e
I9]
o
~
i
—
oN
O
w

1
it
<
™
(%]

o
=
O
i

o

I GEEEEEES. . a— . -
[N W A Sc21 77053
- G G IR S

- [2. ¥] File No. S34-21
- [1 7]

- S G T - ..

IS GEEEEEENY GEEE W -

G G GRS vV G

IBM System/34
Basic Assembler and
Macro Processor
Reference Manual
Program Number 5726-AS1

[

Fourth Edition (January 1982)

This is a major revision of, and obsoletes, SC21-7705-2 and Technical
Newsletters SN21-8019 and SN21-8175. Changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change or addition.

This edition applies to release 8, modification O of the IBM System/34 Basic
Assembler and Macro Processor Program Product (Program 5726-AS1) and to all
subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Changes are periodically made to the information herein;
changes will be reported in technical newsletters or in new editions of this
publication.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 532, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1977, 1978, 1979, 1982

PURPOSE OF THE MANUAL

The Basic Assembler and Macro Processor Reference
Manual is a reference manual for the programmer writing
assembler programs for the IBM System/34. This
manual is not intended to teach an inexperienced
assembler programmer how to code assembler
programs.

Readers are expected to use the manuals listed under
Related Publications in this Preface for further
information on how to code basic assembler language
programs. For example, for a complete description of
the formats of System/34 machine instruction
statements that can be used in assembler programs, see
the IBM System/34 Functions Reference Manual.

This program provides ideographic support when used
with the ideographic version of the SSP and with the
hardware devices that version supports.

HOW THIS MANUAL IS ORGANIZED
This publication is organized as follows:

« Chapter 1 explains the assembler functions and how
these functions are executed.

« Chapter 2 presents the assembler language coding
conventions and programming conventions. The
assembler language format is described, as well as
the three types of terms used to code the
statements.

+ Chapter 3 describes the assembler instruction
statements.

« Chapter 4 describes the machine instruction
statements and lists their mnemonic operation codes.

Preface

» Chapter 5 explains the macro processor and the
coding of macroinstruction definitions.

« Chapter 6 describes the IBM-supplied
macroinstructions and the general rules for coding
macroinstructions.

« Chapter 7 contains programming considerations,
information about assembler control statements, data
files, OCL, and data management considerations.

« Chapter 8 lists and explains all printed messages
issued by the assembler and the macro processor.

« Appendix A shows a sample program. Appendix A
also shows two IBM-supplied macroinstruction
definitions and related macroinstruction expansions.

« Appendix B shows the coded character set for
EBCDIC (extended binary coded decimal interchange
code).

A glossary provides a list of both new and familiar
terms.

Note: Because the manual is arranged for reference
purposes, certain terms appear, of necessity, earlier in
the manual than the discussions explaining them: The
reader who encounters a problem of this sort should
refer to the index, which will direct the reader to the
term’s definition or explanation.

SYSTEM REQUIREMENTS

Refer to the IBM System/34 Planning Guide,

GC21-5154, for the System/34 assembler compiler

requirements.

PREREQUISITE PUBLICATIONS

« IBM System/34 Introduction, GC21-5153

« IBM System/34 Planning Guide, GC21-5154

« IBM System/34 System Support Reference Manual,
SC21-5155

RELATED PUBLICATIONS

« IBM System/34 Assembler Reference Summary,
GX21-7674

« IBM System/34 Concepts and Design Guide,
SC21-7742

« IBM System/34 Installation and Modification Reference

Manual: Program Products and Physical Setup,
SC21-7689

« IBM System/34 System Data Areas and Diagnostic
Aids Manual, LY21-0049

« IBM System/34 Data Communications Reference
Manual, SC21-7703

« IBM System/34 Interactive Communications Feature
Reference Manual, SC21-7751

« IBM System/34 Sort Reference Manual, SC21-7658

« IBM System/34 Ideographic Sort Reference Manual,
SC21-7850

« IBM System/34 1255 Magnetic Character Reader
Reference Manual, SC21-7740

« IBM System/34 Scientific Macroinstruction Reference
Manual, SA21-9275

« IBM System/34 Overlay Linkage Editor Reference
Manual, SA21-7707

« IBM System/34 Functions Reference Manual,
SA21-9243

« IBM System/34 Bibliography, GH30-0231

« IBM System/34 Displayed Messages Guide,
SC21-5159

« IBM System/34 Master Index, SC21-7739

ASSEMBLER CODING MATERIAL

IBM System/34 Basic Assembler Coding Form,
GX21-9279

CHAPTER 1. INTRODUCTION
IBM System/34 Basic Assembler Language
Assembler Language Statements

CHAPTER 2. ASSEMBLER LANGUAGE
Assembler Language Source Program Records
Character Set
Coding Conventions
Assembler Language Statement Entries
Identification Sequence Entry
Assembler Program Conventions
Expressions
Termso
Addressing
Program Linking References

CHAPTER 3. ASSEMBLER INSTRUCTION
STATEMENTS
Symbol Definition
EQU-Equate Symbol
Data Definition
DC-Define Constant
DS-Define Storage
Listng Control
TITLE-Identify Assembly Qutput
EJECT-Start New Page
SPACE-Space Listing
PRINT—Control Program Listing
Program Control Statements
ISEQ-Input Sequence Checking
ORG-Set Location Counter
START-Start Agsembly
USING-Use Index Register for Base
Displacement Addressing
DROP-Drop Index Register as Base Register
ENTRY-Identify Entry-Point Symbol
EXTRN-ldentify External Symbols
ICTL—Input Format Control
END-End Assembly

..................

CHAPTER 4. MACHINE INSTRUCTION
STATEMENTS
Name Entry
Mnemonic Operation Entry
Operand Entry

Contents

CHAPTER 5. MACROINSTRUCTION DEFINITIONS . 51

Macroinstruction Coding Conventions 5-1
Sequence Symbol 5-1
Self-Defining Terms 5-1
Character String 5-1
Character Expression 5-1
Substring 5-2
Alphameric Value 5-2
Variable Symbol 5-2
Count Function 5-4
Arithmetic Expression 5-4
Continuation 5-4
Concatenation 5-4
Defining Macroinstructions 5-5
Definition Control Statement Format 5-6
Macroinstruction Format 5-6

Macroinstruction Definition Control Statements 5-7
Header (MACRO) 5-7
Prototype 5-7
Global 59
local 5-10
Table (TABLE) 5-10
Table-Definition (TABDF) 5-11
Text (TEXT) 5-11
Comment 5-12
Conditional Branch (AIF) 5-12
Unconditional Branch Record (AGO) 5-14
Set Arithmetic (SETA) 5-14
Set Binary (SETB) 5-15
Set Character (SETC) 5-15
Assembly No Operation (ANOP) 5-15
Message (MNOTE) 5-16
Logical End (MEXIT) 5-17
Physical End (MEND) 5-17

Sample Definition of a User Macroinstruction 5-18

CHAPTER 6. MACROINSTRUCTION STATEMENTS . .

WRITING MACROINSTRUCTIONS
MACROINSTRUCTIONS SUPPLIED BY IBM
SYSTEM SERVICES MACROINSTRUCTIONS . . .
System Log Support L.
Generate a Parameter List for a Message
Displayed by System Log ($LMSG)
Generate Displacements for System Log ($LOGD)
Generate the Linkage to the System Log ($LOG)
General SSP Support
Generate Parameter List and Dnsplacements for
$FIND ($FNDP) . . .
Find a Directory Entry ($FIND)
Load or Fetch a Module ($LOAD)
Snap Dump of Main Storage ($SNAP)
Information Retrieval (3INFO)
Generate a Checkpoint Parameter List (JCKEQ) . . .
Establish a Checkpoint (BCKPT)
Inverse Data Move ($INV) .
End of Job ($EOJ)

INPUT/OUTPUT MACROINSTRUCTIONS

General 1/0 Support .
Allocate Space or Device ($ALOC)
Prepare a Device or File for Access (JOPEN)
Prepare a Device or File for Termination ($CLOS) . .
Generate DTF Offsets ($DTFO)

Printer Support
Define the File for a Printer ($DTFP)
Construct a Printer Put Interface (SPUTP)

Disk Device Support .
Define the File for Disk (8DTFD) .
Construct a Disk Get Interface (JGETD)
Construct a Disk Put Interface (PUTD)

Disk Sort Support
Generate a Loadable Sort Parameter List ($SRT)
Construct a Loadable Sort Interface ($SORT)

Timer Support .
Generate Timer Request Block ($TRB)
Set Interval Timer ($SIT)
Return Interval Time ($RIT)
Return Time and Date ($TOD)

Display Station Support
Define the File for Display Station ($DTFW)
Construct a Display Station Input/Output

Interface ($WSIO) .
Generate Override Indicators for Display
Station ($WIND)
Generate Labels for Display Station (SWSEQ)

CHAPTER 7. PROGRAMMING CONSIDERATIONS . .

Assembler Control Statements
HEADERS Statement . .
OPTIONS Statement

Execution Information
Procedures for Assembler .

Data Files Used by the Assembler

Assembler Listing .
Control Statements . . .
External Symbol List (ESL)
Object Code and Source Program Listing
Page Headings .
Diagnostics .
Cross-Reference List

Object Program
Record Formats

Macroinstruction Coding Restrictions

Macroinstruction Definition Restrictions

Disk Data Management Considerations
Access Methods . .
Data Management Control Blocks and Buffers ..
Allocating and Opening the File
Accessing Records in the File

Display Station Data Management Considerations .
GET and ACI Return Codes e
ACQReturnCodes
STI Return Codes
Return Codes for All Operatlons Except GET, ACI,

ACQ, and STI

CHAPTER 8. PRINTED MESSAGES
Macroinstruction Statement Errors
Macro Processor
Assembler

APPENDIX A. SAMPLES

Sample Assembler Program

Sample Macroinstructions
Definition of $PUTP
Definition of $LOG
Expansions of $PUTP and $LOG .

APPENDIXB. EBCDIC

GLOSSARY

71
7-1
7-1

.7

7-3
7-3
7-4
7-5
7-5

The IBM System/34 Basic Assembler and Macro
Processor Program Product consists of two distinct
parts: the assembler processor and the macro
processor. The macro processor is the first to scan the
source program. When it encounters @ macroinstruction
statement, the macro processor refers to a previously
coded and stored macroinstruction definition and uses
the infermation in that definition and the parameters
coded in the macroinstruction statement to expand the
macroinstruction statement into a series of assembler
instruction statements and/or machine instruction
statements. These statements are inserted in the source
program and the original macroinstruction statement is
modified to appear as a comment.

The IBM-supplied macroinstructions perform both
system services and input/output device support.

After the macro processor has expanded each
macroinstruction statement in the source program, the
assembler receives control. The assembler translates the
machine instruction statements into a form usable by
the IBM System/34 and assigns relative storage
addresses to all statements, constants, and storage
areas.

Thus, the principal function of the IBM System/34 Basic
Assembler and Macro Processor program product is to
translate assembler language source programs into
machine language object programs. Therefore, to write
source programs to be assembled by the program
product, you must be familiar with the basic assembler
language.

IBM SYSTEM/34 BASIC ASSEMBLER LANGUAGE

The IBM System/34 Basic Assembler language is a
symbolic programming language and must be translated
into a form usable by the computer before execution.
This computer-usable form is called machine language
or object code. The IBM System/34 Basic Assembler
language provides a convenient method for representing,
on a one-for-one basis, machine instruction statements
and related data necessary to write a program for
execution by any model of the IBM System/34.

Chapter 1. Introduction

This one-for-one relationship to machine language
makes the assembler language versatile. Further
versatility is available because the assembler
programmer can refer to instructions, data areas, and
other program elements by symbolic names, as well as
actual machine addresses. Also available are the
EBCDIC bit pattern, binary arithmetic capabilities, and
access to SSP blocks such as DTFs and |I0Bs. The only
restrictions to be considered are machine restrictions. It
is possible to write some programs that will execute
faster because in unique situations a programmer may
see ways to code more efficiently than the routine
procedures a compiler would generate.

Assembler Language Statements

The basic assembler language is composed of
assembler language statements that use symbols, called
mnemonics, to represent the operation codes of three
types of assembler language statements. The three
types of assembler language statements are as follows:

1. Machine instruction statements represent machine
language instructions on a one-for-one basis. The
symbolically represented machine instruction
statements are translated into executable machine
language code by the assembler processor.

2. Assembler instruction statements control the
functions of the assembler. Each assembler
instruction statement causes the assembler to
perform a specific operation during the assembly
process but is not translated into executable
machine language code by the assembler
processor.

3. Macroinstruction statements represent a sequence
of machine and/or assembler instruction
statements. Each macroinstruction statement
causes the macro processor to select and/or
modify assembler language statements found in
the definition of the macroinstruction.

Figure 1-1 shows an example of each type of assembler
language statement.

Introduction 1-1

IBM 1BM Systern/34 Basic Assembier Coding Form GX21.92700

T [— T T= C—
=== = | 1

11
| T T [T 771 |

[STaTom N | T

Name Toesation e
13 3™ 6 1 8lalio v Tel1a]16 17 8 1920 11 rr TR S5 2 71 T B0t 47 13 345 % 37 38 D a1 & 41 645 &1 40 5D b1 w5 e 55 b6 ok GO B 62 63 68 6% Gk 6 4 1O N 12 13 14 1506 T 18 19 RO W B2 W1 umuu-mu' 919)9-%"1

i si Bl L SrEl TR bl s T ,
*T M v il o - il TNHNK : ‘J_é\ ;:[
+ . H

7 s

ot i 1 Y S § JHE s R P |‘,:. L },.;_._L_i VL | i L$;~L
@ g h d "L+""'L"tl‘ ,1.. R TL ‘ rlrll i ‘T Ll ! . ‘f’,, —;f*i
’ . * { l [I O A e LN bbby eyl [f._»..»_,_
-|DisiDirie | i ! SRR R Vil RN REE I t
A‘ i I" :le’“'lit .v;"" ';?""',’“: . - 1‘: r{fv——-‘—«!»*
_ L . I . | PN Coee gy 1 B v 1 . ' + 4 b
sppe rmnswarie | e
LT L RS RO ERRN B N A EROR PRl FU SRR NEE N
; R RN P SRNRRERE by L FEEE b
D DIF-PS 'TtF'E -_SVL 4 qF‘EOiF: | o N A i I . RN N T
1 r-ex%ﬁ?ﬁne -PRy qﬂ';sirhcm-z.mn{r-v | LT LTS
@ alattH1 1 : N I L N I . dliria s e
opeN | | | [R 1‘;-.“! T LT -
rerrrt AlsEE] I ‘!‘ B H';" bt i
LU g H '] . s } ' b el LR
ERREEERRINNNANE H SERERRERN L LELL L
Ll IUERE RSN ' [i RER
L EERERERQERRANN Ll L ARERENEN : L
L o N -1 4l L4 b
L |
LLLLL L S HA T EH T
V2 24 5 & 7 8lef10ln 120 141 2 DN 712D M2 A0 T2 33043538373 TAD A1 4747 a6 45 66 a7 a8 390 51 5751 34 5596 47 50 30 0041 87 6 64 6508 67 &8 65 JO 71 77 73 74 1576 17 /0 7 SO SL 82 83 e 85 08 B7| 90 91 97 93 04 93 96|

@Machine instruction statement.
@Assembler instruction statement.

@ Macroinstruction statement.

Figure 1-1. Example of Assembler Language Statement Types

1-2

C

In order to code in assembler language, the programmer
must become familiar with certain definitions, coding
conventions, instructions, and other features of the
language. This chapter deals with these items.

ASSEMBLER LANGUAGE SOURCE PROGRAM
RECORDS

A source program is a sequence of assembler language
statements. The body of each record is composed of
two parts. The first part contains the assembler
language statement, which is normally in columns 1-87.
The column following the assembler language
statement, column 88, must always be blank. The
second part of the record contains the optional
identification-sequence number that is normally in
columns 89-96.

The input format control {ICTL) assembler instruction
can change the columns defined as the assembler
language statement. The input sequence checking
(ISEQ) assembler instruction can change the columns
defined as identification sequence number in the source
program. These assembler instructions are explained in
Chapter 3.

Chapter 2. Assembler Language

CHARACTER SET

Source statements are written using the following
characters:

Letters A through Z, and $, #, @
Digits 0 through 9
Special characters + -, . * () blank

In addition, any valid character available on the input
device may be designated between single quotes, and in
remarks and comments. Note that not all print belts
available on System/34 have all the special characters
listed above. The assembler will accept all characters as
input, but those characters not on the print belt will not
be printed.

CODING CONVENTIONS

A coding sheet that contains suggested columns for
each entry is provided. The coding form is shown in
Figure 2-1. Space is provided at the top for program
identification and instructions to the operator; this
information does not become part of the source
program. The coding examples in this book do not
show this part of the form.

GX21 9279+

1BM System/34 Basic Assembler Coding Form Pranred i U'S &
[omoanns T o T T 1T 1T T 1T [o= .
| PROGRAMMER I DATE wsmucvmws]:mncvzn I —r] I] l] Lculn ELECTRO NUMBER ‘
l\] ‘ a8 ‘0\"‘["“ ISJ m‘v‘vlﬂ}jv .’,1;15m.r s6 20 30 91 32 40 1a 35 M.‘A H“‘D“‘y“ A\dllsu.lvtnnlwwlv wd [455 ‘v*n‘.ﬂllﬂl*t 47 44 B5 04 he ukoLn 20 *T]175 H,Hl n!/rlﬂnimk u—.‘.{a’l 44 99 +hy
LL' T T : I — ‘ ‘ ™ | % ! ‘% I 1T]

L ' (111 ™ " Il = =t)
e NENERERE Assembler Language Statement | 17 B Blan!< - Optional
m i T 11777 \ | T 717 T IBERSaEl .

. | ‘ { HH ‘ HHH S RAREI ERREs EEE S ll s T U 1 Identification
L EREREN T OO T T T]]Sequence
T T T T H T
SOSEDTRRRNARNRARRARE T NERRNENERERERANREEA EREERUN INRE Number
e L IM‘A.‘.'_H L [ERREN]T EBENARERENEN BEEDRRE i
e e e e e e e L I
T [RRERARIERARN [ARRSERESNERRREARRRARN HEN ‘ HEEEN
o T T T T T TR CTTT TL - B T
— *_p l:L I l ’ H F TR‘HFL 1 SRS | J‘_L | f | | SEIREE
T e e i e *“ ‘7“1' L
IR T HH
;Hm-l | | ;[LJ‘J‘ _TT ‘,L %_..;,‘ l|l L] -,,“,L.,‘*fah *T‘Aﬁ'*ﬁ‘ﬁ* L+,i'+.]
_L‘+4.‘,,,, L ‘A,ik_w,l. SEEERTEANEEE ‘.Jl_. I | HH o
i Il J—f 1t L~J—~I) 0 [1 N +4 B G T >‘.L - + *» 4 J VI S - . et 4 - |
- T O ARENENTEREAE SRl SERAAREneNn| 1 T
! O o o O e f
T T T T T T P AEANIANESS
14‘1‘, ‘L; J*#J ‘ rll*;j.;»lJrJ‘.ﬁﬁJl‘, IR HT VJ‘_,H[.,HH. i 1_1,4 1], i
e P INRRNEEEN T #,L 1l 1,] FARERN
[Saasset fumnnnn [INRRNRENETEE ERERRNANANENE T LT] _

Figure 2-1. Sample Coding Sheet.

Assembler Language 2-1

http:OllO',.Nt

Assembler Language Statement Entries

Assembler language statements may consist of from
one to four entries. They are from left to right: a name
entry, an operation entry, an operand entry, and a
remarks entry. See Figure 2-2 for an example of each.

The delimiter that separates individual entries is one or
more blanks. Operands can contain a blank only when a
constant is defined and enclosed in apostrophes. For
example:

Name Operation Operend
14 5 v /7 891011 1213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
v |
Name Entry

A name is a symbol created by the programmer to
identify an assembler language statement, storage area,
or value. The name entry, if allowed, is optional except
on the equate (EQU) instruction. The symbol may be
from one to eight characters with the exception of the
name entry used in a START instruction. The name
entry in a START instruction is limited to six characters.
See START Instruction in Chapter 3 for more
information.

The first character of the name entry must appear in
column 1 and must be a letter. (See Character Set
earlier in this chapter.) The remaining characters may be
letters or digits, but not special characters. The name
entry, if used, must be followed by at least one blank. If
column 1 is blank, the assembler program assumes no
name has been entered. (See Figure 2-2.)

Operation Entry

The operation entry is the mnemonic operation code
specifying the machine instruction, assembler
instruction, or macroinstruction desired. An operation
entry is mandatory and may not start in column 1. Valid
mnemonic operation codes consist of from one to five
characters. The operation entry must be followed by at
least one blank. (See Figure 2-2.)

2-2

Operand Entry

Operand entries identify and describe data to be acted
upon by the operation, by indicating such things as
storage locations, registers, affected masks, storage
area lengths, or types of data. Operands-are required
for all machine instruction statements and for certain
assembler instruction statements. An operand is defined
as a term or an arithmetic combination of terms. (See
Terms in this chapter.)

Operand entries must be separated by commas, and no
blanks may intervene between operands and the
commas that separate them. The last operand must be
followed by at least one blank.

Remarks Entry

Remarks are descriptive items of information about the
program. Any valid character available on the input
device may be used in writing a remark. The remark
follows the operand and must be separated from it by at
least one blank. Remarks cannot extend beyond the end
column. (See Figure 2-2.)

Comment Statements

An entire statement field, columns 1-87, may be used
for a comment by placing an asterisk (*) in column 1.
Extensive comment entries may be written by using a
series of lines with an asterisk in column 1 of each line.
Comments may appear anywhere in the source program
and are printed in the assembly listing, but do not have
any effect on the execution or main storage
requirements of the program. (See Figure 2-2.)

Identification Sequence Entry

The optional identification sequence entry is used to
enter program identification and/or statement sequence
characters. To aid in keeping source statements in
order, the programmer may number the records in this
field. These characters are placed in their respective
records and during the assembly the programmer may
request the assembler to verify this sequence by use of
the input sequence (ISEQ) assembler instruction.

http:Operat.on

GX219279
Puated inUS A

1BM Systern/34 Basic Assembler Coding Form

[PROGRAM j KEYING IGIA’NIC —1 ‘] I —I l \ PAGE OF]
Wmnuﬂusn DATE] mimucnous@ﬂia I l | 1 , Lcunlucrnonwun]
Ll a ho 11 98)15[16 10 W 10 20 25 a5 20 30 50 4 ose 34 35 50 40 ay 3 45 4 50 3 55 L] 60 11 4’ LA LA 85 HL b LK L 70 7% 80 2 M H B N‘H'@ :r‘}’ T , &!
vl | - LisTiG. [HEE00
P* : | 1 iy f
NeEENEREN AmigiEn RENENER] W T
A RN -
RN HERRANEER [|| [1111 ! | IBREEE
LABI Y 5SIUX AT] L i1 iaeEis
RSN R R LT L1 Ll | BEERE
guns { e 11 BRAREMRRRARRRRREN SEuil
anevinINe P ETELT LT » |
RRSERANNNENY T T
1 bby ‘ A4 RN L [:
‘ : | RENEE ERRARRRRREERERA! L
T HTT LT 5
bttt $i4 | R B ! | b L i
T RARENANeRE N ! 1T [MEEAN
SERANSRANRERRENANY] I T T T ANNENSASNRRRRERRINRERRpESE
s eih e i i
. | | L 1 14 . L 4] gt b
““*“‘*1? JIIJ bixﬂ I t I BESENEEN jERn SERE [L h _Ttij:{
‘,”Aj‘,l L1 44 L.J#Jl | | NEEEE | NSNS NENEt 4 I
e P [ﬁ B gt L] L] NEEE [y iy dd
;T‘MTTI‘ J JREReN I‘MM I Pl it NEp MT,ﬁ ‘LL,#;TH
SIMERRRIRERAAR I RANRE AENRRRRRRRERRRAAARRRA SRARURRARS INRRAN i T T
I R B [- ,,LA_,, L1y NS || SEREERS _w;‘,lf;H
,,TMH | mlmJl Ll 1.1 [11 LU | | 1 L1l T L 1 L] PhooLics
Figure 2-2. Entry Examples of Assembler Language Statements
ASSEMBLER PROGRAM CONVENTIONS Program relocation is the loading of an assembied
program (object program) into a different area of main
A term is a single symbol, a self-defining value, or a storage from that which was originally assigned by the
location counter reference. A term is used only in the assembler. The difference in bytes between the
operand field of an assembler language statement. The originally assigned address of the object program and
three types of terms are described under Terms in this the address of the relocated object program is the
section. amount of relocation. The addresses assigned to all
statements and data in the relocated program are
An expression consists of one or more terms. The changed by the amount of relocation.
operand fields of assembler language instructions
consist of one or more expressions. Programs are assembled to begin at address 0000,
unless the START statement specifies a different
Terms and expressions are classed as either absolute or address. If a program is not started on a 2K boundary,
relocatable. A term or expression is absolute if its value however, a dump of the program at execution time
is not changed when the assembled program in which it shows the program as beginning at the next lowest 2K
is used is relocated in main storage. A term or boundary.

expression is relocatable if its value is changed when
the program in which it is used is relocated.

Assembler Language 2-3

http:I---=:-,.oo

Expressions Negative values are carried in the twos complement
form. The final value of the expression is the truncated,

The rules for coding an expression are: rightmost 16 bits of the result. In an address constant,
the amount of truncation and the length of the result
1. Two terms or two operators must not be used depend on the length of the constant. The value of the
consecutively in an expression. expression before truncation must be in the range of
-65536 through +65535. A negative resuit is considered
2. Parentheses cannot be used in an expression. to be a 2-byte positive value.

3. Only absolute terms can be used in a multiplication

operation. Absolute Expressions: An absolute expression is one

whose value is unaffected by program relocation.

4. Blanks are not allowed in an expression.
An absolute term may be a nonrelocatable symbol, or

any of the self-defining terms. All arithmetic operations

5. An expression must be of the form A or Ate when)
are permitted between absolute terms.

it contains an external symbol. A is the symbol

used as the operand of an EXTRN statement, and An absolute expression can contain relocatable terms or
e is an absolute expression. Any symbol equated a combination of relocatable and absolute terms under
to an expression of this form cannot be used in an the following conditions:

expression of more than one term. .]
1. The expression must contain an even number of

If there is more than one term in the expression, the relocatable terms.

terms are reduced to a single value as follows: 2. The relocatable terms must be paired and each
pair must consist of terms with opposite signs.
1. Each term is evaluated separately. The paired terms need not be adjacent.
3. Relocatable terms cannot be used in a

2. Arithmetic operations are then performed in a
left-to-right sequence, except that multiplication is
performed before addition or subtraction.

Example: A + B*C would be evaluated as A +
(B*C), not (A + B)*C. The result would be the
value of the expression.

multiplication operation.

3. The intermediate result of the expression
evaluation is a 3-byte, or 24-bit, value.
Intermediate results must be in the range of -2%
through 224-1.

Pairing relocatable terms with opposite signs cancels the
effect of the relocation, because both terms would be
relocated by the same value. Therefore, the value
represented by the paired terms would, in effect, remain
constant regardless of the program relocation. For
example, in the absolute expression A - Y + X, A is an
absolute term and X and Y are relocatable terms. If A
equals 50, Y equals 25, and X equals 10, the value of
the expression would be 35. If X and Y are relocated by
a factor of 100, their values would become 110 and
125, respectively. However, the expression would still
evaluate as 35 (50 - 125 + 110 = 3b).

Relocatable Expressions: A relocatable expression is one
whose value changes by the amount of relocation when
the program in which it is used is relocated. Every
relocatable expression must reduce to a positive value.

A relocatable expression can be a combination of
relocatable and absolute terms under the following
conditions:

1. There must be an odd number of relocatable
terms.

2. All relocatable terms, except one, must be paired
and each pair must consist of terms with opposite
signs. The paired terms need not be adjacent.

3. The unpaired term must not be immediately
preceded by a minus sign.

4, Relocatable terms cannot enter into a
multiplication operation.

All terms in a relocatable expression are reduced to a
single value, which is the value of the unpaired
relocatable term after it has been adjusted (displaced) by
the values of the other terms in that expression. For
example, in the expression W - X + Y where W, X, and
Y are relocatable terms; and W =10, X=3, Y =1
before relocation; the result is the relocatable value of 8.

If the program is relocated by 100 bytes, the resultant
value of the expression would be increased by the
amount of relocation (100), giving the expression a value
of 108.

In the following expression, a combination of absolute
and relocatable terms are used: A + F*G - D + B. A, D,
and B are relocatable terms; F and G are absolute
terms. When given the values A=3,B=2, D=5, F=
1, and G = 4, the result would be a relocatable value of
4. The multiplication occurs first, resulting in 4; then the
addition and subtraction of the other terms, including
the result of the multiplication, is performed in a
left-to-right direction. The result of the arithmetic
operations is a relocatable value of 4 for this expression.

Upon relocation, the value of this expression can be
determined by adding the amount of relocation to all
relocatable terms.

Terms

Every term represents a value. This value may be
assigned by the assembler (for symbols and for location
counter references) or may be inherent in the term itself
(that is, the term may be self-defining). An arithmetic
combination of terms, an expression, is reduced to a
single value by the assembler.

Symbolic Terms

A symbolic term is a character or combination of
characters used to represent a storage location, a
register, or an arbitrary value.

Symbols, through their uses as name entries and
operand entries, provide the programmer with an easy
way to name and reference a program element. The
assembler assigns values to symbols appearing as name
entries in a source statement. The values assigned to
symbols in the name entry of the machine instruction
statement are the addresses of the leftmost bytes of the
storage records containing the statements. The values
assigned to symbols naming storage areas and
constants are the addresses of the rightmost bytes of
the storage fields containing these items. The symbols
naming them are considered relocatable terms because
the addresses of these items may change upon
relocation. A length attribute is also assigned by the
assembler.

Assembler Language 2-5

A symbol that is a name entry in the equate symbol
(EQU) assembler instruction statement is assigned the
value designated in the operand entry of the statement.
Since the operand entry may represent a relocatable
value or an absolute value, the symbol is considered a
relocatable term or an absolute term, depending upon
the value it is equated to. The length attribute of the
symbol on an EQU instruction is obtained from the
operand entry.

The value of a symbol may not be negative and may not
exceed 2'6-1 (65535).

A symbol is said to be defined when it appears as the
name entry of a source statement or the operand of an
EXTRN. EQU statements require that a symbol
appearing in the operand entry be previously defined. In
this case, the symbol, before its use in the operand,
must have appeared as a name entry in a prior
statement.

A symbol may be defined only once in an assembly.
That is, each symbol used as the name of a statement
or operand of an EXTRN must be unique within that
assembly.

Self-Defining Terms

A self-defining term is one whose value is inherent in
the term. It is not assigned a value by the assembler.
For example, the decimal self-defining term 15
represents a value of 15.

There are four types of self-defining terms: decimal,
hexadecimal, binary, and character. Use of one of these
terms is the decimal, hexadecimal, binary, or character
representation of the corresponding machine-language
binary value or bit configuration. The length attribute of
a self-defining term is always one.

Self-defining terms are the means of specifying machine
values or bit configurations without equating the values
to symbols and using the symbols.

Self-defining terms may specify such program elements
as immediate data, masks, registers, addresses, and
address increments. The type of term selected (decimal,
hexadecimal, binary, or character) depends on what is
being specified.

The use of a self-defining term is quite distinct from the
use of a data constant. When a self-defining term is
used in a machine-instruction statement, its value is
assembled into the instruction. When a data constant is
referred to in the operand of an instruction, its address
is assembled into the instruction.

Self-defining terms are always right-justified; truncation
or padding with zeros, if necessary, occurs on the left.

26

Decimal Self-Defining Terms: A decimal self-defining
term is a decimal number written as a sequence of
decimal digits. High-order zeros may be used (for
example, 007). Limitations on the value of the term
depend on its use. For example, a decimal term that
represents an address should not exceed the size of
storage. In any case, a decimal term may not consist of
more than five digits or exceed 2'6-1 {656535). A
decimal self-defining term is assembled as its binary
equivalent. Some examples of decimal self-defining
terms are: 8, 147, 4092, and 00021. In the following
example, a decimal self-defining term is used in a move
immediate (MVI) machine instruction. The 1-byte area
referenced by the symbol, COST, would contain the
decimal value 25 (binary 00011001) after execution of
the instruction.

Name Operation Operand
Y 2 3 4 5 6 7 B|9[10 11 12 13 14[15/16 17 18 1920 2t 2223 24 25 26 27 28 29 X0 31 32 31 14

I D I
I
T
{
]
|

Hexadecimal Self-Defining Term: A hexadecimal
self-defining term consists of one to four hexadecimal
digits enclosed by apostrophes and preceded by the
letter X. An example is X'409°.

Each hexadecimal digit is assembled as its 4-bit binary
equivalent. Thus, a hexadecimal term used to represent
an 8-bit mask would consist of two hexadecimal digits.
The maximum value of a hexadecimal term is X FFFF'.

C

C

The hexadecimal digits and their bit patterns are as
foliows:

Digit Bit Pattern

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
111

TMUOWPOONODARWN—=0O

The following is an example of the use of a hexadecimal
self-defining term. The 1-byte area referenced by the
symbol SWITCH would contain the hexadecimal value
FO (binary 11110000} after execution of the instruction.

Name Operation Operand
1 2 3 4 5 6 7 B|9[10 111213 14/15[16 17 18 1920 21 22 23 24 25 26 27 28 28 30 31 37 33 34

VI | | ISWITCH, X[’

Binary Self-Defining Term: A binary self-defining term
is written as an unsigned sequence of ones and zeros
enclosed in apostrophes and preceded by the letter B,
as follows: B’10001101°. This term would appear in
storage as shown, occupying one byte. A binary term
may represent up to 16 bits.

Binary representation is used primarily in designating bit
patterns of masks or in logical operations.

The following example illustrates a binary term used as
immediate information in a move immediate (MVI)
machine instruction. The byte of immediate information
specified will replace the byte of information referenced
by the symbol BETA.

Name Operation Operand
1 2 3 a4 5 6 7 B[9]10 11 12 1314|1516 17 18 19 20 21 22 23 24 25 26,27 28 2930 31 32 33 34

B Hpg1

Character Self-Defining Term: A character self-defining
term consists of one or two characters enclosed by
apostrophes and preceded by the letter C. All letters,
decimal digits, and special characters may be used in a
character term. In addition, any remaining valid
character (character available on the input device) may
be designated. The following are examples of character
self-defining terms:

cr/ C'AB’ c13
Because of the use of apostrophes in the assembler
language as syntactic characters, the following rule must

be observed when using an apostrophe in a character
term:

For each apostrophe desired in a character
self-defining term, two apostrophes must be written.
For example, the character value A" would be written
as ‘A’".
Each character in the character sequence is assembled
as its 8-bit code equivalent. The two apostrophes that

must be used to represent an apostrophe are assembled
as an apostrophe.

In the following example, a dollar sign ($) would be

| moved into the 1-byte field at REPORT.

[

Name Operation Operand
1 2 3 4 5 6 7 8/9]10 11 12 13 14]/15/16 17 18 1920 21 22 23 24 25 26 27 28 23 30 31 32 33 34

L EPORT, [C/14"

b—i-———1
—

{
E——<
i
[
I

Assembler Language 2-7

Location Counter Reference

A location counter is used to assign storage addresses.
It is the assembler's equivalent of the instruction counter
in the computer. As each assembler language statement
or data area is assembled, the location counter is
incremented the number of bytes used by the
assembled item. Thus, it always points to the next
available location. If a statement defining an instruction
is named by a symbol, the value attribute of the symbol
is the value of the location counter before addition of
the length. If the statement defines storage or a
constant, the value attribute of the symbol is one less
than the value of the location counter after addition of
the length.

The location counter setting can be controlled by using
the START and ORG assembler control statements. The
maximum value for the location counter is 2'6-1 (65535).

The programmer may refer to the current value of the
location counter at any place in a program by using an
asterisk (*) as a term in an operand. The asterisk
represents the location of the first byte of currently
available storage. For example:

Source Generated
Location counter = 1100
LAB2 DCAL2 (%) 1100

Rel
elocatable LAB2 DCAL2 (LAB2) 1101

Nonrelocatable LAB2 DCAL2{1100) 1100

Expressions

An expression is an arithmetic combination of terms.
Two types of expressions are used, absolute and
relocatable. The arithmetic operators are:

+ addition
- subtraction
* multiplication

The following are examples of valid expressions:

AREA+X'2D" N-25 5*C" *15

AREA’s value N's value Decimal 5 Current

plus a minus a times the value of

hexadecimal decimal 25 hexadecimal the

2D 40 (character location
blank = counter
hexadecimal plus a
40) decimal

15

28

Addressing

The two methods of addressing available allow the
assembler programmer to access any part of storage.
These methods are direct addressing and base
displacement addressing. The relative addressing
technique can be used with both methods.

Direct Addressing

The direct addressing method allows the programmer to
represent a 16-bit instruction address by using an
expression as an operand entry. The assembler places
the value of the expression in the machine instruction
which it generates.

Two bytes are always used in the machine instruction
for a direct address. A direct address is indicated by the
absence of a register in the operand.

Figure 2-3 shows an example of direct addressing.

Base Displacement Addressing

Base displacement addressing involves setting up a base
address from which other addresses can be calculated.
This base address must be placed in an index register
before the index register is used for addressing. One
byte is used in the machine instruction for a base
displacement address and is indicated by the presence
of a register in the operand. Any one value of an index
register allows access to 256 storage positions.

You can code the USING statement to make the
contents of an index register the basis for base
displacement addressing. You can code the DROP
statement to terminate base displacement addressing.
For information about the USING and DROP statements,
see their descriptions in Chapter 3.

Figure 2-4 shows examples of base displacement
addressing.

9

ERR LOC OBJECT CODE

‘ 0000

ADDR STMT

o0
o0
o0C
Do
o000
o000
oOr
m-o
OO
OO0
~OO~
wod>
(2364
OO0
6N
o~T|
-

o000
ead
Il
PON
oS
OhOe
LI
O
ooV
Oonbd
VO
mnmo
Pl
mhd
[Tl d
ONb
uno
OO
SO0
LN
-’
b o
ot

0047 i9
0047 0064 20
00635 006C 21
006D Q07R 22
0000 23

Figure 2-3. Example of Direct Addressing

i
2
4
5
é
7 =
8
1]
i
2

mooom
Z1tyb
(=] [=

SOURCE STATEMENT

PRINT NODATA
00000000 0000000000006 06 06 00 00 000000 00000000 0000 00 0000 06 06 06 00 00 00 00 08 0000 06 06 0000 00 00 00 0600 00 00 00 00 00 00 06 00 00 00 0000 00 00 00 00 06 06 000 00 00 0000
»

AN EXAMPLE OF DIRECT ADDRESSING. .

*
0000606 06 0 36 00 00 30 30 00 00 36 36 08 30 00 36 0 30 06 36 00 36 38 30 00 0 38 30 6 30 06 08 08 00 30 00 06 36 36 36 00 36 30 30 06 00 06 00 36 36 00 00 06 98 36 00 08 00 30 00 00 30 06 00 08 00 08

“NAME" OF AREAL TO "NAME" OF AREA

FGOE CETAV: GF AREAL 18 SEO: OF AREAS

NAME 2, NAME {
EAONZ PHONY
ELBO:JOHN J. SMITH III' ‘N E" OF AREA%
£-99 " gBRRESTER: ~EYO¥- BE 4REAL
f3g SNAMES OF AREAZ
E&zap "CITY" OF AREA2

Assembler Language 29

€RR LOC
0000

ERR LOC

0000

0000
0004

OBJECT CODE ADDR STMT SOURCE STATEMENT
§ EXAMPL START O
PRINT NODATA
g 00000606 36 D8 36 36 6 3 36 36 36 36 D6 D6 D6 D8 36 36 3 36 3 06 D6 36 06 36 36 8 36 36 36 06 36 3 36 D6 Db 06 36 D 38 36 36 38 36 3 3 36 3 36 3 26 36 3¢ B 36 3¢ D6 38 6 3¢ 3¢ 3¢ ¢ ¢ 3¢ 0 3¢
* *
] AN EXAMPLE OF BASE-DISPLACEMENT ADDRESSING WITH THE *
I “USING* INSTRUCTION. *
D F I TE 006 0D 60606 IO 6B DD 606 06006 06 IE 636 36 D D6 366 36 36 06 36 06 36 26 6 36 3030 D 36 6 36 36 3 606 36 36 06 36 36 36 3636 36 3406 36 08 30 2 3¢ 6 3¢ ¢
€2 01 0014 14 LA AREA1,R{ POINT TO MOVING “FROM" FIELD
0014 12 USING AREA1,Ri SET TO USE LABELS AS DISPLACEMENTS FROM AREA1
€2 02 0049 14 LA. AREA2,R2 POINT 70 MOVING *TQ- FIELD
0014 15 USING AREA1 R3 SET_T0 USE LABELS OF AREAi AS DISPLACEMENTS INTO
9C 1D 4D 1D 18 MUC NAME(,R2),NAME(,R{) MOVE NAME: OF AREA1 TO INGHE: QF AREA
9C 07 25 25 19 MUC PHON(,R2))PHON(,R1) MOVE "PHON" OF AREAi TO "PHON" OF AREA
9C OE 32 33 20 MUC CITY(,RZ),CITY(,R1} MOVE "CITY" DF AREAL TO "CITY" OF AREA2
0014 22 AREA% EQU
DiD4CBDS40D14R40 0031 23 NAME D CL30'JOHN J. SMITH III' *NAME" DF AREA4
F2FBFB60FSF3FSF2 0039 54 PHON D€ CLOB'288-5392" " OF AREA1
DPD6CICBCSEZEICS 0028 35 CITY D€ CLi5'ROCHESTER' “CITY" OF AREA1
9049 27 AREA2 EQU
0064 28 D CL30 "NAME™ OF AREA2
006E 29 DS CLO8 "PHON® OF AREA2
007D 30 DS CLiS “CITY" OF AREA2
0004 32 Ri EQU 4 EQUATE FOR REGISTER 4
0002 33 R2 Equ 2 EQUATE FOR REGISTER 2
0000 33 END ExaMpi
OBJECT CODE ADDR STMT SOURCE STATEMENT
1 EXAMF2 START 0
2 FRINT NODATA
B K I NI B 3N I B I I I I I KT I B A IEHIEIE I I I I I I I B I IE NI A I K I BT WM I I T N I
5o *
b % AN _EXAMFLE OF BASE DISFLACEMENT ADDRESSING *
7 USING "EQUATES *
QI I I I I P I NI I IE T I IE NI TN T2 T T IE I NN I I I I I I I NI I B3I I W I I K6 I I KK
C2 01 0014 11 LA AREAL, R FOINT TD MOVING "FROM" FIELD
C2 02 0049 13 LA AREA2, R2 FOINT TO MOVING “TO" FIELD
9C 4D 4D 4D 15 MUC NAME(30,K2), NAME(,R1) MOVE "NAME" OF AREA1 TO “"NAME" OF AREAZ
9C 07 25 25 i6 MUC FHON(O8,R2),FHON(,R1) MOVE "FHON" OF AREAL IO "FHON' OF AREAZ
9C OE 33 33 17 HOE EWEVOOE RS RYOVEED) MBUE oEYWY BF AREAL 18 EYHY. OF AREAZ
0014 19 AREA{ EQU
DiDACADS40DL4E40 0031 20 DC CL30'JOHN J. SMITH III' "NAME" OF AREAf
FIFBFBAOFSF3F9F2 0039 94 DC CLO8' 28g-53%2" "FHON" OF AREA{
D?DACICBCSEIEICS 0048 22 nC CL15 ' ROCHESTER "CITY" OF AREAL
0049 24 AREA2 EQU *
0066 25 bS CL30 o " OF AREAZ
006E 2% DS CLog "EHON" OF AREAD
007D 27 iy CLis "CITY" OF AREAZ
004D 29 NAME EQU 29 &2
0025 30 PHON Egu NAME+8 &2
0033 3§ CITY EQU FHON+1i5 &2
0008 33 Ri Egu
0002 34 K2 EQU 2
000 35 END EXAMF2

Figure 2-4. Examples of Base Displacement Addressing

210

http:CITYI15,R2),CITYI.Rl
http:AREA1.R1

Relative Addressing

Relative addressing is the technique of addressing
instructions and data areas by designating their location
in relation to the location counter or to some symbolic
location. This type of addressing is always in bytes,
never in bits or instructions. Thus the expression *+4
specifies an address that is 4 bytes greater than the
current value of the location counter. In the sequence of
instructions shown in the following example, the
instruction with the operation code ZAZ has 4 length of
6 bytes, the instruction AZ has a length of 5 bytes, and
the instruction with MVI has a length of 4 bytes in
storage. Using relative addressing, the location of the
AZ machine instruction can be expressed in two ways:
AAA+6 or BACK-5.

Name Operation Operand
1 2 3 4 5 6 7 8|9]10 111213 14[15[16 17 18 1920 21 22 23 24 26 26 27 28 29 30 31 32 33 34
Ri)IN
¢ .
2 F

.
)
[

Instruction Addressing

A symbol used as a name entry in a machine-instruction
statement addresses the leftmost byte of storage
occupied by that instruction.

Data Addressing

A symbol used as a name entry in a data definition
instruction (see DC—Define Constant and DS — Define
Storage) addresses the rightmost byte of storage
occupied by or reserved for that data.

Program Linking References

Symbols may be defined in one program and referred to
in another, thus linking independently assembled
programs.

The linkages can be made only if the assembler is able
to provide information about the linkage symbols to the
overlay linkage editor, which resolves these linkage
references at link edit time. The assembler places the
necessary information in the external symbol list (ESL)
on the basis of the linkage symbols identified by the
ENTRY and EXTRN instructions. These symbolic
linkages are described as linkages between independent
assemblies. The name of a START statement (the
module name) also has an external attribute and may be
used for program linking.

The linkage symbol is identified to the assembler by
means of the ENTRY assembler instruction. Once a
linkage symbol is identified in a program as a symbol
that names an entry point, another program may use
that symbol in a branch operation or as a data
reference.

Similarly, the program that uses a symbol defined in
some other program must identify it by the EXTRN
assembler instruction because the symbol is used by the
first program to link to the point identified by the
symbol in the second program. The formats of the
EXTRN and ENTRY assembler control instructions are in
Chapter 3.

Assembler Language 2-11

Chapter 3. Assembler Instruction Statements

Assembler instruction statements are requests to the
assembler to perform certain operations during assembly
time. Assembler instruction statements, in contrast to
machine instruction statements, are not translated into
machine language. Some, such as DS and DC, do
cause storage areas to be set aside for constants and
other data. Others, such as EQU and SPACE, are
effective only at assembly time; they generate nothing in
the object program and have no effect on the location
counter.

There are four types of assembler instruction
statements: symbol definition, data definition, listing
control, and assembler processor control. This chapter
explains each assembler instruction statement in detail.
For a complete list of the assembler instruction
statements and their operations, see Figure 3-1.

Operation
Type Code Operation
Symbol EQU Equate symbol
definition
instruction
Data definition | DS Define storage
instructions DC Define constant
Listing control | TITLE Identify assembly
instructions output
EJECT Start new page
SPACE Space listing
PRINT Control program listing
Assembler ISEQ Input sequence
Processor checking
control
instructions
ORG Set location counter
START Start assembly
USING Use index register for
base-displacement
addressing
DROP Drop index register for
base-displacement
addressing
ENTRY Identify entry-point
symbol
EXTRN Identify external
symbol
ICTL Input format control
END End assembly

Figure 3-1. Assembler Instruction Statements

Assembler Instruction Statements

31

SYMBOL DEFINITION

EQU-Equate Symbol

The EQU assembier instruction statement is used to
define a symbol by assigning it to the value, length, and
relocatability attributes of an expression in the operand
field. The format of the EQU control statement is as
follows:

Name Operation Operand
1 2 3 4 5 6 7 B|95[10 11 1213 14|15/16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 4
il NERREREEREREN /
Ty FrTTrTrTrTrTT

E
Ll A Symbol I I An Expressionl

The expression in the operand field may be absolute or
relocatable. Any symbols appearing in the expression
must be previously defined. The name and operand field
entries are required.

The symbol in the name field is given the same value,
length, and relocatability attributes as the expression in
the operand field. The value attribute of the symbol is
the value of the expression. The length attribute of the
symbol is that of the leftmost or only term of the
expression. When an * or a self-defining term is used
as an operand, the length attribute is one.

The following example illustrates how this instruction
can be used to equate a symbol with the contents of
the operand:

Name "Operation Operand
1 2 3 45 6 7 8910 11 12 13 14]15[16 17 18 1920 21 22723 24 25 26 27 28 29 0 31 32 33 M

E6 w
1

=
~

T
X

ST 3FC)”

F
=) u 9

3-2

MAX has the value of TEST+X 3FC’ (X'102'+X'3FC’ or
X'4FE’) any time it is: used in the program. The symbol
STEST has the valué of the first (leftmost) byte of the
data area reserved by the DC instruction. Since the
_symbol on the DC- (TEST}has the value of the rightmost
byte, this type of EQU is useful for addressing the
leftmost byte. The symbol REG2 in any statement is the
same as using the number 2.

EQU is used. t0 equate symbols to register numbers,
immediate data, and other arbitrary values. To reduce
programming time and improve documentation, the
programmer can equate symbols to frequently used
expressions and then use the symbols as operands in
place of the expressions.

DATA DEFINITION

There are two data definition assembler instruction
statements: define constant (DC) and define storage
(DS). These assembler language statements are used to
enter data constants into storage, and to define and
reserve areas of storage. Name entries may be used so
that other program statements can refer to the
generated fields using the same symbols. The length
attribute of the symbol is the length of the storage or
constant area. In the following example, 35 bytes of
storage are allocated and A is pointing to the rightmost
byte of the DC.

Name Operation Operand
1 2 3 4 5 v 7/ 8|9]10 111213 1415|1617 18 19 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34

| LN~ ol By LT
f

DC-Define Constant

The DC assembler language instruction is used to
reserve areas of storage, assign names to those areas,
and then initialize those areas with desired values. This
desired value may be one of seven types of constants:
storage address, binary, character, decimal, hexadecimal,
integer, and floating point.

The format is as follows:

12 JN:meS 6 7 8|9 |C‘)n,azra‘t;o:|‘ 15|16 17 18 19 20 21 z?:’;’:‘dﬁnn 28 29 30 31 32 33 34
NERNERERED) NERRNNERAREEAREREP
T T TTT rrrrrrrreyrrrrrreoTey
A Symbol One Operand as Described E_
or Blank

-

I

Name

The name entry is optional. The symbol in the name
field of the DC instruction statement is the name of the
constant. The value attribute of the symbol naming the
DC instruction is the address of the rightmost byte of
the constant.

Operand

The operand consists of four subfields. The first three
describe the constant and the fourth provides the
constant. No blanks are permitted within any of the
subfields (unless provided as characters in a character
constant) or between the subfields. Subfield 1 is
optional. Subfields 2, 3, and 4 must be present in the
operand field.

The subfields are written in the following sequence:
Sequence Subfield

Duplication factor

Type

Length
Constant

HWN =

Operand Subfield 1: Duplication Factor: The duplication
factor may be omitted. If specified, the constant is
generated the number of times indicated by the factor.
The factor must be specified by an unsigned, decimal
value, 1 through 65535. The duplication factor is applied
after the constant is fully assembled; that is, after it has
been developed into its proper format.

Operand Subfield 2: Type: The type subfield defines the
type of constant being specified. From the type
specification, the assembler determines how it is to
interpret the constant and translate it into the
appropriate machine format. The type is specified by a
letter code as follows:

| = Integer

X = Hexadecimal
D = Decimal

A = Address

B = Binary

F = Floating Point
C = Character

Operand Subfield 3: Length: The third subfield
describes the number of bytes required by the constant.

The entry for this subfield may be written two ways:

1. Ln, where n is an unsigned, decimal value. The
value of n is as follows:

n = 1-256 for |, B, C, X constants

n = 1-31 for D constants

n = 1-3 for A constants

n = 4 or 8 for F constants

2. L (absolute expression), where an absolute

expression is enclosed in parentheses. The value
limits for the absolute expression are the same as
those for n in the previous paragraph. A location
counter reference is not allowed in this expression.

Refer to Assembler Program Conventions in
Chapter 2 for information about expressions.

Assembler Instruction Statements 3-3

Operand Subfield 4: Constant: This subfield supplies the The constant types, their identification letters, and an
constant described by the subfields that precede it. A example of each follow. Unless otherwise specified, the
data constant (all types except A) is enclosed in maximum length is 256.

apostrophes. An address constant (type A) is enclosed

in parentheses.

Constant ID
Type Letter |Example Explanation

Integer | IL2'15° Negative numbers are inserted into storage in twos
complement notation. If the constant is not the specified
length, the constant is padded or truncated on the
left—positive constants are padded with zeros, negative
constants with ones. The length of the constant is limited to
4 bytes, and the value must be within the range of -(232) +1
to 232 -1. You cannot use the high-order bit as a sign bit if
the value is outside the range -(2%') +1 to 2°' -1,

Decimal D DL5'125.66 This constant is stored in zoned decimal format. The decimal
point is used only for documentation; it is ignored by the
assembler. If the constant is not the specified length,
padding with decimal zeros or truncation occurs on the left.
Each decimal digit occupies one byte of storage. The
maximum length is 31.

Binary B BL1°'10110 If the constant is not the specified length, padding with binary
zeros or truncation occurs on the left. Each digit occupies one
bit of storage; eight digits occupy one byte of storage.

Character Cc CL14'CHARACTER DATA’ |If the constant is not the specified length, padding with
blanks or truncation occurs on the right. Each character,
including blanks, occupies one byte of storage.

Hexadecimal X XL3'ABC55%’ If the constant is not the specified length, padding with zeros
or truncation occurs on the left. Each two digits oecupy one
byte of storage.

Floating Point |F (single) The only valid lengths for floating point constants are 4 and
FL4'52.56E-3" 8. If the constant is not the specified length, padding with
(double) binary zeros or truncation occurs on the right. Floating point
FL8'9237.7734E-69’ numbers have two components: a mantissa and an exponent.

The mantissa is a signed or unsigned decimal number. Its
decimal point can appear at the beginning, at the end, or
within the decimal number. The exponent consists of the
letter E, followed by a signed or unsigned decimal integer.
Note that there are no assembler floating point instructions.
Floating point is supported for scientific macroinstructions.

Address A AL2(BETA) BETA could be an external reference. |f the constant is not
the specified length, padding with zeros or truncation occurs
on the left. The maximum length is 3.

3-4

Examples of the DC instructions for each of the

constant types are given in Figure 3-2. The object code

generated for these constants is also shown.

C

ADDR STMT SOURCE STATEMENT

ERR LOC OBJECT CODE

e Eoul
adacan IJad>

AuuWwii i -

H DECIMAL POINT

D
i;F;EBDEDPADDED
D

Lt 3L

VE & PADDED

ZZZZ W= I Il dJddJaanan
JOIXTubLbbuiacaaa

W

- =3

° e

= =)

- b

- >

it - - ~ 7

o000 (=1} - - -

[el=l=d -l - O SA~L

oo - - A0 - +Ll- Ow~M- Tl

s - iN- - NOQOWIT - 3 W0 WTCleMu
O NNCININHNO O === CIMIND0 N0 OM L Ol
NiNwwt CICIHOO T T L A #INININCININTT - = i~
| e | At RN L CICI | O XK | X
...................... ~
T MMM HINN M A DO A € T T DD I -MCIC]
N T e TR R 0 S T o R A |
HHOAQAANELOUMOCUL L L LLLCCCTIT

QOULLOVLOJLLLOVLLOVLOLVVDLO0
aaAeaaAcAnANQRARQARARRARARAS

HCIMIT A I X A CING HCIH1 OO TNV I TN
FEEEOQOOZZZELXX X aanaa
ZZZZulwidl=== T Tl J i dJddaanon
EITETT=T=Y=1- T 1. 1E1E5 = o JA TR TRTR. 2. £ 2. £ 4

MTINOMN DO OHIM TN ON 00O v CIM TN 0N DO
ot ot vt v 1 CUC OO TICE NI CICY

N O vt O T MIN 00~ LTI 0 LIV WO o
OOO0OOO CICICICCICIID TInIninin
COOVO0OVOOOCOOOOOVOOOOOOOO0O

OOOOOOOO0OCOOOOOOCOOOCOOOOO00
=3 [=d=3°¢
T [=3=3°¢
o ocCO
T [=d=dd
(=4 [=dodd
T o000
intn o [=3=3°4
we T oow
[l - Quu. oo
Ll o OXNOOE
Lvin == O M [=1~]. T=l=T=] l.
Ol il W w - OTXROCT

6 o4 00 - L olneoolnr OEO

Olbli QU © gl OCiL
E60F15080c44—r033.ﬂ.ﬂ.33344030
MOIOLLULLICHOOMONTIMOUTTOMOL L

OO0 OS CIN DX O O~ Tl M-l Pl =N

OOO0OO0OO0O0O0O0OOOOOIOOOO0O
OCO00O0O0OOOOOOCOOOOCOCOOOOO0O

Figure 3-2. DC instructions

3-5

Assembler Instruction Statements

DS—-Define Storage

The DS assembler language instruction is used to
reserve areas of storage and to assign names to_those
areas. The format of the DS instruction is as follows:

Name Operation Operand
1 2 3 a5 6 7 8|9]10 1112 1314[15(16 17 18 1920 21 22 23 24 26 26 27 28 29 X0 31 32 33 34
NEERERE) NIEEERAERRERENEEED
T T LY LR AREEAAES
[| A Symbol One Operand Written in the B

|Lor Blank | | Format Described Below]

The format of the DS operand is similar to that of the
DC operand. Subfields 1 to 3 are employed and are
written in the same sequence as for the DC operand.
Subfield 1 (duplication factor) is optional; subfields 2
and 3 (type and length) are required. The name field
entry is optional.

Storage areas of more than 256 bytes may be reserved
by use of the duplication factor in a DS instruction. If a
duplication factor is included in the operand, the total
amount of storage assigned to the constant field is the
duplication factor times the length. This product is
limited to 65535.

LISTING CONTROL

The listing control instructions help the programmer
document the assembler listing so it will be more
readable. These instructions are TITLE, EJECT, SPACE,
and PRINT.

3-6

TITLE-Identify Assembly Output

The TITLE instruction identifies the assembly listing.
The format of the TITLE instruction s as follows:

Name Operation Operand
1 2 3 4 5 6 7 B|9[10 11 12 13 14{15(16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34

RSRERRE Y, - ENNARNABARRARARRED
| Name or A Sequence of Characters | |
Blank Enclosed in Apostrophes :M

|
| |

T f

The name field may contain up to eight alphabetic or
numeric characters in any combination. The name of the
first TITLE instruction is printed on the header line of all
listings. The names of all subsequent TITLE instructions
are ignored.

The operand field contains a sequence of characters
enclosed in apostrophes. Each single apostrophe
desired as a character in the constant must be
represented by a pair of apostrophes. The contents of
the operand field are printed beneath the IBM Assember
heading on each page of the assembly listing.

A program may contain more than one TITLE
instruction. Each TITLE statement provides the heading
for pages in the assembly listing that follow it, until
another TITLE statement is encountered. Each TITLE
statement advances the listing to a new page before the
heading is printed. The TITLE instruction is not printed
in the source listing.

C

EJECT-Start New Page

The EJECT operation causes the next line of the listing
to appear at the top of a new page. This instruction
provides a convenient way to separate routines in the
program listing. The format of the EJECT operation
statement is as follows:

Name Operation Operand
1 2 3 4 5 6 7 B[9]10 11 12 13 14[15/16 17 18 1920 21 22 23 24 25 26 27 28 29 X0 31 32 33 34

EREREY
Ty

T
T
__| Blank | Blank

The EJECT operation statement will not be printed in
the listing. The name and operand fields must be blank.

SPACE-Space Listing

The SPACE operation is used to insert one or more
blank lines in the listing. The format of the SPACE
control statement is as follows:

Operation Operand
1 2 3 4 5 6 7 B[9{10 11 12 1314|1516 17 18 1920 21 22 23 24 25 26 27 28 29 X0 31 32 33 34
LIS NAREREEERREEARERED
YT T LA O 0 O O O O R

A Decimal Value or Blank

f
@
o
3
=

The name field must be blank. An unsigned decimal
value is used to specify the number of blank lines that
are to be inserted. If the operand contains a blank, a
zero, or a one, one blank line will be inserted. If the
value of the operand exceeds the number of lines
remaining on the current page, the instruction has the
same effect on the listing as an EJECT operation. The
SPACE operation, like the EJECT and TITLE operations,
is not listed on the assembler listing, but does increase
the statement counter by one.

Note: The assembler checks the first 87 bytes of the
source statement unless you use ICTL to change the
source record format. If you have no operand on the
SPACE instruction, sequence numbers or comments
appearing before byte 87 will cause assembly errors.

PRINT-Control Program Listing

The programmer can control the printing of an assembly
listing by using the PRINT operation. A program can
have any number of PRINT instructions. Each PRINT
instruction controls the listing until the next PRINT
instruction is encountered.

Name Operation Operand
1 2 3 a4 5 6 7 8[9]10 111213 14[15/16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34

LIl IRl N LITTLL /

Ty T LI 4 I {

—I Blank I Operand

s
a

Assembler Instruction Statements 3.7

The operand field can include one entry from each of
the following groups (one, two, or three operands):

1. ON: A listing is printed.
OFF: No listing is printed.

2. DATA: Constants are printed out in full on the
assembler listing.
NODATA: Only the leftmost 8 bytes of the
constants are printed on the assembler listing.

3. GEN: Print operations generated by the macro
processor if not overridden by other print control
statements (PRINT OFF).

NOGEN: Suppress printing of statements
generated by the macro processor.

Operand entries must be separated by a comma.

The ON, GEN, and DATA conditions are assumed by
the assembler unless otherwise specified by a PRINT
instruction. If an operand is omitted, it is assumed to be
unchanged and continues according to the last
specification.

PROGRAM CONTROL STATEMENTS

ISEQ-Input Sequence Checking

The ISEQ instruction is used to check the sequence of
source records. Sequence checking begins with the first
record after the ISEQ instruction. The sequence entry is
read from the position identified by the ISEQ operand.
The sequence entry on the next record is then compared
to previous sequence value. The ISEQ statement has
the following effect:

1. The sequence entries on source statement records
are checked for ascending order.

2. Statements that are out of order and statements
without sequence entries are flagged in the
assembler listing.

3. The total number of flagged statements is noted at
the end of the assembler listing.

For example, with sequence values of 13, 27, 31, 6, 8,
45, 47, b, and 48, the record numbered 6 and the
record without a sequence value would be out of
sequence. These two records are flagged in the error
field of the listing, and a statement at the end of the
listing shows that two records were out of sequence.

3-8

The assembler does not check the sequence unless
requested to do so by the ISEQ statement.

The following is the ISEQ instruction format:

Name Operation Operand
1 2 3 a4 5 6 7 8[9[10 11 12 13 14{15/16 1/ 18 1920 21 2223 2425 26 27 28 29 0 11 32 11 34
LLUILD NEENEERENNNNEREREY
Ln . o e g LI S S s S o S S S p au
[: Blank -j,%,k,,h Two Decimal Values of the ji

I] || Form L,R or Blank

T
!

The name field entry must be blank. The operands L
and R, respectively, specify the leftmost and rightmost
columns of the field on the source record to be
checked. L,R must be within the range of columns 73 to
96 inclusive. The length of the field (R-L+1) must be 1
to 8. An ISEQ statement with a blank operand
terminates the checking. Checking may be resumed
with another ISEQ STATEMENT. Columns to be
checked must not be before the end column.

Note: Statements generated by the macro processor are
not tested for sequence.

ORG-Set Location Counter

The ORG instruction alters the setting of the location
counter. By altering the setting of the location counter,
you can specify storage boundaries. For example, you
can use the ORG instruction to set the location counter
so that an input buffer is aligned on an 8-byte
boundary.

The format of the ORG instruction is as follows:

Blank operand:

Name Operation Operand
1 2 3 45 6 7 8|9[10 111213 14/15{16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34

NRERNRED . SRR)

AL S | g

Blank

ﬁ

|

i
o
i)
E
=

I

-+

-

Expression A as operand:

Name Operation
1 2 3 4 5 6 7 8|9[10 11 12 13 14)15|

Operand
16 17 18 1920 21 22 23 24 25 26 27 28 29 30 11 32 13 34

LIRS A e § I-

w*l Blankl

3
S

Expression A as operand optionally followed by two
absolute expressions B and C:

Name Operation Operand
1 2 3 4 5 678|910 111213 14]15]16 17 18 1920 21 22 23 2¢ 25 26 27 26 29 30 31 32 33 M

NEEREEED A,

__E;' -

The location counter is set to the smallest value that is
greater than or equal to A, and is also C more than a
mulitiple of B. The expression A may be either absolute
or relocatable; B and C must be decimal values. The
default values for B and C are 1 and O respectively. For
example:

Current

Location New Location
Counter A B C Counter

275 b 100 50 350

340 * 100 50 350

350 * 100 50 350

504 * 256 0 512

750 1000 - - 1000

Any symbols in the expression must have been
previously defined. An ORG operation may reduce the
location counter for the purpose of redefining the
current program, but must not be used to specify a
location below the starting location counter value. If the
previous ORG statement has reduced the location
counter to redefine the current program, an ORG
statement with an omitted operand can then be used to
restore the location counter to the previous maximum
assigned address plus one.

Location

Counter Address Name Operation Operand

0064 0069 SYMBOL DC 1CL6"
006A 0325 FILLIN DS 7CL100
00CE - - ORG FILLIN-599
OOCE 01F9 DATA DC 1560CL2'AZ’
0326 - - ORG -

END

START-Start Assembly

The START instruction specifies an initial location
counter value for the program. The format of the
START instruction statement is as follows:

Name Operation Operand
1 2 3 4 % 6 7 B|9]10 11 12 13 14/15[16 17 18 1920 21 22 23 24 25 26 27 28 29 J0 I1 32 33 14
NREREREY ANERENRERRARERRENEN
L2 s, ¢ DA SO0 SO SR N NN AN N NS SN NN AN Sk Mk BRSO
k A Symbol A Self-Defining Term or Blank |~
| or Blank .

The assembler uses the self-defining term specified by

the operand as the initial location counter value of the

program. If a symbol names the START instruction, the
symbol is established as the name of the object
program (the name symbol on the START instruction is
limited to a maximum of 6 characters). If a symbol
name is not specified, the object program is assigned
the default name ASMOBJ and a diagnostic message is
issued.

For example, either of the following statements could be
used to indicate an initial assembly location of 2040. In
addition, the first statement establishes MAIN as the
object module name.

Name “Operation Operand
1 2 3 4 5 6 7 8[9]10 11 12 1) 14]1516 17,18 1920 21 22 23 24 25 26 27 28 29 0 It 32 33 4

[}

if the operand is omitted, the assembler sets the initial
location counter value of the program at zero.

Note: The START instruction may not be preceded by
any type of assembler language statement that may
either affect or depend upon the setting of the location
counter. If no START instruction appears in the
program, the initial location counter value will begin at
zero.

Assembler Instruction Statements 39

USING-Use Index Register for Base Displacement
Addressing

The USING operation indicates that an index register is
to be used for base displacement addressing. This
instruction also specifies the relocatable value that the
assembler uses to compute base displacements for base
displacement addressing.

Notes:

1. A USING instruction does not load the register
specified. It is the programmer’s responsibility to see
that the specified base address value is placed in the
register.

2. The USING statement is not required if you code
only absolute displacements.

Name Operation Operand
4 5 & 7 B|9[10 1112 12 14[15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

TTTTLIUSING |

'Wl Blank | VR |[

R must be an absolute expression with the value 1 or 2.
V is a relocatable expression whose value must be in
the range O to 65535. The operand R specifies the
index register that can be assumed to contain the base
address represented by the operand V. If the
programmer changes the value in an index register
currently used as a base register and wishes the
assembler to compute displacement from this new
value, the assembler must be told the new value by
means of another USING statement. Two USING
instructions may be used to have the two index registers
as base registers to two different portions of main
storage.

An example of how to use the USING instruction in

base displacement addressing is given in Chapter 2
under Addressing.

3-10

DROP-Drop Index Register as Base Register

The DROP operation specifies a previously available
index register that may no longer be used as a base
register.

Operation Operand
9110 11 12 13 14[15(16 17 18 1920 21 22 23 24 25 26 2728 29- 30 31 32 33-34

8
) 7

i1 1 |

. =1
| | |Blank Et_|

——

R must be an absolute expression with the value 1 or 2.
The expression value indicates which index register,
previously referenced in a USING statement, is now
unavailable for base register use.

It is not necessary to use a DROP operation when the
base address being used is changed by a USING
statement, nor are DROP statements needed at the end
of the source program.

ENTRY-ldentify Entry-Point Symbol

The ENTRY operation identifies linkage symbols that are
defined in this program and can be referenced from
other programs.

Name Operation
|13156789|0||12|J|4|5|6|7|s|sm2|7773242526777&79]3313233u
1NN NEERRENENENREREREY
1T g F 1ty 11T T v 1T
T | Blank One Relocatable Symbol that Aiso
T Appears in this Program

|
|

The symbol in an ENTRY operand field can be
referenced by another program provided that program
uses the same symbol in the operand of an EXTRN
statement. The symbol used in the operand field, for
both EXTRN and ENTRY instructions, has a maximum
limit of 6 characters. See EXTRN Statement in this
chapter. The following example identifies the statements
named SINE and TAN as entry points to the program.

Name Operation Operand
1 2 3 a4 5 6 7 8|9]10 1112 13 14]15[16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34

EXTRN-Identify External Symbols

This operation identifies symbols used in the current
program that are defined in another program. Each
symbol in the operand of an EXTRN control statement
must be identified by an ENTRY control statement or be
the module name in some other program. The symbol
used in the operand field, for both EXTRN and ENTRY
instructions, has a maximum of 6 characters.

Name Operation Ope
1 2 3 45 6 7 8lolion |2|3|4|5|sn|s|sm7| unu:‘s;snzanmzlsznzu

) N L1 LU
Yt T ™ T T T
[1] Blank One Relocatable Symbol Not Found

in the Name Field of the Current

Program Optionally Followed by

an Absolute Expression in

Parentheses

T+

The external symbol cannot be used in a name field in
the same program that describes that symbol as an
EXTRN. The name field entry of the EXTRN statement
must be blank.

An EXTRN subtype can be specified for the EXTRN
symbol by following the symbol with an absolute
expression enclosed in parentheses. The value of the
absolute expression cannot be less than zero nor more
than 255. Any symbol in the expression must have been
previously defined. For an explanation of the subtype
values and their meanings, see the Overlay Linkage
Editor Reference Manual.

Assembler Instruction Statements 3-11

Figure 3-3 shows how ENTRY and EXTRN can be used
to make two or more programs act as one program
through sharing data and control. The main program
defines symbols A, B, and C and identifies them as
entry points. These same symbols are identified as
EXTRNSs (external symbols) in the subroutine. This
allows the subroutine to use these symbols just as it
would if the symbols had been defined in the
subroutine. SUBRO1, on the other hand, is defined and
identified as an entry point by the subroutine and as an
EXTRN, external symbol, by the main routine. These
four symbols—A, B, C, and SUBRO1- can now be used
interchangeably by both the main routine and the
subroutine.

The main routine has control first. It executes
instructions and then branches to SUBRO1, which is
defined as an entry point in the subroutine. Instructions
in the subroutine are executed. Notice that the
subroutine uses symbols A, B, and C, which were
defined in the main routine. Control is then passed back
to the main routine.

Note: The actual resolution of symbols between
programs is performed by the overlay linkage editor and
not by the assembler.

PROGRAM

PROGRAM

PROGRAMMER

PROGRAMMER

1 2 3 AN.:.E 7 8|9 o ‘D:’.":“‘u;‘. 15 IG?:’I’:'?QZO?‘ 222324252627 2829303132333435363 1 2 23 IN.:.E 7 89 f0 lo‘lu":"::"|l 15 lG?:‘I’;’TBZO?! 222324 2526272829 3031323334362363
Al AR rllZ AR
NITRY [A TRY| [sL8Rd
EWTRIV I g;%
EWTRlY| &
X (4 1 EXT
ENTRY, ERU SwA S7] ET LIRS,
2 ‘ V Dlr(5)1 Sk
i (4. AC¢)
B 5 L Z Di(\42|,),
S D/ >
i ve || leXisD], Eniht
| { TUR) i
DiA’ 12,38 S 0 7 2d7
¢ L 15678’ en|/ S A5
< [[5] D
? ‘ VD
[N V"TJ{?J?
J | 1
I |
12 2 a4a 56 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 V2 3 4 5 6 1 8B 9 1011 1213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 J4 38 36 :
Main Routine Subroutine

Figure 3-3. Example ENTRY and EXTRN Statements

http:3132333.35

ICTL~Input Format Control

The ICTL instruction allows the programmer to alter the
normal format of his source program statements. The
ICTL statement must precede all other source
statements in the source program and may be used only
once. An invalid or illegal ICTL instruction ends the
assembly. The format of the ICTL instruction statement
is as follows:

Name Operation Operand
1 2 3 a5 6 7 B|9[10 11 12 13 14)15/16 17 18 1920 21 2223 24 25 26 27 28 29

REVR T,/ IENARRRRERRRRR RS

17

3132 33 4

RERESiREy

T

|
1
2 Decimal Values of the Form be

I]

|

T

|

|

|
!

—+—

Operand b specifies the begin column for the source
statement. It must be from 1 to 48, inclusive. Operand
e specifies the end column of the source statement. It
must be from 49 to 96, inclusive. The column after the
end column must always be blank.

If no ICTL statement is used in the source program, the
assembler assumes that the begin column is 1, and the
end column is 87.

Note: ICTL must be the first source statement in the
source program, including comment statements. The
assembler control statements OPTIONS and/or
HEADERS, however, must precede the ICTL and all
other source statements. The HEADERS and OPTIONS
statements are described in Chapter 6.

END-End Assembly

The END instruction terminates the assembly of a
program. The END instruction must always be the last
statement in the source program. The format of the
END instruction statement is as follows:

Name Operation
1 2 3 a5 6 7 8[910 11 12 13 14[15]16 17 18 1920 1

i

LR AR T

*'Ielank

Operand
2223 24 25 26 27 28 29 30 31 32 33 14

ENRREENRENEDY

l

T
LBIank or a Relocatable Expression]J
|

e

(
|

The operand of this instruction can contain: 1) a blank,
or 2) an expression {usually a name field entry) which
specifies the address to which control is transferred
after the program is loaded. This is usually the name
given on the START instruction. If the operand is blank,
control is transferred to the address identified by the
START instruction.

If the operand is blank and you want to put a comment
on the instruction, code a comma as the operand. For
example:

Name Operation Operand
1 2 3 4 5 6 7 8[910 111213 14/15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36

ENI ,| [EN|D E. L

Note: The assembler checks the first 87 bytes of the
source statement unless you use ICTL to change the
source record format. If you have no operand on the
END instruction, sequence numbers or comments

appearing before byte 87 will cause assembly errors.

Assembler Instruction Statements 3-13

Machine instruction statements represent machine
instructions on a one-for-one basis. The assembler
translates these symbolic representations into machine
language usable by the computer. Machine instruction
statements differ from assembler instruction statements
in that the machine instruction statements are
executable parts of the program logic (such as MVI, ST,
LA), while assembler instruction statements are simply
orders to the assembler, each statement directing a
specific operation (such as DC, START, SPACE).

The format of a machine instruction statement is closely
related to the format of a machine language instruction
that results from the assembly process.

A mnemonic operation code is used in place of the
actual machine language operation code, and one or
more operands provide the information required by the
machine instruction. A comment and a sequence entry
may be included in the machine instruction statements,
but they do not become part of the object code.

Name Entry

Any machine instruction statement may be named by a
symbol, which other assembler statements can use as
an operand. The value attribute of the symbol is the
address of the leftmost byte assigned to the assembled
instruction. The length attribute is the length of the
instruction.

Chapter 4. Machine Instruction Statements

Mnemonic Operation Entry

The mnemonic operation codes are designed to be
easily-remembered codes that remind the programmer
of the functions performed by the instructions. The IBM
System /34 Basic Assembler and Macro Processor
Program Product provides mnemonic and extended
mnemonic operation codes. The complete set of
mnemonic codes is listed in Figures 4-1 and 4-2. For
the operand formats see Figure 4-3. For the formats of
the instructions when they are in main storage, see
Figure 4-4.

Extended mnemonic codes are provided for the
convenience of the programmer. They are unlike other
mnemonic codes in that part of the information usually
provided in the operand is in the extended mnemonic
code itself. Extended mnemonic codes allow the
following:

1. Conditional branches (BC) and jumps (JC) can be
specified mnemonically, requiring only a branch
address as an operand.

2. Half-byte moves (MVX) can be specified
mnemonically, requiring only addresses as
operands.

Extended mnemonic codes are not part of the set of
machine instructions, but are translated by the
assembler into the corresponding operation and operand
combinations.

Machine Instruction Statements 4-1

Mnemonic Operation

Instruction Code Operand Formats'
Zero and add zoned decimal ZAZ Type 1
Add zoned decimal AZ Type 1
Subtract zoned decimal Sz Type 1
Move hex character MVX Type 2
Move characters MVvC Type 2
Compare logical characters CLC Type 2
Add logical characters ALC Type 2
Subtract logic characters SLC Type 2
Insert and test characters ITC Type 2
Edit ED Type 2
Move immediate MVI Type 3
Compare logical immediate CLI Type 3
Set bits on masked SBN Type 3
Set bits off masked SBF Type 3
Test bits on masked TBN Type 3
Test bits off masked TBF Type 3
Store register ST Type 3
Load register L Type 3
Add to register A Type 3
Branch on condition BC Type 3
Load address LA Type 3
Load program mode register LPMR? Type 4
Supervisor call SvC Type 4
Transfer control XFER Type 4
Jump on condition JC Type 5

1Machine-instruction operands are divided into tive types. The characteristics of each type
are as follows:
Type 1: Two-operand format in which a length is explicit or implied in both operands.
Type 2: Two-operand format in which a length can be explicit in either operand, but not in
both. If length is not explicit in either operand, the assembler uses the implied
length of operand one.
Type 3: Two-operand format in which a length cannot be specified.
Type 4: Two-operand format in which data operands are immediate data.
Type 5: Two-operand format in which operand one is used by the assembler to calculate a
positive displacement and operand two is immediate data.
2Privileged instruction

Figure 4-1. Mnemonic Operation Codes

Mnemonic

Operation Hexadecimal
Instruction Code Q-Code'
Move hexadecimal character (MVX)
Move to zone from zone Mzz X'00°
Move to numeric from zone MNZ X'02
Move to zone from numeric MZN X'01
Move to numeric from numeric MNN X'03
Branch on condition (BC)
Branch B X'87
Branch high BH X'84’
Branch low BL X'82
Branch equal BE X'81
Branch not high BNH X'04'
Branch not low BNL X'02'
Branch not equal BNE X'01
Branch overflow zoned BOZ X'88’
Branch overflow logical BOL X' A0
Branch no overflow zoned éNOZ X'08’
Branch no overflow logical BNOL X'20°
Branch true BT X110
Branch false BF X'90°
Branch plus BP X84’
Branch minus BM X'82'
Branch zero BZ X'81
Branch not plus BNP X'04’
Branch not minus BNM X'02'
Branch not zero BNZ X071
Jump on condition (JC)
Jump J xX'87
Jump high JH X'84'
Jump low JL X'82
Jump equal JE X'81
Jump not high JNH X'04
Jump not low JNL X'02
Jump not equal JNE X'01°
Jump overflow zoned JOz X'88’
Jump overflow logical JOL X'A0
Jump no overflow zoned JNOZ X'08’
Jump no overflow logical JNOL X'20
Jump true JT X110
Jump false JF X'90
Jump plus JP X'84'
Jump minus JM X'82
Jump zero Jz X'81
Jump not plus JNP xX'04'
Jump not minus JNM X'02
Jump not zero JNZ X'01

"The hexadecimal Q-codes for the extended mnemonic operation codes are the
contents of the Q-byte in related System/34 machine instructions. For a
description of the System/34 machine instructions, see the Functions Reference
Manual.

Figure 4-2. Extended Mnemonic Operation Codes

Machine Instruction Statements 4-3

Type Instructions Possible Operand Formats

1 ZAZ,AZ,SZ AA A(L).A D(,R).A D(L.R).A
AA(L) A(L),A(L) D(,R),A(L) D(L,R),A(L)
A,D(,R) A(L),D(,R) D(,R),D(,R) D(L,R),D(,R)
A,D(L,R) A(L),D(L,R) D(,R),D(L,R) D(L,R),D(L,R)
2 MVC,CLC,ALC AA A(L)A D(,R).A D(L,R).A
SLC,ITC,ED AA(L) A(L),D(,R) D(,R),A(L) D(L,R),.D(,R)
A,D(,R) A,D(L,R) D(,R),D(,R) D(.R),D(L,R)
MVX AA(l) All)A D(,R),A{l) D(I,R),A
A,D(l,R) A(l),D(,R) D(,R),D(l,R) D(l,R).D(,R)
3 MVI,CLI,SBN Al D(,R).|

SBF, TBN,TBF,BC

L. STALA A.R D(,R).R
4 LPMR? 11

SVC, XFER
5 JC Al

"Privileged instruction

Code Meaning Acceptable For

A Address Relocatable expression,
absolute expression, or
self-defining value

D Displacement Relocatable expression,
absolute expression, or
self-defining value

L Length Absolute expression or
self-defining value

R Register Absolute expression or
self-defining value

| Immediate data Absolute expression or
(bit masks, self-defining value
condition bit
masks, or
control bits to
be used in the
instruction)

Figure 4-3. Operand Formats

4.4

Mnemonic Operation Code Q-

(one byte) Code Ope ————={ Total
Bits Instr
03 Bits 4-7 (one [4— First—mla— Second —om Length
byte)
[} 1 2 3 q 5 6 ? a 9 A B c [»] E F Op | Q ‘Q—vaam—.{
1] 2ZAZ AZ £74 MV X ED ITC |MVC |CLC |ALC |SLC 2 Bytes 2 Bytes Direct 6
Direct TBvie Dip |
- 1
1 ZAZ AZ ¥4 MV X ED ITC |MVC |CLC |ALC |SLC Indexed by XR1 S L x1
1-Byte Disp
2 ZAZ AZ 174 MV X ED ITC |MVC |CLC |ALC |SLC Indexed by XR2 5 l X2
3 ST L A TBN (TBF |SBN |SBF |MV! |CLI q
q ZAZ AZ |SZ2 MV X ED ITC |MVC [CLC [ALC [SLC 1 Byte 2 Bytes Direct 5 x1 1
Displacement TByte Disp
5 ZAZ AZ sz MV X ED ITC |MVC [CLC [ALC |SLC Indel’:(! Indexed by XR1 4 x1 x1
by XR1 1-Byte Disp
6 ZAZ AZ sz MV X ED |ITC |[MVC |CLC |ALC |SLC Indexed by XR2 4 x1 x2
7 ST L A TBN | TBF |SBN [SBF |MVI [CL) 3 x1
8 ZAZ AZ 174 MV X ED ITC |MVC |CLC |ALC [SLC T By 2 Bytes Direct 5 x2 _]
Displacement T Byte Disp
9 ZAZ AZ sz MV X ED ITC [MVC |CLC |ALC [SLC indexed Indexud by X1 4 x2 x1
A zAz AZ |sz |mvx €D [1Tc |mvc |cLe [aLc |sie by xRz ! Byt Dise 4 x2 | x2
Indexed by XR2
B ST L A TBN | TBF |SBN |SBF [MV) |CLI 3 X2
Cc BC LA 2 Bytes Direct 4 i
1-Byte Disp
e LA Indexed by XR1 3 x
1-Byte Disp
E 8C LA
Indexed by XR2 3 x2
F J SVC [XFER|LPMR| 3

Figure 4-4. Main Storage Instruction Formats

Machine Instruction Statements 4-5

http:Itl(it!lI.ed
http:Indell.ed

Operand Entry

Some operands are written as single fields, and other
operands are written as single fields followed by one or
two subfields. For example, addresses may consist of
the contents of an index register and a displacement.
An operand that specifies an index and displacement is
written as a displacement field followed by an index
register subfield, as follows:

40(,2)

A comma must separate operands. Parentheses must
enclose a subfield or subfields, and a comma must
separate two subfields within parentheses. The
following rules apply for subfields:

« If both subfields are omitted, the separating comma
and the parentheses must also be omitted.

« If the first subfield in the sequence is omitted, the
comma that separates it from the second subfield is
written. The parentheses must also be written.

« |If the second subfield in the sequence is omitted, the
comma that separates it from the first subfield must
be omitted. The parentheses must be written.

Fields and subfields in an operand may be represented
either by absolute or by relocatable expressions,

depending on what the field requires.

Blanks may not appear in an operand unless provided
by a character self-defining term.

For base displacement addressing, the base must be
specified in the second subfield.

46

When a length specification is not included in an
operand requiring a length, the assembler uses the
implied length. The implied length is the length attribute
of the first term of the affected operand, as follows:

Term or Expression Length Attribute

Name on a machine
instruction

Length, in bytes, of the
instruction.

Location counter
reference (*)

Length, in bytes, of the
instruction in which it
appears, except for EQU
where the length attribute
is one.

Expression Length attribute of the
leftmost term in the

expression.

Self-defining term Length attribute is one.

START name entry Length attribute is one.

The operand formats for the machine instructions are
given in Figure 4-3.

Notes:

1. For the extended mnemonics of the MVX instruction,
the Q code is inherent in the mnemonic and the |
field is not used.

2. For the extended mnemonics of the BC and JC
instructions, the Q code is inherent in the mnemonic
and the second operand is not used.

3. When a relocatable symbol is used as the first
operand on a JC instruction, the assembler computes
the displacement from the current value of the
location counter.

4. When a relocatable symbol is used in the
displacement field in a base-displacement
specification D(L,R) or D(,R), then the assembler
computes the displacement from the base register
value specified in a current USING instruction.

5. When the length is not specified in the operands of a
Type 1 or Type 2 (excluding MVX) instruction, the
assembler uses the implied length of the operands.
The implied length of both operands is used in Type

1. The implied length of operand 1 is used in Type 2.

6. Following an EDIT instruction, a conditional branch
that tests the second operand for positive, negative,
or zero might not work correctly unless the equal or
zero condition is forced on before the edit.

9

Macroinstruction statements represent predetermined
sequences of machine and/or assembler instruction
statements. Before a macroinstruction statement can be
coded, a macroinstruction definition must have been
defined and must reside in the assembler library
(#ASMLIB). This macroinstruction definition is either
coded by the user or supplied by IBM. For the
IBM-supplied macroinstructions, see Chapter 6 in this
manual.

The macroinstruction definition is composed of definition
control statements. These control statements specify
values for the symbolic parameters appearing in the
prototype statement of the associated macroinstruction
definition. Each of the definition control statements,
details about symbols, terms, expressions and
mnemonics, and how to define a macroinstruction are
discussed in this chapter.

MACROINSTRUCTION CODING CONVENTIONS

Sequence Symbol

Sequence symbols provide labels that can be branched
to and therefore determine the sequence in which macro
definition statements are processed.

A sequence symbol is written as a period followed by
an alphabetic character, $, #, or @, followed by as
many as five alphabetic or numeric characters.

Self-Defining Terms

There are four types of self-defining terms: decimal,
hexadecimal, binary, and character. These terms
represent machine language values, bit configurations, or
immediate data in arithmetic expressions. Self-defining
terms are always right-justified. Padding with zeros or
truncating, if necessary, occurs on the left. Self-defining
terms are always positive and may not exceed 65,535.

Decimal Self-Defining Term: An unsigned integer
written as a string of decimal digits. High-order zeros
may be used. The decimal term is converted to its
binary equivalent.

Chapter 5. Macroinstruction Definitions

Hexadecimal Self-Defining Term: One to four
hexadecimal digits enclosed in apostrophes and
preceded by the letter X. Each digit is converted to its
binary equivalent.

Binary Self-Defining Term: An unsigned sequence of
ones and zeros enclosed in apostrophes and preceded
by the letter B. The rightmost 16 digits specified are
used to generate the 2-byte binary value.

Character Self-Defining Term: One or two characters
enclosed in apostrophes and preceded by the letter C.
Any of the 256 hexadecimal combinations may be used,
including all letters, digits, and special characters. To
represent an apostrophe in a term, two apostrophes
must be entered. Each character is converted to its
binary equivalent, except as noted for apostrophes.

Character String

A character string can include special characters and
blanks and is enclosed by single apostrophes. When a
character string is decoded, enclosing apostrophes are
removed. Half of the number of apostrophes appearing
within the string are removed; so for every apostrophe
that is to appear in a decoded character string, two
apostrophes must be coded in succession. A decoded
character string may be from 1 to 50 bytes long.

Note: Special characters refers to the special characters
available in the System/34 character set.

Character Expression

A character expression is a term, null term, or
combination of terms that is enclosed in single
apostrophes and that may be reduced to a character
string from zero to 50 bytes in length. Terms are either
literal strings of any of the 256 hexadecimal
combinations possible for each byte, except an
ampersand (&), or are variable symbols. A null term is
indicated by two consecutive single apostrophes. If an
apostrophe is required as a data character, it must be
entered as two consecutive apostrophes inside the
delimiting apostrophes. In multiterm expressions, all the
rules of concatenation apply. (See Concatenation in this
chapter.)

Macroinstruction Definitions 5-1

Substring

A substring is a method of selecting specific characters
from a character string defined in a character
expression. A substring is specified as (m,n) where m
and n are each a valid arithmetic expression. The start
character of the substring is m; the length of the
substring is n. The following rules apply to specifying
substrings:

1. The value of m may not be less than or equal to
zero.

2. The value of n may not be less than zero.

3. If the value of n is zero or if the value of m is
greater than the length of the character string, the
substring has no value.

4. If the value of n is greater than the remaining
length of the character string, the substring is all
the remaining characters of the character string.

In a substring notation, there must be no blanks
between the closing single apostrophe of the character
string and the left parenthesis of the substring.

Example of substring:

The original character string &CHAR is
ABCDEFGHIJKL.

The desired substring is DEFGH (five characters
beginning with position 4).

The substring is coded as ‘&CHAR’ (4,5).

Alphameric Value

An alphameric value is a continuous string of alphameric
characters (not enclosed by apostrophes). When an
alphameric value is processed (decoded), commas,
blanks, dashes, and equal signs become delimiters. A
decoded alphameric value may be from 1 to 50 bytes
long.

Variable Symbol

A variable symbol is written as an ampersand (&)
followed by an alphabetic character, $, #, or @, and
followed by as many as five characters. The characters
can be any combination of alphabetic, numeric, or $, #,
@ (other special eharacters and blanks cannot be used).
There are two types of variable symbols: symbolic
parameters and set symbols. The relationship between
these types is:

Symbolic parameters
1. Positional parameters

2. Keyword parameters

Set symbols

1. Global
a. Arithmetic
b. Binary

c. Character

2. Local
a. Arithmetic
b. Binary
c. Character

Symbolic Parameter

Positional or keyword symbolic parameters are assigned
values by the macroinstruction statements, prototype
statements, and table records. The values assigned to
symbolic parameters cannot be changed by the macro
processor.

Positional Parameters: Positional parameters appear
prior to keyword parameters in the prototype record.
Each positional parameter is written as an & followed by
an alphabetic character, $, #, or @, followed by as
many as five alphabetic or numeric characters.

Positional parameters appear on user macroinstructions
as parameter values positioned prior to keywords and in
the same sequence that they had in the prototypes.

Keyword Parameters: Keyword parameters appear after
positional parameters in the prototype record. Each
keyword parameter is written as an & followed by an
alphabetic character, $, # or @, followed by five
alphabetic or numeric characters.

Keyword parameters appear on user macroinstruction
statements with the label of the prototype definition
statement excluding the lead &, followed by a dash,
followed by the parameter value.

The difference between keyword parameters and
positional parameters is that the keyword in a keyword
parameter must always be followed by a dash (-). An
example of a macroinstruction that contains anly
keyword parameters is:

$EXP1 &PLIST-2,&NOTE-

An example of a macroinstruction that contains only
positional parameters is:

$EXP2 &A, &B

An example of a macroinstruction that contains both
positional and keyword parameters is:

$EXP3 &C,&D,&PLIST-3

Set Symbol

A set symbol is a storage area defined by global or local
records. The values assigned to these symbols may be
changed by the macro processor by use of set records.

Three different kinds of set symbols can be used:

1. Arithmetic set symbols are defined by GBLA
(arithmetic global) and LCLA (arithmetic local)
records and are assigned values by SETA (set
arithmetic) records.

2, Binary set symbols are defined by GBLB (binary
global) and LCLB (binary local) records and are
assigned values by SETB (set binary) records.

3. Character set symbols are defined by GBLC
(character global) and LCLC (character local)
records and are assigned values by SETC (set
character) records.

Global: A global is a set symbol defined with a global
statement. This symbol will have a storage area
assigned to it only once for each program assembled.
The same set symbol may be defined in other
macroinstruction definitions called out in the program,
but the storage area will remain as that of the original.
The use of globals is a primary means of passing
information to macroinstruction definitions called later in
the program.

Note: Be careful when using globals, because they
retain their values and spaces in the symbol table even
when not being used. The use of globals when not
needed may cause needless symbol table overflow.

Local: A local is a set symbol (storage area) that retains
its value only during the expansion of a single
macroinstruction definition. Each time a symbol appears
on a local record, it is treated as though it is the first
definition of the symbol in the program. These symbols
are used to retain values which may be used later in the
same macroinstruction definition.

&SYSNDX

&SYSNDX must not be used as a variable set symbol.
&SYSNDX is a system variable that may be
concatenated with other characters to create unique
names for macroinstruction definition statements and
generated assembler source instructions. The three-digit
number 001 is the value assigned to &SYSNDX when
the first macroinstruction statement is processed. The
value is increased by one for each subsequent
macroinstruction processed in the program.

&SYSNDX can have a maximum value of 999.
Therefore, the number of macroinstructions in one job
must not exceed 999 when &SYSNDX is used. (No
diagnostic messages exist for the incorrect use of
&SYSNDX.)

Note: &SYSNDX cannot be used as a keyword or
positional parameter.

Attribute

Attribute refers to the kind of value assigned a variable
symbol in the variable symbol table (VST). Variable
symbols can be assigned the following kinds of values:

Numeric value
Character string value
Null value

Binary value

Macroinstruction Definitions 5-3

Count Function

The count function determines the length, in bytes, of
the value assigned to a symbolic parameter. This length
is obtained by: K’ label of symbolic parameter.

Example: If &LIST equals ABCDEFG, then K'&LIST
equals 7.

The user may refer to the count function only in the
operand of a macro processor control statement (for
example, AIF or SETA).

Arithmetic Expression

An arithmetic expression is a term or series of terms
separated by operators. The valid terms for an
arithmetic expression are variable symbols, self-defining
terms, or count functions. The valid operators in an
arithmetic expression are addition (+), subtraction (-),
multiplication (*), and division (/). Parenthesized
expressions are supported up to three nested levels.

The following rules apply to arithmetic expressions:

1. Two or more terms must be separated by
operators.

2. Two or more operators must be separated by
terms.

3. No more than three nested levels of parentheses
are allowed.

4. Parentheses must be balanced; that-is, for each
left parenthesis there must be a right parenthesis.

5. Unless a left parenthesis is the first element in the
expression, it must be immediately preceded by an
operator or another left parenthesis.

6. A left parenthesis must be immediately followed
by a term or another left parenthesis.

7. A right parenthesis must be immediately preceded
by a term or another right parenthesis.

8. A right parenthesis must be immediately followed
by an operator or another right parenthesis unless
it is the end of the expression.

Arithmetic expressions are evaluated using 24-bit signed
arithmetic (a 3-byte field ranging from -8,388,608 to
8,388,607). An expression is reduced to a single value
as follows:

1. Parenthesized expressions are evaluated from the.
innermost set of parentheses outward.

2. All multiplication and division is performed before
addition and subtraction. All operations are
performed from left to right.

Continuation

Continuation is supported for prototype records only. A
nonblank character in position 72 and a comma after the
last operand indicate that a continuation of the
prototype record follows. At least one operand
beginning in position 16 must appear on every
continuation of a prototype record. Columns 1 through
15 must be blank. Up to five continuation lines are
allowed for any prototype record, which allows a
maximum of six lines to be entered for each prototype
record.

Concatenation

Separate values physically combined so that they appear
as one value are said to be concatenated.

Concatenation occurs under any of the following
conditions:

1. A symbolic parameter or set symbol immediately
precedes or fotlows another symbolic paramete: or
set symbol with no intermediate delimiter.

2. Characters immediately precede a symbolic
parameter or set symbol with no intermediate
delimiter.

3. Characters are joined to a preceding symbolic
parameter or set symbol by an intermediate
period.

AIF records permit concatenation of symbolic
parameters or set symbols and character strings only.
Model records and assembler source instructions permit
concatenation of symbolic parameters or set symbols
and alphameric values only.

Defining Macroinstructions

Definition control statements are used to code
macroinstruction definitions. The values established in
the definition control statements are used by the macro
processor to generate assembler and/or machine
instruction statements. Figure 5-1 lists the definition
control statements in the order that they must appear in
a macroinstruction definition. For the complete list of
macroinstruction definition mnemonics available for use
in defining macroinstructions, see Figure 5-2.

MACRO (required)

Prototype (required)

Global declares

Local declares

Table

Table definitions

TEXT (required)
macro logic

MEXIT

MEND (required)

Figure 5-1. Sequence of Definition Control Statements
in a Macroinstruction Definition

Mnemonic

MACRO

None (macro title
used)

GBLA
GBLB
GBLC
LCLA
LCLB
LCLC
TABLE
TABDF
TEXT
or.
AIF
AGO
SETA
SETB
SETC
ANOP
MNOTE
MEXIT
MEND

Record Type

Header

Prototype

Global arithmetic
Global binary
Global character
Local arithmetic
Local binary

Local character
Table

Table definition
Text

Comment
Conditional branch
Unconditional branch
Set arithmetic

Set binary

Set character
No-op

Message

Trailer (logical end)

Trailer (physical end)

Figure 5-2. Definition Control Mnemonics

Macroinstruction Definitions

5-5

Definition Control Statement Format

A definition control statement may contain up to four
entries: name, operation, operands, and remarks. The
first three entries (name, operation, and operands) are
position-dependent and must begin in positions 1, 10,
and 16 respectively. The remarks entry may occur in
any position following the operands if at least one blank
is provided for separation.

Macroinstruction Format

The format of a macroinstruction is:

Name [Operation Operand

1 2 3 4 5 6 7 8]9]to 1t 1213 1415016 t7 18 1920 21 22 23 24 25 26 27 28 29 30 It 32 33 14 35

vvvvvv T T 1T 1T 1T T T 7T 1T 1 T T T [1T T T v T T T 17T

A Symbol or 'IMnemonic Zero or More One Blank

Not Used T [||Operands of the [I"| Must Separate

["]|Form Described,|["| a Remark

Separated by I"| from the Last
Commas [| Operand

‘ :

Name: |If the name entry on the macroinstruction
contains a symbol and a symbolic parameter appears in
the name entry of the associated prototype record, the
symbolic parameter is assigned the value of the symbol
in the macroinstruction. (See Prototype in this chapter.)

If the name entry on the macroinstruction contains a
symbol and the name entry of the associated prototype
record does not contain a symbolic parameter, the
symbol in the name is ignored.

If the name entry on the macroinstruction is not used
and a symbolic parameter appears in the name entry of
the associated prototype record, the symbolic parameter
is assigned a null value. The length of the name entry is
8 bytes with blanks padded on the right.

Operation: The mnemonic operation code must be
identical to the mnemonic operation code of the
associated prototype record.

5-6

Operands: The operand may contain keyword and/or
positional parameter operands.

The value assigned a keyword or positional parameter in
a macroinstruction is assigned to the corresponding
symbolic parameter defined in the associated prototype
record.

A symbolic parameter defined without a value in a
prototype record is assigned a null value with an
undefined attribute, unless an operand referring to the
corresponding keyword or positional parameter appears
in the associated macroinstruction.

A keyword parameter defined with a value in a
prototype record retains the assigned value, unless an
operand containing the corresponding keyword appears
in the associated macroinstruction.

The keyword parameters may be written in any order;
however, positional parameters must be in the sequence
specified on the prototype statement and must occur
before any keyword parameters.

Keyword Parameter Operands: Each keyword operand
must consist of a keyword immediately followed by a
dash, immediately followed by the value assigned to the
keyword.

Each keyword appearing in the operand must
correspond to one of the symbolic parameters appearing
in the operand of the associated prototype record. (Each
symbolic parameter in the associated prototype record
does not require a corresponding keyword in the
macroinstruction.) A keyword corresponds to a symbolic
parameter when the characters in the keyword are
identical to the characters following the ampersand in
the symbolic parameter.

Positional Parameter Operands: A positional parameter
operand corresponds to a keyword value; that is, just
the value is given and not the keyword. Commas in
succession are used to indicate the omission of
positional parameters and null value assignment.

An example of a macroinstruction statement and its
relationship to the prototype definition control statement
is:

STATEMENT
Name Operation Operand
1 2 3 4 5 6 7 8|9[10 111213 14)15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4 43,44 4% 46 43 30 37 52 L 52 53 54
L TE AT, L&W{T}S - a}f Dl T}f -] | Prototype
L st Lol \
3 VEISH LD -z12 | Macroinstruction Statement
| L]
] 1] | NERR
&DAT1 is assigned 'YES' by the macroinstruction. Prototype

&DAT2 is assigned null value by omission.
&DAT3 is assigned ‘8" by prototype defauit.
&DAT4 is assigned ‘12’ by the macroinstruction.

MACROINSTRUCTION DEFINITION CONTROL
STATEMENTS

Header (MACRO)

The header statement denotes the beginning of a macro
definition and must be the first control record in the
definition. A maximum of one comment record (asterisk
in position 1) can precede the header record. A
comment record preceding a header record is not
generated as source output. The format of the header

record is:

Name Operation Operand,
1 2 3 4 5 6 7 8[9[10 11 12 13 14[15[16 17 18 1920 2) 2223 24 25 26 27 28 29 30 31 32 33 34
| Not Used || | Not Used

The prototype statement defines the mnemonic
operation code that must appear and the parameters
that may appear on the corresponding macroinstruction
statements. The mnemonic operation code in the
definition prototype statement is the same one used to
code a macroinstruction statement in the assembler
source program. By varying the values assigned to
parameters, the user can vary the sequence of
assembler source instructions generated for each user
macroinstruction.

Macroinstruction Definitions 5-7

The prototype record must be the second control record
in @ macro definition. The format of the prototype

record is:
STAPEMENT
Name Operation Operand Remarks
12 3 45 6 7 8]|9[1011 1213 14[/15(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 656 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74 75
1T 1T T 7 77T LA v 7 T 1T ¥y —rT1TTrT
A Symbolic [i—|symbol || Positional [-[Nonblank
Parameter or Parameters |_| Character or
Not Used Followed by |_| Not Used
Keyword
Parameters
LI
I L |
A
Name Operation Operand Remarks
123 45 6 7 8|9[1011121214/15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 42 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74 76
PIARMS/-[2 iclonrx 10N [REELIRD
Name: The symbolic name entry of the prototype Operand: The mnemonic operand consists of positional
statement is optional. If the keyword prototype record is and/or keyword symbolic parameters separated by
continued, the name and operation entries must not be commas. A blank indicates the end of the operands.
repeated on the continuation records.
Positional parameters are represented by variable
symbol names. Positional parameters must precede any
Operation: The symbol in the operation entry is the keyword parameters in the prototype statement. Each
mnemonic operation code that must appear in all user positional parameter is followed by a comma.
macroinstruction statements that refer to this
macroinstruction definition. The operation mnemonic Keyword parameters are variable symbol names
must not be more than five characters long. If the followed by a dash and immediately following the dash:
keyword prototype record is continued, the operation a parameter value, a comma, or, if keyword parameter is
entry must not be repeated on the continuation records. the last parameter in a macroinstruction, a blank. If a

parameter value is included, the value is used as the
default value. If a parameter value is not included, a null
value is used as the default value.

A comment may be entered following the operands as
long as at least one blank exists as a delimiter between
it and the operands.

If the prototype statement is continued, at least one
operand beginning in position 16 must appear on every
continuation record. The preceding example shows a
continued prototype statement.

58

Global

Three types of global statements can be used in
macroinstruction definitions to define global set
symbols. These types of global statements are
arithmetic, binary and character. A global set symbol is
a set symbol whose value is available to all
macroinstructions in an assembler source program. If
used, a global statement must be the first definition
control statement following the prototype statement.
Global statements can be specified in any order and
more than one of each type can be used.

A global set symbol is established when the first
specification of a symbol name is given in a global
record. Subsequent global records may specify the
same symbol name, but the global is not reestablished.
Subsequent declares of the symbol must specify it as
the same type, either arithmetic, binary, or character.

Arithmetic Global (GBLA)

The arithmetic global specifies an arithmetic set symbol.

Arithmetic set symbols are initialized to 3 bytes of
hexadecimal zeros. The 3-byte field remains through all
value assignments. The format of the arithmetic global
record is:

Name Operation Operand
1 2 3 4 5 6 7 8/9[10 11 12 13 14[15(16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34
- T L One or More Global Arithmetic |-
Not Used
] Symbols Separated by Commas |-
— NN LI B}
B Example: 1 3 L_ 2

Binary Global (GBLB)

The binary global specifies a binary set symbol. When
binary set symbols are defined, they are initialized to
zero. The variable can be set to either zero or one by
SETB records. The format of the binary global record is:

Name Operation Operand
1 ;Jns61asllnunultlsllenulgmn271:2-75267725291)31323334
“|Not Used |7 ‘_-H__ One or More Global Binary Set
_l L LLLl Symbols Separated by Commas |
L
L Ll
Example: [] L

Character Global (GBLC)

The character global specifies a character set symbol.
When a character set symbol is defined, it is given a
zero length. A zero- to 8-byte character field can be
assigned by the SETC record. The assigned characters
may be any of the 256 hexadecimal combinations
possible for one byte. The format of the character
global record is:

Name Operation I Operand
1 72 3 a4 5 6 7 8|9]10 11 12 13 14{15016 17 18 1920 21 22 21 24 25 26 27 28 29 30 I 32 33 34 I 36
LI S S ¢ LE ™7 T T 71T 1T 1T T 7T 1T T T 7T 1T T T T 17
"|Not Used |77 One or More Global Character

Set Symbols Separated by Commas
| L] | L ||

1

Macroinstruction Definitions 5-9

Local

Three types of local records can be used in
macroinstruction definitions to generate local set
symbols: arithmetic, binary, and character. If used, they
must be the first-eontrol-statemants following the global
mnemonics, if globals are used, or the first control
records following the prototype record, if globals are not
used. Local mnemonics can be specified in any order
and more than one of each type can be used.

Local set symbols are established and initialized in each
macroinstruction definition in which they appear.

Arithmetic Local (LCLA)

The arithmetic local mnemonic specifies an arithmetic
set symbol. Each arithmetic set symbol specified is
initialized to 3 bytes of hexadecimal zeros and remains
as a 3-byte field. The format of the arithmetic local
record is:

Nome Operation | Operand
1 2 3 4 5 6 7 8[9]10 1112 13 14]15]16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 4 3 3%
lllllll q

One or More Local Arithmetic Set
Symbols Separated by Commas

Character Local (LCLC)

The character local specifies a character set symbol.
Each character set symbol is initialized to a null value
and zero length. It may then be changed to a character
value of from zero to 8 characters. The format of the
character local record is:

Name Operation Operand
1 2 3 45 B 7 B[]0 111213141516 17 18 1920 21 22 23 24 25 26 27 28 29 X0 31 32 33 4 I 36
™ T T T

ran e 0
| |Not Used One or More Local Character]
Set Symbols Separated by Commeas | |
LI I [L1
: Example: C 0 L[,

Table (TABLE)

A table statement is used to assign a value to a
positional or keyword symbolic parameter. A table
statement must be followed by at least one
table-definition statement. The format of the table
record is:

Binary Local (LCLB)

The binary local specifies a binary set symbol. The
binary set symbol is initialized to zero. The format of
the binary local record is:

Name “Operation Operand
1 2 3 4 5 6 7 8|9]10 1112 13 14/15[16 17 18 1920 21 2223 24 2% 26 27 28 29 10 31 32 1) 4
T i 1 1 1 L |

T T LIC T T T TV T 1T
"|Not Used

|| One or More Local Binary Set)
Symbols Separated by Commas |

|

 [examote: i L, BALoELz

610

1 INotused [T

Name Operation Operand
1 2 3 4 5 6 7 8(9]10 1112 13 14]15]16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 31 34
T T 17 LT 1T 1T 171 TT1T7

A Syr;ubblic Parameter

Table-Definition (TABDF)

Table-definition statements assign values to symbolic
parameters given on table records. The value given in a
table-definition statement is assigned to the symbolic
parameter given in the previous table statement if one
of the following conditions is satisfied:

1. The argument of the table-definition statement
matches the value previously assigned to the
symbolic parameter by the macroinstruction or
prototype record.

2. Positions 1 and 2 of the argument of the
table-definition record are occupied by
apostrophes and no value has been previously
assigned to a symbolic parameter by the
macroinstruction or prototype record.

3. The argument of the table-definition statement is
blank. A blank argument assigns the specified
value to a parameter if the parameter entered does
not match an argument specified in a preceding
TABDF statement.

At least one table-definition statement must follow each
table record. The format of the table definition record
is:

Name Operation
1 23 45 6 7 Blalonn 121314

T T T T 1T

Operand
15/16 17 18 1920 71 22 23 24 265 26 27 28 29 30 31 32 33 34
T T 11T

_— Argument Value

Argument: A string of characters with no embedded
blanks. The argument may be taken from the prototype
record or a user macroinstruction.

Value: A character string or an alphameric constant.
Following is an example of lines from a macro definition
that define a table or table record:

In this example if the user enters a yes for the first
positional parameter (&DAT1), then & DAT1 is assigned
the value 1. If the user makes no data entry for the first
positional parameter, then &DAT1 is assigned the value
9.

Text (TEXT)

A text statement must be present in every
macroinstruction definition. The text statement denotes
the beginning of conditional processing instructions.

The definition control records that can appear before the
text record in the jobstream are: header, prototype,
global, local, table, and table-definition records. Any of
these records appearing after the text statement are
considered invalid, and errors result. The format of the
text statement is:

Name Operation Operand
1 2 3 4 8 6 7 B|l9[10 1112 13 14[15|16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34
| A

T T 1 1 &1 x I |

: Not Used Not Used L

STATEMENT
Name Operstion Operand

@2:4557s910||;;-M|5|6|7|s:’9-2102|2:232425;27282930:!32:334353537:5:;401!0203

A 2 2 ., hl

B AlBUe WDAT|L f

S| TABDA I
0 TABD
g TABDA
L

Macroinstruction Definitions 5-11

Comment

Source output comments: These comments can appear
after the TEXT record and before the first trailer record
(MEND). These comments are written out as part of the
macroinstruction expansion. The format of a source
output comment is:

* Desired comment

One comment of this format can appear before the
header record, but it is not generated as source output.

Comments internal to the macro definition: These
comments can appear after the header record and
before the first trailer record (MEND). These comments
are not included in the macro expansion. The format of
an internal macro comment is:

* Desired comment

Conditional Branch (AIF)

AIF conditionally alters (forward or backward) the
sequence in which macro definition records are
processed. The AIF record may appear any place after
the TEXT statement. The format of the AlF statement
IS:

Operation

Name Operand
1 2 3 4 5 6 7 8|9]t0 1112 1314|1516 17 18 19X 21 22 23 24 25 26 27 28 29 I 31 32 33 34 I 36
LA T

T I L O O A

A Sequence A Logical Expression Enclosed in |

|| symbol or Parentheses Immediately Followed]
Not Used by a Sequence Symbol

| 1
| |

5-12

Operand: The logical expression is evaluated to
determine whether it is true or false. If the expression is
true, the record named by the sequence symbol in the
operand is the next record processed by the macro
processor. If the logical expression is false, the next
sequential instruction of the macro definition is
processed.

Whenever AIF operands of unequal length are compared
(after assigned values have been substituted for
symbolic parameters), the lengths, and not the content,
of the operands are compared. Otherwise, three kinds
of comparisons of content are possible:

1. Type attribute (T') checking
2. Binary condition checking

3. Value checking

J

Type Attribute (T') Checking: The user may refer to the
type attribute only in the operand of the AIF record.
Attribute checking cannot be performed with set

symbols.
Condition Meaning
, INE} .
AIF (T'&name]EQ N’) .sequence symbol Test &name for a numeric value.
. NE} .,
AIF (T'&name EQ u’) .sequence symbol Test &name for a character
string value.
. NE| .
AlF (T'&name o) .sequence symbol Test &name for a null value (no
EQ . .
value assigned). This null test
is recommended.
. NE[‘e
AIF (T'&name) .sequence symbol Test &name for a null value (no
EQ| . .
value assigned). This null test
is not recommended.
. NE , . .
AIF (T'&name {EQ} T'&name 1) .sequence symbol This test determines whether
or not &name and &name 1

have the same attribute.

Note: No concatenation of symbols in an AlF operand is
supported in T’ processing. If concatenation is
specified, an error results.

Binary Condition Checking: The format for binary
condition checking is:

AIF (&symbol).sequence symbol

This format is valid only if &symbol is a binary set
symbol. See Set Binary Record (SETB) in this chapter.
If &symbol has a value of 1, the AIF condition is
assumed true, and a branch forward or backward to the
sequence symbol is taken. Otherwise, processing
continues with the next sequential instruction.

Macroinstruction Definitions

5-13

Value Checking

r N

GT
count function, GE)
AIF &symbo" or (blank){ EO ,(blank)
‘character expression’ NE
LT
LE

N 7

Note: &symbol = any symbolic parameter or set symbol:

GT = greater than

GE = greater than or equal
EQ = equal

NE = not equal

LT = less than

LE = less than or equal

Concatenation of symbolic parameters, set symbols, and
character strings is supported for an AIF record.

Unconditional Branch Record (AGO)

The AGO record unconditionally alters (forward or
backward) the sequence in which macro definition
records are processed. The AGO record causes a
branch forward or backward to the record whose name
matches the sequence symbol given in the operand of
the AGO record.

The AGO record may appear any place after the TEXT
record and before the MEND record. The format of the
AGO record is:

Name | Operation Operand
1 2 3 a4 5 6 7 B|9]10 111213 14]15[16 17 18 1920 21 22 23 24 25 26 27 28 20 X0 I 32 33 44
LR SR TT 1T 171 TT 11
A Sequence A Sequence Symbol
Symbol or
Not Used

5-14

count function, :
&symbol, or .sequence symbol
‘character expression’

Set Arithmetic (SETA)

The SETA record assigns a value to the arithmetic set
symbol referenced in the name field. The 3-byte
hexadecimal value assigned is derived from an
evaluation of the operand field. The SETA record may
appear any place after the TEXT record. The format of
the SETA record is:

Name Operation Operand
1 2 3 4 5 6 7 B8[9[10 11 1213 14{15/16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34
T T

LI L R L T rrr1rrrrrrrT

An Arithmetic| | An Arithmetic Expression
Set Symbol

Operand: The arithmetic expression may contain
arithmetic, character, and/or binary set symbols. Any
character set symbols used must have a value of from
one to eight decimal digits. Binary set symbols are
either zero or 1, and &SYSNDX is given a hexadecimal
representation of its current value. The values assigned
by the SETA records must be in the range of
-8,388,608 to 8,388,607. If you use the count function
as an operand, it must appear alone.

Set Binary (SETB)

The SETB record assigns a value of zero or 1 to the
binary set symbol referenced in the name field. The
SETB record may appear any place after the TEXT
record. The format of the SETB record is:

Name Operation Operand
1 2 3 4 5 6 7 8[9]10 111213 14|15[16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34
i rrid [

A Binary _ Oor1
Set Symbol

Set Character (SETC)

The SETC statement assigns a zero- through
8-character value to the character set symbol referenced
in the name field. The character value assigned is
derived from an evaluation of the operand field. If the
derived value contains more than eight characters, only
the first eight characters are used.

The SETC record may appear any place after the TEXT
record. The assigned characters may be any of the 256
hexadecimal combinations possible for one byte. The
format of the SETC record is:

Name Operation Operand
1 2 3 4 5 6 7 8/9]10 11 12 1314|1516 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34
T 1T T T T T T E rTTTrT T T T T T T T TTT

A Character
Set Symbol

A Character Expression
(may include substring
notation)

Operand: The character expression, which may include
substring notation, may contain character, arithmetic,
and binary set symbols. Null values can be assigned in
the character expression by specifying two consecutive
single apostrophes or by specifying only variable
symbols that already have null values.

Arithmetic set symbols used in the character expression
are converted to only their significant decimal digits in
the string. All leading zeros are dropped, and, if the
value of the arithmetic set symbol is zero, a single
decimal zero is used. Binary set symbols appear as
either zero or 1, and &SYSNDX is given its current value
in three decimal digits.

Assembly No Operation (ANOP)

The ANOP statement may be used to provide a name
(sequence symbol) to which AIF and AGO statements
may branch. ANOP may appear any place after the
TEXT statement and before the MEND statement. The
format of the ANOP statement is:

Name Operation Operand
1 2 3 4 5 6 7 8[9]10 11 1213 14[15(16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34
FrTr e TTTTTTT

A Sequence i [T°| Not Used

Symbol

Macroinstruction Definitions 5-15

Message (MNOTE)

The MNOTE statement may be used by the programmer
to generate a message and to indicate the error severity,
if any, to be associated with the message. The MNOTE
statement may appear any place after the TEXT
statement. The format of the MNOTE statement is:

Name Operation Operand
1 2 3 45 67 5|s||o 11 12 13 141516 17 18 1920 21 2223 24 25 26 27 28 29 30 J1 32 33 34
T 1 T 1 | EL]_I‘FTTHIJ
A Sequence | | B | sc
1 Symbol or SC,'Message’
Not used SC,MIC code number,
msg member type
|
|
|
I
T
Operand:

SC = Severity code (two digits 00-99)

Severity codes are divided into the following
classifications:

SC <08 The macro processor generates

the message as an assembler comment
(* in position 1), and no

error condition occurs.

SC =08 The macro processor generates a
special assembler statement that
will cause the message to be printed
on the assembler source listing

with a warning (W-error).

SC > 08 The macro processor generates

the message as an assembler comment
without an * in column 1. This will
cause the assembler to flag that
statement as a hard error (M-error).

‘Message’ One to 50 characters enclosed
in apostrophes with no embedded
apostrophes. This message will
eventually occur as coded on the
assembler source listing.

MIC code A four-digit code which identifies
number the message member within the

message member type.

Note: Message member type for the MNOTES for
IBM-supplied macroinstructions is ASM.

5-16

Examples:

1. An MNOTE instruction which causes a W error
and a comment on the source listing:

Name Operation Qperand
1 2 3 4 5 6 7 8(9]10 11 12 13 141516 17 18 1920 21 2223 24 25 26 27 26 28 J0 31 32 33 34 36 36 I7

. [4[mol

2, An MNOTE instruction which causes an M error
and generates message #56 as obtained from the
user message member set:

Name Operation Operand
1 2 3 4 5 6 7 8|90 11 12 13141516 17 18 1920 21 22 2] 24 25 26 27 28 29 30 31 32 31 34

3. An MNOTE instruction which causes an M error
but no message:

Name Operation Operand
1 2 3 4 5 6 7 8]9][10 1112 13 14)15[16 17 181920 21 2223 24 25 26 27 28 29 0 31 32 33 4

Logical End (MEXIT)

The MEXIT statement denotes that macro definition
processing ends with this record. The format of the

MEXIT record is:

Name
! 2.3 45678
10

Operation Operand
9110 11 12 13 14[15[16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 4
T LI

T

A Sequence
Symbol or
Not Used

Not Used

Physical End (MEND)

The MEND statement denotes the end of, and must be
the last control record in, the macro definition.
Processing of the macro definition ends when this
record is encountered.

The format of the MEND record is:

Name Operation Operand
1 2 3 4 5 6 7 8[9]10 11 12 13 14[1s5(16 17 18 1920 21 22 23 24 25 26 27 268 29 30 31 32 331 M4
T‘I‘T‘T‘T‘T!‘"hquﬁ!_ TT T T T 1717 |
T 1
A Sequence Not Used i

Symbol or :
Not Used i

Macroinstruction Definitions 6-17

SAMPLE DEFINITION OF A USER
MACROINSTRUCTION

Figure 5-1 shows the definition of a user-defined
macroinstruction that generates instructions to move
more than 256 bytes of data. Figure 5-2 shows an
assembled program in which the user-defined
macroinstruction is issued. The macroinstruction is
issued several times in the program to demonstrate how
parameters specified in the macroinstruction determine
which lines of code are generated from the
macroinstruction definition.

MACRO
@MDVL &TO,

For a description of how to code macroinstruction
statements, see Chapter 6. For an example of
IBM-supplied macroinstruction definitions, see Sample
Macroinstructions in Appendix A.

MOVE 'TO' LAKEL (LEFT EYTE) c
S&FROM MOVE_'FROM' LABEL (LEFT BYTE) €
&LENGtH, LENGTH OF FROM_AND TO FIELDS c
&ADDR- ADDRESS TO BE IN REGISTER ONE
LCLA &WRKLNG LENGTH--REMAINING EYTES TO MOVE
LCLA &WRKLMi LENGTH MINUS ONE
LCLE &SW EDIT_SWITCH, IF ON GEN NO CODE
LELC sWRKAD SUESTRING OF ADDR- FARM
SFACE
&SW SETE 0 SET_EDIT SWITCH OFF
o --1F THERE IS AN EDIT ERKOR
* JIT IS SET TO ONE AND NO
e CINSTRUCTIONS WILL HE GENERATED
L2322 222222222 22 22 R X 8 X2 R X2 R 2 R 2 2R 2 X2 2 222 22233222223 X2 222222 2322
o *
% CHECK FARAMETER ONE, TO ADDRESS LAEEL. *
i *
o TEIE T DT T U B I TP T T DTN T DI DI IE T I IE U I DI DTN IE I NN
A (T'&4TO NE '0').MV#001 IF FIRST FARM ENTERED,
o CHECK_IT GTH, ELSE
e WKITE GUT AN ERROK HESSAGE
T AND SET ON THE EDIT SWITCH SO
. J:THAT RO CODE"'isTBENERATED
: MNOTE 08, ‘FARM { (TO ADDR) MAY NOT RE _OMITTED, '
aswW SETE SET EDIT ERKOR_SWITCH ON
AGOD .MVE002 GO CHECK THE 'FROM' ADDRESS
. %
IMV£001 ANDF
ATF (K'ATO LT '7').MV$002 IF_THE NUMBER OF CHARACTERS IN
x --FARM 1 IS 6 CHARACTERS OR LESS
e T IS OK, ELSE SET ON THE
Tw {ERROR SWITCH.
WX
MNOTE 08, 'FARM 1 (TD ADDR) MUST EBE é CHARACTERS OR LESS. °
asu SETH 1
:ll-)"('l LR 2SS 2SS S22 S 2 22 2 R R X222 22222222222 RS
L *
e CHECN FARAMETER TWO, FROM ADDRESS LABEL *
. % *
i ii 22X 222 R RS 22 e R R s s R SRS S RS AREISLS S S 2 Y
LMV2002 ANOF
AIF (T'&AFROM NE ‘0').MV$003 IF SECOND FARM ENTERED,
o ..GO_CHECK ITS LENGTH, ELSE
e CWRITE OUT AN ERROR_MESSAGE
o CAND_SET ON THE EDIT SWITCH SO
Tx ITHAT NO CODE IS GENERATED
o
MNOTE 08, 'FARM 2 (FKOM ADDR) MAY NOT —BE OMITTED.
asw SETE SET EDIT ERROR_SWITCH ON
AGD - .MV$004 GO CHECK THE LENGTH FARAMETER
R
IMV$003 ANUF
ATF. (K'AFROM LT '7').MU2004 IF THE NUMEER OF CHARACTERS IN
x .FARM 2 IS & CHARACTERS OR LESS
T IT IS OK, ELSE SET ON THE
T LERROR SWETCH.
. ®
MNOTE 08, 'FARM 2 (FROM ADDR) MUST BE & CHARACTERS OR LESS.
s5u SETH 1

:“Ii““!“Rlﬂ*iﬂ.R'ﬂﬂ&iﬂII“IRR“ﬁ“*“l*ﬂﬂ.“**ﬁ!ll.liﬂlﬂ“ﬂﬂiﬂ.li.ﬂﬂi*“Iﬁﬂﬂﬂ“

o
o®
L%
-MV%004

»*
CHECK FARAMETER THREE, LENGTH OF MOVE. »
»*
_lnnlnnni;;a:nnﬁinnnniiininnﬁu&&nnnniniiiinni&&iuinnnilnnnﬁhiiin&nnnnuﬁn
AIF (T'ALENGTH NE '0').HU€005 IF LENGTH FARM ENTERE
0 SEE_IF IT 1S NUHERIC ELSE

>
=

V3005

PN . [
xby X KX 3! 1 XX XXX

JWR ITE oUT AN ERROR_MESSAGE
AND SET ON THE EDIT SWITCH SO

..THAT NO CODE IS GENERATED.

MNOTE 08, 'FARM 3 (LENGTH) MAY NOT EE OMITTED,

SETH SET EDIT ERROR SWITCH ON

AGD .MVE006 GO SEE IF ALL EDITS PASSED.

ANOP

AIF (T'&LENGTH EQ 'N‘).MV3006 _IF THE LENGTH FPARM IS NUMERIC
. IT IS OK, OTHERWISE
J.SET ON THE ERROR SWITCH

MNOTE 08, 'FARM 3 (LENGTH) MUST BE NUMERIC.

SETE: {

Figure 5-1 (Part 1 of 2). Sample Macroinstruction Definition

5-18

% »
it CHECK THE EDIT SWITCH. *
]
I 222 ISR 2223 R AR R R R R i s AR RS2 222 YRR 22 R AR R YL L
(MV$006 ANOF
AIF (ASW).MVEEXIT IF_THE EDIT SWITCH IS ON
.. --THE MACRO AND DO NOT GtNERnTE
::IIl!!!llI!IIIl!l!lII!I!!E.!I!I!.!.I.II!.l.!.ﬂlﬂll!.ﬂ!.l.lﬂllﬂ!l!.lll!
) »
e GENERATE THE NECESSARY MOVE INSTRUCTIONS. .
R
HI&Iillﬂlhﬂlhl’llhllhlllh!lﬂlll » L] L] 3] "
AWRKLNG SETA A&LENGT SET TO TOTAL NUMBER OF BYTES
SURKLNL SETA &L LENGTH-1 SET TO NUMBER TO MOVE MINUS ONE
' AIF (AWRKLNG LT '257').MVeEND _IF THERE ARE LESS THAN 257
o +-BYTES REMAINING TO BE MOUED
= ..THEY CAN BE MOVED IN ONE
w L INSTRUCTION, OTHERWISE
T IMOVE ONLY_ 256 BYTES AND
x :DECREASE THE NUMBER REMAINING
N .BY 256.
. %
MVC ATO+&WRKLM1(256) , AFROM+&WRKLM1
SURKLNG SETA SMRKLNG-356
&WRKIMS TA &WRKLNG-1
AGO .MV4LOOP
.MVZEND ANDF
. MUC ATO+&WRKLM1 (AWRKLNG) , SFROM+&WRKL M1
o TETEDE U0 0 000 06 0 30 U0 00060000000 00 56 00 600 06 36 00 3600 36 00 30 0 00 30 06 36 36 36 30 0 30 38 06 3 38 30 56 06 56 38 30 3 30 96 3 3% 06 3% 34 0% 2 0%
.I *
i CHECK FARAMETER FOUR, ADDRESS TO BE LOADED IN REGISTER ONE .
I'ﬂ!ilﬂllvliIIIHIlﬂhillhh'ﬂlll.'.ﬂ'lﬂﬂ.lll'Il.lllIII.III"II"II‘I'IHII‘
AIF (T'AADDR EQ '0°).MVSEXIT IF FARM 4 WAS OMITTED, THIS IS
o ..0K AS IT IS AN OFTIONAL FARM.
e
. AIF ('8ADDR'(1,1) NE '@').MUILDAD IF THE FIRST CHARACTER
i ::8ENERA¥E A fuag ABBRE?:’
w NSTRUCTION, .OTHERWISE
T S BENERATE QL 0AD TREFRUCTION
. - -USING CHARACTERS TWO' THRU
. .
SURKAD SETC . LADDE'(2,7) SET STRING TO IGNORE THE '@’
oo “HUSERt? MACRO IS DONE, EXIT MACRO
.MVELDAD ANDP
AADDR, 1
.MV#EXIT ANOF
MEXIT
MEND
Figure 5-1 (Part 2 of 2). Sample Macroinstruction Definition
IBM SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 04

TIME §3.37 PAGE 2

ERR LOC ORJECT CODE ADDR STMT SOUKCE STATEMENT 05-09-79
0000 1 START X'0000'
3 . @MOVUL HERE, THERE, 512
E 022 2 5+ v HERE+S44(254) , THERE+S
3882 8k EF 8187 8447 &+ HUE HERE:334(%3¢) . THERE 244
8 » @MOVL HERE, THERE, 224, ADDR-HERE
000C OC DF 0407 0307 10+ MYC HERE+223(224), THERE+223
0012 C2 01 0028 i1+ LA HERE, 1
13 » @MOVL HERE , THERE, 400, ADDR-@HEREADR
0016 OC FF Q4E7 O3EZ7 {5+ MUC HERE+399(256), THERE+399
00iC OC @8F QOR? 02H7 16+ MUC HERE+143(144), THERE+143
0023 35 01 0027 17+ L HEREADR, 1
19 » @MOVL HERE, TOOMANY , 375
" 214 %08 FARM 2 (FROM ADDR) MUST BE & CHARACTERS OR LESS.
23 » @MOVL HERE, THERE
W 25 %08 PARN 3 (LENGTH) MAY NOT BE OMITTED.
0026 0028 0027 27 HEREADR DC AL2 (HERE)
0028 29 HERE EQU %
0028 0227 30 b 2CL256
0228 32 THERE Eu x
0228 0427 33 [) 2CL256
9428 35 TOOMANY EQU *
0428 0637 32 b 2CL256
FFFF 38 END

Figure 5-2. Use of Sample Macroinstruction

Macroinstruction Definitions

#MNOTE

#MNOTE

5-19

http:a.WRKL.NG

A macroinstruction is a source statement that generates
a predetermined set of assembler statements each time
the macroinstruction is used. The IBM System/34 Basic
Assembler and Macro Processor Program Product
provides macroinstructions which perform both system
services and input/output device support. By using
these macroinstructions, you can perform both system
and input/output operations with less coding.

Writing Macroinstructions

You code macroinstructions as follows:

Name Operation | Operands Continuation

Symbol Macro
or Blank | Name

No Operands Any Nonblank
or One or More | Character if
Separated by Continuation is
Commas Being Used

The name field can contain any valid assembler
language symbolic name beginning in column 1. The
name is assigned to the first byte of generated code.
Since the name is optional, it is shown below in
brackets.

The desired mnemonic operation code {macroinstruction
name) must appear as specified in that
macroinstruction’s description. The operation code must
start in column 10.

Keyword

Dash
/ Parameter

[namel | $ABC | NAME- module[FIND-address/[PACK /8]

7 }

Operand Optional Default, Option
Operand Value List

Chapter 6. Macroinstruction Statements

Operands specify the available services and options that
you want to use. The operands must start in column 16.
Macroinstructions supplied by IBM use only keyword
operands. The following conventions apply to the
IBM-supplied macroinstructions:

« Each operand consists of a keyword followed by a
dash and a parameter.

« Keywords—those shown in capital letters—are coded
exactly as shown in this chapter.

« The parameter part of the operand must immediately
follow the dash.

« Parameters—those shown in lowercase letters—indicate
information you must supply.

« An option list for a keyword parameter is specified as
follows:

KEYWORD-A/B/C

This list indicates that options A, B, or C are the only
valid options for the keyword parameter. When the
options Y/N are given in a macroinstruction, Y
indicates a yes response, N indicates a no response.

« Commas separate the operands; blanks cannot be
left between operands.

» The keyword operands may be written in any order.

Optional operands are indicated in this chapter by
enclosing the operand within brackets

[KEYWORD-parameter]. If an operand is not
specified, the default value is used. A default value is
selected for any optional keyword that is omitted. The
default value is indicated in this chapter by a line under
the default option. For example, [KEY-A/B/C]
indicates that option A is the default value.

No operands can be specified beyond column 71. If
continuation is required, column 72 must contain a
nonblank character and the last operand before
continuation must be followed by a comma and a blank.
If the comma is in column 71, the blank is not required.
An operand cannot be divided and continued on the
next line. The operands of the continued field must
begin in column 6. For an example of continuation
coding, see Figure 6-1.

Macroinstruction Statements 6-1

A comment must be separated from the operand or
comma by at least one blank space. A comment cannot
be inserted between operands on a one-line
macroinstruction. Figure 6-2 shows examples of
comments used with macroinstructions. On the
assembler listing, all comments on the generated code
are aligned by the macro processor to begin in column
40. Any comments too long to be contained in columns
40 through 71 are truncated from the right.

STATEMENT

Name Operation Operand Remarks
1 2 1 4 5 6 7 8|9]/10 11 121314]|15/16 17 18 1920 21 22 23 24 25 26 27 28 29 I 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 43 50 51 52 53 54 565 56 57 58 59 B0 61 62 63 64 65 66 67 68 6970 11 72 13 74 76576
1] = ° - - 512:/CHATN- Av
N 17T . N
|
T -BuFdl,TO -
ad
- -
S| - ” '
-

- 9

-

Figure 6-1. Continuation Coding Examples

STATEMENT

Operation Operand Remarks
7 8(9]10 31 12 13 14[15[18 17 18 1920 21 2223 24 25 26 27 28 20 0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5) 52 63 54 55 56 57 58 59 60 €) 62 63 64 6566 67 68 6970 71 72 73 4 7576

(ﬁlP MW* i

—

B ——

Figure 6-2. Comments on Macroinstructions

Macroinstructions Supplied By IBM

The macroinstructions provided by the IBM System/34
Basic Assembler and Macro Processor Program Product
and the functions they perform are shown below.

Note: Communications macroinstructions are described
in the Data Communications Reference Manual and the
Interactive Communications Feature Reference Manual.
Scientific macroinstructions are described in the
Scientific Macroinstruction Reference Manual.

6-2

Device Type
Supported

System Log

General SSP

General 1/0

Printer

Disk

Disk Sort

Timer

Display Station

Macroinstruction
Name

$LMSG
$LOGD
$LOG

$FNDP
$FIND
$LOAD
$SNAP
$INFO
$CKEQ
$CKPT
$INV
$EOJ

$ALOC
$OPEN
$CLOS
$DTFO

$DTFP
$PUTP

$DTFD
$GETD
$PUTD

$SRT
$SORT

$TRB
$SIT
$RIT
$TOD

$DTFW
$WSIO
$WIND
$WSEQ

Function

Generate parameter list for message displayed by system log
Offsets in log parameter list
Linkage to system log

Generate find parameter list

Find a directory entry

Load or fetch a module

Snap dump of main storage

System information retrieval

Generate a parameter list for checkpoint requests
Establish a checkpoint

Inverse data move

Linkage to end of job

Allocate disk space or device

Prepare a device or file for access

Prepare a device or file for termination

Generate DTF offsets for all devices, including data communications

Define the file for a printer
Construct a printer PUT interface

Define the file for disk
Construct a disk GET interface
Construct a disk PUT interface

Generate a loadable sort parameter list
Construct sort interface

Generate timer request block
Set timer interval
Return/cancel timer interval
Return time and date

Define the file for display station

I/0 requests to display station

Generate indicators for PUT and PUT overrides

Generate labels and values for display station device-dependent values

Figure 6-3. Macroinstructions Supplied by IBM

Macroinstruction Statements 6-3

System Services Macroinstructions

Use system services macroinstructions when you want
to communicate with the System Support Program
Product (SSP). These macroinstructions can do the
following:

« Log and write error messages

« Obtain object modules from disk and load them into
main storage

« Pass control to modules in main storage
« Determine the location of an object module on disk
« Terminate the current job

The system services macroinstructions are divided into
these groups:

1. System log macroinstructions provide support for
and linkage to system log functions.

$LMSG
$LOGD
$LOG

2. General SSP macroinstructions provide linkage to
system functions.

$FNDP $CKEQ
$FIND $CKPT
$LOAD $INV
$SNAP $EOJ
$INFO

SYSTEM LOG SUPPORT

Specifying a $LOG macroinstruction in your program
generates a call to system log. (System log is a group
of system output routines that provide communication
between the operator and the system.) You may want
to use system log to notify the operator of error
conditions, error recovery procedures, and the validity of
previous operator responses to halts. If the operator
selects an invalid option in response to a halt, the
response is not accepted by system log. Instead, the
halt is displayed again with another message indicating
that the response is invalid.

Note: When an immediate cancel (option 3) is selected,
control is passed directly to the end-of-job (EOQJ)
routine by system log.

Two types of output are available through system log;
formatted and unformatted messages. Both are
displayed on the system log device.

« A formatted message consists of two lines. The first
line, the format line, contains the message ID and
available options. The second line contains the actual
message text.

« An unformatted message consists of one line. This
statement indicates errors or issues instructions to
the operator; for example, requesting that a disk file
be loaded.

Messages can be issued with or without accompanying
halts and can be routed to either the system console or
the work station.

To use system log, you must do the following:

1. Build the log parameter list using the $LMSG
macroinstruction.

2. Use the $LOGD macroinstruction if you want to
establish labels for the log parameter list. You can
then use the labels to modify the parameter list
during program execution.

3. Issue the $LOG macroinstruction.

4, Process in your program any replies returned by
the operator.

Generate a Parameter List for 8 Message Displayed
by System Log ($LMSG)

This macroinstruction generates a system log parameter
list for a message to the operator. This parameter list is
referenced by a $LOG macroinstruction when $LOG is
used to issue a message. See the chart following the
parameter descriptions for a summary of which
parameters to use with each message type.

The format of the $LMSG macroinstruction is:

[name] $LMSG [TYPE-code] [,COMID-code]
[,SUBID-code] [,FORMAT-Y/N]
[.HALT-Y/N] [.MIC-number]
[LOPTNO-Y/N] [,OPTN1-Y/N]
[LOPTN2-Y/N] [,OPTN3-Y/N]
[.SKIP-Y/N] [,SPACE-1/2/3]
[,MSGLN-number]
[.MSGAD-address] [, WRSTE-Y/N]
[.DRLEN-number]
[.DRADD-address] [,HIST-Y/N]
[.CRT-Y/N] [,VARIN-Y/N]

TYPE-code specifies the type of system log parameter
list. If this operand is omitted, TYPE-1 is assumed. The
valid codes and their meanings follow:

Code Maeaning

1 Output from a message member,
without data response

1R Output from a message member,
with data response

2 Output from a user program,
without data response

2R Output from a user program,
with data response

3 Output from a user program,
with a format line. The format line
contains the program ID, the MIC
number, options if options are
available, and the program name.

4 Type 1 with 8 bytes of user-supplied
information added to the front of
the message

COMID-code specifies a 2-byte field used to identify the
module issuing the message. If this operand is omitted,
blank is assumed. This field is not displayed, but is
logged in the history file if HIST-Y is specified.

SUBID-code specifies a 2-byte field used to further
identify the module issuing the message. If this operand
is omitted, blank is assumed. This field is not displayed,
but is logged in the history file if HIST-Y is specified.

FORMAT-Y /N specifies whether or not to include the
format line if the output is from a message member. If
this operand is omitted and TYPE-3 is not specified, N
(no) is assumed. |f TYPE-3 is specified, do not specify
FORMAT: FORMAT-Y (yes) is always assumed if
TYPE-3 is specified.

HALT-Y /N specifies whether or not response is required
(that is, whether the operator is supposed to enter an
option number). If this operand is omitted, N (no) is
assumed.

MIC-number is a decimal number, within 0001-9999,
used to identify a specific message within the message
member. If this operand is omitted, 0001 is assumed.

OPTNO-Y /N specifies whether option O is allowed. If Y
(yes) is entered, option O is allowed; if N (no) is entered
or if the operand is omitted, option O is not allowed.

OPTN1-Y /N specifies whether option 1 is allowed. If Y
(yes) is entered, option 1 is allowed; if N (no) is entered
or if this operand is omitted, option 1 is not allowed.

OPTN2-Y /N specifies whether option 2 is allowed. If Y
(yes) is entered, option 2 is allowed; if N (no) is entered
or if this operand is omitted, option 2 is not allowed.

OPTN3-Y /N specifies whether option 3 is allowed. If Y
(yes) is specified, option 3 is allowed; if N (no) is
specified or if this operand is omitted, option 3 is not
allowed. If option 3 is allowed and selected by the user,
control will not be returned to your program.

SKIP-Y /N specifies whether or not to skip to line six of
the next page before printing. This operand is valid for
printed messages only. If this operand is omitted, N
(no) is assumed.

Macroinstruction Statements 6-5

SPACE-1/2/3 specifies the number of lines to space
after printing a message. This operand is valid for
printed messages only. If this operand is omitted, 1 is
assumed.

MSGLN-number specifies the text length. The number
must be a decimal entry from 1 to 132. Anything over
75 bytes is truncated if the message is routed to a
display station or the system console. This parameter
specifies the insert data length if VARIN-Y is specified.

MSGAD-address specifies the leftmost byte of the
message buffer. This parameter specifies the insert data
address if VARIN-Y is specified.

Note: The message buffer should contain only printable
characters. For example, the buffer should not contain
BSC or SNA control characters.

WRSTE-Y /N specifies whether the message is routed to
the work station or the system console. If this operand
is omitted, Y (yes) is assumed and the message is
routed to the work station. If WRSTE-N is specified,
messages are routed to the system console. If the
system console is being used as a work station and the
job is an SRT, messages are routed to that work station.

Note: The message is displayed only if CRT-Y is
specified, regardless of routing.

DRLEN-number is the length of the reply area in
decimal. This area must be either 1, 8, 60, or 120 bytes
long.

DRADD-address specifies the address of the leftmost
byte of the reply area.

HIST-Y /N specifies whether or not the message is to be

recorded on the history file. If this operand is omitted,
Y (yes} is assumed.

66

CRT-Y /N specifies whether or not the message is to be
displayed on the display screen. If this operand is
omitted, Y (yes) is assumed.

VARIN-Y /N specifies a variable length data insert for

type | messages: The-system log function allows you to
insert variable length data anywhere into the text of a
message that is retrieved from a message member.
Substitution occurs wherever the symbol # appears in

the message text. If this operand is omitted, N (no} is

assumed.

Note: The inserted data should contain only printable
characters. For example, the data string should not
contain BSC or SNA control characters.

J

C

$LMSG Parameter Use Chart

Msg Type
Param 1 1R 2 2R 3 4 Defauit Values
COMID R if S S R if blanks
FORMAT-Y FORMAT-Y
SUBID R if S S R if blanks
FORMAT-Y FORMAT-Y
FORMAT R 2673 E 2646 E 2646 E 2646 E 2646 R 2673 No
HALT R 2674 E 2647 E 2647 E 2647 R 2674 R 2674 No
MIC R 2657 R 2657 R 2657 R 2657 0001
OPTNO R if HALT-Y R if HALT-Y |R if HALT-Y | No
2650 2650 2650
OPTN1 R if HALT-Y If HALT-Y is specified, Y must be R if HALT-Y |R if HALT-Y |No
2650 specified for at least one OPTN 2650 2650
OPTN2 R if HALT-Y parameter. R if HALT-Y R if HALT-Y [No
2650 2650 2650
OPTN3 R if HALT-Y R if HALT-Y (R if HALT-Y [No
2650 2650 2650
SKIP No
SPACE R 2675 R 2675 1
MSGLN R if R 2654 R 2654 R 2654 TYPE-1 and
VARIN-Y VARIN-Y, 8;
else, 75
MSGAD R if R 2649 R 2649 R 2649 FFFF
VARIN-Y
WRSTE R 2672 R 2672 R 2672 R 2672 R 2672 R 2672 Yes
DRLEN R 2653 R 2653 8
DRADD R 2648 R 2648 FFFF
HIST S S S Yes
CRT S S Yes
VARIN S No
Key to chart:

1. No entry = parameter not used with corresponding message type.

2. R = parameter is used with corresponding message type under noted circumstance or diagnostic MIC number
issued if not entered.

3. E = parameter invalid with corresponding message type and diagnostic MIC number issued if entered.

4. S = parameter used with corresponding message type and default assumed if not entered.

Macroinstruction Statements

6-7

Generate Displacements for System Log ($LOGD)

This macroinstruction generates the field labels and
offsets for the system log parameter lists. To avoid
duplicate labels, you should use this macroinstruction
only once in a program.

The format of the $LOGD macroinstruction is:

[name] $LOGD no operands

Generate the Linkage to the System Log ($LOG)

This macroinstruction generates the linkage required to
use the system log function, and checks the response
returned.

If you will need the data in register 2 later, you should
save the contents of that register before issuing $LOG.

The format of the $LOG macroinstruction is:

[name] $LOG [LIST-address] [,OPTNO-address]
[,OPTN1-address]
[.OPTN2-address]

LIST-address specifies the address of the leftmost byte
of the system log parameter list generated by the
$LMSG macroinstruction. |f this operand is not
specified, the address of the parameter list is assumed
to be in register 2.

OPTNO-address specifies the address of the routine that
should receive control if option O is taken. If this
operand is not specified, no check is made for a
response of 0. You would use this operand only if
OPTNO-Y was specified for the associated system log
parameter list.

OPTN1-address specifies the address of the routine that
should receive control if option 1 is taken. If this
operand is not specified, no check is made for a
response of 1. You would use this operand only if
OPTN1-Y was specified for the associated system log
parameter list.

OPTNZ2-address specifies the address of the routine that
should receive control if option 2 is taken. |f this
operand is not specified, no check is made for a
response of 2. You would use this operand only if
OPTN2-Y was specified for the associated system log
parameter list.

6-8

GENERAL SSP SUPPORT

The general SSP macroinstructions provide linkage to
system functions.

Generate Parameter List and Displacements for
$FIND ($FNDP)

The $FNDP macroinstruction generates a loader
parameter list and generates the labels for the
displacements into the parameter list. This parameter
list is used as input to the supervisor by $FIND.

The format of the $FNDP macroinstruction is:

[name] $FNDP [NAME-module]
[.V-DC/EQU/ALL]
[.TYPE-O/P/R/S] [.SKIP-code]
[.LOADER-Y/N] [,LOAD-address

NAME-module is the name of the module to be found by
$FIND macroinstruction. If this operand is omitted,
blanks are assumed.

V-DC/EQU/ALL specifies whether the parameter list,
labels, or both are to be generated. If this operand is
omitted, EQU is assumed.

DC generates a 12- or 18-byte paraineter list used
by the $FIND macroinstruction.

EQU generates the displacement labels for the $FIND
parameter list. If V-EQU is specified or defaulted, all
other operands are ignored.

ALL generates both the parameter list and the
corresponding displacement labels.

TYPE-O/P/R/S specifies the library member type. If
this parameter is omitted, O is the default.

Code Meaning

(0] Load member

P Procedure member
R Subroutine member
S Source member

C

SKIP-code specifies the type of library search to
perform.

Code Description

NO Search the designated user library,
then the system library

USER Skip the user library and search only the
system library

SYSTEM Skip the system library and search only
the designated user library

If this operand is omitted, NO is assumed.

LOADER-Y /N specifies whether the parameter list is
used by $LOAD. If Y (yes) is specified, a 12-byte
parameter list is generated for use by $LOAD. If N (no)
is specified, an 18-byte parameter list is generated that
cannot be used by $LOAD. If this operand is omitted, N
(no) is assumed. LOADER-Y can only be specified with
TYPE-O.

Note: When the module is not found: If LOADER-Y is
specified in the $FNDP macroinstruction, a cancel-only
halt is issued and control is not returned to your
program. If LOADER-N is specified in the $FNDP
macroinstruction, control is returned to your program for
determination of appropriate action.

LOAD-address specifies the address where the module is
to be loaded in main storage. This address must be on
an 8-byte boundary, due to the 1/0 buffer boundary
restrictions. This operand is processed only if
LOADER-Y is specified.

Find a Directory Entry ($FIND)

You can use the $FIND macroinstruction to locate library
members that you want to load for use by your
program.

The $FIND macroinstruction searches the library
directory for the requested module name; if it locates
the module name it returns the directory entry data in
the parameter list.

$FIND requires the parameter list generated by the
$FNDP macroinstruction. $FNDP is described in a
preceding paragraph.

You can include more than one $FIND macroinstruction
in a program. However, after you issue the first $FIND,
you must continue to restore relevant fields in the
parameter list generated by $FNDP before you issue
successive $FINDs. You can restore fields in the
parameter list by moving new values to the fields.

Note: When a module is not found by $FIND: If
LOADER-Y is specified in the $FNDP macroinstruction,
a cancel-only halt is issued and control is not returned
to your program. If LOADER-N is specified in the
$FNDP macroinstruction, control is returned to your
program for determination of appropriate action.

If you will need the data in register 2 later, you should
save the contents of that register before issuing $FIND.

The format of the $FIND macroinstruction is:

[name] $FIND [PLIST-address]

PLIST-address specifies the address of the leftmost byte
of the 12- or 18-byte parameter list built by $FNDP.
After execution, the parameter list contains the directory
entry of the module. If this operand is not specified, the
address of the parameter list is assumed to be in index
register 2.

Macroinstruction Statements 6-9

Load or Fetch a Module ($LOAD)

The $LOAD macroinstruction generates the linkage to
load a module into main storage at the address you
specify. The address is specified in the $FNDP or
$LOAD macroinstruction using the LOAD keyword.
LOADER-Y should be specified in the $FNDP
macroinstruction so that the parameter list output from
$FNDP will be a $LOAD parameter list. You may have
control returned after the module is loaded, or you may
pass control to the module. If you will need the data in
register 2 later, you should save the contents of register
2 before issuing $LOAD.

The format of the $LOAD macroinstruction is:

[name] $LOAD [PLIST-address] [, TYPE-code]
[,LOAD-address]

PLIST-address specifies the address of the leftmost byte
of the parameter list built by $FNDP, which identifies
the directory entry of the module in main storage. If
this operand is omitted, the address is assumed to be in
register 2.

TYPE-code specifies the type of load to perform. If this
operand is omitted, LOAD is assumed.

LOAD loads the module at the specified LOAD
address and returns control.

FETCH loads the module at the specified LOAD
address and passes control to the module.

LOAD-address specifies the address where the module is
to be loaded in main storage. The address must be on
an 8-byte boundary. Use this parameter only if the load
address is to be filled in or changed. If the PLIST
parameter in this macroinstruction uses index register 2,
then the LOAD parameter must also use index register
2.

6-10

Snap Dump of Main Storage ($SNAP)

This macroinstruction provides an interface with the
nonterminating system storage dump routine. You must
specify the region-or the limits ot the area to be
dumped. The contents of the specified main storage
area are printed on the SYSLIST device. Output from
the dump routine consists of:

« The specified dump identifier

« The contents of register 1 (XR1), register 2 (XR2), the
instruction address register (IAR), and the address
recall register (ARR)

« The contents of the specified main storage area

Control is returned to the next sequential instruction in
your program.

The format of the $SNAP macroinstruction is:

[name] $SNAP [REGION-Y/N] [,LOW-address]
[HIGH-address] [,ID-char]
[.PLIST-2/address/INLINE]
[.V-DC/EQU/ALL]

REGION-Y /N specifies whether the entire region should
be dumped and whether the HIGH and LOW parameters
should be ignored. If Y (yes) is specified, the entire
region is dumped. If N (no) is specified, the area
specified by the HIGH and LOW parameters is dumped.
If this operand is omitted, N is assumed’.

LOW-address specifies the address of the low limit of
the storage area to be dumped. The low limit must be
lower than the high limit and within the allocated
storage area. If this operand is omitted, address X'FFFF’
is assumed’.

HIGH-address specifies the address of the high limit of
the storage area to be dumped. If the high limit is not
within the allocated storage area, only that storage that
is within allocated storage is dumped, and an error
message is displayed. If this operand is omitted,
address X'0000" is assumed’.

ID-char specifies any 4 characters, which are used as a
dump identifier. If this operand is omitted, blanks are
assumed.

'1f you allow REGION, LOW, and HIGH to default, you will
not get a dump (the low address is higher than the high
address).

C

PLIST-2/address/INLINE specifies the address of the
$SNAP parameter list. If this operand is omitted, 2 is
assumed.

Parameter Meaning
2 The address is in register 2.

address Specifies the address of the

leftmost byte of the parameter list.
INLINE The parameter list is generated
inline.

Note: The PLIST and V keywords are mutually exclusive.

Normally, unless PLIST-INLINE is specified, you use
one $SNAP macroinstruction to generate a parameter
list (V-DC), and one or more additional $SNAP
macroinstructions to dump portions of your program
(PLIST-2 or PLIST address).

V-DC/EQU/ALL specifies whether the parameter list
labels, DCs, or both, are generated. If this operand is
omitted, neither is generated. Do not specify V if you
specified PLIST.

Parameter Meaning

DC $SNAP initializes the storage
area for the parameter list.

EQU $SNAP generates labels; all other
$SNAP operands are ignored.

ALL $SNAP initializes the storage
area for the parameter list
and generates labels.

Information Retrieval ($INFO)

$INFO allows access to system information contained in
the system communications area or work station local
data area which cannot be accessed directly. The
macroinstruction performs three separate and distinct
functions:

« Generates labels and displacement values for the
SVC and the parameter list

« Generates an SVC to retrieve or change specific
system information based on the values supplied for
$INFO parameters

« Generates a parameter list for the function based on
the parameter values supplied for $INFO parameters.

The $INFO macroinstruction must be expanded at least
three times to retrieve system information. The first
expansion generates the labels supplied in the
macroinstruction. This expansion should be placed in
the area of your code where you are defining other
labels.

To generate the labels, the format is:

no label $INFO no operands

The second expansion of the macroinstruction generates
the SVC to retrieve or change specific system
information. This expansion is placed within your
executable code where you want to perform the request.

To generate the SVC, the format is:

[name] $INFO PLIST-2/address
PLIST-2/address specifies the address of the leftmost
byte of the parameter list. 2 indicates the address is in
XR2. The PLIST parameter must be given. If this
parameter is omitted, labels are generated again instead
of the SVC.

Macroinstruction Statements 6-11

The third expansion of the macroinstruction generates PUT-code specifies that the value in the user’s buffer is

the parameter list, which defines the function desired. used to update the system communications area or the
work station local data area. A description of each PUT
To generate the parameter list, the format is: function—the number of bytes updated and the contents

of those bytes—follows:
[name] $INFO [GET-code] [,PUT-code]

[.BUFFER-address] [,ID-name] UPSI updates the 1-byte UPSI| switch with the value
[.LEN-number] [,OFFSET-number] in the user’s buffer.
GET-code specifies the value to be retrieved from the PROG1 updates the 8-byte program 1 message
system and placed in the buffer supplied by the user. If member disk address with the value in the user's
this operand is omitted, UPSI is assumed. A description buffer. The first 3 bytes contain the sector address
of each GET function—the number of bytes returned in of the message member; the next 3 bytes are
the buffer and the contents of those bytes—follows: unused; the remaining 2 bytes contain the main

DATEFRMT returns 1 byte containing the program
date format. The character D indicates
day-month-year format; M indicates month-day-year
format; Y indicates year-month-day format.

PROGDATE returns 3 bytes containing the program
date field. This is a six-digit date in year-month-day
format.

SDATE returns 3 bytes containing the session date
field. This is a six-digit date in year-month-day
format.

UPSI returns 1 byte containing the UPSI switch value.

INQUIRY returns 1 byte containing the inquiry switch
value. The character Y indicates an inquiry request is
pending; N indicates an inquiry request is not
pending.

LOCAL returns 1 to 256 bytes of the work station
local data area as specified by the LEN and OFFSET
operands.

NEP returns 1 byte containing the program attribute
byte. The character Y indicates the program is a
never-ending program; N indicates the program is
not a never-ending program.

MRTMAX returns 1 byte containing the hexadecimal
value for the maximum number of requesters allowed.

LINES returns 1 byte containing the hexadecimal
value for the number of lines per page.

DATEUNPK returns 6 bytes containing the unpacked
program date field in the format defined in the date
format field.

6-12

storage address of the format 1 for the library in
which the message member is located.

PROG2 updates the 8-byte program 2 message
member disk address with the value in the user's
buffer. The first 3 bytes contain the sector address
of the message member; the next 3 bytes are
unused; the remaining 2 bytes contain the main
storage address of the format 1 for the library in
which the message member is located.

USERI1 updates the 8-byte user 1 message member
disk address with the value in the user’s buffer. The
first 3 bytes contain the sector address of the
message member; the next 3 bytes are unused; the
remaining 2 bytes contain the main storage address
of the format 1 for the library in which the message
member is located.

LOCAL updates 1 to 256 bytes of the work station
local data area as specified by the LEN and OFFSET
parameters.

BUFFER-address specifies the address of the leftmost

byte of the user’s buffer where the data is placed for a
GET operation or acquired for a PUT operation. If this
operand is omitted, address X'FFFF is assumed.

ID-name specifies the 2-byte logical ID of the terminal
used in selecting the job control block. If this operand is
omitted, the job control block for the active task is used.

LEN-number specifies a decimal value from 1 to 256,
which is used as the length of this local request. Data is
counted starting from the offset value specified. If this
operand is omitted, 1 is assumed.

OFFSET-number specifies a value from 1 to 256 which
is used as the offset for this local request. If this
operand is omitted, 1 is assumed.

Generate a Checkpoint Parameter List (§CKEQ)

This macroinstruction generates a parameter list to be
used by the $CKPT macroinstruction. $CKPT, which is
described in a following paragraph, requests the SSP
checkpoint facility to establish a checkpoint in a
program. The SSP checkpoint facility records system
status and job information at each established
checkpoint so that, in the event of a system
malfunction, you can restart your program at a
checkpoint rather than having to run the entire program
again from the beginning.

For a description of considerations and restrictions
regarding the SSP checkpoint facility, and for a
description of the associated restart facility, see the
Concepts and Design Guide.

Only one $CKEQ macroinstruction is required in each
program that contains one or more $CKPT
macroinstructions. The format of the $CKEQ
macroinstruction is:

[name] $CKEQ [V-DC/EQU/ALL]
[,LABEL-filelabel |
[.IMSG-FIRST/ALL]

V-DC/EQU/ALL specifies whether the parameter list,
labels, or both are to be generated for the checkpoint
facility. If this operand is omitted, EQU is assumed.

Parameter Maeaning

DC Generates the checkpoint
parameter list used by the
$CKPT macroinstruction.

EQU Generates the displacement labels
for the checkpoint parameter list.
If V-EQU is specified or assumed,
all other operands for $CKEQ
are ignored.

ALL Generates both the checkpoint
parameter list and the
corresponding displacement labels.

LABEL-filelabel specifies the label of the file that is to
contain the checkpoint records. Checkpoint records
contain the information recorded at a checkpoint. Do
not use a // FILE statement to defihe a file for
checkpoint records: the file is created dynamically by
the checkpoint facility. This operand is required if V-DC
or V-ALL is specified.

IMSG-FIRST /ALL specifies whether the checkpoint
informational message is to be displayed on the work
station display screen only after the first checkpoint is
recorded (IMSG-FIRST) or is to be displayed after each
checkpoint is recorded (IMSG-ALL). If this operand is
omitted, ALL is assumed.

Establish a Checkpoint ($CKPT)

The $CKPT macroinstruction establishes a program
checkpoint. Before you issue a $CKPT macroinstruction,
you must generate a checkpoint parameter list by
issuing the $CKEQ macroinstruction. $CKEQ is
described in preceding paragraphs. The $CKPT
macroinstruction can be used more than once in a
program. However, because only one checkpoint record
file is created for a program, the $CKEQ
macroinstruction need be issued only once regardless of
the number of $CKPTs issued in a program.

For a description of considerations and restrictions
regarding the SSP checkpoint facility, see the Concepts
and Design Guide.

If you will need the data in register 2 later, you should
save the contents of register 2 before you issue $CKPT.

The format of the $CKPT macroinstruction is:

[name] $CKPT [PLIST-address]
PLIST-address specifies the address of the leftmost byte
of the checkpoint parameter list that is generated by the

$CKEQ macroinstruction. If this operand is omitted, the
address is assumed to be in register 2.

Macroinstruction Statements 6-13

Note: Each time you issue $CKPT to establish a
checkpoint, you should check the return code provided
in the checkpoint parameter list. Check the return code
to determine whether or not the system and job
information was recorded successfully or the program
was restarted successfully. The return code is at
displacement $CKCCODE in the checkpoint parameter
list. Possible values and their meanings are:

Value

$CKCCPNT

$CKCCERR

$CKCCIOP

$CKCCRES

6-14

Meaning

Normal checkpoint completion

Disk 1/0 error. If a disk I/0 error
occurs, retry the checkpoint request,
bypass the request, or issue an error
message. If a disk 1/0 error occurs
while a checkpoint record is being
written to the checkpoint file,
alternate requests may be successful
because two checkpoint records are
maintained in the checkpoint file.

Invalid request. An invalid parameter
exists in the parameter list generated
by $CKEQ.

Normal restart completion. For a
description of the restart facility, see
the Concepts and Design Guide.

Note: After successful completion of
a program restart, the restart facility
returns control to the first instruction
that follows the last $CKPT executed
in the program. Any recovery
operations required after a restart,
such as restoration of work station
displays, should be included in your
program so that they are performed
upon return from a restart.

Value

$CKCCNOP

No checkpoint record was saved.
This return code can be set only
when the first checkpoint is
requested. If this code is set, one or
more of the following may have
occurred:

« The checkpoint facility detected a
condition in which checkpoints
cannot be saved (for example,
DISP-SHR specified on a // FILE
statement).

« An explanatory system log device
message was displayed.

« The operator responded with the
0 option, indicating that the job
should be run without saving
checkpoints.

Inverse Data Move ($INV)

This macroinstruction generates the code that allows
you to do an inverse move on desired data. That is, the
bytes of data at the TO address are in the opposite
order they were in when at the FROM address.

The format of the $INV macroinstruction is:

[name] $INV FROM-address, TO-address
LEN-number

FROM-address specifies the rightmost byte of the field
where the data is located. This operand can be either a
symbolic address or a register displacement address.

TO-address specifies the leftmost byte of the field
where the data is to be moved. This operand can be
either a symbolic address or a register displacement
address.

LEN-number specifies the decimal length (in bytes) of
the field to be moved.

Note: If the FROM and TO fields overlap, data will be
lost.

End of Job ($EOJ)

The $EOJ macroinstruction generates the linkage
required to execute the end-of-job routine.

The format of the $EQJ macroinstruction is:

[name] $EOJ no operands

Macroinstructure Statements

6-15

Input/Output Macroinstructions

The input/output support macroinstructions provide
access to devices without requiring that you write
extensive routines to perform each function. The
input/output support macroinstructions are divided into
seven groups:

1.

General /0 macroinstructions, which are used
with all device types:

$ALOC
$OPEN
$CLOS
$DTFO

Printer macroinstructions, which support printer
devices:

$DTFP
$PUTP

Disk macroinstructions, which provide support for
and linkage to disk data management:

$DTFD
$GETD
$PUTD

Disk sort macroinstructions, which provide an
interface to the sort utility (part of the Utilities
Program Product, number 5726-UT1) or to the
ideographic sort utility (part of the Ideographic
Generator/Sort Utilities Program Product, number
5726-1G1):

$SRT
$SORT

Timer macroinstructions, which provide support for
and linkage to the interval timer function:

$TRB
$SIT
$RIT
$TOD

Display station macroinstructions, which support
work station devices:

$DTFW
$WSIO
$WIND
$WSEQ

Data communications macroinstructions that
support BSC programs. For information about the
data communications macroinstructions, see the
Data Communications Reference Manual.

Communications macroinstruction support for the
interactive communications feature. For
information about the support, see the /nteractive
Communications Feature Reference Manual.

Scientific macroinstructions, which provide access
to the scientific instruction set. For information
about the scientific macroinstructions, see the
Scientific Macroinstructions Reference Manual.

GENERAL /0 SUPPORT An allocate request requires that preopen DTFs be
supplied as input to the routine. When the allocate

The general 1/0 support macroinstructions are used request is for a disk, an OCL FILE statement is also
with all devices. $DTFO is used to generate DTF labels, required. More than one DTF can be allocated at one
offsets, and fields for each device. The normal time by chaining the DTFs. To chain DTFs, you must
execution sequence for the other general |/0O support enter the address of the next DTF in the DTF you are
macroinstructions is: building. The last DTF in a chain must have X FFFF’
entered in place of the chain address. For a description
1. $ALOC to allocate the file or device to your of the disk, printer, and display station DTFs, see
program $DTFD, $DTFP, and $DTFW, respectively.
2. $OPEN to prepare the file or device for use Note that if you will need the data in register 2 later,
you should save the contents of that register before
3. I/0 operations and any processing required issuing $ALOC.
4. $CLOS to prepare the file or device for job The following output is returned to your program:
termination

« The DTF is prepared as required by $OPEN.

Allocate Space or Device ($ALOC) « The contents of register 1 are restored.
The routines called by the $ALOC macroinstruction | « Bit 5 (the sixth bit) of the third attribute byte of the
allocate all input/output devices and files. These DTF is set on to indicate device allocation.

routines check to ensure that:
« The address of the first DTF allocated is returned in

« The DTF is not open register 2.
« The system supports the requested device The format of the $ALOC macroinstruction is:
« The device requested is either not being used or [name] $ALOC [DTF-address]

capable of multiple allocation
DTF-address specifies the address of the leftmost byte
« Space is available for a new file of the first DTF being allocated. If this operand is not
entered, the address is assumed to be in register 2.
« A FILE statement is given for each disk file

These routines also:

« Match the DTF with the COMM or PRINTER
statements given.

« Load the data management task for data
communications DTFs.

« Format files allocated with an output access method.
Delete-capable direct files are filled with X’'FF’'; other
direct files are filled with blanks; index areas are filled
with X'FF'; and data areas of nondirect P or T files
are filled with X'00".

« Sort indexed files requiring keysort unless they are

shared or allocated with an access method other than
an indexed sequential method.

Macroinstructure Statements 6-17

Prepare a Device or File for Access ($OPEN)

This macroinstruction prepares a file for data transfer.
Use the allocate macroinstruction before preparing
(opening) the file. Depending on the device, one or
more of the following functions are performed for each
file opened:

« The DTF is formatted.

« Input/output buffers, index buffers, and I0Bs are
formatted.

« Buffers are initialized as required.

« Diagnostic tests are performed to ensure that the
access method and the file organization are
compatible.

Note: A DTF must be closed before it is moved or
overlaid; otherwise, unpredictable results via $CLOS will
occur. More than one DTF can be opened at one time
by chaining the DTFs. To chain DTFs, you must enter

the address of the next DTF in the DTF you are building.

The last DTF in a chain must have X'FFFF' entered in
place of the chain address. See $DTFD, $DTFP, and
$DTFW.

Input: The preopen DTF and format-1 label are input to
the open routine. Before issuing $OPEN, you must be
sure to allocate the device by issuing the $ALOC
macroinstruction. Also, if you will need the data in
register 2 later, you should save the contents of that
register before issuing $OPEN. You must also consider
the following when opening a file:

« The record length, key length, and key displacement
must be specified correctly.

« For a disk file, the disk access method must be
compatible with the organization of the file being
opened.

« For a disk file that is also opened by another program
level or by an inquiry program, the access methods
must be compatible with each other.

Output: The open routine returns control to your
program after the requested file is opened. The output
consists of:

. The restored contents of register 1

« The updated format-1 labels

. Bit 7 (X '01°) in the second attribute byte in the DTF
(set on to indicate the file is open)

« The initialized buffers
. The address of the first DTF opened (in register 2)
The format of the $OPEN macroinstruction is:
[name] $OPEN [DTF-address]
DTF-address specifies the address of the leftmost byte

of the first DTF to be opened. If this operand is not
entered, the address is assumed to be in register 2.

Prepare a Device or File for Termination ($CLOS)

The $CLOS macroinstruction prepares a device for job
termination. $CLOS updates file labels to reflect the
current file status. For devices other than disk, only the
entries related to the requested functions are restored.
If you will need the data in register 2 later, you should
save the contents of that register before issuing $CLOS.

Input to $CLOS consists of the opened DTF.and the
format-1 labels created by the allocate function.

Output from $CLOS is returned to your program when
control is returned. The output consists of:

« The restored contents of register 1

« The format-1 label for the disk file (updated to
indicate current file status)

« The buffer contents scheduled for disk output and
disk update operations (written to disk)

« The data and index (written to disk), and an indicator
showing whether key sorting is required at
end-of-job for output files and file additions

Notes:

1. If a device or file is to be reused after it is closed,
both allocate and open must be issued before 1/0
operations can be processed.

2. More than one DTF can be closed at one time by
chaining the DTFs. To chain DTFs, each DTF to be
closed must contain the address of the next DTF in
the chain. The last DTF in a chain has X'FFFF’
entered in place of the address. See $DTFD, $DTFP,
and $DTFW.

The format of the $CLOS macroinstruction is:
[name] $CLOS [DTF-address]
DTF-address specifies the address of the leftmost byte

of the first DTF to be closed. If this operand is not
entered, the address is assumed to be in register 2.

Generate DTF Offsets ($DTFO)

This macroinstruction defines the DTF labels, offsets,
field contents, and field lengths for all devices and
access methods supported by System/34. To avoid
duplicate labels, this macroinstruction should be used
only once in each program. For a list of the fields that
$DTFO defines, see the DTFs in the System Data Areas
and Diagnostic Aids Handbook.

The format of the $DTFO macroinstruction is:

[name] $DTFO [DISK-Y/N] [,PRT-Y/N]
[.BSC-Y/N] [,WS-Y/N]
[.SNA-Y/N] [,ICRTC-Y/N]
[LALL-Y/N] [.FIELD-Y/N]

DISK-Y /N specifies whether labels are to be generated
for the disk devices. If this operand is omitted, N (no) is
assumed.

PRT-Y /N specifies whether labels are to be generated
for the printer. If this operand is omitted, N (no) is
assumed.

BSC-Y /N specifies whether labels are to be generated
for BSC. If this operand is omitted, N (no) is assumed.

WS-Y /N specifies whether labels are to be generated
for work station devices. If this operand is omitted, N
(no) is assumed.

SNA-Y /N specifies whether labels are to be generated
for SNA. If this operand is omitted, N (no) is assumed.

ICRTC-Y /N specifies whether labels are to be generated
for SSP-ICF (interactive communications feature) return
codes. If this operand is omitted, N (no) is assumed.

ALL-Y /N specifies whether labels are to be generated
for all devices supported. If this operand is omitted, N
(no) is assumed.

FIELD-Y /N specifies whether to generate the labels

which define the contents of the DTF fields. If this
operand is omitted, N (no) is assumed.

Macroinstructure Statements 6-19

PRINTER SUPPORT

This section describes the macroinstructions that
support the printers. The following functions are
provided:

+ $DTFP builds a preopen DTF for a printer and
assigns its offsets. The DTF provides information to
printer data management routines that perform output
operations.

« $PUTP builds the interface needed to print data.

Define the File for a Printer ($DTFP)

The DTF provides information needed to allocate, open,
and access a printer. This macroinstruction generates
the code that builds the printer DTF.

The format of the $DTFP macroinstruction is:

[name] $DTFP RCAD-address,|IOAREA-address,
NAME-filename [,OVFL~number]
[.PAGE-number] [,UPSI-mask]
[.HUC-Y/N] [.CHAIN-address]
[.PRINT-Y/N] [,SKIPB-number]
[.SPACEB-0/1/2/3]
[.SKIPA-number]
[.SPACEA-0/1/2/3]
[,RECL-number] [,ALIGN-Y/N]
[.ERROR-Y/N] [.RETURN-Y/N]

RCAD-address is a required operand that specifies the
address of the leftmost byte of the logical record. The
area must be on an 8-byte boundary.

IOAREA-address is a required operand that specifies the
address of the leftmost byte of an area in main storage
allocated to contain the buffers. The length of this area
must be equal to record length (RECL) plus 19.

NAME-filename specifies the name of the print file. This
name must be the same as the name specified on the
PRINTER OCL statement. This operand is required.

OVFL-number specifies the line on the printer after
which the overflow completion code will be returned. If
this operand is omitted, it defaults to six lines less than
the number specified for the PAGE operand.

PAGE-number specifies the number of lines to print per

page. If this operand is omitted, it defaults to the
system value for the number of lines per page.

6-20

UPSI-mask specifies the settings of the external (//
SWITCH statement) indicators used for conditionally
opening files. The code must be specified as 8 bits. For
example, to set on bits 0, 3, 5, and 7, you would enter
UPSI-10010101. When the mask bits that are set to
one are also set in the switch, the file is opened. If the
DTF is not opened and operations are issued for this
DTF, the operations are not performed and you receive
a return code of hex'99’.

If this operand is omitted, zeros are assumed.

HUC-Y /N specifies whether to halt if an unprintable
character is detected. If N (no) is specified or if this
operand is omitted, no halt occurs.

CHAIN-address indicates the address of the next DTF in
the chain of DTFs. If there is no DTF chain or if this is
the last DTF in a chain, this operand should be omitted
(X'FFFF’ is then assumed).

PRINT-Y /N specifies whether to perform both a print
and a skip or space, or only a skip or space. The
default is Y (yes), meaning that a print is performed.

SKIPB-number specifies the line to skip to before the
print operation. If this operand is omitted, it defaults to
zero, and no skip is performed.

SPACEB-0/1/2/3 specifies the number of lines to
space before the print operation. If this operand is not
entered or exceeds 3, the default value is zero.

SKIPA-number specifies the line to be skipped to after
the print operation. The maximum allowed is 255. If
this operand is omitted, it defaults to zero, and no skip
is performed.

SPACEA-0/1/2/3 specifies the number of lines to
space after the print operation. If this operand is
omitted or exceeds 3, it defaults to zero.

Note: If the SKIP or SPACE values exceed the value
specified for PAGE, no operation is performed.

RECL-number specifies the length of the line to be
printed. If this operand is omitted, the default is 132
positions.

ALIGN-Y /N specifies whether alignment is requested on
the first page. If Y (yes) is specified, a halt is issued to
the operator after the first data line is printed, allowing
the operator to check alignment. If this operand is
omitted, N is assumed.

Note: This parameter may be overridden by the ALIGN
parameter on the PRINTER OCL statement.

ERROR-Y /N specifies whether an error message should
be issued for a permanent error. If N (no) is specified,
control is returned to the user program with the
completion code set. If this operand is omitted, Y is
assumed.

Note: NOT READY conditions on the printer (that is,
forms jam, out of forms) are not considered permanent
errors.

RETURN-Y /N specifies the options available to the
operator after a permanent |/O error message is issued.
If Y (yes) is specified, the operator is allowed to take
either a 2 option or a 3 option. If the 2 option is taken,
control is returned to the user program with the
completion code set. If Y (yes) is specified,
permanent-error console messages are printed on the
system printer. If N (no) is specified, the user is allowed
a 3 option only. If this operand is omitted, N is
assumed.

Construct a Printer Put Interface ($PUTP)

This macroinstruction generates the interface needed to
communicate with printer data management. Before
using $PUTP you must provide a DTF for the file (see
$DTFP).

If you will need the data in register 2 later, you should
save the contents of that register before issuing $PUTP.

The code generated by this macroinstruction gives
control to the data management routine. The routine
completes execution and returns control to the
generated code. If the ERR operand is specified, the
generated code checks the completion code for errors
and branches to your error routine if errors occurred.

If the OVFL operand is specified, the generated code
checks for page overflow and branches to your overflow
routine if overflow occurred.

The format of the $PUTP macroinstruction is:

[name] $PUTP [DTF-address] [,PRINT-Y/N]
[.SKIPB-number]
[.SPACEB-0/1/2/3]
[,SKIPA-number]
[.SPACEA-0/1/2/3]
[.ERR-address] [,OVFL-address]

DTF-address specifies the address of the leftmost byte
of the DTF for this file. If this operand is omitted, the
address is assumed to be in register 2.

PRINT-Y /N specifies whether to perform both a print
and a skip or space, or only a skip or space. If this
operand is omitted, the DTF remains unchanged.

SKIPB-number specifies the line to skip to before the
print operation. The maximum is 255. If this operand is
omitted, the DTF remains unchanged.

SPACEB-0/1/2/3 specifies the number of lines to
space before the print operation. If this operand is
omitted, the DTF remains unchanged.

SKIPA-number specifies the line to be skipped to after
the print operation. The maximum is 255. If this
operand is omitted, the DTF remains unchanged.

SPACEA-0/1/2/3 specifies the number of lines to
space after the print operation. If this operand is
omitted, the DTF remains unchanged.

Note: If the SKIP or SPACE values exceed the value
specified for PAGE, no operation is performed.

ERR-address supplies the address in your program that
receives control if the controlled cancel option is taken
in response to a permanent |1/0 error. If this operand is
omitted, no code is generated to check for the
controlled-cancel completion code, and you should
check the return code in your program to determine the
outcome of the operation.

OVFL-address specifies the address in your program that
should receive control if page overflow occurs.

Note: If a PRINT, SKIPB, SPACEB, SKIPA, or SPACEA,
operand is specified, the DTF is changed. The DTF is
not reset after the operation is complete; the user must
reset the DTF if this is required.

Macroinstructure Statements 6-21

DISK DEVICE SUPPORT

This section describes the macroinstructions that
support disk devices. The following functions are
provided:

« $DTFD builds a preopen DTF for disk GET/PUT
operations.

- $GETD builds the interfaces required to get input
records from a disk device via a GET or a read.

« $PUTD builds the interfaces required to put output
records to a disk device via a PUT or a write.

6-22

Define the File for Disk ($DTFD)

This macroinstruction generates the code that builds the
disk DTF. The disk DTF provides information needed to
allocate, open, and access a file on the disk.

The format of the $DTFD macroinstruction is:

[name] $DTFD ACCESS-code, RECL-number
.NAME-filename, BLKL-number,
IOAREA-address [,UPSI-mask]
[LBUFNO-1/2] [,LIMIT-Y/N]
[,ORDLD-Y/N] [.CHAIN-address]
[.RCAD-address] [,KEYL-number]
[.KDISP-number]
[.KEYADD-address]
[,MSTNDX-address]
[.MSTBYT-number]
[.CURENT-address]
[.HIGH-address]
[.DMADDR-address]
[.SIAM-Y/N] [,I0OBUF-address]
[.ERROR-Y/N] [,RETURN-Y/N]

¢

C

ACCESS-code specifies the access method used for the
file. This operand is required. The codes and their
meanings are as follows:

Code Access Method
Code Access Method

ISU Indexed sequential update
CA Consecutive add ISUA Indexed sequential update and add
CG Consecutive input IR Indexed random input
co Consecutive output IRA Indexed random add with input
CuU Consecutive update capable
DG Direct input (decimal RRN) IRU Indexed random update
DO Direct output (decimal RRN) IRUA Indexed random update and add
DU Direct update (decimal RRN) ISRI Indexed sequential random input'
DGA Direct input addrout (binary RRN) DUMMY Dummy open to obtain information
DOA Direct output addrout (binary RRN) about a file
DUA Direct update addrout (binary RRN) ZPAMA Sector mode data management add
1A Indexed random add ZPAMI Sector mode data management input
10 Indexed output ZPAMO Sector mode data management output
IS Indexed sequential input
ISA Indexed sequential add with

input capable

1The ISRI (indexed sequential/random input) access method is similar to random-by-key access into an indexed file. A key, which you

specify, is retrieved along with the corresponding data record. At this point, you can choose to do one of the following:

a. Request that the next key be read (OP-FGET).

b. Request that the previous key be read (OP-BGET).

c. Provide a new key and request another random read (OP-NGET).

d. Provide a new key and specify reading of the equal key, the next higher key, or the last key, whichever is encountered first
{OP-AGET). ISRI then looks for a key (and its corresponding record) that equals the key you provide. If an'equal key is not
found, ISR returns the next higher key {and record). If neither an equal nor a higher key is found and you are not accessing
a delete-capable file, ISRI returns the last record in the primary portion of the file. The primary portion is the part of the file
that reflects the ordered keys in the index. If you are accessing a delete-capable file, the last record in the primary portion may

be a deleted record. In this case, ISRI returns the record not found completion code. You can specify OP-BGET in response to the
record not found completion code. OP-BGET causes ISR| to read backward through the file, skipping deleted records until a valid

key is found.

Only index entries in the primary index area can be accessed through ISRI, and only input operations are supported by ISRI. Master

track index is not supported by ISRI.

The ZPAM access methods (ZPAMA, ZPAMI, ZPAMO) Remember the following when using ZPAM:
are used to process disk sectors of data rather than
records. ZPAM provides an easy way of moving large + The disk sectors are processed consecutively.

amounts of data rapidly.

+ Input, output, and add functions are supported.

When you use ZPAM, the following operands are
required on $DTFD: ACCESS, RECL, NAME, BLKL,
IOAREA, DMADDR, and IOBUF.

Only sequential files can be processed.

If you cannot process all of your data with one call to $DTFD is 32 bytes.
data management ($PUTD), you must use multiple calls.
Each $PUTD requires an associated, unique $DTFD.
Data management writes one or more disk sectors to
main storage depending on the block length (BLKL) you
specify. BLKL can vary for each call; however, on all
calls except the last one, BLKL must be a multiple of
256 bytes. On the last call, if the number of bytes of
data to be passed is less than a multiple of 256 bytes,
you must place the exact number of bytes of data to be
passed in BLKL. After the last $PUTD, you must issue

$CLOS because the last $PUTD does not close the file. .
Macroinstructure Statements

The amount of main storage required for IDAREA in

6-23

RECL-number specifies the decimal length of the logical
record. The maximum length is 4096. This operand
must be specified.

NAME-filenare specifies the name of the file. The name
must be no more than 8 characters in length, and must
be the same as that specified on the FILE OCL
statement. This operand must be specified.

BLKL-number specifies the decimal length, in bytes, of
the 1/0 buffer. This operand must be specified.

In general, the length specified must be a multiple of
256 bytes. In particular, for input operations (which are
always in locate mode) and the DO and DOA access
methods (which involve internal input operations), the
following rules apply:

« If the record length is a power of 2, then BLKL must
be at least (RECL + 255) rounded down to the next
multiple of 256.

« If the record length is not a power of 2, then BLKL
must be at least (RECL + 255) rounded up to the
next multiple of 256.

I0OAREA-address specifies the address of the leftmost
byte of an area in main storage allocated to contain all
buffers and 10Bs for the access method. The area must
be on an 8-byte boundary. This operand must be
specified.

Disk open divides the |/0O area into the required disk
input/output blocks (I0Bs) and physical buffer areas. If
the access to the file is indexed, two 10Bs are built;
otherwise, one is built. If SIAM-Y is specified, or if a
ZPAM access method is used, the address of the
physical buffers is provided by the IOBUF parameter.

In the event of very limited user main storage in relation
to the size requirements of the physical buffers for disk,
it may be advantageous to use the SIAM method to
allocate buffers. Through SIAM, the same storage area
may be used for a physical buffer for any or all disk files
accessed by a program. Data management will then use
this area as a physical buffer for every file specified as
SIAM. Care should be taken, however, in the use of
SIAM since many more |/O operations are likely to
occur when SIAM is specified for access to a file. This
may hinder the performance of the job.

6-24

The amount of main storage required for IOAREA is
shown in the following chart:

Sequential and Direct Files

(BLKL * BUFNO) + 39
' Indexed Files

BLKL + 335

Sequential and Direct Files (SIAM)
32

Indexed Files {SIAM)
64

Sequential Files (ZPAM)
32

UPSI-mask specifies the settings of the external (//
SWITCH statement) indicators used for conditionally
opening files. The code must be specified as 8 bits. For
example, to test bits 0, 3, 5, and 7, you would enter
UPSI-10010101. When the corresponding bits are on in
the switch, the file is opened. If the file is not opened
and operations are issued for this DTF, the operations
are not performed and you receive a return code of hex
99. If this operand is omitted, zeros are assumed.

BUFNO-1/2 allows you to specify either a single or
double buffer for the file. You can use a double buffer
only with the consecutive access methods. If this
operand is omitted, a single buffer is assumed.

LIMIT-Y /N is used only for indexed sequential get and
indexed sequential update. It specifies whether the
sequential access is within limits. If this operand is
omitted, N (no) is assumed.

ORDLD-Y /N specifies whether an ordered load is to be
used with the indexed output access method. Use this
operand only with the indexed output access method. If
this operand is omitted, N (no) is assumed.

CHAIN-address specifies the address of the next DTF in
the chain of DTFs. If there is no DTF chain or if this is
the last DTF in the chain, this operand should be
omitted {X'FFFF’ is then assumed).

RCAD-address specifies the address of the leftmost byte
of the logical record. When a record is to be written to
disk (through output, add, or update), you must provide
a logical buffer that contains that record. This allows
data management to move the data from the logical
buffer to the physical buffer. This type of processing is
known as move mode. All put operations are move
mode. Note that you must make the DTF field
associated with RCAD ($F1WKB field) point to the
leftmost byte of the logical record.

After get operations (always locate mode), you must
move the obtained record from the physical buffer to a
logical buffer if you intend to update the record or if you
intend to place the record in another file via another
DTF. Note that data management changes the $F1WKB
field after a get operation to point to the retrieved
record in the physical buffer.

If this operand is omitted, zeros are assumed. You must
provide the logical record address before you can
request an output operation. This operand is not
required for input-only files.

KEYL-number specifies the length of the key field and
must be used for all indexed access methods, but no
others. If this operand is omitted, a length of 1 is
assumed.

KDISP-number is entered for indexed access methods
only. It indicates the displacement into the record of the
rightmost byte of the key field. The displacement of the
first byte in the record is zero, the second byte is one.
and so on.

KEYADD-address specifies the following:

» For indexed random access methods, the main
storage address of the leftmost byte of the key area.
This area must be one key length and cannot contain
any X'FF’ characters. If the key area is a binary field
or generated by a user program, you must ensure
that no X'FF' characters appear in the key area.

« For direct access methods, the main storage address
of the leftmost byte of the relative record number
area. This area must be 10 bytes when using a
decimal relative record number, with the relative
record number right-adjusted in the rightmost 7 bytes
of the area. The leftmost 3 bytes are changed by
data management. This area must be 3 bytes when
using binary relative record number, with the relative
record number right-adjusted in the rightmost 3
bytes of the field. If this operand is omitted, address
X'FFFF’ is assumed.

MSTNDX-address specifies the address of the leftmost
byte of the master track index in main storage. Use this
operand for indexed random access and indexed
sequential within limits access methods only. If this
operand is omitted, address X'FFFF’ is assumed. Master
track index is not supported when you use the ISRI
access method.

To aid the performance of the indexed random and
indexed sequential within limits access methods for
large files, you may supply data management with space
for a master track index. This area will be formatted by
open so that the requested key within the primary index
area of the indexed file may be located more easily. It is
in effect an index into the index area or a second-level
index.

Macroinstructure Statements 6-25

MSTBYT-number specifies the number of bytes to be
reserved for the master track index. If this operand is
omitted, zero is assumed. Use this operand in
conjunction with the MSTNDX operand.

There is a minimum and maximum number of bytes that

can be reserved. To determine the number of bytes to
be reserved, use the following:

Minimum Maximum

DMADDR-address specifies where, in the user area of
main storage, $OPEN should load data management.
The area must be aligned on an 8-byte boundary. This
field is used only with the ISRI, ZPAMA, ZPAMI, and
ZPAMO access methods.

While -much- of -data-management -may-be-used-without
reserving space for data management programs, you
must reserve space if you are accessing disk through
ISRI or ZPAM. This area will be initialized at open time.

If you are using two DTFs with the same access method

MSTBYT = EL*2 MSTBYT = EL*(N+1) (ISRI or ZPAM), you need reserve only one area.
where: The area reserved for ZPAM data management must be

512 bytes. The area reserved for ISRI data management

EL= entry length (KEYL (key length) + 3)

N = Number of tracks containing index
entries (1 track = 60 sectors)

To determine N, do the following:

1. Use the CATALOG procedure to find the total

must be 2048 bytes.

SIAM-Y /N specifies whether SIAM support is used for
this DTF. If this operand is omitted, N (no) is assumed.

IOBUF -address specifies the address of the leftmost
byte of the user-provided 1/0 buffer. Use this operand
only with SIAM-Y (yes) and ZPAM access methods.

number of records that the file can contain.
The area required for the buffer is:
2. Determine the number of keys in each sector by
dividing 256 by the entry length. Drop the
remainder.

ZPAM access methods

Area = BLKL (block length) + 7
3. Determine the number of sectors in the index by
dividing the number of records in the file by the
number of keys in each sector (the result of step

2). Round up the result.

SIAM sequential or direct access

Area = BLKL (block length) + 7
4. Determine the number of tracks by dividing the SIAM .indexed access
number of sectors (the result of step 3) by 60; if

the quotient is not a whole number, round it up to
the next whole number.

Area = BLKL (block length) + 7 or

271, whichever is greater
CURENT -address specifies, for the indexed sequential
access method, the address of the leftmost byte of the
user’'s save area for current and last keys. If this
operand is omitted, address X FFFF' is assumed.

ERROR-Y /N specifies whether an error message should
be issued by I0S for a permanent disk error. If N (no) is
specified, control is returned to the user program with
the completion code set. If this operand is omitted, N is
HIGH-address specifies the address of the leftmost byte assumed.
of the user’s save area. This save area is two key
lengths long, with the low key in the left half and the
high key in the right half. Use this in conjunction with
indexed sequential processing within limits. If this
operand is omitted, address X'FFFF' is assumed.

RETURN-Y /N specifies the options allowed to the
operator after a permanent disk error message is issued.
If Y (yes) is specified, control is returned to the user
program with the completion code set and the operator
is allowed to take either a 2 option or a 3 option. If N
(no) is specified, the operator is allowed a 3 option only.
If this operand is omitted, N is assumed.

6-26

Construct a Disk Get Interface ($GETD)

The $GETD macroinstruction generates the interface
needed to communicate with disk data management
when a record is being read from a disk file. Before
using $GETD you must provide a DTF for the file (see
$DTFD). If you will need the data in register 2 later, you
should save the contents of that register before issuing
$GETD.

Note: Disk data management operates in locate mode
for input operations. In locate mode, disk data
management locates a record by placing the address of
the record in the disk DTF. The address points to the
record’s location in a physical buffer.

The code generated by this macroinstruction gives
control to the data management routine; the routine
completes execution and returns control to the
generated code. The generated code performs any
requested tests on the completion codes returned by
data management.

The format of the $GETD macroinstruction is:

[name] $GETD [DTF-address] [,INVKEY-address]
[,OP-code] [.ERR-address]
[.EOF-address] [.NRF-address]

[.DIRDRF-address]

DTF-address specifies the address of the leftmost byte
of the DTF for this file. If this operand is omitted, the
address is assumed to be in register 2.

INVKEY -address specifies the address in your program
that receives control if an invalid key value is detected.
This condition can occur only with indexed random
accesses. If the key field is a binary field or generated
by a user program, you must ensure that no X'FF’
characters appear in the key field.

OP-code may be specified when the access method is
ISRI (indexed sequential /random input). The codes are:

NGET Random get by equal key

AGET Random get by high/equal/last key
BGET Get backward (previous) by key
FGET Get forward (next) by key

ERR-address supplies the address in your program that
receives control if the controlled cancel option is taken
in response to a permanent 1/0 error. If this operand is
omitted, no code is generated to check for the
controlled cancel completion code.

EOF -address specifies the address in your program that
receives control when the end of file is detected. If this
operand is not supplied, no code is generated to check
for the end-of-file condition. You must not use this
operand with random or direct access methods.

NRF -address must be used only for random and direct
access methods. It specifies the address in your
program that receives control if a no-record-found
condition occurs.

DIRDRF -address must be used only for the direct access
method. It specifies the address in your program that
receives control if a deleted record is encountered.

Note: If INVKEY, ERR, EOF, NRF, or DIRDRF is
applicable but not specified, you should check the return
code in your program to determine the outcome of the
operation.

Macroinstructure Statements 6-27

Construct a Disk Put Interface ($PUTD)

The $PUTD macroinstruction generates the interface
needed to communicate with disk data management
when putting a record to disk or updating or deleting a
previously retrieved record. Before using $PUTD you
must provide a DTF for the file (see $DTFD). If you
need the data in register 2 later, you should save the
contents of that register before issuing $PUTD.

Note: Disk data management operates in move mode
for output operations. In move mode, disk data
management moves a record from the logical buffer
identified in the disk DTF to a physical buffer.

The code generated by this macroinstruction gives
control to the data management routine; the routine
completes execution and returns control to the
generated code. Completion codes are tested if
requested and control is returned to your program.

The format of the $PUTD macroinstruction is:

[name] $PUTD [DTF-address] [,INVKEY-address]
[.ERR-address] [,EOX-address]
[, DUPREC-address]
[, SEQERR-address]
[. KEYERR-address]
[.INVDRP-address]
[.DIRNDR-address]
[.UPDATE-Y/N] [,DELETE-Y/N]

DTF-address specifies the address of the leftmost byte
of the DTF associated with this file. If this operand is
omitted, the address is assumed to be in register 2.

INVKEY -address specifies the address in your program
that receives control if an invalid key value is detected.
This condition can occur only with indexed random
accesses. This field must be one key length and cannot
contain any X'FF’ characters. If the key field is a binary
field or generated by a user program, you must ensure
that no X'FF’ characters appear in the key field.

ERR-address supplies the address in your program that
receives control if the controlled cancel option is taken
in response to a permanent 1/0 error. If this operand is
omitted, no code is generated to check for the
controlled cancel completion code.

6-28

EOX-address supplies the address in your program that
receives control when an end of extent is reached during
the operation.

DUPREC-address provides the address in your program
that receives control when a duplicate record is
encountered. Use this operand only with the indexed
add access method.

SEQERR-address is the address in your program that
receives control in the event of a sequence error during
an ordered load of an indexed sequential file.

KEYERR-address specifies the address of your program
that receives control when an attempt is made to update
a record in an indexed file and the attempt would
destroy the record key.

INVDRP-address specifies the address in your program
that receives control if an invalid put to a delete-capable
file is detected. This condition can occur with all access
methods except ZPAM and ISRI. An invalid put is
signaled if the record to be added to or updated in the
file contains X'FF’ in the first byte.

DIRNDR-address must be used only for the direct access
method. It specifies the address in your program that
receives control if you are doing direct output to a
delete-capable file and the current record in the file is
not a deleted record (it does not contain X'FF’ in the
first byte).

UPDATE-Y /N indicates whether an update is to be
performed. If this operand is omitted, N is assumed.

DELETE-Y /N indicates whether a delete is to be
performed. If this operand is omitted, N (no) is
assumed.

Note: If ERR, EOX, DUPREC, SEQERR, INVKEY, or
KEYERR is applicable but not specified, you should
check the return code in your program to determine the
outcome of the requested operation. For a complete list
of currently defined return conditions, see Return
Conditions under Accessing Records in the File in Chapter
7.

DISK SORT SUPPORT

Generate a Loadable Sort Parameter List ($SRT)

The $SRT macroinstruction generates the loadable sort
parameter list used by the $SORT macroinstruction,
which is described in following paragraphs. $SORT
requires a parameter list in order to load the sort utility
or the ideographic sort utility. The sort utility is part of
the Utilities Program Product, number 5726-UT1. The
sort utility and the loadable sort parameter list are
described in the Sort Reference Manual. The ideographic
sort utility is part of the Ideographic Generator/Sort
Utilities Program Product, number 5726-1G1. The
ideographic sort utility and the loadable sort parameter
list are described in the Ideographic Sort Reference
Manual. The maximum size of the parameter list is 2048
bytes, including 125 bytes reserved as a work area for
the sort utility or for the ideographic sort utility.

The format of the $SRT macroinstruction is:

[name] $SRT [V-DC/EQU/ALL]
[,OUTPUT-filename]
[,SOURCE-source member name]
[,USERLB-library name]
[.INPUT1-filename]
[.INPUT2-filename]
[.INPUT3-filename]
[.INPUT4-filename]
[.INPUT5-filename]
[,INPUT6-filename]
[.INPUT7-filename]
[.INPUT8-filename]
[LALTSEQ-Y/N]
[.KASRT-Y/N]

V-DC/EQU/ALL specifies whether the parameter list,
labels, or both are to be generated. If this operand is
omitted, EQU is assumed.

Parameter Meaning

DC Generates the loadable sort parameter
list used by the $SORT
macroinstruction.

EQU Generates the displacement labels for
the loadable sort parameter list. If
V-EQU is specified or assumed, all
other operands for $SRT are ignored.

ALL Generates both the loadable sort
parameter list and the corresponding
displacement labels.

OUTPUT-filename specifies the name of the file that is
to contain the sorted data. If this operand is omitted,
blanks are assumed.' 2

SOURCE-source member name specifies the name of the
source member that contains the sort sequence
specifications. If this operand is omitted, no entry is
created for it in the generated parameter list, and the
34-byte sequence specifications must be placed
immediately after the generated portion of the loadable
sort parameter list. Omit this operand if you want to
supply the sequence specifications in the ioadable sort
parameter list.’

USERLB-library name specifies the name of the user
library that contains the source member specified in the
SOURCE parameter, if any. If this operand is omitted,
no entry is created for it in the generated parameter list.
Omit this operand if you want to supply the sequence
specifications in the loadable sort parameter list.’

INPUT 1-filename specifies the name of the first, or only,
input file to sort. If this operand is omitted, blanks are
assumed." 2

INPUT2-filename specifies the name of the second input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list.?

INPUT 3-filename specifies the name of the third input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT3 can be specified, INPUT2 must be specified.?

INPUT4-filename specifies the name of the fourth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT4 can be specified, INPUT2 and INPUT3 must be
specified.?

INPUT5-filename specifies the name of the fifth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT5 can be specified, INPUT2 through INPUT4 must
be specified.?

Macroinstructure Statements 6-29

INPUT6-filename specifies the name of ‘the sixth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT6 can be specified, INPUT2 through INPUT5 must
be specified.?

INPUT?7 -filename speeifies the name of the seventh
input file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT7 can be specified, INPUT2 through INPUT6 must
be specified.?

INPUT8-filename specifies the name of the eighth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT8 can be specified, INPUT2 through INPUT7 must
be specified.?

ALTSEQ-Y /N specifies whether an alternate collating
sequence table is contained in bytes 1793 through 2048
(the last 256 bytes) of the loadable sort parameter list:
Y if yes, N if no. If this operand is omitted, N is
assumed. If Y is specified, you must place the alternate
collating sequence table in bytes 1793 through 2048 of
the loadable sort parameter list.

lSpace is always reserved in the generated parameter list for an
OUTPUT filename and an INPUT1 filename. |f you want to
reserve space in the parameter list for other operands, specify
names in $SRT for the operands (actual names can then be
inserted in the parameter list by your program).

2 Al files named in $SRT must be defined by FILE statements
before the $SORT macroinstruction is used. The files must also
be closed before $SORT is used. If one or more of the input files
named in $SRT are offline multivolume files, a sort work file
must be supplied before $SORT is used. The name of the file
must be WORK. (For adescription of how to code FILE
statements, see the System Support Reference Manual.)

6-30

KASRT-Y /N specifies whether the ideographic sort utility
(#KASRT) should be loaded: Y if yes, N if no. If this
operand is omitted, N is assumed. If N is specified or
assumed, the sort utility (#GSORT) is loaded. The sort
utility and the ideographic sort utility each require 14
K-bytes. However, the ideographic sort utility requires
16 K-bytes-whenever:

« l|deographic control fields are specified and

« Either SOURCE- is not specified or ALTSEQ-Y is
specified in $SRT.

It is your responsibility to ensure that this space is
available. For information on how to increase this space,
see the System Support Reference Manual.

5

C

The following example shows how to build a parameter
list to be passed to the loadable sort transient. In this
example:

« The input file is named IN and has 100-byte records.

« The output file is named OUT and contains input file
records sorted on columns 1 through 10.

« The sort sequence specifications are included in the
parameter list, not stored in a source member.

« The alternate collating sequence specified sorts all
characters except blanks, uppercase alphabetic
characters, and numeric characters to the end of the
file.

Name Operstion Operand

S RTP&N SIRT| [[VI-]AL[L]. [EIN[P[VTI1]-[ZIN], lolulr[plult]- lofulv]. [AlL[v]s[ElQl-]Y] |] | REEA
bl ClL3M[' isloRr[xn| | leidi1/@lA xie{1/0id ‘| | lslolRiT| lueAblelr] lslplele
biC clL/si[FNcidole1del1ig]’ SlolRY] [eloluls|- [] TvimiRlul 1
Ic CILB N[FiolcigloidioiLlgla]” plalT/Al [1ls| MH[o|LE[[REE/c/ojRID
blc 3 |7/ N T END| [SO[RIT] [SIP[EC
oR(G SIORTIP|ARMI+[x|* g1 LIO[CINTIE| ALITISIE/Q [ARIEIA
bC ewyLl‘FF' CHARIS|- | [BEIFIORE] [BIL[AINIK
NE EEENEE BILJAN[K
blc 128U [FIF” CHARIACTERIS]| [THRIY
DiC LS ABICDEFGHI] Al [THRY| [T]
DIC/ TIXILAL [FIFCT] CHIARIACTIER[S] [THRIV 3
Dic L4 |3 KILMNOPIQR! * 3| [TIHRIY
c NNNGEEER CIHARIACITER]S THPU S
DIC cilal SiTlulvinxlylz|” S| [TH[RY %
D(C| ARNANEEEN CIHIARIACITERIS| [THRIu
pc clL1g [gl1]23usle7/8la] | [THRU @ |
pic XL ERTT I 1T REMAIINING [CHARACTIERS)

The following operation calls the loadable sort:

Name Operation Operand
123 456 7 8910111213 14]15[16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39

$IS|oR[T] [PILLIS[T]-[SIOR[T[P[AR

Macroinstructure Statements

6-31

http:61626364.66

Construct a Loadable Sort Interface ($SORT)

The $SORT macroinstruction generates an interface to
the sort utility or to the ideographic sort utility. The sort
utility is part of the Utilities Program Product, number
5726-UT1. The sort utility is described in the Sort
Reference Manual. The ideographic sort utility is part of
the Ideographic Generator/Sort Utilities Program
Product, number 5726-1G1. The ideographic sort utility
is described in the Ideographic Sort Reference Manual.
The interface generated by $SORT permits you to load
the sort utility or the ideographic sort utility as though it
were part of your program. Before you issue $SORT,
you must generate a loadable sort parameter list by
issuing the $SRT macroinstruction. $SRT is described in
preceding paragraphs.

If you will need the data in register 2 later, you should
save the contents of register 2 before you issue $SORT.

The code generated by $SORT gives control to the sort
utility or to the ideographic sort utility. After completing
the sort, the utility returns control to the instruction that
follows the code generated by $SORT. You should
cherck the sort completion indicator to determine

v hether the sort was successful. The indicator
BRTCOMP) is at displacement $SRTINDB in the
wadiabiz sort parameter list: if $SRTCOMP is off, the
.o vias successful; if $SRTCOMP is on, the sort was
uricuccessful.

$SORT can be issued more than once to perform
multiple sorts in a single program. Before you issue
$SORT, all files named in $SRT must be defined by
FILE statements and the files must be closed. If one or
more of the input files named in $SRT are offline
multivolume files, a sort work file must be supplied
before $SORT is used. The name of the work file must
be WORK. (For a description of how to code FILE
statements, see the System Support Reference Manual.)

The sort utility (#§GSORT) and the ideographic sort utility
(#KASRT) each require 14 K-bytes. However, the
ideographic sort utility requires 16 K-bytes whenever:

« ldeographic control fields are specified and

« Either SOURCE- is not specified or ALTSEQ-Y is
specified in SRT.

It is your responsibility to ensure that this space is
available. For information on how to increase this space,
see the System Support Reference Manual.

The format of the $SORT macroinstruction is:
[name] $SORT [PLIST-address]

PLIST-address specifies the address of the leftmost byte
of the loadable sort parameter list that is generated by
the $SRT macroinstruction. If this operand is omitted,
the address of the loadable sort parameter list is
assumed to be in register 2.

TIMER SUPPORT

Generate Timer Request Block ($TRB)

This macroinstruction generates a timer request block
(TRB). You must use $TRB if you use $SIT, $RIT, or
$TOD in your program.

The format of the $TRB macroinstruction is:

[name] $TRB [V-DC/EQU/ALL]

V-DC/EQU/ALL specifies whether the parameter list,

labels, or both are generated. If this operand is omitted,

DC is assumed.
Parameter Meaning

DC Generates the timer request
block parameter list used by
$RIT, $SIT, and $TOD

EQU Generates the displacement
labels for the timer request block

ALL Generates the timer request
block and the corresponding
displacement labels

Set Interval Timer ($SIT)

This macroinstruction sets the interval timer, which
causes an interrupt after the specified amount of time.
Before issuing $SIT you must place the desired interval
in the time field of the timer request block.

The format of the $SIT macroinstruction is:
[name] $SIT [TRB-address]
[,TYPE-DEC/BIN/TU/TOD]
[,ITYPE—REAL/WAIT]

TRB-address specifies the address of the leftmost byte
of the timer request block. If this operand is omitted,

the address of the timer request block is assumed to be

in register 2.

TYPE-DEC/BIN/TU/TOD specifies the format of the
time interval in the timer request block. (You must place
the time interval in the time field of the timer request
block before issuing $SIT. The time field is at
displacement $TRBTIME in the timer request block
generated by $TRB.) If this operand is omitted, DEC is
assumed. The valid time interval formats are:

DEC: A 6-byte decimal number specifying the hours,
minutes, and seconds (HHMMSS) that are to elapse
before the timer interrupt.

BIN: A 32-bit binary number specifying the number
of seconds that are to elapse before the timer
interrupt. The binary value must be right-adjusted in
bytes 4-7 of the timer request block time field.

TU: A 32-bit binary number specifying the number of
timer units that are to elapse before the timer
interrupt. One timer unit is 8.192 milliseconds. The
binary value must be right-adjusted in bytes 4-7 of
the timer request block time field.

TOD: The actual time of day when the timer interrupt
is to occur. The time is a 6-byte decimal number
specifying the hour, minute, and second (HHMMSS).

ITYPE-REAL/WAIT specifies the type of interval to be
timed. If this operand is omitted, REAL is assumed.
The types of time intervals are:

REAL: The timer decreases the time interval
continuously for all types of processing.

WAIT: The program issuing the $SIT macroinstruction
is placed in a wait state for the specified time
interval. When the time expires, control returns to
the instruction following the $SIT macroinstruction.

Macroinstructure Statements 6-33

Return Interval Time ($RIT)

This macroinstruction returns the remaining amount of a
time interval or cancels an unexpired time interval. The
remaining time is returned in the time field,
displacement $TRBTIME, of the TRB established by the
$TRB macroinstruction. The time interval is set by $SIT
and is returned in the format specified in that
macroinstruction.

The format of the $RIT macroinstruction is:
[name] $RIT

[TRB-address] [,CANCEL-Y/N]
[LWAIT-Y/N]

TRB-address specifies the address of the leftmost byte
of the timer request block. If this operand is omitted,
the address of the timer request block is assumed to be
in register 2.

CANCEL-Y /N specifies whether the remaining time in
the interval is to be canceled. If this operand is omitted,
N is assumed.

WAIT-Y /N specifies whether the task issuing the $RIT

macroinstruction is in a wait state until the time interval
expires. If this operand is omitted, N is assumed. This
operand is ignored if CANCEL-Y is specified.

Return Time and Date ($TOD)

This macroinstruction returns the time of day and the
system date to the program. The time of day is
returned in the time field of the timer request block, the
system date in the date field. The time and date fields
are at displacements $TRBTIME and $TRBDATE,
respectively, in the timer request block generated by
$TRB. Time and date are returned in the format
specified during system configuration.

The format of the $TOD macroinstruction is:

[name] $TOD [TRB-address]

[.TYPE-DEC/BIN/TU]

TRB-address specifies the address of the leftmost byte
of the timer request block. If this operand is omitted,
the address of the timer request block is assumed to be
in register 2.

6-34

TYPE-DEC/BIN/TU specifies how the time is to be
returned in the timer request block. The valid formats
are:

DEC: A 6-byte decimal number indicating the time in
hours, minutes and seconds (HHMMSS).

BIN: A 32-bit binary number indicating the time in
seconds. The number is right-adjusted in bytes 4-7
of the time field of the timer request block.

TU: A 32-bit binary number indicating the time in
timer units. One timer unit is 8.192 milliseconds. The
number is right-adjusted in bytes 4-7 of the time
field of the timer request block.

If this operand is omitted, DEC is assumed.

DISPLAY STATION SUPPORT

All communication with the display stations or system
console is done via work station management (WSM).
Work station management consists of two parts: a
generator routine and a data management routine. The
screen format generator routine (SFGR) builds the library
load member that is required when a display station is
used as a formatted input/output device. For further
information about the screen format generator routine
(SFGR), see the System Support Reference Manual.

Work station data management (WSDM) provides the
interface between the system and the display stations.
This section describes the macroinstructions that
support display station devices. You build your DTF
using the $DTFW macroinstruction. You then use the
$WSIO macroinstruction to modify the DTF fields for
each operation.

Note: A guide to the concepts of work station data
management is provided in the Concepts and Design
Guide.

C

Define the File for Display Station ($DTFW)

This macroinstruction generates the code that builds the
display station DTF. The display station DTF provides
information needed to allocate, open, and access a
display station file.

Note: For a description of how to code $DTFW for the
interactive communications feature, see the Interactive
Communications Feature Reference Manual.

The format of the $DTFW macroinstruction is:

[name] $DTFW [DEV-code]
[.UPSI-mask] [,CHAIN-address]
[,OUTLEN-number]
[, INDEXA-address] [,RESET-Y/N]
[,NUMFMT-number]
[,ROLINE-number]
[, STRTLN-number]
[,ENDLN-number]
[,.VARLIN-number]
[.INDA-address]
[.MEMBER-name]
[,INLEN-number]
[,TERMID-name] [,PRNT-Y/N]
[.ROLL-Y/N] [.CLEAR-Y/N]
[.RECBKS-Y/N] [,HELP-Y/N]
[.FKDATA-Y/N]
[,TIDTAB-address]
[LENTLEN-number]
[,TNUM-number]
[.F1ADDR-address]
[.RPGEXT-address]
[.HALTS-Y/N]

DEV-code specifies the file type for which this DTF is to
be used. If this operand is omitted, display station
(WSTN) is assumed. The codes and their meanings are
as follows:

Code File Type

CONS RPG console

KBD RPG keyboard
CRT RPG display screen
WSTN Display station

UPSI-mask specifies the setting of the external (//
SWITCH, statement) indicators used for conditionally
opening files. The code must be specified as 8 bits. For
example, to test bits O, 3, 5, and 7, you would enter
UPSI-10010101. When the corresponding bits are on in
the switch, the file is opened. If the file is not opened
and operations are issued for this DTF, the operations
are not performed and you receive a return code of hex
99. If this operand is omitted, zeros are assumed, and
the file will be unconditionally opened.

CHAIN-address specifies the address of the next DTF in
the chain of DTFs. If there is no DTF chain or if this is
the last DTF in the chain, this operand should be
omitted (X'FFFF’ is then assumed).

OUTLEN-number is only required for OPMODs of
ERROR and UNF, or OPCs of PUT, PTG, PNW, and PTI.
If the operation is ERROR, the OUTLEN value must be
between 1 and 78, and it represents the amount of data
written from the logical record area to the error line at
the display station. If the operation is UNF, the
OUTLEN value must be between 2 and 4096, and it
represents the amount of data sent from the user's
logical record to the display station. If the operation is a
PUT, PTG, PNW, or PTI, then OUTLEN represents the
maximum amount of data that can be written from the
logical record area to the output fields in the display
screen format. The OUTLEN value must be at least as
large as the sum of the lengths of all program output
fields. A program output field is as field where either
constant data was not supplied in locations 57 through
79 of the $SFGR field definition specification, or where
an indicator was specified in locations 23 and 24 of the
$SFGR field definition specification. If this operand is
omitted, an OUTLEN value of X'0000" is assumed. After
a successful input operation, the actual length of data
returned is in this field; therefore, OUTLEN should be
respecified after every input operation.

Note: If the operation is an unformatted PUT to a
display station that has ideographic support and if
GAIJI-ON is specified on the WORKSTN OCL
statement, OUTLEN should not be greater than the
display station buffer size (the minimum display station
buffer size is 2048 bytes). If the execution time output
data from the user’s logical record area also contains
MIC data, the user must reserve 6 bytes to contain the
4-character digit and the 2-character message member
identifier. This 6-byte length must be included in the
total OUTLEN value.

Macroinstructure Statements 6-35

INDEXA-address specifies the symbolic address of the
leftmost byte of the area in which display station OPEN
will build the display screen format index. This area
must be 16 bytes for each format in the load member to
be opened. All open display station DTFs must use the
same display screen format index area. If this operand
is omitted, address X'0000’ is assumed.

Note: To open more than one format load member for a
display station at the same time, you can chain multiple
DTFs for the display station.

RESET-Y /N specifies whether to reset the active format
index address. If Y is specified, a new format index is
built at the address specified by INDEXA. If N is
specified and there is an active format index, INDEXA
must equal the address of the active format
index—formats can be added to the index during open
and duplicate entries result in a halt. If N is specified
and there is no active format index, a format index is
built at the address specified by INDEXA. If this
parameter is omitted, N is assumed.

NUMFMT -number specifies in decimal the maximum
number of display screen formats for which an index is
to be built. The maximum allowed is 255. If this
operand is omitted, up to 32 new format index entries
can be built.

ROLINE-number specifies in decimal the number of lines
to roll the displayed data on a roll operation. The
maximum number is equal to the display screen size.
For example: If the display screen size is 24 lines, the
maximum number that can be entered here is 24. If this
operand is omitted, O1 is assumed.

STRTLN-number specifies in decimal the first line of the
roll area on a roll operation. The maximum number is
equal to the display screen size minus 1. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 23. If this operand
is omitted, 01 is assumed.

ENDLN-number specifies in decimal the last line of the
roll area on a roll operation. The minimum number is
02. The maximum number is equal to the display screen
size. For example: If the display screen size is 24 lines,
the maximum number that can be entered here is 24. If
this operand is omitted, 24 is assumed.

6-36

VARLIN-number specifies in decimal the actual start line
number if a variable start line number was specified to
SFGR for the format for this request. The maximum
number is equal to the display screen size. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 24. If this operand
is omitted, 01 is assumed.

INDA-address specifies the symbolic address of the
leftmost byte of the override indicator area, if override
indicators were specified at SFGR time for this format.
The indicator area must not start at location X'0000’
because WSDM ignores all indicators at address X' 0000’
and they are assumed off. If this operand is omitted,
address X'0000’ is assumed, and work station data
management ignores all indicators.

MEMBER-name specifies the name of the SFGR load
member containing all the formats to be opened. If this
operand is omitted, blanks are assumed, and no formats
are opened.

INLEN-number specifies in decimal the size of the user's
input buffer; that is, the maximum amount of input data
that the application program is prepared to receive. This
number must not be greater than 65535. If this operand
is omitted, zero is assumed, and no data is transferred.

Note: If the operation being performed is an
unformatted PUT, this value must equal the total length
of all input fields defined on the screen.

TERMID-name specifies the symbolic name of the
display station. This is the two-character ID, which the
user assigned via system configuration or the SYMID
parameter on the // WORKSTN statement, that
represents the display station to which the request is
directed. If this operand is omitted, blanks are assumed,
and for an SRT program the requesting display station is
assumed; for MRT programs a halt is issued unless the
operation is an ACI (accept), INQ (status inquiry) or GTA
(get attributes) operation.

C

The parameters PRNT, ROLL, CLEAR, RECBKS, and
HELP are the function-control-key mask specifications.
The function-control-key mask supplied to WSDM via
the DTF is used in conjunction with the
function-control-key mask specified in the SFGR source
specifications. If a specific function control key is
disabled in either the work station DTF or the SFGR
specifications, the key becomes disabled on the
keyboard. A function control key must be enabled in
both cases to be enabled to the application program.

PRNT-Y /N specifies whether your program will process
the Print key. If Y (yes) is specified, the print key
indicator is placed in the AID byte field of your program
DTF when the operator presses the Print key. If N (no)
is specified, the system attempts to print the work
station ID, the user sign-on ID, the system date, the
time, and the current display on the display station’s
associated printer. If this operand is omitted, N (no) is
assumed.

ROLL-Y /N specifies whether your program will process
the Roll+ (Roll Up) and Roll+ (Roll Down) keys. If Y
(yes) is specified, the roll key indicator is placed in the
AID byte of your program DTF when the operator
presses a Roll key, and data is returned as if the
Enter/Rec Adv key was pressed. If N (no) is specified,
an error message is displayed to the operator when the
operator presses the Roll key. If this operand is omitted,
N (no) is assumed.

CLEAR-Y /N specifies whether your program is able to
process the Clear key. If Y (yes) is specified, the clear
key indicator is placed in the AID byte field of your
program DTF when the operator presses the Clear key.
If N (no) is specified, an error message is displayed to
the operator when the operator presses the Clear key. If
this operand is omitted, N (no) is assumed.

RECBKS-Y /N specifies whether your program is able to
process record backspace (that is, the Home key when
the cursor is in the home position). If Y (yes) is
specified, the record backspace key indicator is placed
in the AID byte field of your program DTF when the
operator presses the Home key. If N (no) is specified,
an error message is displayed to the operator when the
operator presses the Home key. If this operand is
omitted, N (no) is assumed.

HELP-Y /N specifies whether your program is able to
process the Help key. If Y (yes) is specified, the help
indicator is placed in the AID byte field of your program
DTF when the operator presses the Help key. If N (no)
is specified, the command is not issued and an error
message is displayed to the operator when the operator
presses the Help key. If this operand is omitted, N (no)
is assumed.

FKDATA-Y /N specifies whether input data is to be
returned along with a function control key indicator for
all enabled function control keys. If Y (yes) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, and
input data is returned regardless of whether the operator
has modified any of the fields. This does not apply to
remote work stations; see Note 2. If N (no) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, but no
input data is returned. If this operand is omitted, N (no)
is assumed.

Notes:

1. The FKDATA parameter has no effect on the
operation of the Roll+ (Roll Up) and Roll+ (Roll
Down) function control keys. These keys always
operate as specified by the ROLL parameter.

2. You must use the FKDATA parameter with caution
when you are programming for a remote work
station. Your job could permanently halt if there are
no modified input fields on the screen of the remote
work station when a function key is pressed while the
FKDATA parameter is active.

TIDTAB-address specifies the address of a work station
ID table. Programs that support multiple display stations
typically maintain a table of display station IDs and
associated status indicators. By specifying the TIDTAB,
ENTLEN, and TNUM parameters, you reserve an area
for the ID table. Open places the ID of the display
station that requests the program in the first 2 bytes of
the first entry of the table, and sets the first bit in the
third byte on. Open also places the SYMID value from
each // WORKSTN statement into other entries in the
table. The IDs are placed in the first 2 bytes of the
entries. If REQD-YES is specified in a WORKSTN
statement, open sets on the first bit of the third byte in
the corresponding table entry. The ID table must be
large enough to contain an ID for each display station
supported by the program plus additional entries up to
the program’s MRTMAX value (MRTMAX is specified in
a // COMPILE statement and can be overriden by a //
ATTR statement). The entire table must be initialized to
00s before open is called. After open is complete, the
user program must maintain the table. If this operand is
omitted, address X'0000" is assumed, and no table is
built. (For a description of ATTR, COMPILE, and
WORKSTN statements, see the System Support
Reference Manual.)

Macroinstructure Statements 6-37

ENTLEN-number specifies in decimal the length of each
entry in the display station ID table TIDTAB. The
maximum allowed is 255. If TIDTAB was specified, the
minimum ENTLEN is 3: two bytes for an ID and a third
byte for status indicators.

TNUM-number specifies in decimal the total number of
TIDTAB table entries. The total space allocated for the
table is assumed to be the product of ENTLEN and
TNUM. The maximum TNUM allowed is 255. If this
operand is omitted, 01 is assumed.

F1ADDR-address specifies the address of the leftmost
byte of the library format 1 used to find the load
member. If this operand is omitted, work station data
management scans the user library (first requester’s
library if an MRT program), then the system library for
the load member.

RPGEXT-address specifies the address of an RPG
extension to the work station DTF. If this parameter is
omitted, address X'0000’ is assumed. This parameter is
not used by work station data management.

HALTS-Y/N is valid only if this DTF is to be used to
communicate with the interactive communications
feature, which is described in the Interactive
Communications Feature Reference Manual. The
parameter specifies whether interactive communications
data management should halt for permanent
communications errors: Y if yes, N if no. If this
operand is omitted, N (no) is assumed.

6-38

Construct a Display Station Input/Output Interface
($WSI0)

This macroinstruction builds the executable code to
modify a display station DTF according to the
parameters specified, then issues a call to work station
data management to execute the specified operation.
Before using $WSIO you must provide a DTF for the file
(see $DTFW) and establish the offsets for the DTF (see
$DTFO). If you will need the data in registers 1 and 2
later, you should save the contents of those registers
before issuing $WSIO.

After each $WSIO macroinstruction, you should check
the return code. The return codes are defined in the
$DTFO macroinstruction with WS-Y and FIELD-Y.
Return codes from $WSIO are described under Display
Station Data Management Considerations in Chapter 7.

Note: For a description of how to code $WSIO for the
interactive communications feature, see the Interactive
Communications Feature Reference Manual.

[name] $WSIO [DTF-address] [,OPMOD-code]
[,OPC-code] [,OUTLEN-number]
[.INLEN-number]
[,RCAD-address] [,ROLDIR-U/D]
[.RLCLER-Y/N]
[,ROLINE-number]
[,STRTLN-number]
[.ENDLN-number]
[.VARLIN-number]
[.INDA-address]
[,FORMAT-name]
[.,TERMID-name] [,PRNT-Y/N]
[.ROLL-Y/N] [.CLEAR-Y/N]
[LRECBKS-Y/N] [.HELP-Y/N]
[.FKDATA-Y/N] [,PID-id]
[.PL@-address]

DTF-address specifies the address of the leftmost byte
of the display station DTF to be modified. If this
operand is omitted, the address is assumed to be in
register 2.

C

OPMOD-code specifies the operation code modifier to
be generated if desired. The codes and their meanings
are as follows:

Code Maeaning

ERROR PUT for displaying information on
the error line.
OVR PUT for displaying only override
fields and attributes. (If an override
indicator was specified on the SFGR S
specification, this value is not required.)
ROLL Roll the display with the specified
operation.
UNF The data does not need formatting
by WSDM.
PRINT Print the displayed data on the
printer specified in the PID parameter.
PRUF PUT for read under format.
FMH This code is for use with the
interactive communications
feature, which is described in
the Interactive Communications
Feature Reference Manual. The
code indicates that a function
management header precedes the
data associated with an evoke
operation. The code is valid only
for evoke operations for the SNUF
(SNA upline facility) subsystem.
ZERO Clear any previous OPMOD specification.

Notes:

1. An OPC of PUT, PTG, PNW, or PTI must also be
specified for OPMOD values of OVR, UNF, or PRUF.

2. The OPMOD keyword can be coded as OPM.

OPC-code specifies the operation requested of WSDM.
The codes and their meanings are as follows (codes
unique to the interactive communications feature are
described in the Interactive Communications Feature
Reference Manual):

ZERO: Sets the operation code field to X'00°. This
code is used with operation code modifiers for which
you do not want a WSDM operation code. For
example, if you wanted to roll or print displayed data
without requesting any other work station operation
in the call to WSDM, you could use the ZERO
operation code with the modifier ROLL or PRINT.

GET: Receive data from the display station specified
by the TERMID parameter. Control is returned to
your program when the data is available in the user
record area. This operation ignores the OPMOD
value.

PUT: Send data to the display station specified by
the TERMID parameter. Control is returned to your
program when data transfer is complete.

PTG: A combination of a put-no-wait (PNW)
operation to the display station specified by the
TERMID parameter, followed by a GET request to the
same display station. Control is returned to your
program when the data resulting from the GET
operation is available in the user record area.

INV: Enable the display station, specified by the
TERMID parameter, to send data to the system. The
data entered by the display station operator is
presented to your program in response to a
subsequent accept input (ACI) operation. Control
returns as soon as the invite input {INV) is scheduled.

PNW: Send data to the display station specified by
the TERMID parameter. Control is returned to your
program when the operation is scheduled, and the
program’s DTF, record area, and indicators are
available for reuse. If a second put-no-wait (PNW)
is issued to the same display station, the first PUT
must be complete before the second operation is
queued. The main difference between a PUT and
PNW is the return code. On a PUT, the return code
reflects the status of the entire PUT operation, while
on a PNW, the return code reflects only the
scheduling of the operation.

Macroinstructure Statements 6-39

PTI: A combination of a put-no-wait (PNW) and an
invite input (INV) to the same display station. Control
is returned to your program when the invite input
request is scheduled.

ACI: This operation is not to a specific display
station. It requests data from any display station that
responded to a previous invite input operation. For
example, suppose your program issues three invite
input operations to display stations A, B, and C. The
program could now issue an accept input request,
and be presented with data from any display station
(A, B, or C) that responds with a data transmission.
The ID of the display station that sent the data is
returned at displacement $3WSNAME in the DTF. The
accept input operation is also used as the first
request from a program to receive program data
passed from the invoking procedure. This operation
ignores the OPMOD value.

ACQ: Allocate the display station specified by the
TERMID parameter to this program. This operation
ignores the OPMOD value.

REL: Release the display station specified by the
TERMID parameter from this program. This operation
ignores the OPMOD value.

GTA: Get the attributes of the display station
specified by the TERMID parameter, and place them
in the program’s record area. This operation ignores
the OPMOD value.

Following a get attribute operation, the program’s
record area appears as follows:

Byte O Device type.
Cc'D’ Display type.
C'N’ Non-display type.
All remaining letters
are reserved.
Byte 1 Display size.
c1 1920-character display.
cz 960-character display.
Byte 2 Type of attachment.

cr Local attachment.

C'R Remote attachment.
Byte 3 Online/offline status.

co Device is online.

CF Device is offline.

Byte 4 Allocation status of device.
C'A Device allocated to requester.
CF Device allocated to other user.
cv Not allocated but available.
C'N Not allocated, not available.
cu Device unknown to system.

Byte 5 Invite status of device.
cyYy Device is invited.

C'N Device not invited.

Byte 6 If invited, completion status.
cyY Invite completed.
C'N’ Invite not completed.

Byte 7 Inquiry status.
cyY Device in inquiry.
C'N’ Device not in inquiry.

EGTA: Get the attributes of the ideographic display
station specified by the TERMID parameter, and
place them in the program’s record area. This
operation ignores the OPMOD value. Following an
extended get attribute operation, the program'’s
record area appears as follows:

Bytes 0-7 Same as for GTA operation.

Byte 8 Display type.
CA Alphanumeric/Katakana type.
cr Ideographic type.

Byte 9 Keyboard type.
CA Alphanumeric/Katakana type.
cr Ideographic type.

Byte 10 Sign-on type.
CA Alphanumeric/Katakana type.
cr Ideographic type.

Bytes 11-15 Reserved. X'00’ will be returned.

STI: Cancel a previously issued invite input request to
the display station specified by the TERMID
parameter. |If the stop invite fails (operator aiready
pressed the Enter/Rec Adv key), your program will
be informed via a return code, and the data will
remain at the display station, available for a
subsequent request. However, if an output request is
issued to the display station, the input data is
destroyed.

Note: A stop invite is not required to override an
existing invite input. However, if input is already
available, the input data is lost.

RES: Resets the keyboard of the display station
specified by the TERMID parameter without
requesting a format. This allows an application to
ignore keys that are not supported.

RTG: Performs a keyboard reset (RES) followed by a
GET.

RTI: Performs a keyboard reset (RES) followed by an
invite input (INV).

ERS: Erases all modified input capable fields that are
currently defined on the display of the display station
specified by the TERMID parameter. This operation
locks the keyboard and repositions the cursor to the
first input field. For a detailed explanation of how
erase input fields works, see the erase input fields
entry (columns 31 and 32) under the $SFGR—Screen
Format Generator Utility Program in the System
Support Reference Manual.

ETG: Performs an erase input fields (ERS) followed
by a GET.

ETI: Performs an erase input fields (ERS) followed by
an invite input (INV).

CLR: Clears the entire display screen of the display
station specified by the TERMID parameter, including
attribute bytes. This operation also destroys any
existing field definitions pertaining to that specific
display station.

INQ: Determines the invite status of the display
stations associated with this program. This operation
returns a 2-byte return code in index register 2. In
the high-order byte, X’00° means no invites
outstanding; X'10° means at least one invite
outstanding; X’'30’ means at least one outstanding
invite, at least one of which is completed. in the low
order byte, X’00° means stop system is not in effect;
X'02" means stop system is in effect. This operation
has no associated DTF. Register 2 need not contain
a DTF address. Register 1 contents are preserved. If
this operation code is specified, all other specified
parameters are ignored.

SIQ: Determines the invite status of the display
stations associated with this program. This operation
performs a function similar to INQ, except SIQ
utilizes the DTF to issue the operation and return the
data. Two 1-byte return codes are returned in the
DTF as a result of this operation. In the DTF at
displacement $WSRSIQ, hex 00 means no invites
outstanding; hex 30 means at least one outstanding
invite, at least one of which is completed. In the DTF
at displacement $WSRTC, hex 00 means stop system
is not in effect; hex 02 means stop system is in
effect. If this operation code is specified, any
specified operation code modifier is ignored, and the
operation code modifier field in the DTF is cleared to
hex 00.

Macroinstructure Statements 6-41

OUTLEN-number is only required for OPMODs of
ERROR and UNF, or OPCs of PUT, PTG, PNW, and PTI.
If the operation is ERROR, the OUTLEN value must be
between 1 and 79 and it represents the amount of data
written from the logical record area to the error line at
the display station. If the operation is UNF, the
OUTLEN value must be between 2 and 4096 end it-
represents the amount of data sent from the user’s
logical record to the display station. If the operation is a
PUT, PTG, PNW, or PTI, then OUTLEN represents the
maximum amount of data that can be written from the
logical record area to the output fields in the display
screen format. The OUTLEN value must be at least as
large as the sum of the lengths of all program output
fields. A program output field is a field where constant
data was not supplied in locations 57 through 79 of the
$SFGR field definition specification, or where an
indicator was specified in locations 23 or 24 of the
$SFGR field definition specification. If this operand is
omitted, the DTF value remains unchanged. After a
successful input operation, the actual length of data
returned is in this field; therefore, OUTLEN should be
respecified after every input operation.

Note: If the operation is an unformatted PUT to a
display station that has ideographic support and if
GAIJI-ON is specified on the WORKSTN OCL
statement, OUTLEN should not be greater than the
display station buffer size (the minimum display station
buffer size is 2048 bytes). If the execution time output
data from the user’s logical record area also contains
MIC data, the user must reserve 6 bytes to contain the
4-character digit and the 2-character message member
identifier. This 6-byte length must be included in the
total OUTLEN value.

INLEN-number specifies in decimal the size of the user's
input buffer, that is, the maximum amount of input data
that your program is prepared to receive. This number
must not be greater than 65535. If this operand is
omitted, the DTF remains unchanged. The INLEN and
PID parameters use the same field in the DTF;
therefore, INLEN must be specified after each operation
that specified a PID.

Note: If the operation being performed is an
unformatted PUT, this value must equal the total length
of all input fields defined on the screen.

RCAD-address specifies the symbolic address of the
leftmost byte of the logical record area. This operand
must be specified in the first $WSIO you issue in your
program to establish the record address. Then, if this
operand is subsequently omitted, the DTF remains
unchanged.

Note: If the operation being performed involves GET or
ACI or UNF, the record area must be on an 8-byte

boundary.
6-42

ROLDIR-U/D specifies the direction to roll the display
when requested. This operand must be specified in the
first $WSIO you issue with a roll operation. Then, if this
operand is subsequently omitted, the DTF remains
unchanged.

RLCLER-Y /N specifies whether the lines vacated by a
roll operation should be cleared. This operation must be
specified in the first $WSIO you issue with a roll
operation. Then, if this operand is subsequently omitted,
the DTF remains unchanged.

ROLINE-number specifies in decimal the number of lines
to roll the data being displayed on a roll operation. The
maximum number is equal to the display screen size.
For example: If the display screen size is 24 lines, the
maximum number that can be entered here is 24. If this
operand is omitted, the DTF remains unchanged.

STRTLN-number specifies in decimal the first line of the
roll area on a roll operation. The maximum number is
equal to the display screen size minus 1. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 23. If this operand
is omitted, the DTF remains unchanged.

ENDLN-number specifies in decimal the last line of the
roll area on a roll operation. The minimum number is
02. The maximum number is equal to the display screen
size. For example: If the display screen size is 24 lines,
the maximum number that can be entered here is 24. If
this operand is omitted, the DTF remains unchanged.

VARLIN-number specifies in decimal the actual start line
number if a variable start line nhumber was. specified to -
SFGR for the format for this request. The maximum
number is equal to the display screen size. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 24. If this operand
is omitted, the DTF remains unchanged.

INDA-address specifies the symbolic address of the
leftmost byte of the override indicator area, if override
indicators were specified at SFGR time for this format.
The indicator area must not start at location X'0000’
because WSDM ignores all indicators at address
X'0000°, and they are assumed off. If this operand is
omitted, the DTF remains unchanged.

FORMAT-name specifies the name of the display screen
format to be used for this operation. This operand is
required only for formatted PUT operations. If this
operand is omitted, the DTF remains unchanged.

TERMID-name specifies the symbolic name of the
display station. This is the 2-character ID, which the
user assigned via system configuration or the SYMID
parameter on the // WORKSTN statement, that
represents the display station to which the request is
directed. If this operand is omitted, the DTF remains
unchanged.

PRNT-Y /N specifies whether your program is able to
process the Print key. If Y (yes) is specified, the print
key indicator is placed in the AID byte field of your
program DTF when the operator presses the Print key.
If N (no) is specified, the system attempts to print the
following on the display station’s associated printer':
the work station ID, the user sign-on ID, the system
date, and the time (all on one line, enclosed within a
box of asterisks), followed by four blank lines, followed
by the current display.

ROLL-Y/N specifies whether your program is able to
process the Roll+ (Roll Up) and Roll¥ (Roll Down) keys.
If Y (yes) is specified, the roll key indicator is placed in
the AID byte field of your program DTF when the
operator presses a roll key and data is returned as if the
Enter/Rec Adv key was pressed. If N (no) is specified,
an error message is displayed to the operator when the
operator presses the roll key.'

CLEAR-Y /N specifies whether your program is able to
process the Clear key. If Y (yes) is specified, the clear
key indicator is placed in the AID byte field of your

program DTF when the operator presses the Clear key.
If N (no) is specified, an error message is displayed to
the operator when the operator presses the Clear key.'

RECBKS-Y /N specifies whether your program is able to
process the record backspace (that is, the Home key
when the cursor is in the home position). If Y (yes) is
specified, the record backspace indicator is placed in the
AID byte field of your program DTF when the operator
presses the Home key. If N (no) is specified, an error
message is displayed to the operator when the operator
presses the Home key.'

HELP-Y /N specifies whether your program is able to
process the Help key. If Y (yes) is specified, the help
key indicator is placed in the AID byte of your program
DTF when the operator presses the Help key. If N (no)
is specified, an error message is displayed to the
operator when the operator presses the Help key.’

FKDATA-Y /N specifies whether input data is to be
returned along with a function control key indicator for
all enabled function control keys. If Y (yes) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, and
input data is returned regardless of whether the operator
has modified any of the fields. This does not apply to
remote work stations; see Note 2. If N (no) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, but no
input data is returned.’

Notes:

1. The FKDATA parameter has no effect on the
operation of the Roll+ (Roll Up) and Roll+ (Roll
Down) function control keys. These keys always
operate as specified by the ROLL parameter.

2. You must use the FKDATA parameter with caution
when you are programming for a remote work
station. Your job could permanently halt if there are
no modified input fields on the screen of the remote
work station when a function key is pressed while the
FKDATA parameter is active.

PID specifies the ID of the desired printer on a print
request. Allowable values are:

SYSTEM-the system printer

WSTN-the ID of the printer associated within the
display station specified by the TERMID parameter
XX—the 2-character ID of the desired printer

If this operand is omitted, the DTF remains unchanged.
The INLEN and PID parameters use the same field in
the DTF; therefore, PID must be specified after each
input operation.

'Use of PRNT, ROLL, CLEAR, RECBKS, HELP, and FKDATA is
discussed here. The parameters PRNT, ROLL, CLEAR,
RECBKS, and HELP are the function-control-key mask
specifications. The function-control-key mask supplied to
WSDM via the DTF is used in conjunction with the
function-control-key mask specified in the SFGR source
specifications. If a specific function control key is disabled in
either the work station DTF or the SFGR specifications, the
key becomes disabled on the keyboard. A function control key
must be enabled in both cases to be enabled to the
application program. If any of these parameters or the
FKDATA parameter is specified, N is assumed for the
unspecified parameters. If none are specified, the DTF
remains unchanged.

Macroinstructure Statements 6-43

PL@-address is for use with the interactive
communications feature. The ‘parameter specifies the
address of an associated evoke parameter list, which is
generated by the $EVOK macroinstruction. $EVOK is
described in the Interactive Communications Feature
Reference Manual. This operand must be specified for
the first evoke operation and remains unchanged if not
specified thereafter.

6-44

Generate Override Indicators for Display Station
(SWIND)

This macroinstruction generates a table of override
indicators and offsets for PUT and PUT overrides used
by work station data management.

The format of the $WIND macroinstruction is:
[name] $WIND [MAXIND-number]
MAXIND-number specifies in decimal the highest number

used by SFGR as an override indicator for your program.
If this operand is omitted, 99 is assumed.

Generate Labels for Display Station ($WSEQ)

This macroinstruction generates labels and offsets to
reference certain work station device dependent values,
such as attention identification (AID) bytes, and bit
representations for the display screen attribute bytes
and write control characters.

The format of the $WSEQ macroinstruction is:

[name] $WSEQ no operands.

C

C

ASSEMBLER CONTROL STATEMENTS

Two control statements are used: the HEADERS
statement and the OPTIONS statement. A total of 45
of these control statements may be used, in any order.
Each statement is limited to six operands. All control
statements must appear before any assembler source
statements.

HEADERS Statement

The HEADERS control statement specifies control
information other than output control information to the
assembler. The programmer may specify a category
level for the object module through the CATG operand,
or the length of the control section for any subtype 4 or
5 EXTRNs in the assembler through the COML4 and
COML5 operands. For an explanation of category levels
and subtype 4 and 5 EXTRNs, see the System/34
Overlay Linkage Editor Reference Manual.

The format of the HEADERS statement with the CATG
operand is:

nnnnn is a 1- to 5-character decimal string whose value
must be less than 256. If more than one CATG operand
appears in the assembler control statements, the value
of the last valid operand is used for the module category
level. The module category level is placed in the module
ESL record. The HEADERS keyword must start in
column 2 or greater; the preceding column must be
blank; and there must be one or more blanks between
keywords. Blanks are not allowed between selected
options.

Chapter 7. Programming Considerations

The format of the HEADERS statement with the COML4
and COMLS5 operands is:

1 4 8 12 16 20 24 28 32

nnnnn is a 1- to 5-character decimal string whose value
must be less than 65536. If more than one COML4 or
COMLS5 operand is present in the assembler control
statements, the length in the last valid operand is used
for the appropriate subtype control section length. The
lengths specified are placed in the ESL records for the
subtype 4 or 5 EXTRNs. The HEADERS keyword must
start in column 2 or greater; the preceding column must
be blank; and there must be one or more blanks
between keywords. Blanks are not allowed between
selected options.

OPTIONS Statement

An OPTIONS statement is for assembler control options.
All OPTIONS statements must precede the source file.
The user may specify the following assembler options
on OPTIONS statements: LIST, NOLIST, XREF,
NOXREF, OBJ, NOOBJ. Several options may appear on
one statement in any order, but must be separated by
commas. If the programmer prefers, separate
statements may be used for each option. The OPTIONS
keyword must start in column 2 or greater; the
preceding column must be blank; and there must be one
or more blanks between the keyword and the selected
options. Blanks are not allowed between the selected
options.

Programming Considerations 7-1

The following example shows options appearing on one XREF A cross-reference listing is generated.
statement:

NOXREF A cross-reference listing is not generated.

0BJ The object program is placed in the
14 8 12 16 20 24 28 32 library as a subroutine member.

NOOBJ The object program is not placed in
the library.

If OBJ is entered on the OPTIONS statement and there
are errors in the assembly, a halt is issued giving the
choice to terminate or place the object program in the
library as a subroutine member.

If no OPTIONS statement is used, the assembly is
The following list provides a brief description of all the processed as though LIST, XREF, and OBJ had been
options available: specified.

Option Explanation

LIST The following sections of the
assembler listing are printed:

« Options information
« External symbol list
« Source and object program listing
» Diagnostic listing
« Error summary statements

NOLIST Only the following listings are printed:
» Options information

« Any statements in error and
the associated diagnostics

» Error summary statements

The NOLIST option overrides all
assembler PRINT statements.

EXECUTION INFORMATION

Procedures for Assembler

The loading and running of the assembler and macro
processor can be done through the use of System/34
procedures. These procedures, and the procedure
commands that request them, are described here. (For a
complete description of System/34 procedures and
procedure commands, see the System Support Reference
Manual.)

ASM Procedure

The ASM procedure invokes the assembler and can
invoke the macro processor. The ASM procedure is
requested by way of the ASM procedure command.

ASM Procedure Command

The ASM procedure command requests execution of the
ASM procedure, which invokes the assembler and,
optionally, the macro processor. If you just enter ASM,
a display appears prompting you for command
parameters.

ASM source name > #H-BRA—RY],

source library
parameter 2 MAC
object module library | NOMAC
, [;;:blksz] B;nblksz]
t
, I wrkblksz] I wrk2blksz [yes]
bl b} m

source name Required source program name

parameter.

#LIBRARY
source library

Specifies the name of the library
in which the source, named in the
first parameter, is located. If
omitted, the system library
(#LIBRARY) is assumed.

parameter 2
object module
library

MAC
NOMAC

srcblksz
30

asmblksz
45

wrkblksz
10

wrk2blksz
36

yes
no

Specifies the name of the library

in which the object module will be
placed. If omitted, the library
specified in the second parameter is
assumed. If the second parameter is
omitted, the system library (#LIBRARY)
is assumed.

Macro processor parameter.

NOMAC bypasses the macro processor;
MAC invokes the macro processor.
MAC is the default if the

parameter is omitted.

$SOURCE file size parameter.
$SOURCE provides source input to
the macro processor.

If the macro processor is not invoked,
$SOURCE provides source input

to the assembler.

srcblksz: three-digit decimal number
indicating blocks required by $SOURCE.
30 is the default.

$ASMINPT file size parameter.
$ASMINPT provides source input

to the assembler if the macro processor
is invoked. $ASMINPT contains the
source program and macro processor
generated code. If the macro processor
is not invoked, this file is not used.
However, the parameter is still used.

asmblksz: three-digit decimal number
indicating blocks required by
$ASMINPT. 45 is the default.

$WORK file size parameter.
$WORK contains the object code
produced by the assembler.

wrkblksz: three-digit decimal number
indicating blocks required by $WORK.
10 is the default.

$WORK?2 file size parameter.
$WORK?2 is used as a work file
by the assembler.

wrk2blksz: three-digit decimal
number indicating blocks required by
$WORK2. 36 is the default.

Place job on the input queue.
Do not place job on the input job
queue. No is the default.

Programming Considerations 7-3

OLINK Procedure $WORK2 requires approximately 40 sectors per 100

source statements:
This procedure invokes the overlay linkage editor to
create a load module. The OLINK procedure is

P i Number of Requi Block
described in the Overlay Linkage Editor Reference Source Program Size umber of Required Blocks

{number of (One block equals 10
Manual.
statements) sectors.)
100 4
Data Files Used by the Assembler
200 8
Disk files are used for the following: 300 12
« Intermediate text (SWORK2 file) 400 16
. . 500 20
+ Cross-reference file ($WORK2 file)
600 24
» Overflow symbol table(s) (PWORK2 file) 700 28
« Object program records ($WORK file) 800 32
. 900 36
» Source program records ($SOURCE file and
$ASMINPT). $SOURCE provides source program 1000 40
records for the macro processor. If the macro The $WORK file contains the object records. One sector
processor isn’t called, $SOURCE also provides source contains four 64-byte object records. The default is 10
program records for the assembler. If the macro blocks.
processor is called, $ASMINPT provides source
program records to the assembler. $SOURCE size requirements are as follows: J

If the source records are 80 (rather than 96) columns in
length, they are padded on the right with 16 blanks
before being placed in the input file. In this case, the
user should provide an ICTL statement to prevent the
assembler from processing the sequence field of the 100 a
80-column record.

Source Program Size
(number of
statements) Number of Required Blocks

200 8
$WORK2, $ASMINPT, $SOURCE, and $WORK are 300 12
automatically allocated but their default sizes may be
overridden by specifying the respective parameters on 400 15
the ASM procedure. 500 19
600 23
700 27
800 30
900 34
1000 38

$ASMINPT uses the same chart as $SOURCE. Note,
however, that the number of generated statements
should be counted in the program size.

7-4

ASSEMBLER LISTING

The printed output of the assembler includes the control
statements, external symbol list, object code and source
program listing, the cross-reference listing, and the error
message listing. These listings are described in detail in
this section.

Control Statements

Any OPTIONS or HEADERS statements specified by the
user are printed and any specification errors are noted.
A list of OPTIONS in effect during the assembly is then
printed.

External Symbol List (ESL)

The object program name, EXTRNs.and ENTRYs are
printed in the following format:

Symbol Type
Object program name MODULE
ENTRY symbol ENTRY
EXTRN symbol EXTRN

Object Code and Source Program Listing

The following items are printed for each entry in the
source program. See Appendix A for examples of an
object code and source program listing.

(ERR) Error Field: This field contains an E, |, W, or M
for those statements in error.

E For assembler and
macro processor errors

w MNOTE warnings with
a severity of 8

| Information or image messages
from the macro processor

M MNOTE errors with
severity greater than 8

(LOC) Location Counter: A four-digit hexadecimal
number that is left-padded with zeros. This number
represents the leftmost byte of any object code printed
on this line.

Object Code: Translated code. All code in this field is
left-justified.

« Instructions: Maximum of 6 bytes (12 hexadecimal
characters). The operation, Q code, operand 1, and
operand 2 fields are separated by one blank.

« Data Constants: Maximum of 8 bytes (16
hexadecimal characters) per line. No blanks are
inserted among the data.

« (ADDR) Address Field: Blank except for the
following:

— For the DC and DS instructions, it contains the
address of the reference byte, that is, the
rightmost byte of the field.

— For the END instruction, it contains the address to
which control will be passed to start execution of
the program.

— For the USING instruction, it contains the address
referenced in the first operand field.

— For the EQU instruction, it contains the value of
the operand field.

— For the ENTRY instruction, it contains the address
of the entry point.

(STMT) Statement Number Field: This field contains the
number of the source statement starting from one. All
source statements, including comments, are numbered.
Valid SPACE, EJECT, and TITLE statements are always
assigned statement numbers but are never printed. The
statement number field is 4 characters long and
therefore the program listing is accurate for only 9,999
statements.

Source Statement: A reproduction of the entire source
record. All source records are printed except for the
listing control statements: SPACE, EJECT, and TITLE.

Items printed include:

Column Item

1 Error flag

5-8 Location

9 Blank

10-25 Object code
27-30 Address

32-35 Statement number
37-132 Source statement

Statements generated by the macro processor are
preceded by plus (+) signs.

Programming Considerations 7-5

Page Headings

The following information is printed for each page in the
listing:

« A header stating that the object code listing was
produced by the IBM System/34 Basic Assembler
and Macro Processor Program Product and
identifying the release level.

« The content of the user’s current TITLE card.

« A descriptive header, which gives a short description
of the contents of the various fields of the
source-object listing, the current date and time, and
the page number.

Diagnostics

The source and object program listing includes error
codes for improperly coded statements. These codes
are documented at the end of the source and object
program listing under the heading Diagnostics. The
diagnostics list provides the following information:

« Statement: The statement number in decimal, as
assigned by the assembler, of the statement in error.

« Error code: A four-digit code. See Chapter 8 for a
complete list of these codes and the corresponding
messages.

+ Message: A translation of the error code, indicating
the type of error made.

Also included under the heading Diagnostics are these
error summary statements:

« A count of the total statements in error in the
assembly. Total does not include missing module

name and missing end statement errors.

« A count of total sequence errors in the assembly, if a
sequence check is requested.

76

Cross-Reference List

If XREF is specified on the OPTIONS statement, this list
includes all symbol names referred to in the source
program. This list includes the following columns:

« SYMBOL: The symbol name.
o LEN: The length attribute of the symbol, in decimal.
« VALUE: The hexadecimal value of the symbol.

« DEFN: The statement number, in decimal, where the
symbol is defined.

« REFERENCES: The statement numbers, in decimal,
where the symbol is referenced. Each symbolic
reference to a data area or machine register whose
contents may be altered by the execution of a
machine instructiorr is flagged with an asterisk.

At the end of the cross-reference list, the error
summary statements are printed again.

OBJECT PROGRAM

The assembler program converts the source program
into control information, machine language instructions,
and data, all of which collectively are called an object
program. There is one object program produced per
assembly. Each object record is produced as a 64-byte
field.

Each object program generated by the assembler
contains three types of records.

« ESL (external symbol list) record
« TEXT-RLD (text-relocation directory) records

« END record

Record Formats

The following describes the format of each record type.
ESL Record: The object program name, module name,
and all EXTRN and ENTRY symbols are placed in the
ESL record. The ESL record format is:

« Byte 1: Record type identifier S.

» Byte 2: Length-1 of the ESL record.

« Bytes 3-62: ESL record.

» Bytes 63-64: Filled with zeros.

TEXT-RLD Records: Text records and RLD pointers are
combined in this type of input record. The text portion
of each record contains the object code for the program,
while the RLD pointers indicate where the address
constants and relocatable operands of the text are
located. The format for the TEXT-RLD record is:

« Byte 1: Record type identifier T.
« Byte 2: Length-1 (of text only).

« Bytes 3-4: Assembled address of the low-order
(rightmost} text byte in the record.

« Bytes 5-64: Text starts at byte 5 and goes right.
RLD starts at byte 64 and goes left. The leftmost
end of the RLD section is marked by the hexadecimal
zeros that fill the space between the text and RLD
sections. The end of text is always followed by at
least one byte of X'00'.

END Record: The last record in each object program is
an END record. The END record contains the entry
address of the object program. If the user did not
include an operand in his source program END
statement, the object program END record generated by
the assembler contains the address X'FFFF'. The format
for the END record is:

« Byte 1: Record type identifier E.
« Bytes 2-3: Entry address of the object program.

« Bytes 4-64: Unused

Programming Considerations 7-7

MACROINSTRUCTION CODING RESTRICTIONS

The generated code for some macroinstructions uses
register 1 and/or register 2. The contents of the
register used by the generated code must be saved
before issuing the macroinstruction; otherwise, the
contents are destroyed. The $WSIO macroinstruction
uses registers 1 and 2. These macroinstructions use
register 2:

$ALOC $OPEN
$CKPT $PUTD
$CLOS $PUTP
$FIND $RIT

$GETD $SIT

$INFO $SNAP
$LOAD $SORT

$LOG $TOD

The code generated by the macroinstructions is
assigned labels; these labels begin with the dollar sign
($). To avoid duplicate-label errors, do not use the
dollar sign as the first character of a label.

MACROINSTRUCTION DEFINITION RESTRICTIONS
The macro processor assumes that any ampersand

starts a variable symbol. An ampersand used elsewhere,
including within a comment, results in error ASM-5402.

78

DISK DATA MANAGEMENT CONSIDERATIONS

Access Methods

Figure 7-1 indicates which access methods may be
used with which file types. Note that four different
situations are covered on the chart.

« The combination of the file type and the access
method is not allowed by allocate or open. For these
situations, the number of the corresponding message
is given.

« The combination of the file type and the access
method is allowed. These situations are indicated by
a blank entry.

« In several situations, the actual file type of the file
will change to that of the access method. These
situations are indicated by File Change.

« The combination of the file type and the access
method cannot occur. These situations are indicated
by X.

L File Type

Consecutive Direct Indexed
DISP- DISP- DISP- DISP- DISP- DISP-
NULL NULL NULL NULL NULL | NULL
DISP- [DISP- |DISP- |Existing | New |DISP-|DISP-| DISP- |Existing | New |DISP- |DISP- |DISP- |Existing| New
OLD |NEW |SHR |File File |OLD [NEW| SHR [File File |OLD |NEW [SHR |File File
CG ALOC
1356 X X X X
Cu ALOC OPEN OPEN]|OPEN
1356 2204 2201 [2204
X X X 2204 X
CA OPEN OPEN [OPEN OPEN OPEN|OPEN
2202 2201 |2202 2204 2201 |2204
X 2202 X X 2204 X
(0] ALOC]|ALOC File ALOC|ALOC File ALOC|ALOC
1360 |1359 Change 1360 |1359 Change 1360 | 1359
1360 1360 1360
° 1361 X 1361 X X 1361 X
£
2 DG ALOQ
g DGA X X 1356 X X
< pu ALOG -
DUA X X 1356 X X
DO |File ALOC|ALOC ALOC|ALOC File ALOC| ALOC
DOA] Change 1360 | 1359 1360 | 1359 Change 1360 | 1359
1360 1360 1360
X 1361 X 1361 X 1361 X
IR OPEN OPEN|OPEN OPEN OPEN|OPEN ALOC
2203 | X 2203 | 2203 X 2203 | X 2203 |2203 X 1356
IRU | OPEN OPEN|OPEN OPEN OPEN|OPEN ALOC
2203 | X 2203 | 2203 X 2203 | X 2203 |2203 X 1356
- 1A
IRA OPEN OPEN| OPEN OPEN OPEN |OPEN ALOC
IRUA 2203 | X 2203 | 2203 X 2203 | X 2203 | 2203 X 1356
10 |File ALOC| ALOC File ALOC|ALOC ALOC|ALOC
Change 1360 | 1359 Change 1360 | 1359 1360 | 1359
1360 1360 1360
X 1361 X X 1361 X 1361
(Figure 7-1 (Part 1 of 2). Access Methods

Programming Considerations 7-9

Access Method

ISU

ISA
ISUA

ISRI

ZPAMI

ZPAMA

ZPAMO

File Type

Consecutive Direct Indexed
pDISP- | DISP- DISP- | DISP- DISP- | DISP-
NULL |NULL NULL NULL NULL |NULL
DISP- | DISP- | DISP- [Existing | New |DISP- |DISP- [DISP- [Existing | New |DISP- |DISP- [DISP- |Existing | New
OLD |NEW |SHR [File File [OLD |NEW [SHR [File File |OLD |NEW |SHR |[File File
OPEN OPEN [OPEN OPEN OPEN |[OPEN ALOC
2203 | X 2203 |2203 X 2203 |X 2203 |2203 X 1356
OPEN OPEN |OPEN OPEN OPEN |OPEN ALOC
2203 | X 2203 [2203 X 2203 |X 2203 [2203 X 1356
OPEN OPEN |OPEN OPEN OPEN [OPEN OPEN ALOC
2203 2201 [2203 2203 2201 (2203 2201 1356
X 2203 X X 2203 X
OPEN OPEN |OPEN OPEN OPEN |OPEN ALOC
2203 | X 2203 |2203 X 2203 |X 2203 (2203 X 1356
ALOC
1356 X X X X
OPEN OPEN OPEN |OPEN OPEN OPEN |OPEN
2201 2202 (X 2201 |2202 X 2204 |X 2201 |2204 X
ALOC|ALOC File ALOC|ALOC File ALOC|ALOC
1360 |1359 Change 1360 |1359 Change 1360 |1359
1360 1360 1360
1361 X 1361 X X 1361 X

Figure 7-1 (Part 2 of 2). Access Methods

7-10

Of the access methods listed in Figure 7-1, the ISRI
and ZPAM (ZPAMI, ZPAMA, ZPAMO) methods require
the user program to provide space for the access
method code.

The ISRI (indexed sequential/random input) access
method is similar to random-by-key access into an
indexed file. A key, which you specify, is retrieved along
with the corresponding data record. At this point, you
can choose to do one of the following:

Request that the next key be read (OP-FGET).
« Request that the previous key be read (OP-BGET).

« Provide a new key and request another random read
(OP-NGET).

« Provide a new key and specify reading of the equal
key, the next higher key, or the last key, whichever is
encountered first (OP-AGET). ISRI then looks for a
key (and its corresponding record) that equals the key
you provide. If an equal key is not found, ISRI
returns the next higher key {(and record). If neither an
equal nor a higher key is found and you are not
accessing a delete-capable file, ISRI returns the last
record in the primary portion of the file. The primary
portion is the part of the file that reflects the ordered
keys in the index. If you are accessing a
delete-capable file, the last record in the primary
portion may be a deleted record. In this case, ISRI
returns the record not found completion code. You
can specify OP-BGET in response to the record not
found completion code. OP-BGET causes ISRI to
read backward through the file, skipping deleted
records until a valid key is found.

Only index entries in the primary index area can be
accessed through ISRI, and only input operations are
supported by ISRI. Master track index is not supported
when you use the ISRI access method.

The ZPAM access methods are used to process disk
sectors of data rather than records. The amount of data
transferred must be a multiple of 256 bytes. This
provides an easy way of moving large amounts of data
rapidly. During processing, the record length of the file
is not used by data management; rather, data
management processes a number of disk sectors of data
based upon the block length you specify. Processing of
the disk sectors through ZPAM is consecutive. Input,
output, and add functions are supported through ZPAM.

Data Management Control Blocks and Buffers

To interface with disk data management, you are
required to provide storage space for interface
information. These areas must be available to the
system from the time the file is allocated until it is
closed.

DTF

The DTF is the major control block for communication
between data management and you. It provides the
information needed to allocate, open, access a file on
the disk device, and close the file. It also contains
pointers to the other control blocks and the buffer areas.
The DTF can vary in length from 72 bytes for a
consecutive access to 138 bytes for an indexed
sequential access. For information on generating a disk
DTF, see Define the File for Disk ($DTFD) in Chapter 6.

1/0 Buffer Area

This area is divided into the required disk input/output
blocks (IOBs) and physical buffer areas by disk open. |f
the access to the file is indexed, two I0Bs are built;
otherwise, one is built.

In the event of very limited user main storage in relation
to the size requirements of the physical buffers for disk,
it may be advantageous to use the SIAM method to
allocate buffers. Through SIAM, the same storage area
may be used for a physical buffer for any or all disk
files. Data management will then use this area as a
physical buffer for every file specified as SIAM. Care
should be taken, however, in the use of SIAM since
many more |/O operations are required when SIAM is
specified for a file. This may hinder the performance of
the job.

Logical Buffer Area

Whenever data is being written to disk (through output,
add, or the output portion of an update), you must
provide a logical buffer. This allows data management
to move the data from the logical buffer to the physical
buffer. This type of processing is known as move
mode.

Programming Considerations 7-11

Master Track Index Area

To aid the performance of the indexed random and
indexed sequential within limits access methods for
large files, you may supply data management with main
storage space for a master track index. This area will be
formatted by open so that the requested key within the
index area of the indexed file may be located more
easily. It is in effect an index into the index area or a
second-level index. Master track index is not supported
when you use the ISRI access method.

Address of Data Management Routines

While much of data management may be used without
reserving space, you must reserve space if you are
accessing disk through ISRI or ZPAM. This area will be
initialized at open time.

If you are using two DTFs with the same access method
(ISRI or ZPAM), you need reserve only one area.

Requested Record Number or Key Area

While processing under a direct access method, the user
must specify a relative record number of the requested
record. While processing under an indexed random
access method, the user must specify the key of the
relative record number. This area correlates to the
KEYADD parameter of the $DTFD macroinstruction.

Key Hold Areas

While processing under index sequential access method,
the user must provide a space two key lengths long for
the use of data management. This area correlates to the
CURENT parameter of the $DTFD macroinstructions.

Key Limits Area
When the use of key limits is requested, the user must
provide an area for containing the low and high limits.

This area correlates to the HIGH parameter of the
$DTFD macroinstruction.

7-12

Allocating and Opening the File

Before processing data from any disk file, the file must
be allocated ($ALOC) and opened ($OPEN). $ALOC and
$OPEN perform the following operations:

« |f the file is new, space on the disk is reserved for
the data and the space is initialized.

« Diagnostics are performed to ensure that the access
method and file organization are compatible and that
all necessary information about the file was provided.

« The input/output blocks (I0Bs) and buffer areas are
formatted.

« The DTF is formatted to a post-open state.

For more information on the $ALOC and $OPEN
macros, see Allocate Space or Device ($ALOC) and
Prepare a Device or File for Access ($OPEN) in Chapter
6.

Accessing Records in the File

After the file has been allocated and opened, you may
begin accessing records of that file. The
communications vehicle between your calling program
and the disk data management program is the same
DTF that was used for allocating and opening the file.
Certain fields in the DTF are for communication from the
calling program to data management, some are for
communication from data management to the calling
program, some are bidirectional communication fields,
and still other DTF fields are for internal data
management use only.

Several DTF communication fields are pointers to main
storage areas. (These main storage areas will be
referred to as DTF areas in order to differentiate them
from the DTF fields.) Each field in the DTF has a name
as defined in the $DTFO macro expansion. Those field
names (excluding the prefix, $F1) will be used to identify
specific fields and areas.

Figure 7-2 describes the DTF fields that comprise the
external interface. All DTF fields not described on this
chart are reserved for internal data management use and
may not be altered or otherwise depended upon by any
calling program.

DTF
Field
—DEV

—AT1*

—NAM

—OPC

—WKB

—CMP

—RCL

—BKL

-10B

—KAD

—KD

—-AT2*

How Specified
Macro/Keyword
$DTFD/*

$DTFD/ACCESS

$DTFD/NAME

$GETD & $PUTD/
UPDATE or
DELETE

$DTFD/RCAD

$DTFD/RECL

$DTFD/BLKL

$DTFD/IOAREA

$DTFD/KEYADD

$DTFD/KEYL

$DTFD/KDISP

$DTFD/ORDLD

Direction of
Communication
C/P (Vector) D/M

-

=

=

Figure 7-2 (Part 1 of 2). DTF Fields

Access
Methods
Applicable

All

All

All

All

All

All

All

All

All

I/R

I/R
1/

I/R
1/s

I/R
1/s

Reqd

Yes

Yes

Yes

Yes

Yes*

Yes

Yes

Yes

Yes*

Yes

Yes

No*

Set By

c/p

c/P

c/p

c/p

c/P
b/m

D/M

c/p
c/p
c/p
OPEN

c/P
OPEN**

c/p

c/p

c/P

Can Be Altered

After Open Notes

No *No keyword applies to
this field.

No *Also certain bits in other
ATTR bytes may be set
by $DTFD.

No

Yes For ISRI, BGET and FGET

may be specified .

Yes *Required of C/P for
update and delete
add/output.

Yes *See section on completion
code,

No

No* *Can be altered after open
for ZPAM or direct access
methods.

No

Yes*** *Not required for I/R
output.

**Alter by open for I/R
accesses.
***User beware basis—
alterable.

No

No

No *|f indexed access part of

AT2 affected.

Programming Considerations 7-13

DTF
Field

—CHN

—CUR

—LST

—HI

-LO

~AT*

—PBF

—AT*

—AT*

—AT*

—-DMA

Direction of
How Specified Communication
Macro/Keyword C/P (Vector) D/M

$DTFD/CHAIN ->*

$DTFD/CURENT -

$DTFD/CURENT -

$DTFD/HIGH* -

$DTFD/HIGH* -

$DTFD/SIAM ->

$DTFD/IOBUF ->

$DTFD/ERROR -
$DTFD/RETURN -
$DTFD/BUFNO -
$DTFD/LIMIT -

$DTFD/MSTNDX -

$DTFD/MSTBYT -

$DTFD/DMADDR -

C/P = calling program
D/M = data management

Figure 7-2 (Part 2 of 2). DTF Fields

7-14

Access
Methods
Applicable

All

1/s

I/S

1/S

I/S

ALL

ALL*

ALL
ALL
CONS
1/S

I/R
I/sLL*

I/R
I/sLL*

ISRI
ZPAM

Reqd

No

Yes

Yes

No

No

No

No*

No

No

No

No

No

No

Yes*

Set By

C/pP

OPEN*

c/P

OPEN*

c/p

OPEN
C/P

c/p
c/p
c/P
c/p

c/p

c/p

Can Be Altered
After Open

No

No

No

No
No
No
No

No

No

Notes

*Communication to
ALLOC and CPEN.

*Set by OPEN based on
CURENT.

*Used when limit specified.

*Set by OPEN based on
HIGH.

*Part of field.

*Need only be specified
with SIAM or ZPAM.

*Part of field.
*Part of field.
*Part of field.
*Part of field.

*Indexed sequential
within limits.

*Indexed sequential
within limits.

*For the special access
methods specified.

DTF Fields Common To All Access Methods

As noted in the previous chart, several DTF fields are
used for communication between the calling program
and data management. The following are used for all
access methods:

« WKB Area

DEV Field

ATI Field

Is initialized by the $DTFD macro to
specify a disk DTF.

Reflects the general type of access
method specified. Other attribute
bytes further qualify the access
method.

NAM Field Specifies the file name. The NAM

OPC Field

field must correspond to the name
specified in the FILE statement.

Specifies either input, output,
update, or delete. If output is
specified here, the attributes are
checked to distinguish add from
normal output.

WKB Field Contains a logical record pointer.

CMP Field

RCL Field

This is a bidirectional field. For
output type operations (output,
update, or add), the calling program
must point to the beginning of the
logical record for output. For
successful input operations, data
management points to the beginning
of the logical record retrieved
(always within the physical buffer).

Contains a logical record with the
length specified in RCL field.

Contains completion code upon
return from data management. This
field tells whether the operation was
successful; and if not, why not. See
Return Conditions later in this
chapter.

Contains logical record length set by
calling program.

« BKL Field

« |OB Field
and Area

« CHN Field

« AT2-3-4
Fields

Contains block length set by user.
In general, this length must be a
multiple of 256 bytes. In particular,
for input operations (which are
always in locate mode) and the DO
and DOA access methods (which
involve internal input operations), the
following rules apply:

— If the record length is a power
of 2, then BKL must be at
least (RCL + 255) rounded
down to the next multiple of
256.

— |If the record length is not a
power of 2, then BKL must be
at least (RCL + 255) rounded
up to the next multiple of 256.

At DTF creation, contains a

pointer to the left byte of the 1/0
area provided by the calling
program. This area must be large
enough to hold all necessary I0Bs
and physical |/0 buffers.
Furthermore, the area must be large
enough or aligned such that OPEN
can begin each buffer on an 8-byte
boundary. Unless you are using
SIAM, the following formulas can be
used:

Consecutive or Direct Accesses:
32 + 7 + (BKL * BUFNO)
Indexed Accesses:
2(32) + 7 + 264 + BKL

32 is the 10B length.

OPEN, in addition to dividing this
area as indicated, fills the DTF field
PBF with the beginning address of
the physical |/O buffer (unless
SIAM or ZPAM is specified).

Contains pointer to next DTF on
chain if calling program chooses to
allocate and/or open several DTFs
with one call. The last DTF on a
chain should not specify the CHAIN
parameter.

Contain information which qualifies
the access method, tells whether
SIAM was specified, and tells what to
do in case of 1/O error.

Programming Considerations 7-16

Consecutive Processing Fields

Consecutive processing is used when you want to
process each record in order of physical location within
the file.

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, there is one
other field you can specify for consecutive processing:

« BUFNO Attribute Field Specifies whether or not
you want a double size buffer.

Direct Processing Fields

Direct processing is used when you want to process a
file randomly by relative physical location of the data
record.

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, you must
specify one other field and one other area for direct

processing:

« KAD Field Contains a pointer to left byte of the
area that contains the relative record
number of the record to be
processed.

« KAD Area For direct processing, this is either a
3-byte or a 10-byte area depending
on whether the relative record
number is binary (3 bytes) or
decimal (10 bytes). In either case,
the number is right justified.

If binary relative record numbers are
used, the first record position in the
file is 0 and the binary number of
the highest possible position is
equivalent to decimal 16711407 and
hexadecimal FEFEEF. If decimal
relative record numbers are used,
the first record position in the file is
1 and the number of the highest
possible position is 9999999. The
number specified is used as an
absolute value.

7-16

Indexed Random Processing Fields

Indexed random processing is used when you want to
process an indexed file and want the capability to
process randomly by key value.

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, the following
are used for indexed random processing:

+ KAD Field For indexed random processing at
DTF creation, this field must point to
the left byte of an area the length of
one key. Open adjusts this pointer
to make it a right-byte pointer to
the area. When interspersing input
operations with update, delete, or
add operations, this field must be
reinitialized as a right-byte pointer
before each input operation. Note
that this field is also used in direct
processing.

+ KAD Area Contains the key value of the record
to be processed at each entry to
data management. The calling
program should ensure that no byte
contains a value of X'FF'.

For update-, delete-, or
add-capable processing (accesses
IRU or IRUA), this area must not be
within the logical record area.

» KL Field Contains the key length (a binary
number).
« KD Field Contains the key displacement (a

binary origin O number) to the
rightmost byte of the key in the
record. For example, if the
rightmost byte of the key is in the
eighth byte position of the record,
then KD must contain the value 7.

C

« MIX Field Optional master index pointer field,
which points to the leftmost byte of
an area where the master index is
built by open.

o BYT Field Used in conjunction with the MIX
field, specifies length of field. Must
be a multiple of (KL + 3).

« MIX Area Must not be altered by the calling
program after open.

Indexed Sequential Processing Fields

Indexed sequential processing is used when you want to
process an indexed file in ascending order by key. With
this access method, you have access only to the primary
portion of the file, which is the part reflected by the
ordered keys in the index. With the IFILE characteristic,
you have access to both the primary portion of the file
and the overflow portion of the file. (For information
about ISRI, see Access Methods in this chapter.)

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, the following
are used for indexed sequential processing:

KL Field

Key length (see Indexed Random
Processing Fields).

« KD Field Key displacement (see Indexed
Random Processing Fields).

« CUR Field Contains pointer to a 2-key-length
area. Prior to open, it is a left-byte
pointer. After open, the CUR area is
divided into two subareas, current
and last.

« CUR Area This 2-key-length area is reserved by
data management after open.
« Hl Field When using limits processing, this is
a required field that, before open,
points to the leftmost byte of a
2-key-length area. After open, the
HI area is divided into two subareas,
high and low.
« Hl Area The above 2-key-length area is
reserved by data management after
open.

« AT2 Field Part of this field tells whether
LIMITS is specified.

The following fields can also be used if you specified
limits processing (LIMIT-Y):

« MIX Field Optional master index pointer field,
which points to the leftmost byte of
an area where the master index is
built by open.

« BYT Field Used in conjunction with the MIX
field, specifies length of field. Must
be a multiple of (KL + 3).

« MIX Area Must not be altered by the calling
program after open.

Updating Records

Update is used when one or more fields of an existing
record are to be changed. In general, prior to issuing an
update operation to data management, you must have
just issued an input operation for that record. If you
issue an add operation between an input operation and
an update operation, the update will not be successful.

Although you may succeed at times in the practice of
doing an input followed by several updates to that
record, that practice is discouraged for two reasons.
One is performance; the other is that the sequence will
not be successful when either SIAM or file sharing is
designated.

You must generally avoid updating records within the
physical buffer. In the event of SIAM or file sharing,
data management primes the |/0O buffers as part of the
update process. Hence, updates would be lost. After
receiving the input, move the record to the logical record
area (specified by the RCAD parameter in $DTFD)
outside the 1/0 buffer, make any desired field updates,
then issue an update operation.

Finally, you cannot change the KAD area value between
an input, update sequence.

Programming Considerations 7-17

Deleting Records

Delete is used when you want to delete a record from a
file. After a record is deleted, it is no longer accessible.
The record is not physically removed from the file, but
the data is erased.-

The rules for deleting records are the same as those for
updating records. Updating records is described in
preceding paragraphs.

Adding Records

Add is used when more records are to be included in an
existing file.

Direct access method add is not a supported function.

Index sequential add requires that you first issue get
operations (beginning with the lowest key in the file)
until you encounter the first key higher than the key you
want to add or until end of file is reached. At that point
you can issue an add operation.

7-18

Return Conditions

The following list describes all currently defined return
conditions. These are conveyed in the completion code
field in the DTF. For the actual labels and hex values of
the return codes, see the values generated by the
$DTFO macroinstruction.

« Normal return

« Permanent disk error

« End of file

« Invalid operation code

« Record not found—indexed random

o Out of extent—direct

« Update—previous operation not input

« Invalid key—indexed random

« Invalid block length

« Direct—record not found

« Invalid update, add, or output

« Update key error

« Override—deleted record not found

« Direct—put to nondeleted record

¢ Duplicate key add attempted

« Out of sequence

« End of extent

« Undefined access type

« DTF not opened

Terminating The File

When all desired records have been processed, you
should close ($CLOS) the file . Once the DTF has been
through close, no additional record processing is allowed
via that DTF unless and until the process of allocate and
open is repeated. For more information on the $CLOS
macroinstruction, see Prepare a Device or File for
Termination ($CLOS) in Chapter 6.

C

DISPLAY STATION DATA MANAGEMENT
CONSIDERATIONS

Following each DTF operation issued via $WSIO, a
2-byte return code is passed back in the DTF at
displacements $WSRTC-1 and $WSRTC. The return
codes possible after the various $WSIO operations are
described here, except for operations issued to the
interactive communications feature. Return codes from
the interactive communications feature are described in
the Interactive Communications Feature Reference
Manual. All the return codes listed for an operation are
mutually exclusive.

Note: For a guide to work station data management
concepts and considerations, see the Concepts and
Design Guide.

GET and ACI Return Codes

After a GET or ACI operation, the following return codes
are possible at $WSRTC:

Label Value Explanation

$WSROK X'00’ Operation successful
$WSRACC X'01’ New requester
$WSRSTP X'02' Stop system requested

by system operator (see
the System Data Areas
and Diagnostic Aids
Handbook for the
contents of $WSRTC-1)

$WSRACR X117 ACI rejected. No invites

outstanding.

$WSRKBD X114 Input rejected, keyboard

disabled.

$WSRNAV X'24' Display station released
by display station

operator

$WSRREL X'28' GET rejected. Display
station previously

released by program.

$WSRIRJ X'34' Input rejected. Input
buffer (INLEN parameter)

too small

$WSRPE X'80° Permanent 1/0 error
occurred at the display
station. In response to
the error, the system
operator selected a 2

option.

ACQ Return Codes

After an ACQ operation, the following return codes are
possible at $WSRTC:

Label Value Explanation

$WSROK X' 00 ACQ successful

$WSRAQO X'08' ACQ successful. Display
station already allocated

to the task.

ACQ failed. Display
station allocated to a

$WSRAFW xX'18’

non-NEP.

$WSRAFS X'32 ACQ failed. Unauthorized
user.

$WSRAFN X'38’ ACQ failed:

— Display station is not
in standby mode.

— Display station is in
command reject mode.

— A permanent |/0O error
occurred at the display
station.

— The display station is
allocated to an NEP.

STI Return Codes

After an STI operation, the following return codes are
possible at $WSRTC:

Label Value Explanation

$WSROK X'00
$WSRNAV X'24

STI successful

Display station released
by display station
operator

$WSRREL X'28 STl ignored. Display
station previously

released by program.

STI failed. Display
station operator entered
data, which should be
read by a GET or ACI
operation.

$WSRSPF X'44’

Permanent 1/0 error
occurred at the display
station. In response to
the error, the system
operator selected a 2
option.

$WSRPE X80

Programming Considerations 7-19

Return Codes for All Operations Except GET, ACI, Label Value

ACQ, and STI

$WSRG! X561

After any operation except GET, AC|, ACQ, and STI, the
following return codes are possible at $WSRTC:

Label

$WSROK

$WSRNAV

$WSRREL

$WSRIRJ

$WSRDFL

$WSPOGE

$WSRGRF

7-20

Value

X00
X4

X288

X'34'

X'40°

X'45’

X580’

Explanation $WSRGU X'52’
Operation successful

Display station released
by display station
operator

Operation ignored.
Display station previously
released by program.

Input rejected. Input
buffer (INLEN parameter)
too small.

Printer specified by print
operation is offline.

Invalid ideographic
character during print

operation. $WSRPE X'80'

On an output operation, a
display station
ideographia. character
table full of ideographic
characters was detected.
The user selected a 2
option.

Explanation

On an output operation, J

an invalid ideographic
character was found. The
user selected a 2 option.

On an output operation,
one of the following -
errors was detected:

« An undefined
ideographic character
was found.

« The extended file of
ideographic characters
has not been
allocated.

« The extended file of
ideographic characters
has not been restored.

The user selected a 2
option.

Permanent |/0 error
occurred at the display

station. In response to '
the error, the system J
operator selected a 2

option.

MACROINSTRUCTION STATEMENT ERRORS

Any errors made in coding macroinstructions are flagged
in the $ASMINPT file by placing an error code and an
error message immediately after the macroinstruction.
The error code and message are then printed on the
assembly listing when the source program is assembled.

The following listing shows the error codes that may be
caused by errors in macroinstructions. Other error
codes may be generated by the macro processor and
are caused by errors in the macroinstruction definitions.

ASM-2600 INVALID V PARAM GIVEN. NO
MACRO CODE GENERATED.

Explanation: Something other than DC, EQU or ALL
was coded for V parameter.

ASM-2601 INVALID TYPE PARAM SPECIFIED.
TYPE-DEC ASSUMED.

ASM-2602 INVALID ITYPE PARAM
SPECIFIED. ITYPE-REAL
ASSUMED.

ASM-2603 INVALID CANCEL PARAM
SPECIFIED. CANCEL-N ASSUMED.

ASM-2604 INVALID WAIT PARAMETER
SPECIFIED. WAIT-N ASSUMED.

ASM-2605 UPDATE-Y AND DELETE-Y BOTH
SPECIFIED. DELETE-Y ASSUMED.

ASM-2606 INVALID NREF PARAMETER
SPECIFIED. NREF-N ASSUMED.

ASM-2607 INVALID XLOFF PARAM
SPECIFIED. XLOFF-N ASSUMED.

ASM-2609 RCAD PARAMETER NOT
SPECIFIED. ZEROS ASSUMED.

Chapter 8. Printed Messages

ASM-2610 NAME PARAM NOT SPECIFIED.
NAME-FILENAME ASSUMED.

ASM-2611 I0AREA PARAMETER NOT
SPECIFIED. ZEROS ASSUMED.

ASM-2612 ACCESS PARAMETER NOT
SPECIFIED. ACCESS-CG
ASSUMED.

ASM-2614 DMADDR PARAM GIVEN BUT
NOT NEEDED. PARAM IGNORED.

ASM-2615 DMADDR PARAMETER NOT
SPECIFIED. ZEROS ASSUMED.

ASM-2617 RECL PARAMETER NOT
SPECIFIED. RECL-32 ASSUMED.

ASM-2618 RECL PARAMETER GREATER
THAN 4096. RECL-32 ASSUMED.

ASM-2619 BLKL PARAMETER NOT
SPECIFIED. BLKL-256 ASSUMED.

ASM-2620 10BUF PARAMETER USED
INVALIDLY. PARAMETER
IGNORED.

Explanation: This parameter is valid only with
SIAM-Y and ZPAM access methods.

ASM-2621 KEYADD PARAMETER NOT
SPECIFIED. HEX FFFF ASSUMED.

ASM-2622 KEYL PARAM NOT SPECIFIED,
INDEXED FILE. 1 ASSUMED.

ASM-2623 KDISP PARAM NOT GIVEN,
INDEXED FILE. 0 ASSUMED.

Printed Messages 8-1

ASM -2624

ASM-2625

ASM-2626

ASM-2627

ASM-2628

ASM-2629

ASM-2630

ASM-2631

ASM-2632

ASM-2633

ASM-2634

ASM-2635

ASM-2636

8-2

CURENT PARAMETER NOT
SPECIFIED. HEX FFFF ASSUMED.

HIGH PARAMETER NOT
SPECIFIED. HEX FFFF ASSUMED.

KEYADD INVALID FOR
CONSECUTIVE ACCESS.
IGNORED.

KEYL INVALID FOR NON-INDEXED
ACCESS. IGNORED.

KDISP INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

MSTNDX INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

CURENT INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

HIGH INVALID FOR NON-INDEXED
ACCESS. IGNORED.

ORDLD-Y INVALID FOR
NON-INDEXED OUTPUT.
IGNORED.

LIMIT-Y INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

BUFNO-2 INVALID,
NON-CONSECUTIVE ACCESS.
IGNORED.

SIAM-Y REQUIRES IOBUF PARAM.

HEX FFFF ASSUMED.

GET AND PUT BOTH GIVEN. NO
MACRO CODE GENERATED.

ASM -2637

LENGTH OR OFFSET INVALID. NO
MACRO CODE GENERATED.

Explanation: Something other than a decimal value
from 1 to 256 was coded.

ASM-2638

ASM-2639

ASM-2640

ASM-2641

ASM-2642

ASM-2643

ASM-2644

ASM -2645

ASM-2646

ASM-2647

ASM-2648

ASM-2649

ASM-2650

FROM MISSING LEFT PAREN. NO
MACRO CODE GENERATED.

FROM PARAM MISSING REG. NO
MACRO CODE GENERATED.

FROM PARAM MISSING DISP. NO
MACRO CODE GENERATED.

TO MISSING LEFT PAREN.
MACRO GENERATION STOPPED.

TO PARAM MISSING REG.
MACRO GENERATION STOPPED.

TO PARAM MISSING DISP.
MACRO GENERATION STOPPED.

PLIST-2 WITH LOAD PARAM.
MACRO GENERATION STOPPED.

INVALID TYPE PARAMETER.
MACRO GENERATION STOPPED.

FORMAT INVALID WITH TYPE
GIVEN. FORMAT IGNORED.

HALT INVALID WITH TYPE GIVEN.
HALT IGNORED.

TYPE GIVEN REQUIRES DRADD
PARAM. HEX FFFF ASSUMED.

TYPE GIVEN REQUIRES MSGAD
PARAM. HEX FFFF ASSUMED.

HALT-Y REQUIRES OPTNO,
OPTN1, OPTNZ2, OR OPTN3.

ASM-2651 INVALID DRLEN PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than 8 or 60 was
coded.

ASM-2652 HIST-N, CRT-N BOTH GIVEN. NO
MACRO CODE GENERATED.

ASM-2653 TYPE GIVEN REQUIRES DRLEN
PARAM. DRLEN-8 ASSUMED.

ASM-2654 TYPE GIVEN REQUIRES MSGLN
PARAM. MSGLN-75 ASSUMED.

ASM-2655 TYPE PARAMETER NOT
SPECIFIED. TYPE-1 ASSUMED.

ASM-2656 INVALID TYPE PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than 1, 1R, 2, 2R, 3 or
4 was coded.

ASM-2657 TYPE GIVEN REQUIRES MIC
PARAM. HEX 0001 ASSUMED.

ASM—-2658 INVALID WRSTE PARAMETER.
NO MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2659 INVALID HALT PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2660 INVALID FORMAT PARAMETER.
NO MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2661 INVALID HIST PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2662 INVALID CRT PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM—-2663 INVALID OPTNO PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM—-2664 INVALID OPTN1 PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2665 INVALID OPTN2 PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2666 INVALID OPTN3 PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2667 INVALID SPACE PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than 1, 2, or 3 was
coded.

ASM-2668 INVALID SKIP PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2669 INVALID VARIN PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was
coded.

ASM-2671 FORMAT-N, HALT-Y GIVEN. NO
MACRO CODE GENERATED.

Printed Messages 8-3

ASM-2672 WRSTE PARAMETER NOT
SPECIFIED. WRSTE-Y ASSUMED.

ASM-2673 FORMAT PARAMETER NOT
SPECIFIED. FORMAT-N
ASSUMED.

ASM-2674 HALT PARAMETER NOT
SPECIFIED. HALT-N ASSUMED.

ASM—-2675 SPACE PARAMETER NOT
SPECIFIED. SPACE-1 ASSUMED.

ASM-2678 LOADER-Y INVALID WITH TYPE
GIVEN. PARAM IGNORED.

ASM-2679 INVALID CODE PARAMETER.
MACRO GENERATION STOPPED.

ASM-2680 BLKL PARAMETER AND RECL
PARAMETER CONFLICT.

Explanation: BLKL must be equal to or greater than
RECL.

ASM-2681 STATION IDS RECOMMENDED ON
SWITCHED LINES.

ASM-2682 INVALID TRANSP PARAMETER.

Explanation: Something other than Y or N was
coded.

ASM—-2683 INVALID ITB PARAMETER.

Explanation: Something other than Y or N was
coded.

ASM-—-2684 INVALID UPSI PARAMETER.

ASM—-2685 INVALID CODE PARAMETER.

Explanation: Something other than E or A was coded.

ASM-2686 RCAD PARAMETER REQUIRED.

ASM—-2687 ITB PARAM, TRANSP PARAM
AND FTYP PARAM CONFLICT.

84

ASM-2688 TRANSP PARAMETER AND CODE
PARAMETER CONFLICT.
Explanation: TRANSP is valid only with CODE-E.
ASM-2689 FTYP PARAMETER REQUIRED.
ASM--2690 INVALID TYPE PARAMETER.
ASM—-2691 INVALID BUFNO PARAMETER.
ASM-2692 RECL PARAMETER REQUIRED.
ASM—-2693 TERMAD PARAMETER AND TYPE
PARAMETER CONFLICT.
Explanation: TERMAD is valid only with TYPE-MP.
ASM-2694 INVALID TERMAD PARAMETER.
ASM-2695 TERMAD PARAMETER REQUIRED.
ASM—-2696 INVALID DLYCT PARAMETER.

ASM-2697 BLKL PARAMETER REQUIRED.

ASM-2698 RVIMSK PARAMETER AND
RVIADR PARAMETER CONFLICT.

ASM—-2699 INVALID ERRCT PARAMETER.

ASM-2700 RCVID PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with
switched lines.

ASM-2701 RCVCT PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with
switched lines.

ASM-2702 RCVCT PARAMETER REQUIRED.

ASM-2703 RCVID PARAMETER REQUIRED.

ASM-2704

ASM-2705

INVALID RCVCT PARAMETER.

SNDID PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with
switched lines.

ASM-2706

SNDCT PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with
switched lines.

ASM-2707

ASM-2708

ASM-2709

ASM-2710

ASM-2711

ASM-2712

ASM-2713

ASM-2714

ASM-2715

ASM-2716

ASM-2717

ASM-2718

ASM-2768

SNDCT PARAMETER REQUIRED.

SNDID PARAMETER REQUIRED.

INVALID SNDCT PARAMETER.

RECSEP PARAMETER AND ITB
PARAMETER CONFLICT.

RECSEP PARAMETER AND
TRANSP PARAMETER CONFLICT.

INVALID RECSEP PARAMETER.
RECSEP PARAM IGNORED.

INVALID SKIP PARAMETER.
SKIP-N ASSUMED.

INVALID LOADER PARAMETER.
LOADER-N ASSUMED.

LOADER-N GIVEN OR ASSUMED.
LOAD PARAMETER IGNORED.

INVALID TYPE PARAMETER.
TYPE-O ASSUMED.

INVALID OPC PARAMETER
SPECIFIED. OPC-N ASSUMED.

NAME PARAMETER REQUIRED.
BLANKS ASSUMED.

V PARAM NOT ALLOWED WHEN
PLIST-INLINE SPECIFIED.

ASM-2769 LABEL PARAMETER MISSING. NO
MACRO CODE GENERATED.

ASM-2770 INVALID IMSG PARAMETER.
IMSG-ALL ASSUMED.

ASM-2771 TYPE PARAMETER REQUIRED.

ASM-2772 SYMID PARAMETER LENGTH
INVALID.

Explanation: The SYMID parameter must be 2
characters long.

ASM -2773 CTYPE PARAMETER REQUIRED.

ASM-2774 INVALID CTYPE PARAMETER.

Explanation: See the Interactive Communications
Feature Reference Manual for a description of the
CTYPE parameter.

ASM-2775 LUNUM PARAMETER LENGTH
INVALID.

Explanation; The LUNUM parameter must be 3
characters long.

ASM—-2776 RECL PARAM INVALID WITH
RECLAD PARAM.

ASM—2777 SSENSE PARAMETER LENGTH
INVALID.

Explanation: The SSENSE parameter must be 4
characters long.

ASM-2778 USENSE PARAMETER LENGTH
INVALID.

Explanation: The USENSE parameter must be 4
characters long.

ASM-2779 INVALID DR1 PARAMETER. DR1-Y
ASSUMED.

Explanation: See the Interactive Communications
Feature Reference Manual for a description of the
DR1 parameter.

Printed Messages 8-5

ASM-2780 INVALID DR2 PARAMETER.
DR2-N ASSUMED.

Explanation: See the Interactive Communications
Feature Referénce Manual for a description of the
DR2 parameter.

ASM-2781 INVALID ERI PARAMETER. ERI-Y
ASSUMED.

Explanation: See the Interactive Communications
Feature Reference Manual for a description of the
ERI parameter.

ASM-2782 USERLB IGNORED WHEN
SOURCE NOT SPECIFIED.

ASM—-2783 INPUT2 THROUGH INPUT8 MUST
BE GIVEN SUCCESSIVELY.

ASM—-2784 INVALID ALTSEQ PARAM
SPECIFIED. ALTSEQ-N
ASSUMED.

ASM—-2785 INVALID KASRT PARAMETER
GIVEN. KASRT-N ASSUMED.

ASM—-2786 INVALID USE OF RECFMT
PARAMETER.

ASM-3500 REQUIRED STATEMENT LABEL
MISSING.!

ASM-3501 PARAMETER 1 MISSING OR
INVALID.!

ASM-3502 PARAMETER 2 MISSING OR
INVALID.'

'For a description of the required value, see the 1255
Magnetic Character Reader Reference Manual.

8-6

ASM-3503 PARAMETER 3 MISSING OR
INVALID.

"ASM—3504 PARAMETER 4 MISSING OR

INVALID.

ASM-3505 NO CASE KEYWORDS
SPECIFIED.!

ASM-3506 EDIT PARAMETER INVALID.'.

ASM-3507 DELIMS PARAMETER MISSING
OR INVALID.!

ASM-3508 INCLDL PARAMETER INVALID.".

ASM-3509 $DE STATEMENT ALREADY
ISSUED.

Explanation: Only one $DE macroinstruction is
allowed in a single program. For a description of
$DE, see the 1255 Magnetic Character Reader
Reference Manual.

ASM-3510 EXCLUD PARAMETER INVALID.'

ASM-3511 DLSEQ PARAMETER MISSING OR
INVALID.

ASM—-3512 ALTCLS PARAMETER INVALID.'

ASM-3513 NUM PARAMETER MISSING OR
INVALID OR DUPLICATE.

Explanation: The NUM parameter is missing, is
invalid, or duplicates the NUM parameter on a
previous $DF macroinstruction. The $DF
macroinstruction is described in the 1255 Magnetic
Character Reader Reference Manual.

C

ASM-3514 MAXL PARAMETER MISSING OR
INVALID.!

ASM-3515 MINL PARAMETER INVALID".

ASM-3516 $DF STATEMENT MISPLACED.

Explanation: All $DF macroinstructions must precede
the $DE macroinstruction. $DE and $DF are
described in the 1255 Magnetic Character Reader
Reference Manual.

ASM-3517 MOD PARAMETER MISSING OR
INVALID.

ASM-3518 REM PARAMETER MISSING OR
INVALID.

ASM-3519 WF PARAMETER MISSING OR
INVALID.!

ASM-3520 SUM PARAMETER MISSING OR
INVALID.!

ASM-3521 TABLE PARAMETER INVALID.

ASM-3522 LEN PARAMETER MISSING OR
INVALID."

ASM-3523 NUM PARAMETER MISSING OR
INVALID.’

ASM-3524 PAD PARAMETER INVALID.!

ASM-3525 PREVIOUS TABLE NOT CLOSED.

Explanation: A previous table which was opened by
way of a $DT macroinstruction was not closed by
way of a $DTD LAST macroinstruction. $DT and
$DTD are described in the 1255 Magnetic
Character Reader Reference Manual.

'For a description of the required value, see the 7255
Magnetic Character Reader Reference Manual.

ASM—=3526 NO TABLE DEFINITION OPEN.

Explanation: A $DTD macroinstruction was issued to
define table data, but no $DT macroinstruction
was issued to define the table. $DT and $DTD are
described in the 1255 Magnetic Character Reader
Reference Manual.

ASM-=3527 HEX STRING IS NOT EVEN
LENGTH.

Explanation: Excluding the first X, a string of hex
characters specified in a $DTD macroinstruction
must contain an even—not odd—number of
characters. $DTD is described in the 1255
Magnetic Character Reader Reference Manual.

ASM -3528 DATA PARAMETER TOO SHORT
OR TOO LONG.

Explanation: Excluding the first C or X, a string of
data characters specified in a $DTD
macroinstruction must contain 1 through 32
characters. For a description of $DTD, see the
1255 Magnetic. Character Reader Reference Manual.

ASM-3529 PARAMETER 9 INCORRECTLY
SPECIFIED.

Explanation: If it is specified, the ninth (positional)
parameter in a $DTD macroinstruction must be
LAST. $DTD is described in the 1255 Magnetic
Character Reader Reference Manual.

ASM-3530 ACTUAL TABLE LENGTH
GREATER THAN SPECIFIED.

Explanation: The actual length of data entered in a
table by way of $DTD macroinstructions is greater
than the length specified for the table in the LEN
and NUM parameters of the $DT macroinstruction.
$DT and $DTD are described in the 1255
Magnetic Character Reader Reference Manual.

ASM-—-3531 FIRST CHARACTER OF DATA
PARAMETER IS NOT C OR X.!

Printed Messages 8-7

ASM-3532 TABLE PARAMETER MISSING OR
INVALID.

ASM-3533 TYPE PARAMETER MISSING OR
INVALID."

ASM-3534 ALEN PARAMETER MISSING OR
INVALID.

ASM-=3535 COMP PARAMETER MISSING OR
INVALID.

ASM-3536 ELEN PARAMETER MISSING OR
INVALID.

ASM-3537 NUM PARAMETER MISSING OR
INVALID.'

ASM-3538 POS PARAMETER INVALID.

ASM-3539 WORKAREA LENGTH EXCEEDED.

Explanation: The total length of the work area(s)
defined by the $DW macroinstruction(s) exceeds
256 bytes. $DW is described in the 1255
Magnetic Character Reader Reference Manual.

ASM-3540 NO $STRT STATEMENT ISSUED.

Explanation: The program must begin with a $STRT
macroinstruction. For a description of $STRT, see
the 1255 Magnetic Character Reader Reference
Manual.

"For a description of the required value, see the 1255
Magnetic Character Reader Reference Manual.

88

ASM-3541

NO $DE STATEMENT ISSUED IN
A MAIN PROGRAM.

Explanation: One $DE macroinstruction is required in
each main program (TYPE-MAIN on $STRT). $DE
(and $STRT) is described in the 1255 Magnetic
Character Reader Reference Manual.

ASM-3542

NO $DF STATEMENT ISSUED IN
A MAIN PROGRAM.

Explanation: At least one $DF macroinstruction is
required in each main program (TYPE-MAIN on
$SRTR). $DF (and $STRT) is described in the
1255 Magnetic Character Reader Reference Manual.

ASM-3543

ASM-3544

ASM-3545

ASM-3546

ASM-3547

PARAMETERS 2 AND 3 MISSING
OR THE SAME."

TYPE PARAMETER INVALID.'

LRSIZE PARAMETER MISSING OR
INVALID."

TTSIZE PARAMETER INVALID, 16
ASSUMED."

$STRT STATEMENT ALREADY
ISSUED.

Explanation: Only one $STRT macroinstruction is
allowed in a single program. $STRT is described
in the 1255 Magnetic Character Reader Reference

Manual.

ASM-3548

ASM-3549

ASM-3550

HOZCF AND/OR HOZCL
PARAMETER INVALID.!

RESBUF PARAMETER INVALID.!

BUFNUM PARAMETER INVALID.

C

MACRO PROCESSOR

Any errors made in coding macroinstructions are flagged
in the SASMINPT file by placing an error code and an
error message immediately after the macroinstruction.
The error code and message are then printed on the
assembly listing when the source program is assembled.
An error condition diagnosed by the macro processor is
reported on the source listing in the following format:

* Macroinstruction
E MIC# Diagnostic Error Message
| Image of last macro definition record read in
Example:
* $GETD
E 5428 Invalid AIF Record

1 AIF (&AB EQ '1" .A)

However, there are some cases when the last macro

-definition record read in is of no value for debugging.

Under these conditions the image of the last macro
definition record read in will not be displayed.

ASM-5400 INVALID CONTINUATION ON
MACRO CALL

Explanation: Positions 1-15 of a macro call statement
contain a nonblank entry.

ASM-5401 INVALID OPERATION CODE

Explanation: The mnemonic operation code of the
record being processed is not a valid System/34
assembler operation code.

ASM-5402 INVALID VARIABLE SYMBOL

Explanation: An invalid variable symbol was found.
This error could be caused by an ampersand (&) in
a comment.

ASM-5403 VARIABLE SYMBOL TABLE IS
FULL

Explanation: The variable symbol table is full. (The
user should split the job into smaller requests.)

ASM-5404 VARIABLE SYMBOL NAME NOT
FOUND

Explanation: A reference has been made to an
undefined variable symbol.

ASM-5405 GLOBAL VARIABLE REFERENCE
INVALID

Explanation: A set symbol identified on a global or
local record is also identified on a prototype or
TABLE record within the same macro definition.

ASM—-5406 INVALID CHARACTER STRING

Explanation: An invalid value exists on the record
being processed:

— Null value when not permitted

— Value exceeds 50 bytes when decoded

— Value exceeds the limits of the record on which
it appears

ASM-5407 SEQUENCE SYMBOL NOT FOUND

Explanation: A sequence symbol is missing or
misspelled.

ASM-5408 MACRO DEFINITION NOT FOUND

Explanation: The macro definition was not found in
the source library.

ASM-5409 INCOMPATIBLE ATTRIBUTES
ENCOUNTERED

Explanation: A set symbol identified on a global
record has been identified as another type of set
symbol within a previous macro definition
statement.

The attribute of a set symbol referenced in the
name field of an SETA, SETB, or SETC record
does not match its assigned attribute.

ASM-=5410 INVALID GLOBAL OR LOCAL
RECORD

Explanation: A format error occurred in an operand of
a GBLA, GBLB, GBLC, LCLA, LCLB, or LCLC
record.

Printed Messages 8-9

ASM-5411 HEADER STATEMENT IS INVALID
(MACRO)

Explanation: Misplaced control records following the
text record within a macro definition.

ASM-5412 PROTOTYPE STATEMENT IS
INVALID

Explanation: A prototype record has one of the
following:

Format error in an operand field
Invalid entry in a name field

Operation field name incorrect

More than five prototype continuations

ASM-5413 INVALID KEYWORD ON MACRO
CALL

Explanation: An invalid keyword was found on a
macroinstruction.

ASM-5414 INVALID INPUT DATA ON
MACRO CALL

Explanation: An invalid response to a keyword
parameter was found on a macroinstruction.

ASM—-5415 INVALID DELIMITER ON
PROTOTYPE

Explanation: No dash follows the keyword in a
keyword parameter on a prototype statement.

ASM-5416 INVALID CONTINUATION ON
MACRO CALL

Explanation: The format of a macroinstruction is for a
continuation record to follow but continuation is
not indicated.

ASM—-5417 TABLE RECORD WITHOUT TABDF
RECORD

Explanation: A TABDF record does not follow a
TABLE record.

ASM—-5418 MEND STATEMENT OUT OF
SEQUENCE

Explanation: A MEND record was found immediately
following a TABLE record.

8-10

ASM—-5419 INVALID RECORD BEFORE TEXT
RECORD

Explanation: An error has been encountered in the
placement of control records prior to the TEXT
record within a macro definition. Invalid table
record encountered.

ASM—-5420 INVALID TABLE DEFINITION
RECORD

Explanation: A table-definition record is invalid:

~ The value does not start in position 16

— The argument is not left-justified starting in
position 1

— The argument exceeds the limits defined for the
record

— The mnemonic operation code (TABDF) is
missing

ASM—=5421 INVALID AGO RECORD

Explanation: An AGO record has an invalid sequence
symbol.

ASM -—-5422 DEFINITION STATEMENTS OUT
OF ORDER

Explanation: The macro definition records are not in
the expected sequence.

ASM—-5423 INVALID SEQ SYMBOL ON AGO
STATEMENT

Explanation: The length of the sequence symbol is
invalid.

ASM—-5424 INVALID SETB RECORD

Explanation: An error exists in the format of a
variable symbol required in the name field of an
SETB record, or the operand is not O or 1.

ASM—-5425 INVALID FORMAT ON MNOTE
STATEMENT

Explanation: Invalid format on an MNOTE record.

ASM~-5426 MODEL RECORD IS IN ERROR

Explanation: One of the fixed format fields of a
model record has exceeded its defined limits. An
entry in field 1 must begin in position 1.

ASM-5427 MODEL RECORD FIELD BUFFER
EXCEEDED

Explanation: A value compared in the operand of an
AIF record is more than 50 bytes long or has an
invalid format. (Only symbolic parameters, set
symbols, character strings, count functions, and
type attributes are valid for comparison.)

A model record is more than 71 bytes long.

ASM~5428 INVALID AIF RECORD

Explanation: An error has been detected in the format
of an AIF record.

ASM-5429 INVALID USE OF COUNT
FUNCTION

Explanation: The count function is being used with
other than symbolic parameters.

ASM-=5430 ERROR IN SETA STATEMENT
SYNTAX

Explanation: An error exists in the format of a
variable symbol required in the name field of an
SETA record, or the operand is blank.

ASM—5431 ERROR IN SETC STATEMENT
SYNTAX

Explanation: An error exists in the format of a
variable symbol required in the name field of an
SETC record, or the operand is not enclosed with
quotes and delimited by a blank.

ASM-5432 DECIMAL NUMBER IS INVALID

Explanation: Arithmetic term exceeds bounds of
-8,388,608 to +8,388,607.

The value of a symbolic parameter or a decimal
self-defining term exceeds maximum value of
65,535.

ASM-5433 BINARY TERM INVALID

Explanation: A position in a binary self-defining term
is other than O or 1.

ASM-=5434 EXPRESSION TERM INVALID

Explanation: An invalid operand or operator is used in
an arithmetic expression. Valid operands are
binary, character decimal, and hexadecimal
self-defining terms; variable symbols; and count
functions. Valid operators are addition (+),
subtraction (=), multiplication (*), and division (/).

ASM-5435 CONSECUTIVE OPERATORS
ENCOUNTERED

Explanation: Consecutive operators have been
detected within an arithmetic expression.

ASM~-5436 EXPRESSION ENDS WITH AN
OPERATOR

Explanation: An arithmetic expression has been ended
with an operator.

ASM~-5437 INVALID HEX TERM

Explanation: A hexadecimal self-defining term
contains an invalid hexadecimal digit.

ASM~—5438 INVALID USE OF LEFT
PARENTHESIS

Explanation: Improper placement of left parenthesis
or more than 3 levels of nested parentheses within
an arithmetic expression.

ASM~-5439 NO OPERATOR FOR OPERAND

ASM-5440 CONSECUTIVE OPERANDS
ENCOUNTERED

Explanation: Consecutive operands have been
detected within an arithmetic expression.

ASM—=5441 INVALID COMBINATION OF
OPERATORS

ASM-=5442 INVALID RIGHT PARENTHESIS

Explanation: A parenthesis is not paired properly.

Printed Messages 8-11

ASM-5443 NULL VALUE IN ARITHMETIC
EXPRESSION

Explanation: Arithmetic expressions cannot contain
null values.

ASM-5444 CHARACTER EXPRESSION IS TOO
LARGE

Explanation: There are more than the maximum
number of bytes for a character expression.

ASM-5445 INVALID SUBSTRING TERM

Explanation. When evaluating a character expression,
the value of either a term of a substring is
negative or the substring term is O.

ASM—-5446 SUBSTRING SYNTAX ERROR

Explanation: Syntax error in use of substring
character expression exceeds the limits of the
input record.

ASM-5447 INVALID LABEL ON MACRO
INSTRUCTION

Explanation: A macroinstruction label contains an
invalid character.

ASM-5448 MNOTE MESSAGE NOT FOUND

ASM-5449 MACRO IS A BAD'MEMBER

Explanation: The definition for a macroinstruction
cannot be found.

ASM-5450 MISPLACED POSITIONAL
PARAMETER

Explanation: All positional parameters must precede
any keyword parameters.

8-12

ASSEMBLER

A flag of E precedes each error code in the error field
on the assembly listing. After the assembly is complete,
a table of statement numbers, MIC codes, and error
messages is listed.

ASM—-5500 INVALID NAME LENGTH

Explanation: The name field entry is greater than the
maximum length allowed.

ASM-5501 INVALID CHARACTER IN NAME

Explanation: The first position of a name field entry
starts with a nonalphabetic character or contains
an invalid character.

ASM-5502 NAME NOT ALLOWED IN
INSTRUCTION

Explanation: A name field entry was found on an
instruction where one is not allowed.

ASM—-5503 REFERENCE TO UNDEFINED
SYMBOL

Explanation: The referenced symbol is not defined in
this program.

ASM-5504 NAME REQUIRED ON THIS
INSTRUCTION

Explanation: An EQU instruction does not have the
required name field entry.

ASM -5505 PREVIOUSLY DEFINED SYMBOL

Explanation: This symbol has been previously defined
in this program.

ASM-5506 MODULE NAME MISSING

Explanation: Either the START instruction is missing,
or the START instruction is present but the name
field entry (module name) is missing. The
assembler program assigns the default module
name ASMOBJ.

ASM-=5508 INVALID OPERATION CODE

Explanation: Undefined operation field entry.

ASM~-5509 INVALID ORIGIN

Explanation: There has been an attempt to change
the value of the location counter to a value less
than the initial value of the location counter using
the ORG instruction.

ASM-5510 INVALID OR ILLEGAL ICTL

Explanation: There is an operand error on an ICTL
instruction, or the ICTL instruction is not the first
statement in the program. (The ICTL is treated as
the last source statement in the program.)

ASM-5511 INVALID START INSTRUCTION

Explanation: The START instruction was encountered
after the location counter was initialized.

ASM-5512 LOCATION COUNTER ERROR

Explanation: There is a location counter overflow
(greater than 65535) or there has been an attempt
to reference the location counter at 65536.

ASM-5513 MISSING END STATEMENT

Explanation: The END statement is missing from the
program.

ASM-=5516 INVALID OPERAND DELIMITER

Explanation: An operand field syntactical delimiter is
either misplaced or missing.

ASM—=5517 INVALID OPERAND FORMAT

Explanation: The operand field format is not correct
for this instruction.

ASM-5518 MISSING OPERAND

Explanation: An operand field entry is missing from
an instruction requiring one.

ASM—=5519 INVALID SYNTAX IN
EXPRESSION

Explanation: There has been a violation of one or
more of the expression syntax rules.

ASM-5520 EXPRESSION VALUE TOO LARGE

Explanation: The final expression value is not in the
range -2'¢ to 2'5-1.

ASM-5521 INVALID OPERAND

Explanation: One or more operand entries do not
meet the specifications for this instruction.

ASM-=5522 ARITHMETIC OVERFLOW

Explanation: An intermediate expression value is not
in the range -22* to 2¢-1.

ASM-5523 ADDRESSABILITY ERROR

Explanation: A relocatable displacement is outside the
range of the USING instruction.

ASM-5524 REGISTER SPECIFICATION ERROR

Explanation: The index register specification is not 1
or 2.

ASM—-5525 INVALID CONSTANT

Explanation: There is an error in a constant
specification on a DC instruction.

Printed Messages 8-13

ASM-5526 INVALID CONSTANT TYPE

Explanation: The data type specified in a DC or DS is
not valid.

ASM-=5527 INVALID DUPLICATION FACTOR

Explanation: There is an error in the duplication factor
specification on a DC or DS.

ASM-5528 INVALID LENGTH SPECIFICATION

Explanation: There is an error in the length
specification.

ASM—-5529 INVALID STATEMENT DELIMITER

Explanation: The column following the statement field
is not blank.

ASM —-5530 RELOCATABLE MULTIPLICATION

Explanation: A relocatable term was used in a
multiply operation.

ASM-5531 RELOCATABILITY ERROR

Explanation: A relocatable expression is used where
an absolute expression is required; or an absolute
expression is used where a relocatable expression
is required.

ASM-5532 INVALID SYMBOL

Explanation: There is an invalid character in or invalid
length of a symbol in the operand field.

ASM—-5533 INVALID SELF-DEFINING TERM

Explanation: There is an error in the format of a
self-defining term.

ASM —-5534 SELF-DEFINING VALUE TOO
LARGE

Explanation: The value of self-defining term is
outside of the range of -2'¢ to 2'6-1.

ASM-5535 INVALID IMMEDIATE FIELD

Explanation: The value of the immediate field is not in
the range of X'00" to X'FF'.

8-14

ASM—-5536 INVALID DISPLACEMENT

Explanation: The value of the absolute displacement
is not in the range of O to 255.

ASM—-5537 INVALID EXTRN

Explanation: The symbol is invalid, already defined in
the program, or the subfield is invalid.

ASM-5538 TOO MANY ESL RECORDS

Explanation: More EXTRN and ENTRY statements
were found in the program than are permitted.
This count includes multiple EXTRNs and ENTRYS,
ENTRYs with valid symbols which are not defined,
and EXTRNs with valid symbols which are defined
in the program.

The region size determines the number of
permissible ESL records as given in the following
table:

Region Size Maximum Statements

14 - 18 85

20 125
22 - 26 170
28 - 34 210
36 and up 255

This appendix contains:
A sample assembler program
Sample macroinstruction definitions and related
macroinstruction expansions

SAMPLE ASSEMBLER PROGRAM

THE LIST OF DPTIONS USED DURING THIS ASSEMBLY IS-- LISTyXREF,0BJ

Appendix A. Samples

134 SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 06
ASSMPL EXTERNAL SYMBOL LIST
-09-79 TIME 09.45 PAGE 1
SYMBOL TYPE 05-0
ASSMPL MODULE
I3% SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 04
ASSMPL
ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT 05-09-79 TIME 09.45 PAGE 2
1 ICTL 1,71
2 ISEQ 73,80 83935993
3 PRINT NOGENsNODATA 00040000

IBM SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 04
ASSMPL DISK FILE TD PRINTER (80/80 LIST PROGRAM)
ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT 05-09-79 TIME 09.45 PAGE
5 SEEASEAAEEECEAERADS S AXBAREBET AR ‘#‘#‘t#ﬁ##‘##0#‘t##t#v#t‘ttﬂﬂ#‘##‘t#
6 » THIS PROGRAM READS A FILE FROM THE DISK AND LISTS IT
T & ON THE PRINTER. g
9 * THERE ARE THREE POSSIBLE MESSAGES ISSUED BY THIS PROGRAM: ®
10 ¢ MESSA MEANING *
11 & SEQF ON SYSIN® END OF FILE ENCOUNTERED FROM DISK READ. &
12 ¢ THE PROGRAM ISSUES THE MESSA °
13 & AND GDES TO EO0J. *
14 » *PRINTER ERROR® THERE HAS BEEN A PERMANENT PRINTER e
15 = ERROR. THE PROGRAM ISSUES THE %
16 * MESSAGE AND GOES TO END OF JOB. *
17 % *SYSIN ERROR® THERE HAS_BEEN A PERMANENT READ %
18 = ERROR. THE PROGRAM ISSUES THE *
19 * MESSAGE AND GOES TO END OF JOB. %
20 %55aSORXSSRAXAAVLEXEXISSISEVANXXBEXETXIXES TSV XYRA AL S ETASE VXXV ATLE TR
0800 22 ASSMPL START X*0800°
24 & PREPARE THE FILES FOR USE (DTFS ARE CHAINED)
26 = $ALOC DTF-DSKDTF ALLOCATE ALL FILES
33 & $OPEN DTF-DSKDTF DPEN ALL FILES
40 & READ FROM SYSTEM SOURCE LIBRARY AND PRINT RECORDS UNTIL END JF FILE
0810 41 REDAGN EQU .2
42 & $GETD DTF-DSKDTF,ERR-SYSER¢EOF-EOF sOP-NGET
0829 BS 02 09 54 L SFLWKB(9 XR2) 4 XR2 POINT TO RETRIEVED RECIRD
082C 2C 4F 0B47 4F 55 MVC DSKREC(80)9y791yXR2) MOVE DATA TO PRINT BUFFER
56 ¢ $PUTP DTF-PRTDTF,ERR-PRNERKySPACEA-1,PRINT-Y
0846 CO 87 0810 67 B REDAGN BRANCH BACK AND READ AGAIN

0000000000000 000 W
0000V oOOCOLO000
NI st 1t et kot ot ot ot 1t 1t © O O O
=OOD~NC WL WN=COD~NE
0000000000000 000
COO0000O00LUO0e00

00230000

02250000

00270000

002900090

02390000

Samples A-1

IBM SYSTEM/34 BASIC ASSEMBLER-MACKO PROCESSOR RELEASE 0¢
ASSMPL DISK FILE TO PRINTER (B80/80 LIST PROGRAM)
ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT 05-09-79 TIME 09.45 PAGE
69 %= END OF FILE ON SYSIN
084A C2 02 0OBD4 70 EOF LA EOFMSGy LOG
71 = EOF MESSAGE
0852 CO 87 0869 76 EOQJ INVALID REPLYs TRY AGAIN
78 = ERROR ON DISK READ
0856 C2 02 0BODC 79 SYSER LA SERMSGy LOG
8G = DISK READ ERROR MESSAGE
08SE F2 87 08 85 EOJ GO TO EOJ
87 = ERROR ON PRINTER
0861 C2 02 OBE4 88 PRNERR LA PERMSGy LOG
89 = $LOG PRINTER ERROR MESSAGE
95 * END OF JOB ROUTINE
2859 96 EOJ EQU &
97 = $CLOS DTF-DSKDTF CLOSE ALL FILES
103 * SEQJ END JOB
109 * CONSTANTS AND DATA AREAS
111 = DISK FILE TABLES ETC.
112 *SKDTF SDTFD ACCESS-CGeRECL-80¢NAME-INPUT¢BLKL=5129 IOAREA-IN3UF,
113 = CHAIN=-PRTDTF ¢RCAD-INRCRD
158 * BUFFER AND WORK AREAS FOR DISK INPUT INTERFACE
J801 159 INBUF EQU =
o801 03FT 160 108 DS CcL39
O8F8 OAFT 161 INAREA DS 2CL256
JAF8 162 INRCRD EQU %
OAF8 0847 163 DSKREC DS cLso
165 = PRINT FILE TABLES ETC.
166 *RTOTF $DTFP RCAD-INRCRD¢ IOAREA-OQUTPUTRECL-BO9NAME-FILENAME
196 * BUFFER AND WORK AREAS FOR PRINTER INTERFACE
871 197 DUTPUT EQU &
0871 0BD3 198 IDAREA 0S CcL99
200 * SYSTEM LOG TABLES
202 *0FMSG SLMSG TYPE-29¢SPACE-2yMSGLN-159¢MSGAD-EOFMGC yWRSTE-N

I8 SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 0¢
ASSMPL DISK FILE TJ) PRINTER (80/80 LIST PROGRAM)
ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT 05-09-79 TIME C9.45 PAGE
219 ®ERMSG SLMSG TYPE-29SPACE-2¢MSGLN-159MSGAD-SERMGCyWRSTE-N
236 TERMSG SLMSG TYPE-2¢SPACE-2¢MSGLN-159MSGAD-PERMGCyWRSTE-N
JBEC 253 EOFMGC EQU b4
OBEC C5D06C640D6D540E2 OBFA 254 ocC CL15*EOF ON SYSIN .
JBFB 256 SERMGC EQU *
OBFB E2EBE2C9D540C5D9 0CO9 257 nc CL15°SYSIN ERROR .
0COA 259 PERMGC EQU ©
OCOA D7TD9C9DSE3CS5D940 J2L18 260 DC CL15°*PRINTER ERROR *
262 * OFFSETS FOR ALL DTFS DEFINED IN THIS PROGRAM
264 * $DTFU DISK-YoPRT-YoFIELD-Y
611 ¢ REGISTER LABELS
0002 612 $OTF EQU 2
0002 613 SYS EQU 2 SYSIN PARAMETER LIST PJINTER
0002 614 LOG EQU 2 SYSLOG PARAMETER LIST PJINTER
J002 615 XR2 EQU 2 INDEX REGISTER 2 REFERENCE
0800 617 END ASSMPL
TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-- 0
TOTAL SEQUENCE ERRDRS IN THIS ASSEMBLY-- 0

02600000

02520009
°80630

03800000

X0382200)

5
X02840000

Xx05860000

03970000
03990008

00000

1010000
1020000
1030009
1040009
1050000

01079002

SAMPLE MACROINSTRUCTIONS

The definitions of the IBM-supplied $PUTP (Construct a
Printer Put Interface) and $LOG (Generate the Linkage to
the System Log) macroinstructions are given here. The
definitions are followed by a partial assembler program
in which $PUTP and $LOG are issued. The
macroinstruction expansions listed in the program show
how the expansion generated for a macroinstruction is
related to the definition of the macroinstruction.

Definition of $PUTP

MACRO
ELABEL SPUTP EDTF-¢EPRINT-9ESKIPB-¢&SPACEB~-9yESKIPA-,
ESPACEA-9EERR=-9EDVFL~-
TABLE EPRINT
Y TABDF X*40°
N TABDF X°00°
YES TABDF X'4D*
NO TABDF Xx*00°
TABLE ESPACEB
0 TABDF 02
1 TABDF 01
2 TABDF 02
3 TABDF 03
TABLE ESPACEA
0 TABDF 00
1 TABDF 21
2 TABDF 02
3 TABDF 03
TEXT
AGO «ARCR
@ COPYRIGHT=5726-5SS1 CIPYRIGHT IBM CORP 1977 LICENSED MATERIAL ~ %
o PROGRAM PROPERTY OF IBMe REFER TO COPYRIGHT INSTRUCTIINS @
@ FORM NUMBER G-12)-2083. o
«ARCR ANOP

¢ LINKAGE TO PRINTER DATA MANAGEMENT
AIF (GLABEL EQ **1.2
ELABEL EQU &

ol ANOP

AIF (EDTF EQ **)eA

LA &DTFe2 XR2 ==-==> OTF
Y} ANOP

AIF (EPRINT EQ **).B
MVI 110920 4EPRINT

B ANDP
AIF (ESKIPB EQ *"1.C
MVI 26092)4ESKIPB

C ANOP
AIF (ESPACEB EQ **).D
VI 27(42)4ESPACEB

<D ANOP
AIF (ESKIPA EQ '*).E
MVI 28(92)4ESKIPA

oE ANDP A
AIF (ESPACEA EQ *').F
MVI 29(+2)4ESPACEA

SET OP CODE IN JTF

SET SKIP BEFORE

SET SPACE SEFDRE

SET SKIP AFTER

SET SPACE AFTER

oF ANOP
svC 064401 TRANSFER CONTROL TO
ncC XL1°13° DATA MANASEMENT

ALF (EERR EJ **)eH
CLI 10(e2)eX*41"
BE EERR
oH ANOP
AIF (EOVFL EQJ **).ENDP
CLI 12(92)9X%°48°

BE COVFL
«ENDP ANDP
* END OF EXPANSION
MEND

PERMANENT ERROR ?
YESe GO TD ERRIR ROUTINE

PAGE OVERFLIW ?

YESe GO TO OVERFLOW ROJTINE

Samples

A-3

ERR LOC

J320
0004
0007
J02A
000D
00JE
0011

0015
0018

A-4

OBJECT CODE

00
BC
BC
Fé
13
BD
00

Fo
05

ol

Definition of $LOG

CLABEL

% - PROGRAM PROPERTY OF IBMe

MACRD
$LOG ELIST-4EJIPTNO-+EOPTNL-4EOPTN2-
TEXT

AGO

«L0OG00 SKIP COPYRIGHT GENERATION
COPYRIGHT-5726-AS1 CIPYRIGHT IBM ZORP 1977 LITENSED MATERIAL

% FORM NUMBER G-120-2083.

«L0GID
* LINKAGE

CLABEL
«L0GO1

«L0GD2

«L0OGO03

«L0GO4

«L0GO0S
#* END OF

REFER TO COPYRIGHT INSTRUCTIONS

ANOP

TOD SYSLOG ROUTINES

AIF (T*ELABEL EQJ *0*).LDOGO1l LABEL NOT SPECIFIED?
EQU *

AIF (TPELIST EQ *N*).L0OGI2 WAS LIST SPECIFIED

LA ELISTs2 REGISTER 2 ~-> PARAMETER LIST
svC X*04'yx*01°* CALL SYSLIG WITH REFRESH
DcC xLito0s5°* SYSLOG RIB

AIF (T*EIPTNO EQJ *0D*')eLOGO3

TBN 10(+214x*30° WAS OPTIJN ZERJ TAKEN
BT &0PTNO YES¢GD TJ OPTNO ADDRESS
ANDP

AIF (T*EDPTNL EQ '0°)eLIGO4

TBN 10(+2)9eX*40" WAS OPTION ONE TAKEN

BT &JPTN1 YES»G0 TO OPTNL ADDRESS
ANOP

AIF (T*E0PTN2 EQ *0°).LDGOS

TBN 10(e2014x°20° WAS OPTIJIN Twd TAKEN

BT LOPTN2 YES+GO TD OPTN2 ADDRESS
ANJP

EXPANSION
MEND

Expansions of $PUTP and $LOG

0000
08
10
04

0A
0000

IB8M SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR

ADDR STMT SOURCE STATEMENT
2 =
3 %
4 =
5 %
65
7 %
8 %
9 %
10¢% LINKAGE. TJ PRINTER DATA MANAGEMENT
1l LA PITDTF2
12+ MVI L1(e2) ex*40"
13+ MVI 291921401
lae svC 04401
000D 15« DC xL1'13¢
16+ CLI 10(¢2)9X*61"
17 BE PRINERR
18+% END OF EXPANSION
19 =
2] =
21 =
22 = $LIG
23+% LINKAGE TJ SYSLOG RQUTINES
24¢ svC X'04'9X*01"
0ols 25+ ocC xL1'05"
25+%* END OF EXPANSION
27 *

RELEASE 04

04-10-79 TIME 15413 PAGE N

TAIS IS AN EXAMPLE OF A PARTIAL ASSEMBLER PROGRAM
SHIWING EXPANSIOJONS OF THE MACROS $PUTP AND $LOG
TO DEMONSTRATE HOA MACRO EXPANSIINS WIRK

$PJTP DTF-PRTDTFyERR-PRNERR¢SPACEA~1sPRINT-Y

XR2 ----> DTF

SET JP CJIDE IN DTF

SET SPACE AFTER

TRANSFER CINTROL T2
DATA MANAGEMENT
PERMANENT ERROR ?

YESe GO TD ERRDR RJUTINE

CALL SYSLOG WITH REFRESH
SYSLOG RIB

The coded character set for EBCDIC (extended binary
coded decimal interchange code) is shown in the
following table.

Appendix B. EBCDIC

EBCDIC
Main Storage Bit Positions 0, 1,2, 3
Main Storage 0000} 0001} 0010]| 0011} 0100]| 0101] 0110|0111 | 1000} 1001|1010} 1011] 1100| 1101| 1110] 1111
Bit Positions
4,5.6,7 Hed O 1 2 3 4 5 6 7 8 9 A B C D E F
]
0000 o |nuL|oDLE|Ds % | &| - \ AN
0001 1 | SOH | DC1 | sSOS / a) ~ A J 1
0010 2 |STX |DC2|FS |SYN b k s B K S 2
™
0011 3 |ETX|DC3| g4 c I { c L T 3
0100 4 |PF |RES |BYP |PN d m u D M U 4
0101 5 |HT |NL |LF |RS e n v E N v 5
EO
0110 6 |LC |BS Tl uC t o W F 0 w 6
PRE
0111 7 |DELIL sc| EOT y p x G P X 7
1000 8 CAN h 4 vy H Q \% 8
1001 9 |RLF | EM ' | ! 2 I R z 9
| :
1010 A |SMM|CC |SM ¢ | i LVM
1011 B |VT |cut|cuz|cu3 $ ‘ =
1100 C |FF |IFS pca | < . % @ LF r’
1101 D |CR |[IGS |ENQ|NAK]|) _
110 € |SO |IRS | ACK + > H—‘
111 F |sI IUS | BEL |suB | | | ? EO

Duplicate Assignment

EBCDIC

B-1

arithmetic expression: A conditional assembler
expression that is a combination of arithmetic terms,
arithmetic operators, and paired parentheses.

assembler: A computer program that prepares an
object program from a source program written in a
symbolic source language in which there is a
one-to-one correspondence between the instruction
formats and data formats coded and those used by the
computer.

assembler instruction statement: A statement that
controls the functions of the assembler.

base displacement addressing: An addressing method
that involves setting up a base address from which
other addresses can be calculated.

character string: A string consisting solely of
characters.

checkpoint: A reference point in a program at which
system and job status is recorded so that, if necessary,
the program can be restarted at that point.

delete-capable file: A file that can contain records that
are logically deleted, though no physical compression
occurred when the records were deleted.

direct addressing: An addressing method that allows
the programmer to represent a 16-bit instruction
address by using an expression as an operand entry.

expression: An arithmetic combination of terms.

global: Available to all macroinstructions in an
assembler source program.

keyword parameter: A parameter that consists of a
keyword, followed by one or more values.

literal: See self-defining term.

locate mode: A way of providing data to the user by
pointing to its location rather than by moving it.

location counter: A counter used to assign storage
addresses.

Glossary

machine instruction statement: A statement that
represents a machine language instruction on a
one-for-one basis.

macroinstruction statement: A statement that
represents a sequence of machine and/or assembler
instruction statements.

MIC: Message identification code.

move mode: A way of transferring data by identifying
its location to data management.

operand: An entry that follows an operation code and
further defines the operation to be performed.

positional parameter: A parameter that must appear in
a specified location, relative to other positional
parameters.

processor: A computer program that includes the
compiling, assembling, translating, and related functions
for a specific programming language.

relative addressing: A means of addressing
instructions and data areas by designating their location
in relation to the location counter or to some symbolic
symbol.

self-defining term: A term whose value is inherent in
the term.

sequence symbols: Labels used in coding
macroinstructions that determine the sequence of
macroinstruction definition statement processing.

set symbols: In assembler programming, a variable
symbol used to communicate values during conditional
assembly processing.

term: A single symbol, self-defining value, or location

counter reference used only in the operand field of an
assembler language statement.

Glossary C-1

&SYSNDX 5-3

* $ALOC 6-16, 7-12
$ASMINPT 7-3, 7-4
$CKEQ 6-13

. $CKPT 6-13
$CLOS 6-19, 7-18
$DTFD 6-22
$DTFO 6-19
$DTFP 6-20
$DTFW 6-35
$EOJ 6-15
$FIND 6-9
$FNDP 6-8
$GETD 6-27
$INFO 6-11
$INV 6-15
$LMSG 6-5
$LOAD 6-10
$LOG 6-8
$LOGD 6-8
$OPEN 6-18, 7-12
$PUTD 6-28
$PUTP 6-21
$RIT 6-34
$SIT 6-33

A 4 $SNAP 6-10
$SORT 6-32
$SOURCE 7-3, 7-4
$SRT 6-29
$TOD 6-34
$TRB 6-33
$WIND 6-44

$WORK 7-3,7-4
$WORK2 7-3, 7-4
$WSEQ 6-44
$WSIO 6-38

absolute expressions 2-4
access methods 6-23, 7-8

- access system communication area 6-11
access work station local data area 6-11
accessing records in a file 7-12
address data constant 3-4

address of data management routines 7-12

addressing
base displacement 2-8
data 2-9
direct 2-8
instruction 2-9

C

Index

addressing (continued)
relative addressing 2-9
AGO, unconditional branch 5-14
AIlF, conditional branch 5-12
allocate space or device
($ALOC) 6-17, 7-12
alphameric value in macroinstructions 5-2
ANOP, assembly no operation 5-15
arithmetic expression 5-4
arithmetic global (GBLA) 5-9
arithmetic local (LCLA) 5-10
ASM command statement 7-3
ASM procedure 7-3
assembler control statements
HEADERS 7-1
OPTIONS 7-1
assembler instruction statements
assembler processor control 3-8
data definition 3-2
listing control 3-6
operations 3-1
program control 3-8
symbol definition 3-2
assembler language source program
records 2-1
assembler language statement format entries
comments 2-2
identification sequence 2-2
name 2-2
operand 2-2
operation 2-2
remarks 2-2
assembler language statements
definition 1-1
example 1-2
types 1-2
assembler language, basic 1-1
assembler listing 7-5
assembler printed messages 8-12
assembler program conventions
addressing 2-8
expressions 2-4
term 2-5
assembler sample program A-1
assembly no operation (ANOP) 5-15
attribute 5-3

Index

base displacement addressing 2-8
basic assembler language 1-1
binary data constant 3-4
binary global (GBLB) 5-9
binary local (LCLB) 5-10
binary self-defining term 2-7, 5-1
buffer size determination

(see also 1/0 buffer area)

disk 6-24

printer 6-20

change system communication area 6-11
change work station local data area 6-11
character data constant 3-4
character expression 5-1
character global (GBLC) 5-9
character local (LCLC) 5-10
character self-defining term 2-7, 5-1
character set 2-1
character string 5-1
checkpoint 6-13
close a file (JCLOS) 6-19, 7-18
coding conventions
coding form 2-1
entries 2-2
macroinstructions 5-1
coding macroinstructions 6-1, 7-8
coding sheet 2-1
comment entry, assembler language
statement 2-2
comment, macroinstruction 5-12, 6-2
communications 6-16
concatenation 5-4
conditional branch (AIF) 5-12
consecutive processing fields 7-16
constant types 3-4
construct an interface
disk get (BGETD) 6-27
disk put (PUTD) 6-28
display station input/output
($WSIO) 6-38
loadable sort ($SORT) 6-30
printer put (PUTP) 6-21
continuation 5-4
continuation coding 6-1
control program listing, PRINT 3-7
count function 5-4
cross-reference list 7-6

X-2

data addressing 2-11
data definition
DC 3-3
DS 3-6
data files 7-4
data management considerations
disk 7-8
display station 7-19
data management control blocks and buffers,
disk
address of data management
routines 7-12
DTF 7-11
1/0 buffer area 7-11
key hold areas 7-12
key limits area 7-12
logical buffer area 7-11
master track index area 7-12
requested record number or key
area 7-12
DC, define constant 3-3
decimal data constant 3-4
decimal point 3-4
decimal self-defining terms 2-6, 5-1
define constant, DC 3-3
define storage, DS 3-6
define the file
disk ($DTFD) 6-22
display station ($DTFW) 6-35
printer ($DTFP) 6-20
defining macroinstructions
description 5-5
restrictions 7-8
sample A-3, 5-18
definition control statement format 5-6
deleting records 7-18
determining buffer size
(see also 1/0 buffer area)
disk 6-24
printer 6-20
device allocation 6-16
diagnostics, general 7-6
direct addressing 2-8
direct processing fields 7-16
directory entry find 6-9
disk
buffer size 6-24
DTF
fields 7-12
generation 6-22, 7-11
get interface 6-27
put interface 6-28
disk data management considerations 7-8
disk device support 6-22
disk sort support 6-29
displacement generation
checkpoint (JCKEQ) 6-13
display station (SWSEQ) 6-44
DTF ($DTFO) 6-19
find ($FNDP) 6-8

C

C

displacement generation (continued)
information retrieval($INFO) 6-11
snap dump ($SNAP) 6-10
sort (BSRT) 6-29
system log ($LOGD) 6-8
timer ($TRB) 6-33
display station data management
considerations 7-19
display station support
DTF 6-35
get interface 6-38
1/0 interface 6-38
label generation 6-44
override indicators 6-44
put interface 6-38
DROP, program control statement 3-10
DS, define storage 3-6
DTF
disk 6-22, 7-11
displacement generation ($DTFO) 6-19
display station 6-35
fields 7-12
printer 6-20
dump, main storage 6-10
duplication factor 3-3

EBCDIC B-1
EJECT, listing control instruction 3-7
end assembly, END 3-13
end of job (3EQJ) 6-15
END, program control statement 3-13
entries, assembler language statement 2-2
ENTRY program control statement 3-11
EQU 3-2
error field 7-5
ESL 7-5
establish a checkpoint (BCKPT) 6-13
execution 7-3
expressions

absolute 2-4

coding rules 2-4

relocatable 2-5
extended mnemonic operation codes 4-3
external symbol list, ESL 7-5
EXTRN, program control statement 2-4, 3-11

fetch a module ($LOAD) 6-10

file preparation 6-17, 7-12

file termination 6-18, 7-18

find
directory entry ($FIND) 6-9
displacement generation (BFNDP) 6-8

find (continued)

parameter list generation (SFNDP) 6-8
find a directory entry (3FIND) 6-9
floating point data constant 3-4
format, assembler language statements 2-2
formatted messages 6-5

GBLA, arithmetic global 5-9
GBLB, binary global 5-9
GBLC, character global 5-9
general 1/0 support 6-17
general SSP support 6-8
generate an interface
disk get (BGETD) 6-27
disk put (JPUTD) 6-28
display station input/output
($WSIO) 6-38
loadable sort ($SORT) 6-32
printer put ($PUTP) 6-21
generate displacements
checkpoint (JCKEQ) 6-13
display station (SWSEQ) 6-44
DTF ($DTFO) 6-19
find (BFNDP) 6-8
information retrieval ($INFO) 6-11
snap dump ($SNAP) 6-10
sort (BSRT) 6-29
system log ($LOGD) 6-8
timer ($TRB) 6-33
generate labels
checkpoint (BCKEQ) 6-13
display station (SWSEQ) 6-44
DTF ($DTFO) 6-19
find (SFNDP) 6-8
information retrieval ($INFO) 6-11
snap dump (BSNAP) 6-10
sort ($SRT) 6-29
system log ($LOGD) 6-8
timer (JTRB) 6-33
generate linkage to
disk get (BGETD) 6-27
disk put (BPUTD) 6-28
display station input/output
($WSIO) 6-38
printer put (SPUTP) 6-21
system log ($LOG) 6-8
generate offsets
checkpoint (JCKEQ) 6-13
display station (SWSEQ) 6-44
DTF ($DTFO) 6-19
find (BFNDP) 6-8
information retrieval ($INFO) 6-11
snap dump ($SNAP) 6-10
sort (BSRT) 6-29
system log (BLOGD) 6-8
timer ($TRB) 6-33

Index

generate override indicators for display
station (SWIND) 6-44
generate parameter list
checkpoint (fCKEQ) 6-13
find (BFNDP) 6-8
information retrieval {$INFO} 6=11
loadable sort ($SRT) 6-29
snap dump (3SNAP) 6-10
system log (3LMSG) 6-5
timer ($TRB) 6-3
generate timer request block ($TRB) 6-33
get interface
disk 6-27
display station 6-38
global set symbol 5-3
global statements
arithmetic (GBLA) 5-9
binary (GBLB) 5-9
character (GBLC) 5-9
glossary C-1

halts 6-5

header (MACRQO) 5-7

HEADERS, control statement 7-1
hexadecimal data constant 3-4

1/0 buffer area 7-11

(see also buffer size determination)
ICTL, program control statement 3-13
identification sequence entry 2-2
identify assembly output, TITLE 3-6
identify entry-point symbol, ENTRY 3-11
identify external symbols, EXTRN 3-11
index register addressing 3-10
indexed random processing fields 7-16
indexed sequential processing fields 7-17
information retrieval ($INFO) 6-11
input format control, ICTL 3-13
input/output macroinstructions 6-16
input sequence checking, ISEQ 3-8
instruction addressing 2-9
integer data constant 3-4
interface generation

disk get ($GETD) 6-27

disk put ($PUTD) 6-28

display station input/output

($WsSIO) 6-38

printer put ($PUTP) 6-21
interval timer

displacement generation ($TRB) 6-33

parameter list generation ($TRB) 6-33

return 6-34

interval timer (contin
set ($SIT) 6-33

ued)

inverse data move ($INV)

job termination 6-15

key hold areas 7-1
key limit areas 7-1
keyword parameters

label generation

checkpoint (BCKEQ) 6-
display station (SWSEQ)

DTF ($DTFO) 6

find ($FNDP) 6-8
information retrieval ($INFO)

snap dump ($SNAP)

sort ($SRT) 6-29

system log ($LOGD)

timer ($TRB) 6-33

LCLA, arithmetic local

LCLB, binary local

LCLC, character local

linkage generation
disk get ($GETD)
disk put ($PUTD)

6-15
ISEQ, program control statement

display station input/output

($wsIO) 6-38

printer put ($PUTP)

system log (LOG) 6-8

LIST 7-2

listing control
EJECT 3-7
PRINT 3-7
SPACE 3-7
TITLE 3-6

3-8
2
2
5-2
13
6-44
-19
6-11
6-10
6-8
5-10
5-10
5-10
6-27
6-28
6-21
6-10

load or fetch a module ($LOAD)
local set symbol 5-3

local statements
arithmetic (LCLA)
binary (LCLB}) 5
character (LCLC)
locate mode 6-27,
location counter refe
logical buffer area
logical end (MEXIT)

5-10
-10
5-10
C-1
rence
7-11
5-17

2-8

machine instruction statement entries

mnemonic operation 4-1

name 4-1

operand 4-6
macro processor printed messages 8-8
MACRO, header 5-7
macroinstruction

coding convention 5-1, 6-1

coding restrictions 7-8

comments 5-12, 6-2

defined 6-1

definition restrictions 7-8

disk 6-22, 6-29

display station 6-34

general I/0 6-17

general SSP 6-8

1/0 6-16

printer 6-20

statements 6-1

supplied by IBM 6-2

system log 6-4

system services 6-4

timer 6-33

writing 6-1
macroinstruction coding restrictions 7-8
macroinstruction definition 5-5
macroinstruction definition control
mnemonics 5-5
macroinstruction definition control
statements 5-7
macroinstruction format 5-6
macroinstruction statement errors 8-1
macroinstruction statements 6-1
macroinstructions supplied by IBM 6-2
main storage dump 6-10
master track index area 7-12
MEND, physical end 5-17
message (MNOTE) 5-16

messages
formatted 6-5
printed 8-1

unformatted 6-5
MEXIT, logical end 5-17
mnemonic operation codes 4-2
MNOTE, message 5-16
move mode 6-28, C-1
move, inverse data ($INV) 6-15

name entry 2-2, 4-1
negative numbers 3-4

NOLIST 7-2
NOOBJ 7-2
NOXREF 7-2

0OBJ 7-2
object code listing 7-5
object program 7-7
object program relocation 2-3
offset generation
checkpoint ($CKEQ) 6-13
display station ($WSEQ) 6-44
DTF ($DTFO) 6-19
find ($FNDP) 6-8
information retrieval (JINFO) 6-11
snap dump ($SNAP) 6-10
sort ($SRT) 6-29
system log ($LOGD) 6-8
timer ($TRB) 6-33
OLINK procedure 7-4
open a file (BOPEN) 6-18, 7-12
operand entry 2-2, 4-6
operand formats, machine
instructions 4-4, 4-5, 4-6
operation entry 2-2, 4-1

options
LIST 7-2
NOLIST 7-2
NOOBJ 7-2
NOXREF 7-2
oBJ 7-2
XREF 7-2

ORG, program control statement 3-8

page headings 7-6
parameter list generation
checkpoint ($CKEQ) 6-13
find ($FNDP) 6-8
information retrieval ($INFO) 6-11
loadable sort ($SRT) 6-29
snap dump ($SNAP) 6-10
system log ($LMSG) 6-5
timer ($TRB) 6-33
parameters
keyword 5-2
positional 5-2
pass control 6-10
physical end (MEND) 5-17
positional parameters 5-2
prepare a device or file for access
($OPEN) 6-18, 7-12
prepare a device or file for termination
($CLOS) 6-19, 7-18
PRINT, listing control instruction 3-7
printed messages
assembler 8-12
macro processor 8-8
macroinstruction statement 8-1
printer support
buffer size 6-20
define the file ($DTFP} 6-20

Index

printer support (continued)

put interface ($PUTP) 6-21
procedures 7-3
program control statements

DROP 3-10
END 3-13
ENTRY 3-11
EXTRN 3-11
ICTL 3-13
ISEQ 3-8
ORG 3-8
START 3-9
USING 3-10

program conventions, assembler 2-3
program linking references 2-11
program relocation 2-3
prototype 5-7
put interface

disk 6-28

display station 6-38

printer 6-21

read a record from disk 6-27, 7-12
record formats 7-7

relative addressing 2-9

relocatable expressions 2-4
relocation, program 2-3

remarks entry 2-2

requested record number or key area 7-12
restart 6-13

retrieve information 6-11

return conditions 7-18, 7-19

return interval time ($RIT) 6-34
return time and date ($TOD) 6-34

sample assembler program A-1
sample coding sheet 2-1
sample macroinstructions A-3, 5-18
self-defining terms
binary 2-7, 5-1
character 2-7, 5-1
decimal 2-6, 5-1
definition 2-6, 5-1
hexadecimal 2-6, 5-1
sequence symbol 5-1
set arithmetic (SETA) 5-14
set binary (SETB) 5-15
set character (SETC) 5-15
set interval timer ($SIT) 6-33
set location counter, ORG 3-8
set symbol 5-3
SETA, set arithmetic 5-14

SETB, set binary 5-15
SETC, set character 5-15
snap dump ($SNAP) 6-10
sort, disk 6-29
source program listing 7-5
source program records, assembler 2-1
source program size 7-4
space allocation 6-17, 7-12
SPACE, listing control instruction 3-7
start assembly, START 3-9
start new page, EJECT 3-7
START, program control statement 3-9
statements, macroinstruction 6-1
substring 5-2
support
disk 6-22, 6-29
display station 6-34
general I/0 6-17
general SSP 6-8
1/0 6-16, 6-17
printer 6-17
system log 6-4
system services 6-4
timer 6-33
symbol definition, EQU 3-2
symbolic parameters 5-2
symbolic terms 2-5
system communication area
access 6-11
change 6-11
system date, return 6-34
system log support
description 6-4
displacement generation ($LOGD) 6-8
linkage generation ($LOG) 6-8
parameter list generation ($LMSG) 6-5
system services macroinstructions 6-4

T checking 5-13
TABDF, table-definition 5-11
table (TABLE) 5-10
table-definition (TABDF) 5-11
terminating a file 6-19, 7-18
terms
definition 2-5
expressions 2-4, 2-8
location counter reference 2-8
self-defining 2-6
symbolic 2-5
text (TEXT) 5-11
time of day, return 6-34
timer interrupt 6-33
timer request block 6-33
timer support 6-33
TITLE, listing control instruction 3-6
type attribute (T') checking 5-13

unconditional branch record (AGO) 5-14
unformatted messages 6-5

use index register for base displacement
addressing, USING 3-1

USING, program control statement 3-10

value checking 5-14
variable symbol 5-2

work station local data area

access 6-11

change 6-11
write a record to disk 6-28, 7-12
writing macroinstructions 6-1

XREF 7-2

Index

X-7

r o 1] r
READER’S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I1BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply. Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
Page Number Error publication, or tell you why a change is not being made, provided you

include your name and address.

Page Number Comment

IBM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may, Name
of course, continue to use the information you supply.

Address

® No postage necessary if mailed in the U.S.A.

D

|enuepy 8duaiajay

10533014 OJoBY
pue Ja|qusssy dliseg

€/ waisAs NI

€-G0LL-1208

§C21-7705-3

Fold and tape Please do not staple

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM CORPORATION
General Systems Division
Development Laboratory
Publications, Dept. 532
Rochester, Minnesota 55901

Fold and tape Please do not staple

International Business Machines Corpodration

General Systems Division
4111 Northside Parkway N.W.
P.0. Box 2150

Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/international
44 South Broadway

White Plains, New York 10601
US.A.

(International)

—— - - — — — — — ——— — — — — — — —aun

(1Z-VES "ON 3j14) [ENuUBW 30UaI3JaY 10552001 OIIBN PUB JA|QUIBSSY DISBE HE/WaISAS WA |

buoy in) — — — — —

€-G0LL-LZIS "V'S'N ui pajuld

C

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

{International)

S$C21-7705-3

(LZ-PES "ON 8l14) |ENUBIY 30UaIajaY 10§S300.4 OIOB|\ PUE JB|QUIBSSY dlseg pE/walsAs gl

€°G0LL-1T08 Y'S'N ul pajulid

a0

