Systems
Network
Architecture

Format and Protocol
Reference Manual:
Architecture Logic For
LU Type 6.2

IESE Systems Network Architecture SN30-3562
Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2

Fourth Edition (December 1985)

This publication obsoletes document SC30-3269-2.

Changes are made periodically to this publication; these changes will be incorporated into new editions
of this publication. It is possible that this material may contain references to, or information about,
IBM products (machines and programs) or services that are not announced in your country. Such references

or information must not be construed to mean that IBM intends to announce such IBM products or services
in your country.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not of itself constitute or imply a grant of (i) any license under
any patents, patent applications, trademarks, copyrights, or other similar rights of IBM or of any third
party; or (11) any right to refer to IBM in any advertising or other promotional or marketing activities.
IBM assumes no responsibility for any infringement of patents or other rights that may result from use of
the subject matter described in this document or for the manufacture, use, lease, or sale of machines or
programs described herein, outside of the responsibilities assumed via the agreement for purchase of IBM
machines and the agreement for licensed programs.

Licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms and condi-
tions. IBM does not grant licenses under its appearance design patents. Inquiries relative to licensing
should be directed in writing to the IBM Director of Commercial Relations, International Business
Machines Corporation, Armonk, New York, 10504.

The following sentence does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: International Business Machines provides this publication "As Is" without
warranty of any kind, either express or implied, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. HWithin the United States, some states do not allow

disclaimer of express or implied warranties in certain transactions; therefore, this statement may not
apply to you.

Publications are not stocked at the address given below; requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Networking Architecture, Department E96, P.0. Box 12195,
Research Triangle Park, North Carolina 27709, U.S.A. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

(c) Copyright International Business Machines Corporation 1984, 1985, 1988. All rights reserved.

PREFACE

TNL SN30-3562 (30 Sep 1988) to SC30-3269-3

This is one of two books that describe, at the implementation level, the Systems Network Archi-
tecture (SNA) logical unit (LU) type 6.2 protocols. This book concerns the SSCP-depeident LU
6.2 protocols (those protocols involving mediation by a system services control point during
LU-LU session initiation); the second book, SNA LU 6.2 Reference: Peer Protocols, SC31-6808,
concerns the SSCP-independent LU 6.2 protocols. ~ LU-LU protocols not related to
session-initiation and -termination are common to both SSCP-dependent and -independent LU 6.2;
these common protocols will be updated in the future only in the SNA LU 6.2 Reference: Peer
Protocols, which therefore has precedence over this book for information on those protocols.

Changes from the SC30-3269-1 version of this book are indicated by change bars in the left-hand
margin. These changes include specification of security provisions at the session and trans-
action level; additional details of the logic for resynchronizing logical units of work follow-
ing LU or session failures; and minor enhancements, corrections, and editorial improvements.
The changes for the security capabilities are extensive, affecting Chapters 2-4, 5.0-5.2, 5.4,
and 6.1, as well as Appendixes A, E, G, and H. The resynchronization logic is confined to Chap-
ter 5.3.

This book does not describe any specific machines or programs that may implement SNA, nor does
it describe any implementation-specific su ets or deviations from the architectural description
that may appear within any IBM SNA product. These matters, as well as information on SNA prod-
uct installation and system definition, are described in the appropriate publications for the
particular IBM SNA machines or programs to le used.

The following books should be read in conjunction with this one.

COREQUISITE PUBLICATIONS

] SNA LU 6.2 Reference: Peer Protocols, SC31-6808—reference information on SSCP-independent
protocols for LU 6.2.

. SNA Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084—reference informa-
tion on LU type 6.2 verbs for programmers writing transaction programs to run on SNA.

L SNA Formats, GA27-3136—information on LU 6.2 and other SNA formats.

PREREQUISITE PUBLICATIONS

e SNA Concepts and Products, GC30-3072—basic information on SNA for those readers wanting
either an overview or a foundation for further study.

® SNA Technical Overview, GC30-3073—additional details on SNA, especially on functions and
control sequences; bridges the gap between the most elementary overview of SNA and the
detailed descriptions of the formats and protocols.

RELATED PUBLICATIONS

® SAA Common Programming Interface: Communications Reference, SC26-4399—description of Sys-
tems Application Architecture'sY Communications Interface, which provides a high-level pro-
gramming interface to LU 6.2.

1 systems Application Architecture is a trademark of International Business Machines Corpo-
ration. ’

Preface 111

TNL SN30-3562 (30 Sep 19838) to SC30-3269-3

® SNA Format and Protocol Reference Manual: Architectural Logic, SC30-3112—comprehensive
Information on the formats and protocols of SNA type 1, 2.0, %, and 5 nodes.

® SNA—Sessions Between Logical Units, GC20-1868—reference information on SNA formats and
protocols for LU types other than type 6.2.

® SNA Type 2.1 Node Reference, SC30-3422—reference information on type 2.1 node protocols.

iv SNA Format and Protocol Reference Manual for LU Type 6.2

CONTENTS

CHAPTER

Use and
General

1. INTRODUCTION .« . e e

Organization of This Book
Concepts [N SN

Definition of an SNA Netuork .

Nodes

. e . e s s s e s e

NAUs and Node Types e e e e e
The Path Control Netuwork e .

Other Definitions and Notational

CHAPTER

2. OVERVIEW OF THE LU .

Introduction e e e e e e e e e
Concepts and Terms e e s e e e e
Distributed Transaction Processing e e
Transaction Programs e e e s .
Control Operator et e e e e s
Resources e e e e e e e e e
Protocol Boundaries e e e e .

Names

s s s s & s s e s e e e

Roles e e e e e
Transaction Program References
LU References C e e e e e e
Mode Names s e e e e e e e
Internal Identifiers e e e
Conversation Characteristics .
Send/Receive Protocol e
Sender/Receiver Conhcurrency
Mapping e e e e e e e e e
Session Allocation e e e e e
Session Multiplicity
Session Pool c e e e e e e
Session Selection
Session Contention Polar!ty
Session Limits e e e e e e
Starting and Ending Sessions .
Phases e e e e e e e e e e
Session Usage Characteristics
Session Activation Polarity
Session-Level Pacing

Profiles C e e e e e
Security c e e e e e e
Error Handling C e e e

Kinds of Errors e

« v e e
¢ o s e

Application Errors ...
Local Resource Failure .
Recoverable System Errors
Program Failures s e e .
Session Failure . e e .
Conversation Failures .
LU Failure C e e e e e

Program Error Recovery Support

LU Error Recovery Functions--Abnormal Sessvon Deact

Confirmation e e e e e
Program Error Indication
Sync Point

e e o o

Functions

o o o e o

Abnormal Conversatlon Deallocatxon

Base and Optional Function Sets

Application Program Interface Implementations

Principal Base Functions . .

Basic Conversations .
Mapped Conversations ..

Principal Optional Functions

Mapping e e e e e e
Sync Point . e .

Program Inrtlaltzatlon Parameters (PIP)

Security e o e e e o o »

e o e o

s o o o o

e o o o o

-

.

e o o e e o

e ¢ o

e e o o o

e o o o

.
e ¢ s e

e o o o
.

* e e o e e o

.
* o ¢ & o o o
e o s o o
e o o o o

Contents

| U L L O T e A |

R R A e]
~OVPPOPOPRIONNNNNOORCCOTVNIUIEL P G

NNNNNNNNNNNNNNI})NNNNNNNNNNNNNN

r}’ro
e

v

Performance Options e e e e e e e
Message Units and their Transformations .
Mapped-Conversation Message Units e ..
Basic-Conversation Message Units . e e e
GDS Variables e e e e e e e e e e
Logical Record e e e e e e e e e e e
Buffer Record C e e e e e e e e e e s
Conversation Message-Unit Sequences .« .
Conversation Message « « &
Conversation Exchange e e e e e e e
Session Message Units e e s e e e e e s
Function Management Headers e e e e e
Basic Information Unit e e e e e e s
Session Message-Unit Sequences .« s e e o

e o o o

Mapped-Conversation Message-Unit Transformatio
Basic-Conversation Message-Unit Transformation .

Data Exchange with other NAUs e e e e e
LU-CP Message Units e e s s e e e e s
LU-PU Records C e e e e e e

¢« o e .

External Flow Sequences for the Base Function Se

Notation e e s e s e e e e e e e e e e
Verbs and Parameters c e e e e e e e
Data Transfer Description “ e e e e

Error-Free Flouws e e e e e e e e e e e

Allowable Combinations of Sequences ..

Exception Flou e e e e s e s e e e e s

Error Flows C e e e e e e e e e e e e

LU Structure e s s e e s e s e s e e e e e

SNA layers e e e e e s s e s e e e e e

Component Overview e e e e s e e e e s
Functional Summary by Function

Example Transaction Program e e e e e .

Message-Unit Transfer e e s s e e e e s
Sending Data e e e s e e e e e e e e
Receiving Data © o s s s s e s s e s e
Internal Buffering

Transaction Program Initiation and Termina
Invoking a Remote Transaction Program
Initiating the Initial Local Transaction
Terminating a Transaction Program . .

Conversation Allocation and Deallocation
Selecting a Session e e e e e e e e
Bidding e e e e e e e s e e e e e e
Newly Active Session . . . ¢« « ¢ o o &
Deallocation ¢ v o v o o o »

«

Session Activation and Deactivation ..
Starting a Session
Initializing Session Limits .. e

Session Initiation c e e e e e e
Session Activation « e e e e e e e
Session Outage e
Ending a Session . . + ¢ ¢« o o o o o »
Operator Request e e s s s e e s
Session Shutdown: e e e e e e e
Session Deactivation e e e e e e s
Functional Summary by Component e e e e e
Presentation Services e v e e e e e s
Half-Session e e e e s e e e e e e e
Resources Manager e e o s v s s e s o
LU Netuwork Services e e e e e e e e s
Functions of Service Transaction Programs
Control-Operator Functions “ e e e e s
SNA Distribution Services “ e e e e
Document Interchange Services PO
Optional Functions e e e e e s e e e e
Mapping Function . . . ¢ ¢« ¢ ¢ ¢ ¢ o &

Sync Point Function e s e s s e e s
Sync Point Control c e e e e e e
Logging c e e e e e e e e e e e
Resources Manager e e e e e e e s
Protection Managers e e e s e e
Sync Point Protocol e e e s e e
Commi tment and Back-Out =
Resynchronization e e e e e e e

SNA Format and Protocol Reference Manual for LU

ion .

Program

Type 6.2

Data Structures c t e s e s s s s s 4 . s s s e e s w
LU-Accessed Network Resources et e e e e e e e e e
Processes and Dynamic Resources s e e e e e e e
Resource Raiationships in a Distributed Transaction

L} Clartup and Shutdoun © s s 6 o o s s e s s e s s s
LU Process Creation and Termination e s e e e e s
CP-LU Session Activation ¢ ¢ v v v o &
Control-Operator Transaction Program Initiation ..
Control-Operator Actions e s e e e s e e e e e e s
Running State et e e e e s e e s e s e e e e e e
Example s s e e s s e e s e e s e s e s e

Protocol Boundary Summary e e s e s s e e e e e e e
External Protocol Boundary Verbs and Message Units .

PS-TP Protocol Boundary: Transaction Program Verbs
LNS-PU Protocol Boundary

HS-PC Protocol Boundary s e e e s e e e e e e e
Inter-Component Structures s e e s 4 s e s s s e s o
PS-HS Protocol Boundary e s e s s s e s s s e s s
PS-RM Protocol Boundary c e e e s e e e s e e e
RM-HS Protocol Boundary e o o s s s 8 s s e s e
RM-LNS Protocol Boundary« . . .
LNS-HS Protocol Boundary . . . ¢« v ¢« ¢« ¢« « o o o &
Component Interactions and Flow Sequences e e e e e
Notation et s e s e e e s b e s s e s e e e e e s

CHAPTER 3. LU RESOURCES MANAGER e e b e e s e e e e

General Description . e e e

« e e e e e e e e e e
Resources Manager Functions « e e e o e e e e o o o
Component Interactions e e e e s o s s s e o s e s
Resources Manager Data-Base e e s e 6 s e s 4 s o s

Control Blocks Maintained by the Resources Manager
Control Blocks Accessed by the Resources Manager
Establishing a Conversation e e e e e
Allocating a New Conversation

Obtaining a Session c v e o o
Immediate Session Processing
Attaching a Transaction Program
Races for the Use of a Session .
Terminating a Conversation . . .
Activating a New Session . e e .
Changing the Maximum Session Limit
Session Outage c e e e e e e e e e .
Creation and Termination of Presentation
High-Level Procedures e e e e e e e

RM: PROCESS

e o o e

.
e ¢ o o 0 o o
¢ e o o o e & o
e+ o & e o e o @
¢ s e s e e e o s
e o ¢ ¢ o o o o o
e s 6 o e o o o o o

ervic

e o e e o e+ e e o s o o

S
PROCESS_HS_TO_RM_RECORD: PROCEDURE . .
PROCESS_LNS_TO_RM_RECORD: PROCEDURE .
PROCESS_PS_TO_RM_RECORD: PROCEDURE . .

Low-Level Procedures e e e e e e e e e
ACTIVATE_NEEDED_SESSIONS: PROCEDURE .
ACTIVATE_SESSION_RSP_PROC: PROCEDURE .
ALLOCATE_RCB_PROC: PROCEDURE . .
ATTACH_CHECK: FROCEDURE “ e . .
ATTACH_LENGTH_CHECK: PROCEDURE .
ATTACH_PROC: PROCEDURE PO .
ATTACH_SECURITY_CHECK: PROCEDURE .
BID_PROC: PROCEDURE e e e e .
BID_RSP_PROC: PROCEDURE . .
BIDDER_PROC: PROCEDURE .« . .
BIS_RACE_LOSER: PROCEDURE .
BIS_REPLY_PROC: PROCEDURE .
BIS_RQ_PROC: PROCEDURE . . .
CHANGE_SESSIONS_PROC: PROCEDURE .
CHECK_FOR_BIS_REPLY: PROCEDURE . .
COMPLETE_HS_ATTACH: PROCEDURE . .

E

e e o o

¢ o o e o
¢ o o o s
¢ o 0 o o o

CONNECT_RCB_AND_SCB: PROCEDURE
CREATE_RCB: PROCEDURE o e e
CREATE_SCB: PROCEDURE e e e e e .
CTERM_DEACTIVATE_SESSION_PROC: PROCEDUR
DEACTIVATE_FREE_SESSIONS: PROCEDURE
DEACTIVATE_PENDING_SESSIONS: PROCEDURE
DEQUEUE_WAITING_REQUEST: PROCEDURE ..
FIRST_SPEAKER_PROC: PROCEDURE

e ¢ & s e e e e ¢+ e e o s e s @
6 6 ¢ e 6 & & e & s e e e e ¢t e & e & 0 s e o+ .

¢ 6 6 o s+ e e s e & * e ¢ o s o
@ ° 6 e & e e e ¢ e e e s e+ o S e e & 6 ¢ e e o o ¢ & e & & & & & & o ¢ s s & e 6 s 0 e s o

€ e 6 & e s e o s 6 4 0 e 6 + 8 & & ¢ 9 e e e e 6 + e s e e s+ + e 6 6 & s e & & o

. L ° . . 3 . . 3 3 . 3 . 3 . . . -t o L . . 3 . . 3 .
L N TR

® @ o + o e e s + o6 e 8 & e 2 e e e + s ¢ s e e e 6 & e ¢ o

© ® e 8o & o ¢ & ° o e ¢ o e e & e e e e & o+ o & ¢ o o o e o

e ¢ o o

* o o o

¢ o o o e s e 0 o s o e o

e e e e e e o o e o

e @ e e 8 ¢ 9 0 e © & & + s s ¢ o e e & * & O e 4 S 9+ e e & o e & & e * 6 & e e ¢ ¢ & * o

e & o ¢ o o ¢ & e & + s e e 6 e o 0 s o e e o .

4 & & & e o & & ¢ e 9 6 e s 6 * e & & & 9 & e & * ¢ e & 6 e & e ¢ & & & s ¢ & e 6 4 6 o s 0+

¢ ¢ o 6 e e e & o & & & o e ¢ & & & e e e o s 0

@ e e e 8 e o e 9 & s 6 & + e e o e e e o+ e e & & € e & e e e & e 4 + e s 6 & e & & 6 e o + o

¢ e e e e 9 & e s & 8 s ° e 6 e e s s 9 s ¢ s .

6 ¢ & ¢ & o & & & & s & o e " s 9 s e & s & 6 s ¢ e O 2 0 e v 4 s e & s & & .t s s o 0 e o

¢ o o s e 9 e o e+ & & o + e o o ¢ s o e e ¢ o .

@ ¢ 4 + o 9 & & s & s 6 s e e 9 & e * o 6 e e e e & e & * & e s e e & e s e s s e 4 s o 6 &

e 6 & & o e+ s & e e e e e e 6 e e s e e e v o o

4 e e e o o e & o & s e &+ + s e s 9 6 s ° & s & &+ e+ S o o e ° e+ e s e s e & e 4 4 0 e o s

o e o o e e & e 9 & e & & e & s e e o s s o s

® 9. 8 8 o e @ o e & e e & e e T 6 4 & s 5 s s e s+ s 8 e e e e e e 4 o+ s e & t e e o e ¢ o @

o 6 o 6 s+ s e e e e & & o e e & o e o s e s o

@ ® 6 e 8 e e e & & e 0 & e 9 e 6 e e+ e ¥ & e & &+ o e e e & & % & & & & 6 &6 6 6 s 6 s o o @

¢ o o s o e s & s e e e o e e o ¢ o & s & ¢ o 0

¢ e e & o & e 9+ & e e o e o & &+ 9 & s e e e 6 4t e e e 4 & s .t e e e e s &6 e e e e e e s

e o o e e e ¢ e e s 8 e e e 6 & ¢ & s o o ¢ o o

¢ ® & e o e o e 9 e s e s s s s 4 e + + s e e s O s e e o s+ 6 s & s+ & s 6 &6 e e 2 e & s e o

6 6 o e e o e s & e o s e s e e o s s s s s .

¢ ® 6 @ e s & & e & 8 e 9 e e e e e et e+ 4 6 e v s+ & e e o s+ s e e s s & 6 & & e & e e e e o

® 6 o e s e o & o e e 6 8 e 6 s+ ¢ e e e o o 0 .

4 & 6 & & o e e & & e e o o © s T e e & 9+ 6 s e+ e e & 6 & e & e e e e & & o e 4 e o s &

© e o s e e e s e s s e e e & s s e e s s e o o

e 6 & s e o o s e s s+ s s e e e s e o
® e 6 o e 6 & o o e e e e e & + & e e e 0 e o o
® o 6 s+ s & o s & e s e s e o s 6 s s e e e s 0

* e e e e

@ 8 e 9 8 s ¢ e © 0 e & e e s 2 e © & & T e s+ 6 s 4 + & s e & & 0 & e e & + & & ¢ ° & e o o 6
@ 9 & & o o e e & & s e & s o e 6 o & e e e e+ & e & € 9 e & & + & & e & ¢ s s s 6 9 e e s &
¢ 0 o 6 8 4 6 e & e & 3 5 s + 8 e & e e s + 4 s st e + t e e e s+ & o 6 4 & 8 & o o o o v o @
¢ 6 & 8 e o & 6 & & e s+ & ¢ 9 e e e 0 & 2 & e ¥ e e & e 6 .+ * 4 s & e & & o & s s e o o

Contents

¢ & o & o 9 e & e e e e 4 e e e & o o ¢ ¢ .0 o

4 ¢ & 8 6 e o o o e + & s s e & e & & 6 e e e & e ¥ e e 0 & s e e & & & s s s & o6 o 6 o o o

2-42
2-42
2-42
2-45
2-a4»
2-45
2-45
2-46
2-46
2-47
2-48
2-49
2-49
2-49
2-49
2-49
2-49
2-49
2-49
2-50
2-50
2-50
2-50
2-50

W
1]
-

NOVOPLPLPULHULNDN-

vii

FREE_SESSION_PROC: PROCEDURE N

GET_SESSION_PROC: PROCEDURE
PS_CREATION_PROC: PROCEDURE . e
RM_ACTIVATE_ SESSION_PROC: PROCEDURE . .
RM_DEACTIVATE_SESSION_PROC: PROCEDURE .
RM_PROTOCOL_ERROR: PROCEDURE
RTR_RQ_PROC: PROCEDURE . « « « ¢ v o « &
RTR_RSP_PROC: PROCEDURE .+ « « « & « . .
SECURITY_PROC: PROCEDURE . . « « .+ .+ « .
SEND_ACTIVATE_SESSION: PROCEDURE
SEND_BIS: PROCEDURE « v &« « « o o « + .
SEND_BIS_REPLY: PROCEDURE « . .
SEND_BIS_RQ: PROCEDURE . « « « « « « 4« .
SEND_DEACTIVATE_SESSION: PROCEDURE . . .

SESSION_ACTIVATED_ALLOCATION: PROCEDURF
SESSION_ACTIVATED_PROC: PROCEDURZ P
SESSION_ACTIVATIOM PCLARITY: PROCEDURE .
SESSION NPEACZ 1AVATED_PROC: PROCEDURE .« .
SFSS1UN_DEACTIVATION_POLARITY: PROCEDURE
SET_RCB_AND_SCB_FIELDS: PROCEDURE . 2 a
SHOULD_SEND_BIS: PROCEDURE ¢ s e s e o o
SUCCESSFUL_SESSION_ACTIVATION; PROCEDURE
TEST_FOR_FREE_FSP_SESSION: PROC:ZDURE [
UNBIND_PROTOCOL_ERROR_PROC: PROCEDURE .
UNSUCCESSFUL_SESSION_ACTIVATION: PROCEDURE
Finite-State Machines e e e e e e e e

e e o e & & 4 & o e e e e o s & o e o o o e & o

#FSM_SCB_STATUS . P
FSM_ SCB STATUS BIDDER FSM DEFINITION . .
FSM_SCB_ STATUS FSP: FSM_ DEFINITION s = s e
#FSM BIS « e e P
FSM_| BIS BIDDER: FSM DEFINITION > =« = s =
FSN BIS_FSP: FSM_| DEFINITION e o e e s e .
#FSN RCB STATUS . « s o s e
FSM_RCB_ STATUS BIDDER FSM DEFINITION PN
FSM_RCB_STATUS_FSP: FSM_DEFINITION e o o o
Local Data Structures e e e e e e e e e e
LU_NAME e e e e e e e e e e e e e e e
MODE_NAME e e e e e e e e e e e e e
HS_ID e e e e e e e e e e e e e e
REB_ID v v v v v e e e e e b e e e e e
TCB_ID v v v v e e e e e e e e e e e e
SENSE_CODE e e o o o s s s b e s s s s s s

CHAPTER 4. LU NETWORK SERVICES o e e e e s

General Description« . . .
Overview of CP-LU Session Actlvatlon .
Overview of CP-LU Session Deactivation
Overview of LU-LU Session Initiation .
Overview of LU-LU Session Termination
Session Outage and Session Reinitiation

Netuwork Context for Session Initiation and
ILU and TLU .

¢ v e e o

« ¢ e e o o

-
1]
3
3

OLU and DLU e e e s s o s s e s s e
PLU and SLU C e e e e e e e e e e
RU Parameters e e e e e e e e e e
Network Name . . . e e e e e
Fully Qualified Network Name . e e e
Uninterpreted Name e e e e e e e e
User Request Correlation c e e e e
Mode Name .. . P . e .

Session Key and Sessron Key Content
LU-LU Verification Data c e e e e
Specification of RU Parameters . e s
Implementation-Dependent Parameters
Installation-Specified Parameters

e e o o e & & & ® o e e s e s e e ¢ e+ e
e ¢ & e e & e e e e o e e 3 0 e o = e 0+ o o
« o o e o o & 6 ¢ e * & s o o o e o o o

Session-Services RU's . o e s s v s
INITIATE-SELF (INIT- SELF) v e e e
CONTROL INITIATE (CINIT) e
RSP(CINIT) . e e e e e e .
SESSION STARTED (SESSST) e e e e e
BIND FAILURE (BINDF) . e e e e e s
TERMINATE-SELF (TERM- SELF) e e e e s
CONTROL TERMINATE (CTERM) e e e e s

-to
e
-t

SNA Format and Protocol Reference Manual for LU

S e e e et e e e e e s e e e s e o o

e 8 e e e e 6 e & 8 s e e e e e o e & e & & & & o ¢ ° e € e & v e e o e o & o e ¢ o
@ 6 o o e e & ¢ o e & & & & 8 ° e & ¢ & & e ¢ e + e ¢ o o s 6 e & & o e & o s & o o
e o & e & e e e+ e e e e 8 e 9 & v e ¢ 8 4 e 2 e ¢ & 3 s e e & s & s & s s e e & o 0

@ o 6 4 e o 6 e & € 6 s+ e st T e e e ¢ * o s o

e e e .
e e e
e e e
e e e .
e e e .
e e e
ination
e e e .
[
[P
. e e
e e e
. e e .
. e e s
e e e .
e e e
e e e
PR
PO
e e e e
e e e .
“ e v
. e e e
e e e e
« e e e
e e e
e e e
e e e .
e e e .

Type 6.2

e ¢ o & e e 8 e e & e 9 8 e e s e e & & e & & * e e 9 e e ¢ e s o 9 o e ¢ & ¢ ¢ o o

o e o e

e ¢ o e e e @ e e o o o o &

¢ ¢ o o & o o s

e ¢ e e ® s & e e & e ® o s e 8 2 & ¢ & 6 4 e e ¢ e+ e 9 e 4 6 e o & & © o 0 ¢ o 0 o

e e e e e »

¢ e e e e

¢ s 6 s e e 6 6 e e * & & ¢ s ¢ e

e ¢ 9 o 9 e o e e e e o e e s e e s e e s o ®

e s e o o & & e s o & e o & ¢ & & & o

e o o ¢ © e o e e & © e e e s e o 9 o e o ¢ s o 0

¢ ¢ e 4 e e s e e+ & s e e e o 6 & o o e o o e e o o =

e e o e o e s e e v & e ¢ o e ¢ e ¢ o s o e o o o o

¢ e e s o e e e s e 8 e e e o e s 0

¢ & e o e & 4 + e e * e s 6 e+ e & e e 6 & ¢ e ¢ ¢ s & o o ¢ @

e o s e o & o e & o o

¢ s & o o e & o ¢ & e o e e e e 6 e e e e ¢ e s T 0

e & o o e 8 e & & 6 e 8 6 e & e ¢ & 9 e & e & 0 e o 6 6 ¢ e ¢ & o & o e o ¢ © o o o

e o 8 s s s 6 ¢ s 6 8 e 6 s e e e e & ¢ e o s s+ o o e 0

e 6 6 & o e e s 6 & s o o s o ¢ o ® e % o o o & e o s e e s o & o 9 s v O & ° o

P T T Y

4 o o o o o e e 8 o 6 e e 9 e & o & o ¢ s o o

e o 6 6 & 6 & e & e & & 6 e e e e & * s+ e * e e ¢ e 0 o © s & e o e o e o © o e © 0

e o e o o e o o o o 8 & 6 & & e e ¢ e & o o e e ¢ & o & o

- e e o © e ® s s o e o @

e & o 6 6 e 6 6 & e e & o s s e & e e ¢ o s & e o ¢ o o o

¢ o o o o o o 8 o e e o o s & s 6 e s e o s+ o e s s o o &

v e e e e e e o o © s o o

e ¢ e 6 o & e e & e & T e e o e o e o 9 o o & e o e e o o

e s o o 8 o e ® o o e e o e s o o

e e o o o o e e e o & o

o ¢ ¢ o e 6 e o o o o o

¢ o o 9 e o o o o s »

s o ¢ & % e e & & o o e 4 e+ 9 e @

e s s o 6 e o & s e s e e e & e e s e o o ¢ ¢ T ¢ o 2 9

e ¢ o s o 8 9 o ¢ o & o

e o o o o 0 & & + e & e 6 ¢ ¢ e ¢ ° e & o & o © o & ° s &

e o o o © 5 o e ® @& e & ® e & & e o e e 2 e e & o @ o o o

4 6 e 6 ¢ & o e e e & e o e & & e o © e e © e o o e s s ° o © e O e o © e s & © @ o

e o o o o o o o & e & s o s e e e e e & @ o e o s s o o

.

e 6 e o 9 e & e & ¢ & e o e e & 9 e 6 e e e o ° © o S e + e ©°© e ° e o o o & © o O o

e o o o 6 6 & 6 & e e e & o o @ e o 4 o e ¢ s s e & o © o

e o o o » e & e e 9 o6 s & e e e * o e e & & o 9 ¢ e e e o s e o e o o € o o e © o o

o & o o

e o 6 o o ® e & e & & & e o o o 3 6 & & * & o o o

e 8 e 4 © 8 e e & ° & 9 & & s s & e & & e+ e e e & o ° & s s & e o &+ o s & o+ o o o+ o

¢ o 6 o 6 6 6 & 8 e & e e s 4 & & 0 & & e o s 0o s e s s 0

e o & 8 9 e+ e e e e 6 e & & & & e e © & e € e ° s e e e & o o & & * o + o ¢ s & o o

e o o o 8 s s e e s + e s s s e s e e * e s s s o s v 0

@ o o & » e e e e e e o & e ® o & e & e © e & ° & 0o e & & & & o & & e o s s .+ e e o

o o 6 8 6 % e & e e + e & e o 3 e v .+ s e s o 2 s ¢ 9 0

Pl
1
[

1 U
PP PLPPLPLUDDN -

]
NoocouUutmmuoiuiwnntn

bf&&bb#bf#bbb#bb
[

f#bf‘b-&‘-&‘-b
0 O

G-

R~
]
-
[=Y

4-11

£
1

o

—

4-12

CLEAN UP SESSION (CLEANUP)

SESSION ENDED (SESSEND) e s e e e e e e
UNBIND FAILURE (UNBINDF) e e e e e e e s
NOTIFY e e e s e e e e e e s e e e e e
Session-Control RU's . e e s e e e s
ACTIVATE LOGICAL UNIT (ACTLU) “ e e e s
RSP(ACTLU) . e e . s e e e e e
DEACTIVATE LOGICAL UNIT (DACTLU) e e s
BIND SESSION (BIND) s e e e e e e e e
RSP(BIND) e e e e e e e e s
UNBIND SESSION (UNBIND) e e e e e e s
Maintenance-Services RU's e e e e e e e
ECHO TEST (ECHOTEST) P .« . e e .
REQUEST ECHO TEST (REQECHO) « e e e e s
LNS Protocol Boundaries e e e e e e . .
LNS Flous .. C e e e e e e e s
Flows for a Perlpheral LU e e e e e e e
Flows for a Subarea LU e e e e e e e e e
Introduction to Formal Description e e e e
High-Level Procedures e e e e e e e e
LNS: PROCESS . . .

PROCESS_RECORD_ FROM RM PROCEDURE . .
PROCESS_RECORD_FROM_HS PROCEDURE . .
PROCESS_RECORD_FROM_NNM: PROCEDURE “ e
Low-Level Procedures (in alphabetical order)
ACTIVATE_SESSION_ERROR: PROCEDURE PR
BIND_RQ_STATE_ERROR: PROCEDURE e e e e
BIND_RSP_STATE_ERROR: PROCEDURE . ..
BIND_SESSION_ LIMIT EXCEEDSD: PROCEDURE .
BUILD_AND_SENT_LCT_SESS_RSP_NEG: PROCEDURE
BUT.Z_aND_SEND_ACT_SESS_RSP_P0OS: PROCEDURE
BUILD_AND_SEND_ACTLU_RSP_NEG: PROCEDURE

BUILD_AND_SEND_ACTLU_RSP_P0OS: PROCEDURE

BUILD_AND_SEND_BIND_RQ: PROCEDURE ...
BUILD_AND_SEND_BIND_RSP_NEG: PROCEDURE .
BUILD_AND_SEND_BIND_RSP_P0S: PROCEDURE .
BUILD_AND_SEND_BINDF_RQ: PROCEDURE . e .
BUILD_AND_SEND_CINIT_RSP: PROCEDURE ..
BUILD_AND_SEND_DACTLU_RSP: PROCEDURE ..
BUILD_AND_SEND_DEACTIVATE_SESS: PROCEDURE
BUILD_AND_SEND_HIER_RESET_RSP: PROCEDURE

BUILD_AND_SEND_INIT_HS: PROCEDURE . o e
BUILD_AND_SEND_INIT_RQ: PROCEDURE .« o e
BUILD_AND_SEND_PC_CONNECT: PROCEDURE .
BUILD_AND_SEND_PC_HS_CONNECT: PROCEDURE

BUILD_AND_SEND_PC_HS_DISCONNECT: PROCEDURE
BUILD_AND_SEND_RSP_OR_LOG: PROCEDURE . .
BUILD_AND_SEND_SESS_ACTIVATED: PROCEDURE

BUILD_AND_SEND_SESS_DEACTIVATED: PROCEDURE
BUILD_AND_SEND_SESSEND_RR: PROCEDURE . .
BUILD_AND_SEND_SESSST_RQ: PROCEDURE ..
BUILD_AND_SEND_TERM_RQ: PROCEDURE . .
BUILD_AND_SEND_UNBIND_RQ: PROCEDURE .
BUILD_AND_SEND_UNBIND_RSP: PROCEDURE .
BUILD_AND_SEND_UNBINDF_RQ: PROCEDURE .
CINIT_RQ_STATE_ERROR: PROCEDURE [N
CLEANUP_LU_LU_ SESSION: PROCEDURE . .
INITIALIZE_LULU_CB_ACT_SESS: PROCEDURE .
INITIALIZE_LULU_CB_BIND: PROCEDURE . . e
INITIALIZE_LULU_CB_CINIT: PROCEDURE ..
LU_MODE_SESSION_LIMIT_EXCEEDED: PROCEDURE
PROCESS_ABORT_HS: PROCEDURE . o s .
PROCESS_ACTIVATE_SESSION: PROCEDURE ..
PROCESS_ACTLU_RQ: PROCEDURE ..
PROCESS_BIND_RQ: PROCEDURE ..

e e e o e e

PROCESS_BIND_RSP: PROCEDURE e e
PROCESS_CINIT_RQ: PROCEDURE e e e .
PROCESS_CLEANUP_RQ: PROCEDURE e e
PROCESS_CTERM_RQ: PROCEDURE e e e e
PROCESS_DACTLU_RQ: PROCEDURE ..

PROCESS_DEACTIVATE_SESSION: PROCEDURE
PROCESS_ECHOTEST_RQ: PROCEDURE
PROCESS_HIERARCHICAL_RESET: PROCEDURE

PROCESS_INIT_HS_RSP: PROCEDURE

¢ o o o ¢

e o o o o o o

e & o o o o o 4 e & o o

® e o e o e e & & s & & 6 6 e & e & e e e * s e e e e s+ e e 9 s e e e s s s s s s e e s 0 s e 0 0

e ¢ o 4 e e e e o e o

¢ o o o o & o o o o o

e o o 8 e & o s e e e e o s o

v e e e e

o o o o o & o e @

¢ o s e e o o e o

6 s 8 e e 6 e e e e s s e o s s e 0 0

o e o e 0 e e e e 0

o« o e e

* e e e s e o o

e 6 e e o o e e e e e o

® 6 o 6 o e 6 % e 9 e + e e s+ e v e s e e e o o s e e 0

.

¢ e o s e e e o o e o s s e o o o

e o o & & + e & o & e e e e s s e e e o ¢ e o

¢ o & o o s o & e & e o ¢ s o o o

o o e e o

o e e o o

e ¢ ¢ e e e e o o o e s e o o @

e v ¢ e o o & s e e s e s

¢ 6 o e s 9 e s e o e o e o e o s o o

© ¢ e 8 e e e s e 4 e e e & & & e 4 e 0 e s s v e e 0+

¢ e 6 4 e o e e & o e o s s e e o s e o s o

e 6 o o e s e e e e s e e e e+ 4 s e e s e e o s 0 e e 0

O ¢ s e et e e e e e e e e 4 e e e e s e

o s e e e e s e o

e o o 8 e ¢ e o ¢ o ¢ o o e o

e o o o & s o s e o e

e o o e o s o

e * o e e o & e e e o o & e s & o e e o

® o e e e e o o e e & e s e o o

e e e e o e v s e e e e ¢ ¢ e o o o s s e e e s .

e s e e s e s e e

e o o e e o 4 o ® o e s

e ¢ o e & e e e o o ¢ o o o

e o o e 4 e s e e e e v

e e e s e s e e e e e e e & & o

s ¢ e e o o e e e o o o @

e 6 6 o e o o o e e o o & & o o & s o

¢ o o & o e & e & o & e & s & e & & C & v e ¢ e o s e o o« e s s

o e e s o

e o & o o & s e 0 e e o @

¢ o o o & e o e & o & o s s o o

¢ e e e e

¢« e o o o

e e o e v e o

e e s e & e e e e o o o 0 e e

e 6 ¢ o o o e e e + e s e s e o o o o

¢« o o e o«

v e e e e 4 e e

® ¢ 9 s e e e e o e e e e e e s e s e 4 e & & o o

e o6 o o o 9 e o o o o o @

o 4 o o 4 6 o e s 6 & e e o o & e s e & s & s s e o

« o e o e

e o o e e o e o v o e

" e s e e & e o e s e e

¢ e 9 o e ¢ s e o e o e o o s o

o o s s o e s s o

e e 6 e o e 6 e e + e e s e e e e e & .

¢ o e e e o e e o

« e o o o e o

o o o e o o

e o 6 9 o o e & 8 e s e e o o o o

¢ ¢ o e o e « o o o s e 0

« e e e

e o o e o e o o

¢ ¢ o e e e e e+ e & e & 4 4 e & e e 4 & &6 s e e+ e o

e o 6 6 6 & 9 6 .6 e o 9 e e e e ® e o o ¢ o 0 o 0

¢ ¢ o e o e e o o e o & s e e o

e o e 0 e e 6 * & & e * & 6 e 6 e 4 e e e e e e e 4 0 e o e o

e % o 8 4 4 e e s 6 e s e 8 e e ¢ ¢ o s o 0 9 e o o+ .

¢ ¢ & e e s e e s e e e e s e e 6 o e ¢ s 0

e ¢ e ¢ o e e o

O ¢ o e e e e o 0 o & e ¢ o e

6 6 e 4 e e e e 6 6 & ¢ & & 6 6 9 e € e e e s e e s & & e e 4 e+ s e s s 0 0

¢ ¢ o s o o e s e e

¢ e v e e e e e e e e s e s s e s e e e & o

¢ o e e o e 6 e e & & 9 e s e e e & e & o s 0 e e s v e e s 0 0 0 0

© ¢ e o e e e e e e e+ & e 4 e s e s e o o

S e ¢ e e e o e e s e e e e o

¢ o e 4 o e o & 6 & 0 s & ® e e e e & e o & s 0 e o+ e e 2 e 0 0 e o

© o e e e e s e e & e e e o e 9 s e 0 % e e T 4 s e e e & 4+ o e 6 4 e 4 0 e e 0

¢ o 6 o e o 6 6 s 6 e e e e e e e 6 e & s s s e + e o s o o 0 0

@ o e o e e e e e 4 s e e s e e s e s ¢ + e e e e e e & & 4 e s & o e s o e s o o

Contents

4-12
4-13
4-13
4-16
4-15
4-17
4-17
4-19
4-19
4-25
4-28
4-29
G-31
§-31
4-32
4-34
4-35
4-41
4-66
G-47
4-47
4-48
4-48
4-50
4-51
4-51
4-52
4-53
4-55
4-56
G-57
4-57
4-58
4-59
4-59
4-60
4-60
4-61
4-62
4-62
4-63
4-63
4-6%
4-64
4-65
¢-65
4-66
4-67
4-67
4-68
4-68
4-69
4-69
4-70
4-70

4-74
4-75
4-76
4-77
4-77
4-78
4-79
4-81
4-82
4-84
4-85
4-86
4-87
4-87
4-87
4-88

ix

o0 o
29
&
.o .
P
. .
e o
o e
o
L 4
o .
o .
o .
o 0
. e
o .
o
o .
..
o
. e
. .
L
o e
* 0
o
.
.o o
o .
.
m.
[=]
[Tt}
[S N4
&2
o w
"
0 o
wo
R_..
w o
-
]
0 >
(™
| allal
o I g
=0
TJN
[81l
n v
g
[S NS
&
a. o

PROCESS_NOTIFY_RSP

4-89
4-90
4-90
4-90
4-91
4-91
4-92
4-93
4-94
4-101
4-101
4-101
%-101
4-101
4-101

e o o e+ o

o & o e o

e o o o o

s o o & o o s o o e o

PROCEDURE

.
.

PROCESS_PC_CONNECT_RSP:

e & & o o e s o o & o o o e s & o o

e o o e o

PROCEDURE

PROCEDURE

PROCESS_REQECHO_RSP

e o o e o

e o o o s & e e e s s e o o e o

PROCESS_SESSION_ROUTE_INOP

e e o o

e o o e e e s s s e s s ° ° e e =

PROCEDURE
PROCEDURE

PROCEDURE

.
H

PROCESS_TERM_SELF_RSP

o o

e o o o o

e o o s o

.

Py
.

.
°

PROCESS_UNBIND_RQ
PROCESS_UNBIND_RSP

s o e o

s o o o & o o

-

e o o o o o e e e o o o

e e e o & o o+ o s e e e o o s o

PROCEDURE -

.
.

Finite-State Machines

o o & o

e o & & o & e o e s

e o o o o

e & o o e o o

. s o s o s o s o e o

s e o o e o o

e o o o o

“« o e o

FSM_DEFINITION

FSM_STATUS:
Local Data Structures

e ® & e o e o o o & o e o e s e ® o ° o a

e e o o & o o

LOCAL

e o o o 4 & e & o s e o e o e o o

e o o o o e o o o

e o o o o

ERROR_TYPE

e e & s o e o

-

e @ & & e o o e & e e e+ e e + + o o e e * e

SESSION_TYPE

e o & o o = o

@ o ¢ & o o o e+ & o & ° e ° s o s o

e o o o e o

RESET_NORMAL

@ ® & & e e o e o o e e e o s o & s o o o s o o e o o o o o

RESET_SON

@ o & & 4 e e & o e e e+ ©o o e © s o e & e+ e & o o

s e 8 o s s s o

.« o

.

-
]

11111111344455678013355
11111111

0 00000000000000000
0 55555555555&&&&&&&&&Jmmmmmmooo
18 18 18 10 10 1 18 19 1 18 15 16 10

e 4 & e+ o e & o s e e o o e« s o o o

OVERVIEW OF PRESENTATION SERVICES

CHAPTER 5.0.

e o e

s o o o

e o o o o o e

e & o & 4 o e e o s+ o .

e o o o & o e o

General Description

* o

¢ e o

® & o e o o & e e e o & e e e+ s © o s e e

. .

-

PS Component Functions

e o o o o o

.« e

. .

TP:

o« o 0 e
o o o o
v e e e
o s s
o s s
* s &+ o
o e e
e s e
e e
e e e
e o e e
o s e e
¢« e e e
o e o .
o s e
o o e e
o o o
e e e
o s 8
o o s e
* o .
o e s e
“« e e e
o e o e
e o o o
v e
. e .
o o0 e
[+ 4
e oL
o
o QO .
.
N)
o.
o . .
-
. .« .
.
o e
.
oY & o
w ww
ZWP .
Hg?
14
< X"
0. e
= >
HEY ~Z
ZWOO
H>EO
IR
nuouny
aooao

¢ o e

s e o o

e e & s s e o o °

e o e & s s & e e e o e s o s o

Data Base Structure

. e o e o o e e s o o o

.

Initialization and Termination (PS.INITIALIZE)

Verb Processing (PS.VERB_ROUTER)

e o o o o o

.

e o & o & ® s e * ® e * e o o e o

e e o o o o e o e o o o o o

e o o o o o

s s e o o o

WAIT Verb Processing

® o o e 8 s s o & e a2 ° e s e o e s o s e o

.

ing

GET_TYPE Verb Process
High-level Procedures

e © 8 & 8 e e o 3 e o e+ s s o s o o o

e o o o o

* o o s e e o

PROCESS

e e e e e o

e o o o o o o o

e & o s o & o o o o e o e e s o o

- .

.

PS:

- . o o

e e o o o

e & o s o s e o =

* o s & o e s & o o

PROCEDURE
RECEIVE_PIP_FIELD_FROM_HS: PROCEDURE

.
.

PS_INITIALIZE

. e 8 o e e o o & o o

* o e o o+ o o s o

PS_ATTACH_CHECK

e o o e o o o o

© o o o o o o

e & o o & o o o o o s o o

PROCEDURE

.
.

ATTACH_ERROR_PROC

.

»

¢« o o o

e o & 4 o e e & & © o e o e e o

. o

PROCEDURE

PROCEDURE

DEALLOCATION_CLEANUP_PROC

PS_VERB_ROUTER

PROCEDURE

e o e s o e o

3
.

3

2 e o e e+ o e

« o & o o <

.
.

PROCEDURE

Lou-level Procedures

s e

® o e & o 3 s e s & s & o o

.

.
.

WAIT_PROC

;e e e e o e e o e o

« e o o o o

“ e e
o o .
o v .
o« o v
. e e
e« o e
e o e
e s e
o o e
« e e
. o e
o« o e
¢« o o
« o o
o e
o o e
o« o
o« o e
o o e
o« o e
s o 0
o o e
o o e
o« o o
. o
.

w
‘25
‘28

[T &
S e
mp

PS_PROTOCOL_ERROR: PPOCILURE

INITIALIZE BTTACHED_RCB:

-
.

TEST_rox_RESOURCE_POSTED

d Protocol Machines

e« o s e e

e & e o o o o & s © s e e e & o+ e s s o

ine

L wef

e & & e & o e e o 3 & & o ° o

e o s o s o o

e e © o o e o o

UPM_EXECUTE: PROCEDURE

UPM_ATTACH_LOG

s o e

.

® ® e 4 o o & o e ® s e e e s e o o© e o e o & s e+ o o

PROCEDURE

.
.

UPM_RETURN_PROCESSING

.

.

* o & o ° & e e s e e & &

® s 8 o s e o

.

-

PROCEDUR::

.
.

Local Data Structures

.

.

e o 9+ e o o o s o e o o

e s o o o o o o o e o o o o o

-

s e & o o o

e o s o o

e o & s & & s s e o s o o o

S_DATA

PIP_FIELD

PS_PROCES

.

e e o & o 0o o e e e o o o

e o o o o o e

e o e o 3 s e e o o

RETURN_CODE

.

e o ¢ & & e+ o+ o ©o o e & s o o e e o o o e + o o

e o o e o

PIP_LIST

@ © 4 o & o 3 s e e o e e o o e e o o o © o o

o o o o

Lu_ID

e & o o & © e e o o o & & e e o

e o & s o s e o

- .

o o o

....
e
C e
C e e
e
C e
c e e
e
c e
C e
c e e
e
c e e
c e
c e
C e e
e
*« o o @
o o o .
c e
C e
c e
¢ o o 0
e
* o & 0
c e e
c e
. o 0 .
e
c e
e
C e
c e
Ce .
.
RRm
gt M«
1
bhad
o R R
| 1@
[g B4
2e38

L
i
l

e o & o e o e e o

PRESENTATION SERVICES--CONVERSATION VERBS o e e e

CHAPTER 5.1.

11'&1111
o s o

5 5555555

e o o o & & o s e

e o o o o

e & & o e 6 & e o s+ o s o e s o o

General Description

e o o o o o s+ e o

e o o o o e o e & o s o e e o o

e & o e o o s o

PS.CONV Functions

e o o o o

e o 5 e ¢ & o o o o e o s & e o & o+ o o o o e e o

Component Interactions

* ® e o o o & ® o s 8 o 5 e e e o a3 o e e & ° e o o

PS.CONV Data-Base Structure

e & 92 & e e o & e o e & o o o o e o o

LU Control Block (LUCB) and Associated Lists

Transaction Control Block (TCB)

PS_PROCESS_DATA

.

s o ® e & & s o o

e o o o & & o o o e o o o o

@ e 8 o e o e e e e

e e e e ¢ o o e o & o o e o e o s o o o o o

Resource Control Block (RCB)

Verb Parameters
PS-RM Records
PS-HS Records

11111334%/«.—%6

-t gt
« o s o
o n

e ® o © o © o e o o

e o & o & s e e o o o

s o o s o

e o o & o e o

e © o e e & o © & e e o o 6 o e o s o o e e o o o

.

e o s o & & o s o

e ® o ® & ® o 5 & & s ° s & 0o e © e s o o°o o o

.

e o & e o o e o o o

s & o o & o e o o

s s o

s o e s o s o o o o

. o

o o o o

e o © + o o o o o e o & e & e e e o o o o

Tracking Logical Record Length

SNA Format and Protocol Reference Manual for LU Type 6.2

X

Maintaining and Checking

Verb Processing . .
Verb Checking . .
ALLOCATE . .
POST_ON_| RECEIPT .
REQUEST_TO_SEND
SEND_ERROR « o s

Protocol Errors ..

Conversation Failures

High-Level Procedures

PS_CONV: PROCEDURE .

.

e o o o o

.

ALLOCATE PROC: PROCEDURE

CONFIRN_PROC PROCEDURE

CONFIRMED_PROC: PROCEDURE
DEALLOCATE_PROC: PROCEDURE

FLUSH_PROC: PROCEDURE

GET_ATTRIBUTES_PROC: PROCEDURE

the Basic
. . .
[
e e e e
e e e e
e e e e e
e e e e
e e e e
e e e e
e e e e
e e e e
e e .
e e
. e
e e
N

POST_ON_RECEIPT_PROC: PROCEDURE

PREPARE_TO_RECEIVE_PROC: PROCEDURE
RECEIVE_AND_WAIT_PROC: PROCEDURE
RECEIVE_IMMEDIATE_PROC: PROCEDURE

REQUEST_TO_SEND_PROC: PROCEDURE

SEND_DATA_PROC: PROCEDURE

SEND_ERROR_PROC: PROCEDURE . .

TEST_PROC: PROCEDURE
Low-Level Procedures .

COMPLETE_CONFIRM_PROC: PROCEDURE
COMPLETE_DEALLOCATE_ABEND_PROC: PROCEDU
CONVERSATION_FAILURE_PROC PROCEDURE
DEALLOCATE_ABEND_PROC: PROCEDURE
DEALLOCATE_CONFIRM_PROC: PROCEDURE
DEALLOCATE_FLUSH_PROC: PROCEDURE

. o e

DEQUEUE_FMH7_PROC: PROCEDURE

GET_END_CHAIN_FROM_HS: PROCEDURE

OBTAIN_SESSION_PROC: PROCEDURE

PERFORM_RECEIVE_PROCESSING: PROCEDURE

POST_AND_WAIT_PROC: PROCEDURE

PREPARE_TO_RECEIVE_CONFIRM_PROC: PROCEDUR
PREPARE_TO_RECEIVE_FLUSH_PROC:

PROCESS_DATA_PROC: PROCEDURE .
PROCESS_FMH7_PROC: PROCEDURE .

PROCESS_RM_OR_HS_TO_PS_RECORDS: PROCEDURE

RCB_ALLOCATED_PROC: PROCEDURE
RECEIVE_DATA_PROCESSING:
RECEIVE_RM_OR_HS_TO_PS_RECORD: PROCEDURE
SEND_DATA_BUFFER_MANAGEMENT: PROCEDURE
SEND_DATA_TO_HS_PROC: PROCEDURE

SEND_ERROR_DONE_PROC :

PROCEDURE

PROCEDURE

e o s e

-

.

-

Conversation State

.
.
.

e o e o o o e e o s

.
.
.
.
.
.

.

.

e o & o o e e & & 4 & o & s o o o o

.
.
.
.
.
.

D)

.

.

SEND_ERROR_IN_RECEIVE_STATE: PROCEDURE
SEND_ERROR_IN_SEND_STATE: PROCEDURE

SEND_ERROR_TO_HS_PROC: PROCEDURE

SET_FMH7_RC: PROCEDURE

TEST_FOR_POST_SATISFIED:

WAIT_FOR_CONFIRMED_PROC:

.

o o o

PROCEDURE
PROCEDURE

WAIT_FOR_RM_REPLY: PROCEDURE .
WAIT_FOR_RSP T0O _RI_TO_SEND_PROC: PROCEDURE

WAIT FCR_SEND_ERROR_DONE_ PROC:

cinite-State Machines

FSM_CONVERSATION: FSM_DEFINITION
FSM_ERROR_OR_FAILURE: FSM_DEFINITION
FSM_DEFINITION

FSM_POST:
Local Data Structures
TEST e e e e e e e

CHAPTER 5.2.

General Description .
PS.MC Functions N
Component Interactions
PS.MC Data Base Structure

Transaction Control Block (%CE)

LU Control Block (LUCB)

Transaction Program Control Block (TPCB

.

« .

o e s .

. .

e o o o

. -

Resource Control Block (RCB)

.

-

.

e o ¢

.

.

.

e e e o o o

.

.

.

e ¢ o o o

e o e s e * & o o o o o

.......xj.............

PROCEDURE

PROCEDURE

e« o o o o

e o o o o

.

e o o e+ & o o o e e & o & o o

e + o s o s e o e o

.
.
.
-
.
-
.
.
.

.

.

e o o o o o

)

.

.
.
.

e o o e o o e e

e o e s e e s o

e e o o o o e+ & o

e e o e e o o

e o o s o o

¢ o e e & e e e e e e+ s+ e @ e & e s s e s s e s 2 e e s+ e s s s e e s 0

e o 6 s s e e e e o o e e o e s+ o e & o ¢ s o

e e o e ¢ o s .

e o s o s e e s e o s

e ¢ o o o o o o

¢ e o & e & s s s e e+ e e e e o s & ® e v e

¢ ¢ & o e e e e e e e

e e o o s e e o

e o o o e s e e o

e 6 e & s e e + e e & e o e & o e e e .

3 e & o e e e e & e & o 4 s s e o @

e e & o v o 0 e e e o

e e & e o s o o

¢ o o e o e e o e 8 e ¢ e e e s e e e o & e e s e o o

¢ ¢ e e e o s e e s e e 9 e

¢ & o o & o s s 4 e s s e 0 & & s o o o

e o o s o e o o

@ e e o e e e e & e o & & e s e e e & e e 4+ e e e e e e s e s e e e e e e s o s e e s e s 0+ o

* o o o o o e o e e o

PRESENTATION SERVICES--MAPPED CONVERSATION

e e o o o ¢ e o

e e e o o e & o o

® ¢ 6 & o & o 6 e s o s 9t & e e e e+ e e e & e e e e e * & 4 s e & & e & s e e e & e ¢ 2 e e & o o

¢ o o & e s e + e e e e e s e s e & & s o & s e+

o e e o e o

e o e o o s e e o ¢ s v e e e e e & + & s s e e e+ e s e e e o

e e e e o o e e o

e e ¢ o o o o o

® e o + e e e e s & e s e e + e e 6 e & s e e s e * s s s e e e e e+ s e e 9 e e e o

VERBS

e o s e o o o @

e ¢ s e e e o o

e e o e o o o o

e 4 e s o o e o s e e o & o e ¢ o o

@ e e o s s e & e e & e s s e & s 6 T e s 4 s e & & e e 0 e e s e s 0+ e s v s .

e e e o o e o o

o e s e e e o+ e e e

e o 6 & e o+ s e T e e s e ¢ e e e e e e 4 + e

® ¢ o e e e o s e e s e e s o e e o s o

¢ e e e o o o o

¢ & o 9 s e e e e e & & o e e e e s e o e e s e e s s o

@ e o o e e s e e e e e & 6 o s e & % e e e e & e e e s e s s e e o

* e e o s e o+ o

? e o e e o & o 8 o e e e e s e e + o e e e & e e 4 e e & e s s e+ & 0 e e s e 0.

e o o e e o s e e e s e o o o e o s o

e e o e+ o e o«

e e o o o

e e o o e e s e e o o

e e o e o o o o o o

e e e e 2 e e e e o e e e e o

e & o o & & o e e e o 2 s e o

v e e o e o o .

e o e e ¢ o o o

e & o & o 4 e & e 4 e e e e & 2 * e s e + 9 e e e + s e & e e e & s e s e e s e e v e e e s e o e o s o o

* e o o o o o o

¢« e e e 0

e * & o o e e e e e 2 6 & e & ¢ o o o o

e ® o o e e s e e e+ e o e e e

s e e o o o o o

© e 6 o e & & & e 4 s 2 e e & e e e e e * e+ e v e s e e & & & & e e o e e s e o o o e o o e o o o

e o o e o o o o

® e e o e e e s e e o e o e+ e o e & & s e o ¢ e o e e o o e s 0 e e e ¢ o o e e o e e s e o

e o o ¢ o o s e o e o

& e o & e + e o & e s e e & e & 9 e & & s e & 2 e s e s e e s s e e v v s+ e e e e 0+ s e s+ s e s s s o

* o o s e e e e o o

.

e + o o e & o e s e o s o

¢ o s e e e s e o e

¢« e o o e o o

e o e + o o & e & & o

e o o o s s e e o e o

s & o e o o o o o
® e s e e & & e e 4+ & s e s+ e e e+ e e e e+ e o & 6 & & 9 e e T s e+ & s & + e e e s+ e & e e 2 e s s s e e s e .+ s s e s e e 9

€ ¢ o o e e e o e & s e & & e e e & * e 9 e e e e & s e s 6 e 4 s e e o s+ e e o

e o o o s o e

« o .
« . .
¢« s .
.« o o
o v .
. o .
. e e
« o .
o o o

Contents

. .
LI O U O Y |

s oo n
I bt ot oot ot ot Pt et et
1

P Bt ot et et et (et (et Bk Pt Pt Bt Pt B bt et et bt bt o et et et bt b et et et b d bt et et Bt Pt (e Gt Bt Gt Bt fed Bt ot Bt Bt ot b Pkt Bk ek ot et bt et 0 ¢ @
1

e s e o s o o e & s »
L L R U U U U U DR BN B |

]
oA UIUIVIUNULIUNVIVIDLLLLLPLUHUUWOLHWUWWWUMD NN N RN - e e e e]

. « e e e ¢« o e+ e o 0
LU N SRR U N S N |

. . o o . . . DY
| O L A A T T T T T Y D A R N |

.
1

NNOUVIUWUW IR OOONOCOUNIPUN H=OONTLPUFHOOUONOUIUN~,OUVUONRALUNOOVRENVNPAN OO YOYNNNGSRORO

RS EUEUEURURSURYRURLUEU RS RGRGRURUEURURU RS RURURU RS RURURURURGEGRGEGROURUEURG RO RURURURU RS R RURURU R RS RS R RS RS RS

.
n
1
—

Ntvnoﬁamrvﬁa%
SR PLPPLPPLPN -

RUEU R RO R RO R v

e o e o o o

xi

55577778688990000!

2~c?.2~ca.2.c9.2.¢7.2
. . 3 .9.9.9.9~9.9_9_2
5555555555555

.

Conversation Data Stream Formatting

s s e e

Construction of GDS Variables

GDS Variables with Multiple Logical Records

FM Header Data .
Examples of Mapped Conversation Verb Processing

.

.

°

.

.

.

-

e o

Establishing a Mapped Conversation
Terminating a Mapped Conversation

Data Mapping and the Mapper

i

Mapping Example

Block Mapping
Map Names

> o o o

.

-

-

Map MHame GDS Variables

Mapper Invocation

1!1111
i1

2

¢ o o s o o e o & 6 ¢ o s e o

O = MM NOO~MINOVONDOO~~NMIING
”..22&%%223333333444444

~N o
4

«Q Q
44

&55&55555555555&555&55&555&5555555555555555

......

. o . .
5§50
4 4
BB . .

43

¢ 0 O w

N Y W

g cc -

ErH M muD.P

[oo

LV V— 6

LT T - =

G.w-C o 0
- L B oW

WPNMVT

-
pWEdem
onx <O

1] [

= (284

Mapped Conversation Errors

°

Mapper Errors

.

Error Data GDS Variables

Protocol Violations

e 6 2 o o s s s e o s s o s

e ¢ & o o o s s ot s o

e ¢ o o o o o & & o s o o

. . e s o o o s s .
P T T A)
]
..m...........
o o o s s s s s o s s o e
(8
o o3 o o o o s s o s e o o
<8
. e s e s s s s 0 e s o
x
e B o s 2 s s e s s . .
'
e BT o s o e s s s e
[~ 1] w
. @ o & e o e o o m
T O w
owu.qno..oemmm
cim @ s 0 e e . D
| =] mDmE
.& o 0 . NN RS
25 wg .08 E
1 w mw mR..P
'nr..mE f=1 mpm
ey 1] m—u.: oo
. . o w O w ..mc
‘3% -BBSEEsENE
>~ o WCRPDWREP
‘§7 cEgT . BENE
e U m..mo 1= w -
esm 123 m WL O
o B Q) e mnrchr.r.w
aomomR WER.
nn e W G Je20 I
L LUy m Iwgoowo 2
o oW LOFOHXPF<
LL wOW jwoep | ||
PPWFOTH"WPTNEE
o CmARR 10X >
w0 e -
¢ ¢ ugu Ol b =) =0 W
OO0 UND »=ZZACOFNWO
o rul.n.O.h.Lrun.W.t
2> 0 CcLOU0O LA o
ﬂﬂMMiQQQQ..Q_Q
nouo WnrMuMuMuuuwwmwM”m x
'

PROCEDURE

PROCESS_DATA_COMPLETE: PROCEDURE

« o e o
s s &

PROCEDURE

PROCESS_ERROR_OR_FAILURE_RC

.
.

PROCEDURE

RECEIVE_INFO_PROC

MC_TEST_PROC:

—

FROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE

PROCESS_MAPPER_RETURN_CODE

.

.
.

PROCESS_DATA_INCOMPLETE:

TO_SEND_PROC:

MC_REQUEST

. .

.

DATA_PROC

MC_SEND

.

.
<

MC_SEND_ERROR_PROC

.

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE .

RCVD_SVC_ERROR_TRUNC_NO_TRUNC

.
.

.
s

.

RCVD_SVC_ERROR_PURGING:

PROCESS_ERROR_DATA

PROCEDURE

D_INDICATOR:
SEND_SVC_ERROR_PURGING:

GET_SEND

.

.

PROCEDURE

PROCEDURE

PROTOCOL_ERROR_PROC

UPM_MAPPER:

PROCEDURE

.

-

.

Local Data Structures

o o
. .

-
.

.

ERROR_DATA_STRUCTURE
SEND_BUFFER

123456999999155

‘ ...}33}&}&33444

D owae A 18 S e e

1161810 10 18 1 ‘o
. e e e e s e e e e e e e e e
. e e e e e s e e e e e e e e
. s e e e e e s e s e s e e e
. e e e e s e s e s e s e e e
. s e s e e s e e e e e e e e
. e e e e s s s s s s e s s s
. s e e e e e e e e e e e e e
. s e e s s e e e s s e s e e
. s e s s e s s e s s e s e s
. e
. e s e s s s s s s s s s s e s
. e e s s s e s e s e e e e e s

s e s e s e s e e e s e ..
n e e o o e o o s o s s e e e o
«©
R e e ® ® o e o & o o+ & °o o+ 2 o
'Y}
> e o s s s 6 o ® o s 8 s s e o
2] s s s o 8 o 2 2 s s & s s s
w
=] s o o o o o s 2 & s & & s 2 s
|l
> e e ¢ o s o s b 6 s o o s o s
@

w e o o o s s & 3 & o e e & o @
»

B
=
-

o) e o o o s s o s 6 0 e o e e e
-4

s e s e e s s e s e s e e e
g e e e e e
>
n s e e o e e o o o o o ¢ o o

" e o o o o Ul s e o e s s 0o o 0
>
2 ~ OO
8m...... .
R
w L E m
) @ o o 0 s O o o o s s > .
> o
O » o ¢ o e o & o ¢ s o
3 9 > ™
= QU e e e s e . * o o B
[- + €
« . L . % . ﬂ . s L ..m
Ll od
E 2 ,. f'8.8 5.8
i n
o atS.mOc% £ .
W -~ s e e - ﬂ m
>
¥ 532 %2850 chk S0
L C NGo-uELUNQ
RSN 13 i
" ﬂCbainncmthvMi
o atgttﬁﬁHEtupﬁtr
[
a F.m.thPP.irstta .w
-4 ~0 n®w nNEg-0LD
w edu_ X0 sPWMQtns
- . U CLEno mrw.lr
o <] c.uw.l 2= L U OO 0o
< rWoLFSSCPRCFan
“ 2 L
3 Goc (S

SHA Format and Protocol Reference Manual for LU Type 6.2

el

.
* .
°« o
. .
o
o o
LY
o o
o o
e o
o o
o o
o o
e o
o o
o o
o o
o o
s o
¢ o
o o
« o
o o
LIEEY
o o
o o
o o
o o
o o
o o
o o
o o
o o
o e
° o
o o

.

x

BACKED_OUT
DEALLOCATE_ABEND_%*

PROG_ERR

e e o o o o e o o
e e o o o o o o o

-

1sions

e e s e o o o o
istic Deci

e o o o o o o o o o o

.

FAILURE_%*, Recovery, and Heur

RESOURCE

e 8 e e e o e e ¢ ¢ o o ¢ ¢ s o 2 v e e ¢ o
“ s o e o o e s 0 s o s s s e e o s s o o o
¢ o o & o s 8 e o s o o o s 0 s e o s o o o
e & & & e o ¢ 0 ¢ & o T * s v 9 & o+ o s o o
o 6 6 o o s o e s e s o o s e e o e s o o e
¢ 6 o o o 8 8 e 0 s o o e s e e 6 4 s o s
o e e & & & o e ® o 6 & & o6 s o 0 2 0 0+ b o
e o o o 6 s o 8 e e e s s e e 9 e 0 s 0 o o
e ©® e o & & 8 e ¢ e 6 3 e 6 e ¢ o+ 2 e o o
e 6 o & o 6 o s e o o o e e s e s 9 e o v o
o o o ¢ o 6 o s o 6 o o o o e o s s e e s e
® e 8 & e o o s o o 0 & ° 0 e o e o+ 2 e ¢ o
e & e ® o e ° e & o & o o s 0+ 0 ¢ e o e 0 o
e 6 6 & o o o o 2 s o s s s 2 o s e s e s o
e o o ¢ o o o s 4 s o 5 0 o s o 0 o s o o o
® ® @ e e & o e * o * 0 0 & s & s e o 2 o o
e 6 e ¢ o o o s e o s o o s o s e o o .
e o o o o o o ¢ o o s o e o s s & s o .
FYl
e o o ® 6 6 8 s e e s s s s s o e e e oL
Y
o
oo--o..omoooco-o-on .
FY]
oﬁooo.o.ca e o e & s o o o lH
N
e o o o o o G U ¢ o o o o e o o 2 D) ¢
[m.d c
. o s s e . L o o o o ¢ o o o e
2 286 <
.S.....w.hc........ 3 .
] W.e + T
e o o+ o o o @ o X ¢ o o+ o o o o C .
v W20 R
o e . o . .
] ¢ 9o oo
el v e e E ed o e o e o o e P
[[Y + [V
o o o @ LY oL o ¢ o o o oL o
—- + 00C O >
. @ YT e e D o o o o e 2D D o
x. <UO0On+ LT o Q2
. Ore L B8 3 C o e o o o o > .
TOVNDBH U NT— m Q7T
LD C VO Qo un o e o o o o -
BOH- <O L NB > T+
0O _t o ogd L N R
NSO CCLLWD W + 0
o T 60 0L 3 C > » o [3 S
COCad #imim O-HT~ 02D [~ XS]
im0 GCHHML-~CU_ O ok ¢ oL .
NN~ Dlee B8 20 B NTW (] Xo0Oun
N+ OB ONNULL U0 X LN] 2 -
[] 0o @ ¢ 0Ono p >4 Zuno
OUNC3I CCXxPY+¥ 0O [=] e 132~
0oo~=-00000O [« S o [EN -] (SRS
E . C o CL L=+ 0uy w -
BLOVOH¥LCHLLO [72] Q so bl b= - - uw
- B0V OU n gLNENFF0 (<3~
LT~ CCL L+ ETOCWHWH L~ 0
JVNO U+ AX0O0YBTNADEZOLE OUNX
O C UV VNTLUZY IWOTEXD .~ O
X LoansdoOodoLLUY CM.-REOOESQ-A
O3 N>VNLJExowx 0o oxowLxT unm
g oUUQ oL]
mXo - Q. 172

1

l.l‘.l.1333333444455556666790112
et ol e e ot

a. 444
e o s s e e e 4 s 4 4 & s s 8 e e s e e e e e e e
un MUV « - o

e o o & o o

PRESENTATION SERVICES--CONTROL-OPERATOR VERBS

CHAPTER 5.4.

e e o e o o o o o o o o e o o s o o

e o o e o o o o o o

e o o s s o

Introduction

Function Summary

e o & o o o e e @ © e © & o e o e & o e o o © o s+ o s e =

e @ o o o o o 8 o+ ° e e e s e o s o

Structure Summary
Concepts and Terms

@ @ o o o o e @ e o o o o e o o o o o e o o o e o s e o o

* e o e o o o

Operator

4 e o o e & & e o o e o o s 4 o e o o s s o o

Scope of Control-Operator Functions
LU-Accessed Network Resources

Session Characteristics

@ @ 4 o & & o o o e e & o o & e o o o o s s o

s o @ o o s o o

e ® ® e+ e e e o & e+ o e s e o s & o o

e o o o e o e o o

e o o o

e e o & o o o o o o o o o s o o

Session Identification

e o o o o o o o

.

@ 8 & & o o o s o o e o

Single- vs. Parallel-Sessions

Contention Polarity
Session Limits and Counts

e o o e o o o o s o o

¢ e o o o o o o o o o o o o

e o o o

e o o o @ o o o s+ o

e e 2 o o o o o o s e o s o o e o

e o o o o o o o

e o o o e o o o o o o

.

Session Bringup and Takedown

Phases

e o o o e o o o o

e & e o o o o & e o o e o o o o o

o o o

e o o e o o

“ e

e e o o ® o & e o o o o & o e o o o o o s o o

Control-Operator Functions

(LUymode) entry

o o o o o o

e e o & o o o o o o o

e 8 e o o o s o s o o

e o o o e o o o o o o o o o o e o e o o o o o o

Distributed Operator Control
Local Functions and Services

® o e o ® © © o o o e o o o o o o & o o o o s o o

.

e o o o o o

e 4 o o o 4 o e & o e s e o o o o o e e o s o o

LU Definition Verbs

e ® o o o o o o s o

e & o e o o o & o+ s o s o o

Local Session-Control Verbs
Distributed Functions and Services

e e @ o o o o e e o e o o e & o o o

e o o o o o

e o o o & o o ® & o e & 2 e & e s s o o o

Functional Relationships for Distributed Verb Processing

Change Number of Sessions Verbs
Operation Phases

® o © o o o o o o e e o o e o o & o e e o

e o o o o o o s o

.

.

CNOS Transaction

e o o o

e o o o o s s o s o s s e e o s o o+ o o

¢ e o e o o o

e 8 e o e e e o o o e e s o o o & o

CNOS External Message-Unit Flows
The CNOS Process Relationships

e o o o o

e o o e o o

e e o o o e o & s e o o o

NMMITINOVCOCOO ~m
et et et et eed o et OO NN

e e s e s o @

N 10 1O IO WY 1A IO LA WO LA LA WO L IO LN WD W N NN

s o o o o o

Processes

e o o & o o o o o e e o o & o e o o o o o o

@ © & e & o @ o e o o o o o s e o o o o
e o o o e 2 e o o o o o
e o o o o

e & o o o o e s o o & o o o o

e s s e e e o
.

Transaction-Handling Process Relationships
Single Verb Issuance

Shared Data

Simultaneous Verb Issuances at Partner LUs

* o o o o o

* e o & o o o o o

e o o o o e o o o o

Simultaneous Verb Issuances at the Same LU

CNOS Race Resolution

® o ® e o o o 4 o o o o o o e o s o o o o e o o o

e o o o o

e o o o

..
L
. e
. e
..
..
. .
. .
. o
. e
. .
* o
. .
* o
. .
L2
. .
..
. .
. .
L
. .
. .
. .
L
. .
.
.
N
. L
-
e
w
.
-
]
<
+ 0
E
. =
o
3
-
o
og
B .C
W
T O
cc
£
EOQ
G O
o

e 8 @ © e ¢ 4 o o o e e s © o o © o o o o o o o o o o o

* o o o o o o

Race Flous

@ o 4 & o o e e © o s e e ® e s o & & o o e ° o e e e+ o e e 2 o

No Race

e e o o o o o

e e @ o o o o o o o o o & o e o e e o o o

Single-Failure Races

Double-Failure Race
Recovery from Conversation Failure

Base and Optional Support

-

e e o o o o e o o o o o o s o o e s s o

e o o o o o o

e o e o o

e o o o o o s o o

e & o o s o @ o * e o o & o & o e ° o o

o o s o o

.

@ o @ o o & e e o e & o o & o o o o o e o

Base-Function-Set Support
CNOS Minimum Support Set

* o o o o o o

e o o o o

e o o o o o o o

e o o o o o, o o

@ o @ o o o o o 6 o o e o o s s s e o e s o o

Parallel-Session Optional Functions

Contents

xiv

Component Interrelationships « s e e s
Transaction Programs e e e e e e e
Control-Operator Transaction Program
CNOS Service Transaction Program .
PS.COPR Components e e e e e e e e
CNOS Verb Router s e e e s e e s
Local Control-Operator Verb Processing
LU Definition Verb Processing “ e
Local Session-Control Verb Processing
INITIALIZE_SESSION_LIMIT .«
RESET_SESSION_LIMIT « o s o
ACTIVATE_SESSION e e e e e
DEACTIVATE_SESSION “ e e e .
Session-Limit Services at the Source
Privilege Checking C e e e e
CNOS Conversation Allocation .
GDS Variable e e e e e e e e
CNOS Record Flows e e e e e
Errors .. « e e e s
Update (LU,mode) Entry c e e
Request Changes in Session Count
Return to the Transaction Program

.
-
.
.
.
.

¢ o6 e s & & ¢ ™ ¢ o o

e e o o

o e o s e

Session-Limit Services at the Target LU

CNOS Reply C e e e e e e e e e e
Session-Limit Parameter Negotiation
Errors “ e e e e e e e e e e e
Other Interactions e e e e e
Session-Limit Data Lock Manager .
Locking the (LU,mode) Entry .
Verb-Routing Procedure
PS_COPR: PROCEDURE e e e e e .
Session-Control Verb Handlers . .
INITIALIZE_SESSION_LIMIT_PROC: PROCE
RESET_SESSION_LIMIT_PROC: FROCEDURE
CHANGE_SESSION_LIMIT_PROC: PROCEDURE
ACTIVATE_SESSION_PROC: PROCEDURE .
DEACTIVATE_SESSION_PROC: PROCEDURE
DEFINE_PROC: PROCEDURE e e e e e
DISPLAY_PROC: PROCEDURE « o v e .
DECETE_ PROC: PROCEDURE .
LOCAL_ SESSION LIMIT_FROC: PROCEDURE
LOCAL_VERB_PARAMETER_CHECK: PROCEDURE
SNASVCHMG_VERB_PARAMETER_CHECK: PROCEDUR
CHANGE_ACTION: PROCEDURE e o o o o
Source-LU CNOS Procedures e e e e e
SOURCE_SESSION_LIMIT_PROC: PROCEDURE
VERB_PARAMETER_CHECK: PROCEDURE ..
SOURCE_CONVERSATION_CONTROL: PROCEDURE
SOURCE_CONVERSATION: PROCEDURE “ e .
RESULT_CHECK_ALLOCATE: PROCEDURE [
RESULT_CHECK_SEND_COMMAND: PROCEDURE
RESULT_CHECK_RECEIVE_REPLY: PROCEDURE

UR

e o s e e

RESULT_CHECK_RECEIVE_DEALLOCATE: PROCEDUR

CHECK_CNOS_REPLY: PROCEDURE “ e e .
Target-LU CNOS Procedures e e e e e
X06F1: PROCEDURE C e e e e e e e v
PROCESS_SESSION_LIMIT_PROC: PROCEDURE
TARGET_COMMAND_CONVERSATION: PROCEDURE
RESULT_CHECK_RECEIVE_COMMAND: PROCEDURE
RESULT_CHECK_RECEIVE_SEND: PROCEDURE
CHECK_CNOS_COMMAND: PROCEDURE « e .
NEGOTIATE_REPLY: PROCEDURE e e e e
CLOSE_ONE_REPLY: PROCEDURE e e e
TARGET_REPLY_CONVERSATION: PROCEDURE
RESULT CHECK_SEND_REPLY: PROCEDURE .

SESSION_LIMIT_| DATA LOCK_MANAGER: PROCEDUR

CHAPTER 6.0. HALF-SESSION c e e e e e
General Description PN [
Protocol Boundaries betuween HS and Other
Formal Description . . . « ¢« ¢« « « « &
HS: PROCESS . o o e
PROCESS_LU_LU_ SESSION PROCEDURE . .

.

e o e 6 o [T o s o o

E

.
.
.
-

.
.

.

.
-

.

¢« e o .

-

Components

-

.

e e e 4 o o & e @ e o o e e e e e e o 2 e e ¢ e e e e o e o

¢ & o o & e o o

o 4 o o o [TMe o ¢ o ¢ s o o o

.
.
.
.
.
.
E

-

@ o e o & & & e 6 e o & e e 6 o 8 e & e e e e & e s 4 + s 6 6 e & 6 o e o e & e ¢ e e e & 0 o ¢ + & e o

o o e o ¢ o o & o o e o

.

.

¢ e & e & 6 4 & s 4 e & & e & e s e & e+ s e 6 e o & 2 e .+ e e s 2 e s s e e

e o o e 6 6 & e e & e & ® e e & 6 & s+ & o & & o s e o o

.

e o o o o 6 6 e e 6 e 4 o s e e & e o e e & e e e o e e e s s s & 2 & & e & 4 5 & . s e e+ s 0 o s & s & 0+ s & e e e e+ s s e s s e o

.

e 6 & & & e @ & & 6 s e & e e e s+ e e & e & e 6 & 6 4 s e e .+ e ¢ s e s s o

e & o © 6 8 6 & & & e & & ¢ o & & e & s s & o ¢ o s o 0

.

-

.

e 6 4 6 s+ e+ & & e e e e e e e & e e & & o .+ s e o o s s s 4 s .

o o 6 e & e e s e e e e & s e s o e & o o o o o

e o o e & o o s o

SNA Format and Protocol Reference Manual for LU Type 6.2

e o 6 o e e e e e e & & o 8 & e & & & & & e & s s 6 T e e e t e s e e & & & ¢ 2 6 e & e e & s & & o o

e o 6 e o o e & & o s e & o o

« e o o

e o 6 & 6 8 6 4 e e 6 & e & & 6 & e & 6 ¢ e 4 e 8 & & 8 s 8 o 6 4 s s & 0 4 s e s v s s s s s s 6 s e 6 4 0 s 0 s 0 06 s s e+

. .

e ¢ e e o

® e o s 6 6 e ¢ 6 & 6 e 6 e o s o & e & & o & e o

e o o e & 6 & e & 6 e e & & e & e & ¢ e e & s & 6 e 6 & & 2 6 s s e s a2 e s v e .

e e s o .

e @ 6 ¢ e 8 6 & o & e 6 & 2 s e 8 & & & e & v e o e & & 6 & & ¢ e & e & e & 9. ® & & 6 6 & o & ¢ e o

e o o o

e & & o 8 ¢ & o o & o o ¢ o 0

o & 6 e e o & 6 o e 6 & 6 s+ & 6 6 e & 8 e s e e e e e & & & 8 o e & e e s e 2 e o & & & & & o ¢ 0 o

e o 8 6 & o & e o o e e s & o o

e o o ¢ o

© 4 6 6 & 4+ e o & e e & e s+ 9 s 6 e e e e & & e e & e & e 6 & 6 o o 6 s 0 & e 6 4 o

e & e e 5 ¢ & o e & s e © ¢ e 6 e o ¢ & & s o o

¢« o e o o

e e e o 8 e o s e o o o

¢ & ¢ o e+ e e+ e e o e ¢ o

¢ & e & e & e & & & & 4 4 & 4 & 6 & e e o o o

¢ & s & ¢ o o ¢ e & o o ¢ o o

e o o o o

e o o o 8 & o o 6 6 e 8 6 e e & o e & e s e € & 8 4 6 e & s 6+ s e + s s e s+ 6 s o s e & .+ s e s s+ e s e s s s s s s e s s e s e o

o s o o o

e 4 o 8 s e e & & e e & & 8 e 4 e 6 & e 6 & & e s e 6 & & ¢ & s & e e o @

e ¢ o o o o 4 & 6 & e o s .

e o o o & o s e o & o & o s 0

o« e o o

e e s o

e e o o 4 6 o e 6 e @ 6 s 8 e 8 e e s & & & e & & e e 4 4 s & s & 0 4 e e & o s e & & & s & e s+ 6.0 B & b s s s s & s 0 0 s & o e

¢ & & & ¢ 2 & ¢ o e s e o o

e 46 e s e e o 9 e o e o e & e & s e s e & & o 6 o s o & s o

o o

e & o & s 6 & o & & & e s s ¢ o o o

o e o o o

* e e e

e o o 6 & o 6 6 & & 6 6 6 & & 6 s & 4 & & e & e & e * e o s e e & e e & e & e o o o e e & o e o b & s & & 2 s v e e e o o e & & 2 ¢

o e 6 6 6 e e e & 4 & s e e s 6 e e e & e 8 e 6 e * 6 s 4 & e e & & & & 8 6 e e+ 6 + 6 9 & s+ s & & o

e 6 e & 6 & 6 e & & o & ¢ s 0 .

o ¢ o o o

e o & 6 8 6 & 6 & & e & o 6 € & & & & & o e e 6 o e + e e e e & 4 e s+ & + s s e & + s e s 6 o o s 4 s s s s 4 s s e e e r s s s 0

e ¢ o s .

e o o 8 o s s o & & & 6 & 6 8 & & & & o o o e e & e & & & & e & & & s -6 o & ¢ e e © & e o 0 s o s e s s s 2 s e & s e e e s s s s

s e o & o

¢ ¢ e o & e e e s & 2 & 6 s 4 e & 0 e e 0 s e o s o

e« o o & & & & 6 & & 6 & & 4 6 4 8 6 s e s s s 0 o e s s o ¢ e & s & o e s o

.

e o o e o

6 o 6 e 6 e e & 6 e & e e & * e e 8 e e 4 & 6 & 4 4 & e o s e s+ & o o o

o & o o & o & & & 6 & & & & & & & & s+ & & + 6 ¢ v e o o & o

e o o o o

]
VU UVUNUNPAPDLLLLPPLPPLPUHBNUWUWWULWUWUUWUWLWUWLINPONNPBPOPPRPONPPPPPDRDORPDPDPIRPPDOMDON

o o 4 s & e e s s e e @
U U U U o

DR
U

bbbbnpbobpbaba»abpaa»aoaafa%%f%fffpaanpbaopapo&obaaa

e & e o e o
L B B)

LRV R R RO RURURE R RS EURUEURRGRURURU R R RS RV RO RV RUNL R RS RV RO R U R R

e & o o e s o e o o o s e e s s o
L T I R R (O R (O R (S N S N N B M |

VS UNOORORTLUNRHOYONITUVNIPLPUWULUNNOOOODOOODRNNNNSNNUTOIOIBTS,ADPDPPLPPUNDDON

« o e
1

o .
[

abafob»

1
cacccOOGOTTITUILIL
NOTUVILPUNDFOONNG

o o e
1

o e
[

b%»foba

[CRCURCRUECECEUEURU NG R R RN R R R R U R R RS R R R RS R RS R R R R

.
o
1
—

coo0o0Oo
'
PUUN -

[= - e = e Y o
e e e o

e o o o

e e o o o

e e o o o o e o o o

e o o

.

PROCEDURE

PROCESS_CP_LU_SESSION
Data Structures

-

DATA FLOW CONTROL

-

LOCAL

SNF
CHAPTER 6.1.

e & o o

.

e o o o

LU-LU Half-Sessions

Overview of DFC Functions

DFC Structure

or

-

Introductiorn

. e o o

-

e o o o o o o

DFC

e o o o o

e o o o o

-

Initialization

Send

® @ o & & ® o © o o o e s e o o+ o o

Termination
Protocol Boundaries

Receive

e o o o o o

-

e e o o e e e o

e o o e

Function Management Profile 19

Usage Associated with FM Profile 19

Conditional End Bracket (CEB)

FM Header Usage
Usage of DR1

.

.

-

.

Sending RQE with BB from Contention Loser

Usage of LUSTAT(0006) (RQE1,CEB)

Usage of SIGNAL(00010001)

-

.

Sequence Numbering of Requests and Responses

Stray SIGNALs and Responses

-

Sending SIGNAL and Responses

RQD required on CEB

SIGNAL Requests

Receiving Responses

SEND_ERROR Processin

iving

Rece

.

g ..
Detailed Description of DFC Functions

Request/Response Formatting

Chaining Protocol

-

-

.

.

.

Request/Response Correlation

o e

Request/Response Mode Protocols

Bracket Protocols

-

-

Send/Receive Mode Protocols
Queued Response Protocol

¢ o 6 8 & s & s+ 0 8 6 6 @ ¢ &6 8 & 0 8 o ¢ & 0 ¢ v o ved =t yi vt =i vl ood Pl vt oed vt omd vl ool vd od oo e ot et e o =t e
6 VOOV OOV OO OV VOO IO VO VOV OOOVOVOOOOOVOOONY *+ ¢ 2 o 0 o 0 o 0 o s 2 3 v o o o

VO OVIOOVOVIOOVOOVOVIOOVIVIOVOOIOOVOVIO VOOV

. .
e o o o o

-
.

« o o o

o o
* o o

-

PS Send and Receive Records

DFC Request and Response Formats

-

DFC Request and Response Descriptions
BIS (BRACKET INITIATION STOPPED)
LUSTAT (LOGICAL UNIT STATUS)

RTR (READY TO RECEIVE)

SIG (SIGNAL)
DFC for CP-LU Half-Sessions

.

-

.

o o

. o .

-

.

.
.
. o o

s o e

o o o

.
-
.

e o o o
e o o o
o o o

.
.

Overview of DFC Functions

Immediate Request and Immediate Response Mode Enforcement

Error Processing

Request/Response Formatting
High-Level Procedures

.

PROCEDURE
PROCEDURE

PROCEDURE

.
.

DFC_SEND_FROM_PS

DFC_INITIALIZE

DFC_SEND_FROM_RM:

.

.

e o o o

e o o o

PROCEDURE
PROCEDURE

.
3
.

DFC_SEND_FROM_LNS
TRY_TO_RCV_SIGNAL
PROCEDURE

o
:

DFC_RCV

PROCEDURE
Low-Level Procedures (in Alphabetical Order)

PROCEDURE

DFC_RCV_FSMS:

DFC_SEND_FSMS:

e o o o o o o o s e o
o o o

PROCEDURE

FORMAT_ERROR:

. e e o o o o o o o o o

.

PROCEDURE

.
.

FORMAT_ERROR_EXP_RSP

FORMAT_ERROR_NORM_RSP

.

PROCEDURE
PROCEDURE
Q_FMD: PROCEDURE

.
.

°
.

FORMAT_ERROR_RQ_DFC

FORMAT_ERROR R

.

PROCEDURE

.
.

GENERATE_RM_PS_INPUTS

FORMAT ERROR:SSCP LU

PROCEDURE

FROCEDURE

PROCEDURE

.
<

INVALID_SENSE_CODE

OK_TO_REPLY:

. o

PROCEDURE

PROCESS_RU_DATA

PROCEDURE
PROCEDURE

PROCEDURE

PROCESS_SEND_PARM:

RCV_STATE_ERROR

o o o o

e o o o

LY

.

.
.

SEND_BIU

Xv

Contents

* s s s ® e e s e s s s o

* o s o

© 8 e e o o & & e o e ° o e s s e e e v o s s s o

® o ® 6 © e © o & & v o o o e e s e e @
¢ ® ¢ o & e @ e o o o+ e o o o e o s ° s e e e ° o .

SEND_RSP_TO_RM_OR_PS: PROCEDURE
STATE_ERROR_SSCP_LU: PROCEDURE

STRAY_RSP

: PROCEDURE

SEND_NEG_RSP_OR_LOG: PROCEDURE
RSP_BIU

SEND_|

e o o o e o o o s+ e

e o o o o o

.

PROCEDURE

UPDATE_FSMS: PROCEDURE

.
.

® e & e & s 2 s e+

e e e o e+ & e o e ° s o s e e o o+ o

ite-State Mach
FSM_BSM_FMP19

ini

e & o o e s e e e s o .

.

® o o o e e & e o o

« o

ines

F

o o 0 o s o o
e o o o o o o
o 6 e o o o o
» o s o s o o
e o & o s o
o o o 0 4 o o
e s 8 0 s s
e o o o o s+ o
® o o s & s
s e o o o s 0
o s s s s o o
o o s 0 s s o
o o o o o o o
s 0 o o o o o
¢ o o o o o o
o o & o s o
e« 2 s o o o o
e o o o o o o
R N
o o o o o o o
e o o * o
s o o .
o e o .
.

.

.

FSM_DEFINITION

FSM_DEFINITION

°
.

FSM_CHAIN_RCV_FMP19: FSM_DEFINITION

FSM_GRI_CHAIN_RCV_FMP19: FSM_DEFINITION

FSM_CHAIN_SEND_FMP19: FSM_DEFINITION
FSM_IMMEDIATE_RQ_MODE_SEND: FSM_DEFINITION
FSM_IMMEDIATE_RQ_MODE_RCV: FSM_DEFINITION

FSM_RCV_PURGE_FMP19:

l

2

22222222222222

s e o & & e 2 s s e & & 4 o

Ome=MMMINONOOOO

llllllllllla
b1

22222222222»&22

666666666666666.¢..o.........

o e e & o ° e o o

TRANSMISSION CONTROL

CHAPTER 6.2.

e o 8 s s+ s e ¢ ¢ s s o o e

VOVOVOOVOOVOLOVVOY

e o o 82 ® s o & s+ o o s s

® o o o s ¢ o o+ s s s e

e o ¢ o e s o o 4 o 8 o s

¢ s e o o s v o 0 e & e s e

s o o o e 2 2 o 8 s s s s

e o o o & s o e s s o s s 0

* o ¢ 0 o 4 e & s s 0+ > s o

® ¢ 8 & 5 & v 2 2 s 0+ o+

L S R L

* o 2 e s s e s s e s s o o

o o e o o o o s s o s e o

o« o s o R S T S

B S
Ll od

o o o o Iff o o o+ s s s o 0 o

B | T
[}

e o o o & o s 6 s e & o 0
™

* o o e s e s s s s e e e
B

o o o o s s o e s e 0 0 .

o s 0 s 6 v e e e o e e .
£

® s o o4s s s e s & o s o o

o 4+ o o4 * o o 0 o o+ o o

....0%...-....
£ 2

« o e O ¢+ o o o o o o 0
g8

e o o o N o o o o o o o o
mwe

o s s o K ¢ ¢ o o o o o
<]

o o ¢Cdo-oﬁ . .
o o ormo- < 3T Y .
= [] ov 4]
cav-hsnc)"eom.
- 4 o
‘om.os .mlTnmo
- 55 .22]

. e . .~ .
z 582 CEpd
. . ot @ sl Com o O W
-t W 6 © O~ Pm
PR F WCl.P
- deg 3 o
. O «¥ O mupec-n—t
- £ -+ v u Om
‘g oogowEa
w - > A0 00O .tm
. o T L B QL en
ME IPCPWS.‘OZ
B> 0 em.l.l..
ONgLrmirx O+~
mY.le -~ U0 U AN
mtr > < Y tom oy i
m.l a-w X oL L L L+~
- < L -t B 0 V-
.1ankeeem_o :l%nl
...-Z%W-CC ME..\S -
- 0L O =0 uno]
-t £ e s - MN
B o~ o nun - 8- L]
- 13 5%0 ma.‘.
(9 mmcnwe (2] EVO
.m L - SSIRN—OIST
55 2 Fod

Ini

« e e o @ e & e e o s e e+ o .

.

-

PROCEDURE
PROCEDURE

TC.EXCHANGE_CRV:

TC.BUILD_CRV

TC.FORMAT_CHECK

.
.
.
.
.
.
.
.

¢ e e e e

e o & o s o s & e e o e o o

FROCEDURE

TC Send and Receive Procedures

.
.

.

.

.

* s e o e e ¢ o .

e s & ® s e e o

PROCEDURE

TC.SEND:

.

e e & o o e o & ° e e ° ° s & s e & & e s e e e e e s s v o+ o

PROCEDURE

o o s .

v o o .

e e e e e e e e e o

* o . s o o e o o & o+ e o

.
.

TC.TRY_TO_ENCIPHER

.

.

e o * o o e s s o

“ o o o s s & & s e o o

.

.

PROCEDURE

-
s

TC.RCV

e e s e e e e e s o s e s

* o e o° =

e ® o o e s e e o

: PROCEDURE

Q

TC.RCV_CHECKS

.RCV_NORM_R

.
» e e 4 e o

Ty
LITY

.
.

_RQ: PROCEDURE

-

‘TC

TC.DEQUEUE_PAC: PROCEDURE

v o o o

e e o s e o

e e o & o o+ o

¢ PROCEDURE
mnes

.TRY_TO_SEND_IFR

TC
TC F

e o e o &+ o o

e v e e
.

* e e e o o

® + o o o s e e o

FSM_DEFINITION

.
.

te-State Mach

ini
FSM_PAC_R

g

_RQ_SEND

FSM_PAC_R

.

.

.

s & ¢ e e e e e e o

.

o * o o o s s e e

"

Q_RCV: FSM_DEFINITION

NODE DATA STRUCTURES “ e e e e e

APPENDIX A.

1112234578

i

AAAAAAAAAA

e e o o o

.

Control Blocks

CPLU_CB

LucB

® & & e o + e e s e ° e e e+ s s s o v o

]

e e o o s s e v . ® & & s 8 s e e e e e & o s s o

e *» o & o s s e e

CP_ID

e ® e o o e e+ s s . o e

* e o o @

PARTNER_LU

e & & e e s e e+ e & e e o o o o

® e s o & o e e o

e o o o o

e o o

MODE
TRANSACTION_PROGRAM

* e s e o ®

* o o o =

e o & o s v e s e v o

LuLy_ce

RCB

L]
[
L3

. .
. .
e o o e

. .
. .
o o o o o

. .
. .
® ¢ e & o & e s v s s e e s s o .

.

o o o o o
-

* s e .
« s s
- i

BUFFER_ELEMENT
RECEIVED_INFO

o
1
-

e 8 & 9 o e 4 e e * 6 ° + & & & & e & s e s e s e s e e .+ v s v

e o o o o .

SCB

(=4
-~

«

e o o e o o o e o

e & o o s e o e v e+ e e o+
o o e

* s .

« o o

JCB
Interprocess Records

e & o e o e e+ o 4 & s o e .« s e * s e e e v o

HS_TO_LNS_RECORD

ABORT_HS

-

® o e s o e e e o .+ e s o e o v
e o o o o .

HS_RCV_RECORD

INIT_HS_RSP

" e e o e o

* e o

e e o e e + e e o

. e s e o

.

HS_TO_PC_RECORD

o ° o o

.

e o s s e

HS_TO_PS_RECORD

. o .

® e s & o o+ e e e o o s s e o

e e o e o o o o s

LY

CONF IRMED

'~

.

® ® e % e o e % e e * s e s e s v e e o e e =

e o e o s o

* e o e

* s s e o &

e o o o o

.

« e e o o

e e s s e o e e

e o e o o e e o

e o o e -

.

RECEIVE_DATA

RECEIVE_ERROR

REQUEST_TO_SEND

e o s s s e v s e e
.

T_TO_SEND .

O_REQUES

HS_TO_RM_RECORD

RSP_T!

e o o o o

— e’ Y

SNA Format and Protocol Reference Manual for LU Type 6.2

Xvi

ATTACH_HEADER

A-14
A-164
A-14
A-14
A-15
A-15
A-15
A-15
A-16
A-16
A-16
A-16
A-17
A-17
A-17
A-17
A-18
A-18
A-18
A-19
A-19
A-19
A-19
A-20
A-20
A-20
A-21
A-21
A-21
A-21
A-22
A-22
A-22
A-22

.

3IS_REPLY

FREE_SESSION

.

RTR_RQ

.

RTR_RSP

-

-

SECURITY_HEADER

-

LNS_TO_HS_RECORD

HS_SEND_RECORD

INIT_HS

.

LNS_TO_NKM_RECORD

-

ACTLU_RSP_SEND_RECORD

BIND_RQ_SEND_RECORD

BIND_RSP_SEND_RECORD

DACTLU_RSP_SEND_RECORD

HIERARCHICAL_RESET_RSP

o o

PC_CONNECT

PC_HS_CONNECT

PC_HS_DISCONNECT

UNBIND_RQ_SEND_RECORD

UNBIND_RSP_SEND_RECORD

-

LNS_TO_RM_RECORD

.

ACTIVATE_SESSION_RSP

CTERM_DEACTIVATE_SESSION

-

SESSION_DEACTIVATED

SESSION_ACTIVATED

NNM_TO_LNS_RECORD

ACTLU_RQ_RCV_RECORD

.

BIND_RQ_RCV_RECORD

DACTLU_RQ_RCV_RECORD

BIND_RSP_RCV_RECCRD

HIERARCHICAL_RESET

PC_CONNECT_RSP

A-23
A-23

SESSION_ROUTE_INOP

UNBIND_RQ_RCV_RECORD

A-23

UNBIND_RSP_RCV_RECORD

A
R
o
i,
.
i,
i,
.
i,
.
.
.
.
i
.
i,
i,
.
i,
i,
.
(=N~}
oo
[e Q=]
OO
wow
D“_nK_
(22
H_H_
0o
T_T-
ms
o

A-24
A-24
A-24
A-24
A-25
A-25
A-26
A-26
A-26
A-27
A-27
A-27
A-28
A-28
A-28
A-28
A-29
A-29
A-29
A-29
A-30

-

-

CONFIRMED

REQUEST_TO_SEND
SEND_DATA_RECORD

SEND_ERROR

PS_TO_RM_RECORD

ALLOCATE_RCB

CHANGE_SESSIONS

DEALLOCATE_RCB

GET_SESSION

RM_ACTIVATE_SESSION

-

RM_DEACTIVATE_SESSION

TERMINATE_PS

UNBIND_PROTOCOL_ERROR

RM_TO_HS_RECORD

.

BID_wWITH_ATTACH

BID_RSP

BID_WITHOUT_ATTACH

.

BIS_REPLY

.

BIS_RA

HS_PS_CONNECTED

.

RTR_RQ

.

.

.

S
<<
¢ o e
¢ o o
“ . e
o s
o s e
DY
. o .
o o
. o
o o 0
« s e
o s
o v e
o o e
o o e
o« o e
. s .
o o o
o o e
o e e
o o »
o o »
o o o
o« o
o o
o s
o o e
DRI
o o e
e e o
o o e
v e e
o« o e
DY
o o e
.
LY
.mw
i
g
[«
$= D
oo
'O
e
—

RM_TO_LNS_RECORD

A-31
A-31

A-31
A-32
A-32
A-32
A-32
A-33
A-33
A-33

-

.

DEACTIVATE_SESSION

ACTIVATE_SESSION

RM_TO_PS_RECORD

.

ATTACH_RECEIVED
CONVERSATION_FAILURE

. o

-

RCB_ALLOCATED

RCB_DEALLOCATED

RM_SESSION_ACTIVATED

.

.

.

.

. .

.

SESSION_ALLOCATED

O

xXv

Contents

Request RUs e s s e e s e o o

CRV_RQ_RU “ e e e s « s s v o v »
Miscellaneous Structure Types e s e o o o
ADDRESS e s e s e s e e e e e e e e
BIU . . e s s a2 s s s e s ss
PC_ CHARACTERISTICS c e e 4 s e s e e e s
PIU e e e e e e e s e e e e e e s
SEND_PARM .. e e e e e e e e e e s
SESSION_ INFORMATION e e e e e e e e
Miscellaneous Enumerat|on Types e s o o

APPENDIX D. RH FORMATS e e e e e e e e s

APPENDIX E.
Summary of Request RU's by Category .

Index of RU's by NS Headers and Request Codes
Request RU Formats .

e o ¢ o e e a o ¢ o
e e e o e e o o o o
¢ v e ¢ o e o o o o
e e e ¢ o e o o o o

e o o o

REQUEST/RESPONSE UNIT (RU) FORMATS .

- o e

« -

ACTLU3 SSCP-->LU, Exp, SC (ACTIVATE LOGICAL UNIT)

BIND; PLU-->SLU, Exp; SC (BIMD SESSION)
BINDF3 PLU-->SSCP, Norm; FMD NS(s) (BIND FA

« o e

ILURE)

o °
s e
o
o .
. .
. .
. o
.
. e
o o
. .
. .
. e
. .
. .

.
.« e

.

BIS; LU-->LU, Norm; DFC (BRACKET INITIATION STOPPED)
CINIT; SSCP-->PLU, Norm; FMD NS(s) (CONTROL INITIATE)

CLEANUP; SSCP-->SLU, Norm; FMD NS(s) (CLEAN UP SESSION)

CTERM3 SSCP-->PLU, Norm; FMD NS(s) (CONTROL TERMINATE)

CRV; PLU-->SLU, Exps; SC (CRYPTOGRAPHY VERIFICATION)

DACTLU; SSCP-->LU, Exps; SC (DEACTIVATE LOGICAL UNIT)

ECHOTEST; SSCP-->LU, Horm; FMD NS(ma) (ECHO

TEST)

INIT-SELF; ILU-->SSCP, Norm; FMD NS(s) (INITIATE-SELF)
LUSTAT; LU-->LU, Norm; DFC (LOGICAL UNIT STATUS)

NOTIFY; SSCP<-->LU, Norm; FMD NS(s) (NOTIFY
ILU/TLU Notification C e e e e e e e
LU-LU Session Services Capabilities

REQECHO; LU-->SSCP, Norm; FMD NS(ma) (REQUEST ECHO TEST

RTR; LU-->LU, Norm; DFC (READY TO RECEIVE)

SESSEND; LU-->SSCP, Norm; FMD NS(s) (SESSION ENDED)

) . .

o o e o

.

.

SESSST; LU-->SSCP, Norm; FMD NS(s) (SESSION STARTED)

SI6; LU-->LU, Exp; DFC (SIGNAL) .« e .

TERM-SELF3; TLU-->SSCP, Norm; FMD NS(s) (TERHINATE ~SELF)

UNBIND; LU-->LU, Exp; SC (UNBIND SESSION)

UNBINDF; PLU-->SSCP, Norm; FMD NS(s) (UNBIND

User Data Structured Subfield Formats . .
Unformatted Data C e e e e e e e e e s
Mode Name . . e e e e e e s
Session Instance Identlerr . o e e
Fully Qualified PLU Network Name . . .
Fully Qualified SLU Network Name . . .
Random Data e e o s s s s s s e e e e
Enciphered Data C e e e e e e e e e

Summary of Response RU's .. .« . .

Positive Response RU's with Extended Formats
RSP(ACTLU); LU-~->SSCP, Exp; SC e e s o
RSP(BIND); SLU-->PLU, Exp; SC c e e s
RSP(CINIT); PLU-->SSCP, Norm; FMD NS(s)

Common Structured Subfields e e v e e

Control Vectors “ e v e e e
SSCP-LU Session Capab111t1es e e e e s
LU-LU Session Services Capabilities .
Mode/ Class-of-Service/ Virtual-Route-I d
Network-Qualified Address Pair c e e .
VR-ER Mapping Data e e e e o« e e e
Local Form Session Identlfler .« e e e
Control Vector Keys Not Recognized . .

Session Keys . . c e e e e e e s e e
Uninterpreted Name c e e e e e e e e s
Network Name Pair e e e e e e e e e
Network Address Pair e et e e e e e
URC . . e v o v v @
Network- Quallfled Address Palr . e e .

Common Subvectors . e e e e e e e
Product Set ID (X'l10"®) e e e e e e e s
Product Identifier (X'11') e e e e e e

Harduware Product Identifier (X'00')
Emulated Product Identifier (X'01')

xviii SHA Format and Protocol Reference Manual for

.

o .
.
o o
.

.
o« o

. ..
FAILURE)
e e e e e e
[
e e e e e e
e e e e e s
“ e e e e s
e e e e e
e e e o e s
c e e e e
e e e e
e e e e e
e e e e e
e e e e e e
e e e e e e
e e e e e
e e e e e
e e e e e
tifier-Lis
e e e e e .
e e e e e
e e e e e s
e e e e e
c e e e e e
e e e e e e
e e e s e e
e v e v e e
e e e e e
e e e e e e
e e e e e
e e e e e e
e
“ e e e e s
e e e e e
LU Type 6.2

-+

e o o ¢ o o o ¢ o o

e o o o o o o

.
.
.
.
)
.
.
.

.

.

e e o o ¢ o o ¢ & o @ 0 ¢ o e e 0

e o 6 o o o o o ¢ & o ¢ o o o

e ¢ o o ¢ o o o e o

o o o ¢ o o o @

e o ¢ o ¢ e o e o

o o o e

e ¢ o & ¢ e e e o ¢ e ¢ o & o e« @ ¢ 0

e o o & e o ¢ o o & & & o o o

¢ o o e« o e o o ¢ o

e ¢ o o o o e 4 e & e & e 4 e e € @ o & s e e e e e e e v e s s e . 4 s s e e e e e s

e o e o @ & & e @ & s & s e ¢ o & & € ¢ € & ¢ e o a4 s s & ¢ e e e & ¢ ¢ & ¢ ¢ & o 0 0

e o o & e o & & ¢ o

e o o o ¢ o o o+ e o

e e o o o o o o o o o o o s 4 e e o e o & s e e e e e e e 4 e e e & s e e e s s 4 s e e e s 000 e e

e o e ¢ o ¢ & o ¢ o

e o o @ o e o 0 4 6 4 € o e e e @+ e e e e e e 0 0 4 e e e e e e e e e b 0. 0 e e 0 e e e e

@ ¢ e o ¢ e o o o o

e e @ @ e 6 ¢ & o o 6 @ e e @ e 6 ¢ o & o & e e ¢ e e @ ¢ e 4 ¢ e e 4 2 0 ¢ ¢ e e 0o 0 . 0

¢ o @ o o ¢ e o o & & s o o

e @ @ e & e e e e e & e e ¢ e e @ o e & e o & & e e o @ ¢ o e ¢ 2 8 e e @

e o o o e @ e 9+ e e e o ¢ v e o e e

¢ o o e @ ¢ o o o & o

e & o o ¢ 0 e e o o

e o o o o 6 @ o 4 & & e 8 & & s s & & 6 & & @ ¢ e & & 4 e s e & & s 0 e e e s s st e e

e e o o ¢ o o e o o

e o o @ o o o o 4 o e & @ & s e o @ o e e s e ¢ & e ¢ s s e e e e e . e e e s s e e e e e

¢ o o e v e o o e e

e o o 6 o o s e e 6 e & e e 4 s 6 & e s s s s e s 6 s ¥ s s s e e s s s e e e e st s e e

e ¢ o o o o o o ¢ ¢

e e o o o o 4 o e 8 e e e e 4 o ¢ € e o & e s e & s e ¢ e s e e e s s e e e e s e 0 e s e s e

¢ ¢ o o ¢ o o o o o

e o o o o o @ & o o o e o e e e e e e & e s s s e & & s e e .+ s ¢ & s e s s e e s s e e s s s e 00000

® o o ¢ 0 o o o ¢ o

e o e o o o o 4 o @ o 6 & & € o e e e o 6 s e s e s s o 4 4 e s e e e s s e e e s s 0 0 s 0 et

e o o o & e o o o e

e e o o o o & o o o

e o o o o o & o @ ® e & o e e o 9 e s e o e 4 e ¢ @ & o s o e e ¢ & s e e e 0 s 0 s e 0 0000

¢ ¢ o o 0 o s o & o

e o o o o 6 o o o o e 4 e e 6 e e e 4 & & s e s s e 4 e & v e e s 0 s s s e e s a0

e o o o o 9

e ¢ o o ¢ ¢ o o o o

e 6 o o 6 8 o e & 8 e o & e e e e @ e s e e e ¢ .+ e e e 4 e s & 4 s s s e e & s s 0 s e e e

A-33
A-33
A-33
A-34
A-34
A-35
A-35
A-36
A-36

>
m [~] L
I [ol
[- o

mmmrrmmmm
covovnuniunew

Software Product Serviceable Component Identifier (X'02') . . E-25

Softuware Product Common Level (X'04') « e s e s s s s s s e s s s s e e s e s+« E-25
Software Product Common Name (X'06') . . . e s s+ e s s s e s e e e s e s s E-26
Softuware Product Customization Identifier (X 07') e v e e e s e o s e« o« E-26
Software Product Program Number (X'08') . . e e e e s e e e e e e e e e s . . E-26
Software Product Customization Date and Time (X'09') e v e e e e e s e e s e s .. E-26
APPENDIX F. PROFILES e + o s s e s b e s v e s s e s s e s s e e P “ e e F-1
Function Management (FM) Profiles c e s e e e e e e e e e e e e e v e e e e e e F-1
FM Profile 0 e e e e e s s e s s e s e s s s s e s e e s e e s e e e e e e e e F-1
FM Profile 6 e e s e s s e s s e s e e e e e e e e s e e e e e e e e e s e e s e F-2
FM Profile 19 s e e e s e s s e e e e e s e e e e e e e e s e e e e e e e e F-3
FM Profile vs. Type of Session c e e e e e e e e e e e e s . . . C e e e e e e F-4
Transmission Services (TS) Profiles e e e e e e e e e e e e e e . e e e e e e e F-5
TS Profile 1 C e e e e e e e e e e e e e e e e e e “ e e e e . e . .. F-5
TS Profile 7 C ot e e e e e e e et e e s e e e e e e e e e e e . e e e e e F-5
TS Profile vs. Type of Session ¢ ¢ ¢ v o v v v o v o o .. e e s F-6

APPENDIX G. SENSE DATA e e e e et e e e e e e e st e e e e e e e e e e e

[}
-

Request Reject (Category Code = X'08')

Request Error (Category Code = X'10') e o s s e e s s e e v e s . . e s . . -
State Error (Category Code = X'20') e e .. « e e e e e e .« . e e ..

RH Usage Error (Category Code = X'40') . . e e e e e e e e e e e e s e e e e e e -
Path Error (Category Code = X'80') C e e e e e e e e e e c e e e e s e e e e e e e -

x mmcl"mm @
® N OV

APPENDIX H. FM HEADER AND LU SERVICES COMMANDS c e e e e s s e e e e e e e e e e

[]
-

Symbol-String Length e e e e e s e s s e e e e e e e e e e e e e e e e e e .« . e H-2
FM Headers . . . e s v s s s s s s e s s e e e e e s e e e e e e e H-4
FM header 5: Attach .. R e e e e e e e e . e e e e e e H-6
Access Security Informatlon Subflelds . C e e e e e e H-7

PIP Variable P T e .« . . N H-7

FM header 7: Error Description e e e e e e s e s s e e s e e e e e e e e e e e H-8
FM header 12: Security .. et e e e b e e e s e e e e e e e e e e e e e e e e H-9
Presentation Services (PS) Headers e 4 e 4 s s s e s s s e s s e s e s e s e s e s e s+ H-10
PS header 10: Sync Point Control .« . e s e e o . “ e e s s e s e e e s s e+ s H-10
Formats of Records used by LU 6.2 Service Transactton Programs e v e s e s e e e s e o s H-11
Change Number of Sessions (CNOS) C ot e e e e e e e e e e e e e e e e s o s o « o+ H-12
Exchange Log Name C e e e e e e e e e e s e e e e e e e+« . H-13
Compare States v e e e e e e “ b e s s e e e e s e e s e e e s . o . +« . H-14
SNA-Defined Transaction Program Names e e s e s e e e s e s s s e s s v e e e e e e e . H-15
GDS Variables . e e . e e e e e e e
Format of Application Data GDS VarIable e 2 ¥4
Format of Mull Data Variable v e e e s e e e e e e e e e e e e « e e v s e o . R-17
Format of User Control Data GDS Varlable C e e e e e e e e e e e e c e e e s o s . H-17
Format of Map Name 6DS Variable e e e e e e s e e e e e . e e e s s e s s R-17
Format of an Error Data GDS variable e e e e e e e e . e . . PR . . H-18
Format of Error Log GDS Variable C e e e e e e e e e e e e e . « H-19

APPENDIX I. GENERAL DATA STREAM T T T I-1

Structured Fields e o s o s % o s e 4 e v e e e s s e e e s e s e e ne e e e e I-1
Length (LL) Description e s s s e b s e s e s s e e s s e et s e e s ee e e e e I-1
Identifier (ID) Description e e e e s e e e s e e s s e e et e e e e e e e e e e e I-1

APPENDIX N. FSM NOTATION O N-1
APPENDIX T. TERMINOLOGY: ACRONYMS AND ABBREVIATIONS Y 6

INDEX S T T T e L I X-1

Contents XixX

This page intentionally left blank

XX SNA Format and Protocol Reference Manual for LU Type 6.2

LIST OF ILLUSTRATIONS

CHAPTER 1.

Figure

1-1.

INTRODUCTION

Overvieu of the SNA Network e s e s e e e e e e e e e e e e e

Figure 1-2. Examples of Nested Nodes C e e s e e e e e s e e e e e e s

CHAPTER 2.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

L
o .

]
.

.

vaﬁ:ﬁ:vavruham
OCOVONTULL LN

. Overview of LU 6.2 Components e e e e e e e e

. ALLOCATE (delayed) Race, Bracket Rejected --First Speaker LU

OVERVIEW OF THE LU

Placement of LUs within the SNA Network (Example) N
Peer and Layer Exchanges e e e e s s s s e s e e s e
LU-LU Verification [N c e e .. « s e e s s
Relationships of Sequences of Message Unlts (Example)

Relationship of Data Records to Logical Records (Example)
Relationship of Conversation Message to BIU Chain (Example)
Start Conversation without Confirmation e e e e e e e
Conversation Turnaround without Confirmation e e e e e

o o e o

« o e o o

Finish Conversation without Confirmation e e e e e e
Start Conversation uwith Confirmation . e . “ e e e s
Continue Conversation: Confirmation without Turnaround .
Conversation Turnaround with Confirmation, using LOCKS(SHORT)
Conversation Turnaround with Confirmation, using LOCKS(LONG)
Finish Conversation with Confirmation c e e e e e e e e
Possible Next Sequence in Error-Free Cases e e e e e .
One-Kay Conversation uwithout Confirmation e e e e e e e
Tuo-Hay Conversation with Confirmation .. c e e e s
Conversation Turnaround following REQUEST_TO_ SEND (ulthout Con
SEND_ERROR Issued by Sender C e e e e e e e e e e e e e e
SEND_ERROR Issued by Receiver e e [N
SEND ERROR Issued by both Sender and Recelver (SEND ERROR Race
DEALLOCATE ABEND Issued by Sender c e e e e e .
DEALLOCATE ABEND Issued by Receiver e e e e e .

e e o o o o o o e e

.
.
.
.
.

“ e e .
..1.-...............

. o o e

.

¢ 0 b e s -h- e o o
-t

Structure of a Presentation Services Process . .
Example of Communicating Transaction Programs ..
Internal Buffering in LU Send/Receive Data Operations
Map Name Usage by Mapped Conversations e e e e e
Relationship of LU Components for Sync Point Functions . e e .
LU Static Data Structures (Example) C e e e e e e e e e e e e
LU Dynamic Data Structures and Processes (Example) . . .
Data Structure Relationships among LUs for a Dnstr1buted Transa ti
(Example) t e e e e e e e e e e e e e e e e e e .
LU Process Creation and Termination Hierarchy
Complete Conversation Example--Local LU ...
Complete Conversation Example--Remote LU ..
Session Deactivation--Local LU e e e e s
Session Deactivation--Remote LU e e e e s .« .. . o .
ALLOCATE (when allocated), CONFIRM (by First Speaker) ~--Local LU
ALLOCATE (when allocated), CONFIRM (by First Speaker) --Remote LU
ALLOCATE (delayed), CONFIRM (by First Speaker) --Local LU e .
ALLOCATE (delayed), CONFIRM (by First Speaker) --Remote LU .

« e o
o e s e 0

Example)

-
-
-
-
.
e s s e s e

-

o« e e .
« e e .
« o o .
o e s e
« e e
o e s e
o e e e

.
. .
. .
. .
. . .
. .

mat

oooc.o-om-coo~ooc'oooc-c-'

O ¢ o o s
3

e v e e e e

ALLOCATE (delayed), RECEIVE_AND_WAIT (by First Speaker) --lLocal LU
ALLOCATE (delayed), RECEIVE_AND_WAIT (by First Speaker) --Remote LU

ALLOCATE (when allocated), RECEIVE_AND_WAIT (by Bidder) --lLocal LU

ALLOCATE (when allocated), RECEIVE_AND_MWAIT (by Bidder) --Remote LU

ALLOCATE (delayed), CONFIRM (by Bidder) --Local LU c e e e e
ALLOCATE (delayed), CONFIRM (by Bidder) --Remote LU “ e o o o o
ALLOCATE (delayed), RECEIVE_AND_MWAIT (by Bidder) --Local LU [N
ALLOCATE (delayed), RECEIVE_AND_WAIT (by Bidder) --Remote LU .
ALLOCATE (delayed), CONFIRM (by Bidder), Attach Error --Local LU
ALLOCATE (delayed), CONFIRM (by Bidder), Attach Error --Remote LU
ALLOCATE (immediate), Successful --Local LU e e e e
ALLOCATE (immediate), Successful --Remote LU “ e e
ALLOCATE (immediate), Unsuccessful --Local LU [
ALLOCATE (immediate), Unsuccessful --Remote LU . .
ALLOCATE (delayed) Race, Bracket Rejected --Bidder LU

« o

. .

-

.
o o o
¢ o o e o

.
e o o o o o o

ALLOCATE (delayed) Race, Bracket Accepted --Bidder LU

List of Illustrations

e e o o

¢ o e o o ¢ o

e o e e o o e ¢ s o s o

~“~te o o o @

¢ ¢ e o 4 s e o e s o e o

e e o o e o o e o o

e + o o e e o o o o o o o

© 4 e 0 e 6 o s 4 4 6 e s T e o s e o e e 6 e e e e e s e e e

® & 6 e 6 0 e e e e e e + e e e o & 4 e o s 0 ¢ ¢ o o

.

e ¢ o ¢ o o o ¢ o o o

« e o o e e ¢« e+ e o o

¢ e o e 4 s e

e e & e o & 4 6 e e & s 9 e 4 9 s e e e s e e ¢ ¢ e @

e ¢ o ¢ ¢ & o & ¢ o ¢ o ¢ ¢ o o o

o o e o

¢ e e s s e s e e

@ o & e+ ¢ e e o & o e e e+ s o+ e & & s+ 0 e 0 v e o

1-4

2-2

2-5
2-10
2-17
2-18
2-19
2-21
2-21
2-21

xxi

'3]

-y

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Ficure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-59.
2-60.
2-61.
2-62.
2-63.
2-66G.
2~65.
2-66.
2-67.
2-68.
2-69.
2-70.
2-71.
2-72.
2~73.
2-74.
2-75.
2-76.
2-77.
2-78.
2-79.
2-80.
2-81.
2-82.
2-83.
2~84.
2-85.
2-86.

2-87.

2-88.
2-89.

2-90.
2-91.
2-92.
2-93.
2-94.
2-95.
2-96.
2-97.
2-98.
2-99.
2-100
2-101
2-102
2-103
2-104%
2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112

e 4 e ¢ e e o e s & e ¢ ¢

2-113.

CHAPTER 3. WU

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

. Bid Races e e v e e e e e

DEALLOCATE FLUSH (RQE1l) ~--Local LU o« o e
DEALLOCATE FLUSH (RQE1l) --Remote LU PO
DEALLOCATE FLUSH (RQD1) --Local LU .« e .
DEALLOCATE FLUSH (RQD1) -~Remote LU . .
DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP Sent --Local LU
DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP Sent --Remote LU
DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP not Sent ~-Local LU
DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP not Sent --Remote LU
DEALLOCATE CONFIRM (RQD213) --Local LU e e s e s e s s e s v e
DEALLOCATE CONFIRM (RQD213) --Remote LU .« . e s s e o e o
DEALLOCATE ABEND Issued in SEND, Beiween-chaxn State ~--Local LU
DEALLOCATE ABEND Issued in SEND, Between-Chain State --Remote LU
DEALLOCATE ABEND 1Issued in SEND, In-Chain State --Local LU . e e
DEALLOCATE ABEND 1Issued in SEND, In-Chain State --Remote LU .
DEALLOCATE ABEND Issued in SEND, -RSP Received State --Local LU

DEALLOCATE ABEND Issued in SEND, -RSP Received State --Remote LU

DEALLCCATE ABEND Issued in SEND State --Local LU “ e e e s e v
DEALLOCATE ABEND Issued in SEND State ~--Remote LU . e e
DEALLOCATE ABEND Issued in RCV, Betuween-Chain State -—Local Lu .
DEALLOCATE ABEND 1Issued in RCV, Between-Chain State --Remote LU

DEALLOCATE ABEND Issued in RCV, In-Chain State --lLocal LU [
DEALLOCATE ABEND Issued in RCV,; In-Chain State --Remote LU . e e
ALLOCATE (delayed), DEALLOCATE FLUSH (by First Speaker) --Local LU
ALLOCATE (delayed), DEALLOCATE FLUSH (by First Speaker) --Remote LU

. .

ALLOCATE (delayed) Race, Bracket Accepted --First Speaker LU

¢« ¢ e e

.
. -
. .
- .

¢ e o

.
.
°
.
.

¢ o o o ¢ ¢ o o

e o o o e o s e o o

ALLOCATE (delayed), DEALLOCATE CONFIRM (BY First Speaker) --Local LU

¢ & & e 4 ¢ e 2 * s e 9 o s 6 ¢ s ¢ o e ¢ ¢ o

ALLOCATE (delayed), DEALLOCATE CONFIRM (BY First Speaker) --Remote LU

ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to RECEIVE_AND_WAIT

--Local LU . e . . e e e

ALLOCATE (delayed), DEALLOCATE FLUSH (by B\dder) to RECEIVE AND HAIT

e o s e 6 4 o e+ e e e 9+ e 8 8 e 0 e s s e 0

--Remote LU . . . e e e e e e e s e o e
ALLOCATE (delayed), DEALLOCATE FLUSH (by Btdder) to SEND_ ERROR --Local LU

ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to SEND_ERROR --Remote

LU e e e e e e e e e e e e e e e s e e e e

ALLOCATE (delayed), DEALLOCATE CONFIRM by Bvdder) —-Local L . .
ALLOCATE (delayed), DEALLOCATE CONFIRM (by Bidder) --Remote LU .

CONFIRM (RQD2|3) --Local LU e e
CONFIRM (RQD2|3) --Remote LU « .
CONFIRM (RRE2]3) --Local LU « e e .
CONFIRM (RQE2]|3) --Remote LU . . .
CONFIRM (RQE2]3}, SEND_ERROR --Local LU .
CONFIRM (RQE213), SEND_ERROR ~-Remote LU . .
CONFIRM (RQD2{3), SEND_ERROR --Local LU
CONFIRM (RQD213), SEND_ERROR --Remote LU .. .
RECEIVE_AND_WAIT Causing RQE,CD --lLocal LU . .
RECEIVE_AND_MWAIT Causing RQE,CD --Remote LU .
SEND_ERROR before SEND_DATA --Remote LU . . .
SEND_ERROR before SEND_DATA --Local LU - .
SEND_ERROR Crossing SEND_ERROR, Both Issued in Receive S
S

.
- .
.
.

Y

.

. .
« s .
. .
. .

« .
e ¢ e e e o o e o o o

¢ o & o o e ¢ o ¢ o e o
¢ ¢ ¢ e s e e o o & o ¢

-
-
.
.
.
.
.
.
.
.
-

SEND_ERROR Crossing SEND_ERROR, Both Issued in Receive
SEND_ERROR before CONFIRM --Remote LU
SEND_ERROR before CONFIRM --Local LU e e e e e s
SEND_ERROR at End-of-Chain ~-Remote LU
SEND_ERROR at End-of-Chain ~--tocal LU
REQUEST_TO_SEND, Received in Send State --Remote LU

REQUEST_TO_SEND, Received in Send State --Local LU .
REQUEST_TO_SEND, Received in Receive State --Remote LU
REQUEST_TO_SEND, Received in Receive State --Local LU

+
e s o e o e o o B Yo s e o o e o e o e s
- o+

o e o o ¢ o o ¢

RESOURCES MANAGER

Overview of Component Interactions Involving the Resources Manager
Allocation of a Resource Control Block (RCB) .
Allocation of Session Using BID_WITHOUT_ATTACH

Allocation of Session Using BID_WITH_ATTACH
Responding to a Bid for a Session c e e e
Immediate Allocation of a Session
Attach Flows C e e e e e e e e

. e

e & s o e

READY TO RECEIVE (RTR) Flows
End of a Conversation [
Activation of a New Session .

o o o
¢ o o o .

o 0 & e o @

o o o o & o

e o o o o o

e o 6 o o o

o o e & o o o

¢ o« & o & o o o
¢ o e o o e o @
¢ o e o & o 4 ¢ o
¢ e e 9+ & o ¢ ¢ @
e & o o ¢ ¢ e o @
e o e & ¢ o ¢ ¢ o
¢ e ¢ o o & e o o o
e ¢ o o o & o o &
¢ ¢ o o ¢ ¢ ¢ o o
e o o o

¢ o o o & s & o o

SNA Format and Protocol Reference Manual for LU Type 6.2

BB e o o o o o o o o o o
]
1

¢ o o & ¢ ¢ ¢ o [~ e s s e 4 s+ s ¢ s s
]

e e o o 9 e e o Pugipe ¢ ¢ o e o e o+ ¢ e 0

¢ o+ e o o e o o e

e e e e e e s e o s 0

-
[

v e e 4 v e 9 o

e o * e & @ o o e e o

+ e 0 e .

e & o s & e 8 & 4 ¢ 4 e+ e e s+ s ¢ s e e

+ v e e * e e s = o

e LU

¢ e e 2 e e+ e o

e o o ¢ o o e o & o o

e o e 4+ 0 o e o o e 9 e o & e o T s e s e o

¢ o e e o ¢ o o o o ¢

[

PUNLUWUN=OOORN

i

NNNNN!}?NNNN
DODOPOOONN

2-87

[

[L
W= OO NCUW-

:uuut:tuuu

ot ot ot

Figure
Figure

3-12. Decreasing the Number of Sessions e e e e v e s e e e e v e e e e e
3-13. Session-Outage Actions e v st e s e e e s e st e e e et e e e e

CHAPTER 4. LU NETWORK SERVICES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fijure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

CHAPTER 5.0.

4-1. Protocol Boundaries Betmeen LU Network Services and Other Components
4-2. Session-Services RH Formats . .

4-10. SSCP-LU Session Activation to an LU in a Perlpheral Node

4-11. SSCP-LU Session Deactivation to an LU in a Peripheral Node
4-12. LU-LU Session Initiation by Local PLU in a Peripheral Node
4-13. LU-LU Session Initiation by Local SLU in a Peripheral Node .
4-14. LU-LU Session Initiation by Remote LU to Local LU in a Peripheral
4-15. LU-LU Session Termination by Local LU in a Perlpheral Node . e

G-3, Session-Control RH Formats [P e s s e s s e s e s s e e . .
4-4. Format of User Data v e e s a e e s s s e e e s e s e ne e . .
4-5. Reinitiation Responsibility ¢ . . ¢ ¢ 0o v v v o ..
4~-6. Maintenance Services RU Formats e e e e e e e e e e e e ..
4-7. Records Exchanged Between LNS and Other Co mponents e e e e e s ..
4-8. PNCP-LU Session Activation “ e e s s e e s e s a4 s e 4w s e .« .
4-9, PNCP-LU Session Deactivation “ e e e e e « . “ s e e e . .

® e o o o & o & o o s o 0

ode

e Ze o e o e s s s e e

4-16. LU-LU Session Termination by Remote LU to Local LU in a Peripheral Node

4-17. SSCP-LU Session Activation to an LU in a Subarea Node
4-18. SSCP-LU Session Deactivation to an LU in a Subarea Node .

4-19, LU-LU Session Initiation by Local PLU in a Subarea Node .
4-20. LU-LU Session Initiation by Local SLU in a Subarea Node . . .
4-21. LU-LU Session Initiation by Remote SLU to Local PLU in a Subarea Node
4-22. LU-LU Session Initiation by Remote PLU to Local SLU in a Subarea Node
4-23. LU-LU Session Termination by Local LU ¢ ¢ ¢ v v v v o o ¢ o »
4-24. LU-LU Session Termination by Remote LU e v s s e e as

. .

o e e o

o ¢ o & o o s 0

« o o & e s .

OVERVIEW OF FRESENTATION SERVICES

Figure 5.0-1. Overview of Presentation Services, Emphasizing PS.INITIALIZE and

PS.VERB_ROUTER B S S T S

Figure 5.0-2. Initialization and Termination of Presentation Services and Transaction

CHAPTER 5.1.

Figure

Figure
Figure
Figure
Figure
Figure
Figure

CHAPTER 5.2.

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

CHAPTER 5.3.

Figure
Figure
Figure
Figure
Figure

Figure 5.2~

5.1-1.

5.1-2.
5.1-3.
5.1-6.
5.1-5.
5.1-6.
5.1-7.

5.3-1.
5.3-2.
5.3-3.
5.3-4.
5.3-5.

Program T T T

PRESENTATION SERVICES--CONVERSATION VERBS

Overview of Presentation Services, Emphasizing Presentation Services for

Basic Conversations e e o o s o s e o e o
LU Control Block List and Associated Lists

Transaction Control Block (TCB) v e e e e s
Resource Control Block (RCB) .. .
PS.CONV Requests and Associated RM Responses
SEND_ERROR Race e 4t s s e v e e s e s e o o
SEND_ERROR Race with Deallocation

.

e o s o

e o o o o
¢ o e o o o
* e o o o o o
e« o o o ¢ o
e o o o o
¢ o o o o s
e o ¢ o o s o
¢ ¢ e o o @
e e e e o o
e ¢ ¢ o o o &
¢ o e o o s s
e« o o o o o

PRESENTATION SERVICES--MAPPED CONVERSATION VERBS

Overview of Presentation Services, Emphasizing Presentation Services for

Mapped Conversations e b s e e s e e e e ee e e s e e e e
PS.MC's Use of the Basic Conversation Protocol Boundary .
6DS Variables and Logical Records e s o e s o o s
Transformation of Data from MC_SEND_DATA to a GDS Variable .
An Example of Mapping . « + &+ « ¢ ¢ 4 e 4 e v e v e e e e
MC_TEST_PROC “ e s s e e e e e s e e e “ s e e s e e s .
Detectrng a Service Error as a Result of MC_ RECEIVE AND_WAIT Processing
Detecting a Service Error as a Result of a Call to MC_TEST_PROC .« . e
Receipt by PS.MC of a SVC_ERROR_PURGING Return Code
Receipt by PS.MC of a SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC Return Code

* o

e o e o
¢ o o o s o

o o o o &
e ¢ o o o 0

PRESENTATION SERVICES--SYNC POINT SERVICES VERBS

Relationships among Failures and Recovery
A Typical Sync Point Tree
Basic Sync Point Flous e s v s e s s e
Optimized Flow: No Resource Changed .
Optimized Flow: Last Resource o o o o

* ¢ & o
e o o o o
« o o o o
« o o o o
« o o o o
e e o o o
e o o o o
¢ o o o o
« e ¢ o e
e e o o o
e e o o o
“ o o o o
e o e o o
e s o o o
e e ¢ o o

List of Illustrations

e o ¢ o ¢ o e o 0 0 e o 0 e 0

e e o o ¢ o o o

3-15
3-17

4-33

S
LD LPLPDPLPLIPUUEU

#00#&#&#?&&0#&#&#

guu
VIS LU =moogONOOTTN

5.0-2
5.0-3

DA
]

WU'U‘?‘U’IU‘M
o—y—nlru—o-l-
POV EN

i

XXiv

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

CHAPTER 5.4.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

CHAPTER 6.0.

5.3-6.

5.3-7.
5.3-8.
5.3-9.
5.3-10.
5.3-11.
5.3-12.
5.5-13.
5.3-14.
5.3-15.
5.3-16.
5.3-17.
5.3-18.
5.3-19.
5.3-20.
5.3-21.

5.3-22.
5.3-23.
5.3-264.

5.3-25.
5.3-26.

5.3-27.

5.4-1.
5.4-2.
5.4-3.
5.4-6.
5.4-5.
5.4-6.
5.4-7.
5.4-8.
5.4-9.
5.4-10.
5.6-11.
5.4-12.
5.4-13.
5.4-16.

5.4-15.
5.4-16.

Sync Point Services for Local (Nonconversational) Resources, Such

I T e
Sync Point Services for Conversation Resources . .
Sync Point Services for Function Shipping
Illustrative Sync Point Flow: 6eneral Case
Illustrative Sync Point Flow: Last-Resource Optimizat
Illustrative Sync Point Flow: No Resources Changed
Back Out Example 1 o e e e e e e e
Back Out Example 2 c e e e e e e e
Resync after Conversation Failure .
Resync after LU Failure e o e e o o
Avoiding Failure Resulting from an Attach-SON Race .
SEND_ERROR and Prepare vs. Prepare Race during Session Oufage
SEND_ERROR and Request Commit vs. Prepare Race during Session
Lost Sync Point Messages: Initiator's View
Lost Messages for Sync Point: Last Agent's View e e e e e
Resynchronization Action: At Initiator, When Resynchronizing
Last Agent “ e e o s v e N

.
.
-

¢ o o o
e o o o
« o o o
¢ v v .
e o o o o

o o o o

.
.
ion

e o e e o ¢ o o ¢ o o

e o e e o

e o ¢ o ¢ o o s o o o

e o o o o o & o e o o

e o o e o o & o o o o o

Outage

e o o

.

with the

.

e o o o o o 0 ¢ o 2 e &

.

.« e o

e o o e & & o o & o o o

.

.

-

Resynchronization Action: At Last Agent. Hhen Resynchronrzsng with the

Initiator “ e e e e e e e e e e e

Resynchronization Action: At Inrtiator, Nhen Resynchron|z|ng utth the

Not-Last Agent « o o o o “ o o .

.« .

-

-

Resynchronization Action: At Not-Last Agent. Nhen Resynchrontzxng with

the Initiator e e e e e s e e e e e e e e e e

e & o e e o

Resynchronization Action: Resync from Last Agent e e e e e e e e
The Sequence of LU Control Operator Messages Generated by Sync Point

Resynchronization e
Cascaded Resynchronization Example .
Cold Startof an LU
Log Name Mismatch during Resync
Sync Point Services Calling Tree ..
Heuristic Mixed in Reply to Sync Point Flouw . .
Verb Sequences and Sync Point Flows to the Last Agen

Cascaded Resources . e e e e e e e e e e e .
Sync Point with No Resources Changed “ e e e e e e e e
Sync Point with Changes to Protected Resources, Request SEND
Sync Point with Changes to Protected resources, Request RECEIV

.« e e .

¢ o o o .
* e o o o

.
.
.
.
-
.

¢« ¢ e o e o

-§oooooo

.
.
.
.
-
.

T
X

.
.

.

.

’ ic
.

o e b e e .

. .

Sync Point with Changes to Protected Resources, Request DEALLOCATE

BACKOUT Logic e o s o 5 o 5 o s o s o e s n e v e e e e

PRESENTATION SERVICES--CONTROL-OPERATOR VERBS

o o Qe ¢ o & o o

E

]

« o o o o

o o o

s e .

.
.
-
.
.

&

.
.
.
.

o o o o o o

Control-Operator Components in Relation to Other Components of the LU

LU Component Relationships for Distributed Session-Control Verbs

.

e o o o o o

e o ¢+ o o o

.

Sequence of Verbs and Information Exchange in CNOS Transaction Programs

CNOS External Message-Unit Flous e e e e s e e e e e e s
CNOS Process Interactions at a Single LU c v e e e e
Transaction Handling Component Relationships--Case 1
Transaction Handling Component Relationships--Case 2
Transaction Handling Component Relationships--Case 3
No Race * ¢ o o e s o e e b s e e s s e s e s s
Single-Failure Race Condition--Case 1 “ o s »
Single-Failure Race Condition--Case 2 “ e e
Double-Failure Race Condition
Structure of Presentation Services for the Control Operator
Single-Session Contention Polarity Determined by
Minimum~Contention-Nimer-Linit Parameters ..
Source-LU Component Interactions for CNOS « ..
Target-LU Component Interactions for CNOS PR

.
.
.
.
.
.
.

e o o o o o o
e o ¢ & ¢ o o o o

« e .
. o s
s e e e

. .

.

« o

. e e

« e e

« o e

o o
.

HALF-SESSION

Figure 6.0-1. Overview of Half-Session et e e e e e s e e e e e e e

CHAPTER 6.1.

Figure
Figure

Figure
Figure

6.1-1.
6.1-2.
6.1-

6.1-4.

3. Use of Sequence Numbers « e e v s . s e

DATA FLOW CONTROL

Overview of DFC for LU-LU Half-Sessions C ek e e e e e
Detailed Structure and Protocol Boundaries of DFC for LU-LU
Half-Sessions e e e e e e s e e e e ..

+ e e e ¢ o
- > e s
-

-
e e o o o

Case 1: "Late'" SIGNAL or Response .« .

SNA Format and Protocol Reference Manual for LU Type 6.2

¢ e o e o o o o o o

e o s 4 s o o e o o

o e o o & o o o o

e e o o o o o o o

e o o & e o o o s .

.
[]

PAEPAINAINEDEINGET BT T
CHUWWWUWUHWHWHWWWL. -
[llll(:ll:lu

D)
{1

VMPUWUN=OONNIURDDNN

(RCECUEU NG RC RUNURURU R RS |
1
PN RPN N e bt fot ot bt s

uut.'uuuu
O O VI W W

umuunuunuv ?’l\ﬂlﬂ?‘llﬂlﬂ

s pe bbbb&b&b&&mm?‘
j A

.
U

LI I A |
) ot bt fut Pt b et Pt Pt St
oo WOOOPNOPWNN=OONDN

« s e e
'

.
i

« .

gun e n

|

)
NN

6.0-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure

CHAPTER 6.2.

Figure
Figure
Figure
Figure
Figure
Figure

APPENDIX

APPENDIX

Figure
Figure

APPENDIX

Figure

APPENDIX

APPENDIX

Figure

APPENDIX
Figure

Figure
Figure

APPENDIX

Figure

APPENDIX

Figure

APPENDIX

. Case 2: "Early'" SIGNAL e s s s e e o s e 8 s s s s s s e s
. Case 3: "Early" SIGNAL e e o e v s s 8 o s s e e e e s
. SEND_DATA_RECORD to Request RH Mapping e e e e e e e e e
. Request RH to RECEIVE_DATA Record Mapping C e e e e e e e
. DFC Request Formats C s o 8 s s s s e e e s s s s s e e s e
. DFC Response Formats e e s o s e v s . « e e s s e e e .
. Overview, Structure, and Protocol Boundarves of DFC for CP-LU

Half-Sessions et e e s s e s s e e e e e e e e

TRANSMISSION CONTROL

. Structure of TC and Flow of Data within the Half-Session .
. Distributing the Session Cryptography Key and Session Seed to
. Interrelation of TC.SEND and TC.RCV
. TC Initialization Calling Tree e e o 2 e s s e e e s s s .
. SEND Calling Tree C e e e e e e e e e e e e e e e e e

. RCV Calling Tree C e e et e e e e e e e e e e .

.

A. NODE DATA STRUCTURES

D. RH FORMATS

D-1.
D-2.

RH Formats « e e [.« .

FMD Request/Response Comb1natlons for SeSSlons betueen Tuo LU 6.

E. REQUEST/RESPONSE UNIT (RU) FORMATS

E-1.

RU Sizes Corresponding to Values X'ab' in BIND e e e e e

F. PROFILES

6. SENSE DATA

6-1.

Sense Data Format e e e e e e e s e s s e s e s ae e e e e

H. FM HEADER AND LU SERVICES COMMANDS

H-1.
H-2.
H-3.

Symbol-String Types e e e e e e e e e e e e e ey e e e
Symbol-String Lengths e e e e e e e e e e e e e e e e e e e
Examples of FM Header Placement C e e e e e e e e e e e e e

I. GENERAL DATA STREAM

I-1.

6DS Structured Field C e e e e e e e e e e e e e e e e e

N. FSM NOTATION

N-1. Syntax of an FSM State-Transition Matrix e v s e e e e e e

T. TERMINOLOGY: ACRONYMS AND ABBREVIATIONS

List of Illustrations

¢ e e o o o

e o o o o &

2s

¢ o e o o o

¢ o o ¢ o o

o o 4 e

“ e o e

6.1-6
6.1-6
6.1-11
6.1-11
6.1-12
6.1-13

6.1-17

E-8

I-1

XXV

This page intentionally left blank

XXVi SNA Format and Protocol Reference Manual for LU Type 6.2

CHAPTER 1. INTRODUCTION

This book, in conjunction with the companion
books listed in the Preface, provides a
formal definition of Systems Network Archi-
tecture (SNA). It is intended to complement
individual SNA product publications, but not
to describe individual product implementa-
tions of the architecture.

SNA logical unit type 6.2 (hereafter general-
ly referred to as LU 6.2, or simply LU) is
defined here in the form of a functionally
layered system, represented by a formal
description, that is decomposable into compo-
nents called protocol machines. Protocol
wachines generate output sequences in
response to input sequences, in accordance
with fixed rules, or protocols, governing
distinct information transfers into, out of,
and within the system.

The protocol wachine definition of SNA uses
the following basic notions:

® Finite-state machines: A finite-state
machine (FSM) is an abstract device hav-
ing a finite number of states (memory)
and a set of rules whereby the machine's
responses (state transitions and output
sequences) to all input sequences are
well defined.

® Routing and checking loqic: Routing and
checking logic performs a mapping of
inputs (message units and FSHM states)
into outputs. It is used to verify
validity of message units and to route
them to FSMs.

® Block diagrams: A block diagram repres-
ents the decomposition of a protocol
wachine into its component submachines
(which themselves are protocol wmachines)
and the signaling paths between them.
Each block in the diagram can be further
decomposed into its constituent subma-
chines.

® Protocol boundaries: A protocol boundary
is a specification of the format and con-

tent requirements iwposed on the signals
exchanged between protocol machines.

The remainder of the book presents details of
the SNA formats and protocols for LU 6.2,
arranged as follows:

¢ Chapter 2 provides an overview of the
functions and structure of the LU, as
well as the sequences and message units
exchanged between two communicating LUs.

¢ Chapters 3 and 4 describe LU services
manager components; these components
attach transaction programs as requested,
allocate sessions to transaction pro-
grams, and coordinate the activation and
deactivation of sessions involving LUs.

* Chapters 5.0 through 5.4 describe the
general structure and detailed functions
of presentation services—in particular
the execution logic for LU 6.2 verbs.

® Chapter 6.0 provides an overview of the
half-session, while Chapters 6.1 and 6.2
describe the data flow control and trans-
mission control protocols, respectively,
within half-sessions.

¢ Appendix A describes the data structures
used in the formal description and the
relationships among the control blocks.

* Appendixes D through I provide details of
the general data stream and various head-
ers, request-response units, profiles;
and sense data used in SNA.

¢ Appendix N describes the basic concept
of, and notation for, finite-state
machines.

s Appendix T (included as foldout pages at
the back of the book) provides a compre-
hensive list of abbreviations and acro-
nyms used in the book.

Chapter 1. Introduction 1-1

End
User

D A R A AT A Y

eseeesses0sssssen

sescsssessssevee

eeccesssssesesnn

secoes

seevcose

cesso

PR

cee

D A I I I A

I e A A AR,

evessss.0ther NAUs (PUs and SSCPs)

D I I A A N R R X

D I R R R I I I A R)

D R I I I R I I I I A A N R Y

End
User

N Ceeesesseesenaasascesterttccestansannnn
. . .
. . .
. . .

. . . End

<->|Half-Session|<t> — = = = =>|<4>|Half-Session|<—> < >|User
. | . .
Upper . . Upper .
Layers . . | . . Layers .
>lof the L . . L] of the .
Ly . . | . . LU .
. . .
. | . .

<->{Half-Session|<t> <1>|Half-Session|<-> < >|End

. | . .| fuser
. . .
LUnal |. | . LUnaj |.
. . .
e erssessescectaccenatoseratoacnnn | Ceeeseesseateratesstereertsoraanns
. teeteeassestesessssnsrreseserennne
. | Ceeseescsestescerscnttceranraseane
. S ieccesseessencersceresasanenacnne
. | e ssesessssecntscserserrannsaens
<=>|Half-Session|<t> Ceeeesesssecescessasssrsssassssanae
. | tesssesernsnes cesersessenesenns
Upper . cetsscsssons . ceesescscsareed
Layers U . | teesecerranees Cersescssessnaane
>lof the ° . chertsessenss L] cerecrescensons
Lu ® . | cressssesesese cevservessascsans
- LR BB A IR I A A . . ® e o0 s e 0000000
. | Ceessensessnns cesesaesssercnnas
<->|Half-Session|<t> teeeessssseressssesesassenennronnn
. | e ettcescecesecsectrctstacencranen
. .
Wna2 |. | Ceeceecceceracecsecctasnataneanans
. Ceveees Cetetresrecesassasenaes
Cesesecatesteracterscrrerstoannnn | P ceeesssesscescnescerans
LB IR B IR B IR A . ® e 000000000 ® 9 0 00000000080 .o ® 0 00000000
ceessorssesnne seseesrssesanaen | teeetesesssescsercnrssnrsenrtsenen
cresseesccnes ¥ ittt iencnan tecrecesrectesesesecscssensssensee
N tecereresescenae | e ssesseessessesserrenrrcercennne
EIE AR I AR I I A A) . EE LR BRI AR I AR I Y LRI BN B A I B A I I I CIC IR Y LS A)

Upper
Layers

of the
LU

{=>

Half-Session

Half-session

LUnai

<+>

.

.

|
-

MSG=(naj,nai,

other parameters,|.

and data)

Path Control

Network

<1>

<>

Half-Session

*

Half-session

<=2

<>

Upper
Layers

of the
LU

LUnak

.

L R I R R I I R R R I N I I A AR AP AP

SNA Network

.

® 0 00 000 0005006000000 0000000000000080000000000000000000600000000000e0sssLItNNsIGIILEOEIOEOGES

.

D I I I R R N N I I I A AP S A AP AT AR

Figure 1-1.

1-2

Overvieu of the SNA Network

SNA Format and Protocol Reference Manual for LU Type 6.2

End
User

GENERAL CONCEPTS

DEFINITION OF AN SNA NETWORK

An SHA network:

® Enables the reliable transfer of data
between end users (typically, terminal
operators and application programs).

® Provides protocols for controlling the
resources of any specific network config-
uration.

An SNA network consists logically of a set of
network addressable units (NAUs) intercon-
nected by an inner path control network con-
sisting of the path control, data 1link
control, and physical layers; Figure 1-1 on
page 1-2 shows the general relationships.
SNA networks functionally have a layered
organization, the outermost layers of which
form the NAUs, each of which in a general SNA
network is associated with a network address
(na). A NAU consists of the upper layers,
transaction services (TS) and presentation
services (PS), and one or more half-session
protocol machines (consisting of the data
flow control and transmission control layers)
depending on the number of other NAUs with
which it can be paired to form sessions.

Those NAUs serving end users are called log-
ical units (LUs). An LU allows an end user
to gain access to network resources (such as
links, programs, and directories) and to com-
mmicate with other end users. An LU may
also provide a service (such as for a control
operator) wholly contained within the LU that
is accessed from another LU via a session.
Thus, in some cases, an LU-LU session has an
end user only at one end. The presence of
various services within an LU is a function
of LU type, product design, and installation
options.

In general, there need not be a one-to-one
relationship between end users and LUs. The
association between end users and the set of
LUs is an implementation design option.

The LUs provide protocols allowing end users
to communicate with each other and uith other
NAUs in the network. An LU can be associated
with more than one network address (or with
multiple, distinct local-form session identi-
fiers); this allows two LUs (and therefore
their end users) to form multiple, concur-
rently active sessions with each other.

Besides LUs, two other network addressable
units are defined: physical units (PUs) and
system services control points (SSCPs).
These NAUs, in conjunction with one another
and with LUs, provide a variety of session,
configuration, wanagement, and
network-operator services.

Message units are transported between NAUs by
the path control network. Trase wmessage
units are of the general form:

MS6 = (naj,naijother parameters, and data),

where naj is an address of the destination
NAU, and nai that of the origin NAU. (The
pair, naj and nai, together identify a par-
ticular session; their form varies depending
on the types of nodes involved.) The path
control network routes and delivers message
units to naj in the same order as sent from
nai.

The message units transferred within an SNA
network generally have two components:
end-user information and control information.
The end-user information is passed by the SHA
network and does not affect its state. Con-
trol information may sometimes be passed to
the end users (as in the case of the Change
Direction indication, which allows one end
user to transfer the right to transmit data
to the other); however, its main purpose is
to change the state of the SNA network, thus
effecting a normal contrel change (such as a
change to a path control routing table) or a
raecovery from an exception condition.

NODES

The SHA network physically consists of nodes
interconnected via links. An SNA node is a
grouping of SNA-defined protocol machines.
An SNA product node may consist of addi-
tional, product-specific protocol machines
that use one or wmore SNA nodes. A
user-application node may consist of addi-
tional, installation-defined protocol
machines that use one or more SNA product
nodes. These relationships are shown in Fig-
ure 1-2 on page 1-4. The abstraction of
nested nodes is a useful reminder that each
product exists in an environment that con-
tains many design features that are not
defined by SNA.

For specific details of nesting of SNA nodes
and SNA product nodes within user-application
nodes, see SNA Concepis and Products and SNA
Technical Overview.

In this book, '"node" is synonymous with "SNA
node,"” and the qualifier will generally be
omi tted. Thus, end users and protocol
machines not defined in SNA are external to
the node, as that term is used hereafter.

Various node types are defined in SNA: types
1, 2.0, 2.1, 4, and 5. They are distin-
guished by varying capabilities, such as for
interconnection, and by the presence or
absence of different NAU types.

For example, type 2.1 nodes can connect to
the general subarea routing network or to
other type 2.1 nodes directly. In the former
case, subarea nodes (discussed below) provide
general intermediate routing within the path
control layer, allowing complex network con-
figurations to be fashioned; in the latter

Chapter 1. Introduction 1-3

(a)

(b)

(c)

Figure 1-2.

R I I I R I I I I R R R R R R I I A

“oe .o

see e

SNA Node

.o DRy

e ceoe

L A I I I R I R I I N S A R

tsesssssesssscsssssssssssss SNA Product Node

User-Application Node

Typical Case

D R R R I I A B R A A S I I IR S AP A

“ve secsvesvace oo

“ew sssvvrecen ce e

SNA Node SNA Node

s seescesncene

e

ce o sesecscces oo

R I R R A e I I I R R R A R Y

cessssssssseassvssnssnssnses SNA Product Node

User-Application Node

Two SNA Nodes within an SNA Product Node

D A A IR I IR ST

eve e

LY veo

SNA Node SHA Node

cee .o

cve e e se e

seecesssesssssvsveve

«es SNA Product Node

secsescresssvecsssnee

ves SNA Product Node

User-Application Node

Two SNA Product Nodes within a User-Application Node

Examples of Nested Nodas

1-4

case, two type 2.1 nodes can
independently of other

intercomnect

thereby insulated from changes in the global
nodes, in a

network address space resulting from reconf-

peer-to-peer relationship.

Type 1 and type 2 (i.e., 2.0 or 2.1) nodes
are also referred to as peripheral nodes,
because they have limited addressing and
path-control routing capabilities. They do
not participate in the general network rout-
ing based on a global network address space.
Instead, they depend on "boundary function"
support in types & or 5 nodes to transform
between the address forms, local to the
peripheral nodes, and the network addresses
used in the general routing portion of the
path control network. Peripheral nodes are

igurations.

Types 4 and 5 nodes are referred to as sub-
area nodes. (A subarea represents a parti-
tioning of the network address space. It
contains a subarea node and all the peripher-~
al nodes attached to the subarea node.) Sub-
area nodes, besides also being sources and
sinks of data, have more general path control
capabilities. They can perform intermediate
routing—passing message units received from
one node on to another—and provide adaptive
control of traffic flow within the subarea
routing portion of the network.

SNA Format and Protocol Refererce Manual for LU Type 6.2

NAUS AND NODE TYPES

A node always includes a physical unit (PU),
which controls the attached links and various
other resources of the node. A PU has a type
designation corresponding to the type (1,
2.0, 2.1, 4, or 5) of node in which it
resides.

A node typically also includes logical units
(LUs), through which end users attach to the
node, and thus to the SNA network. From the
vantage of this book, node types 2.1 and 5
are of primary interest, as these are the
only nodes that include LU 6.2 implementa-
tions.

A subarea PU or subarea LU resides in a sub-
area node. A peripheral PU or peripheral LU
resides in a peripheral node.

Type 5 nodes each contain a system services
control point (SSCP). (Type 4 nodes do
not—the primary architectural distinction
between subarea node types.) An SSCP sup-
ports protocols for management and control of
a domain. A domain consists of one SSCP and
the PUs, LUs, links, and link stations that
the SSCP can activate. Each PU, LU, link,
and link station in a network belongs to one
of the domains comprising the network, and
some can belong to more than one domain—a
feature referred to as 'shared control."
Each SSCP provides network services within
its domain (basically for converting local
names to global addresses) through protocols
supported in conjunction with the PUs or LUs
in the domain. The multiple SSCPs in a net-
work jointly support network services across
domains.

Type 2.1 nodes each contain a peripheral node
control point (PNCP), which provides services
on a more local scale than an SSCP provides.
In particular, a PNCP can mediate LU-LU

e e A e =

This section describes some notational con-
ventions widely used in both the figures and
the text. (Additional conventions are
defined within figure legends throughout the
book.)

A naming convention, using qualifiers sepa-
rated by periods to denote more specific com-
ponents of a composite protocol machine, is
used throughout the book. Component subma-
chines are shown as blocks within a larger
block that represents the composite machine.

In many cases; it is desirable to identify a
qualifier by a phrase of multiple terms, in
order to better convey the meaning of the
qualifier. The multiple terms in the phrase
are connected by underscores to indicate that
they are part of a phrase rather than sepa-
rate qualifiers representing further decom-

session-initiation requests (by doing local
address look-up) in the type 2.1 node
peer-to-peer context just as an SSCP does in
the more general network configuration con-
text.

THE PATH CONTROL NETWORK

The system consisting of all interconnected
path control (PC) and data link control (DLC)
components forms the path control network.
The input/output streams of the path control
network consist of streams of control infor-
mation, such as addresses, and associated
user data.

Each node has a PC element and NAUs. The
node and link connections of the network, and
the PC routing algorithms, combine to provide
the following behavior for the path control
network:

. An input to a PC element in node-i from a
NAU is transmitted and routed by the path
control network and emitted as output by
the PC element in node-j to the destina-
tion NAU. (Since node-i and node-j can
be the same node (i=3j), NAUs within the
same node can be connected by a session.)

® Message units with the same session iden-
tifiers are emitted by the path control
network in the order submitted by the
origin NAU.

Just as primary-secondary DLC asymmetries and
other DLC details are hidden from PC, so the
routing and other concerns of the path con-
trol network are not visible at the protocol
boundary with the NAUs; in particular, the
path control network conceals the node inter-
connections and the NAUs need only consider
their logical connections (i.e., sessions)
with other NAUs.

positions. The underscore convention is also
used in names of states and data structures.

Each protocol machine in the book has a
unique name consisting of a sequence of qual-
ifiers. For example, (MACHINE.PRI.X_SEND,
MACHINE.SEC.X_RCV) and (MACHINE.SEC.X_SEND,
MACHINE.PRI.X_RCV) are examples of two basic
protocol machine pairs. This naming conven-
tion produces protocol machine names that
carry precise information on the role of the
protocol machine and its relative position in
the network structure.

Two other symbols, *|" and "&," are used in
names and expressions. The "|" symbol indi-
cates one of several (or "either...or'). For
example, MACHINE.(PRIISEC) means ‘'either
MACHINE.PRI or MACHINE.SEC.'" The "&'" symbol
is used to indicate composition. For exam-
ple, MACHINE.(RCV&SEND) is the composite pro-

Chapter 1. Introduction i-5

1-6

tocol machine consisting of MACLINE.RCV and
MACHINE.SEND.

Some of the protocol machines defined in the
book interact directly with undefined compo-
nents. These undefined components, called
undefined protocol machines (UPMs), represent
implementation and/or installation options
that are not architecturally prescribed (be-
ing product or user oriented).

Within block diagrams, the following con-
ventions indicate the type of interaction
between components:

® Solid arrows indicate data flow; between
processes, this implies send/receive
(asynchronous) logic.

® Dotted arrous indicate calling relation-
ships.

® Dotted lines
access.

indicate data structure

Message units exchanged between SNA compo-
nents are also denoted by special notation,
particularly in sequence flow diagrams. A
message unit is either a request or a
response, depending on the RH coding (see
"Appendix D. RH Formats"); these are denoted
respectively by a request-unit name (here

designated generically by the term "RQ") and
by RSP.

RQR(QUAL) denotes a request having the proper-
ty described by QUAL; for example, RQ(Begin
Chain), or simply RQ(BC), denotes a request
whose RH is coded '"Begin Chain.' A similar
convention applies to responses. For exam-
ple, RSP(BIND) denotes a response to the BIND
request—a response that echoes the request
code '"BIND."

The asterisk (%) character is used in
sequence flows, as well as elseuhere, to mean
"any value" (or "don't care"). For example,
"*¥BC" means 'BC or -BC'"—where "-" is the
standard symbol for "NOT."

The procedural logic in the formal
description uses simple English, some
control-structure elements (e.g.,

if/then/else) common to most high-level lan-
guages, and a few straightforward conventions
that are generally clear in context. For
example, a call is frequently shoun in the
form: "Call PROCEDURE(X, Y, Z)"; this
results in calling PROCEDURE and passing it
the arguments X, Y, and Z.

Abbreviations commonly used in the text are
listed at the back of the book on foldout
pages (Appendix T) for easy reference.

SNA Format and Protocol Reference Manual for LU Type 6.2

CHAPTER 2.

OVERVIEM OF THE L

INTRODUCTION
This chapter is an overview of logical unit
type 6.2 (hereafter referred to simply as
). The LU provides application programs

CONCEPTS

AND TERMS

DISTRIBUTED TRANSACTION PROCESSING

Distributed transaction processing involves
two or more programs, usually at different
systems, cooperating to carry out some proc-

essing function. This involves program
intercommunication to share each other's
local resources such as processor cycles,

data bases, work queues, or human interfaces
such as keyboards and displays.

The LU supports distributed transaction proc-
essing by serving as the port between the
programs and the Path Control network. It
allows a transaction program (TP) to invoke
remote programs and to exchange data wuith
them.

All commumnication provided by the LU is
program-to-program. Any end user that is not
a program is represented to the LU by a pro-
gram. For example, fixed-function terminals
and their devices (e.g., keyboards and dis-
plays) present themselves as fixed programs
(e.g.» microcode) that use the same LU func-
tions as user-written application programs.
Human users at workstations do not interact
directly with the LU but rather with local
workstation programming support which in turn
interacts with the LU.

This program-to-program communication accom-
modates a variety of distributed processing
comnections, including peripheral node to
subarea node, subarea node to subarea node,
and peripheral node to peripheral node. For
example, an application program at an
outlying site (a terminal or a distributed
processor) might communicate with a data-base
management system at a central processor to
maintain consistency between regional and
central records. For another example, sys-
tems programs in workstations might exchange
files and documents with each other.

Figure 2-1 on page 2-2 illustrates the role
of the LU in relation to an SNA network. The
LU connects transaction programs to the path
control network. The LUs activate sessions

with support functions for distributed trans-
action processing.

between themselves. The component of a ses-
sion in each LU is called a half-session.
Tuwo or wore sessions between the same pair of
LUs are called parallel sessions. Multiple
sessions can concurrently use the same phys-
ical resources connecting the LUs.

The logical comnnection between a pair of
transaction programs is called a
conversation. A transaction program initi-
ates a conversation with its partner with the
assistance of the LUs. MWhile a conversation
is active, it has exclusive use of a session,
but successive conversations may use the same
session.

An LU may run many transaction programs suc-
cessively, concurrently, or both, Each
transaction program may be connected to one
or more other transaction programs by conver-
sations. Multiple conversations between dif-
ferent pairs of transaction programs can be
active concurrently, with each conversation
using a distinct session.

Conversations comnect TPs in pairs, but any
TPs directly or indirectly connected to each
other by conversations are participating in
the same distributed transaction. For exam-
ple, if TP A and TP B are connected by a con-
versation, and, concurrently, TP B and TP C
are connected by a conversation, then TPs A,
B, and C all are participating in the same
distributed transaction.

TRANSACTION PROGRAMS

The direct user of the LU is an application
transaction program (application TP). Appli-
cation TPs are provided by the end user to
carry out functions of distributed applica-
tions.

A transaction program is distinguished from
programs in general by two characteristics:
the way it is invoked, and the communication
functions it initiates.

Chapter 2. Overview of the LU 2-1

o o0 o0 . o e o0 s o o o6 oo se so 00 oo o0 oo e oo 0o se . oo oo o0 o
oo oo o0 e oo 0 oo . o a0 o0 40 ee 00 40 o . o o0 ve o . v os 0e o
os oo oo . e o o . 0 oo ee oo o . ve oo oo o
0o oo oo . e 0 o . o s se o . o oo o0
0o oo e . e o e . . o s @ . v er 0o 00
ve oo v eo oo v e . . oo se @ o oo oo 00 0o o
oo oo o0 v oo o o . . 0o o0 o o oo oo 0o o0 o0 0
o o . e o o . . o e o oe oo oo oo 0o oo o
oo v . o o o . . . e ve @ o oo oo [TERTE T
oo o . o v o . . oo oe o o o0 oo ee oo 0o o
. o o . e o e o . oo o0 o oo o0 oo oo 4o oo o
o » o o o oo o o o oo » . - oo oo e os oo oo o0 so o0 o
.. . se oo o oo o o o o M e oo e . B oo oo e oo o0 o0 v oo o0 o
. oo oo oo v oo oe o0 o W e oo v o o m oo e e0 w0 o . oo oo 00 o
. o o " » o0 0o oo oo
. . o]] 00 oo o0 @
. o o0 » n o o0 o0 »
. . e » » o o0 o0 o
. o o >] » o o0 00 o
. o oo S5] n e oo e o
oo - I B R B ERRN o0 o0 o0 o
oo - - oo oo s0 ee
. -— . e — B —— — - - oo o0 o0 o
. » n o oo se 00
. n » e oo o0 o
.. - - e s o0 o
. » —— »n ea——— = s s a0 o
. = »n v 00 e o
.. ™ »n e oo o0 oo
. o o o2 .] o oo n . . . e oo 0o o
. oo o o o » o o0 » . . . o o0 oo oo
o v o . » oo oo "] .o . . ve oo o0 o
. e Ty . [oo oo » .o . . e oo 00 o
o oo o os . - oo o0 = .o .o . ve o0 we o
. oo o o . n o o n . . . o 00 00 o
. o . o . »n os oo] . o . v o0 vo »
. oo s oo .. » oo oo - . . . ®s o0 o0 oo
. o o v . » v o] oo | o . oo o0 00 o
o o Y . » o o0 » . . o oo o0 00 o
. e o o . » v oo » oo o0 o0 o0
. o o o .] o s] o . . o o0 00 o
. e o o0 .] e oo] oo . o e oo se &
. o o . » o o] . . .
o 1 s b HE e - - : W |
e L] e oo - . 3
0 n .o oo - . £
0. E BN EENEENEEERNEEERERDB LM oo o0 = . o
- e u . -
. r o oo n .]
. *e o0 00 e oe 0 00 o0 | |} e oo . .
. os o0 o0 o0 s o0 ss 0o »n oo o . .
. 2 oo o0 s oo o o0 oo oo n PO . . N
s =] oo oo oo .o e v s | m o o0 . .] v oo o0
oo -t ee o0 so o o o0 se se - e oo . o ') e o0 o
. o o0 se o oo 4e oo] o oo . .
o ve o0 0o o o o0 o0 o0] o o . .
o . v o] .
] . s - .
o B @ B R EEESENEBEEENENERENYBEBRSN oo o L 133 B EE N BEREEREBEESBDNZS
| [] v oo] oo »
o r] o -] .]
. — ve oo ve o n o o - .] o oo o0 _
. | oo o0 00 o0 n o o] . » o oo os
oo .] oo o] . n . 0o ee
. . o o . -] o o . . n o oo oo
. . o oo e [« IS [] e oo n . n o oo oo
. . o o . L0 = o o0] . n o oo oo
. o . o L4 3] oo oo »n o] . oo oo
o o . T] o o n .] . o0 oo
. o . o B3O W n o oo n . »n oo oo oo
o . . e OZ »n oo oo n . m . .
. o . . - o ee] .] N .
. . o Y » PY] . n . pes
. oo] o o0 » .] o oo oo
. o o0 oo . . n]
. oo o0 oo .]]]
o o oo oo . . - ——] —— n |
oo s o . . n] »
o ee oo oo .. »n n]
s 0o se oo o0 .]] n
e ve o0 o0 oo o n - - e b -y
e 00 oo o0 o0 . n]]]
o0 oo oo 00 oo . b=} X n EEAR]
o 00 00 o . . < - n] n
o0 o8 o0 oo oo . z -l] n EE R EEREEBNDESN
20 00 oo v0 oo . » »n n
W o —— N
cc L] =]
0O . »]
- e o0 00 oo o oo oo %] e M oo W o .o
FY Y o o o oo oo B oo M eo M oo .
B O oe o0 o oo oo R —B .
o o o o oo o0 .
w1 oo oo se oo oo ps
- C oo oo . oo oo [P
Qn PO o oo oo o s
Q o oo o oo 0e = .
< - o oo . oo oo oS
v o . o0 oo .
. o o0 . o0 oo s oo s oo o
3 s o0 ® 00 90 00 o0 oo o oo oo L4

ion
ini-
internal

tarted run-

is s
ted to the conversat
(In the case of the

ked program
the LU generates an

invo
1S connhec

ker.

The
invol

d
ts i

i

Parallel Sessions
(connecting two LUs)

ning an
tial program,

program.
with

lled

ism ca

ked by another

by a mechan
th another named

is invo
ing transaction program
ion wi

Conversation(connecting two TPs)
K

Single Session
(connecting two LUs)

1nvo

jon program
The

Placement of LUs within the SNA Netuwork (Example)

h.
tiates a conversat

ttac

A transaction program
ini

ENEnsEEREENEE
transact
SNA Format and Protocol Reference Manual for LU Type 6.2

LEGEND:
Figure 2-1.

2-2

Attach' to simulate invocation by another
transaction program. It does this in
response to some external stimulus, e.y.,
operator action.)

A transaction program uses the LU to communi-
cate with other transaction programs by issu-
ing transaction program verbs (which are
described in the publication SNA Transaction
Programmer's Reference Manual for LU Type
6.2). (In some cases, internal LU components
also issue transaction program verbs on
behalf of transaction programs.)

Besides application transaction programs,
distributed transactions can include trans-
action programs provided by the LW itself,
called service transaction programs (service
TPs). These are SNA-defined transaction pro-
grams within the LW that provide utility
services to application transaction programs
or that manage the LUs. They are attached by
other transaction programs and they issue
transaction program verbs to communicate uith
other transaction programs. For example, the
LU includes service transaction programs for
distributed operator control of the LW, by
which control operators can determine the
number of parallel sessions they will share,
and for sync point resynchronization, which
assists distributed transaction recovery fol-
lowing transaction failure in certain circum-
stances. Other service TPs provide document
interchange services (using Document Inter-
change Architecture [DIAl), which allow
processors and workstations to synchronously
exchange files and documents. Furthermore,
SNA Distribution Services (SNADS) service TPs
provide asynchronous distribution of files
and documents.

Different execution instances of the same
transaction program could perform parts of
the same distributed transaction at different
LUs or parts of several different trans-
actions at the same LU.

CONTROL OPERATOR

The WU control operator describes and con-
trols the availability of certain resources
(see "Resources'); for example, it describes
network resources accessed by the local LU
and it controls the number of sessions
between the LU and its partners.

The LU control operator is represented to the
LU by a control-operator transaction program
that interacts with the LU on behalf of, or
in lieu of, a human operator. The relation-
ship between the control-operator transaction
program and the LU control operator is
implementation-defined.

The control-operator transaction program
invokes operator functions by issuing
control-operator verbs. These verbs are
issued by the control-operator transaction
program to convey operator requests to the
internal components of the Lu.
Control-operator verbs are described in SNA

Transaction Programmer's Reference Manual for
LU Type 6.2.

RESOURCES

The LU provides several kinds of resources to
support distributed transactions.

Conversations comnect transaction programs
and are used by the transaction programs to
transfer messages. A conversation is acti-
vated when one transaction program attaches
another.

Associated with each end of a conversation
are protocol states that each LU maintains in
order to coordinate interaction between the
two TPs. These indicate (for example) which
TP is sender and which is receiver at a given
time.

The LU provides two types of conversations.
Mapped conversations allow the TPs to
exchange arbitrary data records in any format

set by the programmers.

Basic conversations allow TPs to exchange
records containing a two-byte length prefix.

Application transaction programs typically
use mapped conversations, and service trans-
action programs typically use only basic con-
versations; however, either conversation type
might be used by either program type.

Sessicns provide relatively long-lived con-
nections between LUs; a session can be used
by a succession of conversations. Sessions
are activated by LU pairs as a result of
operator commands and transaction-program
requests for conversations. They are not
explicitly visible to transaction programs;
for example, a transaction program cannot
explicitly request use of a particular ses-
sion.

A mode is a set of characteristics that may
be associated with a session. These charac-
teristics typically correspond to different
requirements for cost, performance, and so
forth. Modes are defined by the control
operator as a selection of
path-control-network facilities and LU
session-processing parameters.

One characteristic of mode is class of serv-
ice. The path control network can offer dif-
ferent classes of service that correspond to
particular physical links and routes and par-
ticular transport characteristics such as
path security, transmission priority, and
banduwidth.

Other characteristics of mode include
operator-selected processing parameters such
as message-unit sizes and the number of mes-
sage units sent between acknouledgments (pac-
ing window sizes).

Each mode characterizes a group of sessions
with a particular partner LU; multiple modes

Chapter 2. Overview of the LU 2-3

2-4

may exist for the same partner LU. Modes
associated with different partner LUs are
considered distinct, even if they represent
similar sets of characteristics.

A combination of partner WU and wode is
called an (LU,mode) pair.

LU-accessed network resources constitute the
relatively static environment that the LU or
its containing node establishes as a result
of installation definition. The principal
components of this environment are the. LU
itself, the control points that serve the LU,
the transaction programs that the LU can run,
the potential partner LUs (remote LUs) with
which the LU can commumicate, and the modes
of service available between the LUs.

Local resources are resources whose principal
functions and operations are not defined by
SNA, but which LU components use or interact
with for sore functions. These include local
files, data bases, recovery and accoeunting
logs, queuves, and terminal components. For
example, LU components interact with local
data-base managers to coordinate distributed
error recovery of data-base updates. Also,
SNA distribution services uses queues to
exchange messages between application trans-
action programs that provide document routing
and distribution.

Protected resources are local resources, such
as data bases, whose state changes are logged
so that all resources changed by a trans-
action can be restored to a consistent state
in the event of a transaction failure. The
LU interacts with protected resources to pro-
vide the sync point function (see "Sync Point
Function' on page 2-39) for distributed error
recovery.

PROTOCOL BOUNDARIES

In order to accommodate LU implementations on
different processors and transaction programs
written in different programming languages,
SNA defines the LU's interface to application
transaction programs in generic terms only.

' This specification is called the transaction

program protocol boundary. It consists of
the set of LU functions that a TP way
request, and the possible parameter values
that may be supplied or returned for these
functions.

SNA does not define a particular syntax or
format for representing these functions and
parameter values. HNevertheless, for purposes
of discussion in SNA publications, the func-
tions and parameters are represented gener-
ically by transaction program verhs; these
are described in SNA Transaction Programmer's
Reference Manual for LU Type 6.2.

Each LU implementation has one or more pro-
gramming environments that provide these
functions. Each such environment is called
an applications programming interface (API),

The iU actually presents a partitioned proto-
col boundary to the transaction program; for
example, there are separate subsets of the
verbs for mapped conversations, for basic
conversations, and for S5MADS. Mhen a hierar-
chical relationship exists between these sub-
sets, e.g., when verbs from one set cause
internal issuances of verbs from another set,
this partition introduces gublavers within
the LU.

A protocol boundary can be interpreted from
two points of vieuw.

From one point of view, a protocol boundary
is a boundary between tio layers or sublayers
of the node. For example, TPs exchange data
with LUs across the TP-LU protocol boundary,
and LUs exchange data with the path control
network across the LU-path-control protocol
boundary. From this viewpoint, the rules of
exchange are called layer protocols.

But from another point of view, a protocol
boundary is a boundary between two peer com-
ponents of the same layer. In other words,
the transaction program protocol boundary may
be thought of as a direct boundary between
one TP and another, and similarly, the path
control protocol boundary may be regarded as
a direct boundary between LUs. From this
viewpoint, the rules of exchange are called
peer protocols.

Figure 2-2 on page 2-5 shows the principal
protocol boundaries between the LU and
external components. The figure illustrates
how the protocol boundaries divide the LU
into layers and sublayers, and how the con-
ceptual flows between peer components are
accomplished by interlayer exchanges. 1In
this example, the application TP has a mapped
conversation with another application TP and
a basic conversation with a service TP. The
figure illustrates that the conceptual infor-
mation flow between peer components at each
layer is reduced to conceptual information
flow at the next lower layer by actual infor-
mation flow between layers and information
transformation within layers. For example,
the conceptual mapped conversation connection
is reduced to a basic conversation; each bas-
ic conversation is reduced to a session; and
finally, the sessions are reduced to con-
nections in the path control network (which
itself performs further layer transformations
that are not shoun).

NAMES

The LU allows transaction programs to refer
to its resources, such as other TPs and LUs
and shared comaunication facilities, by
installation-selected names. Thus, the pro-
grams need not be concerned with implementa-
tion and configuration details such as the
actual network addresses or transport charac-
teristics. For example, when one transaction
program invokes another, the invoking TP
identifies the partner TP by a transaction
program name, it identifies the partner LU by

SNA Format and Protocol Reference Manual for LU Type 6.2

Mapped-Conversation

Application

Protocol Boundary sususssssssn|sssw

Basic—Conversation

Protocol Boundary sssuss|ssssw|swsw|us

Path—Control

Mapped Conversation

Basic Conversations

- — . e e o e e o e ew e we w we f e

- e e e e e e e M e e e e e

Protocol Boundary sazwussssaus|sssnus

|App1ication
TP

NN ARENE NN ERN NSNS NN N IR YBERETRER AN | ARGV EEARNR | NREEES
(Path Control Network)

LEGEND:
<~ — => conceptual flows between peer components (peer exchange)
<

Figure 2-2. Peer and Layer Exchanges

> actual flows across interlayer protocol boundaries (layer exchange)
ssuwER¥ protocol boundary between layers or sublayers

an LU name, and it identifies the desired set
of session characteristics by a mode name.

Names are character strings that the instal-
lation associates with particular resources.
They are specified by the control operator
(on behalf of the installation management)
subject to the SNA-imposed constraints, e.g.,
character set and length restrictions,
described in “Appendix H. FM Header and LU
Services Commands'. (Hithin an LU implemen-
tation, the local resource names may differ
from those that conform to SNA; for example,
a program directory might use names of a dif-
ferent length or character set. In this
case, the implementation aluways translates
betuween its internal names and the
SNA-conforming names that are used by trans-
action programs or that are transmitted out-
side the LU.)

The name of a particular resource is known
within a particular environment. HWithin this
environment, the name of each entity of a
particular class is unique, but the same
entity might have different names in differ-
ent environments. For example, each LU

~allows local aliases for remote resource
names, so that local transaction programs can
be made insensitive to name changes elsewhere
in the network. Of course, the control oper-
ator must change the LU's relevant
name-translation tables whenever the remote
names are changed.

Roles

Hereafter, the following terms are used to
distinguish the roles of individual TPs and
LUs of a pair. With respect to location, the
term local means residing at the LU from
whose perspective an activity is described;
the term remote means residing at that LU's
actual or potential session partner. Hith
respect to a conversation, the source TP (or
its LWW) is the initiator of a conversation
with the target TP (or its LU).

Jransaction Proaram References

A source TP selects a target transaction pro-
gram by its transaction program name (TPN) as
dafined at the source LU. In the simplest
case, this is also the name of the TP as
defined at the target LU. Optionally, howev-
er, the source LU can allow the two names to
be different, in which case it converts the
TP-supplied name into the TPN recognized at
the target LU.

A TPN alone does not uniquely identify a
transaction program instance. The target LU
creates a new transaction program instance
for each Attach it receives.

Chapter 2. Overview of the LU 2-5

2-6

LU References

Each LU provides a set of LU names by which
its TPs may refer to remote LUs: these names
are called local LU names (a local LU name
is a local alias of a remote LU's name, not
the local LU's oun name). Local LU names are
unigque within each local LU, but not neces-
sarily outside an LU.

The path control network routes information
to an LU by a network address rather than by
a name. The correspondence between names and
addresses is maintained at the control int,
which is another NAU that assists the LU dur-
ing session initiation.

The control point identifies each LU by its
fully gualified LW name (also called
netuwork-qualified LU name). It consists of a
network ID followed by a network LU name.
The network ID is unique throughout a set of
interconnected SNA networks; the network LU
name is unique within a particular SNA net-
work, which may contain multiple domains (for
wore information on domains,; see ‘'Chapter 1.
Introduction™).

The control point uses the fully qualified LU
name of the intended partner LU to determine
the corresponding netuwork addresses used for
routing uithin the path control network. The
LUs themselves use their fully qualified LU
names for certain purposes; for example, LUs
resolve some race conditions by exchanging
and comparing their fully qualified LU names.

An LU may provide another set of names by
which it refers to remote LUs when issuing
session-initiation requests to its control
point: these names are called uninterpreted
LU names. Each uninterpreted LU name is
unique within a particular initiating LU, and
is knowm to that LU's control point but is
not known elsewhere in the network.

The LU name is converted into the network
address in stages. If the LU uses an unin-
terpreted LU name to identify its partner,
the control-point translates this into a ful-
ly qualified LU name; otherwise, the LU sup-
plies the fully qualified LU name to the
control point directly. Then, the control
point provides the network address for that
fully qualified LU nawe.

Mode Names

A source TP cannot select a particular ses-
sion for a conversation, but it can specify
that the session selected have a particular
set of characteristics, or mode. It does
this by specifying a corresponding mode nawe.

Mode names are unique relative to a partic-
ular partner LU. Mode names for different
partner LUs are independent: the same mode
name can correspond to different sets of ses~
sion characteristics for different partner
LWs.

-

Internal Identifiers

The LU assigns internal identifiers to con-
versations and sessions once they are acti-
vated. These are called resource IDs and
half-session IDs, respectively. TPs or the
control operator use these identifiers for
subsequent references to these entities.
These identifiers are generated by the LU and
passed back to the transaction program or to
the contrel operator in the form required for
subsequent verbs; the transaction program or
operator need not interpret these identifi-
ers.

CONVERSATION CHARACTERISTICS
Send/Receive Protocol

The LU normally allows TPs to exchange data
in only one direction at a time, i.e., one TP
sends and the other receives until the send-
ing TP surrenders the right to send. This is
called half-duplex flip-flop protocol. The
LUs coordinate and enforce the send/receive
state at each end of the conversation. LUs
do allow some exceptions to strict alter-
nation of send and receive: the receiving
TPy, at any time, can send an error indi-
cation, putting itself in send state; it can
send the partner an attention indication,
e.g.» to request the right to send; and it
can abnormally terminate the conversation.

Sender/Receiver Concurrency

Different applications require different
degrees of concurrency between sender and
receiver. For example:

® On-line inquiry applications might
require real-time interaction.

® Status-reporting applications might
require immediate transmission but no
response.

® Document distribution applications might
allow sending and receiving at the send-
er's and receiver's convenience, respec-
tively, which might be separated by
arbitrary periocds of time.

For the first two cases, the LUs use direct
conversations between the TPs.

For the real-time interactive case, the LU
keeps the TP-TP connection active until the
transaction is completed; both the source and
target TPs are concurrently active. This is
called synchronous transfer.

The W treats the immediate~transmission,
no-response case as a special case of syn-
chronous communication, using a one-way con-
versation. The source L allocates
(initiates) a conversation as in the first
case, sends the data, and deallocates (re-

SNA Format and Protocol Reference Manual for LU Type 6.2

leases) the conversation. Khen the message
reaches the target LU, it initiates the tar-
get TP, which receives the data and likewise
deallocates the conversation. But since the
source TP is expecting no reply, it might
have terminated while the data is still in
transit through the path control network,
before the target TP is initiated. Thus, the
source and target TPs are not necessarily
active at the same time.

For the third case, the LU provides SNA Dis-
tribution Services (SNADS). In this case,
the sender, called the origin TP, and the
ultimate receiver, called the destination TP,
are typically not active at the same time.
Therefore, the data is stored at one or more
locations en route between periods of active
transmission. This mode of communication is
called asynchronous transfer.

In SNADS, the origin application TP sends a
message unit, ultimately intended for the
destination TP, to a local service TP. The
service TP at the origin stores the data in
local permanent storage. When the appropri-
ate time for sending the data arrives, e.g.,
when lower-cost transmission facilities
become available or after compensating for
time-zone differences, a service TP at the
origin allocates a conversation to a service
TP at the destination and sends the data.
The receiving service TP at the destination
LU stores the data in local permanent storage
for later retrieval. Finally, an application
TP at the destination retrieves the stored
message.

SNADS also allows multiple intermediate serv-
ice TPs between origin and destination. The
origin service TP can allocate a conversation
to an intermediate service TP, which would
receive the data, store it, and later forward
it to another intermediate service TP or to
the ultimate destination service TP.

Each SNADS service TP can also duplicate the
data and send it to multiple destinations or
application programs.

Mappin

Two communicating TPs might process the same
information using different internal data
formats (presentation spaces) e.g., differ-
ently organized data structures or different
sets of individual structures and variables.
To assist the TPs in interpreting data in
formats suited to their internal processing
algorithms while providing a mutually under-
stood format for the data transmitted over
the conversation, some LUs provide an
optional function of mapped conversations,
called mapping. (Mapping concepts are dis-
cussed in '"Mapping Function' on page 2-39).

SESSION ALLOCATION

A principal function of the LU is to provide
sessions between LUs for use by conversations

between TPs.

Session Multiplicity

Only one transaction-program pair at a time
can use a particular session. In order to
allow multiple concurrent transactions, e.g.,
for a multiprogrammed processor or a
multiple-user workstation, some LUs, called
parallel-session LUs, allow two or more ses-
sions at the same time, even with the same
partner LU. Any session between a pair of
LUs that both provide parallel sessions is
called a parallel session, even if only one
such session is currently active.

Some LUs, called single-session LUs, can have
only one active LU-LU session at a time (but
can have successive sessions with different
partner LUs). Any session involving a
single-session LU is called a sinqle session,
whether the other partner is a single-session
LU or a parallel-session LU.

Thus, all sessions betuween a pair of LUs are
of the same type: single or parallel. Some
LU protocols used on single sessions are dif-
ferent from those used on parallel sessions,
but these differences are indistinguishable
to transaction programs.

An LU that does not support parallel sessions
can have only one active LU-LU session at a
time. A parallel-session LU can have, con-
currently, one or more parallel-sessions with
each of one or more parallel-session LUs, and
one single session with each of one or more
single-session LUs. (No middle capability
[multiple-session LU] exists, i.e., any LU
that supports multiple concurrent single ses-
sions also supports parallel sessions.)

Session Pool

To avoid repeating session-activation proc-
essing for each conversation between the same
pair of LUs, the LU allows successive conver-
sations to use the same session.

When the LU activates a session or when a
session previously in use by a conversation
becomes free, the LU places the session in a
session pool. MWhen a transaction program
initiates a new conversation, the LU allo-
cates a session from this pool, if one is
available.

Session Selection

Transaction programs do not select particular
sessions, but specify only that the conversa-
tion be allocated a session with a particular
partner LU and with a particular mode name.
The LU partitions the session pool by partner
LU and mode name; the LU allocates a session
from only those sessions for the requested
(LU, mode) pair.

Chapter 2. Overview of the LU 2-7

2-8

Session Contention Polarity

Another session-selection criterion concerns
the relative priority of the LU for use of
the session. The LUs at each end of a ses-
sion could both try to start a conversation
at the same time. To resolve this con-
tention, the LU operator specifies, for each
session, which LU's TP will be allowed to use
the session in such a case; this is called
the session contention polarity of the ses-
sion. From the viewpoint of the local LU, a
session for which that LU is designated to
win an allocation race is called a
contention-ninner session (or first-speaker
zession). A session that the local LU will
surender to the partner is called a
contention-loser session (or the bidder ges-
sion--s0 called because a contention-loser LU
will bid, i.e., request permission of the
contention-winner LU to use the session).

Session Limits

The number of sessions in the session pool is
constrained by operator-specified criteria,
including several limits on the number of
active sessions.

The total LU-LU session limit is the waximum
number of sessions that can be active at one
time at the LU.

The (LU,mode) session limit is the maximum
number of LU-LU sessions that can be active
at one time for that particular (LU,mode)
pair.

The automatic activation limit for a partic-
ular (LU,mode) pair specifies the maximum
number of LWU-LU sessions that the LU will
activate independently of requests for con-
versations. Automatically activated sessions
constitute the initial session pool (addi-
tional sessions, within the other limits, are
added to the pool on demand from conversation
requests).

The local-LU minimum contention-winner limi
for a particular (LU,mode) pair determines
the minimum share of the total number of ses-
sions for that (LU,mode) for which the local
LU can be contention winner. Similarly, the
partner-LU minimum contention-winner limit
determines the wminimum share of those ses-
sions for which the partner LU can be con-
tention winner.

Session limits are discussed in wore detail
in "Chapter 5.6. Presentation Serv-
ices--Control-Operator Verbs'.

CINIT.

STARTING AND ENDING SESSIONS
Phases

Starting and ending sessions involves four
phases of activity, although some phases are
omitted in some circumstances.

Session-limit initialization and reset con-
sists of issuing control-operator verbs
(e.g.» INITIALYZE_SESSION_LIMIT,
RESET_SESSION_LIMIT) to specify the number of
sessions the LU can have with a given part-
ner, and to specify conditions for their
activation and deactivation.

Session initiation and termination consists
of control-point activity, such as supplying
the network addresses corresponding to LU
names, that mediates requests for session
aativation and deactivation.

Session shutdown consists of the LU activity
to terminate conversation activity on a ses-
sion prior to deactivating tha session.

Session activation and deactivation consists

of creating or destroying the end-to-end log-
ical connection betueen the LUs.3

SESSION USAGE CHARACTERISTICS

Session Activation Polarity

An LU activates a session with its partner by
sending a message unit called BIND. The LU
that activates a session (sends BIND) is
called the primary LU; the LU that receives
BIND is called the secondary LU. These terms
are relative to a particular session: the
same LU can be primary LU for one session and
secondary LU for another.

The primary LU always has first use of the
session, i.e., it can initiate the first con-
versation on the session, regardless of the
session contention polarity. (When the first
conversation completes, the principal right
to initiate conversations reverts to the
contention-winner LU.)

Session-Level Pacing

To prevent an LW from sending data faster
than the receiving LU can process it (e.g.»
empty its receive buffers), the two LUs
observe a session-level pacing protocol. At
the time a session is activated, the LUs
exchange the number (the pacing window size)
and size (the maximum RU size) of the message
units they can accept at one time. The send-

Session initiation and termination protocols use session services RUs, e.g., INIT_SELF,

Session shutdown protocols use data flow control RUs, e.g., BIS.
Session activation and deactivation protocols use session control RUs, e.g., BIND, UNBIND.

SNA Format and Protocol Reference Manual for LU Type 6.2

ing LU mill send no more message units than
the receiver will accept (a pacing window)
until the receiver sends an acknouledgment
(pacing response) indicating that it can
receive another pacing window.

Profiles

Session traffic is characterized by a partic-
ular set of SNA-defined formats and proto-
cols, identified by a function management
(FM) profile and a transmission services (TS)

profile (see “"Appendix F. Profiles"). The
profile used depends on the Kind of session
and the kind of node:

¢ On an LU-LU session, all LUs use FM pro-
file 19 and TS profile 7.

® On a CP-lU session, an W in a subarea
node uses FM profile 6 and TS profile 1.

® On a CP-LU session, an LU in a peripheral
node uses FM profile 0 and TS profile 1.

Chapter 2. Overview of the LU 2-9

Figure

2-10

. —— ———— — —— — ———— t_—— —— ——— — ————— — —— S S o — —— S

Primary LU

Secondary LU

BIND (RD1)
[11 [} >
RSP(BIND, PWIRD11, RD2)
[21 < L]
r UNBIND
[3al | [>
|
~—or-=<
| FMH-12 (PWIRD21)
[3b] | o >
L
r UNBIND
[4al l < (*]
——or-=-<
| .
[4b] | .
i .
L
LEGEND:
RDi random data (i=1]2)
PW LU-LU password
PWIRDi] RDi enciphered using PH as cryptography key
2-3. LU-LU Verification
SECURITY cussion, the numbers in parentheses

The LU provides three functions to assist the
installation in providing security: partner
LU verification, partner end-user verifica-
tion, and session cryptography. Partner-LU
verification is a session-level security pro-

tocol; it involves protocols at the time the
session is activated. Partner end-user ver-
ification is a conversation-level security

protocol, taking place at the time a conver-
sation is started. Session cryptography is
another session-level protocol, the parame-
ters for which are exchanged at session acti-
vation.

Partner-lU verification 1is done by a
three-flow exchange between the two LUs, with
each LU using an LU-LU password and the Data
Encryption Standard (DES) algorithm. This
exchange is called LU-LU verification. LU-LU
passuords (see '"Appendix H. FM Header and LU
Services Commands') are established by imple-
mentation and installation-defined wmethods
outside of SNA. LU-LU passwords are on a
partner-LU basis: one LU-LU password is
established between each LU pair. This pass-
word is used for all sessions between the LU
pair. It is recommended that each LU pair
have a unique password; however, it is not an
architectural requirement.

Figure 2-3 shous the LU-LU verification pro-
tocol exchanges. In the following dis-

correspond to the numbers in that figure.

During session activation, random data (RD1)
is sent in BIND from the primary LU to the
secondary LU (1). The secondary LU enciphers
this random data using the LU-LU password and
the random data as input to the DES algo-
rithm. The secondary LU returns (2) the now
enciphered random data (PWIRD1]) to the pri-
mary LU along with its own randomly generated
data (RD2) in RSP(BIND). The primary LU com-
pares the received enciphered random data
with its oun copy of the random data that it
enciphered using its LU-LU password and the
DES algorithm. If the two versions of the
enciphered random data do not compare equally
(3a), LU-LU verification fails, session acti-
vation fails, and a security violation is
logged. If the two versions of the enci-
phered random data compare equally (3b), the
primary LU has verified the identity of the
secondary LU and LU-LU verification contin-
ues.

Using the LU-LU passuword and the DES algo-
rithmy, the primary LU enciphers the random
data received from the secondary LU. The
primary LU returns this enciphered random
data (PWIRD21) in a Security FM header
(FMH-12) to the secondary LU (3b). The sec-
ondary LU compares this enciphered random
data with its own version of the enciphered
random data. If the two versions of the
enciphered random data do not compare equally
(4a), LU-LU verification fails, the session

SNA Format and Protocol Reference Manual for LU Type 6.2

is terminated, and a security vieclation is
logged. If the two versions of the enci-
phered random data compare equally (4b), the
secondary LU has verified the identity of the
primary LU, and LU-LU verification is com-
plete.

When the transmission links and LUs that make
up the network are physically secure (as
determined by the installation management),
LU-LU verification may be omitted. Under
this circumstance, LU-LU verification would
not take place, yet the session would still
be considered secure; therefore, access to
secure resources would still be permitted
following conversation-level security proto-
cols (see below). Permission to use
conversation-level security to gain access to
secure resources is installation defined and
communicated to the partner LU during session
activation in the BIND/RSP(BIND) exchange.

When the network is not considered secure,
LU-LU verification should be omitted, and
acceus to secure resources via
conversation-level security should not be
permitted. Denial of permission to use
conversation-level security is installation
defined; an indication of this denial is com-
municated to the sender of the request during

session activation in the BIND/RSP(BIND)
exchange.
End-user verification (conversation-level

security) is used to confirm the identity of
the partner end user (e.g., transaction pro-
gram). When a TP requests access to another
TP, it must supply adequate security informa-
tion in the request to satisfy the security
requirements of the requested TP, or the
request will be rejected. This could include
a user ID and password (see access security
information subfields in ‘"Appendix H. FM
Header and LU Services Commands') supplied by
the end user that initiated the request.
When a user ID and password are supplied on
the request, they are verified by the LU that
receives them. If the end user has not sup-
plied the correct user ID and password combi-
nation, the request is rejected.

An optional additional criterion for access
to a specific TP is permitted. This criteri-
on would be a check of an authorization list
associated with the target transaction pro-
gram. The keys to search the authorization
list would be combinations of the user ID and
an optional profile supplied on the request.
The authorization list could be made up of
combinations of user ID and profile. After
the user ID is verified by the LU, the
authorization list may be searched for access
rights to the specific transaction program
named in the request. If the additional cri-
terion is not wmet, the request is rejected.

An intermediate transaction program (one
started by another TP) that requires
conversation-level security way need to
access an additional TP that requires

conversation-level security. In this case,
an Already Verified indicator is set in the
additional request; the user ID and optional
profile in the first request, which initiated

the intermediate transaction program,
supplied in the second request.
reasons, the password that initiates the
intermediate TP is never saved, but the user
ID and optional profile that initiated the
intermediate TP are saved. The Alresdy Veri-
fied indicator can be used only if the sender
of the indicator is trusted by the receiver
of the indicator to have performed the proper
verification of the usar ID and rpassword that
initiated the sender. This level of trust is
installation defined at the receiver of the
indicator and communicated to the sender of
the indicator during session activation in
tha BIND/RSP(BIND) exchange.

are
For security

To help prevent data from being interpreted
or modified during transit, the LU provides
session cryptography, whereby all user data
is enciphered at the source LU and deciphered
at the target LU. The encryption algorithm
uses a cryptographic key, supplied by the
control point, and a session seed, generated
by one of the LUs when the session is acti-
vated. (See '"Chapter 6.2. Transmission Con-
trol" for a full discussion of session
cryptography.)

ERROR HANDLING

Kinds of Errors

Errors affecting transaction processing are
classified as follouws:

Application Errors: These are errors related
to the application data and processing, e.g.,
user input error or data-base record missing.
Detection and recovery are the responsibility
of the transaction programs.

Local Resource Failurae: These are failures
in non-SNA resources, e.g., a disk read
error. If the resources are not protected
resources, recovery is the responsibility of
the transaction program or of the non-SNA
support for the failing resource, e.g., a
disk subsystem. If the resource is a pro-
tected resource, the TPs can use the LU sync
point function (see "Sync Point Function" on
page 2-39) to assist in recovery in conjunc-
tion with non-SNA support.

Recoverable System Errors: These are errors
or exceptional conditions, e.g., races
resulting from contention for use of a ses-
sion, for which an SNA-defined recovery algo-
rithm exists. The LU performs the recovery
algorithm; the transaction programs are
normally not aware of these errors, except as
they affect timing.

Program Failures: Thase are errors that
cause abnormal termination of a transaction
program. The LU recovers from such errors by
deallocating any active conversations for the
TP that were not deallocated by the failed
transaction program; thus freeing the ses-
sions for use by other transaction programs.
Any further recovery depends on transaction

Chapter 2. Overview of tha LU 2-11

2-12

program logic and implementation-defined
capabilities such as error exits.

Session Failure: These are failures caused
by unrecoverable failure of the
half-sessions, e.g., invalid session proto-
cols received, or by failure of the underly-
ing network components, e.g., the links.
This case is reported to the LUs through ses-
sion outage notification (SON).

If a conversation is active on the session at
the time of failure, the failure is mani-
fested to the transaction program as a con-
versation failure (see below); othernise,
these errors do not affect transaction pro-
grams. LUs report the conversation failure
to the affected transaction programs.

Conversation Failures: These are failures
caused by unrecoverable failure of the under-
lying session. The resulting conversation
failure is reported to each transaction pro-
gram by a return code on the next verb
issued. The same session and conversation
cannot be recovered, but the LU can activate
another session.

The operator or the transaction programs have
the responsibility to recover the trans-
action. To recover from an interruption in
transaction processing, for example, the
source transaction program can allocate a new
conversation, using another session, to a new
instance of the target transaction program or
to another transaction program.

LU Failure: This is a failure of an LU from
such causes as malfunction of the implement-
ing harduare or software. In many cases,
such a failure appears to remote
(non-failing) LUs as a session failure, and
they recover as they would from any other
session failure. In some cases, recovery is
performed by the sync point function.

Program Error Recovery Support Functions

The LU assists TP recovery from application
errors and local resource failures by sup-
porting the protocols discussed below to
exchange error information and to immediately
end messages or conversations.

Confirmation: This function (e.g., CONFIRM
verb) allows a TP to solicit positive or neg-
ative acknouledgment of a message unit from
the partner TP. The interpretation of this
positive or negative acknowledgment (CON-
FIRMED or SEND_ERROR verbs, respectively) is
program dependent: for one application, con-
firmation wmight mean only that the data was
received; for another, it might mean data was
safely stored on disk; for a third, it might
mean that the data represents a valid account
record update; and so forth.

Program Error Indication: This function
(SEND_ERROR verb) allows a TP to inform the

partner TP of a program-detected error; this

includes sending negative acknoulecdgment to a
confirmation request.

This function also causes program-to-program
transfer of the current message unit to
cease. If a TP detects an error uwhile
receiving, issuing the SEND_ERROR verb
directs the receiving LU to ignhore any addi-
tional data in transit (i.e., to the end of
the conversation message--see ‘“'Conversation
Message" on page 2-15); this is called purg-
ing. Similarly, if a sending TP detects an
error, issuing the SEND_ERROR verb informs
the partner that the source TP has stopped
sending. If the TP stops sending before
reaching a predetermined application-program
data boundary (i.e., the end of a logical
record--see ''Logical Record" on page 2-14),
this is called truncation.

Sync Point: Many transactions require con-
sistent, regular updates of distributed

resources such as distributed data bases.
While a transaction is in progress, however,
the resources at different LUs can enter
mutually inconsistent interim states. If one
of the transaction programs encounters an
error, some recovery action may be necessary
to restore the resources to mutually consist-
ent states. In order to verify or restore
consistency among distributed resources, some
LUs provide a distributed error-recovery
function, called synec point. (Sync point
concepts are discussed in '"Sync Point Func-
tion" on page 2-39.)

Abnormal Conversation Dealleccation: This
function allows a TP to abnormally terminate
a conversation. A TP might do this, for
example, when an error is detected for which
it has no recovery procedure and continuing
the transaction would be meaningless. Hhen
this is received, the LU informs the TP that
the conversation has been abnormally termi-
nated.

LU Error Recovery Functions--Abnormal Session
Deactivation

For some errors,; the LU or operator initiates
recovery.

If an unrecoverable session-protocol error
occurs, the LU abnormally deactivates the
session.

If the control operator detects an error,
e.g.» an apparent deadlock or loop, it can
force immediate abnormal deactivation of a
session.

Either of these cases are normally manifested
to affected transaction programs as conversa-
tion failure.

BASE AND OPTIONAL FUNCTION SETS

The LU functions and protocols are organized
into subsets. The function sets consist of a
base function set, which provides basic com-
munication services common to all LU imple-
mentations, and a small number of optional
function sets, which may be used by implemen-

SNA Format and Protocol Reference Manual for LU Type 6.2

tations with wmore sophisticated additional
requirements. These SNA-defined function
sets are described in SNA Transaction Pro-
grammer's Reference Manual for LU Type 6.2.

All WU 6.2 implementations of a given func-
tion set provide that function in a way that
conforms to the protocol boundary. Further-
more, an LU 6.2 implementation that provides
one function in an option set provides all
other functions in that option set as well.
Thus, all LU 6.2 implementations can communi-
cate using the base set, and any two imple-
mentations supporting functions in the same
option set can communicate using that full
option set.

Two Kinds of optional functions exist. Send
options determine what formats and protocols
will be sent but do not affect what can be
received; all formats and protocols sént
using these options can be received by all

LUs. Receive options determine what can be
received as well as what can be sent. For
receive options, the source LU and TP

requirements are described in the BIND and
the Attach; the receiving LU rejects the ses-
sion or conversation if it, or the specified
TP, does not support the required options.

The principal base and optional functions are
listed below. The complete sets are defined
in SNA TYransaction Proarammer's Reference

Manual for LU Type 6.2.

Application Program Interface Implementations

Open-API implementations support arbitrary
user-written transaction programs, e.g., a
data-base management system running on a host
processor. For these implementations, the
API provides verbs and parameters for all of
the base function set, and perhaps some
optional function sets.

Closed-API implementations do not support
user-written programs but provide only a
fixed, implementation-determined set of serv-
ice transaction programs, e.g.,» a DIA service
transaction program for an office work-
station. For these implementations, the API
provides only the particular verbs and param-
eters that the transaction program set
requires.

MESSAGE UNITS AND THEIR TRANSFORMATIONS

A message unit (MU) is any bit-string that
has an SNA-defined format and is transferred
between SNA components or sublayers.

Distributed transaction programs exchange MUs
nith each other by means of Ws. Transaction
programs exchange application-oriented umits
of data, e.g., a customer record or a docu-
ment, over a conversation. The LUs, in turn,
exchange session-oriented MUs via the
path-control network. But the content and

Principal Base Functions

Basic Conversations: All implementations
provide receive support for all

basic-conversation formats and protocols.

Open-API implementations provide basic con-
versation verbs, but not necessarily in all
supported programming languages. For exam-
ple, an implementation might support both
basic- and mapped-conversation verbs in a
systems-programming language such as Assem-
bler, but provide only mapped-conversation
verbs in high-level languages.

Mapped Conversations: All open-API implemen-

tations provide mapped conversations (prima-
rily in high-level languages).

Principal Optional Functions

Mapping: This is an optional function for
mapped conversations (see '"Mapping Function™
on page 2-39).

Sync Point: This is an optional function for

basic and mapped conversations (see "Sync
Point Function'" on page 2-39).
Program Initialization Parameters (PIP):

This is the means of passing initial parame-
ters or enviromment setup information to a
target TP.

Security: This is an optional function for
verifying the identity of partner LUs and end
users (see ''Security" on page 2-10), and for
for protection of data in transit.

Performance Options: Several optional func-
tions exist to maximize performance for spe-
cific transaction requirements. For example,
an LU can optionally allow transaction pro-
grams to eliminate or accelerate certain
acknonledgments, or to perform processing
concurrently with certain conversation func-
tions. These are send options, so TPs writ-
ten for implementations that support these
options will operate correctly with partner
TPs and LUs that do not support them.

format of an MU wmost appropriate for exchange
between transaction programs is in general
different from that most appropriate for
transmission on a session. Whereas an appli-
cation program typically uses a record size
corresponding to logical groupings of the
data, the LU typically uses MU sizes related
to internal buffer sizes and efficient flow
control. Furthermore, the LU may need to add
encoded protocol information, such as confir-

Chapter 2. Overview of the WU 2-13

2-16

mation requests or MU sequence numbers, to
the program-supplied data.

The LU transforms program-oriented MUs used
by the TP into network-oriented MUs used by
the path control network, and vice versa.
(Throughout this section, message-unit tran-
sformations are described from the sender's
side, i.e., transaction program to LU to net-
work; the process is inverted at the receiv-
er.)

The message-unit transformation takes place
in stages. Each stage transforms some of the
information from the higher stage into a
SNA-defined bit string. Typically, a stage
reblocks (regroups) the MUs from the previous
stage into differently sized units and con-
verts the protocol information into formatted
headers (prefixes) to the reblocked data,
thus creating new MUs.

MAPPED-CONVERSATION MESSAGE UNITS

A data record, at the mapped-conversation
protocol boundary, is a collection of data
values that correspond to the DATA parameter
of a single mapped-conversation MC_SEND_DATA
verb issuance. The format of a data record
is completely arbitrary within the con-
straints of the implementation and the trans-
action program. For example, it need not
even be a contiguous byte string, but might
be a collection of variables and structures.

A mapped-conversation record (MCR) is the
elementary unit of information transferred
between two TPs on a mapped conversation. A
MCR contains the values of a data record
represented as a string of contiguous bytes.
It may be of arbitrary length. It contains
no information for wuse by the LU; its
internal format is significant only to the
TP. The TP supplies needed protocol informa-
tion, such as the mapped-conversation record
length, in separate parameters of the verb,
using representations appropriate to the pro-
gramming language and processor being used.

(A MCR consists of data from a single verb
issuance by the sender, but it may be
received in one or more parts, each with a
single verb issuance, depending on the
receiving TP's receive buffer size),

BASIC-CONVERSATION MESSAGE UNITS

GDS Variables

Full connectivity among programs requires
that all transaction programs interpret the
records they transfer in the same way. To
facilitate uniform interpretation of records
among programs written for different process-
ors, service transaction programs and some
internal LU components, including
mapped-conversation support, use the formats
defined by general data stream architecture
to represent records (see Appendix I).

A general data stream (GDS) variable consists
of a GDS header (LLID) followed by the data.
The GDS header is a descriptive prefix con-
taining a 2-byte length prefix (LL) that
indicates the length of the variable, includ-
ing prefix, and a format identifier called
the GDS ID that indicates the GDS-defined
format of the data. The Lls identify the
boundaries of variable-length fields within a
message unit of contiguous fields, and the
GDS IDs identify the representation of the
data. A GDS variable may be of arbitrary
length. If the variable length exceeds the
value that can be represented in the length
prefix (215-1 = 32,767 bytes, including the
prefix), the record consists of multiple seg-
ments, each with its own length prefix. Only
the first segment contains an ID field. The
length prefix also contains a continuation
bit that indicates whether the corresponding
segment is the last (or only) segment in the
GDS variable.

All data transferred at the
basic-conversation protocol boundary by serv-
ice TPs and other internal LU components (but
not necessarily data transferred by applica-
tion transaction programs) is represented as
GDS variables with SNA-defined formats (see
"Appendix H. FM Header and LU Services Com-
mands').

Logical Record

A logical record is the elementary unit of
information transferred between users of the
basic-conversation protocel boundary. A log-
ical record consists of a 2-byte length pre-
fix (LL) followed by data. Its maximum
length is 32,767 bytes, including the prefix.

The LL prefix of a logical record has the
same format as the LL field in a GDS variable
segment; thus, a GDS variable segment is also
a logical record.| The basic-conversation
protocol boundary requires only the LL pre-
fixs not a full GDS LLID. Thus, logical
records generated by application TPs need not
use ID fields; if they do, the application
assigns and interprets the ID fields; the
basic-conversation support of the LU treats
everything following the LL prefix of the
logical record as user data.

The logical record is the elementary unit for
which the LU detects or reports truncation.

Buffer Record

It might be inconvenient for a transaction
program to issue a single send or receive
verb for each logical record. For example,
the sender or the receiver might have limited
buffer space or might not know ahead of time
the maximum length of the records being sent.
Or, the transaction program might prefer to
send a group of small, related records with a
single verb issuance. So, the unit of data
that a program sends or receives with a sin-
gle basic-conversation verh is of

SNA Format and Protocol Reference Menuml tor LU Type 6.2

program-determined length. This unit is

called a buffer record.

No SNA-defined limit exists on the length of
a buffer record; for example, it could exceed
32,767 bytes. The buffer-record length can
be different for each verb issuance.

No correspondence is nhecessary between the
lengths or boundaries of logical records and
those of buffer records, or between send
buffer records and receive buffer records.
Nevertheless, a receiving program may
optionally specify that the LU begin a neuw
receive buffer record for each new logical
record received. The relationship between
logical records and buffer records is illus-
trated in Figure 2-6 on page 2-19.

CONVERSATION MESSAGE-UNIT SEQUENCES

Certain sequences of message units are rele-
vant to conversation protocols.

Conversation Messaqge

A basic-conversation message consists of the
sequence of logical records transferred in
one direction from one TP to another without
an intervening change of direction or confir-
mation. (The Attach FM header generated from
the ALLOCATE verb is also considered part of
the initial basic-conversation message.)

The end of a conversation message is deter-
mined, when sending, by a conversation state
change caused by the verbs issued. For exam-
ple, PREPARE_TO_RECEIVE, RECEIVE_AND_KAIT,
CONFIRM, SYNCPT, and DEALLOCATE end a conver-
sation message. When receiving, the end of a
conversation message and conversation state
change is determined from corresponding pro-
tocol information received from the sender.
The information identifying the end of a con-
versation message and specifying the way it
was ended is generically called the
end-of-conversation-messaqge indication.

A basic-conversation message is the elementa-
ry unit for which the LU supports confirma-
tion or program-error reporting (e.g.,
SEND_ERROR) between sender and receiver, and
for which it performs purging.

A mapped-conversation message is analogous to
a basic-conversation message; that is, it

consists of the sequence of
mapped~conversation records (or data records)
transferred in one direction from one TP to
another without an intervening change of
direction or confirmation, as understood at
the mapped-conversation protocol boundary.

The unqualified term conversation messaqge is
used when the intended protocol boundary is
clear from the context, or when both the
mapped-conversation message and its corre-
sponding basic-conversation message are
designated.

Conversation Exchange

A conversation exchange consists of the com-
plete set of mapped- or basic-conversation
messages transferred between a pair of TPs
using a particular conversation.

SESSION MESSAGE UNITS

Session message units are formatted for LU-LU
protocols and for effective use of the path
control network.

Function Management Headers

A function management (FM) header is a mes-
sage unit generated by the LU to carry cer-
tain LU control information. The LU uses the
following FM headers:

® An Attach FM header (FMH-5) specifies the
name and required characteristics, e.g.,
option sets required, of the target TP.

® An Error-Description FM header (FMH-7)
describes a transaction program error or
Attach failure.

® A Security FM header (FMH-12) carries
security information for LU-LU verifica-
tion.

Basic Information Unit

A basic information unit (BIU) is the message

unit transferred between two LUs. It con-
sists of a request header (RH) and a

request/response unit (RU).

The RH is a formatted prefix to the RU. It
carries protocol information encoded from the
TP verbs or generated internally by the LU.
"Appendix D. RH Formats'" gives further
details.

RUs carry FM headers, TP-supplied data (for-
matted by the TP or the LU into logical
records), and other protocol information.
The LU uses the following RUs on an LU-LU
session:

. Category FMD RUs, for transaction-program

data

® Category DFC RUs, such as BIS, LUSTAT,
RTR, SIG

* EXR, for some path-control-detected
errors

(For details, see "'Appendix E.

Request/Response Unit (RU) Formats' and "“Ap-

pendix H. FM Header and LU Services
Commands''.)
The LUs also transfer other information

describing the BIU, such as the length and

Chapter 2. Overview of the LU 2-15

2-16

sequence number, which is formatted by path
control. Path control uses this information
to build a transmission header (TH).

SESSION MESSAGE-UNIT SEQUENCES

The following sequences of BIUs are relevant
to session protocols:

A (BIU) chain is a sequence of BIUs that con-
stitute a single unidirectional transfer.
The chain is the most elementary unit that
can be independently confirmed or for which
errors can be reported using SNA-defined LU
protocols. It corresponds to a TP-TP conver-
sation wessage.

A bracket consists of the set of all chains
transferred on a particular conversation. It
corresponds to a TP-TP conversation exchange.
The first data RU in a bracket begins with an
Attach FM header that identifies the target
TP.

The total session traffic comprises a
sequence of one or more brackets. Prior to
bracket traffic, the session is activated
(BIND protocols). Prior to normal session
deactivation, bracket traffic is shut doun
(BIS protocols). All session traffic stops
when the session is deactivated (UNBIND pro-
tocols), whether or not any brackets are in
transit.

Figure 2-4 on page 2-17 illustrates the cor-
respondence between the conversation
wessage-unit sequences and session
message-unit sequences. In the figure:

® The column labelled TP-TP shows the con-
versation message-unit sequences.

(The corresponding conversation
message-unit sequences for the partner
TPs at LU Y are not shown; they are the
reverse of those shown for TP A and TP
B.)

® The colum labelled LU-LU shows the ses-
sion message-unit sequences.

® The colum labelled LW X shows the
relationship between the tuwo sets of
sequences.

MAPPED-CONVERSATION MESSAGE-UNIT TRANSFORMA-
TION

The wmapped-conversation support in the LU
converts a data record into a 6DS variable.

First, the LU optionally performs a
TP-specified wmwapping transformation on the
data record, producing a mapped-conversation
record. If wapping transformations are not
supported or if one is not specified, the TP
supplies the data in MCR format (i.e., a con-
tiguous byte string of TP-determined length).

The mapped-conversation support in the LU
then segments the MCR into units of allowed
logical-record length and adds LLID prefixes,
thus producing a 6DS5 variable consisting of a
sequence of logical records. This is illus-
trated in Figure 2-5 on page 2-18.

BASIC-CONVERSATION MESSAGE-UNIT TRANSFORMA-
TION

Above the basic-conversation protocol bounda-
ry, a TP, or an internal LU component such as
the mapped-conversation support, gererates a
sequence of logical records constituting a
conversation message. It passes this conver-
sation message to the LU as a sequence of
buffer records, by issuing basic-conversation
verbs. Along wuwith the buffer records, it
passes unformatted protocol information such
as the ALLOCATE verb parametars, from which
the LU builds FM headers.

Conceptually, the LU assembles the sequence
of FM headers and logical records into a com-
plete conversation message. It then converts
this conversation wmessage into a chain of
BIUs. Of course, the LU does not necessarily
store a complete conversation message at one
time; when it accumulates enough buffer
records to build one or more BIUs, it builds
those BIUs and sends them out, saving any
residual data for the next BIU.

To build BIlUs, the LU reblocks the FM headers
and logical records into RU-sized units and
generates the necessary RHs., The LU sets the
RH indicators to correspond to functions or
states specified by verb parameters; for
example, it sets the chaining indicators
(BCI, ECI) to indicate the first and last
BIUs in the chain, and it sets the bracket
indicators (BB, CEB) to indicate the first
and last BIUs in a bracket. When necessary,
the L also generates Attach or
Error-Description FM headers (FMH-5 and
FMH-7) from verb parameters and includes
these in the BIUs. The final result is a BIU
chain. Along with the BIU, the LU generates
parameter values for use by path control (to
build the transmission header). The LU
transfers the BIUs and the unformatted BIU
parameters to path control for transmission
to the partner LU. Figure 2-6 on page 2-19
illustrates the conversion process.

DATA EXCHANGE WITH OTHER NAUS

The LU also exchanges wessage units with oth-
er NAUs, specifically with the CP, via the
CP-LU session, and with the PU, directly.
These message units are listed in "Chapter 4.
LU Network Services" and are described brief-
ly belou.

LU~-CP Message Units

The LU sends session services RUs on the
CP-LU session. These RUs are used in the

SNA Format and Protocol Reference Manual for LU Type 6.2

TP—TP LU X LU—Lu Wy

via via
LU Path Control ——— - -
session
activation
TP A B s L 1
® ¢ o BIUs ® o ¢
{ESS=z=SsD=sSsD=ssss
H (TP A sending) :
L eeees Attach ceesesan :
: s =====x ANSNNN LU X sendin:’ ceen : :
C : == ANSNNNY BIU with FMH-5 : : :
0 CHM EESSSNNNNNNN : : :
N 0Ss ANSRNNNNNNNN : : :
\ N G L2 2 N ANSN SNNNNNNN 2 Cc : :
F v so==s=oosozssssss=sED> ANMLALLANNNAD H : s
R HERRN SN\ A H H
S ANSNN 4 I B :
A ANN\ o4 N R :
T N\A\N\> : A :
I cesl c H
0 ceee K :
N 777707 c E :
veess| (TP A receiving) V2224444 H T
E : KSSSSSSISTTIISIISI==N/LL////777777 BIUs A : S
X CHM LI 90484444 * 00 I : E
C 0S logical records |<////////7//7)|<=======z====zz==z=== N : S
H N 6 o o0 /1107 et : S
A v <=========z=====z=====|<///// s I
N - : 0
G / / / / : N
E <=== TP A, LU X alternating send/receive ===> :
: / / / / :
lesecosscne cevessel T
R
A
o 0o O [N BN} ® o O F
(other TPs) (other conversations) (other brackets) F
[2 B] LN BN] ¢ O O I
cecssene [
(LU X receiving) ces :
BIU with FMH-5 : : :
TP B Attach Vo044 : B :
K====z===ss===s=ms=s=| /0077777707 [od R :
ceesssssns 009474 H A :
c I8 449444 A C :
0 resas \ VIV 999444 I K :
N : (TP B receiving) \ V020004044444 N E :
v CHM L====s=s=s=sscs==ms====|C /Ll /000027 7 : T H
0s L \ 9999444 session cest : :
E N G logical records |<////7/ shutdown crsssnel :
X v L) </r/7/7 TEEZSIZIZ=ZSTITZ=TI==D H
[od H <=s=======ss=ss===s==ik//// e @ ¢ BIlUs © o o s
H Seces LESEmSoooooSssToooET s
Geeerveneonn cessecensaed
session
deactivation
SZETISSzSsSzTzToSEE=EY>
o e o BIUs © ¢ @
{===ZzsS==zs==z=s=s=sss
LEGEND:

<====> message-unit flows

N\\\\\> conversion of logical records to BIUs
<//// conversion of BIUs to logical records
...... Message unit sequence boundaries

Figure 2-4. Relationships of Sequences of Message Units (Example)

Chapter 2. Overview of the LU 2-17

Data Record

A

(optional mapper transformation)

v
|< Mapped-Conversation Record >|
1 r
length I/ L) OI/
I : : :
LLIID . .
| <——————Logical Record ———— > : .
: 1 : :
: LL / @ e 0 H H
. J . .
: |< : :
: Logical Records s :
: >| :
: T :
: e o 0 / :
: L :
: LL
: |]<— Logical Record —>|
! 6DS Variable !
LEGEND:
data record: data supplied by the transaction program MC_SEND_DATA verb (arbitrary format)
length: length of the mapped-conversation record (after mapper transformation, if any)
LL: logical-record Length field; the first bit is the continuation field
ID: GDS ID field
Figure 2-5. Relationship of Data Records to Logical Records (Example)
session-initiation protocols for LU-LU ses- The LU generates and uses session control RUs
sions, e.g., for translating the partner LU for session activation and deactivation. It
name into the network address. In some sends these to the PU for routing to the
cases, the choice of RUs depends on the type remote LU.
of node (subarea or peripheral) containing
the sending LU. Another group of LU-PU internal records is
used to connect the LU to other node compo-
The LU also uses the CP-LU session to send nents or to reset the LU.
and receive maintenance services RUs.
LU-PU Records
The LU has a direct protocol boundary with
the PU in its node.
2-18 SNA Format and Protocol Reference Manual for LU Type 6.2

| ¢<=—————— 6DS variable / /—>|< GDS variable >|
]« LR >« LR / /->]< LR >|
Attach 1 T
values LLIID data LL data I/ L OI/ LLIID data
A
] |<Buffer Record>|<Buffer Record>| L) |<Buffer Record>|<Buffer Record>|
v H : H : : H
FMH-5 : : : : :
|< Conversation Message >|
TH : : : ;
val- |[R H RU : : : :
ues - : : : :
|< BIU >| : : : :
: TH values |R H RU : : :
: |< BIU >| : : :
: 1 : : :
: TH values |R H /000 : : :
: l< : : :
H BIUs H : :
: >| : :
: W : :
: — : :
H TH values (R H RU :
: |< BIU >| :
H TH values |R H RU
: J<— BIU —>]
L BIU Chain |
LEGEND:
LR: logical record LL: Length field GDS ID field
RH: request header RU: request unit BIU: basic information unit
FMH=-5: Attach FM header (occurs only on first conversationmessage af conversation)
Attach values: information for the Attach FM header, from the ALLOCATE verb.
TH values: protocol information generated by the LU; the TH is built by path control.
Figure 2-6. Relationship of Conversation Message to BIU Chain (Example)
EXTERNAL FLOW SEQUENCES FOR THE BASE FUNCTION SET

This section illustrates the correspondence
betueen some typical basic-function-set
transaction ' program verb sequences and the
resulting flows of BIUs through the path con-
trol network. (The verbs are described in
detail in SNA Transaction Programmer's Refer-
ence Manual for LU Type 6.2).

The correspondence is illustrated in Fig-
ure 2-7 on page 2-21 through Figure 2-23 on
page 2-28. In the figures, the left column
shows verbs issued by the invoking or
initially-sending TP, and the right column
shows verbs issued in response by the invoked
or initially-receiving TP. The center column
shows the contents of the resulting chain (RH
indicator settings, RU data and FM headers).

Chapter 2. Overview of the LU 2-19

2-20

The arrows indicate direction of BIU flow. A
group of arrows in the same direction repres-
ents a chain, but no necessary correspondence
exists between arrows in the figures and BIUs
in the chain.

Each figure shows one of the following:

® The beginning of a chain, for chains that
begin a bracket

® The end of one chain and the begimning of
the next

® The end of a chain, for chains that end a
bracket

"Allowable Combinations of Sequences'" on page
2-23 shows howu these flows can be combined,
or sequenced, to form complete conversations.
Finally, "“Error Flows" on page 2-25 shows
asynchronous response cases.

NOTATION

The following notation is used in the fig-
ures.

> Request RU
Cmmome Response RU
RH indicators:

The flow is labeled with the indicator values
that are carried in the RH.

BB Begin bracket

CEB Conditional end of bracket

BC Begin chain

EC End chain

RQEl Request exception response 1

RQE2 Request exception response 2 (in this
case, DRII = DR1|-DR1; i.e., RQE3 is
equivalent to RQE2).

RQD1 Request definite response 1

RQD2 Request definite response 2 (in this
case, DRII = DR1|-DR1; i.e., RQD3 is
equivalent to RAD2).

cb Change direction

+DR2 Positive response to RQD2

-RSP(0846) Negative response to chain

RU contents:

FMH-5 Attach FM header

FMH-7 Error-description FM header

The sense-data categories shown are:

0864 Abnormal deallocation
0889 Program-detected error

data User data in FMD RU

Verbs and Parameters

The returned RETURN_CODE parameter of the
RECEIVE_AND_WAIT verb is not shoun when it is
set to OK; in that case, the returned
WHAT_RECEIVED parameter is shown instead.

DATA_#* represents
TA_COMPLETE or
parameter.

either setting (DA~
DATA_INCOMPLETE) of this

Data Transfer Description

Whenever a TP has the right to send, it
issues SEND_DATA zero or more times. Simi-
larly, a TP in receive state repeatedly
issues RECEIVE_AND_WAIT, until it receives
all of the data and the
end-of-conversation-message indication. The
receiver issues at least one receive verb; in
the absence of errors, zero or more initial
issuances of SEND_DATA by the source TP
result in zero or more receive verb issuances
(with WHAT_RECEIVED = DATA_INCOMPLETE) at the
target. The final issuance receives the
end-of-conversation-message indicator as
WHAT_RECEIVED = DATA_CONMPLETE. Since the
buffer record sizes used at the sending TP
and at the receiving TP may differ, the num-
ber of receive verb issuances does not neces-
sarily watch the number of send verb
issuances.

All of the following figures begin or end
with the data-transmission sequence Just
described. That sequence is represented in
the figures as follows.

When the figure begins with (the end of) the
data-transmission sequence, it shows (at the
sending TP) a single SEND_DATA verb, and a
corresponding data arrow, followed by verti-
cal (two-dot) ellipsis marks (:). No
RECEIVE_AMD_WAIT verb is shown at the
receiving TP.

When the figure ends with (the beginning of)
the data-transmission sequence, it shows (at
the receiving TP) vertical ellipsis marks
(:), followed by a single RECEIVE_AND_WAIT
verb with WHAT_RECEIVED = DATA_COMPLETE.
"Data" is shoun on the corresponding arrouw,
along with the end-of-conversation-message RH
indicators. No SEND_DATA verb is shown at
the beginmning of the receiving-TP verb
sequence.

ERROR-FREE FLOWS

The error-free flows for the base function
set flows are described in terms of the verb

SNA Format and Protocol Reference Manual for LU Type 6.2

sequences shoun in Figure 2-7 on page 2-21
through Figure 2-14 on page 2-23.

SEQUENCE 1

ALLOCATE
SYNC_LEVEL(NONE) BC,BB,FMH-5
> (TP started)

SEND_DATA data

>

. - .
. < :

Figure 2-7. Start Conversation without Confirmation

SEQUENCE 2
PREPARE_TO_RECEIVE EC,RQE1,CD,data RECEIVE_AND_WAIT
TYPE(FLUSH) > WHAT_RECEIVED=DATA_COMPLETE
RECEIVE_AND_WAIT
WHAT_RECEIVED=SEND
BC,data SEND_DATA

Figure 2-8. Conversation Turnaround without Confirmation: PREPARE_TO_RECEIVE is optional; when it
is omitted, and a receive verb is issued from SEND state, the function of
PREPARE_TO_RECEIVE is performed before any data is actually received.

SEQUENCE 3

.

DEALLOCATE EC,RQE1,CEB,data RECEIVE_AND_WAIT

TYPE(FLUSH) > WHAT_RECEIVED=DATA_COMPLETE
(local deallocation) RECEIVE_AND_WAIT
RETURN_CODE=DEALLOCATE_NORMAL
DEALLOCATE
TYPE(LOCAL)

(local deallocation)

Figure 2-9. Finish Conversation without Confirmation

SEQUENCE 4
ALLOCATE BC,BB,FMH-5

SYNC_LEVEL(CONFIRM) > (TP started)
SEND_DATA data

>

. . -
. : .

Figure 2-10. Start Conversation with Confirmation

Chapter 2. Overview of the LU 2-21

SEQUENCE 5

CONFIRM

:

EC,RQD2,~CD,data RECEIVE_AND_WAIT
> WHAT_| RECEIVED= DATA_COMPLETE
RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM
+DR2 CONFIRMED

RETURN_CODE=OK <

SEND_DATA BC,data

.
.

.
o

Figure 2-11. Continue Conversation: Confirmation without Turnaround

SEQUENCE 6A

PREPARE_TO_RECEIVE RECEIVE_AND_WAIT

TYPE(SYNC_LEVEL) EC,RQD2,CD,data
LOCKS(SHORT) > WHAT_RECEIVED=DATA_COMPLETE
RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND
+DR2 CONFIRMED
RETURN_CODE=0K <
BC,data SEND_DATA

<&

. . -
. . -

Figure 2-12. Conversation Turnaround with Confirmation, using LOCKS(SHORT):

When the receiving TP issues CONFIRMED after the LU has received RQD2--indicating
CONFIRM LOCKS(SHORT)--the LU immediately sends a CONFIRMED response (+DR2). This
allows the CONFIRM sender to resume processing immediately, so that, for example, it
can release locks on its local resources.

(The receiving LU processes the RQD2 internally; it does not inform the receiving TP of
the LOCKS parameter value.)

SEQUENCE 6B
PREPARE_TO_RECEIVE RECEIVE_AND_WAIT

TYPE(SYNC_LEVEL) EC,RQE2,CD,data
LOCKS(LONG) >

WHAT_RECEIVED=DATA_COMPLETE
RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND
CONFIRMED
(LU omits sending +DR2)
BC,data SEND_DATA
RETURN_CODE=0K <

. . .
. . .

Figure 2-13. Conversation Turnaround with Confirmation, using LOCKS(LONG):

When the receiving TP issues CONFIRMED after the LU has received RQE2--indicating
CONFIRM LOCKS(LONG)--the LU does not send an immediate confirmation response. Instead,
it continues processing until it has a complete BIU to send. The CONFIRM sender
interprets receipt of BC without an intervening response as positive confirmation.

LOCKS(LONG) does not require the +DR2 response BIU that LOCKS(SHORT) requires, but it
can cause the CONFIRM sender to wait longer before resuming processing.

2-22 SNA Format and Protocol Reference Manual for LU Type 6.2

SEQUENCE 7

. .

WHAT_RECEIVED=DATA_COMPLETE

WHAT_RECEIVED=CONFIRM_DEALLOCATE

DEALLOCATE EC,RQD2,CEB,data RECEIVE_AND_MWAIT
TYPE(SYNC_LEVEL) >
RECEIVE_AND_WAIT
+DR2 CONFIRMED
RETURN_CODE=0K <
Local Deallocation DEALLOCATE
TYPE(LOCAL)

Figure 2-14.

Finish Conversation with Confirmation

ALLOWABLE COMBINATIONS OF SEQUENCES

When a program issues one of the verb
sequences shown above, that program is limit-
ed in its choice of the next verb sequence it
can issue. The matrix in Figure 2-15 shous
which verb sequences can follow a given verb
sequence in the base function set. The
matrix has the following meaning:

® The row numbers (left column) and column
numbers (top row) in the matrix corre-
spond to the sequence numbers in Fig-
ure 2-7 on page 2-21 through Figure 2-14.

A row corresponds to the verb sequence
just issued; a column corresponds to the
verb sequence issued next.

In the matrix, row 0 or column 0 repres-
ents the state in which no conversation
exists, i.e., the state prior to ALLOCATE
or subsequent to DEALLOCATE.

® A letter N or C in a cell indicates that
the sequence corresponding to the column
number can follow the sequence corre-
sponding to the rou number.

- N--indicates a next sequence allowed
for conversations allocated with

either SYNC_LEVEL(NONE) or
SYNC_LEVEL(CONFIRM), i.e., conversa-
tions started with sequences 1 or ¢

- C--indicates a next sequence allowed
only for conversations allocated with
SYNC_LEVEL(CONFIRM), i.e., conversa-
tions started with sequence ¢4

- empty--indicates that the correspond-
ing sequence order is invalid

¢ The Next-Sender column indicates which TP
is initial sender (i.e., issues the verbs
in the left column of the figure) for the
next sequence:

- SAME--the initial sender of the next
sequence is the same as the initial
sender of the previous sequence.

—~ OTHER--the initial sender of the next
sequence is the partner of the ini-
tial sender of the previous sequence.

Figure 2-16 on page 2-24 and Figure 2-17 on
page 2-24 illustrate the application of these
rules to generate allowable conversation
sequences.

ol1]2|3}fa]5 | 6A] 6B] 7 | Next-Sender

0 N c

1 N | N SAME

2 N | N Cc o c c SAME
3N

4 cj|c Cc c Cc c SAME

5 cj|c cyjcjcyc SAME

6A| cjc cjecjpc|ec OTHER

6B Cc Cc Cc C Cc c OTHER
71¢C

Figure 2-15.

Possible Next Sequence in Error-Free Cases

Chapter 2. Overview of the LU 2-23

ALLOCATE
SYNC_LEVEL(NONE) BC,BB,FMH-R
— > (TP started)

SEND_DATA data RECEIVE_AND_WAIT INOTE 1--see text]
> WHAT_RECEIVED=DATA_%
SEND_DATA RECEIVE_AND_WAIT
DEALLOCATE EC,RQE1,CEB,data WHAT_RECEIVED=DATA_COMPLETE
VI E(FLUSH) —> RECEIVE_AND_WAIT
(local deallocation) RETURN_CODE=DEALLOCATE_NORMAL
DEALLOCATE

TYPE(LOCAL)
(local deallocation)

Figure 2-16. One-Way Conversation without Confirmation: Combines Sequences 1 and 3

The sequence shown in Figure 2-16 is gener- SEND_DATA and one additional issuance of
ated as follows: RECEIVE_AND_WAIT.

1. Begin in state 0. 4. Select a column containing an N in row 1.
2. Select a column containing a lettered In this example, column 3 was chosen.

cell in row 0.
5. Orient sequence 3 according to the "next
In this example, column 1 was chosen. sender" column for the previous sequence.
This corresponds to sequence 1.
In this example, the next sender is SAME,

3. Supply an arbitrary number of SEND_DATA so the left column of sequence 3 1is
and RECEIVE_AND_KWAIT verbs follouing issued by the same TP as the left column
sequence 1, as allowed by the the of sequence 1.

data-transfer convention.
6. Select a column containing an N in rouw 3.

In this example, the ellipsis wuas The only choice is column 0, indicating
replaced by one additional issuance of the end of the sequence.
ALLOCATE BC,BB,FMH-5
SYNC_LEVEL(CONFIRM) >(TP started)
PREPARE_TO_RECEIVE EC,RQE2,CD RECEIVE_AND_WAIT
TYPE(SYNC_LEVEL) > WHAT_RECEIVED=CONFIRM_SEND
LOCKS(LONG) CONFIRMED
BC,data SEND_DATA

RETURN_CODE=OK <
RECEIVE_AND_WAIT
WHAT_RECEIVED= EC,RQD2,CEB,data DEALLOCATE
DATA_COMPLETE < TYPE(SYNC_LEVEL)

RECEIVE_AND_WAIT

WHAT_RECEIVED=

CONFIRM_DEALLOCATE
CONFIRMED +DR2

-------------------- > RETURN_CODE=OK

DEALLOCATE
TYPE(LOCAL)

Figure 2-17. Two-Way Conversation with Confirmation: Combines Sequences 4, 6B, and 7.

The sequence shown in Figure 2-16 is gener- 2. Supply some number of SEND_DATA and
ated as follows: RECEIVE_AND_WAIT verbs following sequence
4.

1. Beginning in state 0, select sequences 4,
6B, and 7, returning to state 0. In this example, 0 instances of SEND_DATA
were chosen. Thus, following the data
transfer convention, the SEND_DATA verb

2-24 SNA Format and Protocol Reference Manual for LU Type 6.2

and data arrow in sequence 4 are elimi-
nated, as is the RECEIVE_AND_WAIT
WHAT_RECEIVED = DATA_COMPLETE and the
data on the EC arrow in sequence 6B.

3. The next sender following sequence & is
SAME; therefore, sequence 6B has the same
orientation as the preceding sequence.

4, Supply some number of SEND_DATA and
RECEIVE_AND_WAIT verbs following sequence
6B.

In this example, only one instance of
each was chosen, corresponding exactly to
the number in the sequence figures.

(This figure illustrates that the ari-ous
do not necessarily correszund to BIUs.

For example, the CONFIRM, SEND_DATA, and
DEALLOCATE might generate only one BIU,
even though two arrows are shown in the
figure.)

5. The next sender following sequence 6B is
OTHER; therefore, sequence 7 is reversed
to have the opposite orientation from
that of the preceding sequence (i.e.,
since the left column of sequence 6B cor-
responds to the left column of the com-
bined sequence, the left column of
sequence 7 corresponds to the right col-
umn of the combined sequence).

6. The next row number is 0; therefore this
comnlaies ihe sequence.

SEND_DATA data
SEND_DATA

REQUEST_TO_SEND_RECEIVED=YES

.

.

RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_¥
BC,EC,SIGNAL (erpedited flow) REQUEST_TO_SEND
<
RECEIVE_AND_WAIT

WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=SEND

PREPARE_TO_RECEIVE EC,RRE1,CD,data
TYPE(FLUSH) >
RECEIVE_AND_WAIT BC,data

WHAT_RECEIVED=DATA_3

.

Figure 2-18.

<

. o -
s .

SEND_DATA

Conversation Turnaround following REQUEST_TO_SEND (without Confirmation):

REQUEST_TO_SEND issued by the receiving TP results in an expedited-flow one-RU chain.

The TP sending data
subsequent verb.

is notified via the REQUEST_TO_SEND_RECEIVED parameter of a
The interpretation of REQUEST_TO_SEND_RECEIVED is determined by the

TP. In this example, the sending TP stops sending and issues RECEIVE_AND_WAIT.

EXCEPTION FLOW

Figure 2-18 illustrates the only non-error
case for which a TP can send while in receive
state. This flow represents issuing the
REQUEST_TO_SEND verb and sending the SIGNAL
RU.

This flow can be substituted for sequence 2.
A similar sequence corresponding to sequence
6A or 6B exists, but is not illustrated here.

ERROR FLOWS

Figure 2-19 on page 2-26 through Figure 2-23
oh page 2-28 illustrate flows resulting from
transaction-program error recovery for the
base function set. When the TP detects a
TP-defined error (e.g., the received data

fails an application validity check, or the
partner sends more logical records than
expected) it issues SEND_ERROR or DEALLOCATE
TYPE(ABEND). When the LU detects a trans-
action program error, such as an Attach fail-
ure, it generates similar flows.

Three cases exist:

¢ Verb issued by sender
* Verb issued by receiver

® Verb issued by both (e.g., a SEND_ERROR
race has occurred)

(This case is not illustrated for DEALLO-
CATE.)

For cases not shown here, see ‘''Component
Interactions and Flow Sequences" on page
2-50.

Chapter 2. Overview of the LU 2-25

SEND_DATA

e

.
.

(TP detects RECEIVE_AND_WAIT

an error)

SEND_ERROR data
right ¢ > WHAT_RECEIVED=DATA_INCOMPLETE
SEND_DATA FMH-7(0889),data RECEIVE_AND_WAIT

> WHAT_RECEIVED=PROGRAM_ERROR_TRUNC

.
K .

Figure 2-19. SEND_ERROR Issued by Sender:

The SEND_ERROR verb forces sending of accumulated data and begins a new RU with an
FMH~7. The issuing TP remains in send state; it can, for example, send additional
TP-determined data to further describe the error.

SEND_DATA data RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_%
) (TP detects an error)
-RSP(0846) SEND_ERROR
(R ——
SEND_DATA datal Purge incoming BIUs
> to end of chain
' "
(LU ends chain) <-=--- - "
EC,RQEL1,CD,no data "
- > " (LU detects end of chain)
RETURN_CODE=0K
BC,FMH-7(0889),data SEND_DATA
<

RETURN_CODE=
PROG_ERROR_PURGING
RECEIVE_AND_WATT

»
. .

o

Figure 2-20. SEND_ERROR Issued by Receiver:

The SEND_ERROR verb causes a negative response to the incoming chain; the sending TP
sends End-of-chain and Change-direction when it receives the response. Heanwhile, the
receiver purges incoming RUs until the End-of-chain indication is received, then it
sends FMH-7 and leaves the issuing TP in send state so it can, for example, send
additional TP-determined data describing the error. :

2-26 SNA Format and Protocol Reference Manual for LU Type 6.2

.

SEND_DATA

(TP detects
an error)
SEND_ERROR

SEND_DATA

.
.

]
(LU ends chain) <=---l “w

data RECEIVE_AND_WAIT

> WHAT_RECEIVED=DATA_3*
(TP detects an error)

-RSP(0846) SEND_ERROR

s o v e T e 200 o e

datal Purge incoming BIUs
| > to end of chain
FMH-7(0889),data "

.
.

g
o
o

EC,RQE1,CD,no data "

> " (LU detects end of chain)
RETURN_CODE=0K

BC,FMH-7(0889),data SEND_DATA

<.

RETURN_CODE=
PROG_ERROR_PURGING
RECEIVE_AND_KAIT

.

. .
. .

Figure 2-21. SEND_ERROR Issued by both Sender and Receiver (SEND_ERROR Race):
Each LU begins SEND_ERROR processing as in the no-race case, but since the receiver is
purging to end of chain, the SEND_ERROR from the sender is alse purged, so the
receiver's SEND_ERROR takes precedence.
SEND_DATA RECEIVE_AND_MWAIT
DEALLOCATE data
TYPE(ABEND_PROG) > WHAT_RECEIVED=DATA_¥*
EC,RGD1,CEB,FMH~7(0864) RECEIVE_AND_MWAIT
> RETURN_CODE=
+DR1 DEALLOCATE_ABEND_PROG
(response used <
internally)
Figure 2-22. DEALLOCATE ABEND Issued by Sender:

The flow is similar to SEND_ERROR in send state. The +DR1l response is
internal processing.

required for

Chapter 2. Overview of the LU 2-27

SEND_DATA data RECEIVE_AND_WALT
> KHAT_RECEIVED=DATA_»
~RSP(0846) DEALLOCATE
[————— TYPE(ABEND_PROG)
SEND_DATA datal Purging
> ”"
i :
: : : : :
(LU ends chain) <---d "
EC,RQE1,CD,no data "
> "(LU detects end of chain)
BC,EC,RQD1,CEB,FMH-7(0864)
<
RETURN_CODE=
DEALLOCATE_ABEND_PROG
+DR1

Figure 2-23. DEALLOCATE ABEND Issued by Raceiver:

> (response used internally)

The flow is similar to SEND_ERROR in receive state. The +DR! response is required for

internal processing.

LU STRUCTURE

Figure 2-24 on page 2-29 illustrates the
structure of the LU.

The upper protocol boundary of the LU is the
transaction program protocol boundary (de-
scribed in SNA Transaction Programmer's Ref-
erence Manual for LU Jype 6.2). A
transaction program processes end user data,
and requests LU services to commmicate with
other transaction programs.

The lower protocol boundary of the LU is the
path control protocol boundary, below which
is the SNA path control network, which the LU
uses to communicate with other LUs and uwith
its control point (CP).
The LU also has a protocol boundary with the
PU (see "Chapter 4. LU Network Services').
SNA LAYERS
The LU contains instances of the follouwing
four SNA layers:

Transaction services

Presentation services

Data flow control

Transmission control

Component Overview

The LU has two layers of components, one for
its upper protocol boundary with transaction
programs, and one for its lower protocol
boundary with the path control network. Each
layer consists of a group of processes con-
taining a pair of SNA layer-instances, and a
mahager component that creates, destroys, and
otheruise manages these instances.)

The upper layer contains transaction proc-
esses, which contain instances of the follow-
ing SNA layers:

Transaction services
Presentation services

More concretely, each transaction process
contains an execution instance of a trans-
action program and some Presentation Services
components for processing the verbs issued by
it. (See Figure 2-25 on page 2-30.)

This layer is managed by the resources manag-
er component (RM), which creates transaction
processes (in response to Attaches received
from remote LUs), destroys them after they
have finished executing, and connects them
with sessions (thus enabling them to partic-
ipate in distributed transactions).

2-28 SNA Format and Protocol Reference Manual for LU Type 6.2

e

)
® Application

Control- < > Control Operator
Transaction Operator
Program Transaction
Program
A A
: : | .
: : .
H H | DIA L4
: : SNADS __}
: : RESYNC
: : CNOS
: : Service
: : Transaction
: H Programs
: : A
H v H
H H 1
I H v .
: 1@
| v '_I
Presentation Services
Resources
Manager
A
<
A
I
\"
<
PU < > <]
LU I 1
Network Y v I v v 4
Services 1 ¢
[)
> Data Flow
PNCP-LU SSCP-LU Control
Half- Half-
Session Session Transmission
Control
Services Manager LU-LU Half-Session
A A A
LU
v \ v
LEGEND: PATH-CONTROL NETWORK
< > SEND/RECEIVE relationship
<....> CALL/RETURN relationship
CNOS: Change Number of Sessions RESYNC: Sync Point Resynchronization
SNADS: SNA Distribution Services DIA: Document Interchange Architecture Services
Figure 2-24. Overview of LU 6.2 Components

Chapter 2.

Overvieu of the LU

2-29

Resources Manager

LEGEND :
veees> CALL/RETURN relationship (within a process)

<
NOTE:

Figure 2-25.

> SEND/RECEIVE relationship (between processes)

Transaction Program
cveesssssssccssccsssse’
: any verb issued
PS_INITIALIZE PS Verb Router v
: A : A : A 3
e g2] ot / / H
A v v v v
other
PS for PS for PS for PS PS for
Mapped Sync Point Control verb Basic
Conversations| Services Operator handlers |[Conversations
PS.MC PS.SPS PS.COPR| e e o PS.CONV
/ / A
|
v v

Half-Session or
Resources Manager

PS verb router is called recursively by PS verb handlers.

Structure of a Presentation Services Process

The lower layer contains half-sessions (HSs),
which contain instances of the following SNA
layers:

Data flow control

Transmission control

Half-sassions enforce protocol rules for con-
versation data exchange, and transform mes-
sage units between the format useful +to
conversing programs and the format appropri-
ate for the Path Control netuwork (this
includes implementing session services such

FUNCTIONAL SUMMARY BY FUNCTION

2-30

This is the first of tuwo sections describing
the functions and interactions of LU compo-

nents. This section is organized by func-
tion; it concentrates on functions that
involve multiple components. For each func-
tion, it explains in approximate time

sequence the roles of the various LU compo-
nents. The next section is organized by com-
ponent, and covers functions performed
principally by one component. A full
description of each component is given in its
corresponding chapter of this book.

For illustrations of the component inter-
actions discussed in this section, including
a variety of cases not discussed elseuhere in
this chapter,; see "Component Interactions and
Flow Sequences' on page 2-50. In particular,
Figure 2-34 on page 2-52 and Figure 2-35 on
page 2-53 illustrate the interactions, at the
source and target LUs, respectively, for a

as pacing and cryptography). KWhile most of
these are LU-LU half-sessions for transport-
ing conversation data, one of them must be a
CP-LU half-session connecting the LU to its
Control Point.

This layer is managed by the LU network serv-
ices component (LNS), which creates and
destroys half-sessions and interacts with SNA
components outside the LU (the control point
and the nodal NAU manager in the PUJ.

The resources manager and LU network services
components are created by the PU when it
activates the LW; they run continuously
thereafter.

typical conversation; Figure 2-36 on page
2-54 and Figure 2-37 on page 2-55 illustrate
typical interactions for session deacti-
vation.

The LU manages the state and configuration of
its local resources, including transaction
programs, conversation resources, and
half-sessions. It cooperates with other LUs,
using shared sessions and conversations, to
configure these resources to support distrib-
uted transactions. (An LU implementation
might also manage other, non-SNA, resources
such as processor execution cycles, storage,
and data bases.)

The principal functions leading to LU trans-
action processing are the following,; not nec-
essarily performed in this order:

® Activating sessions between two LUs

SNA Format and Protocol Reference Manual for LU Type 6.2

® Invoking transaction programs

® Initiating conversations between the
transaction programs

® Transferring message units between the
transaction programs

EXAMPLE TRANSACTION PROGRAM

Figure 2-26 outlines some typical verb issu-
ances for an example pair of transaction pro-
grams.

SOURCE TP TARGET TP

MC_ALLOCATE

MC_SEND_DATA MC_RECEIVE_AND_WAIT
" "

MC_RECEIVE_AND_WAIT "
MC_SEND_DATA
"

" "

" MC_DEALLOCATE
MC_DEALLOCATE

Figure 2-26. Example of Communicating
Transaction Programs

The programs, running at different LUs, issue
complementary sequences of verbs. The LUs
convert these executed verbs into
message-unit flows.

MESSAGE-UNIT TRANSFER

First, consider transfer of message units.
Assume that two transaction programs are run-
ning at their respective LUs and are con-
nected by a mapped conversation. For the
programs to transfer data, one program must
issue MC_SEND_DATA verbs while the other

issues complementary MC_RECEIVE_AND_WAIT
verbs.
The TP invokes PS for each

transaction-program verb it issues. PS per-
forms the function appropriate to the specif-
ic verb. For each verb, PS verifies that the
verb is valid in the current conversation
state, converts the verb parameters to an
intermediate representation, and performs
verb-specific processing that includes issu-
ing appropriate requests to other LU compo-
nents.

When sending, PS transforms the
mapped-conversation record (MCR) into logical
records, determines message-unit sequence
boundaries such as the end of a conversation
message, and passes the data and control
information to HS. HS converts the logical
records into one or more RUs, encodes the
protocol information into the RH, and passes

the resulting BIU and TH information to path
control.

When receiving, HS checks incoming BIUs for
format and protocol validity and passes the
data to PS. When the TP issues a
RECEIVE_AND_WAIT verb, PS checks the verb for
validity, waits until HS supplies the
requested amount of data, and passes the data
and protocol information back to the TP.

The following sections discuss these func-
tions in more detail. (Figure 2-4 on page
2-17, Figure 2-5 on page 2-18, and Figure 2-6
on page 2-19 illustrate the message-unit
relationships discussed.)

Sending Data

For MC_SEND_DATA, PS verifies that the con-
versation is in send state. If mapping is
being performed, PS maps the
transaction-program data record into a
mapped-conversation record (see 'Mapping
Function" on page 2-39). It transforms the
MCR into a sequence of logical records of
implementation-defined length by segmenting
the supplied data and prefixing the appropri-
ate GDS LLID fields. It issues SEND_DATA
verbs as often as necessary (determined by
the buffer-record size used by the PS.MC
implementation) to send all the logical
records.

PS (in particular, the PS verb router) is
recursively callable: it is called by a TP
when the TP issues a verb, and it is also
called by verb handlers within PS that them-
selves issue verbs. For example, the
mapped-conversation verb handlers in PS typi-
cally issue one or more basic-conversation
verbs to perform the function requested by a
mapped-conversation verb.

When PS has first entered send state, it
expects an LL at the beginning of the first
buffer record. From then on, PS compares the
accumulated length of the data passed on suc-
cessive issuances of SEND_DATA to the
logical-record lengths specified in the LLs,
thus verifying that the conversation message
sent ends at a logical record boundary.

PS accumulates the data from successive buff-
er records in an internal buffer of
implementation-defined length. When the
buffer is full, PS transfers the data to HS
with an indication of whether it is the last
of the data for a conversation message. MWhen
PS detects the end of a conversation message,
e.g.» a PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT,
CONFIRM, SYNCPT, or DEALLOCATE verb was
issued, PS transfers its remaining accumu-
lated data with an indication of hou the con-
versation message was ended, e.g.
confirmation request, conversation turn-
around, or deallocation. It also places the
conversation in the appropriate state.

Meanwhile, the HS process, also in send

state, waits for data from PS. HWhen PS
passes the data, HS reblocks it into RU-sized

Chapter 2. Overview of the LU 2-31

2-32

units (the RU size for a session is deter-
mined by BIND negotiation when the session is
activated). When HS has received more data
than necessary to fill an RU, it generates an
RH, builds the BIU, and generates a sequence
rnumber and other TH information. If session
gryptography is being used, HS enciphers the
ata.

HS encodes each RH to indicate the beginning
or end of a bracket (corresponding to a com-
plete conversation exchange) and the begin-
ning or end of a chain (corresponding to a
conversation wessage). For all but the last
BIU in a chain, HS encodes the RH with RQEl.

For the last BIU for the conversation mes-
sage, HS encodes the RH with EC (the
end-of-conversation-message indicator) and
other indicators selected by PS, such as CD
(e.g., PREPARE_TO_RECEIVE verb issued), RQD2
(e.g.» CONFIRM issued), RQD1 (DEALLOCATE
TYPEIABEND]) issued), and CEB (DEALLOCATE
issued). HS changes the local session state
accordingly.

KS passes each completed BIU and the corre-
sponding TH information to path control for
transmission to the receiving HS in the
remote LU.

HS enforces session-level pacing. The send-
ing HS sends at most one pacing window of
BIUs before receiving a pacing response. It
then requires a pacing response from the
receiver before sending another window. The
receiving HS sends a pacing response when it
can receive another pacing windod, e.g., when
it has enough free buffers. Depending on its
ability to receive additional data, the
receiver may send a pacing response at any
time after receiving the first BIU of a win-
dou.

Receiving Data

The HS process at the receiving LU receives
BIUs and TH information from path control.
It sends pacing responses when it is able to
receive additional BIUs, If session
cryptography is specified, it deciphers the
data. It checks for correct session proto-
col. It checks BIU sequence numbers to
detect lost or duplicate BIUs and to corre-
late responses with the correct bracket. 1If
it detects any protocol error, it abnormally
deactivates the session, i.e., it requests
LNS to issue UNBIND indicating a format or
protocol error.

If the BIU is satisfactory, HS sends the
Attach FM header, if present, to RM, and
sends all other RU data to PS. HS also sends
PS an indication of significant state changes
that were encoded in the received RH such as
end of a conversation message (End-of-chain),
enter send state (Change-direction), confir-
mation request (Definite-response 213) and
end of conversation
(Condi tional-end-of-bracket). HS changes its
own session state accordingly.

Meanuvthile, the receiving ™ issues
MC_RECEIVE_AND_WAIT verbs to receive the con-
versation message. Each verb issuance calls
PS.

For each MC_RECEIVE_AND_WAIT issuance, PS
repeatedly tand recursively) issues
RECEIVE_AND_WAIT verbs until it receives a
complete MCR from HS.

For each RECEIVE_AND_KWAIT verb issuance (in-
cluding the case in which RECEIVE_AND_MAIT is
issued directly by a transaction program,
i.e., for a basic conversation), PS waits for
the data from HS. As PS receives the data,
whizh includes LL fields, PS accumulates the
data in an internal buffer, until it reaches
the end of a logical record (or buffer
record). While accumulating the data, PS
keeps track of the LL fields, to verify that
the conversation message ends on a leogical
record boundary.

When the PS verb handler for RECEIVE_AND_WAIT
returns (recursively) to the PS verb handler
for MC_RECEIVE_AND_MWAIT, PS5 checks the length
and continuation fields in the Lls to verify
that a complete MCR has been received, strips
the €DS LL and ID fields, and reblocks the
data into an MCR. (If the TP receive buffer
cannot contain the complete MCR, PS passes it
to the TP in receive-buffer-sized segments,
i.e., mapped-conversation buffer records.)

If PS receives an end-of-conversation-message.
indication, it does not forward this indi-
cation to the TP until after all logical
records and MCRs have been received. It then
returns the end-of-conversation-message indi-
cation alone on the next MC_RECEIVE_AND_WAIT
verb issued, and places the wmapped conversa-
tion into the appropriate state.

Internal Buffering

Figure 2-27 on page 2-33 illustrates internal
buffering that the LU wmay perform during send
and receive operations. The figure has the
follouwing meaning.

Column (A)

TP send buffer record is the DATA parameter
(LL and data) of the SEND_DATA verb.

Column (B)

PS send buffer is a buffer in the sending PS
of implementation-defined length (in this
example, 6) for accumulating TP data to
be sent to HS.

PS-t0-HS record is the data transferred to
HS from a full PS5 send buffer.

Column (C)

HS internal buffer is & buffer in the send-
ing HS of RU size (in this example, &)
that accumulates data from PS until a
complete RU can be sent.

SNA Format and Protocol Reference Manual for LU Type 6.2

Source LU Path Control Target LU
(A) (B) (c) (D) (E)
TP Send : PS PS—to-HS : HS HS~to-HS : HS—-to-PS : PS TP Receive
Buffer : Send Record : Internal via : Record : Receive Buffer
Record : Buffer : Buffer PC s : Buffer Record
:(length 6) (length 6):(RU size 4) (RU size 4): (RU size 4):(infinite) (length 8)
Data LL: ; ; ; Data (len)
} t } }
(1) gfedcbA 7 : g fedcbA fe dcbA : dcbA : dcbA
(2) | ponmlkjiH 9 : ponm lkjiHg : 1kji Hgfe : Hgfe : H gfedbcA 7
(3) : :(HS defers sending RU) : ;
(4) srQ 3 : s rQponm : rQponm 1kji :+ 1kji s lkjiH
(5) : : "] ponm : ponm : p onmlkjiH 9
(6) vul 3 : wuTs : rQ H ; p
(7) ZyxH 4 : zy ¢ xWvuTs H XWvu TsrQ : TsrQ : T srQ 3
(8) $#0: s #zy : #zy xWvu ¢ xHvu : K wT 3
(9) : : : #zy ; #zy : # zyxH &
(10) : : : : : #
]] 1 1
Direction of Flouw
>
NOTATION:

Read data strings right to left to correspond with the order of

A capital letter represents the start of a logical record
(i.e., the first byte of the LL field.)

represents the end-of-conversation-message indication.

(This is actually coded in the RH, which is not shoun in this

flow on the session.

example.)

Parenthesized numbers and letters identify rows and columns for explanations in the text.

Figure 2-27.

Internal Buffering in LU Send/Receive Data Operations (Example)

HS-to-HS via PC is an RU transmitted over
the path control network.

Column (D)

HS-to-PS record is a received RU sent from

HS to PS.
Column (E)

PS Receive Buffer is an unbounded buffer for
accumulating received data from HS.

-
a-

JP Record is the DATA parameter buffer of
the RECEIVE verb (of length 8 in this
example).

This example assumes that the FILL parameter
of the receive verb has the value LL. The
buffer and record sizes were selected to sim-
plify the illustration; typical actual sizes
would be much larger, e.g., 256 bytes for the

RU size,

and up to 32,767 bytes for a TP

record.

Notes on the figure:

Rouw (1)

(A) The sending TP sends a 7-byte logical
record (Abcdefg) to PS.

(B) PS sends the first 6 bytes (its buffer
length) to HS (Abcdef) and retains the
7th (g), awaiting more data.

(C) HS at the sender receives the 6 bytes
from PS and sends 1 RU (4 bytes: Abced)
to path control and retains the remain-
ing 2 bytes (ef).

(D) HS at the receiver receives the RU (4

bytes) and sends the data to PS

Chapter 2. Overview of the LU 2-33

2-34

(E) Meanwhile, the
RECEIVE_AND_WAIT.

receiving TP issues

PS accumulates the data in its buffer
until it has enough to satisfy a TP
request, i.e., enocugh to fill the TP
receive buffer or complete a logical
record.

Row (2)

(A) The sending TP sends a 9-byte logical
record (H...p).

(B) This forces another 6-byte buffer from
PS (g...1); PS retains the remaining &
bytes (m...p).

(C) HS nou has 8 bytes; it sends 1 RU (4
bytes: efgH) and retains ¢ (ijkl).

(D,E) At the receiving LU, this RU completes
- the logical record (A...g) at the
receiver. PS passes the record to the
TP and retains the first byte of the
next record (H).

Rouw (3)

(C) HS at the sender still has exactly
enough data accumulated for one more RU
(ijkl), but HS does not send this RU
until forced by arrival of another byte
or an end-of-conversation-message indi-
cation. HS always maits with an exact-
ly full RU so it can incorporate any

subsequent protocol signals into the
RH.

The interpretation of the remaining lines is
similar. Highlights are given belou.

Rou (5)

(E) At the receiver, the second RU received
completes the second logical record
(H...p) at the receiving PS. But since
the receiving TP buffer is only 8
bytes, PS can pass only 8 bytes (H...0)
on the current receive verb.

Rows (6)

(E) PS at the receiver passas the last byte
(p) of the second logical record to the
TP on the next receive verb.

Rous (8-9)

(A-C) The end-of-conversation-message indi-
cation (#) from the sending TP forces
the sending PS and HS to send all resi-
dual data in their buffers. This makes
ohne more record available to the
receiving TP,

Row (9)

(D,E) When the receiving HS and PS get the
end-of-conversation-message indication,
they forward all residual data as soon
as possible. The TP gets the last log-
ical record.

Row (10)

(E) The receiving ™w gets the
end-of-conversation-message indication
alone on the next receive verb.

TRANSACTION PROGRAM INITIATION AND TERMI-
NATION

Before the TPs can exchange message units,
the TPs must be brought into execution.

Invoking a Remote Transaction Program

Assume that a source TP is already in exe-

cution. It requests invocation of a remote
TP by issuing the ALLOCATE verb (or
MC_ALLOCATE, which PS.MC converts into an

ALLOCATE). It identifies the program to be
invoked by specifying the remote transaction
program name and remote LU name, and selects
the desired transport characteristics by
specifying a mode name.

Using the parameters
source PS builds an Attach FM header and
sends it to HS (in some cases, via RM) for
transmission to the partner LU. When the
target HS receives the Attach FM header, it
passes it to its RM. This RM checks some
parameters in the Attach FM header including
all security parameters. If a format or pro-
tocol error is found, the Attach FM header is
rejected by terminating the session that it
arrived on. If no format or protocol error
is found, RM creates a PS process and passes
it the Attach FM header. The new PS analyzes
the Attach FM header and, if an error is
detected, rejects it; otherwise, PS selects
and loads the specified transaction program
code, and calls it, placing it initially in
receive state for the conversation.

from ALLOCATE, the

Once & target TP is invoked,; it can act in
turn as a source TP to invoke other TPs. 1If
conversation-level security is required by
the other TPs, the same security user ID that
initiated the original target TP may be used,
along with an Already Verified indicator in
the Attach FM header, or the source TP may
supply the required security parameters.

Initiating the Initial Local Transaction Pro-

ram

The first TP activated for a distributed
transaction is initiated in a way that
appears to the TP as though it were invoked
as a target TP by another scurce TP. To do
this, the source RM behaves as if it had
received an Attach: it creates the PS proc-
ess and generates an Attach FM header to pass
to PS. These RM actions are triggered by
implementation-defined means such as issuing
a local control-operator verb.

PS then loads and calls the TP,
then issue verbs by calling PS.

which can

SNA Format and Protocol Reference Manual for LU Type 6.2

Yerminating a Yransaction Program

A TP ends by returning to PS.INITIALIZE. PS
then performs any necessary final processing
(such as deallocating the TP's remaining con-
versations), and notifies RM. RM then
destroys the PS process.

CONVERSATION ALLOCATION AND DEALLOCATION

A source TP initiates a conversation with a
target TP by issuing the ALLOCATE (or
MC_ALLOCATE) verb.

The source PS satisfies the TP request in two
steps.

First, PS sends RM a request to allocate a
conversation. RM creates a conversation
resource and notifies PS.

Second, PS sends RM a request to assign a
session to the conversation. Khen RM has a
session available for the conversation, RM
comnects the PS process of the issuing TP to
the HS process of the session and notifies PS
and HS. PS places the source end of the con-
versation (where the allocation Nas
requested) initially in send state.

If a session is not immediately available, RM
suspends the issuing process.

After a session is assigned to the conversa-
tion at the source LU, PS sends the Attach FM
header to HS for transmission to the target
LU. (In some cases, PS sends the Attach FM
header to RM rather than directly to HS; RM
then sends it to HS when bidding for the ses-
sion.)

When HS at the target LU receives the first
BIU of the bracket, it notifies RM. RM
receives the Attach from HS, creates the con-
versation resource, and makes it accessible
to HS and PS. It places the target end of
the conversation initially in receive state.

The following sections give further details
of these functions.

Selecting a Session

RM maintains a list of allocation requests
and a list of free sessions and their con-
tention polarities. If RM has an allccation
request and a first-speaker
(contention-winner) session is free (i.e., in
between-brackets state), RM allocates that
session to the conversation. If a
first-speaker session is not free but a bid-
der (contention-loser) session is free, RM
bids for the session. If no sessions are
free, but the session limits have not been
reached, RM requests that LNS activate a new
session.

Bidding

RM requests HS to attempt to begin a bracket
by sending an RU with BB; this is called
bidding for the session.

RM always accepts a bid received on a bidder
session.

If RM receives a bid on a first-speaker ses-
sion, RM accepts or rejects the bid depending
on whether any of its ouwn transactions need
to allocate the session for use by their oun
conversation (if they do, then it sends a
negative response to the bid; otherwise, it
sends a positive response to the bid).

Optionally, a negatively-responding RM will
inform the partner when it is again willing
to accept a bid.

Newly Active Session

When a session becomes newly active, it is
initially in in-brackets state. If LU-LU
verification is active; RM at the primary LU
creates and sends (via HS) a Security FM
header (FMH-12) to the secondary LU's RM for

verification. The LU that activated the ses-
sion (the primary LU, or BIND sender) has

first right to send, regardless of the ses-
sion contention polarity. If RM at the pri-
mary LU has no unsatisfied conversation
request when a session becomes active, it
requests HS to yield the session, i.e., to
end the bracket.

Deallocation

When PS requests deallocation of the conver-
sation; HS ends the current bracket, and RM
deletes the conversation resource and places
the session in the frea-session list.

SESSION ACTIVATION AND DEACTIVATION

If RM has a conversation request for a ses-
sion but no session is free and the session
limits have not been exceeded, RM requests
LNS to activate a new session. RM also
requests session activation as a result of
operator commands (such as INITIAL~
IZE_SESSION_LIMIT).

Starting a Session

Starting a session involves the following
three activity phases: session limits
initialization, session initiation, and ses-~
sion activation.

Initializing Session Limits: Prior to any
transaction activity, the control operator
sets limits on the maximum and minimum mm-

Chapter 2. Overview of the LU 2-35

2-36

ber, and contention polarity, of active ses-
sions with particular parther LWs using
particular mode names (see "Control-Operator
Functions" on page 2-38 for details).

Session Initiation: Mhen LNS receives a ses-
sion activation request from RM, LNS sends an
INITIATE session-services RU, containing the
partner LU name, to its control point, using
the CP-LU session.

When the control point receives the INITIATE,
it translates the LU name ints a netuwork
address.

The CP then sends a CINIT RU, which contains
the network address, the cryptographic key if
session cryptography is used, and a
description of other characteristics for the
‘session, to the LU that is to activate the
session. (The LU that activates a session is
called the primary LU [PLU]. The PLU is not
necessarily the LU that requested session
initiation.)

Session Activation: LNS for the PLU receives
the CINIT and retains the address. Using
information from the CINIT and from the LU's
mode table for the requested mode, LNS then
generates a BIND session-control RU contain-
ing the desired session parameters. If secu-
rity is used, the session parameters include
randomly generated data for LU-LU verifica-
tion and an indication of the amount of
conversation-level security support that is
defined for the secondary LU. Random and
enciphered data are sent/received only when
LU-LU verification is active. NS sends the
BIND to its local PU for routing to the part-
ner LU.

LNS for the LU receiving the BIND (the sec-
ondary LU or SLU) negotiates the proposed
session parameters to acceptable values;
enciphers the received random data based upon
the LU-LU password; saves the indication of
the primary LU's conversation-level security
support for the secondary LU; and creates a
positive response to BIND that includes an
indication of the secondary L's
conversation~level security support for the
primary LU, randomly generated data, and the
enciphered version of the random data
received in BIND. [INS sends this positive
response to BIND via its local PU.

Hhen the positive response to BIND is sent or
received, the LNS at each end connects a new
RS process to the path control network. If
the session uses cryptography, the HSs
exchange cryptography-verification RUs.
Then, each LNS notifies its RM that a new
session is available. If LU-LU verification
is active, before the new session is avail-
able for conversations, the primary LU's RM
enciphers the random data received on the
response to BIND and returns it to the sec-
ondary LU's RM for verification.

If the LUs cannot agree on session parame-
ters, or the enciphered random data compar-
ison fails, the session activation fails.

Session Outage

If session outage occurs, NS notifies RM.
If a conversation was active on the session,
RM notifies PS, which notifies the trans-
action program of conversation failure. RM
requests LNS to activate another session if
it has unsatisfied conversation requests or
an unsatisfied auto-activation limit.

Ending a Session

Ending a session involves the following three
activity phases: operator reguest, session
shutdoun, and session deactivation.

Operator Request: Sessions are not deacti-
vated in the normal course of transaction
program processing; they are deactivated only
upon specific reguest from the
control-operator transaction program.

When the LU operator at either end of a ses-
sion determines that a session is to be deac-
tivated, the control-operator transaction
program issues a control-operator verb. The
control operator can cause sessions to end in
tuwo ways.

The operator can issue a RESET_SESSION_LIMIT
verb to reset the session limits to 0 for
speci fied partner LUs and mode names. The LU
proceeds with subsequent phases until there
sre no active sessions for the specified
(LU,mode) pairs.

The operator can also issue a DEACTI-
VATE_SESSION verb to deactivate a specific
session (this wmight be done, for example, to
recover from certain error situations). This
does not change the session limits, however,
so the LU might activate another session to
replace it.

Khen PS.COPR receives the verb, it issues a
session-limit-change notification or a
session-deactivation request to RM.

Session Shutdown: When RN
session-limit-change notification, RM first
performs drain processing. If the operator
has requested RESET_SESSION_LIMIT with drain
indicated, then RM performs no deactivations
until all requests for allocation of sessions
with the specified mode name have been satis-
fied.

receives a

Khen drain is complete, or when RM receives a
session-deactivation request, and an affected
session next enters betwean-brackets state,
RM initiates a bracket-termination protocol.
This consists of an exchange of
bracket-initiation-stopped (BIS) RUs assuring
that all brackets have completed at both ends
of the session, i.e., that no other BIUs are
in transit between the LUs.

After receiving BIS, the partner LU drains
its allocation requests and sends BIS in
return.

SNA Format and Protocol Reference Manual for LU Type 6.2

When the BIS protocol is complete, the RM
that initiated the BIS protocol instructs its
LNS to deactivate the session.

Session Deactivation: When LNS receives a
session-deactivation request from RM, it
sends UNBIND, via the local PU, and awaits a
response. MKhen the partner LNS receives an
UNBIND, it unconditionally sends a positive

FUNCTIONAL SUMMARY BY COMPONENT

This section is organized by component; it
reviews the specific functions of each prin-
cipal component, and describes functions per-
formed primarily in one component.

Presentation Services

PS manages transaction programs and controls
conversation-level communication between TPs:

® loads and calls the transaction program

¢ Maintains the conversation protocol
state, e.g., send/receive state of the TP

L Enforces correct verb parameter usage and
sequencing constraints

® Coordinates specific processing for each
verb

® Performs mapping of transaction program
data into mapped-conversation records

e Converts mapped-conversation records to
GDS variables, and the reverse: it par-
titions the data into logical records and
generates LLID prefixes

® Buffers conversation-message data from
the transaction program into contiguous
blocks for efficient subdivision by HS

® Reblocks RU data from HS into logical
records or buffer records as required by
the TP

® Verifies logical-record length and bound-
aries

L] Truncates or purges data when errors are
reported or detected by the TP

o Generates and issues FM headers for
Attaches and Error-descriptions

Half-Session

HS controls session-level communication

between LUs:

® Reblocks data from PS into RU-sized units

response. When the response to UNBIND is
sent or received, the corresponding LNS dis-
connects the half-session process from the
path control network, notifies the CP that
the session is ended, and destroys the
half-session process.

® Builds RHs and enforces correct RH param-
eter settings

® Creates chains and enforces chaining as
the unit of LU-to-LU error recovery

. Correlates
bracket

responses with the correct

® Enforces bracket protocol
rejected brackets

and purges
e Enforces protocols for the relevant FM
and TS profiles for the session

® Generates and enforces sequence numbering
to detect lost or duplicate BIUs

. Provides session-level pacing

L Exchanges cryptography-verification RUs
when session cryptography is being used

® Enciphers and deciphers data when session
cryptography is being used

Resources Manager

RM manages presentation services and conver-
sations.

¢ Creates and destroys instances of presen-
tation services

® Creates and destroys conversation
resources and connects them to
half-sessions and to presentation serv-
ices

. Finishes LU-LU verification for

session-level security by generating and
processing Security FM headers (FMH-12s)

® Performs all conversation-level security
checks, verifies conversation-level pass-
words, and controls access to protected
transaction programs

® Maintains the data structures represent-
ing the dynamic relationships among con-
versation resources, half-sessions,
transaction program instances, and trans-
action program code

Chapter 2. Overview of the LU 2-37

2-38

® Chooses the session to be used by a con-
versation and controls contention for the
session

® Performs drain action: allows session
traffic to cease before requesting ses-
sion deactivation

¢ Requests LNS to activate and deactivate
sessions

LU Netuwork Services

LNS manages sessions:

® Coordinates session initiation in concert
with the control point

® Sends and receives BIND

® Supplies and negotiates session parame-
ters during BIND exchange

° Exchanges cryptographic key and session
seed

® Exchanges random and enciphered data and
performs initial LU-LU verification

¢ Notifies RM of session outage

®* Notifies the control point of LU charac-
teristics and conditions during LU
initialization (ACTLU exchange)

¢ Creates and destroys half-session
instances and connects them to path con-
trol instances

FUNCTIONS OF SERVICE TRANSACTION PROGRAMS

Service transaction programs provide func-
tions to the end user that require communi-
cation with another LW using a special
SNA-defined pattern of verbs.

Service TPs form part of a distributed trans-
action similarly to other TPs. They have a
transaction program name and are invoked by
the Attach mechanism, and they exchange
information with these other TPs by issuing
transaction-program verbs.

Service transaction programs differ from
user-application transaction programs in that
they are SNA-defined and are considered part
of the LU. The names of service transaction
programs are SNA-defined. The records that
service TPs send and receive are SNA-defined
GDS variables.

Control-Operator Functions

All LUs have an implementation- or
installation-defined control operator trans-
action program (COPR TP) that represents the
LU control operator's interface to the LU.

Using a program-selected means such as opera-
tor console input, this TP issues
control-operator verbs to perform
control-operator functions.

Control-operator verb functions include cre-
ation and modification of the data structures
that describe the LU and the LU-accessed net-
work resources: control points, transaction
programs, partner LUs, and modes. Other
control-operator verb functions limit the
numbers and contention polarities of sessions
with particular LUs for particular mode
names, and also determine when sessions will
be activated and deactivated.

For an LU that supports parallel sessions,
there are additional transaction services
components for the control operator. These
LUs contain a change-number-of-sessions
(CNOS) service transaction program. When
processing CNOS verbs, the COPR TP at one LU
exchanges GDS variables with the CNOS service
TP at its partner to reach mutual agreement
about limits on the number of parallel ses-
sions between them.

(Control-operator functions are discussed in
further detail in '"Chapter 5.4. Presentation
Services--Control-Operator Verbs" .)

SNA Distribution Services

SNA Distribution Services (SNADS) provides a
set of verbs that an application TP may issue
to request asynchronous distribution of data.

The service is provided by a network of dis-
tribution service units (DSUs) interconnected
by conversations and sessions. Each DSU con-
sists of PS verb handlers and a collection of
service TPs within the LU. The service TPs
provide data storage, routing, and distrib-
ution asynchronously with the origin or des-
tination application programs.

SNADS 1is described in the publication SNA

tribution Services.

Document Interchange Services

Document Interchange Architecture (DIA)
describes formats and protocols for synchro-
nous exchange of documents by using
basic-conversation verbs in a prescribed way.
Document interchange services include service
TPs for synchronous document transfer.

Document interchange archi tecture is

described in the publication Document Inter-
change Architecture--Concepts and Structures.

OPTIONAL FUNCTIONS

This section describes the principal optional
function sets.

SNA Format and Protocol Reference Manual for LU Type 6.2

Mapping Function

ine mapping function is an optional function
of mapped conversations (PS.MC) that allouws a
TP to select transformations, called maps, to
be applied to TP data at the sending and
receiving TP protocol boundaries. Maps are
non-SNA-defined transformation tables or pro-
cedures that can be defined by the installa-
tion at both the source and target LUs. Maps
can specify, for example, howu fields of a
mapped-conversation record are related to the
TP variables (data record) referred to in
protocol-boundary verbs.

Each LU can support multiple maps. Each map
is identified by a map name. The maps to be
applied are selected by the transaction pro-
gram (via verb parameters) and by other maps
(in an implementation-defined way), as shown
in Figure 2-28 on page 2-40.

Three separate map-name name spaces exist
(terms in parentheses correspond to those in
the figure):

1. Sender locally-known map name: This map
name (map-name-1) is known to the TPs at
the sending LU. It identifies a map
(map-1) at the sending LU that defines
the transformation performed by the send-
er from the format of the sending-program
data (data-1) to the format of the MCR
(data-2) that is sent on the conversa-
tion. This map also defines a corre-
spondence between the sender
locally-known map name (map-name-1) and
the globally-known map name (map-name-2)
described belou.

2. Globally-known map name: This map name
(map-name-2) is known at both the sending
and receiving LUs, and is transferred on
the conversation between sender and
receiver. It identifies a map (map-2) at
the receiving LU. This map defines the
transformation performed by the receiver
from the format of the MCR received on
the conversation (data-2) to the format
of the data presented to the receiving
transaction program (data-3). This map
also defines a correspondence betuween the
globally-knoun map name (map-name-2) and
the receiver locally-knoun map name
(map-name-3) described belou.

3. Receiver locally-known map npame: This
map name (map-name-3) is Knoun to TPs at
the receiving LU. This identifies the
format of the data presented to the pro-
gram (data-3), e.g., it allows the pro-
gram to select the correct structure
definition or format description for the
data produced by the execution of the
receiver map (map-2).

Mapping 1is performed by a PS.MC component
called the mapper.

The mapper at the sender selects the send map
specified by the sender locally-knoun map
name, which is supplied as a parameter of the
MC_SEND_DATA verb. It performs the send map-

ping on the TP-supplied data, producing a
mapped-conversation record. Using the sander
map» the mapper also selects the
globally-known map name.

The LU sends the globally-known map name over
the conversation in an SNA-defined map-name
GDS variable (see "Appendix H. FM Header and
LU Services Commands'), and sends the
mapped-conversation racord in a separate GDS
variable.

The mapper at the receiver selects the
receive map specified by the globally-knoun
map name received. It performs the receive
mapping on the mapped-conversation record it
receives, resulting in data formatted for
presentation to the TP. Using the receiver
map, the mapper also selects the receiver
locally-knoun map name. PS.MC passes the
receiver locally-known map name and the
reformatted data to the TP as returned param-
eter values for the next receive verb issued,
e.g.» MC_RECEIVE_AND_WAIT.

The receiving TP uses the receiver
locally-known map name in a TP-determined way
to interpret the received data.

The TPs supply or receive a map name parame-
ter value for each send or receive verb
issued, respectively. The LU, however, does
not send another map-name GDS variable if the
globally-known map name has not changed from
that of the previous record sent. To accom-
plish this, the mapper at each LU retains the
most recently sent and most recently received
values of map-name-2 for the conversation
(the send and receive map names can be dif-
ferent). The retained values for each direc-
tion persist until changed or until the end
of the conversation, regardless of interven-
ing turnarounds.

Sync Point Function

The sync point function allows all TPs proc-
essing a distributed transaction to coordi-
nate error recovery and maintain consistency
among distributed resources such as data
bases.

The sync point functions affect protected
resources. These include conversation
resources and implementation- or
installation-designated resources such as
data bases. Any changes to a protected
resource are logged so that they can be
either backed out (reversed) if the trans-
action detects an error, or committed (made
permanent) if the transaction is successful.

The transaction programs divide the distrib-
uted transaction into discrete, synchronized
logical units of work (LUWs), delimited by
synchronization points (sync points). (Cor-
responding sync points occur at each TP par-
ticipating in the distributed transaction.)
LUNs are sequences of operations that are
indivisible units for the application, i.e.,
any failure in an LUW invalidates the entire
LUX (all LUW processing by all TPs for the

Chapter 2. Overview of the LU 2-39

* % ¥ %
* * % *
[se__ x| I %]
| | Sender map (map-1) | | Receiver map (map-2)
*___ % %__ %
| |
| |
" v
| s | r—
source TP sends: | | transferred on conversation: | | target TP receivas:
| | | i
map-name-1, data-1 | | map-name-2, data-2 | | map-name-3, data-3
> | . > | >
| ! | |
I Seind | | Receive |
| Mapping | | Mapping |
e | I
Figure 2-28. Map Name Usage by Mapped Conversations
transaction), so the transaction is backed Protection Managers: Each protected

2-40

out to the previous sync point.

The LU components for the sync point function
are shoun in Figure 2-29 on page 2-41.

Highlights of the sync point function are
discussed below. (See '"Chapter 5.3. Presen-
tation Services--Sync Point Services Verbs"
for details.)

Sync Point Control: The sync point function
at each LU is coordinated by PS.SPS.

For each TP process participating in the dis-

tributed logical unit of work, the corre-
sponding PS.SPS tracks the state of that
logical unit of work. To do this, P5.S5PS has
protocol boundaries with the TP and with the
protection managers for each conversation and
for each protected local resource allocated
to that TP.

Logging: When processing a given logical
unit of work, whenever a TP issues a verb
that makes any changes to a protected
resource, the corresponding resource pro-
tection manager logs the change so that, if
necessary, the change can be backed out lat-
er.

The log manager maintains the log entries for
each active LUK (i.e., for each active trans-
action) on non-volatile storage, using
implementation-defined data-management func-
tions. The same log is used to record all
log entries for all the LU resources for the
LUKW.

Resources Manager: When it creates the PS
process, RM provides PS.SPS with access to
the log. RM also logs conversation allo-
cations, thereby supplementing the work of
the conversation protection manager.

In some cases, a transaction program can ter-
minate normally before its sync point log
entries are erased. In these cases, RM
assumes the function of the terminated sync
point control to complete the protocol and to
release (forget) the log entries.

resource; e.g., a conversation or a local
data base, has a protection manager that logs
significant state changes during a logical
unit of work, detects errors affecting the
integrity of the changes; and commits or
backs out the changes as determined by the
sync point protocol.

The protection manager for a conversation is
dafined by SNA; protection managers for other
(non-SNA) resources are defined by the imple-
mentation, but have a similar protocol bound-
ary to PS5.SPS. The protection managers form
a sublayer between PS verb handlers and the
resource-control components.

Syne Point Protocol: At the end of a logical
unit of work, an application-designated TP
initiates sync point. The LUs then carry out
a protocol involving all local protected
resources and conversations being used by the
TP, and all partner LUs and TPs directly con-
nected by those conversations, to determine
whether any TP or protected resource detected
an error in the LUW, and to propagate this
result to the other LUs and TPs.

When a TP issues a verb that invokes the sync
point function (e.g., SYNCPT, BACKOUT) its
PS.SPS coordinates the sync point protocol.
PS.SPS exchanges sync point commands, in the
form of presentation services (PS) headers
and FM headers, over the TP's conversations
with other TPs. Each PS.SPS component for
the transaction performs similar exchanges,
in turn, with its TP's conversation partners.
The PS.SPS components also determine the sta-
tus of local non-SNA resources by exchanging
appropriate commands across their internal
protocol boundaries. These exchanges direct
the protection managers to complete any pend-
ing log entries for the LUW.

The sync point protocol culminates with a
mutual decision among all TPs processing the
LUH either to commit or to back out the LUW,

Commitment and Back-Out: When the sync point
protocol is complete at a particular TP, the
resource control components use the LUK log

SNA Format and Protocol Reference Manual for LU Type 6.2

application RESYNC
transaction service
program transaction
A program
|
I'I l'l
tecessssssssscssssssss (Note 1)
s ¢ & @
PS PS PS $———————— (Note 2)
sync point local function— function— PS.CONV
services resource shipping shipping
resource resource
control
(PS.SPS) (non—SNA) (non—-SNA) (non—SNA)
A A— A A A-A
A AAAA :
s []
H L]
— : l ® (Note 3)
1 i : | | | ——-v—
—V: V— : Vv V— Ve VT
protectlon protection : protection protection
manager manager : manager manager
_—— = =] for PO . S R, -
local function— : conversa— conversa-
resource shipping : tion tion
control resource : resource resource
(non—SNA) (non—SNA) : -
A A s : A A
> Seeeeel
l_ PS
log C—
manager <
<
A
|
\' J. \v /. []
< .
resources manager |< .
r
? V- V V V: V—
v local LU~-LU LU-LU
LNS resource half- half-
control session session
A A A
I I |
v v v v
log file local resource path control

NOTES:

1. Function-shipping resource control recursively calls PS to communicate with the partner.
The conversation used for communication with the partner has its own protection manager.

2. PS components not relevant to sync point have been omitted from this figure.

3. A distinct protection manager exists for each conversation resource created by PS.

4. The non-SNA components are undefined protocol machines (UPMs).

Figure 2-29. Relationship of LU Components for Sync Point Functions

Chapter 2. Overview of the LU

entries to supply the information needed
(e.g.,» data base change records) to perform
the required commitment or back out. They
then notify PS.SPS to erase the log entries
for that LUMW.

Resynchronization: An LU failure might occur
during the sync point protocol, so that some
LU never receives an expected LUN status
report. To recover from this case, the other
LWUs can wait until the failing WU is reini-
tialized, and then the LUs perform a resyn-
chronization (resync) protocol to complete
the sync point processing at each LU. Resync
uses service transaction programs to exchange
sync point status among the LUs.

When the failing LU is reactivated, the LU
completes the resync transaction before run-
ning any other transaction programs that
require sync point. The resync service TP is
initiated by RM at some LU, typically at the

DATA STRUCTURES

2-42

The LU waintains data structures representing
the state and configuration of its resources.

Some system-definition data structure ele-
ments represent the LU-accessed network
resources. These structures describe the
characteristics of the LU itself, the trans-
action programs that the LU can run, the
control-points that serve this LU, the part-
ner LWs with which this LU can communicate,
and the modes characterizing possible ses-
sions with particular partner LUs.

Other data structure elements represent the
dynamic environment created by the LU. The
principal components of this environment are
the transaction program instances in exe-
cution (represented by transaction-program
processes) the active sessions with other LUs
(represented by half-session processes), and
the active conversations (represented by con-
versation resources). This environment also
includes the relationships of the dynamic
components to the LU-accessed network
resources and to each other.

LU-ACCESSED NETWORK RESOURCES

Figure 2-30 on page 2-43 illustrates the data
structures that represent the LU-accessed
network resources.

The LUCB structure (and some associated lists
not shown) describe the local LW. This
information includes the LU's fully qualified
name and the set of optional functions (e.g.,
parallel sessions and mapping) that the LU
supports. The LUCB is also the anchor for
lists of data structures describing the other
LU resources.

A TRANSACTION_PROGRAM structure (and associ-
ated lists not shown) describe the trans-

sync point initiators this TP attaches the
resync TP at its partners, which continue
propagating the resync TP throughout the LUs
that had been processing the distributed
transaction.

The first step of the resync transaction is
to validate the integrity of the LU logs,
i.e., to determine that all LUs® logs contain
consistent entries for the same LUW. To do
this, the resync service TPs exchange
Exchange Log Name 6DS variables on the con-
versation. Next, the service TPs exchange
Compare States 6DS variables to determine the
status of the sync point protocol at the time
of failure. PS.SPS then uses this informa-
tion to complete the sync point protocol.
(See "Appendix H. FM Header and LU Services
Commands' for the SNA-defined format of the
Exchange Log Name and Compare States 6DS var-
iables.)

action programs at the local LW. This
information includes the transaction program
name, its current availability status, and
the set of optional functions (e.g., sync
point and mapping) that it supports.

An CPLU_CAPABILITY structure describes a con-
trol point. This information includes the
allowed formats of addresses and the set of
session-services RUs used on the LU-CP ses-
sion.

A PARTNER_LU structure describes a remote LU
(potential partner W). This information
includes the remote LU's names: local LU
name, fully-qualified LU name, and uninter-
preted LU name. It also includes the set of
the LU's optional capabilities such as paral-
lel sessions. The PARTNER_LU structure also
contains a list of mode descriptions.

A MODE structure describes a mode. This
information includes the wode name and the
set of optional functions that are supported
by the remote LU on a mode basis, e.g., sync
point. It also includes the session parame-
ters that characterize this mode, such as
maximum allowed RU size, session-pacing win-
dow size, and session cryptography parame-
ters. The wmode structure also indirectly
describes link characteristics: the mode name
is used by the control-point as the key to
tables identifying the links and routes to be
used for sessions for that mode.

PROCESSES AND DYNAMIC RESOQURCES

Figure 2-31 on page 2-44 illustrates the
principal data structures and processes, and
their relationships, that represent the
dynamic environment. The formal description
represents these relationships in various
ways such as pointers between control blocks,

SNA Format and Protocol Reference Manual for LU Type 6.2

LUCB

=
[]
—1 TPGM .
[]
PTNR
MODE
— TPGM MODE
MODE
PTNR
MODE
PTNR
MODE
MODE
—1 TPGM PTNR
L MODE
° L J
[] []
MODE °
MODE
L]
L]
L]
LEGEND:
Vertical lines represent lists of subordinate resources
Abbr., Data Structure Nawe
LUCB: Local LU information (LuCB)
TPGM: Transaction Program Code information (TRANSACTION_PROGRAM)
CPC: Control Point information (CPLU_CAPABILITY)
PTNR: Partner LU information (PARTNER_LU)
MODE: Mode information (MODE)
Figure 2-30. LU Static Data Structures (Example)

keys of elements in lists, and intermediate
dynamic control blocks.

The processes also contain state information
used by LU functional components; this is
described in wore detail in chapters con-

cerned with the relevant functional compo-
nents.

The TP process represents a transaction pro-
gram instance. It identifies the transaction
program code that it is using. There may be

Chapter 2. Overview of the LU 2-43

Luce

TPGM 1 |:

.
..
.
3
o

TP A

#

.2:3:2:2:2]

RCB E

TPGM 2

o
o
.
.

TP B

..
e

& %

faas

#
#

#EFRARR

TPGM 3

RCB F

RCB 6

o
3

TP C

%

#
#

TPGM 4

o
ve

suds

RCB H

f.2222:2:2

RCB I

06 20 00 o0 02 0o e oo oo oo
e 40 oo 00 00 ee ee se o0 oo

TP D

o HRNHER

LEGEND:
Vertical lines represent lists of subordinate resources
association of process to static data elements
association of processes via RCB dynamic data element
association of RCB with MODE in lieu of unavailable HS

ee e
sees

22130
FHHHH

Abbr.
LUCB:
TPGM:
CPC:
PTNR:
MODE
TP:
RCB:
HS:

Local LU information

RCB J

HS

.
.

o
o
.

o
oo
3
..
o
o

F6 636 I IE I 26 36 36 I I 6 3 I JE I I I 36 I I I I I I I I 6 I I I 6 I I 36 3 36 36 3¢

fi2:2:2:2:2:2:2:2:2 123 HS K Jss2s2:

#

#

#

#

#

12121222 HS M ez
bi2:2:2:2:2] HS N |se2ee:

#

#

#

#

#

#

#

#

HABAR{{ABUR] HS P fooeee
HERBARBABBRABERE] HS Q o222
#HnuNy

#

e

HARBARBURBEE HS R |2

| —
"""""""""""""""" HS T [sess:

T

.

[]

®

Transaction Program Code information

Control Point information
Partner LU information

Mode information

Transaction program process
Conversation resource information

Half-session process

Data Structure Name
(Luce)
(TRANSACTION_PROGRAM)
(CPLU_CAPABILITY)
(PARTNER_LU)

(MODE)

(RCB)

Figure 2-31. LU Dynamic Dzia 5tructures and Processes (Example)

CPC
.
.
)
PTNR W
%*
MODE U
MODE
MODE L
PTNR X
MODE
PTNR Y
MODE V
MODE
PTNR
MODE Z
.

2-44

multiple transaction program processes exe-
cuting the same transaction program code.

it

SNA Format and Protocol Reference Manual for LU Type 6.2

is associated.

The HS process represents a half-session.
identifies the remote LU and mode with which

It

A mode may be associated

with wany half-session processes, but each HS
process is associated with only one mode.

The RCB structure represents a conversation
resource. The RCBs are the central elements
in the dynamic configuration of the LU: they
represent the connection of a transaction
program to a half-session; this connection is
dynamically created and destroyed, and allows
an asynchronous (SEND/RECEIVE) relationship
between TP and HS. The RCB identifies the
local TP using the conversation and the
half-session being used, if any. Because a
session might not be immediately available
when a TP allocates a conversation, the RCB
also identifies the remote LU (PARTNER_LU)
and mode name (MODE) for the desired session.
Many conversation resources, hence RCBs, wmay
be associated with the same local TP, but
each RCB wmay be associated with only one
local TP, one partner LU, one mode, and one
half-session.

Figure 2-31 on page 2-44 illustrates several
of the possible relationships among these
structures. In the figure:

® An active session is associated with the
control-point (CPC).

(This session is used directly by LU
internal components, so no relationship
to a transaction program is shoun.)

® RCB E associates active TP A for trans-
action program code 1 with mode name U,
awaiting a free session with mode name U.

® Active TP B for transaction program code
2 has two active conversations:

LU STARTUP AND SHUTDOWN

LU startup consists of four phases: creating
the LU processes, activating the CP-LU ses-
sion, initiating the control operator trans-
action program, and setting the LU definition
and session limits. The LU then initiates
programs and activates sessions in response
to further operator, transaction program, or
partner-LU actions.

To shut down the LU, the steps are reversed,
but some can be omitted. The winimum steps
to terminate communications include resetting
the session limits and deactivating the CP-LU
session.

LU PROCESS CREATION AND TERMINATION

Figure 2-33 on page 2-47 shows the process
creation and termination hierarchy for the
L.

First, the PU in the nodae creates two dynamic
processes, RM and LNS. These processes con-
tinue running thereafter.

- RCB F connects it to remote LU W via
session K with mode name U.

-~ RCB 6 connects it to remote LU Y via
session P with mode name V.

. LU H has two free sessions, M and N, each
with mode name L.

®* Remote LU X has a single mode name with
no active sessions.

® No active TP instances exists for trans-
action program 3.

® Tuwo active TP instances exist for trans-
action program 4: TPs C and D.

® Two conversations 6 and H exist with
remote LU Y, each using a different mode
name.

* Tuwo conversations I and J use separate
sessions R and T, both uith mode name Z.

RESOURCE RELATIONSHIPS IN A DISTRIBUTED
TRANSACTION

In contrast to Figure 2-31, which illustrates
the data structures for several transactions
from the perspective of a single LU, Fig-
ure 2-32 on page 2-46 illustrates the
relationships among data structures at
several LUs from the perspective of a single
distributed transaction. In this case, the
paired half-sessions connect LWs, and the
paired conversation resources, represented by
RCBs, connect transaction program instances.

The PU creates the CP-LU half-session when it
receives ACTLU session-control RU from the CP
(see "CP-LU Session Activation").

The TP and HS processes are discussed in
“"Running State' on page 2-47.

CP-LU SESSION ACTIVATION

The CP in the network (the PNCP or the SSCP)
activates the CP-LU session for the LU by
sending ACTLU, to which LNS responds, if
ready, with +RSP(ACTLU). This session acti-
vation is required prior to any LU-LU session
initiation or termination.

When the CP determines that no further ses-
sion initiation or termination activity is
required, it deactivates the CP-LU session by
sending DACTLU to the LU.

If the CP-LU session is interrupted because
of session outage, the CP attempts to reacti-

Chapter 2. Overview of the LU 2-45

TPGM TPGM

P TP

NENRREERENESEERENEREEEN |RCB

RCB

HS HS

HS

TPGM

TP

RCB

HS

wece

TPGM
™
RCE |wannEEs iR RN RN NN RN EN NN NN AN EERERES | RCB
HS ettt it st HS
LU A o
LEGEND :

Association of a process with its data structures
muunEd Conversation (connection between transaction program instances [TPsl)

=z===== Session (connection between LUs)
TPGM: Transaction program data structure (represents transaction program code)
RCB: Resource control block (represents a conversation)
TP: Transaction program process instance
O Half-session process instance
Figure 2-32. Data Structure Relationships among LUs for a Distributed Transaction (Example)
vate it. This need not interrupt normal CONTROL-OPERATOR ACTIONS
LU-LU session traffic.
The control operator specifies the LU defi-
CONTROL-OPERATOR TRANSACTION PROGRAM INITI- nition describing the LU-accessed network
ATION resources: the control points, transaction
programs, partner LUs, and modes. (An imple-
mentation might provide this function without
RM creates a PS process and initiates the requiring explicit operator interaction,
control-operator TP. e.g.», the LU definition might be specified at
system-definition time.)
The operator initializes session limits with
the partner LUs by issuing the INITIAL-
2-66 SNA Format and Protocol Reference Manual for LU Type 6.2

] .

L]
[]
Transaction
I Program /
-~ Presentation
I [Services
04 > Process]
PU o > |
Resources
Manager
Process
(RM)
PU o > o
.
LU .)
Network V-
Services l [
Process
(LNS) LU-CP LU-LU
Half-Session Half-Session —
Process Process
PU o
LEGEND:

> process creation (The arrow points from creator to created.)

Figure 2-33. LU Process Creation and Termination Hierarchy

IZE_SESSION_LIMIT verb for the relevant mode
names. For parallel-session mode names, this
verb activates an LU-LU session using the
SNA-defined mode name SNASVCMG (if not
already active) and establishes. mutually
agreeable session limits for other mode names
by exchanging CNOS GDS variables on that ses-
sion. This verb optionally causes activation
of a predetermined number of sessions for the
specified mode name.

When sessions are to be deactivated, the con-
trol operator issues RESET_SESSION_LIMIT for
the mode name. For a parallel-session con-
nection, this causes another CNOS GDS vari-
able exchange to elicit the partner LU's
cooperation in the session shutdown. 1In any
case, this verb causes the LU to eventually
cease initiating new transaction programs and
activating new sessions (drain). As sessions
become unused, RM and LNS deactivate them.

The LU initiates no further actions to shut
doun the LU. Any further actions are at the
initiative of the CP or the PU.

RUNNING STATE

Once the CP-LU session has been activated and
the LU-LU session limits have been set, the
LU is ready to process transactions.

RM creates a transaction-program process when
it receives an Attach or an initial TP invo-
cation request; it destroys that process when
PS indicates that the TP has completed and
all its conversations have been deallocated.

Either RM or the partner LU can request ses-
sion activation; in either case, LNS performs
the relevant processing. LNS creates an HS
process for an LU-LU session and connects it
to a path control instance whenever it sends
or receives BIND. LNS destroys that process
when it has sent or received a positive
response to UNBIND, has disconnected the
half-session from path control (by sending
PS_HS_DISCONNECT), and has notified the CP
that the session is ended (by sending
SESSEND).

Chapter 2. Overview of the LU 2-47

EXAMPLE the local and remote LUs, respectively, for
an LU shutdoun sequence. ''Chapter 5.4. Pres-
entation Services--Control-Operator Verbs"

Figure 2-36 on page 2-54 and Figure 2-37 on describes LU startup and shutdown in more

page 2-55 illustrate typical interactions at detail.

2-48 SNA Format and Protocol Reference Manual for LU Type 6.2

PROTOCOL BOUNDARY SUMMARY

This section lists the external message units
and internal records exchanged by LU compo-
nents. For full descriptions of these struc-
tures, see "Appendix A. Node Data Structures'
in Appendix A

HIERARCHICAL_RESET_RSP
PC_CONNECT
PC_HS_CONNECT
PC_HS_DISCONNECT
SESSION_ROUTE_INOP_RSP

UNBIND_RQ_SEND_RECORD
UNBIND_RSP_SEND_RECORD
EXTERNAL PROTOCOL BOUNDARY VERBS AND MESSAGE
UNITS NNM_TO_LNS_RECORD
ACTLU_RQ_RCV_RECORD
BIND_RQ_RCV_RECORD
PS-TP Protocol Boundary: Transaction Progqram BIND_RSP_RCV_RECORD
Verbs DACTLU_RG_RCV_RECORD
HIERARCHICAL_RESET
PC_CONNECT_RSP
SESSION_ROUTE_INOP
UNBIND_RQ_RCV_RECORD
UNBIND_RSP_RCV_RECORD

TRANSACTION_PGM_VERB

Basic-Conversation Verb Variants

ALLOCATE

CONFIRM HS-PC Protocol Boundary
CONFIRMED

DEALLOCATE

FLUSH PC_TO_HS_RECORD

GET_ATTRIBUTES
GET_TYPE
POST_ON_RECEIPT
PREPARE_TN_PEZEIVE
RFFTIVE_AND_WAIT
REGUEST_TO_SEND

HS_70_PL_RECORD

INTER-COMPONENT STRUCTURES

SEND_DATA PS-HS Protocol Boundary
SEND_ERROR
TEST
WAIT PS_TO_HS_RECORD
Mapped-Conversation Verb Variants Variants

CONFIRMED

MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH
MC_GET_ATTRIBUTES
MC_POST_ON_RECEIPT
MC_PREPARE_TO_RECEIVE
MC_RECEIVE_AND_WAIT
MC_REQUEST_TO_SEND
MC_SEND_DATA
MC_SEND_ERROR
MC_TEST

REQUEST_TO_SEND
SEND_DATA_RECORD
SEND_ERROR

HS_TO_PS_RECORD
CONFIRMED
RECEIVE_DATA
RECEIVE_ERROR
REQUEST_TO_SEND
RSP_TO_REQUEST_TO_SEND

PS-RM Protocol Boundary

Control-Operator Verb Variants

PS_TO_RM_RECORD
ALLOCATE_RCB
CHANGE_SESSIONS
DEALLOCATE_RCB
GET_SESSION
RM_ACTIVATE_SESSION
RM_DEACTIVATE_SESSION
TERMINATE_PS
UNBIND_PROTOCOL_ERROR

ACTIVATE_SESSION
CHANGE_SESSION_LIMIT
DEACTIVATE_SESSION
INITIALIZE_SESSION_LIMIT
PROCESS_SESSION_LIMIT
RESET_SESSION_LIMIT

LNS-PU Protocol Boundary

RM_TO_PS_RECORD
ATTACH_RECEIVED
CONVERSATION_FAILURE
RCB_ALLOCATED
RCB_DEALLOCATED
RM_SESSION_ACTIVATED
SESSION_ALLOCATED

LNS_TO_NNM_RECORD
ACTLU_RSP_SEND_RECORD
BIND_RQ_SEND_RECORD
BIND_RSP_SEND_RECORD
DACTLU_RSP_SEND_RECORD

Chapter 2. Overview of the LU 2-49

RM-HS Protocol Boundary

RM_TO_HS_RECORD
BID_RSP
BID_WITH_ATTACH
BID_WITHOUT_ATTACH
BIS_REPLY
BIS_RQ
HS_PS_CONNECTED

ENCIPHERED_RD2

HS_TO_RM_RECORD
ATTACH_HEADER
BID
BID_RSP
BIS_RQ
BIS_REPLY
FREE_SESSION
RTR_RQ
RTR_RSP
SECURITY_HEADER

COMPONENT INTERACTIONS AND FLOW SEQUENCES

2-50

The following figures illustrate both the
internal-protocol-boundary flow sequences
among LU components and the external flows
between two LUs that result from
basic-conversation verb issuances.

Each sequence is illustrated by a pair of
figures on facing pages. Each separate fig-
ure represents the complete flow as seen by a
single W. The figure labeled local LU
represents the LU that initiates the sequence
being illustrated; the figure labeled remote
LU represents the partner LU. For cases
illustrating a race between two LUs, the LUs
are distinguished as first speaker and
bidder. The flows through the path control
network are shown in the column nearest the
center margin, and are replicated in each
figure; numerals in parentheses correlate
corresponding flows in the facing figures.
When flows cross in the path-control network,
the crossing is illustrated on the sending
side of the delayed flow.

NOTATION

For the interpretation of labels on the
arrows, see the following: (which, in some

RM-LNS Protocol Boundary

RM_TO_LNS_RECORD
ACTIVATE_SESSION
DEACTIVATE_SESSION

LNS_TO_RM_RECORD
ACTIVATE_SESSION_RSP
CTERM_DEACTIVATE_SESSION
SESSION_ACTIVATED
SESSION_DEACTIVATED

LNS-HS Protocol Boundary

LNS_TO_HS_RECORD
HS_SEND_RECORD
INIT_HS

HS_TO_LNS_RECORD
ABORT_HS
HS_RCV_RECORD
INIT_HS_RSP

cases have been abbreviated)

® For verb and verb-parameter names
(TP-PS), SNA Transaction Programmer's
Reference Manual for LU Jype &.2

® For protocol-boundary records and message
units (TP-PS, PS-RM, RM-LNS), "Protocol
Boundary Summary' on page 2-49

® For RU names (LNS-LNS, HS-HS), "Appendix
E. Request/Response Unit (RU) Formats"

. For RH indicators (LNS-LNS, HS-HS), "“Ap-
pendix D. RH Formats"

The following abbreviations for chaining
indicators are also used:

- FIC (first in chain) (BC,~EC)

- MIC (middle in chain) = (-BC,-~EC)

= LIC (last in chain) = (-BC, EC)
- OIC (only in chain) = (BC, EC)
¢ For data elements of RUs (LNS-LNS,

HS-HS), "“Appendix H. FM Header and LU
Services Commands'

SNA Format and Protocol Reference Manual for LU Type 6.2

This page intentionally left blank

Chapter 2.

Overview of the LU

2-51

IP () RM LNS HS(FSP) (to part U
ALLOC(when allocated) ALLOCATE_RCB
o >0 >0
RCB_ALLOCATED(OK)
o<
GET_SESSION(NO_ATTACH) ACTIVATE_SESSION ! BIND?
T >o >o > (a)
+RSP(BIND)?
1 o< (b) .-
IINIT_HS
>0
ACTIVATE_ INIT_ | CRV3
SESSION_ HS_ > (e)
RC=0K SESSION_ALLOCATED(OK) RSP(+) RSP(+) +RSP(CRV)3
o< o< o< o< o< (d)
ENCIPHERED_RD2% BC,~EC,RQE1,~BB,FMH-12%
>0 > (e)
HS_PS_CONNECTED
>0
SEND_DATA SEND_DATA(ALLOC,FMH,DATA,NOT_END_OF_DATA) ~BC,RQE1,FMH-5,DATA
>0 >0 > (1)
RC=0K
o<
SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) : ~ RQE1,DATA
>0 >o > (2)
RC=0K
o<
SEND_DATA(DATA,
RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH) EC,RRE1,CD,DATA
>o >o > (3)
RC=0K,DATA_COMPLETE RCVD_DATA(DATA,DEALLOCATE_FLUSH) BC,EC,RQE1,CEB,DATA
o< o< o< (4)
|RECEIVE_AND_NAIT FREE_SESSION
>0 o<
RC=DEALLOCATE_NORMAL
o< !
iDEALLOCATE LOCAL DEALLOCATE_RCB
>o >0
RC=0K RCB_DEALLOCATED
o< o<
NOTES:

Session—-activation flows to PU, CP, and path control have been omitted;
see “"Chapter 4. LU Network Services' for details.

BIND/RSP(BIND) flows through the PU (not shown).

CRV/RSP(CRV) flows only when session—level cryptography is being used.
Flows only when LU-LU verification is being used.

S UN

Figure 2-34, Complete Conversation Example--lc.ar LU

2=-52 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) (Bidder)HS LNS RM PS TP
BIND2 1
(a) >0
+RSP(BIND)?2 |
tb) < 1
INIT_HS
°<——.__—J
CrV3
(c) >0
+RSP(CRV)3 INIT_
d) < HS_
RSP(+) SESSION_ACTIVATED
>0 >0
BC,-~EC,RQE1,~BB,FMH-12¢ SECURITY_HEADER?
(e) >0 >0
-BC,RQE1l,FMH-5,DATA BID
(1) >o >0
BID_RSP(POS) I
o<:
ATTACH_HEADER ATTACH
>0 >0 >0
HS_PS_CONNECTED I RECEIVE_AND_WAIT
o< o<
RC=0K,
RQE1,DATA RCVD_DATA(DATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_%COMPLETE
(2) >o >o >0
RECEIVE_AND_WAIT I
o<
RCVD_DATA(DATA, RC=0K,
EC,RQE1,CD,DATA PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_COMPLETE
(3) >or O >0
RECEIVE_AND_WAIT l
o<
RC=0K,
WHAT_RCVD=SEND
>0
SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA l
o< 0
I RC=0K
>0
BC,EC,RQE1,CEB,DATA SEND_DATA(DATA,DEALLOCATE_FLUSH) DEALLOCATE FLUSH l
(4) < o< 0
DEALLOCATE_RCB I
o<
[RCB_DEALLOCATED RC=0K
>o >o
FREE_SESSION
>0
NOTES:
Session—activation flows to PU, CP, and path control have been omitted.
2 BIND/RSP(BIND) flows through the PU (not shoun).
3 CRV/RSP(CRV) flows only when session-level cryptography is be!ng used.
Flows only when LU-LU verification is being used.
Figure 2-35. Complete Conversation Example--Remote LU
Chapter 2. Overview of the LU 2-563

CCPR 1P i PS RM LNS HS(FSP) to part LU)

RESET_SESSION_LIMIT!

[+ >o
(if parallel session, CNOS exchange occurs here)
O s ‘ - > (%)
CHANGE_SESSIONS?
O >0
r
(drain action)®
BIS_RQ BIS,RQ,BC,EC,RQEl,~BB,~CEB
o >o > (1)
Repeat for
each session < BIS_REPLY BIS,RQ,BC,EC,RQE3,~BB,~CEB
for the : o< o (2)
spacified
mode name. DEACTIVATE_SESSION 4 UNBIND3
>0 > (a)
+RSP(UNBIND)3
4 o< (b)
NOTES:

-

For specific-session deactivation, substitute DEACTIVATE_SESSION and eliminate the CNOS exchange.
2 For specific-session deactivation, substitute RM_DEACTIVATE_SESSION and eliminate the drain action

Drain action: wait until no allocation requests allowed by drain state are pending,

then wait until session is in between—brackets state, i.e., +RSP(CEB) is sent or received.
Session—deactivation flows to PU and CP have been omitted.

5 UNBIND/RSP(UNBIND) flows through the PU (not shoun)

&

Figure 2-36. Session Deactivation--Local LU

2-54 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) (Bidder)HS LNS RM PS CNOS TP

(if parallel session, CNOS exchange occurs here)

(%) < >0
BIS,RQ,BC,EC,RQE1l,-BB,-CEB BIS_RQ l
(1) >0 >0
(drain action)’
BIS,RQ,BC,EC,RQE3,-BB,~CEB BIS_REPLY
(2) < o<) repeat for
> each session
UNBINDS . SESSION_DEACTIVATED in mode
(a) >0 >0
+RSP(UNBIND)3
(b) < 4
NOTES:

3 Drain action: wait until no allocation requests allowed by drain state are pending,
then wait until session is in between-brackets state, i.e., +RSP(CEB) is sent or received.
Session-activation flows to PU and CP have been omitted.

5 UNBIND/RSP(UNBIND) flous through the PU (not shoun).

Figure 2-37. Session Deactivation--Remote LU

Chapter 2. Overview of the LU 2-55

P

PS RM HS(ESP) t ne

<

ALLOC(when allocated) ALLOCATE_RCB

>0 >0
RCB_ALLOCATED(OK) |
o<

GETTSESSION(NO_ATTACH) HS_PS_CONNECTED

>0

RC=0K SESSION_ALLOCATED(OK) I
o< o<
| SEND_DATA
>0
RC=0K
o<
| CONFIRM SEND_DATA(ALLOC,FMH,DATA,CONFIRM) 0IC,BB,RQD2|3,ATTACH,data
>0 >0 — - > (1)
RC=0K CONFIRMED +RSP
o< o< o< 2)

Figure 2-38.

ALLOCATE (when allocated), CONFIRM (by First Speaker) --Local LU

2-56 SNA Format and Protocol Reference Manual for LU Type 6.2

Lto partner LU) HS(Bidder) RM PS 1P
0IC,BB,RAD2|3,ATTACH,data BID
() >o >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
> >0 >0
HS_PS_CONNECTED RECEIVE_AND_WAIT |
<. o<
° RC=0K,
RCVD_DATA(DATA,CONFIRM) WHAT_RCVD=DATA_*COMPLETE
>0 >0
RECEIVE_AND_MWAIT |
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONFIRMED |
2) < o< o<
| RC=NONE
>0
Figure 2-39. ALLOCATE (when allocated), CONFIRM (by First Speaker) --Remote LU

Chapter 2. Overview of the LU

2-57

TP PS RM. ‘ HS(FSP) to_partner

ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK)
o< o<
| SEND_DATA
>0
RC=0K
o< .
I CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH 0IC,BB,RAD2|3,ATTACH,data
>or >o >o > (1)
SESSION_ALLOCATED(OK)
o< .
HS_PS_CONNECTED
) o
RC=0K CONFIRMED B ~ +RSP
o< o< o< (2)

Figure 2-40. ALLOCATE (delayed), CONFIRM (by First Speaker) --lLocal LU

2-58 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS(Bidder) RM PS e

OIC,BB,RAD2|3,ATTACH,data BID
1) >0 >0
BID_RSP(POS) |

o<
| ATTACH_HEADER ATTACH
>o >0 >0
HS_PS_CONNECTED | RECEIVE_AND_MWAIT |
o< o<
RC=0K,
RCVD_DATA(DATA,CONFIRM) WHAT_RCVD=DATA_*COMPLETE
>o >0
RECEIVE_AND_WAIT |
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONFIRMED |
(2) < o< o<
RC=NONE
>0

Figure 2-41. ALLOCATE (delayed), CONFIRM (by First Speaker) --Remote LU

Chapter 2. Overview of the LU 2-59

TP) RH

HS(ESP) Lo partner LU)
ALLOC(delayed) ALLOCATE_RCB
O >0 >0
RC=0K RCB_ALLOCATED(OK) |
o< o<
| SEND_DATA
>0
RC=0K |
o<
l RCV_AND_WAIT GET_SESS(ATTACH) BID_WITH_ATTACH 0IC,BB,RQEL,CD,ATTACH,data
>o >o So > (1)
SESSION_ALLOCATED(OK)
o<

| HS_PS_CONNECTED
>0

RCVD_ERROR : -RSP(0846)

o< o<)
RC=PRUG_ERROR_ " - RCVD_DATA(FMH,DATA,
PURGING - : PREPARE_TO_RCV_FLUSH) 0IC,RQE},CD,FMH7
o< o< o< (3)

Figure 2-42. ALLOCATE (delayed), RECEIVE_AND_WAIT (by First Speaker) --Local LU

2-60 SNA Format and Protocol Reference Manual for LU Type 6.2

PS P

(to partner LU) HS(Bidder) RM
OIC,BB,RQEI1,CD,ATTACH,data BID
(1) >0 >0
BID_RSP(POS) J
o<
| ATTACH_HEADER ATTACH
HS_PS_CONNECTED l RECEIVE_AND_WAIT |
o< o<
RCVD_DATA(DATA, RC=0K,
PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_%COMPLETE
>0 >0
—RSP(0846) SEND_ERROR SEND_ERROR |
2) < o< <
RC=0K

SEND_DATA(FMH,DATA,

0IC,RQE1,CD,FMH7 PREPARE_TO_RCV_FLUSH)

>0
RECEIVE_AND_WAIT]

O<

(3) < o<

Figure 2-43,

ALLOCATE (delayed), RECEIVE_AND_WAIT (by First Speaker) --Remote LU

Chapter 2. Overview of the LU

2-61

Ip

PS RM ' HS(Bidder)

(t artne
ALLOC(when allocated) ALLOCATE_RCB
[+ >o >0
RCB_ALLOCATED(OK)
ol
GET_SESS(NO_ATTACH) BID_WITHOUT_ATTACH LUSTAT,BB,RQD1
d>or >o > (1)
RC=0K SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP
o< o<- . < o< (2)
| SEND_DATA HS_PS_CONNECTED
- >0 >0
RC=0K
o< SEND_DATA(FMH,DATA,
| RCV_AND_WAIT PREPARE_TO_RCV_FLUSH) OIC,RQE1,CD,ATTACH,data
>o >o > (3)
Figure 2-44. ALLOCATE (when allocated), RECEIVE_AND_WAIT (by Bidder) --local LU
2-62 SNA Format and Protocol Reference Manual for LU Type 6.2

PS TP

(to partner LU) HS(FSP) RM
LUSTAT,BB,RQD1 BID

(1) >0 >?

+RSP BID_RSP(POS} I

OIC,RQE1,CD,ATTACH,data ATTACH_HEADER ATTACH
(3) O O >0 >0
HS_PS_CONNECTED RECEIVE_AND_WAIT |
o< o<
RCVD_DATA(DATA, RC=0K,
PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_¥COMPLETE
20 >0
RECEIVE_AND_WAIT |
o<
RC=0K,
WHAT_RCVD=SEND
>0
Figure 2-45. ALLOCATE (when allocated), RECEIVE_AND_WAIT (by Bidder) --Remote LU

‘Chapter 2. ' Overview of the LU

2-63

IP PS RM HS(Bidder) (to partner LU)

ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK)
o< o<
‘ SEND_DATA
>0
RC=0K |
o<
] CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH 0IC,BB,RQD2|3,ATTACH,data
>o >o >0 > (1)
SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP
o< o< o< (2)
HS_PS_CONNECTED
>0
RC=0K CONFIRMED
o< o<

Figure 2-46. ALLOCATE (delayed), CONFIRM (by Bidder) --Local LU

2-64 SNA Format and Protocol Reference Manual for LU Type 6.2

{30 partner LU) HS(FSP) ’M PS 1P
0IC,BB,RQD2|3,ATTACH,data BID
() >o- >0
BID_RSP(POS) J
o<
| ATTACH_HEADER ATTACH
> >0 >0
HS_PS_CONNECTED RECEIVE_AND_WAIT |
o< - o<
RC=0K,
RCVD_DATA(DATA ,CONFIRM) WHAT_RCVD=DATA_¥COMPLETE
>0- >0
RECEIVE_AND_WAIT J
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONFIRMED |
2) < o< o<
RC=NONE
" >0
Figure 2-47. ALLOCATE (delayed), CONFIRM (by Bidder) --Remote LU
Chapter 2. Overview of the LU

2-65

Ip

ps RM
ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK)
o< o<
| SEND_DATA
>0
RC=0K
o<

l RCV_AND_WAIT

GET_SESSION(ATTACH)

S,
7O

BID_WITH_ATTACH

HS(Bidder): (to partner LU) ' :

0IC,BB,RQE1,CD,ATTACH,data

RC=0K, WHAT_RCVD=
DATA_%COMPLETE
o<

O

SESSION_ALLOCATED(OK)

o< o<

BID_RSP(POS)

kil ° 4

>

Pl

FIC,data

HS_PS_CONNECTED

RCVD_DATA(DATA,NOT_END_OF_DATA)

<

2)

>0

|

Figure 2-48.

2-66

O

ALLOCATE (delayed), RECEIVE_AND_WAIT (by Bidder) --local tU .- . k

SNA Format and Protocol Reference Manual for LU Type 6.2

HS(FSP) RM PS Ip
0IC,BB,RQE1l,CD ""Acuod.*. BID
§8) >o >0
BID_RSP(POS) J
<
ATTACH_HEADER ATTACH
>0 >0 >0
HS_PS_CONNECTED | RECEIVE_AND_NAIT'
o< - o<
RCVD_DATA(DATA, RC=0K,
PREPARE_TO_RCV_FLUSH WHAT_RCVD=DATA_%COMPLETE
>0 >0
RECEIVE_AND_MWAIT |
o<
RC=0K,
WHAT_RCVD=SEND
>0
FIC,data SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA |
(2) < o< o<
| RC=0K
>0
Figure 2-49. ALLOCATE (delayed), RECEIVE_AND_WAIT (by Bidder) --Remote LU

" Chapter 2. Overview of the LU

2-67

TP , PS RM HS(Bidder) (to par]
ALLOC(delayed) ALLOCATE_RCB

S,

o >o >0
RC=0K RCB_ALLOCATED(OK)
o< o<
| SEND_DATA
>0
RC=0K |
o< ’
| CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BB,RQD2|3,ATTACH,data
>o- >o >0 > (1)
SESSION_ALLOCATED(OK) BID_RSP(POS) ~RSP(0846)
o< o< o< 2)
HS_PS_CONNECTED
>0
RCVD_ERROR |
°(
RCVD_DATA(FMH,DATA,
RC=ALLOCATION_ERROR DEALLOCATE_FLUSH) 0IC,CEB,RQE1,FMH?
o< o< o< (3)
DEALLOCATE_LOCAL DEALLOCATE_RCB FREE_SESSION |
20 >0<:
RC=0K RCB_DEALLOCATED
o< o<

Figure 2-50. ALLOCATE (delayed), CONFIRM (by Bidder), Attach Error --lLocal LU

2-68 SNA Format and Protocol Reference Manual for LU Type 6.2

(to_partner LU) HS(FSP) RM PS

TP

0IC,BB,RAD2|3,ATTACH,data BID

O >0
BID_RSP(POS) |

(1)

o<

ATTACHCALLOCATION
ATTACH_HEADER ERROR)

O >0
HS_PS_CONNECTED |
o<

| RCVD_DATA(DATA , CONFIRM)

-RSP(0846) SEND_ERROR
(2) <

SEND_DATA(FMH,DATA,

0IC,CEB,RQELl,FMH?7 DEALLOCATE_FLUSH)
(3) < <

A4
FREE_SESSION DEALLOCATE_RCB
>0<

RCB_DEALLOCATED

>0
Figure 2-51.

Chapter 2.

ALLOCATE (delayed), CONFIRM (by Bidder), Attach Error --Remote LU

Overview of the LU

2-69

IP PS , RM HS(FSP)

ALLOCATE(immediate) ALLOCATE_RCB(immediate)

o >0 >0
FSP session available
RC=0K RCB_ALLOCATED(OK) l
o< o<

[HS_PS_CONNECTED

>0
.
°
°

[The flow continues as in the ALLOCATE(when allocated) case.l

Figure 2-52. ALLOCATE (immediate), Successful --lLocal LU

2~70 SNA Format and Protocol Reference Manual for LU Typae 6.2

(no activity at remote LU)

from here on just like ALLOCATE(when allocated)
Figura 2-53. ALLOCATE (immediate), Successful --Remote LU

Chapter 2. Overview of the LU 2-71

P

PS RM HS

ALLOCATE(immediate) ALLOCATE_RCB(immediate)

L4

°(

>o >0
(no first-speaker
session available)
RCB_ALLOCATED

RC=UNSUCCESSFUL (unsuccessful)

<.

v

Figure 2-54. ALLOCATE (immediate), Unsuccessful --Local LU

2-72

SNA Format and Protocol Reference Manual for LU Type 6.2

(to_partner LU)

(no activity at remote LU)

Figure 2-55. ALLOCATE (immediate), Unsuccessful --Remote LU

Chapter 2. Overview of the LU 2-73

TPN(A) PS(A) RM HS(Bidder) (to partner LU)
ALLOC(delayed) ALLOCATE_RCB
(-4 >o >0
RC=0K RCB_ALLOCATED(OK)
o< o<
| SEND_DATA
>0
RC=0K |
o<
l CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BB,RQDZ|3,ATTACH,data
>0 >0 b4 L}
BID 0IC,BB,RQE1,CD,ATTACH,data
o< o< 1)
TPN(B) PS(B) I BID_RSP(POS)
>0
ATTACH ATTACH_HEADER
o< o< o<
| HS_PS_CONNECTED
>0
RECEIVE_AND_WAIT
>0
RC=0K, WHAT_RCVD= RCVD_DATA(DATA,
DATA_%COMPLETE PREPARE_TO_RCV_FLUSH)
o< o<
|RECEIVE_AND_NAIT
>0
RC=0K, WHAT_RCVD=
SEND
o<
| SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA)
>0 >0
RC=0K I enqueued > (2)
o< BID_RSP(NEG) -RSP(0813)
o< o< 3)
etc. try another session |
or enqueue dequeue
| FIC,data
> (4)
Figure 2-56. ALLOCATE (delayed) Race, Bracket Rejected --Bidder LU

2-74

SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU)

0IC,BB,RQE1,CD,ATTACH,data BID_WITH_ATTACH GET_SESS(ATTACH)

HS(FSP) RM PS ip

ALLOCATE_RCB ALLOC(delayed)
o< O O
RCB_ALLOCATED(OK) RC=0K
(o4 >0
SEND_DATA
o<
RC=0K

>0

RECEIVE_AND_WAIT

(1) <

A%4

g4 \%4
SESSION_ALLOCATED(OK)

>0
HS_PS_CONNECTED'
o<
0IC,BB,RQD2|3,ATTACH,data BID
2) o >0
—-RSP(0813) BID_RSP(NEG)
3) < o<
RC=0K,
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_*COMPLETE
4) >0 o >0

Figure 2-57. ALLOCATE (delayed) Race, Bracket Rejected --First Speaker LU

Chapter 2. Overview of the LU

2-75

IPN(A) PS(A) RM HS(Bidder) (to partner LU)
ALLOC(delayed) ALLOCATE_RCB
o O >0
RC=0K RCB_ALLOCATED(OK)
o< o< -
| SEND_DATA
>0
RC=0K
o<
| CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BB,RQD2|3,ATTACH,data
~Or >Or >0 1
BID ' .0IC,BB,CEB,RQE1,ATTACH,data -
o< - o<— = ‘ $9)
TPN(B) PS(B) | BID_RSP(POS)
>0
ATTACH ATTACH_HEADER
o< o< o<
I HS_PS_CONNECTED
>0
RECEIVE_AND_WAIT
>0 > (2)

RC=0K, WHAT_RCVD=
DATA_%COMPLETE
°(

RCVD_DATA(DATA,
DEALLOCATE_F

<.

LUSH)

o<

IRECEIVE_AND_HAIT

FREE_SESSION

>0 o<
RC=DEALLOCATE_
NORMAL
o<
I DEALLOCATE DEALLOCATE_RCB
>0 >0
RC=0K RCB_DEALLOCATED l
o< o<
TPN(A) PS(A)
SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP
o< o o<= (3)
HS_PS_CONNECTED
. >0
RC=0K CONFIRMED
o< o<

Figure 2-58.

2-76

ALLOCATE (delayed) Race, Bracket Accepted ~-Bidder LU

SNA Format and Protocol Reference Manual for LU Type 6.2

HS(FSP) RM PS TP
ALLOCATE_RCB ALLOC(delayed)

o< o< 0

l RCB_ALLOCATED(OK) RC=0K
>0 >0
SEND_DATA |

o<

RC=0K

>0

OIC,BB,CEB,RQE1,ATTACH,data BID_WITH_ATTACH GET_SESS(ATTACH)

DEALLOCATE_FLUSH

(1 < o o o<
| SESSION_ALLOCATED(OK) RC=0K
>0
Hs_Ps_conuecrzol
°(
| FREE_SESSION DEALLOCATE_RCB
>0<
l RCB_DEALLOCATED RC=0K
>0 >0
0IC,BB,RAD2|3,ATTACH,data BID
(2) >0 >0
BID_RSP(POS) |
o(
| ATTACH_HEADER ATTACH
> >0~ >0

>0
HS_PS_CONNECTED |

RECEIVE_AND_WAIT

o< o<
RC=0K,
RCVD_DATA(DATA ,CONFIRM) WHAT_RCVD=DATA_*COMPLETE
>o >0

RECEIVE_DATA

o<
RC=0K ,WHAT_RCVD=
CONFIRM
>0
+RSP CONFIRMED CONFIRMED
(3) < o< o<
| RC=NONE
>0

Figure 2-59. ALLOCATE (delayed) Race, Bracket Accepted --First Speaker LU

Chapter 2. Overview of the LU

2-77

IP pPS RM H3 {10 partner LU)

DEALLOCATE_F LUSHb SEND_DATA(DEALLOCATE_FLUSH)

S,
>

_ LICvCEByRQEl_

A4

A4

> (1)
FREE_SESSION

o<
Q

DEALLOCATE_RCB

>0
RC=0K RCB_DEALLOCATED l
o< o<

Figure 2-60. DEALLOCATE FLUSH (RQEl) --local LU

2-78 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS RM PS Ip

RECEIVE_AND_WAIT

o< 0
LIC,CEB,RQE1L .+ RCVD_DATA(DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMA
(1) >0 >0 >0
FREE_SESSION DEALLOCATE_RCB DEALLOCATE_LOCAL
>0< o<
RCB_DEALLOCATED RC=0K
>0 >0

Figure 2-61. DEALLOCATE FLUSH (RQEl) --Remote LU

Chapter 2. Overview of the LU 2-79

I = A — s (to partner LU)

(sequence number wrap)

DEALLOCATE_FLUSH = SEND_DATA(DEALLOCATE_FLUSH) LIC,CEB,RQD1? ‘
(- >0 >0 - - > (1)
FREE_SESSION +RSP
o< - o< 2)
DEALLOCATE_RCB
. >0
RC=0K RCB_DEALLOCATED

o< o<
NOTES:

1 RQD1 is required under‘ccrtain sequence number wrap conditions.
Figure 2-62. DEALLOCATE FLUSH (RQD1) -—I.oc.i [KV)

2-80 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS RM PS Ip

RECEIVE_AND_KWAIT

o<]
LIC,CEB,RQD1 RCVD_DATA(DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
(1) >0 >or >0
+RSP | DEALLOCATE_RCB DEALLOCATE_LOCAL
(2) < o< o<
| FREE_SESSION
>0
| RCB_DEALLOCATED RC=0K

>0 >0

Figure 2-63. DEALLOCATE FLUSH (RQD1) --Remote LU

.. Chapter 2. Overview of the LU

2~-81

Ie PS T RM E HS - (to Eaffﬂ‘f IU!”A

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) ~ FIC,data N o .
o >0 ——>0— — > (1)
RC=0K
o<
DEALLOCATE_FLUSH SEND_DATA(DATA,DEALLOCATE_FLUSH) LIC,CEB,RQE1
A4 hh "4
FREE_SESSION
o< L
DEALLOCATE_RCB 2 -RSP(0846) o
>0 [- (2)
(This stray response) o
is discarded) ‘ ' > (3)

RC=0K RCB_DEALLOCATED
o< o<

Figure 2-64. DEALLOCATE FLUSH (RQE1), SEND_ERROR, -RSP Sent --lLocal LU

2-82 SNA Format and Protocol Reference Manual for LU Type 6.2

(%o partner LU) HS RM PS TP
RECEIVE_AND_WAIT
o< 0
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) RC=0K,
(1) - >0 >0 WHAT_RCVD=
DATA_*COMPLETE
>0
-RSP(0846) SEND_ERROR SEND_ERROR
(2) <« 0<: o<
LIC,CEB,RQE!L RCVD_DATA(DATA,DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
3 >0 >0 >0
FREE_SESSION DEALLOCATE_RCB DEALLOCATE_LOCAL
>0< o<
RCB_DEALLOCATED RC=0K
>o >0
Figure 2-65. DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP Sent --Remote LU

Chapter 2.. Overview of the LU

2-83

Ip PS RM HS (to partner LU)

SEND_DATA SEND_DATA(DATA ,NOT_END_OF_DATA) FIC,data
o >0 — > > (1)

RC=0K

o<
DEALLOCATE_FLUSH SEND_DATA(DATA,DEALLOCATE_FLUSH) LIC,CEB,RQE1 .
>o >o > (2)
FREE_SESSION

o<

DEALLOCATE_RCB

>0

RC=0K RCB_DEALLOCATED

o< 0<

Figure 2-66. DEALLOCATE FLUSH (RQEl), SEND_ERROR, -RSP not Sent --lLocal LU

2-84 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU)

HS RM PS 1P

RECEIVE_AND_WAIT

o< *]
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) RC=0K
(1 >o >0 WHAT_RCVD=
| DATA_%COMPLETE
>0
LIC,CEB,RQE1 RCVD_DATA(DATA,DEALLOCATE_FLUSH)
(2) >0 >0
| FREE_SESSION SEND_ERROR
>0 o<
IRC=DEALLOC_NORHAL
>0
DEALLOCATE_RCB DEALLOCATE_LOCAL
o< Lo]
RCB_DEALLOCATED RC=0K
>0— >0

Figure 2-67. DEALLOCATE FLUSH (RQEl), SEND_ERROR, -RSP not Sent --Remote LU

Chapter 2. Overview of the LU

2-85

Ip PS RM

HS (to partner LU)

DEALLOCATE_CONFIRM SEND_DATA(DEALLOCATE_CONFIRM)

EC,CEB,RAD2|3

o >0 >0 > (1
CONFIRMED +RSP
o< o< 2)
DEALLOCATE_RCB FPRE_SESSION
- >0%
RC=0K RCB_DEALLOCATED
o< o<

Figure 2-68. DEALLOCATE CONFIRM (RQD2]3) --Local LU

2-86; SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS RM PS TP
RECEIVE_AND_WAIT
o< o
EC,CEB,RQD2|3 RCVD_DATA(DEALLOCATE_CONFIRM) RC=0K,WHAT_RCVD=CONFIRM
(1) >0 20 20
+RSP CONF IRMED CONFIRMED l
2) < o< o<
| FREE_SESSION | RC=0K
>0 20
RECEIVE_AND_NAIT"
o<
RC=
DEALLOCATE_NORMAL
>0
DEALLOCATE_RCB DEALLOCATE_LOCAL l
o< o<
RCB_DEALLOCATED RC=0K
>0 >0
Figure 2-69. DEALLOCATE CONFIRM (RQD2|3) --Rewovte LU

Chapter 2.

Overview of the LU

2-87

IP PS RM HS ‘ {to partner LU)

SEND_DATA(FMH,DATA,

DEALLOCATE_ABEND DEALLOCATE_FLUSH) 0IC,CEB,RQD1,FMH7(0864)
o >or >o > (1)
I DEALLOCATE_RCB FREE_SESSION +RSP
>0< o< (2)
RC=0K RCB_DEALLOCATED |
o< o<

Figure 2-70. DEALLOCATE ABEND Issued in SEND, Between-Chain State --local LU

2-88 SNA Format and Protocol Reference Manual for LU Type 6.2

(o partner LU)

0IC,CEB,RQD1,FMH7(0864)
1)

HS RM

PS P

RCVD_DATA(FMH,DATA,
DEALLOCATE_FLUSH)

v

RECEIVE_AND_WAIT
o< 0
RC=DEALLOC_ABEND

+RSP
2) <«

Figure 2-71. DEALLOCATE ABEND

o<

DEALLOCATE_RCB

O >0
DEALLOCATE_LOCAL |

>

RCB_DEALLOCATED

\4

RC=0K

FREE_SESSION

>0

>0- >0

Issued in SEND, Between-Chain State --Remote LU

Chapter 2. Overview of the LU

2-89

1P PS , RM - HS (to partner LU)

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data
o >0 >o > (1)
RC=0K
o<
SEND_DATA(FMH,DATA, ‘
DEALLOCATE_ABEND DEALLOCATE_FLUSH) LIC,CEB,RQD1,FMH7(0864)
>0 . ->0r - > (2)
DEALLOCATE_RCB FREE_SESSION +RSP
>0< o< (3)
RC=0K RCB_DEALLOCATED |
o< 0<:

Figure 2-72. DEALLOCATE ABEND Issued in SEND, In-Chain State --Local LU

2-90 SNA Format and Protocol Reference Manual for LU Type 6.2

(to _partner LU)

FIC,data
(1)

HS RM PS ip

RECEIVE_AND_WAIT
o< o
RCVD_DATA(DATA,NOT_END_OF_DATA) RC=0K,WHAT_RCVD=

LIC,CEB,RQD1,FMH7(0864)
(2)

>0 >? DATA_%COMPLETE

>0
RECEIVE_AND_WAIT I

o<

RCVD_DATA(FMH,DATA,

DEALLOCATE_FLUSH) RC=DEALLOCATE_ABEND

v

+RSP
(3) <

g

>, >0

o
DEALLOCATE_RCB DEALLOCATE_LOCAL

Figure 2-73. DEALLOCATE ABEND

O

o<
RCB_DEALLOCATED RC=0K
>0 >0

FREE_SESSION

>0

Issued in SEND, In-Chain State --Remote LU

Chapter 2. Overview of the LU

2-91

Ip : PS_ RM . HS o (to partner LU)

SEND_DATA
o >0

RC-0K |
o<)

FLUSH . SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data
o >0 g >0 > (1)
o< I
RCVD_ERROR : -RSP(0846)
o<= . - —0< - - (2)

DEALLOCATE_ABEND SEND_DATA(FMH,DATA,DEALLOC_FLUSH) : - LIC,CEB,RQD1,FMH7(0864)
>o >o > (3)
DEALLOCATE_RCB- FREE_SESSION]
- >0< -
RC=0K RCB_DEALLOCATED]
o< + 2

Figure 2-74. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Local LU

2-92 SNA Format and. Protocol Reference Manual for LU Type 6.2

HS RM PS e

i
1<

(to partner

RECEIVE_AND_WAIT

o< 0
RC=0K, WHAT_RCVD=
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) DATA_XCOMPLETE
(1) >0 >0 >0
-RSP(0846) SEND_ERROR SEND_ERROR
(2) < o< o<
RCVD_DATA(FMH,DATA,
LIC,CEB,RQD1,FMH7(0864) DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
3) >0 >0 >0
l FREE_SESSION DEALLOCATE_RCB DEALLOCATE
>0<. o<
RCB_DEALLOCATED RC=0K
>0 >0

NOTE: This TP gets no indication that the DEALLOCATE is of type ABEND
because everything (including FM headers) is discarded when purging.

Figure 2-75. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Remote LU

Chapter 2. Overview of the LU 2-93

2-94

JP PS RM

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA)

HS us.mmu.m

FIC,data

A4 b’ 4

RC=0K |

o<

SEND_DATA(FMH,;DATA,

DEALLOCATE_ABEND DEALLOCATE_FLUSH)

o —> (1)

LIC,CEB,RQD1,FMH7(0864)

A4

I DEALLOCATE_RCB FREE_SESSION

&

>0 S > (2)

~-RSP(0846)

RC=0K RCB_DEALLOCATED

o< O

o< (3)

Figure 2-76. DEALLOClTE ABEND Issued in SEND State --Local LU

SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) P HS RM PS TP

RECEIVE_AND_WAIT

o< 0
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) RC=0K ,WHAT_RCVD=
(1) >0 >0 DATA_%COMPLETE
L >0
-RSP(0846) SEND_ERROR SEND_ERROR
o< o<
RCVD_DATA(FMH,DATA,
LIC,CEB,}| RQD1,FMH7(0864) B DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
(2) >o >o >0
FREE_SESSION DEALLOCATE_RCB DEALLOCATE_LOCAL |
3 <—— >o< o<
RCB_DEALLOCATED RC=0K
O~ >0

NOTE: TPN on right gets no indication that DEALLOCATE_ABEND occurred
because everything (including FMHs) are discarded when in purge state.

Figure 2-77. DEALLOCATE ABEND Issued in SEND State --Remote LU

Chapter 2. Overview of the LU

2=

95

IP PS RM HS (to partner LU)
in RCV state

DEALLOCATE_ABEND SEND_ERROR
o >o >0
RCVD_DATA(DATA,NOT_END_OF_DATA) FIC,data
o< o< (1)
purge
-RSP(086G6)
> (2)
RCVD_DATA(PREPARE_TO_RCV_FLUSH) LIC,RQE1,CD,no data
o< o< (3)
SEND_DATA(FMH ,DATA,
DEALLOCATE_FLUSH) OIC,CEB,RQD1,FMH7(0864)
L >o— > (4)
| DEALLOCATE_RCB FREE_SESSION +RSP
>0¢< o< (5)
RC=0K RCB_DEALLOCATED]
o< o<

Figure 2-78. DEALLOCATE ABEND Issued in RCV, Between-Chain State --Local LU

2-96 SNA Format and Protocol Reference Manual for LU Type 6.2

artn HS RM PS IP
FIC,data SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA
(1) < o< o<)
RC=0K
>0
—RSP(0846) RCVD_ERROR
(2) >o- >0
LIC,RQE1,CD,no data SEND_DATA(PREPARE_TO_RCV_FLUSH) SEND_DATA
(3) < o< o<

0IC,CEB,RQD1,FMH7(0864)
(4) >0

RCVD_DATA(FMH,DATA,

DEALLOCATE_FLUSH) RC=DEALLOCATE_ABEND

+RSP

(5) <

>0 >0
DEALLOCATE_RCB DEALLOCATE_LOCAL
o< o<

RCB_DEALLOCATED

RC=0K
>0 >0

FREE_SESSION

Figure 2-79.

>0

DEALLOCATE ABEND Issued in RCV, Between-Chain State --Remote LU

Chapter 2. Overview of the LU

2-97

1P PS RM HS . (to_partner LU)

RECEIVE_AND_WAIT

[, >0
RC=0K , WHAT_RCVD= , ‘ -
DATA_*COMPLETE RCVD_DATA(DATA,NOT_END_OF_DATA) FIC,data ~
o< o< — o<- —— o)
DEALLOCATE_ABEND SEND_ERROR ‘7 -RSP(086G6)
>0 - - > o - - - > (2)
RCVD_DATA(PREPARE_TO_RCV_FLUSH) LIC,RQEL1,CD,no data '
o< o< - ———— ' (3)
SEND_DATA(FMH,DATA, S
" DEALLOCATE_FLUSH) ‘ ‘ OIC,CEB,RQD1,FMH7(0864)
D ——— - —> (4)
DEALLOCATE_RCB - FREE_SESSION +RSP
>0<: 0<: (5)
RC=0K RCB_DEALLOCATED
o< o<

Figure 2-80. DEALLOCATE ABEND Issued in RCV, In-Chain State --Local LU

2-98 SNA Format and Protocol Reference Manual for LU Type 6.2

to_part HS RM PS ip

FIC,data SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA
(1) < o< o< 0
) RC=0K
>0
-RSP(0846) RCVD_ERROR
(2) >0 >0
LIC,RQE1,CD,no data SEND_DATA(PREPARE_TO_RCV_FLUSH) SEND_DATA
(3) < o< o<
RCVD_DATA(FMH,DATA,
OIC,CEB,RQD1,FMH7(0864%) DEALLOCATE_FLUSH) RC=DEALLOCATE_ABEND
(4) >0 >0 >0
+RSP DEALLOCATE_RCB DEALLOCATE_LOCAL
(5) < o< o<
RCB_DEALLOCATED RC=0K
. >0 >0
FREE_SESSION
>0

Figure 2-81. DEALLOCATE ABEND Issued in RCV, In-Chain State --Remote LU

Chapter 2. Overview of the LU 2-99

IP PS RM HS(FSP) (to partner LU)
ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK)
o< o< ‘
| SEND_DATA
>0

RC=0K |

o<

[DEALLOCATE_FLUSH GET_SESS(ATTACH) BID_WITH_ATTACH OIC,BB,CEB,RQE1,ATTACH,data

S, 5

RC=0K
o<

>o >o o > Q)
SESSION_ALLOCATED(OK)

o<

| HS_PS_CONNECTED
>0

DEALLOCATE_RCB FREE_SESSION
>0<

RCB_DEALLOCATED

Figure 2-82.

©

ALLOCATE (delayed), DEALLOCATE FLUSH (by First Speaker) --Local LU

2-100 SNA Format and Protocol Reference Manual for LU Type 6.2

{to_partner LU)

0IC,BB,CEB,RQE1,ATTACH,data

(1)

HS(Bidder) RM PS Ip

BID
>o >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
>o >0 >0
us_ns_couuecreoAJ RECEIVE_AND_WAIT |
o< o<
RCVD_DATA(DATA, RC=0K,
DEALLOCATE_FLUSH) WHAT_RCVD=DATA_XCOMPLETE
>0 >0

| Free_sesston RECEIVE_AND_WAIT l

>0 o<
RC=DEALLOC_NORMAL

>0
DEALLOCATE_RCB DEALLOCATE_LOCAL I
o< o<
RCB_DEALLOCATED RC=0K
>0 >0

Figure 2-83. ALLOCATE (delayed), DEALLOCATE FLUSH (by First Speaker) --Remote LU

Chapter 2. Overview of the LU

2-101

Ie PS RM HS(Bidder)

(to partner LU)

ALLOC(delayed) ALLOCATE_RCB
o >o >0
RC=0K RCB_ALLOCATED(OK)

o< o<
[SEND_DATA

>0

RC=0K

o<
lDEALLOCATE_CONFIRM GET_SESS(ATTACH) BID_WITH_ATTACH OIC)BB;CEB,RQDZ!3,ATTACH,data

O (o) >0 > (1)

SESSION_ALLOCATED(OK)
o<
HS_PS_CONNECTED
>0
CONFIRMED +RSP
o< o< (2)
DEALLOCATE_RCB FREE_SESSION]
>0<
RC=0K RCB_DEALLOCATED
o< o<

Figure 2-84. ALLOCATE (delayed), DEALLOCATE CONFIRM (BY First Speaker) --Local LU

2-102 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS(FSP) RM

PS TP

0IC,BB,CEB,RQD2|3,ATTACH,data BID

(1) (4 >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
>0 >0 >0
HS_PS_CONNECTED | RECEIVE_AND_WAIT |
o< o<
RCVD_DATA(DATA, RC=0K,
DEALLOCATE_CONFIRM) WHAT_RCVD=DATA_*COMPLETE
20 >0
RECEIVE_AND_WAIT |
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONFIRMED |
(2) < o< o<
FREE_©T5SION [RC=NONE
. >0 >0
RECEIVE_AND_MWAIT |
o<
IRC=DEALLOC_NORMAL
>0
DEALLOCATE_RCB DEALLOCATE_LOCAL |
o< o]
RCB_DEALLOCATED RC=0K
>0 >0
Figure 2-85. ALLOCATE (delayed), DEALLOCATE CONFIRM (BY First Speaker) --Remote LU

Chapter 2. Overview of the LU

2-103

IP PS RM

HS(Bidder) (to partner LU)
ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK)

o< o<
| SEND_DATA

>0

RC=0K

o<

IDEALLOCATE_FLUSH GET_SESS(ATTACH) BID_WITH_ATTACH

4

0IC,BB,CEB,RQD1,ATTACH,data
>0 >0 > (1)

SESSION_ALLOCATED(OK) BID_RSP(POS)

+RSP
o< o< o< (2)
| HS_PS_CONNECTED
>0
DEALLOCATE_RCB FREE_SESSION
>0<

RC=0K RCB_DEALLOCATED |
o< o<
Figure 2-86.

ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to RECEIVE_AND_WAIT --Local LU

2-104 SNA Format and Protocol Reference Manual for LU Type 6.2

{(to partner LU)

HS(FSP)

RM PS P

0IC,BB,CEB,RQD1,ATTACH,data BID
(1) >o >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
>0 O >0
HS_PS_CONNECTED | RECEIVE_AND_WAIT |
o< o<
RCVD_DATA(DATA, RC=0K,
DEALLOCATE_FLUSH) WHAT_RCVD=DATA_*COMPLETE
O >0
+RSP l RECEIVE_AND_WAIT |
(2) < o<
I FREE_SESSION RC=DEALLOC_NORMAL
>0 >0
DEALLOCATE_RCB DEALLOCATE_LOCAL |
o< o<
RCB_DEALLOCATED RC=0K
(o) >0
Figure 2-87. ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to RECEIVE_AND_WAIT --Remote LU

Chapter 2.

Overview of the LU

2-105

Ip PS _RM i HS(Bidder) (to partner LU)

ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK)
o< o<
[7SEND_DATA
>0
RC=0K
o<
I DEALLOC_FLUSH GET_SESS(ATTACH) BID_WITH_ATTACH 0IC,BB,CEB,RQD1,ATTACH,data
o o >0 > (1)
SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP
o< o< o< 2)
| HS_PS_CONNECTED
>0
DEALLOCATE_RCB FREE_SESSION l
L >0<
RC=0K RCB_DEALLOCATED J
o< o<

Figure 2-88. ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to SEND_ERROR --Local LU

2-106 . SNA Format and Protocol Reference Manual for LU Type 6.2

(to _partner LU)

HS(FSP)

RM PS Ip

OIC,BB,CEB,RQD1,ATTACH,data BID
(1) >o >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
>0 Loy >0
HS_PS_CONNECTED | RECEIVE_AND_WAIT
o< o<
RCVD_DATA(DATA, RC=0K,
DEALLOCATE_FLUSH) WHAT_RCVD=DATA_*COMPLETE
>0 >0
| FREE_SESSION
>0
+RSP I SEND_ERROR
(2) < o<
RC=DEALLOCATE_NORM
>0
DEALLOCATE_RCB DEALLOCATE
o< O
RCB_DEALLOCATED RC=0K
>0 >0
ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to SEND_ERROR --Remote LU

Figure 2-89.

Chapter 2.

Overview of the LU

2-107

e PS RM__ HS(Bidder) (to partner LU)
ALLOC(delayed) ALLOCATE_RCB
O >o >0
RC=0K RCB_ALLOCATED(OK)
o< o<
l SEND_DATA
>0
RC=0K
o<
|DEALLOCATE_CONFIRM GET_SESS(ATTACH) BID_WITH_ATTACH O0IC,BB,CEB,RQD2|3,ATTACH,data
>0 >0 >o - - —>. (1)
SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP
0<— - 0 - o< - (2)
HS_PS_CONNECTED
>0
CONFIRMED '
o<
DEALLOCATE_RCB FREE_SESSION l
>0<

RC=0K

o<

Figure 2-90.

RCB_DEALLOCATED

1%)

ALLOCATE (delayed), DEALLOCATE CONFIRM (by Bidder) --lLocal LU

2-108 SNA Format and Protocol Reference Manual for LU Type 6.2

HS(FSP) RM

PS IP

0IC,BB,CEB,RQD2|3,ATTACH,data BID
() >o >0
BID_RSP(POS)]

o<
| ATTACH_HEADER ATTACH
>o >0 >0
HS_PS_CONNECTED] RECEIVE_AND_WAIT |
o< o<
RCVD_DATA(DATA, RC=0K,
DEALLOCATE_CONFIRM) WHAT_RCVD=DATA_%COMPLETE
>0 >0
RECEIVE_AND_WAIT]
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONFIRMED |
2) < o< o<
FREE_SESSION | RC=NONE
>0 >0

DEALLOCATE_RCB

RECEIVE_AND_WAIT
o<
|RC=DEALLOC_NORMAL

>0
DEALLOCATE_LOCAL l

o<

RCB_DEALLOCATED

%4
RC=0K
>0 >0

Figure 2-91.

ALLOCATE (delayed), DEALLOCATE CONFIRM (by Bidder) --Remote LU

Chapter 2. Overview of the LU

2-109

TP PS RM ; HS , {to partner LU)

SEND_DATA
[—0
RC=0K |
o< ,
CONFIRM SEND_DATA(DATA,CONFIRM) OIC,RQD2|3,DATA
o >o >o > (1)
RC=0K CONFIRMED +RSP

o< —0<: o< 2)

Figure 2-92. CONFIRM (RQD2|3) --Local LU

2-110 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS : RM PS Ip

RECEIVE_AND_WAIT

o<]
RC=0K,
0IC,RQD2|3,DATA RCVD_DATA(DATA,CONFIRM) WHAT_RCVD=DATA_*COMPLETE
(1) >o >o >0
RECEIVE_AND_WAIT |
o< |
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONFIRMED |
(2) < , o< o<
| RC=NONE
>0

Figure 2-93. CONFIRM (RQD2!3) --Remote LU

_ Chapter 2. Overview of the LU 2-111

IP PS —BM HS ‘ {to partner LU)

SEND_DATA
[, >0
RC=0K '
o< -
PREPARE_TO_RECEIVE
>0
NO RC | ,
o< SEND_DATA(DATA,
| CONFIRM(LOCK=LONG) PREPARE_TO_RCV_CONFIRM_LONG) OIC,RQE2|3,CD,DATA
>0 : . « >0 > (1)
RC=0K CONFIRMED ' FIC,data
o< o< " o< (2)
RECEIVE_AND_WAIT
>0
RC=0K ,WHAT_RCVD= v
DATA_%COMPLETE RCVD_DATA(DATA,NOT_END_OF_DATA)
o< o<

Figure 2-94. CONFIRM (RQE2|3) --local LU

2-112 'SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) Hs RM PS Ie

RECEIVE_AND_WAIT

o< 0
RCVD_DATA(DATA, RC=0K,
OIC,RQE2|3,CD,DATA PREPARE_TO_RCV_CONFIRM) WHAT_RCVD=DATA_%COMPLETE
>0 20 >0
RECEIVE_AND_WAIT |
o<
RC=0K,KHAT_RCVD=
CONFIRM
>0
CONFIRMED CONFIRMED |
o< o<
l RC=NONE
>0
RECEIVE_AND_WAIT |
o<
RC=0K, WHAT_RCVD=
SEND
>0
FIC,data SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA |
2) < o< o<
l RC=0K
>0

Figure 2-95. CONFIRM (RQE2|3) --Remote LU

Chapter 2. Overvieuw of the LU 2-113

Ie P9 _RM__ H {to partner LU)

SEND_DATA
O >0
RC=0K
o<
| PREPARE_TO_RECEIVE
t >0
NO RC |
o< SEND_DATA(DATA, ,
| CONFIRM(LOCK=LONG) PREPARE_TO_RCV_CONFIRM_LONG) OIC,RQE2|3,CD,DATA :
>o . >o > (1)
RCVD_ERROR -RSP(0846)
o< o< ~ (2)
RC='derived
from FMH7' RCVD_DATA(FMH,DATA,NOT_END_OF_DATA) FIC,FMH7,DATA
o< : o< o< (3)

Figure 2-96. CONFIRM (RQE2(13), SEND_ERROR --lLocal LU

2-114 SNA Format and Protocol Reference Manual for LU Type 6.2

{to partner LU) Hs RM PS Ie

RECEIVE_AND_WAIT

o< 0
RCVD_DATA(DATA, RC=0K,
OIC,RQE2|3,CD,DATA PREPARE_TO_RCV_CONFIRM) WHAT_RCVD=DATA_*COMPLETE
(1) >0 >0 >0
RECEIVE_AND_WAIT |
o<
RC=0K,WHAT_RCVD=
CONFIRM
>0
-RSP(0846) . SEND_ERROR SEND_ERROR |
(2) < o< o<
| RC=0K
>0
FIC.FMH7,DATA SEND_DATA(FMH,DATA,NOT_END_OF_DATA) SEND_DATA |
(3) < o< o<
I RC=0K
>0

Figure 2-97. CONFIRM (RQE213), SEND_ERROR --Remote LU

Chapter 2. Overview of the LU 2-11%

IP PS RM HS (to partner LU)

SEND_DATA
[>0
RC=uLK |
o\
I SEND_DATA
>0
RC=OK |
o<
| CONFIRM SEND_DATA(DATA,CONFIRM) 0IC,RQD2|3,~CD,DATA
>o >o > (1)
RCVD_ERROR ~RSP(0846)
o< o< (2)
RC="'derived
from FMH7' RCVD_DATA(FMH,DATA,NOT_END_OF_DATA) FIC,FMH7,DATA
o< o< o< (3)

Figure 2-98. CONFIRM (RQD213), SEND_ERROR --lLocal LU

2-116 SNA Format and Protocol Reference Manual for LU Type 6.2

t t U] HS_ RM PS P
RECEIVE_AND_MWAIT
o< 0
RC=0K,
0IC,RQD2|3,~CD,DATA RCVD_DATA(DATA,CONFIRM) WHAT_RCVD=DATA_*COMPLETE
() >o >0
RECEIVE_AND_WAIT |
o<
RC=0K , WHAT_RCVD=
CONFIRM
>0
~RSP(0846) SEND_ERROR SEND_ERROR |
2y < o< o<
| RC=0K
>0
FIC,FMH7,DATA SEND_DATA(FM{,DATA,NOT_END_OF_DATA) SEND_DATA |
3) < o< o<
I RC=0K
>0

Figure 2-99. CONFIRM (RQD2|3), SEND_ERROR --Remote LU

Chapter 2. Overview of the W

2-117

IP PS RM HS

(to partner LU)

SEND_DATA
[- >0-
RC=0K |
o<
[47 SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data
>o >o > (1)
RC=0K |
o< SEND_DATA(DATA,
I RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH) LIC,CD,RQE1
>0 >0 > (2)

Figure 2-100. RECEIVE_AND_WAIT Causing RQE,CP --local LU

2-118 SNA Format and Protocol Reference Manual for LU Type 6.2

Ip

\°4

>0

to par HS RM PS
RECEIVE_AND_MWAIT
o<
) RC=0K,

FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_INCOMPLETE

(1) >0 >0

RCVD_DATA(DATA,
LIC,CD,RQE1 PREPARE_TO_RCV_FLUSH)

(2)

>0

RECEIVE_AND_WAIT

o<

RC=0K,WHAT_RCVD=
DATA_*COMPLETE

>0

RECEIVE_AND_WAIT

o<

RC=0K,
WHAT_RCVD=SEND

Figure 2-101. RECEIVE_AND_WAIT Causing RQE,CD --Remote LU

Chapter 2.

>0

Overview of the LU

2-119

P PS RM HS (to partner LU)
SEND_DATA
O >0
RC=0K |
o<
SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data
RC=0K |
o<
SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) MIC,data
>o >0
RC=0K |
o<
RCVD_ERROR -RSP(0846)
o< o< (2)
> (3)
SEND_DATA SEND_DATA(PREPARE_TO_RCV_FLUSH) LIC,CD,RQELl,no data
>0 >o > (4)
(discard data)
RC=PROG_ERROR_ RCVD_DATA(FMH,DATA,
PURGING NOT_END_OF_DATA) FIC,FMH7,DATA
o< o< o< o (5)

RECEIVE_AND_WAIT

RC=0K,

>0

NHAT_RCVD=DATA_*COTPLETE

o<

Figure 2-102. SEND_ERROR before SEND_DATA --Remote LU

2-120

SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) Hs RM PS Ip

RECEIVE_AND_WAIT

o<]
RC=0K,
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_*COMPLETE
(1) >0 >o >0
-RSP(0846) SEND_ERROR SEND_ERROR
(2) < o< - o<
MIC,data RCVD_DATA(DATA,NOT_END_OF_DATA)
(3) >0 >0 purged
LIC,CD,RQE]l,no data RCVD_DATA(PREPARE_TO_RCV_FLUSH) RC=0K
(4) >0 >0 >0
FIC,FMH7,DATA SEND_DATA(FMH,DATA,NOT_END_OF_DATA) SEND_DATA
(5) < o< o<
RC=0K
>0

Figure 2-103. SEND_ERROR before SEND_DATA --Local LU

Chapter 2. Overvieuw of the LU 2-121

IP PS RM HS (to_partner LU)
SEND_DATA : ~RSP(0846)
O >0 (1
RC=0K |
°(
lPREPARE_TO_RCV_FLUSH SEND_DATA(DATA, PREPARE_TO_RCV_FLUSH) LIC,RQE1,CD,data
>o >o > (2)
RC=0K |
°(
| SEND_ERROR SEND_ERROR
>o >0
RCVD_ERROR
o< O
purged
RCVD_DATA(FMH,DATA) FIC,FMH7,data
o< 0< (3)
purged
-RSP(0846)
> (6)
RC=0K RCVD_DATA(PREPARE_TO_RCV_FLUSH) LIC,RQEL1,CD,no data
o< o< o< (5)
SEND_DATA SEND_DATA(FMH,DATA,NOT_END_OF_DATA) FIC,FMH7,data
> >o > (6)
RC=0K
o(

Figure 2-104.

2-122

SEND_ERROR Crossing SEND_ERROR, Both Issued in Receive State --Remote LU

SNA Format and Protocol Reference Manual for LU Type 6.2

(2)

(3)

(4)

(5)

(6)

(to partner LU) HS RM PS TP

-RSP(0846) SEND_ERROR SEND_ERROR
< o< o) o
LIC,RQE1,CD,data RCVD_DATA(DATA, PREPARE_TO_RCV_FLUSH) RC=0K
O O >0
purged
FIC,FMH7,data SEND_DAT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>