H0O11d3 FOVINIT AVIHINO

©
o
<
™
n
)
z
i)
i

SC21-7707-0

. E—— S -

e ———— $C21-7707-0
- es = oas o
: prm— L —— File No. S34-36
e ——

Gl Y N W

[—————— -

IBM System/34
Overlay Linkage Editor
Reference Manual
Program Number 5726-SS51

OVERLAY LINKAGE EDITOR

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Preface

The Overlay Linkage Editor is a part of the IBM
System/34 System Support Program Product (Program
Number 5726-SS1). This manual is intended for
experienced programmers who plan to link-edit their
own object modules rather than have the language
processors (assembler and compilers) do the
link-editing.

This publication contains:

« Introductory information regarding system
configuration and storage requirements

« General information about input, output, and use of
the Overlay Linkage Editor

« Specific information about the contents of the various
overlay areas and how the user can design an overlay

« Examples of how the Overlay Linkage Editor can be
used

First Edition (October 1977)

Related Publications

These publications contain information that further
describes topics discussed in this manual:

« IBM System/34 Basic Assembler and Macro Processor
Reference Manual, SC21-7705

« IBM System/34 System Support Reference Manual,
SC21-5155

« IBM System/34 System Data Areas and Diagnostic
Aids Handbook, LY21-0049

« IBM System/34 System Support Program Logic
Manual: System, LY21-0050

« IBM System/34 FORTRAN IV Reference Manual,
SC21-7706

This edition applies to release 2, modification O of the IBM System/34 System
Support Program Product (Program Number 5726-SS1) and to all subsequent
releases and modifications until otherwise indicated in new editions or technical

newsletters.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM systems, refer to the latest
I1BM System/34 Bibliography, GH30-0231, for the editions that are applicable and

current.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental. Use this publication only for the

purpose stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM

publications and technical information about the system should be made to your
local IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader’'s Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1977

CHAPTER 1. INTRODUCTION
System Configuration
Primary Storage Requirements
Secondary Storage Requirements
ErrorHalts
Changes in Load Module Size

CHAPTER 2. USING THE OVERLAY
LINKAGEEDITOR
Compiler Entry
UserEntry
OCL Statements
Control Statements
Parameter Descriptions
Storage Map

CHAPTER 3. OVERLAYS
Overlay Areas
Root Area
User Overlay Area
System Overlay Area
Coresident Area
Assigning Overlays
Determining Which Modules Can Be
Overlaid
Including Overlay Modules in the Root
Link-Edit Start Addresses
Load Module Entry Point
Overlay Area Size
Using the Group Statement

CHAPTER 4. EXAMPLES
Examples 1 Through5
Example 1
Example 2
Example 3
Example4
Example 5 o000
Examples6and 7
Example 600,
Example 7
Examples 8 Through 11
Example8o
Example 9
Example 10
Example 11

2-1
2-1
21
2-1
2-2
2-3
2-11

31
3-1
3-1
3-1
3-2
3-2
3-2

4-1

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Contents
APPENDIX A. MESSAGES A-1
APPENDIX B. OBJECTMODULES B-1
External Symbol List (ESL) Records B-1
Text-Relocation Directory (RLD) Records B-3
EndRecord B-4
APPENDIX C. PERFORMANCE
IMPROVEMENTS C-1

APPENDIX D. HOW TO SPECIFY THE OLINK

PROCEDURE D-1
GLOSSARY E-1
INDEX e X-1

Chapter 1. Introduction

Overlay linkage editor processing is necessary following the assembly or
compilation of any program except an RPG program, which uses the RPG

. linkage editor. The output of a language processor (assembler or compiler) is
called an object module (see Figure 1-1). An object module cannot be run as a
program until it is link-edited into a load module. Object modules and load
modules reside in the library on disk as subroutine members and load
members respectively.

Source

Object
Program

Module

Load
Module

Language
Processor

Linkage
Editor

&
Figure 1-1. Preparing a Source Program for Execution

The Overlay Linkage Editor provides a compiler entry and a user entry. The
compiler entry provides the following functions:

+ Catalogs the output object module of a language processor, such as |IBM
System/34 Assembler, into the library on disk as a subroutine member.

« Link-edits the output object module of a language processor into a load
module and catalogs it into the library on disk as a load member. The
assigning of modules to overlay segments is determined automatically by
the Overlay Linkage Editor.

The user entry allows the programmer to link-edit object modules into load
modules. The programmer can influence the determination of overlays himself
or he can allow the Overlay Linkage Editor to determine the overlay structure.
The load modules are cataloged into the library on disk as a load member.
Note: For further information concerning library organization, see the System
Support Reference Manual.

SYSTEM CONFIGURATION

‘ The Overlay Linkage Editor is a part of the IBM System/34 System Support
Program Product and runs on all models of the IBM System/34.

Introduction 1-1

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

PRIMARY STORAGE REQUIREMENTS

The primary storage requirement for the execution of the Overlay Linkage
Editor is 14K bytes of main storage.

SECONDARY STORAGE REQUIREMENTS

The Overlay Linkage Editor requires 21 library blocks. For execution, work
space must be available on the disk; this space can be specified by the
programmer or allocated by the Overlay Linkage Editor {(see index entry: OCL
statements).

ERROR HALTS

Halts are issued with error messages on the system logging device for error
conditions.

CHANGES IN LOAD MODULE SIZE

Changes made to the Overlay Linkage Editor from release to release may cause
change in the size of the output load module. For example, a program that fits
in 4K on one release may not fit in 4K on the next release. |f this type of
change increases the size of a load module so it no longer fits in available
main storage, a message is issued and it will be necessary to build a new load
module by rerunning the Overlay Linkage Editor.

1-2

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Chapter 2. Using the Overlay Linkage Editor

This chapter describes the compiler and user entries to the Overlay Linkage
Editor and the storage map that is printed by the Overlay Linkage Editor and is
used by the programmer to determine the structure of a program. The
requirements for the object modules processed by both entries of the Overlay
Linkage Editor are described in Appendix B.

COMPILER ENTRY

The compiler entry to the Overlay Linkage Editor is used by language
processors to catalog their output object modules (object modules are
described in Appendix B). Language processors can also specify link-editing.
The Overlay Linkage Editor then link-edits the object module into a load
module and catalogs the load module into the library, if requested.

When the programmer compiles an object module and immediately link-edits it
into a load module via the compiler entry, he can influence the determination
of overlays only by specifying the category of the object modules on the
compiler input. For the Overlay Linkage Editor method of determining overlay
structure, see index entry: determining overlay modules.

USER ENTRY
To use this entry to the Overlay Linkage Editor, the programmer must supply:

« Operation Control Language (OCL) statements

« Overlay Linkage Editor control statements

OCL Statements

The following OCL statements are an example of loading the Overlay Linkage
Editor via the user entry:

// LOAD #OLINK

// FILE NAME-$WORK,RETAIN-S,BLOCKS-40

// FILE NAME-$SOURCE,RETAIN-SyBLOCKS-40

// RUN

// MODULE NAME-CCCCCC,LIBRNAME-#LIBRARY

// OPTIONS ATTR-DED,MRTMAX-0,SUBLIB-#LIBRARY

// PHASE NAME-CCCCCC,LIBRNAME-#LIBRARY,RETAIN-P
// END

The LOAD statement loads the Overlay Linkage Editor into main storage from
disk.

Using the Overlay Linkage Editor 2-1

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

The FILE statements are optional. The Overlay Linkage Editor will find disk
space if FILE statements are not supplied. Space will be assigned if there is a
minimum of 24 blocks available (even though 24 blocks may not be sufficient
for a large program). FILE statements should be supplied for large programs
(25K or more) to ensure that the Overlay Linkage Editor has adequate work
space to complete the link-editing. Also, the Overlay Linkage Editor uses all
available main storage for the file buffers; therefore, the file must be equal to
or greater than the region size. If the two FILE statements are supplied, they
must be the same as the standard FILE statements used by the compiler.

The RUN statement starts the execution of the Overlay Linkage Editor.

The OCL statements can be entered from the system input device or called
from a procedure member in the library.

Control Statements

Overlay Linkage Editor control statements can be entered from the system
input device or from a procedure member in the library. The types of control
statements are:

1. PHASE statement: Optional, none or one allowed.

2. OPTIONS statement: Optional, none or one allowed.

3. MODULE statements: Required, one or more than one allowed.

4. GROUP statement: Optional, none, one, or more than one allowed.

5. CATEGORY statement: Optional, none, one, or more than one allowed.

6. EQUATE statement: Optional, none, one, or more than one allowed.

7. END statement: Required, only one allowed.

Use

Define load
module

Define
environment

Define object
modules

Group object
modules together
in storage

Change category
(priority) of
object module

Equate module
names

End of control
statements

Parameter Descriptions

Page of $C21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Control Statement Summary

Control Statement

// PHASE NAME—name, LIBRNAME—name, RETAIN— {—P} s

R
LINKADD— {;,°°°° } RLD— {YES }

// OPTIONS STORE—annK, LEVEL—nnn, ENTRY—label,

YES
XXX NO
ATTR_{’xxx,xxx,...xxx'} sMAP=1 YREF(°
MSG
SUBLIB—{ "aM¢ 4 MRTMAX—nnn
name1, name2

name

// MODULE NAME— {
name, name,. .

. name'} ’

LIBRNAME—name

name

// GROUP NAME-— {
name,name,. ..

name,} , AREA-USER

// CATEGORY NAME—{?ame } ,
name, name,. .. name
VALUE—nnn
// EQUATE OLDNAME— {f‘a’"e } ,
name,name, .. .name
NEWNAME— {f‘ame }
name,name,. .. name

// END

The following is a discussion of the parameters for each of the control
statements. When there is a default value for a parameter, the default value is

underlined.

Using the Overlay Linkage Editor 2-3

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

PHASE Statement

The PHASE statement specifies the name of the load module. If the PHASE
statement is omitted, the load module is assigned the same name as the
mainline routine (see index entry: MODULE statement).

// PHASE NAME—name, LIBRNAME—name, RETAIN— {T':} R

LINKADD— {)): :°°° } RLD— {YES }

NAME: The name that the load module will have in the library directory. If the
NAME parameter is not supplied, the load module will have the name of the
mainline routine. The name can be from one to six characters long. The first
character must be alphabetic and can contain any combination of System/34
characters except blanks, commas, quotes, or periods.

LIBRNAME: The name of the library where the load module is to be placed.
The library name can be from one to eight characters long. If this parameter is
omitted, the load module is placed in the system library.

RETAIN: Specifies whether or not the operator is notified of an existing load
member in the library specified by LIBRNAME or the system library.
RETAIN-R means the load module is to replace an existing member with the
same name and the operator is not notified that a duplicate entry existed. If
RETAIN-P is specified, and a member exists with the same name, a message
is issued that requires an operator response before replacing an existing
member with a new member. If RETAIN is not specified, P is the default.

LINKADD: Specifies the link-edit start address, which is the relocatable
address assigned to the first byte of the link-edited load module. This address
must be a multiple of eight if RLD-NO (on the PHASE statement) or
ATTR-COM (on the OPTIONS statement) is specified. If this parameter is
omitted, the link-edit address is X’0000’. If the start address plus the number
of bytes in the program exceeds X FFFF' (64K), the program is link-edited to
start at X'’0000’.

RLD: Specifies whether the program will be produced with Text-Relocation
Directory records (RLDs). If this parameter is omitted, YES is the default (see
index entry: RLD records).

OPTIONS Statement

2-4

The OPTIONS statement describes the load module and specifies the type of
linkage editor output. If the entire OPTIONS statement or any of the
parameters are omitted, the system uses the defaults given in the following
parameter explanations.

// OPTIONS STORE—annK,LEVEL—nnn,ENTRY—-IabeI,ATTR—{,xxx }
XXX g XXXy ..eX XX
YES
NO name
SMAP— ’SUBLIB—{‘namﬂ,nameZ‘} ,MRTMAX—nnn
MSG

STORE: The storage size the load module has available for execution. If
specified, the library directory entry contains this size even though the actual
size required by the load module is less. If not specified, the available user
main storage is used to determine when overlays are required and the library
directory entry contains the actual load module size.

a = 1/4 increments expressed as:
Q = 1/4 or 256 bytes
H = 1/2 or 512 bytes
T = 3/4 or 768 bytes
0 = zero bytes

nn = 1K increments, expressed as a two-digit decimal number
Example: Q04K = 1/4K + 4K = 256 + 4096 = 4352 bytes

LEVEL: The number that is placed in the level entry in the library directory.
Different modification levels of load modules can be assigned different level
values. The maximum value for nnn is 255. The default is 001.

ENTRY: An entry point or module name of an included module. The label must
be six characters or less. The default is the entry point of the mainline routine.

ATTR: Attributes of the module being link-edited. If ATTR is not specified, no
attributes are assigned. The possible values are:

COM (program common supported): This module requires the calculation of
a new load address at load time. This ensures that the new main storage
load address is beyond the program’s own common region.

DED (dedicated module): This module must execute alone. No other tasks
can be executed.

LSC (load only from system console): This module cannot be loaded from a
display station.

NEP (never-ending program): This module is a long-running program and
any resources allocated to the program are not available to other programs.
The never-ending program attribute can be assigned to both multiple
requestor terminal programs and single requestor terminal programs. This
attribute can also be assigned to programs executed from the input queue.
In addition, the never-ending program attribute assigned to a multiple
requestor terminal program allows the program to do an ACCEPT INPUT
operation without an outstanding INVITE.

NEX (not executable): This module is loaded by another module and cannot
be loaded by a LOAD OCL statement.

Note: If NEX is specified, none of the other attributes may be specified.

NIQ (noninquirable module): This module cannot be interrupted by using the
inquiry key.

NSW (nonswappable module): This module is never interrupted or put to
disk. This attribute may reduce system throughput.

Using the Overlay Linkage Editor

2-5

Page of $C21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

SIS (scientific instruction set microcode): This module requires the scientific
instruction set microcode for execution.

SRQ (source required): This module requires the allocation of the $WORK
and $SOURCE files. $SOURCE must be filled either from the system input
device or a source library.

UCS: This module reads utility control statements.

MAP: Type of printer output during link-edit:

YES = A storage map and messages are printed. If MAP is not
specified, YES is assumed.

NO - No storage map or messages are printed.

XREF = A storage map, cross-reference list, and messages are
printed.

MSG = Only messages are printed.

SUBLIB: The name of the library that contains the user subroutines to be
link-edited. If two names are entered, name1 library is searched first, followed
by name2 if necessary. The library name can be from one to eight characters
long. If this parameter is omitted or if the subroutines are not found in the
library or libraries named, the Overlay Linkage Editor searches the system
library for the user modules. The Overlay Linkage Editor uses this parameter
when performing AUTOLINK.

MRTMAX: The maximum number of active requesting display stations that can
be allocated to the program. The maximum value for nnn is 255. This
parameter indicates that the module can be used as a multiple requestor
terminal program. If zero is specified or if MRTMAX is omitted, the program
is not considered a multiple requestor terminal program.

MODULE Statement

2-6

The MODULE statement specifies which object modules are to be included in
the load module. Muiltiple module names may be submitted on one MODULE
statement; the mainline routine is the first object module named. If a module
name is not found in the library, an error message is displayed; if you take a
zero option, the Overlay Linkage Editor will do a find on the next module name
in the statement.

CAUTION

Programs that include instructions that decrement the location counter cannot
be link-edited on System/34. An object module that includes a decremented
ORG statement causes a terminal error at link-edit time.

name

‘name, name,. . . name'} » LIBRNAME—name

// MODULE NAME—{

NAME: The names of the object modules to be included in this program. Each
name must be six characters or less. The maximum number of characters that
may be entered is 60 (including the commas and the two single quotes).

LIBRNAME: The name of the library where the object modules are located.
The library name can be from one to eight characters long. Only one
LIBRNAME parameter is allowed with each MODULE statement. If this
parameter is omitted, the system library is the default.

GROUP Statement

The GROUP statement specifies a number of object modules that the
programmer wishes to group together in storage. The programmer may design
an overlay structure, based on his knowledge of the object modules being
link-edited, to obtain more efficient loading of overlay segments. These
modules are put into the same overlay segment or partly in an overlay segment
and partly in the root segment.

The first module named in a GROUP statement should be referenced by a
module that is not in the group (see index entry: grouping modules).

By specifying AREA-USER, you can also use the GROUP statement to assign
coresident overlay modules to the user overlay area (see index entry: overlay
area), thereby possibly reducing main storage size.

The GROUP statement is optional; if it is not supplied, the Overlay Linkage
Editor designs the overlay structure (see index entry: overlays).

name

// GROUP NAME-— { ,
name,name,. .. name

} ,AREA—USER

NAME: The name of a module that should be assigned to the user area or the
names of the object modules that must all be in storage at the same time.
Each name must be six characters or less. The maximum number of characters
that may be entered is 60 (including the commas and the two single quotes).

AREA: If the module named in this statement is assigned to an overlay, it will
be assigned to the user overlay area. If a list of names (‘'name,name, . . .")
precedes AREA-USER, the named modules are grouped in the user overlay
area. To force multiple modules to the user area without grouping them
together, specify each module name on a separate GROUP statement.

For more detailed information on grouping, See Using the GROUP Statement, in
Chapter 3.

Using the Overlay Linkage Editor 2-7

2-8

CATEGORY Statement

The CATEGORY statement temporarily changes the category value (priority) of
an object module. Because the priority of an object module influences the
placement of the module in an overlay segment, the category value of the
module is changed only for this link-editing.

Notes:

1. Modules in the same overlay do not need to have the same category value.

2. For a discussion of all the factors that determine overlay assignments, see
Assigning Overlays in Chapter 3.

name

// CATEGORY NAME—{,)
name,name,. .. hame

} s VALUE—nnn

NAME: Names of modules for which the category value (priority) is to be
changed for this link-editing. Each name must be six characters or less. The
maximum number of characters that can be entered is 60 (including the
commas and the two single quotes).

VALUE: The new category value:
0 A module with this category value cannot be overlaid. It is always
placed in the root segment.

1-7 These category values are generally reserved for system modules.
These modules can be overlaid if necessary to satisfy main storage
size. Modules with these category values may call only modules
with the same category value or category O modules. IBM system
modules have the following general category values:

Category System

Value Module
2 Disk 1/0
4 Arithmetic
5 1/ 0 control modules
6 Display 1/0

Category values 1, 3, and 7 have no assignment and are available
for use.

8-125 These category values assign overlay priorities. The lower the
number, the less likely that the module will be overlaid.

126 This category value assigns a special overlay priority. In any overlay
program, routines of category 126 will be given first consideration
for reinclusion in the root area (nonoverlay main storage).

127

128

This value is treated the same as a category value of O (zero). Itis
displayed on the storage map as category 0, not category 127,
except when it is assigned by a CATEGORY statement.

This value specifies that the module must be aligned on a 256-byte
boundary. Value 128 can be used with any lower category value.
This is done by adding the lower value to 128. For example, you
can specify that a module have a category value of 8 and be
aligned on a 256-byte boundary by specifying a category value of
136 (8 + 128) on the CATEGORY statement. Category 128
indicates a category O module aligned on a 256-byte boundary.

If an input module contains a category value of 128, the module
will be aligned on a 256-byte boundary even if a CATEGORY
statement assigns a category value of less than 128. The
boundary-align attribute cannot be changed by a CATEGORY
statement, but a module not automatically aligned on a boundary
(that is, with a priority less than 128) can be aligned for this
link-edit.

CAUTION

If a module has input/output buffers, the buffers must be aligned
on an 8-byte boundary. Even if the compiler indicates that the
buffers are aligned on 8-byte boundaries, this does not ensure that
the buffers will be aligned after link-edit.

Assuming that you have aligned the input/output buffers properly
in your module (subroutine), there are two ways to ensure that the
alignment will not be altered by the link-edit:

« Assign all input/output buffers to the mainline routine.

« Use a category value of 128 to align the module to a 256-byte
boundary.

All overlays are aligned on a 256-byte boundary, therefore, if the
module is the first module in an overlay, it will be on a 256-byte
boundary.

Using the Overlay Linkage Editor

2-9

2-10

EQUATE Statement

The EQUATE statement allows a temporary change to a reference to a module
name or entry point. References to a module name or entry point specified in
the OLDNAME parameter are resolved to the module name or entry point in
the NEWNAME parameter. If a list of names is entered, the OLDNAME entries
have a one-to-one relationship to the NEWNAME entries. The first OLDNAME
is resolved to the first NEWNAME, the second to the second, and so on.

Each list must contain the same number of names. If a name is used as an
OLDNAME more than once, it is resolved to the first NEWNAME it matches.
Only one level of equating is done. Consider the following statements:

// EQUATE OLDNAME-ABLE,NEWNAME-BAKER
// EQUATE OLDNAME-BAKERj,NEWNAME-SAM

These statements would cause references to ABLE to be resolved to BAKER
and references to BAKER to be resolved to SAM. References to ABLE would
not be resolved to SAM.

If two modules are equated and their entry points are also referenced, the
entry points also must be equated.

// EQUATE OLDNAME— {?ame } ,NEWNAME— {f‘ame ,
name,nName,...nName name,name,... Nname

OLDNAME: The module name or entry point now referenced in the program.
The name must be six characters or less. The maximum number of characters
that may be entered is 60 (including the commas and the two single quotes).

NEWNAME: The module name or entry point that will replace the referenced
name or entry point in the program. The name must be six characters or less.
The maximum number of characters that may be entered is 60 (including the
commas and the two single quotes).

END Statement
An END statement indicates the end of the Overlay Linkage Editor input and

must follow the control statements read from the keyboard or procedure
member.

// END

)

STORAGE MAP

A storage map is printed unless MAP-NO is specified on the OPTIONS
statement. The system date is printed following the title line. The headings on
the map are: Start Address, Overlay Number and Overlay Area, Category,
Name and Entry (for module name and entry points), Code Length
Hexadecimal, Code Length Decimal, and Referenced By (only if a
cross-reference list is included). The Overlay Area names the area into which
each overlay is loaded: U for user area, S for system area, and C for
coresident area.

If the category of a module is changed, both the old and new category values
are printed. The format is: old, new.

If a module is included in two or more overlays, it appears on the map in two
or more places. If MAP-XREF is specified on the OPTIONS statement, a
cross-reference list is also printed. This list contains modules that have
external reference ESLs to the module names or entry points.

At the end of the storage map, the total storage used is given in decimal, and
the start control address is given in hexadecimal. If the program uses overlays,
the nonoverlay storage size is also printed. The storage size of an overlay
program is always in increments of 256 bytes. The nonoverlay storage size is
the exact number of bytes in the load moduie.

The storage map can be omitted to save link-edit time.

(See examples 6 through 11 for sample output.)

Using the Overlay Linkage Editor 2-11

OVERLAY AREAS

Chapter 3. Overlays

Main storage for an object program with overlays may be divided into four
areas: root, user, system, and coresident (see Figure 3-1). Not all programs
will need all four areas. The storage map indicates which overlay area each
overlay segment is loaded into and the start address of each overlay area. See
the storage maps printed with the examples in Chapter 4.

Resident Nucleus

— GLOBAL
— COMMON

— Mainline Module

— Category 0 Modules (user)

— Other Modules Included (if
available)

and Transfer Vectors

— QOverlay Fetch Routine, Fetch Table,

space
— Root Area

User |/O Dependent Modules
(categories 8-126)

}'— User Overlay Area

—
—

_—
System Modules =~ — -

}—'— System Overlay Area

(categories 1, 2, 3, 5, 6,
and 7. Each category in
a separate overlay.)

System Modules (category 4)

T —
—~—
—
T —
—

User 1/0 Independent Modules
(categories 8-126)

—

Figure 3-1. Overlay Areas

Root Area

s —Coresident Area

The root area of an overlay program contains the parts of the program that are
never overlaid (see Figure 3-1). The root area always contains the mainline

module, overlay fetch routine, fetch table, and transfer vectors. The remaining
parts of the root depend on the program being linked.

User Overlay Area

The user overlay area contains customer modules that call system 1/0
modules. An overlay segment loaded into the user overlay area can contain
modules of different category values.

Overlays 3-1

3-2

System Overlay Area

A system overlay segment contains system modules with the same category
value, and all included system modules with that category value are assigned
to that overlay segment. Each system overlay segment is independent of other
system overlay segments; that is, a system module can call only another
module with the same category or a module with category O.

Coresident Area

The coresident area is actually a part of the system overlay area (see Figure
3-1). The system arithmetic overlay segment (category 4) is sometimes smaller
than the system overlay area. If it is smaller, the remaining space is the
coresident area and can be used to load user modules that are

I/ O-independent (do not call system |/O modules). |f the main storage
requirement of category 4 plus the coresident area is greater than the size of
the system overlay area, category 4 modules are reincluded in the root area
until all category 4 routines are in nonoverlay main storage, or until the
category 4 plus coresident area can fit into the system overlay area. An

I/ O-independent module can be moved from this area to the user area by
grouping it with an |/O-dependent user module or by specifying AREA-USER
on the GROUP statement.

Routines of category 126 can be given first consideration for reinclusion in the
root area (nonoverlay main storage).

ASSIGNING OVERLAYS

The Overlay Linkage Editor attempts to fit all modules of an object program
into the specified storage size without overlays. If this cannot be done, the
Overlay Linkage Editor assigns some modules to overlay segments. Figure 3-2
shows the Overlay Linkage Editor method of assigning modules to overlay
segments. The maximum number of overlay segments in a program is 254.
The first module encountered (on a MODULE statement) is the mainline routine
and thus part of the root. The extended root mainline includes the mainline
and all its descendants with each string of descendants being terminated when
a nonzero category module is encountered. A descendant is a module called by
another module. The root is in main storage at all times and is never overlaid.
The amount of main storage available determines the amount of code placed
into overlay segments. If the load module does not fit in the main storage size
specified (in the STORE parameter of the OPTIONS statement) and generating
overlay segments would not enable it to fit better in storage, overlay segments
are not generated, and a message is issued.

Through the user entry you can use the GROUP statement to specify module
groupings (see index entry: grouping modules) and use the CATEGORY
statement to change the category of a module. You originally established the
category of a module by specifying options to the compiler or assembler.

® |f program fits in available storage without overlays Build program without overlay segments

® Assign category 0 to modules that cannot beoverlaid.
(See index entry: determining overlay modules.)

® Assign root area as follows (see index entry: root area):

End of
Link-edit

. — Mainline module

— Category 0 modules

— Overlay fetch routine

— Fetch table entries for overlays

— Transfer vectors for overlay modules

® Assign system modules to overlays. (see index entry:
system overlay area and co-resident area)

® Compute minimum size of each overlay area.

® Include overlay module in the root if they fit and
can be included (see index entry: including mod-
ules in root). Modules are included by category
values 1 through 126 in order.

Assign system modules to overlays. (See index entry:)
system overlay area and coresident area.) If a module is included in the root, the transfer
vector for it is eliminated and the fetch table entry
— If the user module, its descendant, or a module it is eliminated if the module was the last entry in the
is grouped with (see index entry: GROUP state- overlay segment.
ment) calls a system I/O module, assign the user)
module to a user overlay segment and assign each ® |f any modules were included, repeat the last two
descendant that calls a system |/O module or has steps.

a descendant that calls a system |/O module to the
same user overlay segment. Assign descendants of
modules in the user overlay segment that do not
call system I/O modules to a coresident overlay
segment along with their descendants.

Pad nonsystem overlays to equal lengths by com-

— If the user module does not call a-system 1/O bining smaller overlays to create larger ones.
module, assign the module and its descendants
to a coresident area.

. Build overlay program,

End of

‘ Link-edit

Figure 3-2. Overview of the Overlay Linkage Editor Method of Assigning Overlays

Overlays 3-3

The Overlay Linkage Editor generates an overlay fetch routine, fetch table, and
transfer vectors for programs with overlay segments, and includes them in the
root segment. The generated code is 121 bytes, plus 7 bytes for each overlay
segment, and 11 bytes for each overlay segment entry point that has a transfer
vector. During execution of the object program, the overlay fetch routine is
called when an overlay segment is needed. The overlay fetch routine checks to
see if the segment is already in main storage. If it is, the segment is not
reloaded. This saves the time needed to load the segment.

Determining Which Modules Can Be Overlaid

The Overlay Linkage Editor considers a module capable of being overlaid if the
category of the module is nonzero and if the module is a direct descendant of
(called by) the mainline routine (the first module named on the MODULE
statement) or descends from the mainline routine through only category O
modules. A, C, G, and H in Figure 3-3 meet these requirements and can be
overlaid.

A module that calls a module of an extended mainline routine (B and E are
examples of extended mainline in the shaded portion of Figure 3-3) can be
overlaid only if the module called has no direct or indirect call to an overlayable
module. C in Figure 3-3 is overlayable since it calls E, and E does not call an
overlayable module. If E called an overlayable module, C would have to be
included in the root.

A module called by an overlay module can itself be overlaid (module F in
Figure 3-3).

Modules that do not qualify for overlay segments are assigned to the root
segment. Module C in Figure 3-4 is assigned to the root segment because it
appears twice in the program. Modules C and F in Figure 3-5 are assigned to
overlay segments because each appears only once in the program, even though
they do not meet the requirements mentioned above for overlay modules.

Including Overlay Modules in the Root

After the Overlay Linkage Editor has assigned all modules to either the root
segment or to overlay segments, any overlay modules that can be included in
the root segment without exceeding the user-specified main storage size are
included. A module can be included if it meets one of the following criteria:

« The module calls no other module.

« The module is a user module and calls another user module but the called
user module appears in only one overlay segment.

« The module is a system module called from a user module and all other
system modules with the same category, not called by user modules, have
already been included in the root segment.

Mainline

Category 8

E

Category 0

Category 8

Category O

Category 8

*Modules assigned to root

Figure 3-3. Structures of an Overlay Program

Mainline

>

Category 10

|

B

Category 0

I

Cc

Category 50

*Modules assigned to root

Category 10

il

B

Category 0

Category 50

Figure 3-4. User Modules Assigned to the Root Because
they Cannot be Overlaid

C D
Category 8 Category O
H
E 3 Category 8
Category O
»
E
Category O Category 0
L M
Category O Category O
»
Mainline
A h D
Category 10 Category 10
B " E
Category O Category 0
I . |
c F
Category 50 Category 60

*Modules assigned to root
**Modules in first user overlay
***Modules in second user overlay

Figure 3-5. Normal Root Modules Assigned to Overlays

EX XS

nw

Overlays

Link-Edit Start Addresses

If LINKADD is not coded on the PHASE statement, the program is link-edited
to start at X'0000°". If the start address plus the length of the program exceeds
64K, the program is link-edited to start at X'0000".

The link-edit start address does not affect the load address.

Load Module Entry Point

The entry point of a load module can be changed by using the ENTRY
parameter on the OPTIONS statement. The entry point can be changed to an
overlay segment. If this is done, the actual entry point will be to the overlay
fetch routine to load the overlay segment. The entry point of a load module
that references a common area must be the first byte of the module.

Overlay Area Size

The Overlay Linkage Editor assigns the smallest overlay areas possible. The
programmer can increase the size of the overlay area, and thereby possibly
decrease the number of overlays, by using the GROUP statement to group
modules into one large overlay. The Overlay Linkage Editor then automatically
increases the sizes of the other overlays to take advantage of the increased
area. This reduces the number of overlays.

Using the GROUP Statement

The GROUP statement specifies module grouping and/or overlay area
assignment. The sequence of module names within the GROUP statement is
important. The module of a group that is referenced from outside the group
must be the first module named on the GROUP statement.

Figure 3-6 shows the modules referenced in the following GROUP statements.
To group modules A, B, and C in one overlay and D, E, and C in another
overlay, the correct GROUP statements are:

// GROUP NAME-'A,B,C'
// GROUP NAME-'D,E,C'

Modules A, B, C, D, and E would be assigned to only one overlay if the
sequence of module names in the GROUP statements were as follows:

// GROUP NAME-'C,A,B!
// GROUP NAME-'C,E,D'

The GROUP statement can also be used to assign overlays to the user area.
To assign groups AB and DE to the user overlay area, use the following
GROUP statements:

// GROUP NAME-'A,B',AREA-USER
// GROUP NAME-'D,E',AREA-USER

Module C would be assigned to the coresident area. This method reduces the
size of the user area, saves secondary storage (module C appears only once),
and may speed up execution of the program (module C must be loaded only
once).

Mainline
I
I I |
A B D E
| l
Cc C

Figure 3-6. Structure of Sample Program

Overlays

3-7

Chapter 4. Examples

EXAMPLES 1 THROUGH 5

These five examples show the OCL statements and Overlay Linkage Editor
control statements used to link-edit five programs. The notes with each
example explain the purpose of the statements in each job.

Example 1

// LOAD #OLINK

// FILE NAME-$SOURCEBLOCKS—20,RETAIN-S

// FILE NAME-$WORK,BLOCKS—-20,RETAIN-S

// RUN

PHASE NAME-TEST50,RETAIN-P,LINKADD-X'OAOO',LIBRNAME-TEST
// OPTIONS ATTR-SRQ,LEVEL-20,SUBLIB-TEST,MRTMAX-007

// MODULE NAME-TEST40,LIBRNAME-TEST

// END

B QEpaoBEsR
~
~

The Overlay Linkage Editor is loaded from the disk.

The $SOURCE file of 20 blocks is allocated on the disk. This is a scratch
file.

The $WORK file of 20 blocks is allocated on the disk. This is a scratch
file.

I Execution of #OLINK (last OCL statement) is started.

The output load module is generated as a load member in the library
named TEST under the name TEST50. If a load member already exists
with the same name, a message will be issued. The start address is
X'0A00'.

B This program (TEST50) requires $WORK and $SOURCE files. The level
number is 20. Subroutine members to be link-edited reside in the library
named TEST. The maximum number of requestor terminals that can
access the program at one time is seven.

The mainline routine for this program is an object module (subroutine
member) in the library named TEST under the name TEST40.

B End of the Overlay Linkage Editor input. Automatic overlays are
generated if needed.

Examples 4-1

Example 2

(] =] -]~

H

// LOAD #OLINK

// RUN

// PHASE NAME-BLUE,RETAIN-R

// MODULE NAME-BLUE

// CATEGORY NAME-WHITE,VALUE-20

// EQUATE NEWNAME-RED,OLDNAME-YELLOW
// END

The Overlay Linkage Editor is loaded from the disk. Because no file
statements are given, the Overlay Linkage Editor finds from 24 to 72
blocks of work space on disk for each file {($WORK and $SOURCE).

The output load module is generated as a load member in the system
library under the name BLUE. If a load member already exists with the
same name, it will be replaced and no message will be issued.

The mainline routine for this program is BLUE and is a subroutine
member of the system library.

For this link-edit the category of module WHITE is changed to a value of
20. WHITE is included in the load module BLUE by autolink.

The references to YELLOW in the object module are replaced by RED in
the load module.

Example 3

Bl // LOAD #OLINK
K // FILE NAME-$WORK yBLOCKS-40,RETAIN-S
// FILE NAME-$SOURCE,BLOCKS-40,RETAIN-S
// RUN
PHASE NAME-BLACK,RETAIN-P
// OPTIONS STORE-HL2K,ENTRY-WHITE,MAP-MSG,SUBLIB-DEPT300
// MODULE NAME-GRAY,LIBRNAME-DEPT100
// CATEGORY NAME-'RED,GREEN',VALUE-55
CATEGORY NAME-YELLOW,VALUE-25
// EQUATE OLDNAME-'A,B,C'yNEWNAME-"'X,Y,Z'
// EQUATE OLDNAME-'D,yE,F',NEWNAME-'Q,Q,Q'
// END

[~ |
~N
~N

]
~
~

$WORK and $SOURCE are allocated 40 blocks each on the disk and are
scratch files.

The object code is constructed so that the program can run in 12.5K of
main storage. The entry point WHITE is the start control address. Only
messages are printed. Subroutine members to be link-edited reside in the
library named DEPT300.

The mainline routine for this program is GRAY, which is a subroutine
member of the library named DEPT100.

Il For this link-edit the category of both modules, RED and GREEN, is
changed to a value of 55.

If more than one module’s category value is to be changed, more than
one CATEGORY statement can be used.

BB The references to module names or entry points A, B, and C are replaced
by X, Y, and Z, respectively.

The references to module names or entry points D, E, and F are replaced
by Q.

Examples 4-3

Example 4

(>~]~1-

.

//
//
//
//
//
//
//
//
//

LOAD #OLINK

FILE NAME-$WORK,BLOCKS—-40,RETAIN-S
FILE NAME-$SOURCE,BLOCKS—40,RETAIN-S
RUN

MODULE NAME-AAAA

GROUP NAME-'AA,BB,CC'

CATEGORY NAME-'AA,BB,DD,EE',VALUE-30
CATEGORY NAME-CC,VALUE-10

END

The mainline routine for this program is AAAA, which is a subroutine
member of the system library. The program will be cataloged as a load
member in the library under the name AAAA. If a load member AAAA
already exists, a message will be issued.

The overlays, if necessary, are constructed so that AA, BB, and CC are in
main storage at the same time.

The category value of subroutines AA, BB, DD, and EE is 30 for this
link-edit.

Routines in the same overlay do not need to have the same category
value. By giving the module a lower category value its chance of being in
the root segment increases.

Example 5

gopEan

H

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

// LOAD #OLINK

// RUN

// PHASE NAME-JIM

// OPTIONS MAP-XREFSUBLIB-'VOLK,MAN'
// GROUP NAME-TOM,AREA-USER

// MODULE NAME-SUE,LIBRNAME-BUD

// END

The Overlay Linkage Editor is loaded from the disk. Because no file
statements are given, the Overlay Linkage Editor finds from 24 to 72
blocks of work space on disk for each file (BWORK and $SOURCE).

The program is cataloged as a load member in the system library under
the name JIM.

Prints a cross-reference list, storage map, and messages. Subroutine
members are found in libraries named VOLK and MAN. VOLK has the
most subroutine members, and because it is entered first, it is searched
before library MAN. Subroutine members not found in VOLK or MAN
will be searched for in the system library.

If TOM is assigned to an overlay, it will appear in the user overlay area.

The mainline routine for this program is named SUE, and is a subroutine
member of the library named BUD.

Examples 4-5

EXAMPLES 6 AND 7

These two examples of the same program show how the overlay structure of a
load module can be changed by varying the input control statements. Both
examples include the input control statements, the storage map printed by the
Overlay Linkage Editor, and a graphic representation of the overlay structure.
Figure 4-1 shows the calling sequence of the modules within the program.

Example 6

Two overlay load points are shown on the storage map (START ADDRESS
heading). INIT (coresident area) has the same load point as the system overlay
area because it has no references to system modules and no category 4
modules appear in the program. A reference to a category 4 module does not
disqualify a module from the coresident area.

MULT4 and DIV4 are assigned to the root area by the Overlay Linkage Editor
because of their low category values and small size. FINAL is assigned to the
root area despite its high category value because it can be placed there without
causing the program to exceed its main storage size. Normally GET6 or PUT6
would be included in the root segment before FINAL because of their lower
category values. However, the Overlay Linkage Editor does not include any
system modules that are called by user modules until all system modules of
the same category that are called only by other system modules are in the root
segment. In this example, #5LPRT and #$MFRD will not fit.

MAINL
| | I 1 I | | | | IR | |
DIV4 INIT NAME ADDRSS LOC INV BILL SHIP ITEM FINAL MULT4 SREAD
GET6
MULT4 DIV4 —SMFRD

SWRITE

PUT6

=SLPRT

Figure 4-1. Calling Sequence of Modules Link-Edited in Examples 6 and 7

Page of SC21-7707-0

Issued 14 July 1978

By TNL: SN21-7963

Example 6 (continued)

[+2]
=
b= [=)
0 -—
=
>
Son
- me
w 8 >
-
& 8O
-
202
-
& § c
£ 9 3
- 28 ‘@
$%5 g
D29 O 3
T
P~
| =
x £
= w T
m | _ bl &
'3 > 4 S
| © > %)
|
o m
8 28 8
m o o -
o
—~ o
=] < o
St 10 '
x| Wi w
N Sw >
Ox -0 -
9 L IND —~ <
[:]=] >q=mn N >
L) o>) ~0 N0 e
v . oW | NWNMNNNe
[ES X e DWIDONNG ||
Zn W >0JDuWdl | W<
o) | = 1D CWWDDDZ
<z W QI><CJ>DDdddr
b=—t o *Q o> g o 4l AU
wa C ¢ oW eD>DNCADD>D> o
= = =00 eVNI>> e & S}
ow VN Jbedwa > e JO X
W e dDWEWEQUI~WZ
Ve AULZFORXCSOOZ— T =
XX Tlre o NNZ L I~DN e
o2 vig<h i bt
00 JIXTWWWWWUWWWWWW
NE OJIZTITIIIIIIIIT
XA |ouddCSI<LILCCL
Zl) WKIZZFZ22IITTZ22Z
[TVITVRES & 474
AEET A T3> > > >
Od€dqd ZV xXoxxxXodoroxoaaxa
nZzZz ZWOOO00C00C000
WO JUIVVVOVIBVLVLVLO
OWW 1= DWW W W WAL UL W

O==DOIa0dqCCd LI Z
—HUL LA O0TUVVLVLVVVLVILVW

N e
ARSI,

J

1400

OVERLAY LINKAGLE EDITOR STURAGE USAGE MAP ANVU CROSS REFERENCE LIST

REFERENCED BY

NA

LOC

vy
- 4 J

Lallal 1 J=T.N)
OV O~-DVOO
(=) (- o2 4

pleielelelsle)

ocowoOmooO
ONO4AULOO
OmMO®MDDOU
00D0QI0

INvV Loc

BILL

aw
—X
I«a
wz

wvi

onN
~3

INvV

BILL

aw
—~T
T«
wz

(%]

onN
oy

20

Lac

.

)
>

-

Ll
N

[a]=)

20

INV LGC

L

au;
-
Ia
wZ

wv

N Nl nd N g
ZYXZTF XZI XL ZI X ZTF XTI X LT AL ZA~00Z
N al T aL VL I al JT el IV al JFTaloTV. {alate]
el el (el {da el fdal (odal S 4 {TTin] 4
P AT RO SO AT XD N RS S oD ¢ A G- 3

A
~3

anN
[L

20

20

wnun

INV Lac

BILL

o w
—F
I<
wnZz

(%}

]
~3

22

INV LGC

BILL

ow
—E
I<a
wz

N

0BOO
QEQO

w

N NJIO- -

DNAN NN

E*S MAIN STDRAGF SIZE IS

F THIS MODULE

[=]1%]

LUGED AS A LOAD MEMBER

O T
DN D=3

—

SYs-31130

ot

—

SYS~3134

C

4-7

Examples

Example 7

This example shows three overlay load points. Overlays 1, 2, 3, and 4 are in the

user area. Overlays 5 and 6 are in the system area, and overlay 7 is in the coresident

area (user module in the system area). GROUP statements were entered to increase

the size of the user overlay area.

-
c
o
3
g
Q
(8]
I
| 2
- (=
] | ¢ s £
2 J 3 £
»
I > > >
L ° °
Q [=}
: g § g 8
o o o - -
o
L (o)
K=} < o
N 10]
x| Wil w
(1% W 2
Ox 100] -
~<Q <MD —~ <
[.:]=} >q—~mn N >
(] &> =21 FNO -
wo X e e I NWANMNNNe
[N Fe DWIDNNG T J
zwv I >0JDWJl lwwwa
— I == JDqWWDDDZ =
<z U QOD>9u>DDdddr >e
- o ea e>g e iddqIue Z0
wa O ¥ oW e>NAASDD> o
o — OO *N>> e e e -0 el
oW VI I dUX * e AT —~JNN
WX H e DWXWIQUIDI~WZ e &
Ve QUZFOZXA00Z =TI - —wod
XX 22Wre e« NNZCI~MNe TOJ
Qe NI L L EEr 0O
J0 JIXFTWWWWWUIWIWWWWZ 90
NZE OI I2FIZTTI2TITII T oo
XN AW CC ! | |
Z1) WaQIZZZZZZZZZZ22uWwWw
—Www ITEXg ETXT
SETF G Z>>>>>>>>>>>>dadqd
Odqd ZV X XXAXXXAXXXXXLZZZ
RZ2Z P4 Malalalelslslealelalala)
WA I I0DI0VOLVLVLVLVIAAA
Oww VHDOWWWWWWWWWWWWIDD

I A Z A= O b b e b e b pom e e e D D D O
O=—~DIa0dqdqdIdddqIdd I XX Z
UL XAOTOIDIVIVUIVLIVOD I W

NN NN NN AN N NN NNNNNNNNNNNN
AR RIRRNRRNRNRANNENNNNNNNNN

OVERLAY LINKAGE EDITOR STORAGE USAGE MAP AND CROSS> REFERENCE LIST

REFERENCED BY

RILL INvV Loc

MAINL
SHIP
S NAME

BILL

Lalalad =Y
PONOO
O Moy
~N

ounonN
NN ONO
O~ M
00002

JIFal -
Z U
—JJd¥E
4D>4ax
I¥OZwn

3 N

——

(%4 (o]
2 [=]
- -
> >
4 4
Ll —
- -
) -
— —
3] @
aw aw
—~Z —X
I« I<a

oon
nw~o
o~ 3

= o o }

N (%)

o
~~3

S anN
woor

202

[e]ele)

22D

N

Lac

SHIP

(% w
< Ndd Vg VNad Va0 —d

QX
—al
Ir-Xx
NN

nNoN
N~
R

[e]el=]

o o B]

M3

ZIXZZTXZZIXLZZETXLZZA—~D0Z2Z
U ot L O 0t 0 L O 5 g L O 0t 0t UL O B B dmt bt
=D QIO CIFIACCL TWO A
EF~GqIT~CEIT~CII~CITNNOATE

DN DN~ DO D
D0 N NNOr~
(2} meaeN

q=TANDOW

00000000

=17, 17,1V, 1V, V. TS 161

N0 000r~r~

oo0OYWMOO
QQOY~VOND
WML T
Ot et e ek i ot i

w
<
2
2
C
x - 4
w
w @
— b3
p o w
(o4 I v
x
w u [« =]
- 2Jun a4 -
- 0O v
won - W
N LW (%]
- WNQ
[40 >
N wn x
w o qw
O qQw rax
« O o4«
X I WZe
O Ox O 4
- x0DJ 2>
T o . 7Y
Zwn a4
Z O Lol - 4
- VT 4aaxX
a (ol L]"Y]
X g -0
¥ v ¥
v <« —~u
e > Iz
w ng wk-
T ddd d
dIwx aOInNga
QIITWI O+
Q=>4 D
TU QUTI >+
wWwnZw o
Q=00 Jq~
a Z axwn
INT OEID
AMOWON=—
H00X S+ JJ
Oondr-o0
— e
O ~N &
M MmN M
— 4 —
M mm m
UL
w v n
> >> >
w o n

4-8

EXAMPLES 8 THROUGH 11

These four examples show how the overlay structure of a program can be
changed by varying the input control statements. The changes result from
varying the category values of modules and varying the main storage size. All
four examples show the input control statements, the storage map printed by
the Overlay Linkage Editor, and a graphic representation of the storage map.
Figure 4-2 shows the calling sequence of the modules within the program.

ROOT

CHARLY DOG EASY LOVE MIKE EASY

Figure 4-2. Calling Sequence of Modules Linked in Examples 8 through 11

Examples

49

NONNNNNNNN
NONONNNNNNN

Example 8

All modules except ROOT, BAKER, and KING are given overlay category values.
Because no system modules (category values 1-7) are present, only one overlay area
is assigned. Any module assigned to an overlay segment must be assigned to the
same segments as its descendants. Because ABLE calls CHARLY and DOG
(through BAKER), these three modules aré assigned to one segment. Likewise,
JAKE calls LOVE and MIKE (through KING) and is assigned, with them, to the
second overlay segment. EASY would have assigned to both segments, but space
was available in the root so EASY was included in the root segment.

LOAD #0LINK 0000
FILE NAME-$SOURCEyRETAIN-S4BLOCKS-50
EahE NAME-$SWORKyRETAIN-S4BLOCKS-50
PHASE NAME-RIZ2Z]
OPTIONS MAP-XREF ySTORE-TI11K
MODULE NAME-ROQT
CATEGORY NAME-*ABLEsJAKE "+ VALUE-8 Root
1800 = —— — =— —
OVLFRTN
1900
Coresident — Overlays 1, 2
Coresident
2D00
OVERLAY LINKAGE EDITOR STORAGE USAGE MAP AND CROSS REFERENCE LIST
START OVERLAY CATEGORY NAME AND CODE LENGTH REFERENCED BY
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL
0000 0 ROOT 0800 2048
0800 0 BAKER 0400 1024 ABLE
0C00] KING Q400 1024 JAKE
1000 37 EASY 0800 2048 KING BAKER
1800 OVLFRTN Q0C9 201
1900 1 C 048 ABLE 0328 808 ROOT
1C28 1 C 37 CHARLY 0800 2048 BAKER
2428 1 C 37 DOG 0800 2048 BAKER
1900 2 C 048 JAKE 0400 1024 ROOT
1000 2 C 37 LOVE 0800 2048 KING
2500 2 C 37 MIKE 0800 2048 KING
SYS-3130 I RIZZI MODULE®'S MAIN STORAGE SIZE IS
11520 DECIMAL
SYS-3131 I 0004 IS THE START CONTROL ADDRESS OF THIS MODULE
SYS-3132 I THE NONOVERLAY MAIN STORAGE SIZE IS
16168 DECIMAL
SYS-3134 I RIZZI MODULE IS CATALOGED AS A LOAD MEMBER
#LIBRARY IS THE LIBRARY NAME
67 TUTAL NUMBER OF LIBRARY SECTORS

NNONONNNNNNN
NONNNNNNNNN

Example 9

All modules have an overlay category (nonzero). Because there are no system
category values (1-7), only one overlay area is assigned by the Overlay Linkage
Editor. Only two overlay segments are possible because each calling module must
be in the same segment as its descendants. Module EASY could be given a category
value of 0 so it would be placed in the root rather than in both segments.

START

ADDRESS NuMB
0000
0800
0900
0C28
1028
1828
2028
0900
0000
1100
1900
2100

-3130 I R

10

SYS-3131 1 0

SYS-3132 1 T

16

-3134 I R

CATEGORY NAME_AND CODE LENGTH

ENTRY HEXADECIMAL DECIM

0] rROQT 0800 2048
OVLFRTN O0FS 245

0,8 ABLE 0328 808
0,8 BAKER 0400 1024
37 CHARLY 0800 2048
37 DOG 0800 2048
37 EASY 0800 2048
0,8 JAKE 0400 1024
08 KING 0400 1024
37 LOVE 0800 2048
37 MIKE 0800 2048
37 EASY 0800 2048

[(alalalalalalalalalal

T
Y

LOAD #0L INK 0000
FILE NAME-$SQURCEsR -S¢BLOCKS=50
abLE NAME-SWORKyRET +BLOCKS-50
N
PHASE NAME-RIZ
OPTIONS MAP-XREFySTORE-HLOK Root
MODULE NAME-ROCT
CATEGORY NAME-*BAKER,KING®*yVALUE-8
EQBEGURV NAME-*ABLEy JAKE 'y VALUE-8
0800 [—]
OVLFRTN
0900
Coresident
2900

*S MAIN STORAGE SIZE IS

ART CONTROL ADDRESS OF THIS MODULE
AIN STORAGE SIZE IS

ALOGED AS A LOAD MEMBER
RY NAME
F LIBRARY SECTORS

T v X
c»

>
=

Coresident — Overlays 1, 2

OVERLAY LINKAGE EDITOR STORAGE USAGE MAP AND CROSS REFERENCE LIST

REFERENCED BY

Examples

Example 10

Module EASY is assigned a category value of 2. Because the Overlay Linkage
Editor assumes that categories 1, 2, 3, 5, 6, and 7 are system 1/O modules, modules
BAKER and KING are 1/0O dependant and are assigned to user overlay segments.
The remaining four modules are 1/0 independant and are assigned to coresident
overlay segments.

// LOAD #O0OL INK 0000
// FILE NAME-$SQURCERETA I -S¢BLOCKS-50
/£ FILE NAME-$SWORKyRETAIN-SyBLOCKS~50
// RUN
// PHASE NAME-EV2
// OPTIONS MAP-XREF ¢STORE-HTK
// MODULE NAME-ROQT
// CATEGORY NAME-'BAKERyKING®'yVALUE-8
// CATEGORY NAME-EASY,VALUE-2
// END Root User — Overlays 1, 2
System — Overlay 3
Coresident — Overlays 4 through 7
OF28 T T T
OVLFRTN
1100
User
1500
Coresident
System
|1D00

OVERLAY LINKAGE EDITOR STORAGE USAGE MAP AND CROSS REFERENCE LIST

START OVERLAY CATEGORY NAME_AND CODE LENGTH REFERENCED BY
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL
0000 0 ROCT 0800 2048
0800 0 ABLE 0328 808 ROOT
0B28 0 JAKE 0400 1024 ROOT
0F28 OVLFRTN O0F7 247
1100 1 U 048 BAKER 0400 1024 ABLE
1100 2 U 048 KING 0400 1024 JAKE
1500 3 S 3742 EASY 0800 2048 KING BAKER
1500 4 C 37 CHARLY 0800 2048 BAKER
1500 5 C 37 006G 0800 2048 BAKER
1500 6 C 37 LOVE 0800 2048 KING
1500 7 C 37 MIKE 0800 2048 KING
SYS-3130 I EV2 MODULE*S MAIN STORAGE SIZE IS
7424 DECIMAL
SYS-3131 I 0004 IS THE START CONTROL ADDRESS QOF THIS MODULE
SYS-3132 I THE NONOVERLAY MAIN STORAGE SIZE IS
16168 DECIMAL
SYS-3134 I EV2 MODULE IS CATALUGED AS A LOAD MEMBER
#LIBRARY IS THE LIBRA AME
72 TOTAL NUM ER OF LIBRARV SECTORS

4-12

NONNNNNNNNN
NNNNNNNNNN

Example 11

All modules except ROOT have an overlay category (nonzero). Because BAKER
and KING call a system module (EASY), they are assigned to user overlay
segments. Modules that call BAKER and KING (ABLE and JAKE) are put into the
same overlay segment as the modules they call. Modules that do not call system
modules are assigned to the coresident area.

LOAD #0OL INK 0000
FILE NAME-$SOURCE ¢yRETAIN-SyBLOCKS-50
ElIJhE NAME-SWORKyRETAIN-S4BLOCKS-50
PHASE NAME-EVZ28
OPTIONS MAP-XREF ¢ STORE-T6K
MODULE NAME-ROQT
CATEGORY NAME-'ABLE+BAKERy JAKEyKING' yVALUE-8
CATEGORY NAME-EASY VALUE-2
END Root User — Overlays 1, 2
System — Overlay 3
Coresident — Overlays 4 through 7
0800 [— — — — —
OVLFRTN
0A00
User
1200
System Coresident
1A00

OVERLAY LINKAGE EDITOR STORAGE USAGE MAP AND CROSS REFERENCE LIST

START OVERLAY CATEGORY NAME AND CODE LENGTH REFERENCED BY
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL
0000 0 ROOT 0800 2048
0800 OVLFRTN 0100 269
0AQQ 1 U 0,8 ABLE 0328 808 ROOT
0028 1 v 048 BAKER 0400 1024 ABLE
0QAOQOQ 2 u 0.8 JAKE 0400 1024 ROOT
QEQO 2 U 0,8 KING 0400 1024 JAKE
1200 3 S 3742 EASY 0800 2048 KING BAKER
1200 4 C 37 CHARLY 0800 2048 BAKER
1200 5 C 37 DOG 0800 2048 BAKER
1200 6 C 37 LOVE 0800 2048 KING
1200 7 C 37 MIKE 0800 2048 KING
SYS-3130 I EvV28 MODULE®*S MAIN STORAGE SIZE IS
6656 DECIMAL
SYS-3131 I 0004 IS THE START CONTROL ADDRESS OF THIS MODULE
SYS-3132 I THE NONOVERLAY MAIN STORAGE SIZE
16168 DECIMAL
SYS-3134 I EV28 MODULE IS CATALOGED AS A LOAD MEMBER
#LIBRARY IS THE LIBRARY NAME
72 TGTAL NUMBER OF LIBRARY SECTORS

Examples 4-13

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Appendix A. Messages

The error conditions diagnosed by the Overlay Linkage Editor are included in
this section. Messages are printed on the system printer, and if requested by
the compiler, the messages are also added to the Diagnosed Source File. (See
the IBM System/34 FORTRAN IV Reference Manual, SC21-7706, for further
information about this file.) |f MAP—NO is specified on the OPTIONS
statement, information messages are not printed.

Messages Requested by the Compiler

If a Diagnosed Source File has been requested and a subroutine member is to
be cataloged, one of the following messages is placed in the fifth record of the
Diagnosed Source File (when this record is displayed, it appears as the fourth
record on the screen):
— MODULE WAS NOT CATALOGED AS A SUBROUTINE MEMBER
(Issued because the linkage editor aborted)
— SYS-31nn WAS DISPLAYED, MODULE WAS NOT CATALOGED AS A
SUBROUTINE MEMBER
— nnnn DECIMAL IS THE CODE LENGTH OF THE SUBROUTINE MEMBER
(Appears when the subroutine member is cataloged in the library)

If a subroutine member was not requested to be cataloged, the record area is
blank.

If a Diagnosed Source File has been requested and a load member is to be
cataloged, one of the following messages is placed in the sixth record of the
Diagnosed Source File (when this record is displayed, it appears as the fifth
record on the screen):
— MODULE WAS NOT CATALOGED AS A LOAD MEMBER
(Issued because the linkage editor aborted)
— SYS-31nn WAS DISPLAYED, MODULE WAS NOT CATALOGED AS A
LOAD MEMBER
— nnnn DECIMAL IS THE MAIN STORAGE SIZE OF THE LOAD MEMBER
(Appears when the load member is cataloged in the library)

If a load member was not requested to be cataloged, the record area is blank.

There are three classes of messages: informational, warning, and terminal.
The informational messages are indicated by an | in print position 10. These
messages are printed without halts. Warning messages are indicated by a W
in print position 10. A halt with options O (continue processing) and 3
(immediate cancel) is issued with warning messages. Terminal messages have
a T in position 10 and are issued with a halt with option 3 only.

Messages A-1

SYS-3100

SYS-3101

SYS-3102

SYS-3103

SYS-3104

A-2

ENTRY LABEL IN OPTIONS STATEMENT WAS
NOT FOUND

The label given as the entry point on the OPTIONS
statement (ENTRY-label) was not one of the entry
points of the object modules.

The name on the OPTIONS statement should match
one of the names on the storage map.

OBJECT MODULE TEXT OUT OF SEQUENCE
nnnn BEGIN ADDRESS
nnn OVERLAY NUMBER

An ORG instruction has caused code to overlay other
code.

namexx MODULE HAS AN INVALID
EXTERNAL SYMBOL LIST FIELD IN
S RECORD

aaaaaa INVALID EXTERNAL SYMBOL LIST
NAME

If using Basic Assembler, you may have specified an
invalid EXTRN subtype.

namexx MODULE HAS AN INVALID
RELOCATION DIRECTORY ENTRY
IN T RECORD

nnnn TEXT RECORD ADDRESS

The object module named has a bad text record. The
erroneous record has the nnnn address in bytes 3
and 4.

ENTRY POINT IN PROGRAM NOT FOUND
nnnn BEGIN ADDRESS
nnn OVERLAY NUMBER

There is an unresolved EXTRN to an entry point.
Probable user error.

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

SYS-3105 T namexx SUBROUTINE MEMBER NOT
FOUND IN LIBRARY

The name printed in the message was not found by

autolink. To correct the error, copy the module to the
library or change the EXTRN to the correct module.

Messages A-2.1

SYS-3107

SYS-3108

SYS-3109

W

w

w

PROGRAM WILL NOT FIT IN THE MAIN
STORAGE SIZE SPECIFIED

Even with overlays, the program will not fit in
storage. The storage size is either the size specified
on the OPTIONS statement (STORE—annK), the main
storage size specified to the compiler, or the default
of the current main storage size. If more main
storage is not available for execution, change the
module sizes or categories to allow a different overlay
structure. If this message is issued and no overlays
are indicated on the storage map, overlay segments
were not generated for one or more of the following
reasons:

1. Overlays would not have provided a storage
advantage.

2. All of the object modules had category O.

3. Only one overlay segment was available for
an overlay area.

namexx MODULE WAS NOT REFERENCED
BY AN EXTRN

A module was read from the system input device or
was referenced on the MODULE statement but was
not referenced by an EXTRN in any of the included
object modules. An EXTRN must reference the
module name for the Overlay Linkage Editor to
determine the program structure.

MAINLINE MODULE NAME IS IN A GROUP OR
CATEGORY STATEMENT

The mainline module name has no meaning in a
GROUP or CATEGORY statement. The name should
be removed from the statement.

Messages

A-4

SYS-3110

SYs-3111

SYS-3112

w

w

T

A MODULE IN A GROUP STATEMENT HAS A
CATEGORY VALUE LESS THAN 8

The module with the 0-7 category value is ignored
when grouping modules. If the user wants the
module in a specific overlay segment, he must supply
a CATEGORY statement with a value of 8-126, in
addition to the GROUP statement. If no module
named in a GROUP statement has a category value
of 0-7, this message may result from a module being
forced to category O by the linkage editor. This could
be the mainline module, a zero-length module, or a
module called from a system module (message
3112). Categories 127, 128, and 255 are treated as
category 0.

namexx MODULE IN A CATEGORY OR
GROUP STATEMENT NOT
REFERENCED BY OBJECT
PROGRAM

The name in the CATEGORY or GROUP statement is
not referenced 'by any of the included or auto-linked
modules. The name should be removed or the
correct name determined from the storage map. This
message may also appear if a module is named twice
in CATEGORY assignments.

SYSTEM AREA MODULE CALLS MODULE OF
WRONG CATEGORY

namexx SYSTEM AREA MODULE
namexn CATEGORY NUMBER

namexx CALLED MODULE

A module with category 1-7 can call only modules
with the same category or category 0. The category
of one of the modules must be changed.

SYS-3113 W namexx MODULE NAME OR ENTRY POINT
IS A DUPLICATE

This message can occur for either of two reasons:

1. If the name is on the storage usage map
twice, the program contains duplicate entry
points or module names. If the duplicate
entry points or module names are not
referenced, the program can be executed. If
the duplicate entry points or module names
are referenced, the references may be
resolved to the wrong name and the program
would not execute correctly. Therefore, the
object module should be recreated to
eliminate the duplicates.

2. If the name appears only once, the module
was included more than once via the
MODULE statement. The duplicate name
subparameter can be removed.

SYS-3114 T namexx MODULE HAS AN INVALID
EXTERNAL SYMBOL LIST
NUMBER IN TEXT RECORD
nnnn LOAD ADDRESS

The object module named has an invalid ESL number
in a T-type record. The error record has the nnnn
address in bytes 3 and 4.

SYS-3115 T ENTRY POINT IS NOT RELATIVE ZERO IN A
MODULE WITH COMMON AREA

The entry point must be the first byte of the module
because the start control address on the header
record is used to indicate the load point of the
module. The entry point must be changed by either
récreating the module or using the ENTRY parameter
on the OPTIONS statement.

Messages A-5

A-6

SYS-3130

SYS-3131

SYS-3132

SYS-3133

SYS-3134

namexx MODULE’'S MAIN STORAGE IS
nnnn DECIMAL

The module named requires the amount of main
storage given by nnnn to execute.

XXXX IS THE START CONTROL -
ADDRESS OF THIS MODULE

The entry point of the root segment is specified by
XXXX.

THE NONOVERLAY MAIN STORAGE SIZE
nnnnn IS DECIMAL

The amount of main storage this program needs to
execute without overlays is nnnnn.

namexx MODULE IS CATALOGED AS A
SUBROUTINE MEMBER
nnnnnnnn IS THE LIBRARY NAME

nnnn TOTAL NUMBER OF LIBRARY
SECTORS
nnn CATEGORY NUMBER

This message is issued when the compiler entry is
used to catalog a subroutine member.

namexx MODULE IS CATALOGED AS A
LOAD MEMBER

nnnnnnnn IS THE LIBRARY NAME

nnnn TOTAL NUMBER OF LIBRARY
SECTORS

This describes the load module cataloged into the
library.

SYS-3135

namexx MODULE’S CODE LENGTH IS
nnnn DECIMAL

Describes the number of bytes in the object module
cataloged to the library. This size does not include:

1. Bytes reserved for common
2. Bytes bypassed for boundary alignment

3. Bytes used by routines referenced by
EXTRNs

Messages

A-7

Appendix B. Object Modules

The Overlay Linkage Editor accepts object modules for link-editing from disk.
Object modules contain three types of records which must be in this order:

Type Meaning
S-type External symbol list (ESL) records
T-type Text-relocation directory (RLD) records
E-type End record
External Symbol List (ESL) Records
External symbol list fields occur within S-type records to define areas within an
object module and contain external references to other modules. The Overlay
Linkage Editor accepts the following types of external symbol list fields:
« External reference
« Module name
« Entry point
An S-type record contains up to five ESL fields in any combination of the
above three types.

External Reference

External reference (EXTRN) fields are divided into seven subtypes. These
subtypes are:

External reference to a module name (EXTRN subtype 0)

« External reference to an entry point (EXTRN subtype 128)

« Weak external reference to a module name (EXTRN subtype 3)
« Weak external reference to an entry point (EXTRN subtype 131)
« GLOBAL COMMON (EXTRN subtype 4)

« LOCAL COMMON (EXTRN subtype 5)

« Conditional external reference to a module name (EXTRN subtype 6)

Object Modules B-1

EXTRN Subtypes 0 and 128: This external symbol list field specifies a symbol
that is defined as a module name (subtype 0) or entry point (subtype 128) in
another module. The external reference to a module name must be to the
cataloged module name. The Overlay Linkage Editor searches the $WORK file
(object modules are placed on $WORK by a language processor or by #0LI2)
to find a module. If the module is not found in the $WORK file, autolink is
performed. Autolink means that the Overlay Linkage Editor searches the object
library members to resolve all unresolved external references to module names.
If the external reference cannot be resolved, a message is issued. External
references to entry points are not resolved by autolink.

EXTRN Subtypes 3 and 131: The function of the weak external reference is
the same as for the external reference except no autolink is performed. If the
Overlay Linkage Editor cannot resolve the referenced name, the weak external
reference is ignored and remains unresolved.

EXTRN Subtype 4: This external symbol list record specifies a space allocation
for a GLOBAL COMMON area. This area is allocated at the start of the user’s
program area. The size of the area is the size of the largest COMMON area
encountered. This area is saved across INVOKE (one FORTRAN program
calling another and transferring control to the called program), if the called
program contains the GLOBAL COMMON ESL. The Overlay Linkage Editor
sets the program common attribute in the load module.

EXTRN Subtype 5: The Overlay Linkage Editor allocates an area of main
storage for the COMMON area either at the beginning of the user’s program
area or immediately following the storage reserved for the GLOBAL COMMON.
This area is used by modules within the same program and is not saved across
INVOKE.

EXTRN Subtype 6: The function of the conditional external reference is the
same as for the external reference. That is, autolink is performed if necessary,
except that if the Overlay Linkage Editor still cannot resolve (find) the
referenced name, the conditional external reference is ignored and remains
unresolved.

Module Name
This external symbol list field provides the symbolic name, start address, length
in hexadecimal, and category value of the object module.

Entry Point

This external symbol list field provides the entry point name in the module and
the address of the entry point in hexadecimal.

Text Relocation Directory (RLD) Records
T-type records contain the object code of modules to be link-edited. T-type
records also contain the information needed to make the text relocatable. The
load addresses on the text records must be in ascending order, and must not
overlap from one text record to the next.
Each record is 64 bytes long in the following format:

Byte Contents

0 T (denotes text relocation directory record).

1 Length minus 1 of object text contained in the record.

2-3 Address of the rightmost byte of object text in the record.

4-63 Object text begins in byte 4; 1-byte or 3-byte relocation directory
entries are inserted beginning in byte 63 from right to left. Unused
bytes (at least one) between the text and the relocation directory
contain X'00". The relocation directory entry points to the right end
of the address (displaced from beginning of text).

One-Byte RLD

Each 1-byte relocation directory entry contains the following:

Bit Meaning
0 0 = entry points to the rightmost byte of an address within this
module.

1 = entry points to an EXTRN.
1 0 = 1-byte relocation directory entry.

2-7 Displacement from the leftmost text byte in the record.
Displacement count starts with 00.

Object Modules B-3

B-4

Three-Byte RLD

Three-byte relocation directory entries are generated by the compiler for
external references when a displacement from an external symbol is specified
in a source statement. These entries are required to support programs
referencing a common data area which may be considered external to all
included modules. Each 3-byte relocation directory entry contains the

following:
Byte Bit Meaning
1-2 (leftmost) ALL Relative EXTRN external symbol list count so
name of the EXTRN can be found. Relative
external symbol list count starts with 0001.
3 (rightmost) 0 1 = entry points to an EXTRN with a known

displacement.

1 1 = 3-byte relocation directory entry.

2-7 Displacement from the leftmost text byte in
the record. Displacement count starts with
00.

Three-byte relocation directory entries are processed like 1-byte entries except
that the base address is the address defined in the external symbol list entry
corresponding to the relative EXTRN count.

End Record

An E-type record must be the last record of an object module.

Appendix C. Performance Improvements

You can reduce the time required to link-edit a program by using one or more
of the following procedures:

1. Do not request a cross-reference list. For many programs the time saved
may be small, but for programs with many module names and entry
points, along with many references to these module names and entry
points, significant time saving can result. The time saved is not only the
amount of time needed to print the list, but also the .additional time
needed during the link-edit to save all the information on disk.

2. Have the linkage editor locate the needed object modules via autolink
rather than by you supplying multiple MODULE statements.

Performance Improvements C-1

Page of $C21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Appendix D. How to Specify the OLINK Procedure

The OLINK procedure resides in the system library (#LIBRARY). It can be used
to call the Overlay Linkage Editor to create a load module. Following is the
format of the procedure and a chart showing what each parameter is used for
in the procedure:

object library load module name
OLINK module name, L#LIBRARY] [module name]

[load module lib _ .
;;)Emr;;:ye i rary] , Exttnbute1] s [attnbuteZ]

mrtmax value user subrlib1, user subrlib2
#LIBRARY

[YES
’] NO

b

Note: If the module name (a required entry) is not entered, a prompt screen
will appear. Each parameter appears on the prompt screen, along with its
default. Any or all parameters may be keyed.

How to Specify the OLINK Procedure D-1

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Required/
Parameter Optional Type Specify Default
1 Required Name of object Name of object module None
module
2 Optional Library with object Library name where search | #LIBRARY
module for module
3 Optional Name of load Name to put on load Object name
module module
4 Optional Library to place load |Where to place load #LIBRARY
module module
5 and 6 Optional Attribute Enter one of the following |Null
per parameter (maximum
of two):
COM (Common)
DED (Dedicated)
NEP (Never-ending
program)
NEX (Not executable)
NiQ (Noninquirable)
NSW (Nonswappable)
LSC (Load only from
system console)
SIS (Scientific mode)
SRQ (Source required)
usc (Utility control
statements)
7 Optional MRTMAX Number of terminals 0
available to allocate (0 to
255)
8 and 9 Optional User subroutine Where to find user #LIBRARY
library subroutine members
(maximum of 2
parameters)
10 Optional Whether to place on |Whether to place on input |No
input job queue job queue

D-2

Examples

1.

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

An object module, PROGA, resides in the user library called USERLIB.
The user wants an executable load module from this. The load module
name is LOADA, and it will be placed in the USERLIB.

OLINK PROGA,USERLIB,LOADA,USERLIB

An object module, SAMPL, resides in the system library #LIBRARY. The
user wants an executable load module of the same name in the same
library.

Note: By specifying only the object name, the defaults for the other
parameters determine that the system library is to be searched, the load
module name will be the same as the object module name, and the load
module will be placed in the system library.

OLINK SAMPL

How to Specify the OLINK Procedure D-3

D4

The following terms are defined as they are used in this
manual. If you do not find the term you are looking for,
refer to the index or to the IBM Data Processing
Glossary, GC20-1699.

autolink: A process whereby the Overlay Linkage Editor
searches the object library for object modules to resolve
all unresolved external references to module names.

COMMON: An area of main storage that contains data
areas common to more than one routine within one
program. This area is not saved when control is passed
from one program to another.

conditional external reference: An external reference
that causes autolink to be performed. However, if the
module named by the conditional external reference is
not found, no error message is printed and the
conditional external reference is treated as a weak
external reference.

descendant: In a caller-called relationship between two
modules, the called module is the descendant.

diagnosed source file: An optional disk file of source
input, containing error and diagnostic messages. This
file can be viewed or updated from a display station.

external reference: (1) A reference to a symbol that is
defined as an external name in another module. (2) An
external symbol that is defined in another module; that
which is defined in the assembler language by an
EXTRN statement, and is resolved during linkage
editing. See also weak external reference.

fetch routine: The routine to find the overiay on disk
and load it to storage.

fetch table: The parameter needed to load a single
overlay.

GLOBAL: An area of main storage that contains data
areas common to more than one program. This area is
saved when control is passed from one program to
another.

heading: A title printed at the top of a column or page.

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Glossary

INVOKE: A process where one load module calls and
transfers control to another load module.

load module: The output of the linkage editor; a
program in a format suitable for loading into main
storage for execution.

mainline: The first module encountered when
link-editing. This module is always in the root segment.

object module: A module that is the output of an
assembler or compiler and is input to the linkage editor.

overlay: (1) To repeatedly use the same blocks of main
storage during different stages of a program. When one
module is no longer needed in storage, another module
can replace all or part of it. (2) A program segment or
phase that is loaded into main storage. It replaces all or
part of a previously loaded segment.

overlay module: A load module that has been divided
into overlay segments, and that has been provided by
the Overlay Linkage Editor with information that enables
the overlay fetch routine to implement the desired
loading of segments when requested.

overlay program: A program in which certain control
sections can use the same storage locations at different
times during execution.

overlay region: A continuous area of main storage in
which segments can be loaded independently of other
regions.

overlay segment: See segment.

root segment: That segment of an overlay program that
remains in main storage at all times during the execution
of the overlay program; the first segment in an overlay
program. A root segment cannot be overlaid.

segment: A part of a computer program divided into
parts such that the program can be executed without
the entire program being in main storage at any one
time.

Glossary E-1

transfer vector: The linkage to an entry point in an
overlay that allows the overlay to be loaded to storage
before control is passed into the entry point.

weak external reference: An external reference that
does not have to be resolved during linkage editing. If it
is not resolved, it appears as though its value was
resolved to zero.

aligning modules on a boundary 2-9
allocating work files (see examples)
AREA-USER parameter 2-7, 3-2
arithmetic system modules 3-2
assembler 1-1

assigning category value 2-8
assigning mainline routines 2-6, 3-2
assigning modules to overlays 2-7
assigning overlays 3-2

ATTR parameter 2-5

(see also example 1)

OPTIONS statement 2-4
attributes of load module 2-4
autolink B-2
automatic overlay assignment 1-1

boundary align modules, category value 2-9

cataloging load module 1-1

(see also RETAIN parameter)
CATEGORY statement 2-8, 2-9, 3-4
category value

changing 2-8

(see also examples)

of system modules 3-2

original assigned by compiler 3-2
changing category value

(see also examples)

errors caused by 2-8

of BSCA modules 2-8

of system modules 2-8
changing entry point to overlay 3-6
changing load module size 1-2, 3-2
changing overlay structure (see examples 6-11)
Code Length Decimal, storage map heading 2-11
Code Length Hexadecimal, storage map heading 2-11
common areas

GLOBAL B-2

local B-2

modules referencing entry point of 3-6
compiler entry

description 2-1

functions 1-1
conditional external reference ESL record B-1
configuration 1-1
control statements 2-2

error messages (see messages)

summary 2-3

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

Index

coresident area 3-2
(see also examples 6-11)
cross-reference list
on storage map 2-11
specifying 2-6

descendant 3-2

designing overlay structure, using GROUP statement 2-7

determining mainline routine 3-2

determining overlay modules 3-4

determining overlay structure, using GROUP statement
diagnosed source file A-1

end record, object module B-4
END statement 2-10
ENTRY parameter

OPTIONS statement 2-4

(see also example 3)

entry point

ESL records B-2

of load modules 3-6

(see also ENTRY parameter)

of modules referencing common area 3-6
ENTRY POINTS, storage map heading 2-11
EQUATE statement 2-10
error halts 1-2
error messages 1-2, A-1
ESL (external symbol list) records B-1
examples

example 1 4-1

example 2 4-2

example 3 4-3

example 4 4-4

example 5 4-5

example 6 4-6

example 7 4-8

example 8 4-10

example 9 4-11

example 10 4-12

example 11 4-13
execution main storage size 2-5
extended root mainline 3-2
external reference ESL records B-1
external symbol list (ESL) records B-1
EXTRN (see ESL records)

Index

2-7

fetch routine, overlay (see overlay fetch routine) load module 1-1

fetch table changing 1-2, 3-2
generating 3-4 (see also STORE parameter)
part of root 3-1 storage map 2-11
size 3-4 entry point 3-6

FILE statements 2-2 (see also ENTRY parameter)

functions of linkage editor 1-1 naming 2-4

size 2-5

loading linkage editor 2-1
LOCAL COMMON area 3-1

generating overlays
overlay fetch routine 3-4
GLOBAL COMMON area 3-1

ESL record B-1 mainline routine
GROUP statement 2-7 assigning 2-6
(see also example 4) determining 3-2
size 3-6 entry point (see ENTRY parameter)
system modules on 3-1 from MODULE statement (see examples 1, 2, and 4)
use of 3-6 part of root 3-1
grouping modules 3-6 MAP parameter, OPTIONS statement 2-6

maximum number of overlays 3-2
messages 1-2, A-1
method of assigning overlays 3-2
modification levels (see LEVEL parameter)
module name in ESL record B-2
module name, storage map heading 2-11
halts, error 1-2 module placement within overlay 2-7
heading, glossary definition E-1 MODULE statement
determining mainline routine 2-6
module, load (see load module)
module, object 1-1
contents B-1
description B-1
modules, overlay 3-4
1/0 dependent modules including in root 3-4
in coresident area 3-2 moving modules using GROUP statement 2-7, 3-2
in user area 3-1
1/0 independent modules, in coresident area 3-2
improving performance C-1
including modules in root 3-4
increasing size of user area (see example 7)
increasing overlay size 3-6

informational messages A-1 name
invalid statements (see messages) in PHASE statement 2-4
INVOKE feature of load module 2-4

with GLOBAL COMMON B-2 NAME parameter

with LOCAL COMMON B-2 CATEGORY statement 2-8

GROUP statement 2-7
MODULE statement 2-6
PHASE statement 2-4
name, module
ESL record B-1
NEWNAME parameter 2-10
last control statement (see END statement) nonoverlay storage size 2-11
LEVEL parameter
(see also example 1)
OPTIONS statement 2-5
link-edit start addresses 3-6
LINKADD parameter 2-4, 3-6
linkage editor control statements 2-2

object module 1-1
contents B-1
description B-1
OCL statements 2-1
OLDNAME parameter 2-10
OLINK procedure D-1
one-byte RLD B-3
OPTIONS statement
(see also control statements)
description 2-4
parameter 2-5
sequence 2-3
summary 2-3
overlay area
coresident 3-1, 3-2
root 3-1
size of, increasing 3-6
system 3-2
user 3-1
Overlay Area, storage map heading 2-11
overlay assignments, automatic 1-1
overlay determination
compiler entry 2-1
overlay fetch routine
as entry point 3-4
part of root 3-1
size of 3-2
overlay modules 3-2
including in root 3-4
Overlay Number, storage map heading 2-11
overlay segments, reducing number of 3-6
overlay structure, chaining (see examples 6-11)
overlays
loading by fetch routine 3-2
maximum number 3-2
overriding priority (see CATEGORY statement)

parameter descriptions 2-3, D-1
parameters 2-3, D-1
performance improvements C-1
permanent load modules 2-4
PHASE statement

description 2-4

parameters 2-4

sequence 2-3
primary storage requirements 1-2
priority (see category value)
procedure library, OCL statements in 2-2
procedure, OLINK D-1
program modification levels (see LEVEL parameter)

Referenced By, storage map heading 2-11
relocation directory records B-3

replacing existing load module 2-4
RETAIN parameter, PHASE statement 2-4

Page of SC21-7707-0
Issued 14 July 1978
By TNL: SN21-7963

RLD parameter, PHASE statement 2-4
RLD records B-3
root area, contents of 3-1
(see also examples 6-11)
root mainline, extended 3-2
root segment, assigning modules to 3-4

sample jobs (see examples)
secondary storage requirements 1-2
segments, overlay

loading 3-2

reducing number 3-6
sequence of control statements 2-2
size of fetch routine 3-2

size of load module 2-5

size of overlays, increasing 3-6

size of storage used 2-11

standard file statements 2-2
start address 3-6
Start Address, storage map heading 2-11
storage map

format of 2-11

specifying 2-6

(see also MAP parameter)

storage requirements

primary 1-2

secondary 1-2
storage size, non overlay 2-11
STORE parameter 2-5

execution size 2-5

OPTIONS statement 2-5
subtype, external references B-1
symbol list records, external B-1
system configuration 1-1
system modules

category value of 2-8, 2-9

in GROUP statement 2-7

in system overlay area 3-2
system overlay area 3-2

(see also examples 6, 7, 10, 11)

not used (see examples 8 and 9)

techniques, overlay 3-2
terminal messages A-1
text-RLD record B-3
three-byte RLDs B-4
transfer vectors

part of root 2-11, 3-2

size of 3-2
type of control statements 2-2

Index

X-3

user entry
functions 1-1
input to 2-1
user overlay area 2-7
(see also examples 6, 7, 10, 11)
increasing size of 3-6
not used (see examples 8 and 9)

VALUE parameter, CATEGORY statement 2-8
varying overlay structure (see examples 6-11)
vectors, transfer (see transfer vectors)

warning messages A-1
weak external reference, ESL record B-2
work files, allocating (see examples)

<+ - ™.

«

JIBIME

Technical Newsletter This Newsletter No. SN21-7963
Date 14 July 1978

Base Publication No. SC21-7707-0
File No. S34-36

Previous Newsletters None

IBM System/34
Overlay Linkage Editor
Reference Manual

© 1BM Corp. 1977

This technical newsletter, a part of release 02 modification 00 of the IBM System/34 System Support
Program (Program Product 5726-SS1), provides replacement pages for the subject publication. These
replacement pages remain in effect for subsequent releases unless specifically altered. Pages to be
inserted and/or removed are:

Title Page, Preface A-1,A-2

iii, iv A-2.1, A-2.2 (added)
1-1,1-2 D-1,D-2

2-1 through 2-6 D-3, D-4 (added)
4-5 through 4-8 E-1, E-2 (added)

X-1 through X-4

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments
® Addition of Diagnosed Source File messages
® Appendix added to explain OLINK procedure

® Miscellaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

Printed in U.S.A.

§C21-7707-0

Reference Manual

IBM System/34
Overlay Linkage Editor

‘V°S'N 8yl U] pajlew §) Aiessadsau abeisod ON ¢

$531ppY

awepn ‘g o Anadoad ayr awosaq suonsabbins pue sjuawwod ||y 310N

Jugwwoy saquunp abey

*SS3Jppe pue aweu JNOA apn|aul

noA papiaoad ‘apew Bulaqg 10u s1 abueys e Aym noA jja1 1o ‘uoneaiqnd 10443 Jaquinpy abey
8yl Ajlie|d 10 1991109 ||IM ap ‘wii0) pled-abelsod siyy buisn Ag 11 1noqe
sn |91 ased|qd -uoneatqnd siy} ul uonewsour Buipesasiw 1o ajeinddeu) *Ajdes o (uo os pue ‘uonesisn||i ‘jeaiydeifodAl) uoneasiqnd ui Jouigy

‘uoIBI0| JNOA 15313U 321}}0 Youe.q NG| 3yl 03 JO aAlRIuasaIdal Ng| JNOA 01 PaldaLIp ag PINoYs *212 ‘suollediqnd jeuonippe 10} s1sanbaa ‘1i0ddns
Butwwesbo.d g | Ul sabueyd ‘swaisAs \g| 1noge suonsanb |eoluyssy ‘suonedijgnd o) sebueyds isenbal 10 su0Le uonedl|gnd Ajuspl 0) AJUO WO} SIY) ash asedld

WHOd LN3IWY . H3AV3Y

S$C21-7707-0

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

0-L0LL-1ZDS VSN Ul pAIulld (9E-VES "ON 2j14) [ENUEl 80uaiaay J01PT abe3UI ABHISAQ bE/WalsAS

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W,
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/international
44 South Broadway

White Plains, New York 10601
US.A.

(International)

SC21-7707-0

0-L0LL-12IS VSN Ul pAaulld (9E-PES 'ON 2|ld) |BNUBK adUAIajaY J0MPT abexui Ael1anQ pE/WRISAS

