SR30-0436-1

IBM Series/1

Event Driven Executive

Licensed Program

Study Guide



=5 SR30-0436-1

O

.

IBM Series/1

Event Driven Executive

Licensed Program
Study Guide



®

Second Edition (September 1980)

This edition is a major revision of, and obsoletes, SR30-0436-0. 1t contains material in
support of IBM Series/1 Event Driven Executive version 3.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent editions.

Use this publication only for the uses stated in “’Section 1. Introduction to This Course.’

Publications are not stocked at the address given below. Requests for I1BM publications
should be made to your 1BM representative or to the IBM branch office serving your
locality.

This publication could contain technical inaccuracies or typographical errors.

A form for reader’'s comments is provided at the back of this publication. 1f the form

has been removed, address your comments to IBM Corporation, General Systems Division,

Technical Publications, Department 796, P.O. Box 2150, Atlanta, Georgia 30055. IBM

may use and distribute any of the information you supply in any way it believes

appropriate without incurring any obligation whatever. You may, of course, continue

to use the information you supply. .

© Copyright International Business Machines Corporation 1979, 1980



™
O

Section 1. Introduction to This Course ........ 1-1
Course Overview ... .. .. ..ot vneenennn 1-1
Material Requirements . .................. 1-3
Study Tips .o vt e e e 1-3
Course Objectives . .. ....civiii e eennnn. 14
Event Driven Executive Components—Version 3 .. 14

Basic Supervisor and Emulator (5719-XS3) .... 14

Event Driven Executive Utilities (6719-UT5) ... 1-6
Event Driven Executive Macro Library/Host

(5740-LM4) . . . .. .. .. 1-5
Event Driven Executive Program Preparation
Facility (5719-XX4) .................. 1-5
Event Driven Executive Macro Library
(5719-LM7) . .. ... . 1-6
Event Driven Executive — An Operational
Overview . .. .. i ittt it e 1-6
Section 2. Instruction Format .............. 21
Event Driven Executive Basic Instruction Format . . 2-1
Language Syntax/Coding Conventions ......... 2-1
Instruction Format . .. ................... 2-2
Instruction Format Review Exercise — Questions .. 2-5

Instruction Format Review Exercise — Answers ... 2-6

Section 3. Program/Tasks ................. 3-1
Program/Task Concepts and Structure . ........ 3-1
Single Task Program .. ................. 3-2
Multiple Task Programs .. ............... 3-3
Multiple Program Structure . ............. 3-5
Overlay Program Structure . .. ............ 3-7
Program/Task Definition . ................ 3-10
Program/Task Execution . ................ 3-12
Program Loading .................... 312
Program Synchronization . . ............. 3-15
Task Synchronization . ................ 3-18
Queuable Resources . ................... 3-21
WAIT/POST Operation . ..........couv... 3-24
Attention Lists ... ........... ... 3-26
Programs/Tasks Review Exercise — Questions ... 3-29
Programs/Tasks Review Exercise — Answers . ... 3-32
Section 4. Data Definition . .. .............. 4-1
DATA Statement .. ........ccuuiennnnn 4-1
BUFFER Statement .. ................... 4-6
TEXT Statement .. ..........cveeunnennn 4-8
Data Definition Review Exercise — Questions ... 4-11
Data Definition Review Exercise — Answers . ... 4-12

Contents

Section 5. Data Manipulation . . .. ........... 5-1
Integer Arithmetic . .............ccovu... 5-1

Optional Operands . . .................. 5-2
Floating Point Arithmetic ................. 5-3
Data Movement Instructions . . . ............. 54
Logical Instructions . ... ........ueeuunnn. 5.6
Data Manipulation Review Exercise — Questions . 5-10
Data Manipulation Review Exercise — Answers .. 5-12
Section 6. Queue Processing . .............. 6-1
DEFINEQ .. ... ... . ittt 6-2
LASTQ/FIRSTQ/NEXTQ .......... e 64
Queue Processing Review Exercise — Questions ... 6-7

Queue Processing Review Exercise — Answers . ... 6-8

Section 7. ProgramControl ... ............. 741
Subroutines . . . ... ... e 71
SUBROUT Statement . ... ..........c0uuu.. 7-1
CALL Statement .. .........c¢ccuueueennn 7-2
Passing Subroutine Parameters .............. 7-2
USER Statement .. ..........cc0vttiunn.n 7-5
Program Control Review Exercise — Questions . ... 7-9
Program Control Review Exercise — Answers . . .. 7-10
Section 8. Program Sequencing . ............ 8-1
GOTO Statement . ... .......cvvvieuen.nn 8-1
IFStatement . .. .. .. ... ...t iiiernnnnn 84
Relational Conjunctions . ............... 8-6
DO Statement .. ........c.iuttiieeennnnn 8-7
Program Sequencing Review Exercise —
Questions . ... ... it e e e e 8-11

Program Sequencing Review Exercise — Answers . 8-14

Section9. Timers . ................00u.. 9-1
GETTIME Instruction . . . ...... ... 9-1
INTIME Instruction . .. .......coveeuennn. 9-2
STIMER Instruction ... ..........cc0cuo.. 9-3
Timing Functions — Coding Example .......... 94
Timers Review Exercise — Questions .......... 9-7
Timers Review Exercise — Answers . .......... 9-8
Section 10. Disk/Diskette 1/O ............. 10-1
Devices Supported — Diskette . . . ... ........ 10-1
Devices Supported —Disk . ............... 101
Devices Supported —~Tape . .......c.cc.u... 10-1

Disk Volume Definition ............... 10-2

Diskette Volume Definition ............. 10-3

Contents i



Tape Volume Definition ...............
DataSets .........iviiiivinnennnnn
Records .......... ... iennnn.
Record/Sector Relationship . ............
PROGRAM Statement DS=Operand .........
READ/WRITE Statements — Disk/Diskette . . . ..
READ/WRITE Statements — Tape .........
NOTE/POINT Statements . ..............
Disk/Diskette 1/0 Coding Examples . ........
Tape l/OExamples . . ..........cv....
Load-Time Data Set Definition ............

Disk/Diskette 1/O Review Exercise — Questions .
Disk/Diskette 1/0O Review Exercise — Answers .

Section 11, Terminal1/O . ...............
TERMINAL Statement . .................
RollScreens . ......................
NHIST=Operand ........... ...
StaticScreens . ... ..... ... e,
ENQT/DEQT Instructions . ...............
IOCB Statement . . .. ...t
Data Representation ....................
PRINTEXT Instruction . .................
READTEXT Instruction ................
Operator Control of Program Execution . ... ..
PF and Attention Key Handling .........
QUESTION Instruction . ..............
WAIT KEY Instruction . ..............
HARDCOPYPFKey ................
Static Screen Coding Example ............
ERASE Instruction . ... ..............
TERMCTRL Instruction ..............
RDCURSOR Instruction ................
PRINTNUM/GETVALUE Instructions . ......
PRINTIME/PRINDATE Instructions ........
Terminal |/O Review Exercise — Questions . . ..
Terminal 1/O Review Exercise — Answers .. ...

Section 12. Data Formatting ..............
DataConversion . .. ...t iieneneenennnn

CONVTB Instruction . ..........ccvuuun.
CONVTD/CONVTB Coding Examples ........
GETEDIT/PUTEDIT Introduction ..........
PUTEDIT/GETEDIT Instructions ..........
FORMAT Statement . . .. .. .............
Data Formatting Review Exercise — Questions . .
Data Formatting Review Exercise — Answers . . .

Section13. Sensor 1/0 . .................
SensorBased 1/O . .......... ...
Digital Input/Output . ... ..............
Analog Input/Qutput .. ...............
Event Driven Executive Sensor 1/0 Support

iv.  SR30-0436

IODEF Statement . . ..........ovvvuun.. 13-8
SBIOStatement .. ..........¢ccciuo.... 13-10

Sensor 1/0 Coding Examples . .......... 13-12
Sensor |/O Review Exercise — Questions . . . ... 13-19
Sensor 1/O Review Exercise — Answers . .. .... 13-20

Introduction to Sections 14 Through 18

Section 14. Utility Programs .............. 1441
Operator Commands . ........ e 144
BA e e 1441
o 14-2
L 14-2
D and BP .. e 14-2
0 O 14-2
BE L e e e e 14-3
B i e e e e 14-3
$Tand$W . ... ... . 14-3
$VARYON and $VARYOFF ............ 144
Operator Command . ................... 144
System Utility Programs — Introduction .. ... .. 14-6
Data Management/Maintenance Utilities . ... ... 14-7
SDASDI ... e e 14-7
SINITDSK ... i i e 149
SDISKUTT ... ittt ee e 14-11
SDISKUTZ2 . ..ottt i e i e e i 14-12
SCOPY .. e e 1414
SCOPYUTT . ... i it i 14-15
SMOVEVOL . ... .ttt ie et 14-17
SCOMPRES . .......ciiiiiiinnnnn. 1417
STAPEUTT . ... it i i i 14-18
Terminal 1/O Utilities .................. 1419
STERMUT1 . ... .. it 14-19
STERMUT2 ....... .. iiiiiinn 14-21
STERMUT3 ... . ittt 14-25
SPFMAP .. ... e e 14-25
SFONT .. i e e 14-26
Miscellaneous Utilities . . ................ 14-36
SIMAGE . ...ttt 14-36
SIOTEST ...ttt it i e i iiee 14-43
$PREFIND . ....... ..., 14-44
Program Preparation Utilities ............. 14-46
SEDITIN ... .. i it iiienns 14-46
SUPDATE . ... .ottt eeaen 1449
SFSEDIT ..ttt i e e 14-50
Other Utility Programs .. ............... 14-80
BSC Utilities .. .........ccuiiein.nn 14-80
SBSCTRCE . .. .. ittt ierenenn 14-80
BSCUTT ...ttt it it it 14-80
$BSCUTZ ...t ittt 14-80
Display Processor (Graphics) Utilities . . ... ... 14-81
SDIUTIL .. e e e e 14-81
$DICOMP . .. i e i 14-81
SDIINTER . ... ... i, 14-81



Host Program Preparation Utilities . .. ....... 14-81 Section 16. Program Preparation Using

SHCFUTT . ... ... i i i 14-82 SEDXASM . .......... .., 16-1
$EDIT1/SUPDATEH ................ 14-82 Program Preparation Overview ............. 16-1
$RJE2780/$RJE3780 ... ...... ..o 14-82 SEDXASM ... ... i 16-3
$PRT2780/$PRT3780 ............... 14-83 SEDXLIST .. ... e 16-5
$DEBUG ...........ciiiiennnnnn 14-83 SLINK . e e 16-5
CSJOBUTIL Lo e e 16-7
Section 15. System Installation ............ 15-1 Program Preparation Example . . . ... ....... 16-12
Objectives . .. .ot i it e e e e 15-1 Problem Description .. ................. 16-12
Machine Readable Material .. .............. 15-1 Create/Modify Source Module .......... 16-13
5719-XS3 Basic Supervisor and Emulator . ... 15-1 Assemble Source Module . ............. 16-22
5719-UT5H System Utility Programs ........ 15-1 Produce Assembly Listing ............. 16-24
5719-XX4 Program Preparation Facility ... .. 15-1 Link Edit Object Modules ............. 16-25
5719-LM7 Macro Library . . ... .......... 15-2 Format Object Module ............... 16-28
5740-LM4 Macro Library/Host . .......... 15-2 $EDXASM Copy Code Function .. ....... 16-30
Starter System Installation Overview . ........ 15-2 Job Stream Procedure . ............... 16-37
Installing the Starter System . .. .. .......... 15-3
User System Generation . ................ 15-5 Section 17. Program Preparation Using
SYSGEN Overview . ........ oo, 15-6 SSTASM . ... e 17-1
Allocate Required DataSets .. ........... 15-5 ObjJeCtives & v v v vttt e e 1741
Edit System Configuration Statements ........ 156-7 $S1ASM Machine Readable Material ......... 171
SIOTEST ..ttt e e e 15-7 Installing $S1ASM . . . . ... .. ... ... ...... 17-2
SYSTEM Statement .. ............... 15-10 SSTASM Operation .. .. ov v i i v v 17-2
TIMER Statement . ................. 15-11 Data Set Requirements . ............... 17-3
DISK Statements . ...........couo.. 15-11 $STASM/SJOBUTIL Interface .. ........... 17-5
TERMINAL Statement . .............. 15-12
System CommunicationsArea .......... 15-13 Section 18. Session Manager .............. 18-1
Select Supervisor Support Modules ......... 15-15 Objectives . .. .. . i ittt i i e e e 18-1
Edit $JOBUTIL Procedure File . .. .. ........ 15-19 Session Manager Overview . ............... 18-1
Assemble/Link/Format . ................ 15-20 Session Manager Operating Concepts . ........ 18-6
Designate Tailored Supervisor . .......... 15-24 Definitionof Terms . ................. 18-6
IPL Tailored Supervisor . .............. 15-26 Using the Session Manager . .............. 18-10
Loading the Session Manager ............. 18-10
Data Set Allocation . ................ 18-12
Appendix A. SYSGEN Listings ............. A-1
Appendix B. Program Preparation Listings . ... .. B-1

Contents v



vi

SR30-0436

This page intentionally left blank.

O



COURSE OVERVIEW

Section 1. Introduction to This Course

This course is intended to give Series/1 personnel a general knowledge
of the concepts and theory incorporated in the Event Driven Executive
system Version 3. Upon completion of this course, the student should
be able to install, generate and maintain an Event Driven Executive
system as well as write and execute basic application programs.

The prerequisite for this course is successful completion of /ntroduction
to Smaller Systems Student Text (SR30-0185) or equivalent experience.
Programming experience using high level languages is also strongly
recommended.

The Event Driven Executive instruction set and system support
programs have been divided into several broad functional groups,
each group constituting a section of this study guide. An attempt
has been made to organize the sections in a logical sequence for
study. Each section, however, is also as modular as possible, and
can be studied as a separate unit, or in a sequence other than
presented, if desired.

Section 1. Introduction to This Course
Contains introductory material, as well as a brief operational
overview of the Event Driven Executive system.

Section 2. Instruction Format
Coding conventions/syntax rules for coding Event Driven
Executive instructions,

Section 3. Programs/Tasks

This section covers program/task structure, application program
design considerations, and all of the Event Driven Executive
instructions used for task control and synchronization.

Section 4. Data Definition

Section 5. Data Manipulation

These two sections cover all of the basic instructions required to
define, move, or perform logical or arithmetic operations on data
in storage.

Section 6. Queue Processing
Discussion and illustration of the queue definition and processing
instructions.

Section 7. Program Control
How to define and use both Event Driven Executive subroutines,
and subroutines written in Series/1 Assembler Language.

Introduction to This Course  1-1



1-2 SR30-0436

Section 8. Program Sequencing
Discussion and illustration of IF and DO structures, and the
relational statements used with them.

Section 9. Timers
Instructions to access the system’s 24 hour clock and the elapsed
time clock, and to wait for a time delay are discussed.

Section 10. Disk/Diskette 1/0
Discussion and examples of defining and accessing data sets from
an application program.

Section 11. Terminal 1/0

Section 12. Data Formatting

The comprehensive terminal 1/0 support provided by the Event
Driven Executive is discussed in detail, with several coding
examples. Data Formatting support is used with terminals, and
therefore immediately follows.

Section 13. Sensor Input/Output

This section includes some basic sensor 1/0 concepts, as well as
how to incorporate the sensor |/O support in a supervisor and to
access sensor 1/0 devices from a user program.

Section 14. System Utilities
All of the system utilities are described. Those utilities required
most often are discussed in detail.

Section 15. System Installation

This section covers installation of the supplied supervisor and system
programs as received from PID, and generation of a tailored supervisor,
using the online Program Preparation Facility.

Section 16. Program Preparation Using $EDXASM

$FSEDIT (text editor), SEDXASM (Event Driven language assembler),
$SLINK (link editor), SUPDATE (object module formatter), and
$JOBUTIL (job stream processor) are used to prepare a program for
execution. Included are examples of the use of the COPY CODE
assembler feature and the AUTOCALL link editor option.

Section 17. Program Preparation Using $S1ASM
This optional topic is for those users who will be assembling Series/1
assembler language and/or Event Driven language programs using

$S1ASM, the Series/1 Macro Assembler {Licensed Program 5719-ASA).

Section 18. Session Manager
Organization and operation of the Session Manager programmer pro-
ductivity tool.

%

)



MATERIAL REQUIREMENTS

Course Materials Form No.

*1BM Series/1 Event Driven Executive
Licensed Program Study Guide SR30-0436

Additional Materials

STUDY TIPS

*IBM Series/1 Event Driven Executive
System Guide SC34-1702

*|BM Series/1 Event Driven Executive Operator’s
Reference, Messages and Codes SC34-1703

*IBM Series/1 Event Driven Language
Reference SC34-1706

**|BM Series/1 Macro Assembler Language
Reference SC34-0317

**#*|BM Series/1 Event Driven Executive
Communications and Terminal
Application Guide SC34-1705

***|BM Series/1 Event Driven Executive
Internal Design , LY34-0202

*Required to complete this course.

**Not required to complete course, but may be a useful
reference for users who will be preparing programs
written in Series/1 assembler language, using the
Series/1 Macro Assembler (5719-ASA) (optional topic
in Study Guide).

***Not required to complete this course, These manuals address
topics that are not covered in the study guide, but which may
be of interest to some students,

Each section has a set of objectives. Read the objectives carefully so
that you understand what you should be learning in that section.

For each topic you will find a READING ASSIGNMENT. Read the
reading assignment and then continue in the Self Study Guide. At the
end of most sections you will find a Review Exercise. Try to complete
it prior to looking at the correct answers and be sure you understand
your mistakes before proceeding to-the next topic or section.

The total amount of study time you will need is estimated at 50 to
60 hours. This may extend over a period of two or three weeks if
your study periods are brief and somewhat separated because of
other duties.

Introduction to This Course  1-3



COURSE OBJECTIVES

For best results, set a short time goal rather than a long one and then
make every effort to meet that goal. Study sessions should be about
2 hours long but use whatever time you wish. You may find that
several short sessions are more productive than one longer session.

The student upon completion of this self-study course should be able

to:
1.

o 0N

Describe the major components and facilities of the Series/1
Event Driven Executive system

Install an Event Driven Executive system on a Series/1
Use the utility programs to maintain a system
invoke Supervisor utility functions from a terminal

Use most of the Event Driven Executive instructions
necessary to code application programs

Load application programs from a terminal, or from other
programs

Understand the use of overlay programs, multitasking, and
task/program synchronization

EVENT DRIVEN EXECUTIVE COMPONENTS—VERSION 3

The Event Driven Executive software offering consists of five
licensed programs:

1.

2
3.
4

Basic Supervisor and Emulator (5719-XS3)
Event Driven Executive Utilities (56719-UTh)
Event Driven Executive Macro Library/Host (5740-L.M4)
Event Driven Executive Program (5719-XX4)
Preparation Facility

Event Driven Executive Macro (5719-LM7)
Library

Basic Supervisor and Emulator (5719-XS3)

1-4 SR30-0436

Event Driven Executive application programs are made up of instructions
coded in the Event Driven Language. At execution time, the assembled

output of these instructions is passed to the emulator portion of the
Supervisor/Emulator, and the Emulator links to the system routines
required to perform the functions. The Supervisor portion of the

Supervisor/Emulator manages system and 1/0 resources for application

programs in execution.

)



Event Driven Executive Utilities (5719-UT5)

C The system utilities also operate urder the control of the supervisor.
They provide online, interactive support for a tailored supervisor
generation, source module preparation, disk initialization, data set/
volume maintenance, etc.

Event Driven Executive Macro Library/Host (5740-LM4)

This is a set of libraries and procedures to be installed on a host
System/370, so that Event Driven Executive or Series/1 assembler
programs can be assembled on the host machine. The macros support
all of the Event Driven Executive functions supported by the Event
Driven Executive Program Preparation Facility (5719-XX4).

Prerequisites for host program preparation include:

o A binary synchronous communications line between the Series/1
and the host

o Use of either the S/370 Event Driven Executive Host Communi-
cations Facility IUP (5796-PGH) or the RJE utility supplied
with Event Driven Executive Utilities (6719-UT5), for transfer of
data sets between the two systems

@ On the host, installation of the S/370 Program Preparation
Facilities for Series/1 FDP (5798-NNQ)

C/) Event Driven Executive Program Preparation Facility (56719-XX4)

The Event Driven Executive Program Preparation Facility consists
of programs which allow the user to assemble and link edit appli-
cation programs concurrently with the execution of other pro-
grams (including other program preparation programs). The user
can also reconfigure, assemble, and link edit custom supervisors
online.

The Event Driven Executive assembler, SEDXASM, (part of 5719-XX4)
is used to assemble application programs written in the Event Driven
language. As long as no Series/1 assembler language code is included

in application source code (USER exit routines), this is the only
assembler required for program preparation.

Licensed program 5719-ASA, (separately orderable program, not part of
5719-XX4) the Series/1 Macro Assembler, also runs under the Event
Driven Executive system, and is used to assemble programs written in
Series/1 assembler language. When installed under the Event Driven
Executive, the Series/1 Macro Assembler is called $S1ASM. If the
Series/1 Macro Library (5719-LM7) is also installed, $S1ASM may be
used to assemble Event Driven Executive supervisors and programs
written in the Event Driven Language, as well as programs written in
Series/1 assembler language.

Introduction to This Course 15



Event Driven Executive Macro Library (5719-LM7)

—
This library contains the macro prototypes for the Event Driven L ‘
instruction set, and all the macros necessary to build a supervisor -
tailored to a particular system configuration. This library is used when

preparing programs using the Series/1 Macro Assembler $51ASM (not

required if system generation/program preparation is done with

SEDXASM).

EVENT DRIVEN EXECUTIVE — AN OPERATIONAL OVERVIEW

1-6 SR30-0436

The Event Driven Executive component that controls execution

of user-written applications is the Supervisor/Emulator. It is a multi-
programming supervisor, capable of controlling concurrent program
execution.

The basic unit of work for the supervisor is an instruction. Instructions
are combined to form tasks, each of which has an assigned priority,
used by the supervisor to allocate system resources.

An application program may have more than one task (multitasking).
Each task competes for system resources with every other task in the
system, based on task priority. Each task runs independently of all
other tasks.

Programs/tasks are made up of Event Driven Executive instructions

that have been processed by an assembler and prepared for execution

by the link/formatting system utilities. At execution time, the

Supervisor/Emulator analyzes an instruction’s assembled format, and (\
links to the appropriate supervisor routine to perform the operation. —
Following the completion of each instruction, the supervisor processes

the next sequential instruction in the highest priority task that is

ready.

The Supervisor/Emulator occupies the lowest 10 to 40+ K bytes

of Series/1 storage, depending on what support is included. The rest
of storage is available for user application programs. Programs may be
loaded by a terminal operator request, or by execution of a LOAD
instruction in a currently executing program. Programs are loaded
dynamically, using a relocating loader, into the smallest available

area of storage of sufficient size to contain them.

Other functions/services performed by the supervisor include task
dispatching (starting/ending tasks), I/O interrupt handling, program/
task synchronization, and provision for inter-program communication
via a global common area.



Section 2. Instruction Format

EVENT DRIVEN EXECUTIVE BASIC INSTRUCTION FORMAT

OBJECTIVES: After completing this topic, the student should be
able to describe the basic format used in coding Event Driven
Executive instructions.

LANGUAGE SYNTAX/CODING CONVENTIONS

The Event Driven Executive instruction set was originally imple-
mented as a macro library, using a macro assembler on the native or
a host machine to process application source modules. $EDXASM

is an online Event Driven Executive language assembler, not a macro
assembler, and does not utilize a macro library to process application
source modules. Although macros are not used, macro assembler
language syntax and coding conventions are still followed, thereby
retaining compatibility with previous releases.

If required, Series/1 macro assembler language syntax/coding con-
ventions may be reviewed in the Series/1 Macro Assembler Language
C Reference (SC34-0317).

Instruction Format  2-1



INSTRUCTION FORMAT

READING ASSIGNMENT: IBM Series/1 Event Driven Executive '
Language Reference (SC34-1706), “General Instruction Format."” -

The basic Event Driven Executive instruction format is:
Tabel op opndl,opnd2,....opndn,KEYWORD=,P1=,P2=,...Pn=
where

Tabel identifies the location of a particular instruction and
can be referenced by other instructions.

op s the operation to be performed by the Series/1 (MOVE,
ADD, etc.)

opndl,opnd2,....opndn are positional operands. The
meaning of each parameter or operand is defined by its
position in the operand field of the instruction. The number
of positional operands varies with each instruction type.

opndl is normally the ‘“to"’ or target location.
opnd2 is normally the “from”’ or source loaction.

KEYWORD= are keyword operands. The keyword (PREC, RESULT,
EVENT, etc.) specifies a particular parameter to be
used in that instruction’s execution.

Pl=,etc are keyword operands that allow positional operand
modification at execution time.

2-2 SR30-0436



@

Figure 2-1 shows the relationship of the various parts of a source
statement to the general instruction format. (The ADD instruction

is discussed in detail in “’Section 5. Data Manipulation’’, and

is used here only to illustrate the basic instruction format.) In this
example, three positional operands are used. FIELD is the name of the
“to"’ or ‘‘target’’ location, DATA is the “from’’ or “source’’ location,
and the third positional operand is the integer value ‘1", the “‘count”
operand. A keyword operand, PREC= is also coded; in this case, the
S indicates ‘’single precision.”

ADDIT ADD FIELD,DATA, 1,PREC=S

LABEL op opnd1 opnd3 KEYWORD
(operation (to or (count) OPERAND
to be target (specifying single
performed location) opnd2 precision)
by (from or
computer) source location)

Figure 2-1. Source statement/general instruction format relationship

For the ADD instruction, the count and PREC = operands are not
required; they have values to which they will default if not coded
(the values coded in the illustration are, in fact, the default values

for these operands). In the ADD, the ““count’ operand applies to the
first positional operand only (the number of consecutive values,
beginning at location FIELD, to which the value in DATA is to be
added), and the ‘PREC ="’ operand, as coded, applies only to the
first positional operand and the result (which is also the first
operand, in this example).

Other instructions may not have a count or PREC= operand or, if
they do, they may apply to other than the first positional operand.
The general syntax of an Event Driven Executive instruction adheres
to the basic format just discussed; the meaning of the operands,

and the number of operands allowed differs depending on the
instruction type.

Instruction Format  2-3



2-4 SR30-0436

This page intentionally left blank,



o

INSTRUCTION FORMAT REVIEW EXERCISE — QUESTIONS

1.

In the study guide, and in the reading assignment, the terms
““operand’’ and ““parameter’’ are both used. These terms
are interchangeable, and both refer to labels/names/values
in the operand field of an instruction.

True
False

In the operand field of an instruction, all positional operands
used must precede (from left to right) any keyword operands
used.

True
False

All instructions have the same number of positional operands,
but the number of keyword operands varies from instruction
to instruction.

True

False

In the operand field of an instruction, positional operands are
separated by commas, but keyword operands may be separated
by blanks or by commas.

True

False

The meaning of a positional operand, in a given instruction,
is determined by its position (first, second, etc.), while the
meaning of a keyword operand is determined by the keyword
used.

True
False

Labels beginning with ““$’’ have a special meaning to the system,
and are reserved for system use.

True

False

Instruction Format

2-5



INSTRUCTION FORMAT REVIEW EXERCISE — ANSWERS

2-6 SR30-0436

True. Both terms are used interchangeably, throughout the (f\j
study guide and the manuals. For example, —

parameter one
parameter 1
first parameter
parm1
operand one
operand 1

first operand
opnd1

are all used at one time or other to refer to the first positional
operand in an operand field being discussed.

A possible area of confusion might be an instance when “’parameter”
is used to describe information passed to another program or a
subroutine, rather than to reference an element of an operand

field. Normal attention to the context in which the term is used
will usually prevent any misunderstanding.

True. All positional operands must be coded before (to the left
of) the first keyword operand. After all positional operands have
been coded, multiple keyword operands may be coded in any
sequence desired; all keywords are analyzed in light of the meaning
of the keyword itself, rather than its position within the operand
field.

False. Different instructions vary in the number of required C
positional operands (must be coded, no default), optional

positional operands (will default to predetermined value if

not coded), and required/optional keyword operands.

False. A/l operands, keyword or positional, are separated
by commas, with no imbedded blanks allowed. When the first
blank is detected, all further information is considered a comment.

In the situation where two or more optional positional operands
are allowed, and you skip one and code the other, the skipped
(defaulted) operand must be indicated by a comma if the coded
operand follows it in position.



®

Example:

label op opndl,gopnd?2,opnd3,opndd

REQUIRED OPTIONAL

VALID OPERAND STRUCTURES
opndl,opnd2
REQUIRED OPERANDS ONLY — OPTIONAL OPERANDS
(opnd3, opnd4) TAKE DEFAULT
opndl,opnd2,opnd3
REQUIRED OPERANDS PLUS FIRST OPTIONAL OPERAND
(opnd3) CODED — opnd4 TAKES DEFAULT VALUE
opndl,opnd2,opnd3,opndd
REQUIRED AND OPTIONAL OPERANDS CODED
opndl,opnd2, ,opnd4
REQUIRED AND LAST OPTIONAL OPERAND (opnd4)

CODED, SKIPPED OPERAND (opnd3) INDICATED BY A
COMMA

INVALID OPERAND STRUCTURES
opndl1,opnd?,opnd4

THE VALUE YOU THOUGHT YOU CODED FOR opnd4
WILL BE ASSIGNED TO opnd3, AND opnd4 WILL TAKE
THE DEFAULT

5. True. Self explanatory.

6. True. There is no system enforced discipline preventing a user
from defining storage locations with labels beginning with the ““$""
character. However, because system defined functions/locations/
resources have labels beginning with this character that may be
referenced by operands in user-written instructions, confusion can
be avoided if users restrict their own definitions to labels not
beginning with “$"’.

Instruction Format  2-7



2-8 SR30-0436

This page intentionally left blank.



@

Section 3. Program/Tasks

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1.  Describe programs and tasks as used in an Event Driven Executive
System

2. Define an application program structure that fits system and
application requirements

3. Use the Event Driven Executive program and task definition
statements

4. Understand and use the task synchronization statements

o

Include operator attention routines in a program

PROGRAM/TASK CONCEPTS AND STRUCTURE

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702) ‘‘Program/Task Concepts and Structure”
through ““Multiple Program Structure.” 1BM Series/1 Event Driven
Executive Language Reference (SC34-1706), ““Task Control.”

System resources in an Event Driven Executive system are allocated

to tasks according to the priorities of the tasks. A task is a unit of work,
defined by the application programmer. A program is a disk- or
diskette-resident collection of one or more tasks, that can be loaded into
storage for execution. Although ““program’’ and ““task’’ are sometimes
used synonymously, the basic executable unit for the supervisor is

the task.

Task priority is assigned by the application programmer when the task
is coded. Valid priorities range between 0 and 511, with 0 being the
highest possible priority, and 511 the lowest. Tasks with priorities
between 0 and 255 execute on hardware level 2, and those between
256 and 511 on level 3.

Program/Tasks  3-1



Single Task Program

3-2 SR30-0436

For most applications, an elaborate program structure is not C
required, and programs will consist of a single task, as shown in e
Figure 3-1.

PROGRAM AS SINGLE TASK

® NO EXECUTION OVERLAP WITHIN PROGRAM

© PROGRAM COMPETES FOR SYSTEM RESOURCES
WITH OTHER TASKS CURRENTLY IN SYSTEM

PROGA

Figure 3-1. Single task program structure

Figure 3-2 is an example of the type of application that lends itself
to the single task program structure. The job is sequential in nature,
and will be waiting for operator input most of the time. There is no
requirement for asynchronous execution of multiple functions or
I/0 overlap with processing, and nothing to be gained by a more
complex structure.

OPERATOR REQUEST LOADS

“CUSTOMER FILE UPDATE"”

PROGRAM (\ ‘
s

UPDATE

1. GET CUSTOMER NAME FROM TERMINAL
(OPERATOR INPUT)

SEARCH CUSTOMER FILE FOR NAME
READ CUSTOMER RECORD
DISPLAY CUSTOMER RECORD ON TERMINAL

ACCEPT UPDATE FROM TERMINAL (OPERATOR
INPUT)

WRITE UPDATED RECORD TO CUSTOMER FILE

GO BACK TO STEP 1 IF MORE RECORDS TO
UPDATE

8. ELSE, END UPDATE PROGRAM

e

Figure 3-2. Single task application example N

o P~ DN

o




O

Multiple Task Programs

Figure 3-3 illustrates a multitasking program structure. PROGA is
started up by the system when the program is loaded, and is called the
PRIMARY TASK. The other tasks shown will not start up until a user-
coded command is executed that tells them to begin. PRIMARY
TASKS go into execution as a result of the program’s being loaded into
storage, while initiation of SECONDARY TASKS is a user responsibility.
Once in execution, all tasks within a program compete for system re-
sources with one another, and with all other tasks active in the system.
The supervisor considers each task as a discrete unit of work, and
assigns resources based on task priority, regardless of which tasks are
PRIMARY or SECONDARY.

PROGA PROGRAM MADE UP OF MULTIPLE TASKS
o CONCURRENT (ASYNCHRONOUS) EXECUTION
OF TASKS WITHIN PROGRAM
e TASKS COMPETE FOR SYSTEM RESOURCES
TASKX WITH ALL OTHER TASKS CURRENTLY IN SYSTEM

TASKY
TASKZ

Figure 3-3. Multitasking program structure

Figure 3-4 is an example of an application that makes use of multi-
tasking. The program repetitively reads a group of Analog Input
points, performs calculations on the data and stores the results in an
output area on disk.

Program/Tasks  3-3



3-4 SR30-0436

OPERATOR REQUEST
LOADS “A/l DATA
REDUCTION” PROGRAM

AIRDUCE

START “AISCAN" TASK

WAIT FOR “AISCAN"” TASK TO COMPLETE

READ A/l VALUES FROM DISK INTO WORK AREA
START “AISCAN"” TASK

PERFORM DATA REDUCTION ON DATA IN WORK
AREA

6. WRITE RESULTS TO OUTPUT AREA ON DISK
\7. GO BACK TO STEP 2

S

AISCAN

1. READ A/I POINTS INTO STORAGE
2. WRITE A/l VALUES TO DISK

3. TASK “AISCAN’ COMPLETED

V\_/

Figure 3-4. Multitasking application example

To take advantage of multitasking, the reading of the Analog Input
points has been defined as a separate task, which also buffers the collec-
ted data to disk. When the program is loaded into storage, the supervisor
starts up the primary task, AIRDUCE. The first step in AIRDUCE is

to start up the secondary task AISCAN. AIRDUCE then waits for
completion of the reading and buffering of the first set of Analog

Input values,

When AISCAN completes, AIRDUCE starts up again, and retrieves
the buffered data from disk. AISCAN is restarted and, while the
first set of values is being processed, the second set is being col-
lected; the two functions are overlapping.

C



)

@

Multiple Program Structure

As already mentioned, an application program consists of a user-
written collection of one or more tasks that has been prepared

for execution and stored under a unique name on disk/diskette.

A terminal operator can request that a program be loaded into
storage and placed in execution by entering a request for the super-
visor load utility $L and supplying the program name.

Programs may also be loaded by executing a LOAD instruction in
another program that is already in execution {(use of the LOAD
statement is discussed later in this section). When the supervisor
receives a request to load a program, either from a terminal or a task
already in execution, it finds the program on disk/diskette, finds a
section of unused storage large enough to accommodate the program,
loads the program from disk/diskette, relocates it into the storage
area, and starts up the program’s initial task. When a program com-
pletes execution, the supervisor releases the storage it occupied so
that the area can be used to load other programs.

Because programs are dynamically relocated into storage as load
requests are received, the size and structure of the programs can have
an effect on system throughput. To illustrate this, assume there is

a payroll application consisting of the following functions:

Function Description

SORT Separate part-time hourly, full-time hourly,
and salaried employee data into three
separate files,

PART-TIME Process all records in part-time employee
WAGES file

FULL-TIME Process all records in full-time employee
WAGES file

SALARIED Process all records in salaried employee file
WAGES

WRITE Print checks for all employees

CHECKS :

Program/Tasks

35



3-6 SR30-0436

Although the payroll job just described is a fairly straightforward

application, which could be coded as a single program, there may C
be valid reasons for breaking it up into multiple programs. Onecon-  \__. .
sideration is the size of a program, in relation to the storage available

on the system and the number and size of other programs that may

need to run concurrently. If the size of PAYROLL in relation to the

total storage available for user programs is as depicted in Figure 3-5,

you can see that, once PAYROLL is loaded, little storage will be left

for loading other programs.

SERIES/1
STORAGE

SUPERVISOR

PAYROLL

(AVAILABLE
STORAGE)

Figure 3-5. Program structure

Conversly, if other programs are already in execution when the load
of PAYROLL is requested, there may be some delay before enough
contiguous storage to accommodate so large a program becomes
available and the load can again be attempted.

Below is a redefinition of the payroll application with each function
coded as a separate program.

Program Name Description

SORTIME Separate part-time hourly, full-time hourly,
and salaried employee data into three
separate files

PARTIME Process all records in part-time employee file

FULLTIME Process all records in full-time employee file

SALTIME Process all records in salaried employee file

CHECKS Print checks for all employees C



—.

O

Overlay Program Structure

As can be seen in Figure 3-6, each of the programs is now much
smaller than the entire PAYROLL program. As each program
completes execution, it would request the load of the succeeding
program. The probability of there being enough storage to load

other applications is greatly increased, and the chance of having to wait
for storage to become available so that you can again attempt to load

a program there was previously no room for, is reduced.

SERIES/1
STORAGE
SUPERVISOR
SORTIME
PARTIME
FULLTIME
(AVAILABLE
STORAGE) SALTIME
CHECKS

Figure 3-6. Program structure

If system activity were very high (several other applications in
concurrent execution), a lack of contiguous storage availability
could still cause some difficulty in the loading of the next se-
quential program. In a payroll application, this is acceptable,
because it is not “time-critical’’; a delay in execution of a succeeding
step will not invalidate the final result.

Some applications are time constrained; for example, those involving
the processing of data acquired in realtime, where a delay in execution
might result in data being lost or overwritten. This type of application
must have a reasonable expectation of being loaded quickly when
requested and, once loaded, of running to completion with minimal
delay.

Program/Tasks 3-7




Coding a time-critical application as a single program ensures rapid
execution, once it is loaded, but, if the program is large, the same
problems exist as in the single-program payroll application (possible
delay in load due to large amount of storage required; tying up system
once loaded). Breaking up the program into separate programs takes
care of the problem of size, but the requirement for nearly continuous
execution once in operation, is still not met. Again, the level of activity
within the system could result in a delay in loading the next in a se-
quence of programs, a condition that cannot be tolerated in this type
of application.

Using the OVERLAY PROGRAM technique, both the requirement
for a reasonable sized program and minimum execution delay can
be met. In Figure 3-7, the application is split into separate programs.

PHASE1
APPLICATION
PROGRAM ____
-== PHASE1
PHASE2
____________ o=
PHASE3
‘&":: ::::: -—
\\\\\ PHASE4

Figure 3-7. Program overlays

PHASET1 is the initial program, and will load PHASE2, PHASE3,
and PHASE4, as required. PHASE2, PHASE3, and PHASE4 are
defined as OVERLAY PROGRAMS. When PHASE1 is loaded, the
loader recognizes that overlay programs are referenced. The loader
looks at each program that is designated as an overlay, and then
reserves enough storage to hold PHASE1 plus the largest overlay
program.

3-8 SR30-0436



o

SPACE FOR
PHASE1 PLUS
OVERLAY AREA
RESERVED
WHEN PHASE1

IS LOADED

SERIES/1
STORAGE

SUPERVISOR

PHASE1

(OVERLAY
AREA)

(AVAILABLE
STORAGE)

Figure 3-8. Program overlays

OVERLAY AREA LARGE
ENOUGH FOR ‘PHASEY
THE LARGEST OVERLAY
PROGRAM

When PHASE1 is loaded and in execution, and requests that
PHASE2 be loaded, the system immediately loads PHASE?2 into the
overlay area already reserved and starts it into execution. There is no
contention for the storage in the overlay area with other applications
waiting to be loaded, because the overlay area is reserved for the
exclusive use of PHASE 1 overlay programs.

As each overlay program completes, PHASE 1 loads the next, until
all required programs have run. When PHASE 1 terminates execu-
tion, the storage reserved for both PHASE1 and the overlay area

is released.

To summarize, application program structure (single program/multiple
programs/overlays) and task structure within programs (single task/
multitasking) is determined by

1. type of application (time/non-time critical)

2. size of application

3. system storage size

4. operating environment (system activity/loading)

In general, a user should choose the simplest structure that will
support the application’s requirements.

Program/Tasks

39



PROGRAM/TASK DEFINITION

3-10

SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive (\
Language Reference (SC34-1706), “PROGRAM"”, “ENDPROG", o
“END", “TASK"”, “ENDTASK."”

Every Event Driven Executive application program must have a
PROGRAM statement as the first statement in the program. The
PROGRAM statement defines the basic operating environment of the
program, including any data sets that the program will be using, the
names of overlay programs to be loaded, the priority of the program,
etc.

LOCATION OF FIRST EXECUTABLE EXECUTION
INSTRUCTION IN PRIMARY TASK PRIORITY

INITASK PROGRAM BEGIN,200,DS=MASTER,PGMS=0VLAY1

NAME OF . NAME OF A NAME OF AN

PRIMARY . DISK DATA SET OVERLAY

TASK . PROGRAM
ENDPROG

/END C\

LAST TWO STATEMENTS
IN EVERY PROGRAM

Figure 3-9. Program definition

The label of the PROGRAM statement is the name of the primary task
(the only task, if multitasking is not used). The Event Driven Executive
system generates a control block for the primary task (and for every
other task defined), and assigns the first word of that contro! block to
the symbolic task name. As I/O and other operations are performed
during execution of the task, return codes and status indicators are
placed in this word, and may be examined by instructions referencing
the symbolic task name.



O

All Event Driven Executive programs must end with an ENDPROG
statement, followed by an END. These two statements must be the
last two statements in the program.

Tasks within programs (other than the primary task) are defined by the
TASK statement, and must end with the ENDTASK statement. The
TASK statement performs the same functions for a task that the
PROGRAM statement did for a program except that the data files

and overlay programs defined in the PROGRAM statement apply for
all tasks defined in that program, and are not specified in the TASK

statement.

INITASK PROGRAM

TASK2 TASK

NAME OF
SECONDARY TASK °

ENDTASK
ENDPROG
END

LAST EXECUTABLE STATEMENT
IN EVERY SECONDARY TASK

Figure 3-10. Task definition

BEGIN,200,DS=MASTER,PGMS=0VLAY1

START ~
NO PRIORITY SPECIFIED
DEFAULT =PRIORITY 150

LABEL OF FIRST

EXECUTABLE

INSTRUCTION

Program/Tasks ~ 3-11



PROGRAM/TASK EXECUTION

Program Loading

3-12 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive ~
Language Reference (SC34-1706) “PROGSTOP”, “LOAD"”, “WAIT", <_
“ECB”, “ATTACH.” ]

Event Driven Executive programs are readied for execution at the
time they are loaded into storage from disk or diskette (a given program
will not immediately go into execution unless its primary task has a
higher priority than other currently executing tasks). Programs are
loaded by a terminal operator, using the $L operator command,
or by execution of a LOAD statement in a task already in execution.
In both cases, the program to be loaded is referenced by the name
under which it is stored on disk/diskette, and is either entered by
a terminal operator, or specified as a LOAD statement operand.
Note: The name of a program on disk has no relationship to the
name of that program’s primary task. lllustrations in this study
guide frequently show both names the same, but this is not a

requirement of the system.

PROGA PROGRAM STARTA
.

PROGSTOP
ENDPROG
END
T PROGA (\
3 ’

PROGB PROGRAM STARTB

PROGSTOP
ENDPROG
END

STORAGE
SUPERVISOR

y |
/
!
n
PROGB 1
ry
!
b

PROGB

//  PROGRAMS
PROGA ﬁ/ LOADED BY $L

SUPERVISOR
UTILITY FUNCTION

Figure 3-11. Program loading from terminal

As shown in Figure 3-11, copies of the same program may be in storage

and active at the same time. The single copy of a program on disk/

diskette may be loaded as a separate program from one or more

terminals (as shown) as a separate program from one or more programs

already executing, or as an overlay by a currently executing program C

or programs.



Figure 3-12 is a simple example of one program loading another. The
program consists of the single task INITASK, which will start execution
at location BEGIN. No priority is coded on the PROGRAM statement,
so this program will run at the default priority of 150.

INITASK PROGRAM BEGIN

BEGIN LOAD PTHREE
END PROGSTOP

ENDPROG

END

Figure 3-12. LOAD statement

User disk/diskette 1/0 will not be performed in this program (DS=
not coded in PROGRAM statement), and no overlay programs will
be loaded by this program (PGMS= not coded).

Execution of the LOAD statement at location BEGIN requests that
a program named PTHREE be loaded into storage and readied for
execution. The loading program will wait for the completion of the
attempt to load PTHREE before continuing execution.

The last statement to be executed in the loading program is the
PROGSTOP at location END. The PROGSTOP statement must be
the last executable statement in all programs. When PROGSTOP

is executed, the supervisor is notified that this program’s primary task
is to be detached {made not active), various system resources that
were assigned to this program can now be made available to other
tasks, and the storage occupied by this program can be released for
the loading of other programs.

In the oversimplified example shown in Figure 3-12, the loading task
does not check to make sure the load operation was successful. In
actual practice, the user would want to know if the operation failed,
and if it did, the reason for the failure.

Program/Tasks 3-13



3-14 SR30-0436

In Figure 3-13, the program location ABORT is specified in the

ERROR= keyword operand. |f the load is successful, execution con- (\
tinues with the statement following the LOAD. If the load operation —
fails, control is transferred to the location specified by the ERROR=

keyword operand. In this example, ABORT is the label on a

PROGSTOP statement and failure of the load operation would

result in termination of the loading task. (In actual application pro-

grams, error routines are likely to be much more complex.)

INITASK PROGRAM BEGIN

BEGIN LOAD PTHREE ,ERROR=ABORT
ABORT PROGSTOP

ENDPROG

END

Figure 3-13. LOAD statement

\

Every task has a Task Control Block (TCB) associated with it. A task’s —
TCB is automatically generated during the program preparation process

when a task definition statement is encountered. A TCB consists of

those pointers, save areas, work areas, and indicators required by the

supervisor for controlling execution of the task in storage.

The first word of a task’s TCB is used by the supervisor to pass
information from the system to the task, regarding the outcome of
various operations the task has initiated. Depending on what operation
was attempted, the value set in the first word of the TCB by the super-
visor could indicate an arithmetic exception condition, the result of

an attempted |/O operation, or, as in Figure 3-13, a load operation
completion code.

When a TCB is generated, the location of the first word is assigned
the label on the task definition statement: the “name’’ of the task.
In this study guide, and in Event Driven Executive reference docu-
mentation, this label is referred to as the ‘‘taskname,” and the first
word of the TCB is called the ‘‘task code word.”” In Figure 3-13,

the task code word would be referenced by the taskname INITASK.
If ABORT (specified in ERROR= keyword operand of LOAD
statement) were the label of a user-written error routine, instructions
in that routine could get the load operation completion code by
using INITASK to locate the task code word. Appropriate operator
messages could then be printed out or alternative actions taken,
based on the precise meaning of the completion code. C



- At this point, the instructions required to examine the task code word
Q have not been discussed; however there will be examples illustrating
this technique in later sections of this course,

Program Synchronization

Assuming the LOAD operation was successful, and PTHREE does
go into execution, the loading program illustrated in Figure 3-13
has no way of telling when PTHREE finishes execution. For some
applications, there is no need for a loading program to be notified
of a loaded program’s completion, but there are cases where syn-
chronizing the execution of programs or tasks is required. This can
be accomplished by defining an event, and waiting for that event to
happen.

The “‘wait on event” facility is a signalling mechanism whereby a
task or program can be notified when a certain event has occurred,
and can wait or suspend execution until it does occur. Events in-
clude such things as the expiration of a time delay, completion of
an /O operation, or termination of a task or program. Events may
be user defined or, for some frequently required functions, may

be predefined by the system.

Completion of program execution is a predefined event, invoked by
coding the EVENT= keyword operand in the LOAD statement. In
Figure 3-14, the event has been named DONE3, which is also the
label of an Event Control Block (ECB) that is used by the supervisor
to keep track of whether the event has or has not occurred.

(ij}

INITASK PROGRAM BEGIN

BEGIN LOAD PTHREE ,EVENT=DONE3, ERROR=ABORT
WAIT DONE3

ABORT PROGSTOP

DONE3 ECB
ENDPROG
END

Figure 3-14. LOAD statement

O

Program/Tasks 3-15



3-16

SR30-0436

Note: |f preparing programs using $S1ASM, the Series/1 Macro

Assembler, coding the EVENT= keyword operand in a LOAD state- ,
ment causes an ECB with the proper label to be automatically gen- C\
erated. When preparing programs using the Event Driven language -
assembler SEDXASM, the ECB must be coded, as shown in Figure

3-14.

When.the LOAD statement is executed, the supervisor recognizes
that an event has been defined in the EVENT= keyword operand.
The supervisor finds the ECB named DONES, and sets it to indicate
that the event has not occurred.

After PTHREE has been loaded, both PTHREE and the loading program
are in execution concurrently. Eventually PTHREE will complete
execution (execute a PROGSTOP) and, at that time, the supervisor

will set the ECB at location DONE3 to indicate that the event has
occurred.

When the WAIT statement in the loading program is executed, the

supervisor will see that the waited-on event is DONE3. The supervisor

checks the ECB at location DONES3 to see if the event has occurred.

If it has, execution continues with the next statement following the

WAIT. If it has not, the loading program is placed in a wait state,

and execution will not resume until PTHREE completes. When an

event occurs, and the associated ECB is set to indicate that it has

occurred, the supervisor also checks to see if there are any tasks in

wait state, waiting on that event. |f there are, the supervisor changes

them to the ready state, and they resume normal execution, based on

priority. C '
For examples of how user-written events are defined and used, see -
the discussion titled “WAIT/POST" later in this section.

One instance where waiting on a “‘completion of execution’ event
such as was just described must be done is when a program loads an
overlay. It is a user responsibility to ensure that a program that loads
an overlay program does not execute a PROGSTOP until the overlay
program has completed execution. -

If a program has loaded an overlay program that is now executing,
and the loading program issues a PROGSTOP, the storage occupied
by the loading program and the overlay area is released to the system,
and made available for loading other programs. Although the overlay
area contains a program still in execution, the loader believes the
storage is available, and may, in response to a load request, load
another program into the same area, with completely unpredictable
results.



)

O

In Figure 3-15, PTHREE is defined as an overlay program in the
PGMS= operand of the PROGRAM statement. Up to nine overlay
programs may be defined in a PGMS= list.

INITASK PROGRAM BEGIN,PGMS=PTHREE
BEGIN I:O/-\D PGM1,EVENT=DONE3,ERROR=ABORT

WAIT DONE3
ABORT PROGSTOP
DONE3 ECB

ENDPROG

END

Figure 3-15. LOAD statement

The LOAD statement requests the load of PGM1. This is a positional
keyword reference to the PGMS= list in the PROGRAM statement. if
multiple overlay programs were defined in the PGMS= operand, and
you wished to load the second program in the list, the LOAD state-
ment would be coded to load PGM2; for the third program, PGM3,
and so on up to the maximum of PGMS.

Note that the EVENT= keyword operand in the load statement is
coded, and that the loading program waits for completion of the
overlay program before issuinga PROGSTOP.

A program’s primary task is started into execution {placed in a ready
state) by the system at the time the program is loaded. Secondary
tasks within a program are readied for execution by an ATTACH
instruction, issued from the primary task or another secondary task
previously attached and running.

In Figure 3-16, a secondary task called TASK1 is defined. TASK1
will be started up by the ATTACH in the primary task, at location
BEGIN. Once TASK1 has been attached, TASK1 and INITASK, the
primary task, execute concurrently and independently.

Program/Tasks 3-17




Task Synchronization

3-18

SR30-0436

INITASK PROGRAM BEGIN

BEGIN ATTACH TASK1,110

WATT TASKDONE
PROGSTOP

TASK1 TASK START ,EVENT=TASKDONE

ENDTASK
ENDPROG
END

Figure 3-16. TASK statement

In this example, TASK 1 actually runs at a higher priority than the
primary task, and would receive preference in the allocation of system
resources. The PROGRAM statement has no priority coded, so the
primary task runs at the default priority of 150. There is no priority
coded in the TASK statement, so TASK 1 also defaults to 150, but the
ATTACH instruction specifies priority 110, which overrides any
coded or defaulted priority in the TASK statement

It is just as undesirable for a primary task to release storage (execute
PROGSTOP) containing an executing secondary task, as it is for a
program to release storage containing an overlay program still in
execution. The TASK statement therefore has an EVENT= operand
that is used by the attaching task in the same manner as the loading
program used the LOAD statement’s EVENT= operand.

The example in Figure 3-17 uses many of the concepts you have just
studied. Beginning with the PROGRAM statement at location
INITASK, the starting address of the primary task is BEGIN; the
primary task will run at priority 100; and two overlay programs are
defined in the PGMS= list, PTHREE and PFIVE. At the time the
program in Figure 3-17 is loaded into storage, enough storage will be
reserved to hold the program plus the largest of the two overly
programs.

®



Now assume that the program has been loaded, and the system has
attached the primary task, INITASK. Execution starts at location
BEGIN. This statement requests the load of overlay program PFIVE,
because PFIVE is the second program in the PGMS= list of the
PROGRAM statement, and the LOAD statement specifies PGM2,

If the load of this first overlay fails, the ERROR= operand of the
LOAD statement will cause a transfer of contro! to location
OUTSBAD, the label of the PROGSTOP, and execution will
terminate.

INITASK PROGRAM BEGIN, 100, PGMS=(PTHREE ,PFIVE)
BEGIN LOAD PGM2 ,EVENT=DONE5 , ERROR=0UT5BAD
L4 LOAD PFOUR
Al ATTACH TASK1
W5 WAIT DONE5
L3 LOAD PGM1 ,EVENT=DONE3 , ERROR=0UT 3BAD
W3 WAIT DONE3
OUT3BAD WAIT TASKDONE
OUT5BAD PROGSTOP
DONE5 ECB
DONE3 ECB
TASK1 TASK START,EVENT=TASKDONE
ENDTASK
ENDPROG
END

Figure 3-17. Task/program synchronization

Program/Tasks 3-19



If PFIVE loads properly, the next statement executed would be the

LOAD instruction at location L4. This statement requests that pro- C
gram PFOUR be loaded into whatever storage is available (not in P
overlay area). As it is coded here, any errors encountered in attempt-

ing to load PFOUR will be ignored, and execution will continue with

the statement following the LOAD.

At location A1, the primary task attaches the task defined at location
TASK1, at a priority of 150 (default taken, and no override coded in
the ATTACH). At this point, the primary task INITASK is executing,
the secondary task TASK1 is executing, the primary task of PFIVE, and
any secondary tasks it attached are running in the overlay area, and if
PFOUR loaded successfully, it is also in execution.

Before attempting to load overlay program PTHREE (LOAD statement
at location L3), a WAIT at location W5 is executed, waiting on the
completion of execution event defined in the LOAD statement which
previously loaded PFIVE (EVENT=DONES). If PFIVE has not
finished, the execution of INITASK is suspended at this point. When
PFIVE completes, or if PFIVE were already through when the WAIT
at W5 was issued, the LOAD at location L3 is attempted.

This is a load of PTHREE, the first (PGM1) overlay program defined
in the PGMS= list of the PROGRAM statement. Notice that if the
load operation fails, the ERROR= operand of the LOAD statement
would cause a transfer of control to location OUT3BAD, which is a
WAIT for the completion of TASK1, rather than to OUT5BAD, the

PROGSTOP. If the load of PTHREE were unsuccessful, the primary
task is assured that no program is executing in the overlay area, but (\
the secondary task TASK1 could still be in operation. Any overlay ~

program in execution, and all attached tasks, must run to completion.
before PROGSTOP is executed by the primary task.

Note: In the figures in the study guide, no user-coded ECBs are shown
for event control blocks named in the EVENT= operands of TASK state-
ments. When programs are prepared using the Event Driven language
assembler SEDXASM, the system will automatically generate the
required ECB with the TCB created by the TASK statement, and a
user-coded ECB is not allowed (will cause assembly errors). Users pre-
paring programs under the Series/1 macro assembler may also allow the
system to assign the ECB, or may code an ECB of that name, and the
system will use the explicitly coded ECB instead of assigning one.,

If disk or diskette 1/0 is used in a program, the data sets to be accessed
must be defined in the PROGRAM statement’s DS= operand, in much
the same manner as overlay programs are specified using PGMS=. This
topic will be discussed in the DISK 1/0 section of this study guide.

3-20 SR30-0436



O

o

QUEUABLE RESOURCES

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “ENQ"’, “DEQ.”

A resource is a physical or logical entity within the system. Examples
of resources include a subroutine or data area existing within a parti-
cular program, or perhaps a data set or |/O device known broadly
across the system.

A shared resource is one that may be required by multiple tasks at
the same time. For instance, a table of constants might be referenced
from two or more asynchronously executing tasks within a program.
Since, by definition, the values in the table are “constant” (not being
altered by the tasks using them), access to the table (resource) is
unrestricted.

Unrestricted access to some shared resources may have undesirable
results. As an example, if a program were printing a report on a
printer, and other programs had free access to the printer resource,
the report could end up with printed output from the other programs
interspersed with report lines. In this case, the printer is a shared
resource, but is also what is called a serially reusable resource; one
that should be used by only one task at a time.

The ENQ/DEQ instructions provide a mechanism by which user tasks
may gain exclusive use of a serially reusable shared resource, and retain
control over that resource until explicitly releasing it for use by other
tasks.

Figure 3-18 is an example of how queuable resources are defined

and used. The program consists of the primary task INITASK, and two
secondary tasks, TASKA and TASKB. Assume that both TASKA and
TASKB have a requirement for a 500-word work area.

Instead of putting a 500-word work area in both TASKA and TASKB,
the programmer has chosen to save some storage, and define only

one work area. This single work area is designated as a queuable
resource, and will be shared by TASKA and TASKB, using the ENQ
and DEQ instructions.

The 500-word work area is defined in the DATA statement at {ocation
CALCTABL (DATA statements are discussed fully in a later section).
The Queue Control Block for this resource is defined in the QCB
statement at location CALCQ.

Note: |f preparing programs using the Series/1 macro assembler, coding
an ENQ statement causes the automatic generation of a QCB with the
same label as specified in the operand of the ENQ. When preparing
programs using the online assembler ($EDXASM), users must code the
QCB; it is not automatically generated.

Program/Tasks 3-21



INITASK PROGRAM

STARTUP ATTACH
ATTACH
Wl WALT
W2 WAIT
PROGSTOP
CALCTABL DATA
CALCQ QCB
TASKA TASK
ASTART ENQ
DEQ
ENDTASK
TASKB TASK
BSTART ENQ
DEQ
ENDTASK
ENDPROG
END

Figure 3-18. ENQ/DEQ/QCB

3-22 SR30-0436

STARTUP

)

- TASKA

TASKB

AFINISH
BFINISH

500F'0"

ASTART,EVENT=AFINISH
CALCQ

CALCQ ~

BSTART,EVENT=BFINISH
CALCQ

CALCQ



A
J

When the program begins execution, the primary task attaches both
TASKA and TASKB. TASKA and TASKB have agreed to the con-
vention that any time either of them needs to use the work area
CALCTABL, they will enqueue that resource by issuing an ENQ
instruction referencing the QCB called CALCQ. Assuming that
TASKA issues the ENQ first, the supervisor checks the QCB at
CALCQ, finds that no other task is currently enqueued, and gives
exclusive control of the work area to TASKA. TASKA can now use
CALCTABL without fear of TASKB altering its contents in mid-
execution,

While TASKA has the work area enqueued, TASKB, which is also in
execution, attempts to gain control of the work area by issuing its own
ENQ of CALCQ. The supervisor checks the QCB, finds that TASKA
is already using the resource represented by CALCQ, and therefore
places TASKB in the wait state, waiting upon availability of the
requested resource.

When TASKA is finished with the work area, it issues a DEQ of
CALCQ. The supervisor checks the QCB, and finds that TASKB

is waiting on that resource. TASKB is placed back in the ready state,
and the QCB is changed to indicate TASKB's “ownership” of the
resource represented by CALCQ.

An additional operand, not shown in the example, may be coded on
the ENQ statement. This is the keyword operand BUSY=. It would be
coded if, when attempting to ENQ a resource and the resource was
busy (enqueued by another task), you did not want to suspend, waiting
for the resource to be dequeued. You may code the label of an instruc-
tion in the BUSY= operand (BUSY=label), and control will be
transferred to that location if the resource is already enqueued when
your task tries to ENQ it.

Note that ENQ/DEQ provides protection from simultaneous access
of a serially reusable resource only if all users requiring the resource
agree to employ it. In the example in Figure 3-18, if one of the two
tasks were to use the CALCTABL work area without first enqueuing
for it, neither the supervisor nor the other task has any way of
detecting or preventing it.

Program/Tasks 3-23



WAIT/POST OPERATION

3-24

SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706) “POST", “RESET"”, “"WAIT."”

Figures 3-14 through 3-17 illustrated how a program or task can
synchronize execution with a loaded program or attached task by using

a WAIT on the ECB named in the associated LOAD or TASK statement’s
EVENT= operand. The EVENT= operand is a convenient means of
synchronizing the execution termination sequence of loading and

loaded programs or attaching and attached tasks, but programs and

tasks often require synchronization at other points in their execution.
This can be accomplished through user-defined events, and the
WAIT/POST mechanism.

In the example in Figure 3-19, assume that the primary task, WAITPOST,
at some point in its execution, requires a certain set of numeric values

in order to continue. These values are the result of the execution of

a calculation routine in XTASK, an attached secondary task, the primary
task must therefore make sure that the calculation routine in XTASK

has been executed, before proceeding with its own execution,

The primary task could wait on the EVENT= operand in the TASK
statement XTASK (EVENT=TASKDONE), and be assured that the
required values had been calculated. This method would work, but
the entire secondary task would have to run to completion before
WAITPOST could resume execution. Depending on what else
XTASK has to do in addition to the calculation routine, there

could be a considerable amount of time in which the required values
were ready for use, but WAITPOST is still in a wait state.

Defining the completion of the calculation routine in XTASK as a user
event allows XTASK to signal the primary task as soon as the required
values have been generated. The event is called CALCDONE, and an
ECB of that name is coded. ECBs for user-defined events are initially
set up to indicate ‘‘event occurred.” A WAIT issued against such an
ECB will act as though the event has happened (fall through). There-
fore, a RESET of the ECB must be executed before a WAIT is

issued against it. The RESET instruction at location INITGO sets the
ECB to indicate “‘event has not occurred.”

C



o~

O

WAITPOST PROGRAM INITGO

INITGO RESET CALCDONE
Al ATTACH XTASK
W1 WAIT CALCDONE
W2 WAIT TASKDONE
PROGSTOP
XTASK TASK TASKGO ,EVENT=TASKDONE
Calculation
Routine
p1 POST CALCDONE
ENDTASK
CALCDONE ECB
ENDPROG
END

Figure 3-19. WAIT/POST

In the example, execution begins with the RESET command at
location INITGO, which changes the ECB at CALCDONE from

its initial indication of “event occurred’’ to “event has not occurred.”
At location A1, the secondary task XTASK is attached.

WAITPOST and XTASK are now in concurrent but asynchronous
execution. When XTASK finishes calculating the values required by
the primary task, the POST instruction at location P1 is executed,
and the ECB at location CALCDONE is set to indicate “event
occurred.”

Program/Tasks 3-25




ATTENTION LISTS

3-26 SR30-0436

At the time the POST is issued, the supervisor checks to see if there

are any tasks waiting on this event. If the WAIT at W1 had already -
executed, the primary task would now be in a wait state, and the super-

visor would place WAITPOST back in a ready state. |f the WAIT had ~—
not yet occurred, WAITPOST would continue executing until it was

encountered. When the WAIT was issued, the supervisor would check

CALCDONE, and, finding the event already complete, would allow

WAITPOST to continue execution.

The instructions following the WAIT at W1 in the primary task, and the
instructions following the POST at P1 in the secondary task can now
continue executing concurrently; the primary task did not have to wait
until the secondary task terminated before using the required values.
(Notice that the proper termination sequence for an attaching and

an attached task is still necessary, and is provided for in the example

by the WAIT on EVENT=TASKDONE at location W2.)

The RESET instruction is used with user-defined events. System-defined
events, such as those declared in the EVENT= operand of LOAD or
TASK statements, are automatically initialized by the system. The use
of RESET with a system-defined event may result in improper or un-
predictable operation.

Note: When preparing programs using the Series/1 macro assembler,
declaring an event name in the operand of a POST statement results

in the automatic generation of an ECB of the same name. Users of the
Event Driven language assembler $EDXASM must code an ECB with a
label matching the name in the POST operand; ECB generation is not

automatic. (\\
-

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “ATTNLIST", “ENDATTN."”

The ATTNLIST capability provides a means for an operator to
communicate with a program using a terminal. The ATTNLIST state-
ment is used to specify operand pairs, each pair consisting of a

1- to 8-character operator command, and a label in the user program,
which will receive control when that operator command is entered.

In the example in Figure 3-20, the ATTNLIST statement defines a
single operand pair, STOP, XTHREE. (Note that ATTNLIST, like
ECB and QCB, is not an executable statement, and must not be coded
within an executable code sequence.) The first ““name’’ in the operand
pair defines an operator command to be entered from a terminal, and
the second is the label of the instruction in the user program that will
be executed when that command is entered.



O

EXMPATTN PROGRAM BEGIN

ATTNLIST (STOP , XTHREE)
QUIT PROGSTOP
XTHREE
ENDATTN
ENDPROG
END

Figure 3-20. Attention list

Assume the program in the example has been loaded and is in execu-
tion. An operator can now press the ATTENTION key on the
terminal (the terminal used to load the program), enter the command
STOP (defined in the ATTNLIST statement), press the ENTER key,
and the attention routine at location XTHREE will be executed. The
attention routine in this example, and every attention routine defined,
must end with an ENDATTN statement.

Program/Tasks  3-27



Attention routines usually set a program indicator that can be checked

by the user task; execution-time decisions (end execution, restart the

program, load another program) can then be made, based upon the C\
value in the indicator. The instructions necessary to set storage —
locations (program indicators) or check them for specific values have

not yet been discussed, and are therefore not shown in Figure 3-20.

For further discussion and complete examples, see the topic

"’Operator Control of Program Execution’” in ‘’Section 11, Terminal

1/0."”

3-28 SR30-0436



PROGRAMS/TASKS —REVIEW EXERCISE —QUESTIONS

C} 1.  Most applications can be programmed as a single task. What
type of application would justify the use of the more complex
multitasking structure illustrated in Figure 3-3?

Answer:

2.  What are the advantages of loading a program as an overlay,
rather than just loading it into available storage?

Answer:

3. What disadvantages are there to the overlay program structure?

Answer:

4, How does a program'’s primary task get started up?

Answer:

N

N\

5.  What statement must be executed to release the storage occupied
by a program?

Answer:

Program/Tasks 3-29



3-30 SR30-0436

This page intentionally left blank.



)

)

6. Fill in the blanks in the following paragraph, using words or
phrases from the list below. (Some items in the list may be used
more than once, and some not at all.)

a. ENDTASK f. PROGRAM
b. ATTACH g. ENDPROG
c. entry point h. PROGSTOP
d. TASK i. END
e. shared resource j. primary task
“The first statement in all programs is the statement.

The label of this statement establishes the name of the program'’s
. The last two statements in every program must be

and . The statement
must be the last statement in a primary task to be executed. The first
statement in a secondary task is the statement. The

statement which defines the end of a secondary task, and which is also
the last to execute, is "

7. What is the purpose of ENQ/DEQ and the QCB?

Answer:

8. The proper execution termination sequence of loading/loaded
programs and attaching/attached tasks is an automatic function
of the Event Driven Execution supervisor.

True
False

9. In Figure 3-20, assuming the program is in storage and executing,
and the operator enters QUIT after pressing the Attention key
on the terminal, which of the following would be true?

a. The program would immediately execute the PROGSTOP
instruction, terminating execution.

b. The program would execute the attention routine at
location XTHREE.

c. The entry would not affect program execution.

d. The program would be placed in a wait state, waiting
for the operator to enter XTHREE.

e. None of the above.

Programs/Tasks 3-31




PROGRAMS/TASKS REVIEW EXERCISES — ANSWERS

3-32

SR30-0436

1.

A user might consider multitasking where speed of execution is of
primary importance, and the nature of the job is such that certain
functions may be overlapped (i.e., I/0 and processing).

When loading an overlay program, the loading program is assured
that space is available, because it is reserved at the time the
loading program itself is loaded. Also, the load of an overlay
program is faster than the load of the same program into available
storage would be. This is because information about the overlay
program which the loader requires in order to load it is looked up
at the time the loading program is loaded, and not at the time the
LOAD command is executed, as is the case when loading a non-
overlay program.

The storage occupied by a program that loads overlays is always
equal to the size of the loading program plus the size of the largest
overlay. If the loading program executes without requiring any
overlays, the overlay area, although unused, is still unavailable

to the rest of the system.

The primary task is “‘attached’” (made ready for execution) by
the system (actually the loader) at the time a program is loaded
to storage. Activation of secondary tasks is a user responsibility,
accomplished by execution of ATTACH instructions in already
running primary or secondary tasks.

Execution of PROGSTOP makes the storage now occupied by
a program available to the system, and terminates (detaches)
the program’s primary task.

The first statement in all programs is the f) PROGRAM state-
ment. The label of this statement establishes the name of the
program’s j} primary task. The last two statements in every pro-
gram must be g) ENDPROG and i) END. The h) PROGSTOP
statement must be the last statement in a primary task to be
executed. The first statement in a secondary task is the d) TASK
statement. The statement which defines the end of a secondary
task, and which is also the last to execute, is a) ENDTASK.

ENQ and DEQ are used to protect against the concurrent use of
a serially reusable shared resource by asynchronously executing
tasks.

FALSE. This is a user responsibility. The system provides the
WAIT/EVENT=/ECB to accomplish it (and WAIT/POST for
user events), but the user must code the required statements.

Choice c. is correct. The ATTNLIST in Figure 3-20 defines
the character string STOP as the operator input required to
execute the attention routine at location XTHREE. Any other
entry is ignored.



/
N

DATA STATEMENT

Section 4. Data Definition

OBJECTIVES: After completing this section, the student should
be able to:

. 1. Define data constants for the following data types:

a. EBCDIC d. Fixed Point
b. Hexadecimal e. Floating Point
c. Binary f. Address Constant

2. Define symbolic data areas using the TEXT and BUFFER
statements

3. Define a text message using the TEXT statement

Data definition statements are used to define arithmetic values or
character strings (constants and messages) and to reserve areas of
storage for use during program execution (1/0 buffers, work areas).

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706) “DATA.”

The DATA statement is the Event Driven Executive equivalent of the
Series/1 assembler language Define Constant (DC) statement. Although
all of the examples in this study guide use DATA statements, DC state-
ments could be coded in their place, with the same results.

Note: This is the only instance where a Series/1 assembler language
statement may be coded in an Event Driven Executive program without
employing the USER statement. See “Section 7. Program Control”’

of this study guide for discussion and examples of the USER instruction.

Data Definition  4-1



4-2

SR30-0436

The format for the DATA statement is shown in Figure 4-1.

OPTIONAL REQUIRED

label DATA  duptypelength'value'’

4 ! A

name of duplication number of

first data factor bytes reserved

constant for each data

defined item defined
type of nominal value
data being of data item(s)
defined

Figure 4-1. Data statement

The DATA statement is made up of at least two (“‘type’’ and “‘value”’)
or as many as four parts. The first three parts (“’dup,”” “type,”” and
“length”’) are data descriptors or modifiers. The last part, “‘value,”

is coded with the actual data being defined. All parts of the DATA
statement are coded contiguously; no separators, such as blanks or
commas, are allowed.

dup duplication factor. This optional operand modifier is coded

as an integer value, indicating how many repetitions of the
data item defined by the rest of the operand should be
generated. If not coded, dup defaults to 1 (one).

type data type. This defines the type of data being defined, and
must be coded in every DATA statement. Nine data types
are supported by the system, each one represented by a
different alpha character. The type of data desired is indi-
cated by coding the appropriate character in the type
portion of the operand.

Tength number of bytes to be used for each data item. The length
modifier is supported for only hexadecimal (data type X)
and EBCDIC (data type C) data, and is optional for those.
Every data type (including hexadecimal and EBCDIC) has
an implicit length associated with it. This length is the
number of bytes required to hold the assembled output of
the data constant defined. For example, every EBCDIC

character is represented by an 8-bit (one byte) binary code.

Therefore, when EBCDIC character strings are defined in
DATA statements, the assembled output requires one
storage location (one byte) for each character in the string
(upper example in Figure 4-2). The length modifier over-
rides this implicit length of one byte per character. The
assembled output of the character string is placed in the
number of bytes specified in the length modifier, with
truncation or padding of the character string if required.

C

e



value

EBCDATA DATA C'ABC'

EBCDATA [ ¢C1

Cc2
OUTPUT

WITH IMPLICIT
LENGTH LENGTH
MODIFIER
EBCDATA DATA CL5'ABC'
EBCDATA g ;
ASSEMBLED
OUTPUT WITH / c3
LENGTH MODIFIER 40
40

Figure 4-2. Length modifier

The length modifier is coded as Ln, where n = the number
of bytes. In the lower example in Figure 4-2, a three-byte
character string is placed in a five-byte field (length = L5),
and the two extra bytes are padded with EBCDIC blanks
(hex 40).

nominal value of constant. The last part of the DATA
statement operand is ‘value’. When the DATA statement is
assembled, the assembler initializes the number of data
elements indicated (dup) of the desired type (type code)
to the value coded in the ‘value’ part of the operand.

Note that ‘value’ must always be coded, and for all data
types other than address data (type code A), the value

is enclosed in apostrophes.

The following examples illustrate the interaction of three parts of the
DATA statement operand. (Length, since it is used with only two data
types, will be ignored for the remainder of this discussion.)

DCON

DATA F'o!

The example shown will define a one-word integer value, initialized
to zero. The optional dup is not coded, so the length will default to
the implicit length of the data type, which is one word for F type data.

Data Definition  4-3



4-4 SR30-0436

CCON DATA 5C'A’

The example shows a data type of C (EBCDIC), and the duplication
factor is 5. This statement would generate a five byte field of the
EBCDIC representation of the character A (in hex, CIC1C1C1C1).
The duplication factor applies to the data defined within the enclosing
apostrophes of the value portion of the operand. If the DATA
statement is written as follows;

CCON DATA 5C'ABC'

a fifteen-byte field would be defined, containing five repetitions of the
ABC EBCDIC character string. Although the implicit length of an
EBCDIC character is 1 byte, three characters are defined, so the duplica-
tion factor applies to the three-byte field.

The operand formats described do not apply when coding address (A-
type) data constant. An A-type data constant is a single word in length,
because it contains a Series/1 storage address.

ACON DATA A(FLC1)

The statement shown above will define a one-word constant at location
ACON, containing the address of location FLC1. Note that the name
of the location whose address you want in ACON is enclosed in paren-
theses, rather than apostrophes.

The DATA statement conforms to the rules for the Define Constant (DC)
instructions in the BPPF Assembler. If you are not familiar with

defining constants, it is recommended that you review the data

definition section in the Series/1 Macro Assembler Language

Reference (SC34-0317).



Here is a summary of the supported data types. The implicit
length generated by the assembly of each different type code is
indicated under Length.

1. Fixed Point Arithmetic Data

Type Code Length
H 1BYTE
F 2 BYTES (1 word)
D 4 BYTES (doubleword)

H, F, or D type codes define signed, fixed point values of the
indicated length and are used in integer arithmetic operations.

2. Floating Point Arithmetic Data

Type Code Length
E 4 BYTES
L 8 BYTES

E and L type codes generate standard or extended precision float-
ing point constants, respectively. Floating point data is used in
floating point arithmetic operations (Series/1 Floating Point
hardware feature required).

3. Address Data Definition
Type Code Length
A 2 BYTES (1 word)

The contents of the location defined will contain the address of a
symbolic program location.

4. Hexadecimal/Binary

Type Code Length
X 4 BITS
B 1BIT

These allow definition of binary bit strings in storage, which are
commonly used in logical operations and when using digital sensor
I/0 (DI/DO/PI). Note: Binary constants (type code B) cannot

be defined if program preparation is being done using the online
Program Preparation Facility, SEDXASM.

5. Character Data
Type Code Length
C 1 BYTE/CHARACTER

Defines EBCDIC characters in storage, for use with EBCDIC 1/0
devices (displays, printers).

Data Definition 4-5



BUFFER STATEMENT

4-6 - SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706) ‘BUFFER.”

The BUFFER statement provides a convenient way to define
contiguous, named, storage areas in a program, for use in 1/0 operations,
as work areas, etc. The BUFFER statement reserves space in

storage, but does not initialize storage to a user-specified value. When
the statement is assembled, the storage reserved is set to binary zeros,
and will be zeros when the program containing the statement is

initially loaded.

Figure 4-3 illustrates the format for the BUFFER statement, and shows
what is generated in storage as a resuit. The label of the BUFFER
statement is the symbolic name of the first data item. In storage this

is preceded by two words of control information. The first word is
called the INDEX, and may be symbolically referenced by the name
you code in the INDEX= keyword operand of the BUFFER statement.

INDEX is used with SBIO and INTIME instructions to place data in
sequential buffer positions automatically, and would not be coded
unless the buffer being defined were intended for that purpose.

See ""Section 9. Timers" in this study guide for an example of the use
of the INDEX operand.

The second word is the count, containing the buffer length you
specified in the count operand. This count will be the number of words
or bytes defined, depending on whether you coded BYTES for the item
operand.



TYPE OF ITEMS
—_ IN THE BUFFER
V) (MAY CODE “BYTES",
OR IF NOT CODED,
DEFAULTS TO “WORDS") OPTIONAL

\ OPERANDS

Tabel BUFFER count, item, INDEX=name

Z'Srféi/ //

NAME ASSIGNED NAME ASSIGNED
TO FIRST DATA TO INDEX VARIABLE
ITEM IF CODED
0000
j> COUNT |
> 0000
0000
—————1 | THE NUMBER
OF WORDS
0000
0000\ (ORBYTES
0000 IF SPECIFIED)
5000 EQUALT?
0000 “COUNT.
( > 0000
— J

Figure 4-3. BUFFER statement

Data Definition  4-7




TEXT STATEMENT

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “TEXT.”

The TEXT statement is used to generate character buffers, and operates
in conjunction with the terminal instructions READTEXT, PRINTEXT,
GETEDIT, and PUTEDIT. Figure 4-4 shows the format for the TEXT
statement, and what is generated in storage.

BB 1abel TEXT 'message' ,LENGTH=,CODE=

BE¥ ENDMSG  TEXT 'RUN ENDED',LENGTH=12,CODE=EBCDIC

= 1@

E4
D5
40
C5
D5
C4
C5
C4
40
40
40

2C>

orococcomQoZ m

Figure 4-4. TEXT statement

4-8 SR30-0436



O

O

In Figure 4-4, the TEXT statement format at [} is shown coded

at [lJ . The message operand is the text ‘'RUN ENDED’ in this
example, but may be any character string you wish, up to 254
characters. The LENGTH= operand is coded as 12, indicating the total
length of the text buffer. The CODE= operand is EBCDIC, which is
also the default. The standard internal representation for character data
is always EBCDIC. The system automatically converts the EBCDIC
character strings to the code required by a particular terminal.

The CODE= operand could be coded ASCI!. This is for special cases
where you do not want the system to do any conversion from and to
EBCDIC, but wish to transmit the exact code pattern in the buffer,
An example is the graphics support, which drives a device employing
an ASCII interface where certain ASCII characters perform graphics
control functions.

The TEXT statement at [IJ would generate the storage configuration
shown just below it. The total storage utilized would be the 14 bytes
shown by the brackets at o . The actual text buffer is defined within
the brackets labeled @ , encompassing 12 bytes (LENGTH=12). The
data buffer is preceded by two bytes of control information, labeled
e. The first byte defines the total length of the buffer (hex OC),
12 bytes. The second byte is the length of this message, nine bytes,
the total number of characters (including blank characters) in the
‘message’ operand. Unused character positions at the end of the
buffer Qare padded with blanks (EBCDIC for blank = hex '40').
The label of the TEXT statement points to the first byte of
character data e .

For both input and output operations, the count (second byte at
location @@ ) cannot exceed the text buffer length (first byte at ) ).
If you attempt to output a message that is larger than the buffer, or
read a character string from a device that is longer than the buffer, the
message will be truncated to fit within the defined buffer length.

The contents of the character buffer defined by a TEXT statement
is not confined to the character string that was coded when it was
assembled. Different messages may be moved into the buffer at dif-
ferent times during execution of a program. If data is moved into a
TEXT buffer using the PUTEDIT command, the count byte is auto-
matically adjusted to reflect the message length. When data is read
from a terminal with a GETEDIT or a READTEXT command, the
count reflects the number of input characters read. If a character
string is moved into a TEXT buffer by any instructions other than
these (i.e., MOVE), the count must be adjusted by the user before
issuing a PRINTEXT referencing that TEXT buffer.

Data Definition  4-9



4-10

SR30-0436

This page intentionally left blank.



DATA DEFINITION REVIEW EXERCISE — QUESTIONS

C) 1.  Match the type with the data representation
a. Extended precision floating point 1. C
b. Address 2. X
C. Character 3. B
d. Double word fixed point 4, F
e. Half word fixed point 5, H
f, Full word fixed point 6. D
g. Binary 7. E
h. Hexadecimal 8. L
i Standard precision floating point 9. A

2. Using the following instruction
MSG2 TEXT LENGTH=20
answer the following questions:

a. How many characters could be stored in the text buffer
defined?

b. How many words would be reserved?
L) ¢. How could you address the first character in the buffer?
3. How many words are reserved by the following instruction?
BUF3 BUFFER 16,BYTES

4.  When coding a TEXT statement, if no ‘message’ is defined
(LENGTH-= only coded), the text buffer will be initialized
to binary zeros.

True

False

)

Data Definition 4-11



DATA DEFINITION REVIEW EXERCISE — ANSWERS

4-12 SR30-0436

1.

a.

b. 9
c. 1
d 6
e. 5
f. 4
g 3
h. 2
i 7

a. 20 characters

b. 11 (20 bytes, one for each character, plus 2 bytes (one for
length, one for count).

c. By referencing the label MSG2

10 words are reserved; 8 for the 16 data positions, and the two
control words which precede the data.

False. Undefined text buffer locations are initialized to
EBCDIC blanks (hex 40).

)



-

INTEGER ARITHMETIC

Section 5. Data Manipulation

OBJECTIVES: After successful completion of this topic, the student
should be able to:

1. Understand the Event Driven Executive arithmetic instructions
which operate on signed integer variables

2. List the Event Driven Executive arithmetic instructions which
operate on floating point data

3. Use the Event Driven Executive data movement instructions to:
a. Replace the contents of one variable with that of another
b. Replace the contents of a variable with the address of another

c. Replace the contents of a data field with the contents of
another data field

4, Determine the result of executing any of the Event Driven Execu-
tive logical instructions, given the values represented by operand1
and operand2

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “Data Manipulation’’, ‘'Data
Representation’’, ““Mixed Precision Operations”, ““ADD”, “ADDV”,
“SUBTRACT"”, “MULTIPLY", “DIVIDE.”

Figure 5-1 shows the basic format of instructions that operate on
integer arithmetic variables.

| ADD |
| SUBTRACT !
label 1+ ADDV opndl,opnd2,count,RESULT=,PREC=
| MULTIPLY b ,
opTionaL! DIVIDE | OPTIONAL

S—

MUST BE CODED

Figure 5-1. Integer arithmetic instruction format

Data flow is from opnd2, to opnd1; in the ADD or SUBTRACT
instructions, the data represented by opnd2 is added to or subtracted
from the data represented by opnd1, and the result of the

operation replaces the contents of the location specified by opnd1.

Data Manipulation 5-1



Optional Operands

5-2

SR30-0436

In the MULTIPLY or DIVIDE instructions, the data in opnd1 is
multiplied or divided by the data in opnd2, and the product or
quotient replaces the contents of opnd1 (for DIVIDE; the remainder
is stored in the task code word, and will be overlaid by the next
DIVIDE, 1/0 or floating point operation).

The optional operands (count, RESULT=, and PREC=) allow the appli-
cation programmer to control the number of variables involved in the
operation, where the result of the operation should be placed, and to
specify the size of the variables (word, doubleword) used. The following
examples illustrate how the optional operands affect instruction
execution. An ADD operation is used as an example, but the principles
also apply for SUBTRACT, MULTIPLY, and DIVIDE.

EXAMPLEL ADD VAL1,CONWORD

This first example uses no optional operands, and is the most basic
form. The word at location CONWORD will be added to the word at
location VAL1. The results of the operation will replace the contents
of VAL1. Both VAL1 and CONWORD are assumed to be single pre-
cision.{word-length) signed integer variables, because word-length is the
default when no other precision is specified.

EXAMPLE1 ADD VAL1,CONWORD,5

The count operand is coded as a 5. The count operand references
opnd1, and specifies how many variables, beginning at the location
specified in opnd1, the contents of opnd2 should be added to. In the
example shown, the word at location CONWORD would be added to
the word (still the default precision) at location VALT1, to the word at
location VAL1+2 (two bytes = one word), at VAL1+4, and so on
through location VAL1+8. Each of the words in the five word field
beginning at location VAL1 would be increased by the value of the
contents of location CONWORD.

EXAMPLE1 ADD VAL1,CONWORD,5,RESULT=RFIELD

Without changing anything else, the keyword operand RESULT=

has now been added. This statement will execute the same way as did
the previous example except that the results of the operation will be
placed in a five-word field beginning at location RFIELD. The five
words beginning at location VAL1 will remain unchanged.

The only remaining optional operand is the keyword PREC=, which
allows the programmer to specify the precision of the opnd1 and opnd2
variables. Again using our example, if the field of data beginning at
location VAL1 were double precision integers, and we wanted to add a
single precision integer at location CONWORD to each of them,
PREC=D would be coded.

EXAMPLE1 ADD VAL1,CONWORD,5,RESULT=RFIELD,PREC=D

TN

C



@

O

The results (double precision integers) would be placed in a ten word
field beginning at location RFIELD, leaving the original contents of
VAL1 undisturbed.

The D in PREC=D signifies that opnd1 is double-precision. DD would
have indicated that both opnd1 and opnd2 were double precision. See
""Mixed Precision Operations’’ in the Language Reference manual for
allowable opnd1/opnd2 precision combinations.

Thus far, the count optional operand referred to opnd1 only. The
vector addition capability is an exception to that rule. The ADDV
statement adds the corresponding components of two vectors
together, and therefore the count operand specifies the number of
components in both vectors {opnd? and opnd2).

FLOATING POINT ARITHMETIC

The format for Floating Point instructions is similar to that for the
arithmetic instructions handling integer variables, except that the
optional count operand is not allowed. Floating point operations
involve the two discrete values represented by opnd1 and

opnd2 only; neither may be vectors,

|
FADD '

|
i A |
label | EMHET opnd1,opnd2’ RESULT=,PREC=
|
| FDIVD ~
OPTIONAL! | OPTIONAL

MUST BE CODED

Figure 5-2. Floating point arithmetic instruction format

The floating point instructions are not software simulations of floating
point hardware; the Series/1 Floating Point hardware feature must
be installed to utilize the floating point capability.

Support for both standard and extended precision variables
(PREC= operand), and all precision combinations are allowed.

For an example of the use of floating point instructions, see Example 6
in the Language Reference, SC34-1706.

Data Manipulation 5-3



DATA MOVEMENT INSTRUCTIONS

5-4 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C
Language Reference (SC34-1706), “MOVE", "MOVEA."”

The MOVE statement has the following format:

| : count
l | —Or—
label : MOVE opndl,opnd? : ,precision
| | o ..
| | (count,precision)
%—\/-—/ l | N\ v J
OPTIONAL ; ! OPTIONAL

MUST BE CODED

Figure 5-3. MOVE instruction format

Unlike the integer and floating point arithmetic instructions, the
RESULT= optional keyword operand is not used; the data specified
by opnd1 is always replaced by that represented by opnd2. The
following statement,

MOVE OLDATA,NEWDATA

would replace the word (default precision) at location OLDATA with
the word at NEWDATA.

The same operation, coded with the count operand=3,
MOVE OLDATA,NEWDATA, 3

would move the three words starting at location NEWDATA into the
three words starting at location OLDATA.

For MOVE statements, precision is indicated by the keywords BYTE,
WORD (default) or DWORD (doubleword). If count is not coded
(default count = 1), then precision is coded by itself. If count is
coded, precision is included as a sublist element in the count operand.



Neither count nor precision
coded; count default=1;
precision defauit=WORD count alone
coded; precision
default=WORD

MOVE OLDATA, NEWDATI;\ /
precision alone coded;

MOVE OLDATA’NEWDATA’ 5 count default=1

MOVE OLDATA,NEWDATA ,DWORD —~—
MOVE OLDATA,NEWDATA, (5,DWORD)

count and precision

both coded; precision
included as a sublist
element in count operand

Figure 5-4. MOVE optional operands

Move operations move data from a field of specified length, to a field
of equal length, so count applies to both opnd?! and opnd2.

The following examples illustrate the MOVE instruction optional
operand variations. Each of the instructions is logically equivalent,
moving four bytes of data from opnd2 to opnd1.

MOVE OLDATA ,NEWDATA, (4 ,BYTE)
MOVE OLDATA ,NEWDATA,?2

MOVE OLDATA,NEWDATA, (2 ,WORD)
MOVE OLDATA ,NEWDATA ,DWORD
MOVE OLDATA ,NEWDATA,(1,DWORD)

The MOVEA instruction moves the address of the location specified in
opnd? into the location specified by opnd1.

MOVEA DATADRS ,DATA

Data Manipulation 5-5



In the example shown, the address of location DATA replaces the
contents of location DATADRS. No optional operands are allowed
with the MOVEA statement, because:

)

a. opnd1 is always the target of the move, so RESULT=is
not valid

b. the data being moved is a Series/1 storage address, which is,
by definition, word-length; precision is therefore always WORD
(no PREC= coded)

c. only asingle address at a time is moved, so count is always
=1, and is therefore not coded.

LOGICAL INSTRUCTIONS

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “AND"”’, IOR", “EQOR",
“SHIFTL"”, “SHIFTR.”

The logical instructions AND (AND), OR (IOR), and exclusive OR
(EOR) operate upon selected bits within a bit field. Opnd2 operates on
opnd1 in the manner summarized in Figure 5-5.

AND (AND)

OPERAND 2 [0{(1 0 0 1 IFABITISA 1IN THE SECOND C

OPERAND, AND THE CORRES-

OPERAND 1 [0{{1 0 1 0 PONDING BIT ISA 1 IN THE
FIRST OPERAND, THAT BIT WILL
RESULTS [0{{1 00 0 BE A 1IN THE RESULT.
OR (IOR)

OPERAND 2 @1 001 IFABITISA1INEITHER THE

SECOND OR THE FIRST OPERAND,

OPERAND 1 @ THE CORRESPONDING BIT IN
THE RESULT WILLBE A 1.
ResuLts  [03(1 01 1]

Exclusive OR (EOR)

OPERAND 2 [0{f1 0 0 1 IF ABITISA 1IN ONE OF THE

TWO OPERANDS, BUT NOT IN

OPERAND 1 @ THE OTHER, THE CORRESPOND-

ING BIT IN THE RESULT WILL

RESULTS ['ES BEAT.

NOTE: RESULTS OF AND, IOR, EOR OPERATIONS WILL REPLACE THE
CONTENTS OF OPERAND 1, OR WILL BE PLACED IN THE LOCATION
SPECIFIED IN THE RESULTS= OPERAND, IF IT IS CODED.

Figure 5-5. AND/OR/exclusive OR

5-6 SR30-0436



The instruction format for AND, IOR, and EOR is shown in Figure 5-6.
C" As with MOVE operations, precision may be BYTE, WORD (default), or
) DWORD. The precision applies to opnd1, opnd2, and to RESULT=,
if coded. The count optional operand applies to opnd1 and
RESULT= only; count for opnd2 is always =1.

| | count
! AND I —or-
1abe1{ IOR opndl,opnd?2 : ,precision ,RESULT=
i EOR | —or— o
: } (count,precision)
Ny’ | i
OPTIONAL® v 2 v -
MUST BE CODED OPTIONAL

Figure 5-6. Logical instruction format

If RESULT= is coded, the contents of opnd1 are unchanged by the
operation. The following illustrates the use of the optional operands.

AND XDATA, ZDATA

Since count, precision, and RESULT= are not coded, count defaults
to 1, precision defaults to WORD, and the contents of XDATA will
be replaced by the word-length bit-field resulting from the AND

of the 16 bits in the word at ZDATA with the 16 bits in the word at

O ‘ XDATA.

AND XDATA,ZDATA,3

The contents of XDATA, XDATA+2, and XDATA+4 will be replaced
by the results of the AND of the 16 bits in the word at ZDATA with
each of the 16 bits beginning at XDATA. Note that the same word at
ZDATA is consecutively ANDed with the three-word bit field beginning
at location XDATA. The precision (default=WORD) determined

how many bits at a time to AND (opnd2 size), and the count operand
how many consecutive groups of bits of that size to perform the
operation against.

AND XDATA,ZDATA, (3,BYTE)
The above is the same as the operation shown before, except that the
8 bits specified in opnd2 (BYTE precision) are successively ANDed

against the three 8-bit groups in opnd1, beginning with the byte at
location XDATA.

Data Manipulation 5-7



58 SR20-0436

Tabel

N’
OPTIONAL

AND XDATA,ZDATA, (3,BYTE) ,RESULT=YDATA

When the statement above is executed, the three bytes, beginning at C
location YDATA, will be replaced by the results of the AND of the

byte at location ZDATA with the three bytes in XDATA, XDATA+1,

and XDATA+2.

Event Driven Executive logical instruction capability also includes
logical shift operations, for both shift left (SHIFTL) and shift right
(SHIFTR). (See Figure 5-7.) Logical shifts, like the other logical
instructions, operate on bit-fields (bit-strings).

I | count

| SHIFTR | }

' opndl,opnd2 ,precision ,RESULT=

| SHIFTL | sPre

| | (count,precision)

l\ )}\ )
MUST BE CODED OPTIONAL

Figure 5-7. Shift instruction format

In shift operations, opnd2 is coded as an absolute value or as a variable
name. The absolute value, or the contents of the variable, contains the
shift count (the number of bit positions, to the right or left, that the

contents of the bit field which begins at location opnd1, should be ~
shifted). (/

The optional operands have the same meaning, and are coded in the
same way, as for AND, IOR, and EOR (note that if opnd2 is a variable
name, that variable has the same precision (BYTE,WORD,DWORD)

as the variable opnd1).



A SHIFTL instruction shifts bits out of the high-order (most significant)
position of a bit field, and fills vacated low-order (least significant) bit
positions with zeroes, Similarly, SHIFTR shifts bits out of the low-
order position, and zero-fills vacated high-order positions. Figure 5-8
illustrates the operation of both SHIFTL and SHIFTR.

. COUNT=5 BIT POSITIONS
E\ /
B

FIRSTOP éHIFTL FIELDA,5 _—WORD PRECISION (default)
»>MOVE SCNT,1
SECONDOP SHIFTR FIELDB,SCNT

Word at SCNT used
for shift count

SCNT DATA Fro
FIELDA DATA B'1111000011110000"
[ 1 DATA B'0001111000000000"

n Before execution of the Shift Left at FIRSTOP, the contents of
FIELDA and FIELDB are exactly as coded

zeros filled in

3 After execution of the Shift Left at FIRSTOP; vacated bit positions

e
FIELDA =/0001 1110 0000 0000

1111 0’ anfted outof
high order position

After execution of the MOVE operation, location SCNT=1

After execution of Shift Right at SECONDOP,

FIELDA = 0001 1110 0000 0000, unchanged,

and FIELDB j/OOOO 1111 0000 OOOO\‘0 shifted out of

zero fills’ low order bit
vacated position position

Figure 5-8. Shift operation

Data Manipulation 5-9



DATA MANIPULATION REVIEW EXERCISE — QUESTIONS
1.

5-10

SR30-0436

Fill in the value for X, Y, and Z after execution of each of the
instructions below. [n each case, assume that before execution,
' X=20, Y=30, and Z=0.

a.

Answers: X=

Answers: X=

Answers: X=

Analyze the two arithmetic operations below, and explain how

ADD

ADD

ADD

XY

Y= z=

they would differ when executed.

a. ADD X,Y,2

ANSWER:

b.  ADDV X,Y,2




XDATA
ZDATA

()

Analyze the two data movement operations below, and explain
how they would differ when executed.

a. MOVE X,Y b. MOVEA X,Y
ANSWER:

Below is a coding example using all five logical instructions. Each
instruction uses the “RESULT=" optional keyword operand to place
the result in a different location (opnd1 is undisturbed). Fill in

(in binary) what the “RESULT="' locations would be after execution
of the coding example.

AND XDATA,ZDATA,BYTE ,RESULT=ANDRSLT
I0R XDATA,ZDATA,BYTE ,RESULT=IO0RRSLT
EOR XDATA ,ZDATA,BYTE ,RESULT=EORRSLT
SHIFTR ZDATA,7 ,BYTE,RESULT=RITERSLT
SHIFTL XDATA,3,BYTE ,RESULT=LEFTRSLT
DATA B'11010010"

DATA B'10011001"

ANSWERS:

- After execution,
a. ANDRSLT= B'
b. IORRSLT= B'
c. EORRSLT= B'
d. RITERSLT=B'

e. LEFTRSLT=B'

Data Manipulation 5-11




DATA MANIPULATION REVIEW EXERCISE — ANSWERS

5-12 SR30-0436

a. X50 Y30 20
b. X20 Y30 750
c. X70 Y30 Z0

Example a. (ADD operation) would add the contents of storage
location “’Y"’ to storage tocation ‘“X’* and to storage location
"“X+2", The “count’ operand (2) applies to opnd1 only.
Example b. (ADDV operation) would add the contents of storage
location ‘Y to storage location ‘X", and the contents of storage
location “Y+2" to the contents of storage location “X+2''. The
“count’’ operand of the ADDYV instruction applies to both opnd1
and opnd2 (also for MOVE).

Example a. (MOVE operation) would replace the contents of
storage location X"’ with the contents of storage location “'Y"’
(move Y to X). Example b. (MOVEA operation) would replace
the contents of storage location “’X’’ with the address of the
storage location 'Y’ {move the address of Y to X).

a.  ANDRSLT=B'10010000'
b. IORRSLT=B'11011011'

c. EORRSLT=B'01001011'

d.  RITERSLT=B'00000001"
e. LEFTRSLT=B'10010000'

TN



O

Section 6. Queue Processing

OBJECTIVE: After completing this topic, the student should be
able to:

1. Define an empty or a full queue

2. Add entries to a queue

3. Retrieve the oldest entry from a queue

4, Retrieve the newest entry from a queue

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), ‘’Queue Processing.”

The queuing instructions discussed in this section are used to define
queues and access entries in queues. The size of a queue (the number
of entries it can hold) is specified by the user. A queue entry is one
word in length. The contents of this word may comprise the queue
entry in its entirety, or as in the examples used in this section, may
be the address of a larger data area (buffer).

A useful example of queue definition and processing is buffer pool
management. If several tasks within an application program have the
possibility of performing 1/O operations, a queue of 1/0 buffers
(buffer pool) can be established. Using the queue processing
instructions, a task requiring an 1/0 buffer obtains it from the

pool, and, when the 1/O has completed, returns it to the pool. No
physical movement of the buffer is involved; the queue entry that is
acquired and returned is actually the address of the buffer in storage.

Another example of the use of queue processing is a “data spooling”’
operation, where multiple units of data are placed in a direct access
data set, with the record numbers of the first record of each unit stored
as a data element (entry) in a queue for later processing. In this
instance, the single-word queue entry is the queued data item itself,
rather than a pointer to a storage location or buffer.

Queue Processing  6-1



DEFINEQ

6-2 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive (\
Language Reference (SC34-1706), “DEFINEQ.” - g

For this discussion, a queue is the system mechanism and control
blocks necessary to logically connect and manage a chain of queue
entries. Figure 6-1 shows the format of the DEFINEQ statement,
which is used to establish a queue.

Tabel DEFINEQ COUNT=3SIZE=
,:\—-v-—/

~ v " OPTIONAL

MUST BE CODED

Figure 6-1. DEFINEQ format

The label of the DEFINEQ statement is a required field. It is the
symbolic name of the queue, and will be used by queue processing
instructions to access the queue. The COUNT= keyword operand
(coded as an integer value) determines the number of Queue Control
Elements {(QCEs) and therefore, the possible number of associated
buffer pool elements the queue may reference. QCEs are three-word
system control blocks, which are logically (contain address pointers)
chained together in active or free QCE chains. QCEs in the active
chain include data entries; free chain QCEs contain no data entries,
and are connected to other free QCEs.

)

In addition to QCEs, the DEFINEQ statement also generates a single
Queue Control Block (QCB). The QCB is three words long, and the
first word is assigned the label of the DEFINEQ statement. The
QCB contains address pointers to the active and free chains of

QCEs. When an entry is added to a queue, the QCB address pointers
are adjusted to remove a QCE from the free chain and attach it to
the active chain.

SIZE= is an optional keyword operand. 1t may be coded to cause
the generation of a pool of data buffers associated with the queue
being defined. The number of such buffers will equal that specified
in the COUNT= operand. The size of each buffer (in bytes) is
specified by the integer value coded in the SIZE= operand. |f
SIZE= is not coded, no buffer pool will be generated, and all QCEs
will initially be defined to be in the free chain (empty queue). If
SIZE= is coded, all QCEs will be in the active chain (full queue),
and the entry in each active QCE will point to one of the buffers in
the buffer pool.



In Figure 6-2, the SIZE= operand is not coded, so an empty queue

is defined (all QCEs in free chain). In figure 6-2, and in the rest of the
illustrations in this section, QCEs in the free chain are shown as shaded.

QTHREE ~ DEFINEQ  COUNT=3

QcB

:

QTHREE
-

l:FREE POINTER

l:FREE POINTER

QCB POINTER

Figure 6-2. Empty queue

No entries are in the queue, but there is space (free QCEs) available
for the addition of three entries.

In Figure 6-3, a full queue (all QCEs in active chain, with queue
entries pointing to buffer pool elements) is defined. Each buffer pool
element is four bytes in length (SIZE=4). No more entries may be
added to this queue, as all QCEs are already active.

Queue Processing

6-3



| QTHREE  DEFINEQ  COUNT=3,SIZE=4]

L Qcs

QTHREE >
[ —I QCEs \
QCB POINTER ~ 1 QCB POINTER
ENTRY
L]
]
OPTIONAL
ENTRY I L BUFFER
= POOL
QCB POINTER
ENTRY ™

Figure 6-3. Full queue

LASTQ/FIRSTQ/NEXTQ

6-4

SR30-0436

READING ASSIGNMENT: I1BM Series/1 Event Driven Executive
Language Reference (SC34-1706), “NEXTQ", ““FIRSTQ"”, “LASTQ.”

The queue processing instructions allow the user to add (NEXTQ) or
retrieve (LASTQ, FIRSTQ) entries in a queue defined by the
DEFINEQ statement. The format for all three queue processing
instructions is similar:

5 FIRSTQ .
label i NEXTQ gname,loc, FULL=
; LASTQ IEMPTY=
—— \ - o
OPTIONAL MUST BE CODED OPTIONAL

Figure 6-4. Queue processing instruction format

FIRSTQ and LASTQ are used to retrieve entries from a queue; NEXTQ
places an entry in a queue. The label of a DEFINEQ statement is
coded as gname, specifying which queue is being accessed.



O

The loc operand is the label of a one-word storage location. This word
will be set to the contents of the entry being retrieved from the queue
by a FIRSTQ or LASTQ instruction. Before executinga NEXTQ
instruction, the user must ensure that this word contains the entry
(data item, such as a record number; or address of a buffer pool
element) being added to the queue.

The EMPTY= keyword operand is coded as the label of the instruction
that will receive control if the queue referenced by a FIRSTQ or
LASTQ instruction has no active entries. FULL= performs the same
function for the NEXTQ instruction in the event there is no room in
the queue to add an entry. If EMPTY= or FULL= is not coded, and
the queue is erroneously empty or full, execution will continue with
the instruction following the FIRSTQ/LASTQ or NEXTQ. A +1

will be returned in the task code word (taskname), and may be
checked by the user.

Entries are placed in a queue one at a time. Therefore, queue entries
differ in their relative age, as some are queued before others. Both
FIRSTQ and LASTAQ retrieve entries from a queue, but they differ
in the age of the entries they retrieve.

LASTQ retrieves the last, and therefore the most recently entered,
entry in a queue. This is often called "“Last In, First Qut”, or
LIFO queue processing. |t is also referred to as stack processing.

Queue Processing  6-56



6-6 SR30-0436

This page intentionally left blank.



QUEUE PROCESSING REVIEW EXERCISE—QUESTIONS

O 1. Including all contro! blocks, how many bytes of storage will be
reserved by the DEFINEQ statement below?

QEXAMP DEFINEQ COUNT=5,SI1ZE=256

Answer: __________bytes
2. What instruction would you execute to:

a. Retrieve the oldest entry in a queue

b. Add an entry to a queue

c. Retrieve the most recent entry in a queue

3. Figure 6-4 shows the format for the Queue Processing instructions.

What optional keyword operand would be used to branch to a user
routine:

a. When you attempt to retrieve a queue entry and there are no
active entries

b. When you attempt to add an entry to a full queue

O

Queue Processing  6-7



QUEUE PROCESSING REVIEW EXERCISE—ANSWERS
1.

6-8

SR30-0436

(=N eNe]

3
128
1316 bytes

FIRSTQ
NEXTQ
c. LASTQ
EMPTY =
b. FULL=

T

o

QCB 3 words, 2 bytes/word
QCEs 5 QCEs, 3 words, 2 bytes/word
BUFFERS 5 of 256 bytes each



SUBROUTINES

SUBROUT STATEMENT

Section 7. Program Control

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1.  Explain the use and execution of subroutines in an application
program

2. Incorporate Assembler language routines in an Event Driven
Executive program

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), 'SUBROUT", ““CALL", “RETURN."”

In many programs, there are certain functions that are required
repeatedly at different points in the program’s execution. Examples
might include conversion of data from one code to another or a
particular sequence of arithmetic calculations.

Rather than code the sequence of instructions that perform the desired
function each time the program needs that function, the function is
coded once, and defined as a subroutine. The subroutine can then be
entered and executed from as many different points in the application
program as required.

Subroutines are defined using the SUBROUT statement whose format
is shown in Figure 7-1.

label SUBROUT namei,parl, ..... par5
R p— \ v s\ - ;
OPTIONAL  MUST BE CODED OPTIONAL

Figure 7-1. SUBROUT format

The name operand is coded with the symbolic name of the subroutine
and will be referenced by other instructions. The /abe/ field is
optional, and should not be confused with the subroutine name
specified in the name operand.

Program Control  7-1



CALL STATEMENT

Par1 through parb are names of parameters that may be passed to
the subroutine when it is entered.

®

The format of the CALL statement is shown in Figure 7-2. The
CALL is used to enter a subroutine defined in a SUBROUT
statement.

| ]
" label iCALL namet ,parl,....parb
N / \ '\ J

v v

OPTIONAL MUST BE CODED OPTIONAL

Figure 7-2. CALL format

The name operand is coded with the symbolic name specified in the
name operand of the SUBROUT statement defining the subroutine
you wish to execute. Par1 through parb may be coded as single
precision integer values, as the symbolic names (labels) of single
precision integer values, or as the addresses of program variables or
data areas.

PASSING SUBROUTINE PARAMETERS

7-2 SR30-0436

Figure 7-3 illustrates basic subroutine operation. Note that the

CALL at location START is a call to CALC, not to SUBT1, the label (\\
on the SUBROUT statement. The last executable statement in .
this and every subroutine isa RETURN. The RETURN instruction

provides the linkage back to the calling task, where execution resumes

at the instruction following the CALL. Subroutines execute as part

of, and at the same priority as, the calling task. Subroutines are not

re-entrant, so if a subroutine is called from multiple tasks, ENQ and

DEQ should be used to ensure serial execution.



O

)

N

SUBEXAMP PROGRAM START

START CALL CALC
PROGSTOP
INTEGERA DATA F'10'
INTEGERB DATA F'15'
SUM DATA F'O'
SUB1 SUBROUT CALC
ADD INTEGERA,INTERGERB ,RESULT=SUM
ENDIT RETURN
ENDPROG
END

Figure 7-3. Subroutine operation

The subroutine CALC in Figure 7-3 adds two integer values together
and stores the result at location SUM. Since CALC is part of
program SUBEXAMP, all labels within the program are known to
the subroutine, and may be referenced by instructions within the
subroutine. In this example, location SUM would contain 25 after
the subroutine has been executed.

When a subroutine uses specific labels in the program, the data that
the subroutine will operate on must be moved into the storage
addresses represented by those labels before the subroutine is called.
The same result can be achieved more easily by using the parameter
passing capability. Parameters may be actual values (integer numbers),
or may take the form of pointers to data that the subroutine will

be using.

In figure 7-4, the SUBROUT statement at location SUB1 specifies two
parameters, XVAL and YVAL. The names used to define parameters
in SUBROUT statements must be unique throughout the program
(cannot appear in the label field of any statement). They are
positional symbolic references to parameters that are passed in the
CALL statement.

Program Control  7-3



SUBEXAMP PROGRAM START

START CALL CALC,50,SUM1 (j\f
c2 CALL CALC,SUM1,Sum2
PROGSTOP
INTEGERA DATA F'10'
INTEGERB DATA F'15'
SUM1 DATA F'o'
Sumz DATA F'o'
SUB1 SUBROUT CALC,XVAL,YVAL
Al ADD INTEGERA, XVAL ,RESULT=YVAL
RETURN
ENDPROG
END

Figure 7-4. Integer parameters

In the first CALL (location START), the first parameter is the single

precision integer value 50. This corresponds to the first parameter

defined in the SUBROUT statement, XVAL, as does program location (\
SUMT1 to the second parameter definition YVAL. When the ADD N~
instruction at location A1 executes as a result of this call, the value

50 will be substituted when XVAL is referenced, and location SUM1

will be used in place of YVAL. Location SUM1 will be set to 60,

the sum of INTEGERA and 50.

The second CALL at C2 will result in 70 being put in location SUM2,
the sum of SUM1 and INTEGERA. Notice that although
INTEGERA is used by the subroutine, it need not be passed as a
parameter, since it does not change from CALL to CALL.

Up to this point, the parameters illustrated have been restricted to
single precision integer values. By passing an address of a data area
as a parameter, and utilizing the software registers (#1, #2) within
the subroutine, any data area or data array may be accessed.

In Figure 7-5, the address of the data area SUMAREA is passed as the
first parameter of the CALL (label is enclosed in parentheses to
specify address rather than content of address). When the subroutine
executes the address is loaded into software register #1. The results
of the ADD operations are moved into SUMAREA using the contents
of #1 as a base address. After execution, SUMAREA will contain 50,
and SUMAREA+2 will contain 25.

7-4 SR30-0436



— .

o

USER STATEMENT

SUBEXAMP
START

SUMAREA

INTEGERA
INTEGERB

S1

PROGRAM
CALL

PROGSTOP
EQU
DATA
DATA
DATA
SUBROUT
MOVE
ADD
MOVE
ADD
MOVE
RETURN
DATA
ENDPROG
END

Figure 7-5. Address parameter

START
CALC,(SUMAREA),40,INTERGERB

*
2F'0!

F'10°

F'15'

CALC ,ADDRSLT, XVAL,YVAL
#1,ADDRSLT
INTEGERA,XVAL ,RESULT=S1
(0,#1),S1

INTEGERA,YVAL ,RESULT=S1
(2,#1),S1

FIOI

When employing this technique, you should keep in mind that
the software registers used by subroutines are those associated
with the calling task, and therefore, the subroutine may he
required to save them on entry and restore them to their original
values before returning.

Note: |f a subroutine is assembled as a separate module for later
link editing, the subroutine name must be declared in an ENTRY

statement.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), ““USER."”

At some time you may require a function not provided by the Event
Driven Executive. Such functions can be coded in Series/1 assembler
language (assuming that you have the appropriate assembler language
background) and included in an Event Driven Executive program
as a user exit routine. The USER statement provides the linkage
between the Event Driven Executive code and the Series/1 assembler

language routine.

Program Control 7-5



7-6 SR30-0436

! ]
label 1USER  name!,PARM=(parml,...parmn)
\ 7 g J \ v o/

OPTIONAL MUST BE CODED OPTIONAL

Figure 7-6. USER format

The name operand is coded as the label of the entry point (label of
first executable instruction) of the assembler language routine. The
PARM= keyword operand is coded as a list of parameters, with each
parameter as a sublist element.

When executing Event Driven Executive code, the user is limited to the

two software registers, #1 and #2. In Series/1 assembler language, the
hardware registers are available. Since the Event Driven Executive
system uses these hardware registers also, certain conventions must be
observed when execution switches from Event Driven Executive code
to Series/1 assembler language and back again. First, hardware
register 2 {R2) is always pointing to the Task Control Block of the
task currently in execution, and must not be disturbed. Second, hard-
ware register 1 (R1) is used by the system to provide linkage to and
from Event Driven Executive instructions. When a user exit routine

is entered (branched to by a USER instruction), R1 is pointing to the
next instruction following the USER statement, where Event Driven
Executive language execution will resume when the assembler
language routine completes. {f parameters are passed by the USER
statement (PARM= coded), R1 will be pointing to the location con-
taining the first parameter. Before exiting from the assembler
language code, the user must increment R1 past all parameters so

that it points to the Event Driven Executive instruction following the
USER statement.

The program in Figure 7-7 includes the user exit routine STCODE.
When the USER statement at location START is executed, a branch
to label STCODE is performed.

Two parameters are coded in the PARM= parameter list of the USER
statement. As with the CALL statement, each parameter is one word
in length, consisting of an integer value or the address of a program
location. Upon entry to SICODE, R1 is pointing to the first para-
meter, which contains the integer value 9. The MVW at location
S1CODE moves the integer value to location FRSTPARM.

The second parameter is the address of program location XVAL.
Using the indirect addressing capability, R1 is again used to move
the parameter into the subroutine.

—

O



USERXAMP PROGRAM START

\ START USER S1CODE ,PARM= (9, XVAL)
- Al ADD P3,FIVEB
PROGSTOP
XVAL DATA Fro*
P3 DATA Fro
FIVEB DATA F'o
S1CODE MV (R1,0),FRSTPARM
GET? MV (R1.2)*,SECDPARM
@
UPDATE ABI 4,R1
ouT B RETURN
FRSTPARM DC Fro
SECDPARM DC Fro
ENDPROG
END

Figure 7-7. User exit routine

To go back to Event Driven Executive code from a user exit routine,
you must branch to label RETURN (B RETURN), as shown at location
OUT. The system routine RETURN expects to find R1 pointing to the
next Event Driven Executive instruction following the USER statement.
The ABI instruction, at location UPDATE, increments R1 past the

two words in the parameter list, so that it points to the ADD

instruction at location A1.

Program Control  7-7




7-8

SR30-0436

User exit routines can only be assembled by $S1ASM (Series/1 macro
assembler) or host macro assemblers. To incorporate a user exit C

' routine into a program prepared using the Program Preparation

Facility, the routine must be first assembled using $S1ASM or the
host assembler, and the resulting object module linked to the Event
Driven Executive main program using $LINK. The user exit
routine entry point should be defined in an ENTRY statement, and
the same entry point must be coded in an EXTRN statement in the
main program with which the routine will be linked.



PROGRAM CONTROL REVIEW EXERCISE — QUESTIONS

1.

What statement is coded to transfer control to a subroutine
written in Event Driven Executive language?

Answer:

Event Driven Executive subroutines begin with a
statement, and the last statement to be executed must be a
statement.

Why can’t user exit routines be assembled using SEDXASM?

Answer:

How does executing a subroutine differ from executing a
secondary task?

Answer:

What statement is used to transfer control to a user exit
routine?

Answer:

How can you pass more than five parameters to an Event
Driven Executive subroutine?

Answer:

Program Control

7-9



PROGRAM CONTROL REVIEW EXERCISE — ANSWERS
1. CALL
2. SUBROUT, RETURN

3.  User exit routines are written in Series/1 assembler language,
and the $EDXASM assembler can assemble Event Driven
Executive language only. User exit routines are assembled
using the Series/1 Macro Assembler $S1ASM, or a host macro
assembler,

4, A secondary task executes concurrently with the attaching
task, and may be run at a different priority. A subroutine
executes on the priority of the calling task, and “in-line’”” with
the execution of the calling task.

5. USER

6. Use one of the five parameters to pass the address of a data
area to the subroutine. The data area can contain as many
additional parameters as required.

7-10  SR30-0436

®



@

GOTO STATEMENT

Section 8. Program Sequencing

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. explain the operation and use of

a. unconditional GOTO

b. indirect GOTO

c. computed GOTO

define an IF/THEN/ELSE/ENDIF structure
define a DO/ENDDO structure

explain the use of relational statements with IF and DO statements

o » 0N

combine IF, DO, and GOTO statements in logical code sequences

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), ‘’Program Sequencing”’, “GOTO."”

Almost all programs have multiple execution paths. A different
sequence of execution may be necessary because of the characteristics
of the input data, the results of a calculation, or the occurrence

of an exception or error condition. One of the Event Driven
Executive instructions providing the means to transfer control to an
alternate section of code is the GOTO statement.

Figure 8-1 is an example of the most basic form of the GOTO state-
ment. This is an unconditional GOTO, used to branch around a
section of non-executable code (e.g., data definitions) that are
imbedded within the executable code.

Program Sequencing  8-1



8-2

SR30-0436

EXECUTION

S
PROGL PROGRAM START, 100 N
START .
GOTO NEXTSTEP
TABLE1 DATA 5F' 256"
DATA C'000256"

NEXTSTEP ——ADDV TABL1,V1,5

ENDPROG
END

Figure 8-1. Unconditional GOTO

Control is transferred from the GOTO statement to the statement at
location NEXTSTEP, skipping over the two DATA statements which
start at TABLET.

Figure 8-2 illustrates another form of GOTO. In this example, the (\
operand is enclosed in parentheses, indicating an indirect GOTO. N
During PROG1 program execution, but prior to executing the

GOTO instruction, the address of the desired “‘branch to’’ location

(Address of NEXTSTEP) is moved [} into location BRNCHADR .

BRNCHADR is the name defined within parentheses in the operand
of the GOTO statement [KJ. When the GOTO is executed, control
is transferred to the instruction at NEXTSTEP Y, indirectly
through the contents of BRNCHADR.

The indirect GOTO can serve as an unconditional branch to any
label in a program, as long as the address of the desired destination
is'first moved into the indirect address location coded as the operand
of the GOTO.



PROG1 PROGRAM START, 100

START
515 [
\MOVEA BRNCHADR ,NEXTSTEP
Py .
AN 13 (BRNCHADR)
RNCHADR DATA Fro
.,3-. .
NEXTSTEP ADD ZVALU,BVALU
ENDPROG
END

Figure 8-2. Indirect GOTO

A third form of GOTO statement is the computed GOTO, whose format
is shown in Figure 8-3.

Tabel 2 GOTO  (TocO0,locl,....Tocn),index
N—— |\ 4

OPTIONAL MUST BE CODED

Figure 8-3. Computed GOTO format

In the first operand, locO through locn are the symbolic addresses of
instructions to which control may be transferred. The second
operand is an index variable. The address to which control is trans-
ferred is determined by the value of the index variable.

The first address {loc0) in the list of addresses which form the first
operand is the address to which you want control transferred if the
index variable exceeds the extents of list loc1—locn.

The next address in the list, loc1, will get control if the index variable
is equal to 1, loc2 if the index variable is equal to 2, etc.

Figure 8-4 illustrates the operation of a computed GOTO with an
index variable outside the range of the list. The index variable is VAL1
and is set to zero by the MOVE statement at location “START".

Zero is outside the range of loc1—locn (NDX1, NDX2 in this case),
and the computed GOTO transfers control to the address at locO
(ERROR).

Program Sequencing 8-3



IF STATEMENT

8-4 SR30-0436

PROG1 PROGRAM START

START MOVE VAL1,0
GOTO (ERROR, NDX1,NDX2),VAL1
DATA Fro!

NDX1

NDX2
PROGSTOP
ENDPROG
END

Figure 8-4. Computed GOTO

The same thing would happen if the index variable were greater
than 2. In this example, the only valid values for the index variable
are 1 or 2, which would result in a transfer of control to location
NDX1 or NDX2.

READING ASSIGNMENT: 1BM Series/1 Event Driven Executive
Language Reference (SC34-1706), “IF", “ELSE", “ENDIF."”

The GOTO statement gives you the ability to transfer control to
another part of a program; |F statements provide a means of deter-
mining when a transfer or branch is required.

The format for an |F statement is shown in Figure 8-5.



W,

@

[enD OF “1F~

] ]
label i IF (relational statement) i ,GOTO,loc
\ - 1\ v — : N v /
OPTIONAL MUST BE CODED OPTIONAL

Figure 8-5. IF Format

The first operand is a relational statement, and all |F statements must
have at least one relational statement. A relational statement expresses
a comparative relationship between two variables, or between a
variable and an explicit value. An IF may be coded to include a GOTO
(second operand) and a specified location (third operand). For
instance, (Figure 8-6);

TESTL  IF  (A,EQ,B),GOTO,STEP3

Figure 8-6. IF/GOTO example

This statement may be interpreted as ‘‘Transfer control to location
STEP3 if the value in location A is equal to the value in location B.”
If A is not equal to B, execution will continue with the instruction
following the IF. The “IF with GOTQ" is the simplest form of IF
that can be coded. |F statements may also take the form of
structures, in which entire code sequences may be executed or
skipped, depending on whether the relationship expressed in

the relational statement is true or not. The basic |F structure is
illustrated in Figure 8-7.

IF RELATIONAL

) (A,EQ,B) STATEMENT

- - M v \

ENDIF TRUE" CODE RELATIONAL

T EXECUTED IF THE MNEMONIC
RELATIONSHIP CAN BE:
EXPRESSED IN THE
RELATIONAL STATE- EQ EQUAL
MENT IS TRUE NE NOT EQUAL

GT GREATER THAN

LT LESS THAN

GE GREATER OR EQUAL
LE LESS OR EQUAL

STRUCTURE

IF RELATIONSHIP EXPRESSED

IN THE RELATIONAL STATEMENT
ISNOT TRUE, “TRUE"” CODE
WITHIN “IF” STRUCTURE IS
|SKIPPED, AND EXECUTION
CONTINUES WITH FIRST
INSTRUCTION FOLLOWING
“ENDIF"” STATEMENT

Figure 8-7. 1F structure

Program Sequencing 8-5




Relational Conjunctions

8-6 SR30-0436

All IF structures must end with an ENDIF statement, except when
using GOTO. In the example, the code between the IF statement
and the ENDIF will be executed if the relationship expressed in the
statement is true (A is equal to B). If the relationship is not true,
the true code will be bypassed, and execution will continue with the
statement following the ENDIF.

In Figure 8-8, one more statement is added to the IF structure. The
ELSE statement starts the false code; these instructions will be
executed if the relationship expressed in the statement is not true,
bypassing the “‘true’’ code. True code begins following the IF in an
IF structure, and ends with the ENDIF if no ELSE statement is coded
(Figure 8-7), or ends with an ELSE statement if one is used (Figure
8-8).

NOT REQUIRED, BUT MAY BE
CODED FOR DOCUMENTATION

. —~~
IF (A,EQ,B),THEN

“TRUE" —
CODE }—ﬂEXECUTEDIFA—Bl

ELSE

~ CODE
ENDIF
. - EXECUTION CONTINUES HERE
AFTER EITHER “TRUE” OR

“FALSE" CODE WITHIN “IF"
STRUCTURE HAS EXECUTED

FALSE }—{EXECUTEDIFA#B]

Figure 8-8. {F/THEN/ELSE

False code begins with an ELSE statement, and ends with the
ENDIF, which defines the end of that |F structure.

As you found in the reading assignment, |F structures can be very
complex. Figure 8-9 is an example of a structure using logical con-
junctions and nesting. A logical conjunction forms a logical link
between two or more relational statements. A nested |F

structure is one that appears within the true or false code of a
previous |F structure.

)



O

DO STATEMENT

LOGICAL CONJUNCTION OF
RELATIONAL STATEMENTS

IF (A,EQ,B),ANL,(C,EQ,D),THEN
GOTO ALLEQUAL

ELSE
IF (A,EQ,B) |
MOVE C.D
. NESTED “IF”
ELSE STRUCTURE
MOVE A,B
ENDIF )
ENDIF

Figure 8-9. Complex IF structure

A transfer to ALLEQUAL will take place only if both 1) A=B and
2) C=D. The false code is another |F structure, nested within the
first, with its own true and false sections. Notice that each IF
structure is ended with its own ENDIF statement.

READING ASSIGNMENT: IBM Sereis/1 Event Driven Executive
Language Reference (SC34-1706), “DO”, “ENDDO."”

The DO instruction alters the sequence of program execution by
causing repetitive execution of the same section of code. The DO
statement establishes the start of a DO loop, and the end of the loop
is defined by an ENDDO statement. The code that is repeatedly
executed is the instruction or instructions that are coded between the
DO and ENDDO statements.

One form of the DO statement is illustrated in Figure 8-10. The
count operand is an integer value, or the label of a storage location
containing an integer value, indicating the number of times you want
to execute the loop.

Program Sequencing 8-7



8-8 SR30-0436

label | DO  count!, TIMES,INDEX=

—— v v
OPTIONAL MUST BE CODED OPTIONAL
Figure 8-10.

TIMES has no function other than documentation, and does not
have to be coded. The INDEX= keyword operand may be coded as
the label of a word of storage. Before the DO loop is executed for
the first time, the storage location is reset to zero. Then, before
execution of the first instruction following the DO statement, and
with every succeeding pass, 1 is added to the storage location. In the
event that a branch out of the loop is done before the count has
gone to zero, the location specified in the INDEX= operand can be
checked to see how many executions occurred.

Figure 8-11 is a flowchart representing the execution sequence of the
DO count, TIMES form of DO loop. (If the INDEX= operand is
not coded, the top two blocks would not apply.)

DO COUNT

SET INDEX
LOCATION
TO ZERO

i —

ADD +1
TO INDEX
LOCATION

¥
EXECUTE CODE
BETWEEN “DO”

AND “ENDDO"

SUBTRACT
1 FROM
COUNT

I

CONTINUE EXECUTION
WITH INSTRUCTION
FOLLOWING “ENDDO"

Figure 8-11. ‘DO count” operation

@



Notice that a post-execution escape mechanism is used (trailing
decision loop). The count is not checked for zero until the loop
has completed the first execution. Therefore, if count is initially
zero, one execution would still occur.

There are two other forms of the DO statement, both employing
relational statements. DO WHILE will repetitively execute the
instructions within the loop while the relationship expressed remains
true. DO UNTIL will keep on executing the loop until the relation-
ship expressed in the relational statement becomes true. The

format for these two instructions is illustrated in Figure 8-12.

WHILE

i . |
label :\DO UNTIL® relational statement J
OPTIONAL MUST BE CODED

Figure 8-12. WHILE/UNTIL format

The relational statements are coded the same way as those used with
the |F statement, and like the IF, two or more relational statements
may be formed into a statement string, using the logical conjunctions
AND and OR.

DO WHILE ' DO UNTIL

pl
P

EXECUTE CODE
IS RELA- NO BETWEEN “DO"
TIONAL CON- AND “ENDDO"

DITION TRUE?,

IS RELA-
TIONAL CON-
DITION TRUE?

EXECUTE CODE
BETWEEN “DO”
AND “ENDDO”

——

CONTINUE EXECUTION
WITH INSTRUCTION
FOLLOWING “ENDDO"

CONTINUE EXECUTION
WITH INSTRUCTION
FOLLOWING “ENDDO”

Figure 8-13. WHILE/UNTIL operation

Figure 8-13 illustrates the execution sequence of DO WHILE and

DO UNTIL. DO WHILE has a pre-execution (leading decision loop)
escape mechanism. The relational condition is checked before the
first execution and, if not true, no execution takes place. DO UNTIL,
like DO count, does not check until completing the first execution
of the loop. Even if the relational condition is true, one execution
will occur.

Program Sequencing 89



810 SR30-0436

In combination, the GOTO, IF, and DO statements provide the
application programmer with the tools necessary to make execution
time decisions, and to alter program execution flow if required.

/

Figure 8-14 is an example of all three statements used together. In the
course of program execution, the variable DIFF is set to zero [f}} .

When the IF statement is executed ﬂ , a transfer of control to loca-

tion DONE will occur if variable A is equal to variable B. If the transfer
to DONE takes place and DIFF (difference between A and B) is checked,
the difference will be zero.

MOVE DIFF,0~——IKR
—7iF (A,EQ,B),GOTO,DONE
IF (A,GT,B),THEN .
DO UNTIL,(A,EQ,B)
ADD DIFF,1
ADD B,1 —a
ENDDO )
ELSE
K
2 DO UNTIL,(A,EQ,B) )
ADD DIFF,1
ADD ALl ~—B
ENDDO ‘ N
[ENDIF < 6 @

DONE

Figure 8-14. IF/GOTO/DO

If A is not equal to B, execution continues with the IF structure [E] .
The true code of the IF is a nested DO loop [} which will repetitively
execute, accumulating the difference between A and B in DIFF until
the two variables are equal. This code will execute only if the variable
A were greater than B when the IF statement was executed.

If B were greater than A, the false code of the IF structure [ ,
another nested DO loop, would repeatedly execute, and again, the differ-
ence between A and B is accumulated in DIFF.

In all cases, when execution continues at location DONE, A will be
equal to B, and DIFF will contain the absolute difference that existed
between A and B at the outset. Notice that the |F structure must end
with an ENDIF [ .

C



PROGRAM SEQUENCING REVIEW EXERCISE — QUESTIONS

[F1ST
[F2ND

ELSE2ND
END2ND

ELSE1ST

END1ST
COMPGO

O

O

Using the coding example below, answer the questions which follow.

IF (A,NE,B)
IF (A,GT,B) ,THEN
SuB A,B
MOVE VAL1,A
ELSE
SuB B,A
MOVE VAL1,B
ENDIF
ELSE
GOTO EXIT4
ENDIF

GOTO (ERR,EXIT1,EXIT2,EXIT3),VALl

1.  Assuming that A=5, and B=3, the next statement to be executed
after execution of the code in the example is at location

a. ERR

b. EXIT1
c. EXIT2
d. EXIT3
e. EXIT4

2. Assuming that A=22, and B=23, the next statement to be exe-
cuted after execution of the code in the example is at location

a. ERR

b. EXIT1
c. EXIT2
d. EXIT3
e. EXIT4

3. Assuming A=0, and B=-5, the next statement to be executed

after execution of the code in the example is at location
a. ERR

b. EXIT1

c. EXIT2

d. EXIT3

e. EXIT4

Program Sequencing 8-11



8-12

SR30-0436

Answer:

The “true”” code for the IF structure beginning at location IF1ST
consists of

a. the code starting at IF2ND and ending at ELSE2ND
b. the code starting at IF2ND and ending at END2ND
c. the code starting at IF2ND and ending at END1ST

d. none of the above

If control is transferred to location EXIT4, then the following is
true;

a. VAL1=4

b. A is greater than B
c. B s greater than A
d. A and B are equal

e. none of the above

How many times will the DO loop below execute?

DO 17, TIMES, INDEX=TWO

ENDDO

C

O



7. Using the coding example below, pick the correct statement from
the list of statements which follow

DO1 DO UNTIL,(X,EQ,Y),OR,(Y,GT,X)
D02 DO WHILE,(X,EQ,Y)
D03 DO UNTIL,(X,NE,Y)
ADD Y,1
ENDDO3 ENDDO
ENDDO2 ENDDO

ENDDO1 ENDDO

Assume when execution begins, X=Y.
a. All three DO loops will execute one time.

b. The first two DO loops will execute once, but the innermost
DO loop (DO3 to ENDDOS3) will not be executed.

c. None of the DO loops will execute, because X is equal to Y
when the first DO statement is encountered (DO1).

d. Question is not valid, because DO loops cannot be nested.

Program Sequencing 8-13



PROGRAM SEQUENCING REVIEW EXERCISE — ANSWERS

8-14 SR30-0436

1.

The correct answer is choice c. A is not equal to B, so the ““true’” >
code following the IF at location IF1ST will be executed. A is \,
greater than B, so the ““true’’ code of the nested IF at IF2ND is
executed. VAL is set to 2, the result of the SUBTRACT oper-
ation. Execution continues at location COMPGO, skipping the
“false’’ code of the nested |F and the first IF. VALT1, the index
variable of the computed GOTO at location COMPGO was set to

2 by the statements in the preceding IF structure, so control is
transferred to location EXIT2.

The correct answer is choice b. A is not equal to B, so the “‘true”
code of |F1ST is executed. A is not greater than B, so the ‘‘false”
code of the nested IF (ELSE2ND to END2ND) is executed, and
the difference between A and B is placed in VAL1 (VAL1=1).
The computed GOTO at COMPGO will transfer control to loca-
tion EXITI.

The correct answer is choice a. Execution proceeds exactly

as in the answer to question 2 above (A#B,A<B), but the difference
between A and B is 5. When the computed GOTO at COMPGO

is executed, the index variable, VAL1, contains a value which
exceeds the range of the list, and therefore control is transferred

to location ERR.

Choice b is the correct answer. ‘‘“True’’ code is everything between
the |IF and the ELSE statement/or the IF and the ENDIF if ELSE
is not coded.

Choice d is correct. If A and B are equal, the relational statemen.__
in the IF at location IF1ST is false, and the ‘’false’’ code is
executed. The ““false’” code is the unconditional GOTO at loca-

tion EXITA4.

The DO loop will execute 17 times. The index variable, TWO, will
be set to zero before the first execution of the DO loop, and
assuming that the code within the DO loop does not contain any
GOTO statements, the loop will execute 17 times, and the index
variable TWO will contain 17 after the DO loop is exited.

The correct answer is choice a. Although X and Y are equal at the
time the first DO statement is executed (DO1), the relational con-
dition associated with a DO UNTIL statement is not checked until
after the first execution of the DO loop.

The second DO loop (DO2) starts with a DO WHILE statement.
The DO WHILE checks for the relational condition before execut-
ing for the first time, but since the condition is true, execution
drops to the second nested DO loop at DOS3.



o

The innermost DO loop is another DO UNTIL, this time with a
“NOT EQUAL" relational mnemonic. The ADD operation
within the loop makes the two variables, X and Y not equal,
thereby satisfying the exit condition for DO3, the innermost
loop.

The exit condition for the second loop, DO2 (first nested loop)
is also satisfied, because it is supposed to execute only as long as
X is equal to Y, which is no longer true.

The first loop will also exit, because although X is not equal to Y,
which is the relational condition specified in the first part of the
relational statement, Y is greater than X, which is specified in

the second part of the relational statement, and the two parts

are joined by the OR conjunction. All three loops will therefore
exit after a single execution.

Note: The relational statement used with the DO at location DO1
could have been coded as:

D01 DO UNTIL,(Y,GE,X)

and would have executed with the same effect as the form used in
the example.

Program Sequencing 8-15



8-16

SR30-0436

This page intentionally left blank.



Section 9. Timers

OBJECTIVES: After completing this topic, the student should be
able to:

1. Use the GETTIME instruction to access the time-of-day and
date from an application program

Use the INTIME instruction to measure time intervals

3. Cause user-defined delays in task execution by using the
STIMER instruction along with the “WAIT on timer’’
capability

If you have the hardware timer feature installed on your Series/1

4955 Processor, or your processor is a 4952 (has self-contained timer),
you can include support in your Event Driven Executive supervisor,
which provides several time/timing functions that may be used by
application programs. In addition to maintaining a time-of-day clock,
the system also provides a time interval (elapsed time) clock, and has
the capability to suspend task execution (go into wait state) for
specified lengths of time.

Y
Q/ GETTIME INSTRUCTION

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “GETTIME."”

The time-of-day (TOD) clock is maintained in hours, minutes, and
seconds. At initial program load (IPL), the clock is all zeros and begins
running. It may be set to actual clock time using the $T operator
command, and will maintain clock time from that point on.

The GETTIME instruction is used to move the TOD values into a
user program. The GETTIME format is;

]

label !GETTIME Todc,DATE=

| — | - v 7 p—
OPTIONAL MUST BE CODED OPTIONAL

Figure 9-1. GETTIME format

Timers 9-1



9-2

INTIME INSTRUCTION

SR30-0436

The hours, minutes, and seconds are maintained by the system in three
storage words in the supervisor. The user must define a three word
storage area in the application program issuing the GETTIME, into \__
which the hours, minutes, and seconds can be moved. The loc

operand is coded as the label of the first position of the three word user-
defined area.

The $T operator command also allows you to enter the date in the form
of month-day-year or day-month-year (depending on how the
DATEFMT= keyword operand of the SYSTEM statement was coded
during system generation). |f the DATE= keyword operand is coded
DATE=YES, the GETTIME instruction will transfer the date as well

as the time into the application program. Three words are also required
for the date, and these must be contiguous with and following the

three word area defined to hold the time.

Each of the six words in the TOD and date locations are direct binary
equivalents of the information they represent. For instance, the third
word of TOD information (loc+4) is seconds, and when it reaches 59,
the next increment resets it to zero, and the minutes word is increased
by 1 (loc+2). Hours is increased by 1 when 60 minutes have elapsed,
days by 1 at midnight, etc. By using GETTIME, an application pro-
gram can time stamp reports, transactions, or any system event in
which information as to the actual time of occurrence is useful.

~
READING ASSIGNMENT: IBM Series/1 Event Driven Executive ( ‘
Language Reference (SC34-1706), “INTIME."” S

Some applications need to measure elapsed time: how long it takes

for a certain code sequence, task or program to execute, or how much
time has passed between the occurrences of events. These time intervals
may be very short, and therefore, cannot be accurately measured using
TOD values, whose resolution is only to the nearest second.

In addition to the TOD clock, the system maintains a relative time
clock. It consists of a double precision (two-word) integer, which is
initialized to zero at system IPL. Every millisecond thereafter, this
value is incremented by 1, and at any given instant, therefore, con-
tains the elapsed time in milliseconds since the system IPL. (A double-
precision integer will contain a count of milliseconds comprising
approximately 49 days elapsed time, before rolling over to zero and
starting again.)

The INTIME instruction is used to read the relative time clock
value into a user program. The format for the INTIME statement
is shown in Figure 9-2.

label LINTIME  reltime,loc i,INDEX
— “ Y N’

OPTIONAL MUST BE CODED OPTIONAL

Figure 9-2. INTIME format C




—

STIMER INSTRUCTION

The reltime operand is coded as the label of a user-defined double-
precision integer variable into which the relative time value will be
moved. The loc operand is coded as the label of a user-defined single
precision integer, which will be set to the number of milliseconds

that have passed since an INTIME instruction, referencing this reltime.
location, was executed in this program. (A single-precision integer will
hold approximately 65 seconds elapsed time in milliseconds, before
rolling over to zero and starting again.)

The INDEX keyword, if coded, indicates that automatic indexing

is to be used in conjunction with a BUFFER statement. If INDEX
is coded, the loc operand must be the label of a BUFFER statement,
instead of a single-word integer. When automatic indexing is used,
repetitive executions of an INTIME instruction result in the storing
of successive elapsed time values in successive buffer positions. The
use of INTIME with automatic indexing is illustrated at the end of
this section, along with the other timer instructions.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “STIMER."”

Every task has a software timer associated with it. This timer will
time out after a user-specified number of milliseconds has elapsed
(60 seconds or 60,000 milliseconds maximum). The desired time
interval is set and the timer started by the STIMER instruction,
whose format is illustrated in Figure 9-3.

i :
label ISTIMER count},WAIT
N’ \ V)

OPTIONAL MUST BE CODED OPTIONAL

Figure 9-3. STIMER format

The count operand is coded either as the number of milliseconds you
want to elapse before the timer expires, or as the label of a word of
storage containing the desired number of milliseconds. |f the WAIT
keyword is coded, the task will go into the wait state until the specified
time interval has passed. Execution will resume with the instruction
following the STIMER.

The WAIT does not have to be coded as part of the STIMER instruction,
but may appear later as an explicit WAIT on the keyword operand
TIMER. This acts in the same manner as a wait on an event, the event
being expiration of the time delay. Using this method, the timer-is
started, and execution continues with the instruction following
STIMER. When the WAIT on TIMER is encountered, the WAIT

will fall through if the time interval has already passed, or the task

will go into a wait state for the amount of time remaining.

Timers 9-3



TIMING FUNCTIONS — CODING EXAMPLE

9-4 SR30-0436

Figure 9-4 is a program that exercises all of the timing functions
previously discussed in this section. The first instruction in the pro-
gram is GETTIME at location STARTIME. It will place the TOD
values for hours, minutes, and seconds into the three words defined
at location STARTED.

The DO loop starting at DOSTART and ending at DOEND will
execute three times. Each time, the INTIME instruction at location
11 will place the time elapsed since IPL in the double precision
integer at SINCEIPL, and will put the time that has elapsed since the
last INTIME execution in the next successive buffer location of the
buffer defined at TIMEBUF. Both values are in milliseconds.

14

)

The STIMER instruction at location S1 causes a 5 second delay
(5000 milliseconds = 5 seconds) in each execution of the DO loop.
After the third delay, the DO loop exits, and the STIMER at location
S2 executes. This starts a 10 second timer running but, since the
WAIT operand is not coded, execution continues.

TIMETEST PROGRAM STARTIME
STARTIME GETTIME STARTED
DOSTART DO 3,TIMES
1 INTIME SINCEIPL,TIMEBUF,INDEX
S1 STIMER 5000,WAIT
DOEND ENDDO
S2 STIMER 10000
12 INTIME SINCEIPL,LASTIME (’“\
ENDWAIT WAIT TIMER AL _
G2 GETTIME STOPPED,DATE=YES
PROGSTOP
STARTED DATA 3F'0"
SINCEIPL DATA 2F'0"
TIMEBUF BUFFER 3
LASTIME DATA F'o’
STOPPED DATA 6F'0"
ENDPROG
END

Figure 9-4. Timing functions

The INTIME instruction at 12 places the elapsed time since IPL

into SINCEIPL again, and puts the elapsed time since a previous
INTIME instruction referencing SINCEIPL was executed into the
single precision integer at LASTIME (INDEX not coded). The WAIT
at ENDWAIT puts the program in a wait state, until the expiration
of the 10 second time delay that was started by the STIMER at S2.



@

O

O

When the 10 seconds are up, the GETTIME at G2 executes, and the
program ends. This time DATE=YES is coded, so a six-word area
is defined at location STOPPED. Hours, minutes, and seconds will
be placed in the first three words, and month, day, and year in

the next three.

When using INTIME to time events where a few milliseconds
difference is critical, keep in mind that the time values retrieved by
your program represent the time that the INTIME instruction is
executed. If the task issuing the INTIME is of a lower priority than
other tasks active in the system at the same time, a delay in execution
of the INTIME may result, and will be reflected in the clock value
retrieved.

Timers 9-5



9-6

SR30-0436

This page intentionally left blank.



TIMERS REVIEW EXERCISE — QUESTIONS

Q All of the questions in this Review Exercise refer to the program in
Figure 9-4. For simplicity, assume that no time is used to execute
instructions, no other tasks are running in the system, and system
overhead is zero.

At the time that the program begins execution, the date has been set
at January 1st, 1979, and it is exactly 5 p.m. {1700 hours). The system
IPL was at exactly 4 p.m.

1.

)

What will be in the three words beginning at location STARTED
after execution of the GETTIME at location STARTIME?

Answer: STARTED
STARTED+2
STARTED+4

What will be the values in the double precision integer at
SINCEIPL and the buffer at TIMEBUF after the first
execution of the INTIME instruction at [1?

Answer: SINCEIPL
TIMEBUF
TIMEBUF+2
TIMEBUF+4

After the second execution?

Answer: SINCEIPL

TIMEBUF
TIMEBUF+2
TIMEBUF+4

After the third execution?

Answer: SINCEIPL
TIMEBUF
TIMEBUF+2
TIMEBUF+4

What will be in SINCEIPL and in LASTIME after execution
of the INTIME instruction at location [2?

Answer: SINCEIPL
LASTIME

What will be in the six words beginning at location STOPPED
after execution of the GETTIME at location G2?

Answer: STOPPED
STOPPED+2
STOPPED+4
STOPPED+6
STOPPED+8
STOPPED+10

Timers 9-7



TIMERS REVIEW EXERCISE — ANSWERS

9-8

SR30-0436

1.

STARTED 17 C
STARTED+2 0 —
STARTED+4 0

The TOD clock is kept using military time, on a 24 hour-a-day
basis. Five p.m. is therefore 17 hours, 0 minutes, and O seconds.

SINCEIPL 3,600,000
TIMEBUF 0
TIMEBUF+2 0
TIMEBUF+4 0

If the system IPL was at 4 o'clock, and it is now 5 o’clock, the
relative time clock has been running for one hour, or 3,600,000
milliseconds. (1 hr x 60 minutes x 60 seconds x 100 milliseconds/
second). The first word in TIMEBUF is zero, because the elapsed
time from the last time an INTIME instruction referencing
SINCEIPL was executed is zero; this is the first time the

INTIME has executed.

SINCEIPL 3,605,000
TIMEBUF 0
TIMEBUF+2 5,000
TIMEBUF+4 0

The second time through, the 5 second delay at S1 has occurred.
Total elapsed time since IPL has increased by 5,000 milliseconds

(SINCEIPL), and the time elapsed since the first INTIME execution, '
also 5000 milliseconds, is automatically indexed into TIMEBUF+2, -
SINCEIPL 3,610,000

TIMEBUF 0

TIMEBUF+2 5,000
TIMEBUF+4 5,000

A second 5 second delay has occurred, increasing SINCEIPL
by another 5000 milliseconds, and placing 5000 milliseconds
in the third buffer position, TIMEBUF+4,

SINCEIPL 3,615,000
LASTIME 5,000

Before exiting the DO loop, an additional 5 second delay occurred,
adding another 5000 milliseconds to SINCEIPL. Because the
INTIME instruction references the same ‘‘reltime’’ operand as the
last INTIME execution (SINCEIPL), LASTIME is set to 5000
milliseconds. [f the INTIME at |2 had a different “reltime’’
operand, it would be treated as a first execution, and LASTIME
would indicate zero elapsed time.



STOPPED

STOPPED+2
STOPPED+4
STOPPED+6
STOPPED+8

STOPPED+10

17
0
25

—

-

79

5 p.m.

0 minutes
25 seconds
January
1st

1979

Fifteen seconds in the DO loop, plus the 10 second delay at
S2 have elapsed.

Timers

9-9



9-10 SR30-0436

This page intentionally left blank.



Section 10. Disk/Diskette 1/0

Q

OBJECTIVES: Upon successful completion of this topic the student
should be able to:

1. Understand the logical layout of disk, diskette and tape
Define data sets in a PROGRAM statement
Read records using the READ statement

Write records using the WRITE statement

o & N

Use NOTE and POINT to access and set the next record
indicator

6. Pass data set definitions to programs loaded from a terminal
or from another program

7. Pass data set definitions to an overlay program from the program
loading the overlay

Q DEVICES SUPPORTED — DISKETTE

The Event Driven Executive supports both the 4964 Diskette Storage
Unit, and the 4966 Diskette Magazine Unit. Diskettes used with the
Event Driven Executive can be Diskette 1 (single-sided), Diskette 2
(double-sided) or Diskette 2D (double-sided double-density) diskettes.
EDX supports all diskettes formatted 256 bytes/sector and Diskettes 1
and 2 formatted 128 bytes/sector. Diskette 2D can only be used in the
4966 Diskette Magazine Unit.

DEVICES SUPPORTED — DISK

The 4962 Disk Storage Unit and the 4963 Disk Subsystem are non-
removable direct access storage devices, available in several capacities,
with or without fixed-head capability. All models of both devices are
supported by the Event Driven Executive.

For information on the physical layout of any of the disk/diskette

storage devices, see the appropriate General Information manual for
that device.

DEVICES SUPPORTED — TAPE

The Event Driven Executive supports all models of the 4969 Magnetic
Tape Subsystem utilizing 800 or 1600 bpi magnetic tape.

Disk/Diskette Input/Output  10-1

S LR NN
BRI T D s T L



Disk Volume Definition

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C
Language Reference (SC34-1706), “'Disk 1/0.” IBM Series/1 Event '
Driven Executive System Guide (SC34-1702), 'Direct Access Storage
Devices” and ‘’‘DISK Configuration Statement.”’

Event Driven Executive direct access storage has an hierarchical
structure. The largest logical unit in the hierarchy is the volume. A
volume is named contiguous area on disk/diskette, starting and
ending on a cylinder boundary.

Disk devices are identified to the supervisor by the DISK system con-
figuration statement at system generation time. The DISK statement
defines the type of disk and hardware address of disks to be supported
by the supervisor.

Volumes on disk are defined by the $INITDSK utility. Before allocat-
ing any volumes, a user must initialize the disk device. This device
initialization creates a volume directory which will contain control
information about volumes that are subsequently allocated on the
device. Once the volume directory is created, volumes can then be
allocated. Before using a newly created volume, it must be initialized;
that is, a directory must be created to contain the control information
about data sets that will subsequentially be allocated in the volume.

10-2 SR30-0436



@

Diskette Volume Definition

Tape Volume Definition

Data Sets

Logical volumes defined on disk devices exist on a non-removable

storage medium. The names used to symbolically reference these

disk volumes (EDX002, ASMLIB, etc.) are recorded in the volume
directory of the device. Diskettes, being removable, also have the

volume name written on them.

A DISK statement is used to define a diskette device (4964 or 4966),
and to establish the device hardware address. This generates the
physical device tables the supervisor requires to operate the device.

A logical volume on diskette encompasses the entire diskette. A
diskette volume mounted on a 4964 device is considered to be a logical
volume, as only a single diskette may be mounted and online at a time.
With the 4966 Diskette Magazine Unit, up to twenty-three volumes
may be online.

Diskette volumes are created (volume name written, directory created,
etc.) by the $SINITDSK utility. As many volumes as required may be
created.

Each magnetic tape is a volume which is allocated by the $TAPEUT1
utility. Only one volume is defined tor each physical tape drive known
to the system. The actual volume label is determined by the system
when the tape is placed on line ($VARYON).

Data sets are members of a library. A data set is a named contiguous
space whose length is determined by the user when the data set is
created. Disk or diskette data sets are allocated by the user, using
utility program $DISKUT1, or, in some cases, automatically allocated
by certain special purpose system utilities. Data sets may be defined
with program organization or data organization, depending on what is
to be stored. Program organization is used for data sets that will
contain executable (loadable) Event Driven Executive programs. Data
organization is used for work files (SEDIT1N, $FSEDIT, $LINK,
$EDXASM, $S1ASM work files), user source modules and application
data sets.

Tape data sets are allocated by the user using the $STAPEUT1 utility.
Data sets can only be defined as data organization. Programs cannot
be loaded and executed from tape.

Disk/Diskette Input/Output  10-3



Records

When a data set is allocated, an entry is made in the directory of the
logical volume in which the data set is defined. The directory entry will
contain such information as the data set name, organization {program
or data), location of the data set starting point within the volume, and
the length of the data set, in records.

A record is 256 bytes in length, and is the smallest logical unit in the
Event Driven Executive direct access storage hierarchy. A record is the
basic unit that is accessed from user and system programs. Data sets
are named, contiguous groups of 256-byte records.

Record/Sector Relationship

Diskettes used as Event Driven Executive logical volumes can be for-
matted in 128-byte or 256-byte sectors. When formatted in 128-byte
sectors, two diskette sectors constitute a single 256-byte logical record.
On a 4962 disk, physical sectors and logical records are the same length,
256 bytes. The physical sector size on 4963 disks is 512 bytes,
allowing two logical 256 byte records in each physical sector.

In all cases, user access to direct access storage is at the logical 256-byte
record level. System routines compensate for physical sector/logical
record mismatches, making the hardware differences between devices
transparent to the user. :

Figure 10-1 summarizes the direct access storage logical layout.

PROGRAM STATEMENT DS= OPERAND

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “PROGRAM Statement."’

- Data sets accessed from user programs must be preallocated on disk or
diskette ($DISKUT1 utility), and must be named in the DS= keyword
operand of the using program’s PROGRAM statement. Figure 10-2
shows how the DS= operand is coded for data sets residing on the IPL

- or other logical volumes.

10-4 SR30-0436

®

@



.

O

VOLUME
CREATED BY
$INITDSK

4964/4966

] Epxvol]

O
l

CONTAINS —»
LIBRARY

+

VOLUME { DIRECTORY

DATA SET CONTAINS_’_::://
RECORDS, EACH

256 BYTES

PATASETS —

TWO 128-BYTE OR D :::

ONE 256-BYTE *
SECTOR(S) ON O
DISKETTE DEPEND-

ING ON HOW '
FORMATTED

Figure 10-1. Disk/diskette logical layout

4962/4963
CONTAINS CONTROL »

INFORMATION ABOUT Q

VOLUMES ON DISK {VOLUME DIRECTOR\(

VOLUMES ALLOCATED EDX002

BY SINITDSK Q'\_A_L_IB,/
EDXO003

| pIRECTORY | Ds1 DS2 DS3

REC1 REC2 REC3 REC4 B

= =

ONE SECTOR %2 SECTOR

ON 4962 ON 4963
(TRANSPARENT
TO USER)

Disk/Diskette Input/Output  10-5



“FILEA” IS ONLY DATA SET N
USED, AND IS ON THE IPL

VOLUME — NO PARENTHESES
REQUIRED, NO VOLUME RE-
QUIRED (DEFAULTS TO IPL)

/
DSEXAMP1  PROGRAM  GO,DS=FILEA

MULTIPLE DATA SETS, ALL

ON IPL VOLUME—-ENCLOSE

LIST IN PARENTHESES, VOLUME
DEFAULTS TO IPL

DSEXAMP2  PROGRAM  GO,DS=(FILEA,FILEB)

“FILEA” AND “FILEB” HAVE NO “FILEX” ON DIFFERENT
VOLUME SPECIFIED—-DEFAULT VOLUME-VOLUME MUST
TO IPL VOLUME BE SPECIFIED

DSEXAMP3 ~ PROGRAM  GO,DS=((FILEA),(FILEB),(FILEX,EDX003))

EACH ENTRY ENCLOSED ENTIRE LIST

IN PARENTHESES ENCLOSED IN -
ADDITIONAL (’ N
PARENTHESES "

Figure 10-2. DS= operand

The IPL volume is the volume where the currently loaded (IPL)
supervisor resides. The system will assume that data sets specified

in the DS= operand list also reside on the IPL volume, unless a different
volume is explicitly coded. Up to nine data sets may be coded in a

DS= operand list.

At the time a program is loaded, the loader (SLOADER) looks up all
the data sets named in the PROGRAM statement’s DS= operand list,
and logically opens them for use by the program. If a named data set
does not exist (was never allocated by $DISKUT1), resides on a volume
other than that specified in the DS= operand entry, or is program
rather than data organization, the load operation is terminated and an
error message results.

READ/WRITE STATEMENTS — DISK/DISKETTE

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “READ", “WRITE."”

106 SR30-0436



@,

O

The 256-byte records in data sets are transferred from disk/diskette
to storage or storage to disk/diskette by READ and WRITE instructions.
The format for READ and WRITE statements is illustrated in Figure 10-3.

DSx is the operand specifying which data set to use. The x in DSx is
coded as an integer value between 1 and 9, and is a positional reference
to one of the 9 possible data sets named in the DS= list of the PROGRAM
statement,

i
| I
label ' READ DSx,]ocf,count,re]r‘ecno,END=,ERROR=,WAIT=,PREC=
\————/ WRITE
OPTIONAL ™

I
'
v

OPTIONAL

MUST BE CODED

Figure 10-3, READ/WRITE format—disk/diskette

DS1 would refer to the first data set in the list, DS2 to the second,
continuing through DS9, referencing the ninth data set defined.

The loc operand is coded as the label of the first byte of the (one or
more contiguous) 256 byte storage area(s), into or from which the
disk/diskette record(s) will be read/written.

|

| ! o ,
“tabel ! READ Dsx,loc!,count,relrecno, END=,ERROR=,HAIT=,PREC=
— | . g ___
OPTlONALL — I OPTIONAL

MUST BE CODED

Figure 10-4. READ/WRITE count operand

The optional count operand is coded as an integer value (or as the

label of a program location containing an integer value) indicating

the number of 256-byte records to be read or written. The user

must ensure that adequate storage is reserved (beginning at location loc)
to accommodate the number of records specified in count. If count

is not coded, the system will default the count operand to 1, indicating
that a single record will be read or written. If count is set to 0, the
READ or WRITE will not be performed (execute as a no-op), and
execution will continue with the next sequential instruction following
the READ/WRITE.

¢t,count,relrecno,l
|

OPTIONAL ~ o — OPTIONAL
MUST BE CODED

Figure 10-5. READ/WRITE relrecno operand

Disk/Diskette Input/Output  10-7



10-8

SR30-0436

The relrecno operand is the relative record number (relative to the
origin of the data set) to be read or written. It is coded as an integer,
or as the label of a location containing an integer, which is the
relative record number you want to access. The relrecno operand
will default to 1 (indicating the first record in the data set) if it is
left uncoded.

For each data set used by a program (DS1, DS2, etc.), the system
maintains a next-record pointer. This pointer is an indicator of the
next sequential record in the data set and, at the time a program is
loaded (before disk/diskette 1/0 has been performed), has an initial
value of 1. It is updated by +1 after each READ or WRITE in which;

a. relrecno is not coded
b. relrecno is coded as O

c. the location specified by the label in relrecno is equal to O

Successive executions of READ/WRITE instructions in which
relrecno has a value of 0 or is not coded will therefore result in
sequential access of the data set; i.e., the relative record number of
the next record read/written will automatically be 1 greater than the
last record read/written. A READ or WRITE with relrecno coded
as an integer greater than 0, or with the contents of the location
specified by the label in relrecno greater than 0 does not disturb
(increment) the next-record pointer.

WRITE  DSx»Tocy,count,relrecno, END=,E

OPTIONAL — OPTIONAL
MUST BE CODED

Figure 10-6. READ/WRITE END= operand

The END= keyword operand is coded with the label of the instruction
that you wish control transferred to when an attempt to READ or
WRITE a record outside the physical boundaries of the data set is
detected. This condition may occur because of a normal end-of-data
set condition {attempting to READ or WRITE the next sequential
record in a data set, when the last record read or written was the last
physical record in the data set), or may be caused by a program logic
error {for example, a READ or WRITE with relrecno erroneously

set to a negative value).

Note: A “logical-end-of-data” facility for READ operations is provided
by a system subroutine called SETEOD. This subroutine will allow a
user to set a given record number in a data set as the last logical record
in that file. An attempt to read a record beyond the last logical record
(although still within the physical boundaries of the data set) would
result in a transfer to the label coded in the READ statement’s END=
keyword operand.




SETEOD is supplied as a system COPYCODE source module, and may
be copied into user programs using the COPY assembler instruction.

@

OPTIONAL ~ — OPTIENAL
MUST BE CODED

Figure 10-7. READ/WRITE ERROR= operand

The ERROR= keyword operand is coded with the label of the instruction
that you wish to get control if an error is detected while executing a
disk/diskette READ or WRITE operation. |f END= is not coded and
ERROR is coded, an end-of-data set condition will result in a transfer

to the ERROR= location. If END= is coded and ERROR= is not, all
abnormal conditions other than end-of-data set will result in contin-
uation of execution with the next sequential instruction following the
READ or WRITE. If neither is coded, execution continues with the

next sequential instruction in all cases.

After each disk/diskette READ or WRITE operation, a completion
code is returned to the user program (see Reading Assignment for a
description of completion codes). The completion code is placed in
the task code word (taskname) of the task issuing the READ or WRITE,
and is also placed in a system control block that may be referenced
N by the symbolic positional data set name (DS1, DS2, etc.). This

Q completion code can be accessed and analyzed by the user program

to determine if the operation was successful and, if not, why it failed.

ROR=,WAIT=,PREC=

‘,-/‘ S | —
OPTIONAL ~ e < OPTIONAL
MUST BE CODED

Figure 10-8. READ/WRITE WAIT= operand

While a disk/diskette 1/O operation is executing, there is an implied
wait for the issuing task. Task execution is suspended (the task is
placed in a wait state) until the i/O is complete. If the WAIT=
operand is coded as WAIT=NO, the wait does not occur; while the

I/O operation is in progress, task execution proceeds with the next
sequential instruction following the READ or WRITE, overlapping
I/0O with processing. Also, if WAIT=NO is coded, the END= and
ERROR= keyword operands are not allowed. Checking for errors

is entirely a user responsibility (completion code in taskname or DSx).

Disk/Diskette Input/Output  10-8



In addition, the user must issue an explicit WAIT instruction, waiting

on the completion of I/0 event. This is a predefined system event, and
the associated ECB is referenced (in the operand of the WAIT statement)
by the symbolic positional data set name (DS1, DS2, etc.) for the data
set used. When the waited on ECB is posted complete, the 1/O operation
has finished, and the completion code is available for inspection.

OPTIONAL — OPTIONAL
MUST BE CODED

Figure 10-9. READ/WRITE PREC= operand

The PREC= keyword operand further defines the relrecno operand. If
PREC=S (single precision) the relative record number is limited to a
value of 32767. |f PREC= D (double precision) is specified relative
record numbers up to 2°!'—1 can be specified. I1f no PREC= operand is
specified the default assumed is S (single precision).

READ/WRITE STATEMENTS — TAPE

10-10

Records in data sets are transferred from magnetic tape to storage or
storage to magnetic tape by READ and WRITE instructions. As with
disk/diskette, the DSx operand specifies the data set to be used. The
format of the READ and WRITE statements is shown in Figure 10-10.

|

|

i READ ! . _ _ _
label | WRITE DSx,loc; ,count,blksize,END=,ERROR=,WAIT=
OPTIONAL ~ - : OPTIONAL

MUST BE CODED

Figure 10-10. READ/WRITE format—tape

All the operands as discussed previously for disk/diskette apply to tape
READ/WRITE operations. Tape records can be variable in length and
are normally read sequentially; therefore, a blksize operand is used
instead of the relrecno operand. BLKSIZE indicates the number of
bytes to be read from or written to tape. If no BLKSIZE is specified,
it will default to 256. Since the maximum size of a tape record is
32767 bytes, the PREC= operand does not apply.

SR30-0436

N

o

.

e



NOTE/POINT STATEMENTS

\/ READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “NOTE"’, “POINT."”

The system-maintained next record pointer changes value (increments)
each time a READ or WRITE (without a user-specified relrecno
greater than 0) is executed. Using the NOTE instruction, a user
program can find out the current value of the next record pointer.
The next record pointer may be set to a user-specified new value

using the POINT instruction.

!

1 NOTE loc _
label ; POINT DSX’re]r‘ecno’PREC_
OPTIONAL™ ~ /

MUST BE CODED

Figure 10-11. NOTE/POINT format

In Figure 10-11, the DSx operand is the symbolic positional reference
to the data set whose associated next record pointer is to be retrieved
(NOTE) or set (POINT). The second operand is coded as the label
of a storage location that the NOTE instruction will move the
current value of the next record pointer into, or that contains the
new value which the POINT instruction will use to set the next

~ record pointer. (When using the POINT instruction, the second

Q operand may be coded as an integer value rather than the label of a

storage location.)

DISK/DISKETTE I/O CODING EXAMPLES

The programs depicted in the next four figures (Figure 10-12 through
10-15) are not meant to be practical examples of how to code disk/
diskette 1/0 operations in a user program. They are intended only to
illustrate some of the concepts already discussed.

In Figure 10-12, the READ instruction at location GO will execute
as a no-operation. Execution will continue with the instruction
following the READ, and no 1/0 is performed. The count operand
is coded as storage location CTR. When the program is first loaded,
location CTR contains zero, and a zero count indicates no records
are to be read (or written, for a WRITE instruction).

Disk/Diskette Input/Output  10-11




10-12

SR30-0436

DISKPGM PROGRAM  GO,DS=WORKFILE
GO READ DS1,BUFF,CTR,END=ENDOUT ,ERROR=E1

®

R1 F'QEAD DS1,BUFF,END=ENDOUT,ERROR=E1

SET7 POINT DS1,7

MOVE CTR,3
R2 READ DS1,BUFF,CTR,END=ENDOUT,ERROR=E1
PROGSTOP
ENDOUT [END-OF-DATA SET|
i __ROUTINE _____ i

E1 R
IERROR ROUTINE]

BUFF BUFFER 768,BYTES
CTR DATA F'o'
ENDPROG
END

Figure 10-12. Count operand use

The READ at location R1 has no count operand coded, so count

defaults to 1, indicating a single record will be read. Since relrecno

is not coded, the relative record number defaults to the current value A
of the next record pointer. The next record pointer has not yet been C
altered, and is therefore at its initial value of 1, indicating the first -
relative record in the data set. The READ at R1 will read the first

record in WORKFILE into the first 256 bytes of the 768 byte area

BUFF. After the 1/O operation, the next record pointer is incre-

mented to 2 (automatic system function).

The POINT instruction at location SET7 changes the next record
pointer to point to the seventh relative record in the data set. The
MOVE which follows sets location CTR to a value of 3. When the
READ at R2 is executed, three 256 byte records (count= CTR = 3},
beginning with relative record number 7 (relrecno defaults to next
record pointer which was set to 7) will be read into storage, beginning
at location BUFF. After the operation, the next record pointer will
have a value of 10.

In Figure 10-13, all count operands are left uncoded, so all READ
operations will be single record reads {(default count = 1). In the first
READ (location GO), relrecno is coded as location RECNBR, which
has an initial value of 2. The second relative record in WORKFILE
will be read into BUFF. The ADD instruction following the READ
updates the user-maintained relative record number in RECNBR by
adding 3. When the READ at R2 is executed, relative record number
5 will be read into BUFF.

The MOVE operation preceding the READ at R3 sets the relrecno
location RECNBR to zero. A zero relrecno value causes a default C
to the next record pointer maintained by the system. »



O

DISKPGM PROGRAM  GO,DS=WORKFILE

GO READ DS1,BUFF, ,RECNBR, ERROR=ERROUTN , END=0UT
ADD RECNBR, 3

R2 READ DS1,BUFF, ,RECNBR,ERROR=ERROUTN ,END=0UT
MOVE RECNBR, 0

R3 READ DS1,BUFF, ,RECNBR, ERROR=ERROUTN , END=0UT

RA READ DS1,BUFF ,ERROR=ERROUTN , END=0UT

P1 PROGSTOP

ouT i_[:'_/\TD_-E)-I?-beA_sTE 7!
L__ROUTINE ____]

ERROUTN [ERROR ROUTINE]
BUFF BUFFER 256,BYTES
RECNBR DATA Fra2!
ENDPROG
END

Figure 10-13. “‘relrecno” operand use

The two previous READ operations (at GO and R2) both used a user-
defined relrecno value greater than zero, so the next record pointer was
not affected, and is still at its initial value of 1. The READ at R3

will therefore read the first relative record in WORKFILE, because

the MOVE operation preceding sets RECNBR to zero.

The READ at R4 has no relrecno coded, and will also default to
the next record pointer for a relative record number. This READ
will read relative record number 2, since the next record pointer
was incremented by 1 after the preceding READ at R3.

In Figure 10-14, all count and relrecno operands are left uncoded, so
all READ commands will read a single record, and the next record
pointer will be used for the relative record number.

The READ statement at GO has both END= and ERROR= operands
coded. An end-of-data set condition will cause a transfer to location
ENDR, and an error condition will result in execution of the instructions
beginning at ERTN. If the operation is successful, relative record
number 1 will be read into BUFF.

Disk/Diskette Input/Output 10-13




"In the READ statement at R2, only the END= operand is used. Error
checking is therefore a user responsibility, and is performed in this
example by the IF statement immediately following the READ. The
symbolic positional data set name, DS1, is checked for a completion
code of -1. A -1 indicates a successful or normal operation. If the
completion code is other than-1, control is transferred to the error
routine at ERTN. If the operation was successful, relative record
number 2 would be read.

DISKPGM PROGRAM  GO,DS=WORKFILE

60 RERD DS1,BUFF,END=ENDR, ERROR=ERTN
R2 READ DS1,BUFF,END=ENDR
IF (DS1,NE,-1),GOTO, ERTN
R3 READ DS1,BUFF,ERROR=EQ
R4 READ DS1,BUFF

IF (DS1,NE,-1),G0OTO,EQ

DONE PROGSTOP

ENDR  YBRINT OUT “END |
LOF DATA SET” MSG}

GOTO DONE
EO IF (DS1,EQ,10),GOTO,ENDR
ERTN  reRiNT OUT “DISK |
{ERROR”MSG___ |

6OTO DONE

BUFF BUFFER 256,BYTES
ENDPROG
END

Figure 10-14. END= and ERROR= use

10-14 SR30-0436



The ERROR= operand is coded in the READ statement at R3, but the
END= is not. An end-of-data set condition will therefore be considered
an error, and will cause a transfer to the label coded in the ERROR=
operand, location EQ. When END= is not coded, but you do not wish
to treat end-of-data set as an error, the specific condition code that
indicates end-of-data set must be checked for in the error routine. The
|F statement at location EO checks for a completion code of 10, which
is the completion code signifying an end-of-data set (relative record
number outside range of data set) condition. If the code is 10, control
transfers to the end-of-data set routine at ENDR, rather than
continuing execution of ERTN. Relative record number 3 is read

if normal operation occurs.

The READ at R4 has neither END= nor ERROR= coded. Operation

is the same as the previous READ at R3, except that the user must check
for abnormal completion; there is no automatic transfer to an error
routine, as is provided by the ERROR= operand. The completion

code is checked by the |F statement following the READ, and transfers
to EO (as did the ERROR=EOQ in the READ at R3) if other than normal
completion is detected. Normal completion results in a read of relative
record number 4.

Figure 10-15 illustrates the use of the WAIT= operand. The READ

at location START is the same as the READ statements you are
already familiar with. It will read a single record (count defaults to 1),
the first relative record in data set WORKFILE (relrecno defaults to
next record pointer = initial value of 1), into BUF1. If an error occurs,
the ERROR= operand will transfer control to E1, the start of the
error routine. (END= is not required because, by definition, if
WORKFILE exists, it has at least one record in it. Since thisis a

read of the first record in WORKFILE, end-of-data set will not occur.)

While the READ at START is in progress, task DISKPGM isin a
wait state (WAIT= operand not coded — default is WAIT=YES).
After successful completion of the READ, the MOVE at location
SETUP is executed, moving the 256 byte record in BUF1 into
WRKAREA (128 words = 256 bytes).

Now a second READ is issued (location R2), with the WAIT= operand
coded as WAIT=NQ. Since the READ at START used the next record
pointer for a relative record number, it now has a value of 2. The
READ at R2 will therefore read relative record number 2 into BUF1,
updating the next record pointer to 3 upon successful completion.

While the READ operation at R2 is in progress, execution of task
DISKPGM continues, because the WAIT=NO operand prevents

the implied wait for 1/0 completion from taking effect. While the
next sequential record (relative record 2) is being read into BUF1,
the program is operating on the data in the previous record, which is
now in WRKAREA. Program execution is overlapping with the 1/0.

Disk/Diskette Input/Output  10-15



10-16

SR30-0436

DISKPGM PROGRAM  START,DS=WORKFILE
BUF1 BUFFER 256 ,BYTES

WRKAREA DATA 128F'0"'
START READ DS1,BUFF1,ERROR=E1
SETUP MOVE WRKAREA,BUFF1,128

R2 READ DS1,BUFF1,WAIT=NO

:rPROCESS THE DATA IN'

'l_'_"ﬁ/_oﬁ_’i AREA” |
W1 WAIT DS1
IF1 IF (DS1,EQ,-1),G0TO,SETUP

IF2 IF (DS1,EQ,10),GOTO,0UT

EL  [PRINT DISK ERAOR]
| MESSAGE :

STOP PROGSTOP

OUT  [PRINT END OF DATA;
| SET MESSAGE :

GOTO STOP
ENDPROG
END

Figure 10-15. WAIT=NO

When WAIT=NO is coded, as illustrated in the READ at R2, the
ERROR= and END= operands cannot be used. Error checking is
therefore entirely a user responsibility. The 1/0 operation com-
pletion code is not available until the I/O operation is finished. To
find out when the 1/0 is complete and the completion code is avail-
able, and also to resynchronize processing with 1/0, the user must
issue a WAIT on the completion of 1/0 event.

The WAIT at location W1 uses the symbolic positional data set name
DS1 as the event name. The ECB is not coded, because it already
exists in the TCB established by the PROGRAM statement. When the
READ operation at R2 completes, the completion code is posted in
location DS1. DS1 is the symbolic address of the first word of the
associated ECB, and therefore the completion of /0 event is marked
as having occurred.

e



TAPE 1/0 EXAMPLES

After the WAIT, execution continues with the |F statement at
location IF1. If the I/O completed normally (condition code = -1),
control is transferred to SETUP, which moves the new record into the
work area. The READ at R2 starts the read of the next sequential
record into BUF 1, and the entire process continues to repeat until

all records have been processed (end-of-data set) or an error occurs.

If other than a normal completion is detected at IF 1, the |F at IF2

executes. An end-of-data set condition (completion code = 10) will
cause a transfer to location OUT, the end-of-data set routine. Any

other completion code is an error, and execution will continue with
the error routine E1, immediately following the IF.

For comprehensive sample programs of magnetic tape operations,
review the examples in the “Tape Management’’ section of the System
Guide (SC34-1702).

LOAD-TIME DATA SET DEFINITION

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “LOAD", “PROGRAM."”

In all of the disk/diskette 1/0 examples thus far, data sets to be used
by a program are named in the DS= list of the PROGRAM statement.
This is adequate for very stable applications, where the program
always uses the same data sets, and the names of those data sets are
known at the time the program is written.

A stable situation is not always possible. At the time a particular
program is being coded, data set naming conventions may not yet
have been established, and data set names therefore would not be
known. Also, the program could be a generalized file routine, de-
signed to perform certain updating or maintenance functions on any
of several similar data sets, a different data set (and data set name)
each time the program is executed.

By coding ?? in place of a data set name (in the DS= list of the
PROGRAM statement), data set names can be specified at the time
a program is loaded for execution, rather than when it is coded. In
Figure 10-16, the first entry in the DS= list is coded as ??, and the
second entry as the data set name FILEA.

Disk/Diskette Input/Output  10-17



10-18

SR30-0436

PROGA  PROGRAM  ASTART,DS=(??,FILEA)
ASTART  READ DS1,BUF1,END=F1,ERROR=E2 (:j\

RD2 READ DS2,BUF2,END=E1,ERROR=E?2

PROGSTOP

ENDPROG
END

Figure 10-16. Terminal load — data set passing

Assuming this program is stored on disk/diskette under the name

PROGA (same as initial task name), a terminal operator would re-

quest that the program be loaded by hitting the ATTENTION key,

and entering “$L PROGA"’. The system loader, recognizing that the

first entry in the requested program’s DS= list specifies a file to be C\
defined at load time, will query the terminal operator with the _
prompt DS1=(NAME,VOLUME):. The operator would then respond

with the name of the data set to be used as DS1 in the format

NAME,VOLUME, if the data set resides on other than the IPL volume,

or with just NAME if the data set is IPL volume resident. For example,

if the operator enters FILEX in response to the prompt (FILEX is

on the IPL volume), PROGA, when loaded, will execute as though

the DS= list in the PROGRAM statement were coded DS=(FILEX,

FILEA). The READ at location ASTART will read from FILEX,

and the READ at RD2 from FILEA. v

Load time file definition is also possible when programs are loaded by
other programs, rather than from a terminal. In Figure 10-17,

PROGA and PROGB both have a data set to be defined at load time

(?? entry in DS= lists). Assuming PROGA is loaded from a terminal,
the terminal operator will supply the missing data set name for PROGA.
PROGB, however, is loaded by PROGA, and therefore PROGA must
pass PROGB's missing data set name.

At location LD1 in PROGA, FILEZ is defined in the DS= list of the
LOAD statement. When the LOAD is executed, FILEZ will be sub-
stituted for the ?? entry in the PROGRAM statement’s DS= list for
PROGB.



@

O

PROGA PROGRAM  ASTART,DS=(??,FILEA)

ASTART
LD1 LOAD PROGB,DS=(FILEZ),ERROR=E3
LD? LOAD PROGB.DS=(DS1) ,ERROR=E3
PROGSTOP
ENDPROG
END

PROGB PROGRAM  BSTART,DS=(FILEB,??)
BSTART ~ READ DS1,BUF,END=ENDB,ERROR=ERRB

WRITE DS2,BUF , END=ENDB, ERROR=ERRB
PROGSTOP

S~ =

ENDPROG

END

Figure 10-17. Program load — data set passing

PROGB will READ from FILEB, and WRITE to FILEZ. Note that
data set names defined in the DS= list of a LOAD statement do not
have to exist in the {oading program’s PROGRAM statement DS=
list.

Disk/Diskette Input/Output  10-19



10-20

SR30-0436

Data set names that are in the DS= list of the loading program’s
PROGRAM statement can be passed using the actual name, or by using
the symbolic positional reference DSx. At LLD2 in PROGA (Figure
10-17), PROGB is again loaded, passing the data set DS1. This refers
to the first entry in the DS= list in PROGRA’s PROGRAM statement,
which is coded as ??. Again assuming this data set name was supplied
by a terminal operator when PROGA was loaded, that same name will
be passed through to PROGB, becoming the data set used by PROGB
for the WRITE operation. If DS2 instead of DS1 were coded, FILEA
would have been passed. ’

When programs using disk/diskette 1/O are loaded as overlays, af/
names of data sets used by the overlay program must be passed by the
loading program, and the data set names that are passed must be
entries in the DS= list of the loading program’s PROGRAM statement.
In Figure 10-18, the PROGRAM statement for PROGA defines
PROGB as an overlay program (PGMS=PROGB). The LOAD state-
ment at LD3 will load PROGB as an overlay, because the program
name specified is PGM1, a positional reference to the PGMS= list.
PROGB uses two data sets, so two data set names are passed to
PROGB in the LOAD statement’s DS= list: DS2 and DS1, which
reference FILEA and ?? in the DS= list for PROGA. When passing
data set names to an overlay program, the LOAD statement must

use the DSx positional references.

All data sets used by an overlay program must be passed to the
overlay by the loading program, and therefore all data set names
in the DS= list of the PROGRAM statement of a program loaded
as an overlay are treated as though they were ?? entries. For
example, if PROGB is loaded as an overlay, FILEB will not be
used, unless it is passed by the LOAD statement in the loading
program.

O



PROGA PROGRAM  ASTART,DS=(??,FILEA),PGMS=PROGB
ASTART

LD3 LOAD PGM1,DS=(DS2,DS1) ,ERROR=E3,EVENT=BDONE
WT1 WAIT BDONE

PROGSTOP

ENDPROG

END

PROGB PROGRAM  BSTART,DS=(FILEB,??)
BSTART  READ DS1,BUF ,END=ENDB,ERROR=ERRB

WRITE DS2,BUF ,END=ENDB,ERROR=ERRB

PROGSTOP

ENDPROG
END

Figure 10-18. Overlay load — data set passing

Disk/Diskette Input/Output  10-21



10-22

SR30-0436

In Figure 10-18, if the terminal operator loading PROGA ($L PROGA)

responds to the DS1=(NAME,VOLUME): prompt by entering o~
FILEC, PROGA will execute as though the DS= list in the Lo
PROGRAM statement were coded DS=(FILEC,FILEA). In the -

DS= list of the LOAD at LD3, the first entry is DS2. This first
position in the LOAD statement’s DS= list corresponds to the first
position in the DS= list for PROGB. The DS2 references the second
entry in the DS= list of PROGA's PROGRAM statement, which is
coded as FILEA. The data set name FILEA is therefore passed to
PROGB as the first entry of the DS= list in the PROGRAM statement
for PROGB. Similarly, the second entry in the LOAD statement'’s
DS= list will pass FILEC, the DS1 data set name entered by the
operator, to the second entry in the DS= list for PROGB. PROGB
will execute as though the DS= list in the PROGRAM statement
were coded as “DS=(FILEA,FILEC)”. The READ will be from
FILEA, and the WRITE to FILEC.



C

DISK/DISKETTE 1/0 REVIEW EXERCISE—QUESTIONS

1.

How many volumes may be defined on a 4962/4963 Disk Storage
Unit?

Which of the following choices, when used to complete the
statement below, makes the statement not true?

““The DS= list in a PROGRAM statement . . .

a. ... must contain an entry for each data set used by the
program.”

b. ... may contain up to nine entries.”’

c. ... may specify data sets resident on other than the IPL
volume.”

d. ... isused to define the names of any overlay programs that

may be loaded by the program.”

e. ... may have entries for data sets that will not be defined
until load time."”

All of the remaining ‘‘Questions for Review’’ refer to the coding
example in Figure 10-19.

Disk/Diskette Input/Output  10-23



PROGI ~ PROGRAM  GO,DS=(DSET1,DSET2,DSET4,DSET9),PGMS=P2
GO READ DS3,BUFA,NBR,RCRD,END=E1,ERROR=E?2
RD2 READ
IF1 IF (s _»__),GOTO,EL
IF2 IF (C_~» . _),G0TO,E2
N1 NOTE DS3,DS3VAL
LD1 LOAD P2,DS=(___,_ ____),ERROR=LDERR
LD2 LOAD ____sDS=U”_ 73777, ) ,ERROR=LDERR
PROGSTOP
BUFA BUFFER »BYTES
DS3VAL ~ DATA FT'0!
NBR DATA F'2!
RCRD DATA F'5'
ENDPROG
END
P2 PROGRAM  PGO,DS=(??,DSET3,??)
PGO READ DS3,BUFF
PR2 READ DS1,BUFF
PR3 READ DS2,BUFF
PROGSTOP
BUFF BUFFER 128
ENDPROG
END

Figure 10-19. Review problem

10-24 SR30-0436

)

@



Pan

.

a. How many records will be read by the READ at location GO?
b. What is the name of the data set used?

c. What is the relative record number of the first record that will
be read?

d. What should be coded as the first operand of the BUFFER
statement at location BUFA?

Answers: a.

b.

d.

Code the READ at RD2 to read a single record (let count take
default) into BUFA. The record should be the first relative
record (iet relrecno take default) in data set DSET4. Do not
code the END= or ERROR= operands. Code the IF at IF1

to check for end-of-data set condition, and the IF at IF2 to
check for other errors.

Answer:

RD2 READ

IF1  IF (_____,__),GOTO,E1
T .7).GOTO,E2

IF2 IF (

After executing the NOTE instruction at N1, what will be the
value of location DS3VAL?

Answer:

Code the LOAD instruction at location LD1 so that when program
P2 executes, the READ at PGO will use data set DSET5, the
READ at PR2 will use DSET9, and the READ at PR3 will read
from DSET3.

Answer:

LD1 LOAD P2DS=(___., ) ERROR=LDERR

Disk/Diskette Input/Output 10 25



10-26

SR30-0436

o

This page intentionally left blank.

.



O

Code the LOAD at location LD2 to load P2 as an overlay
program. In program P2, the READ at PGO should use
DSET1, the READ at PR2 data set DSET?2, and the READ
at PR3, data set DSET4.

Answer:

LD2 LOAD DS=(___,___, __),ERROR=LDERR

The LOAD at LD2 is a load of an overlay program. What
must be added to PROG1 to ensure the proper termination-
of-execution sequence between P2, the overlay program,
and PROGH1, the loading program?

Answer:

Disk/Diskette Input/Output  10-27



~ DISK/DISKETTE 1/0 REVIEW EXERCISE—ANSWERS

10-28

SR30-0436

1.

Each 4962/4963 may have as many volumes as required defined,
within the physical size limitations of the device.

All choices except choice ‘‘d” will complete the statement
truthfully. The “PGMS="" keyword operand is used to
define the overlay programs.

a. 2 records will be read {(count=NBR=2)

b. DSET4 will be used. DSET4 is the third entry in the DS=
list, and is referenced by DS3 in the READ at GO.

c. relative record number 5 (refrecno=RCRD=5)

d. 512 or more, because two 256 byte records are being read
(NBR=2).

RD2 READ DS3,BUFA
IF1 IF (DS3,EQ,10),GOTO,E1
IF2 IF (DS3,NE,-1),GOTO,E2

DS3VAL will contain 2, because the next record pointer is
updated by +1 following the READ at R2.

LD1 LOAD P2,DS=(DS4,DSET5),ERROR=LDERR
LD2 LOAD PGM1,DS=(DS2,DS3,0S1) ERROR=LDERR

The LOAD at LD2 should have the EVENT= operand coded,
declaring an event name. An ECB with that event name should
also be coded, and a WAIT on that event name should occur
prior to the PROGSTOP.



O

TERMINAL STATEMENT

Section 11. Terminal 1/0

OBJECTIVES: After completing this section, the student should be
able to:

1.  Describe roll screen and static screen operation

2. Use PRINTEXT, PRINTIME, PRINDATE, and PRINTNUM
instructions to display data on a terminal

3. Use READTEXT and GETVALUE instructions to read data
from a terminal

4. Understand the purpose of specialized terminal instructions
such as QUESTION, TERMCTRL, etc.

The Event Driven Executive terminal support is designed to be as
device independent as possible. With few exceptions, the user need
not be concerned with what type of device is being driven by terminal
functions coded in the program. The same sequence of terminal
output instructions, for instance, may be used to print data on a
matrix or line printer, on a locally attached TTY device or a remote
ACCA terminal, or to display the data on an electronic display

screen device.

The specific terminal support applies to the |BM 4978, 4979 and 3101
displays. The 3101 Models 10, 11, 12 and 13 operate in character (roll
screen) mode. A 3101 operating in character mode, attached via the
teletypewriter adapter card, can be used as the system console. The
3101 Models 20, 21, 22 and 23 can operate in either character mode or
block (static screen) mode. To be used as a static screen (block mode)
device, the 3101 M2 must be attached via the single line or multiline
asynchronous communications adapter card. Discussions in this section
which refer to a 3101 operating in block mode will be designated as
3101 M2.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702), “TERMINAL Configuration Statement.”’

Terminals are defined to the system using the TERMINAL system
configuration statement. This statement generates system control
blocks and tables containing the logical and physical variables
necessary to operate the terminal. Among the physical variables
described in the TERMINAL statement operands are the type of
terminal (TTY, printer, display, etc.), its hardware address, the type
of transmission code used, and other hardware related parameters
unique to the device being defined.

Terminal 1/O 111



Roll Screens

NHIST= Operand

11-2

SR30-0436

The high degree of device independence is achieved in part by treating

all terminals as though they were line printers, differing only in their (\
page sizes (forms length) and margin settings, also defined by g
TERMINAL statement operands.

The page size for an I1BM 4978/4979/3101 terminal is 24, the maximum
number of lines that can be displayed on the screen. The
4978/4979/3101 Displays can be operated as roll screen or static screen
devices (SCREEN= operand in TERMINAL statement). A roll

screen device operates in much the same way as a typewriter.

Assuming a blank screen (clean page in typewriter) to start, data

is displayed line by line, beginning with line O at the top of the

screen and continuing through line 23 at the bottom of the screen,

just as a typewritten page is filled from top to bottom. When a

page being typed is full, the completed page is removed, a clean

page is inserted, and typing continues at the top of the new page.

When a roll screen device’s screen is full (all 24 lines used), an

attempt to display the next line results in removal of the old screen
(screen is erased) and display of the new line on line 0, at the

top of the screen.

Unlike a typewriter, the display is not a hardcopy device, and therefore

the information on the old screen (previous page) cannot be referred C\
to after it has been erased. If an operator entry is expected and the -
operator prompts describing that entry were displayed on a now-erased

previous screen, time could be wasted in looking up the input request

in a reference book, or in requesting that the program repeat the

display of the prompt.

This potential problem is avoided by coding the NHIST= operand of
the TERMINAL statement to reserve part of the screen as a history
area. NHIST= is the number of history lines you wish to reserve.

For example, if NHIST=12 is coded, the top twelve lines of the

screen are reserved for a history area (physical lines O through 11), and
the bottom twelve lines (physical lines 12 through 23) as a work area,
operating in the normal roll screen fashion. (The 4979 Display
supported by the starter system is defined with NHIST=12, and
NHIST=12 will be the default for user defined 4978/4979 displays if
NHIST= is left uncoded. NHIST defauits to O for 3101.)

Since all terminals, including electronic display screens, are treated
logically as printers, forms control commands are used to position
displayed output on a screen, just as lines and spaces may be skipped
on a printout to position a print line on a page. Although physically
(with NHIST=12) the work area occupies lines 12 through 23, logically,
for purposes of forms control interpretation, they are treated as

lines O through eleven. Display information directed to line O will be
displayed on physical line 12, the top of the work area.



O

Static Screens

Again beginning with a blank screen, successive lines are displayed
starting at the top of the work area, and continuing to the bottom
of the screen. With the work area full, an attempt to display the
next line will cause:

1. the information displayed in the “work area’’ to be moved up
into the “history area”, (physical lines 0 through 11),

2. the “work area” (lines 12-23) to be erased

3. display of the new line on physical line 12, the top of the
work area.

Each time the work area is exceeded, the information displayed there
is moved up into the history area, thereby retaining some past history
for viewing. The work area and history area do not have to be of
equal size; you may code NHIST= to retain as few as O lines of
previous data, or as many as 23 lines.

Terminals operated as roll screen devices are usually used in an
interactive mode, to communicate between a program and an
operator. Operator prompts and their associated responses are ex-
changed on a line by line basis. The display of a new line, or the read
of an operator entry is usually initiated by the operator pressing a
terminal control key such as ENTER or one of the program function
keys, indicating that the operation can proceed. A common example
is the series of prompts and replies that are exchanged between
program and operator when using the Event Driven Executive
utilities.

When a 4978/4979/3101 M2 Display is defined as a static screen device
(SCREEN= operand in TERMINAL statement), the screen is treated

as a page of information. The screen may be formatted with pre-
determined operator prompts (input field names), and these areas

may be designated as ‘‘protected’’, preventing accidental overlay

by input data. The input fields of a static screen are usually

filled in by the operator without interaction with the program.
Terminal operation keys such as TAB, BACKSPACE, or the cursor
positioning keys are used to move the cursor to the required input

field positions.

When all required input fields have been entered, the operator
presses the ENTER key (or a designated Program Function key)

to signal the program that the page is complete. The program then
reads all the information on the screen, erases the screen, and dis-
plays a new page (screen with prompts, but blank input fields) for
the operator to fill.

Terminals operated as static screen devices must be either IBM 4978,
4979 or 3101 M2 Displays, as some of the specialized instructions used
with static screens can be interpreted only by the 4978/4979/3101 M2
hardware. Other electronic display screen devices and, of course, all
hardcopy terminals, are operated as roll screens.

Terminal 1/O  11-3



ENQT/DEQT INSTRUCTIONS

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “ENQT"”, “DEQT."”

When a program is loaded from a terminal, that terminal is dynami-
cally designated by the system as the terminal to be used by terminal
I/0 instructions in the program. Each terminal I/O instruction auto-
matically has exclusive use of the terminal during the execution of
that individual operation; only one task at a time is allowed to per-
form 1/0 on the terminal.

If more than one task is using the terminal, terminal operations
from different tasks could become interspersed. In cases where this
is undesirable, the ENQT (enqueue terminal) facility may be used to
reserve the terminal for the exclusive use of a task, thereby pre-
venting other tasks from using the terminal until the task issuing

the ENQT releases it (DEQT).

label name,BUSY=
N e’ R
OPTIONAL MUST BE CODED OPTIONAL

Figure 11-1. ENQT format

If ENQT is coded without the optional name operand, the default

is to the terminal that loaded the program. The task issuing the
ENQT will acquire exclusive control of the loading terminal, and will
retain control until executing a DEQT instruction. If the terminal is
busy (enqueued by another task) when the ENQT is executed, the
task issuing the ENQT is placed in a wait state, queued up waiting for
the terminal to become available. If you do not wish to be queued

if the terminal is busy, the BUSY= operand should be coded with the
label of the instruction to which you wish control transferred.

The ENQT may also be used to gain exclusive control of a terminal
other than the loading terminal. The symbolic name assigned to a
terminal is the name coded as the label of the TERMINAL statement
defining the device. Coding a name in the label field automatically
defines the terminal to the system as a global resource that may be
enqueued by user programs (ENQT). There are three symbolic ter-
minal names that have special significance, as they are used by the
supervisor or system utility programs:

1. $SYSLOG this is the name of the system logging device or
operator station, and must be defined in every system. In the
system configuration statements used to generate the supplied
supervisor, $SYSLOG is the label of a TERMINAL statement
defining a 4978 Display.

11-4  SR30-0436



2. $SYSLOGA This is the name of the alternate system logging

device. In the event that unrecoverable errors prevent use of

$SYSLOG, the system will use the $SYSLOGA terminal as the

system logging device/operator station. |f defined ($SYSLOGA

is optional), this device should be a terminal with keyboard
capability, not just a printer. The supplied supervisor
$SYSLOGA terminal isa TTY device.

3. $SYSPRTR This is the name of the system printer, and is also
optional. If defined, the output from some system programs will

be directed to this device. In the supplied supervisor,
$SYSPRTR is defined as a 4974 matrix printer.

In addition to being used by the system, these devices may also be

enqueued (ENQT) by user programs. In Figure 11-2, the ENQT/DEQT

coding example refers to the terminals defined in the TERMINAL
configuration statements shown at the top of the illustration. For
simplicity, only the required TERMINAL statement operands are

coded; all other operands are default values.

$SYSLOG ~ TERMINAL DEVICE=4979,ADDRESS=04
$SYSPRTR  TERMINAL DEVICE=4974,ADDRESS=01
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00
DSPLY1 TERMINAL DEVICE=TTY,ADDRESS=10,END=YES

TERMTASK PROGRAM  START
START ENQT
D1 DEQT |
E2 ENQT $SYSPRTR,BUSY=E3
E3 ENQT $SYSLOG
D2 DEQT
PROGSTOP
ENDPROG
END

Figure 11-2. ENQT/DEQT operation

Assuming that the loading terminal is the TTY device DSPLY1, the
ENQT instruction at location START will acquire exclusive control
and retain control until execution of the DEQT at D1. No name
operand is coded for the ENQT, so the loading terminal DSPLY 1
is enqueued, thereby preventing other tasks from using DSPLY 1.

Terminal 1/O

115




I0CB STATEMENT

11-6

SR30-0436

The ENQT at E2 is directed at the 4974 matrix printer, $SYSPRTR. -
If the matrix printer is already in use (enqueued), control is trans- C
ferred to the next instruction at location E3 (BUSY=E3). This is an g
attempt to enqueue the 4979 display terminal $SYSLOG. If

$SYSLOG is already enqueued, TERMTASK will be placed in a wait

state, waiting until the terminal becomes available. In effect, the two

ENQT statements at E2 and E3 may be interpreted as “‘try to get the

system printer; if it is in use, get $SYSLOG instead and use it."”

If the ENQT at E2 executes successfully, acquiring control of $SYSPRTR,
the ENQT at E3 will execute as a no-op. When an ENQT for a given
terminal has successfully executed and enqueued that terminal,

ensuing ENQTSs issued by the same task directed to terminals other than
the terminal already enqueued are ignored. The system allows any one
task to enqueue only a single terminal at a time. To switch from an
already enqueued terminal to a different terminal, a DEQT must be

issued before the ENQT for the new device is executed. DEQT
commands are non-specific (no ““name’’ operand), acting upon

whatever terminal is currently enqueued by the issuing task.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “IOCB."”

One of the system control blocks generated by assembly of the

TERMINAL system configuration statement is called an Input

Output Control Block (IOCB). A terminal IOCB contains infor- C\*
mation such as the terminal’s forms configuration (page size, margins), ud
operating mode (static, roll), and history area size (NHIST= operand).

A terminal is not restricted to the values coded for these parameters

in the TERMINAL statement; they can be dynamically changed by a

user program.

In Figure 11-3, a 4979 Display called DSPLY 1 is defined in the
TERMINAL statement at the top of the illustration. As you know from
the previous discussion of roll screen operation, the NHIST=

default value (for 4978/4979 Displays) is 12, dividing the screen

into a history area and a work area of twelve lines each.

In TERMPROG (Figure 11-3), assume the user wants a screen that
operates so that each new line is displayed on the last (bottom) line of
the screen, forcing the previously displayed 24 lines up one for each
new line displayed. This will cause the screen to act as a continuous
scroll, with each new line forcing the oldest previous line off the-
screen at the top.

()



O

bSPLYl TERMINAL DEVICE=4979,ADDRESS=20

TERMPROG PROGRAM SCROLL
NEWHIST  IOCB DSPLY1,NHIST=23
SCROLL ENQT NEWHIST
DONE DEQT
PROGSTOP
ENDPROG
END

Figure 11-3. I0CB/ENQT

To operate in this way, a history area of 23 lines is required, leaving

a one line work area for new entries. At location NEWHIST is a
user-coded I0CB, which references terminal DSPLY 1, and defines
NHIST=as 23. The ENQT at SCROLL references the |IOCB l{abel
NEWHIST. Execution of the ENQT acquires exclusive control of,
and puts the user-coded I0CB in effect for, the named terminal,
DSPLY1. (If no terminal name is coded, the system will default to
the loading terminal.) Until execution of the DEQT at DONE, DSPLY'1
will operate with NHIST=23. The DEQT will cause DSPLY1 to revert
back to the IOCB values generated by the TERMINAL system
configuration statement.

In the same manner, 4978/4979 Displays that are defined in
TERMINAL statements as roll screen devices (SCREEN= default is
ROLL) may be dynamically enqueued for static screen operation by
a user program. Because Event Driven Executive system and utility
programs expect a roll screen configuration on terminals they commu-
nicate with, you should define the terminals as roll screen devices

in the TERMINAL statements, and enqueue them for static screen
operation (ENQT/IOCB) when required. The exception is where a
terminal is never used to communicate with the supervisor or system
utilities (always used exclusively as a user static screen application
terminal).

The only terminals that may be enqueued directly, by coding the

label of the TERMINAL statement in the name operand of an ENQT
statement, are the two special system terminals, $SYSLOG

and $SYSPRTR. User-defined terminals and $SYSLOGA are enqueued
by coding the label of the TERMINAL statement in the name operand
of an |OCB statement, and referencing the IOCB label in the ENQT
name operand.

Terminal 1/O  11-7



DATA REPRESENTATION

PRINTEXT INSTRUCTION

In general, alphameric (text) data to be written to a terminal is (\
represented in storage as an EBCDIC character string. The system

automatically converts this character string into the code required

by a specific terminal, when an output operation directed to that

terminal is executed. (For some specialized terminals employing

unique control characters imbedded within the text, translation can

be inhibited.)

In a similar manner, input from a terminal is translated into an
EBCDIC character string by terminal read operations. For both input
and output operations involving text data, a user-defined storage area
is used to hold the EBCDIC character string. This storage area may
be implicit, as when an output message (prompt) is coded as an
integral part of an output or input command, or explicit, when an
output or input operation specifies the label of a user-defined

TEXT statement.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “PRINTEXT."

The PRINTEXT instruction is used to print (display) messages on a
terminal, and/or to control forms movement (position display/

cursor on screen). C\

|
PRINTEXT 5 msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT=

label
N’ o -
OPTIONAL MUST BE CODED AT LEAST ONE

OPERAND
MUST BE CODED

Figure 11-4. PRINTEXT format

11-8 SR30-0436

At least one of the PRINTEXT operands must be coded. The msg
operand may be coded as the actual data (enclosed in apostrophes),
or may be the label of a TEXT statement containing the message.

In Figure 11-5, both PRINTEXT instructions will execute the same;
the message “READY FOR INPUT" will be written to the loading
terminal (ENQT with no terminal name or IOCB label specified).



O

TERMPROG  PROGRAM START

START ENQT
P1 PRINTEXT  'READY FOR INPUT'

P2 PRINTEXT TI1
DEQT
PROGSTOP
T1 TEXT '"READY FOR INPUT'
ENDPROG
END

Figure 11-5. ““msg’’ operand

in the PRINTEXT at P1 the storage area containing the EBCDIC
character string READY FOR INPUT is implicitly generated (assembled)
as part of the PRINTEXT instruction; the PRINTEXT at P2 references
the user-defined (explicit) string at location T1.

Terminals are buffered devices. Data to be displayed on a terminal

is transmitted to the terminal’s buffer, and remains in the buffer until
some condition occurs that forces the contents of the buffer to be
displayed. Among the several buffer forcing conditions that can cause
the contents of a buffer to be displayed or printed is the execution

of a PRINTEXT with the LINE= or SKIP= forms control operands
coded.

‘Tabel ' PRINTEXT ~ msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT=

Figure 11-6. Forms control operands

The SPACES= forms control operand positions the message or cursor
within a line, but does not force the device buffer. SKIP=, LINE=,
and SPACES= may be coded as the only operand(s), or may be used
with other operands, including msg. When coded with msg, the forms
control operation is executed before the msg text is transmitted to
the buffer,

In Figure 11-7, assume the loading terminal is $SYSLOG, a 4979
Display. To better illustrate the effect of the forms control operands,
the ENQT at START references an IOCB which sets NHIST= to 0.
The entire screen will now operate as a roll screen work area.

Terminal /O 119



TERMTEST PROGRAM  START

START  ENQT 10CB1 (f\\
P1 PRINTEXT LINE=0 s
P2 PRINTEXT 'MESSAGE 1 ',SPACES=10,LINE=5
P3 PRINTEXT 'MESSAGE 2 '.SPACES=20.SKIP=2
P4 PRINTEXT 'MESSAGE 3 ',SPACES=70
P5 PRINTEXT MESSAGE 4 ',SKIP=1
P6 PRINTEXT 'MESSAGE 5 ',SPACES=5
p7 PRINTEXT T1
P8 PRINTEXT T2
P9 PRINTEXT 'TEST ENDED',SKIP=1
DEQT
PROGSTOP
Tl TEXT 'MESSAGE 6 ',LENGTH=15
T2 TEXT 'MESSAGE 7
I0CB1  I10CB $SYSLOG ,NHIST=0
ENDPROG
END

Figure 11-7. PRINTEXT example

The PRINTEXT at P1 illustrates a forms control operand coded
without the msg command. Since the example is using a 4979
Display, this command readies the screen for display on line 0. If
directed to a hardcopy device, this would be the equivalent of a
page eject command.

The PRINTEXT at P2 has both msg operand (text) and forms control (\
operands coded. The forms control operation will be executed first.
The LINE=b forces the contents of the buffer onto line 0, and clears
the buffer . (Because no msg operand was coded in the previous
PRINTEXT (P1), the buffer is empty, and nothing is displayed on
line 0.) Next, the terminal is readied for display on line 5.

The SPACES=10 skips over the first ten buffer positions, and
MESSAGE 1 goes in the next ten buffer positions (11 through 20).
The text MESSAGE 1 is still in the buffer; no data has yet been
displayed.

The PRINTEXT at P3 performs the following functions:

1. The SKIP=2 forms control operand forces the buffer, displaying
MESSAGE 1 on line 5.

2. The cursor is positioned for line 7 (SKIP=2), and the text
MESSAGE 2 is placed in buffer positions 21 through 30,
skipping over the first 20 buffer positions (SPACES=20).

After execution of the PRINTEXT at P3, the display screen is as
shown in Figure 11-8.

11-10 SR30-0436



O

O

LINES

0 4

1

2

3

4

5 MESSAGE 1

6

7

8

9

10

1

12

13

14

15

16

17

18

19

20

21

22

2 J
CHARACTER 11111111112222222222333333333344444444445555 66677777777778

POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890

Figure 11-8. After P3 execution

The PRINTEXT at P4 (Figure 11-7) has no LINE= or SKIP=

operands coded, so the buffer is not forced out. The text MESSAGE 3
is concatenated to the current contents of the buffer, MESSAGE 2.
MESSAGE 2 is in buffer positions 21 through 30. The SPACES=70
operand in the PRINTEXT at P4 skips over 70 buffer positions,
beginning with position 31. The text MESSAGE 3 will therefore
occupy buffer positions 101 through 110.

The display screen is only 80 positions wide. Text data positioned
outside the line length of a terminal is truncated, and therefore
MESSAGE 3 will not be displayed. (OVFLINE=YES must be coded
in the TERMINAL statement to allow display of text positioned
outside the right margin.)

The PRINTEXT at P5 (Figure 11-7) performs the following functions.

1. displays MESSAGE 2 in positions 21 through 30 on line 7
(SKIP=1 forces the buffer).

2. specifies line 8 for the next output line (SKIP=1) and places
MESSAGE 4 in the first fifteen buffer positions. Figure 11-9
shows the screen after execution of the PRINTEXT at P5.

Terminal 1/O  11-11



1112

SR30-0436

LINES

OCONODEWN=0

CHARACTER
POSITIONS

Figure 11-9.

MESSAGE 1
MESSAGE 2

L y

11111111112222222222333333333344444444445555 66677777777778
12345678901234567890123456789012345678901234567890123 78901234567890

After P5 execution

The PRINTEXT at P6 (Figure 11-7) skips buffer positions 16 through
20 (SPACES=5) and concatenates the text MESSAGE 5 into positions
21 through 30.

Explicitly defined text is also concatenated. The PRINTEXT at

P7 references the TEXT statement at T1. MESSAGE 6 is added to
the buffer in positions 31 through 40. Although the text buffer at T1
is 15 characters long (LENGTH=15), only the data between the
apostrophes is moved into the buffer. The PRINTEXT at P8 adds
MESSAGE 7 in positions 41 through 50.

When the PRINTEXT at P9 executes, the buffer contents are dis-
played on line 8, and the cursor is moved to line 9 (SKIP=1).

TEXT ENDED is placed in the first ten buffer positions. The screen
now looks like Figure 11-10.

)

/q

O

p—



LINES

0

1

2

3

4

5 MESSAGE 1

6

7 MESSAGE 2

8 MESSAGE 4 MESSAGE 5 MESSAGE 6 MESSAGE 7

9

10

1

12

13

14

15

16

17

18

19

20

21

22

23 J
CHARACTER 11111111112222222222333333333344444444445555 66677777777778

POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890

Figure 11-10. After P9 execution

There is no PRINTEXT with a forms control operand following the
PRINTEXT at P9, but the TEST ENDED message will still be trans-
ferred from the buffer and displayed. Execution of a DEQT, like
a LINE= or SKIP= forms operation, is a buffer-forcing condition.

In the example in Figure 11-7, the program would still execute
correctly if the DEQT were not coded. The PROGSTOP statement
will dequeue the terminal (implicit DEQT) and force the buffer. You
should still get in the habit of coding explicit DEQTSs, because the system
cannot be relied upon to perform such housekeeping chores in all cases.
For example, if the terminal instructions in Figure 11-7 were part of

a secondary task and the DEQT were left out, the terminal would
remain enqueued and unavailable to the rest of the system after the
secondary task completed execution. Unlike the PROGSTOP,
execution of an ENDTASK instruction does not automatically

issue a DEQT.

Terminal 1/O  11-13



11-14

SR30-0436 -

Tl
S1
P1
P2

LINES

MESSAGE 1

MESSAGE 2

MESSAGE 5 MESSAGE 6 MESSAGE 7

J

0 4

1

2

- 3

4

5

6

7

8 MESSAGE 4

9 | TEST ENDED

10

1

12

13

14

15

16

17

18

19

20

21

22

23
CHARACTER
POSITIONS

Figure 11-11. After P1 through DEQT

11111111112222222222333333333344444444445555 66677777777778
12345678901234567890123456789012345678901234567890123 78901234567890

Figure 11-11 shows the screen after all PRINTEXT instructions and the

DEQT have been executed.

When writing to roll screen devices, an at sign (@) imbedded in the
text will be interpreted as a new line or “‘carriage return’’ control
character. In Figure 11-12, the programs T1 and T2 are logically

equivalent.
PROGRAM  S1
ENQT
PRINTEXT 'FIRST MSG'
PRINTEXT '2ND MSG',SKIP=1
DEQT
PROGSTOP -
ENDPROG

END

Figure 11-12. @ operation

T2
S2
X1
X2

>=<

PROGRAM  S2
ENQT
PRINTEXT
PRINTEXT
DEQT
PROGSTOP
ENDPROG
END

'"FIRST MSG'
'@2ND MSG'

The PRINTEXT statements at P1 and X1 are identical, and will put
the text FIRST MSG in the buffer. In program T1, the SKIP=1
operand in the PRINTEXT at P2 will force the buffer, displaying
FIRST MSG on the current line, and move the display position to the
next line. 2ND MSG will be placed in the buffer.



O

The @ imbedded in the msg operand of the PRINTEXT at X2 (program
T2) has the same effect as SKIP=1, forcing the buffer contents onto

the current line, and moving the display position to the next line. Unlike
the SKIP= and LINE= operands, the @ or new line operation is executed
at the time it is encountered in the character buffer. The SKIP=1
operand in task T1 executes before 2ND MSG is transferred to the
buffer, because SKIP= and LINE= operations always execute before

the buffer transfer. The new line operation in task T2 is also

executed before 2ZND MSG is transferred to the buffer because the

@ precedes the 2ND MSG text. Were the @ imbedded further along

in the text string, characters to the left of the @ would be con-
catenated to the FIRST MSG text and displayed on the same line as
FIRST MSG, while characters to the right of @ (as shown in Figure
11-12) would be displayed on the next line.

In both T1 and T2, the 2ND MSG text is moved out of the buffer
and displayed by execution of the DEQT (D or X).

label ~ PRINTEXT ~ msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT=

Figure 11-13. MODE= operand

When you want the @ character to act as a normal text character
(not to be interpreted as a new line character), the MODE= keyword
operand should be coded as MODE=LINE.

The MODE= operand has a special function when used with
PRINTEXT instructions directed to static screen devices (4978s or
4979s) with protected data areas.

label  PRINTEXT  msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT=

_Figure 11-14. PROTECT= operand
\

Protected data is written to a static screen by coding the PROTECT=
keyword operand as PROTECT=YES. If MODE=LINE is coded in a
subsequent PRINTEXT that is writing to a line containing protected
data, the protected areas are automatically skipped over when the
buffer is transferred to the screen.

Terminal 1/0  11-15



READTEXT INSTRUCTION

11-16

SR30-0436

READING ASSIGNMENT: [IBM Series/1 Event Driven Executive (\
Language Reference (SC34-1706), “READTEXT.” e

The READTEXT instruction is used to read an alphameric text
string, entered by a terminal operator, into a user-defined text buffer
in storage.

1 |
label !READTEXT loc {pmsqg,PROMPT=,MODE=, SKIP=,LINE=,SPACES=
Ny e’ N\ - J - _,
OPTIONAL  MUST BE CODED OPTIONAL

Figure 11-16. READTEXT format

Tabel

Figure 11-17. pmsg and PROMPT= operands

label

The loc operand is the label of the first location of the storage area
that will receive the EBCDIC character string from the terminal.
The READTEXT instruction (also PRINTEXT) operates with TEXT
statements, using the length and count control bytes that precede a
character buffer generated by a TEXT statement assembly. The loc
operand is, therefore, usually the label of a TEXT statement; if it

is coded as the label of a character buffer not generated by a TEXT
statement, the user must set up the control bytes preceding the
buffer to meet TEXT statement conventions.

READTEXT  loc,pmsg,PROMPT=,MODE=, SKIP=,LINE=,SPACES= C\

The pmsg operand is the prompt message (enclosed in apostrophes)
or the label of a TEXT statement containing the prompt message

you wish displayed before pausing to accept the operator input. The
pmsg operand works in conjunction with the PROMPT= keyword
operand. |f PROMPT= is coded as PROMPT=UNCOND (which is the
default if it is not coded), the prompt message specified by the pmsg
operand will always be written. |f PROMPT= is coded as
PROMPT=COND, advance input is allowed, and the prompt message
may or may not be written. Advance input allows an operator to
enter more information on a line than is suggested by the prompt
message for that line. An operator familiar with a certain prompt/
response sequence can enter all items in response to the first prompt,
thereby skipping succeeding prompt messages. The use of
PROMPT=COND will be illustrated in an example later in this section.

READTEXT ~ Toc,pmsg,PROMPT=,MODE=,SKIP=,LINE=,SPACES="

Figure 11-18. MODE= operand



@

label

The MODE= operand may be coded MODE=WORD (the default,
if not coded) or MODE=LINE. If MODE=WORD is coded, transfer
of data from a terminal buffer to a user text buffer is terminated by:

1. ablank (space) character in the input field

2. exhaustion of the character count in the user text buffer (input
exceeding input buffer length — truncation of input occurs)

3. if directed to a static screen, the beginning of a protected field.

If MODE=LINE is coded, the input data may contain imbedded
blanks without terminating the transfer. If a READTEXT with
MODE=LINE is directed to a static screen, protected areas do not
occupy user TEXT buffer positions; only the unprotected areas are
read.

READTEXT = loc,pmsg,PROMPT=,MODE=,SKIP=,LINE=,SPACES=

Figure 11-19. Forms control operands

The SKIP=, LINE=, and SPACES= operands perform the same function
as with the PRINTEXT instruction, specifying the line and position
within the line where the next operation will take place.

READTEXT operation, including some of the operand variations
just discussed, is illustrated in Figure 11-20. Assuming the program
is loaded from a 4979 Display, the ENQT at START changes the
(defaulted) history area from 12 lines to none, and enqueues the
terminal. The LINE=3 operand in the READTEXT at R1 readies
the terminal for display on line 3, and the loc operand specifies a
20-character text buffer at location T1 as the storage area that will
receive the input data.

The READTEXT at R2 specifies T2 as the input buffer. The pmsg
operand is the label of the TEXT statement T3, containing the
prompt message ENTER PART NBR:.

When the READTEXT at R1 executes, the prompt message ENTER
PART NAME will be displayed on line 3, the cursor will be positioned
just following the colon in the prompt message, and task TERM will
be suspended, waiting for operator input.

As an operator keys an entry onto the screen, there is no program
involvement. The actual input operation (transfer of terminal buffer
information to storage) does not begin until the program is signalled
that the input is complete. When the operator is satisfied that the
input is correct, he/she will press the ENTER key, initiating the
actual transfer. (The Program Function keys are also interrupt
generating, and are frequently used in operator/terminal communica-
tion. They will be covered later in this section.)

Terminal 1/O0 1117



11-18 SR30-0436

Assume that the operator, in response to the ENTER PART NAME:
prompt, enters BRACKETS, and then presses the ENTER key. The
READTEXT at R1 will transfer the contents of the terminal buffer to
the text buffer at T1. The READTEXT at R2 will then display the
prompt message ENTER PART NBR: on the next line, and TERM
will again be suspended, waiting for operator input.

The operator then enters 105636, and presses ENTER again. The
READTEXT at R2 transfers 105636 to the text buffer at T2, and the
program runs to completion,

TERM PROGRAM START

IoCB1  I0CB NHIST=0

START  ENQT 10CB1

R1 READTEXT  T1,'ENTER PART NAME:',LINE=3

R2 READTEXT  T2,T3,PROMPT=COND
DEQT
PROGSTOP

T1 TEXT LENGTH=20

T2 TEXT LENGTH=6

T3 TEXT '"ENTER PART NBR:'
ENDPROG
END

Figure 11-20. READTEXT operation

If the operator knows that the prompt ENTER PART NBR: will
follow the first prompt of ENTER PART NAME:, he may make both
the part name and part number entries on the same line (line 3), in
response to the first prompt. The READTEXT at R2 has PROMPT=
COND coded, meaning that the prompt message ENTER PART NBR:
will be issued conditional on the absence of advance input in the
previous operation.

If the operator entered BRACKETS 105636 when the first prompt
ENTER PART NAME: was displayed, the READTEXT at R2 would
detect advance input, and would transfer the second part of the entry
(the advance input, 105636) into the text buffer at T2, without
issuing the prompt message ENTER PART NBR:, and without
suspending TERM to wait for the ENTER key.

The presence of advance input is indicated by an imbedded blank
within an input character string. PROMPT=COND will, therefore,
not work if the previous operation (the operation where advance
input is expected) has MODE=LINE in effect, allowing imbedded
blanks. In this case, the operation would not terminate when a
blank in the input is found.



Since advance input (PROMPT=COND) can only be used when

C> MODE=WORD is also used, care must be taken that no blanks,

y other than those separating entries, appear in the input string.

For example, if the operator wished to use advance input, but
mistakenly entered WALL BRACKETS 105636, the first input
operation (READTEXT at R1) would terminate with the blank
between WALL and BRACKETS, and WALL would be transferred
to the text buffer T1. The READTEXT at R2, operating with ad-
vance input because of the imbedded blank, would transfer BRACKE
into text buffer T2, would not issue the prompt at T3, and would
terminate due to exhaustion of the character count of 6 in the input
buffer. The actual part number 105636 would never be read.

OPERATOR CONTROL OF PROGRAM EXECUTION

.PF and Attention Key Handling

READING ASSIGNMENT: [BM Series/1 Event Driven Executive
Language Reference (SC34-1706), “Terminal 1/0 — Attention
Handling”, “ATTNLIST"”, “ENDATTN.”

Attention routines are user routines that service interrupts generated

by pressing the ATTENTION key on a terminal {review Attention

Lists in Section 3). The ATTNLIST statement is used to define oper-

ator entries and corresponding program locations that will receive
C control when the defined entries are made.

The Program Function keys on 4978/4979/3101 M2 Displays generate
interrupts similar to those generated by the ATTENTION key and the
entry points of routines to service these PF interrupts may also be
defined using the ATTNLIST statement.

The ATTNLIST statement in Figure 11-21 defines three attention
routine entry points. SET1, the first entry point, operates with the
ATTENTION key. If an operator presses ATTENTION, enters

the characters ONE, and then presses the ENTER key, location SET1
receives control.

Terminal 1/0  11-19



11-20

SR30-0436

PROG PROGRAM START

ATTNLIST  (ONE,SET1,$PF1,P1,$PF,END) <:\\
START IF (SWITCH,EQ,1),G0TO,PRINT »
IF (SWITCH,EQ,2),G0TO,PFPRINT
IF (SWITCH,EQ,3),G0TO,0UT
BACK GOTO START
PRINT MOVE SWITCH,0

PRINTEXT ~ 'ATTENTION INTERRUPT'
PRINTEXT  SKIP=1
GOTO START

PFPRINT  MOVE SWITCH,O
PRINTEXT  'PROGRAM FUNCTION KEY #1'
PRINTEXT  SKIP=1

GOTO START
SET1 MOVE SWITCH,1
ENDATTN
P1 MOVE SWITCH,?2
ENDATTN
END MOVE SWITCH,3
ENDATTN
ouT PROGSTOP
SWITCH DATA F'o'
ENDPROG
END ™
Figure 11-21. Attention routines \\/‘

Program Function keys are identified in an ATTNLIST statement by
the system convention “$PFx’’, where x is an integer between 1 and
6, corresponding to Program Function keys PF1 through PF6. In this
example, location P1 will get control when PF1 is pressed. (The

x = integer between 1 and 6 applies to the 4979 Display. When using
the 4978 Display, many more interrupting keys are available, and the
PFx in an ATTNLIST statement may range between PF1 and PF254.)
The 3101 M2 has 8 program function keys available.

When $PF is used without a specific number, it is interpreted as all
PF keys not previously defined (to the left of this entry) in this
ATTNLIST statement. In Figure 11-21, Program Function key 1 is
previously defined (middle operand pair $PF1,P1), so location END
will get control if PF2 through PF6 is pressed, and P1 will get control
if PF1 is pressed. If the second and third operand pairs in the
ATTNLIST statement were coded in reverse order, END would get
control when any PF key was pressed, including PF1; control would
never be transferred to P1.

Attention routines execute as part of the system keyboard task, not

as part of the user task within which they appear. Since user inter-

ference with system keyboard task execution is clearly undesirable,

certain 1/0 and task control instructions are not allowed within \
attention routines. See the reading assignment for a list of excluded C
instructions. -



—

QUESTION Instruction

When the keyboard task detectsan ATTENTION or PF key interrupt

for a task with the appropriate entry points defined in an ATTNLIST
statement, part of the response process is to briefly enqueue the
interrupting terminal (ENQT). If the user task has an ENQT already

in effect, the keyboard task is prevented from getting in. For an interrupt
resulting from the operator’s pressing the ATTN key, the system cannot
present the > prompt character until the user program issues a DEQT,

at which time the > will be displayed. For interrupts generated by
depression of PF keys or the ENTER key (while the terminal is
enqueued by the user), the system returns an identifying code to the user
program. This code can be examined by user instructions to determine
which key was pressed. All PF keys and the ENTER key will present
identifying codes; the user is not restricted to those PF keys defined

in an ATTNLIST statement whose function has been temporarily
inhibited by a user ENQT. Examples later in this section will illustrate
how to retrieve and use the identification codes resulting from PF

key or ENTER key interrupts.

Attention routines execute on hardware level 1, thereby automatically
preempting execution of all user tasks on levels 2 and 3. They should,
therefore, be kept very short and are usually limited to the setting

of a program switch (or posting an ECB) which is checked during
normal program execution. The example in Figure 11-21 illustrates
this.

This program checks a program indicator for a value, and branches
to different program locations, depending on what value is found.
In this case, the indicator is the word at location SWITCH, which
has an initial value of zero. As long as SWITCH remains zero, the
program will loop between START and BACK.

Pressing the ATTENTION key and entering ONE results in execution
of the attention routine at SET1, altering the value of SWITCH to = 1.
When the IF statement at START is next executed, control will be
transferred to PRINT, and the message ATTENTION INTERRUPT
will be displayed. Pressing PF1 will set SWITCH=2 (attention

routine at P1), and result in a transfer to PFPRINT, which will display
PROGRAM FUNCTION KEY #1. Pressing any Program Function key
other than PF1 will end the program (SWITCH=3, transfer to location
OUT). Note that the attention routine at location END (PF2 through
PF6) only sets location SWITCH to cause a later transfer to the
PROGSTOP; PROGSTOP is one of the instructions excluded from
attention routines, and cannot be issued from within the attention
routine itself.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “QUESTION.”

The QUESTION statement provides another way of altering program
execution through terminal input. QUESTION displays a prompt
message, usually in the form of a question, and branches to a specified
location based on the response entered on the terminal.

Terminal 1/0 11-21



WAIT KEY Instruction

11-22

SR30-0436

| 1
label i QUESTION pmsg, YES=,NO=,SKIP=,LINE=,SPACES=
[ S— N - —_— \ v / o > J
OPTIONAL MUST BE CODED AT LEAST OPTIONAL
ONE MUST
BE CODED

Figure 11-22. QUESTION format

The pmsg operand is coded as the prompt message, contained within
apostrophes, or as the label of a TEXT statement containing the
prompt message.

The YES= and NO= operands are coded with the labels of the program
locations which are to get control if a YES or a NO response is
entered. The only valid responses to a QUESTION prompt are Y and
N (or any character string beginning with Y or N). Either YES= or
NO= may be left uncoded, but not both. Entering the uncoded
response will result in transfer to the instruction following the
QUESTION statement.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “WAIT."”

In addition to the implied wait for operator input that is provided

by the READTEXT and QUESTION instructions, the user can wait

for the ENTER key or PF keys at any time, using a special variation

of the WAIT statement, WAIT KEY. This instruction suspends the
issuing task until the ENTER key or one of the PF keys is pressed,

at which time the WAIT terminates, and execution continues with the
instruction following the WAIT KEY. There is no automatic transfer
to an attention routine; execution of a WAIT KEY instruction enqueues
the terminal and temporarily inhibits the ATTNLIST capability during
the time the task is suspended due to that WAIT instruction, just as the
ATTNLIST function is inhibited while an ENQT is in effect.

'WAIT KEY is most often used by tasks operating terminals as static

screen devices. In the roll screen examples shown before, issuing a
READTEXT command caused a suspension of the issuing task, waiting
on operator input. Execution resumed, and the input operation com-
pleted only when the operator signalled the program that the input data
was available by pressing the ENTER key.

When operating with static screens, the ENTER key signals that an
entire page (screen) of input data is available. READTEXT instructions
directed to a static screen terminal therefore do not cause the issuing
task to wait; the input data is expected to be present, and is transferred
immediately.

WAIT KEY allows a task with a terminal enqueued as a static screen
device to wait on the ENTER key (or PF keys), even though the implied
wait with READTEXT is not operative.

C



‘\
({ /
/

HARDCOPY PF Key

Note: When operating with static screen devices, the implied wait with
READTEXT is inoperative only when the READTEXT has no prompt
message coded. Terminal input operations that are obviously intended
for operator dialogue, such asa READTEXT with the pmsg operand
coded, or a QUESTION instruction, still work the same as with roll
screens, automatically suspending the issuing task.

As already noted, the ATTNLIST capability is inhibited when a
terminal is enqueued by a task as either a roll screen or static screen
device, and/or when the task is suspended by a WAIT KEY instruction.
Although automatic transfer to individual attention routine entry
points associated with specific PF keys is no longer possible, the user
can find out which key was pressed, and do the routing personally.
An integer value equal to the numeric designation of the PF key is
passed back to the user task in the second word of the task’s TCB
(taskname+2), and may be examined by the user program. The code
passed back for the ENTER key is zero. For PF1, taskname+2

will contain a 1, for PF2 a 2, and so on through 6 for PF6. The code
can be checked, and a transfer decision made, using |IF statements or
a computed GOTO.

(Note: When using the 4978 Display, many more interrupting keys and
corresponding identification codes are available than with the 4979
terminal discussed above. See the topic “$PFMAP’’ in Section 14.
Utility Programs for an aid in determining the identification codes
associated with particular 4978 interrupting keys.)

One of the operands in the TERMINAL statement defining 4978/4979
Displays is HDCOPY=. This is coded with the symbolic name of a
hardcopy terminal and a PF key number, in the format HDCOPY=
(termname,keynbr). The termname must be coded. |f keynbr is not
coded, it defaults to 6, indicating Program Function key PFB.

Whenever the PF key specified in the HDCOPY= operand is depressed,
the present screen contents are printed out on the designated hardcopy
device. The default for the 4979 supported by the supplied supervisor
is HDCOPY=($SYSPRTR,6), causing the screen contents to be printed
on the 4974 Matrix Printer whenever PF6 is depressed.

Not knowing which PF key you may designate to activate the
hardcopy system function, all examples in this section address Program
Function keys PF1 through PF6 (as though HDCOPY= were coded
HDCOPY=($SYSPRTR,6)).

In coding your own programs, you should be aware that the key you
specify in the HDCOPY= operand is not available to you for other
purposes. If specified in an ATTNLIST statement, the associated
entry point will never receive control nor will pressing the hardcopy
PF key terminate a WAIT KEY operation, or present its code in
taskname+2,

Terminal /O 11-23



STATIC SCREEN CODING EXAMPLE

11-24

SR30-0436

In the following several illustrations (Figures 11-23 through 11-43),

a simple static screen program is developed, using most of the terminal
instructions already discussed, and introducing some new instructions
applicable only to static screen operation.

The initial portion of this program operates the terminal as a roll
screen device, with NHIST=0. The rest of the program uses the
terminal in the static screen mode. An I0CB will be required for
each of the two modes.

Operator instructions are displayed requiring the operator to (1) end

the program, or (2) bring up the entry screen (static screen) and proceed.
The operator’s decision is communicated to the program using the
ATTNLIST facility, so an ATTNLIST statement will also be required.

Figure 11-23 shows the two IOCBs, the ATTNLIST statement, and
the associated attention routines.

XMPLSTAT PROGRAM START

I0CB1 I0CB NHIST=0

10CB2 10CB SCREEN=STATIC
ATTNLIST  (END,OUT,$PF,STATIC)

ouT POST ATTNECB,1
ENDATTN

STATIC POST ATTNECB,-1
ENDATTN

ATTNECB  ECB

ENDPROG
END

Figure 11-23. IOCB/ATTNLIST

Figure 11-24 is the entire roll screen portion of the program. Execution
begins at location START, with the ENQT directed to IOCB1. The
IOCB changes NHIST=12 to NHIST=0 for the loading terminal (no
terminal name specified in the I0OCB, default to loading terminal, and
assuming loading terminal is a 4979 with NHIST=12 normally in
effect).

Now that the loading terminal is enqueued, the five PRINTEXT
statements following the ENQT display the program title and
operator directions on the screen. Since operator control has been
defined through an ATTNLIST, and ATTNLIST is inhibited while
the terminal is enqueued, the last PRINTEXT is followed by a DEQT,
placing the ATTNLIST in effect.

C



C

S~

XMPLSTAT PROGRAM START

I0CB1
10CB2

START

CHECK
ENTRY

ENDIT

ouT
STATIC

I0CB NHIST=0

10CB SCREEN=STATIC
ATTNLIST  (END,OUT, $PF,STATIC)
ENQT 10CB1

PRINTEXT  'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
PRINTEXT ~ 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2

PRINTEXT ' THE PROGRAM'

PRINTEXT ~ 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

PRINTEXT ' BRING UP THE ENTRY SCREEN'

DEQT

WAIT ATTNECB,RESET

IF (ATTNECB,EQ,1),G0TO,ENDIT
ENQT 10CB2

PROGSTOP

POST ATTNECB, 1

ENDATTN |

POST ATTNECB,-1

ENDATTN

ATTNECB  ECB

ENDPROG
END

Figure 11-24. Roll screen portion

The ECB at location ATTNECB assembles with an initial value in the
first word of -1 indicating ““event complete”’. The WAIT at location
CHECK is coded with a RESET operand, which resets the first word
of the ECB at ATTNECB to zero before the WAIT is executed. A zero

in the first word of an ECB indicates “event not occurred,” so the
WAIT at CHECK will suspend task XMPLSTAT, waiting on event

ATTNECB. If the WAIT has been coded without the RESET operand,

the WAIT would have executed as a no-op.

If the operator presses ATTENTION, enters END and presses

RETURN, the attention routine at OUT will execute, posting the
ECB at ATTNECB with a +1 (first word = 1). A value other than
zero in the first word of the ECB indicates ‘‘event complete,” and
the WAIT operation terminates. Execution continues with the |F

statement following the WAIT, which will transfer control to location

ENDIT.

Terminal /0

11-25



ERASE instruction

11-26

SR30-0436

If the operator wants to proceed with the CLASS ROSTER PROGRAM
and presses a PF key, ATTNECB will be posted with a value of -1 by (\
the attention routine at STATIC. The WAIT will terminate, the IF B
that follows will not transfer control to ENDIT (ATTNEBC NOT = +1),

and execution will continue with the ENQT at location ENTRY, which

is the beginning of the static screen portion of the program.

After the program title and operator instructions have been written
to the terminal (while the program is waiting at CHECK for the
operator response), the screen looks like Figure 11-25.

LINES
e )
1 CLASS ROSTER PROGRAM
2
3 HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM
4
5 HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN
6
7
8
9

\. J N
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 ( )
POSITIONS=—+12345678901234567890123456789012345678901234567890123456789012345678901234567890 ' \_//

Figure 11-25. Initial operator instructions

Assuming the operator pressed a PF key, execution now continues
at location ENTRY (Figure 11-26). The ENQT enqueues the terminal
as a static screen device.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “"ERASE.”

An automatic erase of a roll screen is performed by the system each
time the page size of the screen is exceeded. Erasure of a static screen
device is a user responsibility, and the ERASE instruction is,
therefore, valid only for static screens.

You can select how much you want to erase, from as little as a single

character position to the entire screen. In Figure 11-26, the ERASE

following the ENQT will erase the entire screen. The MODE= operand

defines the ending point of the erase operation; in this case, the end of

the screen. The starting point of the erase is determined by SKIP=,

LINE=, and SPACES= forms operands, in this example defaulting to

LINE=0, SPACES=0. TYPE= specifies whether only unprotected

data should be erased (TYPE=DATA) or if the erase applies to C
protected data also (TYPE=ALL). —



XMPLSTAT PROGRAM  START

(::> 10CB1 10CB NHIST=0
: 1I0CB2  IOCB SCREEN=STATIC

ATTNLIST (END,OUT ¢*

TNCoe

SNCTION KEY TO',SKIP=z
ENTRY SCREEN'

ENTRY ENQT 10CB2
ERASE MODE=SCREEN,TYPE=ALL
TERMCTRL BLANK
PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1
PRINTEXT PF1 = DELETE ENTRY 1'
PRINTEXT PF2 = DELETE ENTRY 2'
PRINTEXT 'PF3 = DELETE ENTRY 3 ', SKIP=1
PRINTEXT 'PF4 = DELETE ENTRY 4'

ENDPROG
END

Figure 11-26. Operator directions

TERMCTRL Instruction

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “TERMCTRL.”

C/J TERMCTRL is used for several specialized functions, most of which are
device/hardware feature dependent control operations. The 3101
operating in block mode uses an attribute byte (prefixed to the data
field) to define the display mode as low or high intensity, blinking or
non-display. The TERMCTRL statement is used to set the character-
istics of the attribute byte. In Figure 11-26, the TERMCTRL BLANK
instruction blanks the 4979 display screen.

The remainder of this portion of the program is going to format the
display screen by executing a series of PRINTEXT instructions. When
several operations are performed sequentially, the 4979 screen exhibits
a flickering that some people find annoying. Issuing the TERMCTRL
BLANK turns off the display capability of the screen, allowing the
series of output operations to take place without visible flicker. After
the formatting has been completed, another TERMCTRL function will
be used to display the finished screen.

The five PRINTEXT instructions following the TERMCTRL will write
some operator guides at the top of the screen. When these instructions
have executed, the screen would look like Figure 11-27 (assuming an
unblanked screen). '

Terminal /O 11-27



11-28

SR30-0436

LINES

y - |

1 ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2

2 PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4 L

3

4

5

6

7

8

9

10

1

12

13

1

15

16

17

18

19

20

2

22

2B J
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS —12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-27. Operator directions/screen

In Figure 11-28, execution continues with the PRINTEXT at location

HDR. This instruction writes a screen-wide (80 character) line of

hyphens, separating the operator guide area just written from the

rest of the screen. The text buffer referenced by this instruction

(location DASHES) is not the label of a TEXT statement, but is a

user-defined text buffer. Since PRINTEXT uses the control bytes

that precede text buffers generated by TEXT statements, the user N
must code the control bytes when defining non-TEXT statement \__
text buffers. ~

The DATA statement preceding location DASHES is coded as
X’6050’, establishing a length byte of 80 and a count byte of 80
(hex 50=decimal 80). This tells the PRINTEXT at HDR that the
buffer is 80 character positions long, and that all 80 positions
contain data.



XMPLSTAT PROGRAM
I0CB
10CB
ATTNLIST

PRINTEXT
PRINTEXT
HDR PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
MOVE

DATA
DASHES  DATA

ENDPROG
END

START

SCREEN: —PAGE COMPLETE',LINE=1
] DELETE ENTRY 1'

PF2 = DELETE ENTRY 2'

'PF3 = DELETE ENTRY 3 ',SKIP=1

'PF4 = DELETE ENTRY 4'
DASHES,PROTECT=YES,LINE=3

"CLASS NAME:',LINE=4,PROTECT=YES

"INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5

LINENBR,6

ru

X'5050'
8oc'-"

Figure 11-28. Non-standard text buffer

The PROTECT=YES operand specifies that the line of hyphens be
written as protected data. Protected data cannot be altered by
operator input.

The next PRINTEXT places CLASS NAME: in the first eleven
positions of line 4, and the following one puts INSTRUCTOR NAME:
on the same line, with both messages protected.

The last PRINTEXT in Figure 11-28 writes another separator line
of hyphens, again using the user-defined text buffer at DASHES.
Figure 11-29 shows how the screen would look if it were displayed
at this point.

Terminal 1/O  11-29



11-30

SR30-0436

'S )
0
1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2 C

2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4 et

B | e e e e e e e e e e e e e e

4 | cuass nane: INSTRUCTOR NAME:

B | T e e e

7

8

9

10

1

12

13

14

15

16

17

18

19

20

21

22

23 Y,
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS —*-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-29. Header

The rest of the screen formatting section of the program is shown in
Figure 11-30. This portion will format the remainder of the screen

into four data entry areas.

First, the variable LINENBR is set to 6. Next, a DO loop is defined,
specifying four executions of the loop, corresponding to the four
data entry areas to be formatted. (f\\

All PRINTEXT instructions within the loop have the LINE= operand ~
coded, with the variable name LINENBR, rather than as an integer

constant. Before this first execution of the DO loop, LINENBR

was initialized to 6. The first PRINTEXT writes the protected

characters NAME: into the first 5 positions of line 6, and the second

PRINTEXT leaves 25 unprotected spaces following NAME:, and

writes STREET: to the same line.



@

XMPLSTAT PROGRAM  START

I0CB1 I0CB NHIST=0
10CB SCREEN=S=4
ATTNLIST (Fne

Al
A2

WAITONE

LINENBR

PRINTEXT
PRINTEXT
PRINTEXT
MOVE

DO
PRINTEXT
PRINTEXT
ADD
PRINTEXT
ADD
PRINTEXT
ADD
ENDDO
PRINTEXT
TERMCTRL
WAIT

DATA
ENDPROG
END

—sHES ,PROTECT=YES,LINE=3

"CLASS NAME:',LINE=4,PROTECT=YES
"INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5

LINENBR,6

4,TIMES

"NAME:',LINE=LINENBR,PROTECT=YES
'STREET:',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR, 3

LINE=4,SPACES=11

DISPLAY
KEY

FIOI

Figure 11-30. Finish formatting the screen

Next, the ADD at A1 increases LINENBR by 1, and the PRINTEXT
that follows is directed to line 7, LINENBR is again incremented
(ADD at A2), and the last PRINTEXT is directed to line 8. The
ADD just preceding the ENDDO increases LINENBR by 3, skipping
down to the next data entry area to be formatted.

After four executions of the DO loop, the PRINTEXT immediately
following the ENDDO statement is executed. This PRINTEXT
positions the cursor just to the right of the CLASS NAME: message
in the screen header, above the four data entry areas just formatted
in the DO loop. The TERMCTRL DISPLAY command removes
the blanking from the screen, and displays the cursor at the position
determined by the previous PRINTEXT. Figure 11-31 shows the
fully formatted screen that is now displayed.

Terminal 1/0  11-31



11-32 SR30-0436

( )

0

1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2

2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4

B T T T T T T T e e e e e e e 0 o o o 0 o b o

4 [CLASS NAKE: — INSTRUCTOR

B | mm e e e e

6 [NAME STREET:

7 cITyY

8 STATE :

9

10

11 PAME: STREET:

12 CITY

13 STATE :

14

15

16 [NAME: STREET:

17 CITY

18 STATE :

19

20

21 PAME: STREET:

22 CITY -

23 STATE : y,
CHARACTER 11111111112222222222333333333344444444445655566555666666666677777777778

POSITIONS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-31. Completed format

The program is in a wait state, suspended by execution of the
WAIT KEY at location WAITONE. The program will not be

activated again until the operator presses the ENTER key or one of

the PF keys.

The screen is now completely formatted, and ready for data entry.

Figure 11-32 shows the complete screen formatting portion of the

program.



O

XMPLSTAT PROGRAM

10CB1
I0CB2

ENTRY

HDR

Al
A2

WAITONE

DASHES

LINENBR

10CB
I0CB

ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
MOVE

DO
PRINTEXT
PRINTEXT
ADD
PRINTEXT
ADD
PRINTEXT
ADD
ENDDO
PRINTEXT
TERMCTRL
WAIT

DATA
DATA

DATA
ENDPROG
END

START
NHIST=0

SCREEN=STATIC

I0CB2

MODE=SCREEN,TYPE=ALL

BLANK

'"ENTER KEY = PAGE COMPLETE',LINE=1
DELETE ENTRY 1'
DELETE ENTRY 2'
DELETE ENTRY 3

'"PF4 = DELETE ENTRY 4'
DASHES,PROTECT=YES,LINE=3
"CLASS NAME:',LINE=4,PROTECT=YES

: PF1
' PF2
'PF3

i

',SKIP=1

"INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32

DASHES ,PROTECT=YES,LINE=5

LINENBR,6
4,TIMES

"NAME:',LINE=LINENBR,PROTECT=YES

'STREET:',LINE=LINENBR,SPACES=30,PROTECT=YES

LINENBR,1

'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES

LINENBR,1

'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES

LINENBR,3

LINE=4,SPACES=11

DISPLAY
KEY

X'5050'
8oc'-"

FIOI

Figure 11-32. Screen formatting section

The operator may position the cursor at will, and enter data in any
unprotected area of the screen. Positioning the cursor at LINE=4,
SPACES=11 (PRINTEXT following ENDDO), is a convenience to

the operator, not a required function — the operator could have used
the cursor positioning keys to move the cursor to the same position.

Terminal 1/0O

11-33



11-34 SR30-0436

Some cursor-positioning functions are automatically provided by the
hardware. Assume that the operator enters SERIES/1 HARDWARE
in the space immediately following the protected CLASS NAME:

message, and then presses the tab right key (). The cursor

will automatically skip over the protected INSTRUCTOR NAME:
field, and position itself at the beginning of the unprotected area
which follows, as shown in Figure 11-33.

0 - )
1 | ENTER KEY = PAGE COMPLETE  PF1
2 | PF3 = DELETE ENTRY 3 PF4

ELETE ENTRY 1 PF2 = DELETE ENTRY 2
ELETE ENTRY 4

]
oo

16 | HANE: STRELT:
7 crTy
18 STATE :

21 | NAHE: STREET:
22 CITY
23 {_ STATE : )

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS =» 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-33. Cursor movement (1)

After entering the instructor name, the next tab right key depression
results in the cursor position shown in Figure 11-34, ready for the
first student name entry.

LINES
b ( ‘ A
1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 | PF3 = DELETE ENTRY 3 = DELETE ENTRY 4
3 i e e
4 : SERIES/1 HARDWARE
5
6
7
8
9
10
1M [ HAME
12
13
14
15
16
17
18
19
20
21 | NAME ST
22 cl
23 ST Y,

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS —» 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-34. Cursor movement (2)

C

C



Each successive tab key depression results in an automatic skip

of the cursor to the beginning of the next unprotected area on the
screen. In this example, the cursor will successively tab to NAME:,

STREET:, CITY:, and STATE:, and then down to the NAME: in
the next data entry area, as shown in Figure 11-35.

LINES
rr -
1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
3 e e e e e et e m m M m e - - e ——_——————

4 ICLASS HAME: SERIES/1 HARDWARE  [NSTRUCTOR NAME: JOHN JONES

B e e e e m e e m e e e e m e mmemmem e ————————————

6 |namr: JOHN JAMES STREET: 111 GRANT AVENUE

7 cI1Ty . ENDICOTT

8 STATE : NEW YORK 13760

9

10

1 INAME: — STREET:

12 clry

13 STATE :

14

15

18 |nuane: STREET:

7 CITY

18 STATE :

19

20

21 {yane: STREET:

2 CITY

SN STATE y,
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS -+ 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-35. Cursor movement (3)

With no interaction with the program, an entire screen of information

can be prepared for input, and transferred at one time. This is what
is meant by static screen operation, in contrast to the transactional
prompt/reply dialogue typical of roll screen operation.

Figure 11-36 shows a completed input screen. The operator is

now at the point where the program must be signalled to proceed.

LINES
¥ -
1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
B e e e e e e e e e e e o o o e
4 [cLASS HAwE: SERIES/1 HARDWARE  pystrucToR mame: JOHN JONES
- R
6 |yamE: JOHN JAMES STREET: 111 GRANT AVENUE
7 ciiy . ENDICOTT
8 STATE - NEW YORK 13760
9
10
11 |yaMe: JAMES JONES STREET: 255 ALHAMBRA CIRCLE
12 ¢c11y . CORAL GABLES
13 STATE : FLORIDA 33135
14
15

16 |yapE: JIM JOHNS

STREET: 140 EAST TOWN STREET
ciTy : COLUMBUS

18 STATE : OHIO 43215

19

20

21 yame: JOAN JIMSON STREET: 6216 WASHINGTON AVENUE

22 1Ty : RACINE

23 STATF : WISCONSIN 53406 _ J
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS -+ 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-36. Full screen

Terminal /O

11-35



11-36 SR30-0436

In Figure 11-37, the WAIT KEY at WAITONE will be terminated

by pressing the ENTER key or a PF key. The computed GOTO y
following the WAIT KEY will transfer control to various entry C
points, depending on the return code in “taskname+2."”" A return B
code of zero, from the ENTER key, will cause a transfer to location

READ. PF1 through PF4 will return codes of 1 through 4, and result

in transfers to E1 through E4, respectively. (With the GOTO coded

as shown, a PF key higher than PF4 will cause a transfer to READ,

as the return code would be outside the valid range of index values

1-4, just as the zero returned by the ENTER key is outside that range,

and also results in a transfer to READ.)

For now, assume the operator presses the ENTER key, signalling
the program that the page is complete, and transferring control to
READ.

XMPLSTAT PROGRAM  START
I0CB1 I0CB
10CB2 10CB
ATTNLIST

Lo ine UISPLAY

WAITONE WAIT KEY
GOTO (READ,E1,E2,E3,E4), XMPLSTAT+2

READ  QUESTION 'MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP (j\\
ERASE  MODE=LINE,LINE=2,SPACES=55,TYPE=DATA -

ERASE MODE=SCREEN,LINE=6
PRINTEXT LINE=6,SPACES=5
TERMCTRL DISPLAY
GOTO WAITONE

CLEANUP ERASE MODE=SCREEN,TYPE=ALL
DEQT
GOTO START

ENDPROG
END

Figure 11-37. ENTER key

In a real program, the routine at location READ would contain the
READTEXT instructions necessary to read all the data entered on
the screen. In the application illustrated here, that data would
presumably be collected and used to print a class roster for the
SERIES/1 HARDWARE course taught by JOHN JONES.

Assuming that the contents of the screen has been transferred, the
QUESTION instruction at READ displays the prompt message

MORE ENTRIES? in the operator guide area at the upper right of P
the screen, as shown in Figure 11-38. \



( )

N

!

1 ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4 MORE ENTRIES ? __

3

4

5

CLASS HAME: SERIES/1 HARDWARE

NAME : JOHN JAMES T: 111 GRANT AVENUE
© ENDICOTT

C1TY
STATL @ NEW YORK 13760

11 [NAME: JAMES JONES RCET: 255 ALHAMBRA CIRCLE
: CORAL GABLES

Aft : FLORIDA 33135

16 |NAMC: JIM JOHNS ‘T: 140 EAST TOWN STREET

17 " COLUMBUS

18 : OHIO 43215

19

20

21 [NAME: JOAN JIMSON STRUET: 6216 WASHINGTON AVENUE

22 { 1 RACINE

23 | STATE @ WISCONSIN 53406 y
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS—»~12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-38. After ENTER key

The MORE ENTRIES? query is asking the operator, ““Are there
more students to add to this roster, or are the students just read from
the current screen the last ones at this time?”’

The QUESTION statement is coded with NO=CLEANUP. YES=

is not coded, and therefore a YES response will result in execution of
the ERASE instruction following the QUESTION. Assume there are
more students, and YES is the response. The first ERASE following
the QUESTION clears the prompt and reply from the operator guide
area, and the second ERASE clears all unprotected data from the
four data entry areas in lines 6 through 23. The SERIES/1
HARDWARE and JOHN JONES entries in the header area are left
undisturbed, since the student names and addresses to be entered are
still for the same class.

The PRINTEXT following the second ERASE (Figure 11-37) positions
the cursor at the first unprotected entry field for the first data entry
area. The TERMCTRL DISPLAY that follows displays the cursor,
resulting in the screen shown in Figure 11-39.

Terminal /O  11-37



m
w

CONONBWN = O

CHARACTER

7

NAME:

HAME :

ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

- SERIES/1 HARDWARE

PF1 =
PF4 = DELETE ENTRY 4

INSTRUCTOR NAME JOHN JONES

STREET:
cIvy
STATE

STRELT:
Iy
STATE &

STREET:
CITY
STATE @

STRELT:
CITY
STATL

DELETE ENTRY 1 PF2 = DELETE ENTRY 2

—

11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS—12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-39. Reply YES to QUESTION

If there were no more students to enter for this roster, and the
response to the MORE ENTRIES? prompt were NO, the
QUESTION statement (Figure 11-37) would transfer control to
location CLEANUP, which erases both protected and unprotected
areas of the entire screen, dequeues the terminal, and goes back to
the beginning of the program (START), bringing up the roll screen
with the initial operator directions, as shown in Figure 11-40.

LINES

CONDODUAEWN = O

10
1"
12
13
14
15
16
17
18
19
20
21
22
23

CHARACTER

e “
CLASS ROSTER PROGRAM
HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM
HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN
§ W,
11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS—+-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-40. Reply NO to QUESTION

11-38 SR30-0436

C



In Figure 11-41, assume the program is again suspended by the WAIT
KEY at WAITONE, with the completed screen depicted in Figure 11-36.
The transfer to location READ and the MORE ENTRIES? prompt from
the QUESTION statement resulted from the operator’s pressing the
ENTER key. The WAIT KEY may also be terminated by a PF key.

There are no pre-assigned functions for PF keys, other than the
hardcopy facility already discussed. Therefore, the purpose of a
particular PF key in any program is defined by the instructions coded
in the routine to which control is transferred when that PF key is
depressed.

In the example in Figure 11-41, PF1 through PF4 have been assigned
as delete functions for the four data entry areas, as shown by the
operator guides at the top of the screen (Figure 11-36).

XMPLSTAT PROGRAM  START

I10CB1 10CB NHIST=0
10CB? 10CB SCREEN=STATZ=
ATTNLIST (END&=
==OT g =4 ,SPACES=11
TERMCTRLC DISPLAY
WAITONE WAIT KEY
GOTO (READ,E1,E2,E3,E4) ,XMPLSTAT+2
El MOVE LINENBR,6
GOTO DELETE
E?2 MOVE LINENBR,11
GOTO DELETE
E3 MOVE LINENBR,16
GOTO DELETE
E4 MOVE LINENBR,21
DELETE  ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
ADD LINENBR,1 ’
ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
ADD LINENBR,1

ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
SUBTRACT LINENBR,?2

PRINTEXT LINE=LINENBR,SPACES=5

TERMCTRL DISPLAY

GOTO WAITONE
LINENBR DATA Fio
ENDPROG
END

Figure 11-41. PF keys

Terminal /O 11-39



11-40  SR30-0436

Assume that for some reason, the student JIM JOHNS, the third entry
on the screen, is not supposed to be on the class roster; the operator,
therefore, presses PF3.

In Figure 11-41, the PF key terminates the WAIT KEY, and the
computed GOTO transfers control to E3. The MOVE at E3 initializes
the LINENBR variable to 16, which is the top line of the third data
entry area. Control is then transferred to DELETE, where successive
ERASE operations and adjustments of the LINENBR variable result
in erasure of the unprotected portions of the third data entry area.
Before returning to the WAIT KEY, the cursor is positioned and dis-
played at the first entry field of the erased data area, as shown in
Figure 11-42,

ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4

'i .

o [ )
1

2

4 {CLASS N/

5 |-

6 |V JOHN JAMES 2irttli 111 GRANT AVENUE
; ell?ﬂ * ENDICOTT

: SIATE ¢ NEW YORK 13760

FT: 255 ALHAMBRA CIRCLE
> CORAL GABLES
¢ FLORIDA 33135

11 |HAMET JAMES JONES

>

21 [WAHES JOAN JIMSON STREET: 6216 WASHINGTON AVENUE

2 '”}I\%r © RACINE

23 STATE © ISCONSIN 53406 )
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS—12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-42. After PF3

For your reference, the program example used in the foregoing dis-
cussion is shown in its entirety in Figure 11-43.

@

)



XMPLSTAT PROGRAM

10CB1
I0CB2

START

CHECK
ENTRY

HDR

Al

A2

WAITONE

I10CB
10CB
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT

IF

ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
MOVE

DO
PRINTEXT
PRINTEXT
ADD
PRINTEXT
ADD
PRINTEXT
ADD
ENDDO
PRINTEXT
TERMCTRL
WAIT
GOTO

START

NHIST=0

SCREEN=STATIC

(END,OUT, $PF,STATIC)

10CB1

"CLASS ROSTER PROGRAM',SPACES=15,LINE=1
"HIT "ATTN" AND ENTER "END" TO END',SKIP=2
' THE PROGRAM'

'"HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

ATTNECB,RESET

(ATTNECB,EQ,1),GOTO,ENDIT

10CB2

MODE=SCREEN, TYPE=ALL

BLANK

"ENTER KEY = PAGE COMPLETE',LINE=1

' PF1 = DELETE ENTRY 1'

' PF2 = DELETE ENTRY 2'

'"PF3 = DELETE ENTRY 3 ', SKIP=1

'"PF4 = DELETE ENTRY 4'
DASHES,PROTECT=YES,LINE=3

'CLASS NAME:',LINE=4,PROTECT=YES

"INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES
DASHES,PROTECT=YES,LINE=5

LINENBR,6

4 ,TIMES

'"NAME:',LINE=LINENBR,PROTECT=YES
"STREET:',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR, 3

LINE=4,SPACES=11

DISPLAY

KEY

(READ,E1,E2,E3,E4) ,XMPLSTAT+2

Figure 11-43. Complete program (1 of 2)

Terminal 1/0

=32

11-41



11-42

SR30-0436

El
E2
E3

E4
DELETE

READ

CLEANUP

ENDIT

DASHES
ouT

STATIC

ATTNECB
LINENBR

MOVE
GOTO
MOVE
GOTO
MOVE
GOTO
MOVE
ERASE
ADD
ERASE
ADD
ERASE
SUBTRACT
PRINTEXT
TERMCTRL
GOTO
QUESTION
ERASE
ERASE
PRINTEXT
TERMCTRL
GOTO
ERASE
DEQT
GOTO START
PROGSTOP
DATA
DATA
POST
ENDATTN
POST
ENDATTN
ECB

DATA
ENDPROG
END

LINENBR,6

DELETE
LINENBR, 11 (:ij
DELETE “

LINENBR,16

DELETE

LINENBR,21
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,1
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,1
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,?2

LINE=LINENBR,SPACES=5

DISPLAY

WAITONE

"MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP
MODE=LINE,LINE=2,SPACES=55,TYPE=DATA
MODE=SCREEN,LINE=6

LINE=6,SPACES=5

DISPLAY

WAITONE

MODE=SCREEN,TYPE=ALL

X'5050"

80C" - C
ATTNECB, 1 -

ATTNECB,-1

\

FlOl

Figure 11-43. Complete program (2 of 2)



RDCURSOR INSTRUCTION

Q READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “RDCURSOR.”

Another instruction applying only to static screens, but not used in
the foregoing programming example, is RDCURSOR. This instruction
will store the line number and indent from the left margin (SPACES)
corresponding to the current cursor position, in user program variables.
It can be used as an additional means of communication between
program and operator. For example, if a prompt displayed on a
particular screen is unusually cryptic, an operator unfamiliar with the
application might not know what data should be entered in the associ-
ated data entry field. If a particular PF key is designated as the

help function, and results in a transfer to a routine which executes

a RDCURSOR instruction, the operator can position the cursor in

the data entry field whose purpose is in doubt, and press the help

PF key. The RDCURSOR command could then sense the cursor
position, find out which field is causing the confusion by comparing
the sensed position to the known data entry field locations, and
display explicit instructions for the field in question.

PRINTNUM/GETVALUE INSTRUCTIONS

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “PRINTNUM", “GETVALUE.”

~ The PRINTEXT and READTEXT instructions are used to transfer
C) EBCDIC character strings to and from terminals. PRINTNUM
and GETVALUE instructions perform the same functions for
numeric values. PRINTNUM takes a numeric value in storage,
automatically performs the conversion from internal (binary)
representation, and transfers it to a terminal for display or
printing.

O

Terminal /O 11-43



11-44 SR30-0436

PRINTNUM can display a single value,

Pl PROGRAM  START
START PRINTEXT 'VALUE = '
PRINTNUM IVAL

PRINTEXT SKIP=1
PROGSTOP

IVAL  DATA F'31416'
ENDPROG
END

VALUE = 31416

()



O

@

— or a single PRINTNUM statement can be used to display multiple
values. When more than one value is displayed by the same
PRINTNUM, the values can be displayed on separate lines,

PRINTNUM 1loc,count,nline

P1 PROGRAM

START PRINTEXT
PRINTNUM
PRINTEXT
PROGSTOP

IVALS DATA
DATA
DATA
ENDPROG
END

START

*VALUES'
IVALS,3,1,SKIP=1
SKIP=1

F'31416"
F'500"
F'17'

1T

XXX rs
co.-""....

XYY Y2
PRI
-

Terminal 1/0

11-45



11-46

SR30-0436

— or can be displayed on the same line.

PRINTNUM 1oc,count,n1ine ~

P1 PROGRAM START

START PRINTEXT 'VALUES'
PRINTNUM IVALS,3,3,SKIP=1
PRINTEXT SKIP=1

PROGSTOP
IVALS DATA F'31416°
: DATA F'500'
DATA F'a7’
ENDPROG
END

VAE_U‘ES‘E 31416 500 17 - -




When multiple values appear on the same line, you can control the

spacing between values.

PRINTNUM

loc,count,nline,nspace

P1
START

IVALS

PROGRAM
PRINTEXT
PRINTNUM
PRINTEXT
PROGSTOP
DATA
DATA
DATA
ENDPROG
END

START
'"VALUES = '
IVALS,3,3,10
SKIP=1

F'31416'
F'500°
Fr17'

VALUES=

31416 500 17

Terminal /O

11-47



11-48 SR30-0436

1f desired, values may be displayed in hexadecimal rather than
decimal form.

PRINTNUM Toc,count,nline,space,MODE=

P1 PROGRAM  START

START PRINTEXT 'VALUES = '
PRINTNUM IVALS,3,3,10,MODE=HEX
PRINTEXT SKIP=1

PROGSTOP

IVALS DATA F'31416'
DATA F'500'
DATA F'17!
ENDPROG
END

[ TN

VALUES=  7ag 01F4  go11




GETVALUE transfers a numeric text string, input by an operator,
into storage, automatically converting to internal (binary) representation.

GETVALUE Tloc

P1 PROGRAM  START

START GETVALUE IVAL
PROGSTOP

IVAL  DATA F'o'
ENDPROG
END

Terminal /O 11-49



As with READTEXT, a prompt message may be issued prior to the
input operation. ' B

GETVALUE 1loc,pmsg

P1 PROGRAM  START

START GETVALUE IVAL,'ENTER VALUE:'
PROGSTOP

IVAL  DATA F'o'
ENDPROG
END

[ Y TN

ENTER VALUE: 31416

11-60 SR30-0436



N Multiple values can be read by a single GETVALUE instruction,

GETVALUE 1loc,pmsg,count

P1 PROGRAM  START

START GETVALUE IVALS,'ENTER VALUES:',3

PROGSTOP

IVALS DATA 3F'0!
ENDPROG
END

[ 1N

ENTER VALUES: 31416 1430 19

Terminai 1/0

11-51



— and hexadecimal input can be accepted.

GETVALUE 1loc,pmsg,count,MODE=

P1 PROGRAM  START

START GETVALUE IVALS,'ENTER VALUES:',3,MODE=HEX
PROGSTOP

IVALS DATA 3F'0!
ENDPRQOG
END

ENTER VALUES: 388A 2IF0 388D

Forms control operands (SKIP=, LINE=, and SPACES=) serve the
same purpose and are used the same way with PRINTNUM and
GETVALUE as for PRINTEXT and READTEXT. See the reading
assignment for how to use PRINTNUM and GETVALUE with
double precision integers, standard and extended precision floating
point values, and the external data formatting option.

PRINTIME/PRINDATE INSTRUCTIONS

1152

SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “PRINTIME"”, “PRINDATE."”

PRINTIME and PRINDATE are pre-defined terminal output
operations. PRINTIME will display the current value of the system
24 hour clock in the format HH:MM:SS. PRINDATE displays the
date as MM/DD/YY or DD/MM/YY depending on the option selected
on the SYSTEM statement when the supervisor was genérated.

a

~



O

TERMINAL 1/0 REVIEW EXERCISE — QUESTIONS

1.

Describe the program states or conditions which, while in
effect, inhibit the ATTNLIST capability.

a.

List three buffer forcing conditions.
a.

b.

C.

Assume the following two instructions are executed, directed at
a static screen.

PRINTEXT 'ENTER: ",LINE=3,PROTECT=YES
PRINTEXT 'NEXT ENTRY:',SPACES=10,PROTECT=YES

What character position will the N in NEXT occupy?

Answer:

On the left are listed the interrupt generating terminal keys.
In the space following each key, list the letter(s) designating
the statement(s) on the right that apply to each key. More
than one statement may be true for each key, and each state-
ment may apply to more than one key.

a. will terminate a WAIT KEY operation

PF keys b. used with ATTNLIST, not with WAIT
——  KEY
ATTN k
i c. used with WAIT KEY, never with
ENTER key ATTNLIST

d. will not terminate a WAIT KEY operation

e. can be used with ATTNLIST, and will
also terminate a WAIT KEY

List the special system terminals that may be enqueued by
coding their names as the operand of an ENQT instruction.

Answer:

Terminal /O 11-53



11-54

SR30-0436

This page intentionally left blank.



-

-

Below on the left is a list of five operator entries. Each entry is in
response to the GETVAI_UE prompt in the program given.

On the right are spaces for the values that would be displayed

by execution of the PRINTNUM immediately following the
GETVALUE in the program. Fill in what the PRINTNUM
would display after each of the entries on the left (each operator
entry/PRINTNUM display pair should be considered a new load/
execution of the program).

P1 PROGRAM

START GETVALUE
PRINTNUM
PRINTEXT
PROGSTOP

VAL DATA
ENDPROG
END

OPERATOR

ENTRY

a. 1492

b. -3

39000
d. NO ENTRY

START

VAL, 'ENTER NBR:'
VAL

SKIP=1

FIOI

PRINTNUM
DISPLAY

(ENTER KEY ONLY)

e. 1BA3

Terminal /O 1155



TERMINAL 1/O REVIEW EXERCISE — ANSWERS

1156 SR30-0436

1.

a. program has the terminal enqueued
b. program is suspended by a WAIT KEY operation
Any three of the following:

“LINE=""in a succeeding operation

g 9

“SKIP=""in a succeeding operation

DEQT execution

a »©

an "@"’ character imbedded in the text of this or of a
succeeding operation, with MODE=WORD in effect

e. TERMCTRL DISPLAY execution

f.  ""change of operation direction”, such as a PRINTEXT
followed by a GETVALUE or READTEXT

Character position 21, line 3. The “SPACES=10"

leaves 10 unprotected spaces between the end of the pre-
ceding protected field, and the beginning of the

“NEXT ENTRY" text.

PF keys a, e PF keys (a) will terminate a WAIT KEY
operation, and, when a program is not suspended by a WAIT KEY,
and the terminal is not enqueued, may also be used in an

ATTNLIST (E‘) C\
ATTN key b, d The ATTN key will not terminate a WAIT —
KEY operation (d). When the program is not in a WAIT KEY,

and the terminal is not enqueued, the ATTN key may be used

by the ATTNLIST function (b).

ENTER key a,c  The ENTER key terminates a WAIT KEY (a)
(as well as the implied wait of a READTEXT/GETVALUE/
QUESTION), and cannot be used with ATTNLIST (c).

Answer: _$SYSPRTR, $SYSLOG _ The third "‘special
system terminal’’, $SYSLOGA may be enqueued by user
programs, but only by using the “ENQT/label of IOCB”’
convention, or by an ENQT with no IOCB label reference,
when $SYSLOGA is the “loading’’ terminal.




6. OPERATOR PRINTNUM

ENTRY DISPLAY
), a. 1492 1492
b. -3 8
c. 39000 0
d. NO ENTRY
(ENTER KEY ONLY) 0
e. 1BA3 -1

Entries a. and b. operate normally. Entry c. is too large to be
contained in a single word integer, so VAL is left undisturbed,
as it is for d., when no entry is made. Entry e. is an attempt to
enter a hexadecimal value, when “MODE=HEX"’ is not coded
in the GETVALUE operand field. The input operation
terminates when the first non-numeric character is encountered
in the input field.

Terminal 1/0 1157



1158 SR30-0436

This page intentionally left blank.



C

@

DATA CONVERSION

INTEGER VALUE| 31,416

Section 12. Data Formatting

OBJECTIVES: After completing this topic, the student should

1. Understand when to use the data formatting/conversion
instructions

2. Be able to convert numeric character strings to binary values using
CONVTD

3. Beable to convert binary values to EBCDIC character strings using
CONVTB

4. Understand the operation of GETEDIT/PUTEDIT instructions, and
their relationship to FORMAT and TEXT statements

For purposes of this discussion, data conversion refers to the process of
converting arithmetic values from internal representation (binary) into
external representation (EBCDIC character strings), or the reverse.

You are already familiar with some forms of data conversion. As illus-
trated in Figure 12-1, the assembler performs data conversion when
assembling arithmetic constants, defined in DATA statements. The
binary values generated during the assembly are the internal equivalents
of the externally represented values coded in the source statements.

FLOATING POINT VALUE| 3.1416

DEFINED IN DATA STATEMENT ... DEFINED IN DATA STATEMENT ...

IVAL DATA F'31416’

FVAL DATA E3.1416

CONVERTED BY THE ASSEMBLER INTO
A 1-WORD BINARY NUMBER, HEX 7AB8

0111 1010 1011 1000

CONVERTED BY THE ASSEMBLER INTO A
2-\WORD (STANDARD PRECISION) BINARY
FLOATING POINT NUMBER, HEX 4132 43FE

0100 0001 0011 0010 0100 0011 1111 1110

Figure 12-1. Assembler data conversion

Data Formatting  12-1



CONVTD INSTRUCTION

122 SR30-0436

While the DATA statement can only be used to convert constants
known at assembly time, GETVALUE converts data entered at a

terminal, in “realtime.” GETVALUE, and in the reverse direction, \_
PRINTNUM, not only convert arithmetic values, but carry —
the operation one step further by performing the /O as well (see

“Section 11. Terminal 1/0").

)

These instructions, while useful, do not meet all data conversion
requirements. For example, a numeric value read into a text buffer by
a READTEXT instruction rather than by a GETVALUE, will be in the
form of an EBCDIC character string, which must be converted to
internal representation before the program can operate on it.

Similarly, it may not always be desirable to convert an internally
represented constant or variable and immediately display or print it,

as occurs with PRINTNUM. You may instead want to convert it to an
EBCDIC character string, and hold it for later output by a PRINTEXT.

READING ASSIGNMENT: |IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “CONVTD.”

CONVTD converts an EBCDIC character string into a binary arithmetic
value. Single and double precision integers, and standard and extended
floating point internal formats are supported.

label! CONVTD opndl,opnd2: ,PREC= {FORMAT=
N’ N\ - ~ ~— N -
OPTIONAL MUST BE CODED REQUIRED IF
opnd1 IS
OTHER THAN
SINGLE PRE-
CISION
INTEGER

®

Figure 12-2. CONVTD format

The first operand (opnd1) is the label of the first byte of the storage
area that will contain the binary equivalent of the EBCDIC string after
it has been converted. The user must reserve enough space to hold the
results of the conversion. This may be two bytes, for a single precision
integer variable, four bytes, for double precision integer or standard
precision floating point values, or eight bytes for extended precision
floating point variables.

The second operand (opnd2) is the label of the first character of the
EBCDIC character string to be converted. Leading blanks or zeros are
allowed.



O

Figure 12-4. FORMAT= operand

CONVTB INSTRUCTION

... Width of the B
EBCDIC character
string in bytes

The PREC= operand describes opnd1 (Figure 12-3).

PREC= Operand
PREC=S
PREC=D
PREC=F
PREC=L

opnd1 Description

Single Precision Integer (default)
Double Precision Integer
Standard Precision Floating Point

Extended Precision Floating Point

Figure 12-3. PREC= operand

Storage Required
1 Word (2 Bytes)
2 Words (4 Bytes)
2 Words (4 Bytes)
4 Words {8 Bytes)

The FORMAT= operand is coded as a list containing three sublist
elements, all enclosed in parentheses. The three elements describe the
EBCDIC character string pointed to by the label in opnd2, as shown

in Figure 12-4.

FORMAT=(W,D,T) where;

... Number of
positions to the right
of the decimal point.
J Code 0" if integer.

...Code “I"” if integer
...Code “F" if real
number

...Code "E" if real

number in “E’’ notation

If not coded, FORMAT= defaults to FORMAT=(6,0,1), indicatinga

six-byte EBCDIC field containing an integer number.

READING ASSIGNMENT: 1BM Series/1 Event Driven Executive
Language Reference (SC34-1706), “CONVTB.”

CONVTB converts values in internal representation (binary) form to an
EBCDIC character string.

label
[ —

-

CONVTB opndl,opndj,PREC=JFORMAT=

[N

-

OPTIONAL

MUST BE CODED

-

REQUIRED IF REQUIRED IF opnd1

opnd1 1S 1S OTHER THAN A
OTHER THAN 6-BYTE FIELD

SINGLE PRE-
CISION
INTEGER

Figure 12-5. CONVTB format

Data Formatting 12-3



Since the direction of the operation is the reverse of CONVTD, the
meaning of opnd1 and opnd2 is also reversed. The label of the left-
most byte of the storage area, which will receive the EBCDIC string
resulting from the conversion, is opnd1 and opnd2 is the label of the
storage location containing the variable.

The PREC= and FORMAT= operands are coded the same way for
CONVTB as for CONVTD; because opnd1 and opnd2 are reversed,
PREC= now applies to opnd2 and FORMAT= to opnd1.

CONVTD/CONVTB CODING EXAMPLES

12-4 SR30-0436

In Figure 12-6, the CONVTB at C1 is converting the constant at loca-
tion CON1 into an EBCDIC character string, which will be stored in the
text buffer EBC1.

CCODE PROGRAM C1

C1 CONVTB EBC1,CON1
IF (CCODE,NE,-1),G0TO,CNVTERR
P1 PRINTEXT "TEXT='

PRINTEXT EBC1
PRINTEXT SKIP=1
END PROGSTOP
CNVTERR  MOVE CODE , CCODE
PRINTEXT 'CONVERT ERROR,CODE="
PRINTNUM CODE
PRINTEXT SKIP=1

GOTO END
EBC1 TEXT LENGTH=6
CON1 DATA F'14398'
CODE DATA F'o!

ENDPROG

END

Figure 12-6. Return code = -1

Completion codes for CONVTB and CONVTD operations are returned
in the task code word (taskname). The |F statement immediately

following the CONVTB is checking the return code for Normal Comple-

tion (-1). In this example, the operation will be successful, and the
PRINTEXT instructions beginning at P1 will display TEXT=14398.

In Figure 12-7, the CONVTB is attempting to convert a value of
21,000,000, in location CON2, and store the resulting text string in the
text buffer at EBC2. The text buffer is not large enough to hold the
character string generated by the conversion, and will be set to zeros.
The completion code will be a 3, indicating Conversion Error, and the
|F statement following the CONVTB will transfer control to location
CNVTERR.

The error routine beginning at CNVTERR will display an error message

and the completion code resulting from the operation. The first instruc-

tion moves the completion code from taskname into the user-defined
program variable CODE.



O

O

CCODE PROGRAM c2

CONVTB EBC2,CON2 ,PREC=DWORD
IF (CCODE,NE,-1),GOTO,CNVTERR
P1 PRINTEXT 'TEXT="

PRINTEXT EBC2
PRINTEXT SKIP=1
END PROGSTOP
CNVTERR MOVE CODE ,CCODE
PRINTEXT 'CONVERT ERRROR, CODE='
PRINTNUM CODE
PRINTEXT SKIP=1

GOTO END
EBC2 TEXT LENGTH=6
CON2 DATA D'21000000"
CODE DATA F'o'

ENDPROG

END

Figure 12-7. Return code = 3.

This is a standard convention, and is necessary because other operations,
such as 1/0, also post completion codes in taskname, and will overlay
the code you want to display. For instance, were the |F statement
following the CONVTB replaced by the statement

PRINTNUM  CCODE

in an attempt to display the return code from the conversion operation,
the code displayed would be the completion code resulting from execu-
tion of the PRINTNUM itself, not the code returned by the CONVTB.

When the error routine at CNVTERR completes execution, the message
CONVERT ERROR, CODE=3 will be displayed. A -1, for Normal
Completion, or a 3, indicating Conversion Error, are the only comple-
tion codes generated by CONVTB operations.

In Figure 12-8, a CONVTD operation is attempting to convert the
EBCDIC string in EBC3 to a binary value to be stored in location CON3.
The EBCDIC string consists of blanks and the delimiter **, ”’. This
results in no conversion, and a completion code of 2, indicating Field
Omitted. Commas and slashes (/) are considered arithmetic delimiters
and, if found in a text string during CONVTD execution, will terminate
the conversion. In this example, since the delimiter (comma) was pre-
ceded only by blanks, the Field Omitted completion code is generated
and the program will complete execution with CONVERT ERROR,
CODE=2 displayed.

Data Formatting 125



128 SR30-0436

CCODE PROGRAM
C3 CONVTD
IF
P1 PRINTEXT
PRINTNUM
PRINTEXT
END PROGSTOP
CNVTERR MOVE
PRINTEXT
PRINTNUM
PRINTEXT
GOTO
EBC3 TEXT
CON3 DATA
CODE DATA
ENDPROG
END

Figure 12-8. Return code = 2

If the text buffer at EBC3 had contained numbers {in EBCDIC code),
all numbers to the left of the delimiter would have been converted,

and a completion code of -1 returned. For instance, 12,391 in the text
buffer would convert to the binary equivalent of 12. Any non-numeric
character imbedded within the text field will end the conversion.

In Figure 12-9, the CONVTD at C4 is attempting to convert the blank
text field at EBC4. This will result in a return code of +1, which
indicates No Data In Field. The example will complete with the message

C3

CON3,EBC3
(CCODE,NE,-1),G0TO,CNVTERR
'"VARIABLE="

CON3

SKIP=1

CODE ,CCODE

'CONVERT ERROR, CODE='
CODE
SKIP=1
END
', ', LENGTH=6
Flol
FlOl

CONVERT ERROR, CODE=1 displayed.

CCODE PROGRAM
C4 CONVTD
IF
P1 PRINTEXT
PRINTNUM
PRINTEXT
END PROGSTOP
CNVTERR MOVE
PRINTEXT
PRINTNUM
PRINTEXT
GOTO
EBC4 TEXT
CON4 DATA
CODE DATA
ENDPROG
END

Figure 12-9. Return code = 1

C4

CON4,EBC4
(CCODE,NE,-1),G0TO,CNVTERR
'"VARIABLE='

CON4

SKIP=1

CODE,CCODE

'CONVERT ERROR, CODE='
CODE

SKIP=1

END

LENGTH=6

F|0I

Flol

C

-



@,

GETEDIT/PUTEDIT INTRODUCTION

GETEDIT and PUTEDIT instructions combine several of the |/0 and

conversion operations already discussed. For review, Figure 12-10

summarizes the instructions used to move data from a terminal into

storage (READTEXT, GETVALUE) and convert it to internal
representation (CONVTD, or implicit with GETVALUE).

READTEXT LENGTH CONVTD
COUNT
\» -E /
B

i C

—- D —

| —]

C

/
PERFORMS CONVERTS TO USES TEXT
1/0 OPERATION INTERNAL FORMAT BUFFER
READTEXT GETVALUE CONVTD
GETVALUE CONVTD READTEXT

Figure 12-10. External to internal summary

Data Formatting

> GETVALUE —————

12-7



In Figure 12-11, the reverse operations are shown, converting and
moving data directly to a terminal (PRINTNUM), or first converting it
to external format (CONVTB), and then displaying it (PRINTEXT).

— PRINTNUM
CONVTB LENGTH PRINTEXT
COUNT
B
b C_.—
s D-——-—
—— |
\—/Cﬂ
/
PERFORMS CONVERTS TO USES TEXT
1/0 OPERATION EXTERNAL FORMAT BUFFER
PRINTEXT PRINTNUM CONVTB
PRINTNUM CONVTB PRINTEXT

Figure 12-11. Internal to external summary

PUTEDIT and GETEDIT perform all of the functions shown in
Figures 12-10 and 12-11. The 1/O plus conversion provided by
GETVALUE and PRINTNUM is supported, but with the addition of
the use of a text buffer. The value is therefore displayed/read (1/0),
and is available both in external format (as EBCDIC string in text
buffer) and in internal format.

12-8 SR30-0436



(U

GETEDIT

LENGTH
» | COUNT »110011101100
| E
B |
— C
— D —
_..—.l —
——C
/

LENGTH
COUNT

PUTEDIT

1. Performs 1/0 operation (optional)
2. Performs conversion

3. Uses text buffer

Figure 12-12. PUTEDIT/GETEDIT summary

Viewed another way, the transfer of an EBCDIC string to or from a
terminal as provided by PRINTEXT and READTEXT is supported,

but with the addition of conversion to or from internal representation
(CONVTD/CONVTB functions).

Data Formatting 12-9



PUTEDIT/GETEDIT INSTRUCTIONS

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “GETEDIT", “PUTEDIT.”

To perform a conversion, four items of information are required:

1. Direction of conversion (from internal representation to external,
or the reverse). This is implicit when GETEDIT (external to
internal) or PUTEDIT (internal to external) is coded.

2. Conversion specification. Length of character string and type of
data item to be converted to or from. This information is coded

in a FORMAT statement, and the location (label) of the FORMAT

statement is the first operand of the GETEDIT or PUTEDIT.

3. Character buffer location. The second operand is the name of the
character buffer (usually the label of a TEXT statement) that
contains the character string to be converted (GETEDIT) or will
hold the results of the conversion (PUTEDIT).

4. Storage variable location. The named program storage location(s)
containing the internally represented data item(s) that are the
input to (PUTEDIT) or results of (GETEDIT) the conversion.
Figure 12-13 summarizes the operand format just discussed, using
GETEDIT as an example. (GETEDIT is used in most of the
following illustrations, but the concepts demonstrated are equally
valid for PUTEDIT operations, if the direction of conversion is
taken into account.)

name of

label GETEDIT FORMAT

statement

LABEL OF THE FORMAT
STATEMENT THAT DESCRIBES
THE EBCDIC DATA IN THE
CHARACTER BUFFER TO BE
CONVERTED (ALPHA? ARITH-
METIC? “E"" NOTATION? etc.)

Figure 12-13. GETEDIT format

12-10 SR30-0436

name of TEXT
statement
(location of
character buffer)

LOCATION (LABEL

ON TEXT STATEMENT)
OF THE BUFFER
CONTAINING THE
CHARACTER STRING
TO BE CONVERTED

(variable name)

variable
((name ,type))

—Oor—

((variable ))
,count
name

—Or—

((variable count.t e»
name ' Lyp

|

LOCATION(S) IN
STORAGE WHERE
CONVERTED VALUE(S)
WILL BE PLACED,

AND THE TYPE
(PRECISION) OF THE
VALUES, IF ARITH-
METIC



FORMAT STATEMENT

O

name of name of TEXT
label  GETEDIT FORMAT | , | Statement
statement (location of
character buffer)
CGET GETEDIT FLTFORM ,
CJ FLTFORM FORMAT (1ist),gen

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “FORMAT."”

Figure 12-14 illustrates the basic layout of the FORMAT statement,
and shows how it is referenced by a GETEDIT.

(variable name)

variable
((name ,type))

—Or—

<(Vanable,count)>
name

variable
((name ,count,type ))

DATA
CONVERSION
SPECIFICATION
MAY BE: "I INTEGER NUMERIC
“F"” FLOATING POINT
NUMERIC
“E” FLOATING POINT
NUMERIC — “E"
NOTATION
“H” LITERAL ALPHA-
MERIC DATA
“X" BLANKS
“A" VARIABLE ALPHA-
MERIC DATA

Figure 12-14. FORMAT statement

MAY BE:

"PUT" — THIS FORMAT STATE-
MENT USED WITH PUTEDIT
COMMANDS ONLY

“GET" — THIS FORMAT STATE-
MENT USED WITH GETEDIT
COMMANDS ONLY

“BOTH’" — MAY BE USED WITH
BOTH PUTEDIT AND GETEDIT
(DEFAULT)

Data Formatting 12-11



Note that among the various types of data items that are allowed in the
data conversion specification list are type F and type E. The type F
indicates floating point numeric. Do not confuse this with the fixed
point binary designated by the F that is used in DATA statements.
Similarly, the E means E-type notation, and not standard precision
floating point, as did the E used with DATA statements. By specifying
E-type notation in the FORMAT list, the variable being described is
implicitly considered to be a floating point value.

Figure 12-15 is an example of a FORMAT statement, whose list
describes a single variable, with data conversion specification type E.
Detailed explanations of all the available data specification types, and
examples of their use, may be found in the reading assignment.

FORMAT

— SPECIFIES THE TYPE OF CONVERSION TO BE PERFORMED
WHEN DATA IS TRANSFERRED FROM STORAGE TO A TEXT
BUFFER BY APUTEDIT COMMAND, OR FROM A TEXT
BUFFER TO STORAGE BY A GETEDIT COMMAND.

EXAMPLE: WRITE A FORMAT STATEMENT THAT WILL ALLOW
CONVERSION TO AND FROM FLOATING POINT NUMBERS
WITHIN THE RANGE OF —9.9999 TO +9.9999, USING “E" TYPE
NOTATION.

FLTFORM  FORMAT (E11.4),BOTH

/ \ MAY BE USED BY

CONVERSION TYPE
FLOATING POINT, E BOTH PUTEDIT AND
NOTATION GETEDIT

NUMBER OF POSITIONS
TO RIGHT OF
DECIMAL POINT

LARGEST POSSIBLE VALUE
SMALLEST POSSIBLE VALUE

+9.9999

—9.9999
et m——

1234567

v ————
7 CHARACTER

POSITIONS

4 CHARACTER (g ¢
__POSITIONS N

11 POSITIONS REQUIRED

E NOTATION TAKES UP

Figure 12-15. FORMAT statement E type

12-12 SR30-0436



<3,

()

The second operand in the GETEDIT statement (Figure 12-16) is the
location of the character buffer. The length of this buffer must be
large enough to accommodate the largest character string anticipated,
or truncation will result (254 characters maximum).

name of name of TEXT
tat t
label  GETEDIT FORMAT | ?.22:22 of
statement character buffer)
r—" —
CGET GETEDIT FLTFORM, FLOATEXT ,
FLOATEXT  TEXT LENGTH=18

FLOATEXT ————

FLOATEXT +1

FLOATEXT + 2

FLOATEXT + 17

Figure 12-16. Character buffer location

/

LENGTH OF

(variable name)

variable
((rame “avee))

—or—

((Var'able,count))
name

variable
(( name ,count,type ))

BUFFER (HEX 12=DEC 18)

COUNT OF NUMBER OF
INPUT CHARACTERS
RECEIVED OR QUTPUT

CHARACTERS TO TRANSMIT

SPACE FOR 18
CHARACTERS
RESERVED

(18 BYTES)
INITIALIZED TO
EBCDIC BLANKS
(HEX 40)

Data Formatting 12-13




label  GETEDIT

CGET

Figure 12-17 summarizes the third operand, the variable list. The
variable names used must previously have been defined in the program
(DATA statements).

(variable name)

—or—
((variable type))
name of name of TEXT name '
FORMAT ' statement , . —Oor—
statement (location of ((varlable count))
character buffer) - \\name '

variable
(( hame ,count,type))

~

GETEDIT FLTFORM,FLOATEXT,((name, count, type))
et e

STORAGE LOCATION
TO PUT VALUE
CONVERTED FROM
CHARACTER STRING
IN BUFFER

MULTIPLE LOCATIONS IF
MULTIPLE CONVERSIONS

TYPE/PRECISION

OF VARIABLE

“S" OR D" INDICATES
SINGLE OR DOUBLE

WORD INTEGER
(DEFAULT=SINGLE)

“F’”OR “L" INDICATES
STANDARD OR EXTENDED
PRECISION FLOATING POINT
(DEFAULT=STANDARD)

Figure 12-17. Third operand summary

12-14 SR30-0436

C



GETEDIT

If arithmetic variables are being converted, the data type specified must
agree with the data conversion specification in the FORMAT statement
(F or L in GETEDIT must have either F or E in FORMAT statement,
and S or D in GETEDIT corresponds with | in FORMAT statement).

The completed GETEDIT statement is shown in Figure 12-18, with all
three operands-coded. To illustrate the optional I/O capability, a
fourth operand, ACTION= is also coded. The more common usage
(and the default) is ACTION=1/0, meaning a GETEDIT or PUTEDIT
would implicitly issue a READTEXT or PRINTEXT. With
ACTION=STG, the GETEDIT or PUTEDIT assumes the user will take
care of transferring the EBCDIC character string from or to the
terminal by issuing explicit READTEXT or PRINTEXT commands as
required.

— GETS EBCDIC CHARACTER STRING FROM A CHARACTER
BUFFER SET UP BY A TEXT STATEMENT

— CONVERTS EBCDIC CHARACTER STRING ACCORDING TO
SPECIFICATIONS IN FORMAT STATEMENT, AND PLACES
RESULT OF CONVERSION IN STORAGE

— MAY OPTIONALLY ISSUE A READTEXT COMMAND TO
TRANSFER EBCDIC CHARACTERS FROM A TERMINAL
INTO THE CHARACTER BUFFER, BEFORE BEGINNING
CONVERSION

EXAMPLE: CONVERT THE EBCDIC CHARACTER STRING IN THE
CHARACTER BUFFER DEFINED BY THE TEXT STATEMENT AT
LOCATION “FLOATEXT" INTO A STANDARD PRECISION
FLOATING POINT NUMBER, ACCORDING TO THE SPECIFICA-
TIONS OF THE FORMAT STATEMENT AT LOCATION “FLTFORM".
STORE THE RESULT AT LOCATION “FVAL".

CGET GETEDIT FLTFORM,FLOATEXT,((FVAL,F)),ACTION=STG

LOCATION OF LOCATION OF OUTPUT OUTPUT CONVERT ONLY—
FORMAT CHARACTER DATA DATA DO NOT ISSUE
STATEMENT BUFFER (TEXT  LOCATION  TYPE READTEXT
, . STATEMENT) (FLOATING COMMAND
POINT) BEFORE
CONVERSION
STARTS

Figure 12-18. Completed GETEDIT

Data Formatting 12-15




12-16  SR30-0436

As a comparison, the same operation in reverse is illustrated in
Figure 12-19.

PUTEDIT

— CONVERTS DATA IN STORAGE INTO EBCDIC CHARACTER
STRING, ACCORDING TO SPECIFICATIONS IN FORMAT
STATEMENT

— PLACES EBCDIC CHARACTER STRING IN CHARACTER
BUFFER SET UPBY TEXT STATEMENT

— MAY OPTIONALLY ISSUE A PRINTEXT COMMAND TO
TRANSFER CONTENTS OF THE CHARACTER BUFFER TO
A TERMINAL DEVICE AFTER CONVERSION

EXAMPLE: CONVERT THE STANDARD PRECISION FLOATING
POINT VARIABLE AT STORAGE LOCATION “FVAL" INTO AN
EBCDIC CHARACTER STRING, ACCORDING TO THE SPECIFICA-
TIONS IN THE FORMAT STATEMENT AT LOCATION “FLTFORM",
PLACE THE EBCDIC STRING IN THE CHARACTER BUFFER DE-
FINED BY THE TEXT STATEMENT AT LOCATION “FLOATEXT".

CPUT PUTEDIT  FLTFORM,FLOATEXT, ( (FVAL,F)),ACTION=STG

LOCATION OF LOCATION OF LOCATION OF INPUT CONVERT
FORMAT CHARACTER INPUT DATA DATA ONLY-DO
STATEMENT BUFFER (TEXT TYPE NOT ISSUE
STATEMENT) (FLOATING PRINTEXT
POINT) COMMAND
AFTER
CONVERSION

Figure 12-19. Completed PUTEDIT

All operands are in the same position, and have the same meanings for
PUTEDIT as for GETEDIT; only the operation direction is reversed.

Figure 12-20 is an overview of a complete GETEDIT operation using

the same examples of GETEDIT, TEXT, and FORMAT as you have

seen in the previous figures. Following the numbers on the illustration,
the characters entered at the terminal |48 , are transferred to the text
buffer by the READTEXT instruction [ . In this example, the
READTEXT is issued by the user sometime prior to execution of the
GETEDIT. If ACTION=1/0 were coded in the GETEDIT (or not

coded, and allowed to default), the READTEXT would be automatically
issued by the GETEDIT.




BB OPERATOR ENTERS
CHARACTERS ".31416E 01"

BB | READTEXT  FLOATEXT |

TRANSFERS EBCDIC STRING "4BF3F1F4F1F6C540F0F1"
FROM TERMINAL INTO TEXT BUFFER

B | FLOATEXT TEXT LENGTH=18 |
pa—

N,

| 1 2
0 A
4 B
i f B CGET GETEDIT FLTFORM,FLOATEXT, ((FVAL,F)),ACTION=STG
F 4 CONVERTS EBCDIC CHARACTER STRING INTO
F 1 BINARY FLOATING POINT NUMBER—STORES

AT LOCATION “FVAL"

F 6
C6b
. g EE|FLTFORM FORMAT  (E11.4),BOTH |
F I FVAL 4 1 3 2
40 4 3FE

N 2N

A0 |

FLOATEXT +17—»| 4 0

Figure 12-20. GETEDIT overview

Data Formatting 12-17



12-18 SR30-0436

The GETEDIT [EJ, using the FORMAT statement FLTFORM I ,
converts the EBCDIC character string in the text buffer at FLOATEXT

B into a standard precision floating point value, which is stored at
FVALIR .

Note: Support for GETEDIT/PUTEDIT/FORMAT instructions is
supplied in the form of object modules. When a user program
containing GETEDIT/PUTEDIT/FORMAT statements is assembled,
$EDXASM automatically generates corresponding EXTRN records
for use by the link edit utility $LINK.

After an object module has been produced by SEDXASM, it must be
processed by SLINK to include the data-formatting object modules.
The user must code the AUTO= parameter in the link edit OUTPUT
control statement as AUTO=$AUTO,ASMLIB. $AUTO is the name of
a system-supplied data set on ASMLIB, which contains an autocall

list, including entries for the GETEDIT/PUTEDIT/FORMAT

support modules.

)



2

DATA FORMATTING REVIEW EXERCISE—QUESTIONS

Match the instructions on the left with the statements on the right. The
instructions may apply to more than one statement, and the same
statement may be true for more than one instruction, or not true for

any.

a. CONVTD
b. PRINTNUM
c. GETEDIT

d. CONVTB

PRINTEXT

f.  GETVALUE
g. PUTEDIT

h. READTEXT

" —
—

always requires a text buffer.

used to read numeric values from
a terminal and convert them to
internal (binary) representation.

may optionally perform 1/0.

cannot be used for internal/external
or external/internal conversion.

never performs 1/0.

used to convert an EBCDIC string
in a text buffer to a binary value.

never requires a text buffer.
always performs 1/0.

may be used to convert both float-
ing point or integer values.

Data Formatting 12-19




DATA FORMATTING REVIEW EXERCISE—ANSWERS

1.  CONVTD (a), GETEDIT (c), CONVTB (d), PUTEDIT (g), and
READTEXT (h) always require a text buffer. PRINTEXT (e)
usually uses a text buffer, but may be used to issue forms control
commands without any transfer of text. GETVALUE usually
uses a text buffer, either implicit, as the pmsg operand, enclosed
in apostrophes, or as an explicitly coded TEXT statement but
may be coded without a prompt message, and therefore no text
buffer.

2. GETEDIT (c) and GETVALUE (f) may be used to read numeric
values from a terminal and convert them to internal (binary)
representation. GETEDIT can read and convert multiple values,
integer and floating point or mixed integer and floating point, of
varying external format. GETVALUE can read multiple single
precision integers. If the external format of the input value is
other than single precision integer {(double precision integer,
standard or extended precision floating point in either F or E
format), then the format of the input variable must be specified
in the FORMAT= operand, the internal format must be specified
in the TYPE= operand, and only one value can be read and
converted by execution of a single GETVALUE instruction.

3. GETEDIT (c) and PUTEDIT (g) may optionally perform 1/0. If
the ACTION= operand is coded as ACTION=STG conversion will
be performed between the internally represented variables and
the text buffer specified, but no data transfer to or from a terminal
will take place.

4, PRINTEXT (e) and READTEXT (h) cannot be used for internal/
external or external/internal conversion of numeric values. These
two instructions deal in the transfer of text strings between storage
and terminals exclusively. There may be code conversion per-
formed, from the EBCDIC representation in a text buffer to or
from whatever unique code a particular terminal requires, but this
is an automatic function of the system, is transparent to the user,
and is not the conversion of arithmetic values which was defined
as data conversion in this section.

5. CONVTD (a) and CONVTB {d) never perform 1/O. These instruc-
tions always operate between variables and text buffers in storage.
All other instructions listed either always, or optionally may
perform 1/0.

6. CONVTD (a) and GETEDIT (c) are used to convert an EBCDIC
string in a text buffer to a binary value. The GETEDIT may also
have read the value into the text buffer from a terminal
(ACTION=1/0).

1220 'SR30-0436 B

)



@

O

PRINTNUM (b) never requires a text buffer. The conversion

is from the binary value to the code required by the terminal, with
no user defined text buffer employed. GETVALUE (f) does not
require a text buffer for the conversion, but may use one for the
prompt message if the pmsg operand is coded.

PRINTNUM (b), PRINTEXT (e), GETVALUE (f), and
READTEXT (h) always perform 1/0. 1/0 is optional with
GETEDIT (c) and PUTEDIT ({(g).

CONVTD (a), PRINTNUM (b), GETEDIT (c), CONVTB (d),
GETVALUE (f), and PUTEDIT (g), all handle single and double
precision integers, and standard or extended precision floating
point numbers in F or E notation external formats. PRINTEXT
(e) and READTEXT (h) do not perform any conversion, and
therefore do not apply.

Data Formatting  12-21



12-22

SR30-0436

This page intentionally left blank.

)



T

SENSOR BASED 1/0

Section 13. Sensor 1/0

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. Define the sensor 1/O requirements in an application program.

2. Understand how to obtain digital and analog data from external
devices.

3.  Understand how to send digital and analog output signals from the
Series/1 to external devices.

4. Use the facilities provided to service process interrupts on a
Series/1.

READING ASSIGNMENT: 1BM Series/1 Event Driven Executive
System Guide (SC34-1702), “‘Sensor 1/0."

““Data Processing Input/Output” refers to the exchange of information
between a computer and a data processing |/O device. An example of
this is shown in Figure 13-1 in the form of an operator entry at a
terminal, which the program in the computer then transfers into stor-
age, and acts upon.

SERIES/
STORAGE

SUPERVISOR

APPLICATION
PROGRAM

=~ |

Figure 13-1. Data processing 1/0

Sensor 1/O 131



13-2

SR30-0436

Depending on what the input means to the program, an information
message or guidance prompt may be sent back to the terminal operator
in response.

In Figure 13-2, the same example has been put into an applications
context. Assume that the program is a “flow monitoring’’ application,
related to some industrial process. A gauge is connected to a pipe,
indicating the rate of flow through the pipe. The rate of flow can be
adjusted using the valve.

SERIES/1
STORAGE

SUPERVISOR

~ |

Figure 13-2. Flow monitoring

In response to a prompt from the program, the operatc. reads the
gauge, and enters the rate of flow at the terminal. The program trans-
fers the information into storage and checks the entered flow rate
against predetermined limits or targets. If the flow rate is too high or
too low, the program sends a message to the terminal instructing the
operator to adjust the valve down or up.

In the example just discussed, a computer program is used to analyze

a measurement of some physical property (in this case, rate of flow in
pipe), and based on that analysis, request that a mechanical action take
place (turn the valve up or down). The human operator, using the
terminal, provided the flow rate information to the program, and as a
result of a message on the terminal, provides the power to turn the
valve.

APPLICATION 6 ?
PROGRAM

M’



),

)

SERIES/1
STORAGE

SUPERVISOR

Using the ‘“Sensor Based Input/Output’’ features of the Series/1, the
same application can be performed without using an operator or a
terminal. In Figure 13-3, the gauge has been replaced by another flow-
monitoring device, which translates flow rate into a voltage propor-
tional to the rate of flow, rather than into movement of a needle
around a dialface. The voltage produced is therefore an analog of the
rate of flow within the pipe.

N

APPLICATION
PROGRAM

= |

SENSOR
BASED
INPUT/
OUTPUT

Figure 13-3. Sensor based 1/0 flow monitoring

The voltage is sensed by the Series/1 Analog Input (A/I) feature, and
converted to a digital value (binary). This value can then be arithmeti-
cally compared with known limits or targets, and a decision can be
made whether to decrease or increase the valve opening.

The manually operated valve has been replaced by a motorized unit.
The direction and amount of rotation of the motor drive can be con-
trolled by the Digital Output (D/O) sensor 1/O feature.

The entire “flow-monitoring’’ application can now be directly con-
trolled by the program, from acquisition of the flow-rate information
(A/1), through the performance of the corrective mechanical-adjust-
ment (D/O). The delays and errors inherent in operator participation in
the process no longer exist.

Sensor 1/0 13-3



Digital Input/Output

Analog Input/Output

13-4

SR30-0436

control, laboratory automation, and plant automation. Sensor 1/0

Sensor 1/0 is used in a variety of application areas, including process (-\
devices available on the Series/1 are as follows; ~—

A digital unit of sensor 1/0 is a physical group of 16 contiguous points.
The entire group of sixteen points is accessed as a unit at the 1/0 in-
struction level; Event Driven Executive programming support allows
logical access down to the single point level. Each point of Digital Input
(D/1) or Digital Output (D/O) may be operated (turned on/off) inde-
pendently. D/l is usually used to acquire information from instruments
which present binary-encoded output, or to monitor contact/switch
status (open/closed). D/O is used to control electrically operated de-
vices through closing relay contacts, pulsing stepping motors, etc.

Process Interrupt (P/I) is a special form of D/Il. If a point of D/I

changes state, and then changes state again, without an intervening
READ operation from the program, the status change will be undetected.
With P/I, a point changing from the off state to on generates a hardware
interrupt, which is then routed, through software support, to an inter-
rupt servicing user program which can respond to the external event
which caused the interrupt. P/l is often used for monitoring critical or
alarm conditions, which must be serviced quickly, and whose occur-
rence must not go undetected.

O

"~

A physical unit of Analog Input (A/l) may be a group of 8 points or 16
points, depending on the type. Analog Output is installed in groups of
2 points. Each point of A/l and A/O is accessed separately, at both the
I/0 instruction and Event Driven Executive support level.

Analog Input is used to monitor devices that produce output voltages
proportional to the physical variable or process being measured. Ex-
amples include laboratory instruments, strain gauges, temperature sen-
sors, or other ‘non-digitizing” instruments. Digital Input was des-
cribed as monitoring an on/off status; only one of two conditions were
possible. With A/l, the intelligence is carried in the amplitude of the
voltage sensed rather than in its presence or absence.



Analog input voltages are converted to corresponding binary equiva-
lents for use by the system, by the use of an Analog to Digital (A to D)

converter. Figure 13-4 is a schematic of the analog input conversion
mechanism.

SERIES/1 (1]
SUPERVISOR POINT SELECT /\
ANALOG TO \ Y I e—
- DIGITAL P
CONVERTER é
APPLICATION I
PROGRAM
0110110 S
\ﬂ B

~ |

Figure 13-4. Analog to digital conversion

The address of the point to be ““read” (sensed) is sent to a multiplexor
Bl which selects the requested point. The voltage at the selected
point [ is routed through the multiplexor to the Analog to Digital
Converter [E) . The A to D converter changes the voltage into an
equivalent binary value, which can then be used in the Series/1 Y .

With Analog Output, this process is reversed. In Figure 13-5, a binary
value [f] which is the equivalent of a desired volitage, is converted to
that voltage by a Digital to Analog Converter B, and transferred to
the specified output point [ .

For more detailed information about Series/1 Sensor 1/0O Features, see
“IBM Series/1 4982 Sensor 1/0 Unit Description’” (GA34-0027).

SERIES/1 B
SUPERVISOR \ B
DIGITAL TO
> ANALOG
CONVERTER
APPLICATION
PROGRAM

1010011
Lo &t gy

~—" |

Figure 13-5. Digital to analog conversion

Sensor 1/0 135



EVENT DRIVEN EXECUTIVE SENSOR 1/0 SUPPORT

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702), “SENSORIQO Configuration Statement.”’

The Event Driven Executive supplied supervisor as sent from PID con-
tains no support for sensor 1/0. If you wish to use these devices, you
must do a “‘tailored system generation’’ to include the required support
modules in your own supervisor. (See the ‘‘System Generation'’ section
of this study guide for more information on generating a ‘““tailored
supervisor’’.)

Figure 13-6 is a graphic depiction of how sensor devices are connected
to a Series/1. The devices themselves (D/I, D/O, P/I, A/O, A/l) attach
to a controller, which in turn attaches to the Series/1. The sensor 1/O
attachment (controller), and each of the devices attaching to it, have
unique hardware addresses. In this illustration, the physical connec-
tions are there, and the hardware addresses are assigned (wired in), but
the supplied supervisor in storage lacks the support necessary to operate

the devices.
SERIES/1
SUPPLIED D/O GROUP
SUPERVISOR
SENSOR {/0 ADDRESS 50
ATTACHMENT
D/I GROUP
ADDRESS b1

ADDRESS 48 D/l GROUP

ADDRESS 52

—_

Figure 13-6. Sensor device connections

13-6 SR30-0436



Building a ““tailored supervisor’’ involves the assembly of a series of sys-
tem configuration statements that reflect the 1/0 configuration and
application requirements you wish to support. The system configura-
tion statement which allowz you to define sensor 1/0 devices is
SENSORIO. Figure 13-7 illustrates the results of a tailored sysgen,
using the SENSORIO system configuration statement to generate the
necessary control blocks, and with sensor I/0O supervisor support mod-

ules included.

TAILORED SYSGEN

SENSORIO ADDRESS=48,DEVICE=4982,D0=50,DI=(51,52)

SERIES/

TAILORED
SUPERVISOR

SENSOR 1/0
CONTROL

DEVICE
TABLES

SYSTEM
CONTROL
BLOCKS

ROUTINES
SENSOR 1/O

e

Figure 13-7. SENSORIO

SENSOR 1/0
ATTACHMENT
(4982)

ADDRESS 48

D/O GROUP
ADDRESS 50

D/I GROUP
ADDRESS 51

D/I GROUP
ADDRESS 52

Sensor 1/0 13-7




IODEF STATEMENT

13-8

SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), “IODEF.” (\

The SENSORIO statement defined the hardware device addresses for
the supervisor. When programs reference 1/0 devices, they use sym-
bolic references, rather than actual addresses. The IODEF statement
(1/0 Definition) establishes the logical link between the addresses de-
fined in the supervisor, and the symbols used to read from and write to
the devices at those addresses from within an application program.

Figure 13-8 illustrates an IODEF statement. Each different logical
sensor device that may be used by a program must be defined in an
IODEF statement. In the example, the first operand is the symbolic
name of the device, “D0O1"". The “DO" portion of “DO1"" is required,
if you are defining a Digital Output device. The numeric portion may
be any number you wish, from 1 through 99 (the ““1”" in “DO1’’ does
not mean "“1st DO device on the adapter”. It is simply a symbolic
reference number, used to differentiate between multiple logical
devices of the same type.)

Each kind of sensor 1/0 is designated in the same manner; the alpha
portion of the symbolic reference indicates the type of device (D/O,
D/I, A/O, A/l, P/1), and the numeric portion differentiates between
logical devices of the same type, and is user assigned.

The second operand in the example is coded as “TYPE=GROUP"'. This

means that the logical digital output device, whose symbolic name is

“DO0O1" consists of an entire group of D/O points (16 points in a group).

The third operand specifies that the hardware address of this group is C
50, which ties back to the hardware address for this group defined in -
the supervisor, during system generation.

You do not have to define a logical D/O or D/| device as consisting of
all sixteen points of a hardware group. The second operand may be
coded as “TYPE=SUBGROUP", in which case a fourth operand must
be coded (BITS=), indicating which bit, or group of bits, within the
hardware group of 16 at this address, constitutes the logical device de-
fined by operand 1. You can therefore have multiple logical devices
defined in the IODEF statement, all referencing the same physical ad-
dress (group of points).



)

O

SERIES/1

"SENSORIO"”

I0DEF  _DO1,

/

THE KIND OF SENSOR /0  SYMBOLIC
REFERENCE
NUMBER

Figure 13-8. IODEF statement

BEING DEFINED (DO IS
DIGITAL OUTPUT, DI IS
DIGITAL INPUT, ETC.)

\H

IODEF CORRESPONDS
TO THE D/O GROUP AT

WAS DEFINED IN THE
SUPERVISOR BY THE

TAILORED
SUPERVISOR SENSOR 1/0
ATTACHMENT
SENSOR 1/0 (4982)
CONTROL
ROUTINES =
SENSOR 1/0
DEVICE
TABLES ,
SYSTEM ADDRESS 48
CONTROL
BLOCKS
APPLICATION \—\
PROGRAM
IODEF DO “ADDRESS=50" IN
IODEF DI
IODEE DI
IODEF DI ADDRESS 50 THAT

TYPE=GROUP ,

v

“DO1" USED FOR SYMBOLIC
REFERENCES IN PROGRAM

D/O GROUP
ADDRESS 50

D/I GROUP
ADDRESS 51

D/t GROUP
ADDRESS 52

SENSORIO ADDRESS=48,DEVICE=4982,D0=50,D1=(51,52)
N

ADDRESS=50

“GROUP” INDICATES THAT
A REFERENCE TO “DO1"”
INCLUDES ALL 16 POINTS
OF THE D/O GROUP AT
ADDRESS 50

Sensor1/0  13-9




SBIO STATEMENT

13-10  SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), ‘‘SBI10O."”

Now that the supervisor can access the hardware (SENSORIOQ, system
generation}, and you have defined the logical sensor 1/0 devices that
will be symbolically referenced in your application program (IODEF),
you are ready to do sensor |/O operations.

All sensor-based input/output operations are performed by execution
of an SBIO statement. The type of operation is determined by the
type of device referenced in the SBIO (READ=DI, Al, WRITE=DO,
AO). In the example in Figure 13-9, the contents of location ACON"’
will be written to the symbolic device “DO1"’, turning on the first eight
digital output points of the D/O group at address 50, and turning off
the second eight bits. The symbolic reference to logical device “DO1"
in the SBIO statement is linked to the definition of “DO1’" in the
IODEF statement, which relates that device to the sixteen digital out-
put points of hardware address 50, through the supervisor support set
up at sysgen.



SERIES/1
TAILORED D/O GROUP
ERVISOR
SUPERVIS SENSOR 1/0 ADDRESS 50
ATTACHMENT
SENSOR 1/0 (4982)
CONTROL
ROUTINES ﬁ D/l GROUP
SENSOR 1/0 ADDRESS 51
DEVICE
TABLES
SYSTEM ADDRESS 48 D/l GROUP
CONTROL ADDRESS 52
BLOCKS
APPLICATION
PROGRAM SENSORIO ADDRESS=48,DEVICE=4982,D0=50,DI=(51,52)
IODEF DO “ADDRESS=50" IN
IODEF DI IODEF CORRESPONDS
IODEF DI TO THE D/O GROUP AT
IODEF DI ADDRESS 50 THAT
WAS DEFINED IN THE
SBIO DO1,ACON SUPERVISOR BY THE
—— “SENSORIO"
IODEF DO1,TYPE=GROUP,ADDRESS=50
“DO1" IN SBIO
CORRESPONDS TO

“DO1" IN IODEF
DOWRITE SBIO DO1,ACON

)

ACON DATA  X'FF0O'

Figure 13-9. SBIO statement

Sensor 1/0 13-1 1'



Sensor 1/0 Coding Examples

Digital Input

13-12 SR30-0436

Following are a few IODEF/SBIO coding examples using various sensor C
I/0 features. In all cases, assume that a tailored sysgen has been accom-
plished using a SENSORIO statement which supports the addresses

referenced in the IODEF statements in the examples.

IODEF DI1,TYPE=SUBROUP,ADDRESS=66,BITS=(0,8)
SBIO  DI1,DIGINI

DIGINI DATA F'0'

Figure 13-10. D/l example

The IODEF defines “DI1’"’ as being the first 8 bits of the D/I group at
hardware address 66. The SBIO instruction will read these 8 bits, right
justified into location “DIGIN1".

C



Process Interrupt

O The interrupting digital input (process interrupt) provides a hardware
interrupt to the Series/1 when a contact closure is detected. These

interrupts are serviced by your supervisor by POSTing that the event
(interrupt) has occurred. You must interrogate in your program for
event completion. When you define a process interrupt (IODEF) the
symbolic reference (PIx) is the label on the event control block (ECB)
for that process interrupt point(s). You can check to see if the event
has occurred by either checking the ECB (it will be a non-zero value if
the interrupt has occurred) or by WAITing on the process interrupt.
The following shows how you can check the ECB.

IODEF  PI1,ADDRESS=68,BIT=10

RESET PI1
INTPTIM STIMER 1000 ,WAIT LABEL ON ECB

CHECK  IF (PIT,NE,0),GOTO, INTSERY

GOTO INTPTIM

INTSERV RESET  PI1
INTERRUPT
r SERVICING

ROUTINE

GOTO INTPTIM

Figure 13-11. P/l example 1

0

Sensor 1/0 13-13



13-14

SR30-0436

In the previous example we are checking every second to see if an inter-
rupt has occurred. The program must be invoked and remain resident
for the duration of checking for interrupts. The following shows a
more efficient way of accomplishing the same thing.

iODEF PI11,ADDRESS=68,BIT=15

INTROUT b:!QIT PI1,RESET

INTERRUPT

ECB LABEL
+ SERVICING

ROUTINE

GOTO  INTROUT

Figure 13-12. P/l example 2

In this exémple, the WAIT is issued against the ECB itself, rather than
checking after a time delay.

In both cases the process interrupt is handled by the supervisor and the
user services the interrupt in a resident application program.

For some applications, the overhead involved in allowing the supervisor
to service and route the interrupt is not acceptable. Using the SPECPI
statement, the user can direct that the interrupt bypass the supervisor
and be handled by a user written assembler language routine within the
application program. This approach provides minimum delay from the
time the interrupt occurs until the user program is entered, but also
requires the user to issue the 1/0O instructions which read and reset the
P/1 group, and to interface properly with the supervisor at the assembly
language level.

)



Digital Output

Digital Output is similar to D/l in terms of coding the IODEF and SBIO
instructions with one exception. D/O has the capability to send pulses,
turn a D/O point on or off for a period of time, then reverse its state.

This is useful in driving pulse-operated devices such as stepping motors.

I0DEF D01, TYPE=SUBGROUP ,ADDRESS=67,BITS=(15,1)

SBIO D01, (PULSE,UP)

Figure 13-13. D/O example

The above example would send a pulse to the device attached to bit 15
of the digital output group at hardware address 67. As shown, bit 15 is
assumed to be off, or in the “DOWN’’ state when the operation begins.
The “UP" says ““turn bit 15 on, and then back off’’. “ON’’ may be sub-
stituted for “UP”, and if going in the other direction, “OFF’’ may be
used instead of “DOWN’’ when coding D/O pulse operations.

Sensor1/0  13-15



External Sync

Both D/I and D/O may be used with external synchronization. The
hardware has the capability of being “triggered’’ by a signal generated [
by a user device external to the Series/1.

iODEF DI1,TYPE=EXTSYNC,ADDRESS=66

SBI0  DI1,DIWORD,1

DIWORD DATA  F'0°

Figure 13-14. External synchronization

In the example shown above, the group at hardware address 66 will be C
read into location “DIWORD" only when the external synchronization 9

signal is received.

The third operand in the SBIO statement is the number of times
(count) you wish the D/l group read (how many external sync signals
are to be waited for) before the supervisor posts the ECB, and execution

continues.

&

13-16  SR30-0436



O

Analog Input

iODEF AI1,ADDRESS=62,POINT=2,RANGE=5V

SBI0  AIl,AIVAL

AIVAL  DATA  F'Q'

Figure 13-15. Analog input (A/1) example

The example above shows the reading and conversion of A/l point 2,
defined in the IODEF as symbolic A/l device “Al1". When the conver-
sion is complete, an /O interrupt is generated, and the supervisor posts
an ECB so that execution may continue.

The electrical value is between +5 volts (range). To further carry out
the example, let’s say the point had a value of 2.5 volts. The converted
digital value in the word “AIVAL" is shown below.

0|1 00000O0O0O0OO0|0|O0O01

o ud N ?
SIGN BIT BINARY REPRESENTATION RANGE
0=POSITIVE OF CONVERTED VOLTAGE (£5V RANGE SHOWN)
1=NEGATIVE (+2.5V SHOWN)
NOT
USED

Figure 13-16. A/l conversion

For a more detailed description of A/l voltage conversion values refer to
“‘|BM Series/1 4982 Sensor 1/0 Unit Description’’ (GA34-0027).

Sensor 1/0  13-17



Analog Output

13-18 SR30-0436

Analog Output sends a voltage to an external user device. The program
provides the binary (digital) equivalent of the desired output voltage to
the A/O device, which then converts it to voltage and puts it out to the
specified point.

iODEF AO01,ADDRESS=64,POINT=0

SBIO AO1,VOLTOUT

VOLTOUT DATA X'7FCO"

Figure 13-17. Analog output (A/Q) example

The above illustrates the “writing” of +5.0 volts to analog output point
zero. A/O does not generate an interrupt upon completion or employ
external synchronization.

The format of the output word at location “VOLTOUT" is shown be-
low.

ojr11111111000000

USED FOR

SIGN IF ~— ~~ -
BIPOLAR BINARY EQUIVALENT UNUSED

A/O IS OF OUTPUT VOLTAGE BITS
INSTALLED (+5V SHOWN)

Figure 13-18. A/O conversion

For a more detailed description of A/O voltage conversion values refer
to "IBM Series/1 4982 Sensor I/0 Unit Description’ (GA34-0027).



SENSOR 1/0 REVIEW EXERCISE — QUESTIONS

\) 1. Can a user access Sensor /0O devices executing under the Starter
Supervisor? (Yes or No)
2. Using

IODEF Al1,ADDRESS=70,POINT=2
what will the following instruction accomplish?
a.. SBIO AIl1,TABLE,2
b. SBIO AI1,TABLE,2,SEQ=YES
3. Using
IODEF DI10,ADDRESS=71,TYPE=SUBGROUP,BITS=(8,2)
what will the following instruction do?
SBIO DI10,DATA1
4. Using
IODEF DO9,ADDRESS=72,TYPE=EXTSYNC
what will the following instruction do?
SBIO DO9,DATA,1

Sensor 1/0  13-19




SENSOR 1/0 REVIEW EXERCISE — ANSWERS

13-20

SR30-0436

1.
2.

No (you must generate a tailored supervisor to access Sensor 1/0).

a. Will read Al point 2 at address 70 two times and store the
converted values at the two locations at TABLE.

b. Will read Al points 2 and 3 once each and store the converted
values at the two locations at TABLE.

Will read bits 8 and 9 of DI group at address 71 into storage
location DATA1 (right justified)

Will write out the contents of storage location DATA to DO
group at address 72 upon receipt of an external signal (pulse).

)



9,

O

Introduction to Sections 14 Through 18

The last five sections of this study guide are:

Section 14, Utility Programs

Section 15. System Installation

Section 16. Program Preparation Using $EDXASM
Section 17. Program Preparation Using $S1ASM
Section 18. Session Manager

These topics address areas of the system that are most subject to
change when new operating system versions are released. New utility
programs may be added, or existing utilities changed or expanded in
function. Almost any change to the system will also change the
system installation process to some extent. Maintenance and/or
enhancement of the assemblers may alter the way certain assembler
functions are invoked, or change the appearance of assembler output
listings.




N’



N

- "
@,
/

OPERATOR COMMANDS

$A

Section 14. Utility Programs

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. Describe the purpose of each of the operator commands and system
utility programs

2. Use the most often required utilities

When the ATTN key on a terminal is pressed, the system responds with
the prompt character *“ >"'. An operator may then enter a character
string defined in an application program’s ATTNLIST statement,
thereby executing a user attention routine.

There are also several operator commands that may be entered in
response to the > prompt, which will cause execution of supervisor
utility functions. The $L entry is one example with which you are
already familiar. $L enqueues the system loader in preparation for
loading a user or system program to storage.

Other system commands that may be entered in response to the ‘>"
ATTN key prompt are:

Terminals are logically assigned or linked to particular partitions in
storage, by the PART= operand of the TERMINAL system configura-
tion statement. (For systems with < 64K of storage, all terminals

are assigned to partition 1 by default.) When $A is entered in response
to the *’ >’ prompt, the system will display the names and load points
of all programs that are active within the partition to which the request-
ing terminal is currently assigned (see ‘“$CP’’ discussion below for how
to dynamically change the partition assignment for a terminal). The
command $A ALL will display all partitions, their sizes, origins and all
active programs.

Utility Programs  14-1



$B

$C

$D and $P

$cP

14-2

SR30-0436

During normal system operation, there may be occasions when a 4978/ C
4979/3101 Display screen becomes cluttered with residual displays

from previous program executions. An example might be some pro-

tected data areas left by an application program that terminated with-

out issuing an ERASE command. The $B operator command will com-

pletely erase (blank) all protected and unprotected areas of the screen

of the requesting terminal.

This operator command is the cancel program function, and is provided
as a last resort to force a program to end execution and release the
storage it occupies. 1t is not a normal means of terminating program
execution, and, depending on what the cancelled program is doing
when the cancel is issued, may result in unpredictable errors. It

is designed as a debug aid, and should be used with discretion.

$C is effective only within the partition assigned to the requesting
terminal. The operator will be prompted for the name of the program
to be cancelled, and also for the load point, if multiple copies of the
program are in execution at the same time.

~
These two commands are on-line debug aids, which allow an operator ( “
to display ($D) the contents of storage in hex, or to patch ($P) storage -
locations from the terminal. These commands will prompt the
terminal operator for starting addresses, number of words, etc., and like
$A and $C, are effective only within the assigned partition.

.The $L, $A, $C, $D, and $P functions are all restricted to the assigned

partition, as specified in the PART= operand of the TERMINAL
system configuration statement defining a particular terminal. The $CP
entry is the ""change partition’’ command, allowing dynamic reassign-
ment of a terminal to a partition. When $CP is entered, the operator is
prompted for the number of the partition to be assigned to the terminal
requesting the partition change. When the reassignment is made, all

of the assigned partition only functions are effective for the new
partition. See the topic ““Operator Command Example’’ later in this
section for an illustration of how the $CP function, along with $A and
$C, may be used.



=
)

@

$E

$T and $W

When system utility or application program output is directed to
$SYSPRTR, the forms are usually not advanced far enough, when
the output is finished, to allow the operator to tear off the complete
report. The $E function advances $SYSPRTR to the top of form
{page eject), allowing the operator to adjust the forms position until
the complete output may be removed.

The Spooling facility provides the function of routing printer output
to disk for later printing. Using the $S operator command, a user can
control the actions of the Spool facility.

The $T entry is the set date and time command for the 24 hour system
clock/calendar. This command may only be issued from the terminals

designated as $SYSLOG or $SYSLOGA. The date and time may be set
anytime, as illustrated below.

>|$T]

DATE(M.D.Y): |10.6.78
TIME(H.M): [13.6

DATE = 10/06/78 TIME = 13:06:36

Figure 14-1. $T command

Note: In Figure 14-1, and in all illustrations in this section, depicting
operator/utility prompt/response sequences, operator entries will be
shown enclosed in boxes.

The $W command displays the 24 hour clock and the date, and may
be entered from any terminal.

>[su]
DATE = 10/06/78 TIME = 13:06:53

Figure 14-2. $W command

Utility Programs 14-3



$VARYON and $VARYOFF

OPERATOR COMMAND

14-4

SR30-0436

The $VARYON and $VARYOFF commands allow a terminal operator (j
to place tape or diskette devices in an online ($VARYON) or offline

(SVARYOFF) status. $VARYOFF might be useful in a situation where

program testing and development are going on, and the operator wishes

to make certain that production data residing on a diskette is inaccess-

ible to the test programs.

$VARYON is frequently used to place diskette volumes online. At
system IPL, if a diskette is not mounted in the diskette drive, the
diskette device is placed offline. When a diskette is mounted, or when
a mounted diskette volume is removed and another volume mounted,
the operator must issue a $VARYON to place the device and volume
online.

>|SVARYON
IODA =02
ASMVOL ONLINE

Figure 14-3. $VARYON command

.

In Figure 14-3, the diskette volume ASMVOL has been mounted, and
placed online with a $VARYON command.

Notice that SVARYOFF and $VARYON prompt the operator for an
1/0 Device Address (IODA=). These commands are effective at a device C
level, and across the entire system. %

The following is a hypothetical situation designed to illustrate the use of
the $A, $C, and $CP operator commands.

We have made two assumptions:

1. A three partition Event Driven Executive system with partition 1
assigned to a 4979 ($SYSLOG), partition 2 assigned to a 4978,
and partition 3 assigned to a TTY device

2.  Program debug and testing is going on in partition 1, a production
job is running in partition 2, and partition 3 is currently not in use.

The application programmer using partition 1 has just produced a load
module named TESTPROG, which he now wishes to test. The
TESTPROG load module just produced is stored on volume EDX002.
An earlier version of TESTPROG resides on volume EDX003. The
programmer inadvertently loads the old version of TESTPROG, which
goes into execution.



> [SL TESTPROG,EDX003]

TESTPROG 10P,13:10:27, LP = 5F00
Figure 14-4. 1st load

The programmer soon realizes the wrong TESTPROG has been loaded,
and without terminating the program, presses the ATTN key and
requests the load of the new version of TESTPROG, this time using the
proper volume.

> [SL_TESTPROG,EDX002]

TESTPROG 12P,13:12:00, LP = 6900
Figure 14-5. 2nd load

The new version of TESTPROG begins execution. The program
enqueues for the loading terminal, and before a DEQT is issued, a pro-
gram logic error causes an execution loop. The ATTN key produces
no response, because the requesting terminal is enqueued. The pro-
grammer cannot, therefore, cancel ($C) either TESTPROG from this
terminal. If the system were re-IPLed to recover, the production job
running in partition 2 would have to be terminated, a possibility that
may or may not be practical.

Since the TTY device assigned to partition 3 is not in use, the pro-
grammer moves to the TTY, and wanting to know what partition it is
assigned to, enters the following;

> [sA]
PROGRAMS AT 13:13:14

IN PARTITION #3  NONE
Figure 14-6. P3 $A

The TTY is still assigned to partition 3, the IPL configuration specified
in the TERMINAL statement defining the TTY terminal. No programs
are presently active in partition 3.

The programmer now switches the TTY to partition 1, and displays
the programs there.

> [$CP

PARTITION # ?

>

PROGRAMS AT 13:14:46
IN PARTITION #1
TESTPROG 5F00

TESTPROG 6900
Figure 14-7. P13$A

Utility Programs  14-5



Both versions of TESTPROG are displayed, along with their load points
in partition 1. The next step is to cancel the looping program, freeing
up the enqueued $SYSLOG.

>
PGM NAME: |TESTPROG
LOAD POINT = [6900

TESTPROG CANCELLED AT 13:15:12
> [$c]

PGM NAME:

TESTPROG CANCELLED AT 13:15:59

>[scp]
PARTITION # ?
Figure 14-8. “$C"

The system prompts for load point on the first cancel, because two
programs of the same name are in the partition. If the first program
cancelled were the one which had the 4979 enqueued, the operator
could then go back to the 4979, which would now respond to the ATTN
key, and terminate the remaining version of TESTPROG normally, or
cancel it, if necessary. In this example, he continues with a cancel of
the other TESTPROG from the TTY. Note that no load point is
required when only one program of that name is active in the partition.

The TTY is then switched back to partition 3. |F this is not done,

future operator commands, including $L, issued from the TTY would
still apply to partition 1.

Note: $A ALL could have been used to display all partitions. $A was
used to show the use of the $CP command.

SYSTEM UTILITY PROGRAMS —INTRODUCTION

14-6

SR30-0436

In this section, the Event Driven Executive utility programs are dis-
cussed under five major groups:

1. Data Management/Maintenance Utilities
Terminal Utilities
Miscellaneous Utilities

Program Preparation Utilities

o & 0D

Utilities supporting system facilities and features not covered in
this study guide.

C



Groups 1 through 4 include all of the most commonly used utility pro-
grams pertaining to facilities or topics discussed in this study guide. For
the most part, Event Driven Executive utilities are self-tutoring; entry
of a ““?’" in response to a COMMAND (?): prompt will result in a display
of all the command options available for that utility. Most command
options are self-explanatory. Discussion of the simpler utilities will be
limited to an illustration of the command options available (terminal
output resulting from ‘‘?'* command response), with a brief explanation
of complex/obscure commands if required. Numerous examples of
actual utility operation may be found in the reading assignments, and
are not duplicated here.

Some utilities have specialized and/or seldom used functions. Where
this is the case, utility operation is discussed and illustrated in full.

Group 4 consists of those utilities required for source program prepar-
ation. Some are covered in this section, but for most, discussion is
reserved for “’Section 16. Program Preparation Using $ED XASM.”
Group 5 are those utilities supporting communications/graphics
facilities, topics which are not addressed in this course. Discussion

is limited to a brief description; no illustrations are provided, and
instead of a READING ASSIGNMENT, there will be a READING
REFERENCE, often in a system reference manual (SRL) not listed
as one of the three manuals required for completion of this course.

DATA MANAGEMENT/MAINTENANCE UTILITIES

C) $DASDI

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Utilities, Operator’s Reference, Messages and Codes (SC34-1703),
“$DASDI Utility Program.”

Before Event Driven Executive logical volumes can be defined on disk
or diskette, the magnetic surface of the disk/diskette must be prepared
for use. This preparation consists of a surface analysis, wherein test
data is written, and then read back and checked for accuracy. If
defective sectors are found, they are flagged, and alternates are assigned.
Sector addresses are written, and in the case of diskettes, 128 byte
sectors are established.

The Event Driven Executive utility used for disk/diskette surface prepar-
ation is $DASDI. Figure 14-9 is the prompt/response sequence resulting
from initialization of a diskette mounted on a 4966 Diskette Magazine
Unit.

Utility Programs  14-7



148

>[SL_$DASDI]

. $DASDI - 7P,05:30:55, LP= 7600
. DIRECT ACCESS DEVICE INITIALIZATION

DISK INITIALIZATION OPTIONS: ‘
0=CREATE STAND-ALONE DUMP DISKETTE 4964/4966
1=4964, 4966 DISKETTE INITIALIZATION.
2=4962 DISK INITIALIZATION
3=4963 . DISK INITIALIZATION
4=EXIT DISK INITIALIZATION

ENTER DISK INITIALIZATION OPTION:

ek ok ke e o ke e e e e e ke e oo ke e ok ok ok ok ok ek ok ok

* DISKETTE FORMATTING PROGRAM *
* IF FORMATTING IS IN PROGRESS, DO NOT *
* CANCEL ($C) THIS PROGRAM. INSTEAD, *

* ENTER ATTN/$IDSKETT TO FORCE TERMINATION. *

kkkkkkkkhkkkhhkkkhhkrhkhkkhkhkhkhhhkhhkrhhrirhhrrhhhiks

ENTER DISKETTE ADDRESS IN HEX [22]

INITIALIZE FOR USAGE WITH THE IBM EVENT DRIVEN EXECUTIVE?
DEVICE VARIED OFFLINE
** WARNING **
FORMATTING WILL DESTROY ALL DATA ON THE DISKETTE IN SLOT 1. CONTINUE?

IBMEDX VARIED ONLINE
FORMATTING COMPLETE

"LOAD $INITDSK?

- Figure 14-9, Diskette surface preparation

- The 4966 has a capacity of 23 diskettes, 2 magazines of 10 diskettes
each, plus three slots for individual diskettes. The three individual slots
are the first three slots in the device. $DASDI operates on slot 1 only;
any diskette on which surface preparation is to be run must first be
mounted in slot 1.

After surface analysis is complete, $DASDI writes the volume label
IBMEDX, on the diskette. The next step after preparing a diskette
surface is usually to create a logical volume for use with the Event
Driven Executive. Logical volumes are created (directories established,
etc.) with the $INITDSK utility. $DASDI therefore gives you the
option of going directly into $INITDSK execution, without having to
end $DASDI and issue the $L command for $INITDSK yourself.

Surface analysis, sector address writing, and alternate sector assign-
ment for 4962 and 4963 disks is done at the factory. When you
receive your disk unit it is ready to go; you do not have to run
$DASDI before running $INITDSK.

While running your system (after logical volumes have been created),
it is possible that a sector on disk may go bad. If this occurs, $DASDI
can be used to flag the defective sector and assign an alternate,
without disturbing the rest of the data on the disk.

SR30-0436



TN

-/

O

$SINITDSK

READING ASSIGNMENT: 1BM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$INITDSK

Utility Program.”

SINITDSK is the utility program used to establish libraries on Event
Driven Executive logical volumes. Figure 14-10 illustrates the initial
prompt/response sequence when $INITDSK is loaded.

>13L $INITDSK

$INITDSK 58P, LP= 8C00

COMMAND (?): ?

ID - INITIALIZE DEVICE
AV - ALLOCATE VOLUME

AF - ALLOCATE FIXED HEAD VOLUME
SV - SPLIT VOLUME

IV - INITIALIZE VOLUME
I1 - INITIALIZE IPL TEXT
VW - VERIFY VOLUME

LV - LIST VOLUMES

DV - DELETE VOLUME

EN - END PROGRAM

Figure 14-10. $INITDSK options

Figure 14-11 illustrates the step by step procedure of using $INITDSK
to set up a disk prior to installing an EDX System. The ID command
creates a volume directory for a disk at address 03. Three volumes
(EDX002, ASMLIB and EDX003) are allocated. Directories are
created for each volume capable of handling 500 data sets each. A
nucleus (SEDXNUC) is allocated in EDX002 and IPL text is written
pointing to SEDXNUC as the supervisor to be loaded at IPL time.

Utility Programs  14-9



14-10 SR30-0436

$INITDSK 58P, LP= 8D00
COMMAND (?): [ID 3 <:i:

INITIALIZE DEVICE WILL DESTROY ALL DATA
CONTINUE?

DISK INITIALIZED

ALLOCATE A VOLUME?

VOLUME: [EDX002

SIZE IN RECORDS: [10000]

EDX002  ALLOCATED

INITIALIZE THE VOLUME JUST ALLOCATED?
MAXIMUM NUMBER OF DATASETS: [500]

DO YOU WANT WRITE VERIFY FOR THIS VOLUME? [N]
ALLOCATE $EDXNUC?

VOLUME INITIALIZED

INITIALIZE IPL TEXT?

IPL TEXT WRITTEN

ALLOCATE ANOTHER VOLUME?

VOLUME: [ASMLIB]

SIZE IN RECORDS: [10000]

ASMLIB  ALLOCATED

INITIALIZE THE VOLUME JUST ALLOCATED?
MAXIMUM NUMBER OF DATASETS: [500

DO YOU WANT WRITE VERIFY FOR THIS VOLUME? [N]
ALLOCATE $EDXNUC? [N] (zf\

VOLUME INITIALIZED

ALLOCATE ANOTHER VOLUME?

VOLUME: [EDX003]

SIZE IN RECORDS: {15880]

EDX003  ALLOCATED

INITIALIZE THE VOLUME JUST ALLOCATED?
MAXIMUM NUMBER OF DATASETS: |500

DO YOU WANT WRITE VERIFY FOR THIS VOLUME? E\l]
ALLOCATE $EDXNUC? [N] S

VOLUME INITIALIZED

COMMAND (?):
$INITDSK ENDED

Figure 14-11. Using $INITDSK



O

.

$DISKUT1

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$DISKUT1
Utility Program.”

> [§L_$DISKUT]]

$DISKUTI 37P, LP= 6300

USING VOLUME EDX002
COMMAND (?):
A

L ---- ALLOCATE SPACE
CV ---- CHANGE VOLUME
DE ---- DELETE MEMBER
EN ---- END THE PROGRAM

LA *--- LIST ALL (DS/PGM)
LACTS * LIST ALL (CTS MODE)
LD *--- LIST DATA SETS
LDCTS * LIST DATA SETS (CTS MODE)
LM =--- LIST 1 MEMBER
LP *--- LIST PROGRAMS
LPCTS * LIST PROGRAMS (CTS MODE)
LS ---- LIST SPACE
LV *--- LIST THROUGH VOLUMES (DS/PGM)
LISTP - DIRECT LISTING TO $SYSPTR
LISTT - DIRECT LISTING TO TERMINAL
RE ---- RENAME A MEMBER

*--- PREFIX (OPTIONAL)

COMMAND (?):

Figure 14-12. $DISKUT1 commands

$DISKUT1 provides many of the most frequently required DASD
storage management furfctions. Those functions annotated as

PREFIX (OPTIONAL) indicate that if a 1 to 8 character text string is
entered with the command, the command will apply to those members
whose name begins with that text string.

When the utility is first loaded, commands apply to the IPL volume,
but may be switched to other volumes with the Change Volume (CV)
command. The only exception is the List Through Volumes (LV)
function, which lists the data sets and programs in all volumes currently
online, without requiring entry of CV to switch from one volume to
another,

Utility Programs  14-11



$DISKUT2

14-12 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C
Operator’s Reference, Messages and Codes (SC34-1703), “$DISKUT2
Utility Program.”’

> $L $DISKUTZ2
$DISKUTZ 4€6P406:57:29y LP= 0000

USING VILUME £0Xx002

COMMAND(?): ?

Co CLEAR DATA SET
Cv - CHANGT vOLUME

DP - DUMP DS OR PGM ON PRINTER

DU - DUMP NS OR PGM ON CONSOLE
(~CA- WILL CANCEL)

PA - PATCH DS OR PGM

SS = SET PRIGRAM STURAGE PARM

LP - LIST D5 GN PRINTER

LU = LIST DS ON CONSOLE

PL - LIST LOG ON PRINTER

LL - LIST LLG ON CONSOLE

EN - EN) PROGRAM

COMMAND(?) : (T\

Figure 14-13. $DISKUT2 commands

In addition to the functions listed in Figure 14-13, all of which normally
operate on symbolically named data or program members, $DISKUT2
has the capability to operate on absolute record numbers within a
volume. If, when prompted for data set name, the operator enters the
special system name $$EDXVOL, the operation will then be directed

to absolute record numbers, rather than symbolic data/program mem-
ber names, with record number 1 being the first record in the volume.

Similarly, if the special system name $$SEDXLIB is entered, absolute
record numbers will be used, and the first record in the directory will

be considered record 1. For most volumes, $$EDXLIB and $$EDXVOL
will both reference the same record, as libraries on volumes usually
begin at the first record in the volume.

Figure 14-14 illustrates the use of the absolute record capability.



O

O

> [§L_$DISKUTZ]

$DISKUT2

USING VOLUME EDX002

COMMAND(?) : [DU_$SEDXLIB
$$EDXLIB IS A DATA SET

FIRST  RECORD:
LAST RECORD:
FIRST WORD:

WORDS / RECORD:
(D)EC OR HE(X):

RECORL 1

1 7BCO

? 0000

17 SRCS

29 0003

33 SRCZ

41 0003

49 SRCZ

57 0003

3] SRCZ

73 0003

81 GRC3

89 0003

97 SBF 4

103 0001

113 SRCY

121 0003
NUMF COMFLETE

ANDTHER AREA?

Figure 14-14. Absolute record capability

73C0
0000
C4E7
0000
E2C3
0000
E2C3
0000
E2C3
0000
nen4
0000
FOF7
0100
DGE3
0000

46P, LP= 6300

0036
0000
LSE4
7C3C
E3n9
0563
E413
1158
E4E3
4409
nzne
o660
F8C3
0000
CHER
1RPC

0001
0000
C340
0230
C3CH
0000
F140
0000
F240
0000
CHEZ
0000
E2FO
0000
E340
4040

003C
0000
003C
0000
013C
0081
0144
01C5
015A
07486
OlES
01352
01CS
0000
o1ns
02RO

3510
0000
013k
0000
0143
0000
0159
0000
01R4
0000
01C4
0000
014
0000
01Fé4
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

4w avwnnnsnnannnal
lemwssnvnnnnnnnal
| $EDXNUC |
Faew s @uwnwwwwwnmaul
I SBSCTRCE e wuunnal
I twwwsnnnnnnnnnnsl
I $BSCUTL
I
| $BSCUT2
I = T
| $COMPRES 2 v ulla o us |
leesee™ennnnnnunal
1$4978CS0 EuMuua. |
Fawwwwmemmmunnnanl

ISIOTEST WNubuwuul

u-nn-u--'

|

Using the special system name $$EDXLIB, the operator is able to dis-
play the first record in the directory of volume EDX002.

Utility Programs  14-13



$COPY

14-14

SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C
Operator’s Reference, Messages and Codes (SC34-1703), “$COPY
Utility Program.”

> L $CuPY
§COPY 33P 906254221y LP= SO0

CaOMMAND (2): 2

CD - CORPY DATA SceT

CV - COPY ViaLime

A= COPY FROM BASIC EXCHANCE
“wE = CCPY TO BASIC EXCHAMGE
(-CA- JILL CAMCEL)

N O~ OND) PRIGRAM

CO¥YMAND (?):

Figure 14-15. $COPY commands

When using $COPY to copy library members, the target member must

already exist (allocate using $DISKUT 1), and must be of the same

organization as the source member. When copying program members,

the target member must be of equal or greater size than the source mem-

ber. When copying data members an entire member may be copied,

or only a selected number of records (partial copy) may be copied. <\
If the entire member is to be copied, the target data member must be —
equal to or larger than the source. If doing a partial copy, the target

member need not be as large as the source, but must have enough

space following the starting target record number to accommodate

the number of records being copied from the source number.

The Copy Volume (CV) command allows entire volumes to be copied,
providing a volume back-up capability. A disk volume may be

copied to another disk volume, a diskette volume to another diskette
volume, or a diskette volume to a pre-allocated data set of appropriate
size (949 records for Diskette-1, 1924 for Diskette-2) on disk. (For
disk volume to diskettes, see SMOVEVOL later in this section.) Note
that copy volume operations do not add the members in a source
volume to the target volume; the original contents of the target volume
are replaced, including the directory.



$COPYUT1

If you have two or more 4964 Diskette Units, or a 4964 and a 4966
Diskette Magazine Unit, diskette volume copies between diskette
devices are possible. If you have a single diskette drive and a disk,
diskette volume copies may be performed using the following procedure:

1. Allocate a target data set on disk of 949 records (Diskette 1) or
1924 records (Diskette 2)

2. Using the CV command, copy the diskette volume to the disk
data set

3. Mount the target diskette on the diskette device and vary
(> $VARYON) online

4. Using the CV command, copy the contents of the disk data set
to the target diskette

If you have a single 4966 Diskette Magazine Unit and a disk, the

above procedure is also recommended. Diskette volume copies between
different slots of a 4966 are allowed, but are very time consuming due
to the slowness of the magazine diskette selection mechanism.

$COPY, like $DISKUT2, has an absolute record capability, using the
special system names $$EDXLIB and $$EDXVOL. This allows copying
of any record relative to the beginning of a volume ($$EDXVOL) or
relative to the beginning of a library ($$EDXLIB). This capability
might be used, for example, when copying one diskette volume to
another. The CV function of $COPY does not copy the first cylinder
on diskette. If the source diskette were an IPL volume (has IPL text
and $SEDXNUC), the IPL text, contained-in the first record of the

first cylinder, would not be copied to the target diskette, and the
target diskette volume, although containing a supervisor in $SEDXNUC,
would not be able to load the supervisor when the IPL key was pressed.

To copy the IPL text to the target diskette, the CD function of $COPY
can be used, with $8EDXVOL specified as the data set name, and
record 1 specified as the first and last record to be copied.

READING ASSIGNMENT: 1BM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$COPYUT1
Utility Program.”

$COPYUT1 is used extensively in system installation and maintenance
activities, such as installing the various system libraries received from
PID, and in applying PTF fixes distributed on diskette, §COPYUT1
differs from $COPY in that operations are performed on entire mem-
bers only; partial copies are not allowed, nor are volume copies or
absolute record operation.

Utility Programs  14-15




14-16 SR20-0436

CM---COPY MEMBER FROM SOURCE TO TARGET

———— MULTIPLE COPY COMMANDS------

CALL--COPY ALL MEMBERS FROM SOURCE TO TARGET

CAD---COPY ALL DATA MEMBERS FROM SOURCE TO TARGET

CAP---COPY ALL PROGRAMS FROM SOURCE TO TARGET

CG----COPY ALL MEMBERS STARTING WITH TEXT FROM SOURCE TO TARGET
CNG---COPY ALL MEMBERS NOT STARTING WITH TEXT FROM SOURCE TO TARGET
------ END OF MULTIPLE COPY COMMANDS------

SQ----SET PROMPT MODE FOR ALL MULTIPLE COPY COMMANDS
NQ----RESET PROMPT MODE FOR ALL MULTIPLE COPY COMMANDS

~-CA-- WILL CANCEL MULTIPLE COPY COMMANDS

CV---CHANGE SOURCE AND TARGET VOLUMES

ROLLON -SET SCREEN = NO PAUSE

ROLLOFF -RESTORE PAUSE CHARACTERISTICS

EN---END PROGRAM

? ---HELP

Figure 14-16. $COPYUT1 commands

This utility will copy data or program members from a source volume
to a target volume, and:

1.  Will delete a member from a target volume, if a member exists
with the same name as the member being copied from the
source volume

2.  Will allocate a member on the target volume of the same size
and data organization as the source member — preallocation
not required

3.  Will copy multiple members with a single command (all, all data,
all program, generic, non-generic), with or without a prompting
pause



O

S

$MOVEVOL

$COMPRES

> |5L_$COPYUTI
$COPYUTI 48P,00:00:14, LP= 6000

***WARNING MEMBERS ON TARGET VOLUME WILL BE OVERWRITTEN***
THE DEFINED SOURCE VOLUME IS EDX002, OK? [NO]

ENTER NEW SOURCE VOLUME: [EDX003

THE DEFINED TARGET VOLUME IS EDX002, OK? [YES

MEMBER WILL BE COPIED FROM EDX003 TO EDX002 OK?
COMMAND (?):

ENTER GENERIC TEXT: {AREC :
ARECPGM1  COPY COMPLETE 300 RECORDS COPIED

ARECPGM5 COPY COMPLETE 100 RECORDS COPIED
ARECPGM3 COPY COMPLETE 50 RECORDS COPIED
COMMAND (?):

Figure 14-17. Generic copy

Figure 14-17 is an example of a generic copy without a prompting
pause. The warning message indicates that existing members with the
same name as any of those being copied will be deleted.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$MOVEVOL

Utility Program.”

SMOVEVOL is a dump/restore utility, used to dump entire disk
volumes to diskette or restore disk volumes from dlskette where the
volumes may span several diskettes.

A dumped volume consists of a control diskette containing the volume
directory and control information, and as many data diskettes as are
required to hold the rest of the information in the volume. See the
reading assignment for information.on creating the control and data
diskettes, and for examples of SMOVEVOL operation.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$COMPRES
Utility Program.”

During normal system usage, data sets in Event Driven Executive
volumes will be deleted, leaving “holes’’ (free space) between members.
The SCOMPRES utility consolidates all available free space within an
Event Driven Executive volume into one contiguous area.

Utility Programs  14-17



$TAPEUT1

14-18

SR30-0436

> [§L_COMPRES
$COMPRES  17P,00:32:48, LP= 6900 C

COMPRESS SYSTEM LIBRARY
WARNING! SHOULD BE RUN ONLY WHEN
NO OTHER PROGRAMS ARE ACTIVE

VOLUME LABEL = [EDX003
COMPRESS LIBRARY ON EDX003?

DIRECTORY HAS BEEN SORTED BY MEMBER IN ASCENDING ORDER.
$EDXNUC COPIED

DATAI COPIED

PROGI COPIED

PROG2 COPIED

THE LIBRARY IS COMPRESSED.

ANOTHER VOLUME?
$COMPRES ENDED AT 00:34:39

Figure 14-18. $COMPRES example

The example shows compressing the members in volume EDX003.

Never compress a volume when any other program is active. You can

determine what programs are active by using the $A operator command. C
If the compress was performed on the volume that contained the super- _
visor you IPLed from, and if the SLOADER program'’s location was

changed, you must re-IPL.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive

.Operator’s Reference, Messages and Codes (SC34-1703), “$TAPEUT1

Utility Program."”



TERMINAL 1/0 UTILITIES

Al
)
S

$TERMUT1

> $L $TAPEUT1
$TAPEUT1 20P,01:21:58, LP= 0000

[2]

COMMAND (?2):

CD ---- COPY TAPE DATASET

CT ---- CHANGE TAPE ATTRIBUTES

DP ---- DUMP TAPE

EN ---- END $TAPEUT1

EX ---- EXERCISE TAPE

IT ---- INITIALIZE TAPE

LT ---- LIST TAPE DRIVES AND ATTRIBUTES
MT ---- MOVE TAPE

RT ---- RESTORE DISK/VOL FROM TAPE
ST ---- SAVE DISK/VOL ON TAPE

TA ---- ALLOCATE TAPE DATASET

COMMAND (?2):

Figure 14-19. $TAPEUT1 options

$TAPEUT 1 provides many of the most frequently required tape man-
agement functions. When invoked, the utility displays information
about tapes defined to the system, The functions provided allow a
user to initialize taxes, allocate and copy tape data sets, and print tape
records as well as providing a save/restore facility for disk devices.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$TERMUT1
Utility Program.’”

This is a general purpose terminal utility, used to perform several
terminal-related functions.

Utility Programs  14-19



14-20

> $L STERVUTIL

>[$L STERMUTI] .
$TERMUT1 19P,01:12:29, LP= 5F00

*xk TERMINAL CONFIGURATOR ***
COMMAND(?):

LA -~ LIST TERMINAL ASSIGNMENTS
RE -- RENAME

RA -- REASSIGN ADDRESS

RH -- REASSIGN HARDCOPY

CT -- CONFIGURE TERMINAL

EN -- END PROGRAM

COMMAND(?):

Figure 14-20. $STERMUT 1 options

The current terminal name, hardware address, and terminal type may
be displayed using the LA (list assignment) function.

$TERMUT] 199403:56:41y LP= 0000

*%% TERMINAL CONFIGURATQOR %%

COMMANC(?2): LA
NAME

===> 3$SYSLOG
nsSPLY1
$SYSLOGA
$SYSLOGH
LINEPRTR
$SYSPRTR

COMMANC(?2): EN

ADDRFSS TYPE PARTITION HARDCOPY
04 4979 2 $SYSPRTR
06 4978 3 $SYSPRTR
00 TTY 1
o8 ACC1 2 (3101 BLOCK MODE)
21 4973 1
01 4974 1

STERMUT1 ENDED AT 03:57:24

SR30-0436

Figure 14-21. LA

Terminals may be renamed, using the RE function. For instance, if
the 4973 printer in Figure 14-21 were mistakenly referenced (ENQT) in
a program as LINPRNTR the name could be temporarily changed from

LINEPRTR to LINPRNTR to test the program, and then changed back.

COMMAND(?):
OLD, NEW TERMINAL NAMES: [CINEPRTR LINPRNTR]

COMMAND(?):

Figure 14-22. RE



-

o

$TERMUT2

Terminal hardware addresses (RA), hardcopy device/hardcopy PF key
designations (RH), and page format configuration parameters (CT)
may all be reassigned using STERMUT1. Reassignments remain in
effect until reassigned again, or until the next IPL, which will cause all
terminals to revert to the assignments in the TERMINAL system
configuration statements.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$TERMUT2
Utility Program.”

4978 Displays have a control store and an image store, which are
loaded from disk or diskette data sets. At IPL, the system auto-
matically loads all 4978s with the control store data set $4978CS0
and the image store data set $4978IS0. These may be the standard
system-supplied data sets, or may be user-created control/image
store data sets that have been renamed $4978CS0 or $49781S0.

>t sTerwyT2 |
PTERMYT? 34P ¢y N655:56y LP= JCGUG

COMMAND (2): ‘
AD - aSSISY DEFINE KEY
C - CHANGE KEY BEFINITION
~ END PROGRAM
- LMaD CCMTROL STORE
- LOAD IMASGE STORF
SAVE CONTRCL STORE
- SAVE IMAGE STIRE \ |
- RISTIRT 4974 T STH. 54 CHAR. SET

NDWnwvrm
Fir 4 O 4 Y
|

CCM¥MAND (2

Figure 14-23. $TERMUT2 options

After IPL, $TERMUT2 can be used to load a control or image store
from user-defined control/image data sets (LC and LI commands),
or to read the control or image store in a display, and write it to a
user-allocated data set (SC and S| commands). Control store data
sets require 16 records, and image store data sets, 8 records.

The 4978 hardware supports the DEFINE function, which allows keys
to be defined with special character strings that have meaning to a
particular application or job. In order to define a key with special
characters, DEFINE mode must be entered. This is accomplished by
pressing the DEFINE key on the 4978 keyboard.

Utility Programs  14-21



Assuming a standard 4978 keyboard is installed, the $4978CSO0 control
store supports the keyboard shown in Figure 14-24. (The unshaded
keys are those that will produce hardware interrupts.)

Figure 14-24. 4978 keyboard, RPQ D02056

As can be seen, there is no key permanently designated as the
DEFINE key. However, using the AD command of $STERMUT2,
you may assign a key of your choice as the DEFINE key.

Figures 14-25 and 14-26 are taken from the General Information
manual for the 4978 keyboard (RPQ D02056). Similar charts are
in the General Information manuals for whichever keyboard you
have installed.

In Figure 14-25, each key position is assigned a reference number.
Figure 14-26 is the first page of several which list the hex scan
code, function ID code, local function code, and interrupt code
which comprises the control store information for each key. The
identifying numbers on the keys in Figure 14-25 correspond to the
key position numbers on the chart in Figure 14-26.

1 3 4 [] || 7 9 10 J 12 || 13 15 17 19 20 22
23 25 26 28 " 29 31 32 ] 34 " 35 37 39 41 42 44
o [ = w | Y
67 68 69 70 n 72 73 74 75 76 77 78 79 80 81 82 83 85 86 87
88 89 90 91 92 93 94 © 95 96 97 98 99 " 100 101 102 103 104 105 106 107 108 109
1o m 112 13 14 115 116 7 118 19 120 Lkl 122 123 124 125 126 127 128 129 130
31 132 133 134 135 136 137 138 139 140 NJ 142 143 145 146 147 149 150 151
———
L]
155 163 164 168 169 170 172 173

Figure 14-25. Keyboard reference assignments

14-22 SR30-0436



Control Store Data
O Downshift — Unshifted Upshift — Shifted
K | Scan code K | Scan code
; Function 1D code ; Function ID code
P Character/local function code P Character/local function code
;’ Interrupt code gﬁﬁ;}z g Interrupt code 52;::5
'; Character image table " Character image table
i Row i Row
0 o
n o{1|2(|3]|4]|5|61}7 n ol12]|3|4]5]|6]|7
1 o1|20]00 01 Y Y 1 {8120{00|o1 Y
3 102§20(00 |02 3 182]20]/00(02
4 103{20{00 (03 4 |83|20]|00{03
6 ]04120]00 (04 6 |84]20{00|04
7 |05{20(00 |05 7 |85(20]00|05
9 10612000 |06 9 |86(20]00|06
10 [07 | 20|00 {07 10]87120100(07
12 |08 |120(00 [0B 1288120{00|0B
1310912000 |0C 1389|20|00(0C
15 [0A]20|00 [OD 15|8A20|00|0D
17 JOB |20 (00 [OE 1718B[20|00|0E
19 |0C|20 (00 |OF 19]8C|20|00|OF
20 |oD|20|00 |10 20|8D{20(00|10
22 |OE|20(00 |11 22|8E|20{00|11
23 |0F|20|00(12 2318F|20{00|12
25 |10 {20]00{13 Note 1 25{90|20(00(13 Note 1
26 |11 {20(00 (14 26191120{00|14
28 |112)20|00 (15 28192(20]00(15
29 113120100116 29193120(00]|16
31 |14 [20{00]17 31194|20(00]17
32]15]20(00{18 3219520|00(18
. 34 116 [20{00(19 34196(20]00(19
C\ 35 [17]20]00 1A 35 |97|20 |00 [1A
37 118 {20{00{1B 3719820(00|1B
39 [19 2000 |1C 39199(20|00(1C
41 |1Aj20(00|1D 4119A|20(00|1D
42 |1B|20]|00|1E 42|9B|20|00|1E
44 [1C|20(00|1F 44 |9C|20)00|1F
61 11D|20{00 )20 61|9D|20]00{20
63 |112120/00]21 63 |9E|20(00 |21
m\‘ 64 11F (2000 {22 64 |[9F 20100 |22
66 120 | 20|00 |23 _ ¥ |le6]ao|20[00|23 N A
67 21 (70 (00 |00|00{00|00]00 |00 |00 |00}00 | (Blank) 67 |A1[70]/00|00]00]00]00]00|00|00|00;00| (Blank)
68 122 |00|F1100/02]|06(02{02|0202|07}00}1 68]A2|00[5A|00]07(30}30]{02({02{00{02]00]!
69 |23 |00|2{00/07|48(01}30 |04 |40 |78]00]2 69 ]A3|00|7C[00|07]48|58]{58(40]|40]3C|00| @
70 )24 [00(¥r3{00|78]|01/10(31 |08 |48 |07 (00} 3 70 |A4|00|7B(00]|05|78105{05178(05|00}00]| #
71 25{00(FF4(00]28(28}0C|48|78|08 |08 [00] 4 71 |A5]00[5B|00]08]3C|50[{07|28(71{40{00]| $
72126 |00{F5|00]78(40|71)08 (08148 |07]00] S 72 |A6{00]|6C|00]4C|45]10|02{20(0D|49|00{ %
73 127100|F6|00}02120]04 47 {48148 |07 |00| 6 73 |A7{00[4A|00]10{3C{50|50|50(3C}10]00] ¢
74 128 100[F7/00{78101{10]02 | 20|04 {40 |00| 7 74 [A8]00(50|00]30{05(30]|06]|50{41]|78[00| &
75 129 100i{F8{00]30{05[30(05|48]|48 {07 (00| 8 75 1A9|00]|5C|{00}00|05{30{78|30{05[00|00]| *
76 {2A|00(F9 (00|07 (48|48 |0F|01{10]02(00(9 76 |AA|00[4D|00]10[02]20/20{20{02]|10]00] (
77 |2B|00|F0|00}30)|05(48 |4A[48]05(30]00|0 77'lAB| 00| 5D[ 00} 20|02 10| 10|10]|02[20]001{ )

Figure 14-26. Control store data

Utility Programs  14-23



14-24

SR30-0436

In Figure 14-24, assume you want to make the key at the

DEFINE key. In Figure 14-25, that key position has a reference

number of 66. In Figure 14-26, the operator is prompted for the scan (\
code of the key to be assigned as the DEFINE key. On Figure 14-26, -
the scan code for key position 66 is hex 20. After the scan code and

terminal name have been entered (Figure 14-27), STERMUT?2 reloads

the control store of the display, with key position 66 assigned as the

DEFINE key.

COMMAND (?):
ENTER SCAN CODE OF THE KEY TO BE ASSIGNED
AS THE DEFINE KEY (HEX):
ENTER TERMINAL NAME (CR OR * = THIS ONE): [DSPLYT]

Figure 14-27. AD command

Back on Figure 14-24, the operator presses the DEFINE key at ﬂ
key is the key which will be redefined. Assume the operator wishes
to redefine Program Function Key 1, and presses it ( on Figure
14-23). Now all key depressions, until the DEFINE key is again
depressed, will be assigned to PF1.

The operator enters the character string $L $FSEDIT EDITWORK,
and then presses one of the two ENTER keys. He or she then presses
the DEFINE key again, ending the redefinition of PF1, and taking the
4978 out of DEFINE mode.

The character string entered is a request to load the text editing utility \
program $FSEDIT, along with the name of a text edit work data set, C
EDITWORK.

Counting the depression of the ATTN key required to get the > prompt,
and the ENTER key depression following the load request, this line of
text normally takes 21 keystrokes to enter into the system. Now that
PF1 has been redefined as this line of text, only two keystrokes are
required; the ATTN key, resulting in the > prompt, followed by PF1,
which enters $L. $FSEDIT EDITWORK and the ENTER key, which

was also part of the redefinition string.

For normal terminal usage, an active DEFINE key is not desirable.

If it is depressed inadvertently, altering of the control store will result.
In Figure 14-28, the C command is used to change key position 66
back to-its original control store configuration, using the chart in
Figure 14-26 to supply the codes.

COMMAND (?):[T]
ENTER TERMINAL NAME (CR OR * = THIS ONE): [DSPLY]]
ENTER SCAN CODE OF THE KEY TO BE REDEFINED (HEX):
ENTER FUNCTION ID (HEX):
ENTER CHARACTER/FUNCTION CODE (HEX):
ENTER INTERRUPT CODE (HEX):
ANOTHER KEY? ‘

Figure 14-28. C command C\



)

STERMUT3

$PFMAP

At the conclusion of the C operation, the control store of 4978
DSPLY 1 still has PF1 defined with the text editor load request
character string, but with no DEFINE key designated. The SC
operation in Figure 14-29 reads the control store, and stores it in a
16 record data set named 4978EDIT, which must be preallocated.
Any time a user desires a keyboard with PF 1 redesignated as a text
editor load request, the LC command of $TERMUT2 can be used to
load the control store from 4978EDIT.

COMMAND (?):
SAVE DATA SET (NAME,VOLUME): [4978EDIT
ENTER TERMINAL NAME (CR OR * = THIS ONE): [DSPLY1

COMMAND (?): [END

STERMUT2 ENDED AT 01:27:44

Figure 14-29. SC command

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$TERMUTS3
Utility Program.”

STERMUTS3 is used to enter a text message and send it to another
named terminal. See the reading assignment for examples and operating
instructions.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$PFMAP
Utility Program.””

When a WAIT KEY operation is terminated by pressing a Program
Function key, an identifying code for the key is placed in taskname+2,
which may be examined by user instructions (see the topic “.STATIC
SCREEN CODING EXAMPLE" in ““Section 11. Terminal 1/0'’). For

a 4979 terminal, PF keys PF1 through PF6 return identifying codes of

1 through 6. Since only the ENTER key and the six PF keys present
identifying codes, determining what code to check for is a simple matter.

The 4978 keyboard has a great many more interrupting keys than does
the 4979, and determining which key is associated with a particular
identifying code is, therefore, more difficult. In fact, by using the
DEFINE feature, even the normal alphameric data entry keys and
cursor positioning keys may be redefined as interrupting keys.

When $PFMAP is loaded, it displays, in both decimal and hexadecimal
form, the identifying code returned by any interrupting key pressed
while $PFMAP is in execution (with the exception of the ENTER key,
which ends the utility). Using this utility, an application programmer
can easily find out what code is associated with a particular key and,
therefore, what to check for in taskname+2.

Utility Programs  14-25



$FONT

14-26 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive .
Operator’s Reference, Messages and Codes (SC34-1703), “$FONT (\
Utility Program.” ”

As already noted in the discussion of the STERMUT2 utility, the 4978
Display has both a control store and an image store. The combination
of Scan code, Function ID.code, Character/local function code, and
Interrupt code which is assigned to each key determines what function
each key will perform if pressed. This function definition information
is contained in the 4978 control store.

One of the functions which may be assigned to a key is that of display-
able character (Function ID code = 00). Each key defined as a display-
able character key will have an EBCDIC code associated with it
(character/local function code in control store), which will be generated
when that key is pressed.

The 4978 also has an image store, containing the bit patterns which,
when interpreted by the hardware, result in the display of characters
on the screen. Each character bit pattern is associated with an EBCDIC
code. When, for example, the ‘1"’ key is pressed on the keyboard and
a 1" appears on the screen, it is only because of the following
circumstances:

1. In the control store, the function ID code for that key position
has been defined as 00, assigning that key as a displayable
character, and the character/local function code is defined as
the EBCDIC character code F1. (\

2. Inthe imége store, the bit pattern associated with EBCDIC F1 —
will, when interpreted by the hardware, result in the display of
the figure we recognize as the arabic numeral 1.

In the discussion of STERMUT2, an example of the CHANGE KEY
DEFINITION function was given, whereby control store key definitions
could be altered. If, for example, the character/local function code for
the 1 key were changed from EBCDIC F1 to EBCDIC C2, pressing the

1 key would result in the display of the alpha character B, because the
image store bit pattern associated with C2 is B.

Similarly, the bit patterns in the image store may also be changed to
alter the appearance of the characters displayed, or if desired, to create
entirely new characters, $FONT is the utility program used to mani-
pulate image store bit patterns.

4978 image stores, like control stores, may be loaded from disk/diskette
data sets. An image is 2K bytes in size, requiring a data set 8 records
in length.



@,

>|SL_SDISKUTI
SDISKUT 28P,09:23:01, LP= 7800

USING VOLUME EDX002

COMMAND (?):
DEFAULT TYPE = DATA - OK? (1)
MYIMAGE CREATED

COMMAND (?):
$DISKUT1 ENDED AT 09:23:48

Figure 14-30. Allocate image store data set

Allocation of a user image store data set is not a prerequisite to using
$FONT. The system-supplied image store data set $4978IS0 can be
used with SFONT. $4978IS0 is, however, automatically loaded to
every 4978 supported by the supervisor at IPL, and modifications
made will be reflected in all the displays, which may not be desired.

When $FONT is loaded, the name of an image store data set must be
supplied. If not supplied as advance input, as in Figure 14-31, the
operator will be prompted to enter it.

>|$L $FONT MYIMAGE|

$FONT P,09:27:03, LP= 7800
COMMAND(?) :

DISP -- DISPLAY TABLE

EDIT -- ENTER EDIT MODE

SAVE -- SAVE TABLE ~

PUT -- LOAD TABLE INTO DEVICE
GET -- READ TABLE FROM DEVICE
END -- END PROGRAM

COMMAND(?): DISP

Figure 14-31. $FONT commands

Utility Programe  14-27



14-28 SR30-0436

The DISP command will display all 2566 EBCDIC codes on the screen,
along with the characters that are generated for each code by the
associated bit patterns in the image store. - If DISP were entered at
this point, SFONT would display the image store in the image store -
data set MYIMAGE. Since MYIMAGE was just allocated, and does
not yet contain an image table, a meaningless display would result. - To
acquire an |mage table to work with, a GET command may be entered
to read an image table from a 4978.

" COMMAND(?) :
TERMINAL NAME : [GSPLAY]

Figure 14-32. GET command

The utility now has an image table, and DISP can be used to display
that table.

Al
=D

G O AR g
G E e

THINER.Y

L1 1 UT 4
weNoOTAPWN—~O

LEEES

Figure 14-33. Image table



O

—

-

The characters are displayed to the right of the EBCDIC codes with
which they are associated. To illustrate how the bit patterns which
generate these characters may be altered, assume that the operator
wishes to alter the appearance of the character “T" by extending the
ends of the crossbar at the top of the character downward. In Figure
14-33, the character ‘T is associated with EBCDIC code “E3.” To
modify or create a character, EDIT mode must be entered. Display
mode is ended by pressing the ENTER key. The COMMAND (?):
prompt will again appear, whereupon the operator can enter the
EDIT command, which will cause the screen in Figure 14-34 to
appear.

T == TAD FORWARD
qFre -~ TAD BACK

B F3 -- NEXT LInE
PF4 - INVERT DOT
ENTER -- SET PATTERN
PFS -« COMMAND MODS

T0E {00

Figure 14-34. EDIT mode (1)

When EDIT mode is first entered, the cursor will be positioned just to
the right of the CODE prompt on the bottom left of the screen. The
utility is waiting for the operator to enter a character in the present
cursor position, or to move the cursor to the right and enter an
EBCDIC code between the parentheses. Assume the operator enters
the character T/, and presses the ENTER key.

Utility Programs  14-29



14-30

SR30-0436

e

Figure 14-35. EDIT mode (2)

$FONT fetches the bit pattern for the entered character, displays the
character image in the image grid at the right, and places the cursor in

the top left-hand square of the 4 by 8 character image grid. The

EBCDIC code for the character entered, ““E3", is placed in the parentheses
to the right of the CODE prompt. The character entered is also displayed
below the character image grid (4978 only — not 4979). C\»

The cursor is moved about within the character image grid by the special
PF key functions described on the screen. For example, pressing PF1
one time will move the cursor forward (left-to-right, and top-to-bottom)
across the grid one position, as shown in Figure 14-36.

- TAB FORWARD
= TRE GACK
EHTER -- 5

PF5 - COMMAND MODE

cone T E3)

Figure 14-36. EDIT mode (3) v C



O

PF2 will move the cursor backwards within the grid (right-to-left and
bottom-to-top). PF3 will move the cursor from its present line down to
the next line, and position it in the leftmost square of the new line.
Figure 14-37 shows the screen after PF3, the ‘‘next line’’ key, has been
pressed once. ‘

13 —~ TAB FORWARD
F2 -~ TAB BACK
F3 - NEXT LINE

PF4 -~ INVERT DOT
ENTER -~ SET PATTERN
PFS -« COMMAND MODE

ConE T (EJ

Figure 14-37. EDIT mode (4)

At the outset of this exercise, the stated objective was to alter the
appearance of the character “T’’ by extending ends of the top crossbar
downwards. The cursor is now in a position to do that. By hitting
PF4, the dot pattern in the first square of the second line is inverted,
which extends the left end of the crossbar downwards.

INVERT DOT
ENTER -- SET PATTERN
PFS -~ COMMAND MODE

cope T (E3

Figure 14-38. EDIT mode {5)

Utility Programs  14-31



Notice that as modifications are made within the grid, they are reflected
in the actual-size character below the grid. (\

The cursor is now moved forward by pressing PF1 repeatedly until it is ~
at the other side of the grid, as shown in Figure 14-39.

= {AB FORWARD
i -- TAB RACK
’ -~ REXT LINE

PF4 -~ INVERT DOT
ENTER -- SET PATTERN
PF5  -- COMMAND MODE

CODE T (E3)

Figure 14-39. EDIT mode (6)

. -
By pressing PF4 again, the other end of the crossbar is extended. ( ‘

T =~ TAB FORWARD
HF2 -~ TAB BACK
FF3 -- HEXT LINE

PF4 -~ IRVERT DOT
ENTER -~ SET PATTERN
PF5 -~ COMMAND MODE

CODE T (E3

Figure 14-40. EDIT mode (7)

14-32 SR30-0436



The intended modification is now complete. Pressing the ENTER key
results in the screen in Figure 14-41.

T ===TAB FORWARD
[FZ -~ TAB BACK
F3 == NEXT LINE

PF4 -~ INVERT DOT
ENTER -- SET PATTERN
PF5 -~ COMMAND MODE

SET _T (E3)

Figure 14-41, EDIT mode (8)

At this point, the operator can “set’” the character just composed into
the image table. I1f ENTER is pressed, the modified T will replace the
normal T. The operator also has the option of associating the
modified T with a different key or EBCDIC code. If, for example,
the operator typed an A on top of the T next to the SET prompt,

and then pressed ENTER, the modified T would replace the character
A. If the operator moved the cursor to the right, and overtyped the
E3 within the parentheses with, for example, the EBCDIC code for O,
FO, the modified T image would replace that for 0.

Assume the operator presses ENTER without altering the character or
the EBCDIC code, resulting in the screen in Figure 14-42.

Utility Programs  14-33



14-34  SR30-0436

PF4
ENTER
PF5

CopE T (E3)

Figure 14-42., EDIT mode (9)

The character has been set, the CODE prompt is again displayed, and
the program is waiting for another character or EBCDIC code to be
entered. The operator presses PF5, exiting EDIT mode, and reentering
command mode.

If you want to be able to load a modified image store to a 4978 at a
future time, it must be stored on disk/diskette. The operator therefore

enters the SAVE command.

COMMAND(?) :

DISP -- DISPLAY TABLE

EDIT -- ENTER EDIT MODE

SAVE -- SAVE TABLE

PUT -- LOAD TABLE INTO DEVICE
GET -- READ TABLE FROM DEVICE
END -- END PROGRAM

COMMAND(?) : [BAVE
COMMAND(?) :

Figure 14-43. SAVE command



O

Notice that no data set name is asked for when the SAVE command is
entered. The table will always be saved in the data set specified when
the utility was loaded; in this case, MYIMAGE.

The only commands not yet exercised are PUT and END. Assuming
that this utility session is being conducted on a 4978 named DSPLAY1,
a PUT to that device name will load this device with the altered image
store, replacing normal ‘T’ characters with new.

COMMAND(?)

DISP -- DISPLAY TABLE

EDIT -- ENTER EDIT MODE

SAVE -~ SAVE TABLE

PUT -- LOAD TABLE INTO DEVICE
GET ~-- READ TABLE FROM DEVICE
END -- END PROGRAM

COMMAND(?) : [BAVE]

COMMAND(?) :
TERMINAL NAME: [DSPLAY1

COMMAND(?) :

Figure 14-44. PUT command

This 4978 will continue to display the modified ““T’’ until such time as
its image store is again loaded with a different image table (STERMUT2,
$FONT, or IPL).

Since the $FONT utility employs a static screen, this utility can only be
used by 4978s or 4979s.

Utility Programs  14-35



®

COMMAND(?) :

DISP -- DISPLAY TABLE

EDIT -~ ENTER EDIT MODE

SAVE -- SAVE TABLE

PUT -~ LOAD TABLE INTO DEVICE
GET -- READ TABLE FROM DEVICE
END -- END PROGRAM

COMMAND(?) : [SAYE]

COMMAND(?) :
TERMINAL NAME: [DSPLAYT]

COMMAND(?):
$FONT  ENDED AT 09:57:44

Figure 14-45. END

MISCELLANEOUS UTILITIES

$IMAGE

14-36  SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C\
Operator’s Reference, Messages and Codes (SC34-1703), “$IMAGE -
Utility Program.”

$IMAGE is used to create formatted screen images for use with
terminals that support static screen functions. The images (formatted
screens) are stored in disk or diskette data sets for later retrieval by
application programs. Stored images may also be retrieved by $IMAGE
for modification/maintenance.

In ““Section 16. Program Preparation Using SEDXASM", the application
program used as a program preparation example is the same program
used in ““Section 11. Terminal /0" under the topic “STATIC SCREEN
CODING EXAMPLE" (see Figure 11-43). In Section 16, the program
is modified to retrieve a stored screen image, rather than formatting the
screen by executing instructions within the program. The following

is a $IMAGE utility session in which the image that will be used by the
modified program is created and stored.



' A formatted screen created by SIMAGE is stored in a disk or diskette

data set that must first be allocated by the user. The formatting
information and text are stored in a special packed format to conserve
space. A logical screen may be of any size from one character position
up to an entire physical screen, and therefore the amount of space on
disk or diskette required to store a given screen image will vary. For
most logical screens, a data set two records in length will be adequate.

The screen image that will be created in this utility session is shown in
Figure 14-46 (same as that shown in Figure 11-31). Since it encom-
passes an entire physical screen and contains several lines of text, a
data set three records in length will be required to store it.

LINES
g ' )
1 ENTER KEY = PAGE COMPLETE DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 | PF3 = DELETE ENTRY 3 DELETE ENTRY 4
3
4
5
6 HAME
7
8
9
10
1| NAME: STREET:
12 CITY
13 STATE
14
15
16 | NAME: STREET:
17 T N
18 Init
19
20
21 | HAML
22
B\ J
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS—-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 14-46. Screen image

Before beginning the $IMAGE utility session, a data set 3 records long,
named VIDEO1 is created using $DISKUT1.

>|$L $DISKUT1| -
$DISKUT1 37P,00:32:06, LP= 5F00
USING VOLUME EDX002

COMMAND (?): [AL_VIDEOI 3]

DEFAULT TYPE = DATA - 0K? [YES]
VIDEO1 CREATED

COMMAND (?):
$DISKUT1 ENDED AT 00:32:33

Figure 14-47. Allocate image data set

Utility Programs  14-37



Now the $IMAGE utility can be loaded, and the utility session began.
Entering a **?"" in response to the COMMAND (?): prompt results in a (f\
list of the $IMAGE commands. w

> [$L $IMAGE]

$IMAGE /6P, LP= 8D00

COMMAND(?) :

ATTR - DEFINE ATTRIBUTE CHARACTERS
DIMS - DEFINE SCREEN DIMENSIONS

EDIT - EDIT SCREEN FORMAT

FTAB - DISPLAY FIELD TABLE

HTAB - SET (HORIZONTAL) TABS FOR EDIT
KEYS - DISPLAY USE OF PF KEYS

NULL - DEFINE NULL CHARACTER

PRNT - PRINT SCREEN IMAGE AND TABLES
SAVE - SAVE SCREEN FORMAT(S) IN DATASET
VTAB - SET (VERTICAL) TABS FOR EDIT
END END PROGRAM

COMMAND(?): [ATTR
ATTRIBUTE CHARACTERS WITH MDT OFF:

LOW INTENSITY (NOW IS ' ') = % -
HIGH INTENSITY (NOW IS ' ') = * <:;”
BLINKING (NOW IS ' ') =§
NONDISPLAY (NOW IS ' ') = #

DO YOU WISH TO DEFINE
ATTRIBUTE CHARACTERS WITH MDT ON? [N]

COMMAND(?): [DIMS 24 80
COMMAND(?): [HTAB 31
COMMAND(?): [NULL /
COMMAND(?):

Figure 14-48. $SIMAGE commands

)

14-38  SR30-0436



The ATTR command allows you to define the characters that define the
attribute bytes for the 3101 M2 screen. When creating a screen, the
display mode of a field (protected or unprotected) can be set by pre-
fixing the field with an attribute byte. In the example placinga $ in
front of a field will cause that field to blink when the screen is dis-
played. Attribute bytes are specified when defining protected or un-
protected null fields.

The DIMS command allows you to define the dimensions of the logical
screen you are creating. The example shows a logical screen of 24 lines
and 80 characters specified, which is equal to the entire physical screen.

HTARB is the horizontal tab settings you wish to have in effect while you
are creating the screen. If not entered, HTAB defaults to 10, 20, 30 etc,
through 80. The example defines a single HTAB setting of 31.

VTAB defines vertical tabs. The default is one vertical line for each
vertical tab key depression. Since VTAB is not entered in this example,
one-line vertical tabs will be in effect.

The NULL command allows you to define the null character. When in
EDIT mode, a null character is entered in each character position you
want to display unprotected data in, or in which operator-entered data
is to be accepted, when the completed screen is used by an application
program.

The KEYS command lists the functions of PF1, PF2, and PF3 (func-
tions valid when EDIT mode is entered).

Utility Programs  14-39



PF1—define protected fields
PF2—define data fields (unprotected) (\
PF3—return to COMMAND mode .

Figure 14-49. KEYS

All of the commands listed in Figure 14-48 may only be entered in the
COMMAND mode. The last command entered (Figure 1448) is EDIT,
which places the $IMAGE utility in EDIT mode. If an existing screen
image were to be edited, the data set name and volume of that image
would be entered with the EDIT command. Since this session is creat-
ing a new screen, EDIT is entered without reference to a data set.

When EDIT mode is entered, PF 1, PF2, and PF3 have the functions
listed in Figure 14-49. Before pressing any of the PF keys, the screen
is entirely blank, and the cursor is in the lower left corner.

The logical screen being created in this example contains both protected
and unprotected data. The operator prompts on lines 1 and 2 are unpro-
tected, and the rest of the prompts are protected (see Figure 14-46).
When the completed screen is displayed, the unprotected areas will
appear brighter than those that are protected, highlighting the prompts
at the top of the image.

When both protected and unprotected text is to appear on a screen

created by $IMAGE, the protected data must be entered first. There-

fore PF1 is depressed, signalling to the utility that protected fields are

to be defined. The cursor now moves to the first available character

position, which is line 0, space 0, in this example. C

As soon as either PF1 or PF2 is pressed, after entering EDIT mode, the
function of PF1 and PF2 is redefined. PF1 is now used as the horizontal
tab key, and PF2 as the vertical tab key. Since no text appears on line
0, the vertical tab key PF2 is pressed, moving the cursor down to the
first position of line 1.

When defining the protected areas of a screen image, all characters
entered, other than the null character, will be protected data. The
operator prompts on lines 1 and 2 are supposed to be unprotected.
Therefore, the actual text of the prompts cannot be entered until the
data definition portion of this utility session, after all protected fields
have been defined. However, since these areas of the screen will contain
unprotected text, null fields must be established, so that when the
unprotected data definition is done, the text entered will be accepted.
Figure 14-50 shows the screen after the null characters for the unpro-
tected operator prompts at the top of the screen have been entered.

14-40 SR30-0436



LINES

v -
\
0
VAN T HLIEILIE002000000 (11110010110111110111
2 | 11711111111111111117 11111111111111111117 11111111111111111111
3
4
5
6
7
8
9
10
1
12
13
14
15
16
i .
18
19
20
2
22
LN J
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS=——+-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 1450, NULL entries

Now the rest of the screen can be formatted. All areas of the screen not
containing null characters will be protected when the screen is com-
pleted. Note that any field meant to receive operator input when the
screen is used must be defined using the null character.

Figure 14-51 is the screen after all protected data has been defined.

LIN
b ~
v V01111 11117111111111111111 101111111170111111111
2 | /111I111171111117 11111111111111111111 11111111111111111117
I Bt
4 | CLASS NAME: ////111111111117 INSTRUCTOR NAME: ////1/11111111111111111111
L I [ e et e Ry D P UG U g g GRSy g g

6 | NAME:///7/117171711171111171 STREET:/[//1171170011001717101102171111111111
7 CITY ///111110100010171001010101710011001111111
8 STATE //1111777111111111011111711171111111111

VW { NAME:////11711111711111117111 STREET:///117111/1171111111111111111111111111/

12 CITY /11 711110111117101111011011111111111771

:g STATE ///111711111111111011011111111111111111

15

16 | NAME:////1171117171111171111 STREET:/[/111171117111111111111117110111111711

17 CITY //J1I1I111101171001001101017107171111117

:g STATE =//1111H111110LT110101101011001101111111111

20

21 | NAME<//7/7171717701111171777 STREET:/[7/11117111110111100711170010111111117

22 CITY ~//11111111111111111111111111111111111]
23 STATE 2///11111001011101001110111111011110111117 y,

CHARACTER 11111111112222222222333333333344444444445555556555666666666677777777778

POSITIONS=—12345678901234567890123456789012345678901234567890123456789012345678301234567890

Figure 14-51. Protected entries

Pressing the ENTER key takes the utility out of protected field defini-
tion, back to EDIT mode (the situation as it was before a define pro-
tected field or define data field decision was made). PF1 and PF2 again
have the meanings printed out by the KEYS command (Figure 14-49).
The ENTER key also causes the screen, as defined up to this point, to
be displayed as pictured in Figure 14-52.

Utility Programs  14-41



0

1 .

2 e

3

4

5

6

7 CITy

8 STATE @

9

10

1| NAME: STRELT:

12 CIty

13 STATE ¢

14

15

16 | NAME: STREET:

17 cITY

18 STATE

19

20

21 | RAME: STREET:

22 CITY

23 STATE Y,
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS —»-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 14-52. Partially completed image

If the desired screen image were now complete, PF3 would be pressed
to get back into COMMAND mode, so that it could be saved. In this
example, however, there is still unprotected data to be defined, so
PF2 is pressed. PF2 brings back the same screen image as in Figure
14-51, with the unprotected fields defined as null characters.

The unprotected null fields in the operator prompt area at the top of C
the screen are now filled in. The other null fields are input fields that P
will be used when the screen is used by an application program, so are

left undisturbed during screen creation.

After all unprotected text is defined, the screen looks like that shown
in Figure 14-53.

LINES
g — ~
1 ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4 11711711711111111111
B o e e e e i 2 2 e e e

CLASS NAME: /111011111111111 INSTRUCTOR NAME: ///11117111111711111111117

4
5
6 NAMES /I ITTTITIT10007177177  STREETS//111111007111107111011071011010111117
7
8

CLTY A /IIII110000710101000071010011111111111
STATE S//11111111710141171007100007112701111117

‘9
10
VO NaMES//IITIT1T1017111717171 STREET/171717171711010101110107010101111117
12 CITY 11111117117111171110171117111711111117
13 STATE /1111111171711111111111711111711111177

16 | NAMEL//I1111117711711111177

ETLLI0I01000001000110077001111777111111
SILIELIINITIE10010010107071111717

18 STATE /11111111717001000100000100011001101111111

19

20

20| HAMEL/IIIITIETI1E11117177  STREET/IIII01117011017111100171711711111177

22 CITY //111110771001171171111114111111111177

23 {_ STATE ///111111001170001100001100110110111117 y,
CHARACTER 11111111112222222222333333333344444444445565555565666666666677777777778

POSITIONS—~12345678901234567890123456789012345678901234567890123456789012345678901234567890
Figure 14-53. Complete image C
P

14-42 SR30-0436



-

$IOTEST

When ENTER is pressed, the completed screen is displayed (Figure
14-46). Any desired changes can be made by again pressing PF1, for
protected fields, or PF2, for unprotected ones. Assuming that the
image is correct, the operator will press PF3 to return to COMMAND
mode.

PF3 will blank the screen, and prompt for a command entry.

COMMAND(?): [SAVE VIDEO1

COMMAND(?): [END

Figure 14-54. Save image

The operator enters the SAVE command, followed by the name of the
data set that was allocated for this purpose. The $IMAGE utility
session is then ended.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive .
Operator’s Reference, Messages and Codes (SC34-1703), “$IOTEST -
Utility Program.”’ :

$IOTEST is an exerciser program for the digital and analog sensor 1/0
features of the Series/1. The operator is prompted for various operating
parameters, and the $IOTEST utility then repetitively executes the
requested exercising operations. See the reading assignment for
examples of the use of this program.

The LD function will list all the hardware devices, and their hexadecimal
addresses, for the Series/1 on which $IOTEST is running. The LS
command will list the hardware devices and addresses supported by the
supervisor currently in operation. These two functions are particularly
useful during system generation. By comparing the output produced

by the LD and LS commands, the operator can easily spot devices
attached but not supported, supported and not attached, or attached
and supported, but assigned the wrong address. Use of these $IOTEST
options is illustrated in ‘Section 15. System Installation.”

Utility Programs. 14-43



$PREFIND

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C
Operator’s Reference, Messages and Codes (SC34-1703), “$PREFIND
Utility Program.”

If a program uses data sets or overlay programs (DS= and PGMS=
keyword parameters in PROGRAM statement), the assembly process
creates control blocks in the program header for each data set and
overlay program specified. Space is reserved in these control blocks
for the physical disk/diskette addresses of the data sets and overlay
programs defined.

After completion of the program preparation process (SLINK if
required, and then $UPDATE), the executable load module may be
loaded to storage. The system program that performs the load
operation is SLOADER, and part of that operation includes filling in
the actual physical addresses of data sets and overlay programs in the
control blocks of the program header. When a large number of data
sets and/or overlay programs are defined, this can be a time-consuming
process, as SLOADER must search a volume directory for each data
set/program used.

To illustrate, the example program in Figure 14-55 has been assembled
and formatted (SUPDATE), and stored on disk under the name MAIN.

00001 PFNDEXMP PROGRAM  START,DS=(DMY1,DMY2,DMY3,DMY4,DMY5) ,PGMS=(OQVLY1, C
00002

00003 START

00004
00005

Figure 14-55. Source for MAIN

14-44

SR30-0436 -

PROGSTOP
ENDPROG
END

OVLY2,0VLY3,0VLY4,0VLY5) (\

This program has five data sets and five overlay programs defined. Since
any data sets or overlay programs used by a program must exist at the

~ time the program is loaded, five 1-record data sets, DMY 1 through
DMY5 have been created using the AL function of $DISKUT1.

Figure 14-56 is the source used to create the overlay programs.

00010 OVLYPROG PROGRAM  START
00020 START PROGSTOP

00030 ENDPROG

00040 END

. Figure 14-56. Overlay source



O

The object module produced by assembly of this source has been
successively processed by $UPDATE five times, each time providing a
different load module name, OVLY1 through OVLYS5.

Figure 14-57 is a load request for program MAIN.

LOAD REQUEST ENTERED

/ AT 01:00:20

> [SL_MAIN
MAIN 4P,01:00:43, LP= 7800

MAIN ENDED AT 01:00:43

Figure 14-57, Load request

The amount of time elapsed, from the time the ENTER key is pressed
to enter the $L MAIN command to the time the load message is
returned, is 23 seconds by stopwatch. The majority of this time was
taken in looking up the data set and overlay program locations for the
control blocks in the program header.

$PREFIND allows data set and overlay programs to be located prior
to program load time, and written directly into the program header on
disk/diskette. When the program is loaded, the information required
is already present, and load time is therefore reduced. In Figure 14-58
the example program MAIN is processed by $SPREFIND.

> [§L_SPREFIND]
$J%;;iND 26P,00:57:40, LP= 7800
COMMAND (?):
PF  PRELOCATE DATA SETS AND OVERLAYS
DE  DELETE PRE-FOUND STATUS
EN Elle)THROGRAM
COMMAND (?): [PE
PGM(NAME ,VOLUME) : [MAIN]
ENTER DATA SET NUMBERS: {D=(1,2,3,4,5)]
ENTER OVERLAY PGM. NUMBERS: [P=(ALL)]

COMMAND COMPLETED
COMMAND (?):

Figure 14-58. $PREFIND operation

In Figure 14-568, the ''D="' entry could have been “ALL", just as it is
for the ""P="" entry, with the same effect. If you don’t want all data
sets or programs prelocated, you can selectively pre-find only those
you wish, by entering the desired positional reference numbers and
leaving out those you want the loader to find at load time.

After the operation shown in Figure 14-568, load time for program
MAIN is under three seconds.

Utility Programs  14-45



Once a program has been processed by $PREFIND and “’pre-found”’
status is established, the system makes no further checks to verify
the validity of the data set/overlay program addresses in the program
header. The AL and DE functions of $DISKUT1, or operations
involving use of $COPYUT1, $UPDATE, and $COMPRES can alter
program/data set locations, and therefore invalidate a program’s pre-
found addresses. This could result in reading the wrong data, writing
over important data, etc. $SPREFIND is therefore not appropriate
for use in test/development environments, and even in “stable’’
application environments should only be used with care.

PROGRAM PREPARATION UTILITIES

$EDITIN

14-46 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), ““$EDIT1
and $EDIT1N Utility Programs.”

The $EDIT1N text editing utility is used to create and edit source
programs and other text data records such as the procedure files used
with $JOBUTIL, or the control record files for SLINK. $EDIT1N
(and also $EDIT1 and $FSEDIT) uses a data member as an edit work
area. This work file must be preallocated by the user ($DISKUT1),
and must be of sufficient size to contain the largest source program
anticipated. The required size can be calculated as follows: number
of text lines (n) divided by 30 times 11 plus 1 (n/30x 11+ 1). The
four primary text editor commands are:

1. READ — get the contents of a data set on a specified logical
volume and store it in the work area data set.

2. LIST — list the contents of the work area on the system printer
(for the starter system on the matrix printer).

END — terminate the text editor.

EDIT — go into edit mode allowing the user to use any of the
edit subcommands.

~—-



Figure 14-59 is an example of a text edit session, demonstrating several
of the EDIT mode subcommands. $EDIT1N is also used to edit the
system configuration statements and link editor INCLUDE statements
during system generation. See the topic “USER SYSTEM
GENERATION" in ““Section 15. System Installation.”

EXAMPLE: > [$§L $EDITIN 1

DST(NAME,VOLUME): [EDITWORK <&
$EDITIN 47p,00:08:01, LP= 5100
READY

EDIT g

DIT
E 10 25010
TOP _OF DATASET

INPUTB

INPUT

00010 [ZPRINT%NOGEN

00020 | PGM1%PROGRAM4%START , 100
00030 | START%PRINTEXT%TXT1,SKIP=2
00040 |ZATTACHZTASK1

00050 | 4WAIT%E1,RESET

00060 |ZPROGSTOP

00070 | TXT1%TEXT%'PROGRAM STARTED' 3
00080 | TXT" 4TEXT%' TASK1 RUNNING'
00090 | TASK1%TASK%GO ,EVENT=E1
00100 [TASK1%TASK%GO ,EVENT=E1
00110 |GO%PRINTEXT%TXT2

00120 |%ENDPROG

00130 |ZEND

00 1404—“

EDIT

CHANGE 80 /T"/12/}<E3
[DELETE 100

INPUT 115] 10]
INPUT

00115 [2ENDTASK
INPUT TERMINATED

Figure 14-59. $EDITIN (1 of 2)

m

!

|

Utility Programs 14-47



14.48

SR30-0436

EDIT

00010 PRINT NOGEN

00020 PGM1 PROGRAM4 START,100
00030 START PRINTEXT TXT1,SKIP=2

00040 ATTACH TASK1

00050 . WAIT E1,RESET

00060 ' PROGSTOP

00070 TXT1 TEXT '"PROGRAM STARTED'
00080 TXT2 TEXT 'TASK1 RUNNING'
00090 TASK1 TASK GO,EVENT=E1
00110 GO PRINTEXT TXT2

00115 ENDTASK

00120 ENDPROG

00130 END

END OF DATA

ENTER VOLUME LABEL: |EDX001
ENTER MEMBER NAME: |COPY
END AFTER 13

I0ODA,CTS= 002,047013,049010

READY~—{H)

$EDITIN ENDED AT 00:23:11

Figure 14-59. $EDIT1N (2 of 2)

COMMENTS:

8 A B

The Text Editor is loaded.
A preallocated data set to be used as a work area is specified.

If you were updating a source module you would issue a READ
indicating the data set name and volume that contain the file. In
this example a new source module is being created, so EDIT
mode is invoked without a preceding READ.

This DELETE removes text lines remaining from a previous editing
session (clears the work area) and positions the editor at the
beginning (TOP) of the work area.

To enter source statements you must issue the INPUT subcommand.

The source statements entered are shown. The % in the text is used
as the default TAB character.

To end the INPUT subcommand depress the ENTER key or
carriage return without entering any data.

An error was made in the original entry on line 80. The slash is
the delimiter between the change fields. Any non-numeric
(except blank, TAB character or *) can be used as the delimiter.
Here T2 replaces ““T" in line 80.

C



O

SUPDATE

Another error was made in the original input. Line 90 and 100 are
the same. Line 100 is deleted.

The user forgot to end the task with an ENDTASK instruction.
It is now entered as line 115.

Using the EDIT subcommand LIST, the contents of the work area
are listed on the terminal. A LIST subcommand issued when not
in EDIT mode will list the work area on the system printer.

The data in the work area is now saved in a preallocated user data
set. The SAVE operation translates the source statements from
the text editor format, in which they exist in the work area, into
the normal source statement format which can be accepted by
the assembler. The save is not destructive; the data is retained in
the work area.

When the SAVE is complete, EDIT mode terminates.

To terminate the text editor, key in END.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$UPDATE
and SUPDATEN Utility Programs.”

$UPDATE is the utility used to format object modules into relocatable
load modules, which can be loaded to storage and executed.

COMMAND: RP

FUNCTION: Read a program and convert it to a relocatable load
module.

EXAMPLE: >|$L $UPDATE

SUPDATE 33P,00:00:20, LP= 5100

THE DEFINED INPUT VOLUME IS EDX002, OK?[Y
THE DEFINED OUTPUT VOLUME IS EDX002, OK?[Y]

COMMAND (?):
OBJECT MODULE NAME: [DEMO
OUTPUT PGM NAME : [FMT]

FMT REPLACE?[Y]
FMT STORED

Figure 14-60. SUPDATE

Utility Programs  14-49



COMMENTS: This example shows the formatting of an object module,

DEMO. The executable output program, FMT, is stored. If a program

member with the same name exists, you will be asked if it is to be (\
replaced. If it does not exist, the utility will allocate the space for the
executable program. The program, FMT, in the example can now be
loaded by the $L operator command or by a LOAD instruction in a
program.

N

$FSEDIT

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$FSEDIT
Utility Program.”’ ‘

This utility provides full-screen text editing capability for the Event
Driven Executive. $FSEDIT operates the terminal as a static screen
device, and therefore must be run from a terminal with static-screen
capability (4978/4979/3101 M2).

Data Set Requirements. $FSEDIT requires a preallocated work data
set for use as a text edit work area. Text data (source statements)
within this work data set are in a special text editor format, identical
to that used by the SEDIT1N text editor; data within a text edit work
data set may be edited by either SEDIT1N or $FSEDIT.

At the conclusion of a text edit utility session, it is important to save
the contents of the edit work data set in a source data set on disk or (-\
diskette (automatic translation from text editor format to source s
statement format is performed).

~

SFSEDIT is loaded using $L operator command (the operator must
provide the name of a text edit data set when the load request is
entered). The operator will be prompted for the names of input/output
source data sets during the utility session, at the time a READ or
WRITE option is selected

SFSEDIT Primary Options

When $FSEDIT is first loaded, the screen shown in Figure 14-61 will be
displayed, with the cursor positioned just to the right of the SELECT
OPTION arrow. An option is selected by entering a number corres-
ponding to the desired option, and pressing the ENTER key.

14-560 SR30-0436



O

$FSEDIT PRIMARY OPTION MENU
SELECT OPTION ===> _

BROWSE - DISPLAY DATASET

EDIT CREATE OR CHANGE DATASET

READ READ DATASET FROM HOST/NATIVE (H/N)
WRITE WRITE DATASET TO HOST/NATIVE (H/N)
SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
LIST PRINT DATASET ON SYSTEM PRINTER
MERGE MERGE DATA FROM A SOURCE DATASET
END TERMINATE $FSEDIT

HELP DISPLAY TUTORIAL

1
2
3
4
5
6
7
8
9

Figure 14-61. SFSEDIT (1)

Option 5: SUBMIT is used to submit a job to a host program prepara-
tion system, and will therefore not be discussed in this section. The
rest of the options will be illustrated in the order in which they would
normally be required, not in the numerical sequence in which they

appear in Figure 14-61.

Creating A Source Statement File

When the Primary Option Menu is displayed (Figure 14-61), entering a
2 places the utility in EDIT mode. ED!T mode is used to modify an
existing source data set, or to create a new one. When modifying an
existing data set, a READ (option 3) of the file to be modified, into
the edit work data set, must first be performed. This will be illustrated
later. At this point, assume a new source statement file will be created.

Invoking EDIT mode with an empty edit work data set will result in
display of the screen in Figure 14-62. Because the work data set is
empty, the editor assumes insertion (creation) of lines is desired, and
the INSERT function is therefore active. The five dots to the left of
the cursor will contain the statement number of the new line once it
has been entered. The cursor is positioned at character position 1 of
the insert line.

Utility Programs  14-51



14-52

SR30-0436

EDIT --- EDITWORK, EDX002 o( 270) COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===HALF

khkkk dhkkkk Top OF DATA dekkdkddkdkhkhhkhkkhkhhhhkhhhkhkkkhhhkkkhkrkhkhhhkkrrkkkdhrkdik

Figure 14-62. $FSEDIT (2)

The top line of the screen, from left to right, displays the mode the

utility is in (EDIT), the name and volume of the work data set

(EDITWORK,EDX002), the number of source statements in the work
data set, and in parentheses, the total number of statements the data

set will hold.

* In Figure 14-63, a line of asterisks and spaces has been entered on the

insert line, and the ENTER key pressed. The utility numbers the
entered line and sets up for the next insert line.

EDIT --~ EDITWORK, EDX002 1 270) COLUMNS 001 072
COMMAND  INPUT ===> OLL ===3HALF

SC
dhhkk khkhkkk TOP OF DATA HRIHKAKREAKFAIA TR A AT A KKK IAKRARKRRKARR AR AR hhAh Ak kA Ak kkd
00010'**********************************‘k*]

Figure 14-63. $FSEDIT (3)

)



Option 4: WRITE

Notice that the “number of source statements in work data set” value
on the top line has incremented.

Continuing in this manner, with a new insert line readied each time the
preceding line has been entered (ENTER key), the 18 comment state-
ments (asterisk in position 1) shown in Figure 14-64 are created. The
insert operation is terminated by pressing the ENTER key without
entering anything on the new insert line.

EDIT ~-- EDITHOR., . N (07
COMMAND INPUT ==- fMENU “HALF

dokkokk Kkkkk TOP OF DATA Fe o e ke e e ok e e sk ok skoke e ke ke ke e ook i e e ek sk e ke ok ke ke ok e e e S e e e ek ok e kok ke
00010 kK ok kK k kK k kK kK kK kK kK k k k kK k k¥ X k *k k kX k k k k¥ k * k *k kK k *k k K%

00020 [*
00030
00040
00050
00060
- 00070
00080
00090

*
*
*
*
*
*
*
00100 * k ok ok k ok ok k k k k k k k k ok k kK kK kK k kK kK ok K kX kK * k& k¥ k¥ k k * Kk k
%
*
*
*
*
*
*
*

THIS SET OF COMMENT STATEMENTS DEMONSTRATES THE ABILITY TO CREATE
A SOURCE FILE, BEGINNING WITH AM EMPTY YORK DATA SET. WHEN
COMPLETE, THIS SET OF STATEMENTS WILL BE WRITTEN TO THE PRE-
ALLOCATED DATA SET "MGRDATA" ON VOLUME EDX002. A PORTION OF DATA

SET "MGRDATA" WILL BE USED LATER TO ILLUSTRATE THE "MERGE"
PRIMARY OPTION OF $FSEDIT.

00110
00120
00130
00140

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA

00150
00160
00170

00180 * Kk hk k Kk k Kk k k k k Kk k k k k k kK k k k¥ kX k kK kK k x k *k k *k * *k * *
*kkkk Khkk BOTTO” OF DATA oo de ke ekt ok e e sk e ek ko e kR A ek A e e ks e ke ke ok e ok ok e e e e ke ke ook

Figure 14-64. $FSEDIT (4)

The cursor is automatically positioned to the right of the COMMAND
INPUT arrow on the second line from the top of the screen. To return
to the Primary Option Menu, the command “MENU" is entered, and the
ENTER key pressed. This brings back the screen shown in Figure 14-61.

The source statements just created will now be saved as a source data
set. The WRITE primary option is selected, and the operator is
prompted for the target data set/volume on the bottom half of the
screen, as shown in Figure 14-65.

Utility Programs  14-53



SELECT OPTION === <::j::

BROWSE - DISPLAY DATASET
EDIT - CREATE OR CHANGE DATASET
READ - READ DATASET FROM HOST/NATIVE (H/N)
YRITE - WRITE DATASET TO HOST/NATIVE (H/N)
SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
LIST - PRINT DATASET ON A SYSTEM PRINTER
MERGE - MERGE DATA FROM A SOURCE DATASET
END - TERMINATE $FSEDIT

- DISPLAY TUTORIAL

1
2
3
4
5
6
7
8
9

DATASET (NAME,VOLUME): [ SOURCE, ASMVOL

Figure 14-65. $FSEDIT (5)

After the contents of the work data set have been written, the prompt
will be replaced by an ending message indicating how many statements
had been written; in this example END AFTER 18. The cursor is re-
turned to the SELECT OPTION input area.

Option 3: READ G

To edit an existing source file, it must first be transferred to the edit
work data set. A diskette volume called ASMVOL is mounted, which
contains a data set named SOURCE. By entering 3 and responding

to the resulting prompts as shown in Figure 14-66, this file is read into
the edit work data set.

14-64 SR30-0436



Option 6: LIST

Option 1: BROWSE

-------------------- 3--- $FSEDIT PRIMARY OPTION MENU
SELECT OPTION ===>

BROYSE
EDIT
READ
WRITE
SUBMIT
LIST
MERGE

DISPLAY DATASET

CREATE OR CHANGE DATASET

READ DATASET FROM HOST/NATIVE
WRITE DATASET TO HOST/NATIVE
SUBMIT BATCH JOB TO HOST SYSTEM
PRINT DATASET ON SYSTEM PRINTER
MERGE DATA FROM A SOURCE DATASET
TERMINATE $FSEDIT

L T T T B B T )

1
2
3
4
5
6
7
8

READ FROM NATIVE?

ENTER VOLUME LABEL:JASMVOL
ENTER MEMBER NAME: [SOURCE

Figure 14-66. $FSEDIT (6)

Entering primary option 6 will list the contents of the work data set on
the system printer. The data set SOURCE on ASMVOL contains the
source file for the program used as an example in ’Section 11. Terminal
1/0". Listing the contents of the edit work area will produce the same
listing as that shown in Figure 11-43, but with statement numbers
printed to the left of each statement.

The BROWSE option is used to examine a source file in the edit work
data set, while precluding the possibility of changing it. Paging response
will generally be faster in this mode. If option 1 is entered with the
work data set containing the file from data set SOURCE, the screen in
Figure 14-67 will be displayed. Note again the top line of the screen,
indicating the operating mode (BROWSE) and the size of the file

being examined (75 statements).

Utility Programs  14-55



1456 SR30-0436

BROWSE - EDITWORK, EDX002 75( COLUMNS 001 072 : <//—\\
COMMAND INPUT ===> SCROLL ===> PAGE N

*khkkk kkkkk TOP OF DATA hhhhhkkhkhhhkKARKIKX KK IKKKIA KKKk KA KRR K KAk kkhhkdhhhhhhddhhdk

00010 XMPLSTAT PROGRAM  START

00020 I0CB1 10CB NHIST=0

00030 I10CB2 10CB SCREEN=STATIC

00040 ATTNLIST (END,OUT,$PF,STATIC)

00050 START ENQT ~ IOCB1

00060 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00070 PRINTEXT 'HIT "ATTN" AND ENTER “END" TO END',SKIP=2

00080 PRINTEXT 'THE PROGRAM'

00090 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

00100 - PRINTEXT 'BRING UP THE ENTRY SCREEN'

00110 DEQT

00120 CHECK WAIT ATTNECB,RESET

00121 IF (ATTNECB,EQ,1),GOTO,ENDIT

00140 ENTRY ENQT 10CB2

00150 ERASE MODE=SCREEN,TYPE=ALL

00160 TERMCTRL  BLANK

00170 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1

00180 PRINTEXT ' PF1 = DELETE ENTRY 1'

00190 PRINTEXT ' PF2 = DELETE ENTRY 2'

00200 PRINTEXT 'PF3 = DELETE ENTRY 3 ',SKIP=1

00210 PRINTEXT 'PF4 = DELETE ENTRY 4'

Figure 14-67. SFSEDIT (7)

This file, as with most source files, is too large to be displayed in its
entirety on the screen. In Figure 14-67, only the first 21 of the 75
statements which make up the file are in view.

To allow viewing of all parts of a file, both BROWSE (option 1) and

EDIT (option 2) modes have a “’scrolling’” function, invoked by pressing

PF keys. PF3'is used to scroll down in the data set, from top to C\
bottom, and PF2 to scroll up, from bottom to top. —

In Figure 14-67, the scroll size is displayed at the extreme right of the
second line. In BROWSE mode, the normal scroll size is PAGE; 22
lines of data. In Figure 14-68, PF3 has been pressed, displaying the
next 22 lines in the work area (statements 220 through 430).



N
W/

O

BROWSE - EDITWORK, EDX002 75 COLUM| )
COMMAND INPUT ===> ( sgkgLNs=EBi;%€;
00220 PRINTEXT DASHES,PROTECT=YES,LINE=3
00230 PRINTEXT 'CLASS NAME:',LINE=4,PROTECT=YES
00240 PRINTEXT 'INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
00250 HDR PRINTEXT DASHES,PROTECT=YES, LINE=5
00260 MOVE LINENBR,6
00270 DO 4,TIMES
00280 PRINTEXT 'NAME:',LINE=LINENBR,PROTECT=YES
00290 PRINTEXT ‘'STREET:,LINE=LINENBR,SPACES=30,PROTECT=YES
00300 Al ADD LINENBR,1
00310 PRINTEXT 'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES
00320 A2 ADD LINENBR,1
00330 PRINTEXT 'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
00340 ADD LINENBR,3
00350 ENDDO
00360 PRINTEXT LINE=4,SPACES=11
00370 TERMCTRL  DISPLAY
00380 WAITONE WAIT KEY
00390 GOTO (READ,E1,E2,E3,E4) ,XMPLSTAT+2
00400 MOVE LINENBR,6
00410 GOTO DELETE
00420 MOVE LINENBR, 11
00430 GOTO DELETE

Figure 14-68. SFSEDIT (8)

The scroll size may be defined as HALF by moving the cursor to the
scroll size area and entering HALF where PAGE now is. HALF indicates
half a page, or 11 lines. In Figure 14-69, scroll size has been defined as
HALF, and PF3 has been pressed, displaying 11 new lines of data.

BROWSE - EDITWORK, EDX002 75( COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>[HALF]

00330 PRINTEXT 'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES

00340 ADD LINENBR,3

00350 ENDDO

00360 PRINTEXT LINE=4,SPACES=11

00370 TERMCTRL DISPLAY

00380 WAITONE WAIT KEY

00390 GOTO (READ,E1,E2,E3,E4) ,XMPLSTAT+2

00400 E1 MOVE LINENBR,6

00410 GOTO DELETE

00420 E2 MOVE LINENBR,11

00430 GOTO DELETE

00440 E3 MOVE LINENBR, 16

00450 GOTO DELETE

00460 E4 MOVE LINENBR,21

00470 DELETE  ERASE MODE=LINE,TYPE=DATA,LINE=LINEBR

00480 ADD LINENBR,1

00490 ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR

00500 ADD LINENBR,1

00510 ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR

00520 SUBTRACT LINENBR,2

00530 PRINTEXT LINE=LINEBR,SPACES=5

00540 TERMCTRL  DISPLAY

Figure 14-69. $FSEDIT (9)

The third and last scroll size option is MAX. With MAX, the scroll will
be all the way to the top (PF2) or bottom (PF3) of the data set. After
the MAX scroll operation, scroll size reverts to the normal scroll size
for the mode in effect (normal scroll size for BROWSE mode is

PAGE, and for EDIT mode is HALF).

Utility Programs  14-57



While in BROWSE mode, the primary command LOCATE can be
used to position the displayed data beginning at a specific statement
number. In Figure 14-70, the primary command LOCATE 450 is
entered into the command input area on the second line.

BROWSE - EDITHORK, EDX002  75( 270) coLU
COMMAND INPUT ===> [TOGATE-50] SOLUMNS 001 BRke
dkkhkk hkkkk TOP OF DATA e e o T ok Je e T ke T ke o g e e e e e e e e e ek ok e gk e e e ok v vk ok ke e de e de e ek bk ke ke ke
00010 XMPLSTAT PROGRAM  START
00020 10CB1 ~ 10CB  NHIST=0
00030 10CB2  10CB  SCREEN=STATIC
00040 ATTNLIST (END,OUT,SPF ,STATIC)
00050 START ~ ENQT  locgl
00060 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00070 PRINTEXT 'HIT "ATTN® AND ENTER END" TO END',SKIP=2
00080 PRINTEXT 'THE PROGRAM'
00090 - - PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00100 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00110 DEQT .
00120 CHECK  WAIT  ATTNECB,RESET
00121 IF (ATTNECB,EQ, 1) ,60TO, EMDIT
00140 ENTRY  ENQT  10CB2
00150 ERASE . MODE=SCREEN,TYPE=ALL
00160 TERMCTRL  BLANK
00170 PRINTEXT 'ENTER KEY = PAGE COMPLETE’,LINE=1
00180 PRINTEXT '  PF1 = DELETE ENTRY 1'
00190 PRINTEXT '  PF2 = DELETE ENTRY 2'
00200 PRINTEXT 'PF3 = DELETE ENTRY 3 ' ,SKIP=1
00210 PRINTEXT 'PF4 = DELETE ENTRY 4'

Figure 14-70. $SFSEDIT (10)

When the enter key is pressed, the screen in Figure 14-71 will be dis-
played starting with statement 450.

- THORK, EDX002 75 COLUMNS 001 072
CeAaD INPOT ( SCROLL ===>PAGE
DELETE

00460 E4 LINENBR,21 .

00470 DELETE " MODE=LINE,TYPE=DATA,LINE=LINENBR
00480 LINENBR, 1 .
00490 MODE=LINE,TYPE=DATA,LINE=LINENBR
00500 LINENBR,1

00510 MODE=LINE,TYPE=DATA,LINE=LINENBR
00520 SUBTRACT LINENBR,2

00530 PRINTEXT LINE=LINENBR,SPACES=5

00540 TERMCTRL DISPLAY

00550 GOTO WAITONE

00560 QUESTION 'MORE ENTRIES ?',LINE=2,SPACES=55,N0=CLEANUP
00570 ERASE MODE=LINE,LINE=2,SPACES=55,TYPE=DATA
00580 ERASE MODE=SCREEN,LINE=6

00590 PRINTEXT LINE=6,SPACES=5

00600 TERMCTRL  DISPLAY

00610 GOTO WAITONE

00620 CLEANUP ERASE MODE=SCREEN, TYPE=ALL

00630 DEQT

00640 GOTO START

00650 ENDIT PROGSTOP

00660 DATA X'5050'

Figure 14-71. SFSEDIT (11)

14-58 SR30-0436



O

The “FIND" primary command performs the same type of positioning
function using a text string instead of a statement number. In Figure
14-72 the command, FIND /ENDIT P/FIRST, is entered in the
command input area.

The FIRST option means look for the text string beginning with the
first statement in the data set. If FIRST is not specified, the search will
begin with the first statement of the currently displayed screen. In this
example, because the current screen is also the top of the data set, both
options have the same effect.

BROWSE - EDITWORK, COLUMNS 001 07
COMMAND INPUT ===> [FI: SCROLL ===> PAG

Khkkkk kxkkkk TOP OF DATA HEHIHKKAKKRAKN KA AR AAA KA A A K AN KKK hRh KT Khhhkkhxkhdkhhd

00010 XMPLSTAT PROGRAM  START

00020 10CB1  10CB NHIST=0

00030 I0CB2  IOCB SCREEN=STATIC

00040 ATTNLIST  (END,OUT, $PF,STATIC)

00050 START  ENQT 10CB1

00060 PRINTEXT ‘CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00070 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2

00080 PRINTEXT ' THE PROGRAM'

00090 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY T0',SKIP=2

00100 PRINTEXT ' BRING UP THE ENTRY SCREEN'

00110 DEQT

00120 CHECK  WAIT ATTNECB,RESET

00121 IF (ATTNECB,EQ,1),G0TO,ENDIT

00140 ENTRY  ENQT 10CB2

00150 ERASE  MODE=SCREEN,TYPE=ALL

00160 TERMCTRL  BLANK

00170 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1

00180 PRINTEXT PF1 = DELETE ENTRY 1'

00190 PRINTEXT ' PF2 = DELETE ENTRY 2'

00200 PRINTEXT 'PF3 = DELETE ENTRY 3 *,5KIP=1

00210 PRINTEXT 'PF4 = DELETE ENTRY §'

Figure 14-72, $FSEDIT (12) .

When the ENTER key is pressed, the screen in Figure 14-73 will be
displayed. The first statement is the statement containing the text
string defined in the FIND command. The cursor will be positioned
under the first character of the target string.

Utility Programs  14-59



BROWSE - EDITWORK, EDX002 75( CHARACTERS FOUND (:j—\\

00650 ENDIT PROGSTOP
00660 DATA X'5050'
00670 DASHES  DATA 8oC'-'

SCROLL ===>PAGE

00680 OUT POST ATTNECB,1
00690 ENDATTH

00700 STATIC  POST ATTNECB,-1
00710 ENDATTN

00720 ATTNECB ECB

00730 LINENBR DATA F'o’

00740 ENDPROG

00750 END

dkkkk Kkhkkk BOTTOM OF DATA Tk hkhkh Ak RIKRARKAKAKAAAKKKRKK KA A K KA K kA hhh Ak hhdhhhdhhk

Figure 14-73. $FSEDIT (13)

If you want to find more than one occurrence of the same text string,

the FIND command does not have to be reentered for each search. The

first occurrence of the text string will be displayed as already illus-

trated. |f PF4 is pressed, the search will continue. Each time the string

is found, the statement containing the string will be displayed at the

top of a new screen. Each time PF4 is pressed the search will continue,

until the end of the data set is reached. C
//‘

LOCATE, FIND, and MENU are the only primary commands recognized
by BROWSE mode. MENU brings up the Primary Option Menu, shown
in Figure 14-61.

Option 7: MERGE

Option 7 allows you to combine (merge) two or more source data sets
in the same edit work area. To demonstrate this option, a portion of
the set of source statements created earlier {Figure 14-66) and stored
in data set MRGDATA (Figure 14-65) will be merged with the current
contents of the work area.

When option 7 is entered, you will be prompted on the lower half of
the screen as shown in Figure 14-74. With the responses shown, state-
ments 100 through 180 of data set MRGDATA will be merged into the
present contents of the work data set following statement 30.

1460 SR30-0436



1
2
3
4
5
6
7
8
9

MERGE DATA

SELECT OPTION ===

BROWSE
EDIT
READ
WRITE
SUBMIT
LIST
MERGE

$FSEDIT PRIMARY OPTION MENU

DISPLAY DATASET

CREATE OR CHANGE DATASET

READ DATASET FROM HOST/NATIVE
WRITE DATASET TO HOST/NATIVE
SUBMIT BATCH JOB TO HOST SYSTEM
PRINT DATASET ON SYSTEM PRINTER
MERGE DATA FROM A SOURCE DATASET

TERMINATE $FSEDIT
DISPLAY TUTORIAL

Figure 14-74, $FSEDIT (14)

Option 2: EDIT

FROM (NAME,VOLUME): [MRGDATA ,EDX902 LINES- 1ST LAST[100 180

ADD AFTER LINE #:

When option 2 is entered, the screen in Figure 14-75 is displayed.
Notice that the merged statements have been inserted, and the entire
data set renumbered.

i --- EDITWORK,EDX002
"MAND INPUT ===>{CHANGE /END,/QUIT,/FIRST] SCROLL ===>HALF
Kkk wkdkk TOP OF DATA FERAAKKKIAKAKK KT REAKAKHAK KA AR KA KA RKARKKHRAARARR KK KKK
XMPLSTAT PROGRAM
10CB1 10CB

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200

10
*

*

*
*
*
*
*
*
*

ga( 270) COLUMNS 001 072

CB2 10C8

START
NHIST=0
SCREEN=STATIC

* kok ok ok k ok kK k ok k ok kK k kK k k k kK kK k kA kA *k k k k k k k ¥ k k k *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA

k k ok Kk k k k k k Kk Kk k k Kk k k k k k k k k k k k *k k &k k& k k k * K

ATTNLIST

START ENQT

PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT

00210 CHECK YAIT

Figure 14-75. $SFSEDIT (15)

(END,OUT, $PF,STATIC)

10CB1

'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
' THE PROGRAM'

'"HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

ATTNECB,RESET

Utility Programs  14-61



In addition to LOCATE, FIND, and MENU, EDIT mode recognizes the
CHANGE, RENUM, and RESET primary commands. In Figure 14-75,
the primary command “CHANGE /END/QUIT/FIRST” is entered in
the command input field. This command will look for the first occur-
rence of the text string END, starting with the first statement in the data
set (FIRST). If NEXT is entered, the search would begin with the first
statement on the current screen (the two statements have the same
results in this example). When the text string END is found, it will be
replaced with the text string QUIT. The first occurrence of END is in
the ATTNLIST statement, at statement number 130 (Figure 14-75).

In Figure 16-17, the ENTER key has been pressed, END has been
changed to QUIT, and the first line displayed is the line the change
occurred in. By pressing PF5, the CHANGE command can be repeated,
with the search beginning with statement 130.

EDIT --- EDITWORK,EDX002 84( TEXT CHANGED
COMMAND INPUT ===> SCROLL ===HALF
00130 ATINLIST (QUIT,OUT,$PF,STATIC)

00140 START  ENQT 10CB1

00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00160 PRINTEXT 'HIT "ATTN" AND ENTER “END" TO END',SKIP=2
00170 PRINTEXT ' THE PROGRAM'

00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00190 PRINTEXT ' BRING UP THE ENTRY SCREEN'

00200 DEQT

00210 WAIT ATTNECB,RESET

00220 IF (ATTNECB,EQ,1),G0TO,ENDIT

00230 ENQT 10CB2

00240 ERASE MODE=SCREEN , TYPE=ALL

00250 TERMCTRL  BLANK

00260 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1

00270 PRINTEXT PF1 = DELETE ENTRY 1'

00280 PRINTEXT PF2 = DELETE ENTRY 2'

00290 PRINTEXT 'PF3 = DELETE ENTRY 3 ',SKIP=1

00300 PRINTEXT ‘'PF4 = DELETE ENTRY 4

00310 PRINTEXT DASHES,PROTECT=YES,LINE=3

00320 PRINTEXT 'CLASS NAME:',LINE=4,PROTECT=YES

00330 PRINTEXT 'INSTRUCTOR NAME:'LINE=4,PROTECT=YES,SPACES=32
00340 HDR PRINTEXT DASHES,PROTECT=YES,LINE=5

Figure 14-76. $FSEDIT (16)

If you want to change every occurrence of a text string in the entire
work area, AL.L should be entered in place of FIRST or NEXT.

When in EDIT mode, changes to the displayed data may be entered,
directly onto the screen. In Figure 14-77, the QUIT in statement
130 has been changed back to END by overtyping.

14-62 SR30-0436

\



EDIT --- EDITWORK, EDX002 84 ( 27 ™

COMMAND. INPYT ===> ¢ 270) [EXT_CHAlMGED
00130 ATINLIST  (END,OUT,$PF,STATIC)

00140 START  ENQT 10cB1

00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00160 PRINTEXT 'HIT "ATTN" AND ENTER “END" TO END',SKIP=2

00170 PRINTEXT ' THE PROGRAM'

00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

00190 PRINTEXT * BRING UP THE ENTRY SCREEN'

00200 DEQT

00210 CHECK  WAIT ATTNECB,RESET

00220 IF (ATTNECB,EQ,1),60T0,ENDIT

00230 ENTRY  ENQT 10CB2

00240 ERASE MODE=SCREEN , TYPE=ALL

00250 TERMCTRL  BLANK

00260 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1

00270 PRINTEXT PF1 = DELETE ENTRY 1'

00280 | PRINTEXT * PF2 = DELETE ENTRY 2'

00290 PRINTEXT 'PF3 = DELETE ENTRY 3 ',SKIP=1

00300 PRINTEXT ‘'PF4 = DELETE ENTRY 4'

00310 PRINTEXT DASHES,PROTECT=YES,LINE=3

00320 PRINTEXT 'CLASS NAME:',LINE=4,PROTECT=YES

00330 PRINTEXT *INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32

00340 HOR PRINTEXT DASHES,PROTECT=YES,LINE=5

Figure 14-77. SFSEDIT (17)

The statements in the work data set may be renumbered using the
RENUM primary command. In Figure 14-78, the RENUM command
is used to renumber the data set in increments of 5, with the first
statement assigned a statement number of 1.

DIT --- EDITHORK, E 270
O T Tt T ¢ ) COLUMNS 001 OFRALF

Kaw §¥5;5=$35 OF DATA Rk kkdokksedeok e ddesk e sk ek e e SODROUA #3534 A ok
00010 XMPLSTAT PROGRAM  START
00020 10CB1 10CB NHIST=0
00030 10CB2 10CB SCREEN=STATIC
00040 * * * % % % % % % % % % % * % K & K % * k K k k *k k Kk k Kk k k K * Kk * *
00050
00060
00070
00080

MERGE DATA
MERGE DATA
MERGE DATA

00100
00110
00120 * k Kk ok k k k k k k k k k k Kk k k k k Kk k k kK k k k kK k k k * k % k &
00130 ATTNLIST (END,OUT, $PF,STATIC)

00140 START ENQT 10CB1

00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=13,LINE=1

00160 PRINTEXT ‘HIT "ATTN" AND ENTER “END" TO END',SKIP=2

00170 PRINTEXT ' THE PROGRAM'

00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

00190 PRINTEXT ' BRING UP THE ENTRY SCREEN'

00200 DEQT

00210 CHECK WAIT ATTNECB,RESET

MERGE DATA

*
*
*
*
00090 * MERGE DATA
*
*
*

Figure 14-78. $SFSEDIT (18)

Figure 14-79 is the resulting display, after the ENTER key has been
pressed.

Utility Programs  14-63



EDIT --- EDITWORK, EDX002 84( 270) COLUMNS 001 072
COMMAND INPUT === SCROLL ===>HALF
dkkkk hkkkk Top OF DATA e Fede e e vk d ek e e e e e de e e e ok e ok sk o vk e o s v g e 3k ke ok o ek e e e e de ek ek ok ek ke ko
00001 XMPLSTAT PROGRAM  START
00006 I0CB1  10CB NHIST=0
00011 I0CB2  10CB SCREEN=STATIC
00016************************************
00021
00026
00031
00036
00041
00046
00051
00056 * k Kk Kk Kk k Kk k % ok k Kk Kk k ok k k Kk k k Kk Kk k ok Kk k k k k k k *k k & &
00061 ATTNLIST (END,OUT,$PF,STATIC)
00066 START  ENQT 10€81
00071 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00076 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
00081 PRINTEXT * THE PROGRAM'
00086 PRINTEXT ‘'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00091 PRINTEXT ' BRING UP THE ENTRY SCREEN'
00096 DEQT
00101 CHECK  WAIT ATTNECB,RESET

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA

*
*
*
*
*
*
*
*

Figure 14-79. $FSEDIT (19)

The RESET primary command is-used in conjunction with the EDIT
mode line commands, and will be illustrated later.

Edit Mode Line Commands

In addition to modification of text strings using the CHANGE primary
command, and the modification of any displayed data on the screen

by overtyping, EDIT mode also allows whole lines, or blocks of lines to
be manipulated, using the ED!T mode line commands. For example,
the INSERT (I) command allows a new line to be inserted between
existing lines. In Figure 14-80, an “’I" is entered to the left of statement
40, indicating that the operator wishes to insert between statement 40
and 50.

14-64 SR30-0436

.

—~



EDIT --- EDITWORK, EDX002 84a( 2 COLUMNS 001 072

xs SCROLL ===
COMMAND INPUT ===> TALF

—

Kk ok

00010
00020
00030

dededr ek TOP OF DATA e e e e e e e e e o ek ke ki ok e e ek ke e e e ok ok kA % o sk e e ki e vk e e e ok sk ke

XMPLSTAT PROGRAM

10CB1
10CB2

10C8
10CB

START
NHIST=0
SCREEN=STATIC

E] 00040 * k ko k k ok k k k k kK k k k Kk Kk k kK k k k k k k ok kA A k k x k *k * *k Kk *

00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210

MERGE DATA
MERGE DATA

*

*

* MERGE DATA
*  MERGE DATA
* MERGE DATA
*

*

k k k k k k d k k k kK k k kK k k ok Kk k k Kk k k k k *k *k k¥ k& k k k *x *x %

ATTHLIST
START ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
CHECK WAIT

Figure 14-80. $FSEDIT (20)

(END,OUT, $PF,STATIC)

10CB1

'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER “END" TO END',SKIP=2
' THE PROGRAM' .

'"HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

ATTHECB,RESET

When ENTER is pressed, the screen comes back as pictured in Figure
14-81, with the insert line displayed, and the cursor in the first charac-
ter position, ready for entry.

EDIT --- EDITWORK, EDX002 84( 2 QOLUHNS 001 072
COMMAND INPUT ===> SCROLL ==TLF

dedk ok kok

00010
00020
00030

dkkkk TOP OF DATA 9k e e Fe ke 3k e e e ok e e ke e ok ok ok e ke vk ok ok ke e e e e ok ok ok e e o e de ke ok ok ke ok

*
*
*
*
*
%
*
*

XMPLSTAT PROGRAM
10CB1 10CB
10CB2 10CB

*

START
NHIST=0
SCREEN=STATIC

* k k ok ok ok ok ok k ok k k k k k k k &k k k k k& k k k k k k k k k k k *k *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA

ATTNLIST

START ENQT

PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT

Figure 14-81. $FSEDIT (21)

* k k ok k Kk k Kk k k k k k k kK k k k¥ k Kk *k k *k *k kK kK ¥ *k k * * ¥ k * *

(END,OUT, $PF,STATIC)

10CB1

'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTH" AND ENTER "END" TO END',SKIP=2
' THE PROGRAM'

'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

When the insert line is complete, the operator presses the ENTER key,
the new line is assigned a statement number, and another insert line is
readied (Figure 14-82).

Utility Programs  14-65



EDIT --- EDITWORK, EDX002  85( 270) COLUMN

COMMAND INPUT ===> SCROLL =-osHALF
dkkkk kkkkk TOP OF DATA dekkokdekkokdkok dokkokkddhkddkkdkhkk kA kkkkkkdkkkhkhkhhhkhhkdhhhhhk
00010 XMPLSTAT PROGRAM  START
00020 I0CB1  IOCB NHIST=0
00030 10CB2  I0CB SCREEN=STATIC

00040************************************

* |INSERT SINGLE LINE

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA

R EEEE

* k k Kk k k k k k ok k k kK k kK k k k kK k kK k kK k ok *k k k k k k k k &k &

ATTNLIST (END,OUT,$PF,STATIC)

START ENQT 10CB1
PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
PRINTEXT 'HIT "ATTN" AND ENTER "EMD" TO END',SKIP=2
PRINTEXT " THE PROGRAM' .
PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
PRINTEXT ' BRING UP THE ENTRY SCREEN'

Figure 14-82. $SFSEDIT (22)

The operation terminates when ENTER is pressed with no characters
entered on the insert line.

The INSERT BLOCK (1) command generates a block of 21 insert
lines. In Figure 14-83 the “Il" to the left of statement 50 indicates
the operator wants to generate the insert block following statement
50.

EDIT --- EDITWORK, EEX00Z 85( 27 COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===> HALF
Kkkkk dkkkk TOP OF DATA ***kkdidckddhiohhkihddhk ik dhhskhdhkhkkhhihiohidhikk sk hk
00010 XMPLSTAT PROGRAM  START
00020 I0CB1 10CB NHIST=0
10CB2 10CB SCREEN=STATIC

d h ok ok ok ok k k kK k k k ok k k ok k Kk k ok ok k k k hk k k Kk k k k k k h Kk &

*
* MERGE DATA
* MERGE DATA
* MERGE DATA
* MERGE DATA
* MERGE DATA
J

*

* k k k k k Kk kK kX k k k k k k Kk k k k k k k k k k kK k k * *k k¥ * ¥ * *

ATTNLIST (END,OUT,$PF,STATIC)

START ENQT 10CB1
PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
"PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
PRINTEXT ' THE PROGRAM'
PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
PRINTEXT " BRING UP THE ENTRY SCREEN'
DEQT -

Figure 14-83. $FSEDIT (23)

- When ENTER is pressed, the screen in Figure 14-84 is displayed.

1466 - SR30-0436

)



EDIT --~ EDITWORK, EDX002 85( 2 COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>HALF
00050 *

Figure 14-84. $FSEDIT (24)

The operator may now fill in the screen as required, without pressing
ENTER for each line (Figure 14-85).

EDIT --- EDITWORK, EDX002 85( COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>HALF
00050 *

* INSERT
*  MULTIPLE
* LINES

Figure 14-85. $FSEDIT (25)

*.When as much data as desired has been entered, the ENTER key is

pressed.

Unused insert lines are removed, the insert lines used are assigned
statement numbers, and the screen appears as shown in Figure 14-86.

Utility Programs  14-67



14-68 SR30-0436

onr --- EDITWORK, EDX002  88( gokgMns-o 1
4 EEr, Ll ===
JUAND INPUT ===> ¢

00051 INSERT
00052 MULTIPLE
00053 LINES
00060 MERGE DATA

00080
00090
00100
00110
00120 ok k ko k k ok ok ok k ok k ok ok k ok ok ok ok ok ok ok k kk ok ok ok ok hk ok ok ok ok ok kB
00130 ATTNLIST (END,OUT,$PF,STATIC)

00140 START ENQT 10CB1

00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2

00170 PRINTEXT ' THE PROGRAM'

00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

00190 PRINTEXT ' BRING UP THE ENTRY SCREEN'

00200 DEQT

00210 WAIT ATTNECB,RESET

00220 IF (ATTNECB,EQ,1),G0TO,ENDIT

00230 ENQT 10CB2

MERGE DATA
MERGE DATA
MERGE DATA

*
*
*
*
00070 * MERGE DATA
*
*
*
*
*

Figure 14-86. $SFSEDIT (26)

The MOVE (M) line command will move a line from one location in
the work data set to another. In Figure 14-87, an “M"’ is entered to
the left of the line to be moved, statement 50, The A" at statement
140 specifies the destination of the MOVE as after line 140.

EDIT --- EDITHORK, EDX002  88( ) DATA REHUMSERED

ngﬁﬁﬁnrlsfyﬂé;%‘p DATA *'k***********************************EEB*&&*:::;******

00010 XMPLSTAT PROGRAM  START

00020 I0CB1  NHIST=0

00030 10CB2  SCREEN=STATIC

00040************************************
[[00050 * INSERT SINGLE LINE

00060

00070

00080

*

*

* INSERT

*  MULTIPLE
00090 *  LINES
00100 * MERGE DATA
00110 * MERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA

[Ab0140 * MERGE DATA
00150 *

00160**********ii************************

00170 ATTNLIST (END,OUT,$PF,STATIC)

00180 START  ENQT 10CB1

00190 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00200 PRINTEXT 'HIT “ATTN" AND ENTER "END" TO END',SKIP=2

00210 PRINTEXT ' THE PROGRAM'

Figure 14-87. $SFSEDIT (27)

Figure 14-88 is the screen displayed after ENTER is pressed. The line
is moved, and the data set renumbered.

O

e



O

O

O

EDIT --- EDITWORK, EDX00Z  88( ¢ RENUMBERED
COMMAND T9PUT ===> ' SCROLL ===HALF
00130 * MERGE DATA

00140 * INSERT SINGLE LINE

00150 * .
00160**************************‘k**********
00170 ATINLIST  (END,OUT,$PF,STATIC)

00180 START  ENQT 10c81

00190 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00200 PRINTEXT 'HIT "ATTN" AND EMTER “END" TO END',SKIP=2

00210 PRINTEXT ' THE PROGRAM'

00220 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

00230 PRINTEXT ' BRING UP THE ENTRY SCREEN'

00240 DEQT -

00250 CHECK  WAIT ATTNECB,RESET

00260 1F (ATTNECB,EQ,1),GOTO,ENDIT

00270 EHTRY  ENQT 10CB2

00280 ERASE  MODE=SCREEN,TYPE=ALL

00290 TERMCTRL  BLANK

00300 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1

00310 PRINTEXT ' PF1 = DELETE ENTRY 1'

00320 PRINTEXT ' PF2 = DELETE ENTRY 2'

00330 PRINTEXT 'PF3 = DELETE ENTRY 3 ', SKIP=1

00340 PRINTEXT 'PF4 = DELETE ENTRY 4’

o

Figure 14-88, $FSEDIT (28)

. The MOVE BLOCK line command (MM) is illustrated in Figure 14-89.

The MM to the left of statements 60 and 80 define the inclusive start
and end points of a block of statements to be moved. The B defines
the destination of the block as before statement 150. (Either A or B
can be used with M and MM.)

EDIT --- EDITWORK,EDXCO2 ga( 270) COLUMNS 001
COMMAND INPUT === SCROLL ===>H
00020 10CB1  10CB NHIST=0
00030 10CB2  IOCB SCREEN=STATIC :
00040************************************
00050
(F1] 00060
00070
[F®] 00080
00090
00100

INSERT
MULTIPLE
LINES
MERGE DATA
MERGE DATA

00120
00130
00140

[8]00150

MERGE DATA
MERGE DATA
INSERT SINGLE LINE

00160 d* k d Kk dk ok k k Kk k Kk k k Kk k ok ok k k k ok Kk % k ok kK k k¥ * Kk * Kk x %

00170 - ATTNLIST (END,OUT,$PF,STATIC)
00180 START ENQT 10cB1

001%0 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00200 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
00210 PRINTEXT ' THE PROGRAM'

00220 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00230 PRINTEXT ‘.BRING UP THE.ENTRY SCREEN'

*
*
*
*
*
*
00110 * MERGE DATA
*
*
*
*
*

Figure 14-89. $FSEDIT (29)

After ENTER is pressed, the screen in Figure 14-90 is displayed.

Utility Programs  14-69



14-70 SR30-0436

EDIT --- EDITWORK, EDX002 88( 270) BLOCK -- DATA RENUMBERED (::j\\
COMMAND INPUT === SCROLL ===> s
HALF

00110 * INSERT SINGLE LINE
00120 * INSERT
00130 *  MULTIPLE
00140 *  LINES
00150 *
00160 *

* ok * k kK k k k Kk Kk k k kK kK k k k k k Kk k k k k k kK k¥ k¥ k¥ k k¥ k k *x *

00170 ATTNLIST (END,OUT,$PF,STATIC)
00180 START ENQT 10CB1
00190 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00200 PRINTEXT  "HIT "ATTN" AND ENTER "END" TO END',SKIP=2
00210 PRINTEXT ' THE PROGRAM'

00220 PRINTEXT "HIT ANY PROGRAM FUNCTION KEY TQO',SKIP=2
00230 PRINTEXT ' BRING UP THE ENTRY SCREEN'

00240 DEQT

00250 WAIT ATTNECB,RESET

00260 IF (ATTNECB,EQ,1),G0TO,ENDIT

00270 ENQT  I0BC2

00280 ERASE MODE=SCREEN, TYPE=ALL

00290 TERMCTRL  BLANK

00300 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1

00310 PRINTEXT ' PF1 = DELETE ENTRY 1'

00320 PRINTEXT ' PF2 = DELETE ENTRY 2'

Figure 14-90. $FSEDIT (30)

The MOVE and MOVE BLOCK commands removed statements from

one part of the work data set and placed them in another. The COPY

(C) and COPY BLOCK (CC) line commands reproduce an exact copy

of the designated statement(s) at another location in the data set with-

out disturbing the original. In Figure 14-91, statement number 110 is

to be copied after statement 40. C
e

CDIT --- EDITWORK, EDX002  88( COLUMNS 001 072
was SCROLL ===>
HALF

dkkkk TOP OF DATA *¥kkakokdkkoh ik hkoddoddoh sk okkokkoke ok ko ok ok ok ek koo ok
XMPLSTAT PROGRAM  START

10CB1 10CB NHIST=0

10CB2 10CB SCREEN=STATIC

* ok ok ok ok ok ok ok R k k kX k k kK k k k ok ok ok ok k k kK k k k k k k k k k k k

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA

INSERT SINGLE LINE
INSERT
MULTIPLE

Je

*

*

*

*

* MERGE DATA
*

*

*

*  LINES
*

*

Kok ok ok ok ko k ok ok ok ok ok ok ok ok ok k ok Kk ok ok ok ok ok ok ok ok ok Kk Kok ok ok ok K
ATTNLIST (END,OUT,$PF,STATIC)
START ENQT 10CB1
PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END",SKIP=2
PRINTEXT ' THE PROGRAM'

Figure 14-91. $FSEDIT (31)

In Figure 14-92, the operation is complete (ENTER key has been

pressed). (\



EDIT --- EdITWORK, EDX002 89( 270) DATA RENU%FE%ED
C%‘é%lzh(l)ﬂ INPUT === ROLL === HAL

Xk ok ko k ok ok ok ok ok ok ok ok ok ok kK ok koK kKK KK Tk kA ok ok Kk
00050

INSERT SINGLE LINE
00060

00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170 d k Kk Kk Kk Kk k Kk Kk k k k Kk Kk Kk Kk Kk k k k k Kk Kk *k k k k Kk k Kk * ¥ * * *k
00180 ATINLIST  (END,OUT,$PF,STATIC)

00190 START  ENQT 10CB1

00200 PRINTEXT °'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00210 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2

00220 PRINTEXT * THE PROGRAM'

00230 PEINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

00240 PRINTEXT ' BRING UP THE ENTRY SCREEN'

00250 DEQT

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT
MULTIPLE
LINES

*
*
*
*
*
*
*
*
*
*
*
*
*
¥*

Figure 14-92. $SFSEDIT (32)

In Figures 14-93 and 14-94, the same operation is performed with the
COPY BLOCK (CC) line command, copying statements 130 through
150.

EDIT --- EDITHORK, EDX002  89( - DATA RENUMRERED
C%ﬁw*lriqu*=i=a * k k Kk k k k k k k k k k k¥ k k *k *k k * *%{C&D’}L*::*:/\* * x
B 00050 * INSERT SINGLE LINE
00060 *
00070
00080
00090

* MERGE DATA
* MERGE DATA
* MERGE DATA
00100 * MERGE DATA
00110 * MERGE DATA
00120 * INSERT SINGLE LINE

*

*

*

*

*

Edoo130

INSERT
MULTIPLE
LINES

* k Kk Kk k *k Kk k k k k k k k k k k k k *k k¥ k k k k *k k k k k *k k *x %

ATTNLIST (END,OUT,$PF,STATIC)
START ENQT 10cB1

Figure 14-93. $FSEDIT (33)

Utility Programs  14-71



EDIT --- EDITHORK, EDX002 92{ BLOCK -- DATA RENUMBERED N’
COMMAND INPUT =sw SCROLL ===>HALF

00050 INSERT SINGLE LINE

00060 INSERT

00070 MULTIPLE

00080 LINES

00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200 * k k Kk k ok ok ok k k ok Kk ok ok k dk Kk Kk ok ok ok k k ok k k k k k k k Kk Kk Kk k
00210 ATTNLIST (END,OUT,$PF,STATIC)

00220 START ENQT 10CB1

00230 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

00240 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2

00250 PRINTEXT ' THE PROGRAM'

00260 PRINTEXT "HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT
MULTIPLE
LINES

* ok Ok % ok ok % F X ok % H X F ¥ *

Figure 14-94. SFSEDIT (34)

When the INSERT LINE () and INSERT BLOCK (I1) line commands

were discussed (Figures 14-80 through 14-85), the | command resulted

in the display of a blank insert line. This insert line is actually an insert

mask, initialized to blanks. The insert mask may be displayed using the

MASK line command. In Figure 14-95, the MASK command is typed

in over the first four digits of the sequence number of statement 40. C
It does not matter what statement’s sequence number is overtyped; -
the data on that line is not destroyed.

EDIT ~-- EDITWORK, EDX002 o 92( 2 COLUMNS 001 072
COMMAND INPUT mau SCROLL ===> HALF
Fkkkk Kkkdk TOP OF DATA *¥kkskkdhokok ki dokokoh ks koo kdkdohodkkkdokdkkodok ok
Q0010 XMPLSTAT PROGRAM  START
00020 I0CB1 10CB NHIST=0
00030 I10CB2 10CB SCREEN=STATIC
MHEE' Kok ok ok ok k k k k k ok ok k K Kk ok k ok ok ok kK k ok k kK k ok k ok ok ok k k Kk
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 *  MULTIPLE
00080 * LINES
00090 *
00100 * MERGE DATA
00110 * MERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA
00140 * MERGE DATA
00150 * INSERT SINGLE LINE
* INSERT
*  MULTIPLE
* LINES
*
*

00160
00170
00180
00190
00200
00210 ATTNLIST (END,OUT,$PF,STATIS)

dok ok ok ok ok ok k k ok k k k ok kok k k ok k k k ok ok k k& k k k¥ k x %k *

Figure 14-95. $SFSEDIT (35)

14-72 SR30-0436



When the ENTER key is pressed, the insert mask is displayed. As you
can see in Figure 14-96, the insert mask is the line of blanks that was
inserted every time you entered the | command.

EDIT --- EDITWORK, EDX002 92( COLUMNS 001 072
COMMAND INPUT === SCROLL ==->» HALF
dkdkk dkkdkk Top OF DATA e e K e Je Je e de kK ke s e s e e e e e de ok ke e e ek K ok ke ke ke kR ok kR ke ke kek ok ko ok ke
00010 XMPLSTAT PROGRAM  START
00020 10CB1  IOCB NHIST=0
00030 10CB2  IOCB SCREEN=STATIC
00040 * k ok Kk k k k k k k k kK k k kK k k k k kK k k k k k& kK *k *k k k k *k h k k *
MASK
00050
00060
00070
00080
00090
00100 * MERGE DATA
00110 * MERGE DATA

* INSERT SINGLE LINE

*

*

*

*

*

*
00120 * MERGE DATA

*

*

*

*

*

*

*

*

INSERT
MULTIPLE
LINES

00130 MERGE DATA

00140 MERGE DATA

00150 INSERT SINGLE LINE
00160 INSERT

00170 MULTIPLE

00180 LINES

00190
00200

* Kk k k kK k k k k k k kK k k k * k k k k k k *k k k *k kx k *k *k * *k *k * X

Figure 14-96. $FSEDIT (36)

(Notice that statement 40, whose sequence number was used for the
MASK command input field, is intact.)

You can redefine the insert mask to be any character string you wish.
in Figure 14-97, the mask has asterisks entered in the leading and
ending character positions.

EDIT --- EDITWORK, EDX002  92( 270)
COMMAND INPUT ===> SCROLL
dekkkk dkkdok TOP OF DATA KhKhK IR IKK KK kR hI I A AA KRR A A AR kI hkhkhdhkhkhdkhid ek kkrkhkk
00010 XMPLSTAT PROGRAM  START
00020 10CB1  10CB NHIST=0
00030 10CB2  10CB SCREEN=STATIC
00040 * k k Kk k k k kK k k k k k k k k k k k kK ¥ *k k¥ *k k k¥ * k¥ x¥ kx *k ¥ k¥ * kx *
MASK
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 *  MULTIPLE
00080 LINES

*

*

00090 *

00100 * MERGE DATA
00110 * MERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA
00140 * MERGE DATA
00150 * INSERT SINGLE LINE
00160 * INSERT

00170 *
00180 *
00190 *
00200 *

MULTIPLE
LINES

d ok ok ok ok ok ok k k K k k k k k k k k k k¥ k k kK k *k k k k k *k k k * k %

Figure 14-97. $FSEDIT (37)

Utility Programs  14-73



14-74 SR30-0436 -

To get out of this insert mask display/definition mode, move the cursor
to the primary command input area on the second line of the screen, (\
type in the primary command RESET, and press ENTER. _—

The RESET primary command is also used to reset undesired but
already entered line commands, and to reset error condmons resulting
from improper use of line commands.

Now that the insert mask display has been RESET, a Line Insert com-
mand is entered (Figure 14-98).

EDIT --- EDITWORK, EDX002 92( 27 COLUMNS 001 072
COMMAND INPUT === SCROLL ===>HALF
Fkkkk kkkkk TOP OF DATA Hohsbkhbhhok kb dh sk sk ddddk ok dobdoddod sk ddkkd ok hbbk ok ok ko
00010 XMPLSTAT PROGRAM  START
00020 10CB1 10CB NHIST=0
00030 I10CB2 I0cB SCREEN=STATIC
00080 * * * % % % % % % % % & * k k k k K Kk k k kK K K ok kK ok ok Kk * Kk k K *
00050 * - INSERT SINGLE LINE
00060 INSERT
00070 MULTIPLE
00080 LINES

*

*

*

. *

[ ooo90 *

00100 *

00110 *

00120 *
00130 * MERGE DATA

*

*

*

*

*

*

*

MERGE DATA
MERGE DATA
MERGE DATA

00140
00150
00160
00170
00180
00190

00200 d ok ok ok v ok ok ok ok d ok ok ok ok ok ok ok ko ok ok ok k k ok ok ok ok ok ok ok ok k k k N
00210 ATTNLIST (END,OUT,$PF,STATIC) o D

MERGE DATA
INSERT SINGLE LINE
INSERT
MULTIPLE
LINES

Figure 14-98. $FSEDIT (38}

When the insert line appears, the line contains the redefined mask
characters (Figure 14-99).



EDIT --- EDITWORK, EDX002 92( & COLUMNS 001 072
COMMAND TNPUT ===>- SCROLL ===>yp ¢

*kkkk hhkkk TOP OF DATA Tkhk AR AT AR A A AR IAKRKKAKRAARK I Ak h Ak kkkkkkkhkkdhkkhkdk

00010 XMPLSTAT PROGRAM  START

00020 10CB1 10CB NHIST=0

00030 10CB2 10CB SCREEN=STATIC
00040*********)?************************ﬁ*
00050 * INSERT SINGLE LINE

00060 INSERT

00070 MULTIPLE

00080 LINES

Akkkdkkhk khkkhhkhhh ik

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT
MULTIPLE
LINES

* % % ok % ok ¥ % Ok F ok % % ¥ *

* hk ok ko k Kk k Kk ok ok k k k k k k Kk ok k Kk k Kk ok Kk Kk Kk ok k ok k *k k &k * K

Figure 14-99. $FSEDIT (39)

Each time another insert line appears, the mask characters are displayed.
You can enter data on top of them if desired, or in the blank areas
between them, as in Figure 14-100.

§ EDIT --- EDITHORK, EDX00? 95( 270) COLUMNS 001 072
COMMAND INPUT ===> . - SCROLL ===> HALF
dhkkkd hkkkk TOP OF DATA FAAAK KA AR I AT A AR I AA I KA KAk Ak khkkhdhhhk ki hkkkdhkhhhkhd
00010 XMPLSTAT PROGRAM  START
00020 10CB1  10CB NHIST=0
00030 10CB2  I0CB SCREEN=STATIC
00040********************************t***
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 *  MULTIPLE
00080 * LINES
00090 *
00091 *w*xx+xxkx [UITH THE INSERT MASK DEFINED, EACH TIME AN TRE R KRR
00092 ****wsr*wx |INSERT LINE IS DISPLAYED, THE MASK CHARACTERS| ##swxssss
*xkdkknskx  IRE DISPLAYED ON THE SAME LINE. bbbl
Kdededk ok kokk e de e e e de ke ok
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE
INSERT SINGLE LINE
INSERT
MULTIPLE
LINES

B o+ % % % * % * * *

Figure 14-100. $SFSEDIT (40)

The DELETE Line (D) and DELETE Block (DD) line commands
remove statement(s) from the work data set. In Figure 14-101, the
D command is entered to the left of line 50.

Utility Programs  14-75



14-76 SR30-0436

EDIT --- EDITHORK, EDX00Z  95( COLUMNS 001 072
COMMAND INPUT ===> ‘ SCROLL ===>yp F

Fekdkk

00010
00020
00030
00040

101 00050
00060
00070
00080
00090
00091
00092
00093
00100
00110
00120
00130
00140
00150
00160
00170
00180

Fkkdk TOP OF DATA Fekkkdkhhhdkhdhkkhhkkdkkhkhhkhhkhkkdhkhkhkhkkkrhhhkhkhkhhkhkkrkhkhd

XMPLSTAT PROGRAM  START

10CB1 10CB NHIST=0

10CB2 1ocB SCREEN=STATIC

Kod ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok k ok ok ok ok ok k ok ok ok K Kk ok ok Kk
* INSERT SINGLE LINE

* INSERT
*  MULTIPLE
* LINES
*

Fhdkddrkkdkk  WITH THE INSERT MASK DEFINED, EACH TIME AN kdkkkdokdkok
wkkkkkderkx  INSERT LINE IS DISPLAYED, THE MASK CHARACTERS — *wkkkskkk
*kadkxkkdx  ARE DISPLAYED ON THE SAME LINE. Fkdkdedokkkkk
* MERGE DATA
* MERGE DATA
* MERGE DATA
* MERGE DATA

* MERGE DATA

* INSERT SINGLE LINE
* INSERT

*  MULTIPLE

*  LINES

Figure 14-101. $SFSEDIT (41)

After the ENTER key is pressed, the screen

with line 50 deleted. , ‘

EDIT -~

- EDITWORK, EDX002 94( 270) COLUMNS 001 072

COMMAND INPUT === SCROLL ===DHALF

*hkkk

00010
00020
00030
00040
00060
00070
00080
00090
00091
00092
00093
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190

dokkkk TOP OF DATA Ye sk e e e sk sk vk sk v o d e e e ok e e e e e de e e o ke ke g e sk ek de dede dede sk ek ek okede keok koo

XMPLSTAT PROGRAM  START
10CB1  10CB NHIST=0
100B2  I0CB SCREEN=STATIC
* k ok k k k k h k ok kK k hk k ok & k k k ok k k * kK k *k k k k k A k¥ k& k * Kk
* INSERT
*  MULTIPLE
*  LINES
* ‘
#wxwwxssex  WITH THE INSERT MASK DEFINED, EACH TIME AN Kk kRN
sexwddnwksk  INSERT LINE IS DISPLAYED, THE MASK CHARACTERS — *swiwkk
#wkkxamkes  ARE DISPLAYED ON THE SAME LINE. RN AR
* MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT :
MULTIPLE
LINES

* ok K R kK Ok k%

Figure 14-102. $FSEDIT (42)

In Figure 14-103, the first statement of a block delete is defined with -

the DD command.

in Figure 14-102 appears



EDIT --- EDITWORK, EDX002 94( 2 COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===> HALF
Kkkkk dkkkk TOP OF DATA Fksbkakn kodbkkokdokokdokhok A dkok ook kkokok ok ko ko ok
00010 XMPLSTAT PROGRAM  START
00020 I0CB1 10CB NHIST=0
10CB2 10CB SCREEN=STATIC

* Kk k Kk Kk k k Kk Kk k ok k ok k k ok k k k k k kK k k k kK * k %k k k *k *k k k &

* INSERT
MULTIPLE
* LINES

*

*xkdkskdkx  WITH THE INSERT MASK DEFINED, EACH TIME AN Fkkekk dedekkok
*ddkckikkxk  INSERT LINE IS DISPLAYED, THE MASK CHARACTERS — #kkkiiikksk
*kdckxkkkkx  ARE DISPLAYED ON THE SAME LINE. alkakabalaholadd
* MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA

INSERT SINGLE LINE

INSERT

MULTIPLE

LINES

TR

Figure 14-103. SFSEDIT (43)

The ending statement to be deleted is not displayed on this screen, so
PF3 is pressed, scrolling down a half-page, to the screen displayed in
Figure 14-104.

B EDIT --- EDITWORK, EDX002 94( 2 BLOCK COMMAND INCOMPLETE
B COMMAND INPUT ===> SCROLL ===> HALF
00093 ****kkxk+x  ARE DISPLAYED ON THE SAME LINE. dedededed dekdedo
00100 MERGE DATA
00110 MERGE DATA
00120 MERGE DATA
00130 MERGE DATA
00140 MERGE DATA
00150 INSERT SINGLE LINE
00160 INSERT
00170 MULTIPLE
LINES

*

00180

* Ok F F X X H F * *

* k k k k k k k ok k ko k k k k k kX k& kK kK kK kK k¥ k k k k * &k k k *k *k k K&

ATTNLIST  (END,OUT,$PF,STATIC)

START ENQT 10CB1
PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
PRINTEXT ' THE PROGRAM'
PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
PRINTEXT ' BRING UP THE ENTRY SCREEN'
DEQT
WAIT ATTNECB,RESET
IF (ATTNECB,EQ,1),GOTO,ENDIT

Figure 14-104. $FSEDIT (44)

(The scope of the C, CC, M, MM, D, and DD line commands extends
from the beginning to the end of the data in the work area, not just the
data on the current screen.)

The end of the Delete Block is entered at statement 200 (Figure 14-104).

Utility Programs  14-77



After the command is entered, the screen in Figure 14-105 is displayed.
All statements merged, inserted, copied or moved during the course of
this exercise have been deleted, and the data set is in the same state it

C

was in when it was first read from SOURCE.

EDIT --- EDITWORK, EDX002

COMMAND INPUT

00210

00220 START

00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420

HDR

===
ATINLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT
IF
ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT

75( 270) COLUMNS 0

(END,OUT, $PF,STATIC)

10CB1

'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
"HIT "ATTN" AND ENTER “END" TO END',SKIP=2
' THE PROGRAM'

'HIT ANY PROGRAM FUNCTION KEY T0',SKIP=2

' BRING UP THE ENTRY SCREEN'

7

1
SCROLL ===>HAL

ATTNECB,RESET
(ATTNECB,EQ,1),G0TO,ENDIT
10c82

MODE=SCREEN, TYPE=ALL
BLANK
YENTER KEY = PAGE COMPLETE',LINE=1
' PF1 = DELETE ENTRY 1'
' PF2 = DELETE ENTRY 2
*PF3 = DELETE ENTRY 3
'PF4-= DELETE ENTRY 4'
DASHES ,PROTECT=YES,LINE=3
'CLASS NAME:',LINE=4,PROTECT=YES,SPACES=32
"INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
DASHES ,PROTECT=YES, LINE=5

',SKIP=1

Figure 14-105. $SFSEDIT (45)

The MENU primary command is entered in the command input field,

and ENTER pressed.

EDIT --- EDITWORK, EDXOQ
INPUT ===> {MENU

COMMAND
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420

START

ATTNLIST
ENQT

PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT

WAIT

IF

ENQT

ERASE

TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
- PRINTEXT
PRINTEXT
PRINTEXT

C

75( 270)

(END,OUT, $PF,STATIC)
10CB1 )
'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
' THE PROGRAM'

'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

COLUMNS 001
SCROLL ===>

ARE

ATTNECB,RESET
(ATTNECB,EQ,1),GOTO,ENDIT
10082 )
MODE=SCREEN, TYPE=ALL
BLANK

'ENTER KEY = PAGE COMPLETE',LINE=1
! PF1 = DELETE ENTRY 1'
! PF2 = DELETE ENTRY 2'
'PF3 = DELETE ENTRY 3

'PF4 = DELETE ENTRY 4’
DASHES ,PROTECT=YES,LINE=3
'CLASS NAME:',LINE=4,PROTECT=YES

' INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5

',SKIP=1

Figure 14-106. $FSEDIT (46)

Option 8

The only Primary Option remaining to be discussed is option 8.

14-78 SR30-0436



SFSEDIT PRIMARY OPTION MENU
SELECT OPTION ===

BROWSE
EDIT
READ
WRITE
SUBMIT
LIST
MERGE
END
HELP

DISPLAY DATASET

CREATE OR CHANGE DATASET

READ DATASET FROM HOST/NATIVE
WRITE DATASET TO HOST/NATIVE
SUBMIT BATCH JOB TO HOST SYSTEM
PRINT DATASET ON SYSTEM PRINTER
MERGE DATA FROM A SOURCE DATASET
TERMINATE SFSEDIT

DISPLAY TUTORIAL

1
2
3
4
5
6
7
8
9

Figure 14-107. $FSEDIT (47)

SFSEDIT ENDED

Figure 14-108. $FSEDIT (48)

Utility Programs  14-79



OTHER UTILITY PROGRAMS

The following utility programs are used with system facilities not
addressed as topics in this study guide.

BSC Utilities

READING REFERENCE: IBM Series/1 Event Driven Executive
Communications and Terminal Applications Guide (SC34-1705),
“$BSCTRCE Utility Program,” “$BSCUT1 Utility Program,” and
“$BSCUT2 Utility Program.”

$BSCTRCE

This utility traces 1/0 on a specified BSC line, and stores the trace data
in a data set on disk or diskette. The data set must be preallocated by
the user, and the name supplied to the $BSCTRCE utility at the time
the utility is loaded. Trace information includes condition codes, status
words, data transferred, and other indicators/information associated
with BSC 1/0 operation.

$BSCUT1

Trace information written by $BSCTRCE is retrieved and formatted
into an easily understood report by $BSCUT 1, and then directed to a
specified terminal or print device.

$BSCUT2

This utility is a BSC exerciser, used to.test the BSC hardware adapter,
and the match between the actual hardware configuration and what
has been specified in the BSCLINE system configuration statement.
Several BSC access method commands may be invoked to exercise
various hardware/system software combinations.

14-80 SR30-0436

(\\,

\

O



DISPLAY PROCESSOR (GRAPHICS) UTILITIES

O READING REFERENCE: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “Graphics
Utilities.”

The Display Processor facility allows the user to generate, store, and
display information in graphic or report format. The information is
contained in a data base created expressly for, and utilizing, data
organization and data formatting conventions unique to the Display
Processor. Display Processor support consists of three utility programs,
which are used to create/maintain the data base, create or alter data
members, or display a graphic or report data member.

$DIUTIL
This utility provides all data base maintenance functions for the Display
Processor data base, including initialization, member deletion/allocation,
data base compression, and member/data base copy.

$DICOMP

A member within the Display Processor data base is called a display
profile. This utility allows the operator to compose a display profile, or
to alter {maintain) existing display profiles.

Q $DIINTR

A completed display profile (data base member) is made up of coded
information representing an image or report. The $DIINTR utility
retrieves a specified display profile, interprets the coded commands/
data it contains, and displays the resulting image.

Note: Terminals used as graphics devices must have ASCII point-to-
point vector graphics capability.

HOST PROGRAM PREPARATION UTILITIES

READING REFERENCE: IBM Series/1 Event Driven Executive
Communications and Terminal Applications Guide (SC34-1705),
“$HCFUT1 Utility Program.”

Utility Programs  14-81



$HCFUT1

$EDIT1/$UPDATEH

$RJE2780/$RJE3780

14-82

SR30-0436

When program preparation is performed on a host System/370, the Host (\
Communications Facility IUP (5796-PGH) must be installed on the N
host system. On the Series/1 side the SHCFUT1 utility program is used.

$HCFUT1 is the basic Event Driven Executive utility program used to
transfer data sets associated with program preparation between the
Series/1 and a host system. The four functions available are;

1. READ a source/object data set from a host into a Series/1 data set
2.  WRITE a Series/1 source/object data set to a host data set

3. SUBMIT a program preparation job to the host job stream
4

SET/FETCH/RELEASE a record in the host System Status data
set

These are the host preparation equivalents of the native preparation
text editing and object module formatting utilities $EDIT1N and
SUPDATE. They differ from the native versions only in the commands
used to store and retrieve source and object module data sets. For the
native versions, any operation involving a data set transfer (READ/
SAVE/RP) requires that both the from and to data sets be resident on
the Series/1. With the “’host prep’’ versions, both will be resident on

the host. C
S

$EDIT1 and $UPDATEH invoke the READ and WRITE (also SUBMIT
for $EDIT1) functions of SHCFUT1 without the operator’s having to
load $SHCFUT1 explicitly. If the operator does load $HCFUT 1 and uses
it for the necessary data set transfers, then the editing/formatting
operations would be done with $EDIT1TN and SUPDATE.

Note: $FSEDIT, the full screen text edit utility, includes host prep data
set transfer functions in its normal command menu; no separate
version for host program preparation is required.

READING REFERENCE: IBM Series/1 Event Driven Executive
Communications and Terminal Application Guide (SC34-1705),
“$RJE2780 and $RJE3780 Utility Programs’ and “$PRT2780 and
$PRT3780 Utility Programs.”

These utilities provide an alternative method of transferring data sets

between a Series/1 and a host program preparation system. The

$RJE2780 and $RJE3780 simulate the IBM 2780 and 1BM 3780

Remote Job Entry stations. Using the Series/1 BSC capability,

$RJE2780 and $RJIE3780 interface to System/360 or System/370

systems with the Remote Job Entry facility installed (6796-PGH not

required). C



$PRT2780/$PRT3780

$DEBUG

These utilities print the RJE printer output spool files created when
$RJIE2780/$RJIE3780 is used with the spooling option invoked.

READING REFERENCE: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$DEBUG
Utility Program.”

$DEBUG is the Event Driven Executive online debugging utility.
$DEBUG may be used to debug any program instructions that execute
as a task, including instructions written in Series/1 assembler language.
$DEBUG capabilities include setting/resetting of breakpoints and trace
ranges; display and modification of storage locations; Series/1 hardware
registers, and task software registers; and alteration of task execution
sequence.

Utility Programs  14-83



14-84

SR30-0436

This page intentionally left blank.

)

)



Section 15. System Installation

OBJECTIVES:

After completing this section, the student should be able to generate a
tailored supervisor for a given sample configuration, using the pro-
grams/utilities provided in the Event Driven Executive Program Prepara-
tion Facility.

MACHINE READABLE MATERIAL

The Event Driven Executive software offering for the Series/1 is com-
prised of five separately orderable programs:

1.  B719-XS3 Event Driven Executive Basic Supervisor and Emulator
5719-UT5 Event Driven Executive Utility Programs

5719-XX4 Event Driven Executive Program Preparation Facility
5719-LM7 Event Driven Executive Macro Library

5740-LM4 Event Driven Executive Macro Library/Host

L

5719-XS3 Basic Supervisor and Emulator

Diskette XS3001 contains the supplied starter supervisor and the neces-
sary utilities to install the product.

Diskette XS3002 contains supervisor object modules used during the
system generation process.

Diskette XS3003 contains object modules that support various system
functions.

5719-UT5 System Utility Programs

Diskettes UT5001-2 contain the link editor, the utility programs and
session manager programs.

5719-XX4 Program Preparation Facility
Diskette XX4001 contains the EDX program preparation modules.

Diskette XX4002 contains copy modules (DSOPEN,SETEOD, etc.) for
inclusion in user application programs.

System Installation  15-1



5719-LM7 Macro Library

5719-LM7 is a library containing source macro definitions for the C
Event Driven Executive instruction set and system configuration state- -
ments. This macro library is used when assembling Event Driven

Executive programs using the Series/1 Macro Assembler, 5719-ASA.

It is not required, and cannot be used by the Event Driven language

assembler SEDXASM, as $EDXASM is not a macro assembler.

5740-LM4 Macro Library/Host

This library is distributed on tape for installation on host S/370s,
which will be used to assemble Event Driven Executive programs.
Included are source macro definitions for the Event Driven Executive
instruction set, as well as procedures/JCL prototypes to aid in host
installation.

STARTER SYSTEM INSTALLATION OVERVIEW

15-2

SR30-0436

Note: This discussion, and the ““USER SYSTEM GENERATION" topic
which follows, will be limited to the Basic Supervisor and Emulator,

the Utility Programs, and the Program Preparation Facility. The Macro

Library (5719-LM7) and Macro Library/Host (5740-LM4) licensed pro-

grams will not be addressed.

Installation is supported for:

e 4962 Model 1 or 2 (9.3MB) ' (\
e 4962 Model 1F or 2F (9.3MB with fixed heads) —
e 4962 Model 3 or 4 (13.9MB)

e 4963 Model 1 (29MB)

o 4963 Model 1F (23MB with fixed heads)

e 4963 Model 2 (64MB)

e 4963 Model 2F (68MB with fixed heads)

An Event Driven Executive supervisor, to IPL, must reside in a data

set named $SEDXNUC. As shipped from PID, diskette XS3001 con-
tains the starter supervisor in a data set named $SEDXNUC. The first
step in starter system installation requires that an IPL of the starter
supervisor from diskette XS3001 be performed. Therefore, the Series/1
on which the starter system is being installed

MUST HAVE EITHER A 4964 Diskette Unit at hardware address
X'02'

OR A 4966 Diskette Magazine Unit at hard-
ware address X'22’

wired as an IPL device (PRIMARY or ALTERNATE).

Note: If a 4966 is the IPL device, an IPL can be performed from disk-
ette slot 1 only.



O

The object of starter system installation is to transfer the programs and
utilities supplied on the PID diskettes to a disk device. Among the
programs transferred is SEDXNUC, the starter supervisor itself, so that
an IPL can be performed from disk rather than diskette. Therefore,
the Series/1 on which the starter system is being installed

MUST HAVE EITHER A 4962 (any model) installed at hardware
address X'03’

OR A 4963 (any model) installed at hardware
address X‘48’

wired as an IPL device (PRIMARY or ALTERNATE). In addition, the
supplied supervisor assumes certain terminal device availability and
hardware address assignments. The Series/1 on which the starter system
is being installed - o -

MUST HAVE EITHER A TTY device at hardware address ‘00’

OR A 4978 or 4979 Display at hardware
address ‘04’

AND MAY HAVE A 4974 Matrix Printer at hardware address
X001’

INSTALLING THE STARTER SYSTEM

The procedures and instructions for installing the starter system
received from PID are contained in the Program Directory which is
shipped with the licensed program diskettes. As new versions or
modification levels of the system are released, details of the installation
process may change. This discussion is therefore limited to the major
steps involved.

Step 1: IPL the Starter Supervisor from XS3001. When the starter
supervisor is first loaded (IPL) and goes into execution, it searches for a
4963 Disk at hardware address x‘48’. If there is no 4963 Disk the
supervisor searches for a 4962 Disk at address x'03’. If found, it reads
the device 1D (which contains information about the device) and alters
the device data block (DDB) for the associated disk.

Step 2: Initialize Logical Volumes. Before copying any data sets, a
volume directory must be written on disk, volumes allocated and direc-
tories created. Review the example in the $INITDSK portion of the
Utilities Section of this document. See the Program Directory for
recommended volume and directory sizes.

Step 3: Copy Starter Supervisor, Utility Programs and System Support
Modules. The utility program $COPYUT 1 is now used to copy the
Starter Supervisor $EDXNUC on XS3001 to $EDXNUC on EDX002.
Some of the system utility programs are also copied to EDX002. The
system support modules are copied from diskette XS3003 to volume
ASMLIB on disk.

System Installation 15-3



Step 4: IPL Starter System from Disk and Complete . Installation. The
IPL SOURCE switch can now be set to IPL from disk, and the starter
’ system agaln loaded, thls time from the disk IPL volume C
, y

EDX002. $COPYUT1 is again Ioaded, this time from EDX002 to
which it was copied in the previous step. $COPYUT1 is used to copy
the remaining system programs on the PID diskettes to.the various
libraries on disk.

Source Target

Diskette Volume Description

UTb001-2 = EDXO002 . Remaining utilities and Session
; Manager modules

XX4001 ~  ASMLIB Program Preparation modules

XX4002 ASM LIB . Copy Code Modules

The Starter Supervisor as supplied by IBM supports the following:
64 KB Storage
4962 Disk at address 03
- or - .
4963 Disk at address 48
4964 Diskette Unit at address 02
4962 Diskette Magazine at address 22
4978 or 4979 Display at address 04
TTY Device at address 0 —~
3101 Model 2X in block mode ‘ (

at address 08 via asynchronous communications single line
adapter

at address 60 via asynchronous communlcatlons multiline
adapter

* at address 68 'via programmable communication adapter

The Starter Supervisor does not support:
Timers
Sensor 1/0
Communications
Interactive Debug
Magnetic Tape
Series/1 to Series/1
General Purpose Interface Bus (GPIB)
Spooling
Floating Point Arithmetic
Users who have different requirements from those provided by the

Starter Supervisor must generate a tailored system that will satisfy
their needs.

15-4 SR30-0436



USER SYSTEM GENERATION

() READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702) “‘System Generation.” (ALL)

SYSGEN OVERVIEW

Creating a supervisor tailored to a specific user configuration consists of
the following tasks:

1. Creating a set of system configuration statements reflecting the
configuration of the system that the supervisor being generated is
to run on.

2. Selecting the supervisor object modules that are required to support
the desired 1/0 devices and system features.

3. Assembling the system configuration statements created in Step 1,
above.

4. Link editing the object module produced by the assembly in Step
3 with the supervisor object modules selected in Step 2 to produce
a tailored supervisor.

In order to demonstrate how these tasks may be accomplished, the
remainder of this section will go through each step of an actual system
generation.

C) Allocate Required Data Sets |

After completion of starter system installation, the system programs are
installed, but no user-allocated data sets have yet been defined. The
system generation process requires the use of several system utility/pro-
gram preparation programs that require data sets for use as work areas
or input/output files. These data sets must be allocated by the user
before SYSGEN can proceed. Data set allocation is done with the
$DISKUT1 utility program.

System Installation 15-5



15-6 SR30-0436

>[$L $DISKUT1

$DISKUT1 37P, LP= 5700
USING VOLUME EDX002

COMMAND (?): [AL EDITWORK 200 D]-

EDITWORK CREATED

COMMAND (?): [AL ASMOBJ 250 D |- 2]
COMMAND (?): [AL ASMWORK 250 |

ASMWORK CREATED

COMMAND (?): [AL SUPVLINK 600 D]- (3

SUPVLINK CREATED

COMMAND (?): |AL LEWORK1 400 D|
LEWORK1 CREATED

COMMAND (?): [AL LEWORKZ 150 D]
LEWORK2 CREATED

COMMAND (?):
$DISKUT1 ENDED

Figure 15-1. Allocate data sets .

)



EDITWORK is the name of a work file that will be required by
SEDIT1IN or $FSEDIT text editing utilities.

These data sets are used by the assembler program $EDXASM.
ASMOBJ is the data set in which the object module output of the
assembler will be stored, and ASMWORK is an assembler work
file. Note: In the Program Directory, it is suggested that you
assemble the sample program CALCSRC to verify starter system
installation. If you performed that step, ASMWORK and
ASMOBJ have already been allocated, and need not be allocated
here.

SUPVLINK is the data set where the link editor, SLINK, will store
the linked object module output from the supervisor link edit.

LEWORK?1 and LEWORK2 are $LINK work data sets.

EDIT SYSTEM CONFIGURATION STATEMENTS

Before proceeding, you must know the configuration of the system you
intend to run the supervisor on, and what features you want to support.
You can generate a supervisor for a system other than the one used for
SYSGEN, but for this discussion, assume the tailored supervisor being
built is for the system you are now running on.

SIOTEST

@

One of the operands you must specify in all of the system configuration
statements defining 1/0 devices is the device hardware address. The
system utility program $IOTEST can be used to find out which devices
are installed on your system and what their addresses are (Figure 15-2).

System Installation  :5-7



>1$L

$I0TEST 32P, LP= 8F00

COMMAND (?): LD

ACTUAL SERIES/1 HARDWARE CONFIGURATION

ADDRESS DEVICE TYPE
00 = TELETYPEWRITER ADAPTER
01 = 4974 PRINTER
02 = 4964 DISKETTE UNIT
03 = 4962 DISK MDL3 »
04 = 4979 DISPLAY STATION
06 = 4978 DISPLAY STATION
08 = SINGLE LINE ACCA
21 = 4973 PRINTER
40 = TIMER FEATURE
41 = TIMER FEATURE

Figure 15-2. $1OTEST LD

In Figure 15-3 below, the LS command is used to list the hardware
devices supported by the starter supervisor under which $SIOTEST is
running.

COMMAND (?):

HARDWARE DEVICES SUPPORTED BY THIS SUPERVISOR
ADDRESS

00
01

DEVICE TYPE

TELETYPEWRITER ADAPTER

4973 PRINTER

4964 DISKETTE UNIT

4962 DISK MDL3

4978 DISPLAY STATION

SINGLE LINE ACCA MODE 3101B
4966 DISKETTE MAGAZINE UNIT
FOUR LINE ACCA MODE 3101B
FOUR LINE ACCA MODE 3101B

COMMAND (?): |END

Figure 15-3. $IOTEST LS

15-8 SR30-0436

®



O

00010
00020
0u030
00040
00050
00nN60
00070
00030
0C030
00100

NU110
(::) 0C120
00130
00140
00150
0ul60
00170
02180
00190
00200
ou21l0
00220
00230
00240
00250
006260
002170
0Gcd0
002930
00300
00310
00320
0330

$EDXDEF

AR A R L

3%
%

<

$SYSLGOG
$SYSLOGA

$SYSLOG3

$3YSLOGC

$5Y5LOGD

£SYSPRTR
$SYSCCH

$EDXPTCH

CSECT

DATA

By comparing Figures 15-2 and 15-3, you can see that the starter
supervisor does not support the 4978 Display at address 06, the 4973
printer at address 21 or the timers at address 40 and 41.

After the tailored system generation is complete and the new supervisor
is loaded, the LS command of $IOTEST should result in a printout of
supervisor-supported devices and address assignments, which matches
the LD command output shown in Figure 15-2,

Now you are ready to build a system configuration statement source
file that reflects the 1/O and system features you wish to support. This
file can be created using either $EDIT1N or $FSEDIT.

During the installation procedure, a data set reflecting the configuration
statements used in generation the starter supervisor was copied to disk.
The data set is SEDXDEF on volume ASMLIB. If you load the Text
Editor, read the data set and list it, the contents would be as shown in
Figure 15-4.

FOOI

EVENT DRIVEN EXECUTIVE - VERSION 39 MODIFICATION LEVEL O

THE FOLLOWING DEFINES THE STARTER SUPERVISOR AS SHIPPED ON THE
DISKETTE LABELEU XS300le FOR COMPLETE OESCRIPTIONS OF THESE
STATEMENTS OR ANY OTHER SYSTEM DEFINITION STATEMENTSs REFER TO
THE EOX VERSION 3 SYSTEY GUIDE: SC34-1702

SYSTEM STORAGE=6494AXPROG=104PARTS=32

DISK
DISK
DISK

DEVICE=4963-234ADDRESS=48
DEVICE=4964+ADDRESS=02
DEVICE=49669ADCRESS=229yEND=YES

TERMINAL DEVICE=49789yADDRESS=044HDCOPY=$SYSPRTR
TERMINAL OEVICE=TTYADDRESS=00sCROELAY=44PAGSIZE=24 C

B33TM=239SCREEN=YES

TERMINAL DEVICE=ACCA9ADDRESS=O3vMODE=3l013'AOAPTER=SINGLE' C

BITRATE=12004RANGE=HIGH

TERMINAL DEVICZ=ACCA,ADDRESS=6N4¥I0c=31013+ADAPTER=FOUR, C
HITRATE=12004RANGE=HIGH

TERMINAL DEVICE=ACCA+ADDRESS=684MODE=31018+COOTYPE=ASCII, c
ATTN=1368yADAPTER=FOURLF=0AyCR=UDsPF1=1861, C
3ITRATZz=120CyRANGE=HIGH

TERMINAL DEVICE=49T744+ADDRESS=01+END=YES

CSECT

QAC3
Qcs
€C3
EC3

cNTRY

DATA
END

$EOXPTCH
128F*0" SYSTEM PATCH AREA

Figure 15-4. Contents of SEDXDEF

System Installation 159



SYSTEM Statement

15-10

SR30-0436

The configuration statements shown match the hardware devices listed

in Figure 15-3. You must edit this file to reflect your requirements N
(Figure 15-2). The 4963 DISK statement and $SYSLOG TERMINAL f )
statement must be modified. The 4966 DISK statement, the g

$SYSLOGC and $SYSLOGD TERMINAL statements for the 4978 at
address 06 and a TIMER statement must be added to complete the new
correct configuration. The configuration statements are now discussed
in more detail.

The SYSTEM statement (statement 110 in Figure 15-4) defines a 64K
system (STORAGE=64), with a maximum of 10 programs executing
concurrently (MAXPROG=10). Now, assume that the system this
supervisor is being generated for has 128K of storage.

When a system has storage greater than 64K, multiple partitions must
be defined, because of the way the software utilizes the hardware
feature that addresses storage above 64K. Each partition defined is a
separate relocatable program area, just as the space between the end

of the supervisor and the end of storage is a relocatable area in systems
with 64K or less.

The STORAGE= operand in the SYSTEM statement must be changed
to STORAGE=128. Up to 8 partitions may be defined, and for this

example, assume that 3 partitions are desired. The MAXPROG= oper-
and will now be changed to MAXPROG=(10,10,10), with each sublist

"element in the operand list corresponding to the maximum number (\
e

of programs allowed to execute in partition 1, partition 2, and parti-
tion 3, respectively. 10 programs in concurrent execution in any one
partition is enough to exceed most application requirements, but this
can be coded to meet your own application needs. (Note: All partitions
do not have to have the same MAXPROG= value; MAXPROG=(6,3,10),
for example, is valid.)

When using multiple partitions, a third operand, PARTS= must be coded.
PARTS= is used to specify the size of each partition. Partitions can be
up to 64K in size with the exception of Partition 1 which is restricted

to 64K minus the size of the supervisor.

Partitions are defined in increments of 2K blocks (2048 bytes each).
The first 64K of storage is represented by 32 such 2K blocks. If we
estimate our supervisor to be 40K, we have 88K or 44-2K blocks of
storage available for partitions. The largest size for partition one would
be 24K (64 - 40K).

Let’s assume in our system we desire partitions of 16, 32, and 40K,
Using the text editor, the SYSTEM statement would be modified to

SYSTEM STORAGE=128,MAX PROG=(10,10,10),PARTS=(8,16,20)



O

TIMER Statement

DISK Statements

One of the devices to be supported by the new supervisor is Timers.
The starter supervisor has no TIMER statement, so one must be added
using the INSERT function of the Text Editor.

Although both timers will be supported, only one TIMER statement is
entered. The system knows that the two timers have contiguous
addresses, so a single TIMER statement specifying the address of the
first timer is all that is required.

Note: For 4952 processors, the timer is part of the processor, not a
feature and no TIMER system configuration statement is used.

The DISK configuration statement is used to define disk and diskette
devices to the system. The configuration file (Figure 15-7) shows

3 DISK statements (4963 Model 23, 4964 Diskette and 4966 Diskette
Magazine). Based on our hardware configuration, we must change the
Disk to 4962-3 and delete the 4966 Diskette Magazine DISK statement.

To run disk/diskette devices, the system generates a system disk task
which it attaches to perform disk or diskette I/0. As with any other
task, the system disk task is not reentrant; it may only be attached by
one user at a time. When multiple direct access devices are supported,
where 1/0 requests to the high data rate disk could be suspended, wait-
ing for the disk task to complete a request for one of the relatively
slower diskette devices.

By coding TASK=YES in the DISK statements defining the diskette
devices, a separate task is generated for each device.

After editing the configuration file, the DISK statements would be:

DISK DEVICE
DISK DEVICE

4962-3,ADDRESS=03
4964 ,ADDRESS=02,TASK=YES ,END=YES

i n

System Installation 15-11



TERMINAL Statement

00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250

$SYSLOG
$SYSLOGA

$5YSLOG3
$SYSLOGC

$SYSLOGC

$SYSPRTR

TERMINAL

TERMINAL

Figure 15-5 below shows a list of the TERMINAL system configura-
tion statements for the supplied supervisor.

DEVICE=49734ADDRESS= O49HDC0§Y $SYSPRTR :
DEVICE=TTY yADDRESS= OO'CPDELAY +vPAGSIZE 24y ~ o C

30TM=234SCREEN=YES

TERMINAL DEVICE=ACCAsADDRESS=084MODE=31018+ADAPTER=SINGLEy '  C
BITRATE=1200yRANGE=HIGH o

TERMINAL DEVICE=ACCA9ADDRESS=60+MIDE=31018yADAPTER=FOURy = - C
BITRATE=12004RANGE=HIGH _ o

TERMINAL DEVICE=ACCAsADDRESS=684MODE=310189CODTYPE=ASCILy ~ C
ATTN=1B68yADAPTER=FOURyLF=0A,CR=0DyPF1=1361, c

SITRATE=1200+RANGE=HIGH

TERMINAL

DEVICE=4974¢9 ADDRESS=014END=YES

Figure 15-5. Starter TERMlNAL‘ statements

15-12 SR30-0436

In a multiple partition system, terminals are assigned to partitions.
When a terminal is assigned to a partition, operator commands invoked
from that terminal are directed to the assigned partition. See the

- "OPERATOR COMMANDS" topic in ““Section 14. System Utilities”

for a discussion on how terminal/partition assignments may be changed
online. For this SYSGEN, $SYSLOG (statement 150) will be assigned
to partition 1, and the TTY device (statements 160 and 170) will be
assigned to partition 2. In statement 170 (the continuation of statement
160), the SCREEN= operand is coded as SCREEN=YES. This indicates
that the supplied supervisor assumes that the TTY is an electronic
display screen device.

SCREEN=YES causes a pause after every 24 lines of output, so that the
data on the screen can be read by the operator. To display the next 24
lines, the operator must press the ENTER key.

Assume the TTY device on this system is not an electronic display
screen device, but is a hardcopy TTY with continuous forms. The
pause after every 24 lines is not required, and is in fact an annoyance,
so SCREEN=YES should be changed to SCREEN=NO.

Using the delete function of the Text Editor, the $SYSLOG and
$SYSLOGD statements can be removed from the file.

Next, the 4978 Display at address 06 and the 4973 Printer, neither of
which is supported by the supplied supervisor, are added to the
TERMINAL definitions. The 4978 is named DSPLY 1, and the 4973
LINEPRTR. The names used are not predefined; you must name the
devices anything you wish.



@

After editing the configuration file, the TERMINAL statements would
be:

00150 $SYSLOG TERMINAL DEVICE=49799ADDRESS=044¢HOCOPY=8SYSPRTRyPART=2
00151 DSPLY! TERMINAL DEVICE=49739ADDRESS=06¢HOCOPY=8SYSPRTRyPART=3

00160 $SYSLOGA TERMINAL OEVICE=TTY4,ADDRESS=00yCROELAY=49PAGSIZE=24%, C
00170 YOTM=239SCREEN=YES

00180 $SYSLOGB TERMINAL ODEVICE=ACCA+ADDRESS=08yMUDE=3101ByADAPTER=SINGLE, C
00190 3ITRATE=96004RANGE=HIGH

00250 LINEPRTR TERMINAL DEVICE=49734ADDRESS=21
00251 $SYSPRTR TERMINAL DEVICE=49T749ADORESS=01END=YES

Figure 15-6. Modified TERMINAL statements

System Communications Area

The system communications area is the area known by the system
global name $SYSCOM. It is used for communication and synchroni-
zation between programs. The supplied supervisor already has a 128
word area called $EDXPTCH, which can be used as part of $SYSCOM.

For this example, $SYSCOM will consist of two QCBs and two ECBs,
plus the already existing 128 word area, SEDXPTCH.

This completes the modifications to the system configuration source
file. Figure 15-7 provides a listing of the changes made for the hardware

specified earlier.

System Instaltation  15-13



060010
00020
00030
00C40
00050
00060
0Cco70
00080
00070
03100
ool1l0
00120

00130

00140
0u1l50
00160
0U170
02130
00130
cu200
03210
00220
00230
00240
00250
ouz2e60
ouz270
Oou230
00290
00300
0u310
00320
00330

$FOXDEF

36 4% 3F dF 3 dr 9 38

$SYSLOS
£SYSLOGA

$SYSLOGS
$S5YSLOGC
$SYSLOGD

$SYSPRTR
$SYSCOM

$EDXPTCH

CSECT

DATA FeO*

EVENT DRIVEN EXECUTIVE - VERSION 3y MODIFICATION LEVEL O

THE FOLLOWING DEFINES THE STARTER SUPERVISOR AS SHIPPED ON THE
DISKETTE LABELED XS300le FOR COMPLETE DESCRIPTIONS OF THESE
STATEMENTS OR ANY OTHER SYSTEM DEFINITION STATEMENTSe REFER T2
THE EDX VERSIDN 3 SYSTEM GUIDE: SC34-1702

SYSTEM STORAGE=649¢MAXPROG=10yPARTS=32

DISK DEVICE=4963-23+4ADDRESS=48

NISK DEVICE=49644ADDRESS=02

OI5K DEVICE=49669ADDRESS=229END=YES

TERMINAL DEVICE=49789ADDRESS=04,HOCOPY=8SYSPRTR

TERMINAL DEVICE=TTY ¢ADDRESS=009CRDELAY=49PAGSIZE=24y
HOTM=234SCREEN=YES : ) .

TERMINAL DEVICE=ACCAyADDRESS=0B8yMODE=31D189ADAPTER=SINGLE,
BITRATE=1200yRANGE=HIGH

TERMINAL DEVICE=zACCA9ADDRESS=60¢MDDE=31J18¢9ADAPTER=FQUR
BITRATC=12009RANGE=HIGH

TERMINAL DOEVICE=ACCA+ADDRESS=68yMODE=31318B,CODTYPE=ASCII,
ATIN=1B68yADAPTER=FOUR ¢yLF=0AyCR=0NyPF1=1861y
BITRATE=1200yRANGE=HIGH

TERMINAL DEVICE=49T44ADDRESS=)19END=YES

CSeCT

2Cs

3Co

EC=

ECR

ENTRY $EDXPTCH

DATA 124dF*0"

END

SYSTEM PATCH AREA

Figure 15-7. Starter configuration

= ’
\~__EDITWORK _~ $FSEDIT

The completed, edited file must be stored in a data set $EDXDEFS on
volume EDX002.

ASMLIB

=
\—_$EDXDEF__~7

EDX002

EDX002

Figure 15-8. Configuration file update

15-14 SR30-0436

[aNal

=
\—__SEDXDEFS_7

®
A



O

SELECT SUPERVISOR SUPPORT MODULES

The next step is to choose the supervisor support object modules
required to support your configuration. These object modules are
specified in link editor INCLUDE statements, which reside in a link
edit control statement file. ’

As with the system configuration statements, you do not have to enter
each INCLUDE record you need. Data set $LNKCNTL on volume
ASMLIB contains all possible supervisor INCLUDE statements. You
must choose those required for your configuration. Figure 15-9is a
listing of the SLINKCNTL data set that shows the modules that were
included in the generation of the starter supervisor. The statements
that have an asterisk in Column 1 are understood by the link editor to
be comments rather than a control record.

00010 #

00020 *

0003C = ,

06330  OUTPUT SUPVLINKZDX002
00140  INCLUBE  FOXSY5,XS$3002

00150 I'N\CLUBE ASMOSJ.EDXON2 *

0

o
00160 * INCLUCE FOXS5VCXeXS3N02 *0
090170 INCLUDE EDNSVCXU9XS2002 #0yL
00180 * INCLUDE $DBUGNUC 9 XS3002 *0
00190 INCLUDF "EDXALU9XS301:2 %*0

002490 INCLUDE
00260 INCLUDE
002790 INCLUCE
00230 INCLUDE
00230 INCLUBE
00350 * INCLUCE
00410 * INCLUODE
00420 INCLUDE
00430 * INCLUCE
Q044C INCLUCS
00450 * INCLUCE
00460 INCLYUOF
0C470 * INCLUDE
00430 INCLUDE
00490 INCLUCE
00300 INCLUDE
00510 INCLUDE
00520 INCLUDE

EDXSTART ¢XS3002 *y
DISKIUyxS3C02 M
D496249XS3002 M
D496344X53002 RM%
D4966A9XS3002 &M
D4969A9XS3002 M

IOSTERMyXS3002 2%
TIOSTTY+XS3002 LN ES
TOSACCA9XS3002 *3%

00530 = INCLUCE TOSS1S1yXS3002  #M%
00543 %= INCLUDE I0SGPIByXS3002  #M*
00550 * INCLUDE 15S40134X53002 =M%
00560 * INCLUCE 10S27419X53002 =M%
00570 * INCLUCE IOSVIRT¢X53002 #MyN¥

02630 INCLUDE
00640 INCLUCSE

00650 * INCLUDE TREACDLXS3002 HH %
0u660 * INCLUODE TRCRSP¢XS3002 5%
00720 * INCLUCE ICSPOQL ¢ XS3002 &M%
00780 * INCLUCE EOXTIMER 9 XS3002 #*6%
0G730 % INCLUDE EDXTIMR249XS3002 #6%*
00850 * INCLUCE BSCAM¢XS3002 T K>
0UB60 = INCLUDE 8SCAMU,XS3002 *ToL*
00870 * INCLUDE TPCOMeXS53002 g%

Figure 15-9. Starter Link file (1 of 2)

FOXTIO«XS3052 LK
EODXTICUyXS3I02 #lgL%
EDXTERMG9X53002 *LgK3
EOXTRMQU9XS3002 *1lsL%
I0S49799XS3002 %MK
I0S497T9U9XS3002 *M,L*
I0S49749XS30N2 Mgk
I0S4974U9X53002 HidyeL*

I0S31014XS53202 #My(%

TRASCII¢XS3002 %4 4P%
TREIASCyXS30N2 %3,pPx%

EVENT DRIVEN EXECUTIVE - VFRSION 34 MODIFICATION LEVEL O

ENTRY=$START

SYSTEY TABLES AND WJORK AREAS
OUTPUT FROM USER SYSTiEM GENERATICN
K% TASK SUPERVISUR (XL)
* TASK SUPSERVISGR (UN-XL)

RESINENT $OEBUG SUPPORT

EDL INSTRUCTION EMULATOR
INITIALIZATION & ERROR HANDLER
BASIC DISK(ETTE) SUPPJIRT

4962/4964 DISKIETTE) SUPPORT

4963 SUSSYSTEM SUPPURT

4366 MAGAZINE SUPPCRT

BASIC TAPE SUPPURT

BASIC TERMINAL SUPPURT (XL)

BASIC TERMINAL SUPPORT (UN=XL)
ENCT/DERT & TERMINAL QUEUEING (XL}
ENQT/DEGT € TERMINAL QUEUEING (UN-XL)
4978/4979 DISPLAY SUPPORT (XL)
497T8/4379 DISPLAY SUPPORT {UN-XL)
4973/4974 PRINTER SUPPORT (XL)
4973/4974 PRINTER SUPPORT (UN-XL)
REQUIRED FOR TTYsy ACCAs 4013 & 2741
AS® 33/35 TCLETYPEWRITER SUPPORT
ASCIT ACCA TERMINAL SUPPORT

3101 LOCK MOJE SUPPORT

SERIES/)1 - SERIES/1 SUPPORT

GPIB SUPPIRT

DIGITAL I/0O TERMINAL SUPPORT

2741 TCRMINAL SUPPORT

VIRTUAL TERMINAL SUPPORT
TELETYPEWRITER TRANMSLATION

MIRROR IMAGE ASCII TRANSLATION
2741 EBDC TRANSLATIOM

2741 CORRESFONDENCE TRANSLATION
SPOOLING 35UPPORT .
4953/4955 TIMEP (7840) SUPPORT
4952 TIMER SUPPORT

BISYNC CGMMs ACCESS SUPPORT (XL)
BISYNC COMM. ACCESS SUPPORT (UN-XL)
HUST COMMUNICATION SUPPORT

System Installation  15-15



0u930
00940
00950
00960
ou970
00980
00990
01050
01110
01120
01130
01190
712900
01210
01220
01230
01240
01300
21310
01320
01330
01340
21350
01360
01370
01330
01370
01400

01410

01420
01430
01440
01450
02060

48 3¢ 3F 38 3¢ 3t 3 %

3 23

3¢

3%

3k 3 3k 3 4e 3%

INCLUGE
INCLUCE
INCLUCE
INCLUCE
INCLUDE
INCLUGE
INCLUDE
INCLUDE
INCLUCE
INCLUDE
INCLUCE
INCLUCE
INCLUDE
INCLUGE
INCLUCE
INCLUDE
INCLUDE
INCLUDF
INCLUDE
INCLUDE
INCLUDE
INCLUCE
INCLUDE
INCLUDF
INCLUDE
INCLUDE
INCLUBE
INCLUCE
INCLUCE
INCLUDE
INCLUDE
INCLUCE
INCLUCE
END

SBCOMyX$30C2 #9%

IOLOADER»XS3002 #9,K* SENSOR 1/0 DEVICE OPEN (XL) ,
TOLOACRUYXS3002 *94L% SENSOR I/0 UEVICE OPEN (UN-XL) (j\
SbAI9X$3002 #M#  ANALOG INPUT SUPPORT -
SBAUyXS$3002 #Mx  ANALOG OUTPUT SUPPORT

SBOIDOyXS30U2  #M%  DIGITAL INPUT/QUTPUT SUPPURT

SBPI+X53002 #M% PROCESS INTZRRUPT SUPPORT

TOSEXIGyX$S3002 «M#  EXIO DEVICE CUNTROL SUPPORT

SYSLDG,XS3002  #A*  I/0 ERROR LOGGING

NOSYSLOG#XS3002 %A*  NO .I/0 <RROR LOGGING

CIRCRUFF¢XS$3002 *B%  PROGRAM/MACHINE CHECK LOGGING

RLOADERyXS3002 #C,K# RELOCATING PROGRAM LOUADER (XL)

RLOADERUy A$30C2 #CoL% RELOCATING PROGRAM LOADER (UN-XL)

EDXFLOAT¢XS300z #0%  FLOATING PIINT ARITHMETIC

NOFLUAT,XS3002 #D%*  FOR SYSTEMS WITHOUT FLOATING POINT

EBFLCVT¢XS3002 #E*  EBCODIC/FLOATING POINT CONVe.

QUEUFI0yXS3uU02 #F%*  QUEUE PROCESSING SUPPURT

EDXINITyXS3002 #H*  SUPERVISOR INITIALIZATION

DISKINITyXS3002 *M*  DISK(ETTE) INITLALIZATION

TAPEINIT9XS3002 #M*  TAPt INITIALIZATION

LOADINITyXS3002 #C*  PROGRAM LOJADER INITIALIZATION

RW4963T09XS3002 *MX 4963 FIXED HEAD REFRESH SUPPORT

TERMINITyXS3002 #1#  TERMINAL INITIALIZATION

INIT49789XS3002 #M% 4974 DISPLAY IMITIALIZATION

TNIT4O13,XS3002 #4%  DIGITAL I/0 TERMINAL INITIALIZATION
SACLARAMyXS3002 *3%  ACCA MULTI-LINE ADAPTER RAY LOAD

8SCINIT,XS3002 *7%  BISYNC (BSCAM) INITIALIZATION

TPINITyXS3092  #3%  HCF (TPCN%) INITIALIZATION

TIMRINIT4XS3002 *6%  4953/4955 TIMER INITIALIZATION

CLGKINIT9XS3002 *6% 4952 TIMER INITIALTZATION

SIIOINITyXS3002 *M%  SENSOR I/0 INITIALIZATION

EXIDINIT,XS2002 *M%  EXIO INITIALIZATION -
SISLINIT9XS3002 *My9% S1S1 INITIALIZATION \__

Figure 159, Starter Link file {2 of 2)

15-16 SR30-0436

BASIC SENSOR 1/0 SUPPIRT

Instead of deleting undesired INCLUDE statements, it is preferable to
insert an asterisk in column 1. The asterisk causes the link editor to
treat the statement as a comment statement rather than a control
record. This gives you a record of what support you have decided to
leave out, which can be helpful if problems develop with the generated
supervisor.

The support available for some system functions is provided in two
versions—untranslated or translated— specified on the INCLUDE state-
ment comments as UN-XL and XL respectively. The untranslated
modules support systems with a memory of 64K or less while trans-
lated modules support systems with greater than 64K of memory.



c

00020 *

00030 *

00080  OUTPUT

09140  INCLUDE
00150  INCLUDE
00160  INCLUDE
00170 * INCLUDE
00180  INCLUDE
00190  INCLUDE
00200  INCLUCE
00260 - INCLUDE
00270  INCLUDE
00280 * INCLUDE
00290 * INCLUCE
00350 * INCLUDE
00410  INCLUDE
00420 * INCLUDE
00430  INCLUDE
00440 * INCLUDE
00450  INCLUDE
00460 * INCLUDE
00470  INCLUDE
00480 * INCLUDE
00490  INCLUDE
00500  INCLUDE
00510  INCLUCE
00520  INCLUDE
00530 * INCLUCE
00540 * INCLUDE
00550 * INCLUDE
00560 * INCLUDE
00570 * INCLUDE
00630  INCLUDE
00640  INCLUDE
00650 * INCLUCE
00660 * INCLUDE
00720  INCLUDE
00780  INCLUCE
00790 * INCLUCE
00850 * INCLUDE
00860 * INCLUDE
00930 * INCLUDE
00940 * INCLUCE
00950 * INCLUDE
00960 * INCLUDE
00970 * INCLUDE
00980 * INCLUDE
00990 * INCLUDE
01050 * INCLUCE
01110  INCLUDE
01120 * INCLUDE
01130  INCLUDE
01190  INCLUDE
01200 * INCLUDE
01210  INCLUDE

01220 * INCLUDE

* The completed INCLUDE file is shown in FigUre 15-10. Those state-
ments with asterisks in column 1 are for features that are not desired
or for 1/0 devices not installed.

SUPVLINK sEDX0O2
EDXSYSeXS3002
ASMOBJy EDXOU2
EDXSVCX9XS3002
EDXSVCXU#XS3002
$OBUGNUC ¢ XS3002
EOXALU9XS3002
EDXSTART¢yXS3002
DISKIOyXS3002
D496244X53002
D4963AyxS$3002
D4966A9XS53002
D4969A4XS53002
EDXTIO9XS3002.
EDXTIOU,XS3002
EDXTERMQ¢XS3002
EDXTRMQUyXS3002
10S4979,XS3002
10S4979U¢XS3002
10S49744XS3002
10S4974U9XS3002
IQSTERM¢XS3002
[OSTTYyX53002
I0SACCA+XS3002
10531014X530G2
TOSS1S19XS3002
10SGPIByXS3002
1054013,4X53002
10S27419XS3002
IQSVIRTXS3002
TRASCIIZXS3002
TREBASCyXS3002
TREBCDyXS3002
TRCRSP¢XS3002
I0SPOOL ¢ XS3202
EDXTIMERyXS3002
EDXTIMR2¢XS3002
BSCAMyXS$3002
BSCAMU¢XS3002
SBCUMyXS53002
IOLOADER ¢ X53002

IOLOADRU9XS3002 *

SBAT#XS3002
SBAO+XS3002°
SBDIDOyXS3002
SBPI+XS3002
IOSEXIDyXS3002
SYSLOGyX53002
NOSYSLOG9XS3C02
CIRCBUFF¢XS3002
RLOADERyXS3002

RLOADERU$XS3002 =

EOXFLOAT9XS3002
NOFLOATyXS3002

Figure 15-10. Updated Link file (1 of 2)

EVENT DRIVEN EXECUTIVE - VERSION 34 MODIFICATION LEVEL O

ENTRY=$START
#0% SYSTEM TABLES AND WORK AREAS
%0% DUTPUT FROM USER SYSTEM GENERATION

20 9K%
F0eL*
26%
Q%
%0%
=M
M
M
#M%
=M%
] 9K
Blel*
] oK=
Rlglx
M K%
ML %
MoK %
FMyL*
*2%
BMX
&3k
EMy0*
RMx
M
M
“ME
=My N%
R4y P¥
Z39P >
5%

i

4 3¢ 3 3
i~ OO X\

- 3t .4k 4F g

TASK SUPERVISOR (XL)

TASK SUPERVISOR (UN-XL)
RESIDENT $DEBUG SUPPORT

EDL INSTRUCTION EMULATOR
INITIALIZATION & ERROR HANOLER
BASIC DISK(ETTE) SUPPURT
4962/496%4 DISKIETTE) SUPPORT
4963 SUBSYSTEM SUPPORT

4966 MAGAZINE SUPPURT

BASIC TAPE SUPPCRT

BASIC TERMINAL SUPPORT (XL}
BASIC TERMINAL SUPPORT (UN-XL)
ENQT/DEQT & TERMINAL QUEUEING (XL)

ENQT/DEQT & TERMINAL QUZUEING (UN-XL)

4978/4979 DISPLAY SUPPORT (XL)
4978/4379 DISPLAY SUPPORT (UN-XL)
4973/4974 PRINTER SUPPORT (XL)
4973/4974 PRINTER SUPPORT (UN-XL)
REQUIRED FOR TTYs ACCAy 4013 & 2741
ASR 33/35 TELETYPEWRITER SUPPORT
ASCII ACCA TERMINAL SUPPORT

3101 B8LOCK MODE SUPPORT

SERIES/1 - SERIES/1 SUPPORT

GPIbB SUPPORT

DIGITAL I/0 TERMINAL SUPPORT

2741 TERMINAL SUPPORT

VIRTUAL TERMINAL SUPPORT
TELETYPEWRITER TRANSLATION

MIRROR IMAGE ASCII TRANSLATION
2741 EBDC TRANSLATION

2741 CORRESPONDENCE TRANSLATION
SPOOLING SUPPCRT

4953/4955 TIMER (7840) SUPPOURT
4352 TIMER SUPPORT

BISYNC COMMe ACCESS SUPPORT (XL}

* BISYNC COMMe. -ACCESS SUPPCRT (UN-=XL)

BASIC SENSOR I/0 SUPPORT

: SENSOR I/0 DEVICE OPEN (XL)
* SENSOR I/J0 DEVICFE QPEN

(UN=-XL)
ANALOG INPUT SUPPORT

ANALOG. QUTPUT SUPPORT

DIGITAL INPUT/QUTPUT SUPPURT
PROCESS INTERRUPT SUPPORT

EXIO DEVICE CONTROL SUPPORT

I/0 ERROR LOGGING

NO I/0 ERRIR LOGGING
PROGRAM/MACHINE CHECK LOGGING
RELOCATING PROGRAM LOADER (XL)
RELOCATING PRDOGRAM LCADER (UN-XL)
FLOATING POINT ARITHMETIC

FOR SYSTEMS WITHOUT FLOATING POINT

System Installation 15-17



01230 INCLUCE EBFLCVT¢XS53002 *E* EBCOIC/FLOATING POINT CONVe

01240 INCLUDE  QUEUEIODyXS3002 *F%* QUEUE PROCESSING SUPPORT (/“\
01300 -INCLUDE EDOXINIT9X53002 %H= SUPERVISOR INITIALIZATION
01310 INCLUCE DISKINIT¢XS3002 *M= DISK(ETTE) INITIALIZATION -

01320 * INCLUODE TAPEINIT9XS3002 3M¥* TAPE INITIALIZATION

01330 INCLUDE LOADINIT$XS3002 %C%* PROGRAM LOADER INITIALIZATION
01340 % INCLUDE RW49631ID¢XS3002 =M= 4963 FIAKED HEAD REFRESH SUPPORT
01350 INCLUDE TERMINIT9XS3002 *1%* TERMINAL INITIALIZATION

01360 INCLUCE INIT49789X53002 4% 4973 DISPLAY INITIALIZATION

01370 % INCLUDE INIT40139XS3002 #M3 DIGITAL I/0 TERMINAL INITIALIZATION
01330 # INCLUOE $ACCARAM¢XS3002 *3% ACCA MULTI-LINE ADAPTER RAM LOAD
01390 * INCLUDE BSCINITyXS53002 *7= BISYNC (BSCA*™) [NITIALIZATION

01400 * INCLUCE TPINITyXS3002 g HCF [TPCCM) INITIALIZATION

01410 INCLUBE TIMRINIT¢XS3002 *o% 4953/4955 TIMER INITIALIZATION

01420 * . INCLUCE CLOKINIT¢XS3002 *6% 4952 TIMER INITIALIZATION
01430 * INCLUDBE SAIUTNIT9XS3032 #M* SENSCR I/OD IMITIALIZATION
01440 * INCLUOE CXTJINIT9XS3002 #M% EXIO INITFALIZATION
01450 * INCLUCE SISLINIT9XS3012 %My S1S1 INITIALIZATION

02060 END
Figure 15-10. Updated Link file (2 of 2)

The completed file is now saved to the LINKCNTL data set on
volume EDX002.

Figure 15-11 summarizes operations up to this point.

ASMLIB

=
$SLINKCNTL

EDX002

=
\~___EDITWORK _~~ $FSEDIT

EDX002

Figure 15-11. Link file update

16-18 SR30-0436



@

O

EDIT $JOBUTIL PROCEDURE FILE

00010
00020
00030
00040
N00s50
20060
000170
03380
00090
0100
0ull0
nc120
on130
00140
0ul150
0015¢C
00170
golaee
09199
03¢06
00210
02220
00230
00249
00250
00250
002170
00280
002720
20300
00310
0232¢
00:330

L K+ )

LOG

J0oB
REMARK
REMARK
REMARK
REMARK
REMARK
PAUSE
PRCOGRA¥
NIMSG
PARM

DS

DS

oS

£XEC
Jump
PROGFK AM
\NOMSG
PARM

oS

DS

DS

FEXEC
Juwe
PROGRAM
NOMSG
PARM
EXEC
LABEL
+Od

Now that SEDXDEFS contains your system configuration statements,
and LINKCNTL contains the edited INCLUDE file, you are ready to
assemble the configuration statements, and link edit the resulting object

module with the supervisor support object modules specified in

LINKCNTL. The linked object module will then be formatted by the

SUPDATE utility to form an executable supervisor.

The assemble, link, and formatting steps will be performed uhder

control of the job stream processing utility $JOBUTIL. You could
load the assembler SEDXASM, provide the data set names required

yourself, and do the assembly, then in turn do the same for $LINK and
SUPDATE, but using $JOBUTIL, all three steps may be accomplished

with a single entry.

$JOBUTIL operation is controlled by a procedure file of job control

statements. For SYSGEN, a procedure file named $SUPPREP is

supplied on volume ASMLIB. Figure 15-12 presents a listing of that

procedure file,

If, when you allocated data sets at the beginning of SYSGEN, you had
used other than the names/volumes recommended, you would now have

to edit this procedure file to reflect the names/volumes you used.

EVENT DRIVEN EXECUTIVE - VERSION 3y MONDIFICATION LEVEL O

$SYSPRTR

$SUPPREP

%% ENTER -GO- AFTER -X53002- HAS BEEN VARIED ONLINE %
%% AND AFTER THE FOLLOWING MEMBERS %

#% HAVE BEEN ALLOCATEC ON VOLUME EDX002: %%

#% ASMNORKyASMUBJ9LEWORKL ¢ LEWORK2y SUPVLINK i

%% - SIZES AS PRESCRIBED IN PROGRAM DIRECTURY — =%
SEOXASMyASMLIB EOX ASSEMBLER PROGRAM
$EDXDEFS9EDXQ02 CONFIGURATION STATEMENTS DATA SET
ASMWORK»ENXQOZ ASSEMELER WIORK OATA S=T
ASMOEJyEJX002 OBJECT CUTPUT DATA SET
ENDJOByGTy 4

$LINKLENXON2 LINK EDITOR PROGRAM

$SYSPRTR

LINKCNTL+EDXO00O2 LINK EDITOR CONTROL STATEMENTS
LEWOBRKL19EDXOQ2 LINK EDITOR WORK DATA SET
LEWORK24EDX002 LINK EDITOR WORK DATA SET
ENOJOBsGT o4

$SUPDATELEDXOUL2 UPDATE (FORMAT) PRNOGRAM

$SYSPRTR SUPVLINKyEDXOO2 $EDXNUCT,EDX002 YES

ENDJUB

Figure 15-12. $JOBUTIL procedure

System Installation

15-19



ASSEMBLE/LINK/FORMAT

156-20

=
\~—__EDITWORK _~~ $FSEDIT

EDX002

For example, if you had called the assembler work file ASMWRK1
instead of ASMWORK, you would have to change the name in the DS
statement number 160.

All files allocated for this SYSGEN used the recommended names and
volumes, so the editor work data set is saved in the data set SUPPREPS
on EDX002. The editing portion of SYSGEN is complete, and is
summarized in Figure 15-13.

ASMLIB

=
$SUPPREP

EDX002

—
SUPPREPS

Figure 15-13. Procedure file update

SR30-0436

Note: Because there were no changes required in the $JOBUTIL pro-
cedure file, the transfer of $SUPPREP on ASMLIB to SUPPREPS on

ED X002 could have been accomplished using $COPY or $COPYUT1,
rather than with the READ and WRITE text editor commands.

To assemble, link edit, and format the tailored supervisor, load
$JOBUTIL, and supply the name of your procedure file, as illustrated
in Figure 15-14.

>|$L $J0BUTIL|
$JOBUTIL 4P, LP = 6000
ENTER PROCEDURE (NAME,VOLUME) : [SUPPREPS,EDX002

$JOBUTIL ENDED

Figure 15-14. $JOBUTIL



o

The procedure file has specified $SYSPRTR as the log device, so the
first thing that happens is that the procedure file statements controlling
the assembly operation print out on the system printer (see Appendix
A, Figure A-1). $JOBUTIL loads the assembler, $EDXASM, which
assembles your system configuration source file, SEDXDEFS.

ASMLIB

$JOBUTIL
(EDX002)

EDX002

—
SUPPREPS /

LINKCNTL. 5D
$SEDXDEFS

N\ EDXO002
N

EDX002 A EDX002

) SEDXASM =
\~—__ ASMWORK Y, (ASMLIB) T ASMOBJ A

Figure 15-15. SEDXASM

The resulting object module is stored in data file ASMOBJ on volume
ED X002, which you created. The listing produced as a result of the
assembly prints out on the system printer, preceded by assembler
statistics (see Appendix A, Figure A-2).

Next, $JOBUTIL loads the link editor, $LINK. (Appendix A, Figure
A-3.) Using the object module from the assembly (ASMOBJ) and the
file of link control records (INCLUDE statements) you stored in
LINKCNTL, the $LINK program brings in the supervisor object modules
specified in LINKCNTL and link edits them with the system control
blocks generated by the assembly (ASMOBJ object module).

System Installation  15-21



$JOBUTIL
(EDX002)

[

\
\\\ EDX002 -
NN

EDX002

ASMLIB

EDX002

) XS3002
\~__ LEWORK1 _— . SLINK < . SUPERVISOR
(EDX002) O OBJECT
LEWORK2 i MODULES

Figure 15-16. $LINK

15-22

SR30-0436

EDX002

The data set SUPVLINK, which you allocated for link edit output, is
used to store the resulting linked module. The link editor prints out
the LINKCNTL file (Appendix A, Figure A-4) and any unresolved
references resulting from the link edit on the system printer. There
will be several unresolved weak external references (WXTRN) for
supervisor support modules you did not want to include, but no
unresolved EXTRN messages should appear.

$JOBUTIL now loads $UPDATE to format the linked supervisor into
a loadable module (Appendix A, bottom of Figure A-4).

C



ASMLIB

$JOBUTIL
(EDX002)

AW N

AN
\\ N\ EDX002
NS

EDX002

—
SUPPREPS

$ESEDIT
' {EDX002)

SUPLIB

\
\

EDX002

(:::) XS3002
. SUPERVISOR
@) OBJECT
I MODULES
EDX002

SUPDATE
(EDX002)

EDX002

—
$EDXNUCT

Figure 15-17. SUPDATE

The formatted load module is placed in SEDXNUCT, a supervisor data
set allocated automatically by SUPDATE. SUPDATE ends (Appendix
A, Figure A-5) and $JOBUTIL completes.

System Installation  15-23



Designate Tailored Supervisor

16-24 SR30-0436

Before you can test the new supervisor, it must be designated as the one
to be loaded at IPL time. To do this you must invoke $INITDSK and
write a new IPL text record (command 1) designating SEDXNUCT on
ED X002 as the new supervisor.

Figure 15-18 summarizes the tailored system generation process.



SLNKCNTL

ASMLIB

C S
SSUPPREP

$JOBUTIL SEDXDEF
(EDX002)
\~\\\\\ EDX002
AN\ EDX002
> =
— $FSEDIT SUPPREPS
EDITWORK (FDX002) & LINKCNTL 2
SEDXDEFS
EDX002
SEDXASM =
(ASMLIB) N ASMOBJ
Q = $SLINK XS3002
LEWORK1 — . SUPERVISOR
v (EDX002) o OBJECT
LEWORK2 \ MODULES
\ i
\
\ EDX002
SUPDATE P
(EDX002) SUPVLINK
EDX002
$COPY =
(EDX002) SEDXNUCT
EDX002

Figure 15-18. SYSGEN overview

O

C S D
$EDXNUC

System Installation 15-25



IPL Tailored Supervisor

When you IPL the tailored supervisor, the IPL message shown in C
Figure 15-19 is displayed. -

*** EVENT DRIVEN EXECUTIVE ***  VER 3.0

IPL = SEDXNUCT,EDX002

STORAGE MAP

PART= START SIZE
1 40448 16896
2 57344 32768
3 90112 40960

SET DATE AND TIME USING COMMAND ST
EDX INITIALIZATION COMPLETE

Figure 15-19. IPL message

The message on the $SYSLOG device indicates that SEDXNUCT is the
supervisor that was loaded and that it is 40K bytes in size. Partition C
sizes are as shown. Users may now execute programs under the tailored
system.

15-26  SR30-0436



@

Section 16. Program Preparation Using SEDXASM

OBJECTIVES: After completing this section, the student should be
able to;

1. Describe the steps required for application program preparation

2. Understand the operation of the online utilities/programs used
for program preparation (57 19-XX2)

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702), “Program Preparation.”

PROGRAM PREPARATION OVERVIEW

The steps required to prepare an Event Driven Executive application
program for execution are outlined in Figure 16-1.

STEP 1: CREATE SOURCE MODULE

Source program modules are created using either SEDIT1TN or
$FSEDIT, the text editing utilities.

STEP 2: ASSEMBLE SOURCE MODULE
SEDXASM, the assembler program, produces object modules
from source modules. An object module may be input to the link
edit program $LINK or, if no references to external modules are
made, it may be input to the formatting utility SUPDATE.

STEP 3: PRODUCE ASSEMBLY LISTING
This is a subfunction of the assembly, STEP 2. The listing can be
suppressed entirely, or errors only printed. The listing may be
directed to a device other than the system printer, if desired. The

listing is produced by $EDXLIST, a separate program loaded by
$SEDXASM as required.

STEP 4: LINK EDIT OBJECT MODULES
The $LINK program is used to combine object modules to form a
complete program. This step is not required if the object module
produced by an assembly is already a complete program in itself
(no references to external modules included in the assembly).

STEP 5: FORMAT OBJECT MODULE

Program object modules produced by $EDXASM or $LINK are
not in executable form. They must first be processed into relo-
catable load modules by the utility program $UPDATE.

Program Preparation Using SEDXASM  16-1



$EDITIN 4
SFSEDIT STEP 1: CREATE/MODIFY SOURCE MODULE

STEP 2: ASSEMBLE SOURCE.

- $SEDXASM MODULE (PRODUCE OBJECT
MODULE)
— et e s e e e e e e e e e
\ 4
STEP 3: PRODUCE
?g%;ﬁ;u ASSEMBLY LISTING

(OPTIONAL)
STEP 4: LINK EDIT
OBJECT MODULES | SLINK
(IF REQUIRED) (AS REQUIRED)

STEP 5: FORMAT OBJECT MODULE INTO $UPDATE

RELOCATABLE LOAD MODULE
(EXECUTABLE PROGRAM)

RUN STEP 2, STEP 3, STEP 4, AND

$JOBUTIL STEP 5 AS BATCH JOB STREAM

Figure 16-1. Program preparation overview

$JOBUTIL: BATCH JOB STREAM PROCESSOR
At the bottom of Figure 16-1 is a reference to $JOBUTIL, the
batch job stream processor. This is a program preparation produc-
tivity aid which allows the assembly, link edit, and formatting
steps to be run as a continuous sequence of job steps, without
operator intervention.

In this section, the features and operating characteristics of each of the
programs/utilities required for program preparation is discussed

separately. Following the discussion is a comprehensive example, using

each utility in preparing a program for execution. (\

16-2 SR30-0436



@

SEDXASM

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$SEDXASM."”

$EDXASM is the system program used for assembly of source pro-
grams written in the Event Driven Executive language. $EDXASM,
along with other program preparation programs, resides on volume
ASMLIB.

Data Set Requirements. $EDXASM is loaded using the “‘$L"" supervisor
utility functicn. The operator will be prompted for required data set

_names, as shown in Figure 16-2.

> [$L $EDXASM,ASMLIB]

SOURCE  (NAME,VOLUME): [SRCINPUT]
WORKFILE (NAME ,VOLUME ) : [WORKSET
OBJECT (NAME,VOLUME): {0BJOUT]

Figure 16-2. $EDXASM (1)

The SOURCE data set is the input source module to be assembled. The
statements in this file are created using SEDIT1N or $FSEDIT.

For WORKFILE, enter the name of a data set to be used as an
assembler work area. This file must already be allocated, and usually
ranges between 100 and 500 records in size, with 250 about average.

The OBJECT data set is the preallocated data set in which the object
module resulting from the assembly will be stored. This object module
will be input either to $LINK, if it is to be combined with other object
modules, or to SUPDATE, if it is a complete program (no references
to external modules).

In Figure 16-2, all three data sets reside on the IPL volume, as no
volume names are supplied. Were the data sets resident on other
volumes, each data set name would be followed by the volume, separ-

ated by a comma.

The loader ($L function) is a serially reusable resource. In Figure
16-2, the loader is enqueued, and therefore unavailable to other users
and to the system, as soon as the ENTER key is pressed to enter the
first line, $L $EDXASM,ASMLIB. It remains enqueued throughout
the prompt/response sequence that follows, a length of time which
may be considerable, depending on how familiar the operator is with
the data set names requested, and how fast they can be entered.

Program Preparation Using SEDXASM  16-3



164 SR30-0436

>[$L $EDXASM,ASMLIB SRCINPUT WORKSET 0BJOUT]

Figure 16-3. SEDXASM (2) (\/

Figure 16-3 illustrates an alternate way of entering the same load
request. When the ENTER key is pressed, all required data set names
are available on the same line, and enqueue time for the loader is
greatly reduced. For SEDXASM, and all other utilities accepting
advance input, the advance input form should be used where possible.
Note: Utilities accepting advance input have no way of “knowing”’
the purpose of a data set, other than by the position of the data set
name on the advance input line. The data set names must be supplied
on the advance input line in the same sequence as the utility would
prompt for them were advance input not employed.

In addition to source, work, and object data sets, whose names must
be supplied at load time, SEDXASM also uses a language control data
set. The language control data set supplied with the system is called
$EDXL and contains the assembler error messages and an “‘op code
to processing module’” specification for each of the standard Event
Driven Executive instructions. |f users wish to modify the instruction
set or add error messages, SEDXL may be changed, or a new language
control data set produced (the language control data set is in source
statement format, and can be modified using $EDIT1N or $FSEDIT).

SEDXASM supports the copycode function, which allows source code

residing in data sets to be included in an assembly by coding a

COPY statement in the source program. The language control data C
set is used to define disk or diskette volumes containing copycode v
data sets to the assembler.

SEDXL, the system-supplied language control data set, already con-
tains *COPYCOD statements which define disk volumes ASMLIB
and EDX002 as volumes containing copycode data sets. |f a user-
written copycode data set resides on either of these volumes, no
change to $EDXL is required to use the COPY statement in a user
source program assembly. However, if a user copycode data set
resides on a volume other than ASMLIB or EDX002, $EDIT1N or
$FSEDIT must be used to add a *COPYCOD statement to SEDXL
which defines the new volume as one which may contain copycode
data sets.

After SEDXASM has been loaded the SELECT OPTIONS (?): prompt
will appear. A “’?’’ response will list the available options, as shown in
Figure 16-4.

SELECT OPTIONS (?) :
LIST - SPECIFY LIST DEVICE

NOLIST - DO NOT PRINT LISTING
ERRORS - LIST ERRORS ONLY

CONTROL - SPECIFY CONTROL LANGUAGE
END - END OPTION SELECTION
('ATTN - CA' TO CANCEL ASSEMBLY)

Figure 16-4. SEDXASM (3) C



.,

O

SEDXLIST

SLINK

LIST You can specify the name of the device that will be used
for the assembly listing (name=label in TERMINAL system
configuration statement). |f the LIST option is not
entered, the list device will default to $SYSPRTR.

NOLIST This option suppresses the listing entirely, but assembly
statistics will be displayed on the loading terminal.

ERRORS Only statements causing assembly errors, along with their
error messages, will be listed. The operator will also be
prompted for the name of the error list device.

CONTROL You can specify the name of your own language control
data set. If it is not entered, this option defaults to
SEDXL on volume ASMLIB.

END Once any option is entered in response to the SELECT
OPTIONS (?): prompt, the operator will continue to be
prompted until END is entered, or until the ENTER key is
depressed with no entry. |f no response is made to the
first SELECT OPTIONS (?): prompt (ENTER key with
nothing entered), the assembly will start without END’s
being entered, $EDXL on ASMLIB will be used as the
language control data set, and the full listing will appear
on the system printer ($SYSPRTR).

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “SEDXLIST.”

The assembly listing is produced by the assembly list processing program
$EDXLIST. Though usually run as part of the assembly process,
$EDXLIST may be loaded directly ($L) and run after the assembly is
finished, as long as the assembler work data set has not been disturbed
{used in another assembly). See the reading assignment for operating
instructions.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$LINK—
Linkage Editor.”

SLINK is used to combine two or more object modules into a single
output object module. Input object modules may be produced by
SEDXASM, by the Series/1 macro assembler ($S1ASM), by the PL/I,
FORTRAN or COBOL compilers, or by the Host Assembler. The
output object module produced by $LINK must be processed by
SUPDATE before it can be loaded and executed.

Program Preparation Using SEDXASM  16-5



16-6

SR30-0436

Data Set Requirements. When $LINK is loaded, the operator is

prompted for the names of three data sets. The first is the link control C\
data set, which will contain control records specifying the object )
modules (names of object module data sets) that will be linked together.

The other two data set names are the names of link edit work data sets,

used as work areas during the linkedit process.

> [SL SLINK]
LINKCNTL (WAME , VOLUME ) : [LTNKCNTL
LEWORK1 (NAME ,VOLUME) : [LINKWRKT
LEWORK2 (NAME ,VOLUME) : [LINKWRK2
SLINK 76P,00:40:39, LP= 5FO0

ENTER DEVICE NAME FOR PRINTED OQUTPUT
$SYSPRTR

Figure 16-5. SLINK (1)

See the reading assignment for recommended work data set sizes.

The link control data set (LINKCNTL) controls overall link edit opera-

tion. The control records are produced using SEDIT1N or $FSEDIT.

The first control record in all LINKCNTL data sets is an OUTPUT

statement, specifying the data set that will be used to store the output

object module resulting from the link edit. This data set (as well as

the work data sets) must be allocated before the link operation is

attempted. In Figure 16-6, the output statement specifies data set \
LINKOUT on the IPL volume (if no volume is specified, default=IPL) C
as the output data set for the linked object module.

OUTPUT  LINKOUT
INCLUDE ASMOUT1,EDX003
INCLUDE ASMOUT5

END

Figure 16-6. $LINK (2)

The output object module will be produced by linking the input object
module in ASMOUT1 on volume EDX003 with the object module in
ASMOUTS5 on the IPL volume, as specified by the two INCLUDE
statements following the OUTPUT record. The first INCLUDE record
must specify an object module that contains an initial task, produced
by an assembly of a source module beginning with a PROGRAM state-
ment with the MAIN= operand coded as (or defaulted to) MAIN=YES.
Subsequent INCLUDE records cannot specify object modules con-
taining initial tasks.

In addition to those object modules explicitly named in INCLUDE

statements, $LINK can also include object modules through the

AUTOCALL option. Using the AUTO= operand of the OUTPUT

control record, an autocall definition data set may be named. This data

set contains the names (and volumes, if not IPL resident) of autocall C\
object modules, along with their entry points. s



OUTPUT  LINKOUT AUTO=MYAUTO,EDX003
INCLUDE ASMOUTA
(::) INCLUDE ASMOUTB
END

RENBR,EDX001 RENUM1 RENUM2
ABTERM ABENT **END

Figure 16-7. SLINK (3)

In Figure 16-7, a reference to RENUM1, RENUM2, or ABENT from
within object module ASMOUTA or ASMOUTB cannot be resolved
by linking ASMOUTA with ASMOUTB. Because AUTO= is coded,
$LINK goes to the autocall data set MYAUTO, and tries to find the
referenced name in the list of entry points specified in the autocall
definition records. If a match is found, $LINK will link the associated
autocall object module with ASMOUTA and ASMOUTB.

The **END in the last autocall definition record performs the same
function for the autocall definition data set as does the END record
for the link control data set.

In addition to the link control and work data set names, the operator
is also prompted for the name (label of TERMINAL system configura-
tion statement) of the terminal which is to receive the $LINK output
messages (see Figure 16-5). $LINK prints out the link control state-
ment file, and a map of the linked object module (see the reading

C) assignment for an example).

- $JOBUTIL

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator’s Reference, Messages and Codes (SC34-1703), “$JOBUTIL —
Job Stream Processor.”’

$JOBUTIL is the batch job stream processor utility. $JOBUTIL uses a
user-created ($EDIT1N, $FSEDIT) job processor procedure file to
sequentially execute a series of programs. To illustrate basic $JOBUTIL
operation, a procedure file to invoke the online assembler, SEDXASM
will be created.

Procedure command statements are stored two statements per record,
so a data set size of 15 or 20 records is usually adequate. For this dis-
cussion, assume a data set called MYPROC is allocated on the IPL
volume.

Using $EDIT1N or $FSEDIT, the procedure command file can now be
created. An asterisk in column 1 defines an internal comment command.

’?* $JOBUTIL / $EDXASM EXAMPLE

Q ' Figure 168. $JOBUTIL (1)

Program Preparation Using $EDXASM  16-7



16-8

SR30-0436

The entire statement is treated as a comment, and may appear anywhere

within the procedure command file. The internal comment statements

are for procedure file documentation only; they are not printed out or C
displayed during $JOBUTIL operation.

All the other procedure commands have a defined positional format.
The commands must appear in character positions 1 through 8, starting
in 1; operands in 10 through 17, starting in 10; and comments in 18
through 71.

!
*  $JOBUTIL / $EDXASM EXAMPLE

*  'L0G' COMMAND - $JOBUTIL LOG DEFINITION
;_OG ON

Figure 16-9. $JOBUTIL (2)

The LOG command controls the printing of $JOBUTIL procedure com-
mands, with LOG coded as shown in Figure 169, procedure com-
mands will be displayed on the terminal used to load $JOBUTIL, as
they are read from the procedure file. Other operand options are either
OFF, for no logging of procedure commands, or terminal name specify-
ing the name of a terminal to which you wish the $JOBUTIL procedure
commands directed.

¢ C\
*  $JOBUTIL / $EDXASM EXAMPLE -~
*  'LOG' COMMAND - $JOBUTIL LOG DEFINITION

LOG ON

*  'REMARK' COMMAND - DISPLAYS MESSAGE

*

ON LOADING TERMINAL
REMARK ~ OPERATOR MESSAGE

!

Figure 16-10. $JOBUTIL (3)

The REMARK command will display on the terminal used to load
$JOBUTIL. REMARK commands may be placed anywhere within a
procedure file, The JOB command, like the REMARK command, is
optional. In Figure 16-11, the JOB command is the first command in
the procedure data set, but could follow the LOG or the REMARK.
The JOB cemmand displays a “’job started” message on the loading
terminal, with the time and date. Both JOB and REMARK operate
without regard to LOG (LOG OFF has no effect).



O

JOB ASMPLE

*  $JOBUTIL / $EDXASM EXAMPLE

*  'L0G' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON

*  'REMARK' COMMAND - DISPLAYS MESSAGE

*  ON LOADING TERMINAL

REMARK ~ OPERATOR MESSAGE

*  'PROGRAM' COMMAND DEFINES THE PROGRAM

* TO BE LOADED

PROGRAM  $EDXASM,ASMLIB

Figure 16-11. $JOBUTIL (4)

The PROGRAM command defines the program name/volume that
$JOBUTIL is to load (if the JOB command is used, it must appear
before PROGRAM).

JOB ASMPLE

*  $JOBUTIL / $EDXASM EXAMPLE

*  'L0G' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON

*  'REMARK' COMMAND - DISPLAYS MESSAGE

*  ON LOADING TERMINAL

REMARK  OPERATOR MESSAGE

*  'PROGRAM' COMMAND DEFINES THE PROGRAM
* TO BE LOADED

PROGRAM  $EDXASM,ASMLIB

* 'DS' COMMANDS DEFINE DATA SETS THE

*  LOADED PROGRAM REQUIRES

DS SCRMAT
DS ASMWORK
DS ASMOUT?2

;

Figure 16-12. $JOBUTIL (5)

“DS" commands define data sets to the program being loaded. Only
one data set may be defined with each DS statement, and the defini-
tions must appear in the same order as the responses to load-time data
set definition prompts would be entered, were the program loaded
using the “$L"" operator command.

Following the DS commands, any additional information required by
the program being loaded is passed using the PARM command. In
Figure 16-13, PARM is coded with no operand. This is equivalent to
responding to the SELECT OPTIONS: prompt by pressing the ENTER
key without entering an option, when SEDXASM is loaded using $L.

Program Preparation Using $EDXASM 169



16-10

SR30-0436

-JOB ASMPLE

*  $JOBUTIL / $EDXASM EXAMPLE : (/“\
*  'LOG' COMMAND - $JOBUTIL LOG DEFINITION —
LOG ON

*  'REMARK' COMMAND - DISPLAYS MESSAGE

*  ON LOADING TERMINAL

REMARK ~ OPERATOR MESSAGE

*  'PROGRAM' COMMAND DEFINES THE PROGRAM
* TO BE LOADED

PROGRAM  $EDXASM,ASMLIB

* 'DS' COMMANDS DEFINE DATA SETS THE

*  LOADED PROGRAM REQUIRES

DS SCRMAT
DS ASMWORK
DS ASMOUT?2

*  'PARM' COMMAND PASSES PARAMETERS TO
*  THE LOADED PROGRAM
PARM

j

Figure 16-13. $JOBUTIL (6)

The program to be loaded now has all the information required to load
and execute. In Figure 16-14, the “EXEC" command issues the load
request for the program defined in the preceding PROGRAM command.

JOB ASMPLE (::j
% $JOBUTIL / $EDXASM EXAMPLE

* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON

*  'REMARK' COMMAND - DISPLAYS MESSAGE

*  ON LOADING TERMINAL

REMARK ~ OPERATOR MESSAGE

% 'PROGRAM' COMMAND DEFINES THE PROGRAM

* 10 BE LOADED

PROGRAM ~ $EDXASM,ASMLIB

* 'DS' COMMANDS DEFINE DATA SETS THE

*  LOADED PROGRAM REQUIRES

DS SCRMAT
DS ASMWORK
DS ASMOUT?2

*  'PARM' COMMAND PASSES PARAMETERS TO

*  THE LOADED PROGRAM

PARM

*  'EXEC' COMMAND ISSUES LOAD REQUEST FOR
*  THE PROGRAM

EXEC

* 'EQJ' ENDS THE PROCEDURE COMMAND FILE
EQJ

Figure 16-14. $JOBUTIL (7)



The “EOQJ’* command following the EXEC indicates end of job, and
terminates the job stream processor utility. If another job were to be
Q run before ending this procedure, appropriate PROGRAM, DS, PARM
and EXEC statements would precede the EQJ.

When the text editing session that created the procedure is complete,
the procedure is stored in the data set MYPROC. The job can be run
by loading $JOBUTIL, and specifying procedure file MYPROC, as
shown in Figure 16-15.

> |5L $JOBUTIL
$JOBUTIL 3P,00:00:17, LP= 5FQ0
ENTER PROCEDURE (NAME,VOLUME): [MYPROC

Figure 16-15. $JOBUTIL (8)

In Figure 16-16, each of the procedure command statements in pro-
cedure file MYPROC (without the internal comments) is related to the
equivalent operator responses for a $L load of the assembler.

JOB ASMPLE
LOG ON
REMARK ~ OPERATOR MESSAGE
[SEDXASM,ASMLIBE »PROGRAM $EDXASM,ASMLIB
SOURCE  (NAME,VOLUME ) : [SCRMAT DS SCRMAT
-, WORKF ILE (NAME ,VOLUME ) : [ASMWORK DS ASMWORK
(:;) OBJECT (NAME,VOLUME): [ASMOUT2 »DS ASMOUT2

SEDXASM 76P,00:46:58, LP= 5F00 PARM
»EXEC
SELECT OPTIONS (?): EOJ

Figure 16-16. $JOBUTIL (9)

Other $JOBUTIL commands allow job steps to be skipped/executed
based on the completion code returned from a previous step, the
invoking of nested procedures in other procedure data sets, and the
entering of procedure commands from the loading terminal. For a
comprehensive example of $JOBUTIL capabilities, see the Program
Preparation Example topic that follows.

Program Preparation Using SEDXASM  16-11



PROGRAM PREPARATION EXAMPLE

PROBLEM DESCRIPTION

1612

SR30-0436

In the remainder of this section, a source module will be assembled, (—\
link edited, and formatted. Each step will first be treated separately, =
and then all steps will be combined under control of the batch job

- stream processor utility $JOBUTIL.

In ““Section 11. Terminal 1/0", a program was developed, which, using
a series of PRINTEXT instructions, formatted a data entry screen (see
the topic Static Screen Coding Example in Section 11). In “‘Section
14. Utility Programs,’’ the SIMAGE screen formatting utility was used
to create the same screen, and to save it in a screen image data set
‘named VIDEO1.

Supplied with the Event Driven Executive system are a group of super-
visor subroutines which allow user programs to access stored screen
images produced by $IMAGE. The goal of this exercise is to replace
the user-written formatting instructions (PRINTEXTSs) in the program
developed in Section 11, with the appropriate subroutine calls to access
the stored screen image in data set VIDEO1.



Create/Modify Source Module

O

$EDITIN
SFSEDIT STEP 1: CREATE/MODIFY SOURCE MODULE

ot e v T —— L G i’ o S, s o e e i s

I srsi’z‘ Aséémate SOURCE.
($EDXASM . | MODULE (PRODUCE DBJECT.
Lo MODULE) . 3

fs‘rsp 3 PRODUCE |
ASSEMBLY LISTING -
, (OPT|0NAL)

$EDXLIST i
(OPTIONAL)

STEP a4 LINK EDIT
OBJECT MODULES
{iF REQUH‘!&D) .

O

Figure 16-17. Step 1: Create source module

Data Set Requirements.

UTILITY

SFSEDIT INPUT OUTPUT WORK CONTROL
DATA DATA DATA DATA

VOLUME SET SET SET SET

EDX002 STATSRC EDITWORK

ASMVOL SOURCE

Figure 16-18. Data set requirements (1)

The source module to be modified is SOURCE on volume ASMVOL.
Using $FSEDIT, the program is read into the text edit work data set
(Figure 16-19).

Program Preparation Using SEDXASM  16-13



SFSEDIT PRIMARY OPTION MENU
SELECT OPTION === .

BROWSE - DISPLAY DATASET
EDIT CREATE OR CHANGE DATASET
READ READ DATASET FROM HOST/NATIVE
WRITE WRITE DATASET TO HOST/NATIVE
SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
LIST PRINT DATASET ON SYSTEM PRINTER
MERGE MERGE DATA FROM A SQURCE DATASET
TERMINATE SFSEDIT
DISPLAY TUTORIAL

1
2
3
4
5
6
7
8
9

ENTER DATASET (NAME,VOLUME) : [SOURCE,ASMVOL

Figure 16-19. Program preparation (1)

The screen formatting code begins at statement 140. In Figure 16-20,
DD is entered to the left of statement 140, defining the start of a
block delete.

EDIT --- EDITWORK, EDX002 75( : COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>pp ¢
Akkk kkkkk TOP OF DATA ARAshidchkahkiihhiehhh sk hhkdhhh sk khh bkt drksikktiik

00010 XMPLSTAT PROGRAM  START
00020 10CB1 10CB NHIST=0
00030 I0CB2 10CB SCREEN=STATIC
00040 ATTNLIST (END,OUT,$PF,STATIC)
00050 START ENQT 10CB1
00060 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00070 PRINTEXT "HIT “ATTN" AND ENTER "END" TO END',SKIP=2
00080 PRINTEXT ' THE PROGRAM'
00090 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00100 PRINTEXT ' BRING UP THE ENTRY SCREEN'
00110 DEQT
00120 WAIT ATTNECB,RESET
00130 IF (ATTNECB,EQ,1),GOTO,ENDIT
= [DDoo140 ENQT 10CB2
00150 ERASE MODE=SCREENTYPE=ALL
00160 TERMCTRL  BLANK
00170 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1
00180 PRINTEXT ' PF1 = DELETE ENTRY 1'
00190 PRINTEXT ' PF2 = DELETE ENTRY 2°'
00200 PRINTEXT °PF3 = DELETE ENTRY 3 ',SKIP=1
00210 PRINTEXT 'PF4 = DELETE ENTRY 4'

Figure 16-20. Program preparation (2)

Scrolling down through the work area, the end of the formatting code
is statement 370 where DD defines end of block delete.

16-14 SR30-0436

O

()



8 EDIT --- EDITWORK, EDX002

COMMAND INPUT ==

00220
00230
00240
00250 HOR
00260
00270
00280
00290
00300 Al
00310
00320 A2
00330
00340
00350
00360

B 0000370

00380 WAITONE

00390
00400 E1
00410
00420 E2
00430

PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
MOVE

D0
PRINTEXT
PRINTEXT
ADD
PRINTEXT
ADD
PRINTEXT
ADD
ENDDO
PRINTEXT
TERMCTRL
WAIT
GOTO
MOVE
GOTO
MOVE
GOTO

BLOCK COMMAND INCOMPLETE
SCROLL ===>yp)

DASHES,PROTECT=YES,LINE=3

'CLASS NAME:',LINE=4,PROTECT=YES

'INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5

LINENBR, 6

4,TIMES

'NAME: ', LINE=LINENBR,PROTECT=YES
'STREET:',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,3

LINE=4,SPACES=11

DISPLAY

KEY
(READ,E1,E2,E3,E4),XMPLSTAT+2
LINENBR, 6

DELETE

LINENBR, 11

DELETE

Figure 16-21. Program preparation (3)

After ENTER has been pressed and after you have scrolled back to the
top of the data set, you will see the screen in Figure 16-22 with state-
ments 140 through 370 deleted.

EDIT --- EDITWORK, EDX002
COMMARD INPUT ===
akkkk TOP OF DATA *HAkkhhokkkokskkdkokkhiohhhohkhhhkokkk ok hdkk ik ko dh ko kdeok e

XMPLSTAT PROGRAM

Kk k ko

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120

00130

00380
00390
00400
00410
00420
00430
00440

10CB1
10CB2

START

CHECK
WAITONE

00450

108
10C8
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT

IF

WAIT
GOTO
MOVE
GOTO
MOVE
GOTO
MOVE
GOTO

51{ 5 COLUMAS 001 072
SCROLL ===>pp £

START

NHIST=0

SCREEN=STATIC

(END,OUT,$PF,STATIC)

10CB1

"CLASS ROSTER PROGRAM',SPACES=15,LINE=1
"HIT "ATTN" AND ENTER "END" TO END',SKIP=2
' THE PROGRAM'

"HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,1),GOTO,ENDIT

KEY
(READ,E1,E2,E3,E4) , XMPLSTAT+2
LINENBR,6

DELETE

LINENBR,11

DELETE

LINENBR,16

. DELETE

Figure 16-22. Program preparation (4)

By using the.insert function of EDIT mode, the statements required to
access the screen image in data set VIDEO1 can now be added.

Program Preparation Using $SEDXASM  16-15



SIMOPEN

16-16 SR30-0436

READING ASSIGNMENT: 1BM Series/1 Event Driven Executive
System Guide (SC34-0312), ‘“Formatted Screen Images.”

®

The first step in using a stored screen image is to read the image data
set into the user program.

}
IMAGEBUF BUFFER 768,BYTES

DSETNAME TEXT 'VIDEO1,EDX002'
¢
GETIMAGE CALL $IMOPEN, (DSETNAME ) , ( IMAGEBUF)

¢

Figure 16-23. Program preparation (5)

Using subroutine SIMOPEN, the data set is read into a user buffer. The
name of the data set is specified in a TEXT statement, and the label of
the TEXT statement is passed to $IMOPEN as the first parameter in the
CALL. The second parameter is the label of the buffer which will
receive the image. Both parameters must be enclosed in parentheses.

The buffer is defined by a BUFFER statement, in bytes. Data set
VIDEO1 is three records in length, so IMAGEBUF is defined as 768
bytes.

user responsibility to check for proper completion (-1 completion
code). In Figure 16-24, the completion code check and error routine
have been added.

SIMOPEN returns a completion code in *‘taskname+2’’, and it is a C
e

IMAGEBUF BUFFER 768,BYTES

DSETNAME TEXT 'VIDEO1,EDX002'
GETIMAGE éALL $IMOPEN, (DSETNAME ) , (IMAGEBUF )
IF (XMPLSTAT+2,NE,-1)
MOVE ERRCODE , XMPLSTAT+2

PRINTEXT  '@IMAGE OPEN ERROR, CODE ='
PRINTNUM  ERRCODE

GOTO ERRQUERY
ENDIF
ERRCODE  DATA F'o"

ERRQUERY QUESTION  '@GRETRY OPEN ? ',YES=GETIMAGE,NO=ENDIT

Figure 16-24. Program preparation (6) C



SIMDEFN

@

SIMPROT/$IMDATA

Before the screen can be displayed, the terminal must be enqueued as a
static screen device. In Figure 16-25, the ENQT IOCB2 is preceded by
a CALL to subroutine $IMDEFN. This subroutine fills in the user-coded
I0CB with the screen dimensions of the screen image in the buffer.
The CALL to $IMDEFN is not a required function; the IOCB may be
enqueued without first calling the subroutine. By calling $IMDEFN,
you are assured that the IOCB will have the proper screen dimensions
for the screen in the buffer. |f SIMAGE is used to change the dimen-
sions of the stored screen image, the new dimensions will be placed in
the IOCB by $IMDEFN when the program next accesses that screen,
with no change in the user program code required.

IMAGEBUF IéUFFER 768,BYTES

DSETNAME TEXT 'VIDEOL,EDX002"
I0CB2  10CB SCREEN=STATIC
GETIMAGE CALL $IMOPEN, (DSETNAME ) , ( IMAGEBUF)
IF (XMPLSTAT+2,NE,-1)
MOVE ERRCODE , XMPLSTAT+2

PRINTEXT  '@IMAGE OPEN ERROR, CODE ='
PRINTNUM  ERRCODE

GOTO ERRQUERY
ENDIF
CALL $IMDEFN, (10CB2) , ( IMAGEBUF)
ENQT 10CB2
ERRCODE DATA Fro

ERRQUERY QUESTION  '@RETRY OPEN ? ',YES=GETIMAGE,NO=ENDIT

Figure 16-25. Program preparation (7)

Now that the terminal is enqueued, the screen image in the buffer can
be displayed. In Figure 16-26, the TERMCTRL BLANK following

the ENQT blanks the screen, preventing flicker while the image is
written. The CALL of subroutine $IMPROT transfers all the protected
data from the image buffer to the screen, and the call to $IMDATA
transfers the unprotected data. (If a screen image consists of all pro-
tected or all unprotected data, only the appropriate subroutine need
be called.)

Program Preparation Using $EDXASM  16-17



IMAGEBUF BUFFER
DSETNAME TEXT

10cB2  10CB

CALL

IF |
MOVE =~
PRINTEXT
PRINTNUM
GOTO

ENDIF

CALL

ENQT

TERMCTRL

CALL

CALL

PRINTEXT

TERMCTRL

GETIMAGE

DATA
QUESTION

ERRCODE
ERRQUERY

- 768,BYTES

'VIDEO1,EDX002"
SCREEN=STATIC

$IMOPEN, (DSETNAME ) , ( IMAGEBUF)
(XMPLSTAT+2,NE,-1)
ERRCODE , XMPLSTAT+2
'@IMAGE OPEN ERROR, CODE ='
ERRCODE
ERRQUERY

$IMDEFN, (10CB2), (IMAGEBUF)
10CB2

BLANK

$IMPROT, ( IMAGEBUF),0
$IMDATA, (IMAGEBUF)
LINE=4,SPACES=11

DISPLAY

FIOI
"@RETRY OPEN ? ',YES=GETIMAGE,NO=ENDIT

Figure 16-26. Program preparation (8)

The PRINTEXT following the last CALL positions the cursor at the
first data entry field, and TERMCTRL DISPLAY unblanks the

screen.

The second parameter of the CALL $IMPROT statement (Figure 16-26)
is coded as 0. This could be coded as the label of a BUFFER statement,
in which case the $IMPROT subroutine will build a table of the location
and sizes of all unprotected (data entry) fields on the screen. Each table

entry is three words in

length. The first word will contain the line

number and the second, the starting position of the field within the
line (spaces from left margin of screen). The third word will contain

the length of the field.

These entries can be used to read/write data

entry fields on the screen.

16-18 SR30-0436



O

The “$IM’’ subroutines are supplied as object modules. Because they
are object modules, they are combined with the user program in the link
edit step, not during assembly. They must therefore be declared as
external references in an EXTRN statement.

Figures 16-27 and 16-28 are listings of the edit work data set after the
edit session is complete. The EXTRN statement is statement 20, with
the image buffer and screen image data set name definition following
at 30 and 40. Other added statements include the “$IM’’ code from
170 to 300, and the two statements at 670 and 680. The source
module modification is complete. The work data set is written to
STATSRC on volume EDX002 ($FSEDIT Primary Option 4), complet-
ing Step 1 of the program preparation process.

Program Preparation Using SEDXASM  16-19



16-20

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410

00420..

00430
00440
00450
00460
00470
00480
00490

XMPLSTAT
IMAGEBUF
DSETNAME
I0CB1
10CB2

START

CHECK
GETIMAGE

WAITONE
El
E2
E3

E4
DELETE

READ

PROGRAM
EXTRN
BUFFER
TEXT
10CB
10CB
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT
IF
CALL
IF
MOVE
PRINTEXT
PRINTNUM
GOTO
ENDIF
CALL
ENQT
TERMCTRL
CALL
CALL
PRINTEXT
TERMCTRL
WAIT
GOTO
MOVE
GOTO
MOVE
GOTO
MOVE
GOTO
MOVE
ERASE
ADD

ERASE-

ADD -

ERASE ,
SUBTRACT
PRINTEXT
TERMCTRL
GOTO

QUESTION

Figure 16-27. Program preparation (10)

SR30-0436

START
$SIMOPEN, $IMDEFN $IMPROT, $IMDATA (T“\
768,BYTES ‘ —
'"VIDEO1,EDX002"

NHIST=0

SCREEN=STATIC

(END,OUT, $PF,STATIC)

10CB1

'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

'HIT "ATTN" AND ENTER "END" TO END',SKIP=2

' THE PROGRAM'

'WIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,1),G0TO,ENDIT
$IMOPEN, (DSETNAME) , (IMAGEBUF)
(XMPLSTAT+2,NE,-1)
ERRCODE , XMPLSTAT+2
'@IMAGE OPEN ERROR,CODE ="' -
ERRCODE
ERRQUERY

$IMDEFN, (10CB2) , ( IMAGEBUF)
10CB2

BLANK

$IMPROT, ( IMAGEBUF),0
$IMDATA, ( IMAGEBUF )
LINE=4,SPACES=11

DISPLAY

KEY :
(READ,E1,E2,E3,E4),XMPLSTAT+2
LINENBR,6

@

- DELETE

LINENBR, 11

DELETE

LINENBR, 16

DELETE

LINENBR,21
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR, 1
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,1
MODE=LINE,TYPE=DATA,LINE=LINENR
LINENBR,2

LINE=LINENBR,SPACES=5

DISPLAY

WAITONE

"MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP



O

00500 ERASE MODE=LINE,LINE=2,SPACES=55,TYPE=DATA

00510 ERASE MODE=SCREEN,LINE=6
00520 PRINTEXT  LINE=6,SPACES=5
00530 TERMCTRL  DISPLAY

00540 GOTO WAITONE

00550 CLEANUP ERASE MODE=SCREEN,TYPE=ALL
00560 DEQT

00570 GOTO START

00580 ENDIT PROGSTOP

00590 DATA X'5050'

00600 DASHES DATA 80Cc'-"'

00610 OUT POST ATTNECB,1

00620 ENDATTN

00630 STATIC POST ATTNECB,-1

00640 ENDATTN

00650 ATTNECB ECB

00660 LINENBR DATA F'o'

00670 ERRCODE DATA F'o!

00680 ERRQUERY QUESTION  '@RETRY OPEN ? ',YES=GETIMAGE ,NO=ENDIT
00690 ENDPROG
00700 END

Figure 16-28. Program preparation (10 continued)

.................... 4--  SFSEDIT PRIMARY OPTION MENU
SELECT OPTION ===>

BROWSE - DISPLAY DATASET

2 EDIT - CREATE OR CHANGE DATASET
READ - READ DATASET FROM HOST/NATIVE
WRITE ~ WRITE DATASET TO HOST/NATIVE
SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
LIST - PRINT DATASET ON SYSTEM PRINTER
MERGE - MERGE DATA FROM A SOURCE DATASET
END - TERMINATE SFSEDIT
HELP -~ DISPLAY TUTORIAL

ENTER DATASET (NAME,VOLUME) : | STATSRC,EDX002

Figure 16-29. Program preparation (11)

Program Preparation Using $SEDXASM 16-21



Assemble Source Module

Data Set Requirements

16-22

SR30-0436

R g L 80 D, 2
S i b

> SEDXASM

MODULE)

Figure 16-30. Step 2: Assemble source module

STEP 2: ASSEMBLE SOURCE
MODULE (PRODUCE OBJECT

UTILITY
INPUT OouUTPUT WORK CONTROL
SEDXASM  DATA DATA DATA DATA
SET SET SET SET
VOLUME
ED X002 STATSRC ASMOUT ASMWORK
ASMLIB $EDXL

ASMVOL

Figure 16-31. Data set requirements (12)




In Figure 16-32, the load request for the assembler is entered. Since
the prompting sequence for the data set required by the assembler is
known, these data set names are entered as advance input on the
same line as the input request.

>[$§L SEDXASM,ASMLIB STATSRC ASMWORK ASMOUT|
$EDXASM 76P,03:14:35, LP= 7F00

SELECT OPTIONS (?): [END

Figure 16-32. Program preparation (12)

Because no options are selected, a full listing will be produced on the
system printer, and the language control data set used for this
assembly will be SEDXL. When the assembler finishes, the resulting
object module will be stored in ASMOUT on volume EDX002.
SEDXASM will then load $EDXLIST to produce the assembly listing.

Program Preparation Using SEDXASM  16-23



Produce Assembly Listing

3

STEP 3: PRODUCE
ASSEMBLY LISTING
(OPTIONAL)

SEDXLIST
(OPTIONAL}

Figure 16-33. Step 3: Produce assembly listing

Data Set Requirements

UTILITY
SEDXLIST
INPUT OUTPUT WORK CONTROL
DATA DATA DATA DATA
VOLUME SET SET SET SET
ED X002 ASMWORK
STATSRC
ASMLIB $EDXL

Figure 16-34. Data set requirements (3)

1624 SR30-0436



Link Edit Object Modules

In this example, $EDXLIST is loaded by $EDXASM. If the response
to the SELECT OPTIONS (?): prompt had been NOLIST, SEDXLIST
would not have been invoked by SEDXASM, but can still be loaded as
a separate program by the operator. For example, if NOLIST were
selected, and the assembly statistics displayed on the loading terminal
at the end of the assembly indicated that there were assembly errors,
$EDXLIST can then be loaded to print a listing. SEDXLIST will
prompt for the source data set and the assembler work data set, and
will get the name of the language control data set from the work data
set, in which it is stored, at the end of the assembly. Aslongas an
intervening assembly has not altered the contents of the assembler
work data set, and you have not modified the source or language
control data sets, SEDXLIST will produce the same listing when loaded
by the terminal operator after an assembly as it would were it loaded
by $EDXASM as part of the assembly step.

The assembly listing produced by the assembly requested in Figure
16-32 is shown in Appendix B, Figure B-1.

4 0 g A 2T
’ —

$EDITIN -

o UL sTeRs propucE
- SEDXLIST. ] acepmBLy LISTING
; (OPTIONALY -4 yopTionAL) -
STEP 4: LINK EDIT
OBJECT MODULES SLINK
(IF REQUIRED) (AS REQUIRED)

siponre

Figure 16-35. Step 4: Link edit object modules

Program Preparation Using $EDXASM  16-25



Data Set Requirements ‘ : C

UTILITY
SLINK INPUT . OUTPUT WORK CONTROL
DATA . DATA DATA DATA
VOLUME SET SET SET SET
EDX002 ASMOUT LINKOUT  LINKWRK1 LINKSTAT
: LINKWRK2
ASMLIB $AUTO
SLEMSG
SIMGEN
SIMOPEN

Figure 16-36. Data set requirements (4)

The screen formatting subroutines ($IMOPEN, $SIMDEFN, $IMDATA,
$IMPROT) used by the source program are distributed in the form of
object modules. To include these subroutines in the program, the
object module output of the assembly (data set ASMOUT) must be
linked with the screen formatting support object modules.

Instead of requiring that INCLUDE control records for the screen
formatting object modules be user-defined, they are system-defined in
the system-supplied autocall data set SAUTO, and may be included

using the autocall option. C\
S

00710 $GPLISTASMLIB $GPLIST

00020 $PUHCASMLI 3 $PIHC

00030 $GEPMASMLIS SGEPM

00040 $GEACASMLIA - $GEAC

0C050 $3CIMyASMLIS $$GIN

00260 TPUFCeASMLIB $PUFC

00070 $PUXCyASMLIY $PUXC

00030 $GEERGASMLIS $GEER

20070 $GEXC ¢ ASMLIH "~ LGEXC

NDJ100N $5SLREENASULIB $$SCREFN

02110 SPUIC yASMLIR $PUIC

00120 tPUSCoASMLIR $PUSC

07130 $GESC,ASMLIB $GESC

02140 $GEFC.ASMLIR ~ $GEFC

00150 $PUAC4ASMLIP " $PUAC

0150 $PUEC,ASMLIS TPUEC

0,170 $GEIC ASMLIA $GLIC

CIL30 S$SPGINyASMLIE $ PG IN

0)19C $8COMCATLASALIR $SCONCAT

003200 $3XYPLOTsASMLIR $SXYPLOT

0N210 $MFSLASMLIP SMFSL

NU220 SIMTFN,ASMLIR STMDEFN $IMPKOT ST ANATA

00230 $PACK ASMLIG LPACK

05240 BUNPACK,ASMLIB $UNFACK

006250 $IMIPEM,ASMLIA $IMDPEN  DSUPEN

03260 $BRETURN9ASMLIB KETURN

36270 £3SVCASMLIA sSVC

07239 $I™DTYPE,ASMLIB 5IMDTYPF »

00290 $SDXATSRyASMLIB SETDUSY SUPEXIT ®EEND <:::

Figure 16-37. Program preparation (13)

1626  SR30-0436



Figure 16-37 is a listing of $AUTO, the system-supplied autocall data
set. The screen formatting support modules are specified in autocall
definition statements 220 and 250.

If you wished to have your own autocall definitions, you could add
them to this data set, and continue to use the system-supplied autocall
data set SAUTO, or build your own autocall data set. In either case,
the last statement in the data set must contain the “**END'’ text,
indicating the end of the autocall data set.

The output object module data set, the autocall data set (if required),
and the object modules to be linked are passed to the link editor in the
link control data set. The link control data set used for this example

is named LINKSTAT. In Figure 16-38, the link control statements
required for this link edit are listed, along with some preceding comment
lines explaining their function.

00010 * THIS LINK EDIT CONTROL DATA SET SPECIFIES:

00020 * 1) THE LINKED OUTPUT OBJECT MODULE WILL
- 00030 * BE STORED IN 'LINKOUT' ON EDX002
00040 * 2) THE AUTOCALL DATA SET IS '$AUTO' ON
00050 * VOLUME ASMLIB (SYSTEM SUPPLIED)
00060 * 3) 'ASMOUT' ON EDX002 IS THE ONLY INPUT
00070 * OBJECT MODULE TO BE INCLUDED
100080 *

00090 OUTPUT LINKOUT AUTO0=$AUTO,ASMLIB
00100 INCLUDE ASMOUT
00110 END

Figure 16-38. Program preparation (14)

This control statement file is created using SEDIT1N or $FSEDIT, and
stored in LINKSTAT using the SAVE/WRITE function at the end of
the text edit session.

>[$L $LINK,EDX002 LINKSTAT LINKWRK1 LINKWRK2]
$LINK 76P,03:31:45, LP= 7F00

ENTER DEVICE NAME FOR PRINTED OUTPUT
$SYSPRTR

Figure 16-39. Program preparation (15)

Program Preparation Using SEDXASM  16-27



Format Object Module

16-28

SR30-0436

data set and the two link edit work data sets, along with the name of
the device to which link editor messages will be directed. The link
editor, using the LINKSTAT link control data set, links the assembled
object module in ASMOUT (INCLUDE control statement) with screen
formatting object modules in ASMLIB, found through autocall defini-
tions in $AUTO; the linked object module is stored in LINKOUT
(OUTPUT control statement). Required error or information messages
are read from the system-supplied link message data set, SLEMSG.

At SLINK load time, the operator supplies the name of the link control C-\
S

See Appendix B, Figure B-2 for the $SYSPRTR output resulting from
this link edit.

STEP5: FORMAT OBJECT MODULE INTO $UPDATE

RELOCATABLE LOAD MODULE
(EXECUTABLE PROGRAM)

Figure 1640. Step 5: Format object module



Data Set Requirements

Q UTILITY
SUPDATE INPUT OUTPUT WORK CONTROL
DATA DATA DATA DATA
VOLUME SET SET SET SET

ED X002 LINKOUT STATPROG
Figure 16-41. Data set requirements (S)
Before a linked (or assembled) object module can be executed, it must

-first be processed by SUPDATE. This utility formats the object
module into a relocatable load module, acceptable to the system loader.

> |$L $UPDATE
SUPDATE 33P,03:33:10, LP= 7F00

THE DEFINED INPUT VOLUME IS EDX002, OK?
THE DEFINED OUTPUT VOLUME IS EDX002, OK? Y]

COMMAND (?): [RP_LINKOUT STATPROG]

Figure 16-42. Program preparation (16)

N .
Q The “RP’’ command means ‘‘Read Program”’, and is followed by the
name of the object module to be formatted, and the name of the
resulting executable program. If data set STATPROG is not already
allocated, SUPDATE will create it. The program STATPROG can be
loaded and executed when this step is completed.

Program Preparation Using $EDXASM  16-29



$EDXASM Copy Code Function

16-30 SR30-0436

In the discussion of the link edit step, object modules were auto- C
matically included in the link edit, using the autocall feature of SLINK.

In a somewhat similar manner, source statements may be merged into

a source module at assembly time, using the ““copycode’’ capability of

SEDXASM.

During the assembly operation, SEDXASM uses a language control data
set. Figure B-3 in Appendix B is a listing of the system-supplied lan-
guage control data set SEDXL. This data set consists of three main parts.
Statements 10 through 2520 are error messages that may be required
during assembly. Statements 2530 through 2880 are *OVERLAY
definitions. These are special control statements, used by the system
loader to find the appropriate assembler overlay for each source instruc-
tion encountered during an assembly.

The third section consists of the two *COPYCOD definitions, statements
2890 and 2900. $COPYCOD statements define logical volumes which
may contain source data sets used as ‘‘copycode’’ source modules. The
logical end of the language control data set is the **STOP**, statement
2910.

The system-supplied language control data set, SEDXL, has volumes

ASMLIB and EDX002 defined as copycode volumes. When a COPY

statement specifying the name of a source data set is encountered during

the assembly of a source module, $EDXASM will search ASMLIB and

EDX002 for a data set of that name, and will include the source state-

ments in that data set in the assembly, if found. User source data sets C '
stored on ASMLIB or EDX002 may be used as copycode modules in of
assemblies using SEDXL for a language control data set. If copycode

data sets reside on other logical volumes, $SEDXL must be modified

(*COPYCOD statements added) to define those volumes to SEDXASM

as copycode volumes, or a user-defined language control data set con-

taining the new *COPYCOD definitions must be used for the assembly.

A user-defined language control data set might be preferred to avoid

altering SEDXL.

Figures 16-43 through 16-50 will illustrate how to set up a user-defined
language control data set, and how to code the COPY function in a user
program.

In Figures 16-43 through 16-45, the system-supplied language control
data set, SEDXL, is modified to establish volume EDX003 as a copycode
volume. The modified version is stored in the user-defined language
control data set STATEDXL, leaving SEDXL undisturbed. Using
$FSEDIT, the system-supplied language control data set SEDXL is read
into the edit work data set, and EDIT mode (Primary Option 2} is
entered. After scrolling to the bottom of the data set, the screen in
Figure 16-43 is displayed.



EDIT --- SEDXL , ASMLIB 291( 1089) COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===> HALF
02720 *OVERLAY $ASMOOOB ASMLIB  SBIO 10DEF

02730 *OVERLAY $ASMOOOC ASMLIB  FIND FINDNOT

02740 *QVERLAY $ASMO0OD ASMLIB ~ FPCONV ~ FADD FSUB FMULT FDIVD
02750 *QVERLAY $ASMOOOE ASMLIB  PRINTNUM GETVALUE READTEXT PRINTEXT CONVTB
02760 CONVTD

02770 *OVERLAY $ASMOOOG ASMLIB  PLOTGIN GIN SCREEN ~ XYPLOT  YTPLOT
02780 CONCAT TP STATUS

02790 *OVERLAY $ASMOQOH ASMLIB  BSCREAD BSCWRITE BSCOPEN BSCCLOSE BSCIOCB
02800 BSCLINE

02810 *QVERLAY $ASMOOOI ASMLIB  FORMAT

02820 *QVERLAY $ASMO00Q ASMLIB  FIRSTQ  LASTQ NEXTQ DEFINEQ

02830 *QVERLAY $ASMEXIO ASMLIB  EXIODEV 1DCB DCB EXOPEN  EXIO
02840 *QVERLAY $ASMO0OS ASMLIB  SYSTEM  STOREMAP DISK TIMER TAPE
02850 *QVERLAY $ASMOOOT ASMLIB  TERMINAL

02860 *OVERLAY $ASMOOOU ASMLIB  HOSTCOMM SENSORIO DDBSIG  GETMAIN FREEMAIN
02870 *OVERLAY $ASMOOOF ASMLIB  ASMERROR $IDEF OTE SLE

02880 *QVERLAY $ASMOOOM ASMLIB  WHERES  TCBGET  TCBPUT

02890 *COPYCOD ASMLIB

02900 *COPYCOD EDX002

02910 **STQP**

kkkkk dkkk BOTTOM OF DATA FRAAAKAAAKAA LA KA KKK AR AR AR AT AR Rk R kA Ak h kA rhkkhkkhhkkkd

Figure 16-43. Program preparation (17)

Using the insert line command, a copycode definition is placed in front
of the **STOP** statement. ‘

EDIT --- SEDXL , ASMLIB 291( 1089)
COMMAND INPUT ===>
02720 *OVERLAY $ASMOOOB ASMLIB  SBIO T0DEF
02730 *QVERLAY $ASMOQOC ASMLIB  FIND FINDNOT
02740 *OVERLAY $ASMOOOD ASMLIB  FPCONV ~ FADD FsuB FMULT FDIVD
02750 *QVERLAY $ASMOOOE ASMLIB ~ PRINTNUM GETVALUE READTEXT PRINTEXT CONVIB
02760 CONVTD
02770 *OVERLAY $ASMOOOG ASMLIB  PLOTGIN GIN SCREEN  XYPLOT  YTPLOT
02780 CONCAT TP STATUS
02790 *OVERLAY $ASMOOOH ASMLIB  BSCREAD BSCWRITE BSCOPEN BSCCLOSE BSCIOCB
02800 BSCLINE
02810 *OVERLAY $ASMOOOI ASMLIB  FORMAT
02820 *OVERLAY $ASMO00Q ASMLIB  FIRSTQ  LASTQ NEXTQ DEFINEQ
02830 *OVERLAY SASMEXIO ASMLIB  EXIODEV 1DCB DCB EXOPEN  EXIO
02840 *OVERLAY $ASMO0OS ASMLIB  SYSTEM  STOREMAP DISK TIMER TAPE
02850 *OVERLAY $ASMOOOT ASMLIB  TERMINAL
02860 *QVERLAY $ASMOOOU ASMLIB  HOSTCOMM SENSORIO DDBSIO  GETMAIN FREEMAIN
02870 *OVERLAY $ASMOOOF ASMLIB ~ ASMERROR S$IDEF 0TE SLE
02880 *OVERLAY $ASMOOOM ASMLIB  WHERES  TCBGET  TCBPUT
02890 *COPYCOD ASMLIB
*COPYCOD EDX002
*COPYCOD EDX003
**STOP**

dhkkhkk kkkk BOTTOM OF DATA Ak e e e e ek ke ke o 9 Ak ke sk ok ok ke ok e e ok e ok ok ok ok e e ek e de ek ke ok ek k ke ok ek

Figure 16-44. Program preparation {18)

Program Preparation Using $EDXASM  16-31



16-32

SR30-0436

ED X003 is now defined as a copycode volume. The edit work data set
is now written into data set STATEDXL, which was previously allocated P

for this purpose.

-------------------- 4--  SFSEDIT PRIMARY OPTION MENU
SELECT OPTION ===>

BROWSE - DISPLAY DATASET .

EDIT CREATE OR CHANGE DATASET

READ READ DATASET FROM HOST/NATIVE
WRITE WRITE DATASET TO HOST/NATIVE
SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
LIST PRINT DATASET ON SYSTEM PRINTER
MERGE MERGE DATA FROM A SOURCE DATASET
TERMINATE $FSEDIT

DISPLAY TUTORIAL

1
2
3
4
5
6
7
8
9

ENTER DATASET (NAME,VOLUME) : [STATEDXL,EDX002

Figure 16-45. Program preparation (19)



.

In Figures 16-46 and 16-47, a portion of code is extracted from the
source data set STATSRC and stored on volume EDXO003 in a data set
named ROLL. This data set will be used as a copycode module.

Again using $FSEDIT, the roll screen instructions from STATSRC
are read into the work area, and identifying comments inserted at the
beginning and end of the data set. This is accomplished by:

1. READ (Primary Option 3) STATSRC into work data set,

2. EDIT (Primary Option 2) and block delete statements 10 through
70, then statements 150 through 700 leaving only the “roll
screen’’ statements

3. Insert comments at top and bottom, resulting in the screen shown
in Figure 16-46.

EDIT --- EDITWORK, EDX002

COMMAND INPUT ===>

S
whhkhd khkkd TOP OF DATA KREREIKKIIAKAK KRR AR KK AR NAARIARI AR KRR RAK KRk Rk hhhkhk

00010
00020
00030
00040
00050

00060 .

00070
00080

00090
00100
00110
00120
00130

*hhkk

*

13( 243) COLUMNS 001 072
L ===sHALF

* START OF "COPYCODE" MODULE
*

START ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT

*

1081

“'CLASS ROSTER PROGRAM',SPACES=15,LINE=1

"HIT "ATTN" AND ENTER “END" TO END',SKIP=2
' THE PROGRAM®

'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

' BRING UP THE ENTRY SCREEN'

* END OF "COPYCODE" MODULE
*

Fiekk BOTTOM OF DATA KRIREIIAKKRKAKRKARKKAAKRAAKAAARKAAAR AR AR A AK KA XXX KA K

Figure 16-46. Program preparation (20)

Program Preparation Using $EDXASM  16-33



Now the COPY CODE module is written to data set ROLL (Figure
16-47).

)

S, 4---  $FSEDIT PRIMARY OPTION MENU
SELECT OPTION ===

BROWSE
EDIT
READ
WRITE
SUBMIT
LIST
MERGE
END

DISPLAY DATASET

CREATE OR CHANGE DATASET

READ DATASET FROM HOST/NATIVE
WRITE DATASET TO HOST/NATIVE
SUBMIT BATCH JOB TO HOST SYSTEM
PRINT DATASET ON SYSTEM PRINTER
MERGE DATA FROM A SOURCE DATASET
TERMINATE SFSEDIT

DISPLAY TUTORIAL

1
2
3
4
5
6
7
8
9

ENTER DATASET (NAME,VOLUME) : [ROLL,EDX003

Figure 16-47. Program preparation (21)

In Figures 16-48 through 16-50, STATSRC is again read into the edit
work area, and modified to use the COPY function. C

In Figure 16-48, STATSRC has been read into the work data set, and
EDIT mode has been entered.

E0IT --- EDITHORK, EDX002 70{ 233) COLUMNS 001 072
COMMAND INPUT > SCROLL === HALF
dhkkkk hkrkk TOP OF DATA KhAK A A A I KA I AT IAAKA AKX A A I A A A A AR A h Ak h Ak hhdkkkhkhkkhhkk khhkhkhd
00010 XMPLSTAT PROGRAM  START
00020 EXTRN $IMOPEN, $IMDEFN, $IMPROT, $IMDATA
00030 IMAGEBUF BUFFER  768,BYTES
00040 DSETNAME TEXT 'VIDEOL,EDX002"
00050 I10CB1  10CB NHIST=0
00060 1I0CB2  10CB SCREEN=STATIC
00070 ATTNLIST (END,OUT,$PF,STATIC)
§ (DD00080 START  ENQT 10C81
00090 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00100 PRINTEXT 'HIT "ATTN" AND ENTER “END" TO END',SKIP=2
00110 PRINTEXT ' THE PROGRAM'
00120 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
PRINTEXT ' BRING UP THE ENTRY SCREEN'
DEQT
CHECK  WAIT ATTNECB,RESET
(ATTNECB,EQ,1),G0TO,ENDIT
GETIMAGE $IMOPEN, (DSETNAME ), ( IMAGEBUF)
1 (XMPLSTAT+2,NE,-1)
ERRCODE , XMPLSTAT+2
PRINTEXT '@IMAGE OPEN ERROR, CODE ='
PRINTNUM ERRCODE

Figure 16-48. Program preparation (22)

16-34 SR30-0436



The ‘DD” to the left of statement 80 and 140 will perform a block
delete of the statements that will be brought in as copy code. In
Figure 16-49, the ENTER key has been depressed, and the delete is

done.

EDIT --- EDITWORK, EDX002 63( 243) COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>HALF

*xdxk wxxrx TOP OF DATA *HFFrrFhkkkkdh kA hhx Ak kA Rk R RIARR A AR A RRA R KA R AR KA

00010 XMPLSTAT PROGRAM  START

00020 EXTRN $IMOPEN, SIMDEFN, $IMPROT, $IMDATA

00030 IMAGEBUF BUFFER 768,BYTES

00040 DSETNAME TEXT 'VIDEO1,ASMVOL'

00050 I10CB1 10CB NHIST=0

00060 10CB2 10CB SCREEN=STATIC

00070 ATTNLIST (END,OUT,$PF,STATIC)

00150 CHECK WAIT ATTNECB,RESET

00160 IF (ATTNECB,EQ,1),G0TO,ENDIT

00170 GETIMAGE CALL $IMOPEN, (DSETNAME ), (IMAGEBUF)

00180 IF (XMPLSTAT+2,NE,-1)

00190 MOVE ERRCODE, XMPLSTAT+2

00200 PRINTEXT '@IMAGE OPEN ERROR, CODE ='

00210 PRINTNUM ERRCODE

00220 GOTO ERRQUERY

00230 ENDIF

00240 CALL $IMDEFN,{I10CB2),(IMAGEBUF)

00250 ENQT 10CB2

00260 TERMCTRL  BLANK

00270 CALL $IMPROT, ( IMAGEBUF),0
00280 CALL $IMDATA, (IMAGEBUF)

Figure 16-49. Program preparation (23)

In Figure 16-50, a COPY command is inserted, naming the copy code
module ROLL. When the assembler encounters the COPY statement,
it will go to the language control data set to find the copy code volume
definitions and locate the data set containing the copy code module.
The source statements in ROLL will be inserted at this point in the
source module, and assembled as part of STATSRC.

Program Preparation Using SEDXASM  16-35.



16-36

SR30-0436

**%%k% TOP OF DATA
XMPLSTAT PROGRAM
EXTRN
IMAGEBUF BUFFER
DSETNAME TEXT
10CB1 10CB
10CB2 10CB
ATTNLIST

*

CoPY
*
CHECK WAIT
IF
GETIMAGE CALL
IF
MOVE
PRINTEXT
PRINTNUM
GOTO
ENDIF
CALL
ENQT

ALF
************************************************E*I;***
START

$IMOPEN , $ IMDEFN , $IMPROT , $ IMDATA

768,BYTES

*VIDEO1,EDX002"

NHIST=0

SCREEN=STATIC

(END,OUT, $PF ,STATIC)

ROLL

ATTNECB,RESET
(ATTNECB,EQ,1),G0TO,ENDIT
$IMOPEN, (DSETNAME ) , ( IMAGEBUF )
(XMPLSTAT+2,NE,-1)
ERRCODE , XMPLSTAT+2

'@IMAGE OPEN ERROR, CODE ='
ERRCODE

ERRQUERY

$IMDEFN, (10CB2), ( IMAGEBUF)
10cB2

Figure 16-50. Program preparation (24)

The edit work data set is saved back into STATSRC using the WRITE

function (Primary Option 4), and the source module is ready for

assembly.



Job Stream Procedure -

O

-
Q

You have seen how, once a source module has been created ($EDIT1N
or $FSEDIT), the assembler (SEDXASM), linkage editor ($LINK), and
load module formatter (SUPDATE) may each be invoked in turn, using
the $L facility. Using a procedure file and $JOBUTIL, all three steps
may be run as a single job stream.

0 seoimin
| sFseDIT

| STEP 2: ‘ASSEMBLE SOURCE "
1" MODULE (PRODUCE OBJEC
. MODULE) S

RUN STEP 2, STEP 3, STEP 4, AND
$I0BUTIL | orep 5 AS BATCH JOB STREAM

Figure 16-51. Job stream procedure

Appendix B, Figure B-4, is a listing of a batch job stream processor
($JOBUTIL) procedure file. The statements in a procedure file are
created using $EDIT1N or $FSEDIT, and saved in a data set. In this
example, the procedure data set is STATPROC on EDX002.

When $JOBUTIL is loaded, the operator is prompted for the name of
a procedure file.

>[SL_$JOBUTIL]
$JOBUTIL 4P,00:05:32, LP= 5FQ0
ENTER PROCEDURE (NAME,VOLUME): [STATPROC

Figure 16-52. Program preparation (25)

Program Preparation Using SEDXASM  16-37



16-38

SR30-0436

In Appendix B, Figure B-4, the JOB command at statement 10 causes
the display of a “job started’’ message on the loading terminal.

>[$L $JOBUTIL

$JOBUTIL 4pP,00:05:32, LP= 5F00

ENTER PROCEDURE (NAME,VOLUME): [STATPROC

**% JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB STATIC

Figure 1653. Program preparation {26)

The LOG command (statement 20, Figure B4) will cause the procedure
file statements (other than internal comments) to print on the system
printer. Statements 120 through 190 will load and execute the
assembler. The source, work, and output data sets are specified in the
DS commands. The PARM command at statement 170 directs the
assembly listing to the system printer, and specifies STATEDXL as the
language control data set for this assembly (STATEDXL contains the
*COPYCOD statement for volume EDX003, where ROLL is stored).
The NOMSG command following the PARM prevents the $ED XASM
load message from being displayed on the loading terminal, but the
REMARK at statement 130 will appear.

> 6L $JOBUTIL

$JOBUTIL 4pP,00:05:32, LP= 5F00

ENTER PROCEDURE (NAME,VOLUME): [STATPROC
**%* JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB  STATIC
REMARK ~ ASSEMBLY OF 'STATSRC' STARTED

Figure 16-54. Program preparation (27)

The normal completion code for an error-free assembly is -1. The
JUMP command !statement 200) tests the assembler completion code.
If it is not equal to minus 1, the JUMP will transfer control to the
label BADASM, which is defined by the LABEL command at state-
ment 410. The REMARK at 420 would be displayed on the loading
terminal, and the JUMP at 430 would transfer to label END, ending

the job.

@



Assuming normal assembler operation, $JOBUTIL would continue
with statements through 350, the link edit step.

Through the PAUSE command, $JOBUTIL allows input of job control
commands by an operator. To illustrate this capability, the link control
data set is not specified in a DS command. Instead, the PAUSE at state-
ment 300 will allow entry of the link control data set name. When the
link procedure is entered, the two REMARK statements preceding the
PAUSE will be displayed, along with the PAUSE operator instructions,
and $JOBUTIL will wait for the operator to press ATTENTION and
enter a command.

> [SL_$SJOBUTIL]

$J0BUTIL 4P,00:05:32, LP= 5F00

ENTER PROCEDURE (NAME ,VOLUME): [STATPROC

xk% JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB STATIC

REMARK ~ ASSEMBLY OF 'STATSRC' STARTED

REMARK ~ LINK EDIT OF 'ASMOUT' OBJECT MODULE STARTED
REMARK ~ NAME OF LINK CONTROL DATA SET ?

PAUSE-*-ATTN:GO/ENTER/ABORT
PAUSE

Figure 16-55. Program preparation (28)

The operator can continue (GO), enter a job control command :
(ENTER), or abort the job stream processor and end the job (ABORT).
In this example, the operator wants to enter a command, so ENTER is
requested. The operator is prompted for the command and the com-
mand operand. When GO is entered in response to the COMMAND
prompt, $JOBUTIL continues.

Program Preparation Using SEDXASM  16-39



00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110

Figure 16-57. Program preparation (30)

16-40

*hkkhhkhkhkhkkhkrhkhhkhhrdhkdhhhrhkhdddhkhhkhkrrkhkhkhhhhkhkdhhkhhkkhkhkhhhhkkhkihkhhkrkhkhkhkhrhkkhik

>

$JOBUTIL 4P,00:47:17, LP= 5F00

ENTER PROCEDURE (NAME,VOLUME):

*%% JOB - STATIC - STARTED AT 00:47:26 00/00/00 ***

JOB STATIC

REMARK ~ ASSEMBLY OF 'STATSRC' STARTED

REMARK  LINK EDIT OF 'ASMOUT' OBJECT MODULE STARTED
REMARK ~ NAME OF LINK CONTROL DATA SET ?
PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE
> [ENTER

ENTER COMMAND

ENTER OPERAND [LINKSTAT
ENTER COMMAND

Figure 1656. Program preparation (29)

$JOBUTIL allows secondary or nested procedures to be invoked from
a primary procedure. To illustrate, the formatting job control state-

ments have been defined as a nested procedure, stored in data set
FORMPROC.

* THIS IS A "NESTED" PROCEDURE, INVOKED FROM
* 'STATPROC' BY THE 'PROC' COMMAND. $JOBUTIL
* SUPPORTS ONE LEVEL OF NESTING.

*

REMARK

PARM
NOMSG
EXEC
EOP

SR30-0436

FORMATTING OF 'LINKOUT' STARTED
PROGRAM = $UPDATE
$SYSPRTR  LINKOUT  STATPROG YES

C



The primary procedure (Appendix B, Figure B-4), after testing for a
successful link edit (JUMP command at statement 360), invokes the
nested procedure FORMPROC by the PROC command at statement
370. At the conclusion of the formatting step, control is returned to
the primary procedure at statement 380. If SUPDATE executed
properly, the job is'ended without displaying the error message
(REMARK at 390).

>[$L $JOBUTIL |

ENTER PROCEDURE (NAME,VOLUME): [STATPROC
**% JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB STATIC

REMARK ~ ASSEMBLY OF 'STATSRC' STARTED

REMARK  LINK EDIT OF 'ASMOUT' OBJECT MODULE STARTED
REMARK ~ NAME OF LINK CONTROL DATA SET ?

PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE
> |ENTER

ENTER COMMAND

ENTER OPERAND |LINKSTAT

ENTER COMMAND
REMARK ~ FORMATTING OF 'LINKOUT' STARTED

$JOBUTIL ENDED AT 00:10:18

Figure 16-58. Program preparation (31)

Figure B-5 in Appendix B is the $SYSPRTR output resulting from exe-
cution of the $JOBUTIL procedure file STATPROC, including the
assembly listing with the ROLL copy code statements successfully
merged.

Program Preparation Using $EDXASM  16-41



1642

SR30-0436

This page intentionally left blank.

)



Section 17. Program Preparation Using $S1ASM

'OBJECTIVES

After completing this section, the student should be able to use
$S1ASM to assemble application programs written in Series/1
assembler and/or Event Driven language.

$S1ASM MACHINE READABLE MATERIAL

Licensed program 5719-ASA is distributed from PID on a diskette with
a volume name of ASAQ01. Included on the diskette are the following
components:

1.  Series/1 macro assembler ($S1ASM)
Linkage editor ($LINK) '

3. System definition file, procedure file, and link control file, for
use in system generation using $S1ASM (5719-LM7 Macro
Library is a prerequisite for system generation using $51ASM).

4. Source, procedure, and link control files for an installation
Q verification test program.

$S1ASM, unlike SEDXASM, is a macro assembler. It will assemble
programs coded in Series/1 assembler language, such as USER exit
routines, and when an operation code not in the Series/1 instruction
set is encountered, it will search a macro library for a macro of that
name. Licensed program 5719-LM7 is the macro library containing
macro prototypes for all the Event Driven language statements, and
must be installed if $51ASM is to be used for assembling Event
Driven language programs, or to build tailored supervisors.

$S1ASM runs under control of the Event Driven Executive supervisor,
so the system on which $S1ASM assemblies are run must also have the
Event Driven Executive Basic Supervisor and Emulator installed.
Program preparation aids and utilities are provided by the Event Driven
Executive Utilities.

Output object modules produced by $S1ASM assemblies must be
processed by $LINK before being formatted into executable load
modules by $UPDATE.

Program Preparation Using $S1ASM  17-1



Note: For users who will be coding programs in the Event Driven lan-

guage, the Program Preparation Facility is recommended. $EDXASM

is a direct assembler for the Event Driven language; no macro processing C,
is involved, and therefore performance is much higher than with g
$S1ASM and the 5719-L.M7 Macro Library.

INSTALLING $S1ASM

Installation procedures for the Series/1 macro assembler are in the
Program Directory, shipped with the program from PID. As with the
other Event Driven Executive program offerings, the $COPYUT1
utility is used to transfer the contents of PID diskettes to disk. If the
installation instructions in the Program Directory are followed,
$S1ASM will reside on logical volume ASMLIB on disk.

$S1ASM OPERATION

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Utilities, Operator Commands, and Program Preparation (SC34-0313),
“Program Preparation Using $S1ASM.”’

Figure 17-1 outlines the steps required to prepare programs for execu-
tion using the $S1ASM macro assembler.

$SEDITIN
$FSEDIT

> $S1ASM

STEP 1: CREATE SOURCE MODULE. MAY BE

SERIES/1 ASSEMBLER LANGUAGE CODE

AND/OR (IF 5719-LM7 MACRO LIBRARY IS C
INSTALLED) EVENT DRIVEN LANGUAGE

STEP 2: ASSEMBLE SOURCE MODULE
(PRODUCES OBJECT MODULE)

STEP 3: LINK EDIT OBJECT
$LINK MODULE (REQUIRED)

$JOBUTIL

Figure 17-1. $S1ASM program preparation overview

17-2

SR30-0436

e ———
—

———

STEP 4: FORMAT OBJECT MODULE
> $UPDATE INTO RELOCATABLE LOAD MODULE

C



.

Data Set Requirements

The program preparation steps illustrated in Figure 17-1 closely
parallel those required for program preparation using SEDXASM
(see Section 16, Figure 16-1), but with the following differences:

1. The source module may contain Series/1 assembler language
code and/or have references to user-written macros.

2. The link edit step is mandatory, even if the assembled program has
no external references. The object module produced by a
$S1ASM assembly cannot be formatted into a load module by
$UPDATE without first being processed by $LINK. ‘

$S1ASM uses three work data sets, which must be allocated by the
user.

>|$L $DISKUTI
$DISKUTI 37P,00:21:02, LP= 8300

USING VOLUME EDX002

COMMAND (?): [AL_ASAWORKT 2000]
DEFAULT TYPE = DATA - OK? [Yf
ASAWORKT CREATED

COMMAND (?): [AL_ASAWORK2 2000]
DEFAULT TYPE = DATA - OK? |Y]
ASAWORK2 CREATED

COMMAND (?): [AL_ASAWORK3 800]
DEFAULT TYPE = DATA - OK? [Y]
ASAWORK3 CREATED

COMMAND (?): [END
$DISKUT1 ENDED AT 00:22:13

Figure 17-2. Allocate work files

The file sizes shown in Figure 17-2 are not unusually big for $S1ASM
work data sets, and may have to be increased to accommodate a large
assembly. Note that WORK1 and WORK2 must be of equal size.

In addition to the three work files, $51ASM also requires:
e A source data set containing the statements to be assembled

e An object output data set in which the object module produced by
the assembly will be stored

o If the source file contains macro references (Event Driven language
statements or references to user-coded macros), at least one, and.
optionally two volume names must be supplied, on which reside the
macro prototypes referenced in the source module

Program Preparation Using $S1ASM  17-3



SOURCE MODULE

—OR—

WORK FILE 1

RN

WORK FILE 2

@_,

o | <=

$S1ASM

WORK FILE 3 /

MACLIB 1

@ AT LEAST ONE
L REQUIRED IF MACRO
INSTRUCTIONS
L

MACLIB 2 CODED IN SOURCE

@ MODULE
/

S

OR-

o —
O
]

OBJECT MODULE
OUTPUT (INPUT
FOR $LINK)

Figure 17-3. $S1ASM data set requirements

17-4 SR30-0436

At load time, the operator is prompted for source, work, and output

data set names.

> [$L_$STASM,ASMLIB]
SOURCE  (NAME , VOLUME) :

)
WORKT ~ (NAME,VOLUME)
WORK2  (NAME,VOLUME):
WORK3  (NAME, VOLUME)
OBJECT (NAME,VOLUME)
$STASM 88P,00:24:

MACLIBT (?):[EDX003
MACLIB2 (?):

ENTER OPTIONS (?):
ENTER QUTPUT DEVICE NA

STSOURCE
: JASAWORK]
ASAWORK?Z
: JASAWORK3
: JASMOBJ

19, LP= 8300

ME:

CPAOOOI ASSEMBLER STARTED

Figure 17-4. $S1ASM load



O

In Figure 17-4, volume ED X003 is specified as MACLIB1. When
macro references are encountered in source data set SISOURCE,
volume ED X003 will be searched for the appropriate macro. Assuming
S1SOURCE contains Event Driven language statements, ED X003
would contain the Event Driven Executive Macro Library.

If required, a second volume may be specified (MACLIB2 (?): prompt),
in which case the second volume would be searched if a required macro
were not found on the volume specified as MACLIB1.

In Figure 17-4, the default assembler options are taken, and the output
is defaulted to $SYSPRTR (null response to both prompts). With the
default assembler options, $S1ASM printed output can be voluminous,
sO you may wish to exercise options to suppress certain parts of the
listing (see reading assignment for available options).

$S1ASM/$JOBUTIL INTERFACE

$S1ASM, like SEDXASM, may be executed under control of the job
stream processor, $JOBUTIL, using job control statements in a proce-
dure file. In Figure 17-5, the job control statements in the procedure

file at the right are the equival

at the left.
JOB
> 151 |[$S1ASM, ASMLIB} —>PROGRAM
SOURCE  (NAME,VOLUME) : [STSOURCE ———DS
WORK1  (NAME,VOLUME): [ASAWORKT ——DS
WORK2  (NAME,VOLUME): [ASAWORKZ}——DS
WORK3  (NAME,VOLUME): [ASAWORK3 }—DS
OBJECT (NAME,VOLUME) : [ASMOBJ DS
$STASM 88P,00:02:39, LP= 8300 PARM
»E XEC
MACLIB1 (?):[EDX003 E0J

MACLIB2 (?):

ENTER OPTIONS (?): [ —

ENTER OUTPUT DEVICE NAME:

Figure 17-5. $JOBUTIL procedure

ents of the operator response sequence

JSPEXMPL
$STASM,ASMLIB
STSOURCE
ASAWORK1
ASAWORK?2
ASAWORK3
ASMOBJ

EDX003

All program preparation steps other than the actual assembly are
identical for $S1ASM and for SEDXASM. See the appropriate topics
in “‘Section 16. Program Preparation Using $EDXASM"’ for informa-
tion on creating a source module, the link edit step, and formatting

a linked object module into a relocatable load module.

Program Preparation Using $S1ASM  17-5



17-6

SR30-0436

This page intentionally left blank.

)



OBJECTIVES

Section 18. Session Manager

At the conclusion of this section, the student should be able to:
1.  Describe basic Session Manager operation

2.  Use the Session Manager to run system utilities/program
preparation programs

SESSION MANAGER OVERVIEW

Throughout this study guide, you have seen numerous examples of the
use of the $L operator command to load programs and system utility
programs, as illustrated in Figure 18-1.

> $L SUTILITY,volume dsname,volume

SUPERVISOR

SUTILITY

Figure 18-1. Load utility using $L

Session Manager 18-1



18-2 SR30-0436

In general, the following statements are true about the use of the $L.
operator command:

1.  All data sets required by the program or utility being loaded,
using the $L. command, must be allocated by the user, prior to
the load operation, using $DISKUT1.

2.  All data set names referenced by the program or utility to be
loaded (which are not already specified in the DS= list of the
PROGRAM statement) must be supplied by the operator each
time the program or utility is loaded, even in a repetitive execu-
tion environment such as program assembly and debug.

3. All execution time options, such as output device, listing options,
etc., are requested with each load of the program/utility, even if
the responses are identical to previous executions and/or even
if the default options (null entry) are acceptable.

In ““Section 16. Program Preparation Using SEDXASM", you were
introduced to $JOBUTIL, the job stream processor utility. By alloca-
ting ($DISKUT1) and then creating ($FSEDIT, $EDIT1N) a job control
procedure data set, a job can be run under control of $JOBUTIL,

as illustrated in Figure 18-2 below.

> $L $JOBUTIL,volume  procname,volume

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\F;Zi;; SUPERVISOR
$JOBUTIL

L” procname

PROGRAM $UTILITY,volume
DS dsname,volume
EXEC

EO0J

Figure 18-2. Loading utility using $JOBUTIL



$JOBUTIL, therefore, relieves the operator of the burden of having to
remember and reenter each data set name and execution option with
each reload of a utility or program. The data set names and options
need only be entered once, into the job control procedure file. As
long a- the data sets and options described in the procedure file

match the execution environment desired, all the operator needs to
know is the name of the procedure file.

Although $JOBUTIL provides obvious productivity advantages over
the direct loading of programs and utilities using the $L operator
commands, a certain level of knowledge about the system must be
attained before it can be used.

A thorough understanding of $JOBUTI L operation, the meaning and
organization of job procedure statements within a procedure file, and
which programs or utilities might most profitably be run under
$JOBUTIL are necessary before procedure files can be created.

A procedure file, once created, is useful only so long as all data sets
and operating parameters within that file exactly match the desired
operation. If a single data set name or execution option is to be
changed, the operator must

1.  Use the $L command to load the program or utility directly,
in which case, not only the changed data set name or option,
but all data set names and options must be entered

or

2. Use $FSEDIT or $EDIT1N to make the required change in

the procedure file

In summary, the $L command is the most flexible facility for loading
programs and utilities. At each load, the operator has the opportunity
to change any or all options or data set names required by the program
being loaded. The drawbacks of this method are that a large number
of keystrokes is required, with the attendant possibility of operator
input error; the operator must remember what may be a large number
of data set names, all of which must be spelled correctly; and that all
of the above is true each time the load is repeated, whether changes
are required or not.

On the other hand, $JOBUTIL, with its associated job control proce-
dure files, is the most efficient means of loading programs and
utilities, but lacks flexibility. If a change is required, the user must
revert to the $L facility, or edit a procedure file, and must have a
fair amount of system experience to create the procedures initially.

The Session Manager is a productivity aid designed to take advantage
of the efficiencies of $JOBUTIL, without losing the flexibility of the
$L operator command.

Session Manager  18-3



18-4 SR30-0436

The overall concept of Session Manager operation is illustrated in
Figures 18-3 and 18-4. When a terminal user logs on (loads) the
‘Session Manager, a menu of options is displayed on the screen. The
operator enters the number associated with the option desired (Part A,
Figure 18-3).

A
2. mmmmmee
K JE—
H
1
1
1
~ : ’
N
\P/
ENTER DATA
B SET NAME:

SUPERVISOR

SESSION MANAGER

SESSION MANAGER

¢
PROGRAM  $UTILITY,volume CONTROL PROGRAM

DS dsname,volume ® PROCESS MENUS
ESEC e BUILD JOB
£ CONTROL

o) \/ PROCEDURE FILE

o)
N procname __—~J

Figure 18-3. Session manager overview {1)

If the utility being loaded requires data set names or execution param-
eters, the Session Manager will display a parameter entry screen (Part B,
Figure 18-3).

The Session Manager uses the operator input from the option and
parameter entry screens to build a $JOBUTIL job control procedure
file (Part C, Figure 18-3).



~—

After all inputs required to complete the procedure file have been
entered, the Session Manager loads $JOBUTIL, passes it the procedure
file, and the program is loaded, and executed under control of the job

stream processor (Figure 18-4).

SUPERVISOR

SESSION MANAGER

E G $JOBUTIL
PROGRAM $UTILITY,volume
DS dsname,volume
EXEC
-EQJ

Figure 18-4. Session manager overview (2)

The next time the same option is chosen (Part A, Figure 18-3), the
Session Manager will again display the parameter entry screen (Part B,
Figure 18-3), allowing the operator to make changes, if desired. If

no change from the previous execution is required, the operator just
presses ENTER (null entry), and the Session Manager uses the parameters
established in the previous execution again.

Without knowledge of job stream processor operation or job control
procedure statements, the operator is able to take advantage of the
efficiencies of running under $JOBUTIL, while retaining the flexibility
of easy alteration of execution parameters.

Session Manager 18-5



SESSION MANAGER OPERATING CONCEPTS

Definition of Terms

Menus

Decision Tables

Procedures

18-6

SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C
Operator’s Reference Message and Codes (SC34-1703), ““Session
Manager.”

Note: The following discussion is intended to convey the general
concepts of Session Manager organization and operation, not the
actual detail. The menus, procedures, and decision tables shown in
the illustrations are abbreviated and simplified for clarity.

In discussing the Session Manager, the term ““menu’’ is frequently used,
usually in the context of “Primary Option Menu”’, ““Secondary Option
Menu”’, or ““Parameter Selection Menu.”” A menu is nothing more than
a full screen image on a 4978/4979/3101 M2 Display. Primary and
secondary option menus usually consist of a numbered list of possible
functions. To invoke a function, the operator enters the number of
that option. For parameter selection menus, the operator fills in data
entry areas with data set names, run parameters, etc., for the utility
being invoked.

Decision tables are associated with option menus, and are used by the C
Session Manager to decide what to do when a given option in an

option menu is selected. For every option in an option menu, there

is a corresponding entry in that menu’s associated decision table. That

decision table entry may direct the Session Manager to display another

option menu, to display a parameter selection menu, or, if the option

selected requires no further menus, to submit a procedure file to

$JOBUTIL for execution.

A procedure is a $JOBUTIL procedure file used by the Session
Manager to execute programs/utilities selected by entry of menu
options. Parameters and data set names required by some utilities are
filled in with entries from parameter selection menus, and the proce-
dure is passed to $JOBUTIL and executed as a result of option menu
decision table entries.



o

The relationship between option menus, option menu decision tables,
parameter selection menus, and $JOBUTIL procedures is illustrated
in Figures 18-5 through 18-7. In Figure 18-5, the operator has
selected option 1, Text Editing, from the primary option menu. The
corresponding entry in the primary option decision table directs the
Session Manager to pass a procedure control file to $JOBUTIL

which will load the full screen text editor, $FSEDIT. No secondary
option menu is necessary, because $FSEDIT is the only text editor
that the session manager supports, and therefore no choice

of editors need be made.

PRIMARY OPTION MENU PRIMARY OPTION DECISION TABLE

-
1. TEXT EDITING
2. PROGRAM PREP
3. DISK UTILITIES

1. EXECUTE $FSEDIT PROCEDURE

2. DISPLAY PROG PREP SECONDARY OPTION MENU

3. DISPLAY DISK UTILITIES SECONDARY OPTION MENU
etc.

$JOBUTIL PROCEDURE FILE

PROGRAM

DS LOAD THE FULL SCREEN
EXEC EDITUTILITY $FSEDIT
EOJ

Figure 18-5. Session manager operation (1)

$FSEDIT needs no parameters, so a parameter selection menu is not
required.

Note: $FSEDIT does require an edit work data set, but this data set
is automatically allocated by the Session Manager when the terminal
operator “logs on’’ to the session manager, and the name of the data
set is automatically passed to the $FSEDIT procedure control file, so
the operator is not required to supply the edit work data set name
when the Text Editing (option 1) function is requested.

In Figure 18-6, the operator has chosen option 3, Disk Utilities, on
the primary option menu. Since there are several disk utility programs,
the primary option decision table entry for option 3 directs the Session

‘Manager to display a secondary option menu, so that the operator may

choose which disk utility program to load.

Session Manager 18-7



PRIMARY OPTION MENU PRIMARY OPTION DECISION TABLE

1. TEXT EDITING™
2. PROGRAM PREP
3. DISK UTILITIES

1. EXECUTE $FSEDIT PROCEDURE C
2. DISPLAY PROG PREP SECONDARY OPTION MENU

3. DISPLAY DISK UTILITIES SECONDARY OPTION MENU

etc.

SECONDARY
OPTION MENU SECONDARY OPTION DECISION TABLE

1. $DISKUT1
2. $DISKUT2
3. $COPYUT1

1. EXECUTE $DISKUT1 PROCEDURE
2. EXECUTE $DISKUT2 PROCEDURE
3. EXECUTE $COPYUT1 PROCEDURE
etc.

$JOBUTIL PROCEDURE FILE

PROGRAM
EXEC
EQJ

LOAD DISK
UTILITY DISKUT1

Figure 18-6. Session manager operation (2)

188 SR30-0436

On the secondary option menu for the disk utilities, the operator has

chosen option 1, $DISKUT1. Because $DISKUT1 requires no execution C
parameters or data set names, the secondary option menu decision

table entry for option 1 directs the Session Manager to pass the

$DISKUT1 load procedure to $JOBUTIL, which will result in the

load of $DISKUT1.

In Figure 18-7, the operator has chosen primary option 2, Program
Preparation. Several different programs and utilities may be used

in program preparation, so the primary option menu decision table
entry directs the Session Manager to display the program preparation
secondary option menu.



PRIMARY OPTION MENU PRIMARY OPTION DECISION TABLE
bt 4
1. TEXT EDITING
2. PROGRAM PREP

3. DISK UTILITIES
etc.

1. EXECUTE $FSEDIT PROCEDURE

2. DISPLAY PROG PREP SECONDARY OPTION MENU

3. DISPLAY DISK UTILITIES SECONDARY OPTION MENU
etc.

SECONDARY OPTION MENU
..... 3 S~ )

SECONDARY OPTION DECISION TABLE

1. DISPLAY $EDXASM PARM SELECTION MENU

. — EXECUTE $EDXASM PROQCEDURE

2. DISPLAY $S1ASM PARM SELECTION MENU
— EXECUTE $S1ASM PROCEDURE

3. DISPLAY $COBOL PARM SELECTION MENU
— EXECUTE $COBOL PROCEDURE

etc.

-—---"
1. $EDXASM ASSEMBLY

2. $STASM ASSEMBLY
3. $COBOL COMPILE
etc.

PARAMETER SELECTION
MENU

SOURCE 72:S1SOURGE

OUTPUT -3 ASMOBT >
OPTIONS-22:NOLIST

- " $JOBUTIL PROCEDURE FILE

<:;) PROGRAM )
DS
DS LOAD
DS b SEDXASM
PARM ASSEMBLER
EXEC |
EOJ

Figure 18-7. Session manager operation (3)

On the secondary option menu, the operator chooses option 1,
$SEDXASM assembly. Since input and output data set names, as well
as execution options may vary from one assembly to the next, the
first part of the secondary option menu decision table entry for
option 1 directs the Session Manager to display a parameter selection
menu for SEDXASM.

If no previous assembly has been done, the data set name and option
entry areas on the screen will appear blank, and will be filled in at
this time by the operator. If a previous assembly has been done, the
data set names and assembler options used for the last assembly will
be displayed. The operator may change items as necessary, or, if
everything is the same as the previous assembly, may use all the same
parameters, by pressing ENTER (null entry).

Session Manager 18-9



In any event, when the ENTER key is pressed, the Session Manager

transfers the data from the parameter selection menu to the job control ,
procedure. Then, under direction of the second part of the secondary C
option menu decision table entry for option 1, the procedure is passed

to $JOBUTIL for execution.

USING THE SESSION MANAGER

The Session Manager is, to a large extent, self-tutoring, and is most
easily learned by actually using it. However, in an attempt to convey
at least an idea of what it is like to use the session manager, the three
option selection sequences illustrated in Figures 18-5 through 18-7
will be repeated, this time using actual screen images that an operator
would see while performing these operations.

LOADING THE SESSION MANAGER

18-10 SR30-0436

A 4978/4979/3101 M2 terminal is logically attached to the Session
Manager by entering the $L command shown in Figure 18-8.

> SL SSMMAIN

Figure 18-8. Session manager example (1)

Note: The Session Manager may be automatically brought up on all
4978/4979/3101 M2 terminals on the system, at IPL. See the reading
assignment for details.



When the load command is honored, the LOGON screen in Figure 18-9
will appear. The session manager requires a unique 1 to 4 character

user ID for each user. For this exercise, the characters XMPL are
entered.

1SMMLOG: THIS TERMINAL IS LOGGED ON TO THE SESSION MANAGER

ENTER 1-4 CHAR USER ID ==> 02:12:17
(ENTER LOGOFF TO EXIT) 00/00/00

ALTERNATE SESSION MENU ==>
(OPTIONAL)

Figure 18-9. Session manager example (2)

The “ALTERNATE SESSION MENU" prompt below the user ID

prompt would be used if you had created your own menus, decision

tables, and procedures for use with the Session Manager.

Session Manager

18-11




Data Set Allocation

After entering the user 1D and pressing the ENTER key, the screen O
shown in Figure 18-10 appears.

SESSION MANAGER ALLOCATING WORK DATA SETS

Figure 18-10. Session manager example (3)

When a user logs on to the Session Manager, the Session Manager ‘
allocates six data sets on EDX003. The names, sizes, and functions
of these data sets are shown in Figure 18-11.

18-12 SR30-0436



O

SSMPxxxx

BSMWxxxx

SSMExxxx
SSM 1xxxx
SSM2xxxx

$SM3xxxx

SIZE
(records)

30

30

400
400
400

250

USED BY THE SESSION MANAGER TO SAVE
PARAMETERS ENTERED FROM PARAMETER
SELECTION MENUS DURING PREVIOUS SESSIONS
UNDER SAME USER ID

USED BY SESSION MANAGER TO SUBMIT PROCE-
DURES TO $JOBUTIL FOR EXECUTION

USED AS A WORK FILE FOR:

$ S $ $ $ $ $
F E S L o] F P
S D 1 I o} (o] L
E X A N B R |
D A S K 0 T
IT S M L RA
M N
X
X X X X X X
X X X X X
X X X

Figure 18-11. Session manager data set allocation

The first four characters of each data set name is as depicted in
Figure 18-11. The last 1 to 4 characters will be the user ID entered
on the LOGON screen (Figure 18-9). In this case, the data sets
would be named $SMPXMPL, $SMWXMPL, etc.

When attempting to allocate data sets, the Session Manager first checks
to see if the data sets already exist, and if they do, will use those already
there. If a user has allocated data sets (with the proper names) using
$DISKUT1, the user-allocated data sets will be used. This allows a

user to define larger data sets than would the Session Manager, if the
sizes allocated by the Session Manager prove too small.

\

Session Manager 18-13



18-14

SR30-0436

After data sets have been allocated, the primary option menu in
Figure 18-12 will appear.

S5 z SESSION MANAGER PRIMARY OPTION MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

SELECT OPTION =>[

TEXT EDITING

PROGRAM PREPARATION
DATA MANAGEMENT
TERMINAL UTILITIES
GRAPHICS UTILITIES
EXEC PROGRAM/UTILITY
EXEC $JOBUTIL PROC
COMMUNICATION UTILITIES
DIAGNOSTIC AIDS

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -

Figure 18-12. Session manager example (4)

The operator enters option 1 for TEXT EDITING, and the screen in
Figure 18-13 appears.

SFSEDIT 30P, LP= 9100

DS1 HAS NOT PREVIOQUSLY BEEN USED
AS AN EDIT WORK DATA SET.

IS IT OK TO USE IT NOW? [YES)

I

&

Figure 18-13. Session manager example {5}



The “ISIT OK TO USE IT NOW?" prompt appears because $SMEXMPL,
the text editor work data set, was just allocated, and the data is not

in a format $FSEDIT recognizes. After once being used for this purpose,
the prompt will not reappear.

After responding YES to the prompt, the primary option menu for
$FSEDIT is displayed, just as it would if $FSEDIT had been loaded
using the $L operator command (Figure 18-14).

SFSEDIT PRIMARY OPTION MENU
SELECT OPTION ===>

BROWSE - DISPLAY DATASET

EOIT CREATE OR CHANGE DATASET

READ READ DATASET FROM HOST/NATIVE
WRITE WRITE DATASET TO HOST/NATIVE
SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
LIST PRINT DATASET ON SYSTEM PRINTER
MERGE MERGE DATA FROM A SOURCE DATASET
END TERMINATE SFSEDIT

HELP DISPLAY TUTORIAL

1
2
3
4
5
6
7
8
9

Figure 18-14. Session manager example (6)

When option 8, “TERMINATE $SFSEDIT" is entered, the screen in
Figure 18-15 appears.

SFSEDIT ENDED AT 02:13:38
SJOBUTIL EMDED AT 02:13:38
DEPRESS ENTER KEY TO RETURH

Figure 18-15. Session manager example {7)

Session Manager 18-15



18-16 SR30-0436

After a utility loaded by the Session Manager is ended, the ENTER

key must be pressed to return to Session Manager control. Control is (\ ‘
returned to the last Session Manager menu displayed before the utility '
was loaded, in this case, the Session Manager primary option menu

(Figure 18-16).

TrIPRIM: SESSION MANAGER PRIMARY OPTION MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

SELECT OPTION == [

TEXT EDITING

PROGRAM PREPARATION
DATA MANAGEMENT
TERMINAL UTILITIES
GRAPHICS UTILITIES

EXEC PROGRAM/UTILITY
EXEC SJOBUTIL PROC
COMMUNICATION UTILITIES
DIAGNOSTIC AIDS

Figure 18-16. Session manager example (8)

This time, the operator enters option 3 for DISK UTILITIES, bringing up
the data management utilities’ secondary option menu in Figure 18-17.

3 ~SESSION MANAGER DATA MANAGEMENT OPTION MENU
NTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> [I]

SDISKUT1 (DISK(ETTE) ALLOCATE, LIST DIRECTORY)
$DISKUT2 (DISK(ETTE) DUMP/LIST DATASETS)

= $COPYUT1 (DISK(ETTE) COPY DATASETS/VOLUMES)
$COMPRES (DISK(ETTE) COMPRESS A VOLUME)
$COPY (DISK(ETTE) COPY DATASETS/VOLUMES)
$0ASDI  (DISK(ETTE) SURFACE INITIALIZATION)

$INITDSK (DISK(ETTE) INITIALIZE/VERIFY)

SMOVEVOL (COPY DISK VOLUME TO MULTI-DISKETTES)
SIAMUT1 (INDEXED ACCESS METHOD UTILITY PROGRAM)
STAPEUT1 (TAPE ALLOCATE, CHANGE, COPY)

—
DWOC O T BN

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. [F A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST QF AVAILABLE COMMANDS.

Figure 18-17. Session manager example (9)



Entering option 1 on the secondary option menu results in the load of
O $DISKUT1, as shown in Figure 18-18.

SDISKUTT - DISK(ETTE) DATA MANAGEMENT UTILITY
*** J0B - S$DISKUT1 - STARTED AT 02:14:49 00/00/00 ***

J0B $DISKUTT ($SMPO301) USERID=XMPL
USING VOLUME EDX002

COMMAND (?):

$DISKUTT ENDED AT 02:15:00

$JOBUTIL ENDED AT 02:15:01

DEPRESS ENTER KEY TO RETURN

Figure 18-18. Session manager example (10)

When the utility is ended, and the ENTER key depressed, the Session
Manager regains control, returning to the last screen displayed

Q (Figure 18-19).

| $SMMO3: SESSION MANAGER DATA MANAGEMENT OPTION MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==>

$DISKUT1 (DISK(ETTE) ALLOCATE, LIST DIRECTORY)
$DISKUT2 (DISK(ETTE) DUMP/LIST DATASETS)
$COPYUT1 (DISK(ETTE) COPY DATASETS/VOLUMES)
SCOMPRES (DISK(ETTE) COMPRESS A VOLUME)

$COPY (DISK(ETTE) COPY DATASETS/VOLUMES)
$DASDI  (DISK(ETTE) SURFACE INITIALIZATION)
SINITOSK (DISK(ETTE) INITIALIZE/VERIFY)

$MOVEVOL (COPY DISK VOLUME TO MULTI-DISKETTES)
SIAMUTY (INDEXED ACCESS METHOD UTILITY PROGRAM)
$TAPEUT1 (TAPE ALLOCATE, CHANGE, COPY)

OO0~V U W

10

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS.

Figure 18-19. Session manager example (11)

Session Manager  18-17



18-18

SR30-0436

To do Program Preparation, the operator now must return to the primary
option menu. To return to a previous screen, press PF3 (Figure 18-20). C

SomPRIM: SESSION MANAGER PRIMARY OPTION MENU
ENTER/GELECT PARAMETERS: PRESS PF3 7O EXIT

SELECT OPTION ==>

TEXT EDITING
PROGRAM PREPARATION

- DATA MANAGEMENT
TERMINAL UTILITIES
GRAPHICS UTILITIES
EXEC PROGRAM/UTILITY
EXEC SJOBUTIL PROC
COMMUNICATION UTILITIES
DIAGNOSTIC ALDS

1
2
3
4
g
6
7
51
9

Figure 18-20. Session manager example {12)

When option 2 is entered on the primary option menu, the program
preparation secondary option menu is displayed (Figure 18-21).

@

SELECT OPTION ==3

SEDXASM COMPILER
SSIASHM ASSEMBLER
SCOBOL COMPILER

SFORT FORTRAN COMPILER
SLISK LINKAGE EDITOR

SUPDATE

SUPDATER (HOST)

SPREFIND

SEDXASM/ SLINK/ SUPDATE,

SPLT COMPILER/SLINK/SUPDATE

[ I T T S R B R A

Figure 18-21. Session manager example {13)



O

The operator enters option 1, the $EDXASM assembler, and the
$EDXASM parameter selection menu is displayed (Figure 18-22).

i

T SESSION MANAGER $EDXASM PARAMETER INPUT MENU
NTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT  (NAME,VOLUME) ==>
OBJECT QUTPUT (NAME,VOLUME) ==>

OPTIONAL PARAMETERS ==>
(SELECT FROM THE LIST BELOW)

AVAILABLE PARAMETERS:
NOLIST

LIST TERMINAL-NAME (WHERE TERMINAL-NAME IS OPTIONAL)
ERRORS TERMINAL-NAME (WHERE TERMINAL-NAME 1S OPTIONAL)
CONTROL DATASET,VOLUME

OVERLAY (#) (WHERE = IS NUMBER OF AREAS FROM 1 7O 6)

DEFAULT PARAMETERS:
LIST $SYSPRTR

Figure 18-22. Session manager example (14)

In Figure 18-22, the source input, object output, and optional
parameter entry areas are blank. This indicates that this is the first
time that $EDXASM has been invoked under this user ID (XMPL).
The Session Manager saves input parameters between executions of
a program within a session, and across sessions of the same user ID
(data set $SMPxxx in Figure 18-11). If SEDXASM had previously
been used with user ID XMPL, the previously entered parameters
would appear in Figure 18-22.

Session Manager 18-19



18-20 SR30-0436

The operator enters the parameters as shown in Figure 18-23.

35MMUZ01: SESSION MANAGER SEDXASM PARAMETER INPUT MENU
NTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT  (NAME,VOLUME) ==> SOURCE
OBJECT OUTPUT (NAME,VOLUME) ==> ASMOUT

OPTIONAL PARAMETERS ==> NOLIST
(SELECT FROM THE LIST BELOW)

AVAILABLE PARAMETERS:
NOLIST
LIST TERMINAL-NAME (WHERE TERMINAL-NAME IS OPTIONAL)
ERRORS TERMINAL~NAME (WHERE TERMINAL-NAME 1S OPTIONAL)
CONTROL DATASET,VOLUME
OVERLAY (#) (WHERE » IS NUMBER OF AREAS FROM 1 TO 6)

DEFAULT PARAMETERS:
LIST $SYSPRTR

Figure 18-23. Session manager example (15)

Before pressing the ENTER key, assume the operator notices that
the output data set name is ASMOUT, when it should actually be

ASMOBJ. The operator can, using the cursor movement keys, position

the cursor so as to correct the erroneous spelling, or can press PF2,
resulting in the screen in Figure 18-24.

SMMOZ01: SESSION MANAGER $EDXASM PARAMETER INPUT MENU
ERTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT  (NAME,VOLUME) ==>

OBJECT QUTPUT (MAME,VOLUME) ==>

AVAILABLE PARAMETERS:
NOLISY
LIST TERMINAL~NAME (WHERE TERMINAL-NAME IS OPTIONAL)
ERRORS TERMINAL-NAME (WHERE TERMINAL-NAME IS OPTIONAL)
CONTROL DATASET,VOLUME
OVERLAY (=)  {WHERE = IS NUMBER OF AREAS FROM 1 TO 6)

DEFAULT PARAMETERS:
LIST $SYSPRTR

Figure 18-24. Session manager example {16)

C



PF2 returns a menu to the state it was in when it was initially displayed,
before operator entries were made to alter it. PF2 may be pressed any
time before pressing ENTER, which signals completion of entry to

a screen.

After reentering the parameters, this time with the correct spelling for
the object output data set name, the $EDXASM parameter selection
menu looks like Figure 18-25.

{sMM0201: SESSION MANAGER $SEDXASM PARAMETER INPUT MENU
(INTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURR

02:17:20
00/00/00

SOURCE INPUT  (NAME,VOLUME) ==» SOURCE

03JECT QUTPUT  (NAME,VOLLYE) ==>» ASMOBJ

NOLIST

Tomommemen Lemmmmnn
LIST PRINTIR KAME
HOLIST

ERRORS

ENTER OPTIONAL PARAMETERS BY POSITION ==

DEFAULTS ARE: LIST S$SYSPRIR

Figure 18-25. Session manager example (17)

Notice that the operator is not required to enter the name of a work
data set. The Session Manager will supply the name of one of the work
data sets that were automatically allocated during LOGON of the session.

Session Manager  18-21



18-22

SR30-0436

Before pressing ENTER, assume the operator has mounted a diskette

volume in the diskette device at address X'02’, and wishes to bring the

volume on line. This requires access to the system operator commands. C
Any time a Session Manager menu is displayed, the operator can get

into system command mode by pressing PF1. When PF1 is pressed,

the currently displayed menu is replaced with the screen shown in

Figure 18-26.

ENTERING SYSTEM COMMAND MODE -
TO REENTER THE SESSION MANAGER,
DEPRESS THE ATTN KEY AND ENTER "$SM"

Figure 18-26. Session manager example (18)

@

The operator varies the volume on line, and enters $SM to return to the
Session Manager.

ENTERING SYSTEM COMMAND MODE -

TO REENTER THE SESSION MANAGER,
DEPRESS THE ATTN KEY AND ENTER "$SM"
SVARYON 02

VOL_ONLINE

[Sst]

Figure 18-27. Session manager example (19)



When the ENTER key is pressed to enter the $SM command, the
Session Manager returns to the same menu that was displayed at the
time system command mode was entered (PF1 was pressed).

SSMMOZ01: SESSTON MANAGER SEDXASM PARAMETER IRPUT MERU
NTER/SELECT PARAHETERS: PRESS PF3 10 RETURN

SOURCE INPUT  (NAME,VOLUME) -=> SOURCE

OBJECT QUTPUT (NAME,VOLUML) ==> ASMOBJ

OPTIGNAL PARAMETERS == NOLIST
(SELECT FRCM THE LIST BELGH)

AVAILABLE PARAMETLRS:
NOLEST
LIST TERMINAL-NAME (WHERE TERMINAL-NAME IS OPTIONAL)
LRRORS TERMINAL-NAME (WHERE TERMINAL-NAME IS OPTICNAL)
CONTROL DATASET,VOLUME
OVERLAY (¢} (WHERE = IS NUMBER OF AREAS FROM 1 10 6)

DEFAULT PARAMETERS:
LIST $SYSPRTR

Figure 18-28. Session manager example (20)

Since all $EDXASM parameters have been entered, the operator
presses the ENTER key to submit the job for execution.

ASSEMBLE SQURCE TO ASMOBJ
**% J0B - SEDXASM - STARTED AT 02:18:14 00/00/00 ***

JOB - SEDXASM ($SMP0201)  USERID=XMPL
SEDXASM . 70P,02:18:18, LP= 8A00

$JOBUTIL ENDED AT 02:18:5]
DEPRESS ENTER KEY TO RETURN

Figure 18-29. Session manager example {21)

Session Manager 18-23



18-24

SR30-0436

After the assembly is complete, the operator presses ENTER to return
to the Session Manager, which brings up the $EDXASM parameter »
selection menu, the last menu displayed. (\

TMOC01: SESSION MANAGER SEDXASM PARAMETER INPUT MENU
ENTER/SELECT PARAMETERS: PRESS PF3 T0 RETURN

SOURCE INPUT  (NAME,VOLUME) ==>SQURCE

(BJECT OUTPUT (NAME,VOLUME) > ASMOBJ

OPTIONAL PARAMETERS == NOL]
(SELECT FROM THE LIST BELOW

AVAILABLE PARAMETERS:
HOLIST
LIST TERMINAL-NAME (WHERE TERMINAL-NAME IS OPTIONAL)
ERRORS TERMINAL-NAME (WHERE TERMINAL-NAME IS OPTIONAL)
CONTROL DATASET,VOLUME
OVERLAY (=) (WHERE = IS NUMBER OF AREAS FROM 1 TO 6)

DEFAULT PARAMETERS:
LIST $SYSPRTR

Figure 18-30. Session manager example (22)

Pressing PF3 twice backs out through the two previous screens, as
shown in Figures 18-31 and 18-32. (\
\/‘

21 SESSION MANAGER PROGRAM PREPARATION OPTION MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==>

SEDXASM COMPILER

SSIASM ASSEMBLER

$COB0L COMPILER

SFORT FORTRAN COMPILER
SLINK LINKAGE EDITOR
SUPDATE

SUPDATEH {HOST)

SPREFIND

SEDXASM/ SLINK/ SUPDATE

SPLT COMPILER/SLINK/SUPDATE

1
2
3
5
5
6
7
&
9
0

o

Figure 18-31. Session manager example (23)



SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU - - -
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

SELECT OPTION ==
XMPL

TEXT EDITING

PROGRAM PREPARATION
DATA MANAGEMENT
TERMINAL UTILITIES
GRAPHICS UTILITIES

EXEC PROGRAM/UTILITY
EXEC SJOBUTIL PROC
COMMUNICATION UTILITIES
DIAGNOSTIC AIDS

1
2
3
4
5
6
7
8
9

Figure 18-32. Session manager example (24)

To end the session, the operator again presses PF3, while the primary
option menu is displayed, which results in the prompt in Figure 18-33.

TERMINATING SESSION MANAGER
DO YOU WISH TO SAVE WORK DATASETS (Y/N):

Figure 18-33. Session manager example {25)

Session Manager  18-25



18-26  SR30-0436

- If the operator replies YES to the prompt, none of the data sets
allocated under this user ID at the beginning of the session will be
deleted. If, for example, you had allocated work data sets larger than
those normally allocated by the Session Manager (using $DISKUT1), to
accommodate particularly large assemblies or compiles, entering YES
would prevent those data sets from being deleted, and the next time
you wished to log on with the same ID, you would not have to first
use $DISKUT1 to allocate your oversize work files.

Entering NO results in deletion of all the data sets under this 1D except
for $SMPxxxx. This data set is retained, and used to save parameters
for future sessions under the same ID. - For example, if the operator
were ever again to log on with ID XMPL, and through the option
menus, choose program preparation and $EDXASM assembly, when the
$EDXASM parameter selection menu was displayed, the parameters
would be those last entered during this session.

Assuming NO was entered, the message in Figure 18-34 would be dis-
played during deletion of the data sets, followed by the LOGON
screen in Figure 18-35.

SESSION MANAGER DELETING WORK DATA SETS

Figure 18-34. Session manager example (26)



T&m&.—mls TERMINAL 1S LOGGED O TO THE SESSIOH MANAGER
02:02:10

ENTER 1-4 CHAR USER 1D == -LOGOFF 00/00/00
(ENTER LOGOFF TO EXIT) /oot

ALTERNATE SESSION MERY ==
{OPTIONAL)

Figure 18-35. Session manager example (27)

To terminate the session, the operator enters LOGOFF in the command
input area, and presses ENTER (Figure 18-36).

SESSION MANAGER TERMINATED
ENTERING SYSTEM COMMAND MODE
TO RELOAD THE SESSION MANAGER: SL $SMMAIN

Figure 18-36. Session manager example (28)

Session Manager  18-27



This page intentionally left blank.

18-28 SR30-0436



Appendix A. SYSGEN Listings

“#% JOB - $SUPPREP - STARTED AT 03:22:45 00/00/00 %%

LOG $SYSPRTR

J0oB $SUPPREP
PROGRAM  SEDXASMyASMLIB
NOMSG

PARM

0s SEDXDEFS+EDX002
DS ASMWORK ¢ EDX0Q02
DS ASMOBJ +EDX002
EXEC

Figure A-1. Procedure file statements controlling assembly

EDX ASSEMBLER STATISTICS

SOURCE INPUT - SEDXDEFS4EDX002
WORK DATA SET = ASMWORK EDX002
OBJECT MODULE - ASMO3J ,EDX002
DATE: 00/00/00 AT 03:23:32
ASSEMBLY TIME: 35 SECONDS
STATEMENTS PROCESSED - 30
NO STATEMENTS FLAGGED

LoC +0 +2 +4 +6 +8
0000 -
0000 0000

0002 0000 0000 0000 0000 0000
0052 000A 000A 00DA 0000 0000
005C 0000 0000 0000 0020 FFFF
0066 0008 0010 0014 0000 0000
0070 0000 0000 0000 0098 OOEC
007A 0140 0194 0198 019C 01A0
0084 OlA4 GOE8 013C 0190 0194
008¢ €198 019C 01AO0 0lA4 0000
0098  FFFF 3000 FFFF 8000 FFFF
00A2 BO00 FFFF 8000 FFFF 8000
00AC  FFFF 8000 FFFF 8000 FFFF
0086 8000 FFFF 8000 FFFF 8000
00CO0  FFFF 8000 FFFF BDOO FFFF
00CA 8000 FFFF 8000 FFFF 8000
0004  FFFF 8000 FFFF 8000 FFFF
00DE 8000 FFFF 8000 FFFF 8000
00EB  FFFF 8000 FFFF 8000 FFFF
00F2 8000 FFFF 8000 FFFF 8000
00FC FFFF 8000 FFFF 8000 FFFF
0106 8000 FFFF 8000 FFFF 8000
0110 FFFF 8000 FFFF 8000 FFFF
Ol11A 8000 FFFF 8000 FFFF 8000
0124  FFFF BOOO FFFF B000 FFFF
012€ 8000 FFFF 8000 FFFF 8000
0138 FFFF 8000 FFFF 8000 FFFF
0142 8000 FFFF BNOO FFFF 8000
014C  FFFF 3000 FFFF 8000 FFFF
9156 8000 FFFF 8000 FFFF 8000
0160 FFFF 8000 FFFF 8000 FFFF
016A 8000 FFFF BOOO FFFF 8000
0174  FFFF 8000 FFFF 8000 FFFF
O17€ B000 FFFF 8000 FFFF 8000
0188  FFFF 8000 FFFF 8000 FFFF

SOURCE STATEMENT $EDXDEFS9EDX002 (5719-XX4)1-V3.0.0

$EDXDEF CSECT

ELC IR R )

DATA F10°
EVENT DRIVEN EXECUTIVE - VERSION 3, MODIFICATION LEVEL O
THE FOLLOWING DEFINES THE STARTER SUPERVISOR AS SHIPPED ON THE
DISKETTE LABELED XS300l. FOR COMPLETE DESCRIPTIONS OF THESE
STATEMENTS OR ANY OTHER SYSTEM DEFINITION STATEMENTSs REFER TO
THE EDX VERSION 3 SYSTEM GUIDE: SC34-1702

SYSTEM STORAGE=128¢MAXPROG=(10910+10) 4PARTS=(8y16+20)

Figure A-2. Assembly statistics and listing (1 of 6)

0/00/ 0 3:23

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110

SYSGEN Listings A-1



0192 8000 FFFF 8000 FFFF 8000
019C  FFFF 3000 FFFF 3000 FFFF
01A6 8000 0003 0000 FFFF

OlAE 0000 0028 2440 0000 0000 TIMER ADDRESS=40 00000111
GlB8 0009 0020 0000 0000 0000
01C2 €000 0000 0000 O3E8 &4ELF —
01CC  1F1C 1F1E 1FLE LF1F 1ELF
0106  1ELF 0000 0028 2441 0000
01EQ0  6E41 0000 6441 0000 6741
0lEA 0000 01A8 0000 0000 0000
0lF4  0BBE EA60

01F8 0800 0000 S8C4 C4CS FOF3 DISK  DEVICE=4962-3,ADDRESS=03 00000120
0202 0000 0149 0000 D2FO FFFF
020C 0000 0000 0000 00J0 02DE
0216 0226 0003 003C 0000 0000
0220  NDOOO 0000 0000 0030 OOCA
022A 0000 0400 0000 O1F8 030C
0234 0000 0000 O3CC 0000 0000
023E 0300 0000 0000 0COO 0000
0252 0000 0000 7003 0001 8007
025C 0000 0000 DOOO D000 026A
0266 0000 0000 8005 0000 0000
0270 0000 0000 027A 0000 0000
027A 2009 0000 0000 Q00O 0000
0284  028A 0000 0000 0000 0000
028E 0000 0000 0000 0000 0000
0298 0000 7F03 029E 2000 0000
D2A2 0000 0000 0000 0000 0008
02AC  02AE 0000 0000 0000 000N
0256 0000 0000 0000 0000 0000
020E 0000 0000 0UO0 0000 0000 DISK  DEVICE=4964yADDRESS=02yTASK=YESEND=YES 00000130
0268 0003 0000 0000 9000 FFFF
02F2 G000 0000 0000 0000 000U
02FC  030C 0000 OVOO 0000 000U
03U6 0000 0000 0000 0000 0106
0310 0000 0000 0000 0U2JE 0000
031A 0000 0000 044C 0000 0000
0324  GOOOD 0000 0VUOO 0000 0000
0338 0000 0000 7002 0001 8007
0342 G000 0000 0J00 0000 0350
034C 0000 0000 8005 G000 0000
0356 0000 0000 0360 0000 0000
0360 2009 0000 0000 0000 0000
036A 0370 0000 0000 00OO 0000
0374 0000 0000 0000 0000 0000
0376 0000 7F02 0384 2000 0000
0388 0000 0000 0000 000 0008
0392 0394 0000 0000 0000 0000
039C 0000 0090 0000 0000 0000
03C4 0606 4040 4040 4040 0000
03CE 0000 0009 0000 Q000 00DO
0308 0000 03DA 03CC 9000 0000
03£2 0000 0000 0U00 0000 0001
03EC 0096 0000 0003 FFFF 0000
03F6 0000 03FB 0000 0000 D3FA
0400  S5BC4 E3E2 D2F1 4040 0000
040A  00N0 0000 0000 0000 0000
0414 0000 FEFF 0000 00GO0 0000
041E 0002 000U 03CC 0000 0000
0428 0000 0000 0000 0NOO 0000
0446 0000 03CC 0080 0000 0000
0450 0000 0000 0000 OCDO 0000
045A  045A 044C 0000 0000 0000
0404 0009 0000 0009 0001 0096
046E 0000 0000 FFFF 0000 0000
0478 0478 0000 0000 247A S58C4
0432 €362 D2F2 4040 2000 000V
048C 000G 0000 0090 0000 0000
0496  FFFF 0000 0000 0000 0000
04A0 0000 044C 0000 0000 0003
04AA 000U 0000 0000 0000 0000
048  C4a4C 0080

04CC  G52E 0000 0000 0000 0000 $SYSLOG TERMINAL OEVICE=4979,ADDRESS=04,HDCOPY=$SYSPRTRyPART=2 00000150
04L6 0009 0000 0000 VOO0 0000
04E0 00200 0000 6004 0003 6F04
04EA 0000 2004 0406 7004 04D4
04F4  TFO4 04D4 0000 0000 0006
04FE  C400 0000 0000 000C 0017
0508 0018 0050 0CO0 0050 0O0OC
0512 0017 0018 0050 0COO 0050
051C 1350 5BE2 EBE2 D306 CT40
0526 0000 FFFF 0000 0708 0000
0530 0406 0000 0000 FFFF 0000
053A  6£6D 0020 6F03 0000 0000
0544 0582 FFFF 4324 052E 6302
054E  054C 5000 C3AS CO72 6F03
0558 0000 0000 0582 674D 0072
0562 4324 0525 5600 6ELD 0O04E
056C  6F03 0000 0000 0628 0000
Figure A-2. Assembly statistics and listing (2 of 6) C
A-2 SR30-0436



0

0576
0580
0534
0534
059€
05C6
0500
0SDA
062A
0634
063E
0648
0652
065C
0666
0670
0674
0684
0698
06A2
06A8
063C
o6C6
0600
060A
06E4
06EE
06F8
0702
070C
0716
0720
Q72A
0734
073E
0748
0752
075C
0766
07170
077A
07A2
07AC
0806
0810
0B1A
0824
082E
0838
0842
084C
0856
0860
0874
087z
0632
088cC
ORG6
03840
08AA
924
083E
03C8
Q3v2
080C
Q3E6
08F0
03FA
a%u4s
090E
0918
0922
092C
0936
0940
0958
0972
0scc
0906
09€E0
09EA
09F &4
09FE
0AD8
0A12
0AlC
0A26
OA3A

4324
OFAC
coon
0000
0000
0000
[PL1IY
0000
0000
0000
0000
000A
0000
D2ce
0002
0000
3000
0000
0000
0000
0900
0000
2006
06AE
0000
0050
0018
C4E2
FFFF
0000
0020
FFFF
5000
0000
0708
0000
0708
0000
0000
0009
0000
0000
0000
coou
0000
0000
0000
082E
F3C1
0000
FFFF
Q000
0000
0on2
0802
6000
0000
7F08
6000
0000
0050
E3E2
000u
0000
6F03
4324
CBAS
0920
5600
€000
6802
coco
0000
1300
0009
€000
0000
€000
nNaces
2000
nond
0002
E2D2
0000
U0V
09Cs
0300
0009

052€
0000
00dC
0000
0000
0030
0000
00090
0000
0000
0000
0000
0654
E3C1
0900
FFFF
00o0e
0000
0001
0628
0000
6006
0406
0000
0000
6C00
0050
D703
0000
0000
6F03
4324
CBAS
075C
5600
0000
6802
0000
0000
0100
0000
0000
0000
0000
0802
0000
0000
0000
E202
0000
0000
0802
2000
0000
0030
0003
5000
0DOA
0000
0050
0000
0306
OADE
FFFF
0000
08cCC
0072
0B40
6E6D
09Ch
09186
0000
0030
0000
o000
0000
0000
0000
0000
00900
FFFF
0000
0067
0000
0000
Q000
0000
0000

6802
0000
0000
0100
0000
0000
0C00
0000
0000
0628
0000
0000
0900
E2D2
0000
0000
0628
0000
0000
0280
0000
0003
7006
0000
000C
0050
0coo
E6F1
0sCC
FFFF
0000
0708
0072
624D
6E6D
0802
0754
0000
0000
c190
0000
0200
0000
0000
0300
0000
FFFF
0000
0066
0000
0000
0000
0000
0000

6F00
0300
€600
0017
0000
0050
ciCy
0300
0020
0000
6802
6F03
0072
004t
0000
09Cé6
FEFF
0300
0000
0000
0974
0000
0000
0000
0001
0000
N9F4
0000
0000
o8CC
QU000
0700
09000

057A
0000
0000
0100
0000
0000
0000
0000
0000
0000
0000
FFFF
0000
0065
0000
0000
0000
0000
2000

0000
6F06
06AE
0006
0017
000¢
0050
4040
0000
0000
0000
6802
6F03
0072
004E
0000
0802
FFFF
0000
0000
0000
0780
0000
0000
0000
0001
0000
0830
0000
0000
0708
0000
2000
0000

0000
1000
0400
001R
0017
4250
0000
0Gl0
oE6D
0920
08EA
0000
4324
6F03
4324
0000
0000
0000
700
0000
0974
0000
2000
0000
UCOA
0000
p2cz2
0noo
0000
0000
0000
0000
0000

0623
FFFF
0000
0000
0000
0506
0000
0000
0000
0000
0001
0000
0656
0000
0000
052€
0000
0000
0000

0000
0000
TF06
0400
0018
o017
1850
0000
040E
6£60
075C
0726
0000
4324
6F03
4324
OFAC
0000
0000
0000
0000
o780
0000
0000
0000
0004
0000
02C2
0000
0000
0000
0000
0000
0000

2002
0000
0000
0050
ools
5BE2
FFFF
0000
0020
FEFF
5000
0000
03cC
0000
08cc
0020
0000
0000
0003
0000
0000
0000
9000
0000
0000
09F2
E3C1
0000
FFFF
0000
0000
0000
09C6

OsSPLYL TERMINAL DEVICE=4973+ADDRESS=06,yHDCOPY=8SYSPRTRyPART=3

$SYSLOGA TERMINAL OEVICE=TTY ADDRESS=00yCRDELAY=49yPAGSIZE=24,
80TM=234SCREEN=YES

Figure A-2. Assembly statistics and listing (3 of 6)

00000151

C00000160
00000170

SYSGEN Listings A-3



OA44
0A46
0A50
0ASA
0A64
OA6E
0AT78
0AB2
0A8C
0A%6
QAAO
0AAA
0A34
OABE
OACSB
0AD2
0ADC
0AES
0AFO
OAFA
0804
OBOE
0B18
0B22
oB2C
0B36
0B40
0B4A
0BS54
087C
0886
ocs2
0ocac
0cce
0CD0
0CO0A
OCE4
OCEE
oCF8
0002
0D20
0D2A
0D34
0D3&
0D48
0D52
0D5C
0066
0070
0D7A
oD84
0DBE
0p9s
00A2
0DAC
0Ds6
00C0
0DCA
0DD4
0DDE
0DESB
0DF2
0DFC
0E06
VE2E
0E38
QEC4
OECE
0EDB
OEE2
OEEC
OEF6
0F00
OFOA
OF14
OF1E
OF3C
JF42
OF4C
0F56
OF60
OF6A
OF74
OF7E
OFd8
0F92
0F9C
OF A6
OF30

0080
0000
0000
0000
2004
0000
000A
600G
BOBO
0003
7008
£050
0000
00Co
0000
D305
o094
FFFE
0000
OADE
2072
684D
6E6D
0OCAA
0324
0000
0000
D886
0000
0000
0000
0000
0000
0000
FEFF
0000
0068
0000
0000
0000
0000
0000
0000
0000
0000
2021
0034
0000
0084
0042
D3C9
FFFF
0000
0020
FFFF
5000
0000
0094
0000
0094
€009
0000
0000
0000
0000
0000
0000
0000
0000
0004
0000
p2ce
0000
0000
0003
0000
co00
0000
0000
06000
0000
2001
OF52
0000
coe4
00642
5BE2
FFFF
0000

0000
V000
0000
0000
0002
0002
0010
0000
6F08
0AB4
0200
0017
0000
0oce
crc2
0020
0000
0000
6802
6F03
0072
004E
0000
oC AA
FFFF
0000
0000
0000
oB86
0000
0000
0000
0001
0000
ocos
0000
0000
OADE
0000
0000
0000
0000
0000
6021
2206
0000
0000
0300
0084
DSCS
0000
0000
6F03
4324
CBAS
ODE8
5600
0000
6802
0000
0000
0100
0000
0000
0000
0030
0000
0000
0000
OEEE
E3C1
0000
FFEF
0000
0000
0EC2
0000
0000
0000
6001
0206
0000
0000
0300
0034
EBE2
0000
0000

0000
0000
0000
0000
0386
0000
07FE
0200
0000
108
0440
0018
0017
1850
0000
100&
6E6D
0832
0AFC
0000
4324
6F03
4324
0000
0000
0000
0000
0000
0886
0000
0000
0000
0004
0000
p2c2
0000
0000
0000
0000
0000
0000
0000
0000
0003
7021
0000
0003
0084
0300
0709
OFAC
FFFF
0000
0094
0172
6340
6E6D
0EC2
0DEQ
0030
0000
0000
0000
0000
0000
0000
0EC2
0000
0000
0000
E202
0000
0000
0EC2
0000
0080
0000
0000
0090
0003
7001
0200
2703
0084
0300
D709
0000
FFFF

0000
€400
7008
0000
0002
0000
60BO
0000
2008
0AB4
0007
0050
0018
58E2
FFFF
0000
0020
FFFF
5000
0000
0ADE
0000
0ADE
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0Co6
E3C1
0000
FFFF
0000
0000
0CAA
0000
0030
0000
6F21
0D3A
0000
033E
0003
0084
€309
0000
0000
0000
6802
6F03

voT2

004E

0000
0EC2

FFFF
0000
0000
0000
0E3C
0000
0000
0000
2000
FFFF
0000
0069
0co0
0000
0000
0000

0000
9080
0000
&6F01
0F52
0000
033E
0003
0084
E3D9
0000
0000

0000
0000
0A64
00o0ov
0002
0000
BOBO
6008
0000
FE10
0000
0000
0050
EBE2
0000
0000
6F03
4324
CBAS
0832
5600
0000
6302
0000
0000
D816
0000
0000
0000
0000
0CAA
0000
0000
0000
E2D2
0000
0000
OCAA
0000
0080
0000
0000
0000
0000
7F21
0020
0042
033E
FFB4
0000
0306
6E6D
ODES
onB2
0000
4324
6F03
4324
0000
0000
0000
0000
0000
0E3C
0000
0000
0000
0001
0000
OEFO
0000
0000
0D9%4
0000
0000

0000
0000
0000
0000
7F01
0020
0042
033€
FF84
0000
0206
6E6D

$SYSLOGB TERMINAL

DEVICE=ACCA+ADDRES5=08¢4MODE=31018B4ADAPTER=5INGLEy

BITRATE=9600+RANGE=HIGH

LINEPRTR TERMINAL

$SYSPRTR TERMINAL

Figure A-2. Assembly statistics and listing (4 of 6)

A4

SR30-0436

DEVICE=49734ADDRESS=21

DEVICE=4974+ADDRESS=014END=YES

C00000180
00000190

00000250

00000251

C



OFBA
OFC4
OFCE
OFD8
JFE2
OFEC
OFF6
1000
100A
1014
101E
1046
1050
100C
10E6
10F0
1OFA
1104
110€
1118
1122
112C
1136
1154
1154
115A
1164
116€
1174
117A
117A
1274
127A

0020
EFFF
5000
0000
OFAC
0000
OFAC
0000
0000
0000
0000
0000
€000
0000
0000
0000
0004
0000
p2c2
0000
0000
0000
0000
0000

FRFF
FFFF
FFFF
FFFF

coou
0000

6F03
4324
CBAS
1000
5600
0000
6802
0000
0000
0100
0000
0000
0000
0000
0020
0000
0000
1106
E3C1
0000
FFFF
0000
©000
100A

0000
oooc
00920
0000

0000
0000

0000
OFAC
0972
6840
6E6D
10DA
OFF3
0000
0000
0090
0000
0000
0000
0000
1004
o000
0000
0000
€202
0000
0000
100A
0000
0080

0000
0000
lelelo]
0000

0000
0000

0000 1000
6802 OFCA
6F03 0000
0072 4324
004E 6F03
0000 4324
10DA 0000
FFFF 0000
0000 0000
0000 0000
9000 0000
1054 1054
0000 0000
0000 00D0
0000 0000
0000 0001
FFFF 00CO
0000 1108
006A 0000
0000 0000
0000 OFAC
0000 0000
0000 0000
$SYSCOM CSECT
0000 0000 Qcs
0000 0000 Qcs
ECB
ECB
ENTRY
0000 0000 SEDXPTCH DATA
END
CXTERNAL/UNDEFINED SYM30LS
$SEOXCEF ENTAY 0000
SvC EXTRN
SUPEXIT EXTRN
SETBUSY EXTRN
RZTURN EXTRN
SvCl WXTRN
POST WXTRN
$SVCIBUF  ENTRY 0002
SVCBF ENTRY 0002
SVCHFEND ENTRY 0052
SINITPRT ENTRY 01AA
$INITMOD ENTRY 01lAC
$STORAGE ENTRY 0052
STOREAAP ENTRY 0076
$BLOCKCT ENTRY 0052
MAPEND ENTRY 0086
SMEMSIZE ENTRY 0062
$PARTSZE ENTRY 0066
DATEFMT ENTRY 0064
$MAPAREA ENTRY 0096
SNUMPART  ENTRY O0Ol1A8
EOXSYS EXTRN
TIMERODB ENTRY OlAE
TIMERQ ENTRY O1lAE
TIMERL ENTRY 0108
TIMEROIA EXTRN
TIMER1IIA EXTRN
oMVOL ENTRY O1F8
DMDDB ENTRY 0226
D49624AT EXTRN
DISKIQO00 EXTRN
DMIPL ENTRY 03C4
TERMDEFS ENTRY 04CC
FIRSTCCB ENTRY 04CC
WAIT EXTRN
ATTACH EXTRN
KBTASK EXTRN
$SYSLOG ENTRY 052€
[A4379 EXTRN
104979 EXTRN
$SYSPRTR ENTRY OFAC

Figure A-2. Assembly statistics and listing (5 of 6)

$SEDXPTCH
128F*Q°*

SYSTEM PATCH AREA

00000260
00000270
00000280
03000290
00000300
00000310
00000320

00000330

SYSGEN Listings A-5



DSPLYL  ENTRY 0708
1A4978  EXTRN
TRASCII  EXTRN
$SYSLOGA ENTRY 08CC
IATTY EXTRN
IOTERM  EXTRN
TRE3ASC  EXTRN
$SYSLOGB ENTRY OADE
IAACCA  EXTRN

103101 EXTRN
LINEPRTR ENTRY 0094
1A4973 EXTRN

104974 EXTRN
IA4974 EXTRN
$SYSCOM ENTRY 115A
SEDXPTCH ENTRY 117A

COMPLETION CODE = -1

Figure A-2. Assembly statistics and listing (6 of 6)

Jump ENDJOBsGTv 4
PROGRAM  $LINKy EDXO02
NOMSG

PARM $SYSPRTR

DS LINKCNTL ¢EDX002
0s LEWORK1,EDX002
0s LEADRK2¢EDX002
EXEC

Figure A-3. Loading link editor

SLINK EXECUTION CONTROL RECORDS
FROM LINKCNTLyEDXOO2
*

* EVENT ORIVEN EXECUTIVE - VERSION 3y MODIFICATION LEVEL O
*

XXX EEGHEERREEE RGBS O QLR EXETHBE A EXERFEEE L EE AR L L RG K&
% COMMENTS MAY BE INCLUDED BY AN *%' IN COLUMN 1 =#

% USE THIS TECHNIQUE TO OMIT UNNEEDED MODULES *

BEEFERSEEAXBEEEEEGEX XA LR EEBLAEEHEXXFEELEFEXEXHGRARE Y
ouTRUT SUPVLINK,yEDXOD2 ENTRY=$START

&

SOEEREEEERE S ARG AG QAR SRR RXTE SR LGS LATRCGEETEELRRAEELEE
* SUPERVISOR SUPPORT *
EATFEH AU G EREEE XSS G IR XX BT L XXLRE SR CE BT RS XA X QAL 1GEX A
“

INCLUDE EDXSYSeXS$3002 *0% SYSTEM TABLES AND WORK AREAS

INCLUDE ASM0O8JsEDX002 «0% QUTPUT FROM USER SYSTEM GENERATION

INCLUDE EDOXSVCX9XS3002 *0yK#% TASK SUPERVISOR (XL)

* INCLUDE EDXSVCXU9XS3002 #0¢L% TASK SUPERVISOR (UN-XL}
INCLUDE $DBUGNUC ¢ XS3002 *G¥* RESIDENT $DEBUG SUPPORT
INCLUDE EDXALU9XS3002 Q% EDL INSTRUCTION EMULATOR
INCLUDE EOXSTART¢XS3002 #0% INITIALIZATION & ERROR HANDLER

*

2322321 22 222 12 2 2 -t 2 2 2 2 2 D 2 2 2t T E 2

%= DEVICE SUPPORT -- DISK(ETTEIS *

FREXREEREEFEERE YRS EERLEEARFREEXLREEAFRERCERRLEEREEEX

*

INCLUDE DISKIOyXS3002 M2 BASIC DISK(ETTE)} SUPPORT
INCLUDE D49624+XS3002 =M= 4962/4964 DISKIETTE) SUPPORT

% INCLUDE D4963A9XS3002 EMF 4963 SUBSYSTEM SUPPORT

% INCLUDE 04966A9XS53002 M= 4966 MAGAZINE SUPPORT

&

HEREXXREEEELEEAIEE BRSSO XBLERASELESEL LR O ROI R o ER G I RLR

* DEVICE SUPPORT -- TAPE =

TEEEEREREEEER FEFEREREARLEASEEXLEBE A RHYEX

%
# INCLUDE D4969A9XS3002 =M% BASIC TAPE SUPPORT
L]

L L e s e e e T s
% DEVICE SUPPORT ~- TERMINALS *
SEREER AEGEFELEEE ARG REXEXRBGARE L LSS R XLRES
*

INCLUDE EDXTI09XS3002 *19K% BASIC TERMINAL SUPPORT (XL)
& INCLUDE EDXTIOU9XS3002 *1yeL%* BASIC TERMINAL SUPPORT (UN-XL)

Figure A-4. Link control file (1 of 8)

A6 SR30-0436



o

O

INCLYDE EOXTERMQ+XS3002
* INCLUDE EDXTRMQUyXS3002

INCLUDE 10S4979+X53002
* INCLUDE 10S4979UyXS3002

INCLUDE 10S49T44XS3002
* INCLUDE 1054974UyXS3002
INCLUDE IOSTERMyXS3002
INCLUDE IDSTTY,XS3002
INCLUDE IOSACCA,XS3002
INCLUDE 10S3101+X53002
INCLUDE I0SS1S14XS3002
INCLUDE I0SGPIByXS3002
INCLUDE 10S4013,X53002
INCLUDE I0S27414XS3002
INCLUOE I0SVIRT¢XS3002

4t 4 4 dr 2 3

“lyK* ENQT/DEQT & TERMINAL QUEUEING (XL)
#19L% ENQT/DEQT & TERMINAL QUEUEING (UN-XL)
#MyK% 4978/4979 DISPLAY SUPPORT (XL)

My L% 4978/4979 DISPLAY SUPPORT (UN-XL)
SMeK%* 4973/4974 PRINTER SUPPORT (XL
HMgL%* 4973/4974 PRINTER SUPPORT (UN-XL)
*2% REQUIRED FOR TTY, ACCAy 4013 & 2741
=M% ASR 33/35 TELETYPEWRITER SUPPORT
*3% ASCII ACCA TERMINAL SUPPORT

“MsO%* 3101 BLOCK MODE SUPPORT

TMx SERIES/1 - SERIES/1 SUPPORT

M GPIB SUPPORT

M2 DIGITAL [/0 TERMINAL SUPPORT

AN 2741 TERMINAL SUPPORTY

“MgN% VIRTUAL TERMINAL SUPPORT

B e e e - 1 2 e
% TERMINAL SUPPORT —- TRANSLATION TABLES *
SFRFEFAUEIRERAXLEFFACEERS LA E AR CEEACRGETE XS IXKFXAISXESK
%
INCLUDE TRASCII,XS3002 #44P% TELETYPEWRITER TRANSLAT

ION

INCLUDE TREBASC9XS3002 #34P% MIRROR IMAGE ASCII TRANSLATION

* INCLUDE TREBCD»XS3002 5% 2741 €BDC TRANSLATION

e e e N Lt e T
TERMINAL SUPPOPT -- SPOOLING %
FREXAFHRFEHFEEFELEERER LIRSS LA LXX LB VLR S XTI F LA R ELETED

L0 BN I L+

INCLUDE I0SPOOLyXS3002 *M¥ SPOOLING SUPPORT

*
HEFRERFL SRR EEE XA F AL XELEXT
¥ DEVICE SUPPNRT -- TIMERS
T T N - T-E T T T e
&

INCLUDE EDXTIMER$XS3002 %63 4953/4955 TIMER (T840}
% INCLUDE EDXTIMR2+XS3002 26% 4952 TIMER SUPPORY
*
B e e e
% DEVICE SUPPORT -- BINARY SYNCHRONOUS COMMUNICATIONS *
e e R L T e o e e T ]
%

VT EEEFRLELTRERERERERIEE

INCLUDE TRCRSPyXS3002 *5% 2741 CORRESPONDENCE TRANSLATION

SUPPORT

* INCLUDE BSCAM¢XS3002 *T9K* BISYNC COMM. ACCESS SUPPORT (XL)
% INCLUDE BSCAMU#XS$3002 *79L%* BISYNC COMM. ACCESS SUPPORT [(UN-XL)

% INCLUDE  TPCOMyXS3002 %6%  HOST COMMUNICATION SUPPURT

x

P E R R R e e 2 e S A 21

% QDEVICE SUPPORT -- SENSOR INPUT/OUTPUT &

- e e R e T 22 e 2 1
INCLUDE  SBCOMyXS3002 %9%  BASIC SENSOR I/0 SUPPORT
INCLUDE  IOLOADERyXS3002 %9,K% SENSOR [/0 DEVICE OPEN (XL)
INCLUDE  IOLOADRUyXS3002 ¢94L% SENSOR I/0 OEVICE OPEN (UN-XL)
INCLUDE  SBAI,X53002 #M%  ANALOG INPUT SUPPURT
INCLUDE  SBAD¢XS3002 M=  ANALOG OUTPUT SUPPORT

FAXFXXFE ARG REIL G EBF IR H X LAETXELAEL LS XX VERESELRREXEL
DEVICE SUPPORT =-- EXIO CONTROL &
E e e e LT

L e e e e ]
SYSTEM SUPPORT -- ERROR LOGGING %

INCLUDE SBDIDGyXS3002 “M& DIGITAL INPUT/OUTPUT SUPPORT
INCLUDE SBP19XS3002 M PROCESS INTERRUPT SUPPORT

INCLUDE IOSEXIO9yXS3002 M= EXID DEVICE CONTROL SUPPORT

3 3k b 4P 42 gF 4F dr QM 4 3F b 4 4F b 4F 3 3 &

INCLUDE SYSLOGyXS3002
* INCLUDE NOSYSLOG+Xx 53002
INCLUDE CIRCBUFF ¢XS53002
x
EREEHEEX PR EEHEE GERCREEEFHERX
* OPTIONAL FUNCTION SUPPORT
AEXXRRE L RSB LRSS SELTAHE S XEHK%

=
=

INCLUDE RLOADERy X$3002
* INCLUDE RLOADERUXS$3002
INCLUDE EDXFLOAT+XS3002
* INCLUDE NOFLOATXS$3002
INCLUDE EBFLCVT»XS3002
INCLUDE QUEUEIODyXS3002

BEERERE XXX FAEIEEL R RETHE

&
SYSTEM SUPPORT -— INITIAL
FHXREUERFAXEFXEESELLERAA S HE

3 38 % b gt
3t

INCLUDE EDXINIT¢XS53002
INCLUODE DISKINIT,4XS3002

Figure A-4. Link control file (2 o

FERERUF LRI AGABREF LRI ARIBSAGEERL XL R RARN R BT GRS LSXSXEE

A 1/0 ERROR LOGGING
*A% NO I/0 ERROR LOGGING
*B¥ PROGRAM/MACHINE CHECK LOGGING

BEEFEEEEREFEEEERRLEALIEE

%
FEREBRERRR R LR A GEATREE S
#CyeK%* RELOCATING PROGRAM LOADER (XL)
*CeL¥ RELOCATING PRIGRAM LOADER (UN=XL)
%% FLOATING POINT ARITHMETIC
*D% FOR SYSTEMS WITHOUT FLOATING POINT
*EX EBCDIC/FLOATING POINT CONV.
=F® QUEUE PROCESSING SUPPORT

TR EFLIGEGEE S CAERERTEXT SR
IZATION =
GRS EXFGE SR FEABEFERLER

FH® SUPERVISOR INITIALIZATION
MR DISKLETTE) INITIALIZATION

f 8)

SYSGEN Listings

A-7



TAPE INITIALIZATION

PROGRAM LOADER INITIALIZATION
4963 FIXED HEAD REFRESH SUPPORT
TERMINAL INITIALIZATION

4978 DISPLAY INITIALIZATION
DIGITAL I/0 TERMINAL INITIALIZATION
ACCA MULTI-LINE ADAPTER RAM LOAD
BISYNC {BSCAM) INITIALIZATION
HCF (TPCOM) INITIALIZATION
4953/4955 TIMER INITIALIZATION
4952 TIMER INITIALIZATION

SENSOR I/GC INITIALIZATION

EXIO INITIALUZATION

®MyQ%* S1S1 INITIALIZATION

LENGTH

052E

& INCLUDE TAPEINIT¢XS3002 *M&
INCLUDE LOACINIT¢XS3002 *C¥
% INCLUDE RW49631ID9XS3002 *M=*
INCLUOE TERMINITyXS3002 %)%
INCLUDE INIT4978+4XS3002 #M%
% INCLUDE INIT40134XS3002 *M%
INCLUDE $ACCARAMyXS3002 #*3%
* INCLUDE BSCINIT,XS53002 =7
* INCLUDE TPINIT4X53002 wgx
INCLUDE TIMRINIT+XS3002 #*6%
* INCLUDE CLOKINITyXS3002 *6%
% INCLUDE SBIOINIT9XS3002 *Mx*
* INCLUDE EXIOINIT9XS3002 =M%
* INCLUDE S1S1INIT¢XS3002
END
*&&x&  UNRESOLVED EXTERNAL REFERENCES
WXTRN EXOPEN
WXTRN SAOA
W XTRN BSCENTRY
WXTRN SDIX
WXTRN SBP1I
WXTRN SDIS
WXTRN SDOX
WXTRN SAIX
WXTRN S00S
WXTRN SAIS
WXTRN $BSCFDD%
WXTRN SO1
WXTRN SAOX
WXTRN soop
WXTRM S00
WXTRN SAI
WXTRN IOVIRT
WXTRN EXIO
WXTRN STP
WXTRN SAD
WXTRN $TPDVADR
WXTRN SDIA
WXTRN $EXICDDAB
WXTRN SDOA
WXTRN SAIA
WXTRN 10L0AD
WXTRN $PROGL
WXTRN D49631H1
WXTRN CNTLBUSY
WXTRN VRY 4966
WXTRN 049668
WXTRN TAPEIOD
WXTRN VRY 4969
WXTRN CNTLEND
WXTRN RD2741
WXTRN RD4013
WXTRN WR2741
WXTRN WR4013
WXTRN EXTOCLEN
WXTRN DEQBSC
WXTRN ACLOSE
WXTRN IOUNLOAD
WXTRN $SVCSIA
WXTRN TPINIT
WXTRN INIT4013
WXTRN BSCINIT
WXTRN TAPEINIT
WXTRN SBIOINIT
WXTRN $SVCLSB
WXTRN EXTOINIT
WXTRN RW496310
WXTRN D4963ATN
WXTRN DOBFIX
WXTRN CCBFIX
OUTPUT NAME= SUPVLINK
ESD TYPE LABEL ADDR
CSECT EDXSYS 0000
ENTRY $START 0230
ENTRY RETURN 0238
ENTRY $DMDDB 0260
ENTRY $IPLVOL 0262
ENTRY STIMRTBL 0264
ENTRY S$TESTADR 0268
ENTRY $TPDDB 026A
ENTRY $BSCADDR 0290
ENTRY EDXFLAGS 0298
ENTRY SVCFLAGS 029A
ENTRY $SBPITAB 029C
ENTRY LCBA 029E
ENTRY  $DMVOL 02A0
ENTRY SVCBFIN 0280
ENTRY SVCBFOUT 02B2

Figure A-4. Link control file (3 of 8)

A-8 SR30-0436



o

O

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECTY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

Figure A-4. Link control file (4 of 8)

SVCRTRN
SvcLl
SVCLT
svCL2
SVCL3
svCLSB
SVCIAR
SVCAKR
SVCLSR
SVCRO
SVCR1
SVCR2
SVCR3
SVCR4
SVCRS
SVCR6
SVCR7
SVCIIAR
SVCILSB
SVCIAKR
SVCILSR
SVCIRO
SVCIR1
SVCIR2
SVCIR3
SVCIR4
SVCIRS
SVCIR6
SVCIRT
UNCHAKR1
UNCHSAV6
SVCPARMS
CMDTABLE
$EDXDEF
SVCBF
$SVCIBUF
SVCBFEND
$STORAGE
$BLOCKCT
$MEMSIZE
DATEFMT
$PARTSZE
STOREMAP
MAPEND
$MAPAREA
$NUMPART
$ INITPRT
$ INITMOD
TIMERDDB
TIMERO
TIMERL
OMVOL
oMDDB
DMIPL
FIRSTCCB
TERMDEFS
$SYSLOG
DISPLAYL
$SYSLOGA
$SYSLOGB
$SYSPRTR
MATRIX
$SYSCUM
$EDXPTCH
EDXSVCX
svC

SVCA
SETBUSY
SvCl
WALT

ENQ

DEQ

PCST
ATTACHX
ATTACH
DETACH
SUPEXIT
SUPEXTRL
SUPLVLXO
SATTACH
SDETACH
SCHAIT
SWAIT
SPCST
SRESETEV
SENQ
SDEQ
STPTASK1
STPTASK2

0284
0286
02B6
02BE
02C6
02CE
02CE
0200
0202
0204
02D6
0208
020A
020C
02DE
02EQ
02€2
02E4
02E4
02€6
N2E8
02EA
02EC
02EE
02F0
02F2
02F4
02F6

02F8 -

02FA
02FC
0300
0306
052E
0530
0530
0580
0580
0580
0590
0592
0594
05A4
0584
05C4
0686
0688
068A
068C
068C
0686
0606
0704
08AZ2
094AA
09AA
0A0C
0BE6
0DAA
OFBC
1272
14BA
1638
1658
1758
1758
178A
1704
170C
1828
1336
1888
1898
19DE
19E2
1A44
LA76
LABC
LAE4
189%
1REO
1€02
1Cl6
1C2E
1C4E
1C5A
1CAQ
1CCo
1CC4

122A

0880

SYSGEN Listings

A9



Figure A-4. Link control file (5 of 8)

A-10

ENTRY
ENTRY

ENTRY
ENTRY
CSECT
ENTRY
ENTRY
cNTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

UNCHAIN
sCP

LPGMXP1
LPGMXP2
$0BUGNUC
STESTCOM
STESTIN
STESTOUT
$TRCSIA
$STRCLSB
EDXALY
#1FB

i 1IFDW
#IFW
#IFTEST
$COMPE
$COMPNE
$FINDE
$FINDNE
[eleh 1]
BRANCH
$EXEC
#NOP
CMDSETUP
CMDSTEST
SooLoNP
SCONT INU
SAV222CR
SAV424CR
SAV444CR
SAV224CR
SAX222
SA222C
SA222
$§X222
§§222C
§5222
SM222
sM222cC
sp222
SpD222C
GETPAR3
GETCNT
SA424
SA424C
55424
5$5424C
SM424
SM424C
SD424
SD424C
SX444
SX444C
SX224R
SX224CR
SD422R
SD422CR
vMovl
MOV1C
AND1
ANDLXX
I0R1
I0R1XX
EORL
EDR1XX
SHR1
SHR1IXX
SHL1
SHL1XX
MOv2
MOv2C
AND2
AND2XX
I0R2
IOR2XX
EOR2
EQR2XX
SHR2
SHR2XX
SHL2
SHL2XX
MOV4
MOV4C
AND4
AND4XX
I0R4
IOR4XX
EOR4

SR30-0436

1CE3
1040

1008
1€Ce
2008
2008
201E
20B6
210A
217A
2192
2192
2196
219A
219C
21CA
210€
21F0
2216
2234
2250
2266
226A
226C
2272
22CA
22DA
22€8
22F0
2304
230E
232€
2334
2338
234A
234E
2352
2364
2368
237C
2380
23C6
23DE
23EC
23F6
241A
241E
2442
2446
2460
2464
248E
2494
24B2
24BA
24F2
24F8
2654
265C
267A
2684
2690
2694
269C
26A4
26AC
26C0O
2602
26E2
26FC
2704
2726
2730
273C
2740
2748
27150
2758
2768
2776
2786
27A0
2788
27€2
2TEE
2804
2808
2810

0184A

085E



ENTRY
ENTRY

N ENTRY
ENTRY

(::::) ENTRY
ENTRY

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
EMTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT

A ENTRY
ENTRY
ENTRY

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY

Q Figure A-4. Link control file (6 of 8)

EOR4XX
SHR4
SHR4XX
SHL4
SHL4XX
MOVEXP
SCALL
SRETURN
BFRCK
USER
EDXLOJP
EDXSTART
INITTASK
PCHKSTA
PCHKLSB
SFTKSIA
STARTPGM
DISKIO
DISKRW
DISKRADS
TAPEOGD
DISKIN00
DCBRETRN
DISKFLIH
DFLIHO4
DISKERRL
DISKERR2
DISKERR3
DISKERRS
DISKERSB
DISKERR7
DISKERL3
DISKPOST
VARYON
VARYOFF
VARYHORD
VARYQCH
VARYDSCB
D49624
D49624AT
04962 IH1
DFLIHS0
DFLIH54
DISKATTN
DATTNOO
E0XTIO
$DPEND
PRSKSP
CURCTL
CTLXFER
PRTEXT
NXTCOMD
RDTEXTL
RDTEXT
QUESTION
PRTNUM2S
PRTNUM2
PRTNUM4S
PRTNUM4
GETVAL2
GETVAL4
KBTASK
ENDATTN
TERMOUT
TERMINT
DECSCAN
FLDCLEAR
BDCWORD
DCBWORD
EBBICVT
EDXTERMQ
ENQT
DEQT
QUTERMIN
QUTERM
DQTERM
DQTERMIN
DGTERMB
DEQTERMS
1054979
104979
104978
1A4979
144978
1054974
104974
134973
1A4973
1A4974

2818
2820
2830
283C
284C
28DE
2942
2966
298A
29BC
29E0
29F0
29F0
2C24
2E1A
2E3E
2EF8
2FB6
2FB6
3072
30C4
313€
3224
32EA
331E
332A
332€
3332
3335
333A
333E
3366
31384
3394
339C
34F2
34F4
34FE
368E
368E
3704
3982
39FA
3424
3A2E
3C40
3€52
3E80
3F2E
3FE6
404E
40D0
40EE
40F2
41EA
4246
424C
426C
4272
4348
4366
4456
4502
4718
48F0
4BOE
4C1C
4C38
4DCA
4€E6C
4FB88
4F88
511C
5172
S17A
S1EC
5224
525E
52CE
532A
532A
532A
5820
5820
5C34
5C34
5034
5€ED6
SEDS

0sCé

0608

osee

1348

03A2

090A

02EO0

SYSGEN Listings

A-11



ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

Figure A-4. Link control file (7 of 8)

IOSTERM
IOTERM
I3STTY
WRTTY
ROTTY
TATTY
I0SACCA
WRACCA
RDACCA
IAACCA
TADELAY
ACCALS
10s3101
103101
ASCIITAB
TRASCII
EBASCII
TREBASC
IaseooL
I10SPNQY
I0S PDQY
I0SPWR
I0SPCMD
I0SPCLOS
IOSPEND
10SPTBL
EDXTIMER
TIMEROIA
TIMERLIIA
SETIMER
WAITIMER
INTIMEX
INTIME
GTIMDATE
PRINTIME
WHATIME
SETCLOCK
SYSLOG
LCcs
$LOGIA
$LOGTSK
$SLOGIA
$SLOGTSK
$SLOGPRM
C IRCBUFF
CIRSTR
CIRIN
CIREND

C IRCNT
CIRESIZ
CIRESTR
RLOADER
LOADPGM
LPGMXPA
LOADPGMO
LOADEXIT
LPGMXPB
ENDCODE
LOADQCB
LOADORG
LCMDKEY
LCMDTGT
LOADFHFL
GETMAIN
FREEMAIN
$ACTIVE
GOTOTABL
$CANCEL
stTop
STOPTASK
EDXFLOAT
FADDO10
FADDOOO
FADD100O
FADDOO1
FADDO11
FADD101
FADD110
FADDL111
FSUBOOO
FSUB100
FSUB001
FSUBo10
FSuBO11
FSUB101
FSuBl110
FSuBltl
FLOATERR
FMPY000

A-12 SR30-0436

5F14
5F14
612E
612E
6168
61CA
63FC
63FC
654A
6702
6878
6882
6992
6992
T14A
T14A
134C
134C
T54E
154E
7676
774C
780C
7932
795A
T9EE
TA28
TA28
TA98
1874
TC6A
TC8E
7C9C
TCF4
7020
TD9€
T0C8
TEAC
TEAC
TEBC
TF2C
TFC6
TFD2
8000
800E
800E
8010
8012
8014
8016
8018
810A
810A
8150
81BC
8386
83FA
84AA
84AC
84B6
84DA
84DC
84E2
88FO
89DA
BATE
8D50
8DCcC
8F96
90DA
9388
9388
9388
9388
9396
93A4
9382
93C0
93CE
930C
930C
93EA
93F8
9406
9414
9422
9430
9468
9478

021A

02CE

0596

0788
0202
0202

04DA

0484

0162

Q0FC

127€

0264



o

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
ENTRY
ENTRY
ENTRY

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECT
CSECT
ENTRY
ENTRY
CSECT
CSECT
CSECT

FHMPYO0OL
FMPYO10
FMPYO11
FMPY110
FMPY100
FMPY111
FMPY101
FOIVOJ0
FDIVOO1
FDIVOL0
FOIVOL1
FDIV110
FDIV100
FDIV11l
FDIV101
FLTCONV
MOVFP4
MOVFP8
IFFLOAT
IFFLOATL
EDXFLEND
EBFLCVT
EBFLD3L
EBFLSTD
FLEBDBL
FLEBSTD
QI0
EDXINIT
START
SEDXINIT
INITEXIT
$SBIOINT
$TERMINT
$DISKINT
$TAPEINT
$49T8INT
$4013INT
SLOADINT
$SPGMCINT
SHOSTINT
$BSCAINT
$EXIOINT
$TIMEINT
INITFEAT
DISKINIT
DSKPREP2
DSKINITL
DG6INIT

PREPIDCB
DISKBUFR
DSOPEN
GETVOL
ENQVOL
DEQVOL
$DSNFND
$DSBIODA
$DSBVOL
$0SBLIB
$DSIOERR
$DSNVTOC
SSEXIT
$OSDCEA
DSs
LOADINIT
TERMINIT
NEXTERM
TERMERR X
INIT4978
$ACCARAM
TIMRINIT

9486
9494
94A2
94B0
94B0
94BE
94BE
94CC
94DA
94E8
94F6
9504
9504
9512
9512
9520
9574
958A
9588
9500
95E8
95€EC 065C
95EC
95EC
9908
9908
9C48 0104
9D4C 018C
9D4C
9076
90DA
9ET6
9€78
9€ETC
9ETE
9E80
9ER2
9E84
9E8S
9EBA
9€E8C
9ESE
9E90
9F04
9F08 0098
Al136
A23E
A344

A406
A418
A69A
AT4E
AB60
ABC6
ACO02
ACO4
ACO6
ACO8
ACOA
ACOC
ACOE
AC10
AC5C
ACAO 0610
B2BO 0200
B412
B478
8580 06A0
BC20 01F6
BE16 0158

MODULE TEXT LENGTH= BF6Ey RLD COUNT= 3131

SUPVLINK ADDED TQ

AT

SLINK COMPLETION CODE=
ON

$LINK ENDED AT
Jump ENDJOB+GTe 4

EDX002

-1

Figure A-4. Link control file (8 of 8)

SYSGEN Listings

A-13



PROGRAM SUPDATEEDX002

NQOMSG

PARM $SYSPRTR SUPVLINKsEDXO02 $EDXNUCNsEDX002 YES
EXEC

$EDXNUCN STORED

SUPDATE ENDED AT
LABEL ENDJOB

Figure A5. End of SYSGEN

A-14 SR30-0436

@



O

EDX ASSEMBLER STATISTICS

SOURCE INPUT - STATSRCeEDXO002
WORK DATA SET — ASMWORKeEDX002
OBJECT MODULE - ASMOUT,EDX002
STATEMENTS PRODCESSED - 70

ND STATEMENTS FLAGGED

Loc +0 *2 4 *6 Y}

0000 0008 D709 D6CT DICL D440
000A 0000 0S5E4 0370 0000 0000
0014 06E6 0000 0000 0000 0100
001E 06E4 000C 0000 0000 0664
0028 0000 0000 0VUOO0 0000 0000
0032 0000

0034

0034 0000 0300 0000 0000 0000
003& 0000 0000 0000 0000 0000 .
0336 0000

0338 OEOD ESC9 C4C5 D6F1 68CL
0342 E2D4 ES5D6 D340

0348 4040 4040 4040 4040 8000
0352 00FF 0000 7FFF 0000 0000
035C 4040 4040 4040 4040 8800
0366 NOFF 0000 TFFF 0000 0000
0370 2002 0403 CSD5 C440 0582
037A 0403 58D7 Co40 05BA

0382 2025 0348

0386 B02A 0001 OCOOF 8026 1414
0390 C3D3 C1lE2 E240 D906 FR2E3
03%A €529 4007 D9D6 C709 ClD4
03A4 902A 0002 0200 8026 2020
03AE C8C9 €340 70C1 E3E3 DS7D
0388 40C1 D5C4 40CS DSE3 C509
03C2 4070 C5D05 C47D E306 40CH
03CC D5C4

03CEe 8026 0COB E3CA CS540 DTD9
0308 D6CT7 D9C1 D440

03DE 902A V00> 0000 8026 201F
U3ES8 C3C9 €340 C1D5 EB40 D709
03F2 N6CT D9C1 D440 C6E4 D5C3
03FC E€3C9 D60S 4002 CS5SE8 40E3
0406 0640

0408 BD26 1AlA 40C2 09C9 0OSC7
0412 40E4 D740 E3C8 C540 C505
041C E3D9 E340 E2C3 D9C5 €505
0426 00B¢

0428 0018 05C2

042C AQA2 05C2 0001 055C

9434 C29€ 0000 033A 0038

043C AOA2 05E6 FFFF 0472

0444 005C 05CA 05E6

044A 8026 1AlA 7CCI D4CL CICS
0454 4006 DTC5 D540 C509 D906
045E D968 40C3 D6C4 C540 TE4O
0468 0028 05CA 0001

046E 00A) 05CC

0472

0472 C29E 0000 0348 0038

047A 9025 035C

047E 1430

0430 C29E 0000 0038 0000

0488 819 0000 0038

048€ B02A 0004 000B

0494 1C3v

0496 2030

0498 00Al D5E6 0004 J50E 04A8
0442 0432 0448C G4Ce

04A8 B05C 05C8 0006

04AE 00A0 04CC

0432 B80SC 05CR 0003

Figure B-1. Assembler statistics and listing (1 of 2)

Appendix B. Program Preparation Listings

SOURCE STATEMENT

XMPLSTAT

IMAGEBUF

CSETNAME
1ucel

10c82

START

CHECK
GETIMAGE

WAL TONE

El

€2

PROGRAM

EXTRN
BUFFER

TEXT
10CB
10CB
ATTNLIST

ENQT
PRINTEXT

PRINTEXT

PRINTEXT

PRINTEXT

PRINTEXT

DEQT

WAIT

IF

CALL

IF
MGVE
PRINTEXT

PRINTNUM

GOTO
ENDIF
CALL
ENQT
TERMCTRL
CALL
CALL
PRINTEXT
TERMCTRL
WAIT
GOT0

MOVE
GOTO
MOVE

STATSRC »EDX002

START

$IMOPENy$IMDEFN ) $ IMPROT y$I MOATA
T639BYTES

*VIDEOGLyASMVOL®

NHIST=0

SCREEN=STATIC
(ENDyOUT 9 $PFeSTATIC)

rocal

*CLASS ROSTER PROGRAM®¢SPACES=15+LINE=1

THIT *¢ATTN'® AND ENTER **ENO®*TO END®ySKIP=2

*THE PROGRAM®

*HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

* BRING UP THE ENTRY SCREEN'

ATTNECBsRESET
(ATTNECByEQs1) 9GOTOWENDIT
$ IMOPENy (DSETNAME) 9 { IMAGEBUF)
(XMPLSTAT+24NEs-1)
ERRCODE ¢ XMPLSTAT +2
'aIMAGE OPEN ERRORy CODE = '

ERRCODE
ERRQUERY

$IMDEFNy{ IOCBL) » ( IMAGEBUF)
10CB2

BLANK

$IMPROTy { IMAGEBUF ) 40
$IMDATAy ( IMAGEBUF)
LINE=4+SPACES=11

DISPLAY

KEY
(READYEL 9 E24E3¢E4) 9 XMPLSTAT+2

LINeNBRy 6
DELETE
LINENGRs11

(5719=-XX4)=V3«0.0

00000010

00000020
00000030

00000040
00000050
00000060
00000070

00000130
00000140

00000150

00000160

00000170

00000180

00000190
00000240
00000250
00000260
00000270
00000280
00000290

00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
0uN00400
00000410

0u000420
00000430
00000440

Program Preparation Listings B-1



04B8
045C
04C2
04C6
04CC
0406
0408
040E
04ES
04EA
04FGC
04FA
04FC
0502
0508
0suA
0S0F
0518
0522
052C
0536
0538
0542
0544
0544
054C
0550
0556
0558
055C
3560
0562
0552
0588
05BA
05C0
05C2
05C8
05CA
0s5cC
05D6
05€0
05E4
OSEE
05F8
0602
060C
0616
0620
062A
0634
063E
065C
0666
0670
067A
0684
068E
0698
06A2
06AC
0636
06C0O
06DE
06E8
06F2
06FA

00A0
805¢C
00A0
805¢C
E02A
2000
8032
€024
2000
8032
E02A
200
8035
A024A
1C30
0040
FO24A
D406
CSE2
FO2A
2000
FO2A
2000
B02A
1€30
0040
FO30
0082
0040
0022
505G
6060
0019
2010
0019
0010
FFFF
0000
0000
co2e
4006
0434
0000
0000
0000
0002
0000
0612
0000
0000
0000
0000
c000
0000
0000
0000
000A
0000
58C1
0000
2000
0000
0000
0000
0009
0000

04ccC
05c8
04CC
oscs
05C8

05C8
0s5C8

05C8
0sc8

05C8
05C8

0496
0002
D9C5
406F
0002

0006
0004

0496
0001

0382
FFFF

6060
05C2

05C2
0000

OEOE
07Cs
05sC
0000
0000
0000
0096
0000
€704
0000
0000
0000
0000
0000
0000
0000
0000
0009
0690
€3E3
0000
FFEF
0000
0000
0664
0000
2000

COMPLZTION CODE =

0010

0015
0000

0001
coov

0001
0000

0002
0003

0037
40CS
4040
0037

0000
0005

2000

6060
0001

FFFF
0000

7C09
D540

0600
0382
0000
0000
0610
D703
0000
FFFF
0000
0300
05E4
0234
0664
0000
0000
0000
C1E2
0000
0000
05E4
0300
0080
0000
0000

FO30

F030

FO30

Co26
DSE3
802E
F030

F030

6060

CSE3
6F40

0234
05E4
0000
0000
0000
£2€3
0000
0000
05E4
0000
2080
0000
0000
0000
FFFF
0000
D240
0000
0000
0000
0000
0000
0000
0000

E3
€4
0004 DELE

0004

0004

100F READ
D9C9
0550
0004

€000

CLEA

ENDI

6060 DASH
out

STAT
ATTN

TE

NUP

T

ES

IC
ECB

L INENBR
ERRCODE
D9E8 ERRQUERY

C02E

0000
0000
0000
FFFF
0000
C1E3
0000
0000
0000
0000
0000
0000
0000
0001
0000
0692
0000
0000
0000
0000
0000
0000
0000

GOTO
MOVE
5070
MOVE
ERASE

ADOD
EFASE

ADD
ERASE

SUBTRACT
PRINTEXT
TCRMCTRL
GoT0

QUESTION

ERASE
ERASE

PRINTEXT
TERMCTRL
felo] 1]
ERASE
OEQT
GOTO
PROGSTOP
DATA
DATA
POST
ENDATTN
POST
ENDATTN
EC8

DATA
DATA
QUESTION

ENDPROG

END

EXTERNAL/UNDEFINED SYMBOLS

-1

sveC

SUPEXIT
SETBUSY
SIMOPEN
$IMDEFN
$IMPROT
$IMDATA

WXTRN
WXTRN
WXTRN
EXTRN
EXTRN
EXTRN
EXTRN

Figure B-1. Assembler statistics and listing (2 of 2)

B-2

SR30-0436

DELETE

LINENSZRy16

DELETE

LINENHBRy 21
MODE=LINEyTYPE=DATALINE=LINENBR

LINENERy 1
MODe=LINEs TYPE=DATA L INE=LINEN®SR

L INENHBR, L
MODE=LINE,y TYPE=DATA,L INE=LINENER

LINEN3R,2

LINE=LINENBRySPACES=S

DISPLAY

WAITONE

*MORE ENTRIES ? *9LINE=29SPACES=55sN0=CLEANUP

MODE=L INEsLINE=29SPACES=559TYPE=DATA
MODE=SCREENsLINE=6
LINF=64SPACES=S
DISPLAY

WAITONE
MODE=SCREENTYPE=ALL
START

X*5050°

8oC*=-*

ATTNECBy 1

ATTNEC3y~1

Feo*

FeOe
*ARETRY OPEN ? *9YES=GETIMAGEsNO=ENDIT

03000450
00000460
07000470
00000480
00000490

00000500
00000510

00000520
00000530

0u000540
00000550
00000560
02000570
00000580

00000590

00000500

00000610
00000620
00000630
00000640
00000650
00000660
000005670
00000680
00000690
00000700
00000710
00000720
00000730
00000740
00000750
02000760
00000770

00000780

00003790

C



$LINK EXECUTION CONTROL RECORDS
FROM LINKSTAT,EDX002

& THIS LINK CONTROL OATA SET SPECIFIES:

le) THE LINKED OUTPUT OBJECTY MODULE WILL
BF STORED IN *LINKQUT® ON EDX002

2e) THE AUTODCALL DATA SET IS *$SAUTO® ON

ASMLIB (SYSTEM SUPPLIED)

*ASMOUT® ON EDX002 IS THE ONLY INPUT

~ OBJECT MODULE TO BE INCLUDED

OUTPUT LINKOUT AUTD=$AUTOsASMLIB

INCLUDE ASMOUT

3.

LR R - R

INCLUDE $IMOPENsASMLIB VIA AUTOCALL
INCLUDE SIMGENyASMLIB VIA AUTOCALL
INCLUDE SIMOTYPEyASMLIB VIA AUTOCALL
INCLUDE $SRETURNyASMLIE VIA AUTOCALL
INCLUDE SUNPACK ASMLIB VIA AUTOCALL
END
wx6sx  UNRESOLVED EXTERNAL REFERENCES
WXTRN svC

WXTRN SUPEXIT
WXTRN SETBUSY
OUTPUT NAME= LINKOUT
ESD TYPE LABEL ADDR LENGTH

CSECT 0000 06FA
CSECT 06FA 09E8
ENTRY $IMOPEN 06FC
ENTRY SFILE 0908

ENTRY DISKBUFR 095C
ENTRY DSOPEN 0A7A
ENTRY $DSNFND OFE2
ENTRY $DSBIODA OFE4
ENTRY $0SBVOL OF€6
ENTRY s$DSBLIB OFE8
ENTRY S$SDSIOERR OFEA
ENTRY S$DSNVTOC OFEC
ENTRY $SEXIT OFEE .
CSECT 10E2 0E2A
ENTRY $IMDEFN 10E4
ENTRY $ IMPROT 1180
ENTRY $IMDATA 1908
ENTRY $ADDRTBL 1EA8
ENTRY SATTRTBL 1EF8

CSECT 1FOC 0074
ENTRY SIMDTYPE 1FOE

CSECT 1F80 0028
ENTRY RETURN 1LF80

CSECT 1FAB 0040

ENTRY SUNPACK 1FAA
MODULE TEXT LENGTH= 1FE3s RLD COUNT= 1015
LINKOUT ADDED TGO €DX002

$LINK COMPLETION CODE= -1
AT 06:38:12 ON 00/00/00

$LINK ENDED AT 06:38:12

Figure B-2. Link edit listing

00010 08 =% TOO MANY POSITIONAL OPERANDS WERE SPECIFIED
00020 08 %> AN INVALID KEYWORD PARAMETER WAS SPECIFIED
00030 08 =»¢ ONE OR MORE UNDEFINED LABELS WERE REFERENCED
00040 08 #&% INVALID NO. OF ELEMENTS IN OPERAND - SHOULD BE L OR 2
00050 08 =x& INVALID INDEX REGISTER SPECIFICATION - NOT #1 OR #2
00060 08 ##% RESULT= OPERAND MUST BE SPECIFIED

00070 08 =%x INVALID PRECISION FOR REGISTER OPERATION
00080 08 #%% OPERAND 1 IS MISSING

00090 08 == OQPERAND 2 IS MISSING

00100 08 e *COUNT® IS NOT ALLOWED WITH INDEX REGISTERS
00110 08 %22 INVALID OR UNDEFINEO OPERATION CODE

00120 08 2o« TASK NAME NOT SPECIFIED

00130 08 #%% TOO MANY DATA SETS SPECIFIED

00140 0B #*%*% TOO MANY OVERLAY PROGRAMS SPECIFIED

00150 08 %% INVALID PARAMETER COUNT

00160 08 =& START= OPERAND MUST BE SPECIFIED

00170 08 %2& DS¥= OPERAND MUST BE SPECIFIED

00180 08 =*=x% DSNAME= OPERAND MUST BE SPECIFIED-

00190 08 #%%* DSLEN= OPERAND IS INVALID

00200 08 === INVALID PRIORITY SPECIFICATION

00210 08 #%¢ INVALID LEVEL SPECIFICATION

00220 08 %% QPERAND FIELD IS TOO LARGE

00230 08 #*%= INVALID PREC= SPECIFICATION

00240 03 =&& UNBALANCED PARENTHESIS IN OPERAND

00250 08 *== SYMBOL IS MULTIPLY DEFINED

Figure B-3. $SEDXL listing (1 of 4)

Program Preparation Listings B-3



0u260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00830
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
o1l110
01120
01130

FA%

ek
Fxk
£33
L33
L2
bt
et
£33
TRE
&x&
Rett]
fe
Ry
fx%
Tk
L35
pp 2]
L
E22 ]

TS
LTS
LT
san
ETTY
T
P
T
EE TS
Py
ax%
ek

%%
g
A

L2
L2 2]

K
Lex
X
L%

LRt
s
%

Lo

RN

e

ST

%

L

e

e

s

R

EE

Gk

ek

G

e

S

ek

e

EEEs

LT3

Eag

LE

P

EEE

PR

B2

et

LS

LR

e

L

et

e

EI

e

Tt

s

LT

SYMBOL EXCEEDS 8 CHARACTERS IN LENGTH

INVALID SELF-DEFINING TERM

I1/0 BUFFER ADDRESS NOT SPECIFIED

QUERY MESSAGE MUST BE SPECIFIED

INVALID DS= SPECIFICATION

INVALID PGM= SPECIFICATION

INVALID PARM= SPECIFICATION

INVALID LENGTH= SPECIFICATION

TEXT MESSAGE IS NOT A VALID CHARACTER STRING

INVALID SYNTAX IN OPERAND FIELD

NULL OR INVALID BRANCH TABLE ENTRY

EVENT NAME NOT SPECIFIEO

COPY CODE MODULE NOT DEFINED

A COPY STATEMENT IS NOT ALLOWED WITHIN COPY CODE
EITHER YES= OR NO= MUST BE CODED

INVALID PROMPT= SPECIFICATION

INVALID MODE SPECIFICATION

LABEL MUST BE SPECIFIED

INVALID MODE SPECIFICATION

MORE THAN ONE LOCAL *ATTNLIST®* HAS BEEN CODED

MORE THAN ONE GLOBAL °ATTNLIST®* HAS BEEN CODED
ATTNLIST: SCOPE= MUST BE °*LOCAL®* OR °*GLOBAL®

ILLEGAL NUMBER OF OPERANDS - MUST BE EVEN

ATTNLIST COMMAND STRING MUST BE 1-8 CHARACTERS IN LENGTH
NO ACTIVE *IF* OR 'DO' STRUCTURE

OPERAND IS NOT °*GOTO®* OR °*THEN®

IF/D0 NESTING LIMIT EXCEEDED

INVALID CONJUNCTION SPECIFED (MUST BE *AND®* OR °*ODR*)
INVALID RELATIONAL OPERATOR SPECIFIED

CONDITION MUST BE *EQ® OR °'NE' FOR *STRING COMPARE*
ACTIVE STRUCTURE IS NOT °IF°*

*D0 WHILE® OR *DO UNTIL®* MUST HAVE EVEN NUMBER OF OPERANDS
ACTIVE STRUCTURE IS NOT *DO°

AN *IF/ELSE/ENDIF* OR °*DO/ENDDO* CLAUSE HAS NOT BEEN TERMINATED
ERROR 60 (RESERVED FOR 'D0')

SPECIFY 'WAIT=YES® OR *WAIT=NO* FOR DISK OPERATIONS
IF *WAIT=NO'y *ERROR=* AND "END=' MAY NOT BE SPECIFIED
UNBALANCED QUOTES IN OPERAND

INVALID PROMPT MESSAGE

*COUNT® MUST BE A POSITIVE SELF-DEFINING TERM

INVALID DATA TYPE SPECIFIED

*COUNT* MAY NOT BE MORE THAN 2 WITH REGISTER OPERANDS
DATA TYPE MUST BE *WORD®* WITH REGISTER OPERANDS
*RESULT=* MAY NOT BE SPECIFIED WITH *MOVE® OR "MOVEA'
INVALID *BUSY' SPECIFICATION

SECOND OPERAND NOT 'RESET' OR *CLEAR®

NO JTHER OPERANDS ALLOWED WITH *TIMER® OR 'ENTER®' WAIT
REGISTER SPECIFICATION INVALID

INVALID RESOURCE SPECIFICATION

*CODE®* MUST BE SELF-DEFINING TERM

*NLINES® MUST BE POSes SELF-DEFINING TERM

*NLINES® REQUIRED WITH "NSPACES® SPECIFICATION

S NSPACES®' MUST KE POSey SELF-DEFINING TERM

INVALID OPCRAND SPECIFIED ON *TERMCTRL®

INVALID °*TYPE='s MUST BE "OATA® OR ‘*ALL®

INVALID *MODE='y MUST BE °*FIELD's °*LINE®*s OR *SCREEN'
INVALID FORMAT IN OPERAND 1

NG CHARACTER STRING SPECIFIED

OPERAND 3 IS MISSING

INCOMPATIBLE MARGINS

INVALID SPECIFICATION FOR *SCREEN'

INVALID SPECIFICATION FOR °*OVFLINE®

NO STORAGE ADDRESS SPECIFIED

NO 3RANCH ADORESS SPECIFIED

INVALID SENSOR INPUT/QUTPUT TYPE

INVALID *ERROR=' SPECIFIED

*BITS=" INVALID FOR *AI* AND ‘AO*

INVALID *SEQ=' FOR ‘*AI’

INVALIO °*BITS=', MUST HAVE THE FORM *BITS={U,V)"*
INVALID *LS3* SPECIFIED

INVALID °*PULSE® SPECIFICATION

INVALID *EOB' SPECIFIED

INVALID *TERMINAL NAME®'y MUST BE 1-8 CHARACTERS
INVALID HEXADECIMAL CONSTANT SPECIFIED

NEITHER POSITIONAL NOR KEYWORD PARAMETERS WERE SPECIFIED
A DATA ADDRESS MUST BE SPECIFIED

INVALID OR UNSPECIFIED LENGTH OPERAND

OTE TYPE MUST BE SPECIFIED

INVALID DUPLICATION FACTOR

INVALID °*FORMAT=* SPECIFICATION

DATA TYPE MUST BE *WORD®' OR °*BYTE®

ILLEGAL CONTINUATION ~ DATA MUST START IN COLUMN 16
*BITS="' MUST BE SPECIFIED WITH *TYPE=SUBGROUP®

PCB NOT SPECIFIED

INVALID °*ADDRESS='y MUST BE BETWEEN '00°' AND *FF°
INVALID °*TYPE=* SPECIFIED

INVALID °*BIT='y MUST BE BETWEEN *0®' AND *15°
*SPECPI=' MUST 3E SPECIFIED FOR °*TYPE=GROUP®* AND °*TYPE=BIT*

Figure B-3. $EDXL listing (2 of 4)

B4

SR30-0436



O

~
01140 08 =&x INVALID °*POINT=*y MUST BE '0-15* FOR Al OR '0-1°* FOR AOQ
01150 08 %% 'ADC' ADDRESS SPECIFIED INSTEAD OF 'MULTIPLEXER® ADORESS
01160 08 #x& INVALID *RANGE='y MUST BE 5Vy500MVy200MVy100MVy50MV920MV+0ORy10MV
01170 08 **x* INVALID °*ZCOR=*', MUST BE °*YES* OR °*NO°*

01180 08 #*#% INVALID OR MISSING COUNT= SPECIFICATION

01190 08 =xx INVALID OR MISSING SIZE= SPECIFICATION

01200 08 ##= INVALID °*LOGMSG=', MUST BE °*YES' OR °NO*

01210 08 #&x INVALID *DS=¢ ON LOAD

01220 08 *s¢ INVALID *'DS=* ON OVERLAY LOADs MUST HAVE THE FORM '0OSX*
01230 08 &% NO OPEN °*TASK® STATEMENT FOR THIS *ENDTASK®

01240 08 =2z% TYPE COJUNT MUST BE BETWEEN O AND 255

01250 08 =&x INVALID GPIB OPERATION

01260 08 #%#& INDEX REGISTER IS AN INVALID OPERAND

01270 08 ##% INVALID FIRST CHARACTER IN PREC=

01280 08 =xx INVALIO SECOND CHARACTER IN PREC=

01290 08 %% TNVALID THIRD CHARACTER IN PREC=

01300 08 #x% MAXIMUM OF 3 PREC= SPECIFICATIONS

01310 08 =% INVALID COUNT= PARAMETER

01320 08 #*#x INVALID PRECISION FOR IMMEDIATE OPERAND 2

01330 08 *xx INVALID DATA TYPE CUMBINATION

01340 08 *2& TOO FEW PREC= SPECIFICATIONS

01350 08 #%% INVALID FORMAT= SPECIFICATION

01360 08 #&& MAXIMUM OF 8 HEXADECIMAL OIGITS (4 BYTES) PER OPERAND
01370 08 #u& DATA TYPE SPECIFICATION IS NOT RECOGNIZED

01380 08 %% FLOATING POINT CONVERSION ERROR OR EBFLCVT NOT IN SUPERVISOR
01390 08 #x& INVALID KEYWORD COMBINATION

01400 08 ##x STORAGE SIZE MUST BE SPECIFIED (16K - 256K)

01410 08 #*#¢ MAX. NUMBER OF PROGRAMS NOT BETWEEN 1 AND 100

01420 08 =%%= INVALID TP= SPECIFICATION -

01430 08 #*=%% MAXPROG= AND PARTS= D0 NOT MATCH

01440 08 =&t PARTITION SIZE EXCEEDS 32 BLOCKS

01450 08 *x* INVALIN DISK= OPERAND

01460 08 *** QUT OF SEQUENCEs END=YES PREVIDUSLY SPECIFIED

01470 08 =*%% TYPE=DSECT IS NOT SUPPORTED

01480 08 % INVALID OR MISSING DEVICE TYPE SPECIFIED

01490 08 *%xx A DEVICE ADDRESS MUST BE SPECIFIED

01500 08 #*s& DEVICE ADDRESS MUST BE FROM X*00* TO X°FF°®

01510 08 *%%* VOLUME LABEL MUST BE SPECIFIED

01520 08 #**= VOLUME LABEL IS MORE THAN 6 CHARACTERS

01530 08 #x& INVALID LIBRARY ORIGIN SPECIFICATION

01540 08 *x% INVALID OR MISSING VOLUME ORIGIN SPECIFICATION

01550 08 %*%* INVALID OR MISSING VOLUME SIZE SPECIFICATION

01560 08 #*#*= INVALID OR MISSING FIXED HEAD VOLUME SPECIFICATION
01570 08 *%& SECONDARY VOLUMES NOT ALLOWED FOGR 4964

01580 08 *2¢ RECORDS PER VOLUME EXCEEDS 32760

01590 08 & COUNT TOO HIGH IN "PARM=' OPERAND

01600 08 #*=& (ONLY 1 HOSTCOMM STATEMENT IS ALLOWED

01610 08 *x& INCONSISTENT TOP MARGIN

01620 08 2*u¢ INCONSISTENT BOTTOM MARGIN

01630 08 *2%= INVALID LEVEL SPECIFICATION

01640 08 #x* TOO MANY PI= ENTRIES

01650 08 *¥% INVALID SPECIFICATION FOR ECHO

01660 08 #*#x STATIC SCREENS ARE NOT SUPPORTED FOR THIS TERMINAL TYPE
01670 08 *=% THE SZCOND PI ENTRY IS INVALID

01680 08 %% THE TWO PI ENTRIES ARE EQUAL

01690 08 **%x THE FIRST PI ENTRY IS INVALID

Cl700 08 #*%% THIS ADDRESS HAS BEEN PREVIOUSLY DEFINED

01710 08 =%& INVALID AITYPE=

01720 08 #&¥ INVALID 4982 FEATURE ADDRESS

01730 08 #*#¢ INVALID 4982 BASE ADORESS

01740 08 #**% REQUIRED PARAMETER IS MISSING

01750 08 #xx SCAN= PARAMETER IS INCORRECT

01760 08 #*Z%* ACTION= PARAMETER IS INCORRECT

01770 08 *2xx INVALID PARAMETER IN DATA LIST

01780 08 *%% FORMAT SPECIFICATION IS INVALID

01790 03 #*%¥ FORMAT - CONVERT SPECIFICATION IS INVALID

01800 03 #*&% FORMAT - PARENS SPECIFICATION IS INVALID

NLBl0 08 #&¥* FORMAT - DELIMITER SPECIFICATION IS INVALID

01820 08 *%x%x FORMAT - X-TYPE SPECIFICATION IS INVALID
01830 08 *%xx FORMAT - F-TYPE SPECIFICATION IS INVALID
01840 038 %% FORMAT - I-TYPE SPECIFICATION IS INVALID
01850 06 #%%* FORMAT - A-TYPE SPECIFICATION IS INVALID
01860 (08 %% FORMAT - NUMERIC SPECIFICATION IS INVALIOD
01870 08 #%* FORMAT - H-TYPE SPECIFICATION IS INVALIO
01880 08 %%%* FORMAT - /-TYPE SPECIFICATION IS INVALID
01890 08 *x% FORMAT - LIST SPECIFICATION IS INVALID

01900 08 *%* FORMAT - EXCEEDS MAXIMUM NUMBER OF SPECIFICATIONS (40)
01910 08 %% FORMAT - MAXIMUM CHARACTER STRING IS 254

01920 03 #&* [NVALID BSCREAD/BSCWRITE TYPE SPECIFICATION

01930 08 #%x% INVALID TIMEQUT OPERAND

01940 08 #*%* INVALID ADDRESS OPERAND

01950 08 *%= INVALID RETRIES OPERAND

01960 08 #xx% INVALID MC OPERAND

01970 08 %=¥ INVALID TYPE OPERAND

01980 08 *%** INVALID BSCIOCB ADDRESS SPECIFICATION

31990 08 =#* THE TOTAL NUMBER OF OPERAND DELIMITERS EXCEEDS MAXIMUM (50)
02000 08 #%¥* INSUFFICIENT STORAGE AVAILABLE FOR TERMINAL PROCESSING
02010 08 *x* LOADER ERROR WHILE PROCESSING TERMINAL STATEMENT

02020 908 **% COUNT NOT BETWEEN O AND 32767

Figure B-3. $EDXL listing (3 of 4)

Program Preparation Listings B-5



02030
02C40
02050
02060
02070
02080
02090
02100
oz110
02120
02130
02140
02150
04160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02230
02300
02310
02320

02330
02340
02350

02360

02370

02380

02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730
02740
0275C
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910

08 »xx FORMAT SPECIFICATION NOT ALLOWED WITHIN GET/PUTEDIT

38 ==& INVALID BIT RATE/RANGE SPECIFICATION

08 #*%x MUST HAVE LINEDEL OR CR OR ATTN OR COD SPECIFIED

08 #%x CRDELAY SPECIFIED INCORRECTLY

08 #x=¥ NAME SUBLIST «GY. PARM SUBLIST

08 *%=x PART NOT ALLOWED WITH PARAMETERSy EVENT= OR OVLY PROGRAMS

08 &&x PART NOT ALLOWED WITH START= OR LOAOPT=

08 #=x PART NOT ALLOWED WITH DSX SPECIFICATIONS

08 #x=x INVALID IMMEDIATE OPERAND IN STRING COMPARE

08 %% INVALID COPYCODE LIBRARY NAME

0Rf =&x DISK I/0 ERROR DURING OPEN OF COPYCODE DATA SET

08 *%¢ DATA SET NAME $3--- NOT PERMITTED FOR COPYCODE

08 *x=% SPECIFIED COPYCODZ MODULE IS NOT A DATA SET

08 *&x YCOMMAND=* MUST BE SPECIFIED

08 *x* $ADDRESS=' MUST BE SPECIFIED

08 *xx INVALID °*COMMAND=*

08 ®&% ¢LEVEL® MUST BE EITHER Oy 1y 2y OR 3

08 *xx $IBIT* MUST BE EITHER O OR 1

08 =x% INVALID HEXADECIMAL ENTRY

08 *xx ¢DCB*' ADDRESS MUST BE SPECIFIED

08 %% 'MOD4' MUST BE SPECIFIED

08 #*xx 'DEVMOD=' MUST BE SPECIFIED

08 =*%& *IOTYPE=* MUST BE *INPUT® OR 'OUTPUT®

08 *%% 'DATADDR=" MUST BE SPECIFIED

08 #&x ¢CHAINAD=' MUST BE SPECIFIED

08 *xx INVALID 'END=*' MUST BE °'YES® OR *NO°*

08 #*xx YMAXDCB=* OUT OF LIMITS

08 *x& *RSg=* MUST BE EVEN

08 #xx *RSB=' QUT OF LIMITS

08 % 'pCI=' MUST BE °*YES®* OR °*NO°

08 $&x *XD=* MUST 3E °*YES® OR °*NO°*

08 #x& ¢SE=* MUST BE °*YES' OR *NO*

08 #x& 'DEVADDR * POSITIONAL PARAMETER MISSING

08 #x& *ECBADDR * POSITIONAL PARAMETER MISSING

08 =%x *IDCBADDR * POSITIONAL PARAMETER MISSING

08 %% INVALID NUMERIC OPERAND

08 #&x TO KEY SPECIFIED WITH #1 OR #2

08 #¢x FROM KEY SPECIFIED WITH #1 OR #

08 #%x INVALID PRECISION SPECIFIED WITH FROM KEY OR TO KEY

08 #&= FROM KEY SPECIFIED WITH IMMEDIATE UPERAND

08 #ex 21 OR #2 USED IN FROM KEY OR TO KEY

08 *&x 1A BUFFER LENGTH NOT BETWEEN 10 AND 100

08 #%& INVALID *ADAPTER=* JPERAND CODED

08 =xx INVALID VCLJUME LABEL ON «COPYCOD RECORD IN $FDXL

08 #«x OPERAND FIELD LEMGTH EXCEEDS 254 CHARACTERS

08 #%x ID= MUST BE SPECIFIEDs AND A UNIQUE 1-6 CHARACTER LABEL

08 =xx LABEL= MUST BE EITHER SL¢ NLy OR BLP (DEFAULT=SL)

08 #%% DENSITY= MUST BE EITHER 800y 1600y OR DUAL (DEFAULT=1600)
08 *x% INVALID *INITPART® OR *INITMOD® PARM ON °*SYSTEM?

08 #%x INVALID TCB LABEL ON *TCBGET' OR *TC3PUT®

=0VERLAY $ASMOO06 ASMLID If [sle] ELSE ENDIF ENDOO
MOVE MOVEA AND I0R EOR SHIFTL SHIFTR
*0OVERLAY $ASM0O0O1 ASMLIB ENCT DEQT corPY USER SQRT
SCOMMENT

*0OVERLAY $ASMOOU2 ASMLIB ADD DIVIDE MULTIPLY MULT SUBTRACT
sus GOTO0 RESET STIMER RETURN INTIME GETTIME ADDV
“COMMENT

*0VERLAY $ASM0O003 ASMLIB PROGRAM LOAD 0scs

SCOMMENT

#0VERLAY $ASMO004 ASMLIB PRINDATE PRINTIME QUESTION TEXT ERASE
ROCURSOR TERMCTRL HASHVAL

*OVERLAY $ASM0O00S ASMLIB ENDPROG ENDTASK PROGSTOP TASK ATTACH
DETACH ATTNLIST ENCATTN

*JVERLAY $ASMOOO7 ASMLIB [2]9 EQU DATA ECB Qcs
BUFFER DS 10CB EXTRN WXTRN ENTRY CSECT

20VERLAY $ASMOOUB ASMLIB READ WRITE NOTE POINT CONTROL
S0VERLAY $ASMO009 ASMLIB WAIT POST ENQ DEQ CALL
SUBROUT  CALLFORT

*0OVERLAY $ASMOOOA ASMLIB GETEDIT PUTEDIT

*0VERLAY $ASMOOOB ASMLIB s8I0 I0ODEF

*0OVERLAY $ASMOOOC ASMLIB FIND FINONOT
*OVERLAY $ASMOOOD ASMLIB FPCONV FADD FsuB FMULT FDIVOD
*DVERLAY $ASMOOOJE ASMLIB PRINTNUM GETVALUE READTEXT PRINTEXT CONVTB
CONVTD .

*0VERLAY SASMOOOG ASMLIA PLOTGIN GIN SCREEN XYPLOT YTPLOT
CONCAT TP STATUS

*0VERLAY $ASMOOOH ASMLIB BSCREAD BSCWRITE BSCOPEN BSCCLOSE BSCINCB
BSCLINE

*OVERLAY $ASMOOOI ASMLIB FORMAT

*0OVERLAY $ASMOOOQ ASMLISB FIRSTQ LASTQ NEXTC DEFINEQ
*OVERLAY $ASMEXIO ASMLIB EXIODEV 1DCB o[0:} EXOPEN €XI0
*QVERLAY $ASMO00S ASMLIB SYSTEM STOREMAP DISK TIMER TAPE
*=OVERLAY $ASMOOOT ASMLIB TERMINAL

*0VERLAY $ASMOOOU ASMLIB HOSTCOMM SENSORIO DDBSIO GETMAIN FREEMAIN
*QVERLAY $ASMOOOF ASMLI3 ASMERROR S$IDEF OTE SLE

*0OVERLAY $ASMOOOM ASMLIB WHERES TCRGET TCBPUT

*COPYCOD ASMLIB

*COPYCOD EDX002

*xSTOP*%

Figure B-3. $EDXL listing (4 of 4)

B-6 SR30-0436



00010
00020
00030
09040
00050
00060
00070
00080
00090
00100
oo1il0
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00230
00290
00300
0c310
00320
00330
00340
ou3iso
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470

Joa STATIC

LOG $SYSPRTR

<

% THIS ASSEMPBLY USES A COPY CODE MODULE NAMED ROLL
* ON EDX003. THE *COPYCODE DEFINITION STATEMENT

* DEFINING EDX003 AS THE COPYCODE VOLUME IS IN A

* USER DEFINED LANGUAGE CONTROL DATA SET NAMED

% *STATEDXL'«*STATEOXL® IS A COPY OF THE SYSTEM

* SUPPLIED LANGUAGE CONTROL DATA SET 'SEDXL®»

* WITH THt *COPYCUDE STATEMENT FOR EDXQ03 ADODED.

£

PROGRAY  SEDXASMsASMLIB

REMARK ASSEMBLY OF *STATSRC* STARTED

DS STATSRC

DS ASMWORK

233 ASMOUT

PARM LIST $SYSPRTR STATEDXL
NOMSG

EXEC

JUMP BADASMyNEs~1

%

% THIS LINK INCLUDES THE *$SIM! SUBROUTINE SUPPORT 8BY
* USE OF THE AUTOCALL OPTIONeTHE AUTOCALL DEFINITION
% STATEMENTS FOR THE °*S$IM' SUPPORT ARE IN THE SYSTEM
* SUPPLIED AUTOCALL DATA SET *$AUTO® ON ASMLIBe

x*

PROGRAM  SLINKsEDX0Q02

REMARK LINK EDIT OF *ASMOUT® OBJECT MODULE STARTED
REMARK NAME OF LINK CONTROL DATA SET ?

PAUSE

DS LINKWRK1

DS LINKWRK?2

PARM $SYSPRTR

NQMSG

EXEC

JuMp BADLINK¢NEs~-1

PROC FORMPROC

JUMp ENDyEQy~1

REMARK FORMAT STEP FAILED

JUMP END

LABEL BADASM

REMARK ASSEMBLY STEP FAILED

JuMp END

LABEL BADLINK

REMARK LINK EDIT STEP FAILED

LABEL END

EOJ

Figure B-4. $JOBUTIL listing

LOG $SYSPRTR
PROGRAM  SEDXASMyASMLIB
oS STATSRC
0s ASMWORK
DS ASMOUT
PARM LIST $SYSPRTR STATEDXL
NOMSG
EXEC
EDX ASSEMBLER STATISTICS
SOURCE INPUT - STATSRC +EDX002
wORK DATA SET - ASMWORK +EDX002
CBJECT MODULE - ASMOUT LEDXO002
STATEMENTS PROCESSED - 17
NO STATEMENTS FLAGGED
Loc +0 +2 *4 +6 +3 SOURCE STATEMENT
0000 0008 D709 D6CT DIC1 D44V XMPLSTAT PROGRAM
0ooA 0000 0S5E4 0370 0000 0003
0014 06E6 0000 0000 0000 OLOO
001E 06E4 0000 0000 0000 0664
0028 0000 0000 0000 0000 0000
0032 0Q00
0034 EXTRN

Figure B-5. STATPROC execution output (1 of 4)

S

STATSRC +EDX002 (5719-XX4)-V3e00

START

SIMOPENySIMOEFMySIMPROTySIMDATA

PAGE 1

00000010

00000020

Program Preparation Listings B-7



0034 0000 0300 0000 0000 0000 IMAGEBUF BUFFER
003F 000G 0000 0000 0000 0000
0336 0000
0338 OEOD ESC9 C4CS5 D6F1 6BC1 DSETNAME TEXT
0342 E2D4 ES506 0340
0348 4040 4040 4040 4040 8000 10CB1 10C8
0352 OOFF 0000 TFFF 0000 0000
035C 4040 4040 4040 4040 8800 T10CB2 I0CB
0366 OO0FF 0000 TFFF 0000 0000
a370 0002 0403 C505 C440 05B2 ATTNLIST
037A 0403 5BD7 C640 O5BA

copy

7684BYTES

*VIDEQlyASMVOL"*
NHIST=0
SCREEN=STATIC
(ENDyQUTy»$PFeSTATIC)

ROLL

*START OF "COPYCODE" MODULE
*x

0382 9025 0348 START ENQT 10CB1
0386 BO2A 0001 000F 8026 1414 PRINTEXT *CLASS ROSTER PROGRAM®¢SPACES=159LINE=1
0390 C3D3 C1lE2 E240 D9D6 E2E3
039A C5D09 4007 D906 C7D9 C1D4
03A4 902A 0002 0000 8026 2020 PRINTEXT THIT **ATTN®® AND ENTER **END''TO END®SKIP=2
03AE €8C9 E340 7DC1 E3E3 D570
0388 40C1 D5C4 40C5 DSE3 C5D9
03C2 407D CS05 C47D E3D6 40C5
03cC 05C4
03CE 8026 0COB E3C8 C540 D7D9 PRINTEXT *THE PROGRAM*
0308 D6CT D9C1 D440
03DE 902A 0002 0000 8026 201F PRINTEXT *HIT ANY PROGRAM FUNCTION KEY TQO'ySKIP=2
03E8 C8C9 E340 C1D5 EB40 D7D9
03F2 D6CT D9C1 0440 C6E4 DSC3
03FC E3C9 D605 40D2 CSE8 40E3
0406 D640
0408 8026 1A1A 40C2 D9C9 DSC7 PRINTEXT * BRING UP THE ENTRY SCREEN®
0412 40E4 D740 E3C8 C540 C5D5
041C E309 E840 E2C3 09C5 C5D5
0426 00B2 DEQT
* END OF "COPYCODE"™ MODULE
&
0428 0018 05C2 CHECK WAIT ATTNECByRESET
042C AOA2 05C2 0001 055C IF (ATTNECByEQe 1) yGOTOLENDIT
0434 C29E 0000 033A 0038 GETIMAGE CALL $IMOPENy {DSETNAME) o  IMAGEBUF)
043C AQA2 05E6 FFFF 0472 IF (XMPLSTAT+2yNEs-1)
0444 035C 05CA 05E6 MOVE ERRCODEy XMPLSTAT+2
044A 8026 1A1A 7CC9 D4C1 C7CS5 PRINTEXT *3IMAGE OPEN ERRDRy CODE = '
0454 40D6 DTCS DS540 C5D9 DID6
04SE D968 40C3 D6C4 €540 TE4O
0468 0023 05CA 0001 PRINTNUM ERRCODE
046E 00AQ 05CC GOTO ERRQUERY
0472 ENDIF
0472 C29€& 0000 0348 0038 CALL $IMDEFNy (IOCB1) » { IMAGEBUF)
047A 9025 035C ENQT 10Ce2
047E 1430 TERMCTRL BLANK
0480 C29€ 0000 0038 0000 CALL $ IMPROTs ( IMAGEBUF) 40
0488 819E 0000 0038 CALL $ IMDATA 4 ( IMAGEBUF)
048%t 202A 0004 0008 PRINTEXT LINE=49SPACES=11
0494 1C30 TERMCTRL OISPLAY
0496 2030 WAITONE WAIT KEY
0498 00A1 05E6 0004 0S0E D4AB G070 (READ+E19E29E39E4) ¢ XMPLSTAT+2
04A2 0482 0483C 04C6
04A8 805C 05C8 0006 El MOVE LINENBRy6
04AE 00AD 04CC GOTO DELETE
0432 805C 05C8 0008 E2 MOVE LINEN3R,s11
0488 00A0 04CC GOTO DELETE
0446C 805C 05C8 0010 E3 MOVE LINENBRy16
04C2 00A0 04CC GOTO DELETE
04Cé 805C 05C8 0015 E4 MOVE LINecNBRy 21
04CC EQ2A 05C8 0000 FO30 0004 DELETE ERASE MODE=LINE,»TYPE=DATA,LINE=LINENBR
0406 2000
0408 8032 05C8 0001 ADD LINENBRy 1
C4DE E02A 05C8 0000 FO30 0004 ERASE MODE=LINE»TYPE=DATA LINE=LINENBR
04EB 2009
O4EA 8032 05C8 0001 ADD LINENBRy1
04FO0 EQ2A 05C8 0000 FO030 0004 ERASE MODE=LINEy TYPE=DATA,LINE=LINENBR
04FA 2000
04FC 8035 05C8 0002 SUBTRACT LINENBRy2
0502 AQ2A 05C8 0005 PRINTEXT LINE=LINENBRySPACES=5
0508 1C30 TERMCTRL DISPLAY
050A 00AO0 0496 GOTO WAITONE

0S0E FO2A 0002 0037 C026 100F READ QUESTION
0518 D4D6 D9CS 40C5 DSE3 DICY

0522 C5E2 406F 4040 802E 0550

052C FG2A 0002 0037 FO30 0004 ERASE
0536 2000

0538 FO2A 0006 0000 F0O30 0000 ERASE
0542 2000

0544 RO2A 0006 0005 PRINTEXT
054A 1C30 TERMCTRL

054C 00AO0 0496 GOTO
0550 FO30 0001 2000 CLEANUP ERASE

Figure B-56. STATPROC execution output (2 of 4)

B-8 SR30-0436

*MORE ENTRIES ? *9LINE=29SPACES=554N0=CLEANUP

MODE=LINEsLINE=29SPACES=55+TYPE=DATA
MODE=SCREEN»LINE=6

LINE=6+SPACES=5
OISPLAY

WAITONE
MODE=SCREENTYPE=ALL

00000030

00000040
00000050
00000060
00000070

00000130
00000001
00000002
00000003
00000130
00000140

00000150

00000160

00000170

00000180

00000190
00000200
00000210
00000220
00000240
00000250
00000260
00000270
00000280
00000290

00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000400
00000410

00000420
00000430
70000440
00000450
00000460
00000470
00000480
00000490

00000500
00000510

00000520
00000530

00000540
00000550
00000560
00000570
00000580

00000590
00000600
0n000610
00000620

00000630
00000640



O

0556
0558
055C
0560
0562
0582
0588
058BA
05CO
05C2
0sCcs8
05CA
0s5CcC
0506
05E9D
0SE4
O5SEE
05F8
0662
069C
0616
0629
062A
0634
063€
065C
3666
0670
0674
0634
J63F
0698
06A2
06AC
o6n6
06C0
06DE
06E8
06F2
06FA

0082
0040
0022
5050
6060
0019
0010
0019
001D
FFFE
0000
0000
co26
4006
0434
0000
2009
0900
0002
0000
0612
0300
0009
0002
0000
0000
0000
0000
9009
0004
0000
SBC1
0000
0000
0000
0000
0002
0000
0000

0382
FFFF

6060
05C2

05C2

0000

OEJE
DTC5
055C
00920
0000
0000
0096
0000
£704
0000
0000
0000
0000
0000
ogace
oogo
0000
0000
0690
E3E3
0000
FFFF
0010
0000
0664
0000
0000

COMPLETION CODE =
BADASMyNEy-1
$LINKy EDXO02
LINKSTAT
LINKWRKL
LINKWRK2
$SYSPRTR

Jump
PROGRAM
DS

DS

DS

PARM

6060
0001

FFFF

0000

7CD9
D540

0000
0382
0000
0200
0610
D703
0000
FFFF
0000
0000
05E4
0234
0664
0000
0000
0000
ClE2
0000
0000
05E4
0000
0080
0000
0000

6060

cse3
6F40

0234
05E4
2000
0000
0000
€2€3
0000
0000
05E4
0000
00RO
0000
0000
0000
FFFF
0000
D240
0000
0000
0000
0000
0000
0000
0000

6060

D9ES
C02E

0000
0000
0000
FFEF
0000
ClE3
0000
0000
0000
0000
0000
00D0
0000
0001
0000
0692
0000
0000
0000
0000
0000
0000
0000

ENOIT

DASHES
ouT

STATIC

ATTNECB
L INENBR
ERRCODE
ERRQUERY

OEQT
GOTO
PROGSTOP
DATA
DATA
POST
ENDATTN
POST
ENDATTN
ECB

DATA
DATA
QUESTION

ENDPROG

END

EXTERNAL/UNDEFINED SYMBOLS

SvC

WXTRN

SUPEXIT WXTRN
SETBUSY WXTRN
$IMOPEN EXTRN
$IMDEFN EXTRN
$IMPRAT EXTRN
$IMDATA EXTRN

$LINK EXECUTION CONTROL RECORDS
FROM L INKSTAT,EDX002

LR KR

OuUTPUT LINKOUT

le}

2}

3.}

*LINKOUT®

THIS LINK CONTROL DATA SET SPECIFIES:
THE LINKED OUTPUT OBJECT MODULE WILL
BE STORED IN
THE AUTOCALL DATA SET IS *sAUTO*

ON EDX002

ASMLIB {SYSTEM SUPPLIED)

*ASMOUT®

ON EDX002 IS THE ONLY INPUT

DBJECT MODULE TO BE INCLUDED

INCLUDE ASMOUT

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

END

Figure B-5

$IMOPEN,ASMLIB
SIMGEN+ASMLIB

$IMDTYPE,ASMLIB
$SRETURNy ASMLIB
SUNPACK 9ASMLISB

AUTO=$AUTCyASMLIB

VIA
VIA
VIA
VIA
VIA

AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL

. STATPROC execution output (3 of 4)

START

X*5050°
8oC*-~"
ATTNECSB,1

ATTNECB,y-1
FeOr

FeO*
*IRETRY OPEN ? *9YES=GETIMAGE,NO=ENOIT

00000650
00000660
00000670
00000680
00000690
00000700
00000710
00000720
00000730
00000740
00000750
00000760
00000770

no000780

00000790

Program Preparation Listings B-9



HRXK

ouTe

MODU
LINK

$LIN

SLIN
JuMp
PROG
PARM
NOMS
EXEC
STAT

sUPD
Jumep
LABE

Figur

B-10

* UNRESOLVED EXTERNAL REFERENCES
WXTRN SveC

WXTRN SUPEXIT

WXTRN SETBUSY

UT NAME= L INKOUT
ESD TYPE LABEL ADDR LENGTH
CSECT 0000 06FA
CSECT 06FA 09€Es8
ENTRY SIMOPEN 06FC
ENTRY SFILE 0308

ENTRY DISKBUFR 095C
ENTRY DSOPEN OATA
ENTRY $DSNFND OFE2
ENTRY $OSBIODA OFE4
ENTRY $DSBVOL OFE6
ENTRY $0SBLIB OFES8
ENTRY $DSIOERR OFEA
ENTRY $OSNVTOC OFEC
ENTRY  $SEXIT OFEE
CSECT 10€2 0€E2A
ENTRY $IMDEFN 10E4
ENTRY S IMPROT 1180
ENTRY $IMDATA 1908
ENTRY $ADDRTBL 1EAS8
ENTRY S$SATTRTBL 1EF8

CSECT 1FOC 0074
ENTRY SIMDTYPE 1FOE

CSECT 1F80 0028
ENTRY RETURN 1F80

CSECT 1FA8 0040

ENTRY $SUNPACK 1FAA
LE TEXT LENGTH= 1FEBy RLDO COUNT= 1015
ouT ADDED TO EODXDO2

K COMPLETION CODE= -1
K ENDED
BADLINK¢NEy-1
RAM  SUPDATE
$SYSPRTR LINKOUT  STATPROG YES
G
PROG STORED
ATE ENDED
ENDysEQy-1
L END
e B-5. STATPROC execution output (4 of 4)

SR30-0436



28 % % 0 0 0 0 %05 0S8 L P00 00 GO 00000000000 PO 0SS 600 000000 L 000 EO0eEE LSS0 e 0 0008000 S8 e 6 66 98 66 S e o0 G600 E 0L IGEELIEGLGGGEOLETITOE

READER'S COMMENT FORM

SR30-0436-1
IBM Series/1

Event Driven Executive
Licensed Program
Study Guide

Please use this form only to identify publications errors or request changes to publications. Inaccurate or mis-
leading information in this publication may be corrected by your comments,

Technical questions or suggestions about IBM systems, programming changes or requests for additional publi-
cations should be directed to your IBM branch office.

List specific errors, omissions, suggestions, additions, and deletions by page number in the space provided.

COMMENTS

IBM may use and distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to print your name and address:

Name
Address

Zip Code

IBM Branch office: No. City

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, SEAL AND MAIL



Fold and tape Please Do Not Staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.40 ARMONK, NEW YORK
POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Technical Publications, Dept. 796

P. O. Box 2150

Atlanta, Georgia 30055

Fold and tape Please Do Not Staple Fold and tape

s e s se s a e

L A A

+ e ee o0 s e o



" 8000000 00 s s e

S PSS S 000 00 505400080000 000 000 00000080 PO L 0000000 6008000000000 ce00ss000es ne 50 e s o8 2e s oo »

READER’'S COMMENT FORM

SR30-0436-1
IBM Series/1

Event Driven Executive
Licensed Program
Study Guide

Please use this form only to identify publications errors or request changes to publications. Inaccurate or mis-
leading information in this publication may be corrected by your comments.

Technical questions or suggestions about IBM systems, programming changes or requests for additional publi-
cations should be directed to your IBM branch office.

List specific errors, omissions, suggestions, additions, and deletions by page number in the space provided.

COMMENTS

IBM may use and distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to print your name and address:

Name
Address

Zip Code

IBM Branch office: No. City

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, SEAL AND MAIL



Fold and tape

Fold and tape

Please Do Not Staple

e ® ¢ o o s o s s s e 0 ® e 0 00 000 000000 eee s

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Technical Publications, Dept. 796

P. O. Box 2150

Atlanta, Georgia 30055

e+ 9 8 68 e 8 8 s+ 6 S 0 G0 s e 0 0 0 S 0 & s 8 0 0 0 8 6 s 0 e s e

Please Do Not Staple

Fold and tape

® o 6 o 0 &6 0 s 0 s 0 0 0 e v s

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

e e s e ssecscocs oo

o e 00

R EEEEEEEX

® ® ® o 6 o e s 0 e e e 0 s e s

« o o s .

e e 00 o0 o

e ® 6 o6 6 66 00 ¢ s 0 s e 0 20 s 26 00 00 S GG oo



SR30-0436-1

Printed in U.S.A.



