
- - - SC21 -7742-3 - - -- - - - - File No. S34-34 - --- ---- - - ---- - --- - • -

I BM System/34
Concepts and Design Guide

Program Numbers 5726-SS1
5726-AS1
5726-F01
5726-RG1
5726-UT1
5726-CB1
5726-BA1

- -
SC21-7742-3 - - -- - - - ._
File No. S34-34 - --- ---- ------ - --- - • -

I BM System/34
Concepts and Design Guide

Program Numbers 5726-551
5726-A51
5726-F01
5726-RG1
5726-UTl
5726-CB1
5726-BA1

Fourth Edition (January 1982)

This is a major revision of, and obsoletes, SC21-7742-2. New material includes
System/34 storage cc;>ncepts, !FILE programming considerations, print spooling,
the X.21 interface, and data processing security. Changes or additions to the text
are indicated by a vertical line to the left of the change or addition.

This edition applies to release 08, modification 0 of IBM System/34 and to all
subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

Changes are periodically made to the information herein: changes will be reported
in technical newsletters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country. (For example, ideographic support is available only in Far
East countries.)

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979, 1980, 1981, 1982

This manual is primarily for System/34 designers,
analysts, and programmers who are changing a
centralized operating environment to 1;1 work station
operating environment. The reader should understand
how System/34 functions can be used in a centralized
environment. The System/34 Implementation course,
82020 provides one way to obtain this information.

The manual is divided into the following segments:

Chapter 1. Introduction: Explains the need for careful
design and programming on System/34 in a work
station environment.

Chapter 2. System/34 Concepts: Reinforces many
concepts that are important in either a centralized or
work station environment and presents additional
concepts that should be understood before design and
programming in a work station environment begins.

Chapter 3. Design Considerations: Describes designing
displays, input documents, printer forms, files,
programs, and security and integrity for a work station
system.

Chapter 4. Coding Techniques: Presents coding
examples that illustrate concepts explained in Chapters 2
and 3.

Chapter 5. Sample Applications: Presents a sample order
entry application and sample inquiry applications.

Appendix A. Display Station Operations Requested by
Basic Assembler Programs: Describes the work station
data management operations that can be requested from
an assembler program.

Note: This manual follows the convention that he means
he or she.

Prerequisite Publications

IBM System/34 Introduction, GC21-5153

IBM System/ 34 Planning Guide, GC21-5154

Preface

Related Publications

• IBM System/34 System Support Reference Manual,
SC21-5155

• IBM System/34 Operator's Guide, SC21-5158

• IBM System/34 Command and OCL Statements
Reference Summary, GX21-7690

• IBM System/34 Data File Utility Reference Manual,
SC21-7656

• IBM System/34 Source Entry Utility Reference
Manual, SC21-7657

• IBM System/34 Sort Reference Manual, SC21-7658

• IBM System/34 Work Station Utility Reference
Manual, SC21-7663

• IBM System/34 RPG II Reference Manual, SC21-7667

• IBM System/34 Installation and Modification Reference
Manual, SC21-7689

• IBM System/34 Data Communications Reference
Manual, SC21-7703

• IBM System/34 Interactive Communications Feature
Reference Manual, SC21-7751

• IBM System/34 Basic Assembler and Macro Processor
Reference Manual, SC21-7705

• IBM System/34 Screen Design Aid Programmer's
Guide and Reference Manual, SC21-7716

• IBM System/34 Overlay Linkage Editor Reference
Manual, SC21-7707

• IBM 5211 Printer Models 1 and 2 Component
Description and Operator's Guide, GA24-3658

• IBM 3262 Models Al and Bl Component Description
and Operator's Guide, GA33-1530

• IBM 5224 Printer Models 1 and 2 Setup Procedures

iii

Page of SC21-7742-3
Issued 27 August 1982
By TNl: SN21-9074

• IBM 5224 Models 1 and 2 Operator's Guide,
GA34-0092

• IBM 5256 Printer Operator's Guide, GA21-9260

• IBM 5225 Printer Operator's Guide, GA34-0089

• IBM System/34 FORTRAN IV Reference Manual,
SC21-7706

• IBM System/34 COBOL Reference Manual,
SC21-7741

• IBM System/34 Installation Manual-Physical Planning,
GA21-9242

• IBM System/34 Physical Planning Template,
GX21-9280

• IBM System/34 BASIC Reference Manual, SC21-7835

• IBM System/34 System Measurement Facility
Reference Manual, SC21-7828

• IBM 5292 Color Display Station Operator's Guide,
GA21-9416

• IBM 5292 Color Display Station Programmer's Guide
to Using Color, GA21-9413

iv

CHAPTER 1. INTRODUCTION

CHAPTER 2. SYSTEM/34 CONCEPTS
SYSTEM/34 STORAGE CONCEPTS
Disk Storage . . .

Task Work Area
Main Storage . . .

Transient Area .
System Nucleus
Control Area . .
Assign/Free Area
Assign/Free Size
Nucleus Size . . .
User Area

SYSTEM/34 JOB PROCESSING
Jobs and Job Steps on System/34
Functions Performed During Job Processing

Command Processor
Initiator . . .
User Program
Terminator . .

System Input (SYSIN) Processing
System Input Processing Example

JOB MANAGEMENT AND JOB SCHEDULING
ON SYSTEM/34

Execution Priorities
Placement of Jobs on the Input Job Queue
Changing the Position of a Job Within
the Input Job Queue

Execution Priorities of Jobs in the
Input Job Queue .

Initiating a Program
Dispatching
Swapping

Active Program List
How the Swapping Function Uses the
Active Program List

Swapping Times . . .
Job Priority
Execution Priority Hints
Nonswappable Programs

WORK STATION DATA MANAGEMENT
Data Fields in a Display Screen Format .

Field Attributes
Work Station Data Management Operations

The Work Station Buffer
Normal Operations
Modified Operations
Operations Requested by Basic Assembler

Programs ..
FILE CONCEPTS
File Identification
File Organization
File Processing .
Delete-Capable Files .
Extendable Disk Files
Indexed Files With the IFILE Attributes .

1-1

2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-8

2-10
2-11
2-17
2-18
2-20
2-21

2-23
2-23

2-24

2-25
2-25
2-26
2-27
2-29

2-32
2-35
2-36
2-37
2-37
2-38
2-40
2-42
2-43
2-43
2-44
2-46

2-49
2-50
2-51
2-52
2-53
2-55
2-57
2-58

Contents

PROGRAMMING ATTRIBUTES OF IFILES 2-60
File Locking and IFILES 2-60
Performance Considerations 2-61
Keysorts and IFILES 2-61

File Sharing in Multiple Program Mode 2-62
Types of Files That Can Be Shared 2-62
Type of File That Cannot Be Shared 2-62
Accessing Records Added to Shared Files 2-62

File Sharing Considerations 2-63
Sector Protection 2-63
File Update Programs 2-66
Key Sorting for Indexed Files 2-68
IPL File Rebuild Function 2-69
Using a Disk File as Two or More Logical Files 2-71
Use of a File by an Inquiry Program in Single

Program Mode . 2-72
Inquiry Programs and IFILES . 2-73

Offline Multivolume Files 2-73
Third and Fourth Disk Drive Implementation
Considerations 2-75

PRINTER CONCEPTS 2-77
Printer Data Management Output 2-79
System List Output . 2-79
Example of Directing Printer Data Management

Output and System List Output 2-79
Vertical Line Spacing Support for the 5225 Printer 2-80

Print Spooling . 2-81
Advantages of Print Spooling 2-81
Spooling Options During Configuration 2-82
Control of Print Spooling 2-82
Spool File 2-82
Spool Intercept Routine 2-84
Spool Writer Programs 2-85
Performance Considerations 2-87
Spool Commands 2-88
Identifying Your Spool Output 2-89
The COPYPRT Command 2-89
Using the STATUS PRT and COPYPRT Commands 2-90
Using Procedure Members and the
COPYPRT Command . 2-91

Related Spooling Documentation 2-92
LIBRARIES 2-93
Types of Library Members 2-93
Library Format 2-94

Directory 2-94
Library Size . 2-94
Reuse of Library Space 2-96
Active User Library 2-97
Library Sharing 2-98
Storing Library Members in Disk or Diskette Files 2-98

Record-Mode Files 2-98
Sector-Mode Files 2-99
Saving a Library on Diskette 2-99

MENUS 2-100
Fixed-Format and Free-Format Menus 2-102
PROGRAM ATTRIBUTES. 2-105

Contents v

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

SRT (Single Requestor Terminal) Program
Coding SRT Programs
Acquiring a Display Station in an SRT Program .
Releasing Display Stations from an SRT Program
Interrupting an SRT Program

MRT {Multiple Requestor Terminal) Program
Coding MRT Programs
Acquiring a Display Station in an MRT Program
Releasing an Acquired Display Station from

an MRT Program
Interrupting an MRT Program
Maximum Number of Display Stations for an

MRT Program
Releasing Requesting Display Stations from

M RT Programs
Ending MRT Programs
Canceling an MRT Program
Using the Attn Key to Release a Display Station
from an MRT Program

Never-Ending Program (NEP) . . .
Coding Never-Ending Programs
Ending a Never-Ending Program

JOBS THAT RUN WITHOUT A REQUESTING
DISPLAY STATION

SYSTEM-PROVIDED SECURITY·
Password Security

Security Classifications
Badge Security

Format of the Magnetic Stripe
Menu Security
File and Library Security
Security File listing
INTERACTIVE COMMUNICATIONS FEATURE
(SSP-ICF)

SSP-ICF Sessions
Locally Initiated Sessions .
Remotely Initiated Sessions
SSP-IC:F Data Management
Autocall Capabilities
System/34 Finance Support Subsystem

Data Communications and the X.21 Interface .
Communications Support Available with the
X.21 Interface

SAMPLE INQUIRY APPLICATION USING SSP-ICF
Local Inquiry Program
Remote Inquiry Program

CHECKPOINT FACILITY (FOR COBOL AND
ASSEMBLER PROGRAMS AND SUBROUTINES) .

Checkpoint Restrictions . .
Checkpoint Considerations .

RESTART FACILITY . . .
Restart Considerations
Printed Output
Nonrestartable Job Step .
Removing Checkpointed Jobs
Operator Considerations
Systam/34 and Distributed Data Processing
Environments

System/34 as a Processor Terminal
System/34 as a Host System ..
System/34 as a Subhost System .
System/34 as a Peer Connection .

Distributed Disk File Facility

vi

2-106
2-106
2-107
2-107
2-108
2-10~
2-112
2-112

2-112
2-113

2-113

2-114
2-114
2-115

2-115
2-115
2-117
2-117

2-118
2-120
2-120
2-121
2-123
2-123
2-124
2-125
2-127

2-128
2-129
2-129
2-130
2-131
2-132
2-133
2-133

2-135
2-136
2-136
2-138

2-139
2-140
2-141
2-142
2-142
2-144
2-144
2-144
2-145

2-146
2-146
2-147
2-148
2-149
2-149

CHAPTER 3. DESIGN CONSIDERATIONS •
DISPLAY DESIGN
Identify the Displays
Provide Meaningful Headings
Plan Readable Displays
Display a Small Amount at One Time
Maintain Consistencies Among Displays
Keep Operator Responses Short . .
Provide One Idea for Each Display .
Acknowledge Operator Input
Make Error Correction Easy
Provide a Means for Help
Make the Operator Feel Productive
Document the Displays

Make the Screen Look Line the Source Document
Use SDA as a Documentation Aid

Use Color if Possible
The Display Format is Easier to Read
Using Color

Error Conditions Are Easier to Identify .
Specifying Color for Display Formats . . .

Column Separators and Underlining with Color
MENU DESIGN
FORMS DESIGN
Design Considerations for Output Forms
Design Considerations for Input Forms
FILE DESIGN
File Organization

Master File Organization . .
Transaction File Organization
Volatility of Files .
Activity of the Files . .

Record Design
Determining Field Size
Providing for a Delete Code
Providing Extra Space . . .
Naming Fields
Documenting Record Layout

Record Blocking
Physical 1/0 and Logical 1/0 .

Blocking Records to Minimize Physical 1/0
Access Method
Storage Index ...
Sequential Processing
File Sharing
Shared 1/0

Access Algorithms for Direct Files
Determining an Access Algorithm .
Handling Synonym Records
Examples

APPLICATION DESIGN
Data Entry Programs . . ·.

DFU Data Entry Programs
WSU Data Entry Programs
RPG II Data Entry Programs
The Badge Reader as a Data Entry Device
Editing in Data Entry Programs

Inquiry Programs . .
File Update Programs
Program Attributes
Disk Activity for Loading Programs and Attaching

Display Stations to Them
Minimizing Disk Activity to Increase Throughout
on the System

3-1
3-2
3-2
3-3
3-4
3-6
3-6
3-8
3-8
3-9
3-9

3-10
3-10
3-10
3-10
3-12
3-12

3-12
3-12.1
3-12.1
3-12.5

3-13
3-16
3-16
3-19
3-20
3-20
3-21
3-22
3-24
3-24
3-25
3-26
3-28
3-28
3-28
3-29
3-32
3-34
3-34
3-35
3-35
3-38
3-38
3-38
3-39
3-39
3-40
3-42
3-49
3-50
3-50
3-51
3-52
3-54
3-54
3-58
3-58
3-59

3-61

3-62

Program Size
Read-Under-Format (RUF) . .
Display Station Local Data Area
External Indicators
DATA PROCESSING SECURITY AND ACCURACY
Physical Security

Physical Location
Limited Access to the Computer
Fire Protection . . .

Data Security
Limited Data Access

Backup and Recovery Considerations
Method 1
Method 2 .
Method 3 .
History File
HISTCRT Procedure

Considerations For Remote Work Stations

CHAPTER 4. CODING TECHNIQUES .
Memo Updating
Program Communication with the Local Data Area .
Using the PROMPT OCL Statement

Using the PROMPT OCL Statement with
PDATA-NO

Using the UPSI Parameter of the
PROMPT OCL Statement . . .

Using the PROMPT OCL Statement with
PDATA-YES

Protecting Records from Concurrent Updates
in an MRT Program

Protecting Records from Concurrent Updates
by Multiple MRT Programs

Using the Local Data Area to Increase Sort
Program Flexibility

Using Data Structures for Multiple Line Displays
Accessing a Function Control Key or Command Key

in an RPG II Program

CHAPTER 5. SAMPLE APPLICATIONS ••..•.
SAMPLE ORDER ENTRY APPLICATION
Documenting Application Functions
Designing the Screens
Designing Disk Files

Master Files . . .
Transaction Files .

Designing the Repor:t
Considerations for Designing Output Reports .

Determining Program Requirements
System Flowchart

Building a Development Library .
Building a Development Menu
Creating Development Procedures

Using SEU to Update and Recompile
a Program (ZSEUR)

Saving Disk Files (ZSAVEF)
Changing the Session Library and/or

Menu (ZLIBCHNG)
Listings for Sample Development Procedures .

Creating Display Screen Formats

3-62
3-64
3-66
3-67
3-69
3-69
3-69
3-69
3-69
3-70
3-70
3-71
3-72
3-74
3-75
3-76
3-79
3-80

4-1
4-1
4-5
4-7

4-9

4-9

4-12

4-13

4-15

4-17
4-19

4-26

5-1
5-1
5-2
5-4

5-12
5-12
5-14
5-20
5-20
5-21
5-27
5-29
5-29
5-30

5-30
5-32

5-33
5-34
5-42

Coding the Programs
Coding with RPG II
Coding with COBOL

Testing the Programs

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

Considerations for Program Testing
Documenting the Application Program

System Test
User's Run Book
Operator Program Run Book . . .

SAMPLE INQUIRY APPLICATIONS USING SSP-ICF
Local Inquiry Program . .
Remote Inquiry Program

APPENDIX A. DISPLAY STATION OPERATIONS
REQUESTED BY BASIC ASSEMBLER PROGRAMS .

GLOSSARY.

INDEX ...

5-53
5-53
5-60
5-61
5-62
5-65
5-75
5-75
5-76
5-78
5-78
5-80

A-1

B-1

X-1

Contents vii

viii

Chapter 1. Introduction

IBM System/34 is a general-purpose system that can be designed to operate
in a work station environment. In this environment, the system is available to
users via display stations and printers that are in their departments. A major
advantage of this environment is that users have access to current, correct
information in the system. Also, users can enter data directly into the system
and find and correct errors that might otherwise be overlooked.

Designing a system and applications that fit your business needs requires
activities such as planning displays, menus, input documents, output forms,
files, programs, and security and integrity procedures. Some of this planning
would be required for any type of system, but some additional planning must
be done especially for a work station environment. This manual provides
important information that you should know in order to design a system in that
environment.

A well-designed system should have the following characteristics:

Easy to Use: System/34 operators should not need to understand how the
system or its programs work. If the displays are understandable, if applications
are divided into logical steps, if written operator instructions are clear, and if
operator data entry is minimized, operators can be productive and make few
mistakes.

Provide Adequate Throughput: Throughput is the amount of work done by the
system during a period of time. You could determine for example, the number
of invoices, . orders, and inquiries that should be processed over a period of
time and design a system that can realistically meet those requirements.

Provide Satisfactory Response Times: Response time requirements can vary
significantly. For example, a 15-second response time might be adequate for
an inquiry program that is used occasionally, but a 2-second response time
might be required for an order entry application that is used for an hour or
more at a time.

Able to Change and Grow: A well-designed system allows for future
expansion. For example, the design should allow for additions of display
screens, printers, and new applications. Be aware that a design might be
adequate initially but might require major rework when the work load increases
or additional applications are installed.

Introduction 1-1

1-2

Provide Security and Integrity: System security and integrity should be planned
for the system so that information required for an audit can be maintained,
recovery from system failures can occur, and the system cannot be used
without proper authorization.

This manual has been written to help you design a system that has these
characteristics. Chapter 2, System/34 Concepts provides information that
should help you design and code applications that use system resources
efficiently. Chapter 3, Design Considerations provides considerations for many
of the design activities that you will do. Chapter 4, Coding Techniques
describes techniques that should be of interest to programmers. Chapter 5,
Sample Application describes the design and development of a sample order
entry application. These chapters can give you a better understanding of your
System/34 and of designing applications to meet the objectives you set.

If you are an experienced designer of work station systems, you would already
know much of the information in Chapter 3 and might want to skip that
chapter. If you thoroughly understand how System/34 works and are
interested mainly in designing the system, you might skip Chapter 2 and begin
reading Chapter 3.

Binary synchronous communications (BSC) between the System/34 and some
office product devices are available with an RPQ. These office product devices
are:

• 6640 Document Printer

• OS/6 Information Processor

• Magnetic Card II-Communicating

• 6670 Information Distributor

• 6240 Magnetic Card Typewriter-Communicating

Chapter 2. System/34 Concepts

This chapter describes concepts of System/34 that are important in a work
station environment. Understanding these concepts can help you plan your
design more confidently and evaluate the design considerations presented in
Chapter 3. The following concepts are described in this chapter:

• System/34 storage concepts: Describes the storage areas used by the
System/34.

• System/34 job processing: Describes how the SSP (System Support
Program) processes jobs and job steps.

• Dispatching and swapping: Defines dispatching and swapping and explains
how the priority capabilities of the system affect dispatching and swapping.

• Work station data management: Defines work station data management and
explains how it works.

• File concepts: Describes important System/34 file concepts such as file
sharing and sector protection.

• Printer concepts: Describes spooling and the differences between the
system list function and the printer data management function.

• Libraries: Describes library members, library size, and active user libraries.

• Menus: Describes fixed-format and free-format menus.

• Program attributes: Describes single requestor terminal (SRT) programs,
multiple requestor terminal (MRT) programs, never-ending programs (NEPs),
and programs that release the requesting display station.

• Security: Describes the security functions provided by System/34.

• Interactive Communications Feature (SSP-ICF): Lists the communications
interfaces supported by SSP-ICF, describes the concept of sessions, and
briefly describes the SSP-ICF data management function.

System/34 Concepts 2-1

2-2

System/34 Storage Concepts

Understanding the storage areas used by the System/34 helps you use the
system efficiently. The following diagram illustrates the important storage
areas of the System/34.

Disk
Storage

DISK STORAGE

Task Work
Area

,,

Main Storage

Transient
Area

System
Nucleus

User
Area

Disk storage is used by the system as a storage place for both programs as
well as files and libraries.

Task Work Area

Programs are moved from main storage to disk and from disk to main storage.
After they are removed from main storage, programs or portions of programs
are stored in the task work area (TWA) of the disk. Also contained in the TWA
are work areas used by active programs and control information used by the
system.

The size of the TWA depends upon:

• Number of display stations being used

• Number of programs running within the system

If a program tries to acquire more disk space than is available within the TWA,
the system attempts to allocate disk storage space. If there is enough
additional space, the system expands the TWA, although this reduces the
amount of space available for your files and libraries. An active program waits
until the necessary amount of disk space is available when there is not enough
room to expand the task work area.

MAIN STORAGE

Main storage contains programs, data, or instructions to the computer. It also
contains work areas used by both application programs and the system.

The following diagram shows the basic parts of main storage.

Transient Area

Control Area

System programs and system work areas System NUCLEUS

Assign/Free

Share work area for system and user programs

User Area

User programs, extended disk data management
and terminator.

Transient Area

System programs not required to be in main storage all of the time are called
transient programs. There is a 2 K area of main storage called the transient
area which is used to contain these programs. Transients are loaded into the
transient area from the system library.

System Nucleus

The system nucleus manages system resources such as:

• Disks

• Printers

• Display stations

There are two main areas of the system nucleus:

• Control area

• Assign/Free area

System/34 Concepts 2-3

2-4

Control Area

The control area contains the programs and work areas used by the system.
Some of the items within the control area are:

• The SSP

• Work space used by the spool writer and spool intercept routine

• Work space used by the work stations

• The system routines that control your libraries and files on disk

• The system routines that control work station operations

Assign/Free Area

The assign/free area contains temporary storage space for both user and
system programs. The more programs you have executing the more the
system attempts to increase the size of the assign/free area by reducing the
size of the user area. The system issues a message when the assign/free area
can no longer be expanded.

Assign/Free Size

The maximum size of the assign/free area is 32 K bytes. The size of the
assign/free area is affected by:

• Number of active tasks

• Number of never ending programs (NEPs)

• Number of multiple requestor tasks (MRTs)

• Number of work stations varied on or signed on

• Number of open files

Nucleus Size

The size of the nucleus you create on your system is important in three ways:

• The smaller your nucleus, the more main storage you can use for your
programs.

• The larger your nucleus, the more system resource you can use at the same
time. A resource is either a program, a file, an NEP /MRT, and so on.

• The system can potentially provide better response time and throughput as
the nucleus increases in size.

You want to have a nucleus size that gives you the maximum amount of
main storage while obtaining the most work possible from the System/34.

The maximum nucleus size is 50K bytes.

User Area

System/34 loads your programs into the user area of main storage before
running them. The user area also contains extended disk data management.

For more information about the nucleus size and performance, refer to Chapter
12 of the Planning Guide.

System/34 Concepts 2-5

2-6

System/34 Job Processing

A basic understanding of the steps in System/34 job processing can help you
design and code applications that more efficiently use System/34. This section
defines the differences between jobs and job steps and describes the major
functions performed during job processing. The following diagram shows the
major SSP functions that are used to process your job.

JOBS AND JOB STEPS ON SVSTEM/34

On System/34, a job is a unit of work initiated by an operator at a display
station or by a remote program that communicates with System/34 via the
Interactive Communications Feature (SSP-ICF). One or more programs can be
executed as part of a job. The execution of each program within a job is called
a job step. Any of the following methods can be used to start a job on
System/34:

• Entering OCL statements from the keyboard. When OCL statements are
entered from the keyboard, the execution of a single program is considered
to be a job. The LOAD and RUN statements, any OCL statements entered
between them, and any utility control statements are processed as part of
the job. OCL statements that are not entered between LOAD and RUN
statements are processed as individual jobs. For example, the setting of
switches via a SWITCH OCL statement that is not entered between a LOAD
statement and a RUN statement is a job on System/34.

• Running a procedure. The operator can cause a procedure to be run by:
Entering a procedure command from the keyboard
Selecting an item from a menu
Placing the procedure on the input job queue

The execution of the procedure requested by the operator is a job on
System/34. If the requested procedure runs other procedures, those
procedures are part of the job.

• Using the EVOKE OCL statement to evoke a different job from within a
procedure.

• Evoking the job from a remote program. that is communicating with
System/34 via SSP-ICF.

The SSP (System Support Program) assigns a unique job name to each job
that the operator submits. The SSP-assigned job name has the following
format:

wwhhmmss

where ww is the work station ID of the requesting display station or the
session ID of the associated SSP-ICF session, and hhmmss is the time the job
was submitted in hours, minutes, and seconds based on the 24-hour clock,
which is set by the system operator.

Starting
th • s ystem

I
ssing Proce

Com mends

St arting
a

Job

Ru nning
a

Job

Term inating
a

Job

~
Task i< Work,.

""""~-""'
....... _

OCL

~_[:> -
Procedure
Library

r-..._......i

...... ~

System Control Flow Overview

IPL

T
~

Work Station - J'<.. Display
K, K..,.

~ Command Management Station
Processor

I Job Control I -_.f-;;;-OCL from Display Station Batch I I Batch Job Procedures Inquiry

-- -,,.t Job

I Logical 1/0 I Queue -Messages, Prompts, Responses
I<" D,-

v rr=0 -SYSIN
-........ Initiator

OCL
":> v Keyboard K.- Messages and Responses

J'<..
v

SYSIN ... -
Reader/ SY SLOG

Interpreter .---
- Source r-~ SYSIN f(.'.-::::= B

...._ File Names --"> ...
VTOC

Prompts, ~· Create ~ ~

rr=8 OCL
Responses Disk

$SOURCE, t-----"
)t-.J ~

....._ for compiler
Initialization Source G CID

~ Library
MSG MBRS, ~

...._ UserPGMS
Object <J

~

Library

Activa Disk Files ~ History

-": $WORK
File

J
...

Program Put
for Sort

Initiation Local t-----"
...... Area .JO. Task - Work

~
. Area

Active
~ Disk Files

~ Assign/Free

rl Device }- History

$WORK Allocate
File

Pointers """"-

H Open H _
"J

J Data l-l Management
User
Program

J] SYSLIST l

..,
~ Active- Disk Files Termination

_;:ii
Close

l_

Step
Close files and update VTOC.

K, Termination

r
Keysort l
for Index File Ji.------

Job
Termination

Control Flow

Data Flow

~-----.....>

System/34 Concepts 2-7

2-8

FUNCTIONS PERFORMED DURING JOB PROCESSING

When the operator enters a statement or command on a command display or
when he selects an item from a menu, the SSP function called the command
processor processes the entry. If a remote program requests a job to be run,
the command processor also processes the procedure command.

Job Request
from
Operator

or

Procedure Command
from
Remote Program

Command
Processor

If the statement entered is a control command, the command processor
performs the requested function. If the statement entered is not a control
command, the command processor either passes control to the initiator
function of the SSP or attaches the display station to an active MRT program
if the procedure command is for an already active M RT program.

Job Request
Command • from
Processor

MAT Program

Operator

or

Procedure Command
I

from
Remote Program Initiator

The initiator reads and processes OCL statements for the job. When it
processes a RUN OCL statement, the initiator loads the requested program and
passes control to it. The RUN statement is the last OCL statement in a job
step.

Job Request
Command • from
Processor

MAT Program

Operator

or

Procedure Command
I

from
Remote Program Initiator

1
User
Program

When the step ends, the SSP terminator function performs system actions
necessary to end the step. If more job steps follow, the terminator returns
control to the initiator. If no other job steps follow, the terminator ends the job
and either returns control to the command processor for locally initiated jobs or
terminates the SSP- ICF session for remotely initiated jobs.

Job Request
from
Operator

or

Procedure Command

from
Remote Program

End

Command
Processor

J
r Initiator

------...

End of Job Steps J
But Not
End of Job

User
Program

~!b J
LJ::,...T_e_r_m-in_a_t_o_r -

Terminate or

the SSP-ICF ~~------·-----...J
session.

The following paragraphs provide more detailed information about the
functions performed by the command processor, the initiator, the user
program, and the terminator.

MRT
Program

System/34 Concepts 2-9

2-10

Command Processor

The command processor is the SSP function that initially processes information
that the operator enters. When (1) the operator enters a command or selects
an item from the menu, or (2) a remote program sends a procedure command
request via SSP- ICF, the command processor checks the command entered or
checks the statement associated with the selected menu item to determine
whether a job should be initiated.

If the associated statement is an operator control command, such as the
STATUS control command, the command processor does not initiate a new
job. Instead, the command processor gives control to the SSP routines that
immediately execute the control command.

If the associated statement is not an operator control command, the command
processor next checks to see if the procedure command is a request for a
currently active M RT program. If it is, the command processor attaches the
display station or SSP-ICF session to the active MRT program. If it is not a
request for an active M RT program, the command processor passes the
statement to the initiator.

Initiator

The initiator uses the SSP system input function to read and process OCL
statements from the system input device, which can be either the keyboard at
the display station or procedure members in a library. During OCL processing,
the initiator checks each OCL statement for valid parameters. The initiator
function contains a routine for processing each of the OCL statements. These
routines are loaded and executed when required by the initiator.

Functions provided as part of the initiator function include:

• Processing substitution expressions and condition tests. (This function is
performed by the SSP system input function.)

• Checking the syntax of each OCL statement.

• Ensuring that required load members exist in the active user library or the
system library.

• Ensuring that required files exist and are compatible with the parameters on
the FILE OCL statement.

• Ensuring that required source and work files are available.

• Acquiring display stations for which REOD-YES is specified on the
WORKSTN OCL statement.

• Releasing the requesting device if RELEASE-YES is specified on the A TTR
QC L statement.

• Ensuring that the available user main storage is at least as large as the job
region size. User storage occupied by nonswappable programs is not
available.

• Allocating the SSP work areas required for the job.

If the processed procedure does not request an active MRT procedure via an
INCLUDE OCL statement, the initiator loads the requested program and passes
control to it.

The initiator executes in the user area of main storage at the same priority level
as the program that is using the initiator.

System/34 Concepts 2-11

2-12

If the initiator processes a procedure call for an MRT procedure, the actions
performed by the initiator depend upon whether or not the MRT program is
already executing. If the MRT program is already executing, the initiator
attaches the display station to the_ executing program; if the maximum number
of requestors is already attached, the initiator queues the display station to the
program. If the MRT program is not already active, the initiator processes the
statements (up to and including the RUN statement) in the MRT procedure,
loads the MRT program, attaches the display station to the program, and
passes control to the MRT program. When the MRT program releases the
display station, the initiator regains control and returns to the calling procedure.
For further information about MRT procedures and programs, refer to MRT
(Multiple Requestor Terminal) Program later in this chapter.

The suggestions listed under OCL Performance Considerations, which follows,
should help minimize OCL processing time.

OCL Performance Considerations

Minimizing OCL statement processing time is a good practice because
excessive processing of these statements can increase job initiation time. The
following suggestions should help minimize OCL statement processing time:

• Use defaults whenever possible. For example, code:

1111~+1~ ~~!~~3TI 11111 l I I llrtTilll I I lliUUffi
not

• Avoid using comments on OCL statements.

• Group OCL statements. For example, all WORKSTN statements should be
grouped together. Grouping statements allows the system to load individual
OCL processing routines once instead of loading them many times.

• Avoid continuation lines. For example, code:

not

• Use the local data area only when necessary. Processing information in the
local data area requires additional disk accesses and can significantly
increase OCL statement processing time.

• Use external switches rather than the local data area to condition the
execution of steps in a procedure.

• When a sort is executed after it is tested, use the 3 print option, which
prints only severe errors.

• After a procedure is tested, do not log OCL statements to the history file.
Logging requires that every OCL statement processed by the system be
written to the history file. Therefore, logging can significantly increase OCL
processing time.

• For interactive applications, avoid using the I I * statement to inform the
display station operator that a procedure has started. Instead, use the first
format displayed by the program to present that information.

• Limit the number of conditional expressions that are processed within a
procedure. The GOTO and TAG statements should help you limit the
number of conditional expressions that are processed.

• Use the PROMPT OCL statement to prompt for data that will be passed to
the program when it begins processing. Using the PROMPT statement in
this way allows the operator to key data into the first display while the SSP
processes the rest of the OCL statements for the job step.

• Use the PROMPT OCL statement to prompt for procedure parameters
instead of using the I I * statement to issue operator messages and then
prompting for input with ?nR? or ?nR'mic'? expressions. The I I * statement
and substitution expressions require more system activity than that required
to display prompts and input fields with a display screen format. For
example, a procedure displays selected records from a selected file. rt the
I I * statement and substitution expressions are used to prompt for input,
the procedure could be coded as follows:

rl'I \ t:JN 1t.Jl< EI IL I- uA 9u 1

rll If! ?1 ?7 GO ~ ER OR ·I-+-

rl I \ t:N tJ I< srr A rn IH R ~c OR D INIU MB E~'
IM IF1 ?~ R? I GO If 0 E1R OR ·.

/l/J 'rEN 111EJR EN D NG l~C RD NU MB l=IJ2 I
+- ~-+- t--+--1

f/j F ?13 R? I ~\ E ND 0 I- FI LE A SS u" IED'
DI s PL AN 11 ?1 .. 1 .. R E co RD It? Z? I~? r31

i--· 1--1-

l/J/ EI ILI N
t--1-- t--1-- -1-1-1

- -· 1-r- -·I- 1-1-1

~ AG k'tl k'

l/_lf_ AU s~ \ REQO PIAR~ E 111 R--PR.DC: i--X I~ ~ti-I ~LED' r
1--1-1-1-1

i~lt:J

r-t-r- - -~~ ~: [~:~
i-r-1

--1-1 -+-I
~- •A--' --1--A• .1. __ ···----1.Ll ___ L L- - ---1-1

System/34 Concepts 2-13

When this procedure is executed, the operator is prompted for one parameter
at a time. The operator presses the Enter I Rec Adv key after entering each
parameter. The same procedure could be coded to use the PROMPT OCL
statement. The procedure then could be coded as follows:

r1_1 4G lSIT ARll
/f/J []

N If IN • a~ ~F M11_ FO RM ~ rr -~ IS p"" ~Nl
/fl_ I i-F ?1 1~ Fi- 72 ?/ GO TO ll OD
~

p o~ PT ~ -[~l! .ru~:JO~~ a-ER BOR ~-,,
'TO lS trlA tr .- .. !-r. ! ,., ·11 ,- !-··I !-

R
llil_ r GI GD OD I ~I SP L~ ?Il 1. 1,R EC CR ~1. 112 ?1, ?3?

_ L_ - - '--'·- ·- ·- - ,_..__.__.__ __ j__.L _ .. _L_ _J
In this case, the display screen formats, DISPLA Y1 and ERROR, are both in a
load member called TRYFM. Figure 2-1 shows the S and D specifications for
the two displays. (Instead of coding S and D specifications, you could use the
Screen Design Aid (SDA) to create the display screen formats.) When
DISPLA Y1 is displayed, the operator is prompted for all three parameters. The
operator enters all three parameters and presses the Enter /Rec Adv key.
Figure 2-2 shows the display screen when DISPLAY1 is displayed.

Note: The check for null entries, which is coded in this example, would not be
required if the fields were defined as mandatory-enter fields (Y in column 29
of the D specification).

Second Edition GX21-9253- U/M 050*

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU
and $SFGR. This coding sheet could contain typographical errors.

Printed in U.S.A.

*No. of sheets per pad may vary slightly.

D >
8 .! :;)

! § Sequence Format
Number I!!. Name

z
9 .,

~
c:

~
::::;

E t:
~ ~ l!

"' I 2 3 4 s 6 7 8 9 1011121314 15 16 17 18

nn s IDISALTAl'<ll 1 T

0

0

0

lo

5
~ "O c:

0 ::::;

ill~ E- E ·~
0 ,.~ .!! :::J .,c: < ... u 11- :><:O

; ~ i~ § ~ go
zs 0 .,

~! JI .li ..Ja:
19 20 21 22 23 2~ 2S 26 27

1 I ·r

11 ~I'(

g
a .,
c

"' 2930

I

-6
o;

"O ;;:
Q;

:J u: c.

1 c:

ill
I!

0 w
31 32 33 34

l

g
~ a

I J

1

3132~

WSU Only
Enter
Mode Review lnser\'

~~
Mode Mode
Record Record

j ~ Identifying Identifying Reserved Key Mask
Reserved ·~ lridicators Indicators

~ ·~1! ::: ~ i
a:~

~~~! ~ ill 0 1 2 3 1 2 3 
ti! ~ ;t,I: a: U> wwci:: 

JS 36 37 38 3940 41 42 ~44 45 46 47~49 ~051 52 53 54 55 56 57 58 59 60 61 6263 164 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

1 111 l l l I J ] JJ1 IIJ1111JIJJIIII 

§ c 
-o ?;' 8. i Reserved I!!. Constant Data 0 

~ ·~ ~ ~ ~ QI ~ ~ 2 

j i ! J j 1! J,234567891011121314151617181920212223~ 
37 38 3940 4142~44 45 ~47~ ~5051 52 53 ~4 55 56 57 58 5960 61626364 65 66 67 68 6970 71 72 73 74 75 7617 78 7980 

~ ~ 11~~1 A~ SE1LE~ITTE1L w~ ~ I~ 

Figure 2-1 (Part 1 of 2). Sand D Specifications for DISPLAV1 and ERROR 

2-14 



Second Edition GX21-9253- U/M 050" 

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU 
and SSFGR. This coding sheet could contain typographical errors. 

Printed in U.S.A. 

•No. of sheets per pad may vary slightly. 

Sequence 
Number 

I 2 3 4 

Sequence 
Number 

1 2 3 4 

wsu Only 
> \It > Enter ;§ l> ~ Mode Review lnser\ 

::> _8 ~ -o ~ ~ ~ "D ~ ~~::rd ~~!rd 
Format ~ z5 :.::i ~ '" .. ~ ·~c:- EE i.L a; _c.c" ~ Identifying Identifying Reserved 
N - ~ g .§.~ - 0 U: Reserved ·5 I d' I d. t 

~ ame ~ ~ i ;; ~ ~ ,:! c5 ~ ~ ~ a l ~.. ~§:.... l ... ~ ?: ~ n 1cators n 1ca ors ~ 
E ~ ... E ~ cu .... - ~ c 15 :c .x. Q) = ... > !. \,,, ·;:: ~ ~ 

Lf & ~ ~~~~~~ ~ ~~ ~ ~ 0 cil ~~~~~~~ 1 2 3 1 2 3 ~ 

Key Mask 

5 6 7 8 9 10 11121314151617181920 2122 232425 262728 2930 3132333435:JE;3738394041421-!_34445}1_647}1_8 •9is051525354555657585960616263js.i656667686970 717273 74757677 787980 

s~DDnD ma . J J In IIIII ]JI]JJJIJ 

Starting 
Location 

~ ~ > 

Field .... ~ ~ ~ ~ ~ ~ 
8. -o Length ~ ~ c§ "; ~ 8. ~ ~ ~ ~ ~ 
~ WSU :5~ ~ - 8<~;~5~ 0 

E F. Id N ... 3 § s. .~ ~ ~ ~ ~ £: :g. ·v. .f 1e ame ~ ~ ~ ~ Q ~ ..S O :E :!: ~ <( ~ 
5 6 7 8 9 10111213141516171819202122232 25262728293031323 

olCll llJllnll714 l~l~ !~ % !l 
D I~ 

Field 
Name 

.~ B )( c: 
w ~ S: c 

~ ~ -o > & i Reserved I.~ Constant Data 0 

~~] ~ ·_~c: ~ ~ ~ c ~ .... ~ 
';~~ ~ U: ~ § Ii 

8
c 

iEg ~ ~ ~ ~ J ~ 
.li8~ £ : ~ -i a: ::> 8 81 2 3 4 5 6 7 8 9101112131415161718192021222 

34 J5 3E 37 38 3940 41 42}1_3 44 45 46 47 ~ 49 50 51 52 53 ~4 55156 57 58 59 60 616263 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

~ ~llMl\~TI ~l~ 1~1~11~1rJ 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

0 

0 

I o1 
D 

D 

0 

D 

D 

Figure 2-1 (Part 2 of 2). Sand D Specifications for DISPLAY1 and ERROR 

System/34 Concepts 2-15 



2-16 

DISPLAY SELECTED RECORDS FROM A FILE 

ENTER FILE NAME ---> 

ENTER STARTING RECORD NUMBER ---> 

ENTER ENDING RECORD NUMBER ---> 

Figure 2-2. DISPLAY1 After the Operator Enters Parameters 

WORK 

00000001 

0000001.Q 



User Program 

Each program allocates and opens the files that it uses. In RPG II, WSU (work 
station utility), and FORTRAN programs, the programmer does not explicitly 
code these operations. After opening the files, the user program begins 
processing. Some of the services the SSP provides during execution of a user 
program are: 

• Disk data management, which controls the flow of information to and from 
disk files. For information about disk files and disk file processing, refer to 
File Concepts later in this chapter. 

• Printer data management, which controls the flow of information to the 
printer. For more information, refer to Printer Concepts later in this chapter. 

• Optional spooling functions, which intercept printer commands and place 
them in disk storage, creating a spool file. When requested, the spooling 
function retrieves records from the spool file and prints them. For 
information about spooling, refer to Printer Concepts later in this chapter. 

• Work station data management, which enables the user program to present 
data on a display screen by providing only a string of data fields and a 
format name. Work station data management then displays the data in the 
predefined format. For information about display screen formats and work 
station data management, refer to Work Station Data Management later in 
this chapter. 

• SSP-ICF data management, which enables the program to communicate 
with programs on the same System/34 (INTRA subsystem) or with 
programs on another system. For more information, refer to SSP-ICF Data 
Management later in this chapter. 

After the user program completes processing, it closes the files it used and 
passes control to the SSP terminator function. The RPG II, WSU, or FORTRAN 
programmer does not explicitly code these operations. 

System I 34 Concepts 2-17 



2-18 

Terminator 

Normal Termination 

When the user program goes to end of job or when the operator selects option 
2 in response to a displayed error message, the terminator function replaces 
the user program in main storage. The terminator performs the following 
steps: 

• Updates the disk VTOC entries 

• Frees system resources, such as main storage and assign free are.a (system 
queue space), that the program used 

• Updates and initializes system data areas so that the SSP can initiate the 
next job step 

• Terminates all previously acquired SSP-ICF sessions established by the 
program 

If more job steps remain in the job, the terminator reloads the initiator so that 
the next step can be run. 

If the step just ended is the last step in the job, the terminator also performs 
the following steps: 

• Deletes all job files (RETAIN-J files) used by the job 

• Deletes the reserve area that was requested for the job 

• Releases the requesting display station if it is still attached to the job and 
returns control to the command processor so that the operator can request 
another job 

• Terminates the requesting SSP-ICF session if the program was requested 
by a remote program and if the session is still active 

• Frees the remaining system resources that were used by the job 



Abnormal Termination 

Abnormal termination of a program occurs when any of the following operator 
actions are taken: 

• The operator selects option 3 in response to a displayed error message. 

• The operator interrupts the executing program and selects option 2 or option 
3 from the Inquiry display for all programs except MRT programs. For MRT 
programs, option 2 releases the display station from the MRT program and 
continues with the next job step; option 3 releases the display station from 
the MRT program and cancels the remaining job steps. 

• The system operator uses the CANCEL control command to cancel the job. 

• A program check occurs. 

• The system detects an error condition during normal termination. 

• The CANCEL keyword is executed in a procedure. 

When an abnormal termination occurs for non-M RT programs, the terminator 
is loaded. Any remaining job steps in the job are not performed. If option 2 
was selected from an Inquiry display, the files that were being used by the 
terminated job are closed. For all other types of abnormal termination, files are 
not closed, and the following statements are true: 

• Files contain all updates made before the abnormal termination. 

• Any additions made to nonshared files do not remain in the file unless the 
file is an I Fl LE. 

• New files are not added to the disk VTOC. 

• If keys were being sorted when the termination occurs, the file is marked as 
unusable. The index will be rebuilt by the IPL file rebuild function, which is 
described later in this chapter. 

When the terminator function ends, it returns control to the command 
processor or terminates the SSP-ICF requestor session depending upon how 
the job was initiated. 

The terminator executes in the user area of main storage. 

System I 34 Concepts 2-1 9 



2-20 

SYSTEM INPUT (SYSIN) PROCESSING 

The SYSIN (system input) function reads records from the input job stream, 
which is either entered from the keyboard or read from a procedure member. 
After reading a statement, SYSIN performs all substitutions and performs the 
functions specified by the statements that control SYSIN processing. The 
statements and expressions that control SYSIN processing are IF, IFT, IFF, 
RESET, ELSE, CANCEL, RETURN, END, GOTO, and TAG. For information 
about these statements and expressions, refer to Chapter 5 of the SSP 
Reference Manual. 

After processing a statement, SYSIN gives the statement to the calling SSP 
function. During job initiation, the calling function is the initiator; therefore, all 
statements up to and including the RUN OCL statement are passed to the 
initiator. After a job is initiated, the statements are passed to the system utility 
program or the user program that requested system input processing. 

The following example shows how SYSI N processes a typical statement. The 
example is intended to give a general idea of how SYSI N works, and is not 
intended to show the detailed logic of SYSIN processing. Before reading the 
example, you should be aware of the fundamental rules of system input 
processing: 

• SYSIN processes a statement one field at a time from left to right. Fields 
are delimited by blanks. 

• Each time a substitution operation is performed, SYSIN goes back to the 
first field in the record and begins processing the record again. This must 
be done to allow for nested substitution. 

• After all substitutions are performed, the length of the generated statement 
must be less than or equal to 120 characters. The actual length of the 
statement before substitution can be up to 240 characters. 

• If substitution expressions follow the RUN OCL statement, job initiation time 
increases due to increased disk read and write operations required by 
SYSIN. You should use GOTO statements to make sure that conditional 
expressions and substitution expressions that follow the RUN statement are 
evaluated only if necessary. 



System Input Processing Example 

In this example, the following record is read from the input job stream: 

$~ DATAF1-?1'?2?'?FILE SWITCH {<1X~OOX?$ 

/ ". I I I 
Field 1 Field 2 Field 3 Field 4 Field 5 

Assume that when this statement is read parameter 1 is undefined and 
parameter 2 has a value of AR. The system input function then performs the 
following steps: 

Step 1. 

Step 2. 

Step 3. 

Identifies the first field as I It> { t> represents a blank). 

Identifies the second field as a valid system input expression {IF). 

Examines the third field and determines that the field contains a 
nested substitution expression. For a nested substitution 
expression, the innermost substitution is performed first. Therefore, 
SYSIN substitutes the value of parameter 2 (AR) into the 
expression. After the substitution, the record looks like this: 

.jJ~ DATAF1-?1'AR'?FILE ?WITC~ (<1XXOOX)$ 

/ ' I l l Field 1 Field 2 Field 3 Field 4 Field 5 

Because a substitution was performed, SYSI N goes back and begins 
processing the record at field 1. 

Step 1. 

Step 2. 

Step 3. 

Identifies the first field as I It>. 

Identifies the second field as a valid system input expression (IF). 

Examines the third field and determines that the field contains a 
substitution expression. SYSIN performs the substitution. In this 
case, parameter 1 is undefined and the value AR is substituted. 
The resulting record now looks like this: 

II IF DATAF1-ARFILE SWITCH X1XXOOXX 
'V'V ' I' . i 

/ , I l I 
Field 1 Field 2 Field 3 Field 4 Field 5 

System/34 Concepts 2-21 



2-22 

Again, because a substitution was performed, SYSIN go0s back and begins 
processing the record at field 1. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Identifies the first field as I It>. 

Identifies the second field as a valid system input expression (IF). 

Identifies the third field as an existence test. SYSIN performs the 
test and, in this case, determines it to be true. 

Evaluates the conditional expression formed by fields 2 and 3. The 
conditional expression specifies that because a disk file labeled 
ARFILE exists the remainder of the record should be processec:t. 
SYSI N discards the IF test (fields 2 and 3) and processes the 
remainder of the statement, which now looks like this: 

II SWITCH X1 XXOOXX 7 \ I 

Field 1 Field 2 FieL 3 

After checking each field and determining that no further substitution or SYSIN 
processing of the statement is required, the statement is passed to the 
initiator. 

Note: If the conditional expression is not satisfied, that is, ARFILE does not 
exist on F1, SYSIN discards the remainder of the record and reads the next 
record from the input stream. 



Job Management and Job Scheduling on System/34 

The IBM System/34 lets you assume an important role in the management 
and scheduling of your jobs. You can affect the order in which your jobs are 
presented to be executed by the use of different job queue priorities in the 
input job queue. You can affect the swapping and main storage processor 
utilization of your programs by the use of different execution priorities. 

EXECUTION PRIORITIES 

You can specify four different execution priorities for your job or job steps. 
These execution priorities may affect the swapping and the way your program 
gains control of the main storage processor from the dispatcher. The 
dispatcher is responsible for allocating the main storage processor to your 
program. The four execution priorities are: 

• High 

• Medium 

• Normal 

• Low 

If you do not specify an execution priority for your job, the system assigns 
your job a normal priority. 

To specify the execution priority of your job(s), you can use the following: 

• PRTY command 

• I I ATTR OCL statement 

For further information about using the PRTY command and I I ATTR OCL 
statement with execution priorities, refer to either the SSP Reference Manual or 
to the Operator's Guide. 

System/34 Concepts 2-23 



Placement of Jobs on the Input Job Queue 

The input job queue has five different· priority levels numbered 1 to 5. Priority 
level 5 is the highest priority and priority level 1 is the lowest. By assigning job 
queue priority levels to your jobs, you can. specify the placement of jobs on the 
input job queue and control the order in which your jobs are presented to the 
dispatcher to be executed. Jobs are placed on the input job queue on a 
first-in, first-out basis within job queue priority level. This means that all jobs 
with a level 5 job queue priority are presented for execution before jobs with a 
level 4 priority, and that before a priority 4 job can be considered for execution, 
all jobs with a job queue of 5 must have been dispatched. If you do not 
specify a job queue priority for a job that is using the input job queue, the 
system assigns your job a level 3 priority. The following illustration shows the 
order in which your jobs are presented for execution based upon placement in 
the input job queue. 

Placement in Job Queue 
by Job Queue Priority Job Order Presented 

for Execution 
Priority 

Job 
5 F 

4 

3 

2 

2-24 

Job Job Job Job A 
D B A 

Job B 
Job 
c Job D 

Job Job F 
E 

__...._ 

__.,,., 
Job C 

Job 
G Job E 

Job Job G 
H 

Job H 

Changing the Position of a Job Within the Input Job Queue 

You can place a job in a higher or lower priority within the input job queue by 
using the CHANGE JOBQ command. The execution priority associated with 
the job is not changed. 

1 

2 

3 

4 

5 

6 

7 

8 



Execution Priorities of Jobs in the Input Job Queue 

The execution priority of a job placed in the input job queue is normal unless 
you use the PRTY command. If you use the PRTY command before placing a 
job in the input job queue, the execution priority is equal to the value specified 
on the PRTY command. If you use the PRTY command and do not specify a 
value, your job is assigned the high execution priority. 

If you use a procedure to place a job in the input job queue, your job has the 
same execution priority as the procedure. 

From the system console you can use the PRTY command to change the 
execution priority of a job in the input job queue. When you change the 
execution priority of a job, the job queue priority and its position within the job 
queue priority are not affected. 

Initiating a Program 

When a _new program is to be initiated, the system arranges the programs by 
execution priority in the active program list and begins initiation of the 
programs with the highest execution priority. 

The initiator on the system takes into account the following items regarding 
execution priority: 

• Execution priority may be specified multiple times in a job by the use of the 
PRTY command or the I I ATTR OCL statement. Each job step may have 
its own priority. The priority specified becomes effective as soon as the 
syntax of the OCL statements are validated by the initiator. 

• When you have an N RT (no requestor terminal) program, the priority of the 
program is the same as the job that initiated the NRT program. 

• When a job is started by the use of the I I EVOKE OCL statement, the 
priority of the job evoked is the same as the job that evoked it. 

• If you do not specify an execution priority for an MRT (multiple requestor 
terminal) program, the M RT program has the same priority as the job prior 
to the inclusion of the MRT program. If you attach a job to an MRT 
program, your job has the same priority as the M RT program. When a job 
is released from an M RT program, the job has the priority that was in effect 
prior to the inclusion of the MRT program. 

System/34 Concepts 2-25 



2-26 

DISPATCHING 

Systems that allow only one program in main storage at a time waste 
considerable processor time. For example, when the executing program waits 
for an I I 0 operation, the processor is idle until the operation is complete. 
System/34, on the other hand, provides a dispatching function that allows 
multiple programs in main storage to share processing time. When a program 
that is using the main storage processor waits for the completion of an I I 0 
operation or has executed for longer than a system-defined time limit, the 
system dispatcher gives control to another program in main storage that is 
ready to execute. The system dispatcher determines which program uses the 
main storage processor next. 

To determine which program should use the processor next, the system 
maintains a list of programs that are in main storage and ready to execute. 
That list is called the program ready list. The dispatcher gives control to the 
program on the list with the highest execution priority. Programs are 
dispatched on a priority first-in, first-out basis. The following chart lists the 
dispatching sequence used by the System/34. 

Execution Priority 

System 

High 

Medium 

Normal 

Medium-low 

Low 

Dispatching Sequence 

2 

3 

3 

4 

5 

Note: The medium-low priority and system priorities are determined by the 
SSP and cannot be specified by the user. 

At certain times, the system assigns a priority other than what you have 
specified. This assignment is temporary and is used to accommodate special 
situations such as termination of a job. 



SWAPPING 

Even though dispatching enables two or more programs in main storage to 
share the main storage processor, processing time can still be wasted. For 
example, if a program is so large that no other program can fit in main storage, 
the time that program spends waiting for 1/0 operations is wasted. Even if 
two or more programs fit into main storage, considerable amounts of time can 
still be wasted. For example, assume that two operators are running programs 
that require those operators to enter information from their display stations and 
that together the two programs, A and B, occupy all the available user storage. 
While one of the programs waits for an operation such as a disk or display 
station operation to be completed, the System/34 dispatching function allows 
the other task to execute. 

Display Station W1 Main Storage 

0--~ -- A 

Display Station W2 

B 

In this situation, the main storage processor is not used continuously. For 
example, after Program A requests input from display station W1, that program 
waits in storage while the operator enters the input. If both programs wait for 
input from display stations at the same time, the processing unit might be idle 
for several seconds. 

To make better use of processing time, System/34 provides a swapping 
function that allows the total amount of user storage required by concurrently 
executing programs to exceed the amount of main storage available for user 
programs. During swapping, the system temporarily removes a program or a 
segment of a program from main storage when the program cannot continue 
to execute because it is waiting to use some resource on the system. The 
system saves this program or segment of the program on disk so that another 
program can use main storage. 

Note: The system swaps the program only if the main storage area is needed 
by another program. 

The swapping function uses the execution priority of a job to help it determine 
which jobs are to be swapped. The lower priority jobs in most cases are 
swapped first, leaving the higher priority jobs in main storage for as long as 
possible. The following chart lists the swapping sequence. 

Execution Priority 

Low 

Medium-low 

Medium 

Normal 

High 

Swapping Sequence 

2 

3 

3 

4 System/34 Concepts 2-27 



2-28 

Ordinarily, swapping requires only fractions of a second. Most of the time, the 
operator at a display station is not even aware that the job is sharing the 
system with other jobs. 

The following example shows how swapping can increase the total amount of 
work that concurrently executing programs can perform. 

Assume that programs A, B, and C are executing concurrently and have the 
same execution priority. The programs are the same size. Programs A and B 
are in main storage; program C has been moved to the swap area on disk and 
is waiting to resume processing. 

Display Station W3 

Display Station W1 Main Storage 

Swap Area 

A 

Display Station W2 

B 

The system knows that program C is waiting to execute when program A 
requests input from display station W1. Program A will be inactive until the 
operator enters information. Therefore, the system transfers program A to the 
swap area on disk and transfers program C into main storage. Programs B and 
C share the main storage processor until program A is ready to be swapped 
back into main storage. In this example, the main storage processor will be 
idle only when all three programs are waiting for work station input. 

Display Station W3 

Display Station W1 Main Storage 

Swap Area 

c 

Display Station W2 

B 

The following paragraphs further describe swapping on a general level, but 
they are not intended to be a complete discussion of the topic. The 
information presented, though not essential for successful use of System/34, 
provides a general understanding of how swapping works and how it can 
affect response time. 



Active Program List 

To keep track of the status of all active programs, the system maintains a list 
(or queue) of all active programs. An active program can be either in main 
storage or in the swap area on disk. The system uses the position of the 
program along with the execution priority to decide which programs to swap in 
and out of main storage. 

Normally, programs on the active program list are in sequence by their 
execution priority. All high priority jobs precede medium priority jobs, and 
medium priority jobs precede low priority jobs. Low priority jobs are last on the 
active program list. For example, if programs A and D are high priority jobs, 
programs 8 and E are medium priority jobs, and programs C and F are low 
priority jobs, the list of active programs might look like this: 

A 

D 

8 

E 

c 

F 

>-

>-

Execution 
Priority 

High 

Medium 

Low 

If you do not specify an execution priority or you specify normal execution 
priority for your job, the system assigns a normal execution priority to your job. 
The normal execution priority is considered equivalent to medium by the 
system. The system can change this system-assigned medium execution 
priority to a medium-low execution priority. This change occurs only when you 
do not specify an execution priority and your program executes for longer than 
a system-determined time limit without performing a display station read 
operation. The time limit, called the interactive time limit, is approximately 
(N+1) x 1 /2 second (1 /2 second=500 milliseconds), where N is the number of 
display stations attached to the program. The interactive time limit also 
deducts I I 0 processing time as well as main storage processor time. 

For more information about the interactive time limit, refer to the System 
Measurement Facility Reference Manual. 

System/34 Concepts 2-29 



2-30 

The following examples show how a program· s position on the active program 
list can be changed, when you have specified an execution priority. 

• When you specify an execution priority and your program performs a display 
station read operation, that program is moved to the bottom of the list of 
programs with the same priority. 

Display Station Read 

B 

E 

Display Station Read 

Execution 
Priority 

High 

Medium 

Low 

• When you specify an execution priority and your program exceeds the 
interactive time limit, that program is moved to the bottom of the list of 
programs with the same priority. 

Exceeds Interactive Time Limit 

Exceeds Interactive Time Limit 

c 

F 

Execution 
Priority 

High 

Medium 

Low 



The following examples show how a program's position on the active program 
list changes when you do not specify an execution priority and you let the 
system assign normal priority to your program. You should be aware that the 
system initially considers normal priority equivalent to medium priority. · 

• When your program exceeds the interactive time limit, that program is 
moved to the top of a system defined list with medium-low priority. Only 
the system can specify a medium-low priority for your program. 

Exceeds Interactive Time Limit E 

y 

z 

c 

F 

Execution 
Priority 

Medium 

Medium-low 

Low 

Your program remains in this medium-low classification until a display station 
read operation is performed by your program. When your program performs a 
display station read operation, the program is moved by the system to the 
bottom of the list of ·the medium priority programs. 

Display Station Read Operation 

E 

y 

z 

c 

F 

Execution 
Priority 

Medium 

Medium-low 

Low 

System/34 Concepts 2-31 



2-32 

Your program remains at the bottom of the list of programs with the same 
priority until programs ahead of it perform display station read operations or 
exceed their interactive time limit. When these conditions happen, your 
program is moved up on the list. The following diagram shows the. movement 
of program C on the active program list. 

Display 

C
·~-- Station 

t Read 

t 

Interactive 
~--+- Time Limit 

Exceeded 
c 
A 

B 

How the Swapping Function Uses the Active Program List 

The System/34 swapping function is activated whenever the status of an 
active program changes such that swapping may occur. For example, 
swapping can occur when a program issues a display station read operation. 

As the first step in swapping, the system starts at the top of the list of active 
programs and checks the status of the programs to determine whether a 
program is waiting to be swapped in. The first swapped-out program of the 
highest priority the system finds that is ready to swap back in is the program 
that will be swapped in. For example, suppose that seven programs are on the 
list. Of those programs, 2, 4, and 7 are swapped out, and 2 and 7 are ready to 
run. If the active program list looks like this: 

Execution 
Priority 

High 

Order 
of 

Search 
for 

Swapping 
In 

l 
Low 

Active 
Program List Status of Program 

4 - - - - - - - - - - - - - - - - - - - - Swapped out, not ready 

6 --------------------

7 --------------------

3 --------------------

5--------------------
2 

In main storage, waiting for display station input 

Swapped out, l ready I 
In main storage, waiting for display station input 

In main storage, executing 

Swapped out, I ready I 
In main storage, waiting for printer operation 

then program 7 is the program that will be swapped in. 



If a program is ready to swap in, the system must determine which program or 
programs to swap out. To determine which programs to swap out, the system 
starts at the bottom of the active program list and searches for programs in 
main storage that are waiting for input from a display station. The system 
swaps out the first program it finds that satisfies the search and swaps in the 
other program if enough storage is made available. The system might have to 
swap out two or more programs to free enough main storage for the program 
to be swapped in. In the preceding example, program 7 is to be swapped in. 
As shown in the example, programs 3 and 6 are both waiting for display 
station input. The system will swap out program 3, which has the lowest 
priority on the list, and swap in program 7. 

Execution 
Priority 

High 

t 
Order 

of 
Search 

for 
Swapping 

Out 

I 
Low 

Active 
Program List 

4 
6 
7 
3 
2 

Main Storage 

6 

5 

3 

Swap Area 

4 
r------+---1 7 

2 

If swapping out program 3 does not free up enough space for program 7, the 
system continues searching until it finds another program or programs to swap 
out along with program 3. In this example, program 6 is also waiting for 
display station input and could be swapped out along with program 3. 
Program 7 could then be swapped in. 

System/34 Concepts 2-33 



2-34 

If the system does not find any programs waiting for display station input or if 
the amount of storage used by the programs and the amount of unused 
storage is not large enough to contain the program to be swapped in, the 
system goes back to the bottom of the active program list and searches for 
programs that have been executing in main storage for longer than 1 /2 
second, including I I 0 time. Such a program can be swapped out only if it is a 
lower priority on the active program list than the program to be swapped in. 
By allowing a program to execute for at least 1 /2 second, the system avoids 
constantly swapping a program in and out while the program uses little or no 
processor time. For example, assume the following: 

• Programs A, C, and D are in main storage. 

• Of the programs in main storage, program A is waiting for display station 
input, and program D had been executing for longer than 1 I 2 second. 

• Programs B, E, and F are swapped out. 

• Of the swapped-out programs, programs E and F are ready to be swapped 
in. 

• The active program list is as follows: 

A - - - - - - - - - - - - - - - - - - - - In main storage, waiting for display station input 

B - - - - - - - - - - - - - - - - - - - - Swapped out, waiting for display station input 

F - - - - - - - - - - - - - - - - - - - - Swapped out, I ready I 
D - - - - - - - - - - - - - - - - - - - - In main storage, ready 

E - - - - - - - - - - - - - - - - - - - - Swapped out, l ready I 
C - - - - - - - - - - - - - - - - - - - - In main storage, executing 



The system begins with the highest priority program at the top of the active 
program list and searches for a swapped out program that is ready to resume 
processing. In this example, the first such program that the system finds is 
program F. Therefore, program F is the program that will be swapped in. 
Now, the system begins searching for a program or programs to be swapped 
out to make room for program F. The system begins at the bottom of the 
active program list with the lowest priority program and searches for programs 
in main storage that are waiting for display station input. Program A is the only 
such program and will be swapped out. If enough space still does not exist for 
program F, the system returns to the bottom of the list and searches for 
programs that have been executing for longer than 1 /2 second. The first such 
program the system finds is program D. Because program D is of lower 
priority than program F on the active program list, program D can also be 
swapped out to make room for program F. 

Active 
Program List Main Storage Swap Area 

A A 
8 
F c 
D 
E 

c D 

The swapping and dispatching activity just described is controlled by programs 
that execute in control storage; therefore, the swapping and dispatching 
functions are executing at the same time as the programs that are using the 
main storage processor. 

Swapping Times 

The amount of time System/34 takes to swap a program or segment of a 
program is directly related to the size of the program. The System/34 swaps 
only as many 2 K byte segments of a program as is necessary. For example, a 
12 K byte program might require about 90 milliseconds to swap in and about 
130 milliseconds to swap out. By comparison, a 24 K byte program might 
require about 140 milliseconds to swap in and about 230 milliseconds to swap 
out. The actual swapping time will vary depending upon the disk drive being 
used and other disk activity within the system. 

System/34 Concepts 2-35 



2-36 

Job Priority 

When assigning jobs to different priority levels within the input job queue and 
specifying different levels of execution priority, your main goal is to process the 
maximum number of jobs in the least amount of time. 

You may want to use the input job queue and execution priorities to establish 
groups of jobs with certain characteristics. For example, you may want to 
assign all nonswappable jobs a specified job queue priority with a specific 
execution priority, so that jobs that use display stations have been executed 
before your nonswappable programs begin to execute. You may want to run 
your testing jobs with one execution priority and your production programs 
with a higher execution priority. You may want to assign execution priority to 
programs based upon the following criteria: 

• Main storage size of the program. You may want to assign a lower 
execution priority to programs that use a larger amount of main storage. 

• Whether the program can be run as an interactive or batch program. You 
may decide to assign higher execution priority to interactive programs than 
to batch programs, depending on your processing requirements. 

• Amount of main storage processing time the program uses. You may decide 
that a program that uses a large amount of main storage processor time 
should have a lower execution priority than a program that does not use as 
much main storage processor time. 

• How much elapsed time it takes the program to run. You may want to 
assign a high execution priority for a job that does not take a long time to 
execute and complete its processing on the system. 

• What kinds of demands the program. makes on system resources, such as 
disk files. You may want to base your assignment of execution priority to a 
job based on the total demands it makes on the system. For example, a 
program that uses four files and a printer may have a lower priority assigned 
than a program that uses only one file and does not use a printer. 

• How important the program is to your data processing requirements and 
deadline schedules. You may want programs that are extremely important to 
your organization assigned a high priority every time they are run. 

You may also let the system set the job queue and execution priorities for you. 



Execution Priority Hints 

In general:. let the system assign execution priorities to your job(s): the normal 
defaults can usually handle your job needs. However, you should be aware of 
the following when setting your own execution priorities: 

• Assign high priority to jobs requiring either fast response time at a display 
station or quick throughput. 

• Assign low priority to batch jobs that will run for a long time. 

• Assign medium priority to interactive jobs that could be reclassified as batch 
jobs by the system, based upon the processing requirements of the 
program. 

Nonswappable Programs 

When you run the overlay linkage editor, you can specify that a FORTRAN, 
COBOL, or assembler program is nonswappable. You cannot define an RPG II, 
BASIC, or WSU program as nonswappable. A nonswappable program, once it 
is initiated, remains in storage until the program completes. Because a 
nonswappabte program decreases the amount of. main storage available to 
other programs, the amount of swapping usually increases when a 
nonswappable program is being run. Therefore, the performance of other jobs 
can be degraded when a nonswappable program is run. Because the 
performance of all other programs may be adversely affected and the capability 
of the system to initiate new jobs restricted, the nonswappable attribute should 
be used only when absolutely necessary. 

When a nonswappable program is run, the amount of main storage available 
for swappable programs is diminished. The amount of storage used by a 
nonswappable program is called nonswappable storage. The remaining user 
storage is called swappable storage. 

System/34 Concepts 2-37 



2-38 

Work Station Data Management 

User programs that communicate with display stations use a system function 
called work station data management to write to and read from a· display 
station. A display screen format defines to work station data management 
what information should be displayed and read from the display station. When 
a program requests an operation, the program supplies to work station data 
management the name of the format that defines the display. Formats used by 
a program are kept in a library load member separate from the program. The 
formats do not have to be kept in the library that contains the program. One 
display format load member can contain up to 32 formats. For an RPG II 
program, the default name of the display format load member consists of the 
program name followed by the characters FM. For example, if the RPG II 
program is called I NV, the default display format load member is named 
INVFM. The FMTS continuation option on the file description specification 
allows you to specify a different name for the format load member or *NONE 
if only interactive communications formats are used. 

Display screen formats are generated automatically by some programs or must 
be defined by programmers for other programs. Examples of automatically 
generated formats are those used by DFU (Data File Utility) and the RPG II 
CONSOLE file. Examples of formats that must be explicitly defined by the 
programmer are the formats used with RPG II WORKSTN files and the formats 
used by WSU, COBOL, FORTRAN, and BASIC programs. 

If you are programming in RPG II, screen formats do not have to be defined as 
the program name followed by the characters FM. You can also use the same 
format member in more than one program. 

The programmer defines display screen formats by: 

• Using SDA (Screen Design Aid) to interactively define the formats. Detailed 
information about SDA is in the SDA Reference Manual. 

• Creating S and D specifications. The programmer can use SEU to place 
these specifications in a source member. For programs other than WSU 
programs, these S and D specifications are used as input to the $SFGR SSP 
utility program, which generates the actual display screen format and places 
it in a library load member. For WSU programs, the S and D specifications 
are included as part of the specifications for the program. The WSU 
procedure calls $SFGR to process those specifications and generate the 
display screen format. For detailed information about the entries on the S 
and D specifications, refer to the SSP Reference Manual and the WSU 
Reference Manual. 



To use the functions provided by work station data management, the 
programmer should know what kinds of information he supplies when he 
defines a display screen format and how that information controls the 
operations performed by work station data management. The following 
sections describe: 

• How information supplied by the programmer affects individual data fields 

• How information supplied by the programmer affects the operations 
performed by work station data management 

Note: If you define a screen format that is larger than the screen size of the 
display station that you are using, an error condition occurs. For example, if 
your screen format is 1000 characters and you are using a 960-character 
screen size, an error condition occurs. 

System/34 Concepts 2-39 



2-40 

DATA FIELDS IN A DISPLAY SCREEN FORMAT 

When the programmer defines a display screen format, he defines it in terms 
of the fields on the display. He specifies each field as an input field, an output 
field, or an output/input field. 

Input fields are fields into which the operator can enter data. When a program 
displays a format, input fields are normally blank. The contents of input fields 
are sent to the program when the operator presses (1) the Enter/Rec Adv key, 
(2) an enabled user command key, or (3) an enabled roll key or when the 
operator exits from a field for which. auto-record-advance was specified. 

Input Fields 

Note: The vertical lines in the input fields are column separators, which can be 
requested by the programmer when he defines the format. 

Output fields contain data that the display station operator cannot change. The 
contents of output fields are not returned to the program when the operator 
enters the display. 



The program can supply the information displayed in an output field, or the 
programmer can provide the information as part of the format definition. 
(Prompts and constant values specified when a format is created are output 
fields.) 

TRANSACTION QUANTITY 

ITEM NUMBER 

P.O./NEMO REFERENCE 

ITEM DESCRIPTION 

PLEASE VERIFY ENTRY AND ACCEPT, CORRECT, OR CANCEL 

PRESS REC ADV TO ACCEPT, 
C~!O KEY l TO CORRECT, 
CMD KEY 7 TO CANCEL 

Output Fields 

System/34 Concepts 2-41 



Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

Output/input fields contain information that is either supplied by the program 
when it displays a format or specified by the programmer when he defined the 
format. The display station operator may change the information in 
output/input fields. The information is returned to the program when the 
operator presses (1) the Enter/Rec Adv key, (2) an enabled user command key, 
or (3) an enabled roll key or when the operator exits from a field for which 
auto-record-advance was specified. 

Output/Input Fields 

Field Attributes 

2-42 

In addition to defining the field type, the programmer defines the location of 
the field on the display and the type of data that can be entered into the field 
(for example, alphameric data or only signed numeric data). Through the use of 
field attributes, the programmer defines physical characteristics such as display 
intensity, and whether or not the field is blinking. These field attributes also 
designate various colors to be used with display formats shown on the IBM 
5292 Color Display Station. 

The description of the $SFGR utility program in the SSP Reference Manual, 
explains each of the field characteristics that a programmer can define for both 
color or noncolor displays. 

Field attributes for creating both color and noncolor displays using the screen 
design aid, are described in the IBM System/34 SDA manual. 

Chapter 3, Design Considerations presents some considerations for both color 
and noncolor displays. 



WORK STATION DATA MANAGEMENT OPERATIONS 

The Work Station Buffer 

Work station data management uses an area in main storage called the work 
station buffer (or work station queue space) as a buffer for work station 
operations. For output operations, work station data management prepares a 
format for transmission by merging data supplied by the program with display 
control information from the format load member. The merged information is 
placed in the work station buffer. Work station data management then 
transmits the contents of the buffer to the display station. For input 
operations, work station data management normally uses the work station 
buffer as an input buffer for information received from the display station. 

The size of the work station buffer is specified during system configuration. 
The size of the buffer can affect system performance. If the buffer is larger 
than necessary, the amount of storage available for user programs is 
decreased, and more swapping might take place. If, on the other hand, 
sufficient buffer space is not available ~or an operation, system performance 
might be degraded. The action taken by the system when the buffer space is 
not sufficient depends on whether the display station is a local or remote 
display station. 

If a format is being transmitted to a local display station and if the size of the 
format exceeds the configured work station buffer size, work station data 
management writes a portion of the user program to the disk and uses the 
freed area as work station buffer space. After the information is transmitted, 
the saved portion of the user program is returned to main storage, and the 
program can resume processing. This activity affects system performance in 
two ways: 

• Additional disk operations are required to perform the display station output 
operation. These additional operations increase the time taken to perform 
the output operation. 

• The space occupied by the user task becomes nonswappable until the 
display station output operation is completed. 

Normally, on a read operation from a local display station, the program is 
swapped into main storage (if the program has been swapped out) when the 
operator presses the Enter key. The SSP reads the information into the buffer 
at the same time that the program is being swapped in. However, if sufficient 
work station buffer space is not available, this overlapping of operations cannot 
occur. Instead, the program is swapped into main storage, and work station 
data management reads the data directly into the input area in the program. 

System/34 Concepts 2-43 



2-44 

If a format is being transmitted to a remote display station and if sufficient 
work station buffer space is not available for a display station output operation, 
work station data management does one of the following: 

• Save on disk any input information in the work station buffer and use the 
freed space for the output operation. 

• If enough space cannot be made available by saving input· data, work station 
data management writes the data onto the disk and issues the output 
operation from the disk area. 

When input is received from a remote display station, work station data 
management normally places the received data in the work station buffer. If 
sufficient work station buffer space is not available, work station data 
management writes the received data onto the disk. After the program is 
swapped into main storage, the data is transferred from the work station buffer 
or from the disk into the program's input/output area. 

Normal Operations 

Normally, when a program requests that work station data management send a 
display screen format, work station data management accepts the request and 
prepares the specified format for transmission by merging data supplied by the 
program and display control information from the format load member stored 
in the assign/free area of main storage. Work station data management places 
the merged information in the work station buffer. The user program can then 
resume execution without waiting for the format to be transmitted. After 
transmitting the format, work station data management invites input from the 
display station. The system will not accept input from the display station until 
work station data management invites input from the display station. 

When the user program requests work station data management to read the 
information entered on the display, work station data management performs an 
accept input operation, which waits for information to be entered from an 
invited display station. 

Input may have been invited from more than one display station attached to 
the program. When a display station operator enters data from an invited 
display station, work station data management causes the input data to be 
read into the user program's buffer area. 

Figure 2-3 summarizes these steps. 

Note: Work station data management does not invite input if you use the 
suppress input operation, which is described later in this section. If a program 
attempts to read from a display station from which input is not invited, the 
display station will no longer be able to communicate with the program. 



Format Name 

User 
(DISP2) ... 

Program ....,.. 

1------1 
Buffer 

§ 
Data from 

User Program 
Program (customer name 

and number) 
Buffer 

User 
Program 

1-----1 
Buffer 

Read 
Request 

User 
Program 

f------1 
Buffer 

User 
Program Input Data 

~-----1 
for Program 

Buffer 

Work Station 
Data 
Management 

Work Station 
Data 
Management 

Work Station 
Data -.-
Management 

Work Station 
Data 
Management 

Work Station .... 
Data --Management 

D 

D 

DISP2 
Cust Name ABC 
Cust No. 12345 
Item Qty 

---- ---

DISP2 
Cust Name ABC 
Cust No. 12345 
Item Qty 
1234 100 

DISP2 
Cust Name ABC 
Cust No. 12345 
Item Qty 

1234 100 

Figure 2-3. Steps in Normal Processing Using Work Station Data Management 

The user program passes to work station data 
management the name of the format to be 
displayed (in this case, DISP2) and a buffer 
containing output data fields to be supplied by 
the program (for example, as the result of a 
disk file access operation). 

Work station data management merges data 
from the program (in this case, customer name 
and number) and display station control infor-
mation with the format. 

Work station data management transmits the 
format and then invites input from the display 
station. 

The program requests work station data manage­
ment to read from the display screen. 

Work station data management accepts the in­
formation entered by the operator (in th is case, 
item number and quantity), and places the 
information in the program's buffer area. 

System/34 Concepts 2-45 



2-46 

Modified Operations 

When a programmer defines a display screen format, he can modify the 
operations normally performed by work station data management, or he can 
identify indicators that conditionally modify the operations when the format is 
displayed. The following sections describe the modified operations that can be 
requested. Each section refers to the columns on the S specification that 
specify the operation. If the programmer uses SDA rather than the S 
specification, he requests these operations by responding to prompts. 

Erase Input Fields Operation 

For an erase input fields operation, which is specified in columns 31 and 32 of 
the S specification, work station data management blanks out the contents of 
the input and output/input fields on the display. Work station data 
management then invites input from the display. The format is not sent to the 
display station on an erase input fields operation. Therefore, the programmer 
might want to request the erase input fields operation when an application 
requires an operator to enter information on the same screen time after time. 
In such an application, the programmer should specify that the erase input 
fields operation be controlled by an indicator. The first time the program 
displays the format, that indicator should be off. The program should then turn 
on the indicator for the next and succeeding times it issues the display. Each 
time the display is issued with the indicator on, the input fields are blanked 
out, and the operator can again use them for input. This technique is especially 
important when a program communicates with a remote display station 
because the amount of information transmitted to a remote display station 
might significantly affect the performance of the jobs using the 
communications line. 

Override Fields Operation 

For an override fields operation, which is specified in columns 33 and 34 of the 
S specification, work station data management: 

• Transmits the contents of conditional output fields if the output indicator is 
on. A conditional output field is a field for which an indicator is specified in 
columns 23 and 24 of the D specification. The field is transmitted only if 
that indicator is on. 

• Retransmits the attribute bytes for all field attributes controlled by indicators, 
except the protect field attribute. 

The override operation allows the program to override (modify) program output 
fields on a display without retransmitting the entire display. Again, this 
technique is especially important when a program communicates with a remote 
display station, in that it reduces the amount of information transmitted over 
the communications line. 



An example of a program that uses the override fields operation would be the 
following inquiry program. The first display issued by the program requests the 
operator to enter the item number of the item to be displayed. 

ENTER ITEM NUMBER ---- (OR I TO END) 

After the operator keys an item number and presses the Enter /Rec Adv key, 
the program retrieves inventory information about the item and displays it. 

ENTER ITEM NUMBER 1-1 11 11 ( OR / TO END ) 

ITEM NO. DESCRIPTION PRICE 
llllll ALUMINUM BATS 2.33 

ON HAN::> 
20 

SOLD 
3 

l 
I 
I 
I 
I 
a 
I 
'\ 

j 

i 
I 
i . .,._ __________ .._. ________________________ ~ ___________________________ , _ _____.). 

System/34 Concepts 2-47 



2-48 

If the operator enters an item number that is not in the inventory file, the 
program turns on the override-fields indicator and redisplays the first display. 
(The override-fields indicator is the indicator specified in columns 33 and 34 of 
the S specification for the first display.) The first display contains a message 
field in line 24 that is displayed only when the override-fields indicator is on. 
Also, the override_;fields indicator could be used to redisplay the incorrect item 
number as a reverse-image field. 

!TEN NO. 
llllll 

ITEM NUMBER 

DESCRIPTION 
ALUMINUM BATS 

ITEM NOT FOUND 

COR I TO ENOl 

PRICE 
2.33 

ON HAND 
20 

Unless the suppress input operation is requested when the override fields 
operation is performed, the operator can enter another item number. 

SOLO 
' 3 



Suppress Input Operation 

For a suppress input operation, which is specified in columns 35 and 36 of the 
S specification, work station data management will not invite input from the 
display station after transmitting the format to the display station. The operator 
may enter information into input fields on the display, but he cannot enter the 
display and return the input to the program until work station data 
management invites input from the display station. The suppress input 
operation should be used when multiple formats are displayed before input is 
sent to the program. When multiple formats are sent, the suppress input 
operation should be specified on all but the last display or the system will have 
to do extra work to generate the displays. 

Note: If an RPG II MRT program transmits multiple displays and does not 
suppress input on all but the last display and if the operator interrupts the 
program by pressing the Attn key before the last display is transmitted, the 
program will be suspended. No other requestors will be serviced during the 
inquiry request. No indication that the program is suspended is given to the 
operators at the other display stations. 

Operations Requested by Basic Assembler Programs 

Appendix A describes the operations that can be requested by a basic 
assembler program when it calls work station data management. 

System/34 Concepts 2-49 



2-50 

File Concepts 

This section describes these System/34 file concepts: 

• File identification 

• File organization 

• File processing 

• File sharing in multiple program mode 

• File sharing consideration 

• Sector protection 

• File update programs 

• Key sorting for indexed files 

• I PL file rebuild function 

• Using a disk file as two or more logical files 

• Use of a file by an inquiry program in single program mode 



FILE IDENTIFICATION 

The SSP requires that you must be able to uniquely identify each file on the 
disk. You can accomplish this by assigning a unique label, eight character 
maximum, to each file on the disk. However, you can assign the same label to 
more than one file as long as each of those files has a different creation date. 

Groups of files, as well as individual files, can be uniquely identified. File labels 
of files that belong to a file group contain one or more periods. The characters 
preceding a period identify the file group. Examples of labels of files within a 
file group are: 

A.B.GO 

! A.B.INV 
A.INV 
A.ACCTS 
A.PRO LL 

Files in file group A 

A1.INV } A1.ACCTS 
A1.PROLL 

Files in file group A 1 

A.B.GO } A.B.INV 
Files in file group A.B 

Only the SAVE procedure and the $COPY and $DELET utility programs can 
process file groups. 

If a file label does not contain one or more periods, the file is not a member of 
a file group. User libraries cannot be processed as file groups. 

Depending upon the disk storage capacity of your system, you can create up to 
2008 files and libraries on your system. 

System/34 Concepts 2-51 



2-52 

FILE ORGANIZATION 

A file can have one of three types of file organization based on the 
arrangement of records within the file: sequential, indexed, or direct. All three 
types can be delete-capable files. For further information, refer to 
Delete-Capable Files, later in this section. 

In a sequential file, the position of a record depends upon the order in which 
records are placed in the file. The first record placed in the file occupies the 
first record position in the file. Subsequent records are placed in the file 
sequentially. 

A sequential file organization usually requires less disk storage than do indexed 
and direct organizations. 

In an indexed file, an entry for each record is stored in a separate part of the 
file called an index. The index has a record key and record location for every 
record in the file. An index allows a program to process required records by 
referring to the record keys. 

The index is divided into a primary area and an overflow area. The entries in 
the primary area are in ascending order by record key. The entries in the 
overflow area are the result of added records and are not necessarily in 
sequence except for I Fl LES. When the SSP does a key sort for the file, the 
SSP merges the overflow entries into the primary area. Refer to Key Sorting 
for Indexed Files later in this section for information about when the SSP does 
a key sort. 

You can bypass the checking of duplicate keys when you are randomly adding 
records to an indexed file by specifying BYPASS-YES on the/ I FILE OCL 
statement. The bypass function is supported by the program-defined access 
path and is not a file attribute. For example, if you have a shared file, one 
access path used by one program may bypass duplicate key checking, while 
the other access path used by another program may check for duplicate keys 
being added to the file. 

Because the BYPASS-YES parameter of the I I FILE OCL statement can result 
in an indexed file containing records with duplicate keys, you should have a 
method of checking to see that records with duplicate keys are not present in 
an indexed file. For example, you might set an L 1 indicator on to,check for 
records with duplicate keys when using RPG II. 



In a direct file, a relationship exists between records and their positions in the 
file. In a direct file, the relative position of a record might be equal to a 
program counter or a field value. The relative position also might be derived by 
a formula or conversion technique (known as an algorithm) that the 
programmer codes. Such an algorithm might result in a number of records 
producing the same relative record position. Those records are called 
synonyms, and a programmer must allow for their storage and retrieval in 
alternative locations within the file. If a direct file is created as delete-capable, 
unused record locations are initialized to hexadecimal FFs. If a direct file is not 
created as delete-capable, unused record locations are initialized to 
hexadecimal 40s (blanks). 

Additionally, an algorithm might result in some record positions being 
unoccupied. The algorithm chosen should be the best compromise between 
wasted disk space and an unnecessarily large number of synonyms. 

FILE PROCESSING 

Programs process files by four basic methods: consecutive, sequential by key, 
random by key, and random by relative record number. These program 
processing methods should not be confused with physical file organizations. 
The following table illustrates which processing methods can be used for each 
file organization. 

File Organization 

Processing 
Method: Sequential Indexed Direct 

Consecutive Yes Yes1 Yes 

Sequential by Key No Yes No 

Random by Key No Yes No 

Random by Relative Yes Yes2 Yes 

Record Number 

1 Only consecutive input processing is valid. 
2Changing the key in a record when processing an indexed file randomly by 
relative record number results in the key in the data record being changed. and 
not the index. 

The consecutive method processes records in the order in which they 
physically appear in a file. This method can be used for all three file 
organizations. Records are read until the end of the file is reached or until the 
program stops reading records. If a delete-capable file is processed 
consecutively, any deleted records are bypassed when they are read. 

Typically, sequential files are processed consecutively when all records in the 
file are to be processed. 

System/34 Concepts 2-53 



2-54 

When a direct file is processed consecutively, the contents of spaces left for 
missing records are read as blank records. If a delete-capable direct file is 
processed consecutively, the deleted records are bypassed when they are read. 
When an indexed file is processed consecutively, the index is ignored. 

Sequential-by-key processing applies only to indexed files. When an indexed 
file is processed this way, records with entries in the primary index area are 
processed in the order of their record keys. Records with entries in the . 
overflow area are also processed when an indexed file having the IFILE 
characteristic is processed this way. In a delete-capable file, the deleted 
records are bypassed when they are read. 

An indexed file can be processed sequentially in one of two ways: total file by 
key or records within limits. Total file by key processes records in the order of 
their key fields. Processing continues until all records with entries in the 
primary area have been read or until the program stops reading records. If 
lFILE support is used, all records can be accessed. Processing records within 
limits allows a section of a file, a group of records, to be processed in key 
sequence. Each section is identified by a lower limit, a starting key, and an 
upper limit, an ending key. 

Random processing by key allows records in an indexed file to be processed in 
a sequence determined by the user. The user program specifies the record key 
of the desired record. Disk data management scans the index portion of the 
file until the key is found and then reads the desired record directly into the 
user program. This access method allows the program to retrieve records from 
the primary area and the overflow area. When a delete-capable file is 
processed randomly by key, the deleted records are not available. 

Random processing by relative record number allows disk records to be 
processed in a sequence determined by the user. (The file is treated as a 
direct file even though it is an indexed or consecutive file.) A particular record 
can be processed independently of its relation to other records. All three file 
organizations can be processed. randomly by relative record number. Relative 
record numbers are used to identify records. These numbers indicate the 
positions of records within the file in relation to the beginning of the file. The 
relative record numbers are not disk addresses, but positive, whole numbers 
that the SSP converts to disk addresses of the records. When a 
delete-capable file is processed randomly by relative record number, the 
deleted records are not available. 

If you want to process an indexed file both by key and by relative record 
number, you can define two logical files in your program for the same physical 
file. This process is described in Using a Disk File as Two or More Logical Files 
later in this chapter. 

The relative record numbers can be in an ADDROUT file created by the Sort 
program of the Utilities Program Product. An ADDROUT file is a record 
address file that contains binary, 3-byte, relative record numbers that indicate 
the relative position of records in the file to be processed. A record can be 
read from the ADDROUT file and used to access a record in the disk file. 

Typically, sequential files are processed randomly when only a few of the 
records in the file are to be processed and the user knows their relative 
location. To process a sequential file randomly, the program should define the 
file as direct. 



DELETE-CAPABLE FILES 

The extended disk data management function of the System/34 SSP allows 
you to create a delete-capable file. User programs can then delete records 
from such a file. Any file, regardless of organization and processing method, 
can be created as delete-capable. When a direct delete-capable file is created, 
all bytes in the file are set to hexadecimal FFs. When a record is deleted from 
a delete-capable file, the SSP fills the record with hexadecimal FFs. Also, for 
an indexed file, the key is marked as deleted, not the record. 

If you use an ADDROUT sort to access records in an indexed file and you 
delete a record, the record is deleted, but not the key. You must reorganize 
the file with a SAVE and RESTORE operation to delete the key. 

When a primary, secondary, or demand file containing deleted records is 
processed consecutively or sequentially, each deleted record (a record 
containing hexadecimal FFs) is bypassed and the next record is read. When a 
file containing deleted records is processed randomly with a CHAIN operation 
by RPG II the no-record-found indicator is turned on when a deleted record is 
accessed. 

Note: The SSP checks the first byte of a record. If that byte contains a 
hexadecimal FF, the record is bypassed. 

Extended disk data management will not allow a record having hexadecimal FF 
as its first byte to be written to a file during an output, add, or update 
operation. If the first byte of the record contains a hexadecimal FF, an invalid 
update/add/output completion code is returned to the user program. 

You can add records to delete-capable sequential and direct files by using 
relative record numbers. By using relative record numbers you must add a 
record in the file in the place you want, if the record has been deleted before. 
If you are using RPG II, the relative record number of the record to be added 
to the file must be placed in the RECNO (continuation line of the F 
specification) field. The relative record number must be the record number of a 
deleted record. You code output specifications that contain ADD to add 
records to a file. RPG II uses the relative record number from the RECNO field 
to locate where the record is to be added to the file. If the relative record 
number is not the number of a deleted record, a halt occurs and the system 
issues a message that a duplicate record exists in the file. 

System I 34 Concepts 2-55 



2-56 

If you are using COBOL and specify relative organization for the file, you can 
add records to delete-capable files also. When ACCESS is RANDOM or 
ACCESS IS DYNAMIC is specified, new records are inserted into the file. The 
RELATIVE KEY specified for the file must contain the desired relative record 
number for this record before a WRITE is issued. When the WRITE statement 
is executed, the record is placed at the specified relative record number 
position in the file. If the relative record number is not the number of a deleted 
record, a halt occurs and a file status return code indicating that a duplicate 
record exists is returned to the program. 

For RPG II programs, the delete-capable file must be defined as an update file 
(U in column 15 of the file description specification) if records will be deleted. 
To delete a specific record, DEL must be specified in columns 16 through 18 
of the main output record line. The DEL applies to all OR extensions of the 
main line. 

For COBOL programs, the DELETE statement is used to delete records. 

For BASIC programs, the DELETE statement is used to delete records. 

When records are loaded or added to ·a delete-capable direct file, the specified 
relative record number must be the relative record number of a record that 
contains hexadecimal FFs; otherwise, an error message is displayed and the 
record will not be added to the file. 

RPG direct files that are not delete-capable must be loaded using the CHAIN 
operation. 

DFU cannot be used to create delete-capable files or to delete records in the 
manner described for the system delete function. DFU can, however, be used 
to update, list, and inquire into delete.;..capable files in a manner similar to that 
used for nondelete-capable files. 

WSU does not allow records to be deleted. Therefore, a WSU program ends 
abnormally if it tries to use a delete-capable transaction file. A WSU program 
can, however, use a delete-capable master file. 



EXTENDABLE DISK FILES 

Specifying extendable disk files prevents your program from abnormally 
terminating when there is no room in the data file to add additional records. 

When you use a disk file on System/34, you can use the EXTEND parameter 
on the FILE OCL statement to identify the file as being extendable. For an 
extendable file, the SSP automatically attempts to allocate more space for the 
file each time it becomes full. The value of the EXTEND parameter specifies 
the amount of additional space that is allocated. (If the file size was originally 
allocated in blocks, the value of the EXTEND parameter is in blocks; if the file 
size was originally allocated in records, the value of the EXTEND parameter is 
in records.) The specified value must be at least large enough to hold one 
record. If a file is being shared and the various users specify different EXTEND 
values, the EXTEND value for the user that caused the file to become full is 
used for the extension. When a file is extended, all users can take advantage 
of the additional file space, regardless of whether or not they specified 
EXTEND on the FILE OCL statement. 

The SSP attempts to extend an extendable file whenever it becomes full as the 
result of one of the following situations: 

• When an indexed or consecutive file is being created or added to. 

• When a direct file is being created. 

• When a record is read from a direct file for updating or is written to a 
delete-capable file, and the specified relative record number is beyond the 
end of the file. (If the relative record number is greater than the file size 
plus the extend value, the SSP does not attempt to extend the file. In that 
case, a no record found completion code is returned to the user program.) 

System/34 Concepts 2-57 



2-58 

The following list describes how the SSP handles different types of extendable 
files when they become full: 

• Scratch and job files in the reserve area: The SSP displays a message when 
such a file becomes full. The operator can then choose to have the SSP 
copy the file into a larger space outside of the reserve area. The user 
program will resume processing after the extend operation. If the operator 
does not choose to extend the file, he can choose an option that returns an 
end of extent completion code to the user program or an option that cancels 
the user program. 

• Direct and consecutive files: The SSP attempts to allocate the additional 
space immediately following the file. If that is not possible, the SSP copies 
the file to a larger area on disk and frees the area originally occupied by the 
file. 

• Indexed files: The SSP copies the file to a larger area on disk and then 
frees the area originally occupied by the file. 

If the SSP successfully extends the file, an informational message identifying 
the file as having been extended is logged in the history file. Execution of the 
user program then resumes. If the extend operation was not successful, either 
because space was not available or because a disk 1/0 error occurred, an end 
of extent completion code is returned to the user program. 

INDEXED FILES WITH THE IFILE ATTRIBUTES 

I Fl LE support allows shared indexed sequential processing of all records in an 
indexed file by keeping the entries in the index overflow area in sequence. 
Without I Fl LE support, indexed sequential processing is limited only to those 
having index entries in the primary portion of the index. IFILE support requires 
that both the extended disk data management and extended index data 
management be selected during system configuration. Indexed files can be 
given the IFILE attribute by specifying it on the FILE OCL statement or the 
SETFILE or BLDFILE procedure. 

The functions provided by I Fl LE support require additional system resources. 
These resources include processing and I I 0 cycles as well as additional main 
storage. Therefore even though the function requires no recompilation of 
programs, you should be selective of which files you give the IFILE attribute to. 
Generally, IFILE support is advantageous only in file sharing situations where 
indexed sequential processing is used while indexed random adds are being 
performed. Large files with a low volume of records being added to the file are 
the best candidates for I Fl LE processing. 



The following list summarizes the general functions and restrictions of the 
!FILE support: 

• !FILE processing allows shared indexed sequential retrieval of records that 
have been added by shared indexed random users. 

• IFILE processing does not change the indexed sequential add restrictions; 
that is, you still cannot specify DISP-SHR with indexed sequential add 
operations. 

• The indexed sequential sequence of get, add, and update data management 
operations are not supported with I Fl LEs. 

• Any binary key of hexadecimal zeros is not supported. There is no 
restriction on decimal key values. 

• Specifying DISP-SHR will assure that doubly defined files in one program 
will have access to records added by that program. 

• !FILE processing does not apply to the assembler language access method 
called ISRI (indexed sequential random input). 

Files having the IFILE attribute place additional demands upon system 
resources. The following list summarizes some techn!ques you can use to help 
performance on your system when using files with the !FILE attribute: 

• Add records to the indexed file with the key values in ascending order if 
possible. 

• Use the KEYSORT procedure at either IPL or STOP system time, since 
fewer entries in the index overflow area require less search time and 
improve performance. 

• Allocate disk space slightly larger than the expected file capacity. 

Indexed files without the !FILE characteristic need to have the added keys in 
the overflow area keysorted into the primary index area before records added 
to the file can be accessed sequentially by key. Refer to Key Sorting for 
Indexed Files later in this chapter for more information on. when the SSP does 
a key sort. 

System/34 Concepts 2-59 



2-60 

PROGRAMMING ATTRIBUTES OF IFILES 

File Locking and IFILES 

Beyond the normal sector protection of records being updated, I Fl LEs have an 
additional level of file protection: the entire file is locked so that the index 
entries can be maintained in sequence, This additional level of protection can 
cause some problems when a program updating records and a program adding 
records are sharing the same indexed file. Record update programs mark the 
file as being in use until the record update is complete and another operation is 
issued by the same program. The record-adding program begins when the 
operation is issued. 

This condition occurs when any of the,following happen: 

• Specifying IFILES as extend capable files. 

• Accessing data records with index entries in the overflow portion of the file. 

• Accessing records in the same sector as the next record slot. 

• The area in the file where the next new record is to be placed is the next 
record slot. 

For example, assume three programs, P1, P2, and P3, are sharing an indexed 
file that is an I Fl LE. Program P1 uses the file first to update records. Program 
P2 is adding records to the file, and program P3 is updating records. Programs 
P2 and P3 wait until the record updating done by program P1 is complete and 
program P1 does another operation. 

Update 

P1 

Add 

P2 

Indexed 
File 

Update 

P3 

(Wait) 



Performance Considerations 

Performance with IFILEs can be slowed down by: 

• A large overflow area in the indexed file 

• A program that occupies a large area of main storage 

• A small user area in main storage 

These three factors affect the way the system uses 1/0 buffers for IFILE 
support. 

Performance may also slow down when adding records randomly by key to an 
indexed file that has not had a keysort done for some time. 

Keysorts and IFILES 

Specifying an indexed file as an I Fl LE eliminates the need for doing a keysort 
each time you want to sequentially process the indexed file to gain access to 
new records added to the file. 

However, System/34 automatically keysorts IFILEs when: 

• A job step terminates normally and the file is not a shared indexed file 

• The last program using the shared index file ends 

System/34 Concepts 2-61 



2-62 

FILE SHARING IN MULTIPLE PROGRAM MODE 

System/34 supports file sharing in multiple program mode; file sharing allows 
two or more programs to access the same file. DISP-SHR must be specified 
on every FILE OCL statement for a file that is shared. For BASIC programs, 
SHR must also be specified on the OPEN statement for the file. 

Types of Files That Can Be Shared 

Input and update files can always be shared. Add files, except for indexed add 
files that are processed sequentially by key, can always be shared. 

Types of Files That Cannot Be Shared 

Files that are being created cannot be shared. An indexed add file that is 
processed sequentially by key cannot be shared. 

Accessing Records Added to Shared Files 

Programs sharing sequential files always have access to added records. 
Programs sharing an indexed file have access to added records, except in 
either of the following situations: 

• If records have been added to a file that is being processed sequentially by 
key, the program cannot access records added to the file since the last time 
the keys were sorted unless the file is an I Fl LE. 

• If records have been added to a file that is being processed consecutively, 
the program cannot access records added to the file since the file was 
allocated to the program. 

Refer to Key Sorting for Indexed Files later in this section for information about 
when the SSP does a key sort. 

If a program that is adding records to a shared file is ended abnormally, the 
records added before the abnormal termination remain in the file. If a program 
that is adding records to a file that is not shared is ended abnormally, records 
added before the abnormal termination are removed from the file unless the 
file is an indexed file using the I Fl LE support. If the system unexpectedly 
stops (for example, as the result of a power failure), added records can be 
recovered during the I PL file rebuild process. For information about I PL file 
rebuild, refer to IPL File Rebuild Function later in this section. 



FILE SHARING CONSIDERATIONS 

If you want to share a file among programs or if you want to allow more than 
one display station to process a file concurrently, consider that: 

• Programs can share only permanent or temporary files. 

• If you change a temporary file to a scratch file by specifying a RETAIN-S 
parameter on the FILE OCL statement, the file cannot be shared. 

• The SSP protects sectors read for possible updating by one program from 
being updated by any other programs. The SSP protects sectors by 
assigning them to the program doing the update. Refer to Sector Protection 
in this section for further information. 

• If programs share more than one file, all programs should access the. files in 
the same sequence to reduce the chances of a deadlock condition. Refer to 
Sector Protection in this section for a description of this deadlock condition. 

SECTOR PROTECTION 

Sector protection is the SSP function of assigning sectors to a program when 
that program reads records in the sectors for a possible update. A sector is a 
256-byte area on disk and.is the smallest amount of data that can be read 
from or written to disk during one operation. 

How you set up record blocking within your application program affects the 
number of records that are sector protected. A sector can contain more than 
one record, and more than one sector can be assigned to the input blocks you 
specify in your application program. Each record contained within a sector is 
sector protected. For more information on how input blocks and sectors are 
related, refer to Record Blocking in the next chapter. 

A program that tries to update a record within a sector that is assigned to 
another program must wait until the sector is released. A program releases a 
sector by (1) completing the update, (2) performing an add operation, (3) 
reading a different sector from the same logical file or (4) rereading the same 
sector. (For information about logical files and physical files, refer to Using a 
Disk File as Two or More Logical Files, later in this chapter.) Programs that 
request an assigned sector for input only do not have to wait until the sector is 
released. 

System/34 Concepts 2-63 



2-64 

A deadlock condition can occur when update files are shared. For example, 
assume that program A and program B are. updating two shared files, file 1 
and file 2. Program A reads record 3 updating from the sector of file 1, and 
program B reads record 2 for updating from the last sector of file 2. 

Record 
1 

First Sector 

Program A 

Record 
2 

Record 
3 

Record 
4 

Program B 

Last Sector 

Record 
3 

Record 
4 

Record 
5 

Suppose that program A tries to read record 5 from the last sector of file 2. 
Program A must wait because the sector is assigned to program B. 

Record Record Record Record 
. 1 2 3 4 

Assigned to Program A 

File 1 

File2 

File 1 

Program B Record Record Record Record Record File 2 

(waiting) 1 2 3 4 5 

Assigned to Program B 

Program A 
(waiting) 



Suppose that program B tries to read record 1 from the first sector of file 1. 
Program B must wait because the sector is assigned to program A. 

Record Record Record Record 

1 2 3 4 

Assigned to Program A 

Program B Record Record Record Record Record 
(waiting) 1 2 3 4 5 

Assigned to Program B 

This condition of programs waiting for each other is called a deadlock. To 
ensure that deadlocks do not occur and that a sector from a shared update file 
is not assigned for a long time, always release a sector before reading a record 
from another shared update file. A sector is released when it is rewritten to 
disk, or a different sector is read. 

For example, in RPG II programs, a good way of releasing a sector is to write 
an output record that has no fields (columns 32 through 71 of the RPG II 
output specifications specify no data). This rewriting causes the sector to be 
released and requires no physical disk accesses. 

Note: If the operator selects inquiry option 1 while the interrupted program has 
a sector enqueued, the system does not resume execution of the interrupted 
program until all sectors are released. The system then allows the operator to 
enter another command or statement. 

Interrupting a program that is updating records in an IFILE can cause a file 
lockout condition which prevents you from accessing records in the file. The 
file lockout condition can occur when a program updating records in the IFILE 
is interrupted. For example, an operator presses the ATTN key and takes 
option 1. The operator starts a program to add records to the file already 
opened by the program that was interrupted. 

File 1 

Program A 
(waiting) 

File 2 

System/34 Concepts 2-65 



2-66 

FILE UPDATE PROGRAMS 

You should use care when updating disk files in any program that supports 
multiple display stations. If a single logical file is used by two or more display 
stations within the same program and if the program, after readin.g a record for 
updating, does other read operations from the same file before actually 
updating the record, the following error conditions can occur: 

• An update or part of an update can be lost. For example, suppose a record 
is read from File X and displayed at display station 1 ; then the same record 
is read from File X and displayed at display station 2. If File X is not 
shared, the update done by one display station might be destroyed by an 
update done by the other display station. If File X is shared, an error 
message is issued, and the second update is not done. 

• The wrong record can be updated. For example, suppose a record is read 
from File X and displayed at display station 1 ; then a different record is read 
from File X and displayed at display station 2. If display station 1 tries to 
update the first record but does not reread that record, disk data 
management tries to update the last record read from File X. 

• An update performed by another program sharing the file can be lost. For 
example, suppose a record is read from File X and is displayed at display 
station 1 ; then a record in a different sector of File X is read by the same 
program and displayed at display station 2. The second read from File X 
causes the SSP to free the sector containing the first record. Another 
program that is sharing File X can update the first record. If display station 
1 rereads and also tries to update that record using the original field values, 
the updates made by the other program might be lost. 



You can avoid the preceding error conditions by using one of the following 
techniques: 

• Before doing an update, reread the record and check that none of the fields 
being updated have been changed since the record was displayed for 
updating. If any of the fields were changed, redisplay the field for updating 
or, if possible, do the update using the field values currently in the record. 

• Protect records being updated by establishing a field in the disk records to 
be used as a busy indicator. After reading and displaying the record for 
update, place the busy indicator in the record and write the record to disk. 
(The busy indicator might be the work station ID and the program name.) 
Subsequent attempts to access the same record should test for the busy 
indicator and not allow access for update. The busy indicator should be 
removed from the record when the update is done by the requestor or if no 
update is to be done. If the possibility exists that another program might 
update the same file concurrently, both programs must test and use the 
same busy indicator. 

If the program ends abnormally and you are not going to restart the 
program, you should run another program that turns off the busy indicators 
in records that were being updated by the program when it ended so that 
programs that check the busy indicator can handle the record properly. 

• Consider defining a separate logical file for each display station. Separate 
logical files protect against updates by other programs, but they do not 
protect against multiple updates within a single program. For further 
information, refer to Using a Disk File as Two or More Logical Files, later in 
this section. 

System/34 Concepts 2-67 



2-68 

KEY SORTING FOR INDEXED FILES 

After an indexed file is created or after an indexed file has records added to it, 
the added keys exist in an overflow area. If the file is to' be processed 
sequentially by key, the keys must be sorted to allow access to all records in 
the file, unless IFILE support is being used. Even when IFILE support is being 
used, key sorting is done by the system to limit the size of the overflow area. 

The SSP sorts keys at the end of a job if the indexed file was created during 
the job and the records were not placed in the file in key sequence. 
Additionally, I Fl LEs are keysorted at end of job when the system detects that 
add operations are slow because of the size of the overflow area. 

The SSP performs a special key sort at the end of a job when certain 
conditions are met. The special end-of-job key sort is done if all of the 
following conditions are true: 

• The file is being used exclusively by one user, or the file is being used by 
the last shared user. 

• There was no overflow key area for this file when the file was first 
allocated. 

• All keys added to the file are in ascending sequence,. and the value of the 
added keys is greater than the highest key in the primary key area of the 
file. 

The SSP sorts keys when a file is allocated to a program if .all the following 
conditions are true: 

• The file has keys out of sequence because records were added to the file. 

• The file processing method to be used is sequential by key. 

• The file is not shared. 

• The file is not being used by an interrupted program. 

The system operator can request that the SSP sort keys at system shutdown. 
To request a key sort, the operator can specify STOP SYSTEM or STOP 
SYSTEM.SORT. The SSP sorts keys of files that (1) have had records added 
to them and (2) have not had the keys sorted. That is, keys are sorted for files 
that have overflow areas. 



The SSP sorts keys during an I PL if the system operator enters Y in response 
to the EXAMINE AND VERIFY THE DISK VTOC? (Y,N) prompt on the file 
rebuild display and if the sort or merge flag is set on in the VTOC entry. These 
flags are set during file processing whenever a duplicate key or an 
out-of-sequence key is found. The flags may be set by disk data 
management, diskette-to-disk copy, or index construction during I PL file 
rebuild. Files might have keys out of sequence if a system shutdown was not 
done before the I PL. 

The SSP sorts the keys of files processed by some SSP utility programs. 
When the following SSP utility programs or procedures are used to do the 
indicated functions, the SSP sorts the keys in the file: 

SSP Procedure 

RESTORE 
DISPLAY 
ORGANIZE 
TRANSFER 
KEYSORT 

SSP Utility 

$COPY 
$COPY 
$COPY 
$BICR 
$DOST 

Function 

Restore a file from diskette 
Display an indexed file 
Organize a file· to disk or diskette 
Transfer a file from disk to diskette 
Sort the keys of an indexed disk file 

The SSP does not sort the keys of shared files. Therefore, records added to 
those files cannot be accessed when the file is processed sequentially by key, 
unless IFILE support is being used. To be able to access these added records, 
you can use the KEYSORT procedure or the $DOST utility program. The 
KEYSORT procedure does not execute until it has exclusive use of the file. 

The KEYSORT procedure issues a warning message when records with 
duplicate keys are found in an indexed file. 

IPL FILE REBUILD FUNCTION 

System/34 provides IPL file rebuild as a recovery function that (1) verifies the 
integrity of the VTOC entry for each user data file and (2), if possible, corrects 
the entry and/or the file itself. Therefore, the IPL file rebuild function should 
be run during IPL following failures such as power outages and inadvertent 
IP Ls. 

The IPL file rel::iuild function is controlled by options on the second IPL display. 
From that display, the operator can (1) request file rebuild or bypass it, (2) limit 
the function to only files that were being created or to all files, (3) request that 
the labels of all files in error be displayed, (4) request that the VTOC entries for 
nonrecoverable errors be deleted, and (5) request that checkpoint/ restart active 
files be deleted. 

System/34 Concepts 2-69 



2-70 

If disk file reorganization (COMPRESS) had not completed when the system 
failure occurred, the IPL file rebuild function calls the $FREE utility to complete 
the reorganization. 

The I PL file rebuild function then examines each entry in the VTOC. If a VTOC 
entry contains any of the following errors, the entry cannot be corrected: 

• The file type is not sequential, direct or indexed 

• The retention type is neither temporary nor permanent 

• The record length exceeds 4096 bytes 

• The file is an indexed file, and the key length is zero or exceeds 29 bytes 

• The file is an indexed file, and the key position exceeds 999 bytes 

• The file is an indexed file, and the key is not within the record 

• The file is not located within the data file bounds 

Because System/34 initializes the data space to hexadecimal zeros for new 
sequential and indexed files, to blanks for direct files, and to hexadecimal FF 
for delete-capable direct files, the I PL rebuild function can update the 
end-of-data pointer in the VTOC entry to reflect records that were added to 
the file. 

Note: Records added to a file may be written on disk or may be in a main 
storage buffer. If a failure occurs, only those records written on disk can be 
located in order to update the VTOC entry. 

If the file is an indexed file, the entire index is reconstructed if (1) the 
end-of-data pointer is updated, (2) the sort or merge flag is set on in the 
VTOC entry, or (3) the number of indexes is not equal to the number of 
records. 

In the VTOC entry for an indexed file, a flag (sort or merge) is set on during 
file processing whenever a duplicate key or an out-of-sequence key is 
encountered. This flag may be set on by disk data management, 
diskette-to-disk copy, or index construction during IPL file rebuild. If the flag 
is set on, the IPL file rebuild function calls the key sort function. 

Finally, the IPL file rebuild function ensures that all files with unique labels are 
marked with the latest date indicator in the VTOC entry. For files with the 
same label, the dates of creation must be unique, and only the file with the 
most recent date is so marked. 

The IPL file rebuild function then re-creates the disk control block to reflect 
both available space and space in use on the disk. 



USING A DISK FILE AS TWO OR MORE LOGICAL FILES 

Each file defined within a program is called a logical file. A program can use 
one disk file as two or more logical files. An RPG II program, for example, 
may be written to access two files called FILEA and FILEB. If the following 
FILE OCL statements are used: 

then the disk file labeled MASTER is used as two different logical files by the 
program. 

An example of using multiple logical files could be a bill of materials program 
that accesses a master file randomly by key and randomly by relative record 
number. 

Records added to one logical file can be accessed from a second logical file 
except in the following cases: 

• Records in the second logical file are being read or updated, and the file is 
an indexed file being processed sequentially by key (unless the file is an 
IFILE). 

• The second file is an input-only file that is being processed consecutively. 

If DISP-SHR is not specified on the FILE statements, records can be added or 
updated in only one of the logical files. If DISP-SHR is not specified on the 
FILE statements for multiple logical files, the following considerations exist: 

• Records can be added or updated through only one of the logical files. 

• If the input-only file(s) is being processed sequentially by key or 
consecutively, added records cannot be read. In addition, updates to 
records that have already been read into the I I 0 buffer are not available to 
the input-only file unless it is an IFILE. For information about when records 
are read into the 1/0 buffer, refer to Physical 1/0 and Logical 1/0 in Chapter 
3. 

• If the input-only file(s) is being processed randomly (either by key or by 
relative record number), the file has immediate access to updated records. 

• If the input-only file(s) is being processed randomly by relative record 
number, added records cannot be read. 

If DISP-SHR is specified, records can be added or updated in more than one 
of the logical files. Care must be taken, however, because the SSP does not 
protect against two logical files updating or adding to the same sector at the 
same time. If two logical files are updating or adding to the same sector at the 
same time, only the update or add made last will appear in the disk file. 

Note: If the file is shared, the system does protect each logical file against 
concurrent updates by other programs. The system does not protect against 
concurrent updates from within the same program. 

System/34 Concepts 2-71 



USE OF A FILE BY AN INQUIRY PROGRAM IN SINGLE PROGRAM M()DE 

Access 
IS 

Method I 0 u 
I y n y'-

0 n n n 
IS 

u y3 n.n 

A n n n 

I y n y2 

0 n n n 
IR 

y3 n u n 

A n n n 

I y n y2 

0 n n n 
c 

u / .. ti< I>/ 

A {:} !\':':/,•••, :<:< 

I y n y'-

R 0 n n n 

u ya n n 

In single program mode, the SSP allows an inquiry program to access active 
files for input or update. Active files are those files thatwere being used by 
the program that was suspended by the inquiry request. Updating an active 
file is allowed only if the suspended program did not open the file for an 
update or add operation. Active output files can never be accessed by an 
inquiry program. 

Figure 2-4 summarizes the types of file processing that can be used by an 
inquiry program when processing a file that was being used by the suspended 
program. 

Interrupted Program 

File Type 

Indexed Sequential 

IR c R c 

Direct 

R c R 

Abbreviation 
Used 

A 
c 

Meaning 

Add 
Consecutive 
Input 

A I 0 u A I I u I 0 u A I u I u I 0 u IR 
IS 
n 

Random by key 
Sequential by key 
Processing by the inquiry 

y4 y n y2 y4 y y y2 s 

n n n n n n n n 

n y3 n n n y3 y3 n :·:·'+: 
i 

n n n n n n n n .·L 
y' y n y2 yl y y y2 I 

L 

n n n n n n n n 1:· 

n y3 n n n y3 Ys n :. 

i 

n n n n n n n n 1·>··,:· 

y' y n y'- yl y y y2 y n 

n n n n n n n n n n 

tCi i( /< ':/ii %> i\L:"','::>i . ) y3 n 
!••.<}: :.> 

...... ::•·.:: .·:::::: 
(/. /:' .. if:\::·:.1 .,..., ........ n n 

y' y n y2 y' y y y2 y n 

n n n n n n n n n n 

n y3 n n n y3 y3 n y3 n 

. 

I 

. 

·.··.·. 
·.· .. 

7 

I<. I ' ... ·.· ............ 

y2 y2 y y2 y y'- y n 

n n n n n n n n 

n n y3 n Y3 n y3 n 

n n n n 

y'- y2 y y2 y y2 y n 

n n n n n n n n 

n n y3 n y3 n y3 n 

.~C 

I: 

·• ..... 

y2 

n 

n 

y2 

n 

n 

0 
R 

u 
y 

program is not allowed 
Output 
Random by relative record 
number 

Update 
Processing the inquiry 
program is allowed 

1 The inquiry program can access all records in the file except those records added 
by the suspended program. 

2 Records retrieved by the inquiry program may not reflect the current status of 
the file. 

3 Records retrieved by the interrupted program may not reflect the current status 
of the file. 

4 The inquiry program cannot access records in the overflow area. 
5 Shading indicates an invalid access method. 

Figure 2-4. Use of a File by an Inquiry Program in Single Program Mode 

2-72 



Inquiry Programs and IFILES 

Suspending the execution of a program that is updating records in an indexed 
file that has the I Fl LE designation and then executing a program that adds 
records to this same indexed file may result in a condition known as an 
enqueue failure. An enqueue failure is a condition where a program cannot 
access the file. If an enqueue failure occurs, the Input Inhibited indicator on 
your work station goes on until you press the ATTN key and take either the 2 
or 3 option. 

OFFLINE MULTIVOLUME FILES 

An offline multivolume file is a sequential file that is used as though it 
completely resides on disk but, in fact, is stored on one or more diskettes. The 
portion of the offline multivolume file stored on one diskette is called a file 
segment. Offline multivolume file processing uses a disk file as a work area in 
which the offline multivolume file is processed a segment at a time. 

An offline multivolume file is created when a FILE OCL statement for a diskette 
file has the same NAME parameter as that on a FILE OCL statement for a new 
disk file. For example, a program creates a disk file called PAYMSTR, which 
requires 800 blocks of disk storage; however, 800 blocks of disk storage are 
not available. In this case, you can create the file as an offline multivolume file 
by using the following FILE statements: 

Note: This example uses a diskette 1 diskette that has been initialized in the 
128-bytes-per-sector format. The 96-block segment was selected to fully use 
each diskette, but you might decide to specify smaller segments if disk space 
is limited. 

Now, when PAYMSTR is created, the system places records in the 96-block 
file on disk. When all 96 blocks are full, the system copies the disk file to the 
diskette in location M 1.01. The system places the next record written by the 
program into the first record position in the disk file. When the file is again 
filled, the system copies it to the diskette in location M1 .02. If all diskettes in 
slot M 1 are filled in this manner, the system prompts the operator to insert 
another magazine in slot M 1 and continue processing. (If AUTO-YES has been 
specified, the system does not prompt the operator, but uses the magazine in 
slot M2.) The system copies the last file segment to the diskette when the job 
ends. 

To process an existing offline multivolume file, you must again specify two 
FILE statements with the same NAME parameter. The size specified on the 
FILE statement for the disk file must be the same as the size specified when 
the file was created. 

System/34 Concepts 2-73 



2-74 

The following restrictions apply to offline multivolume files: 

• They cannot be shared. 

• They can only be sequential files and can only be processed by consecutive 
processing methods. 

• They can only be processed by means of the diskette magazine drive. 

• Each access to an offline multivolume file must start with the first diskette 
of a magazine. Therefore, M 1.01 or M2.01 must be_ specified on the 
LOCATION parameter of the FILE statement for the diskette file. 

• Records added to an offline multivolume file must be added at the end of 
the file. Therefore, the magazine containing the last segment in the file 
should be inserted when an addition is to be made to the file. When 
additions are made, the current program date becomes the creation date of 
all the new segments and of the last segment of the old file. 

• When segments are added to an offline multivolume file, the diskettes must 
not contain any other active files. 

• Only one offline multivolume file at a time can be processed by a step. 

• A program running in inquiry mode cannot access an offline multivolume file 
that was being used by the interrupted program. 

• Offline multivolume files created by System/32 cannot be processed by 
System/34. The offline multivolume files created by System/34 cannot be 
processed by System/32. 

• The size of the disk file cannot exceed the capacity of an individual diskette: 
- For a diskette 1 diskette initialized in the 128-bytes-per-sector format, 

the maximum file size is 96 blocks. 
For a diskette 1 diskette initialized in the 512-bytes-per-sector format, 
the maximum file size is 118 blocks. 

- For a diskette 20 diskette initialized in the 256-bytes-per-sector format, 
the maximum file size is 384 blocks. 

- For a diskette 20 diskette initialized in the 1,024-bytes-per-sector 
format, the maximum file size is 473 blocks. 



THIRD AND FOURTH DISK DRIVE IMPLEMENTATION CONSIDERATIONS 

You have additional disk capability and disk seek processing with the third and 
fourth disk drives on the System/34. The SSP supports the additional disk 
drives by extending the current definition of the logical name for disk drive A2. 
The following chart shows how the physical configuration of the disk drives 
and the logical disk name are related. 

Physical Drive Configuration 

1,2 

1,2,3 

1,2,3,4 

A1 

Drive 
1 

Beginning Block 

Drive 
2 

Number Location 25203 

A2 

Drive 
3 

50406 

Logical Disk Name 
A1 A2 

Drive 
4 

75609 

2 

2,3 

2,3,4 

The SSP allocates space for the file you have specified on the I I FILE 
statement by the following rules if you did not specify a location based upon 
block number: 

• If you specify disk A 1, the file is allocated in the first segment (lowest 
address) on disk A 1 that is large enough to contain the file. If not enough 
space is available on drive A 1, the SSP attempts to allocate the file on the 
disk A2. 

• If you specify disk A2, the file is allocated in the last segment (highest 
address) on disk A2 that is large enough to contain the file. On a 
three-drive system, this is the last segment of drive 3. On a four-drive 
system, this is the last segment of drive 4. If not enough space is available 
on the last physical disk of A2, the SSP attempts to find space on the other 
drives that comprise logical disk A2. If not enough space is available, the 
SSP attempts to allocate the file on disk A 1. 

System/34 Concepts 2-75 



2-76 

The following chart shows the placement of files based upon file type and disk 
drive configuration if you do not specify a preferred disk placement by block 
number. 

Type of File 

Permanent 

Temporary 

Scratch 

Job 

Notes: 

Number of Disk Drives 

1 

A1 

A1 

A1 

A1 

2 

A2 

A2 

A1 

A1 

3 

A2 

A2 

A1 

A1 

4 

A2 

A2 

A1 

A1 

1. Permanent and temporary files are allocated in the 
last segment of the disk large enough to contain 
the file. 

2. Scratch and job files are allocated in the first 
segment of the disk large enough to contain the 
file. 

3. If not enough space· is available for placement on 
a particular disk, the SSP can allocate a file that 
spans the disks. 

The manner in which you arrange your files on the disk can affect the 
performance of your system. You should arrange the files on the disk so that 
the utilization of the disk drives is approximately the same. 

For more information on how you can obtain performance data about your disk 
drives, refer to the System Measurement Facility Reference Manual. 



Printer Concepts 

Five types of printers are available with System/34: the IBM 5211 Line Printer, 
the IBM 3262 Line Printer, the IBM 5224 and 5225 Matrix Line Printers, and 
the IBM 5256 Serial Printer. These printers are described in the System/34 
Introduction. Operating information for these printers is described in the 
following manuals: 

IBM 5211 Models 1 and 2 Component Description and Operator's Guide 

IBM 3262 Models Al and Bl Component Description and Operator's Guide 

IBM 5224 Printer Models 1 and 2 Operator's Guide 

IBM 5224 Printer Models 1 and 2 Setup Procedures 

IBM 5225 Printer Operator's Guide 

IBM 5256 Printer Operator's Guide 

One 5211 or 3262 printer can be attached to a System/34. Multiple 5256 or 
5224 or 5225 printers can be attached to a System/34, either locally or by a 
communications line. 

The system printer, assigned dudng system configuration, should ordinarily be 
located with the system unit and the system console. Any type of printer can 
be the system printer. All printers other than the system printer are called 
work station printers. 

Display 
Station 

Remote 

Work Station 
Printer 

Display Stations 
and Printers 

Display 
Station 

Work Station 
Printer 

System 
Unit 

Display 
Station 

Work Station 
Printer 

System/34 Concepts 2-77 



2-78 

When a program prints information, the program uses either the system list 
function or the printer data management function of the SSP. The following 
diagram lists those programs that use the system list function and those 
programs that use the printer data management function. 

Programs That Use System List Programs That Use Printer Data 
(prints on the system list device for Management (defaults to the 
the session) configuration printer) 

. SSP Utility Programs, except data . Print key 
communications and service aid . SSP data communication 
utilities. Output from the menu build, programs 
history display, display screen format . RPG II compiler 
generator, and library maintenance . Utilities Program Product (SEU, 
procedure use system list. the job execution portion of 

DFU, SDA, and WSU) 

. Privileged user-written assembler . User-written programs 
programs . SSP Service Aids . COBOL compiler . The job setup portion of DFU . FORTRAN compiler . Assembler . The sort portion of the Utilities . BASIC 
Program Product 



Printer Data Management Output 

For individual files, you can direct printer data management output to a specific 
printer by using a PRINTER OCL statement. If output is not directed to a 
specific printer by a PRINTER OCL statement, printer data management output 
is printed on the default printer assigned to the display station. The default 
printer is assigned during system configuration and is shown as the 
CONFIGURATION SYSLIST DEVICE on the second session status display. You 
can use the SET procedure to change the default printer. 

System List Output 

System list output is printed on the system list device for the session. The 
system list device for the session is shown as the SESSION SYSLIST DEVICE 
on the second session status display. When an operator signs on, the default 
printer becomes the system list device. The SYSLIST statement or procedure 
can be used to change the system list device for a session. 

If printed output is generated by a job run from the input job queue or from a 
job that was run by an EVOKE OCL statement, the system printer is used 
unless a PRINTER OCL statement directs output to a specific printer or unless 
the printer default for released jobs is changed during system configuration. 

Example of Directing Printer Data Management Output and System List 
Output 

In this example, printer Pl was assigned to a display station during system 
configuration. Now, however, the programmer would like to redirect all printer 
data management output to printer P2. The following command statement 
changes the default printer to P2: 

SET ,,,,,,P2 

After the SET statement is entered, all printer data management output is 
printed on P2 unless the output is directed to another printer via a PRINTER 
OCL statement. System list output continues to print on printer P1 or the 
default printer for released jobs assigned during system configuration. After 
the SET statement is entered, the second session status display shows P2 as 
the CONFIGURATION SYSLIST DEVICE and printer P1 as the SESSION 
SYSLIST DEVICE. If the operator then signed off and back on, both the 
CONFIGURATION SYSLIST DEVICE and the SESSION SYSLIST DEVICE are 
P2. If an IPL is performed, the default printer is not set to P1, but remains P2 
{the printer specified with the SET procedure). 

System/34 Concepts 2-79 



2-80 

Vertical Line Spacing Support for the 5225 Printer 

If you have a 5225 Printer, you, have the ability to specify the vertical line 
spacing on your output reports without requiring the operator to set the 
hardware switch on the printer. 

You can specify a vertical lines-per-inch value either during system 
configuration or by specifying the vertical lines-per-inch value on a FORMS or 
PRINTER OCL statement or executing the LINES procedure. 

The default value is six lines per inch. You can specify either four, six, or eight 
lines per inch. If you do not specify a vertical lines-per-inch value on either 
the PRINTER or FORMS OCL statements or the LINES procedure, you will 
obtain the value specified during system configuration. 

If you specify the vertical lines-per-inch values using OCL, you should specify 
either the FORMSNO parameter or the LINES parameter when using the 
PRINTER or FORMS OCL statements. This will help in setting the correct 
number of lines per page of forms mounted on the printer and helps in 
maintaining the proper page alignment on the forms when you change the 
vertical lines-per-:inch value. You should initially run CNFIGSSP to assign the 
default values for vertical line spacing for your 5225 Printer. If you do not run 
CNFIGSSP, the SSP assumes a value of six yertical lines per inch. 

If you specify a lines-per-inch value for a printer other than the 5225 Printer, 
the value you specify is igpored by the system. The only way you can specify 
a lines-per-inch value on printers other than the 5225 is by the use of a 
switch on the printer. 



PRINT SPOOLING 

Print spooling is the capability of the SSP to save printer output on disk, in an 
area called the spool file, for printing at a later time. The spool intercept 
routine saves the print data in the spool file, and the spoolwriter retrieves the 
print data from the spool file and prints it. The operator can control the 
spooling process using spool commands. 

The following diagram shows the normal output process and the print spooling 
process. 

lrmal Output Processing Print Spooling 

User 
Program 

Printer 
Data 
Management 

Printed 
Output 

User 
Program 

Printer Data 
Management 

SPOOL 
Intercept 
Routine 

Command 
Processor 

Advantages of Print Spooling 

Print spooling provides several advantages over normal printing: 

• Programs execute faster because time does not have to be spent waiting for 
the printer to print each line of data. 

• Multiple programs using the printer may be run concurrently rather than 
serially because they do not have to wait for the printer to become available. 

• Programs producing printer output can be run even if the printer is not 
working. 

• Multiple copies of the printer output can be produced without repeated 
execution of the program producing the printer output. 

• Different priorties can be assigned to the printer output in order to schedule 
printing sequences. 

SPOOL 
File 

SPOOL 
Writer 

Printed 
Output 

System/34 Concepts 2-81 



2-82 

• In the event of a printer malfunction, printing can be restarted without 
re-execution of the program that produced the printer output. 

• A spool writer printing data from the spool file makes more efficient use of 
the main storage processor, the printer, and the communications lines (for 
remote printers) than direct printing does. 

Spooling Options During Configuration 

During system configuration the user can decide whether to include print 
spooling in the system. If selected, print spooling can be later cancelled via the 
IPL overrides or temporarily disabled for a particular printer by using the 
SPOOL-NO parameter on the I I PRINTER OCL statement. 

If print spooling is selected, you can specify whether all printers are to be 
spooled, or just the system printer. If only the system printer is selected, the 
other printer can be spooled temporarily by the use of the SPOOL-YES 
parameter on the I I PRINTER OCL statement. 

Control of Print Spooling 

Print spooling may be controlled either by the system operator or by 
subconsole operators. Subconsoles are display stations assigned control during 
system configuration over one or more printers. The system operator has 
control over all printers and all print files in the spool file. Subconsole 
operators have control over their designated printer(s) as well as all print files 
in the spool files to be printed on their designated printers. Display station 
operators have some control over print files they create. 

Spool File 

The spool file resides on fixed disk and consists of a primary file and up to five 
additional areas called extents. When spooling is active, the primary file always 
exists; the extents exist only as needed. A new extent is allocated only when 
the primary file and all currently allocated extents are full. When an extent 
becomes empty, it is deleted. 



Spool File Size 

The size of the primary spool file is specified in blocks during system 
configuration and by the IPL overrides. When there is sufficient disk space, the 
amount specified is used to allocate the primary file and extents. Whenever 
there is insufficient disk space, the largest space available is used to allocate 
the primary file first. 

The primary file and extents are divided into contiguous areas called spool file 
segments. The size of the segments is specified in blocks during system 
configuration and by the IPL overrides. The first segment of the primary file 
called the spool master segment keeps track of the rest of the spool file. All 
other segments of the primary file and all segments of the extents store print 
data. When a printer file begins producing output, a spool file segment is 
allocated to that printer file to store print data in. If there is more print data 
than the segment can contain, another segment is allocated when the first one 
is filled. This process continues until all the print data has been put in the 
spool file. Any unused space at the end of the final segment is ignored. Once 
the print file has been printed, it is removed from the spool file, and the 
segments it used become available for use by another printer file. 

Refer to the Installation and Modification Reference Manual to determine the 
spool file and segment sizes based on the expected spool file usage. The 
following explains some of the considerations that can be made: 

• The recommended size for the primary spool file is one-sixth of the number 
of blocks needed to contain all the print data, so that it may be spread 
across the primary file and all five extents. This is done so that the spool 
file occupies less disk space when there is less data in it. A larger primary 
file involves more work by the system to allocate and deallocate spool file 
extents. However, the spool file will occupy more disk space even when it 
contains less data. 

• The recommended size for the spool file segments is based on the size of 
the typical printer file. Larger segments reduce the work the system does 
allocating segments because fewer segments are needed. However, smaller 
segments make more efficient use of spool file space by reducing the 
amount of unused space in the last segment of the print files. The primary 
file and extents have a limit of 800 segments, so in the cases where a large 
spool file is needed, you may need to increase the segment size to keep the 
number of segments from exceeding the limit. 

Heavy usage of the spool file by spool routines and other programs running on 
the system can create increased demand for the disk. To help balance the 
activity across the disks, you can specify a disk preference for the spool file, 
both during system configuration and by the IPL overrides. 

System/34 Concepts 2-83 



2-84 

Spool Intercept Routine 

The spool intercept routine stores printer output in the spool file. Printer output 
can be from multiple printer files, either from multiple programs producing 
printer output or from multiple printer files within one program, or both. 

Spool intercept routine handles all printer files concurrently but independently 
of one another. Each printer file has its own intercept buffer to receive printer 
data, its own spool file segment for storing the data in the spool file, a unique 
spool ID consisting of the characters SP followed by four decimal digits. 

Each printer file may be opened, closed, and reopened, etc. as desired 
independently of all other printer files. When a printer file is closed, it 
becomes disassociated from the spool intercept routine. If the printer file is 
reopened, the spool intercept routine treats it as an entirely new printer file. 
There is no limit to the number of printer files from one or more programs that 
can be handled concurrently by the spool intercept routine. 

If the spool file is not large enough to contain all the print data being put into 
it, a message is issued when it becomes full. You may have to wait until space 
becomes available in the spool file and then respond to the message with an 
option that allows processing to continue, using the newly available space. If 
the spool file has no space available, you may respond to the message with an 
option that will close the printer file in the spool file. When the data in the 
newly closed printer file has been printed, the spool file space it used is made 
available again. Processing of the printer file continues from the point at which 
it was closed, reusing the spool file space. If the spool file frequently becomes 
full, you should consider increasing the size of the spool file. 

Intercept Buffer 

Whenever one spool intercept routine intercepts a new printer file, it assigns an 
intercept buffer in which to accumulate print data and a spool file segment to 
write the print data into. The data in the intercept buffer is written into the 
spool file when it becomes full and the buffer can then be filled with more 
data. 

Intercept buffers are assigned from the system assign/free area and returned 
to it when the printer file is closed. The amount of assign/free area assigned 
for each printer file depends on the following: 

• For a printer file created by a program which has no other spooled printer 
files currently open, a buffer of 512 bytes will be used if there is suffici~nt 
assign/free area. If there is insufficient area, or eight or more programs 
with printer files open a buffer of 256 bytes will be used. 

• For any printer files created by a program having at least one other spooled 
printer file open, a buffer size of 256 bytes is used. 

In addition to the intercept buffers the spool intercept routine itself and other 
related data areas increase the amount of main storage that the SSP occupies 
by about 1 K bytes. The system operator should select a system assign/free 
area size that will accommodate the expected spooling activity. 



Spool Writer Program 

The spool writer program retrieves print data from the spool file and prints it. 
There is a separate spool writer program for each printer in the system. 

Before a spool writer can begin printing, the spool writer program must first be 
started. If the autowriter function is requested during system configuration or 
by the I PL overrides, all spool writer programs will be started automatically 
when you IPL the system. If the autowriter function is not requested, the 
ST ART PRT command must be entered by the system operator or subconsole 
operator to start the spool writer programs. 

Once a spool writer program has been started, the SSP automatically loads it 
into main storage to begin printing whenever a printer file is available from the 
spool file. When nothing is left in the spool file for the writer to print, the 
writer terminates. When a change is made to the spool file so that another 
print file becomes available for printing, the spool writer program is again 
automatically loaded to begin printing. 

The following diagram shows how the spool writer program prints jobs from 
the spool file. 

·SPOOL 
File 

SPOOL 
Writer 

The system operator or subconsole operator may enter a STOP PRT command 
to stop the spool writer(s). When a spool writer is stopped, it cannot print 
even if printer files are available for printing. The START PRT command must 
be entered to allow the writer to print again after it has been stopped. 

Printer files are placed in the spool file according to the PRIORITY parameter 
of the PRINTER OCL statement. The spool writer for each printer selects 
printer files for printing on a particular printer in order of decreasing priority. 
Printer files having equal priority are selected according to the order in which 
they were placed in the spool file. Printer files that are either held, being 
copied by the COPYPRT procedure or still being intercepted are bypassed and 
cannot be printed until that condition is changed. (Printer files can be printed 
while they are still being intercepted if you specify the DEFER-NO parameter 
on the PRINTER OCL statement or entering the CHANGE DEFER command.) 

System/34 Concepts 2-85 



2-86 

Changing Forms 

The operator and subconsole operator can reduce the number of requested 
forms changes by specifying a forms number on the START PAT command 
when starting the spool writer. This causes the spool writer to print only those 
printer files that require the specified forms. When all files have been printed, 
the START PAT command should be entered again with either a different 
forms number, or without a forms number if the writer is to resume printing all 
printer files. 

Before printing each printer file, the spool writer ensures that the forms are 
positioned at the top of a page by advancing them to line one unless they are 
already at that position. -Not advancing the forms if they are already at line one 
prevents the spool writer from inserting a blank page between printer files. 
However, if the previous printer file ended by printing on line one of a page 
and did not move the forms afterwards, the following printer file will begin 
printing on that same page and possibly overlay the information previously 
printed on line one. To avoid this situation, ensure that either your programs 
do not print on line one, or that they move the forms forward. 

Forms Alignment 

If forms alignment was requested by the printer file, either in the program that 
created the file or by the ALIGN-Yes parameter of the PRINTER OCL 
statement, the spool writer will print the first line of output and then issue a 
message requesting the operator to align the forms. When the forms have 
been aligned, the operator may respond to the message, instructing the spool 
writer to reprint the same line and ·halt again, or to print the next line and halt 
again, or to resume normal printing. 

Separator Pages 

The spool writer will print separator pages ahead of each printer file if desired. 
The number of separator pages (0-3) may be specified during system 
configuration for each printer individually, and may be changed by the 
CHANGE SEP command. If separator pages are either specified during 
configuration or set to a nonzero value by the CHANGE SEP command, the 
spool writer issues a message asking the operator whether separator pages 
should be printed whenever any of the following situations occur: 

• When the first printer file is to be printed after the system is I Pled 

• When the first printer file is to be printed after the spool writer has been 
restarted via the RESTART PAT command 

• Whenever a printer file is to be printed that requires forms other than those 
currently in the printer -

The spool writer continues printing or not printing separator pages as specified 
until the operator informs it to do otherwise. 



The REST ART PRT Command 

If the operator stops the spool writer while it is printing a printer file, entering 
the RESTART PRT command causes the writer to begin printing that printer file 
again. A page number may also be entered with the command to inform the 
spool writer of what page it is to begin printing on. Entering the RESTART 
PRT command while the spool writer is printing a printer file causes it to start 
printing the file again from the beginning or from a s~ecific page. 

Message Options 

The options allowed on the messages that the spool writer issues are generally 
sufficient for the operator to inform the writer of the action that is to be taken. 
However, when the writer should take some action other than what is indicated 
by the message options, the operator may enter the appropriate command to 
inform the spool writer of the desired action, rather than responding to the 
message. 

Performance Considerations 

During system configuration, or through the CHANGE RES command, you can 
specify whether individual spool writer programs are to be swappable or 
resident when loaded into main storage. Swappable spool writers may be 
swapped to and from disk in order to share main storage with other programs 
running at the same time; resident spool writers do not have this capability. 
Making a spool writer resident can improve its performance somewhat, 
because a resident spool writer is not swappable. However, doing this can 
significantly reduce the amount of main storage that can be used by other 
programs, as spool writers each require 8 K bytes of main storage. 

Another performance factor of the spool writer is that of priority. During 
system configuration, or through the CHANGE PRTY command, you can 
specify whether an individual spool writer program is to have normal or high 
priority when loaded into main storage. A spool writer program with high 
priority executes before a program with normal priority. The performance of a 
spool writer program can generally be improved by selecting high priority rather 
than normal. 

In addition to the configuration option, the priority of a spool writer may be 
changed by the CHANGE PRTY command. 

A final factor related to the performance of the spool writer for the 5211 /3262 
Printer is the spool writer print buffer size. A buffer size of 1 to 4 half-K bytes 
may be selected. A buffer size of one half-K (512 bytes) is usually sufficient, 
but in a heavily loaded system, a larger buffer size will generally improve 
performance. 

System/34 Concepts 2-87 



2-88 

Spool Commands 

Spool commands are the operator's means of controlling both the spool writers 
and the printer files in the spool file. The following general rules apply to the 
spool commands: 

• Commands entered from the system console can apply to any spool writer 
or to any printer in the spool file. 

• Commands entered from a subconsole apply only to spool writers for 
printers controlled by the subconsole or to printer files that are to be printed 
on printers controlled by the subconsole. 

• Commands entered from a display station apply only to printer files created 
by the display station operator. 

The following spool commands are used on the System/34: 

CANCEL PRT Changes the priority printing sequence of a specified printer 
file in the spool file. 

CHANGE PRTY Changes the priority of a specified spool writer. 

CHANGE RES Changes the resident/swappable attribute of a specified 
spool writer. 

CHANGE SEP Changes the number of separator pages printed by a 
specified spool writer. 

HOLD PRT Holds selected printer files to prevent them from being 
printed. 

RELEASE PRT Releases selected printer files that were previously held to 
allow them to be printed. 

RESTART PRT Restarts a specified spool writer. 

START PRT Starts a specified spool writer. 

STATUS PRT Displays the status of the spool writers. 

STOP PRT Stops a specified spool writer. 

After entering a command, the operator is issued a message indicating whether 
the command was successfully executed. 

For more information about these commands refer to the Operator's Guide or 
to the Command and OCL Statements Reference Summary. 



Identifying Your Spool Output 

Output for each printer has a unique six-character identification consisting of 

the characters SP followed by four numbers, such as SP0042. 

You can obtain the status of each job in the spool file by entering D P 
(Spooled Print Status) command from either the system console, a subconsole, 
or a work station. The following example illustrates the spooled print status 

screen. 

r 

SPOOLED PRINT STATUS **COMPLETE** Cot~SOLE Wl 

POS ID 
1 SP0042 
2 SPOOl•3 
3 SP0044 

BLOCKS AVAILABLE: 
PROC JOBHAHE USER 

~11110559 RON 
Wlll0643 ROH 
Wl 110655 ROH 

1106 OF 1134 
PRWTER ID 
PRUHKEY Pl 
PRltHKEY Pl 
PRitHKEY Pl 

PRTY 
Al 

1 
1 

FORM COPY 
0001 1 
0001 1 
0001 1 

---PAGES---
TOTAL WRT 

1 1 
1 
1 

ENTER F-FORWARO, I-INPUT, R-RESTART, U-UPDATE, ORE-END •......... ~ ..•....•... F 

For more information about the print status screen, refer to the Operator's 
Guide. 

The COPYPRT Command 

The COPYPRT command executes two programs, $UASF and $UASC, to do 
the following: 

• $UASF copies one or more spool entries into a disk file. 

• $UASC displays the contents of the disk file at the work station. 

• Both $UASF and $UASC can copy one or more spool entries into a disk file 
and then display these entries at the display station. 

The disk file can be saved on diskette and restored into the spool file for later 
printing. 

System/34 Concepts 2.;..89 



2-90 

Using the STATUS PRT and COPYPRT Commands 

After using STATUS PRT to display spool entries in the spool file, you can use 
the COPYPRT command to copy entries into a disk file according to criteria 
such as spool ID or forms ID. 

The following two examples show the use of the STATUS PRT and COPYPRT 
commands. 

r 
SPOOLED PRINT STATUS 

BLOCKS AVAILABLE: 
POS IO PROC JQ[.t~l'.ME USER 

1 SP00'•2 Wl 110559 Rot~ 
2 SP0043 ,.H 1106ft3 P.Ot~ 

3 SPO Oltlf l..illl0655 ROH 

*"COMPLETE** 
1106 OF 1134 

PP.INTER ID 
PRitHKEY Pl 
PRHffl<EY Pl 
PRIIHKEY Pl 

PRTY 
Al 

1 
1 

FORM 
0001 
0001 
0001 

COHSOLE Wl 
---PAGES--­

COPY TOTAL ~RT 

1 1 1 
1 1 
1 1 

ENTER F-FOR~lARO, I-J.NPUT, P-RESTART, U-UPDATE, or E-EHD..................... I 
COPYPRT Sf'OOtt3, COPYFILE, CANCEL, CRT 

' ~ 

This example shows the copying of a specific spool ID (SP0043). The first 
entry in the file (SP0042) cannot be copied because it is being printed by the 
spool writer. 



SPOOLED PRINT STATUS **COMPLETE** CONSOLE Wl 

POS ID 
BLOCKS AVAILABLE: 

PROC JOBNAME USER 
Wl 110559 RON 
W l 110643 RON 
Wll 10655 RON 

1106 OF 1134 
PRINTER IO 
PRINTKEY Pl 
PRINTKEY Pl 
PRINTKEY Pl 

---PAGES--­
PRTY FORM COPY TOTAL WRT 

1 SP0042 
2 SP0043 
3 SP0044 

Al 0001 1 l 1 
1 0001 1 1 
1 0001 1 1 

ENTER F-FORWARD, I-INPUT, R-RESTART, U-UPDATE, ORE-ENO .••••••••••••••••••••• 1 
COPYPRT FOOOl, COPYFILE, CANCEL, CRT 

This example shows the copying of all eligible entries with a form number of 
0001. 

Using Procedure Members and the COPYPRT Command 

A procedure member is a library file that contains commonly used control 
statements. You can place the COPYPRT command into a procedu.re member 
and then type the name of the procedure member whenever you want to run 
the COPYPRT command. 

To create a procedure member, you use Source Entry Utility (SEU). 

The sample procedure member called SPOOLCPY contains OCL to: 

• Determine if a copy file is present. 

• Delete the copy file if one exists already. 

• Prompt for the digits of the spool ID to be copied. 

• Copy the spool entry and display the entry at the display station. 

* PROCEDURE TO COPY SPOOL JOB TO DISK AND VIEW ON DISPLAY SCREEN 
•• /./ ·H· 

// IF Di~·1Tt"1F~i. .. ··CP\'?!,..JS? DELETE CPY?l1.JS'? .. F:i. IS COPY FILE PE'.ES'ENT? 
CDPYPF(T ;S.'P?tF'.? 1 CF'Y?l ... JS'? .. C(:1NC:EL. .. CFT 
~": ........................................................................... ·END OF PF;:OCE:OUF'E i··,!E:MBEF;~ .................................... ········ ........................... ···························· 

System/34 Concepts 2-91 



2-92 

Related Spooling Documentation 

The following list should help you identify System/34 manuals that also 
contain information concerning spooling: 

• The Installation and Modification Reference Manual contains information about 
spooling options specified during system configuration and during I PL. 

• The SSP Reference Manual describes the PRINTER OCL statement in detail. 
Chapter 3 also briefly d_escribes operator control commands used for 
spooling; however, the information in Chapter 3 is intended only to identify 
for the programmer the operator control commands and their functions. It 
should not be used as a guide for controlling spooling. 

• The Operator's Guide contains the information required to actually control 
spooling from the console or from the subconsole. When you need 
complete operating information, refer to this manual. 

• The Command and OCL Statements Reference Summary shows the formats 
and briefly describes the functions of all operator control commands. 



Libraries 

A library is a special kind of disk file that contains named groups of data. 
These named groups are called library members. A library member occupies 
physically contiguous sectors within a library. Two members cannot share a 
sector. 

TYPES OF LIBRARY MEMBERS 

A library can contain four types of members: 

• Load members (0 members). Load members usually contain instructions 
that the system can execute. Link-edited load members generated by 
System/34 compilers and display screen formats created by the $SFGR 
utility program are examples of load members. 

• Procedure members (P members). Procedure members contain collections of 
frequently used control statements. You can use the $MAINT utility 
program or SEU to create procedure members in a library. Also you can use 
a key entry device such as a 3741 Data Entry Station or a 5280 Distributed 
Data System to create a member as a diskette file and then use the TOLIBR 
procedure to copy the file into the library. 

For detailed information about the statements and expressions that can be 
coded within a procedure, refer to Writing and Using Procedures in the SSP 
Reference Manual. 

• Subroutine members (R members). Subroutine members are members that 
must be link-edited (joined) before System/34 can execute them. Some 
members created by the COBOL compiler, FORTRAN compiler, or the Basic 
Assembler are examples of subroutine members. BASIC programs can be 
saved in subroutine member form. 

• Source members (S members). Source members contain records such as 
source specifications or program statements that are used as input to a 
program or compiler. You can use the $MAINT utility program or SEU to 
create source members in a library. Also, you can use a key entry device 
such as a 3741 Data Entry Station or a 5280 Distributed Data System to 
create a member as a diskette file and then use the TOLIBR procedure to 
copy the file into the library. 

Note: The REPLACE and SAVE commands for BASIC can be used to save a 
BASIC program as either a subroutine member or a source member. For more 
information, refer to the BASIC Reference Manual. 

System/34 Concepts 2-93 



2-94 

LIBRARY FORMAT 

A library has the following format: 

Directory 

Directory 

t 

Library l 
Control I 
Sector l 

Beginning 
of Library 

Directory 
Entries 

Library Members 

t 
End of 
Library 

The directory contains a library control sector and an entry for each member in 
the library. The minimum directory size is two sectors, and the maximum size 
is 256 sectors. The first sector in the directory is the library control sector. 
Each of the remaining sectors can contain nine entries, except for the last 
sector, which can contain only eight entries. If you know the maximum number 
of members that you will place in the library, you can determine the required 
length of the directory. 

The library control sector contains a record of the used and available library 
locations. Each time you add a member or delete a member from the library, 
the SSP rewrites the library control sector. 

The remaining sectors in the library directory contain entries for each of the 
members in the library. 

LIBRARY SIZE 

The maximum size for a library is 6553 blocks. This size includes library 
members and the directory. The maximum directory size is 256 sectors, 
including the sector used for the library control sector. You can change the 
size of the system library and system library directory by running the BACKUP 
and RELOAD procedures. You can change the size of the system library or 
decrease the size of the system library directory by using the allocate function 
of the $MAINT utility program. You can change the size of any other library or 
the size of its directory by using the allocate function of the $MAINT utility. 
You can also change the size of any other library through the following 
procedure: 

1. Create a new library with more space and a name different from the old 
library name. 

2. Copy the contents of the old library into the new library using the 
LIBRLIBR procedure. 

3. Delete the old library. 

4. Rename the new library with the name of the old library. 



Increasing the size of a user library directory uses disk space that precedes the 
library. Therefore, disk space, O in the following diagram, must be available in 
order to increase the directory size. 

Directory Library Members 

[~~~~!~~~~~~~~~~ ........ ~~~~~~~~~~~~~~ ...... 
~ 

Decreasing the size of a library directory makes disk space, 8 in the following 
diagram, available for library members. 

Directory Library Members 

B 

Disk space, 9, must be unused in order to decrease the directory size. The 
library must be condensed in order to use this directory space for library 
members. 

Increasing the size of a library adds disk space to the end of the library, 9. 
This disk space must be unused in order to expand the library member area. 

Directory Library Members 

..... ~~~~~~~~~""'-~~~~~~~~~~~~~~ ..... !-~~~] 
~ 

Decreasing the size of a library frees space at the end of the library, Q. This 
library space must be unused in order to decrease the library member area. 

Directory Library Members 

D 

System/34 Concepts 2-95 



2-96 

REUSE OF LIBRARY SPACE 

A library member can reuse the sectors that were occupied by a deleted library 
member only if both of the following conditions are true: 

• The job trying to reuse the space is the only job that is using the library, or 
the system is in single-program mode: 

• The deleted member was the last member in the library. 

A new version of a library member can be copied into the space occupied by 
the existing member only if all of the following conditions are met: 

• The job that is copying the new version of the member into the library is the 
only job using the library, or the system is in single-program mode. 

• The new version fits into the space that is used by the existing member. 

• The new version is being copied from a sector-mode file (refer to Storing 
Library Members in Disk or Diskette Files later in this section), or the 
member was created by one of. the following IBM System/34 programs that 
allow library members to reuse library space: 

RPG II Compiler 
Source Entry Utility 
Assembler 
Overlay Linkage Editor 

- Work Station Utility 
FORTRAN 
$MAI NT SSP Utility 
COBOL 

- BASIC 

• The existing member is not an SSP load member in the system library, 
#LIBRARY. 

• The existing member is not a screen format load member. 

Because of the conditions that control the reuse of library space, deleting or 
replacing members can create unusable gaps in a library. The CONDENSE 
procedure or the compress function of the $MAINT utility program collects this 
unused space at the end of the library and, thereby, makes it usable for new 
members. The CONDENSE procedure requires that no active users be signed 
onto the library. The CONDENSE procedure cannot be run while in the inquiry 
mode. 



ACTIVE USER LIBRARY 

Each display station session on System/34 can have an active user library 
associated with it. For most functions performed during execution of user 
programs, the SSP first searches the active user library for required library 
members. If a required member is not in the active user library, the SSP 
searches the system library, #LIBRARY. Functions for which the SSP first 
searches the active user library are: 

• Loading a program 

• Invoking a procedure 

• Displaying a menu or a display screen format 

• Using a message member (MEMBER OCL statement) 

For most functions performed during execution of utility programs or compilers, 
the SSP searches only the system library, #LIBRARY, unless you specify a 
different library. Functions that do not automatically use the active user library 
are: 

• Retrieving records from a message member. The SSP searches only the 
library that was active when the MEMBER OCL statement was entered. 

• Maintaining libraries using the $MAINT SSP utility program. 

• Using DFU, SEU, WSU, or SDA. 

• Using RPG 11, FORTRAN, COBOL, or Basic Assembler. 

• Using BASIC. (Every library used during a BASIC session is active until the 
BASIC session ends.) 

The operator can specify the active user library during session sign on and can 
change the active user library for the session by entering the LIBRARY OCL 
statement, by using the SET procedure, or by specifying a library name on the 
BASIC or BASICR procedure. The active user library can be changed for the 
duration of a procedure via a LIBRARY OCL statement within the procedure. 

System/34 Concepts 2-97 



2.;.98 

LIBRARY SHARING 

On· System/34, two or more programs can read from or write to the same 
library concurrently. However, if one program writes to a library while another 
uses the same library or if two or more programs concurrently write to the 
same library, performance might be significantly degraded. 

Certain library functions require that no other functions use the same library 
concurrently. These library functions are: 

• Compressing a library via the CONDENSE procedure. 

• Deleting all library members or deleting all members of one type via the 
REMOVE procedure. 

• Reusing library space. Refer to Reuse of Library Space earlier in this· section 
for further information. 

STORING LIBRARY MEMBERS IN DISK OR DISKETTE FILES 

Library members can be stored in disk or diskette files in record mode or sector 
mode. A record-mode file on diskette can be used on other systems if it is 
written as a basic data exchange file. A sector- mode file on diskette can be 
used on another System/34. 

Record-Mode Files 

Source and procedure members can be stored as record-mode files. Records 
in a record-mode file can be from 40 to 120 characters long, but all records in 
a file must be the same length. The SSP pads records with blanks 
(hexadecimal 40s) or truncates records to the specified record length. 

The first record in a member stored in a record-mode file on disk or diskette is 
a COPY statement that defines the attributes of the member. The last record 
in a member stored in record-mode file is a CEND statement. When you use 
the $MAI NT utility program to copy a source or procedure member into a 
record-mode file, $MAINT places the COPY and CEND statements in the file. 
If you use SEU, your own program, or a key entry device to create a 
record-mode file, you must place the COPY and CEND statements in the file. 
If the record-mode file is organized as a direct file, you must also include an 
END statement following the CEND statement that terminates the last member 
in the file. The formats and descriptions of the COPY, CEN D, and END 
statements are included in the descriptions of record-mode files in the SSP 
Reference Manual. 

Note: When you use $MAINT to save a procedure member in a record-mode 
file, you should specify SVATTR-YES if you also want the procedure attributes 
saved. Examples of procedure attributes are MRT-YES, PDATA-YES, and 
HIST-YES. 



Sector-Mode Files 

Any library member can be stored as a sector-mode file. All members copied 
into a sector-mode file have 40 bytes of control information preceding the 
member. This control record contains 28 bytes for the member's directory 
entry, 8 bytes of PTF information that is used for diagnostic information, and 4 
reserved bytes. 

If you copy a System/32 sector-mode file to a System/34 library: 

• System/32 SCP members are not copied to the System/34 library. 

• The SSP sets the release level of the copied members to 232 to indicate 
that the members came from a System I 32. 

• Source or procedure members copied from the sector- mode file may require 
more library space than they did on System/32. More space might be 
required because System/32 and System/34 use different blank character 
compression schemes. 

Saving a Library on Diskette 

You can save your user libraries by using the SAVELIBR procedure. The 
SAVELIBR procedure copies all library members (except SSP members) from a 
user library to a diskette file. BLDLIBR or TOLIBR must be used to restore the 
library you have saved. 

Notes: 
1. System/32 diskette files created by releases 1 through 4 of System/32 

cannot be read by System/34 until they are updated by the System/32 
CONVERT procedure. 

2. You can copy subroutine members (R members) or load members (0 

members) from System/32. System/32 load members cannot be run on 
System/34. For example, SEU and DFU members can be copied from 
System/32 to System/34, but the object message members for them 
cannot be used on System/34. You should test subroutines carefully 
because you might have to recompile them for use on System/34. 

3. You cannot copy a System/34 sector-mode file to a System/32 library. 

System/34 Concepts 2-99 



Menus 

A menu is a programmer-defined list of item numbers and brief descriptions 
that appears on the display screen at a display station operator's request or 
when the operator signs on if sign-on menu security is active. When the 
operator selects an item number, the SSP does the function associated with 
that number. The following is a sample menu: 

Menu Name Description 

Item Numbers "-... r 

Operator Enters 
the Selected Item 
Number Here 

2-100 

~COMM.b,NO 

l. SDA SCREEN DESIGN 
2. SDA MENU BUILD 
3. 
4. SEU PROCEDURE 
5. SEU PROG!~AH 
6. 
7. COMPILE PROGRAM 
8. 
9. CATALOG DISK 

10. CATALOG A FILE 
11. CATALOG SINGLE DISKETTE 
12. CATALOG MAGAZINE DRIVE 

ENTER NUMBER, COMMAND, OR OCL. 

MENU: T:,..E_s_T,..M.._ ______ ....., ........ 
13. INITIALIZE 
14. 
15. BACKUP LIBRARY 
16. 
17. DISPLAY RECORDS BY REL NO 
18. DISPLAY RECORDS BY KEY 
19. 
20. LIST A PROGRAM 
21. LIST A PROCEDURE 
22. LIST A DIRECTORY 
23. 
24. 

<- READY 

Menus simplify the operator's duties. The operator needs no knowledge of the 
OCL statements, procedure commands, or operator control commands required 
to do a function. 

The operator displays a menu by: 

• Entering a menu name during signon. The requested menu appears as soon 
as signon ends. 

• Signing on, if sign-on menu security is active and the operator has a menu 
assigned to him. 

• Entering a MENU operator control command. 

• Selecting a menu from another menu, which is called menu chaining. 

The programmer can cause a menu to be displayed at the end of a job by 
using the MENU OCL statement within the job. 

Wl 



Each menu has an associated program-defined command load member. When 
the operator enters a menu item number, the SSP retrieves the record 
corresponding to that item number from the command load member. The 
command load member is created when the menu is created. The retrieved 
record can be an OCL statement, a procedure command, or an operator control 
command. The SSP continues job processing just as if the operator had 
entered the retrieved record from the keyboard. For further information about 
job processing, refer to System/34 Job Processing earlier in this chapter. 

For information about creating menus, refer to the IBM System/34 SDA 
Reference Manual and the IBM System/34 SSP Reference Manual. 

To leave a menu display when sign-on menu security is not active, an operator 
enters a zero instead of an item number. The menu disappears, and the 
COMMAND display appears. 

To end a menu display when sign-on menu security is active, the operator 
must sign off. 

System/34 Concepts 2-101 



FIXED-FORMAT AND FREE-FORMAT MENUS 

System/34 provides two types of formats for menus: fixed-format and 
free-format. A fixed format menu contains 24 numbered items. The 
description of each item can have as many as 30 characters, including blanks. 
As the following displays show, a fixed-format menu fits on one 
1920-character display screen and on two 960-character display screens. 
When using a 960-character display screen, the operator presses the 
Enter /Rec Adv key to select the second half of the menu. 

Fixed-Format Menu for a 1920-Character Display Screen 

Menu Name 

Description (maximum 
of 30 characters) 

Item Numbers""'- r h 

Operator Enters 
Selected Item 
Number Here 

2-102 

~OMMAND 

l. SDA SCREEN DESIGN 
2. SDA MENU BUILD 
3. 
4. SEU PROCEDURE 
5. SEU PROGRAM 
6. 
7. COMPILE PROGRAM 
8. 
9. CATALOG DISK 

10. CATALOG A FILE 
11. CATALOG SINGLE DISKETTE 
12. CATALOG MAGAZINE DRIVE 

ENTER NUMBER, COt'TMANO, OR OCL. 

MENU: ,..r.Es ... r_H ______ _ 
13. INITIALIZE DISKETTE 
14. 
15. BACKUP LIBRARY 
16. 
17. DISPLAY RECORDS BY REL NO 
18. DISPLAY RECORDS BY KEY 
19. 
20. LIST A PROGRAM 
21. LIST A PROCEDURE 
22. LIST A DIRECTORY 
23. 
24. 

<- READY 

Wl 



Fixed-Format Menu for a 960-Character Display Screen 

" COMMAND 
MENU: TESTM 

1. SDA SCREEN DESIGN 13. INITIALIZE DISKETTE 
2. SDA MENU BUILD 14. 
3. 15. BACKUP LIBRARY 
4. SEU PROCEDURE 16. 
5. SEU PROGRAM 17. DISPLAY RECORDS BY REL NO 
6. 18. DISPLAY RECORDS BY KEY 

ENTER NUMBER, COMMAND, OR OCL. 

~ 

r 

COMMAND 
MENU: TESTM 

7. COMPILE PROGRAM 19. 
8. 20. LIST A PROGRAM 
9. CATALOG DISK 21. LIST A PROCEDURE 

10. CATALOG A FILE 22. LIST A DIRECTORY 
11. CATALOG SINGLE DISKETTE 23. 
12. CATALOG MAGAZINE DRIVE 24. 

ENTER NUMBER, COMMAND, OR OCL. 

..... 

A free-format menu on a 1920-character display screen allows the 
programmer to completely define lines 3 through 20. A free-format menu on a 
960-character display screen allows the programmer to completely define lines 
3 through 8 of two display screens. The description of each item is not limited 
to 30 characters. The operator can press the Enter I Rec Adv key to select the 
second half of the menu. The following displays show free-format menus on 
the 1920-character and 960-character display screens. 

<- READY 

<- READY 

"" 
Wl 

_,,,, 

"""" Wl 

,.,J 

System/34 Concepts 2-103 



2-104 

Free-Format Menu on a 960-Character Display Screen 

COMMAND 
MENU: TESTM 

l. SDA SCREEN DESIGN 
2. SOA MENU BUILD 
3. 
4. SEU PROCEDURE 
5. SEU-PROGRAM 
6. 

ENTER NUMBER, COMMAND, OR OCL 

COMMAND 
MENU: TESTH 

7. COMPILE PROGRAM 
a. 
9. CATALOG DISK 

10. CATALOG A FILE 
ll. CATALOG SINGLE DISKETTE 
12. CATALOG MAGAZINE DRIVE 

ENTER NUMBER, CONNANO, OR OCL 

If a display station has a 960-character display screen and a free-format menu 
for a 1920-character display screen is selected, lines 3 through 8 of the menu 
are displayed. If the Enter/Rec Adv key is pressed without any data being 
entered, lines 9 through 14 are displayed. 

Lines 15 through 20 of the menu cannot be displayed on the 960-character 
display screen. 

Refer to the IBM System/34 SDA Reference Manual and the IBM System/34 
SSP Reference Manual for further information about fixed-format and 
free-format menus. 

<- READY 

<- READY 



Program Attributes 

Program attributes describe a program's use of display stations or use of 
resources on System I 34. 

Attributes that can be specified when a program is compiled are: 

• SRT (Single Requestor Terminal). The program allows one requesting 
display station and can acquire data display stations. Display stations can 
be defined as data display stations during system configuration, or a 
command display station can be placed in data mode via the MODE control 
command. 

• MRT (Multiple Requestor Terminal). This attribute allows more than one 
requesting display station for a single copy of the program. The program 
can acquire data display stations. 

• NEP (Never-Ending Program). This attribute can be given to SRT programs 
and M RT programs. Programs do not wait for nonshared resources that the 
NEP uses. An MRT-NEP may wait for additional requestors when no 
requestors are attached to it. 

Note: The STOP system command removes the NEP attribute from an 
MRT-NEP program. 

This section describes the concepts of each of these attributes. For 
information about choosing an attribute during program design, refer to 
Application Design in Chapter 3. For information about jobs that are not 
attached to a requesting display station, refer to Jobs That Run Without a 
Requesting Display Station, later in this chapter. 

System/34 Concepts 2-105 



2-106 

SAT (SINGLE REQUESTOR TERMINAL) PROGRAM 

An SRT program is a program that allows only one requesting display station. 
Each time the program is requested, that program is loaded into main storage. 
The display station that requests the program becomes attached to that 
program. 

Main Storage 

If two display stations request the same SAT program, two copies of the 
program will be in main storage. 

Requestor of 
Program A 

Requestor of 
Program A 

Main Storage 

Program A 

Each requestor has its own local data area and external indicators which can 
be used to pass data to the program. 

Coding SRT Programs 

The SAT attribute is given to a program when it is compiled. A program will 
be an SAT program if the MRTMA.X parameter is zero or is omitted from the 
COMPILE OCL statement. Refer to the SSP Reference Manual for a description 
of the COMPILE OCL statement. 

RPG II, COBOL, FORTRAN, BASIC, and Basic Assembler programs can be 
SAT programs. WSU programs are always generated as MAT programs and 
cannot be changed to SRT programs. 



Acquiring a Display Station in an SRT Program 

An SRT program can acquire other data mode display stations, which are used 
to enter data and/or display output. A display station can be acquired in either 
of the following ways: 

• A display station is acquired if the job step that executes the SRT program 
includes a WORKSTN OCL statement. If the REQD-YES parameter is 
specified on this statement, the display station is attached to the program 
by the system, and the display station must be available (signed on and in 
standby mode) so that the program can be initiated. 

Main Storage 

r-
1 

--i 
I 
L_ 

• If the REQD parameter is NO or omitted from the WORKSTN OCL 
statement, an RPG II program or a COBOL program, instead of the system, 
can acquire the display station via an operation code. An acquired display 
station cannot be operated in inquiry mode. If a command display station 
interrupts the program, the acquired display stations are inactive during the 
inquiry request. After acquiring a data display station, the System/34 data 
management handles it the same as a command display station. The SRT 
program logic should be the same as the logic required for an M RT 
program. 

Releasing Display Stations from an SRT Program 

A display station acquired by the system or by an operation code within an 
SRT program can be released by the program. For example, for RPG II 
programs a display station is released via the REL operation code or via an R 
entry in column 16 of the RPG II output specification. For COBOL programs, a 
display station is released via the DROP operation code. 

The requesting display station cannot be released from an executing SRT 
program until that program goes to end of job. End of job can occur only 
when all acquired display stations have completed processing and have been 
released. Therefore, the requesting display station cannot be released until all 
acquired display stations have been released. 

System/34 Concepts 2-107 



2-108 

Interrupting an SRT Program 

An SRT program can be interrupted only from the display station that 
requested the program. The interruption is called an inquiry request and is 
caused by the operator pressing the Attn key. The SRT program stops 
executing, and the Inquiry display appears. Refer to the System/34 Operator's 
Guide or SSP Reference Manual for a description of the Inquiry display. The 
display station operator can select one of the following options from the 
Inquiry display: 

Option 

0 

2 

3 

4 

5 

Function 

Resume execution of the interrupted SRT program. 

Continue with the inquiry request. The display station enters 
command mode. If the interrupted program is an RPG II 
program, option 1 appears only if the H specification permits 
inquiry (column 37 contains a B). 

End the interrupted SRT program and close the files. 

End the interrupted SRT program and do not close the files. 

Post an inquiry latch, or terminate a BASIC program and 
return to BASIC command mode. An interrupted RPG II 
program can check the inquiry latch by using the RPG II 
subroutine, SUBR95. For information about SUBR95, refer to 
the RPG II Reference Manual. 

Display the session status. 



MRT (MULTIPLE REQUESTOR TERMINAL) PROGRAM 

An MRT program is a program that allows several requesting display stations 
to be attached to one copy of the program at a time. 

Requester 

Requester 

Requester 

Main Storage 

MRT 
Program 

An MRT program can be called only from an MRT procedure. An MRT 
program cannot be called by OCL statements entered from the keyboard. 

An MRT procedure can be called from either the keyboard or a non-MRT 
procedure via an INCLUDE OCL statement or a procedure command. 

When an MRT procedure is called, the SSP checks whether the requested 
procedure is active. If the procedure is not active, the SSP loads and initiates 
the MRT program. If the procedure is active and no more than the maximum 
number of display stations are using the program, the requesting display 
station is attached to the program. If the procedure is active and the maximum 
number of display stations is attached to the program, the SSP places the 
display station on a waiting-for-resources queue. Refer to Never-Ending 
Program later in this chapter for further information about programs waiting for 
system resources. 

System/34 Concepts 2-109 



2-110 

OCL statements in the MRT procedure are executed for the requestor that 
actually initiates the MRT program. Subsequent requestors bypass the OCL 
processing and attach directly to the MRT program" 

For RPG II MRT programs, a display station attaches to the program at the 
beginning of an input cycle or at the last READ operation from the WORKSTN 
file; for WSU programs, a display station attaches at the 
work-session-initiation processing level. For COBOL programs, a display 
station attaches at the last read or call operation that executes. 

Ordinarily, two different MRT procedures should not call the same MRT 
program. If two such procedures are active at the same time, two copies of 
the same MRT program will execute concurrently. When response times are 
long because of many~display stations using the same MRT procedure, you 
might allow two MRT procedures, each allowing half the total number of 
requestors, to call the same program. 

For WSU programs, an MRT procedure is generated when the WSU program 
is generated. For RPG II, COBOL, Basic, and Assembler programs, the 
programmer must provide the MRT procedure. If SEU is used to create this 
procedure, SEU prompts for the MRT attribute at the end of the SEU run. If 
$MAI NT is used to create this procedure, the M RT -YES parameter of the 
COPY statement allows specification of the MRT attribute. 

The following are additional facts about M RT procedures and M RT programs: 

• Only one LOAD OCL statement and one RUN OCL statement are allowed in 
an MRT procedure. Any statements that follow the RUN OCL statement are 
ignored. 

• An M RT procedure can be called from a higher level procedure but cannot 
call a lower level procedure. 

• All MRT procedure names should be unique, even if the procedures are in 
different libraries. 

• When an MRT procedure is originally requested from another procedure, a 
new job is (in effect) started on the system. Therefore, OCL statements 
such as the REGION and ATTR statements within the MRT procedure are 
processed as if they were at the beginning of a job. 

• The OCL statements are not processed again for subsequent requestors. 

• The INCLUDE OCL statement or the procedure command statement cannot 
pass parameters to the MRT procedure. However, the INCLUDE OCL 
statement or procedure command can pass data to the M RT program. The 
SSP passes the data to the .program on the first input operation from the 
requesting display station. Data passed to the program starts with the first 
nonblank character following the procedure name and ends with the last 
nonblank character in the statement. 



• If an attempt is made to call an MRT procedure when the system is in 
single-program mode, the procedure runs but not as an MRT procedure. 
Therefore, the SSP treats any data coded on the INCLUDE OCL statement 
or the procedure command statement as parameters. 

• Except for WSU programs, file sharing conflicts within an MRT program are 
the programmer's responsibility. These conflicts are not handled by 
System/34 file sharing logic. Refer to File Concepts earlier in this chapter 
for further information. 

• An MRT program cannot use job (RETAIN-J) files created by previous steps 
in the job. Subsequent non-MRT job steps can use those job files. In 
addition, job files (RETAIN-J) created by an MRT program are treated like 
scratch files. These files are not passed to subsequent job steps, and they 
are deleted when the MRT program goes to end of job. 

• Any DATE, FORMS, MEMBER, PRINTER, or SYSLIST statement that has 
been used in a previous step has no effect on a job step that runs an MRT 
program. Instead, the MRT program uses values in the system configuration 
record. 

• When the MRT program releases its last requesting display station, the 
program might not immediately go to end-of-job processing. Therefore, the 
M RT program might still be executing while the next statements in the job 
stream of the requesting display station are being processed. For that 
reason, an IF ACTIVE test that determines if the MRT procedure has been 
terminated should not follow the MRT procedure call in the job stream. 

• An MRT program can access the requesting display station's local data area 
and external indicators. For example, RPG II and COBOL provide 
subroutines to read and modify each display station's local data area and 
external indicators. COBOL also provides language extensions for retrieving 
and updating these areas. 

System I 34 Concepts 2-111 



2-112 

Coding MRT Programs 

The MRT attribute is given to a program when it is compiled. A program will 
be an MRT program if the MRTMAX parameter is specified on the COMPILE 
OCL statement and is not MRTMAX-0. An MRTMAX value of one is valid and 
means that only one display stati.on can be attached to the program at one 
time, but that multiple copies of the program are not initiated when more than 
one display station operator requests the program. Refer to the SSP Reference 
Manual for a description of the COMPILE OCL statement. The maximum 
number of requestors can be changed when the program is run via the ATTR 
OCL statement. Program logic should be checked before increasing the 
maximum number of display stations. 

RPG II, WSU, COBOL, and Basic Assembler programs can be MRT programs. 
WSU programs are always generated as MRT programs and automatically 
adjust their program size when the maximum number of requestors is changed 
via the ATTR OCL statement. WSU programs do not have to be regenerated 
to allow for an increased maximum number of requestors. 

BASIC programs can also be MRTs. BASIC programs are not compiled and do 
not use the I I COMPILE OCL statement. Refer to the BASIC Reference 
Manual for details on creating BASIC MRTs. 

Acquiring a Display Station in an MRT Program 

An M RT program can acquire other data display stations, which are used to 
enter data and I or display output. A display station is acquired if the job step 
that executes the program includes a WORKSTN OCL statement. If the 
REQD-YES parameter is specified on this statement, the display station is 
attached to the program by the system, and the display station must be 
available so that the program can be initiated. An available display station is 
one that is signed on and in standby mode. A data display station can also be 
acquired by program logic. This logic must determine the actions to take if the 
display station is not available. BASIC MRT programs use the OPEN statement 
to acquire other display stations. 

Releasing an Acquired Display Station from an MRT Program 

A display station acquired by the system or by an operation code within the 
program can be released by the program. For example, for RPG II programs a 
display station is released via the REL operation code or via an R entry in 
column 16 of the RPG II output specification. For COBOL programs, a display 
station is released via the DROP statement. The display station returns to 
standby mode after it is released. BASIC MRT programs release the display 
station by using the CLOSE statement. 



Interrupting an MRT Program 

A requestor can interrupt his attachment to an MRT program to do other work 
while allowing the MRT and its other users to continue. The interruption is 
called an inquiry request and is caused by the operator pressing the Attn key. 
The Inquiry display appears, and the display station operator can select one of 
the following options to: 

Option 

0 

2 

3 

5 

Function 

Resume use of the M RT program. 

Continue with the inquiry request. The display station enters 
command mode. 

Release the display station from the MRT program and 
continue processing the next job step in the job being run 
from the display station. 

Release the display station from the M RT program and cancel 
the remaining steps in the job being run from the display 
station. 

Display the session status. 

Maximum Number of Display Stations for an MRT Program 

For RPG II programs, the MRTMAX value on the COMPILE OCL statement, on 
the A TTR OCL statement, or on the RPG command statement specifies the 
maximum number of requesting display stations for an MRT program. A 
continuation line of the WORKSTN file description specification specifies the 
total number of requesting and acquired display stations for an MRT program. 
The keyword NUM is specified, and the maximum number of display stations 
is coded in positions 60-65 of the continuation statement. 

For COBOL or Assembler programs, the MRTMAX value on the COMPILE OCL 
statement or on the ATTR OCL statement specifies the maximum number of 
requesting display stations for an MRT program. Program logic determines the 
actual maximum number of display stations that are supported. Internal tables 
in the program might have to be incremented in order to support an increased 
maximum number of allowed requestors. 

For BASIC programs, the MRTMAX value on the ATTR OCL statement 
specifies the number of requesting display stations for an MRT program. 

System/34 Concepts 2-113 



2-114 

For WSU programs, the M RTMAX value on the A TTR OCL statement is set to 
the value specified on the WSU J specification when the program is generated. 
If this value is changed, WSU automatically adjusts the program to its newly 
required size without requiring program regeneration. 

If a display station requests an MRT program while the program is handling its 
maximum number of display stations, the SSP queues that display station 
request to the MRT program. When the MRT program releases one of its 
requesters, the SSP attaches the first queued requester to the MRT program. 
While a display station waits for its request to be honored, the display station 
cannot be used unless the operator interrupts the program and releases his 
display station from the MRT procedure. 

Releasing Requesting Display Stations from MRT Programs 

An M RT program must release a requesting display station when the program 
has completed processing for that display station. If it is not released, the 
display station remains allocated to the M RT program until it ends or until the 
operator interrupts the program and releases the display station. 

For example, for RPG II MRT programs, a requestor can be released by the 
REL operation code or by an R entry in column 16 of output specification. For 
COBOL programs, a requestor can be released by the DROP operation. For 
BASIC programs, a requestor can be released by the CLOSE statement. 

A released requesting display station returns to the place from which the MRT 
program was called. This return can be to: 

• The next OCL statement in the procedure that called the MRT program 

• A menu 

• The command display 

Ending MRT Programs 

An RPG II MRT program that is not an NEP ends when the LR indicator is set 
on. This occurs when the end of file is reached for the primary input file. A 
programmer should not arbitrarily end an M RT program by setting on the LR 
indicator, because requestors might still be attached to the program. 

A COBOL or Assembler MRT program that is not an NEP receives a 
no-outstanding-invites code when no display stations are attached or when no 
attached display stations have been invited. 

A BASIC program ends normally when the last operator using the program 
ends the session. 



The programmer must provide coding to detect the no-outstanding-invites 
condition and end his program. If a request for the MRT program is made 
while it is ending, another copy of the M RT program is initiated. 

A WSU program ends normally when the last operator using the program ends 
his session. Also, a WSU program ends if the EJ indicator is on when the 
processing for a display completes. All attached display stations automatically 
begin end of work session (EW) processing when they return to the WSU 
program. 

Canceling an MRT Program 

Use the CANCEL command from the system console to cancel an M RT 
program. 

Using the Attn Key to Release a Display Station from an MRT Program 

You should be aware of the following consideration when using the Attn key to 
release your display station from an MRT program. The Attn key options do 
not take effect until your M RT program issues a read command to the display 
station. If, for example, you have a coding error in your MRT program, such as 
a loop in your RPG CALC specifications that prevents a read command from 
being issued, you cannot use the Attn key to release your display station from 
the MRT program. 

NEVER-ENDING PROGRAM (NEP) 

The never-ending-program attribute can be assigned to MRT programs, SRT 
programs, and programs run from the input job queue. This attribute can be 
assigned to an MRT program to allow it to remain active when all its 
requestors have been released. The program will probably be swapped out of 
main storage. New requestors can attach to the program without waiting for 
program initiation, which can require a significant amount of time. When a 
new requestor is attached, the program is simply swapped into main storage. 
(Disk activity requires much of the time used for program initiation. For further 
information, refer to Disk Activity for Loading Programs and Attaching Display 
Stations to Them in Chapter 3.) 

An MRT program without the never-ending-program attribute does not remain 
active without requestors and is reinitiated for a subsequent request. 
Therefore, MRT programs that are requested frequently might be assigned the 
never-ending-program attribute to avoid this reinitiation time. 

The never-ending-program attribute can be assigned to an SRT program. 
Typically, this attribute is assigned to an SRT program that uses nonshared 
system resources such as a printer or a nonshared disk file. If another program 
that requires the nonshared resource is requested, the system waits for the 
SRT program to end its use of the resource before starting the new program. 
Because the SRT program has a never-ending-program attribute, the operator 
that requested the new program receives a waiting-for-nonshared-resource 
message. This message allows the operator to cancel the new program or 
request that the SSP retry allocating the resource. 

System/34 Concepts 2-115 



2-116 

If the SRT program had not been never-ending, the new program's operator 
would receive no indication that the program was waiting for a resource. 
However, the operator could use the STATUS USERS command to see that 
the program was waiting for initiation. The Status Active column on the User's 
Status display contains IN IT -WAIT for the new program. 

MRT programs and programs run from the input job queue automatically issue 
the waiting-for-nonshared-resource message to the operator unless NEP-NO 
is specified for the program. 

Figure 2-5 summarizes the effect of specifying the never-ending-program 
attribute for an MRT program, an SRT program, and a program run from the 
input job queue. 

Program Never-Ending-Program Waiting-for-Nonshared- Active when 
Type Attribute Resources Message No Requestors 

MRT NEP-YES Yes Yes 

NEP-NO No No 

Not specified Yes No 

SRT NEP-YES Yes 

NEP-NO No 

Not specified No 

Input job NEP-YES Yes 
queue NEP-NO No 

Not specified Yes 

Figure 2-5. Never-Ending-Program Attribute Summary 



Coding Never-Ending Programs 

The NEP attribute is given to a program when it is compiled by specifying 
NEP-YES on the COMPILE OCL statement. The NEP attribute can be 
overridden when the program is run by specifying NEP-YES on the ATTR OCL 
statement. The System/34 SSP Reference Manual describes these statements. 

A WSU program is not generated as never-ending, but it can be defined as 
never-ending by modifying the procedure that calls the program. The NEP-NO 
parameter on the ATTR OCL statement can be changed to NEP-YES to make 
the program never-ending. 

Ending a Never-Ending MRT Program 

Typically, an MRT never-ending program is coded to accept input from a 
display station, process the input, release the requesting display station, and 
then accept input from any requesting display station. When the program has 
no requesting display stations, the SSP places the program in a wait condition. 
If the system operator enters a STOP SYSTEM command, the never-ending 
program(s) receives control with an indication of the operator's request so that 
the program can execute end-of-job logic. 

An MRT never-ending RPG II program is given control when the STOP 
SYSTEM control command is entered by the system operator. The program 
should test for this condition and end the program. 

A WSU never-ending program ends either when the EJ indicator is set on in 
the prowam or when the program is stopped by the operator. 

A COBOL or Assembler never-ending program must be coded to end when 
the no-outstanding-invites return code is indicated. This return code is 
indicated only when the STOP SYSTEM command has been entered and the 
program has released all its display stations. 

System I 34 Concepts 2-11 7 



2-118 

Jobs That Run Without a Requesting Display Station 

Some jobs do not require interaction with a requesting display station. These 
jobs can execute while the requesting display station continues with other 
work. You can initiate such a job in one of three ways: 

• Placing the job on the input job queue. 

• Explicitly releasing the requesting display station, either with the 
RELEASE-YES parameter on the ATTR OCL statement or with the release 
operation code in a program. 

• Evoking the job with an EVOKE OCL statement or with an 
evoke-end-of-transaction SSP-ICF operation. 

The following considerations apply to jobs that are not attached to a requesting 
display station: 

• Messages are displayed at the system console. 

• Changes that such a job makes to external indicators or to the local data 
area are in effect only during execution of the job. The changes are not 
accessible to any other jobs. 

• Except for jobs run from the input job queue, system list output goes to the 
system list device that was active when such a job was initiated. System 
list output for jobs run from the input job queue goes to the system printer 
or the default printer for released jobs. Printer data management output 
goes to the system printer, unless a printer default for released jobs was 
specified during system configuration. {You can, of course, use the 
PRINTER OCL statement to direct output to an individual printer.) For 
information about system list output and printer data management output, 
refer to Printer Concepts, earlier in this chapter. 

• When the requesting display station is explicitly released, job {RETAIN-J) 
files created by previous job steps are not available to the released job. 

• Jobs on the input job queue are processed one at a time on a first-in, 
first-out basis within job class. The operator can assign different job 
classes by using the JOBQ command before placing the job on the queue. 
In that case, the jobs within a higher job class are started before other jobs 
within lower job classes. For example, jobs in job class 5 are started by the 
system before jobs in job class 4. 

The operator can also assign execution priorities to jobs. Jobs with a low 
execution priority are more likely to be swapped than jobs with a higher 
execution priority. 



II 
II 

• The system operator can start, stop, assign execution priority and job class, 
cancel, and change the order of jobs in the input job queue. The display 
station operator can assign execution priority and job class before the job is 
placed in the queue or can cancel the job after it is in the input job queue. 

• For jobs run from the input job queue, the display station environment at the 
time the job was submitted is saved and used when the job runs. The 
following information is saved: 
- Printer information: Information such as session printer for the job, the 

forms number used with the job, and the lines per page specified for the 
session printer. 
Identification information: Job name, user ID associated with the job, 
and the date. 
Main storage information: The total region size and the job region size. 
Local data area. 
System configuration information for batch BSC jobs. 

The following information is not saved when jobs use the input job queue: 
Communications configuration record. 
Print belt image. The jobs use the print belt information contained within 
the configuration record. 

An example of a job that runs without an attached requesting display station is 
a job that prints transactions entered from many display stations. 

A procedure could be coded to do the following: 

1. Load a program to enter the transactions. This program ends when the 
operator finishes entering transactions. 

2. Load a print program to print the transactions. When the program is 
loaded, its requesting display station is released. 

3. Return to Step 1 to allow the operator to enter more orders. 

The sample OCL in this procedure, ORDENT, is: 

l~i II! 1:1:1:111111111111111111111 

l~i 1~1!~~Utl 111111111111 

System/34 Concepts 2-119 



2-120 

System-Provided Security 

System/34 provides sign-on security and file/library security. Sign-on security 
includes password, badge, and menu security. This section describes major 
aspects of these types of security. Refer to the Installation/Modification 
Reference Manual for further information about security. 

PASSWORD SECURITY 

Password security prevents unauthorized use of a display station. To begin a 
session, an operator must enter his password into a nondisplay field on the 
sign-on display. Nondisplay means that the entered characters do not appear 
on the display. 

, 
SIGN ON 

ENTER BADGE •.•••.••••••• 
USER ID ••••••••••••••••• MJR 
PASSWORD •••••••••••••••• 
MENU (OPTIONAL> ••.•••••• 
LIBRARY ••••••••••••••••• LIBRl_ 

If the operator does not enter the correct password, he cannot begin his 
session. A session is the time from sign on to sign off that an operator uses a 
display station. 

W2 



A disk file called the password security file contains a profile for each person 
that is authorized to use the system. Each profile contains: 

• An 8-character user ID 

• A 4-character password assigned to the user 

• A badge ID if badge security is used 

• Mandatory menu indicator 

• A menu name if menu security is used 

• A library name (can be the library containing the menu or a default library) 

• A code that identifies the user's security class 

• Service aid authorization (patch, dump, setdump) 

• A 20-character comment field 

The password security file can be initialized and updated via the PROF or 
PRMENU procedure. 

Security Classifications 

The security classifications are master security officer, security officer, system 
operator, subconsole operator, and display station operator. 

Master Security Officer 

The master security officer classification is assigned during the initial definition 
of password security. This officer can: 

• Save and restore the password security file. The $PRSV utility saves the 
file, and the $PRST utility restores the file. These utilities can be run only by 
the master security officer. 

• Redefine the password security file. 

• Add, delete, and edit profiles of security officers, subconsole operators, 
system operators, and display station operators. 

• Change his own security profile information. 

• Act as a system operator, subconsole operator, or display station operator. 

• Identify files and libraries to be protected and identify the owners of the 
protected files and libraries. 

• Select and remove file/library security, password security, and badge 
security. 

System/34 Concepts 2-121 



2-122 

Security Officer 

Security officer classifications are assigned by the master security officer. A 
security officer can: 

• Add, delete, or edit profiles of system operators and display station 
operators. 

• Change his own password and badge ID. 

• Act as a system operator, subconsole operators, or display station operator. 

• Identify the files and libraries to be protected and identify the owners of the 
protected files and libraries. 

System Operator 

System operator classifications are assigned by the master security officer or 
by a security officer. An operator designated as a system operator can operate 
any display station, including the display station defined· as the system console. 

Subconso/e Operator 

Subconsole operator classifications are assigned by the master security officer 
or by a security officer. An operator designated as a subconsole operator can 
operate any display station except the display station defined as the system 
console. 

Display Station Operator 

Display station operator classifications are assigned by the master security 
officer or by a security officer. An operator designated as a display station 
operator can operate any display station, except the display station defined as 
the system console. If a display station operator signs onto a subconsole, he is 
not allowed to operate the display station in subconsole mode. 



BADGE SECURITY 

Badge security can be active only with password security and prevents 
unauthorized use of a display station. When badge security is active, the 
sign-on display has an Enter Badge prompt on it. When the sign-on display 
appears, the cursor is at the Enter Badge field. The operator must move his 
badge through a magnetic stripe reader, which reads but does not display the 
badge ID. The operator enters the remaining fields on the sign-on display. In 
order to sign on, the operator must have used the proper badge and entered 
the correct password. 

The master security officer uses the PROF procedure to activate badge 
security. He uses the CNFIGSSP procedure to designate which display stations 
have magnetic stripe readers. 

Badge security requires a magnetic stripe reader at each designated display 
station and the hardware support for connecting the reader to the display 
station. The badge consists of special encoding of data onto a magnetic stripe 
that is a part of the badge. The encoding of data onto the magnetic stripe is 
based upon the American National Standard Magnetic-Stripe Encoding for 
Credit Cards, ANSI X4.16-1973. 

Using badge security requires that password security be on the system. The 
badge IDs are stored in the password security file. 

The badge ID must be eight numeric digits (0-9). 

Format of the Magnetic Stripe 

The data encoded onto the magnetic stripe of your badge is read by a 
magnetic stripe reader. 

The following diagram illustrates the general format of the magnetic stripe you 
need to have when using badge security. 

Operator 
Identification 
Character 

Stripe 
Code 

User Data 
(Badge ID) 

8 numeric 
Digits (0-9) 

Consult your local IBM branch office about the specific format used by a 
magnetic stripe reader. 

End 
Character 

System/34 Concepts 2-123 



2-124 

MENU SECURITY 

Menu security can be used to assign a menu and session library to a user and 
to optionally restrict that user to operating only from the assigned menu. The 
master security officer can assign or change menus for himself and for any 
other user. A security officer can assign or change menus only for system 
operators, subconsole operators, and for work station operators. 

When a menu is assigned, it can be designated as mandatory or not 
mandatory. When the menu is mandatory, the operator can enter only a menu 
item number, an OFF control command, or an MSG control command after 
signing on. If the user attempts to specify a different menu on the sign-on 
display, the system does not allow the operator to sign on. When the menu is 
mandatory, the operator can use the System/34 HELP function to display 
information, but he cannot use the HELP function to run procedures. When the 
assigned menu is not mandatory, the menu is a default menu, which appears 
after the operator signs on but does not restrict the operator to using it. 

Assigning a mandatory menu does not restrict the operator to using only that 
one menu or to a limited number of menu items. The mandatory menu can 
chain to other menus, and procedures run from a menu can display other 
menus by using the MENU OCL statement. 

If a library name and a mandatory menu are assigned, the system does not 
allow the operator to sign on if he attempts to specify a different menu or 
library on the sign-on display. If a library name and a menu that is not 
mandatory (or no menu) are assigned, the library becomes the session library 
after sign on. The library assignment can be overridden on the sign-on display. 

CAUTION 
If a library and a mandatory menu are assigned, the user cannot sign on if the 
menu or library does not exist on the system. If the menu and library are 
specified as defaults (the menu is not mandatory), and if the menu or library 
does not exist, the user can sign on by entering zeros in all positions of the 
menu and library fields on the sign-on display. 



FILE AND LIBRARY SECURITY 

File and library security prevents unauthorized use of files and libraries and can 
be used only if password security is active. File and library security uses a file 
called the resource security file to store information about each protected file 
or library. The resource security file contains a record for each protected file 
and library. Each record contains the user IDs of authorized users of the file or 
library. For each authorized user, the record contains a code that identifies the 
user category. 

For a file, the user's authority can be any of the following: 

• The user is an owner and can: 
Give file access to others 
Rename the file 
Read, display, add, update, or delete information in the file 
Delete the file 

• The user can read or display the information in the file, but cannot change 
the contents of the file. 

• The user can read, . display, and change the contents of the file. 

For a library, the user's authority can be any of the following: 

• The user is an owner and can: 
Give library access to others 
Rename the library 
Display members in the library 
Execute members in the library 
Copy members from the library 
Update members in the library 
Delete members from the library 

• The user can copy, display, execute, and change the contents of the library. 

• The user can copy, display, and execute members in the library, but cannot 
update the contents of the library. 

• The user can only execute members in the library. The user cannot be 
prevented from executing members in #LIBRARY; however, the ability to 
copy, display, or change members in #LIBRARY can be controlled. 

Note: If a mandatory menu is assigned, the user can execute only members 
that are executed from that menu or chained menus. Therefore, a user can 
be prevented from executing members in #LIBRARY if the assigned menu 
and chained menus do not execute #LIBRARY members. 

System/34 Concepts 2-125 



2-126 

A public access level can be assigned for a file or library. For example, the 
public access level for a library can be assigned as execute only. In that case, 
all system users can execute members from that library. However, only the 
users specified in the access list can read or change the member. No user can 
be restricted to a level of access lower than the public access level for the file 
or library. 

An entry for a file or library can be placed in the resource security file before 
the file or library is created. When an attempt is made to create a new file or 
library for which an entry exists in the resource security file and resource 
security is active, the system checks whether the operator is authorized to 
change the contents of the file or library; the system creates the file or library 
and sets a flag in the disk VTOC (volume table of contents) entry indicating 
that the file or library is protected. If the operator is not authorized to change 
the file or library, the system displays an error message at both the requesting 
display station and at the system console; the display station operator must 
cancel the job step or the job. 

When an attempt is made to use a protected file or library, the system ensures 
that the operator at the display station is authorized to use the file or library. If 
an attempt is made to do an operation that the operator is not authorized to 
do, the system displays an error message at both the requesting display station 
and at the system console. The display station operator must cancel the job 
step or the job. 

The system makes special checks before allowing a display station to attach to 
an MRT program. The system checks whether the operator at the display 
station is authorized to execute programs from the active user library at the 
time the MRT was originally requested. If the MRT program allocates disk 
files, the system checks whether the operator is authorized to use those files. 
If the operator is not authorized to use the library or one or more of the files, 
the system displays an error message and does not allow the display station to 
attach to the MRT program. If the MRT program later requests a file to which 
the display station operator does not have authorized access, the security 
function displays a message at the system console, and the system operator 
must cancel the job step or the job. 

Note: Operators of display stations attached to M RJ E need not be authorized 
for all files and libraries used by MRJE. Operators must be cleared for only 
those files and libraries they use. 

If a program attempts to acquire a display station, the system checks whether 
the operator at the display station is authorized to use the library that contains 
the program and whether the operator is authorized to use any files already 
allocated by the program. If the operator is not authorized to use the library or 
one or more of the data files, the system returns an error code to the program 
and does not allow the program to acquire the display station. If the program 
later attempts to use a file to which an operator at an acquired display station 
does not have authorized access, the security function displays an error 
message at the requesting display station; the operator must cancel the job 
step or the job. 



SECURITY FILE LISTING 

You can obtain printouts of the security file in four different formats. These 
different security formats are: 

• System security options by user ID 

• Resource security by resource name 

• Resource security by owner ID 

• Resource security by user ID 

You obtain the printed listing of the security file either by using the PRUST 
procedure or by running $PRL T with the appropriate OCL statements. When 
you run the security file listing procedure, a temporary file. is created and used 
to help in processing the security records. The data in this temporary file is 
erased when the security file report is generated on the output printer you 
specify. For more information on the security file listing, refer to the PRUST 
procedure in the SSP Reference Manual. 

Notes: 
1. Certain functions of the PRUST procedure can be requested only by a 

master security officer. 
2. Any listing that has passwords shown should be kept in a secure place to 

avoid disclosure to unauthorized persons. 
3. The output from the PRUST procedure exists as an entry of the spool file 

until it is printed. This output can be copied by either the system operator 
or the subconsole operator using the COPYPRT procedure. Multiple copies 
of the PRUST output can also be made by the subconsole or system 
operator. 

System/34 Concepts 2-127 



2-128 

Interactive Communications Feature (SSP-ICF) 

The SSP-ICF support on the System/34 allows programs on the System/34 
to establish communications with a remote system and to communicate with a 
program or programs at the remote system. SSP-ICF also allows programs on 
a System/34 to communicate interactively with other programs on the same 
System/34. 

SSP-ICF includes a common application program interface that allows access 
to data management support for specific communications subsystems. The 
following remote system communications interfaces and protocols are 
specifically supported by configured subsystems types: 

• SNA 
- System/370 IMS/VS (using SLU type-P protocols) 
- System/370 CICS/VS (as a 3790 full function logical unit) 
- System/370 user-written communication support using SNA profiles TSP 

3 or 4 and FM P 3 or 4 
- System/34 with SSP-ICF point-to-point 
- System/34 with SSP-ICF multipoint 
- 3601 Finance Communications Controller 
- X.21 Public Data Network (Japan and Scandanavian countries) 

Note: SNA communications to System/370 is supported through NCP /VS 
and VTAM or ACF/NCP/VS and ACF/VTAM. 

• BSC (point-to-point or the System/34 as a multipoint tributary) 
- System/370 IMS/VS via IRSS (multipoint only) 
- System/370 CICS/VS (as a System/3) 
- System/3 Model 15 CCP 
- System/34 using SSP-ICF or batch BSC support (point-to-point only) 

In addition, communications with the following devices and systems is 
supported via BSC protocols: 

- 3741 Models 2 and 4 (point-to-point only) 
3747 (point-to-point only) 
System/7 with MSP/7 (as a System/3) 
System/32 (point-to-point only) 
System /3 with M LM P or RPG TP 
System/38 using BSC support 
Series 1 (as a System/3) 
OS, OS/VS, DOS, or DOS/VS BTAM 
OS or OS/VS TCAM 

- 5231 Model 2 (as a 3741 in transmit mode only) 
- 3750 (World Trade only) 
- 3705 using NCP EP or PEP 
- 5110(asa3741) 
- 5260 (as a 3741) 
- 5280 (as a 3741) 

In addition, Assembler language users running batch BSC jobs can send or 
receive variable length records, blocked or unblocked. 



Also provided is a subsystem that allows a System/34 to coexist on a BSC 
multipoint line with 3270s. The host can be a System/360, System/370, or a 
System/3. The user can write programs that use the current set of host 
programs for 3270s. This support does not allow attaching 3270s to the 
System/34. 

SSP-ICF also provides the Intra subsystem, which enables concurrently 
executing programs on the same System/34 to communicate with each other. 
No data communications line is involved. 

SSP-ICF SESSIONS 

A key SSP-ICF concept is that of a session. By definition, a session is the 
logical connection (or pipeline) between a System/34 application program and 
a remote subsystem. Thinking in terms of display station interaction with 
programs might help you understand the session concept. 

Locally Initiated Sessions 

As described earlier under Program Attributes, an application program can 
acquire a System/34 display station. That display station remains attached to 
the program until the program ends or until it releases the display station~ In 
exactly the same way, a System/34 application program can acquire a session. 
The program itself is coded as if it were acquiring a display station for use as a 
WORKSTN file. The only difference is that instead of using a WORKSTN 
statement to define the requested display station, you use a SESSION OCL 
statement to define the requested session. The SESSION statement identifies 
the session ID used within the program and the location ID that was assigned 
during SSP-ICF configuration. 

System/34 
Application 

Start a 
Session 

ACQ 

...... -Start 
Program A 

SSP-ICF 
Subsystem 

Session 
Started 

-r 

-
__.. 

A session ends when one of the following events occur: 

Remote 
Subsystem 

Starts 
Program A 

• The program requests that the session be ended (via a release or 
end-of-session operation). If a release operation is used to end the session, 
the session will end only if the release operation is successful. 

• The program terminates. 

• An error causes abnormal termination of the session. 

• A normal disconnect occurs on a switched line. 

...... ... 

Remote 
Application 

Program A 

System I 34 Concepts 2-129 



2•130 

Remotely Initiated Sessions 

As described earlier, under Program Attributes, a requesting display station is 
automatically attached to an SRT or an MRT program when the program is 
initiated. When a procedure is evoked from a display station, that display 
station is attached to each SRT and MRT program that is run during execution 
of that procedure. Analogously, a program on another system for which a 
session was configured and enabled can issue a procedure start request for the 
System/34. The System/34 will execute the procedure and the requesting 
session will be attached to each SRT or MRT program that is run as part of 
that procedure. The requesting program can then communicate interactively 
with the program run on System/34. 

System/34 
Application 

Program B ...._ 
.....-

--...... 

SSP-ICF 
Subsystem 

--~ 
Starts Procedure 
B, which Runs 
Program B 

~ 

7 
Interactive Data Exchange 

Remote 
Subsystem 

Session 
Started 

The session ends when one of the following events occurs: 

• A program issues an end-of-session operation. 

• A program issues a put-end-of-transaction operation. If end of transaction is 
received, the program must issue an end-of-session operation to terminate 
the session. 

• An error causes the session to be abnormally terminated. 

When the session ends, all subsequent procedure steps, if any, execute with 
no requesting display station attached. 

Note: Some ICF subsystems, such as BSC 3270, do not support remotely 
initiated sessions. Refer to the ICF reference manual to determine if the 
subsystem you are using supports remotely initiated sessions. 

Remote 
Application 

Start a Session 

--.. 

Start Procedure B 

~ ...... 



SSP-ICF DATA MANAGEMENT 

RPG II programs use the WORKSTN file and COBOL programs use the 
TRANSACTION file to interface with SSP-ICF support. Basic assembler 
programs use assembler macroinstructions to interface with the SSP-ICF 
support. BASIC programs use the OPEN, CLOSE, READ, and WRITE 
statements to interface with SSP-ICF support. When a program issues an 
operation for the file, SSP-ICF data management processes the request. 
(SSP-ICF data management runs in the main storage nucleus area as a 
subroutine of the requesting task.) If the requested operation is for an 
SSP-ICF subsystem, SSP-ICF data management transforms the request into 
the format required by the communications subsystem. If the request is for a 
display station operation, SSP-ICF data management passes control to work 
station data management. 

User Program 

WORKSTN or 
TRANSACTION 
File Request 

SSP-ICF Data 

Yes 

SSP-ICF 
Subsystem 

No 

Remote System 

Work Station 
Data 
Management 

System/34 Concepts 2-131 



2-132 

SSP-ICF data management and the communications subsystems use an area 
of nonswappable main storage as an intermediate buffer pool for sending or 
receiving data for SSP-ICF sessions. This buffer pool allows efficient 
overlapping of user program operations with the communications required to 
send or receive data. For output operations, SSP-ICF transforms the user 
request to the format required by the communications subsystem. SSP-ICF 
data management transforms the request by assigning and. moving data from 
the user program to the nonswappable buffer space. The communications 
subsystem is informed of the request via a task post, and, if the operation 
does not require waiting for successful completion, SSP-.ICF data management 
returns control to the user program. For input operations, the user program 
issues an accept input operation, which causes SSP-ICF data management to 
wait for data from either a display station or an SSP-ICF session. If data is 
received for an SSP-ICF session, the data is moved from the nonswappable 
main storage buffer space to the buffer in the user program. 

Autocall Capabilities 

The IBM System/34 autocall feature allows you to make calls automatically 
over switched M LCA lines without operator intervention. With the autocall 
feature, you will be able to do the following: 

• Define multiple lists of phone numbers that can be accessed by the 
following communications subsystems: 

BSCEL 
BSC CICS/VS 
CCP 
SNA PEER 
SNA 3270 emulation 
SNA upline facility 

• Execute both M RJ E and SRJ E tasks from a procedure from any work 
station, and call a phone number without system operator intervention 

• Have repeated executions of both batch BSC or SSP-ICF job steps that call 
multiple locations 

• Acquire SSP-ICF sessions and calls placed to the location without system 
operator intervention 



To use the System/34 autocall support, do the following: 

• Specify which lines are to be autocall lines when your service representative 
configures the microcode 

• Create object members containing the phone numbers of the remote 
systems you wish to call 

• Start the autocall task by running either a batch BSC job, an MRJE or SRJE 
utility, or an SSP-ICF job 

For more information on how to use the autocall feature, refer to the 
Interactive Communications Feature Reference Manual if you plan to use autocall 
with SSP-ICF. If you plan to use the autocall feature with either MRJE or 
SRJE or batch BSC, refer to the Data Communications Reference Manual. 

System/34 Finance Support Subsystem 

The System/34 Finance Support subsystem allows application programs using 
the interactive communications feature (ICF) to communicate with all models of 
either the 3601 Finance Communication Controller or the 3694 Document 
Processor. A communications adapter for SDLC communications is required to 
use the finance support subsystem. 

For more information about the finance support subsystem, refer to the 
Interactive Communications Feature Reference Manual. 

DATA COMMUNICATIONS AND THE X.21 INTERFACE 

The System/34 supports features that provide an interface to public data 
networks supporting digital communications. This interface is known as the 
X.21 interface. 

To use the X.21 feature, your system needs a multiline communications 
adapter (MLCA). Each MLCA communications line can be defined as either 
switched or leased when using digital communications. The line speeds 
available are: 

• 2400 bits per second 

• 4800 bits per second 

• 9600 bits per second 

• 48 000 bits per second 

The X.21 interface supports up to three switched or four leased lines. If one 
line is configured as a switched X.21 line, the other two lines may be 
configured as either X.21 or non-X.21 switched or leased lines. 

System/34 Concepts 2-133 



2-134 

The following table lists the communications support available with the X.21 
interface: 

Switched Lines 

Communications Component Leased Lines Auto Call Auto Answer 

Remote work station support Yes Yes No 

Batch BSC support Yes Yes Yes 

MRJE and SRJE Yes Yes Yes 

SSP-ICF/BSC subsystems 

BSCEL Yes Yes Yes 

CCP Yes Yes Yes 

CICS Yes Yes Yes 

IMS/IRSS Yes No No 

3270 Device Emulation Yes No No 

SSP-ICF /SDLC subsystems 

SNA upline Yes Yes Yes 

PEER Yes Yes Yes 

3270 SNA emulation Yes Yes Yes 

Finance subsystem Yes No Yes 



Communications Support Available with the X.21 Interface 

Leased Lines 

The leased lines must be defined as X.21 communications when your customer 
engineer does microcode configuration. 

Switched Lines 

For switched lines you must do the following: 

1. Define which lines are to be X.21 lines during the microcode 
configuration. 

2. Start the X.21 interface by running one of the previously listed 
communications components. 

X.21 Autocal/ Feature 

Using the X.21 autocall feature requires you to create object members 
containing the phone numbers of the remote systems. You create these object 
members by using the DEFINX21 procedure. 

The DEFINX21 procedure is described in the SSP Reference Manual. 

For more information on using the X.21 feature refer to either: 

• Interactive Communications Feature Reference Manual. 

• Data Communications Reference Manual. 

System/34 Concepts 2-135 



2-136 

Sample Inquiry Applications Using SSP-ICF 

The following two examples show simple inquiry applications that use 
SSP-ICF. 

Local Inquiry Program 

In this example, a local inquiry program evokes a remote program to answer an 
inquiry. The local program could be an MRT-NEP that receives an inquiry 
request from a display station and, if necessary, evokes a remote program 
through an interactive communications session. After receiving the inquiry 
response from the remote program, the local program releases the session and 
displays the answer to the display station operator. 

If the local program is an MRT-NEP, it remains active even if no display 
stations or sessions are attached. The program waits for a display station to 
request the program and make an inquiry. After receiving the inquiry, the local 
program determines whether the information is available on the local system or 
if a remote application must be evoked. If the information must come from a 
remote application, then the local program performs the steps described in the 
following paragraph. 

First, the program acquires a session corresponding to one described on a 
SESSION OCL statement. For information about acquiring a session, refer to 
SSP-ICF Sessions in Chapter 2. After successfully acquiring the session, the 
local application evokes the remote application. The evoke operation should be 
an evoke (with data), then invite. The evoke portion of the operation activates 
the remote program and includes the inquiry as data; the invite portion allows 
the remote application to send the results. Multiple accepts or gets are 
necessary if the response is expected to be multiple records. After receiving 
the response, the local program releases the session and displays the inquiry 
results to the display station operator. The program can then wait for the next 
inquiry. For information about SSP-ICF operations, refer to the Interactive 
Communications Feature Reference Manual. 



System/34 Local Inquiry Program Remote Application 

Invite Display Station Input 

Accept Display Station Input 

~ 
Acquire 

I I 
.. 

Evoke 
Reads Inquiry 

I I 
• Then Invite 

~ 
Accept • I I ~ 

Send Data (ends transaction) 

Release 

Put Data to Display Station 

Invite Display Station Input 

Accept Display Station Input 

• • • 

System/34 Concepts 2-137 



2-138 

Remote Inquiry Program 

A remote inquiry program is started by a remote system to answer an inquiry. 
After being started, this program receives an inquiry from the remote system, 
sends the response back, and terminates (or handles other inquiries if it is an 
MRT program). The remote inquiry program could be the counterpart to the 
local inquiry program discussed previously. 

The first operation should be an accept to receive the session ID and any data 
transmitted with the request, possibly followed by a get to receive the inquiry. 
The program must then perform any processing necessary to answer the 
inquiry before issuing one or more put operations to transmit the response to 
the remote system. The session ended when the application program 
successfully sent end of transaction. If the program is an MRT-NEP, it can 
issue an accept to wait for the next requestor. 

System/34 Remote Inquiry Program 

Accept 

Get 

'? 
Put data 

End of Transaction 
(session is ended) 

Accept 

• • • 

7 Remote Application 

Send Program Start Request 

Send Data (inquiry) 

I . Get 



Checkpoint Facility (For COBOL and Assembler Programs 
and Subroutines) 

When a batch job will run for an extended period, you can provide for the 
periodic recording of information during the run. The checkpoint facility saves 
the status of the system, and preserves the. associated resources used by the 
job step. Thus, if the program prematurely terminates, the checkpoint facility 
provides a means of restarting the program at an intermediate point. For more 
information about using checkpoints in a program, refer to the Basic Assembler 
and Macro Processor Reference Manual and the COBOL Reference Manual. If 
you intend to use the checkpoint facility for an interactive (nonbatch) job, refer 
to the restrictions and considerations for both checkpoint and restart to ensure 
that the program can be restarted. The restrictions and considerations are 
described later in this section. 

When you use the checkpoint facility, a checkpoint record file is created for 
each job step. The checkpoint record file exists until the job step terminates 
normally. If a malfunction occurs, the checkpoint record file remains on disk 
until the program is restarted and terminates normally. The file labels for each 
checkpoint record file must be different from any other file on the disk. The 
file label is specified in the program. For information about determining the 
size of the checkpoint record file, refer to the Installation and Modification 
Reference Manual. 

Files and libraries are marked as protected (checkpoint active) when they are 
being used by a program saving checkpoints. If a malfunction occurs, these 
resources remain protected just as if the program were still running. 

When a checkpointed job step has run successfully, the checkpoint information 
is removed. The resources assigned to that job step become available for other 
tasks. 

System/34 Concepts 2-139 



2-140 

Checkpoint Restrictions 

The following is a list of restrictions for a job step that requests a checkpoint: 

• Disk files that are specified for the job step cannot use the DISP-SHR 
option in the Fl LE statement. 

• All files, including offline multivolume files, must be allocated and then 
opened before any checkpoints are requested. 

• There is enough space on the fixed disk for the checkpoint file. 

• Checkpoint is not permitted if the program is using batch BSC 
communication lines; however, programs can be using remote work stations 
and SSP-ICF sessions. 

If the requestor for the program is an SSP-ICF session, checkpoint is allowed 
if (1) the program was evoked with end of transaction and (2) either 
PDATA-NO (the default) was specified for the procedure that loaded the 
program or the program has accepted the data sent when the program was 
evoked. 

The following is a list of restrictions for other users when another job step 
requests a checkpoint (the CATALOG procedure can be used to display the 
checkpointed status of the file): 

• The total number of disk VTOC entries available for permanent and 
temporary files is reduced while checkpoint active files reside on disk. The 
amount of reduction is the sum of the following values: 

The number of scratch and job files that are not allocated from the 
reserve area. 
The checkpoint record file. 
The reserve area file. 

• Other jobs and system functions cannot access the checkpoint active files. 

• Checkpoint active files may not be used as input for $COPY functions such 
as saving the file on diskettes or printing its contents. 

• Checkpoint active files may not be deleted by $DELET or renamed by 
$RENAM. 

• Librarian functions that require dedicated use of a library are not permitted. 
Therefore, a condense operation of a checkpointed library, including 
#LIBRARY, cannot be requested if the checkpointed program failed and has 
not yet been restarted. 



Checkpoint Considerations 

If you use the checkpoint facility, you should be aware of the following 
programming considerations: 

• If an assembler program requests a checkpoint, the first checkpoint should 
be issued as soon as possible so that: 

A valid checkpoint record exists. 
- The space for the checkpoint record file has been allocated. 

• Each time an assembler program requests a checkpoint, the program should 
check the completion code in the parameter list. 

• Make sure that operator instructions are complete, so that if a malfunction 
occurs, the operator knows the proper action to take. This action should 
include: 

How to respond to checkpoint/ restart system messages 
- When to run the CRESTART procedure 

• The checkpoint record file must be a new file and cannot have the same 
label as an existing file. A FILE OCL statement must not be supplied for the 
checkpoint record file. 

• Files may be modified by additions, deletions, and updates. The checkpoint 
function keeps track of the last record in the file when the checkpoint 
occurred. The restart function deletes all records added after the last 
checkpoint. Deletions and updates remain in effect unless the program has 
some means to restore them. The COBOL Reference Manual further 
describes considerations for checkpointed programs that update a disk data 
file. 

• If a 2 option was selected for a message and then the 0 option was 
selected for message SYS-1314, the remaining job steps will run 
immediately. If you restart the program, those steps will run again after the 
checkpointed job step completes normally. If you do not want to execute 
the remaining job steps when the 0 option is selected, you can use a 
I I IF ?CD? /3721 expression to branch around the remaining steps. 

• The RESERVE statement is permitted for scratch and job data files. If this 
statement is used, the SSP will attempt to allocate these files from the 
reserve area. 

• If jobs that take checkpoints terminate abnormally, all S (scratch) and J (job) 
files that are not in a reserve area have VTOC entries. If a restart is not 
done, these files are flagged as checkpoint active. 

System/34 Concepts 2-141 



2-142 

Restart Facility 

The restart facility is a means of resuming the execution of a program from a 
checkpoint. Any operator may restart a checkpointed job step. When a 
checkpointed job step is restarted, the restart facility attempts to recreate the 
status of the job step as it was at the checkpoint. 

The restart facility rebuilds and updates the system control blocks with the 
data saved in the checkpoint record. All the resources that the job step used 
are restored to the same status as at the checkpoint. This involves locating 
and allocating disk files, instructing the operator to replace a diskette if offline 
multivolume processing is used, restoring printer file status, and restoring the 
work station work area. The job step is then restored from the last checkpoint. 

The restart facility sets the appropriate completion code in the 
checkpoint/restart parameter list. The assembler programmer should check for 
this completion code so as to determine whether the program is returning from 
a checkpoint or a restart. Return code checking enables the assembler 
programmer to perform any further recovery operation that the particular 
application may require. For further information about the checkpoint/ restart 
parameter list, refer to the Basic Assembler and Macro Processor Reference 
Manual. 

When using the restart facility, it is the user's responsibility to acquire any 
display stations that the job step requires, and to restore the proper displays 
and data to those display stations. 

Restart Considerations 

The following list describes restart considerations: 

• The job step should be restarted as soon as possible after the malfunction 
because the checkpointed resources are not available for other jobs to use. 

• When a checkpointed job step fails, the operator can remove the 
checkpointed job from the system if the job step is not going to be 
restarted. Until the job step is restarted or canceled, the job and scratch 
files associated with the job step will exist along with their VTOC entries; 
also, any checkpointed libraries including #LIBRARY, will appear as if they 
had a user. The CATALOG procedure can be used to display the status of 
checkpointed files and libraries. 

• The local data area and external indicators (UPSI switches) are restored 
even if the restart function is run from a display station other than the one 
from which the program was checkpointed. Therefore, you should ~nsure 
that any jobs following the restart do not depend upon data that was in the 
local data area or external switches before the restart function was run. 

• If resource security is active, the operator who runs the restart function 
must be on the list of users for the user files and libraries for the job step 
being restarted, as well as all job steps that follow the checkpointed job 
step. 



• A RESERVE OCL statement must not B"e used before the restart function is 
run. 

• MRT programs are restarted as SRT programs. 

• If a checkpointed program has not yet been restarted, do not run the 
RELOAD procedure. A restart is not possible if the RELOAD procedure has 
removed message members, load members, procedures, or menus from the 
system library or from a user library. 

• If a checkpointed program has not yet been restarted, do not delete or 
rename a checkpointed user library. 

• Acquired display station sessions or acquired SSP-ICF sessions that were 
active when a checkpoint occurred must be acquired again by the program 
at restart time even if REOD-YES is specified on the WORKSTN OCL 
statement. The program must keep track of the display screen formats and 
data that were displayed at the time of the checkpoint and must restore the 
displays and data. 

• The diskette files for offline multivolume files are not marked as protected 
by the checkpoint function. If a failure occurs, the operator should ensure 
that the diskette files are not used as input or output to any other program 
until the failing program has been restarted. 

• If a checkpointed program is restarted and goes to normal completion or if 
the checkpointed program was executed as part of a procedure and the 
procedure completes normally, the following conditions occur: 

If a menu was active at the time the program or procedure was initiated, 
that checkpointed menu is restored even if a different menu was active 
when the restart function was run. 
The session library, menu library, and message member libraries that 
were active when the program or procedure was initiated are restored 
even if different libraries were active when the restart function was run. 

System/34 Concepts 2-143 



2-144 

Printed Output 

When spooling is not active during a checkpointed job step, all records up to 
the latest checkpoint, including the ones following it to the point of the system 
failure, are printed. When the job step is restarted, the printed records 
requested after the last checkpoint are printed again. This can produce an 
overlap in the output. 

If print spooling is active, overlapping of printed output usually does not Qccur. 
There is an overlap in the printed output only when DEFER-NO is specified in 
the PRINTER statement even though print spooling is active. When spooling is 
active, the spooled output generated after the program is restarted is placed in 
a different entry in the spool file. Therefore, output from before the 
malfunction and from after the restart are in two separate spool file entries. 

Note: If a checkpointed program fails, the spool file should not be reformatted 
before the restart function is run. If the spool file is reformatted and the 
program is restarted, spooled output (the output generated from the start of 
the program until the last checkpoint before the failure) is lost. 

Nonrestartable Job Step 

It is possible that certain conditions will prevent $RSTRT from restarting the 
job step. The job step might be nonrestartable when: 

• A permanent disk or diskette I I 0 error occurred. 

• A failure occurred before the first checkpoint was complete. 

• A user library was deleted. 

• The RELOAD procedure was run. 

Removing Checkpointed Jobs 

If a job step is nonrestartable or if the operator does not wish to restart the 
job, the system operator has the option of removing the checkpointed job from 
the system. The following describes three ways in which a checkpointed job 
step can be removed from the system: 

• If the operator inquires out of or cancels a checkpointed job or responds 
with a 2 or 3 option to any message, a SYS-1314 message is issued. By 
responding with a 1 option to the SYS-1314 message, a specific 
checkpointed job is canceled. 

• By using the DELETE parameter in the CRESTART procedure, the operator 
can cancel the checkpointed job step. For example, the checkpoint record 
file for a job step was labeled CK 1. To cancel the checkpointed job step, 
the operator can enter: 

CRESTART CK1,DELETE. 

• During file rebuild, the operator is prompted about whether to remove all 
checkpoint active files from the system. If the operator selects the Y (yes) 
option, all checkpoint active job steps are removed from the system. 



Operator Considerations 

When working with checkpointed jobs, the system operator and display station 
operator should be aware of the following considerations: 

• An SRT must be restarted from a work station. If the display station does 
not have the same logical ID as the original requester, the following may 
occur: 

I I 0 to a specific display station will probably fail. 
History file continuity will be lost. 
?WS? OCL substitution will cause unpredictable results. 

Note: An SRT program cannot be restarted by the EVOKE operation, by the 
I I EVOKE OCL statement, or from the input job queue. Other types of 
programs can be restarted in those ways. For example, a program that was 
run from the input job queue was checkpointed and the checkpoint record 
file was called CKP1. To restart the program from the input job queue, the 
operator can enter: 

JOBQ ,CRESTART,CKP1 

• If the configuration has been modified for date format, belt image, forms 
number, forms length, or translation table, a diagnostic will be issued to 
which the response can be to terminate the restart or to reinstate the 
previous values that were saved during the checkpoint. If the operator 
chooses to reinstate the previous values, the following statements apply: 
- The belt image remains changed until the next sign-on or until the SET 

procedure is used to change the belt image. 
The translation table remains changed until the next sign-on or until the 
SET procedure is used to change the translation table. 

The other values remain changed until the checkpointed job terminates. 
At that point, they will return to the values they had before the restart. 

• The tasks priority will not be restored to the value at the checkpoint. 

System/34 Concepts 2-145 



System/34 and Distributed Data Processing Environments 

The System/34 has the data processing capabilities which allow you to use 
your System/34 in a distributed data processing environment. A distributed 
data processing environment is where the power of the computer is shared by 
many users who may be in different locations. These locations can be in 
another part of the main computer site or in a different city. You can use the 
System/34 as a processor terminal, a host system, a subhost system, or a 
peer connection. You can also process files that are located on a System/3 
Model 150 or another System/34. 

System/34 as a Processor Terminal 

System/34 as a processor terminal is more applicable in firms with multiple 
locations where the facilities that are remote from the central location are large 
enough to require their own processing capability. In the following examples, 
the remote location has a System/34 and the central installation has a 
System/370 (the host system can be a System/34 or a larger system). Data 
transfer is over communications lines (switched or nonswitched) between the 
processors. Transmission is made to, and perhaps from, the central office's 
system to provide summary data as well as updated file information. In some 
cases, the remote processor may be used for remote job entry into a host 
system. An advantage of using System/34 is that it has multiprogramming, 
which allows communications programs to execute concurrently with other 
programs. 

System/34 -. ------, (-----System/370,303X,308X 

Local Work Stations \ • BSC • SDLC/SNA o, ~C/SDLc4t•-•t••1 =~~;, -SNAUPLINE 

0 OR¢::> 

Rem(]~ 

2-146 

If the host is a System/370 or another System/34, communication can be via 
BSC or SDLC. If the host is any other type system, communication can be 
only via BSC. 



System/34 as a Host System 

System/34 as a host system is applicable to many common business services. 
Many organizations have data that should be entered into a central control file. 
Some examples are attendance reporting, customer order masters, and 
inventory. Firms that have remote locations can use terminals to transmit or 
receive data using nonswitched or switched communications line connection to 
the host System/34. For example, a business has several remote locations. 
Location A uses a System/32 for payroll processing and location B uses a 
programmable 3741 to enter inventory transactions; the other locations use 
online 5250 devices. Summary data from locations A and B are transmitted to 
the System/34 using a switched communications line, while a nonswitched line 
is used to communicate with the 5250 devices. 

----A------.-

1 
,--------System/34-------

·---.. - 0R ..................... .. 

---- System/32 -------

Programmable 3741 _J 
5256 

5251 
Model 11 

5251 
Model 12 

Multiprogramming is an advantage of using System/34 as a host system. 

System/34 Concepts 2-147 



System/34 as a Subhost System 

This category is a combination of the first two. The subhost serves as a host 
for some processor terminals, and also as a type of processor terminal for 
another host. A subhost system provides all the advantages of terminal entry 
to interact with centralized data files in a system and to communicate with the 
central office's system. The central (host) system has the main data files, and 
each subhost has a subset of those data files that can be accessed by the 
terminals attached to the subhost. 

.----- Subhost System -----, 
Host System 

-----System/370,303X,308X-----
Local Work Stations BSC/SDLC 

Q1 0 OR~~" 

DJ 
BSC 

------Processor Terminal 

._ ____ Programmable 3741 ----~ 



System/34 as a Peer Connection 

System/34 as a peer connection is applicable to many common business 
services with one or more remote System/34s. The peer connection allows 
System/34 to utilize data on remote systems and to start remote procedures to 
offload processing. A peer connection provides System/34-to-System/34 
processing without having to go through a host. This processing can be done 
on a point-to-point connection using BSC or SOLC, or on a multipoint 
connection using SOLC. 

System/34 

BSC/SDLCI ( 
System/34 

• 

01 
0 OR 

oJ DJ 
DISTRIBUTED DISK FILE FACILITY 

The distributed disk file facility allows you to access data files stored on 
another System/34 or a System/3 Model 150. You do not have to recompile 
your programs to use this feature. 

The distributed disk file facility is available by PRPO only. The following is the 
PRPQ number list: 

• P84037 for System I 34 

• P84038 for System/3 Model 150 

For more information about the distributed disk file facility, refer to the IBM 
System/34 and System/3 Model 15D Distributed Disk File Facility Reference 
Manual, SC21-7869. 

t/) 

System/34 Concepts 2-149 



2-150 



Chapter 3. Design Considerations 

During system design, you typically need to make decisions regarding the 
following items: 

• Displays and menus that operators use 

• Input documents and printer forms 

• Files 

• Applications and programs 

• System security and integrity 

• Documentation 

• Remote display stations 

For example, you might need to answer questions such as: 

• What information should operators see on their displays and how can I 
format the information so that it is readable 7 

• Should I design similar forms for the various printers? If not, how should 
they differ? 

• Which file organizations should I use and when should I use them? 

• How should I design the records in the files 7 

• What design decisions affect response times 7 

• Which application should I design first? 

• Which data entry programming method should I use 7 

• Which programs should be SRT programs? Which should be MRT 
programs? Which should be never-ending programs? 

Design considerations for all these questions and more are presented in this 
chapter. As you read these considerations, keep in mind that no two 
businesses are likely to have the same design concerns. Therefore, the 
information in this chapter is necessarily general in order to apply to as many 
situations as possible. 

Design Considerations 3-1 



3-2 

Display Design 

This section describes some· key elements of display design. The guidelines 
presented, although representative of most display' design, might not apply in 
all circumstances. The topics are offered more for your consideration during 
display design than for rules that you must follow. 

Display design is concerned primarily with the way data is displayed to the 
operator and the way that the operator responds to this data. Generally, input 
displays should be designed for ease of data entry, and output displays should 
be designed for ease of reading. Many displays show output as well as accept 
input. These displays are the most challenging for the designer, who must 
make tradeoffs between ease of data entry and ease of reading. This section 
might help the designer make decisions about the tradeoffs. 

System/34 operators might be miles from the computer room or at least far 
enough away so they cannot bring their questions or problems to this room. 
Therefore, displays that these operators use should be clear, complete, and 
concise. 

Operators should feel that their display stations are helping them be more 
productive. You might help operators attain a positive attitude for using their 
display stations by involving them in the display design. For example, ask for 
opinions of some sample displays that you plan for them to use and ask how 
they might improve them. 

Experienced operators might be able to use displays that have few operator 
instructions on them, and they might be more productive if the response times 
are short. Inexperienced operators might need more guidance from the 
displays, and they might tolerate longer response times. 

As you read the following display design guidelines, you might consider the 
amount of experience your display station operators have and plan your 
displays accordingly. 

IDENTIFY THE DISPLAYS 

Each display could be identified by a title or heading and a nondisplayed ID. 
The title should be as concise as possible, yet meaningful. Titles, which are 
usually centered on or near the top line of the display, could be intensified or 
underlined. 



PROVIDE MEANINGFUL HEADINGS 

Descriptive headings help operators understand what they see and do. For 
example, the headings on a display for entering line items from an order might 
be: 

LINE ITEM NO QTY DESCRIPTION PRICE AMOUNT 

You might.!:leed to compromise between the number of descriptive headings 
you use, which makes a display easier to understand, and the length of the 
response time. Too many headings might degrade performance, especially on 
remote display stations. For those displays, you might want to minimize the 
number of characters on each display by abbreviating or eliminating the 
headings. 

Design Considerations 3-3 



Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

PLAN READABLE DISPLAYS 

3-4 

The basic rule of designing displays is to make the display screen easy to read. 
Display screens are the easiest to read when they are not cluttered with extra 
information. You should try not to put too much information on one screen. 

The following suggestions are provided to help you plan readable displays: 

• Use blank space to separate data items. Blank space is the most effective, 
leas~ cluttering, separator. 

• Organize data in columns or lists. Text could be left-justified; numeric data 
could be right-justified and aligned on the units position. 

• Present information in some recognizable order for ease of scanning. For 
example, put historical dates in chronological order. 

• Use complete words rather than contractions. 

• Use lowercase letters in prompts. (Lowercase letters do not print on a 5211 
Printer or a 3262 Printer unless it has a 96-character print belt.) 

• Use column separators in input fields. 

• Highlight new, added, or referenced information when a display is reshown. 

• Use blinking fields sparingly. Blinking should be used only for urgent, 
attention-getting purposes. 

• Arrange fields so that the most frequently used fields are recorded first, 
followed by less frequently used fields. 

• For inquiries, show only the expected data in a readable sequence. 

• Avoiding unnecessary information such as asterisks that outline information, 
which reduces the amount of data sent from the program to the display 
station. 

• Use color to differentiate data (if color is available). 

Avoiding unnecessary data is especially important for displays shown at remote 
display stations. Unnecessary data transmitted to a remote display station can 
cause lengthy response times. 



The following displays show use of some of these design guidelines: 

Centered Title Column Separators 

Blank Lines for~--. 
Improved Read­
ability 

Lowercase Letters 
in the Prompt 

Operator 
Instructions 

Reshown Data 
from a Previous 
Display 

Underlining Used 
to Highlight the 

c 

PRESS FIELD EXIT KEY TO CONTINUE 
PRESS COMMAND KEY 7 TO END YOUR SESSION 

ORDER ENTRY 

CUSTO~ER 101 

OBRIEN CHEMICAL SUPPLIES 
1240 INDUSTRIAL WAY 
LAKEPORT MN 25555 

Prompts; lndenta- CUST REF NO 
tion Used for the -

Customer AddreA 

Initial Position 
of Cursor 

KEY REF NO AND VIA; THEN PRESS ENTER 

IJllll 

HAROBIN INTERNATIONAL 
INDIAN HILLS INDUST PAR:< 
MARIETTA GA 521&2 

l 

Design Considerations 3-5 



DISPLAY A SMALL AMOUNT AT ONE TIME 

The displays should be kept uncluttered and include only meaningful 
information. For example, do not display the entire. record on an inquiry if the 
operator normally looks at only one or two fields. Instead, display the 
necessary fields and, perhaps, provide a function that allows the operator to 
display the entire record when it is required. 

Large displays are not intended only for displaying more data; part of the 
advantage of large displays is that they allow more formatting freedom. For 
example, double-spaced lines might make a display more readable. 

Certain applications accumulate data from display to display. To a point, such 
an accumulation might be desirable. However, if you are not careful, the 
display can get too cluttered. 

You might use nondisplay fields for information that is not needed by the 
operator but needed for your programs. For example, the display station ID or 
a screen format ID might be needed by a program, but it might not need to be 
seen by the operator. 

MAINTAIN CONSISTENCIES AMONG DISPLAYS 

Each application has its own display screen requirements, but good design 
requires display consistencies among applications .. For example, terminology, 
abbreviations, and codes should be consistent from one application to another. 
Consistency is particularly important when the same operator does more than 
one application. The standards established within an application are even more 
important than those between applications. 

Use of keys should be standardized for displays and applications. For example, 
avoid allowing command key 7 to end a job on one display and command key 
9 to end the job on another display. Of course, a key sometimes has to be 
used in an application-unique function, but a legend should tell the operator 
about the nonstandard use of the key. 

Reserve areas of the display for certain types of information and maintain the 
areas in the same relative locations on all displays. For example, try to provide 
operator instructions and display messages near the bottom of the displays. 



Legend Placed 
Near Bottom of 
this Display and in 
the Same Relative 
Position on al I 
Displays in the 
Application 

Finally, try to highlight a field consistently, whether via underlining, blinking, 
high intensity, or a reversed image. 

The following display illustrates some of the consistency guidelines: 

ACCOUNTS RECEIVABLE 
CASH RECEIPTS 

Customer Nut.lher 000101 ~ OBRIEN CHEMICAL SUPPLIES 

Check Number U 1111 

Amount I 1111111 

Check Date 111111 

PRESS ENTER TO CONTINUE II 
CHO KEY 2 TO RETRY PREVIOUS ENTRY 
CHO KEY 3 TO ENTER NEXT CUSTOMER 
CMO KEY 7 TO ENO SESSION J 

~--------'------' 

Messages to the operator are shown 
on the bottom line on all displays 
in the application. 

Throughout the application, 
these keys have the same 
basic functions. 

Design Considerations 3-7 



3-8 

KEEP OPERATOR RESPONSES SHORT 

Whenever possible, keep operator responses short but complete. These 
responses can include codes or abbreviations, but only if the operators are 
trained to use them. 

Cursor positioning by operators should be minimized. Instead, displays should 
be designed so that operators need not frequently space over unused fields. 
The cursor might be positioned by the program to avoid this skipping over 
fields. 

Consider blinking the cursor to draw the op.erator' s attention to its initial 
position. 

PROVIDE ONE IDEA FOR EACH DISPLAY 

Whenever possible, a display should contain information concerning only a 
single aspect of an application. For example, one display should not be used 
to inquire into a file and perform an update at the same time. Concentrating on 
a single idea at a time decreases the possibility of an operator error. The 
following display is an example of allowing one function per display. The 
legend of command keys at the bottom of this display shows additional 
functions that the operator can select. 

30000 

A & A GROCERY 
p 0 15159 
E. DUNDEE 

A & A GROCERY 

IL 60118 

PHONE: 312 / 555-1734 
SALESMAN 16 

--- A/R BALANCE ---

BALANCE FORWARD 

PREVIOUS BALANCE 
CHf,RGES 
PAYMENTS 
ADJUSTMENTS 

* AMOUNT NOW DUE 
FUTURE Cl-IARGES 

* TOTAL AMOUNT DUE 
CREDIT LIMIT -

COMMAND KEYS-
l RESUME SEARCH 
5 SALES DATA 

579. 04 
1,313.00 

874.46 
.oo 

1,017.58 
.oo 

l,017.58 
l,soo.oo 

2 NEW SEARCH 
6 PRICE INQUIRY 

LAST PAID ON 9/02/78 

DETAIL FOR AMOUNT NOW DUE-
CURRENT PERIOD 438.54 
OVER 30 DAYS 579.04 
OVER 60 DAYS .00 
OVER 90 DAYS .00 
UPAIO LATE CHGS .00 

3 BILLING DATA 
24 SIGN OFF 

4 A/R BALANCE 



ACKNOWLEDGE OPERATOR INPUT 

Operator interaction with a display station is usually conversational; for 
example, an operator makes an inquiry, and the display station shows the 
requested data. For this reason, you should be concerned about how long an 
operator waits for the System/34 to respond. 

If a program takes a relatively long time to respond to an operator, you might 
want to display an in-process message immediately after the program receives 
the operator's input. For example, you might want to do this for a program 
that does extensive calculations with the operator's input. Acknowledging 
operator responses at remote display stations might affect their response 
times. 

MAKE ERROR CORRECTION EASY 

On System/34, the number of input errors might be reduced by detecting the 
errors as they occur and notifying the operator so that he can correct them. 
One way to design a display to inform an operator of an error is to use the 
lower part of the display for error messages. 

You might reserve a fixed number of message positions on the next-to-last line 
of the display. The bottom line of the display is usually reserved for system 
error messages rather than your messages. The message field can be 
conditioned by an indicator so that the proper message is an output field when 
an error occurs. Indicators can be used to condition the attributes of the 
message and the field(s) in error, and indicators can also be used to position 
the cursor. 

The following display shows the use of some of these guidelines: 

0 R D E R E N T R Y 
ORDER 1'10- 26 CUSTOMER- 47600 GERSHWIN AND SWEET 

ITEM 
NWii3ER 

~-I 2soo 
Valid Item - I _ -------r---- 1 
Invalid Item I 

QTY 
ORDER 

l 

5 

QTY 
SHIP 

l 

QTY 
8/0 

ITEM NOT ON FILE; REKEY OR REMOVE ITEM NUMBER 

Design Considerations 3-9 



3-10 

PROVIDE A MEANS FOR HELP 

Operators should know what actions to take when problems occur. Problem 
recovery steps should be included in the written operating procedures. In 
addition to the written steps, further information about the error should be 
available for the operator to display. This information might be requested via a 
command key or function key. 

MAKE THE OPERATOR FEEL PRODUCTIVE 

Because the operator is using the display station as a means to do a job, the 
display station should be easy to use and allow the operator to do a better job. 
Application programming and display design should not bore, scare, or annoy 
the operator. Try to use only as many features of the display station as are 
necessary. A display that has too many blinking fields or too much underlined 
data and highlighted information might only confuse and frustrate the 
operators. 

Whenever possible try to give the well-trained operator the chance to take 
shortcuts from one display to another. 

DOCUMENT THE DISPLA VS 

Printed copies of your displays can be made by using the Print key. These 
copies can be labeled and stored with the $SFGR utility output for the displays. 
If possible, use a printer that can print lowercase letters. The 5256 and 5225 
printers can print lowercase letters. The 5211 and 3262 printers can print 
lowercase letters only if they are equipped with a 96-character print belt. If 
lowercase characters cannot be printed, they can be changed to uppercase 
characters by using translation tables. Refer to the IMAGE OCL statement 
description in the SSP Reference Manual for details. 

Make the Screen Look Like the Source Document 

If the operators are entering data onto a screen from a particular document, try 
to design the screen display to look like the document. This technique is 
especially helpful if the operator's work includes a lot of data entry. The 
following display illustrates this principle. 



Daily Report of Items Bought 

Item Description 

7653 Air Wrench 
3489 Widget 
4300 Balsam Wedges 

r 

Audio/Eyesight 
1816 West Tuckey 
Phoenix, Arizona 85015 

Quantity Bought Unit Price 

2 Doz 38.95 
1 Doz 4.00 
150 Doz 12.00 

SCREEN: AE232 Report of Items Bought 
Store 346 

Store Number. 346 

Discount Net Cost 

10% 70.11 
5% 3.80 
10% 1620.00 

ITEM Description Quantity Unit Price Discnt Net Cost 

COMMAND KEYS 
4 = Change previous data 
5 = Review data entered 

7 = End of job 

Design Considerations 3-11 



Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

3-12 

Use SDA as a Documentation Aid 

When creating or updating screen formats you can use SDA to help document 
your displays. The following example shows the documentation provided by 
SDA for a newly created screen format. 

SCREEN DESIGN AID DATE 07/07/81 TIME 15.56 

1 ••• + ••• 10 •••• + ••• 20 •.•• + ••• 3o •••• + ••• 4o •••• + ••• 50 •••• + ••• 60 •••• + ••• 10 •••• + ••• 80 
i ** ** 1 
2 ** ACME INC WEEKLY BILLING ** 2 
3 ** ACCOUNT IDENTIFICATION 21-______ STATUS SCREEN ** 3 
4 ** ** 4 
5 ** CUSTOMER NAME --------------- ** 5 
6 ** STREET ADDRESS --------------- ** 6 
7 ** CITY ----------------- STATE ZIP CODE ------ ** 7 
a ** ** 8 
9 ** INVOICE DATA SECTION ** 9 
0 ** ** 10 
1 ** INVOICE NUMBER INVOICE DATE INVOICE AMOUNT STATUS ** 11 
2 ** A211302 07/06/81 $142.30 ** 12 
.3 ** A411202 07/07/81 $156.78· ** 13 
c4 ** ** 14 
.5 ** ** 15 
t6 ** ** 16 
i7 ** ** 17 
18 ** ** 18 
19 ** ** 19 
?.O ** ** 20 
21 ** ** 21 
?.2 ** ** 22 
23 ** ** 23 
24 **CMD KEY 3 INVOICE STATUS CMD KEY 7 RETURN TO BILLING PROCESS ** 24 

1 ••• + ••• i 0 •••• + ••• 20 •••• + ••• 30 •••• + ••• 40 •••• + ••• 50 •••• + ••• 60 ..... + ••• 70 •••• .j. ••• 80 

FORMAT •••• WEEKLYAR 

USE COLOR IF POSSIBLE 

SOURCE MEMBER NAME •••• BILLING 
LIBRARY •.••••••••.•••• DRFLIB 

If you have a 5292 Color Display Station, you can specify field attributes that 
define color for the fields on your display formats. The use of color on a 
display format provides the following· advantages. 

The Display Format Is Easier to Read Using Color 

Data presented in color is easier to read. An operator rarely needs to read all 
the data on the display, only sections of it. 

In addition, the operator can recognize various types of data better. This can 
be important if differences in the following items must be recognized: 

• Heading on the display and data within the display 

• Detail items and totals 

,. Various categories of datd 



Error Conditions Are Easier to Identify 

It is important to draw the display station operator's attention to an error 
condition. Color can be very effective in doing this. Further, various categories 
of errors can be identified by the use of color. For example, red can be used 
to identify critical errors, yellow for less severe errors. 

For more information about using color with display formats, refer to the 
5292 Color Display Station Programmer's Guide to Using Color. 

SPECIFYING COLOR FOR DISPLAY FORMATS 

The 5292 Color Display Station uses the following field attributes to specify 
colors: 

• Blink 

• Column separators 

• High intensity 

The following table lists the colors produced by using these field attributes 
with the 5292 Color Display Station. 

Color Field Attributes 

Green None needed (default) 

White High intensity 

Turquoise Column separators 

Yellow Column separators, high intensity 

Red (nonblinking) Blink 

Red (blinking) High intensity, blink 

Pink Column separators, blink 

Blue Column separators, high intensity, and blink 

Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

Design Considerations 3-12.1 



Page of SC21-7742-3 
Issued 27 ·August 1982 
By TNL: SN21-9074 

Fields 

Input fields 

Normal 

Highlighted 

Output fields 

Normal 

Highlighted 

Headings 

When using color for formatting, decide which highlighting technique you will 
use for the fields in a display format before writing the application. The 
following chart suggests uses of color for the various parts of the display 
format. 

Color Attributes Used 

Turquoise with column Column separators 
separators 

Turquoise with underscore Column separators, underscore 

Yellow with column separators Column separators, h!.qh intensity 

Yellow with underscore Column separators, high intensity, 
underscore 

Green None (default) 

White High intensity 

White High intensity 

White with blue underscore High intensity, underscore 

Blue Column separators, blink, high 
intensity 

Errors (warnings) Red (blinking) Blink, high intensity 

3-12.2 

Red (nonblinking) Blink 

Pink Column separators, blink 

General highlighting Pink Column separators, blink 

Blue Column separators, blink, high 
intensity 

Using Color with Other Field Attributes 

You can use color with other field attributes. For example, you may want to 
define an input field that will appear turquoise and in reverse image. The 
following chart shows the color/highlighting combinations that are available for 
each color and the field attributes that must be specified to display them. The 
column labeled Hex Value gives the hexadecimal value for each field attribute 
combination. Certain programming languages, such as BASIC, use these 
hexadecimal values for defining fields in color using the 5292 Color Display 
Station. 



Color Display Highlighting 

None 
Reverse image 

Green Underscore 
Underscore, 

reverse image 

None 
White Reverse image 

Underscore 

None 
Reverse image 
Blink 
Reverse image, 

Red blink 
Underscore 
Underscore, 
reverse image 

Underscore, blink 

Column separators 
Reverse image, 
column separators 

Turquoise Underscore, 
column separators 

Underscore, reverse image, 
column separators 

None 
Reverse image 

Pink Underscore 
Underscore, 

reverse image 

Column separators 
Reverse image, 

Yellow column separators 
Underscore, 
column separators 

None 
Blue Reverse image 

Underscore 

Nondisplay 

No color Nondisplay 
Nondisplay 
Nondisplay 

i Blink is suppressed. 

Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

Specify this hex value and these attributes: 

Hex 
Value BL cs HI RI us 

20 
21 x 
24 x 
25 x x 

22 x 
23 x x 
26 x x 
28 xi 
29 xi x 
2A x x 
2B x x x 

2C xi x 
20 xi x x 

2E x x x 
30 x2 
31 x2 x 

34 x2 x 

35 x2 x x 

38 x xa 
39 xi xa x 
3C xi xa x 
30 xi xa x x 

32 x2 x 
33 x2 x x 

36 x2 x x 

3A x1 xa x 
3B xi xa x x 
3E xi xa x x 
27 x x x 
2F x x x x 
37 xa x x x 
3F x xa x x x 

2 Column separators are suppressed when reduced line spacing is used. 
3 Column separators are suppressed. 

Note: All other combinations of attributes are invalid. 

and do not blink in blink field. 

BL= Blink 

CS = Column separators 

HI = High intensity 

RI = Reverse image 

US= Underscore 

Underscore and column separators are always blue 

Design Considerations 3-12.3 



Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

The following are S and D specifications to define certain fields in color using 
the 5292 Color Display Station. The following descriptions apply. 

Second Editioll GX21-9253- U/M oso· 

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU 
and $SFGR. This coding sheet could contain typographical errors. 

Printed in U.S.A. 

*No. of sheets per pad may vary slightly. 

Sequence 
Number ! 

~ 
4 5 6 7 8 

Sequence 
Number 

1 2 3 4 

s~ 

D 

D 

D 

D 

D 

DJZ. 
D 

Format 
Name 

WSU Only 
> "' > i-,E""n"°tocc,-r-,c-T..,-----,.------1 8 ~ ~ Mode Review lnser'l 

:J ] ~ -o i ~ ! ~ce ~~!rd ~~c~rd 
! : i d ! b i H J g i.; ! """''d I -] > ~ :~~7~;~~~g :~~7~;:~;,:g Rmmd K•v M"k ~ 
~ gu ~a~~ § ~ ~ - ~ - i ~ "O.; 8. ~ :~ ~ 1 2 3 1 2 3 ~ 
if u;z£.3&'.&~~wWa:i w o (/) Vi~~~~ti:ct a: 

9 10 1111131415 15 17 10 19 20 ;n n 23 2 25 2627 2s 2930 31 32 3334 35~31 Ja 394041 42.f.:44 as 4647~ 49505152 5354 sssss1sa5960616263~656667 686970 1112 13 747576 n 1s 7980 

. ll~ ~ I ~ . II I I Il lll 

Field 

Name 

Starting 
Location 

·i g ~ 
w ~ B c 

~ ~ > 8i ~ Reserved I ~ Constant Data g 
~~_]] ~ ~ ~ > ! -~ ~ ~ ~ 
~oa:: - c: ~ ~ el ~ c: ;; 

~~5~ ~ c: ~ ! ~:J ~ 8 
W 8 <( 0.. i CD ~ a: ::> 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 

34 35 36 37 38 3940 41 42~ 44 45~47 ~~50 51 52 53 ~4 55 ~ 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

my__ 
l'r'~ 

o ~I"" ~I 
~ ~-H-+--l-H-H-H-H-++-t-t-++-+-t-+-+-+-+-+-+-H 

D 

0 

D 

0 

D 
t-+-+--+-+-tt-+--+--+-+-t-+-+-+-tt--+-+--+-+-1-+-+-+-t-+--+-+-t--+-+--+-+--t-+-+-+-t--+--+-+-t--+-+-+-+-->-+-+--+-+-1-+-+-+-t--+-+--+-+-1-+-+-+-tt--+-+--+-+-1-+-+-+-tt--+-+--+-t--+-+--+-1 

D 

D 

D l 
D 

Reference Field Name Description 

• ITEMNO Yellow with column 
separators 

0 ON HAND Turquoise reverse 
image with column 
separators 

• PRICE White 

3-12.4 



Column Separators and Underlining with Color 

Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

When column separators are specified for a field on the display format, they 
appear as blue dots below the specified field, as follows: 

.F.l.E.L.D. 

Yellow, turquoise, pink, and blue are the only colors you can specify for a field, 
if you want to use column separators. With pink or blue fields, the column 
separator dots do not appear on the display. 

When underscoring is specified for a field on the display format, a continuous 
blue line appears beneath the characters of the field. Characters entered in a 
field that is underscored appear green unless other field attributes are 
specified. 

When column separators and underscoring are specified together for a field, 
the column separators appear in reverse image. The data in the field appears 
turquoise. If high intensity is specified in addition to underscoring and column 
separators, the data in the field appears yellow. 

For more information about using color with display forrr:ats, refer to the 5292 
Color Display Station Programmer's Guide to Using Color. 

Design Considerations 3-12.5 



Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-90~4 

3-12.6 

This page is intentionally left blank. 



Menu Design 

A menu is a displayed list of functions from which an operator can select an 
item. Using a menu, an. operator enters a number that specifies what he wants 
to do. Yqu might have the operators use menus so that they can start their 
jobs by selecting an item number rather than entering a command statement or 
OCL statements. Well-designed menus can shorten the time an operator takes 
to do his work and can reduce his chances for error. Your menu design might 
ensure that the operator does his jobs at the proper time in the proper order. 

As described under Menus in Chapter 2, System/34 provides two menu 
formats: fixed and free-form. Fixed-format menus have two columns of 
pre-numbered items, and you can specify descriptions for as many of the 
numbered items as you want. On free-format menus, most of the lines (3 
through 20) are available for you to format as you want. 

For either menu, you might consider placing the most frequently selected items 
near the top of the display so that the operator spends less time scanning for 
them. 

Menu items should not be abbreviated unless you are sure that the 
abbreviations would not confuse the operators. Also, menu items should be 
meaningful. For example, Order Release is a more meaningful item than, 
ORDREL, the name of the program that releases orders. 

Menu chaining, a good technique to use for applications on System/34, helps 
organize an operator's work by guiding him to the displays from which he does 
his jobs. This technique uses a main menu that categorizes the jobs that can 
be done. For example, the following menu is a main menu for an order entry 
and invoicing application. Notice that each item except Monthly Close causes a 
lower-level menu to appear. 

r 
C0~1MAND 

0 R D E R E N T R Y A N 0 I N V 0 I C I N G 
--MAIN MENU--

l ORDER PROCESSING MENU 
2 INQUIRY MENU 
3 REPORTS MENU 
4 MONTHLY CLOSE 
5 FILE MAINTENANCE MENU 

ENTER NUMStR, COMMAND, OR OCL 

<-READY 

Design Considerations 3-13 



The following figure shows some of these lower-level menus ~nd the 
commands used to chain the menus .. 

COMMAflD COMMAND 
MENU: AMBMOO 

ORDER ENTRY AND INVOICING 
--MAIN MENU-- 1 MENU AMB10 

COt\MANO 

COMMAND 

COMMAND 

COMMAND 

MENU: AMBMlO 
ORDER ENTRY ANO INVOICING 

--ORDER PROCESSING--

l ORDER ENTRY 
2 OP.DER ENTRY-IMMEDIATE RELEASE 
3 ORDER MAINTENANCE 
4 ORDER RE LEASE 
5 DISKETTE ORDER ENTRY 
6 BATCH UPDATE 
7 PICK LISTS 
8 ACKNOWLEDGEMENTS 
9 INVOICES 

10 BILLS OF LADING 
11 RETURN TO OE & I MAIN MENU 

MENU: AMBMZO 
ORDER ENTRY AND INVOICING 

--INQUIRY--

l CUSTOMER STATUS 
Z CUSTOMER ORDERS 
3 OPEN ORDER 
4 ITEM 
5 BATCH STATUS 
6 RETURN TO OE & I MAIN MENU 

MENU: AMBM30 
ORDER ENTRY AND INVOICING 

--REPORTS--

l OPEN ORDER BY DATES 
Z OPEN ORDERS BY ITEM 
3 OPEN C'RDERS BY CUSTOMER 
4 BLANKET ORDER STATUS 
5 TAXING BODY DETAIL 
6 TAXING BODY :;UMMARY 
7 COMMISSIONS ~:O~KSHEET 
8 GENERAL LEDGER WORKSHEET 
9 ITEM FRICE LIST 

10 FILE LIST REPORTS MENU 
ll PICKING SHORTAGE REFORT 
12 OE & I MAIN MENU 

MENU: AMBMSO 
ORDER ENTRY ANO INVOICING 

--FILE MAINTENANCE--

1 CUSTOMER MASTER-MAINTENANCE 
Z CUSTOMER MASTER-REORGANIZE 
3 ITEM MASTER-MAINTENANCE 
4 ITEM MASTER-REORGANIZE 

13 OPEN ORDER SUMMARY-REORGANIZE 
14 OPEN ORDER MATERIAL-REORGANIZE 
15 VALIDATE-CUSTOMER ORDER CHAINS 
16 VALIDATE-OPEN ORDER CHAINS 

5 smP-TO MASTER-MAINTENANCE 
6 SHIP-TO MASTER-REORGANIZE 
7 CONTRACT MASTER-tfAINTENANCE 
8 CONTRACT MASTER-REORGANIZE 
9 QUf,NTITY PRICE-MAINTENANCE 

10 QUAfffITY PRICE-REORGANIZE 
11 TAXING BODY MASTER-MAINTENANCE 
12 TAXING BODY MASTER-REORGANIZE 

17 VALIDATE-ITEM WHERE-USED CHAINS 
18 FILE LIST REPORTS MENU 
19 RETURN TO OE&I MAIN MENU 

<-READY 

2 MENU AMB20 

3 MENU AMB30 

4 MENU AMB40 

5 MENU AMB50 

Order Processing Menu includes entering, maintaining, 
releasing, and updating of customer orders and offers 
printing of pick lists, acknowledgments, invoices and bills 
of lading. 

Inquiry Menu includes displaying of the contents of main 
master files. 

Reports Menu includes printing of all report listings avail­
able in Order Entry and Invoicing except those included 
under Order Processing and offers a display of the File List. 
Menu, which lists contents of main master files. 

File Maintenance M?nu includes executing of file mainte­
nance, file reorganization and chain validation of main 
master files and offers a display of the File List Menu, 
which lists contents of main master files. 



When an operator selects item 1 from the main menu, the MENU command is 
executed and the Order Processing Menu appears. When the operator selects 
an item from that menu, he sees either another lower-level menu if there are 
additional order entry categories to select or a display on which he can begin 
order entry. 

When you chain menus, you might allow ways for operators to redisplay the 
main menu. Also, you might allow ways for experienced operators to bypass 
the menu chains and directly begin their jobs. 

The I I MENU OCL statement or the MENU control command are useful when 
you are constructing a menu chain. For more information about constructing 
menus, refer to the Screen Design Aid Reference Manual or to the BLDMENU 
procedure in the System Support Reference Manual. 

Design Considerations 3• 15 



3-16 

Forms Design 

Computer input and output forms should not be overlooked during system 
design because they are important interfaces between the system and the 
users of your system. These forms are possibly the only contact that some of 
the business' customers and employees have with the system; therefore, their 
design can influence impressions of the system and the business. 

DESIGN CONSIDERATIONS FOR OUTPUT FORMS 

System/34 supports the 5211 Printer, the 3262 Printer, the 5224 Printer, and 
the 5225 Printer which are line printers, and a 5256 Printer, which is a 
character printer. Each printer has unique forms design considerations. 

On the 5256 Printer, printing is done one character at a time by a print head 
that must move to the appropriate position on the line. This head movement 
takes time. Therefore, you might consider designing your forms to reduce the 
amount of head movement required. For example, try not to center one or two 
fields on a line if the fields need not be centered. Left-adjusting them on the 
line might shorten the printing time. Placing fields in a horizontal line rather 
than spacing them vertically and minimizing the horizontal space between fields 
might also shorten the printing time. Planning horizontal lines so that 
fixed-length fields print first and variable-length fields print last allows the 
print head to ac;tvance to the next line as soon as the last character prints on 
the line. For example, an item description field might be a good 
variable-length field to print last on a line. Finally, using a large form and 
printing a small amount of information on it might be inefficient because many 
new line returns might be required to print the data. Therefore, keeping the 
forms as short as possible might improve printing speed. 

Figures 3-1 and 3-2 illustrate an initial design and an improved design for an 
output form used by a 5256 Printer. 



r;OLD TO: 
-ir --, 

ABC 
SHIP TO: 

(name) (name) 

Co. (address) (address) 

(city) (city) 

(state) (state) L _JL _J Putting all these 

I T ~,_ fields on one 
VIA: I TERMS: ; CUST. NO .. ~ line would 

SALESMAN r- shorten the form 
l and increase 

I i I I l I 
ITEM QTY. ORD. QTY. SHP. I QTY. BO. I DESC. LIST I AMT. printing speed. I I I I I I 

I I I I I I 
I I I I 

I I I j ~ I I I 
I I I I I I 

I l I I I 
I I l Quantity back ordered is I I 

I I not always printed, so it I I I I I would be better to put it I I 
I I I in the rightmost column. I I I I I I I I I 
I I I I I 
I I I I I I 

I I I I I I 
I I I I 

I l I I I I 
I I I I 

I I 

l 
I I I I 
I I I I I 

l I I I i I 
GROSS' 

TAX Four lines are used for totals, causing 

~ extra spacing. The totals on these four 
DISC. lines could be printed on one line. 

NET J 

Figure 3-1. Initial Forms Design for a 5256 Printer 

Design Considerations 3-17 



r;OLD TO: 
-,r I 

SHIP TO: 

(name) (name) ABC 
(address) (address) 

Co. 
(city) (city) 

L (state) _JL (state) _J 

I I I 
CUST. NO: 1VIA: I TERMS: I SLSMAN: 

I l I ITEM I DESCRIPTION LIST QTY. SHP. AMT. QTY.ORDER QTY. B/O 
I I 
I I T 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 
I I 
I I 
I I 

I 
I I I I I 
I I 

GROSS TAX DISCOUNT NET 

Figure 3-2. Improved Forms Design for a 5256 Printer 

3-18 



On the 5211 Printer or the 3262 Printer, one line is printed at a time by a 
character belt rather than by a print head moving from character to character 
across a page. Good design techniques for a line printer should therefore 
attempt to reduce the number of lines printed on each form. Increasing the 
number of characters printed per line might shorten the time required to print 
the form. An example of this would be to combine two lines into one print 
line. Consider using as wide a form as possible and as short a form as 
possible. Finally, try to space lines so that line skipping rather than line spacing 
can be used because line skipping is usually faster than line spacing. 

For preprinted forms such as picking slips or invoices, consider shading 
alternative lines; this technique can make a long list of items more readable. 
Design and order your preprinted forms well in advance of when you plan to 
use them. Request a proof of the form so that you can verify its accuracy 
before it is printed. 

Refer to the SSP Reference Manual for information about the number of printed 
lines allowed per page. 

Refer to the following manuals for information about the physical dimensions 
of printer forms: 

• 3262 Printer Component Description and Operator's Guide 

• 5211 Printer Component Description and Operator's Guide 

• 5224 Printer Models 1 and 2 Operator's Guide 

• 5225 Printer Operator's Guide 

• 5256 Printer Operator's Guide 

DESIGN CONSIDERATIONS FOR INPUT FORMS 

Well-designed input forms might help shorten data entry time, reduce the 
number of data entry errors, and improve operator satisfaction with the system. 
Forms that will be used for data entry at a display station should match the 
input displays that operators use. For example, the input fields should be in 
the same order and have the same headings on the form and on the display. 
Usually, the form should be designed first and then the display could be 
designed to match the form. 

To shorten the time required to fill out your forms, you might design them so 
that the data can be recorded in the order that it is usually received. You might 
consider placing mandatory entries first, followed by the optional entries, which 
might minimize skipping over fields. If you use special codes, consider listing 
them on the input form so that the operator does not have to look for their 
meanings. 

Design Considerations 3-19 



3-20 

File Design 

One of the most important design activities is file .design. This activity can 
significantly influence system performance, data security, data maintenance, 
data accessibility, and data recovery in case of a system failure. This section 
describes some considerations for attaining a good file design, particularly in 
the following areas: 

• File organization 

• Record design 

• Record blocking 

• Physical 1/0 and logical 1/0 

• Access algorithms for direct files 

FILE ORGANIZATION 

File organization can affect system throughput and display station response 
time in an interactive environment. Because much of the file processing is 
random, the choice of file organization is usually between indexed and direct. 
Indexed organization offers a wide variety of processing methods; however, 
direct file organization provides the following advantages that can contribute to 
an efficient system design: 

• Fewer accesses to the disk can improve response times. 

• File recovery in the event of a system failure is easier for direct files than for 
indexed files. 

• Sharing files between programs is simplified when direct files are used. 

These advantages can be critical to the performance of the system, especially 
for files that are frequently accessed. However, sequential and indexed files 
can be used in an interactive environment. Sequential organization is useful for 
files that are not processed randomly, such as some logging files. Indexed 
organization might be satisfactory for master files if the file is not too active 
and if short response times are not necessary. 

The following information provides considerations for choosing the organization 
of your files. These considerations are not rules that you must follow, but 
guidelines that might help you organize each of your files so that you attain the 
best system performance possible. 



Master File Organization 

A master file is relatively permanent and is often used in several jobs with 
several other files. When you choose an organization for a master file, consider 
these processing requirements for it: 

• What are the organizations of the other files that are processed against the 
master file? If the other files are ordered, which means that they are sorted 
in the same sequence as the master file, the master file could be processed 
consecutively and, therefore, a sequential or indexed organization for the 
master file would be most efficient. 

If the other files that you process against the master file are unordered, the 
master file needs to be indexed and processed randomly by key, or the 
master file needs to be direct. Processing an indexed file randomly requires 
a disk access to read the key and anoth&r disk access to read the record. 
Processing a direct file randomly requires one disk access per record unless 
the record has synonyms and is usually faster than processing an indexed 
file. 

• How do other jobs process the file? If the master file is used in several jobs 
and its records are processed both in order and randomly, either an indexed 
or direct organization should be a better organization than a sequential 
organization. 

• Does the master file require sorting? If so, consider that indexed and direct 
files can be sorted, but the sorted file is a sequential file. Rather than 
keeping the sorted file as the master file, you would need to keep the 
original unsorted file. 

• Can operators inquire into the master file? If so, consider how necessary a 
short response time is. To ensure the shortest possible response times, the 
file should be direct because a record can possibly be read with one disk 
access. Satisfactory response times also might be attained from an indexed 
file processed randomly by key because a record can be read with two disk 
accesses, one for the key and one for the data. If the direct file has 
numerous synonyms, multiple disk accesses can be required for each record, 
and this organization might not provide shorter response times than an 
indexed organization. 

Design Considerations 3-21 



3-22 

Transaction File Organization 

Transaction files are less permanent than master files and typically are used to 
update master files. Transaction files are frequently logged,. in history files to 
keep records of business activities. An example of a transaction file is. a cash 
receipts file for an accounts receivable application. An example of a more 
permanent transaction file is an open-item accounts receivable file. These 
transactions are usually maintained to show detail. on. reports such as 
stE1tements sent to customers and aged trial balances. 

Typically, transaction files entered from display stations in an interactive 
environment are direct files. The reason for using direct files is that the 
operator can usually expect a short response time when doing the following 
functions: paging through a file, adding records, deleting records, and 
reviewing all or part of the file. 

The transaction file created by a WSU program, for example, is a direct file 
that has records separated logically by display station. Several display stations 
can enter transactions concurrently, and these transactions become mixed in 
the file. The transactions from a display station are chained by control 
information so that operators can access the records entered from his display 
station. This logical separation of records requires control records and control 
information in each transaction record. Subroutine SUBR22 allows an RPG II 
program to read records from a WSU transaction file. 

Relative Record 
Number 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Contents 

Next available relative record number 
Last relative record number 

W4 transaction 1 

W1 transaction 1 

W7 transaction 1 

W1 transaction 2 

W1 transaction 3 

W4 transaction 2 

W1 transaction 4 

W7 transaction 2 

W2 transaction 1 

W1 transaction 5 



A direct transaction file might also be organized so that each display station 
has its own work area. For example: 

Relative Record 
Number 

2 

10 
11 
12 

110 
111 

Contents 

Next available relative record number 
First relative record number W1 control record 
Last relative record number 

Next available relative record number 
First relative record number 
Last relative record number 

W1 transaction 1 
W1 transaction 2 
W1 transaction 3 

W2 transaction 1 
W2 transaction 2 

W2 control record 

Notice that a control record is required for the records entered from each 
display station. This direct file organization reduces the possibility of 
contention for the same sector of data, a condition described under File 
Concepts in Chapter 2; however, the number of records that can be entered 
from a display station is limited, and gaps can exist between the end of one 

,.section and the beginning of the next section. 

Design Considerations 3-23 



3-24 

Volatility of Files 

The frequency of additions to and deletions from a file are important factors to 
consider when you choose a file organization. This disk activity is called 
volatility. 

Highly volatile files might be direct files because a record can usually be added 
or deleted with fewer disk accesses than for other organizations, and fewer 
disk accesses should help shorten response times. 

For example, adding records to indexed files requires (1) scanning the index, 
including added index entries, to ensure the record does not already exist; (2) 
reading the data area where the new record will reside; (3) writing the record; 
(4) writing the new index entry. 

Adding records to a direct file might require (1) reading a control record to find 
the next available location, (2) writing the data, and (3) updating the control 
record. Updating the control record after each record addition makes 
programming for recovery easier but requires additional disk access. 

The direct file might require disk space to allow for synonym records, and 
multiple disk accesses could be required for those records. Processing the 
direct file should be faster than processing a sequential file as an indexed file; 
however, in some cases ah indexed file might be processed faster than a direct 
file that has many synonym records. 

Refer to Access Algorithms for Direct Files later in this section for further 
information about synonym records. 

Activity of the Files 

Activity, which refers to the frequency that accesses are made to the file, is 
not as important a factor as how a file is used or how volatile the file is; 
however, activity should be considered when you choose a file organization. 

Activity is usually referred to as a percent of the number of transactions to the 
number of records in the file. For example, if a file has 600 records and 1200 
transactions are processed randomly per day, the activity is 200 percent. 

As activity increases, consecutive processing becomes advantageous because 
of the chance that the record to process is available in a buffer and the record 
can be accessed without physical I I 0 activity. Therefore, very active files 
could be sequential and processed consecutively or could be indexed and 
processed sequentially by key. When an indexed file is processed sequentially 
by key, records added since the last key sort cannot be accessed, unless the 
IFILE attribute is specified. 

A relatively inactive file might best be direct or indexed and processed 
randomly by key. 

The total activity of a master file might be reduced by sorting a transaction file 
so that only one retrieval of a master record is needed for a group of 
transactions that have the same key. 



RECORD DESIGN 

After deciding which organization to use for a file, you can design its records 
and determine the file's size. 

The applications determine what data is needed in the records. Study the 
applications then decide on the layout of the record. Layout means the 
arrangement of fields in a record. When you design a record, you should 
consider processing requirements of the record then determine each field's 
length, location, and name. 

To illustrate these design considerations, a name and address file is described 
in the following text. Each record in the file contains the following data: 

Field 

Customer number 
Name 
Street address 
City and state 
Record code 
Delete code 
Other fields 

Size (number of positions) 

6 
20 
20 
20 
2 

47 

116 Positions 

Design Considerations 3-25 



3-26 

Determining Field Size 

Field size depends on the data in the field. The length of the data can vary, or 
all data in a field can be the same length. In the example, Name is 20 
positions. The length of each customer's name varies, but 20 positions should 
be sufficient for most names without abbreviating them. Customer Number, 
however, is six positions, and all six positions are used in each record. 

Numeric Fields 

If the field is numeric, you should determine whether the field is to be in a 
packed or zoned decimal format. Packed format can reduce the amount of 
storage required. 

Be sure to allow for the maximum length for dollar-amount fields, or a 
high-order position could be lost for exception conditions. 

The maximum length of a packed field in RPG II is 15 digits (8 bytes). The 
following table shows the number of bytes needed for a specified number of 
characters in a packed field as compared to the number of bytes needed for 
that number of characters in a zoned decimal field. 

Number of Bytes Required 

Number of 
Characters Zoned Decimal Packed 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 5 

6 6 6 

7 7 7 

8 8 8 

9 9 9 

10 10 10 

11 11 11 

12 12 12 

13 13 13 

14 14 14 

15 15 15 



The maximum number of numeric digits allowed for a numeric field is shown in 
the following diagram. 

Programming Numeric Digits 
Language Allowed Notes 

BASIC 14 Long precision 

BASIC 6 Short precision 

COBOL 18 

FORTRAN 17 Real*8 variable 

FORTRAN No limit Decimal variable-no 
limits 

RPG II 15 Packed or unpacked 
field 

Key Length 

The maximum alphameric key length is 29 positions. The maximum numeric 
key length is 15 bytes or 8 bytes if the key is packed. All relative record 
numbers in an addrout file are three positions long. 

A/phameric Fields 

No strict rules exist for determining alphameric field size. The major problem 
involves fields with variable length data. For example, if the name field is 
planned as 15 positions and a new customer name has 19 characters, a 
problem arises when this record is added to the file. To avoid this problem, try 
to estimate the maximum length of the data that will be contained in a field. 
Use this length to determine field size. The maximum length of fields for 
various languages is shown in the following table: 

Language 

RPG 
BASIC 
COBOL 

Field Size 

255 positions 
255 positions 
32767 bytes 

Design Considerations 3-27 



3-28 

Providing for a Delete Code 

Your program can place a delete code in a record. Then, when the file is 
processed, your program can check for this code. For example, if a customer 
record becomes inactive, you may not want to process the record. Thus, a 
one-position field is included to provide for a delete code. 

Records with a delete code are not physically removed from a file. To remove 
those records, you can use the ORGANIZE SSP procedure. 

Providing Extra Space 

Because record length is not yet established when the record is designed, you 
can allow for additions to the record. Although it may be difficult to plan what 
data might be added, you should reserve some extra space. For example, you 
might consider making the record length ten percent longer than initially 
required in order to allow for future additions. 

Naming Fields 

An important consideration when choosing field names is that each name 
should be meaningful. Meaningful field names contribute to better 
documentation and help prevent misinterpretation or confusion during program 
writing. The language you use to write your program places restrictions on the 
length you can specify for your field names. The following table lists the 
maximum length your field names can be by programming language: 

Programming 
Language 

RPG 
COBOL 
BASIC 
FORTRAN 

Maximum Field Length 
(characters) 

6 
30 
8 
6 



Documenting Record Layout 

CRECCO CDELETE 

[ipf CUSNO I 

When record layouts are documented, your programs are easier to write. The 
following samples show the layout of a customer master record. Record layout 
includes the order of the fields in the record, the length of each field, and the 
name of each field. Notice that the field names follow the field-naming 
guidelines. The following diagrams show different ways of documenting your 
record layout. Included in this section is a sample form you can use for such 

documenting. 

CST ATE CSLSNO BLANKS 

\ \ ~~ r ICZIPCDI' ~ CNAME CADDR CCITY 

2 3 4 5 9 10 34 35 59 60 81 82 83 84 88 89 90 91 128 

File name: CMAST 
File organization: Indexed 
Key: Customer number 
Record length: 128 

Decimal Data Location 
Field Description Length Position Format From To Field Name 

Record code-MA 2 A 1 2 CRECCO 

Delete code-D (blank if A 3 3 CDELETE 
not active) 

Customer number 6 0 N 4 9 CUSNO 

Customer name 25 A 10 34 CNAME 

Customer address 25 A 35 59 CAD DR 

City 22 A 60 81 CCITY 

State 2 A 82 83 CST ATE 

Zip code 5 0 N 84 88 CZIPCD 

Salesman number 2 0 N 89 90 CS LS NO 

Blanks 38 A 91 128 

Record Length 

Although field lengths within a record may vary, the field lengths for the same 
fields in each record in a file should be the same, and all records in a particular 
file must be the same length. Record length is the sum of the field lengths 
including reserved space. The maximum record length for a disk file is 4096 
positions. 

In the name and address file example in this section, the sum of the fields was 
set at 90 positions. However, record length was set at 128 to reserve 38 
positions for data that might be needed at a later time. 

Design Considerations 3-29 



INPUT/OUTPUT Record De,sc;ription 
< < ·;;·!; 

Record Name Customer Record System ____ .....,..__ _____ _ 

File Name _C_MA __ S_T _____________ _ 181 Disk 

File No.-----
of __ __ 

Page __ 

Date-------

File Organization Indexed Sequence Customer Number Prepared by -----

Record Length _1_2_8 _______ _ Key Customer Number Key Length_6 _______ _ 

Created by--------- Used by ORDHDR .. Updated by ---------

Values Field Description Field Name Length 
Decimal 

Format 
Location 

Pos. From To 

MA Record Code CRECCD ·· 2 A 1 2 
D, blanks Delete Code CDELETE 1 A 3 3 
000001-999999 Customer Number CUSNO ·6 0 N 4 9 

Customer Name CNAME, 25· A 10 34 
Customer Address CAD DR 25 A 35 59 
City CCI TY 22 A 60 81 
State CS TATE 2 A 82 83 
Zip_ Code CZIPCD 5 0 N 84 88 

01-99 Salesman Number CS LS NO 2 0 N 89 90 
Blanks 38 A 91 128 

<. 

3-30 



INPUT/OUTPUT Record Description 

Record Name------------- System-------------

File Name----------------- D Disk D Diskette 

File Organization ----­ Sequence ---------------------

File No. ------

Page __ _ of __ _ 

Date-------­

Prepared by -----

Record Length -----------­
Key __________ _ Key Length _________ _ 

Created by----------
Used by _________ _ 

Updated by -----------

Values Field Description Field Name Length 
Decimal 

Format 
Location 

Pos. From To 

Design Considerations 3-31 



3-32 

RECORD BLOCKING 

A block is the number of characters transferred as a unit of information 
between a disk file and the processing unit. Although only one record at a 
time is available for processing by your program, one or several records may 
be transferred in a block at one time. 

The block length is used to specify the amount of main storage used for an 
1/0 buffer in the user program. Block length does not affect the way that 
records reside on disk, and the block length in a program does not have to 
match the block length specified when loading the file. 

Block length is a multiple of record length. For example, if the record length is 
64, the block length could be 256. Four records would be transferred at one 
time. 

For efficient blocking, you should choose a record length that is either a 
multiple or submultiple of 256. For example, 512 would be a multiple of 256, 
and 64 would be a submultiple of 256 because it divides into 256 a whole 
number of times. 

This choice is best because data is always transferred in sector increments, 
which are 256-byte increments, and you eliminate the chance of having records 
reside in more than one sector. For example, if the record length is 64 and the 
block length is 128, 2 blocks, which is one sector, would transfer with each 
physical I I 0 operation. 

You can specify 100-character records as shown in the following example: 

Sector A Sector B 

100 I 100 I 56 144
1 ...___.. 

100 100 I 12 I 
Record 1 Record 2 Record 3 

To process record 3, therefore, 2 sectors must be in main storage: sector A 
and sector B. The first 56 characters of record 3 reside in sector A; the 
remaining 44 reside in sector B. Thus, to process 100-character records with a 
block length of one hundred, 512 characters (2 sectors) must be available in 
main storage. 



As another example, suppose you specified 100-character records with a block 
length of 400. Four 100-character records might span 3 sectors. To process 
your records in this case, 768 characters (3 sectors) might be required in main 
storage. 

Sector 8 Sector C Sector D 

~ 100 H 88 I 100 68 1321 100 I~ ..__,_.. ..__,_.. 
Record 6 Record 7 Record 8 Record 9 

Block Length of 400 

Blocking can be an advantage if you are likely to process multiple records in 
the block; by specifying a large block, you can reduce the physical I I 0 that 
occurs for a logical 1/0 operation. 

For example, assume you read a file consecutively when the records are 
blocked 100 per block. The first get operation, a logical I I 0 operation, results 
in one relatively long read operation, a physical I I 0 operation, of 100 records. 
However, the next 99 get operations read from the buffer in main storage that 
holds the block of records and require no physical I I 0. 

For files processed randomly, you should not specify a large block length 
unless you are sure that more than one record will be processed in a block 
before another block is transferred. 

For shared indexed or direct files that are processed randomly you should not 
block records because the entire block would be transferred for each input or 
output operation. 

Finally, you might choose not to block records if you are trying to keep a 
program from getting too large. 

Design Considerations 3-33 



3-34 

PHYSICAL 1/0 AND LOGICAL 1/0 

Physical I I 0 operations are those operations that cause disk read and write 
operations to occur. These operations take time because disk arm positioning 
and moving is usually required. Therefore, during system design you normally 
plan to minimize physical I I 0 operations in order to improve response times 
and system performance. 

Logical I I 0 operations are get and put operations that access records. The 
number of physical I I 0 operations that result from logical I I 0 operations is 
affected by the following factors: 

• Record blocking 

• Access method 

• Storage index 

• Sequential processing 

• File sharing 

• Buffer sharing 

Blocking Records to Minimize Physical 1/0 

By specifying a relatively large I I 0 buffer for a program, you can often 
minimize the physical I I 0 activity for a set of logical . I I 0 operations. A large 
1/0 buffer reduces physical 1/0 activity for files that are not shared and for 
shared files that are processed consecutively or sequentially by key for input 
only. 

For example, assume you specify a block of 100 records and use the 
consecutive input access method. The first get operation causes a disk read 
operation to occur that reads 100 records into the buffer. The next 99 get 
operations read from the buffer and require no physical I I 0 operations. 

Refer to Record Blocking in this section for further explanation. 



Access Method 

Another factor that affects the amount of physical I I 0 activity is the access 
method that you use. When a file is accessed with an indexed access method, 
each logical I I 0 operation results in a logical I I 0 operation that processes the 
index entry and a logical I I 0 operation that processes the data record. The 
amount of physical I I 0 activity that occurs depends on whether the contents 
of the index buffer can be used for index entry processing and whether the 
contents of the data buffer can be used for data record processing. 

For example, assume that the logical I I 0 operation is an indexed sequential 
get and the index buffer already contains the next index entry. In this situation, 
physical 1/0 is not required to process the index entry, which can be read from 
the buffer by the logical operation. After the index entry is processed, the data 
buffer is searched to find the associated data record. If the record is in the 
buffer, the record can be read by a logical operation, and physical I I 0 does 
not occur. 

In the previous example, either one or two disk read operations would have 
been required if either the index or the record had not been in the buffers. 

Storage Index 

For COBOL, RPG II, WSU, BASIC, and Basic Assembler programs you can 
request that the system create a storage index, which is an in-storage index to 
the actual file index on disk. (The storage index is called a master track index 
in some System/34 publications, and a key work area in BASIC.) A storage 
index can significantly reduce the amount of physical I I 0 activity required to 
process an indexed file because the storage. index enables the system to go 
more directly to· a record you want. 

When a storage index is not used, the system sequentially searches the file 
index until it finds the entry for a requested record. This search often requires 
several I I 0 operations. When you request a storage index, the system divides 
the file index into segments and then creates a storage index, which points to 
each of the segments. The storage index eliminates needless searching by 
directing the system to the index segment containing the entry for the 
requested record~ 

If the space allocated for the storage index is large enough, the system divides 
the file index into segments one track long. If enough storage index space is 
not allocated for this optimal segmentation, the system divides the file index 
into larger segments. Each storage index entry contains (1) the lowest key field 
from the next segment in the file index and (2) a sector address that points to 
a segment of the file index. 

The sector addresses in the storage index are relative sector addresses which 
represent a displacement sector address from the start of the file. 

Note: The storage index is supported by the SETLL instruction for RPG II and 
the START instruction for COBOL. 

Design Considerations 3-35 



The following chart shows the storage index for a file index that occupies four 
tracks on disk. If a program requests the record with key 1541, the system 
searches the storage index and determines that the requested record is on 
track B. The system then scans the index entries on track B until the entry for 
record 1541 is found. The system can then chain directly to the data record. 

Storage Index for File INDEXT 

----------48 bytes---------.,. 

l-13 bytes -..f 
I I 
I Record Key 

ooo I 1543 

1 
I Record Key 

SSS I 2800 

l 

3 .. 35 

I 
Distance in Sectors from 
start of File to Start of 
Track C 

File Index for File INDEXT 

TRACK A LJI 
I 

TRACK B Record Key I 
347 I 

TRACK C Record Key 
1543 

TRACK D Record Key 
2800 

I 
I 

SSS I FFFFF .•. F 

l 
'-.,...I 

\ 
Distance in Sectors from 
start of File to start of 
Track D 

I Recor~ Key 

I 
Record Key Record Key I 

348 349 I 

I 
Record Key Record Key I 

1544 1545 I 

I 
Record Key Record Key I 

2801 2802 I 

I I 
I 

Record Key I 
345 I 

Record Key 
1541 

I 
Record Key I 

2798 I 

I 
Record Key I 

3173 I 

I 
Record Key I 

346 I 

I 
Record Key I 

1542 I 

I 
Record Key I 

2799 I 



To calculate the amount of space required for the optimal storage index, you 
should first calculate the number of tracks used by the file index. The number 
of tracks used by the file index is related to the capacity of your disk. You will 
use different numbers to calculate the file index if you have more than 27 .1 
megabyte disk capacity. To determine the number of tracks used by the file 
index and the amount of space required for the storage index: 

1. Use the STATUS command to determine disk capacity. 

Is the disk capacity greater than 27.1 megabytes? 

a. If yes, the file index will have 64 sectors per track. 
b. If no (that is, if the disk capacity is less than or equal to 27 .1 

megabytes), the file index will have 60 sectors per track. 

2. Use the CATALOG procedure to determine the number of records in the 
file. 

3. Add three (3) to the key length to determine the length of an entry in the 
file index. (Each entry in a file index is composed of the record key plus 
the 3-byte address of the record in the file.) 

4. Divide 256 by the entry length to determine the number of keys in each 
sector. Drop the remainder. 

5. Divide the number of records in the file by the number of keys in each 
sector to determine the number of sectors in the index. Round· off the 
result. 

6. Divide the number of sectors by either 60 or 64 to determine the number 
of tracks in the index. Round off to the nearest whole number any 
fractional result. 

7. Multiply the number of tracks in the index by the length of an entry in 
the file index to determine the optimal index size. 

Design Considerations 3-37 



The following two examples, using an indexed file containing 8000 records 
with 9-byte keys, show the calculation of the index size. The examples show 
the effects of different disk capacities on the optimal size of the storage index. 

II Disk capacity greater than 27 .1 megabytes 

B 8000 records 

Disk capacity less than or equal to 27.1 megabytes 

8000 records 

B 9 + 3 = 12 bytes for the file index entry 

I 256I12 = 21 keys in each sector 

9 + 3 = 12 bytes for the file index entry 

11 256I12 = 21 keys in each sector 

m 8000/21 = 381 sectors in the index 

1J 381 I 64 = 6 tracks in the index 

m 8000/21 = 381 sectors in the index 

m 381 /60 = 7 tracks in the index 

a 12 * 6 = 72 bytes for the storage index a 12 * 7 = 84 bytes for the storage index 

3-38 

If .the application program cannot accommodate the amount of storage required 
for the optimal sized storage index, you· can specify a smaller size, but this 
smaller size results in a correspondingly smaller improvement in performance. 

Sequential Processing 

If record processing is sequential relative to the physical order of records on 
disk, a performance advantage can be gained. For example, assume 50 
records per block and sequential processing is used. Physical I I 0 for data 
might be required only once for each set of 50 logical requests. 

File Sharing 

File sharing affects the amount of physical I I 0 activity for each logical I/ 0 
operation. For most access methods, each logical I I 0 operation causes at 
least one physical I I 0 operation. 

Exceptions to this guideline occur for consecutive input-only processing and 
indexed sequential input-only processing, which do not always require physical 
1/0 activity for each logical 1/0 operation. 

Shared 1/0 

Shared I I 0 allows two or more. files in one job to share the same buffers and 
causes a large amount of physical I I 0 activity because buffers must be reread 
for each logical I I 0 operation. 



ACCESS ALGORITHMS FOR DIRECT FILES 

A key to designing and implementing a direct file is defining an access 
algorithm that satisfies the processing requirements for the file while preserving 
the advantages of direct files. 

Determining an Access Algorithm 

An access algorithm is whatever fixed (programmed) method is used to 
determine the position to be occupied by each record. The algorithm can be 
simple or complex. In any case, the algorithm must yield a positive, whole 
number as a relative record number. 

In the simplest case, relative record numbers are assigned sequentially. The 
first record placed in the file has relative record number 1, the second record 
has relative record number 2, and so on. 

In another simple case, a control field in each record is used as its relative 
record number. For example, loan number 3456 could be used without change 
as relative record number 3456. Another example of a direct technique is using 
direct files to store large arrays of data. If element 10 is desired, then the 
tenth record in the file is read. A control field should be used directly as a 
relative record only if there is not an excessive number of unused values within 
the range of values for the control field. If there are too many unused values 
and, therefore, unused record positions, an algorithm should be defined to 
reduce the size of the file. 

A formula can be used as an algorithm to determine the record number. For 
example, if loan numbers start with 1001, then loan number 3456 could be 
relative record number 2456 (3456 minus 1000). The formula can be as 
complex as you need to make it. Refer to Examples later in this chapter for 
more information and examples. 

A control field that contains alphameric data could also be used. An algorithm 
must convert the alphameric data to a relative record number. Refer to 
Handling Synonym Records later in this chapter for an example of using a 
customer name as the control field. 

The choice of an access algorithm and, ultimately, the decision whether or not 
to use a direct file is usually based on how well synonym records can be 
handled. A synonym record is a record in a direct file whose control field yields 
the same relative record number as another control field. If the handling of 
synonyms requires a significant number of additional disk accesses, one of the 
important advantages of the direct file is lost. Also, because the access 
algorithm and the synonym code must reside in each program that uses a 
direct file, a risk is involved: if the algorithm and synonym handling are 
revised, you might need to rebuild files and modify all the programs that use 
those files. 

Design Considerations 3-39 



3-40 

Handling Synonym Records 

Synonyms can be handled in many ways. Some of the common ways are: 

• Place synonyms in a separate part of the file, following the home locations, 
which are the locations used for home records. A home record is a record 
that is stored in the location indicated by its relative record number. 

Home Locations Synonyms 

• Place synonyms in the next available blank location, closest to the home 
location. 

Relative 
Record Numbers 

Record Positions 

• Place synonyms in an area, next to the home location, that is reserved for 
synonyms. 

I Home I Synonyms I Home I Synonyms I Home I Synonyms I 

In the first two methods, the record in the home location must contain a 
pointer to the synonym record location. If two or more synonyms exist for a 
home location, the first synonym contains a pointer to the second synonym, 
and so on. 



In the third method, synonyms are close to the home location. For example, 
assume the control field for a file is the first five characters of the customer's 
name. The file contains space for 40CXXl records and allowance for three 
synonyms for each home record. The customer's name is converted to a 
decimal value as follows: 

SMITH 

//\""~ 
E2 04 C9 E3 CS (EBCDIC code) 

I I I I I 
F2 F4 F9 F3 F8 

"'\ I/~ 
(zoned decimal) 

2 4 9 3 8 (decimal) 

The decimal value is then divided by 9999: 

24938 + 9999 = 2.4940 

Ignoring the whole number of the quotient, you would calculate the home 
location as follows: 

(4940 x 4) + 1 = 19761 

Because many Smiths may be in the file, the program may have to read 
records 19761, 19762, 19763, and 19764 to find the correct Smith. If extra 
synonyms are required, the third synonym could point to the next available 
space in the file (possibly the next home location will not require all its 
synonym locations). Another possibility, to reduce the number of synonyms, 
would be to accept six or more characters from the customer name. 

Design Considerations 3-41 



3-42 

Examples 

The following examples illustrate direct file approaches. 

Example 1 

In this example, the major goals are to build a file in which (1) the records can 
be accessed with an average of slightly more than one disk access, (2) the 
amount of disk space used for the file does not contain excessive unused 
space, and (3) the file can grow and easily accommodate new records. 

Defining the Algorithm 

In this example, an indexed item file is to be converted to a direct file for an 
online order entry application. The key field is a five-digit item number; four 
digits are assigned by the user, and the fifth digit is a check digit. The four 
digits start with 1001, and the user merely assigns the next sequential number 
to new items. Deleted item numbers are not reused until item number 9999 
has been taken. Approximately 20 new items are added per month, and four 
items are dropped. The highest current number is 4317, but the file contains 
only 2812 items. 

As a first approach, the algorithm could be stated this way: the direct file 
position for each record shall be equal to the four-digit item number. Assume 
that the new record will be a few bytes larger than the old record and that the 
file will also accommodate 12 months of growth before reorganization. The 
algorithm would require a file containing 4557 record positions. The mapping 
of items to direct file positions would appear as follows: 

12 
Months 
Growth 

Item Number File Position 

1st 

1000th 
1001 1001st 
1002 1002nd 
1003 1003rd 

l 4317--- 4317th 

4557 --- 4557th 

} Unused 

This first approach, while yielding no synonyms, uses only two-thirds of the 
record positions, and most of the unused space is at the beginning of the file. 



Assume the algorithm is revised to state: the direct file position for each 
record shall be equal to the four-digit item number minus 1000. The file 
requires 3557 positions with the following mapping: 

Item Number File Position 

1001--------• 1st 
1002 2nd 
1003 3rd 

4317 --------· 3317th 

4557 --------- 3557th 

This approach, also yielding no synonyms, uses 85 percent of the record 
positions; the unused portion is embedded randomly within the file where 
items have been dropped. Although each record only requires one disk access, 
the file size still is 15 percent larger than the data portion of the file when 
organized as an indexed file. The algorithm can be further revised. 

Now assume the algorithm states: the direct file position for each record shall 
be found by subtracting 1000 from the four-digit item number, multiplying the 
difference by 0.85, and half-adjusting the result. The file will occupy 3023 
positions with the following mapping: 

Item Number File Position 

1001 --------..... 1st 
1002 2nd 
1003 3~ 

4317-------- 2819th 

4557 -------- 3023rd 

This approach uses 99 percent of the record positions, and the file size is only 
1 percent larger than the indexed data. It has, however, introduced the 
possibility of synonym records; item number 1004, if it exists, will also be 
assigned to direct file record position number 3 (same as 1003). Similarly, item 
numbers 4316 and 4317 conflict, as do 4556 and 4557. Thus, the refinement 
of the algorithm to meet the second major goal, minimum file space, may now 
have affected the first goal, minimum disk accesses, because synonym records 
will take a minimum of two accesses. 

Design Considerations 3-43 



3-44 

Handling Synonyms 

Various methods of handling synonyms exist. Whatever method is used, it 
must accomplish two goals: minimum accesses and minimum file space. The 
more immediate goal is to define (program) the manner in which a record will 
find an alternate position when its first location choice is filled. 

Further analysis of the previous item file example might offer some 
suggestions for synonym handling. Note that a synonym in that example 
occurs about once in seven records. 

The previous algorithm causes the following mapping (asterisks identify 
synonyms): 

Item Position Item Position 

1001 1 1009 8 
1002 2 1010 9* 
1003 3* 1011 9* 
1004 3* 1012 10 
1005 4 1013 11 
1006 5 1014 12 
1007 6 1015 13 
1008 7 1016 14* 

Item 

1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 

Approximately one in seven item numbers is unused because of deleted items; 
the file is only· 86 percent full. Thus, you might expect to find an unused 
position in the direct file with about the same frequency as the synonyms 
occur. 

Position 

14* 
15 
16 
17 
18 
19 
20* 
20* 



Item 

1001 
1002 
1003 
1004 
1005 
1006 
1009 
1010 
1011 
1012 

Assume the method of handling synonyms can be stated: a synonym record 
will be placed in the next higher numbered position that is unused. Because 
the file uses only 85 percent of the range of numbers, 15 percent of the 
numbers will not be used because they are deleted. However, the deleted 
numbers are randomly distributed through the entire range of numbers. Thus, 
some positions will be available in the file for synonym records. About every 
seventh number will be a synonym. Assume that of the first 40 item numbers, 
items 1007, 1008, 1015, 1017, 1020, and 1039 are among those deleted 
numbers. 

Position Item Position Item Position 

1 1013 11 1026 22 
2 1014 12 1027 23 
3 1016 14 1028 24 
6 1018 15 1029 25 
4 1019 16 1030 26 
5 1021 18 1031 ** 
8 1022 19 1032 27 
9 1023 20 1033 28 
13 1024 33 1034 29 
10 1025 21 1035 30 

Note the following: 

• Item number 1031 will occupy some position numbered greater than 34. 

• Item number 1037 will occupy a higher numbered position than will item 
number 1031. 

• Record positions 7 and 17 are unused. 

Item 

1036 
1037 
1038 
1040 

• After accessing a record, the program will have to verify that the record is 
the one that the program really wants; if it is not, the program must access 
a synonym. 

• There will not be more than two items with the same relative record 
number; thus, most records require no more than two disk accesses. 

Note: This example assumes that records are loaded into home locations 
before synonym records are loaded in a second run; this example also 
assumes that there will be few added records. If records are added after 
the home records and synonyms are loaded, the home locations for the 
added records may be occupied by a synonym. Thus, the added record 
becomes a pseudo synonym. If many records are added, most will have to 
be handled as synonyms. In this situation, the technique described here 
may be less useful because performance tends to be degraded as records 
are added. 

Position 

31 
** 
32 
34 

Design Considerations 3-45 



3-46 

In this synonym-handling technique, the average synonym should be close to 
the first position searched. Thus, a second. access is necessary approximately 
15 percent of the time, and this access should find the record not too distant 
from the home location. 

At this point, the file shouJd be loaded (home positions only), and the 
synonyms added in a second pass. As the synonyms are added in the next 
available higher numbered position, a synonym pointer in the home record will 
have to be updated to point to the synonym record position .. 

Example 2 

Assume a customer master file contains three types of records (A, B, and C) 
for three types of customers. These records are in an .indexed file in which 
type A records have keys-customer numbers from 10000 to 49999; type B 
records are numbered from 60000 to 79999; and type C records from 90000 
to 99999. Each type of record is arranged alphabeticaUy by customer name. 

The file was first loaded with approximately 500 alphabetized type C records, 
followed by 1000 alphabetized type B records, and finally about 3000 
alphabetized type A records. 

Additions have been made at the end of the file in the following manner: first, 
the added record type is determined-A, B, or C; then it is assigned an unused 
customer number that corresponds to the alphabetic sequence of the customer 
name according to a listing of the file. When first loaded, the contents of the 
file were as follows: 

Record #0001 
Record #0002 
Record #0003 

Record #0467 
Record #0468 
Record #0469 

Record #1592 
Record #1593 
Record #1594 
Record #1595 

Customer #90000} 
Customer #90020 Type C (alphabetical 

C #90040 
by customer name) 

ustomer 

Customer #60020} . 
Customer #60040 Type B (alphabetical· 

C #60060 
by customer name) 

ustomer 

Customer #10000! 
Customer #10013 Typ·e· .. A (alphabetical 
Customer #10026 , by customer name) 
Customer #10039 . 



The file originally contained 4725 records; space was allowed for 6000. 
Eighteen months later, the file contains 5638 records. 

An analysis of the file indicates the following: 

• The file is experiencing about 12 percent annual growth and should probably 
be planned for about 6600 records to meet one year's requirements. 

• Customer numbers 10000-50000 are 8 percent used, and the other numbers 
are 5 percent used. 

• Synonym records should be kept as close as possible to the home location. 

• The best file design solution might be more than one file and more than one 
type of file organization. 

• If all the customer numbers will be in one file, an algorithm must take into 
account the necessity of loading type C customers at the front of the file, 
followed by types B and A. 

• The ratio of A:B:C types is about 6:2:1. 

A trial algorithm might try to accomplish the following mapping: 

Customer 
Number Type File Record Number 

90000-99999 c 0001-0733 (1/9 x 6600 = 733) 
60000-79999 B 0734-2200 (2/9 x 6600 = 1467) 
10000-49999 A 2201-6600 (6/9 x 6600 = 4400) 

In order to accomplish the mapping, the algorithm must: 

• Convert customer numbers 90000 to 99999 into a set of relative record 
numbers from 1 to 733 

• Convert customer numbers 60000 to 79999 into a set of relative record 
numbers from 734 to 2200 

• Convert customer numbers 10000 to 49999 into a set of relative record 
numbers from 2201 to 6600 

Design Considerations 3-47 



3-48 

One method of doing these conversions is as follows: 

• If the customer number is greater than 89999, subtract 89999 from it; then 
multiply the difference by 0.0733 (the ratio of 733 positions to 10000 
numbers), and use the half-adjusted product as the record position. 

• If the customer number is less than 50000, subtract 9999 from it; then 
multiply the difference by 0. 11 (the ratio of 4400 record positions to 40000 
record numbers), add the half-adjusted product to 2200, and use the sum as 
the record position. 

• For all other customer names (60000 to 79999), subtract 59999 from the 
number, multiply it by 0.0733 (the ratio of 1467 record positions to 20000 
numbers), add the half-adjusted product to 733, and use the sum as the 
record position. 

The synonym-handling technique might be the same as in Example 1. 

The test of success might be to implement the algorithm/synonym-handling 
technique by loading the file. Then the success can be measured by another 
program that attempts to retrieve all records and counts the number of 
accesses necessary. The results of the second program dictate whether 
modifications are necessary or desirable. To further test the file, a sample 
program can be run in an interactive environment to see whether response 
times at the display stations are acceptable. 

Example 3 

Other master files might have altogether different uses and for that reason use 
different techniques. Consider a rate file in a telephone revenue accounting 
application wherein one record exists for every from-to location in the United 
States. A call made from number (507) 286-5688 to (518) 392-5536 would 
require the retrieval of a rate record from the master file that would have a key 
of 507286518392. How can such a number be equated to a relative record 
position on a direct file? 

One algorithm might be to multiply the numbers 507286 and 518392 and use 
the second, fourth, sixth, eighth, and tenth digits of the product as the relative 
record position. This technique might yield a random distribution across a file 
for approximately 100 000 records. Another algorithm might be to take the 
second, fourth, sixth, eighth, and tenth digits from the 12-digit key. Thus, the 
first algorithm might locate the rate record in relative position 69301 
(262973004112); the second algorithm might place the same record in position 
02613. Some records, for a given billing location, would be far more active 
than the majority of the records. These very active records might be placed in 
a separate file, which may or may not be direct. 

The techniques described in the previous paragraph are randomizing 
techniques. Many randomizing techniques are employed by users of direct 
files. Regardless of which technique is used, the concept and approach should 
be well documented in each program that uses the technique. 



Application Design 

After the applications for the System/34 have been chosen, you can plan 
which programs should be designed and implemented first. You might 
consider the following factors to help you decide upon the initial programs: 

• Which application best justifies the cost of the System/34? An accounts 
receivable application or an order entry application might benefit the 
business most quickly. 

• Which application makes the user departments more productive and the 
users' jobs easier? Inquiries from display stations are typically programs that 
can help the users do their jobs more effectively. 

• Which application can be designed and implemented in the least amount of 
time? Again, applications that have numerous inquiries are usually easiest to 
plan. 

• Which application are you most familiar with? If possible, starting with an 
application that you have implemented or operated on another system is 
usually a good idea. 

A good design technique, therefore, is to begin by designing the easiest 
programs and gradually add the more complex programs. Inquiry programs are 
usually a good starting point because they are relatively simple and operators 
can use them productively with minimal instruction. More complex programs 
can be added as confidence in programming and operating the System/34 
grows. 

Most applications for System/34 have both batch and interactive programs. 
Interactive programs communicate with one or more display stations; batch 
programs do not have this interaction. 

Interactive programs can be classified as data entry, inquiry, or file update. The 
following examples show typical interactive programs: 

Function 

Data entry 

Inquiry 

File update 

Data entry 

Inquiry 

File update 

Data entry 

Inquiry 

File update 

Program 

Order entry 

Open order inquiry 

Inventory allocation 

Cash receipts entry 

Accounts status inquiry 

Open accounts receivable items 

Inventory receipts/ adjustments 
entry 

Inventory status inquiry 

Vendor code changes 

Application 

Order entry 

Accounts 
receivable 

Inventory control 

Design Considerations 3-49 



3-50 

DATA ENTRY PROGRAMS 

Data entry programs allow one or more operators to enter data directly into the 
system via display stations. Data entry programs involve nearly continuous 
operation of display stations. Operators enter transactions such as order 
information, cash receipt information, or inventory receipt/ adjustment 
information, and programs process them or save them for later processing. 

Typically you will need to choose data entry programming methods. The Data 
File Utility (DFU), Work Station Utility (WSU), and RPG II Program Product are 
three methods that offer similar data entry functions. The following table and 
descriptions compare these data entry methods. These three methods are not 
the only ways to code interactive data entry programs. For example, COBOL, 
BASIC, FORTRAN, and Basic Assembler programs can interact with display 
stations. 

DFU Data Entry Programs 

DFU programs are generally best for high-volume data entry with minimal 
operator guidance and no editing other than modulus 10 and modulus 11 self 
checking. DFU can create an indexed file or a direct file from the entered data. 
Programming is easily done by answering a series of prompts. 

DFU programs are SAT programs. Multiple operators, if they run the same 
program, use separate copies of the program and unique or shared transaction 
files. Refer to the System/34 DFU Reference Manual for a complete description 
of the functions of DFU. 

To allow several operators to enter the same type of data using common DFU 
specifications, you can create a procedure that contains the required DFU 
command. The file name in this command should be the file name 
concatenated with the ID of the display station that calls the procedure. This 
technique results in unique files for each operator. For example, creating an 
order file from two display stations could be allowed by using ORD?WS? for 
the file name. Two files would be created: ORDW1 from display station W1 
and ORDW2 from display station W2. 



WSU Data Entry Programs 

WSU programs optionally create a direct transaction file from a master file or 
files and the data entered from one or more display stations. WSU programs 
can be front-end entry programs for programs that do final editing, processing, 
updating, and printing. WSU is designed for efficient display station data entry 
and processing and, therefore, does not provide printed output. 

WSU programs are always M RT programs, which means they can be used 
concurrently by multiple operators. The MRT program can use input from 
operators, from master files, and from results of processing within the program 
to create and maintain one transaction file. The program can also add records 
to and update any master files that are used by the program. 

Two or more different WSU programs can be running at the same time and 
can share master files. For example, payroll input, job costing input, and 
accounts payable can be handled by three separate WSU programs that run 
concurrently. Sharing of transaction files, however, is not supported. 

The transaction file that a WSU program creates is a direct file, and the 
records are partitioned logically by display station. WSU formats the 
transaction file with special header and trailer records to identify the records. 
WSU protects each partition so that records entered from one display station 
cannot be read or modified from another display station unless a special WSU 
function is enabled. This special function allows you to read and modify 
records entered from another display station. For more information about this 
special WSU function, refer to Chapter 14 of the Work Station Utility Reference 

Manual. 

Because of the headers and trailers, the transaction file cannot be input to a 
follow-on program until this control information has been removed or handled 
in the program. RPG II provides a subroutine, SUBR22, that can be used to 
prepare the transaction file for processing. Refer to the System/34 RPG II 
Reference Manual for a description of SUBR22. 

WSU also provides support for removing the control information. A rebuild 
procedure for WSU allows you to copy a WSU transaction file and change it to 
an indexed or sequential file. The new file can then be processed by a 
subsequent program. 

An extract procedure can copy specific records to another file or remove blank 
records from a WSU transaction file. The extract can also be used to create a 
WSU transaction file by adding control information. This function allows you to 
create a file on a separate data entry device and then update the file using 
WSU. 

Design Considerations 3-51 



3-52 

A WSU program, using an indexed random or a direct access processing 
method, can read from and write to as many as 20 master files. These files 
can be indexed, direct, or sequential files. Master files can be reviewed, 
updated, and added to by operators if the programmer codes these functions 
in the program. 

WSU programs can do more edit checking than DFU programs. Some 
checking is done by the display station; for example, numeric data entered in 
an alphabetic field will cause an error to be flagged, and the operator can 
reenter the field. Some checking can be specified by the programmer on 
display screen specifications; for example, mandatory fill, mandatory enter, and 
self-check fields can be defined on these specifications. Additional checking 
can be done within the program; for example, the calculations for a display can 
check for valid entries within a range of values and reshow the display with the 
cursor positioned at the field in error. 

Refer to the System/34 WSU Reference Manual for a complete description of 
WSU programs. 

RPG II Data Entry Programs 

RPG II provides three methods of coding data entry programs: 

• WORKSTN file 

• CONSOLE file 

• SET /KEY logic of the KEYBORD file 

Programs that use a WORKSTN file have the most display design flexibility 
because these programs use display screen formats defined by the 
programmer. For example, field attributes and a variable starting line number 
can be specified. Also, multiple items per display can be programmed. 

Programs that use a CONSOLE file are easy to code. The format of displays 
are determined by RPG II when the program is compiled. Multiple items per 
display are allowed and require no additional programming. 

Programs that use SET /KEY logic provide field"."by-field data entry. Data is 
entered on the bottom line of the display and, when entered, rolls up one line 
to allow the next field to be entered on the bottom line. 

Refer to the System/34 RPG II Reference Manual for descriptions of coding 
data entry programs via the previous three methods. 



RPG 

Function/Feature DFU wsu JKEYBOARD CONSOLE WORKSTN COBOL BASIC 

Display layout 

Field attribute selection No Yes No No Yes Yes Yes 

Variable starting line No Yes No No Yes Yes Yes 

number 

Multiple items per display No Yes Not Yes Yes Yes Yes 

recommended 

Display associated with Yes Programmable No Yes Programmable Programmable Programmable 

record type 

Function/Feature DFU wsu RPG COBOL BASIC FORTRAN 

Printed output Yes No Yes Yes Yes Yes 

Master file access LIST only Yes Yes Yes Yes Yes 
Multiple user (MRT) No Yes Yes Yes Yes No 

MRT code handled - Most Some Programmable Programmable -
Transaction file Indexed, Partitioned User-coded User-coded - -

sequential, direct 
direct 

Maximum record length 512 4083 4096 4096 4096 4096 

Review mode Yes Yes Programmable Programmable Programmable Programmable 

Insert mode Yes Yes Programmable Programmable Programmable Programmable 

Control over operator No Yes Yes Yes Yes Yes 
modification 

Self-check numbers Hardware Hardware Hardware Hardware Hardware Hardware 
feature feature feature feature feature feature 

Maximum alphameric field 60 256 266 4096 255 4096 
length 

Calculations Limited Yes Yes Yes Yes Yes 

Number of result fields 241 Many Many Many Many Many 

Arrays No No Yes Yes (3-D) Yes (2-D) Yes (3-D) 

Edit checking No Yes Yes Programmable Programmable Programmable 

Batch totals with insert Yes Programmable Programmable Yes Yes Yes 
and review mode 
adjustments 

Time of day Yes Yes Yes Yes Yes Yes 

Date Yes Yes Yes Yes Yes Yes 

Local data area access No Yes Yes Yes Yes Yes 

User switch access No Yes Yes Yes Yes Yes 

Roll keys handled Yes Yes Programmable Programmable Programmable No 

Dup key handled Yes Not Programmable Programmable Programmable No 
available 

Roll portion of screen No No No Yes No Yes 

Write on message line No Yes No Yes Yes No 

Allow help key No No Yes No Yes No 

Read message member via No Yes Yes Yes Yes Yes 
format output 

Explicit open I close No No No Yes Yes Yes 

User indicators No Limited Limited Yes Yes No 

Note: Yes means the function or feature is available for the programming method; No means the function or feature is not 
available. 

1 Less if more than one factor is used per result field. 

Design Considerations 3-53 



3-54 

The Badge Reader as a Data Entry Device 

You can use your badge reader as a means of entering data into the system. 
The data is encoded onto a magnetic stripe which is part of the badge that is 
read by your badge reader. 

The encoding of this data onto the magnetic stripe involves special data 
encoding considerations. Contact your local IBM branch office for more 
information about encoding data for use with magnetic stripe badges. 

Editing in Data Entry Programs 

Data editing at the time data is entered into the system should be a primary 
function of an online application. The same basic edit functions apply to data 
regardless of the application involved. This section addresses some major 
editing problems that you could encounter. 

One or more of the following edit checks may be specified for any given data 
field. 

• Field editing 
Mandatory field entry 
Every field required 
At least one field required 
Only one field required 
Default value editing 
List check editing 
Range check editing 
Mandatory fill 
Self checking 
Adjust/fill 
Duplication 

• Date editing 

• Compatibility editing 

• Table look-up editing 

The following sections provide a detailed discussion of some of the types of 
edit functions that could be considered. 



Field Editing 

Field editing performs basic data characteristic validation for data fields within 
a transaction. Some of the key types of data characteristics possible are: 

• All characters must be blank or alphabetic. 

• All characters must be blank or numeric. 

• All characters must be blank, alphabetic, or numeric. 

• All characters must be numeric. 

• All characters must be numeric, with leading blanks optional. Field must not 
contain embedded blanks. 

• All characters must be alphabetic or numeric. 

• All characters must be alphabetic. Field must not contain leading or 
embedded blanks. 

• All characters must be alphabetic, numeric, blanks, or special characters. 

• All characters must be alphabetic, special characters, or blanks. 

• All characters must be numeric, special characters, or blanks. 

• All characters must be special characters or blanks. 

• All characters must be special characters. 

• All characters must be alphabetic, numeric, or blanks, with no leading 
blanks. 

• All characters must be alphabetic, numeric, or blanks, with no trailing 
blanks. 

• All characters must be alphabetic, with no embedded blanks. Leading and 
trailing blanks are permitted. 

• All characters must be numeric, with no embedded blanks. Leading and 
trailing blanks are permitted. 

• All characters must be numeric, alphabetic, or special characters, with no 
embedded blanks. Leading and trailing blanks are permitted. 

• All characters must be alphabetic or special characters, with no embedded 
blanks. Leading and trailing blanks are permitted. 

• All characters must be numeric or special characters, with no embedded 
blanks. Leading and trailing blanks are permitted. 

Design Considerations 3-55 



3-56 

• All characters must be special characters, with no embedded blanks. 
Leading and trailing blanks are permitted. 

• All characters must be alphabetic, numeric, with no embedded blanks. 
Leading and trailing blanks are permitted. 

Mandatory Field Entry: Specifies that a value must be entered for a field. 
Blank fields that have been designated as required fields are invalid. Other 
types of editing may also be done on required fields. If a field is to have a 
default value, mandatory field entry should not be specified. 

Required Entry of Every Field: Specifies that all fields in a logical group must 
be entered if any one field of the group is entered. This capability might be 
used, for example, on a mailing address to specify that if any part of the 
address-street, city, or zip code-is entered, then all the mailing address fields 
are required. 

Required Entry of at Least One Field: Specifies that at least one field in a 
logical group of fields must be entered. This editing might be used, for 
example, on a list of the reasons a student has withdrawn from a university, to 
ensure that at least one reason for the withdrawal has been entered. 

Required Entry of Only One Field: Specifies that only one field in a logical 
group may be entered. If a group of fields is mutually exclusive, but one field 
is required, this type of editing would be used. This capability might be used, 
for example, to prevent the scheduling of more than one surgical procedure at 
a time per operating room. 

Default Value Editing: Moves specified default values into a data field if 
nothing is entered in that field. If data is entered in the field, the default value 
is ignored, and normal editing is performed. 

List Check Editing: Specifies a list of valid values for a data field. If the 
content of a field is not equal to one of the values in the list, the field is 
invalid. 

An optional feature is to have a default value substituted for the data entered if 
the value of the data entered is not in the list. 

Range Check Editing: Determines whether the value contained in a given data 
field is between predetermined high and low boundaries established for that 
particular data field. 

The range edit function could specify one of three possible conditions for data 
fields that have been range edited: (1) the data value is lower than the 
specified range, (2) the data value is higher than the specified range, (3) the 
data value is within the specified range. 



Mandatory Fill: Ensures that all positions in the field are entered. Thus, for 
example, entry of only four numeric digits in a five-position code field would 
be invalid. A field designated as variable, such as a 25-position name field, 
need not require that all the positions be filled to be considered valid. 

Self Checking: Specifies that the data entered in the field is checked by a 
modulus 10 or modulus 11 algorithm after the field is entered. 

Adjust/Fill: Specifies that data entered in a field can be right-adjusted and 
that unused positions are filled with zeros or blanks. 

Duplication: Indicates that the Dup function key can be used to fill the position 
of the cursor and the positions in the field to its right with the duplication 
character, which is!. (hexadecimal 1 C). The user program must check for these 
characters and place the appropriate duplicated data in the field. 

Date Editing 

Date editing should validate date fields within a transaction. 

Either of two types of date editing may be specified for date fields. The first 
type of date edit determines, in general, whether or not a given date field is 
valid: the month is between 01 and 12; the day is between 01 and 28, 01 and 
29, 01 and 30, or 01 and 31 depending on the month and whether or not it is 
a leap year; and the year is numeric and within a predetermined range. 

The second type of date editing validates the date field as above and, if the 
date is valid, determines whether the date is on or after the current system 
date. This form of date editing is used when the date wanted must be either 
the current date or some date in the future. 

Compatibility Editing 

Compatibility editing should ensure that designated data fields are compatible 
with each other by cross-checking their respective contents. In other words, 
the data within a given field is valid only if another field contains a specific 
value or is within a specified range of values. If this is not the case, then an 
error condition exists, and the first field is flagged as having failed compatibility 
checking. Therefore, even if a field passed field editing, it may fail overall 
editing due to incompatibility. 

Design Considerations 3-57 



3-58 

Table Lookup Editing 

Table lookup editing should provide the ability to alter the contents of a field 
based on a conversion table established by the user. This is basically a 
one-for-one replacement of data according to the conversion specifications 
contained in the table. The table contains the values of the field to be 
converted and corresponding substitution values used to replace the original 
values. 

When a match is found in the conversion table for a given field value, the 
replacement value is placed in the edit result table, and table lookup is 
considered to be successful. If the field contains a value not in the conversion 
table, then the field is considered invalid and is flagged. 

An optional feature of table lookup editing is to have a default value 
substituted for the data entered if that entry is not in the conversion table. 

Summary of Editing 

Collectively, the above edit capabilities provide a powerful tool to the user of 
an online system and although any or all the edits may be performed on any 
given data field, the extent of editing is at the discretion of the user. Field data 
editing is usually performed initially because this validates a data field before 
additional editing is performed. Additional types of editing are usually not 
performed if field data editing indicates a given data field is invalid. 

INQUIRY PROGRAMS 

Inquiry programs are the simplest of the types of interactive programs to 
design and implement. They allow operators to look at information in files. 
Inquiry requirements might vary from user to user: some users might need to 
look at data that pertains to their department only, and other users might need 
to inquire into entire master file records. 

When used for inquiry, a display station is not operated continuously. Rather, 
an operator typically asks a question of the system. Based on the system 
response, another question might be asked. While the operator reads the 
displayed information, the system can handle requests from others or can 
resume processing until the operator asks another question. When an operator 
finishes inquiring, the display station can be used to do other work. 

FILE UPDATE PROGRAMS 

Interactive file update programs update master files with transaction file data. 
How and when the changes occur vary with the type of system design 
implemented. An effective method of file update that provides immediate 
update and efficient recovery is called memo updating. Refer to Chapter 4, 
Coding Techniques, for a description of this method. 



PROGRAM ATTRIBUTES 

Program attributes describe a program's use of display stations or use of 
resources on System/34. 

Attributes that can be specified when a program is compiled are: 

• SRT (Single Requestor Terminal). The program allows one requesting 
display station or SSP-ICF session. 

• MRT (Multiple Requestor Terminal). The program allows more than one 
requesting display station or SSP-ICF session. 

• NEP (Never-Ending Program). This attribute can be given to SRT programs 
and M RT programs. Programs do not wait for nonshared resources that the 
NEP uses, and the NEP remains active when no requestors are attached to 
it. 

A program can also run without a requestor. This allows a display station to be 
released from a job step after that step has been initiated if interaction 
between the display station and the program is not required. 

If none of the steps of a job communicate with display stations, the job can be 
run from the input job queue. 

For a description of each of these attributes, refer to Program Attributes in 
Chapter 2. 

Usually an application has a mixture of these attributes for its programs. For 
example, the sample order entry application in Chapter 5 has an SRT program, 
an MRT program, and a no-requestor-terminal program. The following 
information provides considerations for choosing program attributes. 

If a program is likely to be requested by more than one display station 
concurrently, consider coding an MRT program. Coding a program as an MRT 
program avoids resource conflicts that might occur if multiple copies of the 
program were run concurrently. Also, a single copy of an MRT program usually 
occupies less storage than two or more copies of the same program coded as 
an SRT program. 

If the program runs when main storage might be overcommitted-the programs 
that are running do not fit into storage at one time-an MRT program can 
reduce the swapping that would occur if multiple copies of the same program 
were run concurrently. Reduced swapping should shorten response times for 
the display stations. 

Finally, only the first requestor of a MRT program causes the program to be 
initiated. Subsequent requestors should have a shorter sign-on time because 
their display stations attach to an active program and initiation is not done. 

Design Considerations 3..,59 



3-60 

An M RT program might be more complex and use more main storage than the 
same program coded as an SRT program. If a program will not be requested 
by more than one operator concurrently and if the initiation time for the 
program is acceptable, consider coding the program as an SRT program. 

If the maximum number of requesting display stations is already attached to an 
MRT program, the SSP queues a new requesting display station to the 
program. While the display station waits for its request to be accepted, the 
display station cannot be used unless the operator presses the Attn key and 
releases the display station from the MRT procedure. To avoid this situation, 
you can code the program as an SRT program or increase the maximum 
number of display stations supported by the program. 

If the program must do extensive input/ output processing between displays 
(for example, extensive array processing, multiple printed lines, or ten or more 
disk accesses), shorter response times are possible when multiple copies of an 
SRT program are run concurrently. 

If a program is requested frequently, is active for more than a few seconds, 
and uses nonshared resources such as a printer or nonshared disk files, you 
might want to define the program as never-ending. (Refer to Never-Ending 
Programs in Chapter 2 for a description of these programs.) 

An MRT never-ending program with no active requestors will wait for a 
requestor. This waiting saves program initiation time but will use system 
resources such as assign/free space in order to remain active. 



DISK ACTIVITY FOR LOADING PROGRAMS AND ATTACHING DISPLAY 
STATIONS TO THEM 

Program 
Attribute 

MRT-NEP 

MRT 

SRT 

The following table shows the number of disk accesses required for loading 
programs and for attaching display stations to them. Factors affecting the 
number of disk accesses that are shown in this table are: 

. Program attributes 

. History file logging 

. Read-under-format processing. This technique, a method of overlapping 
data entry time and program initiation time, is described later in this chapter. 

. File status: open or closed 

. Number of files used by the program 

History Files Disk Accesses for Program 
Logging Read-Under-Format Open Load 

Yes No N/A N/A 

No No N/A N/A 

Yes Yes N/A N/A 

No Yes N/A N/A 

Yes No No 41 + (4 x number of files) 

No No No 30 + (2 x number of files) 

Yes No Yes 41 + (2 x number of files) 

No No Yes 30 

Yes Yes No 37 + (4 x number of files) 

No Yes No 26 + (2 x number of files) 

Yes Yes Yes 37 + (2 x number of files) 

No Yes Yes 26 

Yes No No 34 + (4 x number of files) 

No No No 23 + (2 x number of files) 

Yes No Yes 34 + (2 x number of files) 

No No Yes 23 

Yes Yes No 30 + (4 x number of files) 

No Yes No 19 + (2 x number of files) 

Yes Yes Yes 30 + (2 x number of files) 

No Yes Yes 19 

Disk Accesses 
for Display 
Station 
Attachment 

9 

8 

3 

2 

6 

5 

6 

5 

2 

2 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

Design Considerations 3-61 



3-62 

Minimizing Disk Activity to Increase Throughput .on the System 

There are several things you can do to minimize disk. activity and disk 
processing. 

• Call a procedure from within another procedure by u,sing the procedure 
name instead of a I I INCLUDE OCL statement. 

• Log entries to the history file. only if they are absolutely necessary. Each 
record logged to the history file requires three to four disk operations. 

• Send messages «YWork station ~perators by using a I I PAUSE OCL 
statement instead of a I/* statement. 

• Use the IDELETE command to suppress informational me~sages that may 
not be necessary for a particular work station. 

• Use tests for the existence of disk, diskette, or library members only when 
they are necessary. These tests require reading the disk or diskette VTOC 
and require additional disk activity. You should be aware of this when 
coding procedures, and should branch around these expressions in your 
OCL when these existence tests are not needed. 

PROGRAM SIZE 

If possible, programs should be designed to run in a predetermined region size 
that allows more than one program to be resident in user storage concurrently. 
If a program is so large that no other program can be in user storage with it, 
another program can be swapped in, but these programs cannot execute 
concurrently. 

A program that is larger than the predetermined region size can cause two or 
more programs or segments of programs to be swapped out each time the 
large program is swapped in. This swapping can affect performance because 
of the additional disk activity that is required. Swapping, however, is more 
efficient than using overlays for a program if the execution of one program 
cycle results in many overlays. For example, in RPG the number of overlays is 
not easily controlled by a programmer. In COBOL, Basic Assembler, 
FORTRAN, BASIC, and WSU, the programmer can control the overlays and 
therefore might improve performance by using overlays instead of swapping. 
In addition, BASIC has a status feature in the HELP support that allows the 
programmer to see how many overlays are occurring for a particular region size 
and work area partition. 

When you predetermine a region size and, try to code your programs to fit that 
region, you might have to adjust the size of the program after. you have coded 
it. If the program is too large, specifying the predetermined region size to 
execute causes overlays to be built to fit the program into the region. 



Each program need not be the same size in order to execute in the same 
region. If the region size specified for a program is not a multiple of 2 K bytes, 
the number is rounded up to the next even 2 K byte increment. For example, if 
you have a 32 K byte user memory, you might design each program so that it 
executes in a 16 K byte region. Because of the rounding up that was 
previously described, programs between 14 K bytes and 16 K bytes will require 
this region for their execution. 

Program size can vary with the number of functions and the types of functions 
used and is therefore difficult to estimate before a program is coded. For 
example, the following items can affect program size: 

• Number of files used." 

• File types used. For example, input-only disk files require less storage than 
update-capable disk files. 

• Processing method used. For example, input-only processing of disk files 
require less storage than update or add capable processing. 

• Storage index for indexed files. 

• Amount of input processing specified. For example, the number of I 
specifications in an RPG program can affect program size. 

• Record lengths, which can affect the size of input/ output areas that are 
reserved for files. 

• Number of .output specifications. 

• Number and type of calculations. For example, a LOKUP operation in an 
RPG program done by a subroutine. If you use this operation and a manual 
search in an RPG program, you might want to use one method instead of 
two in order to reduce the storage required. 

• Number and sizes of constants, data structures, fields, tables, and arrays 
defined. 

• The number of formats on an H specification in an RPG II program. If a 
number is not specified, 32 is assumed. The number of formats must be at 
least the number of formats in the load member, even if not all of the 
formats are used in the program. For each format, an additional 16 bytes is 
required in your program. For example, if your program uses five formats 
and you specified five formats on the H specification, 80 bytes (5 x 16) are 
used for formats. If, for the same program, you used the default of 32 
formats on the H specification, 512 bytes would be required. Thus, your 
program would be 432 bytes larger than necessary. 

Program size can be adjusted by dividing a program into several job steps and 
using a technique such as the read-under-format technique to show displays. 

Design Considerations 3-63 



3-64 

READ-UNDER-FORMAT (RUF) 

Using a read-under-format technique allows an operator to enter information 
onto a display while the program that uses the display is initiating. When 
read-under-format is used, a program or a procedure displays the format, and 
the program called next in the procedure reads it. The format is displayed by a 
program or a PROMPT OCL statement with PDATA-YES specified. If an SRT 
program displays the format, it then goes to end of job. An MRT program 
displaying the format releases the display station. While the program is being 
initiated, the operator enters information for the display. When the operator 
presses the Enter key, the input from the display is sent to the second 
program. 

This technique can be used with all types of programs, including never-ending 
programs. Read-under-format processing decreases program size because 
each program might handle a few formats. This technique might increase 
processing time because of the extra time the system spends initiating a 
program. 

The following example shows a read-under-format technique that uses two 
displays and two programs. The PROMPT OCL statement is used to show 
Display 1. While the operator enters information on that display, Program 1 is 
being loaded. When the operator enters Display 1, his input is sent to Program 
1. Before Program 1 ends, it shows Display 2. The operator can enter 
information on this display while Program 2 is being loaded. When the 
operator enters Display 2, his input is sent to Program 2. 



!IL 

Program 1 { 
Load Time 

11/J 
I 

ii I 
~ILJ 
If I 

Program 2 { 
Load Time 

JI 
t!IJJ 
JI 
~/ 

I 

OCL 

"ill!' 1v• "'1 ID1u 
• . . 

LIO IAt n 
I l! 1"'1\.1 

f I LS .. ... 
EI LS . . . 
s~ II Cl:I ... 
RILI IN . . . 

Program 1 Ends 

IEIS EI ... 
L ll IUl"I 

blAn IOIQ f lr 
~lIJ l6 

.. ... 
FI LS ... 

IUIN 

s~ I ltll VI [1 

all 1 

Miii ! 
ti l2 rdl 

Display and Program Flow 

Display 1 

The operator keys data and then enters the display • 

Program 1 
Execution 

Display 2 

Program 1 shows Display 2 
and then ends 

The operator keys data and then enters the display. 

Program 2 
Execution 

The sample application described in Chapter 5 also uses a read-under-format 
technique. 

Design Considerations 3-65 



3-66 

DISPLAY STATION LOCAL DATA AREA 

A 256-byte local data area exists on disk for each command display station on 
the System I 34. This area may be used to pass information between programs 
and procedures. This area is initialized to blanks at the start of a session. RPG 
II, WSU, SDA, SMF and 3270 emulation use part of the display station local 
data area to control their execution. Therefore, any user data in those bytes is 
destroyed when one of these programs is run. The use of the local data area 
by these programs is as follows: 

Program 

ICFVERIFY 
SDA 
RPG II 
SMF 
3270 Emulation 
wsu 
HELP 

Bytes Used 

1 through 4 
1 through 104 
201 through 256 
220 through 256 
230 through 256 
238 through 256 
249 through 256 

The LOCAL OCL statement may be used to put data from a procedure into the 
local data area. The ?L'offset,length'? substitution expression may be used to 
test or extract data from the local data area in a procedure. Both COBOL and 
RPG II have subroutines available to read and update the local data area for 
any attached display station. In BASIC, the local data area can be opened with 
the OPEN statement and is then available to read and update. 

The local data area becomes resident in main storage the first time a LOCAL 
OCL statement or LOCAL substitution expression is encountered within a job 
step. Each subsequent LOCAL OCL statement processed in a job step updates 
the main storage resident local data area and the data area that resides on 
disk. Each subsequent LOCAL substitution expression· in the job step accesses 
only the local data area in storage. The local data area is resident in storage 
for a particular job step only until a I I RUN OCL statement is encountered and 
processed. The local data area can be reestablished for the next job step if 
necessary. 

The local data area, when resident in main storage, uses the assign/free area 
of the nucleus. 



The following OCL statements in a procedure called PROCA would prompt the 
operator to enter a starting invoice number. It would store this number in the 
first six bytes of the local data area. PROC5 would execute using and updating 
the first six bytes of the local data area, which contain the invoice number. 
When control returns to PROCA, the updated invoice number would be 
displayed to the operator and the procedure would pause until a 0 response is 
entered. 

" ~ 'IE Nlf 11:1R srr AlR IT[ NG rIN ~Kl IIC E N1U MfB ER 16 l)[J l1IT US' 
I/ (lA L um-t~ -=-ll -1 "-D ~[ ~- 'I? lB ?I . 
~l< ~I 

ILi p lJI~ E1 I N~ rIIN GI 1~ VO IC 8 ~AS ?L '1 ,(, '?. 
1-1-r-· 

Note: If a I I * statement, rather than the PAUSE statement, is used to display 
the operator message, processing of the procedure continues and the message 
might appear on the screen only momentarily. For that reason, if a I I * 
statement is used, you might want to follow it with a PAUSE statement. 

EXTERNAL INDICATORS 

System/34 has a set of eight external· .indicators (switches) available for each 
display station. These switches are available to the COBOL programmer as 
switches UPSl-0 through UPSI-7 and to the RPG II and WSU user as 
indicators U1 through US. 

Subroutines are provided for retrieving and updating the external switches of 
any attached, command-capable display station in an RPG MRT program or in 
an SRT or MRT program coded with the subset ANS COBOL PRPQ 
(X3.23-1968). Retrieving and .updating these switches is automatically done for 
RPG SRT programs; WSU programs, and programs coded with the ANS 
COBOL Program Product (X3.23-1974). The switches are available to BASIC 
programs through the U PSI$ intrinsic function. 

System/34 OCL also has the ability to test and set these switches. Thus, the 
execution flow of various OCL statements in a procedure can be controlled by 
the settings of various switches. 

If UPSl-YES is specified on the I I PROMPT statement, the current setting of 
the eight UPSI switches are made available to the screen format as indicators 
91 through 98. A return code that indicates which command or function key 
was used can be accessed by a ?CD? substitution parameter. For more 
information on using the ?CD? substitution parameter with indicators, refer to 
Using the Prompt OCL Statement in Chapter 4. 

Design Considerations 3.,.s7 



3-68 

The following example uses the SWITCH OCL statement to set switch 1 to an 
off status and switch 2 to an on status; switches 3-8 are unchanged. PROC1 
is called and executed. If switch 1 is on when control is returned from PROC1, 
then. PROC2 is called; if switch 1 is off, the ELSE statement causes PROC3 to 
be executed. The last SWITCH statement sets all eight switches to an off 
status. The switches are also set to an off status when a display station 
session is initiated. 

~I I~~ [

1 iM Iffi t Jl][ 11,vlV 
.. 

llCIU I ,, 
I= ISi 1t.l I! TC Ji-If f11C ticz 

ll/ eL SE I# - 11 

I Slk I ICM IC 01r 
,_ -
If ll 

Note: A separate copy of the switch settings is kept for each requestor of an 
MAT program. When a requestor gains control of the program, the switches 
are automatically set to the values stored for that requestor. 



Data Processing Security and Accuracy 

Data processing security involves protecting both data and the equipment 
needed to process the data. The major emphasis of data processing security is 
to prevent the unauthorized release, modification, or destruction of your 
information or data processing equipment. Data processing security is 
especially important because the System/34 allows many activities to occur at 
the same time, often away from as well as at the central computer site. There 
are two important areas that make up data processing security: physical 
security and data security. 

PHYSICAL SECURITY 

Place your computer in a safe location. There are several factors to consider. 

Physical Location 

You should not place your computer below ground level, as in the basement. 
Backed-up sewer lines, broken water mains, and floods can occur. 

Place the computer away from outside walls or windows. If you must place 
the computer along an outside wall or window make sure the wall or window 
is strong enough to protect your computer from damaging winds, hail, or other 
conditions accompanying severe weather. 

Limited Access to the Computer 

Only people who need to use the computer to do their work should be allowed 
to use the computer. If you have the computer in a special room, you may 
want to limit access to the computer room through the use of special locks or 
special doors. 

Fire Protection 

Place your computer in a building that is as fireproof as possible. Good 
housekeeping is vital to maintain a fireproof environment. 

Other things you can consider: 

• Place some fire extinguishers near the computer and make sure the 
appropriate people are trained in their use. 

• Keep a smoke detector near or in the computer room. 

• Install appropriate sprinklers to put out a fire. 

Because sprinklers can use water that can damage your computer, make 
sure your sprinklers use chemicals that will not damage the System/34. 

Design Considerations 3-69 



3-70 

DATA SECURITY 

Limited Data Access 

Limiting access to your data protects it from being read or disclosed to people 
who are not authorized to use it. The System/34 provides some security 
features to help you safeguard your data. These features include: 

• Password security 

• Badge security 

• File and library security 

• Menu security 

For more information about System/34 security features, refer to 
System-Provided Security in Chapter 2. 

Data Accuracy 

You can better safeguard the accuracy of your data if you use certain data 
controls to help you make sure your data is as accurate, reliable, and complete 
as possible. There are three basic types of data controls: 

• Input controls 

• Processing controls 

• Output controls 

Input Controls 

The following steps will help to ensure that your input data is correct. 

Input Verification: Check fields on the input record to see if these fields are 
correct. Some businesses have personnel check all input documents and 
records before entering them into the computer. 

It is necessary to make sure not only that input records are processed correctly 
but that all input documents cannot be lost and the loss go undetected. You 
should have some way of recording what input was entered into the computer. 



Processing Controls 

Processing controls are those routines that are written into a program to ensure 
the program is processing data correctly. 

Some common processing controls are: 

• Record counts: This control counts how many input records were 
processed; it can determine if any records were lost during processing. 

• Sequence checking: This control checks whether records have been sorted 
properly. 

• Audit trails: An audit trail records what work was done on the computer 
and the order in which the work was done. An audit trail should indicate 
that the computer is doing the work correctly. Additionally, the audit trail 
should provide information to identify any errors and their causes. 

Output Controls 

These controls report the results of the processing done by the computer. 
These controls when combined with input controls can be especially effective 
in checking such items as output totals compared to input totals. Some. 
effective output controls are: 

Output counts: Count of records either processed or written as output. 

Program messages: Messages issued by the program when data errors occur 
(for example, a message issued to the console operator when a four-digit 
control number is blank and the control number is used as a key). 

BACKUP AND RECOVERY CONSIDERATIONS 

Because data (programs and files) can be damaged or destroyed by incorrect 
modification, a system failure, operator errors, or a natural disaster such as a 
fire, keeping backup copies of vital information is recommended. Backup 
procedures typically involve copying the vital information kept on the system 
and then storing the copy in a safe location. For example, data can be copied 
to diskettes, dated, labeled, and stored in a fireproof safe. Because a disaster 
such as a fire could destroy the onsite backup copy, a good practice is to store 
another set of backup diskettes offsite. 

Loss of data could be disastrous to most businesses using data processing. 
Thus, a standard, well-documented, backup procedure should be established 
and used regularly. Typically, master files and all files related to the master 
files are saved at the same time. For example, if a customer master file 
contains an accounts receivable sum for each customer, this file and the 
accounts receivable open item file are saved and restored together. 

Design Considerations 3-71 



3-72 

New data such as batches of transaction records can be copied to disk or 
diskette after they have been entered and edited. These saved transactions can 
be used during recovery procedures to make the master files current. 

Recovery is a series of steps that an operator follows or procedures that an 
operator runs to restore data on the system. Following recovery, programs and 
files are returned to the status that they had just before the error, failure, or 
disaster occurred. 

Recovery procedures can require removing all or some master files, restoring 
backed up master files, and reexecuting those procedures that updated files to 
repost transactions in the order that they were originally processed. 

Programs and procedures can be designed to restore and recover all files, 
inform the operators about the last items correctly processed, and allow 
operations to continue from that point. This effort might involve using 
additional fields in records and using additional calculations in programs. Also, 
new files, programs, and procedures might be needed, particularly for recovery 
in a work station environment. The planning and programming effort might not 
seem costly in light of the potential results of inadequate backup and recovery 
procedures. Typically, businesses that are most dependent on their data 
processing system require the shortest recovery times and thus should develop 
the most elaborate backup and recovery procedures. Regardless of their 
complexity, backup and recovery procedures should be well-documented so 
that all operators use them correctly. 

The following information describes three methods of backup and recovery. 
The first method requires the least design and programming effort, but 
probably requires the longest recovery time because transaction batches are 
not saved. The second method requires more planning and programming, but 
reduces the amount of recovery time required because reentering the 
transactions is not necessary. The third method requires the most planning and 
programming but provides the quickest way to recover data because the 
operator's involvement is minimized. 

Method 1 

This method requires the operator to periodically save master files and files 
that the application updates in order to establish a point from which to recover 
(restart) the application. For example, at the end of each day after all 
transactions have been posted, the operator might execute a procedure that 
contains SAVE commands to back up all master files and their related files on 
diskette. 

Operators should keep a log of the work they do on the system. This manually 
kept log must be accurate if it is to be relied upon during recovery. One 
method of keeping a log is to use the following sample run sheet. 



RUN SHEET 

Work Station ID------- Date _____ Page ____ _ 

Menu, Item, Command, or Operator's Start Stop OK Comments, Halts, 
Procedure Name Initials Time Time Messages 

'~ 

Design Considerations 3-73 



3-74 

Another method of obtaining a log of work done on the system is to print the 
history file. 

This recovery method consists of the operator (1) deleting files from disk, (2) 
restoring the backup copies from diskettes to establish a point from which to 
recover, and (3) reprocessing all transactions that have been entered since the 
last backup was done. 

All of the work done since the last backup must be redone. Because they are 
not saved, transaction batches must be reentered. This method might be 
adequate for a business that processes low volumes of data and that 
frequently backs up its data. 

Method 2 

This method requires the operator to (1) periodically save the master files and 
their related files and (2) save batches of transactions at logical breakpoints in 
the application. For example, at the end of each day after all transactions have 
been posted, the operator executes a procedure that contains SAVE commands 
to back up master files and their related files on diskettes. As part of the 
transaction-posting procedure run during normal processing, a batch of 
transactions is saved on diskette and deleted from disk. The operator labels 
the diskettes that contain the transactions so that he knows the sequence in 
which the batches have been saved. Also, the operator lists the names of the 
procedures in the order that he runs them. 

The recovery method requires the operator to (1) delete the files from disk, (2) 
restore the backup copies from diskettes to establish a point from which to 
recover, and (3) reprocess the application's procedures in their original order 
using the saved copies of the transaction batches. The operator uses the 
information he has labeled on the diskettes to ensure that the transaction 
batches are restored in the correct order. 

This method eliminates the rekeying of transactions that was required in the 
previous method. 



Method 3 

This method requires code to be included in an application's procedures to do 
the following things: 

• Periodically back up the master files and their related files. 

• Automatically back up batches of transactions on disk or diskettes at logical 
breakpoints in the application. 

• Assign names and sequence numbers to these batches of transactions. 

• Keep a history of all procedures executed by the operator following the last 
backup. This history is kept in a control file. 

• Provide a common recovery procedure. 

The recovery method consists of the operator running the common recovery 
procedure, which lists the control file and restores the files. The operator uses 
the listing of the control file to rerun the application's procedures in their 
original order. The common recovery procedure could prompt the operator to 
insert the proper backup diskettes in the correct sequence. 

This recovery method uses a program-generated control log, which is more 
accurate than a manually-kept log. Because unnecessary procedures such as 
reprinting statements or reports could be skipped during recovery, this method 
provides the quickest recovery of the three methods. This method is similar to 
the backup and recovery procedures used in some IBM Licensed Application 
Programs. 

The following example shows one method of restoring a particular file from a 
diskette in a magazine. 

Step 
Procedure 
Command 

CATALOG 

Action 

Determine the file that you want to restore. 

2 RESTORE Restore file to disk from diskette files kept 
as backup. 

3 CAT ALOG(optional) Verify that the file has been restored. 

Design Considerations 3-75 



3-76 

Procedure Command Examples 

1. Print a list of all files on each diskette in a magazine. 
CATALOG ALL, 11, M 1.01, NOAUTO 

2. Restore a file named ORDITEM located on diskette 07 in magazine drive 
01. 

RESTORE ORDITEM,,,,M1 .07 

History File 

The history file is an area that is located in the system area on disk 
(#SYSHIST) and occupies a minimum of 120 sectors and a maximum of 9960 
sectors. The size of the history file is specified during the configuration 
process. The history file is an important tool you can use to review events that 
have occurred on your system. Recorded in the history file are: 

• All OCL statements, utility control statements, control commands, and 
procedures executed by the SSP. 

• All messages displayed at the display station. 

• All operator responses to messages and prompts. 

• Work stations being used. 

• Operator's user ID. 

• Job name in the form WWHHMMSS; WW is the work station ID and 
HHMMSS is the time the job began running. Occasionally, there will be all 
asterisks {*) in either the operator user ID or the job name. This indicates 
that the entry recorded was generated by the system. Double quotes (") 
indicate that the line is continued from the previous entry. 

• The time the entry was recorded in the history file. 



In addition, there are entries in the history file designated as *E entries. There 
are two types of *E entries: *EJ, which indicates the end-of-job recording, 
and *EP which indicates the end of a spool print job. The following information 
items are shown by the *E entries: 

• Starting and ending time of the job 

Date the job was run 

• Amount of elapsed time it took to run the job 

Operator's user ID 

• Work station or printer ID 

Name of the procedure that began the job or created the print job 

• Whether the job was an MRT program 

• Two-character completion code for the *EP entries 
NC: Normal completion 
CP: The print job was canceled by either the console or subconsole 
operator 
SP: The print job has been stopped by either the console or subconsole 
operator 

Th~ following three printouts are samples of a listing of the history file entries. 

HJCTORY FILE DISPLAY WORKSTATION - Xi USER - RON DATE 07124180 TIME l4.0i SUBCONSOLE - PAGE-

STATEMENT 

RENAME TEMP1,WFR7V066 
RENAME PROCEDURE EXECUTING 

HELP SAVE 
SAVE WFR7V066,999,,WSUWSU, ,,,,, 

SAVE PROCEDURE EXECUTING 
SEU SAVEFILE,P,, ,WSUFT 
SEU PROCEDURE EXECUTING 
II LOAD $SFGR 
II RUN 
II LOADMBR NAME-TOM 

HISTORY SYSTEM 

II INOUT INlIB-JMGLIB,OUTLIB-JMGLIB 
II UPDATE SOURCE-TOM 
SAVEFILE 066,CUSMF001,ITEMF002, ,TRANFOlB,58,25 

DISPLAY PROCEDURE EXECUTING 
// END 
SYS-1598 OPTIONS ( 23) cocr 
TRANF018--THIS FILE IS NOT ON DISK 
SYS-50l9 OPTIONS ( 3l SFDE 
TERMINAL ERRORS IN $SFGR INPUT SPECIFICATIONS 
3 
3 
SDA 
SEU SAVEFILE,P,,,WSUFT 
SEU PROCE~JRE EXECUTING 
SEU-0549 OPTIONS < 2 ) SEEJ 
NOT ENOUGH ROOM IN l.IBRARY TO REPLACE MEMBER 
2 
CONDENSE WSUFT 

CONDENSE PROCEDURE EXECUTING 
SYS-2582 OPTIONS ( 123) MARC 
WSUFT --THIS LIBRARY NOT COMPRESSED, BEING USED .•. 
3 
OFF 
OFF 
SEU PROCEDURE EXECUTING 

LI>I<: 
II LIBRARY NAME-WSUFT 
CONDENSE WSUFT 

CONDENSE PROCEDURE EXECUTING 
II LIBRARY NAME-ILIBRARY 

CJR CMENU WSUFT 
OFF 
SEU SAVEFILE,P,, ,WSUFT 
SEU PROCEDURE EXECUTING 
SEU-0545 OPTIONS <Oi 3) SE 
WORK FILE ALREADY EXISTS--IS THIS A RECOVERY RUN~ •.. 
0 
WSU WSUFT079,WSUFT, ,REPLACE 

WSU PROCEDURE EXECUTING 
RON COST WSUFl 
RON wsurr 

WKSTN USER .. JOB NAME TIME 

W2 RON W2143606 14.36.07 
14.36.08 

W2143617 14.36.17 
14.36.30 
14.36.32 

W2143700 l.4.37 .01 
14.37.02 

Xi JMG X1143800 14.38.01 
14.38.05 
14.38.14 
14.38.27 
14.38.49 

W2 RON W2143850 14.38.50 
14.38.52 

Xi JMG Xii43800 14.38.56 
W2 RON W2i43850 14.38.59 

14.39.00 
Xi JMG X1143800 14.39.01 

1,4.39.01 
14.39.05 

W2 RON W21438SO 14.39.l.9 
Xi JMG Xii43926 14.~39.27 
W2 RON W2143'732 14.39.32 

14.39.34 
14.40.36 
{4.40.36 
14.40.41 

W2144046 14.40.46 
14.40.47 
14.40.49 
14.40.49 
14.40.52 

******** ******** 14.41. 02 
1~2 *****'*** ******** 14.41.16 
XJ. JMG Xii43926 14.41.24 
W3 LDK ******** 14.41.28 
Wi RON Wii44i3l. 14.41.31 
W3 LDK W3l44138 14.41.38 

14.41.39 
W1 RON Wi14•l140 14.41.41 
W2 CJR ******** 14.41.55 
W3 *l(•****** ******** 14.41.59 
W2 CJR W2l 44~?00 14.42.01 

i.4.42.02 
14.42.07 
14.42.07 
14.42.13 

W2i44551 14.45.51 
14.45.53 

W3 RON *II*·!!!!*** 14.46.14 
W4 ******•!!* ******** 14.46.35 

Design Considerations 3-77 



HISTORY FILF DISPLAY WORKSTATION - Xi USER ·· RON 

HISTORY ALL, ,CURRENT,TEXTONLY 
HISTORY NOLIST,RESET,,, ,X2 

II LIBRARY NAME-0 
II MEMBER USER1-llMSG2 
II * 2076 @@206 

HISTORY PROCEDURE EXECUTING 
II l .. 01,D $HIST 
II FWN 
II DISPLAY NOLIST,RESET,,, 
11 WORKS'TN· .. X2, 
II SYSTEM-NO 
11 GOTO E:ND 
II END 

*EJ 07.28.07 07.29.l3 OO.Ol.06 07124180 RON Xl PUBSHISR 

* Wi,RON NO OPERATOR COVERAGE FROM ll:30 TO 13:30! ! 
RON COST PUBSLIB 

HELP HISTORY 
II l.DAD $HELP 
II FWN 

DATE 07124190 

II * 'HISTORY SYSTEM,VIEWED,NORESET,TDTAL,CONTROLS,, ,, , ' 
HISTORY SYSTEM, VIEWED' NORESET' TOTAL' CONTl'WLS' ''' ' Operator entry 

HISTORY SYSTEM,VIEWED,NORESET,TOTAl.,CONTRrn .. s,, ... 
1,1 LIBRARY NMH::--o J Generated 
II MEMBER LJSERl-llMSG2 
// ~·(- :~o7b OCL r~·rn206 

H:r.s·nmY Pr.:ocEnuRE EXECUTING Syst~m display 
II LOAD iHIST ] 
;~ Rg~~rn sYsovFL Generated 
~~ D~~~:~~~- ~:iwrn, NDl<ESET, TOH-it.. CONTROLS, OCL 
II END 

SYS-8423 SRT CANCFl_ED BY INQUIRY OPTION 3 AT Xi 
*E.J l3.5"7.23 13.59.09 00.0i.46 07/241BO RON Xi HISTORY *EJ entry 

3-78 

HELP HISTORY 
II LOAD $HELP 
II RUN 
II * 'HISTORY SYSTEM,VIEWED,NDl<ESET,TOTAL,CONTROL.S,,;,,' 

HISTOf(Y SYSTEM, VIEWED, NORESET, TOTAL, CONTROLS, , , , , 
HISTORY SYSTEM,VIEWED,NORESET,TOTAL,CONTRDLS,,,,, 

II LIBRARY NAME-0 
I/ MEMBER USERi-llMSG2 
II * 2076 @@206 

HISTORY PROCEDUl<E EXECUTING 
II LOAD $HIST 
II RUN 
II GOTO SYSOVFl. 
II DISPLAY VIEWED,NORESET,TOTAL,CONTRm_s, 
I I SYS"I" EM-YES 
II FllD 

SYS-8423 SRT CANCELED BY INQUIRY OPTION 3 AT Xl 

HISTORY FILE DISPLAY WORKSTATION - X2 

STATEMENT HISTORY ALL,,,EONLY 

*EJ 11.35.49 ii.36.38 00.00.49 09/0BIBO DRF 

l ENTRIES DISPLAYED 

usrn 

X2 SEU 

ImF DATE 0910BIBO 

TIME 14. 05 SUBCONSOLE - PAGE-

TIME 11.44 SUBCONSOLE - PAGE-

WKSTN USER ,JOB W\ME TIME 

X2 DRF X2113549 11.36.38 



During system configuration you can also specify whether you want an 
automatic wraparound capability for the history file. If you specify the 
wraparound capability, once the file becomes full of entries, each new entry to 
the file causes the oldest entry to be deleted from the file. When the history 
file is listed, the oldest entry is displayed or printed first on the output device 
you specify. 

You can also specify an overflow file for the history file during configuration by 
taking the override options on the IPL sign-on screen. The overflow file helps 
you avoid losing entries once the history file is full. The overflow file contains 
one to eight segments, and each segment is the same size as the history file. 
If fewer than 25 sectors remain in the history file, the system issues an 
informational message to the system console and copies the contents of the 
history file into an overflow file segment. Entries in the history file and the 
overflow file at this time are identical. 

To print or display the contents of the overflow file, use the HISTORY 
procedure. You should reset the overflow file when all entries in a segment 
have been displayed, so that the system can reuse that segment for another 
copy of the history file. If both the overflow segment and the history file are 
full of entries, the system does an automatic wraparound of entries until the 
overflow file is emptied and reallocated by the RESET parameter of the 
HISTORY procedure. Be very careful when using the RESET parameter 
because it is possible to reset one display station's history entries from another 
display station. 

Note: You cannot request all history entries for active jobs in the system 
because the results would be unpredictable and the system performance would 
be slowed down. 

HISTCRT Procedure 

The HISTCRT procedure allows you to selectively view the contents of the 
history file. Using the HISTCRT procedure, you can page forward and 
backwards through entries in the history file as well as view all entries, 
beginning with the most current entry, that match criteria you have defined, 
such as job name or work station ID. 

For more information about the HISTCRT procedure, refer to the SSP 
Reference Manual. 

Design Considerations 3-79 



3-80 

CONSIDERATIONS FOR REMOTE WORK STATIONS 

Program performances can be significantly affected by whether a local work 
station or a remote work station is used. Local work stations communicate 
with the System/34 at a rate of 1 000 000 bps (bits per second). Remote 
work stations communicate at a rate of 1200 bps to 9600 bps. 

Transmission of a format that contains 4000 characters, the maximum number 
of characters in a format for a 1920-character display, takes at least 27 
seconds on a 1200 bps line and at least 4 seconds on a 9600 bps line. These 
time estimates apply to optimum line conditions. Because of this relatively 
slow transmission rate, remote work stations can be a bottle-neck for system 
activity. If remote work stations seem to cause poor performance, two 
alternatives are available that might significantly improve performance: 

• Reducing the amount of data that is transmitted over the line 

• Increasing the line speed 

Of these two alternatives, reducing the amount of data transferred is the only 
one directly controlled by programming techniques. In most cases, you can 
reduce the size of the data stream by: 

• Sending only the minimum amount of data required by an operator to 
efficiently use the application. If both experienced and inexperienced 
operators use the application, consider sending only the information required 
by the experienced operator and allowing the inexperienced operator to 
request additional information. 

• Avoiding the retransmission of data and prompts. 

• Using multiple formats, one for constant information such as headings and 
others for variable data. 

• Using the erase input operation when practical rather than rewriting input 
fields. 

• Using variable start line numbers or rewriting the format. 

• Avoiding the use of the display screen to pass information from one job 
step to another. Instead, consider using a disk file, the local data area, or 
data structures or arrays to pass the information. 

• Using put override for RPG II, WSERROR for COBOL, REWRITE for BASIC, 
or IMSG for WSU to display error messages. These techniques avoid 
retransmission of data when errors occur. 

• Avoiding out-of-sequence fields on formats. Approximately two additional 
characters of data are transmitted for each out-of-sequence field. 

• Using PRINT NEWPAGE and TAB for BASIC rather than letting lines roll up 
on the display. 



• Spooling output data to remote printers. When spooled output is sent to a 
printer, blanks in the data stream are compressed. When output that is not 
spooled is sent to a printer, all characters, including blanks, are transmitted. 

• Avoiding functions that require the contents of the display screen to be 
saved and later restored. Such functions require the transfer of 
approximately 3.5 K bytes of information from and to the display station. 
The following functions cause the entire display screen to be saved and can 
degrade performance of a remote display station: 

Using the Attn key to interrupt the job. 
COBOL programs that use work station support and DISPLAY and 
ACCEPT. 
Changing the mode of a WSU program. 
Using the WSU menu display. 
Receiving informational system messages or messages sent via I I * 
statements when a format is already displayed. You can suppress these 
messages using the IDELETE control command. 
Using the PAUSE OCL statement. 
Using PAUSE or TRACE in BASIC when the work station file is open. 
Interrupting and resuming BASIC programs when the work station file is 
open. 

In addition to the time required for transmitting data, the time required to 
reverse the direction of transmission can also affect performance. Because the 
System/34 communication facility transmits in one direction at a time, time is 
required for the turnaround from receiving to transmitting or from transmitting 
to receiving. 

A 1 I 4 second turnaround time is not unusual. When multiple formats are 
displayed before the program reads from the display screen, suppressing input 
on all but the last format reduces the number of line turnarounds. (Suppress 
input is specified in columns 35 and 36 of the S specification.) If input is not 
suppressed, several line turnarounds are required after each format is 
displayed. 

Another important factor that affects the performance of a system and its 
remote work stations is the size of the work station buffer, which is sometimes 
referred to as work station queue space or WSOS. All output to remote work 
stations must pass through the work station buffer. If the buffer is too small, a 
program may have to wait for a long time before buffer space is available for 
an output operation. For information about how work station data management 
uses the work station buffer, see The Work Station Buffer in Chapter 2. 

Design Considerations 3-81 



3-82 



Chapter 4. Coding Techniques 

This chapter presents coding techniques that can help you program more 
efficiently: 

• Memo updating 

• Program communication with the local data area 

• Using the PROMPT OCL statement 

• Protecting records from concurrent updates in an MRT program 

• Protecting records from concurrent updates by multiple MRT programs 

• Using the local data area to increase the Sort program's flexibility 

• Using data structures for multiple line displays 

• Accessing a command key or a function control key in an RPG II program 

All these techniques might not apply to your situation. For those techniques 
you use, you might find variations of your own that tailor the technique to your 
particular job. 

MEMO UPDATING 

An advantage of a work station environment can be that operators always have 
access to up-to-date information in the master files. For example, suppose an 
operator enters a transaction that reduces the on-hand quantity of an item in 
an inventory master file. If an inquiry is made by another operator for the 
on-hand quantity of that item, he can see the value that reflects the previous 
adjustment made to it. 

Allowing interactive updates to files should be done carefully because recovery 
from a system or program failure can be difficult if you do not know which 
updates are reflected in the file and which updates need repeating. 

Memo updating is a technique that allows interactive updates to your master 
files and provides batch processing to check that the updates have been 
applied correctly. 

Coding Techniques 4-1 



I 
1---

For this technique, master file records must allow duplicate fields for those 
fields that can be updated interactively. For example, memo balance (MBAL) 
could reflect interactive updates, and balance (BAL) could be used for batch 
processing. 

10 30 40 50 

CONTRL DESCR BAL MBAL I 
Key Description Date Balance Memo Balance v 

Duplicates 

Initially (for example, at the beginning of the day), these two fields should be 
equal. The transactions made during the day are applied only to the memo 
balance field. 

The following RPG input specifications and output specifications could be used 
for the master file by interactive data entry and inquiry programs. Notice that 
these specifications ignore the balance field. The memo balance field should 
always reflect the current balance. 

External Field Name 

H 
Filename ~ 'g 

Field Location 
Record Identification Codes 

8. Reco: Name } i ~ ~ ~----_...,,...... __ __,__._._ __ _,....._.....-.iil From To j 
Line ~ =. 5 -! : _ ~ ~ a: i---D-a-ta_S.,..tru_c_tu-re--i~ 

j i--------'-.....i_! i' ~ Position ~ ,e ~ Position ~ ~ ~ Position z o ~ ~ :::Ji--------1~ 

RPG 
Field Name 

st?u~~~re ~AO ~N 1-D ~ 0'5. a:~ ~ ~ cS ~ ~ cS j § ~ H Occurs Length ~ 
Name n Times 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Su 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 I~ IAS TIEIR NS Di 
0 2 I i 

,., 
"O Nh'" RIL H 

0 3 I 111 1~ (J ;;E SCR 
0 4 I ~1 Ill: .... 1liL 
0 5 I 
0 6 I 

0 
[ 

- .s: Output Indicators 

ff 
Zero Balances X =Remove w " Space Skip Commas No Sign CR -...__ ear Field Name to Print Plus Sign 

5 .g = 
e~ or Y= Date 

User :c ~ 

A!d Jd 

Yes Yes 1 A J 
8. Filename -~ ~! EXCPT Name 

No 2 K 
Field Edit 

Defined 8.~ Yes B Z =Zero I?: or 
Yes 3 

Record Name !?:.,!!_ i!!!-~ a: Position No c L Suppress Line E j ~Ci> No No 4 D M 
~ ~ ~~ ~ 85 

in a: 
A ~ < Output :::; 

i-2f.!!+- b ~ b "AUTO ~~ Record ~ Constant or Edit Word z z 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A N D 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 444848048~~~~~~~56U68~~~~6364~66~68~ro 71 72 73 74 

0 1 o!N IAS TIEIR It IC 11 
0 2 0 INIE IAL Ii IC 
0 3 0 

0 4 lo 

4-2 



I 

& 
~ 

Line ~ 

Filename 
or 

Record Name 

Later (for example, at the end of the day), the transaction file is processed by a 
batch edit program. The transactions are posted to the balance fields in the 
master file by a batch update program, as the following segment of the 
program shows: 

External Field Name 
Jc:~ Field Location 

w"' lf:l 1 2 3 ~ ~ 0 ~ 

Field 
Indicators 

l
i Record Identification Codes ~ g 

~ =i € ~ t: From To . ., RPG :§ -8 
, c: • 15 l Field Name ] ii: ~ 'E zero 
:: S .g • ; - )! ~ ;z a: Data Structure - gi c:n ~ Plus Minus or 

Date 0 R j j :g Position ~ ~ i Position ~ e = Position ~ 0 1i j ~ E e ~ -~ -0 Blank 
s t-+-+-::ili¥ o-,.,.2 o~..c: zo~!.~:::o..m Occurs ·2 (.Jg ~1-;; 
~~c;:.~re A N D z O' a: z v u z ~ u ~ u v• n Times Length o ~ u U: 

3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 j2ll 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 48 47 48 49 5u 51 52 53 54 55 56 57 58 59 so 61 62 63 64 65 56 67 68 69 10 11 12 73 74 

01 I[IRIA 1NS !NS ~i 
IIO Cc»lrTR L Mi 0 2 I 

0 3 I 11 
0 4 IMASTElB NS 1012 
o s I IIO (JO I~ T R[L Ml 
o s I ~Ii 
o 1 I 

o s I 

c Indicators Result Field Resulting 

~ Indicators 

~ ~~ 1 Jd !! 
Arithmetic 

:E g Plus J!-linus Zero 

d~ Factor 1 Operation Factor 2 8 = Compare Comments 
Name Length i! 1>21<21-2 

Line .... ea: 

u;·i Lookup(Factor 2)is 
0 0 H High Low Equal z z 

3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 28 27 128 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 sa 54 55 56 57 56 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c oz Ml~ lQ~lI ~ICD ,EL~ L fe[#illJ 
0 2 c 
0 3 c 

0 ~ 

~l Space Skip Output Indicators 
:Field Name 

~ 
Commas 

Zero Balances 
No Sign CR - X =Remove 

~ to Print Plus Sign 
5·9= e. iii or 1 

Y =Date 
User :c ~ 

~ ,:t Yes Yes A J 
& Filename it! J! EXCPT Name K 

Field Edit 
Defined Yes No 2 B Z =Zero 

~ or d 
3 L ~R ~ a: Position No Yes c Suppress 

Line 

~ 
Record Name tt ] ! p in No No 4 D M 

tA * Output 
a: 

c! ts ~ 

~ 
0 0 1) *AUTO ~~ Record a; Constant or Edit Word 
z z z ii: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

AND 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 444548~4848~~~~~~56~5669~~~63645656E6869W 71 72 73 74 

0 1 ol~ IA~ TISR ~ O! Ml~ '"--Note that these 
0 2 lq BAlJ 1401 balances are set 
0 3 0 p,~].J r;o1 equal to one 

another. 
0 4 lq 
0 5 0 II II JIT 1 

Coding Techniques 4-3 



4-4 

Backup of the transaction files is required each day (or for each batch); backup 
of the master files is required periodically. Recovery can be done by reloading 
the master files and processing all subsequent transactions. The current 
transaction file should be intact after the system I PL File Rebuild· function is 
run. After IPL File Rebuild runs, the master file does not reflect the current 
transactions. To bring the memo balance field to its current value, run a 
program that updates the memo balance field with the transactions. Then, 
after the memo balance field has been updated, all current activity has been 
accounted for, and normal operations can continue. 

A variation of the memo updating technique could be to set the memo balance 
field to zero at the start of the day rather than to_ the value of the balance field. 
As for the previous method, interactive updates would be made only to the 
memo balance field. 

The memo balance field would reflect the day's activity for that item. If no 
transactions for the item occurred, the memo balance would remain zero. In 
order to determine the current balance, an inquiry program would have to add 
or subtract the memo balance from the balance in the master file. 



Program 

Programmer 

I 
1--

& 
Line 

~ 
E 
if 

3 4 5 6 7 

0 1 I~ 
0 2 I 
0 3 I 
0 4 I 
0 5 I 
0 6 I 
0 1 I 
n A T 

PROGRAM COMMUNICATION WITH THE LOCAL DATA AREA 

Filename 
or 

Record Name 

0111 
Structute 

Name 

Programs can communicate with the local data area (LDA) via data structures. 
For a discussion of data structures, see the System/34 RPG II Reference 
Manual. A U data structure (U in column 18) defines the LDA to the program. 
This data structure (UDS) can be subdivided. For example: 

RPG INPUT SPECIFICATIONS 
1 2 

J Keying -I Graphic l l l i Card Electro Number l 
PageDJot T Date ] Instruction J Key l l l l 

External Field Name 

H Field Location 

~ ~ Record Identification Codes 
~ 

l -; "' 
From l 5 

w"' cc 1 2 3 To 
c ..J 

:§;:i 0 RPG 
~~ t~ ii ~ Field Name ] .! 'ii 

Ji er 
j u..u: 

:::. 5 ;E· 
~ c ~ ~e~ ~o~ 

Data Structure 
~ e .~ ~ 

H ~ Position Position Position 1g ! 
-fi :~ 

i£+!4-. ~§~ o~~ ~§5 Occurs ~ j cS ~8 ~ z u u en o: nTimes Length 
AND 

GX21-9094-4 UM/050• 
Printed in U.S.A. 

75 76 77 78 79 BO 

~~~~;~~ation l I I I I I 

Field
Indicators

Zero
Plus Minus or

Blank

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 434445464 7 48 49 &v 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

USIE
l"'IMJ lr'K

os= IUtE LDIA
UDIS

1 [25 AR EA
~o Erb CK

-,;; 120 ND ATE
[~12 o~ PA~

Note: Although a filename (DSWRK) is specified in the example, this entry is
optional for data structures used as a display station local data area.

The fields can represent whatever the programmer defines and can be used as
factor 1, factor 2, or results in calculations, or the fields may be used as input
or output fields with input/ output operations.

For SRT programs, a routine is provided to load the LDA into the data
structure before the first RPG II cycle and to copy it back to the LDA following
the last RPG II cycle. This routine is generated if the programmer specifies a U
in position 18 of the DS input control record.

A data structure can also be used with an MRT program. However, the only
LOA loaded into the data structure is that of the first program requester.
When the program ends, no LOA is updated.

When an inquiry is requested or when a job is placed on the input job queue, a
copy of the submitting display station's LOA and user switches is saved. The
LOA copy is updated when the program ends so that the LOA can be tested
by subsequent programs and OCL in the same job. At end of job, this LOA
copy is not saved.

A subroutine, which is mainly for MRT programs, can be used to access the
LOA of any display station that is attached to the MRT program. This
subroutine, SUBR21, allows the programmer to read or write an LOA, which is
identified by the display station ID. SUBR21 requires the two-character display
station ID and an indication whether to read or write all 256 bytes of the
specified LOA.

Coding Techniques 4-5

I

c_
ii

i I
Lino c·

~
Ill

~j
3 4 s e • 9 10

0 1 ~
0 2 c
0 3 c
0 • c
0 5 c
0 8 c
0 1 c

-·

4-6

The following RPG calculation lines are used for executing SUBR21 from an
RPG program:

lndicaton Result F oeld
Resulting

I
j

11 12

tndteaton

I !
Ar1thmet1c

~ ! Plus Minus Zero
F1etor 1 Operation Factor 2 .n Compare Comments

Name Length
: ;'i 1>~1<~1 ·7

Lookup(F1e1or 7Jos
j H HiWi Low E <1ual

13 14 15 18 17 18 19 :10 21 22 23 24 25 211 2/ 128 29 30 31 32 33 34 l5 38 J1 38 l9 40 " 42 43 " 45 48 41 48 49 50 51 52 ~J ~ 56 !165/ ~8 ~9 150 &1 &:t &J tM &~ 6fi &1 68 ee 10 " n n 14

t-l~I ~IL IRllC! 1211

~
~~

- _ _,_ . ..,.~

L
L

..
NI~ l'I t:

1114 II """" D~ !Ir& II iEA

·- ·- .. -~-......._ .. ·=· ·-. ·-· - -·

The meanings of the OP, TNAME, RCODE, and AREA fields are as follows:

OP

TNAME

RCODE

AREA

One-character field that indicates the operation code. The RPG
program places this code in the field.

I = input: read from the LOA
0 = output: write to the LOA

Two-character field that contains the display station ID. If
TNAM E is the same label used with the ID field of the work
station file, then SUBR21 is addressing the LOA for the work
station currently being processed.

One-character field that contains the return code.

0 = successful
1 = unsuccessful (display station was not attached to program)
2 = unsuccessful (display station was not a requestor)

Field, up to 256 characters, that is used with SUBR21 to transfer
the LOA. This field cannot be a data structure.

f-· -

.. -

USING THE PROMPT OCL STATEMENT

The PROMPT OCL statement can be used to show a display directly from OCL
without loading a program. The input returned from this display can be input
to a subsequent display in the program or can be input to the procedure in
which the PROMPT OCL statement occurred.

The format of the PROMPT OCL statement is as follows:

II PROMPT MEMBER-screen format load member name, FORMAT-display screen format name

The PROMPT statement provides a return code to indicate which command or
function key was pressed. This code can be checked by using the ?CD?
substitution expression. The following chart shows the code returned for each
key pressed:

Key

Enter I Rec Adv
Command key 01-24
Roll Up
Roll Down
Help
Record Backspace

Return Code

0000
2001-2024
2090
2091
2092
2093

Coding Techniques 4-7

This example shows the use of the PROMPT OCL statement and the return
codes to set switches allowing the selective listing of library members when a
particular command key is pressed by the operator. The use of the return
codes to set switches, which indicate which library members are to be listed, is
necessitated by the fact the SSP resets the return code to 0000 whenever it
executes a RUN OCL statement.

LIBRARY DIRECTORY LISTING
CURRENT SESSION LIBRARY
PROCEDURE MEMBERS ONLY
SOURCE MEMBERS ONLY
OBJECT MEMBERS ONLY
SUBROUTINE MEMBERS ONLY
SYSTEM DIRECTORY ONLY
f.11 ... 1... DIRECTORIES

C1~1NCEI... 1:~E(~UEST

DRFL..IB
CDMi'·lf.1ND
COMMi~-lND

COMMAND
COMMf.-lND
COMM,~1ND

CDMM(.:iND

CDMMt=~ND

t{EY j.

KEY ...)
A• ..

l·\EY ~=~
l\EY 4
1-\EY r" .)

KEY b

KEY .. .,
I

// Sl,J ITCH OOOOOOOO ? :i. F,? SL I B? 1 ? { lni~ialize sw~tches and ~ara~eter 1,
/ l T t~G Pi=WMPT which contains the session library.

II PROMPT MEMBER-EXAMPLE,FORMAT-EXAMPLE,UPSI-YES
I/ IFF ?CD?>OOOO GOTO PROMPT
II IF ?CD?/2007 CANCEL.
// IF ?CD? /2001. S~H TCH 10000000 --------.. Command key 1 was pressed; set switch 1.
// IF ?CD? /2002 SIA! ITCH 01000000 Command key 2 was pressed; set switch 2.
/.I IF ?CD? .I 200:3 Sl,.I ITCH 00 :i. 00000 Command key 3 was pressed; set switch 3.
/I IF ? CD? I 2 0 0 4 SW ITCH 0001. 0 0 0 0 Command key 4 was pressed; set switch 4.
/ / I F ? CD?/ 2 0 0 ~:> SW I TC H 0 0 0 0 :i 0 0 0 Command key 5 was pressed; set switch 5.
// IF ?C:O? /200.:"> Sl.J ITCH 00000100 Command key 6 was pressed; set switch 6.
/I l...Or~D $MiU NT
// t=~UN

I/ COPY FROM-?1?,
II IF SWITCH1-1 1...IBRARY-P,
// IF SWITCH2-1 LIBRARY-S,
II IF SWITCH3-1 L..IBRARY-0,
I/ IF SWITCH4-1 1...IBRARY-R,
II IF SWITCH5-i LIBRARY-SYSTEM,
II IF SWITCH<!'>·"·j. L.IBE:t~F\'.Y····t~~L..I..., ---
II NAME-DIR,TO-PRINT
// END

Select correct parameter based upon
which switch was set.

Note: The PROMPT-OCL statement cannot be used with a format that
requires more than 88 characters of execution output data. If PDATA-NO or
the PDATA parameter is not specified, the PROMPT OCL statement cannot be
used to display a screen that has more than 88 characters of input data. If
PDATA-YES is specified, the maximum amount of input data is controlled by
the user program that reads the screen.

4-8

Using the PROMPT OCL Statement with PDATA-NO

PDATA-NO is the default value for the PDATA parameter and specifies that all
input from the display is used for parameters in the procedure. The input data
is inserted into positional parameters 1 through 11 in sequence. Each
parameter contains eight bytes; therefore, the input/output data on the prompt
screen can contain up to 88 characters. Parameters can be used for
subsequent OCL processing or passed as data to other procedures or
programs.

As an example of using the PROMPT statement with PDATA-NO, consider a
user-written procedure called SEUP, which prompts the operator for the
member name, member type, and library of a member to be edited with SEU.
The PROMPT screen displayed by SEUP will show the active session library as
the default library to be used. The statements in SEUP are:

Defaults the session library
name to parameter 3.

1 4 8 12 16 20 24 28 32 36 40 44 48

II ~ RO MP Tl ME MB E]R -0 CIL FM LiJF OR M~ Il- SE ufJl ?3 '? SU IB ?'?
SEl u 1?1 ?1.1 12 ?1. 1,1 .. ?6 ?

Notice that parameter 3, if it is not coded on the procedure command, is
assigned the value of the current session library. Because all substitutions in a
record are performed before the record is sent to the initiator function for
processing, the assignment of the session library to parameter 3 is performed
before the prompt screen is displayed.

If a parameter is specified before the prompt screen is displayed, the
corresponding SFGR indicator is set on. For example, if parameter 2 is
specified, SFGR indicator 02 is set on.

Using the UPSI Parameter of the PROMPT OCL Statement

When UPSl-YES is specified on the PROMPT OCL statement, the settings of
the UPSI switches affects the SFGR indicators. Each of the UPSI switches U1
through US that is on sets on the corresponding SFGR indicator 91 through 98.
This allows control of the display by the setting of the UPSI switches in a
previous program or SWITCH OCL statement.

52

Coding Techniques 4-9

4-10

The format for the prompt screen is called SEU01 and is in a format load
member called OCLFM. The prompt screen and its Sand D specifications are

as follows:

SEU PROCEDURE MAWTENAHCE

MEMBER NAME ---> 111111111

MEMBER TYPE.(A/R/S/F/W/P) ---> [el

LIBRARY ---> !OlMlLIIIBl I I I

Second Edition GX21-9253- U/M 050'

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU
and SSFGA. This coding sheet could contain typographical errors.

Printed in U.S.A.

•No. of sheets per pad may vary slightly.

JI
Sequence
Number

1 2 3 4 5

WSU Only

; ~~tj~ Review lnser\

-g ~ ~ ~~::rd ~~:rd
~ 0 ~ u..~ g- Reserved ·~ Identifying Identifying Reserved
8 :i Q. ~ g -o ~ Indicators Indicators

u c: -g ~c.: 0::-1:~~
~ t .J ~ "O t a ~ ·g g.
wen w o t./J V>JL.5~~d:o": cc:

Key Mask

28 2930 3132 3334 35 3~3738 39404142~34445 464*8 49505152 5354 55565758596061626364656667 686970 7172 73 747576 77 787980

l 1 1 1 TT1 l l l l l l lLT !Tl l !Tl l lITTlIT
Starting
Location

Field

l
> ~ Name c:
0 > 0

17l-o ~ ~
c

Field ~ ·-= c > f ~ Reserved ~ Constant Data 0

.8 s:., u..w 8 c. 'O 'O ;;;
;:;

Length - ~ >> .><= J
o; c 'O > ell I- :i

8. 'O ~ l 0 .,,S!
0 0 n c5 u: o;

~ c c
c

8~
c c u:: j ~

;:;

~ wsu ~~ %
0 "' 8 z 'O'O ·;:;

~
0 .c "" ~ E

~~
·;;; c 'O 8, Field Name c c

:i £. c 8 0 -2~ c ~~ Ji~ ~ J:: a; z :::>
u.. ...J J:: 0 < 2 3 4 5 6 7 8 9 101112131415161718192021222

6 7 8 9 10,, 1 21314 15 16 17 1 8 19 2 0 21 22 2 3 2~ 25 26 28 29 30 31 32 3 34 36 37 38 3940 41 42 ~3 44 45 46 47 48 ~50 51 52 53 ,4 55 ~ 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 BO

D i=lL 19 11
oCE1
o~L H lfP
D ~E
D ~1L II
op~ ---
D ~PE
D ~ D
D ~IL 000
D IB RAR
D

D

D

D

1cr
D

D

D

D

D

2.5 32Wol y lt c~~u PROCEDURE MAINT£NANX

16 61J '" CJM EMB R MAI ME
8 5!1 11 [Y Lt IYl Yl

3 1161Y R !I~ p~ ~

)

8 51 12 ~ '(l'f p
5~~ q! v v

1 1 16~ CL IBR RN -- -)

1 51 3 ['(v l'l

Each parameter requires eight bytes of input data from the screen. In this
case, however, the operator needs to enter only one character for the second
parameter {member type); therefore, a 7-byte pad field is defined. A dummy
indicator is coded in columns 23 and 24 of the D specification for the pad
field. The dummy indicator can be any value greater than 11. In this case, the
value is 99. The pad field is protected and not displayed. This field is skipped
and the operator cannot enter characters into this field. The value assigned to
the second parameter in the procedure will be the value entered by the
operator followed by the seven blanks from the pad field.

-- ->

[IA /R ~s lZF ~ 1"1

Coding Techniques 4-11

4-12

Using the PROMPT OCL Statement with PDATA-YES

The POATA parameter, if yes, specifies that input from the display is read by a
user program on the first input request. OCL processing does not stop as it
does when POATA-NO is specified.

Program initiation time can cause a few seconds' delay before the operator
sees the first display in the program. Using the PROMPT OCL statement with
the POATA-YES parameter to show the first display can minimize this delay
because an operator can enter data on the display while the program is
initiated. When it is initiated, the program waits for the operator to finish his
data entry and then reads from the display.

The PROMPT OCL statement can also be used to show the initial display for
an MRT program. The PROMPT statement must be used in an SRT procedure
that calls an MRT procedure. For example:

H-+-t-+-t-++-t-t-t-t-+-tl+-+-F•+-+-HH-++-HH-+-++-1-+--l--+--W-l-.W-i-rf--f--l--l--t--~1--1

H-+-J--t-t-++-t-t-t-f-+ff+-f-l=•++-Hf--+-·++-Hr-\-+-J.·-l-~-~l--!--1~--+-~~4--~--~-1--1--r-1--·~I

H-+-+-+-t-++-+-+-t-+-+-+ll+-:-/l--,,/f!!•tRo+U-+N+-~-+-4--1-1--+--+-+--+-- 1--· 1--: --1--·+-+--+--+--+- -1-- 1--: - ·· ~1---~1

H--+- -t-t-+-t-1--+-t-+-+414!--~-J!.!\=!+-!1~1--l--1--i--l'---l-- I--+++- -- 1-- - - -++-+-+- - 1--1--1-- -- -~I

In the previous example, PROCA shows display 01 and then calls MRTPROC,
which is an MRT procedure. Input from display 01 can then be read by the

MRT program.

The sample application described in Chapter 5 also uses the PROM PT OCL
statement to show the initial display.

c
i----,

&
Line ~

~
if

3 4 5 6

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c

~
9 10

PROTECTING RECORDS FROM CONCURRENT UPDATES IN AN MRT
PROGRAM

System/34 protects files that are shared by two or more programs by not
allowing concurrent reads for updates to the same sector of data. The system
cannot, however, protect a single program from itself or two MRT programs
from each other; this means that a program that allows concurrent updates to
a file by two or more display stations might produce incorrect results.

Situations for which a program might need this internal protection arise most
often in RPG MRT programs. WSU has built-in protection of its transaction
file so that an operator can see and change only those entries that were made
from his display station. RPG MRT programs do not have this built-in
protection.

The following information describes a coding technique for protecting records
within an RPG MRT program or COBOL MRT program. This technique protects
an indexed file and, therefore, record keys are referenced. You can use the
same method to protect direct files. In that case, the references to record keys
would apply to relative record numbers.

This coding technique uses two subroutines, RESERV and RELEAS, and a
table, TABREC. The table is used to hold the key of each protected record.
The table elements, therefore, must be the same length as the key. Because a
display station can own only one record at a time, the number of elements in
the table should be the same as the maximum number of requestors of the
program.

The following subroutine, RESERV, is executed each time a record is read for a
possible update:

Indicators Result Field Resulting
Indicators

1 1 Arithmetic

Plus Minus Zero
Factor 1 Operation Factor 2 Compare

Name Length 1>~1<2[1=2

~ ~
Lookup(Factor 21is

z z High Low Equal

Comments

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 '2e 29 30 31 32 3 3 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 !;4 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

e~ IEIR~ [EE GSR
E~ Lla l(U_e "4~ 11< E ~li

IN11 L~ INI~ LO KUP AB ~EC. llZl
1~ MIO VE "'-l'i tr r.;;

E[N DSR

Coding Techniques 4-13

c !-~

d ... f n
3 4 I I 1 •

0 1 ~
0 2 ~
0 3 ~
0 4 tq
0 5 le
0 • le

~. ~· .. -~.

4-14

lndatol'I

The field named BLANK is defined in the program as a blank field that has the
same length as the key. You can also use the figurative constant *BLANK,
which always has the length of the receiving field.

The RESERV subroutine checks whether or not the requested record is in use.
If this key is in the table, the record is in use, and indicator 11 turns on. The
RPG program should ask the operator to retry his request and, thus, give the
owner of the record a chance to release it. If the key is not in the table, the
record is not in use. The subroutine finds a blank element in the table in which
to store the key. Putting the key in the table establishes protection for the
record.

The following subroutine, RELEAS, is executed when an operator is finished
with a record. The subroutine finds the key in the table and then sets the
element to blanks to remove protection from that record and make it available
to other display stations.

R..,ltfield R-lllno
lndlcltort

l i
Arithmetic

~ flCtOr 1 Fector 2
% Plus _lM~Zero

Opemlon = eom,,.,. Name Length ~ i 1>~<2 1•2

I I I j i Loolwp(Fstor 2:ij!
:z; H~ Low Equ.i

Comments

• 10 11 1:i la 14 ~· 11 17 111120212223242112127. 21 30 31 32 33 34 31 21 37 31 • "° 41 42 ia 4748 .. I05112 ia 54 Ill Ill 57 58 511 IO 111 112 83 14 11111111 17 • • 10 71 72 n 14

uz

-

ICiC I C ,_AC G iR
J<E~ I(

'~i IU~ 11e EC 1flj
v ~1A NIKJ [

Ill

This technique of using the table and two subroutines protects one file. To
protect multiple files used by one RPG MRT program, you must provide one
table per file. If the lengths of the elements differ among tables, you also need
a BLANK field for each table. You can also use the figurative constant
*BLANK, which always has the length of the receiving field.

You should have record lengths that are a multiple of 256 bytes when using
this technique. Refer to File Concepts in Chapter 2 for additional information
about file sharing.

PROTECTING RECORDS FROM CONCURRENT UPDATES BY MULTIPLE MRT
PROGRAMS

When two or more MRT programs share a file and are allowed to update it,
unexpected results can occur if you do not protect records from concurrent
updates.

For example, assume that two operators at displays W1 and W3 are using
MRT Program A to update File 1. At the same time, two operators at displays
W2 and W4 are using MRT Program B to update the same file.

W1 W2

Program A Program B

File 1

W4

Program A Program B

To show how an unexpected result can occur in this situation, assume that
while W1 reads record 14 and displays an on-hand quantity, W3 reads record
60. System protection is removed from the sector that contains the first record
read (record 14) and is given to the sector that contains the last record read
(record 60). Because of this loss of protection, the on-hand quantity in record
14 could be read and updated by another program. Program logic must be
able to handle this situation. For example, when a field is read and displayed,
its value on disk rather than its value on the display should be used for
subsequent calculations, because the disk value is more current.

When two programs allocate inventory based on the same displayed on-hand
quantity, one of the operators may make an incorrect decision because the
quantity he sees is not most current. An editing routine in the program should
display a message when an on-hand quantity is not sufficient.

Coding Techniques 4-15

4-16

If two M RT programs share a file and both can update that file, you can
protect records from concurrent updates by adding and using an ownership
field in each record. If possible, this field should be large enough to hold the
ID of the display station that updates the record.

The ownership field should be blank until it becomes owned (read for an
update) by a program for a particular display station. To establish ownership, a
program should place its name and a display station ID in the ownership field.
If that field is already owned by another display station, a message could be
displayed indicating that the record is temporarily not available. The operator
could decide to reread the record or continue with other calculations and return
later to reread the record.

A program could remove ownership of a record by setting the ownership field
to blank; this usually would be done when the updated record is written.

This technique simplifies file recovery because the ownership field provides a
good picture of what was happening when an error occurred. If this technique
is used, a recovery program is needed to check and reset the ownership field
in all records whenever recovery is necessary, such as after a power failure.

An ownership field can also be used to prevent an operator from incorrectly
updating the same record using two different programs. For example, assume
that the operator requests a program, begins updating a record, and then
cancels the program using the Attn key and option 2 or 3 on the Inquiry
display. If the operator requests the same record using another program, the
ownership field would indicate that the canceled program still. owned the
record. The current program could allow an option to be selected that
overrides the program name of the ownership field or could display a message
instructing the operator to recall the first program and normally complete the
transaction update.

USING THE LOCAL DATA AREA TO INCREASE SORT PROGRAM FLEXIBILITY

The System/34 local data area (LOA) provides a way to increase the flexibility
of System/34 sort programs. By initializing the LDA through OCL and then
accessing this area in the sort statements, you can allow one sort source
member to serve several functions.

For example, suppose the item master file should be sorted to include:

• All items

• Only certain items

• Items within a range

The procedure format might be:

{

ALL }
SORTITEM ITEMS, Item-~, item. -_2, .. :item-9

RANGE, low item, high item ,

The following procedure could be coded for this sort:

1 4 8 12 16 20 24 28 32 36 40 44 48 52

I I ~ ? 1? i l ~ l~C AL1 OFIFSET-1L11DA - .. I•• 111* I~C I

V17 RLN I'

HSOI~~ ~A
~lJd' 1Ll. 3'? 11jj? \ 1~~Z I ?Id?~ 1

7L'7~3'1 11?l'1Z~2'?C1 1

7 L' 7Lt_ 3 I~ ~ [1[11 L' 1 'Z .12 I 1 (? 1

f~C 1111
IZIZ ENIC

Coding Techniques 4-17

4-18

As the previous procedure shows, you can control calls of the sort program via
parameters; such control is particularly useful when you select fields based on
variable data in a field.

As the following example shows, you can substitute nearly all sort
specifications:

1 4 8 12 16 20 24 28 32 36 40 44 48

II m~ 111?1/~T ~ LQCAL ~FFSET-t~~ACT~-' ~i iii'
52

I -,

II ~ L~ NAIMIE-OIU~f~1~L~5EL-IT~IAOOR

II END

By putting the length of the control field and its beginning and ending
positions in the record in the LDA, you can pass this data to the procedure
that calls the sort program.

Note that the ?L'x,y'? option truncates all leading and trailing blanks.
Therefore, any sort specification fields used in this manner should be
zero-filled (as are the item numbers in the first example).

USING DATA STRUCTURES FOR MULTIPLE LINE DISPLAYS

Using data structures in RPG programs can reduce the number of lines you
code and the amount of array processing required to display multiple lines that
have the same format. For example, a data structure might be used in an RPG
program that has the following display:

Display Screen Layout Sheet

COLUMN

01 • ' • • I • ' ' ' j ' ' ' l I • • • . j . ' • ' I • • . ' j ' ' ' • ! . ' ' ' I I ' ' ' ' l ' ' . . I . ' ' . I . ' . . I • ' • • ~--· L ~_.._...__._._~
02

f-L--'-'-..L--L.-'---'---'-'--+--'--'- • ..1. .• 1 .•..•• .l j ' • ' ' I ' ' ' ' I ' ' ' . I ' ' ' ' l ' ... i ' ' . ' I ' . ' . 1 .••• 4-L-L L~ •• L .•. ~~~~~~
03

J.. . .l ••• I .•.• l. .. l '- L l .l '-·'· i ... ~L. L, ' ' ' I ' ' . ' I . ' ' ' I ' ' ' ' I ' ' '.' i ' ' ' ' I ' '· •. ·- l ' .. L.J. j • L . ..L-.l....+--L .. ~..L..-L._....-j

04
• ' ' • l •.•. I ... ' I ' . ' . l ' ' . ' I ' ' ' ' j ' ' ' ' j ••• ' I ... ' ' I ' ' ' ' I ' . ' . 1 ····-'- L.J.~~ .. ~- L •• L ' ·-~ ·-~ ~_,_L_

05
• • ' • l ' ' ' ' l ' ' ' ' l . ' ' ' i ' ' ' ' I ' ' ' ' j ' ' ' ' l ' ' ' ' l ' ' . ' l ' ' ' ' I . ' . ' I ' . . ' I ' ' . ' I . • .L .L .. +~~~_._._-"--1

06
' • ' • l . ' ' ' I ' ' ' ' l ' ' ' l I ' ' ' ' l l ' ' ' I ' . ' . l ' l l l j • l l l l ' ' ' • I . l l l l • l • • I ' . l ' l ' l '.L -l .l L . ..L._,_l__,__._._

07
•• ' • L • ' l • I . . l l l l l ' • I .. l l l • l • l I l • ' • I ' ' ' ' I l ' • l I l ' l l I . l l l I l l ' I I . l l • l •• l ' ·l L.~~~._._.

08
l • l l I l • l l I l l ' 1 I 1 1 1 1 i. 1 l 1 l I . l ' • I l ' 1 l I 1 1 ' l I . l 1 l I l l l 1 I 1 1 1 l l l l l • I l l l l I l l ' 1 + >..~......__._._~

09
l l l l I ' ' ' ' I ' ' ' ' I ' ' ' ' I I ' 1 l I l l l l I ' ' l 1 I l l ' ' I 1 1 l 1 I l l • l I l 1 .•• I 1 • 1 • I ' 1 •• L 1 'j. .. L., 1 ~-............

10
_ .. _ 1Lllit. , 11.r.£.M 1#" D.E.s1c.RJP.r11.o.N. . 1 .••• 1 ... ,q1r.Y ... 1 .P.R.1.c,E . .L.IN1E. r.o:r.J11.L .. .__L......J........L.~_._i_

,, ... ~ .. 1X.-.-.-.. 1X.X.. i 1 .. ,. 1 1 x .xx,x.x . .x.x1x.xx •. x1x .xxx1x.x.x.x .• ,xx_,_, 1X.X.XX-1f __ .._.___.___.__._~
:!: 12

I I ,_L, .j__,_..__, L t I I I l L.L .j l .l 0 I I. 1 J •. ..L '.1 1 I I l -'-

a: 13
I l l .• I I j I 1 I I I I I l I I 1 1 l 1 1 J. I I '

14
I I .I I I I I I I I I l ... j I I I I ' LI l I l l I J l l l J_J

15
I l l I l I I l I l I l l l l l I l

16
I I l I L., L..J. t .. ,J.' I I _,_J_..__ '--'--+ lJ.. ••• ...J.. l

17
l I l I I I l I

18
...J...J_)_.... J.. •• L ~.-t..L....L........_._L -'--'--f . .L-L-..J....J...1.< .. .J.....J... -'--LI I I l I I I

19
' .J. •. L l.. -L.....J..J-.!. . .J. _,__J_"--'--'--++- 1 ... L_j__L _.._._L_ _._,_.f-_ _,__.._,___,_ _,

20
'l .-t-'--~-+-"~+--'--'-'--'---'--'-+~--'-~~'-+-..L....L.+-'--'--'---'-'~'--'-'-l--'-'--'--'--'-'-+-'--'-+--'--'-'--'---'--'-+-'--''-+-L-..1..--'-'-..L...L.-'+'--'--f-'-''-'-..__.__..._._~

21
~ ·-+--<----~~-~~-+-'-~~_._... J J .!. ·-'---'- .J. ~ l .. I l l l I 1 l 1 ' !.. ' ' • .i. L...L. • .l.... _.._._.......,_-'--+__,_,___._.._.__._.

22
l I l ' 1X,X. JXLL.LL.~L:j:_LJ ,_;:::L .. L..LL:J:_LJ. .• ~.X.1-XAXX1X,XX. •. x,x .. X.X.X1Xx.x_x.vcx_,,~X~~~· ~~ ~

23
-~ J ,_..__\ .l . .L .. J. • ...l. . ..l_LL...L..l i l i l.l I l l LLi .L..L.J. l L.L.J_i' I· .. l I •... L...1. .J..+' L.L..L.J..J._J._.J. J..+ -'-· i '..1. J._... '~-+--'--~~......__~

24

Coding Techniques 4-19

Second Edition GX21-9253 U/M 050*

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU
and $SFGR. This coding sheet could contain typographical errors.

Printed 'in U.S.A.

*No. of sheets per pad may vary slightly.

WSU Only
> "" > Enter.
8 ~ ~ Mode ~~v~:w ~~~:
::::> _8 ~ -o c: -g il ~ Record Record

Sequence Format ~ ~ :::; 0 _ ~ ·~ g ~ U: il j " Identifying Identifying Reserved Key Mask

Number ! Name e ! ~ ~ ~ H-E <{ .r 8 ~ ~ ~ :::~"!" Reserved g "O "' Indicators Indicators ~
~ .8 :B ~ c ~o "C Q) Q) ~ - ';. ~ ~? e -

E EU ~ a ~ ~ § ~c: :gc: c: ~ Q) :V -o ::. 8. ~ Q g. 1 2 3 1 2 3 ~
~ ~ cii ~£..9~&:~ ~WW al W 0 (I) U)~~~~Q:Q: CC

1 2 3 4 5 6 7 8 9 10 11121314151617 18 1920 2122 23 2425 26 2728 2930 31323334 35 36 37 3839404142434445 4647148 49505152 5354 55565758596061626364656667686970 7172 73 747576 7l 787980

JJ11 szWfV[o}!I,IEJ I 0I11]2 I I I l l l lll l l l 1 1 1 111 1111111IIII11Jl

Field

Starting
Location

~ 8 >

.~ ~
"c:

~ ~ ~ c:
Name

Sequence

Number !

·;:; ::>
Field ·;:;; Ul 't:I ~ c: Sl
Length _8 ~ .§ ~ j !!_ ~ ~ tl ~ a

~:~Name 1 ~] J J n ~ H n J
c. ~ ~ il . ·~ ~ a_ Reserved ! Constant Data :I
~u u:] £ ~ ~ ~ ~ ; ~

~
E
~

i€s ~ ~ ~o~ ~ ~ § ti u
.li8~£ r iii z &! 58 8123456789101112131415161718192021222

1234567 8 9 10 11121314 15161718 19 20 212223 2~ 25 26 27 28 2930 3132 3 34 JS 36 37 38 3940 41 42j43 44 4S 46 47 48 4950 Sl S2 53 G4 S5 56 S7 SB S9 60 61626364 65 66 67 68 6970 71 72 73 74 75 76 77 78 79 80

4-20

D 2 3 tie 6IY
D

DOJ..N!. 651 I 6V

D0LN7 6~11 hY
D~~N8 6518 6Y

DOLi/if b!ll H

D

0

D

D

D

D

This section provides a partial RPG program that uses a data structure to show
as many as 12 lines of an open order on the previous display.

On each line of the display, the following fields are shown:

Field Name Description Length

LNNO Line number 2
ITNBR Item number 6
DESCR Item description 20
QTY OR Quantity on order 4
PRICE Unit price 8
EXTEND Extended price 10
THSRRN This relative record number 5

The sample RPG program uses an array, OLN, for the fields on the display.
The number of elements in the array is 12, which is the nu

1
mber of lines used

on the display. The length of each element in the array is 65, which is the sum
of the lengths of one line of fields and includes blanks between the fields.

The following sample RPG program uses a data structure that corresponds to

the format of a line on the display:

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS GX21-9092 UM/050"
Printed in U.S.A. IJJ:~ International Business Machines Corporation

Program

Programmer

H
~

Line

Size to
~Compile

1-

j

Date

Keying
Instruction

] Number c:

S .g ~~=c~~e ~ ~ of Print 15
~ ~ g' ~ ~ 1l ~ Positions ~
-~ ·E .c ~ 8~ :": ~ -'" c3 _j ~ ~ - ii. <i

Graphic

Key

Control Specifications

Reserved

Card Electrn Number
1 2

Page[]Jof _

75 76 17 78 79 80

~~;~;~f~~ation I I I I I I I

For the valid entries for a system, refer to the RPG reference manual for that system.

0
;;;

~ ~
0"

HUi
7 8 9 10 lt 1~ t3 1• t5 16 t7 18 19 20 2t 22 ?.3 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ~ ~ 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 3 4 5 6

o}I H Il II 1 II IIIIIIIII I I IIIIIlllillll 111

F
~

Filename

Line

File Description Specifications

File Type

File Designation

End of File

Sequence

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type __,

Type of File
w

File Format "' Organization or ;§
LL ~~--~---- ~ Additional Area g

0 2 ~ Bleloncgkth Record l!: E: Overf_Elow Indicator ·~
~ ~ ._ Length a: .:::: f! Key Field)(

:J u > :l ~ ~ r~~~~;n w g ~ w ~ i-"-~--~~E-xt-er-n-al-R-eco~r~d-N-ame~~~-~~~-'--1

Device

For the valid entries tor a system, refer to the RPG reference manual for that system.

Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Continuation Lines

Option Entry

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape

Re~::d
Condition
U1-U8,

z UC r---

~
3 4 5 6 1 8 9 · 10 11 12 13 14 1s 16 t1 19 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 s1 52 53 54 55 56 51 5B 59 60 51 62 63 64 65 66 67 68 69 10 11 12 13 14

F IW O R K. S i /ti o 2 F 1\t4 0 ft I(5 1~ C p
o 3 F"
0 4 FORDDE.T IC F DIS~ l

o s F ff
F 3 DI ~1'

o 7 F

o 8 F

o 9 F

1 O F

F

F
Zl IL OL 69 89 L9 99 99 "9 £9 Z9 19 09 8S 8S LS 99 SS "9 £9 ZS IS 09 6t St Lt 9t St tt 0 Zt It Ot 6t 81: LC 9t SC l>C CC ZC LC OC 6Z 8Z LZ 9Z SZ tZ CZ ZZ LZ OZ 6L BL LL 9L SI tL Cl ZL LL OL 6 8 L 9 S t C Z I

•Number of sheets per pad may vary slightly.

Coding Techniques 4-21

Ii:f~-t International Busirwss Machines Corporation

~-r~~~~-~~~-i-0-at-e~

E Record Sequence of the Chaining File

i--- Number of the Chaining Field

Line

From Filename

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

To Filename

Keying
Instruction

Graphic

Key

Extension Specifications

Number
of Number

0 Cl Length Table or Entries of ;;; ~
Entries of

Array Name Per d:

i Record Per Table Entry a: -;;

or Array
__J E
co £ & a.

Card Electro Number

Table or Length
Array Name of
(Alternating Entry a:
Format) __J

co
a.

1 2

P•g•rnof_

a
$
c

" &

GX21-9091 UM'050"
Printed m U.S.A.

75 76 77 78 79 BO

~~~;~f:ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 t4 15 16 t7 ts 19 20 2t 22 23 24 25 26 27 28 29 30 3t 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 

0 2 

0 3 
--- --+ t- -- --!-+-+--- -+--+--i-- -+-- +--

-- - -- ---+--- -1-- -J-+-+--

- -- -- - --+-+-- - f--- -- --- -- +-+-- -1--++-+-

-l- +-+-- -- - - - +--t-+--l-+-+-

·U~u ~~. -+-i--1----l-----l-~ 
Line Counter Specifications 

10 11 12 

l l 
1l :;:; £ 

-0 u 1l 
u 1l ~~ -0 ) ) -" ] -" ) ) l 1l ) 1l ) 1l :;:; 

) § 0 ~ 0 § ~ § § ~ § ~ ~ § ~ ~ § ~ § ~ § ~ ~ c § c __J c c c c c c 
:::; z __J ,:; z 0 :::; z uz :::; z u z :::; z u ,:; z u z ,:; z u ,:; u ,:; z u z :::; z u z :::; z u z :::; z u z 

u. z 

Line Filename 

3 4 5 6 1 a 9 to 11 12 13 14 15 t6 11 18 19 20 21 22 23 24 25 26 21 2s 29 30 31 32 33 34 35 36 31 38 3'-1 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 11 12 13 74 

~1-1 +-:-+--t-L+--l-----if-4-+-+-+--+-+--+--+--lf-4-t-+-+--+-+-+--+--l---l-+--+-+--+-+-+-t-+ +-+----+-----",__.____ -+-- - 1-- --1-- - --+--+--f--1---+-+--+---+--+--

r- ----1----+-L _ _.__,>--+-- _____ __,__ _ __,____,_____,_ __ _,___,___ --+-+-+- --1--t-- -- t-- -+- -+-+- _ __,___,___,__-+-.,---;,__.,___,__-+-+--++- -l-f--+--f--t-- -+----l--+-1--1e--+----+--1---+---+--+--l--l-4-+-+--1~~~-+--+--+--+--

-+- -- +- - --- - -l--

•Number of sheets per pad may vary slightly, 

I 
I--- Filename 

~· External Field Name 
~c: Field Location 

~ v Record Identification Codes ~ g 

& Recor': Name j w Vl j ~ 1 2 3 From 1 To g RPG d ls ~ 
~ ~-~ 0~ ~:ls· J i e i a: ~ Field Name 1 i ~ ~ zero 

Line S Ji _ ~ - - - 111 Date Structure 11 -' Ir !' ii Plus Minus or 

u.1---.0,,.,-t,----.--+-..-i .§ 'g Position ~ ~ Position i g !I Position i g !I : ~ -~ I j :~ ~ Blank 

StN~~~re ~l ! l ! i:l z 8 0 z 8 0 ~ ;;; c;c;I~~. Length ~ a ;z 0 ! 
3 4 s e 7 a 9 10 11 12 13 14 16 1e 17 is 19 20 21 22 23 24 n 28 27 j28 28 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45 4tl 47 48 48 &u 51 e2 53 &4 66 511 67 &e 68 eo e1 e2 83 84 85 ee 67 es es 10 11 12 73 74 

Indicators 
Field 

01 I~ nR!DE~ CETAIL FILE - LIINE TEM ~ECORD 
02 1o~ooer ~s 03 1 ct z c 
o J I 3 8101 !l'.Hl n~~ 
o 4 I 9 q. cu ST 

1r; !IC 'Lib 11!0 
1~ 1. ij IQ fl Tl~IE 
2ij 31 ZlE lE I c 
12~ zq <Zll [DIC L A~ 
3 31 z~ CE m s 
BZ 3 at N~O 
~ I/ill 

1t1SR N ltllf fQ I 
RE CQ RO ca 

o s I 

o s I 

o 1 I 

o a I 

1 o I 

o 9 I 

1 1 I 

1 3 I~TEMMST ~s ~5 1 c~ 2 
1 4 I q 2~ lCE 1s1c. 
1 s I 

4-22 



Iif~~ International Business Machines Corporation 

Program 

Programmer J Date 

I ~ 
t---i Filename ~ ~ 

or -;;,"' 
Record Name l w."' co 1 p 8. ~ :J: ;:: 

Line ::: a E -8 ; ~ ] Position 
Data 0 R 5 -~ Structure ~ z 0 

Name 
3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 1 11* o[R ~A WII 1£ Din 111 !Sr 
0 2 I ois-
0 3 I 
0 4 I 
0 5 I 
0 6 I 
0 7 I 
0 8 I 
0 9 I 
1 0 I 
1 1 I 
1 2 I 
1 3 I 
1 4 I 
1 5 I 
1 6 I 
1 7 I 
1 8 I 
1 9 I 
2 0 I 

I 

I 

I 

I 

I 

RPG INPUT SPECIFICATIONS 

J Keying 1 Graphic i 1 1 T l Card Electro Number J 1 2 

Page[I]of 
--1 Instruction r Key T I -

External Field Name 
Field Location 

Record Identification Codes 
~ 

0 
2 3 c 

RPG 
_, 

:§ ~ From To 0 
;::; 

~ 
~ Qi ~ ~ Field Name u. u:: 

Jh Data Structure ~ gi 
~o ~ ~ e ~ ~o ~ ~ Position Position -5 .S 
o~~ 0 ~ ~ 0 ~ Occurs ~ ;~ 
z u u ZUU z u u (J) "'- n Times Length 0 u :;; u 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 41;) 47 48 "::ii :iu 51 52 53 54 55 56 57 58 59 60 61 62 

~" ~1 CIR~ 10 11.e Ft ~c[11 ION!£ DI 5 (J l 11 '{ /..,I V!_e 

I .1.[Q LN NO 

" I I tr TN BR 
I 11 ~2 DE s ~R. l 

3'tt_ 31 ~Q T~ OR. I 

J"I I/ 3 !Su DO I.. II~ I 

l/ !./ 41./ DO Ti 
"IS "" lU CE. NTS 

'" 8 
~4 £0 Ol AR 

SS 55 DO 111.2 --

~b ~7 EC EN TS 
61 b5 fJ1 HS R. R..N 

I t,5J Ou 1L If_J 

-

GX21-9094 UM oso· 
Printed in U .S.A 

75 76 77 78 79 80 

:~;~:~::ation I I I I I I 

Field 
Indicators 

Zero 
Plus M1nu'.> or 

Blank 

63 64 65 66 67 68 69 70 71727314 

I 

Zl LL OL 69 89 L9 99 S9 1>9 £9 Z9 19 09 6S 8S LS 95 SS l>S CS ZS IS OS 61> 8" LI> 9" SI> l>I> £1> ll> II> 01> 6C 8£ LC 9C SC VC CE l£ LC OC 6Z Bl ll 9Z SZ l>Z CZ ZZ LZ OZ 6L 8L lL 91 SL 1>1 El Zl 11 01 6 8 L 9 S v C l 1 

·Number of sheets per pad may vary slightly. 

Coding Techniques 4-23 



l!~ lnterna1tonal Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS GX21-9093 UM/050' 

1-P-rog_ra_m ______ -_,----------i Keying 
Instruction 

Graphic 

Programmer 

c ~J 
~ ~ 

Q; 

~ .5 
Line I- o 

e E 
&8 

Date Key 

Indicators 

Factor 1 Operation 

0 0 0 z z z 

Factor 2 

Printed in U.S.A. 

Card Electro Number ITT 75 76 77 78 79 80 

Page~ of O:l ~~~;~f~ation I I I I I I I 

Result Field Resulting 
Indicators 

Name 
Comments 

g .__Ar_ith_me .... tic-
·;::; Plus MinuI Zero 
·g Compare 

Length ~ 1 > 2 1 < 2 1 = 2 

·~ Lookup(Factor 21is 

6 High Low Equal 
3 4 5 6 7 9 10 111213 14 15 16 11 18 19 20 21 22 23 24 25 25 21j28 29 30 31 n 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 •4 55 56 57 58 59 60 61 62 63 64 65 66 61 68 69 70 71 72 73 74 

o 1 [llclj [INl1IA~ll2E IE o 1 lz: 
0 2 c ~ove \,' DJoj~ 

jHO VE \, 1 DIOT2 
0 4 c SE.10N 'I 'I 

I 
o 1~c 

lNDet. 
Z -A[QjO J. 20 

1 o~c ~J-l~.D 0.2 NtilR.~IN 50 

1 1 ii_ c 
·~t ~OVE 1 L~O OE~CIB. 1 OES t:l_g 1 8 c 

1 9~C~ 
2 0 c 

I~ 
.u c 

I" 

U LL OL 69 99 L9 99 S9 t9 C9 Z9 L9 09 SS SS LS 95 SS 1'S CS ZS LS OS 6t St Lt 9t St tt Ct Zt Lt Ot 6C 8£ LC 9£ SC tC CC ZC IC OC 6Z 8Z lZ 9Z SZ tZ CZ ZZ IZ OZ 6L 81 LL 91 SI ti Cl ZI IL 01 6 8 L 9 S t C Z I 
*Number of sheets per pad may vary slightly. 

~~" ===-= ':' = International Business Machines Corporation 

RPG CALCULATION SPECIFICATIONS 
Printed in U.S.A. 
GX21-9093 UM/050' 

Card Electro Number 

Programmer 

ITT 75 76 77 78 79 80 

Page[~j~J°1 OJ.. ~~~;~f~atioJ I J J I I I t-P-rog_ra_m ______ --r--------l Keying 
Instruction Date 

Graphic 

Key 

c Indicators Result Field Resulting 

~ Indicators 

t--- ~ I I Arithmetic 

Q; 
PluslMinus Zero 

~j 
Factor 1 Operation Factor 2 Compare Comments 

Line I- 0 Name Length 1>21<21=2 

E E 
~ 0 0 

Lookup{Factor 21is 
&8 z z High low Equal 

3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 b4 55 56 57 58 59 60 61 62 63 64 65 66 61 68 69 70 71 72 73 74 

0 1 .tc~ t._1-1 E.CK 1110 5£1~ It .c IJT E.ND tF .Sl~ ISi£ 1DN 11. 
0 2 1-c 'I. co 14 p I~ I J. ll!JC II.A y l:z:s FQ 1-L 
0 3 1c ti I j. t. ~DD i x we oor ~t. £,. E.N1 
0 4 tc ti_ I 2. M~ T P. RIN. ~DO 1 lNl1J r R. Rli4J 'NE. xr RElbJ 1Rlt1~ 
0 5 1c NI 1.. co 10 R..T P..N'1. !Bo l&J NE. _&71 t.. I N E. 
0 6 tc lTlllfrJ 1£1MO l~ND DIE pH. 

() " f.R~ 0 7 tc 
0 8 c 
0 9 c 

4-24 



:::=:=-:::':':: tnt~·· •,11,~1n,11 Hu\1111•\\ MJl·h•rlt'\ Corpo1Jl1on 
RPG OUTPUT SPECIFICATIONS GX21 9090 UM/050° 

Printed in US.A 

I P•oq•Jm 

P•og•J"'""' 

0 
I---

L1r1t! 

Filename 
or 

Record Name 

Datt• 

~ !-:! Space Skip 
t: ~ 

K1~y1ng 

l11struct1011 

Output Indicators 

Graphic 

Key 

~ ~ ............ --......... ---....---..---1 
~~~ ~ A~cl AL 

Field Name
or

EXCPT Ndr1w

~
llU ~::::,""' 11 ... ~

D E L o

~"' ~
....... --.--...... -...-.....+-------! ~ (1) II\ 8;:; OlltPUt ...J

O R o o o 'AUTO ~ <(H1•cord cc

Card Electro Number

Corn mas
Zero Balances

No S1g11 CR
to Print

F-
Yos Yes A
Yes No B
No Yes c
Nn No

Constant or Edit Word

M

75 76 7 7 78 79 80

~~~~:~f:at1on I I I I I I I 

X Remove 
Plus S•gn 

Y Date 

Z Zero 
Suµpress 

5 '9 
User 
Defirwd 

~ 2 2 2 UJ CD 1 :i .! 4 !1 6 I H !I , () , 1 1 ') , 3 , 4 1 ~ , 6 , I 1 H 19 20 '21 n n 24 • 

3 4 5 6 7 8 9 10 '' 12 13 14 15 16 17 18 19 20 ::?t -n ::?3 24 :?5 :'6 ~,, :'8 :'!l JO 31 :1:1 JJ 34 ]!1 .\():JI JH :rn 4() 41 4,1 43 44 4!1 46 4/ 48 4q !>ll !11 ~1:) SJ !l4 Sb !16 !>/ GH !:i!l 60 61 62 63 64 65.66 67 68 69 70 /1 n 13 14 

0 Lj!J 
t--lt-t-+-+-+-+-+-t-t--t-+-+-+--t-+-t-t-t-+-+--+--t-+-+-r++-+ --

t--1--t-+--+--+-+-+-t-t-~-+-+·-+--t-+--t--ii-l-+--+--it-t-+-+--+- ---l ·+-

l : 
I 

t--·-j t---j -+--+-+-t--+-+-+--+--+--+-+-t-t-+-+--+---+--+--+-+-+-t-t-+-+-t 
I 

+- .. --+- -+ -" --+---+---+-+-t--<-+-+-+--+--+-+-+---+-+-+-+-+--+--+--+-+-~>-+--1 

1--1-+-+-+--+--+-~>-+-+-+-+--+--+-+-t--<-+-+-+--+---+-+-+-;-+-+--+--+-+-t--i-t--·-+--+--+--+-+-t--i-+-+-+--+--+-+-l--l-+-+--+--+--+-+-t-t-+-+-+--+--+--+-+-t--i--t-+-+-+--+-~ 

1--1-+-+-+--+--+-~>-+-+-+-+--+--+-+-t--<-+-+--+--+---+-+-•--- -·+-·- . -+- t· --1-~-- --+-- -

t-t-+-+-+--+-+-t--t-t-+-+--+--+-+-+-1--l-+-+--+--+-+-+-t-t-+-+--+-+-+-+-~--+----~---+-t-l-+-+--+-+-+-+-~-+-+-+--+--+-+-t--i-+-+-+--+--+-+---t--+--t-+-+--+--+--t-+-+-+-I 

. t- f- -- -+-+- - --+--+-+-t-·<f-+-+-+--+--+-+-+-;f-+-+-+--+--+--+--+-+-+-<1---+--+-+_. 

lL 1l OL 69 89 L9 99 S9 v9 C9 l9 19 09 6S BS LS 9S SS vs cs lS IS OS 6v Bv L• 91> s• •• C• l• .. o• 6C BC LC 9C SC •C cc lC IC oc 6l Bl Ll 9l Sl •l Cl ll ll Ol 61 81 " 91 SI .. Cl ll II 01 6 8 L 9 s • c l I 
·Number of sheets per pad may vary slightly 

Coding Techniques 4-25 



4-26 

ACCESSING A FUNCTION CONTROL KEY OR COMMAND KEY IN AN RPG II 
PROGRAM 

This section presents an example that briefly outlines the steps required to 
access a function control key or a command key within an RPG II program. In 
this case, the Help function control key is enabled and used in the program. 

In the example program, a display called DISP1 is displayed. When DISP1 is 
displayed, the operator has the option of pressing the Help key for additional 
information. When the Help key is pressed, the program displays help screen 
called H ELP01. 

In the display screen format specifications for DISP1, a Y must be entered in 
column 27 and the key mask must be entered in columns 64 through 69 to 
enable the desired key(s). (In this example, a key mask of 5 indicates that the 
Help key is the only key enabled.) For further information about these 
specifications and other key mask values, refer to the description of the $SFGR 
utility program in Chapter 4 of the SSP Reference Manual. The following is the 
S specification for DISP1 : 

WSU Only 

> ;. ~ Enter ;§ "~ Mode Review lnser'1' 

-~ _8 ~ ,, ~ ~ ~ ~ ~~:~rd ~~!'rd 
~u'::::~e I ml ~:;:at :> j ::; ~ _8 ~ ·~ ~ • U:: ~ 1 Reserved e Identifying Identifying Reserved Key Mask 

I~ 9 c 0 ! ~ >~ _ ~ 8 ~ -~" :.".,-,.~ ~ ·~ ,, ~l--ln-.di_ca_to~rs--1--lnd~ica_t~or_s -I -;. 
t- .... ~.!~~~~o< u : a: cu>8 ~ 
Eo Eo~ (Q EO ~ a i ~ -g :gc: ~c: ~ ~ ~ t: ~ i ~ ·E ~ 1 2 3 1 2 3 ~ 

u.. u. U) ~S.3£~! ~WW CD W 0 ~ ~~.B&:~~£ c! 
1 2 3 4 5 6 1 8 9 10 11121314 1515 1118 19 20 21n23 2 25 26 21 28 2930 31 32 3334 35 ~ 313839404142~344 45 46 47~8 49jso51 52 53 54 55 56 57 585960 61 626364656667 686970 1112 73747516 111819 80 

JJJJ s[Dfl]s1Pf1JIJ J J 1 I I Y I I J 1 JJJ . I I J J I I IJI SIJJ111111JIJJIJ 

In the display screen format specifications for the help screen, HELP01, and for 
all other displays issued by the program, Y should also be specified in column 
27 and a key mask specified. The following is the S specification for HELP01: 

> 
8 .8 
::> E ~ 

Sequence Format ~ ::> ::; 

Number I ~ Name e z ~ • ~ 
~ ~o ::; ~H 
~ u. Ei ~s .3 

I 2 3 4 5 6 7 8 9101112131415161718192021 

] ]] ] sHJE]LN!]J 1 T 1 T T fY 

Enter 
Mode 

~19 :J ~ u:: ~ Q. ~ 
~ -~ U: c Reserved ·g. 

(.) ~ ~ ~ 

~ ~ ! ~ ~]f 
29 30 31 32 33 34 35 3~ 37 38 3940 41 42~3 

1 l l J Jll . 

WSU Only 

Review I nser'• 
Mode Mode 
Record Record 
Identifying Identifying Reserved Key Mask 

~ Indicators Indicators 

f
0

B ~ 
c. 1 2 3 1 2 3 :1;.,· 

~£ ~ 
46 41'48 49~_0 s1 52 53 54 55 56 57 sa 59 60 61 62 63 64 65 66 67 68 5910 111213 74·75 76 11 1919 ~ 

11 l I I I IIJ[5[IJJJJJ1JJJJJ11 



F 
~ 

Filename 

Line 

Within the RPG II program itself, two WORKSTN file continuation lines must 
be coded: One line identifies the INFOS data structure, and the other line 
identifies the INFSR subroutine that will receive control when the Help key is 
pressed. For complete information about the INFOS data structure and the 
INFSR subroutine, refer to Chapter 13 of the RPG II Reference Manual. The 
following are the WORKSTN F specifications for this example: 

File Description Specifications 

File Type Mode of Processing 

File Designation Length of Key Field or 
of Record Address Field 

End of File 
Record Address Type ...J 

Sequence ~-T-ype-of-F-ile~""'iil 
File Format N Organization or ~ 

u. ~ ~ Additi~nal Area ,g 
e ~ Block Record ~ i2 Overf~low Indicator ~ 

§ ~ ~ Length Length ~ ~ ~ ~~~ti~:ld Ji 
~ ~ c~~.....__ __ _,_ __ __..._. _ _._~......._~..____._L=o~~t=io_n~ 
g 0:: w <" External Record Name !------------------.-

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lines 

Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 
r;:nt-

Condition 
U1·UB, 

~ UC r-'--1 

~ ~ 
3 4 5 6 7 8 9. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62.63 64 65 66 67 68 69 70 71 72 73 74 

02 F~ §AM~LE PIRo~RAM 10 ~~o~ o~E OF.~EL~ lK!E:Y 
o 3 F~ 

0 5 F ta 5R NlEJ HE LP 58 
F ~I [NF IDS I~ FQS 
F I 

0 6 

0 7 

F 

f F 

0 8 

0 9 

1 0 F 

F 

F 
u IL OL 69 811 L9 99 99 "9 £9 1:9 19 09 8!l 8!l LS 9S SS "9 £9 ZS IS OS 6v 8v Lv 9V sv vv Cv Zv Iv ov 6C SC LC 9C SC vc cc zc IC oc 6Z 8Z LZ 9Z sz vl CZ zz IZ oz 61 81 LI 91 SI vi Cl ZI II 01 6 8 L 9 s " c z I 

I 
Filename 

In this example, the INFSR subroutine is called HELPSR and the INFOS data 
structure is called INFOS. 

The INFOS data structure is defined in the I specifications for the program: 

External Field Name 
S Field Location 

g f Record Identification Codes ~-· -~ 
Field 

Indicators 

Reco:'c: Name j w "' E l!l 1 2 3 From To -~ RPG ~ M ~ ! g :i f,a. ~ ~ Field Name ! £ ~ -e Zero 

line e :::. 6 .g • - ~ e - ,2! ~ ~ Data Structure - - .E' g> J Plus Minus or 
,f 1---~--.,.-r+-.-t.8 i :;; Position ~ e ~ Position ~ e ~ Position ~ e ~ ~ ~ .§ g "jj :e ,, Blank 

Data OR E·.:15 ... Nnl ... Nl'll ()Nftl~a) Occurs ~ a 1'111'11 "'i 
Structure ~ ~ ~ J! ~ u 0 ~ u ti z u ti c'i5 0:: n Times Length o u :0 0 ii: 

3 4 5 6 7 8 9N
8
1'1;

8
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 j28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5u 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 71 72 73 74 

01 1~ NE~oEo ~o~ ~ELP F1uwc1r1~u K~~ 
0 2 I llN FI> ~ D s 
0 3 I 
o 4 I 

~s,_ 1 __ ._ ·-

Coding Techniques 4-27 



The *STATUS subfield {shown as STATUS in this example) contains a 5-digit 
code that identifies the exception condition. In this case, the code 01125 
indicates that the Help key was pressed. 

The HELPSR subroutine, which gets control when the H$lp key is pressed, is 
coded in the C specifications for the program: 

RPG CALCULATION SPECIFICATIONS 
IBJ\t International Bu1ine11 MachinH Corporotion 

1 2 
Program 

loate 

J Keying 1 1 -' 1 J · Card Electro Number Graphic 
PageDJof 

11nstruction Key l I I 1 Programmer 

Result Field Resulting 
tndicators 

Indicators 

Arithmetic 
c ~ 

i------i ~ I I ~ 
A~d ~d .5! :C Plus Minus Zero 

8. ! Factor 1 Operation Factor 2 ·~ ti Compare 

Line ?:: 0 Name Length ~ ~ 1 > 2 1 < 2 1 - 2 

E ~ 
0 0 0 

·~ ':; Lo.okup(Factor 2)is 
if 8 z z z c!i :z: Hogh Low Equal 

GX21·9093- UM/060• 
Printed In U.S.A. 

75 76 77 78 79 80 

~~:;~f~atlon I I I I I I I 

Comments 

3 4 5 6 1 9 10 11 12 13 14 15 16 11 1s 19 20 21 22 23 24 25 26 21128 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 &a 54 55 56 57 58 59 so 61 62 63 64 65 66 67 68 69 10 71 72 73 74 

Ol c~ ER~OA ~~6Rou~·~·~ tb~r~ldL ~A~S~O M£~E ~H~~ 'MELP' IS PREIS5~0 
02 c H£LP5IR BE&SIRI 
o 3 cl*1 
0 4 c ~[Al~~ COIMP !125 'JJJ_ 'HELP IK~Y 
0 5 c N'l~ 
0 6 Ci*1 ~T HER 
0 7 cl~ ~ TAT US "IOI~ ~ L l Z l 
0 8 cl z~ ~OLL vp 
0 9 c~ 
1 0 c~ 
1 1 c~ 
1 2 c 
1 3 c 
1 4 lq 
1 5 c 
t 6 c 
1 7 c 
1 8 c 
1 9 c 
2 0 c 

IC 
c 
c 
c 
c 

ZL IL OL 69 89 L9 99 99 t9 C9 Z9 19 09 69 89 L9 99 99 t9 C9 zg 19 09 61> 9t Lt 9t> St ti> Ct Zt It Ot SC SC L£ 9£ St tt Ct zc IC Ot 6Z 8Z LZ 8Z 9Z tZ CZ zz IZ oz 61 81 LI 91 SI ti Cl ZI II 01 6 8 L 9 s " t z I 
*Number of sheets per pad may vary slightly. 

4-28 



In this example, the subroutine compares the value in STATUS to 01125 to 
determine if the Help key was pressed. If the Help key was pressed, indicator 
99 is on. When the EXCPT operation is processed, the HELP01 screen is 
displayed. The operator can then read and use the information on the display. 
Assuming there is only one help screen, the operator then presses the 
Enter I Rec Adv key, and the rest of the calculations are processed. 

Note: If the operator enters data on a display and then presses the Help key, 
the entered data is lost when the screen is redisplayed. The screen is 
redisplayed in its original form. 

At the end of this subroutine, factor 2 of the ENDSR operation causes control 
to return to the beginning of a new cycle. Possible values for factor 2 are: 

Factor 2 Description 

blank Control passes to the RPG II error handling 
routine, which in most cases causes the 
program to halt. 

'*GETIN' Control returns to the beginning of 
a new cycle. 

'*DETC' Control returns to the beginning of 
detail calculations. 

'*CANCL' Files are closed and the program 
is canceled. 

The following are the 0 specifications for displaying the HELP01 screen: 

RPG OUTPUT SPECIFICATIONS 
TifM 
::!::::i:r::i ':' =:;. International Business MachinH Corporation 

GX21-9090- UM/050" 
Printed in U.S.A. 

75 76 77 78 79 80 
Program 

Programmer Date 

Keying 
Instruction 

Graphic Card Electro Number 

Key 

1 2 

Page[Do1_ =~:~,:ation I I I I I I I 

'£Space Skip Output Indicators 

~ ~ Fie~ Name ilJ 
Filename e -" e ~ 1 J EXCPT Name lll.lllr-r----.-, 

or ~~ ~ ~ And And End 
Record Name ~~ a: Position ! f-DEL., .fi!in a: 

E 'A+"o+D ~ ~ ~ ~ ~ 8 ~ Output g 
& ~ "AUTO ~ iii Record ii: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ' 

0 
I---

.. 
Zero Balances Commas No Sign CR x = Remove ,.. to Print Plus Sign 5-9• 

Yes Yes 1 A J y = Date User 
Yes No 2 B K Field Edit 

Defined 
No Yes 3 c L z = Zero 

No No 4 D M Suppress 

Constant or Edit Word 

Line 

3 4 s 6 1 a 9 10 11 12 13 14 15 10 11 1e 19 20 21 22 23 24 25 26 21 28 29 JO 31 32 JJ 34 35 36 31 JS I:!!_ 40 41 42 43 44 45 46 47 46 49 so 51 52 53 S4 55 ss 51 ss 59 60 61 62 63 64 65 66 s1 ss 69 10 11 12 13 14 

o 1 01* D I 5 P Lit- V H 1&1L+t_JS ~l~JE_)I+- --+-+- . __ __ _ _ -t-t-- .. _ -i-+- --+- -- -

al2 o ~. ~_g 
-. ~'+-+-+-- 'fUELPil I 

0 3 0 
l-+-+-+-+-+-+--1-+--+-f-l--+-+-+-+-+-+-+--+-it--+--+-t-+--+-+-+-+--t-+- -+--

0 4 0 

Coding Techniques 4-29 



4-30 



Chapter 5. Sample Applications 

Sample Order Entry Application 

This section is an example of the steps taken during the design of a simple 
order entry application. The application is not intended to be complete and 
workable, but it does provide examples of some of the major design steps and 
development steps. The steps described are: 

• Documenting application functions 

• Designing the screens 

• Designing the files Design Steps 

• Designing the reports 

• Documenting program logic 

• Building a development library 

• Building a development menu 

• Creating development procedures 

• Creating screen formats Development Steps 

• Coding the programs 

• Testing the programs 

• Creating program documentation 

• Creating production procedures 

• Creating production documentation 

Sample Applications 5-1 



5-2 

DOCUMENTING APPLICATION FUNCTIONS 

Ordinarily, the first step after selecting an application is to document the major 
functions to be performed by the application. In this example, a diagram is 
used to document the functions. This diagram: 

• Identifies operator transactions that will be handled by the application 
program. A transaction is the exchange of information between the operator 
and the application program. 

• Identifies files that will be used. 

• Identifies reports to be generated. In this case, the picking slip is the only 
report generated. 

Figure 5-1 shows the functions to be performed by this order entry application. 
Notice that screen IDs are assigned to the major screens and that files are 
identified on the diagram. Also, no effort is made to identify error and 
exception processing. These items will be considered later as screens are 
defined and as more detailed program logic is defined. 



Master 
Files 

E3 
Item: 
Quantity: 

Item 
Master 
File 

Transaction 
File 

Transaction 
Hold File 

Figure 5-1. Order Entry Application 

1. The operator enters the customer number and order 
number for the order. 

2. The application program reads the customer's records in 
the customer master file and the ship-to master file. The 
application program displays the names and addresses for 
the operator to verify. 

3. If requested, the application program displays a screen 
that allows the operator to change ship-to information 
and miscellaneous information. 

4. The application program writes order header and ship-to 
records to the transaction file. 

5. The operator enters the items ordered. one line at a time. 

6. The application program reads the item's record in the 
item master file. For each valid item entered, the applica­
tion program writes a record to the transaction file. 

7. When the order is complete, the application program re­
writes the order to a transaction hold file. 

8. An application program prints a picking slip for each 
order after it is placed in the transaction hold file. 

Transaction 
File 

Transaction 
File 

Transaction 
Hold File 

Picking Slip 

Sample Applications 5-3 



5-4 

DESIGNING THE SCREENS 

After the major application functions are documented, the screens are usually 
defined. In this example, the following screen standards are used: 

• The first position of a line is usually not used; this allows you to place an 
attribute character in that position rather than in the last position of the 
previous line when you use SDA (Screen Design Aid). 

• Each screen has a unique screen ID. The first character of the screen ID 
identifies the application (E indicates order entry), and the second character 
is a number. The screen ID is the first output/input field on the screen and 
is a nondisplay field in positions 3 and 4 of line 1. For debugging purposes, 
the screen ID may be displayed and then changed to a nondisplay field after 
the program has been tested. 

• Screen names are formed by combining a three-character abbreviation of 
the application, a one-character screen designation, and the two-character 
screen ID. For example, screen E1 of an order entry application named ORD 
would be ORDSE1. 

• Each screen has a title, centered on line 2 and underlined. 

• Each screen has a 48-character error message field on line 23 and/or line 
24. Error message text is provided as a constant from within the program. 
(A 48-character field was chosen to make coding of the RPG II output field 
easier because a constant of up to 24 characters can be coded on one RPG 
II output specification.) 

• A legend of operator options should be shown in the lower-right corner of 
the screen. If more space is required, the lower-left portion of the screen 
(above the error message line) can be used. Command keys are listed in 
order. 

• All constants are displayed with normal intensity. 

• All output/input fields are displayed with high intensity. 

• When an error is diagnosed, the field in error is displayed in reverse image, 
and the cursor is positio!led at that field. The description of the error 
condition is displayed on line 23. This error description is also displayed in 
reverse image. A put override operation is used to display the error screen. 
The indicator used to request the put override operation is the same 
indicator used to display the error message, to reverse the image of the 
field in error, and to position the cursor. 

• The screens usually do not instruct the operator to press the Enter/Rec Adv 
key. The written operator instructions will indicate that the operator should 
normally press the Enter/Rec Adv key to enter a screen. 

• For all input fields on a screen, the operator must press the Field Exit, Field 
+, or Field - key after entering information in the field. 



• Automatic record advance is specified for the last input field on a screen so 
that the operator need not press the Enter I Rec Adv key if all the fields are 
entered. 

• Numeric fields are right-adjusted and zero filled or right-adjusted and blank 
filled by specifying a Z or B in the adjust/fill entry on the D specification for 
the field. 

Figure 5-2 shows the form that is used for laying out the screens used by this 
application. An area is set aside on each sheet for programming notes that 
apply to the screen. These notes are used when detailed logic of the 
application programs is defined. 

In this example, the screen design process further defines the requirements for 
the programs. When each screen is designed, the error conditions and 
exception conditions that can be handled by that screen are identified, and any 
command keys required to handle those conditions are assigned. 

Figure 5-3 shows the layout sheet for screen E1, the first screen. From screen 
E1, the operator can: 

• Key the customer number and order number and request to enter additional 
information by pressing command key 1 . 

• Key the customer number and order number and request the screen for 
entering items ordered by pressing the Enter/Rec Adv key. 

• Cancel the order entry process by pressing command key 7. 

Figure 5-4 shows the layout sheet for screen E2, which is displayed only if the 
operator presses command key 1 from display screen E1. Ship-to information 
and miscellaneous order information can be entered from screen E2. 

Figure 5-5 shows the layout sheet for screen E3. From screen E3, the operator 
enters the individual line items in the order. The operator enters a line item on 
line 20 of the screen. In this application, lines 13 through 18 show the last six 
lines entered. In addition to being able to enter a new item, the operator can 
use this display to step back through the order, to change or delete previously 
entered line items, or to cancel the order. 

Figure 5-6 shows screen · E4. Screen E4 is used to display the previously 
entered lines. Because this screen is displayed using a variable line number 
and because it is an output screen only, the screen ID is not coded with the 
screen. The screen ID is still assigned for documentation purposes. 

After all the screens are laid out, a list of all the screens, their IDs, and where 
they are used can be compiled. Figure 5-7 shows such a list for this 
application. 

Sample Applications 5-5 



Screen Name: 

Description: 

Screen ID: 
Display Screen Layout Sheet 

COLUMN 

21-30 31-40 71-80 

01 -'-·• • ·- L ........ ~ ~ ... .L. • .L-,.._J_ . ...._..._..._ .... .J-.-_..._.._...._.l_......_.__..__._-1-....._:........ .... ! .. ....__ ..... +....._._,_....J_-'-'-'_.-+ . •. . ... J .•. • • . • I . . ' . l • • • • t- ..... .• _ _.__.~ ............. '-1 

02 t--'-..._.____._.~._._~~~ ~~~._..._+---'-~·-'-J_._ ................. + . ...__._....___....1. ... _ ..... __ .._f.--.-.-_..._ ... ...1__._...__.____.__.(......... ............ ....J_._ .. ..__._ ......... .)... __._._,_+_.__._.__._J_ 
03 ....... l ....... .._........ . .... ...)..... ... :.. .. _ _._j_ ._....____._ ....... .) ............. 1 ................ -f-· ......... L . ....__.__._...j ............... .l .... .._._ .... t-....... -~~~ ............... 
04 ........... _.___L__.__ ......... +......__.____.__ ... _1__.__....__._ ... _j.__._ _...._ I _ .... ~ ....... Ll ' ...... +.................... _.__,_...1__.._ ... ~ ........ _..__._.L ... 

05 j •• L.J • ' •• I .... l . ' .. I ' .. ' l ' .... ' I .... l ' ...... ) _..___.__ ........ .J • ' j ... )-.. ....... _l ........... t ...• J • L.L .L.-+~-
06 ........... L_,_ j •• I ••• j l ••• ' 1-. j •• l ' ' •.• I ' ' •• l •• ' • I ' .••• l •••• I j ••• l j • ' • ~--J. •••• l .- ........... + -'- ....... 1 .... _ ... 

07 j .__._ .. L •••• I .... I •••• I .... l ••• j I .... l •••• I .... l • I •• I .... I ••• I I j ••• l •••• I ._..__._....__..___,._.__._._--l 

08 • • • • l • • • • I . . .1 • l • • • . ... )..... • . • I • • • • I . . . . l • • • • I . . . . · 1 • • • • j • • • • l . . • . I . . . . I . • • . j • '-'-'--'-"'--'--''--'--l 

09 
• I •• I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' .. l •.•. I I I • I l I I I I I ... I I I • I I I I •.•• l •• I I I I I •• l L .•• L-+- .... I ..._..._~'-'-1 

10 
__ J_.__.__.L . .1 J .. ~~~-..L .. .L..) ............ L ... _ ...... ._)_,,__,__.__J •• '-'-·I· I I' I I I I· I· I I I l. I I·-+· •• .__L..___._,_ _ _.__...j......._...__.___l 

11 
•• ,__._L_. I I I . I ._....__L_.._ ...... ) 1 .• 1 I I I • I I I 1 .L 1 L l ... _. 1 I j I 1 I I I • 1 1 • I ... L .• I I I 1 1 I .... l .......... 1 I . 1 '----~~ ............... 

~ 12 
• I 1 • I . 1 I 1 I 1 ... , _ _,__l__ 1.-'--'---Lf......__._... ..... L ... _ _.__ .. __ .-J- .1 • ...1..L .1 l • 1 1 1 I I I 1 1 I • I I I j 1 I 1 • l •• L..L j •• j • l. • .__. __ 4...__.___..__._._._._._'---l 

er 13 
I I I I I I I I 1 I .. 1 ..__l_, • 1 I I I. 1. l 1. 1. + •. I • l I I I I j I I ' I I I ' I I I ' I ' I I I I I I I . 1 •• l 1 1 l 1 I. l ,_..._L..___.__.__ 

14 
1 1 1 I l I •.• l I .. .... 1 1 • 1 I I •--•- 1 • I l I •• I I .• I I I I ~- 1 1 ... .I .1.. ! ! !. I I I I ! I 1 1 • I I 1 I 1 1 l I .• 1 I I ~~~~~----! 

15 
• I I • l I I I • I . ' .. l ••.• I .... l •••• I I ••• I •••• I .. l • l I ••• I . I •• I • I •• I .. ._..._.._.__.___.__-'-+..._.__.__._~~---'--I 

16 
•••• l •••• I .... l •••• I .......... 1 • j L.L. + . ' .... J ' • '"--+--· . I I I I ' • j I . I • .......L .. LL....L. . .j. ._..__._..__l___._.._. • -I _.___.__~_.__._~---'--I 

17 •••• I •••• I ' ' . ' I ' • I • I .... 1 '- ••• I ... ' l •••• I .... I ._.L..._....' • I-· .......... J _.____.__ ... 
18 

j I .. ..L . ...L.l_.__,_ _ _.___..._, _._..._) .... ..L .. ..._.__._1_...._ '~......1. .... L.L...L.-+ '---'·--'-'- ' I 
19 

• • ' .1 I. .___,__...._._1... L ... .. L.. I I • I I '---'-- .L .. L ~ .L .__ L..._..._ .. J..-1..+ . .L L • j .__...__.___.__-'--+__,__,'----'--'--'--'----'--....L......L-l 

20 
..... ~.J-'--'--- I 

21 
~.1...1. . ...L-'----'- ..L :.._.i__...__..__..._, • I I • ' l • I I • I ' ' .. 1" ' ' • 1- .... L ~- L"'-'-''---"-4.............__.__.__._..._..._..._.__. 

22 
I I I' I I''' .j._ ... _,_,__.._L_.__... __ ..... i..... .... __ ,__.___l~....__._ .... _.._...1_..._...,__f_.___...__, 'l ... ' •• I .... I .• '' I· . .,, _ _l__...,. L , __ .__._, ~~--'--! 

23 
L...._l_._. 1...1 l •. L...L~.l....L. I ............ !. ..... L. . .1-+ .. .L • ...L.....L ._l_._.__.__. I •••• I ,_._ _ _.._,__4 __ ... L .._. l .L,.' I·. j •• l j '-'--'--+--'--~...._...__.___...___~ 

24 

Programming Notes: 

Figure 5-2. Form Used for Laying Out Display Screens 

5-6 



Screen Name: ORD5 E 1 

Description: Order Start Screet1 
Screen ID: E 1 

Display Screen Layout Sheet 

COLUMN 

m a I •.•. I .. L-<- .. ! l • J .L .• 1 •... J J j ,. ... J l. .. ..L . .L-'..j ............. i ............. 1 ................. I .. J .L. L .•. .L.J •. j •••.• I l J ..... .j. .............. ~_.._._..._.__,'-1 
02 

f--'-'......._._....L......L......__._'-i-J'--'- J ....L ~ ...... + .L .u • I • l J • iO. .K .Di. .E, Jt L E .... >l 1 A rt U..L_J-~..__.._~+ ~ ............... ~~'-! 
03 

....... L. J J. L .... L...L. .i....L.....L..L...._._._f- ..L...l ... .(.... • • ... L •.. ..L . .l .... i J • .• • .l • • L.. L i l l L L -'-~'--+--'~~~~ 
04 

••• ·- 1 •••• i ... .L .. .L '· J . .L .L ... l · L .LL L ~ L . ••• .(......__._... ......... J....._ ........... .(.........._ L L L ••• L ~-·· _. __ .. • .. ........-f..~ ...L..~ 
05 

•••• , •••• ~U.STOME.R .~u.,.aE.~ .... ~xxx~x ... 1 •••• , •... 1 •••• L ..__ ... 1 .••. 1 .• _._..L..+-.._~ 
06 •••• 1 .... 1 .... 1. '. · l ·' .. 1 ... ·I~·'' I •• '· I·,,'[,, •• , ......... 1 ............ 4 .............. l_..__.__ ... 
07 

.• , , , l , • , , P.RO.E.R1 .NUM.~E.R , . I ••.• 1XXXX~X ... i . Initial • I • . · . I • • • • I · . · · I • • • • j ... ~~~·-. 
08 , , , ' I , , ' ' I ' ' ' ' I ' ' ' , +-• ' , , I ' , , ' I , , , , I , , , , I , Cursor • l , , ' , 1 , , • , I , , , , I , .• , I , -~~~_......., 
09 Position 

,,,,1 ..•. 1 .... 1 .. ,,\ •••• 1,,,,,,,,,1,,,,,, ·l·····'····l····l ....... ..j. ...... ,.L.....L....~~ 
10 

..._..__. 1 ...._.._ ' .• + •. ....1.................l. l.. J I . . ' ' 1. L. • • ' + J J L .L. l • ' J J I ' ' I ' I I I I ' I I ' I I I ' I ' • + ' ' . .....L.... .._l 
11 

' ' I-~ I I i I I •.•. ..! •• ' I i ' ' ' ' I ' ' I I I I .. l J l. l .. I I I I I I ' I I I I I • I L ' ...... I J • I ' I ' .L. '-· J 1 L j J_ .L . .j. •. J --~.L.....L....~'-j 
~ 12 

I I I I I ' I I ' I ' I J .. ...L.L._.__.. ... i-'-.....L...J..l. L...........J. .J • .j. .. Li l J I I ' I I I I I I I 1 I I I I I I I I ' l, J L .•.. 1 .•. •-' J L.. J.....L .. ~~.L.....L.....L.....L..L.....L.-L......f 
a: 13 

I I I • I I I I ' I I ' ' ' L.J ' I ' I J l J ' I ' '. ,_. j ' ' I J I I ' I I I I ' ' I I ' ' I ' I ' ' ' ' I I ' I ' I ' I ' I I I J l ' I ' ' ..L. ....J....~ 
14 

• ' 'I I''' l I J l l •. .Ill l '+ . ..L..L..J.l Ill' I I·' I l I l ~ l '.1 I l J ! I I· I I!!' I l JI'' I' 1 l .• J I' I~_._._.....__._ ... ........., 
15 

. ' I I I I I I • I . ' I • I I ' ' l I l ' J • l l ' .. I ' l ' ' I • l l l I l ' ' ' I I I ' I I I ' I ' I ' ' I I I ' I ~~~-+-'-~..._._~~ 
16 

• ' • I I I • ' • I ' ' ' ' I ' ' ' • .j. ' ............ l _, L .l .L . . j J • .. ...... .l • J ' l .. i ' ' ' ' I I ' ' ' I ' I ' ~ ... _.__.._1 L .... .j. ~_.__._.l-...L.-L..L.J-! 
17 ' ''' [, J •• 1.'' .1 ,,,,,,,,,I ... ·· l · ···l· '''I· ... I ~ •. j .. -<-..LLJ...J ........... ... 

18 
J > .L .i .. l_.._... . ..L.__._(_.. .. ~_.__.._l_.._.._.._._..j.. ..L......L.....j. ,__........_..__J __ J ................ ...L..-'-.....L~...J......J.... . .< ~--.._l.-' L .. .L-'. + ..L..i.....L..J... ........._.._.._....-+-J......L....L.....!........C..........,_~ 

19 
' ' ' • l ._..._..._.._! ' l J .••. I I I I I I ..L L.LL .L I .L. L ...L.....1 .. LL.L....L...L. . .j... .L L.L .J ~~ .............. ~~..._._ ............... 

20 
' ........ .!~ ,Press ENT~R/REu ADV I -or,~ ' 1CK1 1IO, EN1TE& M 

21 
-~.L ......... ~ ............ ~~~....>...+-..._._~~-·-.LL....L...L .. L....1..1 l' 1'' I' I· l' J ! .• J' 'i .. l.L •. L~----+-"~~~.._.._, 

22 i,-----....... ---~__. _ __._ ....... _--+--...... , , 1C.~7. , 1C.A.t.(C,E1l, .O,R,~~ ... E..NjtR.'i L....L.....L...~ 
23 
~~~~~~~~~~~~~~~~~-~-~~~~~-~·~· ~· ~· ~· ~l ·~· _.J..L1-L.l ._._l~ L •• I J l' L l. ·~~~~~~ 

24

Programming Notes:

- o+ker error messa.ge.s:

INVALID ORDER NUMBER, RE.ENTER

- Tke opera.tor shou\d exit from tkis scree~ o..il~.

- Control toto.ls could be prompted for here aMC\ ba(a1'lced at tke e.Kct
of +ke order C fk is LUi If not" be dotte it\ +kio elCCLW\f=>le.),

- I/ PROMPT will be l.lSed to dispta.~ -tkis scree~ .
Figure 5-3. Layout of Display Screen E1

Sample Applications 5-7

Screen Name: OR.DSEZ.

Description: Skip-To or Miscello.neou.s I.ttforma.tiot\ ~Yitry
Screen ID: E. "/...

Display Screen Layout Sheet

COLUMN

o1 Et
02

11
I I~~·~·~'~· ~_._._1-·-·--·-'-·-·-·_.__,_I-·~~----.....__._.

~ 12
-'-'--'------'-''I I I I· I I I I. I I I I· I I I. I I I· I I I I. I I I I· I I I I. I

a: 13
L_. __ _._ _ _,_ __ l_, '-'--'--' I I I I I I-'--' I I I I I I I I I I I I I I I I I -'~·~·--ti~·~·~·-~'~~-+----'-~~~~-+-"------------.

14
-'----'-----'-_I !--'------'----' I

15
_ _.__._____.__J__._-'------'-_ _.___j_,____, I

16
--'----'_J__._ I I I I I I I I I I I I I I I I I I

18

19

20

21

22

23

24

I

--LI I I l .L-'--'--L-11 I I I I I I I I I· I· I I I I I I I I I· I I

I I I I I I I I I I I I I,, I I I I I I I I I· I I I I I I I I· I I I I I-' I I I I I I

Programming Notes:

- TMs sc.re.e-K a.ppea.rs it C.K 1 wa.s pressed wheK scree"' E 1

wa~ displa.yed .

- Skip-to i"forma.tioK will be displayed if a skip-to re..cot"d Wti& re~.
Tke opera.tor caK oveY.ric.{e the, ittfot-rMa.f iott .

Figure 5-4. Layout of Display Screen E2

5-8

Screen Name: ORDSE3

Description: Litte. Itewt EYttr~

Screen ID: E. ~
Display Screen Layout Sheet

COLUMN

01 ~3 I I I ·--+-~-~~.___,_..~~~
02_..._._,____.._-'--'---~-+-'-........_,_-~----'-'---'--+--'--'----'__,_~_~p .~ Q E R I E N T ll 'j'(I I

03t--'--~~_.___,__._-'-+--'--'--'-'---'---'--'-'--'-+-'--'--'---'--'--'-'---'---'--r-'--'--'--'--'--'----'----'-~-'--'----'--'--'-'---'---+-~-~~__.___.__,__._~_,___,___~~__.___._--'--+--'--'--'-'---'--'-~~
04 1CUST 1NO ' ' 1X.>CXX~J(p&DER1 NO I xx~xx
05 ~-'----'----'---+--'----'---'---'--J-'-~-4------'--'---'--L_.__ _ _,__~ _ _,__ __ _._ _ _.__J_.__._ _ _,__4 ,___,_f--.--~~~~~~~~~ ~-+--'--'~~~__,
06 __,___,s.aLD.__IO,__~::;:±;:_,____.__,__iz:;::;::;:j __ L__J__L:::::ti--'---'--L__-'----'--'-+--'--S'HI.B .TO .X1 I I I I I I I I I I I I , , I , ,

07 _,___JX:,__-'---'--L _ _,___,__ _ _._::i=_,___-'--'-_f_.___.___,__:::+:A,_' 1 -'--' L L-f---L-'--_.__,_j__,_ __ _._,__~_._ _ __,__ _ _._ __ ,_ '---'-·--'--'--· -'---'---'----

08 _._ __ _.__,___,_J__,__._. __ ~_L'.l:J::L:z::zt:;:::_,___LJ_Jl~--.x!_JtM__,__ L '---1--'-- ,__.__,_J __ ,_~ _ _,__:z::z::::::L'._,_ _ _.____._ :J: _ _,___,_ L .. l '--'--'--'--fl.L..~--Ln£~0j
09

' • -'----'-- J .J .. ! ' ' i I -' ! ! .! ! --'- .L L+ L -'-'--'--J __ _,__ --'- ' -'- I ' ' L L 1 ' -'- -'-· -• -1---' __,___,___,_J __ _.__,_ _ _,___,__-f-_,____,__-'--'__l__,__._ _ _.__,__+_,_ L -'-__,_+-'---'-- ·~~.__.__.
10 USir, eo. iXJ<.XXX!XXXXX1 ' LSALESMN NO_~u' .. 'Ju _ _,__,_+ -'--'--'-'-Lu4_,____.___,__,__I ' ' ' I I ' ' I I

11_._,____.._~~--~ -'--'--'-~_,___L_,___,_-'---'--+--'---LL_L.l___,____,___,__,___\-.._.__.__,___l__,__. _ _,___,__, I ' ' I I I I I '-'--'--'--'----'---'--l

~ 12 ,_LlJ!E1_,_ IIE!M .KQ I , .QTY1 , , , iOE,SC.,~t.P.ItQN. , , , lu__,__,___l__,__ _ _,__
1

, 1P,fI,C,f1 '--'---~' ~· _,._,~~M~OlJ~,N~T.~--'-+-~-'---'--'----'-'-~
a: 13

14
- L-'- -' L.~'--'--+~ _ __,__,__,__1__,___,__,__, I . ' ' I l_._,___._ _ _,___f-_.___,__ L--'--J L _.__,_J_ _c__l_ I I ' ' I ' ' I ' l_,__,_ __ _.__.___,l--'---'-'--'----'--'--'---'--'--1

15

16

17

18

19

20

21

22

23

24

Lines for displaying __.____,____,_ I I --'--'---'--~-'--'----'---'-J._.___,___._ __ ,__-1--'---'---'----'-_l__.__,__-'-~'-'-L_._ __ ,_ __ ,_ __ ,__+__,___~~~........,__~__.___.___,____,___,__..__.

_ previously entered ___,__, , I , , , . ! , -'--'--'-I , , , , 1 , . , , I , , , , t_, _,___,__4 _ _._, _ _, _ __,__,__.__.___.___.__._.__.~__,____,__~_.__._~~~~
'items

-'---'--+---'--_.__,____._J_'---'---'-----'--+--'---'---'-··'·l _ _,___,___~~--'-'---'--'--'--'--'-+-'-'--'---'--'--'---'---'--'- +-'--'--'---'--'-~-'---'--l

A new item is entered -'--'--1--'--'-__,__._-'--'--__,___,_-'-+-~~__.____,_~-+--'---'--'-~-'--~'--'--t~-'--'----'---'--'--'--'--I-''-'--'---'--'--'--'--~

' • •
1 ~ Cursor Position

Programming Notes:

- Tkis sctee'1 o.~pe.o..t-s (1.) if fk.e.. EY\te.r /Rec. Adv ke~ wo.f:» toressed whett
sc rutt E 1 wa~ cl i~p\a.~e.d , or (2) Q.f+er s,c.re.e.~ E. 2. Q,ppeArs.

- Field bo.c.kspa.ce. f>koulol allow +l\e. \it\e. ~u.mber to be- ellie.t-e.d
(IA~e.o{ fo cka.Vlg~ a. l i ~ if-e.~) •

- If o~\~ a. li~e. ~umber i~ ellie.ted , fk.e program shou\d delet-e.

-fkR. I i~e if.e.Wl .
- Li~e& 13-18 a.re. reee.rved to disp\a..~ u.p to six pre.vlou..6l~ e.Kier-e.& iteMs.
- It~Wl vtllm.be.J- a.V'd ~Ylfit~ CAh onl~ be e.nt.ered for ~ew lit\e i+~ms.

Figure 5-5. Layout of Display Screen E3

Sample Applications 5-9

Screen Name: OROSEY.
Description: E~tered I-tems Oispl~
Screen ID: E4

Display Screen Layout Sheet

COLUMN

01

02

03

04

05 ~~---'-------'---~~-· I I I I I I I I I I I I I I I I I I

06
I I I I· I I I I. I I I I· I! I I. I I I I· I I I I. I I I· I I I I. I I I I·'-'-----~~~+----'--~~~~~~~~~

07,____..._..~~~~-+----'--_,___,____,__L_~ J _ __,___.__ _ __.___.___,. I I I I I I I I I· I _.___,___l___~·~·~· I~·~·~·~~~~~~~__.__.
08

_._____._ .. 1 , 1 , ... l~~L ... _ I , I .I. , _._____._ _ _.___,__J_____.______,__--t-----'-~~~---'-t

09 --'--'-~-L-L .. _j..---1.. __ J_LLJ__,_ _ _j____,____,___._--L_J _ _,__---'-----'---, I· I I I I I I., I I· I I I I I ·I·· _.__~.____._.__.~.i.......i

11
I I·~~~---'------'------'----+--'----'--_.._____._~~__.__,'-'-~-'------'----._._~

~ 1 2 __,____ _._____,__,_l_,___---'-------'------'----+_.._____._----'----'-----'------'--'---'---'-' 1-I _.___. _.___. __.___. __.___. _,____I __,_____. _,___. _,_. _,_, +I __.___. ___.__. ---'--' ---'--' _._I ____._, __._. __..___..-ll'--'·'---·'---'-· _.___. __.__I __,_____. __.__, ---'------'---+----'----'----'--_.._____._----'----'-----'------'-l'--''---'---,_.._-'-'---'------'-----'--+---'----'-_.___.__....___.__.___._~
a: 13

,__,__,_ _ _._J '. ,___.__1. I I I I I I I I I I I I I I I I I I· I I I '-'-----'--'--'--!----i---'---'--_J_ __ l___,_ __ ~___,_j_~~~~_,_____._~~~....._
14

__,_____,___ ___ ._LI 1---'---'--.___,___l__---'---' I ,__.___,___,_---+--'-~ _._..__.__.-l
15

L _,_,_____j__.____,__..__J__.____, _J__,_ I I I I I '. I I I I I -----'-------'-L~_,____L I I I I I I I_____,_ I I I I I '--i-.-'----'----''-----'-'_.__._--'-+_._._....__._...__._""--L-.i.......j
16

--'-------'--'-----'-_J _ _,__ ··I· I I ! ___.___,_____._, I I I I I I I I I I L....L..L__._,, I I'-'----'---'--'-~-----'------''-+----'---'--'------'------'------'-----'--'-------'---+-_.___.___._~
17 -"------'-----'-_L__,____,___.__j___._,______ ~____,____,___j__,__ -f--.--'----'---'--1~~---t-'~~._._~""-+"---'------'---~--'----'--_.._____._~~~~~~~
18

19

20

21
I I· I I I I I I I I· I I I I I

22
-' ' I I I , __ __.__, I ---'----'----' --'----' --'----' +-I --'----' ._, '--' ._, ._I -'----' IL....IL--J''------l'f-----'-----J'----'-----'--'-----'--'-----'-----'--+__,___.___,____.___,____._........._-'-4

23
I - I I I I I I I I I ___.___.____,___,____._._---'--+__._._......._.__,,_.._._.--'-4

24

Programming Notes:

- Fie.Ids are displa.~ed ottly a.fte.,- edifi.-.g is doKe..
- Up to ~ Ii Ke.6 ~in be d ispfQ.~ed.
- Va.tio.ble litte. Kumbers will be used - s+avt OK liH.e \3.

Figure 5·6. Layout of Display Screen E4

5-10

Screen
ID

E1

E2

E3

E4

Screen
Name Where Used

ORDSE1 Order entry start

ORDSE2 Ship-to override and miscellaneous information

ORDSE3 Line item entry

ORDSE4 Line item display (on variable line)

Note: The screen IDs are used in the input specifications for the RPG II
program to identify the screen being read and to turn on an input indicator.
The screen names are used in the S specifications for the screens and in the
output specifications for the RPG II program to display the desired screen.

Figure 5-7. List of Display Screens Used in the Order Entry Example

Sample Applications 5-11

5-12

DESIGNING DISK FILES

At this point, disk file requirements are defined and new files designed.

Master Files

In this example, three master files are used:

• CMAST-the customer master file

• SMAST-the ship-to master file

• IMAST-the item master file

For each of these files, the fields in the file are listed along with a field
description and the field length. Alphameric fields are denoted by an A, and
numeric fields are denoted by an N. The from and to locations and the field
names are assigned. Figure 5-8 shows the list of the fields in each of the
master files. Meaningful field names are used when possible. The first
character of the name identifies the file.

Notes:
1. The record layouts do not show all the fields that would actually be required

in an order entry /billing application. For example, no on-hand quantities are
shown for inventory control.

2. Numeric fields are not packed in this example so that the example will be
easier to follow. In a real application, numeric fields are normally packed
(with two digits stored in each byte except the rightmost byte) to conserve
disk space.

File name: CMAST
File organization: Indexed
Key: Customer number (CUSNO)
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name

Record code-MA 2 A 1 2 CRECCO

Delete code-D (blank if not 1 A 3 3 CDELETE
active)

Customer number 6 0 N 4 9 CUSNO

Customer name 25 A 10 34 CNAME

Customer address 25 A 35 59 CAD DR

City 22 A 60 81 CCITY

State 2 A 82 83 CST ATE

Zip code 5 0 N 84 88 CZIPCD

Salesman number 2 0 N 89 90 CSLSNO

File name: SMAST
File organization: Indexed
Key: Customer number (SCUSNO)
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name

Record code-SA 2 A 1 2 SRECCD

Delete code-D (blank if not 1 A 3 3 SDELET
active)

Customer number 6 0 N 4 9 SCUSNO

Customer name 25 A 10 34 SNAME

Customer address 25 A 35 59 SAD DR

City 22 A 60 81 SCITY

State 2 A 82 83 SST ATE

Zip code 5 0 N 84 88 SZIPCD

File name: IMAST
File organization: Indexed
Key: Item number (ITEMNO)
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name

Record code-IT 2 A 1 2 IRECCD

Delete code-0 (blank if not 1 A 3 3 IDELET
active)

Item number 6 0 N 4 9 ITEM NO

Description 20 A 10 29 IDESCR

Price 6 2 N 30 33 IPRICE

Warehouse location 5 A 34 38 IWHLOC

Figure 5-8. Record Layouts for Master Files

Sample Applications 5-13

I

5-14

Transaction Files

For this application, two transaction files are used. As an order is being built, it
is placed in a partitioned direct file called TRANS. Because, in the example, a
maximum of three display stations can be entering orders at one time, the file
has three partitions. Each partition is assigned for the use of one of the three
possible display stations.

TRANS

After an order has been completely entered, the order is copied from the
TRANS file into a file that contains all orders that have been entered. That file
is called TRANSLOG. After the order has been copied from TRANS, the
partition that the order occupied can be used for another order. In the
following diagram, the operator at display station W2 completes an order; that
order is then written to the TRANSLOG file.

TRANS LOG

The picking slip is printed from the information in the TRANSLOG file.

TRANS LOG

Picking
Slip

Record 1

2

3

4

cu

cs
IT

IT

By using the intermediate partitioned file, the designer can achieve the faster
response times that normally result from direct file processing. Also, a simple
access algorithm is used because, after a record is written to the TRANS file,
the program simply increments the relative record number by one to determine
the location of the next record in the order. Using the two transaction files
requires less disk space than if one partitioned direct file were used. If one
partitioned transaction file had been used, each partition in that file would have
to be large enough to hold the maximum number of orders that can be entered
from any display station.

Note: An alternative to using a partitioned direct transaction file would be to
have a different transaction file for each user or display station. The unique file
names could be formed by appending the user ID or work station ID to the file
name (for example, FILE?WS?). The technique of using multiple transaction
files normally works well if the data entry program is an SRT program.

The following paragraphs briefly describe the file layout and record formats for
the transaction file.

TRANS File

TRANS file organization:

100 101 200 201 300 301

Area used by Area used by Area used by Control
display station 1 display station 2 display station 3 Record

Note: If orders can be entered from several display stations, consider making
the first record of each partition a control record. This reduces the sector
contention/lockout that might occur when several users require the control
record at the same time.

Records in TRANS file:

128 Bytes

Order Customer Customer
Number Number Name Address 1 Address 2 Zip

II "
Ship-to
Name Address 1 Address 2 Zip

II "
Item Number Line Description Quantity Price Amount

No.

,, ,, Item Number Line Description Quantity Price Amount
No.

301 Relative record number of
last record used in partition 1

Relative record number of
last record used in partition 2

Relative record number of
last record used in partition 3

It
1'

J

Sample Applications 5-15

5-16

The transaction file contains three different record types:

• The customer record, which is identified by a CU in the first two positions.
The customer record contains the order number, the customer number, the
customer's address, the salesman's number, and the purchase order
number.

• The ship-to record, which is identified by a CS in the first two positions.
This type of record is optional.

• The item records, which are identified by an IT in the first two positions. An
item record exists for each line item entered by the operator.

All records in the file must be the same length. In this example, the records
are 128 bytes long. Because the records must all be the same length, some
disk space is wasted in each record. If the space required for different record
types differs greatly, you might want to break the longer record into segments
or place the different record types into separate files.

Figure 5-9 shows the record layout for the TRANS file.

File name: TRANS
File organization: Direct
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name

Record code-CU 2 A 1 2 OCODE

Delete code-D (blank if A 3 3 ODELET
not active)

Customer number 6 0 N 4 9 CUSNO

Order number 6 0 N 10 15 ORONO

Customer name 25 A 16 40 CNAME

Customer address 25 A 41 65 CAD DR

City 22 66 87 CCITY

State 2 A 88 89 CST ATE

Zip code 5 0 N 90 94 CZIPCD

Salesman number 2 0 N 95 96 CS LS NO

Purchase order number 10 A 97 106 CPO NO

Ship-to record:

Record code-CS 2 A 1 2 OCODE

Delete code-D (blank if A 3 3 ODE LET
not active)

Customer number 6 0 N 4 9 CUSNO

Order number 6 0 N 10 15 ORONO

Ship-to name 25 A 16 40 SNAME

Ship-to address 25 A 41 65 SAD DR

City 22 A 66 87 SCITY

State 2 A 88 89 SST ATE

Zip code 5 0 N 90 94 SZIPCD

Line item record:

Record code-IT 2 A 1 2 OCODE

Delete code-D (blank if A 3 3 ODE LET
not active)

Customer number 6 0 N 4 9 CUSNO

Order number 6 0 N 10 15 ORD NO

Order line number 2 0 N 16 17 OLINE

Item number 6 0 N 18 23 ITMNO

Item description 20 A 24 43 IDESCR

Quantity ordered 6 0 N 44 49 OQTY

Price 6 2 N 50 55 OPRICE

Amount extended 8 2 N 56 63 OAMT

Warehouse location 5 A 64 68 IWHLOC

Figure 5-9 (Part 1 of 2). Record Layout of TRANS File

Sample Applications 5-17

Decimal Data Location
Field Description Length Position Format From To Field Name

Control record:
Record code-OU 2 A 1 2 RC ODE

Relative record 3 0 N 3 5 RR#1

Number Used by
Display Station 1

Relative record 3 0 N 6 8 RR#2

Number Used by
Display Station 2

\ Relative record 3 0 N 9 11 RR#3

Number Used by
Display Station 3

Figure 5-9 (Part 2 of 2). Record Layout of TRANS File

5-18

Record 1

2

3

4

5

6

7

8

TRANSLOG File

For this example, the TRANSLOG file is also a direct file. The control record,
which is the first record in the file, identifies the last record used in the file.
Orders are placed in the file as they are completed by each display station
operator. The first record of an order immediately follows the last record of
the previous order written to the file.

Note: If inquiry programs use this file, an indexed organization would probably
be better. The record key could be the order number plus the line number.
The inquiry program could locate an order by chaining to the first record of the
order. If the order file was a direct file, an inquiry program would have to
search for the first relative record number of the requested order.

TRANS LOG file organization:

Relative record number of l
last record used.

cu
cs
IT

IT

cu
cs
IT

The record layout is the same as for the TRANS file except for the control
record.

}

First order
entered

}
Second order
entered

Sample Applications 5-19

5-20

DESIGNING THE REPORT

Figure 5-10 shows the picking slip, which is printed for each order. The top
inch of the form is reserved for the company's name and address, the phone
number, report title and number, date and page number, and any instructions
to the customer.

The printed lines are arranged so that as few lines as possible are printed.
Because this form is used by warehouse personnel to pick the order, some
information has to be entered by the picker. Examples of information entered
by the picker are PICKED BY, DATE, and QUANTITY SHIPPED. The form
should be long enough to list the average number of line items in an order.

Note: If warehouse locations are used, the line items could be listed in order
by location. This type of listing requires an intermediate sort step performed
by either the sort utility program or a user-written program. The example does
not sort the line items by warehouse location.

Considerations for Designing Output Reports

Certain considerations to be taken into account when you are designing the
output report:

• Leave enough space on the left edge of the report in case you have to bind
the report.

• Separate each field on the report by at least one space from an adjacent
field.

• Group information items that are similar.

• Number all pages of a report. By using page numbers you can have the
operator restart the printing of a job from a specified page number instead
of the beginning of the job in the event that you have to restart a job that
was printing a report. To restart the printing of a job on a page number
other than page one you should use print spooling or code the restart
capability in your program.

• Provide meaningful headings for the data on the report. Abbreviations,
codes, and special symbols should be avoided. If you need more space
than is available on the output design sheet, use several lines for long
headings, rather than abbreviating them.

• Remember that the appearance of the report is important. The report should
be easy to read and self-explanatory.

111111111122222222223333333333444444444455555555556$6666666677777777778888811118t
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567•90

J_ I

~ llrii rr ~ [)! SlHl l1 :

j ~ i.16.1 J IA I

N • ji) ~l\.ilEllC ~ ,le • I r\li: ! mtr . rm1"- ~•'rt.. 15~ : iCJIArU;

I !

h ..
[J

Figure 5-10. Picking Slip for Order Entry Application

Determining Program Requirements

After the screens are designed, the program requirements can be further
identified. For this application, a transaction-oriented approach is used. Each
program 'processes a limited type of operator transactions.

Program names are formed by combining a three-character application
abbreviation and a three-character function abbreviation. For example,
ORDHDR is a program from the order entry application, and this program
processes header records.

Program

ORDHDR

ORDITM

ORDPRT

Function

Processes the screen on which the operator enters the
customer number and the order number. This program also
allows the operator to change miscellaneous information
about the order.

Processes each line item after it is entered.

Prints a picking slip for each order after it is entered.

1

;
1 _l

Sample Applications 5-21

5-22

After the program requirements are determined, some basic design decisions
can be made. In this example, the following decisions are made:

• Keying by the operator should overlap program initiation. For ORDHDR, a
I I PROMPT statement will be used to display screen E1 before the
ORDHDR program is loaded. Before ORDHDR ends, it will display screen
E3 so that the operator can be keying the first order line while ORDITM is
being initiated.

• ORDHDR will be an SRT program. The SRT attribute i.s selected because:
Data entry overlaps program initiation; therefore, initiation time does not
significantly affect response time.
The program is in main 'storage for a relatively short time.
All three operators will probably not initiate an order at the same time.

• ORDITM will be an MRT program. The MRT attribute,was selected mainly
because the program is in storage for a long time and because all three of
the operators will often be entering line items at the same time.

• ORDPRT will be a no-requester-terminal (NRT) program. The NRT attribute
was chosen because ORDPRT is a resource-handling program that requires
no operator interaction.

After the progr~m requirements are identified and some of the basic design
decisions are made, the logic of the programs can be defined and documented.
In this case, the logic documentation consists of a flowchart and a written
program description that identifies:

• Data to be keyed

• Data to be sent from the program to the display station

• Required disk accesses by type (input, output, or update)

• Editing to be done

• Options available to the operator

• Calculations to be performed

Figures 5-11 through 5-13 show the flowcharts and program descriptions for
the programs in this example.

Order Header Program

ORDHDR

E2

E1

Write Header
Customer and
Ship-to Records
to Transaction File

E3

EOJ

Figure 5-11 (Part 1 of 2). Logic Documentation for ORDHDR

EOJ

Error Message

'INVALID CUSTOMER NUMBER'

Error Message

'INVALID ORDER NUMBER'

Sample Applications 5-23

5-24

ORDHDR Program Description

ORDHDR is an RPG II SRT program that performs the following functions:

1. Accept input from either screen E1 or E2.

2. Enter the customer number and order number on screen E1.

3. If command key is pressed (KG indicator on), set on external switch U1
and LR indicators. Because the program ends, skip the rest of the
calculations.

4. From screen E 1 :

a. Chain to the customer master file, CMAST, to read the customer's
record and also chain to the ship-to file, SMAST.

b. If the customer's record is not found, write the 'INVALID
CUSTOMER NUMBER, REENTER' error message to screen E1.

c. If the order number is blank, write the 'INVALID ORDER NUMBER,
REENTER' error message to screen E1.

d. If the customer number and the order number are valid and if
command key 1 is pressed (KA ison), display screen E2.

5. From screen E2, accept ship-to override and I or miscellaneous order
information.

6. Write to the TRANS file by:

a. Using a table lookup to find which partition to use. For example:

Use an array to read three relative record numbers, RR1, RR2, and
RR3.

TABWS TABP

W1 1
W2 2
W3 3

b. Chaining to the control record, relative record number 301.

c. If the corresponding last used relative record number (RR#, I) is blank,
Z-ADD (Ix 100 + 1). If it is not blank, use RR#,1+1 to write the
customer order header, CU record code, including the user ID.

d. If screen E2 was used, chain to RR#,1+1 and write a second record,
the ship-to and miscellaneous record, CS record code.

e. Chain back to the control record and update the RR# array.

7. Set up the line number for the items by initializing it to 1.

8. Display screen E3 showing customer's name and address, ship-to,
miscellaneous information and headings for item entry.

9. Set on LR.

Figure 5-11 (Part 2 of 2). Logic Documentation for ORDHDR

Error Message:

ITEM NUMBER AND
LINE NUMBER MISSING

No

E3
Items

ORD I TM

Delete Record

Yes

Yes

Yes

Yes

Figure 5-12 (Part 1 of 2). Logic Documentation for ORDITM

Cancel Order;
EOJ

End of this
Order; Rewrite
Records to
TRANS LOG

Read Items
Backward and
Display Them

Validate Item
by Chaining to
IMAST

No

Yes

Yes

Error Message:

INVALID ITEM NUMBER,
REENTER

Write Record
to TRANS

Change Record
in TRANS

Sample Applications 5-25

5-26

ORDITM Program Description

ORDITM is an RPG II MRT program that performs the following functions:

1. Accept input from screen E3.

2. The item number and quantity are the minimum information to be
entered.

3. Save the work station ID and indicators. Set up a field for the variable
line number and code the program for three display stations.

4. If command key 8 is pressed (KH is on), the current order being worked
on should be canceled. Reset to zero the corresponding relative record
number in the TRANS file for the display station. The order will not be
written to the TRANSLOG file. Display screen E1 to enter another
order.

5. If command key 2 is pressed (KB is on), the order is complete. Chain to
the control record of the TRANS file to find out how many records have
to be copied to the TRANSLOG file. Chain to the control record (the
first record) of the TRANSLOG file to find the last relative record used.
Read a record from TRANS and write the record to TRANSLOG until all
records for the order have been copied. At the end, update the control
record of TRANSLOG. Display screen E1 to enter another order.

6. If command key 3 is pressed (KC is on), read the control record of
TRANS and read backwards and display one at a time using screen E4.
Display a maximum of six lines at a time. Then command key 3 can
again be pressed. Save the last relative record number displayed.

7. If an item number is entered, chain to the item master file, I MAST, to
read the item's record. If the item record is not found, write the
'INVALID ITEM NUMBER, REENTER' error message to screen E3. If
the item is found, write the record to the TRANS file, IT record code,
and update the control record of the TRANS file.

8. If a line number less than the current one is entered, a record will be
changed or deleted. If only the line number is entered, the line item is
deleted. Read the previously entered items backwards from the TRANS
file and tag the one to be deleted by placing a D in position 3.

9. Add one to the line number to indicate the next item to be entered.
Display the previously entered line on screen E4. Then display screen
E3 to accept the next line item. Be sure to check the variable line's
value. Its initial value is 13. Add one for each line displayed until 18 is
reached, then reset to 13.

Figure 5-12 (Part 2 of 2). Logic Documentation for ORDITM

Picking Slip Program

TRANS LOG

ORDPRT Program Description

ORDPRT
(NAT)

Picking
Slip

ORDPRT is an RPG II NRT program that performs the following functions:

1. Read the control record of the TRANSLOG file to find the last record

printed.

2. Read each record for the order and print each line.

3. At the end of the order, update the control record with the relative record
number of the last record printed.

Figure 5-13. Logic Documentation for ORDPRT

System Flowchart

After you have completed the requirements definitions and documented the
logic needed in your programs, you should prepare a general systems flow of
your application. The system flowchart should identify the basic operations of
your programs and the resources needed by your programs, and should include
any information you find helpful in explaining the application. The system
flowchart is used to show the basic inputs, outputs, processing steps, and
processing programs.

The following diagram is a sample of a system flowchart for the order entry
application.

Sample Applications 5-27

CM AST
Customer
Master
File

File No. DOR-1

5-28

ORDPRT
Print Picking
Slip

Screen
E3

ORD HOR
Order
Entry
Processing

ORDITM
Order
Item
Processing

TRANS LOG
Transaction
Hold File

File No. DOR-4

Two-Part Paper
Form: 6311Y
Report No. 6311-A

Screen
E2

TRANS
Transaction
File

File No. DOR-3

SM AST
Ship
To
Master

TITLE ORDER ENTRY APPLICATION
ORG. Programmin DATE 01/15/78
AUTHOR A. Programmer PAGE 1 OF 1

Notes

Run Frequency: Daily
Volume: Approximately 500 transactions

per day

ORDHDR (OR-01)

Program Type: SAT
Est Elapsed Time: 1 hour

Accepts customer number, order
number, and ship-to information,
and writes header customer and
ship-to-records to the TRANSACTION
file.

ORDITM (OR-02)

Program Type: MAT
Est Elapsed Time: 30 minutes

Accepts item number and quantity
information, and writes an order
record to the TRANSLOG file.

ORDPRT (OR-03)

Program Type: NAT
Est Elapsed Time: 10 minutes

Generates picking slips, and
updates a control record in the
TRANSLOG file.

BUILDING A DEVELOPMENT LIBRARY

Often, the first step in application development is to build a development
library. For this example a development library called TESTLIB can be built by
entering the following procedure command:

BLDLIBR TESTLIB, 100,20

BUILDING A DEVELOPMENT MENU

After the development library is built, a development menu can be created. A
development menu saves much time by allowing the developer to select
often-used functions, such as modifying and compiling an RPG II program,
from a menu.

To build a development menu called TESTM and store it in TESTLIB, enter the
following SDA command:

SDA TESTM,TESTLIB

For detailed information about how you can use SDA to interactively build
menus, refer to the SDA Reference Manual.

The development menu for this example is shown below. In this case, the
developer has taken advantage of the freedom of design that free-format
menus provide by grouping related functions and separating those groups with
dashed lines.

r
COMM ANO

MENU: TESTM
!-------------------------------:---:
: SDA l. screen Design

2. Menu Build
MENU 13. System functions

14. Other library functions
:--------------------~----------:---:
: SEU 3. Procedure

4. Program MISC
:-------------------------------
: COMPILE 5. RPG II

6. ~1SU

:-------------------------------:

15.
16.
17.
18.
19.
20.

Initialize diskette
Backup 1 i brary
Display file records
Remove library members
Data File Utility
BASIC : CATALOG 7. Disk

8. Diskette :---:
:-------------------------------: LIST 21. Procedure

FILE 9. Save 22. Program
10. Restore 23. Directory
11. Delete :---
12. Rename/Reorganize CHANGE 24. Change Session library/menu

:-------------------------------:--~--------------------------------------
ENTER NUMBER, COMMAND, OR OCL.

<- READY

W7

Sample Applications 5-29

5-30

CREATING DEVELOPMENT PROCEDURES

After building the menu, you can use SEU to create each of the procedures
used by the TESTM menu. To create each procedure, you could enter the
following command:

SEU name,P,,,TESTLIB

where name is the name of the procedure being created. Or you can use item
3, once it is created, from the TESTM procedure. The following sections
describe the procedures for three of the functions on the development menu.
The procedures described are:

• Using SEU to update and recompile a program (item 4 on the menu)

• Saving disk files (item 9 on the menu)

• Changing the session library and I or menu (item 24 on the menu)

These procedures show many of the functions that can be incorporated into
procedures to make them easier to use. For further information about coding
procedures, refer to Chapter 5 of the SSP Reference Manual.

Following the descriptions of the procedures is a section that lists the screen
format specifications for the PROM PT screens displayed by the procedures and
lists the contents of the procedures.

Using SEU to Update and Recompile a Program (ZSEUR)

A procedure called ZSEUR is called when menu item 4 is selected. The
procedure intially displays a format that prompts for the source program name.
The current session library is also displayed, but the cursor is positioned at the
source program name.

r

SEU UPDATE OF RPG II PROGRAM

Current session libr~ry ---> TESTLIB

Source me~ber n~me ---> f'.ROGA

Is member an RPG II progr~m ---> !

The RPG II compiler is not called unless the Y is entered.

The ZSEUR procedure then calls SEU execution so the user can create or
update the program or source member. After SEU execution ends, ZSEUR
displays another PROMPT screen from which the user can compile the
program.

,

COMPILE OPTION OF RPG II PROGRAM

current session 1i brary ---> TESTLIB

Source program name ---> PRO GA

Standard default compile ---> .XES

Run from JOBQ co-no,1-yes) ---> l

XREF list req co-no,1-yes> ---> 0

(Standard Default parameters:
Replace assumed, source and load processed from current
session library. 60 Blocks used for work files.>

If the user leaves the third field as is (YES), the program is compiled using
default parameters defined within the ZSEUR procedure. If the user enters
another value (for instance, NO) in the third field, the procedure calls the
RPG II prompt screen.

In summary, the ZSEUR procedure helps with the typical development task of
changing and recompiling a program by combining the two steps into one
procedure. The specifications for the PROMPT screens and the contents of the
ZSEUR procedure are in PROMPT screens and the contents of the ZSEUR
procedure are in Listings for Sample Development Procedures, which follows the
description of the ZSAVEF and ZLIBCHNG procedures.

Sample Applications 5-31

5-32

Saving Disk Files (ZSAVEF)

A procedure called ZSAVEF is called when menu item 9 is selected. ZSAVEF
displays the following prompt screen, which allows the user to copy all files in
a file group or to copy up to five individual files. The retention days of 999,
volume ID of IBMIRD, and location of 51 are coded as a default, but they can
be changed.

SAVE FILE OPTIONS

Enter: retent;on days <l to 999) ---> 999

date ;f more than one file ex;sts --->

volume-ID of diskette ---> IBMIRD

locat;on (Sl,S2,S3,Ml.nn,M2.nn) ---> Sl

Enter group name ;f desired: --->

Enter up to 5 f;le names: --->

- all files on diskette (ALL) --->

- an ;ndividual file <name> --->

--->

--->

The ZSAVEF procedure allows the user to save. more than one file on diskette,
unlike the SAVE procedure (described in the SSP Reference Manual), which can
only save one. The specifications for the prompt screen and the ZSAVEF
procedure are in Listings for Sample Development Procedures, which follows the
description of the ZLIBCHNG procedure.

Changing the Session Library and/or Menu (ZLIBCHNG)

A procedure called ZLIBCHNG is called when menu item 24 is selected. The
ZLIBCHNG procedure displays the current library and allows the user to change
the session library and/ or the current menu. The ZLIBCHNG procedure
prompts the operator for the new session library name and the menu name.

CHANGE SESSION LIBRARY

current session library --> TESTLIB

Hew session 1 i brary name --> .._[.... 1 _._

Display new menu --> I I

< Enter either library name or menu name or both)

The specifications for the prompt screen and the contents of the ZLIBCHNG
procedure are in Listings for Sample Development Procedures, which follows.

Sample Applications 5-33

5-34

Listings for Sample Development Procedures

This section contains listings of the sample procedures just described. Along
with the listing of procedure contents are the specifications for the prompt
screens displayed by those procedures. The screens themselves are shown in
the preceding sections.

Listings for ZSEUR

The ZSEUR procedure, which allows the user to update and recompile a
program, contains the following statements:

* PROGRAM ENTRY FOR ZS EUR
I I IFF? 1 FI ?SLIB? I I PROMPT MEMBER-ZRFM' FORMAT-SEU
11 IF ?3?/Y IF ?F3 'RI
I I IFF? 3? /Y IF ?F3 Is I? I
SEU?2R?,?3?,,,,?1?

//IF ?3? /S CANCEL
//PROMPT MEMBER-ZRFM, FORMAT-COMPILE

11 IF ? 3? /YES RPG ? 2? ' 6 0 , 6 0 ' REPLACE ' ? 1 ? ' ? 1 ? ' ' ' ' ? 4?? 5?
/ / IFF ? 3? /YES HELP RPG

As shown earlier, ZSEUR issues two displays. The first display (SEU) prompts
for the session library and the source program name. The second display
(COMPILE) prompts for information required to compile the program. The
following charts are the display screen specifications for both displays.

Second Edition GX21·9253· U/M oso·

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU

and $SFGR. This coding sheet could contain typographical errors.

Printed in U.S.A.

•No. of sheets per pad may vary slightly.

WSU Only

~ > ~ ~td~ Review lnser'i

:J ~ c: -o ~~ ~ ~ ~~:;rd ~~!rd
Sequence I Q.l NFoarmmeat ~ i .::; " E - ~ E ~ o ~ ~ f Reserved ~ lldnedn1_ctaiftyoirnsg lldnedn1·catiftyoirnsg Reserved Key Mask
Number 1 ~ f? ~ ... ~ _S" :-2" '" ~ 8 -~ u. g -o ~ ~?'

? - :.§~~~c~o< __ 8 ~... a:-~~g ::
.~ ~ - z;~g~~~ l ~~ ~ ~

0
> ~ §-g~!~·.gl~ 1 2 3 1 2 3 ~

- u.. (I) --.Ja::C:?!. (/)WW !D W en Cl)WWO:a;n..Q...

I 2 3 4 5 6 7 8 9 10 11121314151617 18 1920 2122 232_~25 26 27 28 2930 31323334 35 36373839404142~344454647~8 495051525354 555657585960 61626364656667686970 7172 73 747576 77 787980

ttrn s &rEU n n 1 1 r 1 1 Ll!YYI 1 I J 1 n · T 1 T 1 1 T n 1 n n 1 n n n n n

Sequence

Number

1 2 3 4

Starting

Field

Name

Location

'.9 -0~ > ·~ ~
~ ~ ~ ~

Field ;;; :J o o; <(> i!j, ~ R d !!. Constant Data 0

!!.> .,, Length ~ ;§N~o 8 ~ L u.o~ ~o ~ U:: uc:5 ~ ~] J ~ ~ > ~ c: l eserve ~ ~
CU;:) _, '"' > ... _ ';~ct C U: ~ § C 8C:

~ WSU ~~ Z 5. 8 ~ t- ~ ~ ~ ~ ~ ~EB .c ~ ~ Q.l -g _ cl---------------------l
~ FieldName ~~ -.S ~ 6~.f~~~~~~ ~8~ ~ :r: iii z a: :J;§ 81234551es10111213141s1s111s192021222

5 6 18910111213141516111519w2122n~~avn~m~~~3~2_3~34•3~5~3~6~n~~~n-~44_1_442~_3_«44_5_4~6_v_~~o.+5~o_s1_5~2_u_~_4~Y+N~v-~~~-s_o~~-6-2~U-64~~-6~6~ITT-re~~-1_0~1-11_2~D-7_4~~-7_6~n-1_8~~-8~0

01H~'A_Drlt116 I- !alt ~ fY ls£1LI I~ PlolmJE loF ~ i- Jr. IX
D~£f-lli£R
Df
D • --> '

lc::J.. •• 1 .. 1c.e ... lnlnlmL
D - -->

or[AIM ·-->
DLL

D

D

lo!
D

D

0

D

D

Sample Applications 5-35

5-36

System/34 Display Screen Format Specifications

Starting

Second Edition

Use this coding sheet only to define display screen formats for WSU
and $SFGR. This coding sheet could contain typographical errors.

GX21-9253- U/M oso·
Printed in U.S.A.

·No. of sheets per pad may vary slightly.

Field
Location

~- ~]~ 0
~ "C"C c:

Se F Id - :::> 0 -.; <{ > "' :; Reserved "' Constant Data 0

Name

quence 1e .8... "O ~ -g u.. w ~ -c °' a. c.
.._ :> ~ _, c.U:: ~ Qj :~!Cc- -o > _Et0 ~ :J

Number Length " - > > .>< = u ~ ~ ~ U:: _ J ~ ~ -.: cl!E: c: .g

~ ~!~ Name ~ ~ ~ i ~ ~ ! ~ I I ~ i : ~ E ~ * s: c ~ ~ ~ - c S
~ ~~ ~ ~ 6 ~f8~~~~ ~ w8<r:: 0: J: cc Z a: :::> 8 8, 2 3 4 5 6 7 e 9101111131415161718192021222

1 2 3 4 5 6 7 8 9 10 11121314151617181920 2122232425 26 2728 2930 3132 3 34 35 3637 38 39404142f4344454647484950515253!;455565758596061626364656667686970 7172 73 74757677 787980

DITIImt~ ~ ++:..r-F-FR~~=-r+-.-+-..+-~~r-r-+-h--r-=-r'r-r-H--r-.-.-..-~i,-,-,1~v~~~---.."".-.-b~~,,--,~l~P~-.-.~~~

Dir lplft1 1, 1 ... 1Ala.

D Ir
D

Dis.ILJrle 11 J'l
oi-

lmloi'JJ'J I 1 r l!lh~
oJe --1->
0 \VIE~
Dl~AID

YIN

D1ulalsl
D~~e.IF ~a 1 IJ 11~1alll""!

Ir

1....1. _I

11

H lc.~lc~r1loln llli 1
'-

IC
Ji.Jr

I'°

lxlRlE.F I I Ii l!Jt LrJelt1I lllm-ldo iJ.HX

Second Edition GX21·9253· U/M oso·

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU

and $SFGR. This coding sheet could contain typographical errors.

Printed in U.S.A.

•No. of sheets per pad may vary slightly.

Sequence

Number

1 2 3 4

Name

Starting
Location

~ ~]~ 0

Field •· iil 'O -= ; ~ ~ ~ > 8. ~ Reserved ~ Constant Data

~ Length i ~co!'._ ~ ~ j ~ ~ ~ 1'j ~ u OJ5: ~-"9 a:io ! ~ ~ > ~ c JI f- ~ ! wsu 5 iil ~ :: :: 8 ~ ~ ~ ~ 6 ~ g - - ~ u: ~ ~ ~ c ~
j FieldName ~~ 3 ~ 6~f~~~~i.£]aJ£ 'I:~~; 58 8123456789101112131415151110192021222

5 6 7 8 9 10 11121314151617 18 1920 2122 23 2425 2627 28 2930 3132 3334 35 3637 38 39404142j43444546474849505152 53~455565758596061626364656667 686970 7172 73 747576 77 787980

0~1AID ~~~~ll'~~b~~ _N_~. ~+r+·~---+-l--1--µ~+..+--1--1--1-+~~"-l-+-+-+-+--+--+--+-l-l--+-+--1--1--+--+--+-l-l--+-=+-+-+-+-+-1--i-+-1-+-+-+--+-+-+-1
olt '7 lo.slmi7IQ t!Qldtibl lft L J J i~l,;-1n.111il tl 11" 1

"

D Jt.JtJeJy Js. :
17 IMt.o;ir- 17[1 1~11 lc..ihl1 Jlr le.IX.

D

D

D

D

D

D

D ..

I o1
D

D

D

D

D

Sample Applications 5-37

Listings for ZSAVEF

*SAVE FILES

The ZSAVEF procedure, which allows the user to copy all files in a file group
or to copy up to five individual files, contains the following statements:

//PROMPT MEMBER-ZXFM,FORMAT-SAVE

11 IF ?5? I GOTO SKP1
/ / * '?5? GROUP FILES are BEING SAVED ON DISKETTE'
SAVEALL,?1?,?2?,?3?,?5?,?4?
II TAGSKP1
I I IF ?6? I GOTO SKP2
// * '?6? FILE IS BEING SAVED ON DISKETTE'
I I LOAD $COPY
II FILENAME-COPYIN,LABEL-?6?,UNIT-F1
II FILENAME-COPYO,RETAIN-?1?,LABEL-?6?,LOCATION-?4?,AUTO-YES,
II PACK-?3?,UNIT-I1

II RUN
/ / COPYFILE OUTPUT-DISK, REORG-NO

II END
11 TAG SKP2
//IF ?7? GOTO SKP3
I I * '?7? FILE IS BEING SAVED ON DISKETTE I

I I LOAD $COPY
II FILENAME-COPYIN,LABEL-?7?,UNIT-F1
II FILENAME-COPYO,RETAIN-?1?,LABEL-?7?,LOCATION-?4?,AUTO-YES,
II PACK-?3?,UNIT-I1

II RUN
// COPYFILEOUTPUT-DISK,REORG-NO
//END
//TAG SKP3
//IF ?8?/ GOTOSKP4
/ / * '?8? FILE IS BEING SAVED ON DISKETTE'

/ / LOAD $COPY
II FILENAME-COPYIN,LABEL-?8?,UNIT-F1
II FILENAME-COPYO,RETAIN-?1?,LABEL-?8?,LOCATION-?4?,AUTO-YES,
II PACK-?3?,UNIT-I1

II RUN
11 COPYFILE OUTPUT-DISK,REORG-NO

II END
11 TAGSKP4
j /IF ?9? / GOTO SKP5
I I* I ?9? I FILE IS BEING SAVED ON DISKETTE I
I I LOAD $COPY
II FILENAME-COPYIN,LABEL-?9?,UNIT-F1
II FILENAME-COPYO,RETAIN-?1?,LABEL-?9?,LOCATION-?4?,AUTO-YES,
II PACK-?3?,UNIT-I1

II RUN
/ / COPYFILE OUPUT-DISK, REORG-NO

II END

5-38

11 TAGSKPS
I I IF ? 1 0? I GOTO SKP6
// * '? 10? FILE IS BEING SAVED ON DISKETTE'
I I LOAD $COPY
II
II
II
II

FILENAME-COPYIN,LABEL-?10?,UNIT-F1
FILENAME-COPYO,RETAIN-?1?,LABEL-?10?,LABEL-?10?,LOCATION-?4?,AUTO-YES,
PACK-?3?,UNIT-I1
RUN

// COPYFILEOUTPUT-DISK,REORG-NO
//END
II TAGSKP6

As shown earlier, ZSAVEF issues one display (called SAVE), which prompts for
the save file options. The following listing shows the display screen
specifications for the display:

Second Edition GX21-925J. U/M 050"

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU
and $SFGR. This coding sheet could contain typographical errors.

Printed in U.S.A.

"No. of sheets per pad may vary slightly.

WSU Only

Starting

Field Location > ·-= ~
Name t--r-g 8 > ill~ 0 ., g

. ., :::i ~ i: ~ ~ a. Constant Data
Sequence Field ~ & '" ~ i if. .li dg % ~ -o8~ ;~ -~ :!:! ~ f ., ~ Reserved ~ -~
Number I~ ~ :::i Length j ~ ~ :g ~ H H ~ g ~ ~ ~ ~] ~ -~ ~ ~ ~ .. ca ·~

~ WSU :5~ z e il 8 ~I-~~~!! :e :;; :: 0 l!! .c ~ -g ; -8 .2 c: 8
~ Field Name l~ S £ 8 ~ ~ ~ ~ ~ ~ i ~ ~ 8 ~ £. -£ i6 ~ ~ ::5 8 8 1 2 3 4 5 6 1 8 9 10 1112 1314 151617 18 19 20 21 22 ~

1 2 3 4 5 ~ 7 8 91011121314151617181920 2122232Jl25 262728 2930 3132 3 34 35~3738394041421!;14445 ~4~~50515253~455~5758596061626364656867686970 717273 74757677787980

D I# rJ.i'.HJ Jfj ~ ~ l=ll.61vlt EJtl1. IE 11"[1_ ~
o~IL ~ ~lft~e.I~ : i l.J. • 1a1r1 J -.-1

-
1"

D

DI: io1f5fl~
D till Jel 8j!llJ i.;.l+lg,i
D ltlA.111i= i-1..tl

olPIAln

D

olPIAlo
Dll;Jt~lfl

l...!1_JLl~l~•I tt
17~ 1'l
11 ISIY

-- -1)1

Inf\ IM[2 1 ... i,.1) - -->

0 Lil.rit: :
olt'.Jolnit !01

l'l

~

IY
i-- ·>

IY! IY IY

La. 1

oc lV l'i
~

l'f l'l
~

~ '" t1

Sample Applications 5-39

5-40

Second Edition

System/34 Display Screen Format Specifications Use this coding sheet only to define display screen formats for WSU
and $SFGR. This coding sheet could contain typographical errors.

GX21·9253- U/M 050*
Printed in U.S.A.

*No. of sheets per pad may vary slightly.

I

Sequence
Number

2 3 4

Sequence
Number

1 2 3 4

I!
!

Format
Name

WSU Only
> "' > Enter 8 ~ ~ Mode Review lnser,

:::> _! ~ "E ~~ ¥ -5 ~ ~!rd ~!rd
~ ~ ::; ~ '" ,.E H U: ~ -~ I!! Identifying Identifying Reserved
o cu O Q) & ! >. =>

8
~ :i U:: Reserved ·g. "' Indicators Indicators

: ~ .! m ~ ~ ~8 < ~QI ~ ! ~~: Q.K w ~;; ~ .~ ~ ~
~0~ §0 ~ ~ ~iii § :gc: :gc: c: ~ !! H ~ ~ H· 1 2 3 1 2 3 ~
u. Ul zS...1a:a:~ JI ww m w o ci! <nwwa:a:ctct a:

Key Mask

5 6 7 8 9 10 II 12 IJ 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 Jl 32 33 34 JS ~37 38 39~ 41 42~ 44 45 46 47fl8 49~0 51 52 53 54 ssjs6 57 585960 616263j64 65 66 67 68 6970 71 72 73 74 75 76 77 78 79 80

TTT TTTTT11IIIIIIJ s

Field
Name

Starting
Location

1--o-- >
g 8
't: ::>

Field ~ ~ ~ U: .fi ~
ill j Length i ii d ';; ~ ill ~ > "' U: ~
~ wsu ::>~ ~ .~ & 8~~~~~~ 0

E Field Name 0 ~ c 0 :J .~ a ~ ; ii !:: ~ b
if Z.c ~ :r 0 ;5..!: O ::0 :;:cl!<(o..

5 6 7 8 9 10111213141516171819202122232425262728293031323

I\'
oli::ltWJll.f 1 IA

.~ 11
.. c:
w ': §
~ ~ > QI "' (Pt Co 0 g

a. U: 'E ~ ·~ 'tJ ~ J !, Reserved I~ nstant ata :J

~~~u: ~ £ ~ ~ ~"' 1: = 
Hs M "§. ~ ~ t -g ~ t! ~ 
.fi8.a: £ J: Ill Z a: :::> 8 8 I 2 3 4 5 6 7 8 910111213141516171819202122~~ 
34 j5 J6 37 38 J940 41 42~3 44 45 46 47 ~ ~ 50 51 52 53 54 s5 56 s158 59 60 616263 64 65 66 67686910 111213 74 75 76 n 1s 79 80 

---> 

- ol1l1 
0 - --> 
0 la 

D• 

ol&.~A lul~l:a 

olc It ~,,K,i~ 

0 

0 

loi 
0 

0 

0 

0 

0 

LI 
i(lnlcalN&) 

1 .. 1Allr! IY 
--1-) 

lY 

IY 

- !ftln 

·---> 
---> 



Listings for ZLIBCHNG 

The ZLIBCHNG procedure, which allows the user to change the session library 
and/or the current menu, contains the following statements: 

*PROCEDURE TO CHANGE SESSION LIBRARY ( ZLIBCHNG) 

11 IFF? 1 FI ?SLIB? I? I PROMPT MEMBER-ZRFM, FORMAT-LIB 

11 IFF ?2? I LIBRARY NAME-?2?, SESSION-YES 

11 IFF ?2? I IFF ?3? I MENU?3?' ?2? 
11 IF ?2? I IFF ?3? I MENU?3? 

As shown earlier, ZLIBCHNG issues one display (called LIB), which prompts for 
the session library name and the menu name. The following listing shows the 
display screen specifications for the display: 

System/34 Display Screen Format Specifications 
Second Edition 

Use this coding sheet only to define display screen formats for WSU 
and SSFGR. This coding sheet could contain typographical errors. 

GX21-9253· U/M 050" 
Printed in U.S.A. 

"No. of sheets per pad may vary slightly. 

WSU Only 
> vt > Enter 8 ~ ~ Mode Review Insert 

::> ! ~ '-- 'O ~ -g ~ ~ ~~::rd ~~!rd 
Sequence Format ! ~ ::; - '" .. E .g E ~ U:: ~ ! - Identifying Identifying Reserved Key Mask 
Number I~ Name e c 0 ~ ~ .g,z, § ~ ~ 5. u:: ~ Reserved g. ::;; Indicators Indicators "O 

f ~ ::; iH ~ i~ ; ~c :gc ~ ~ ~ ~ fi '01~ [ l l1~ 1 2 3 2 ~ 
Lf ~ t;; ;fg_3~~~ ~WW~ W ~ ~ t;;Lfitfl~~d:£ l J a: 

I 2 3 4 5 6 7 8 9 10 11121314151617 18 1920 2122 232'25 2627282930 3132 33343536 3738394C 4142fl344454647'48 4~~05152535455565758596061626364656667686970 7172 73 747576 77 781980 

ITTJ 1 s Ltr1e1 n n J i J J J 81: J J J n J i i i i i i i n i 1 n n n n n n J 
Starting l 
Location 

~ ~ ·~~ 
· Id .~ ~ 'O > 0 ~ ~ > G.1 ~ R I ~I Constant Data g Sequence Fie ~ 3: Q.I i[ ~ ~ Q. U:: °E -o !:'I 3. eserved f.B 

Number 8.> ,, Length .! .I!a~ O ~ ~ ~ 5 5 ~ ~ u 6 ~ ~ ~ ·_! ~ > ~ di 1- ~ 
t- WSU ~a ~ ~ 8~~'0;~6~ g cuCO: ~ U: ~ 'O~ -~ c .8E 
E Field Name : 3: S. - => '° c c ..: :=, ·~ ~ E g 0 -5, ~ 1 i c cl---------------------l 
~ ~~ j ~ 6 ;B~c§:E:EJi~ ~ .li8~ ct i iii z a: :::> 8 81 2 3 4 ~ 6 7 8 9101112131415161718192021222 

1 2 3 4 ~ 6 7 8 910111213141516171819202122232~25262728293031323 34J536373839404142~3444546474~4~50515253~4555~575859606162636465666768697071727374757677787980 

Field 
Name 

o~l1 ldllnllnll1 /rl rt I~ lrlulAl11lt.:.!t:"I !c..lt'lc:.l<~lnlt.11 II T '- ..IJ 

oil IT , 

olMl~l\J1 ITll 
olc.11!~1. 

~II i1i"Jl1i"l\J 
olcJ1 

old; lfNioJ?JI J71~ 1n1 .. 
oldt l't 

~·1•171~3 
0 

0 

Sample Applications 5-41 



5-42 

CREATING DISPLAY SCR'EEN FORMATS 

To create the display screen formats used in this example, you could select 
item 1 from the TESTM menu. All display screen formats used by one 
program must be placed in a single display screen format load member. For 
RPG II programs, the member name must be the name of the program 
followed by the characters FM. If you select item 1 from the menu, you will be 
prompted for the name of the program that uses the formats. If you enter 
ORDHDR, the following command statement is generated: 

SDA ORDHDRFM,TESTLIB,ORDHDRFM 

When the SDA menu appears, you could select option 1 and then enter an N 
for the column indicator mode so that the first line on the screen can be used. 
Using the screen formats designed earlier, enter the information from the 
screen layout sheet onto the SDA blank screen. When the entire screen has 
been entered, you can press command key 9. 

In this example, the developer would like to be prompted for field attributes; 
therefore, an * is entered in front of each input or output field, a c is entered in 
front of each constant, and a t is entered after each field. 

An alternative method of prompting for attributes could be used by entering a 
Y for automatic prompting on the initial SDA menu. For this method, I for 
input and E or B for output are used rather than asterisks. SDA automatically 
prompts for additional attributes for these fields. 

For screen E1 in display screen format ORDSE1, Figures 5-14 and 5-15 show 
the screen entry and attribute screens. 

For screen E2 in display screen format ORDSE2, Figures 5-16 and 5-17 show 
the screen entry and attribute screens. 

For screen E3 in display screen format ORDSE3, Figures 5-18, 5-19, and 5-20 
show the S specification, screen entry, and attribute screens. 

Figure 5-21 shows the $SFGR output generated when screens E1, E2, and E3 
are built. All the display screen formats used by the ORDHDR program are 
built in one SDA run. 

If changes are later required to formats that have been built, you can use the 
SDA update function to make changes. This function allows you to use SEU to 
make changes and automatically regenerates formats. An alternative method of 
changing formats is to use SEU directly and then use the FORMAT procedure 
to regenerate the formats. 

Because the next program, ORDITM, uses screens E1 and E3, which were 
designed already, only screen E4 is created. Figures 5-22, 5-23, and 5-24 
show the S specification, screen entry, and the attribute screens for screen E4. 
The specifications for screens E1 and E3 are included using SEU. Figure 5-25 
shows the $SFGR output generated when the display screen formats used by 
ORDITM are built. 



,. 
El 

0 R D E R E N T R Y 

CUSTOMER NUt16t:R xxxxxx 
ORDER NUMBER xxxxxx 

Press ENTER REC/ADV - or - CKl - TO EtffER MISC ORDER nlFO 

CK7 - CANCEL ORDER ENTRY 
MttHt1t1MMMMMHMHHHHHMMHt1HMMMMHMHMMHMMMMMMMMMMM11MMt1M 

Figure 5-14. Screen Entry for Screen E1 

r 
*Elt 

*O R D E R E N T R Yt 

cCUSTOl1ER NUMBERt *XXXXXXt 

cOROER NUMBERt *XXXXXXt 

cPress ENTER REC/AOV - or - CKl - TO ENTER MISC ORDER INFOt 

cCK7 - CANCEL ORDER ENTRYt * 
MMHMMMMMMHHMMHMHMt1HHMMMMHHMMt1t1t1MMHMt1t1Ht111MHMt1t1MMM t 

Figure 5-15. Attribute Screen for Screen E1 

Sample Applications 5-43 



5-44 

r 
E2 

0 R D E R E N T R Y 

CUST NO XXXXXX ORDER NO XXXXXX 

SOLD TO XXXXXXXXXXXXXXXXXXXXXX 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxx xx xxxxx 

CUST PO XXXXXXXXXX SALESMAN NO XX 

Figure 5-16. Screen Entry for Screen E2 

*E2t 

SHIP TO XXXXXXXXXXXXXXXXXXXXXXXXX 
xxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx xx xxxxx 

*O R D E R E H T R Yt 

cCUST HOt *XXXXXXt CORDER NOt *XXXXXXt 

cSOLD TO*XXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXX*XX*XXXXXt 

cSHIP TO*XXXXXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXXXXX*XX*XXXXXt 

cCUST PO*XXXXXXXXXXt cSALESMAN NO*XXt 

Figure 5-17. Attribute Screen for Screen E2 



FORMAT NAME 
WSU FORMAT IO 
START LINE NUMBER 
NUMBER OF LINES TO CLEAR 
LOWERCASE ALLOWED 
RETURr~ INPUT 
RESET KEYBOARD 
SOUND ALARM 

ORDSE3 

ENABLE FUNCTION KEYS 
BLJNK CURSOR 

ENABLE COMMAND KEYS 

ERASE INPUT FIELDS 
OVERRIDE FIELDS 
SUPPRES INPUT 
KEY MASK 

START- ENO-
PRIORITY-

RECORD ID 1-

INSERT ID 1-

99 

****** WSU ONLY ******* 
ENTER HOOE SEQUENCE 

REQUIRED- REPEAT-
PRE PROCESS-

REVIEW MODE INDICATORS 
RECORD ID 2- RECORD ID 

INSERT MODE INDICATORS 
INSERT ID 2- INSERT ID 

3-

3-

Figure 5-18. S Specification Display for Screen EJ 

r 
E3 

0 R D E R E N T R Y 

CUST NO XXXXXX ORDER NO XXXXXX 

SOLD TO XXXXXXXXXXXXXXXXXXXXXX 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxx xx xxxxx 

CUST PO XXXXXXXXXX SALESMAN NO XX 

LINE ITEM NO QTY DESCRIPTION 

SHIP TO XXXXXXXXXXXXXXXXXXXXXXXXX 
xxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx xx xxxxx 

PRICE AMOUNT 

01 xxxxxx xxxxxx- xxxxxxxxxxxxxxxxxxxx xxxxxxx xxxxxxxx-
CK 2 - ENO OF ORDER 
CK3 - PAGE BACKWARDS ON ITEMS 

MHM~1MMMHMMMMMMMMMHMMHHMMHMMMMMMMMMMHHMHMMMMMMMH CK8 - CA~~CEL THIS ORDER 

Figure 5-19. Screen Entry for Screen EJ 

Sample Applications 5-45 



5-46 

r 
*E3t 

*O R 0 E R E N T R Yt 

cCUST NOt *XXXXXXt cORDER NOt *XXXXXXt 

cSOLO TO*XXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXX*XX*XXXXXt 

cSHIP TO*XXXXXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXXXXXXXXt 
*XXXXXXXXXXXXXXXXXXXXXX*XX*XXXXXt 

cCUST POt*XXXXXXXXXXt cSALESMAN NO*XXt 

CLINE ITEM NO QTY DESCRIPTION PRICE AHOUNTt 

*Olt *XXXXXXt *XXXXXX-t *XXXXXXXXXXXXXXXXXXXXt *XXXXXXXt *XXXXXXXX-t 
cCK2 - ENO OF OROERt 
cCK3 - PAGE BACKWARDS ON ITEMSt 

MMt1NMMHMMHMMHMMNMMMMMMMMHMMMMMMMt111MMHNMMMMMMt1MMtcCK8 - CANCEL THIS ORDERt 

Figure 5-20. Attribute Screen for Screen E3 



SOURCE INPUT SCREcN FJRMAT SJuRCE SPECIFICATIJ'lS 

OOOlOSOROSEl q9 
0002DDSC:JOE 00020103Y ~El 

000300T !TLE 0021023lY CO R 0 E R E 'l T R y 

0004'lOFL0003 00l505llY CCUSTOMER ... U"IBt:R 
000500CUSNO 000o0531Y y zv 
000600FL0005 001207\lY COKDER "IU14BER 
OOC7000RONO 00060731 y y f> 
000600FL0007 0J7020 11 y .::. p ENHR ~~C/AOV 
000900 CKl - TO ENTER 141 SC uRDER INFO 
001 OODF L0008 002422 •;i y ::; CK7 - CANCEL JRJER ENTRX 
OOllODY 
00120LlERRMSG 004d230199 qq 

EXHlJTilJ"I Tl..,E OUTPUT BUFFER JESCKIPTION 

FIEL".l START E'lD 
NA14E LFNGTH PJSITION POSJTIJN 

CUSNO 1 b 
ORONO b 7 12 
ER~MSG 48 13 60 

INPUT EWFFEr< DESCRIPTION 

I= IELD START E'W 
NA"'E LENGTH POSITION POSITIO"I 

SCODE 
CUSNO 
ORONO 14 

SOURCE INPUT s:REEN FJR"IAT SJURCE SPECIFICATIUNS 

00130SOROSE2 
OOl'tODSCODE 00020103Y 
00150DTITLE 00210231Y 
00160DFL0003 0007040oY 
00170DCUSNO 000604loY 
00180DFL0005 00080431Y 
OG l 90DDRDNO 000b0442Y 
00200DFL0007 OOC70603Y 
002100CNAME 0025C'6llY 
00220DFL0009 0001004.2¥ 
00230DSNAME 0025Q650Y 
00240DCAODR 00250711 y 
00250DSADDR 00250750¥ 
00260DCC ITV 0022081 l y 
00270DCSTATE 000208 34Y 
002600CZIPCO 000508 3 7Y 
00290DSCITY 00220650Y 
00300DSSTATE 00020873Y 
00310DSZJPCD 00050871;,Y 
00320DFL0019 00071003Y 
D0330DCPONO 00l01011Y 
00340DFL0021 001 l l02bY 
00350DCSLSNO 00021038Y 

EXECUTIO"I TIME OUTPUT BUFF ER 

l=IELD 
NA"'E LENGTH 

SC ODE 
CUSNO b 

ORONO b 
(NAME 25 
SNAME 25 
CA DOR 25 
SAO DR 25 
CC I TY 22 
CS TATE 2 
CZIPCD 5 
SCITY 22 
SSTATE 2 
SZIPCD 5 
CPONO 10 
CSLSNO 2 

INPUT flUFFER DESCiUPT ION 

FIELD 
NA"E LENGTH 

SC ODE 
CUSNO 
ORONO b 
CNAME 25 
SNAME 25 
CAODR 25 
SADOR 25 
CCI TY 22 
CS TATE 2 
CZIPCD 5 
SC ITV 22 
SS TATE 2 
SZIPCD 5 
CPONO 10 
CSLSNO 2 

y y 

y y 

y y 

y 
y y 

y y 

LlESCRIPTION 

START 
POSITION 

1 
3 
9 

15 
40 
b5 
90 

115 
137 
139 
144 
lbb 
168 
173 
163 

START 
PtJSITION 

l 
3 
q 

l 5 
40 
65 
90 

115 
137 
139 
144 
lbb 
lb8 
173 
183 

E"IO 

'F2 
~O R f'J E R 
CCUST NO 

COR)~R "10 

C SULD TO 

C SHIP TO 

CCUST PO 

C SALESMAN NO 

POSITION 

14 
39 
64 
89 

114 
13b 
138 
143 
165 
167 
17 2 
182 
184 

E"ID 
POSITIJN 

2 
e 

14 
39 
64 
89 

114 
136 
l 3t! 
143 
165 
167 
172 
182 
184 

E "I T R Y 

Figure 5-21 (Part 1 of 2). $SFGR Output for Display Screen Formats Used by ORDHDR 

JATF 02/12/H TI"IE OS.34 

Sample Applications 5-47 



5-48 

SOURCE INPUT SCREEN coRMAT SOuRCf SPECIFICATIONS 

00360SORDSE3 99 
00370DSCOOE 00020l03Y 
003800TITLE 00210231Y 
00390DFL0003 00070406Y 
004000C USNO 000604 l6Y y y 

004!00FL0005 0008043lY 
0042000RONO 00060442Y y y 

004300FL0007 00070603V 
0044DDCNAME 00250611Y y y 

004500FL0009 00070642Y 
004C>ODSNA ME 002 50650Y 
004 70DC AOOR 00250711 Y y y 
00480DSADOR 0025075JY y 
00490DCCITY 002208llY y y 
00500DCSTATE 00020834Y y v 
OO'HODCZIPCO 00050837Y y v 
005200SCITY 00220850Y 
00530DSSTATE 00020873Y 
005400SlIPCO 00050876Y 
005500FL0019 00071003Y 
00560DCPDNO OOlOlOllY 
00570DFL0021 OOlllJ26V 
005800CSLS~O 00021038Y 
005900FL0001 00651203Y 
006000 DESCRIPTION PRICE AMOJNT 
0061DOEUNE 00022003Y 
006200!TEMNO 00062008V BY 
0063000 TY 000620 l 7V 
00b40DC>ESCR 00202026Y 
006500PRICE 00062049V 
006600AMDUNT 00082059Y 
0067'.)0FLOOOB 00ltl2150V 
006800FL0009 00292250Y 
006900 ITEMS 
0070C>OERR MSG 0048230199 99 
00710DFLOOll 00232350Y 

EXFCUTION TI ~E OUTPUT BJF FER llFSCIHPTION 

F I''LD START 
NA~E Lfr<GTH POSITION 

CUSNO 
ORC>NO 6 7 
CNAME 25 13 
SNAME 25 38 
CAOOR 25 63 
SADOR 25 88 
CCI TY 22 11 3 
CS TATE 2 135 
CZIPCO 5 137 
SC ITY 22 142 
SS TATE 2 164 
Sl I PC 0 5 166 
CPONO 10 l 71 
CSLSNO 2 l tll 
El!NE 183 
!TEMNO 185 
QTY 6 191 
OESCR 20 197 
PR I CE 217 
AMOUNT 22 3 
ERR MSG 48 231 

INPUT BUFFER ul'SCRIPT ION 

FIELD START 
NA'IE LEl~GTH POSITION 

SC'.JDE l. 1 
C:USNO b 3 
ORD NO 6 9 
CNAME 25 15 
SNAME 25 'tO 
CA DOR 25 65 
SADDR 2? 90 
C:CITV 22 115 
CSTATE 2 137 
Cl I PC D 5 139 
SC ITV u. 144 
SS TATE 2 lb6 
Sll PC D 5 168 
CPONO 10 173 
CSLSNO 2 183 
ELI NE 2 185 
ITEMNO 167 
QTY b 193 
OESCR 20 199 
PR! CE 6 219 
AMOU'\IT 8 225 

ORO-tuRF" SCREEN FOr<~AT LUAO MEMBER 

FORMAT UROSEt 
FOR:~~ T ORDSE2 
FOR.MAT OROSt3 

Ri:.QJ!KE) 
Ri:QulRF.S 
RtOU!kcS 

512 tjYES '.JF STORAC.E 
7~8 BYTES OF STORAC.F. 

1024 8YTES OF STORAGE 

CF3 
CO R 0 E R E N T R y 

CCUST NO 

CORDER NO 

CSOLO TO 

CSHIP TO 

CCUST PO 

~SALESMAN ~o 

CLINE IHM NO QTY 

CCK2 - ENO OF ORDER 
CCK3 - PAGE BACKWARDS ONX 

CCK8 - CANCEL THIS ORDER 

ENO 
POSITILJN 

6 
12 
37 
1>2 
87 

112 
134 
136 
141 
163 
165 
170 
180 
182 
184 
190 
196 
216 
222 
2 ~o 
2 78 

E'\10 
PDSI TION 

' a 
14 
39 
64 
f!9 

114 
136 
138 
143 
165 
167 
172 
182 
184 
186 
192 
19tl 
218 
224 
2 32 

Figure 5-21 (Part 2 of 2). $SFGR Output for Display Screen Formats Used by ORDHDR 

DATE 02/12/79 TI'4E 08.34 



FORHAT NAME 
~SU FOP.HAT ID 
START LINE t~UMB'ER 

ORDSE4 

v 
NW~SER OF LINES TO CLEAR 
LOWERCASE ALLOWED 
RETURN INPUT 
RESET KEYBOARD 
sou~m ALARM 
EN~BLE FUNCTION KEYS 
BLrnK CURSOR 

ENABLE COMMAND KEYS 

ERASE INPUT FIELDS 
OVERRIDE FIELDS 
SUPPR~S IHPUT 
KEY MASK 

****** WSU ONLY ******* 
ENTER MODE SEQUENCE 

START­
PRIO:HTY-

END- REQUIRED- REPEAT-
PRE PROCESS-

REVIEW HOOE INDICATORS 
RECORD ID 1- RECORD IO 2- RECORD IO 3-

INSERT MODE WDICATORS 
INSERT ID 1- INSERT ID 2- INScRT ID 3-

Figure 5-22. S Specification Display for Display Screen E4 

xx xxxxxx xxxxxx- xxxxxxxxxxxxxxxxxxxx xx,xxx.xx xxx,xxx.xx-

Figure 5-23. Screen Entry for Display Screen E4 

Sample Applications 5-49 



, 
*XXt*XXXXXXt *XXXXXX-t *XXXXXXXXXXXXXXXXXXX*XX,XXX.XXt*XXX,XXX.XX-t 

Figure 5-24. Attribute Screen for Display Screen E4 

5-50 



SOURCE INPUT SCREEN FJ~~AT SJURCE S~ECIFILAT!JNS JATF 02/U/7'1 TIME os.33 

OOClOSOR'.lSEl 99 
0002::ioscooE 00020103Y :El 
000300T ITLE 002l023lY CO R 0 E R E 'IJ T R y 

00040L>FL0003 00150,llY C.CUSTOMFR NIJMRcR 
Oil050DCUS"'O 000b0531Y y z y 
00060DFL0005 00120711 y CORDER NUMBER 
00070DORD'IO OOOb073lV v B 
000800FL0007 00702011 v CP E:HER RcC/ADV 
000900 CK l - rn ENTER 'H SC u~OEil. PffO 
00 l J_ODF L 0008 002'tU5lY CCK7 - CA!llCEL ORuER E"JTRX 
OOllOOY 
00120DERPMSG 0041:1230199 q9 
0013 D* 

EXECUTION Ti% OUTPUT 'IJFFFk JESCIUPTION 

F ll'LD START END 
NA~E LE'NGTH POSITION PJSITIJlll 

CUSNO l b 
ORON'.l b 7 12 
ERRMSG 48 13 60 

INPUT SUFFER OESCR!PTIO:; 

FIELD START E'lD 
lllAME LENGTH POSITION POSIT I Jiii 

scnoe 2 2 
CUSNO 6 8 
ORONO 14 

SOURCE IlllPUT SCREElll FORMAT SOURCE SPECIFICATIJNS 

00140SJRDSE3 99 
00150 DS C.OOE 00020103Y CE3 
00160DTITU' 00210231Y CO R D E R E 'II T R Y 
00l 70DFL0003 00071')406Y CCUST NO 
OOlclOOCUSNO 00060'tl6Y y y 
00190DFL0005 00080431Y CORDER 1110 
0020000RDN0 00060442Y y y 
00210DFLOOC7 00070b03Y CSOLD TO 
OG220DCNAME 00250611Y y y 
OJ230uFL0009 00070642¥ C SHIP TO 
OOZ'tODSNAME 00250650Y 
002 500C AODR 002507llY y y 
002600SAODR 00250750Y v 
002700CCITY 00220811Y y v 
00280DC.STATE 00020834¥ y y 
002900ClIPCD 00050837¥ y y 
003000SC I TY 00220850V 
00310DSSTATE 00020d73Y 
003200SZIPCO 00050876Y 
00330DFL0019 00071U03Y CCUST PO 
00340DCPONO 00101011 y 
00350DFL0021 00111026Y C.SALESMAN NO 
003600CSLSNO 00021038Y 
0037 DFLOOOl 00b51203Y CLI"IE ITEM NO QTY 
0038 D DESCRIPTION PRICE AMOUNT 
0039 DELI NE 00022003¥ 
0040 DI TEMlllO 000b2008Y ev 
0041 DQTY 00062017Y v 
0042 ODESCR OQ2U2026Y y 
0043 DPRICE 00062049¥ y y 
0044 OAMOUNT 00082059¥ y 

0045 OFL0008 00182150Y CCK2 - END OF ORJER 
0046 DFL0009 00292250Y CCK3 - PAGE f:!ACKwAROS ONX 
0047 D ITEMS 
0048 DERRMSG 0048230199 99 
0049 DFLOOll 00232 3 5JV CCK8 - CA"lC.EL THIS ORDER 
0050 D'-' 

EXECUTION TIME OUTPUT BUFFER DESCtU P TI ON 

FIELD START ElllO 
lllAME LENGTH POSIT ION POSITION 

CUSNO 6 
ORD~O 6 7 12 
CNAME 25 13 37 
SNAME 25 38 62 
CADD't 25 63 87 
SAODR 25 ee 112 
CCI TY 22 113 134 
CSTATE l 135 136 
CZIPCO 5 137 141 
SC.ITV 22 142 163 
SS TATE 2 lb4 165 
SZIPCD :> 166 170 
CPIJNO 10 1 71 l BO 
CSLSf'.10 2 ltll 182 
ELI NE <. ltl 3 184 
ITEMlllO 6 185 190 
QTY 6 191 196 
DESCR 20 197 216 
PRICE b 217 222 
AMOUlllT 6 22 3 23U 
ERR MSG 48 231 278 

Figure 5-25 (Part 1of2). $SFGR Output for Display Screen Formats Used by ORDITM 

Sample Applications 5-51 



li'<!PUT BUFFER DE SCRIPT I ON 

FIELD START E'ID 
l\IA'IE LENGTH POSITION PDSITIUN 

SC DOE 
CUSNQ 8 
DRON::l t:> 14 
CNAME 25 15 39 
SNAME 25 40 64 
CAODR 25 65 89 
SAODR. 25 90 114 
CCI TY 22 115 136 
CSTATE 2 137 138 
CZIPCD 5 139 143 
SCITY 22 144 165 
SS TATE 2 ,166 167 
SZIPCD 168 172 
CPONO lJ 173 l 82 
CSLSNO 2 183 184 
ELI NE 2 li15 l 86 
I TEMlllO 6 187 1 '12 
QTY 6 193 198 
DES CR 20 199 218 
PRICE 219 224 
AMJU'IT 225 2 32 

SOUR:: E INPUT SCREE Ill FOR.'IA T S'.JURC E SPF.C IFICATIJlllS 

ooc;1osoRDSE4 
0052'.JOLINENO 
005300CUSNO 
005400QTY 
00550DOESCR 
00560DPRICE 
00570DAMT 

EXECUTIOlll 

FIELD 

v 
00020103Y 
00060107Y 
000701 l6Y 
00200l26Y 
00090147Y 
00ll0158Y 

T !'le OUTPUT BUFFER JESCRIPTION 

START 
lllA"E LENGTH POSITION 

LINC: NO 
CUSN'.l 6 
QTY 7 9 
DES CR 20 16 
PR ICE 9 36 
AMT 11 45 

S::REEN FOR'IAT LOAD MEMBER 

FORMAT ORDSEl 
FORMAT ORDSEJ 
FORMAT ORDSE:4 

REQUIRES 
REQUIR~S 

REQUIRES 

512 BYTES OF STORAGE 
1024 BYTES OF STORAGE 

256 BYTES OF STORAGE 

Er-.JD 
POSITION 

8 
15 
35 
44 
55 

Figure 5-25 (Part 2 of 2). $SFGR Output for Display Screen Formats Used by ORDITM 

5-52 



CODING THE PROGRAMS 

Coding with RPG II 

After the display screen formats are generated, you can use SDA to generate 
the RPG II specifications for the formats. To do this, select item 1 from the 
TESTM menu and enter the program name (for example, ORDHDR). Select 
option 8 on the SDA menu. Enter RPG for the type of program and the 
control specifications. Figure 5-26 shows the SDA entries required to build the 
ORDHDR program. After SDA generates the program, use item 20 from the 
TESTM menu to list the program. Figure 5-27 shows the ORDHDR RPG II 
program generated by SDA. You can follow the same procedures for the 
ORDITM program. Figure 5-28 shows the ORDITM RPG II program generated 
by SDA. 

The file specifications are entered next. By executing item 4 from the TESTM 
menu, all the file specifications are entered under the name FILES. Figure 5-29 
shows a listing of each of the file specifications. SEU will be used to copy the 
file specifications needed into each RPG II program. 

Modular programming is used. That is, the program is modified to set on the 
proper indicators in the input and output specifications, and subroutines are 
also set up. The detail calculations will be added later. Using the program 
flowchart, basic program functions are easily identified. 

It is easier to test and debug a smaller program than a larger one. If possible, 
do not code all functions into the program without testing parts of it. Use 
comments in the program to make testing and maintenance easier. 

Figure 5-30 shows the ORDHDR RPG II program partially coded. 

,. 
SDA MENU 

ENTER THE NUMBER ASSOCIATED WITH THE OPERATION YOU WOULD 
LIKE TO PEFORM: 

1 CREATE A NEW $SFGR/WSU SOURCE MEMBER 
2 ADD TO AN EXISTING $SFGR/WSU SOURCE MEMBER 
3 UPDATE AN EXISTING $SFGR/WSU SOURCE MEMDER 
4 DISPLAY THE FORl"fAT IN AN EXISTING $SFGR OBJECT MEMBER 
5 DELETE A FORMAT FROM AN EXISTING $SFGR/WSU SOURCE MEMBER 
6 UPDATE EXISTING $SFGR/WSU SOURCE STATEMENTS VIA SEU 
7 BUILD A MENU INTERACTIVELY 
8 BUILD WSU PROGRAM OR RPG II SPECIFICATIONS FOR WORKSTN FILE 

8 

COL IND NODE? ENTER YORN. DEFAULT IS Y................... Y 
WSU FORM.!.\T MEMBER? ENTER Y OR N. DEFAULT IS N............... N 
AUTOMATIC PROMPTING? ENTER YORN. DEFAULT IS N............. N 

COMMAND FUNCTION KEY 7 TO ENO JOB 

Figure 5-26 (Part 1 of 3). SDA Entries for Generating ORDHDR RPG II Program 

Sample Applications 5-53 



5-54 

,. 
ENTER RPG OR WSU •••••••• RPG 

Figure 5-26 (Part 2 of 3). SDA Entries for Generating ORDHDR RPG II Program 

CONTROL SPECIFICATION ENTRIES 

NUt~BER OF FORMATS ••••••••••••••••••••••••••••••••••••••• 
NAl'l:: TO CALL RPG SOURCE Mrnsrn •••••••••••••••• ~ ••••••••• 

WO~KSTN FILE DESCRIPTION ENTRIES 

05 
ORDHDR 

NAME OF HORKSTN FILE .•....•.•••.•.••.••.••...••.••.•.•.•. SCREEN 
RECORD l.H!GTH FROM $SFGR 0U1 PUT ••••••••••••••••••••••••• ~ 1000 
NU~i3ER OF DISPLP.Y STATIOMS ••••••••••••••••••••••••••••••• 
NU:-tcER c;: INDIClt TORS TO Sl\VE ••••••••••••••••••••••••••••• 
NA~lE CF DATA STRUCTURE TO SAVE ••..•.•..•..••....•..•..••• 
MAME OF FIELD cmnAitHNG \11,~~I/.SLE START LINE NUM3r:R ••••• 
NAME OF FIELD cmHAIN!NG DIS?Lf-IY STATION ID .•...•.•.••••• 
NAME OF FORMAT LOAD MEMBER ..••••••••••..•....•..•..•..••. 

Figure 5-26 (Part 3 of 3). SDA Entries for Generating ORDHDR Program Header (H) Specification 



TESTLU MEM!IEll 

TYPE "A14E !>ISK ADD~ 

JRDHDR 377bl7/J5:111 

H 
FSCREEN CP F • 100) 
ISCIHEN 
10< FORMAT- JROSEl 
I 
I 
I 
IO< FORMAT- OROSEZ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I• FORMAT- !:IROSE3 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
OSCREEN 
0 
0 
0 
0 
0 
D 
D 
0 
0 
0 
0 
0 
D 
0 
0 
D 
0 
0 
D 
0 
D 
D 
0 
0 
0 
0 
0 
D 
0 
0 
0 
0 
D 
0 
0 
0 
0 
0 
0 
0 
0 
0 

99 

99 

JAT E 03/09179 TIME llol7 

TJTAL N:JM TEJ(f/RECORJ ATHIBUTES LI"< AOJll/'lJ"I ST"IT 'HJ DISP ENUY AJ)R l>~J:; SIZE MRT LEI/El 

7 /0007 8015:> JJJOOJ 88/0058 

05 ORO-iDR 
iiORKST~ 

00010002 SC JOE 
00030008 CUS·'lO 
00090014 :lR)'lO 

00010002 SCOOE 
00030008 CUS'lO 
00090014 JR'.l'lO 
00150039 Cl'llA'fE 
0040006't Sl'llA'4E 
0065J089 CAOH 
00900114 SAODR 
Oll5J136 CCITY 
0137:>139 CSU TE 
01390143 CZIPCO 
0144Jlb5 SCITY 
0166:>167 SS TATE 
01680172 SUP CO 
0173Jl82 ::PJ'lO 
Ol83Jl84 CSLSNO 

000100J2 SC JOE 
000300J9 CUSNO 
00090014 ORJi'lO 
0015J039 C~A'IE 
0040JJft4 S~A"IE 
00ft5J089 ::AO)R 
00900114 SAOJll 
0115:>136 CCITY 
01370138 ::sure 
01390143 CZIPCO 
0141t:>lb5 SCITY 
Ol6ftJl&7 SS TATE 
01680172 Sl IPCO 
0173Jl82 CPO'IO 
01830184 CS LS NO 
0185010 EL l'IE 
0187:>192 ITE"INO 
01930198 :ITY 
01990218 oes:R 
02UJ224 PRICE 
02Z5J232 AN:JUl\IT 

K.8 •O~OSEl 
CUS'lO OOOft 
ORD'IO 0012 
ERR14SG 00&0 

K.8 •JRJSE2 
SC DOE 0002 
CUS"O 0008 
olRO'lO 0014 
C.NAME 0039 
SNA"IE 00&4 
CAODR 0089 
SADDR 0114 
CCITY 013& 
CS TATE 0138 
CZIPCD 0143 
SCITY '0165 
SS UTE 0167 
SZIPCD 017 2 
CPO"O 0182 
CSLSNO 0184 

KB •QROSEJ 
CUS>40 0006 
ORO'lO 0012 
C.NA"IE 0037 
SNA"IE 0062 
CAOOR 0087 
SAODR 0112 
CCITY 0134 
CSTATE 0136 
CZIPCO Ol'tl 
SCITY 01b3 
SSTATE 0165 
SZIPCD 017'.l 
:Po..,o 0180 
C SLSNO 0182 
ELINE Jl84 
I TE"INO 0190 
;.)TY 0196 
oes::R 0216 
PRI :e 0222 
AMolJ'IT 0230 
ERR"ISG J278 

Figure 5-27 Listing of ORDHDR RPG 11 Program 

Sample Applications 5-55 



TESTLHl MEMBER 

DISK ADD~ 

ORDITM 60 328/:ll 0318 

H 
FSCREEN CP 1000 
F 
ISCReEill 
I* FORMAT- ~RDSEl 

I 
I 
I 
I* FORMAT- ORDSE3 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I* FORMAT- OROSF4 
JSCReEN 
o 
o 
:J 
0 99 
0 
0 
0 
0 
o 
0 
0 
a 
o 
0 
J 
0 
0 
0 
0 
a 
0 
o 
0 
l.) 

0 
J 99 
u 
0 
0 
0 
u 
J 
(J 

()ATE 02/12/79 TI"IE 08o3l' 

TJTAL NUM TEKT/RECORJ ATTRIBUTES LlNK AOOR/"IUM STMT RLD DISP ENTRY AJ)R PROG SIZE MRT LEVEL 

5/1)005 80/50 000000 65/0041 

05 OR')ITM 
<10RKSTOll 

KSLOll SllNE 

OOOlOOOZ scooE 
00030008 CUSNO 
00090014 ORONO 

OOOlOOOZ scooe 
00030009 CUSNO 
00090014 ORDillO 
00150039 CNAME 
00400004 SN AME 
00050089 CA DOR 
00900114 SA DOR 
OllSOl36 CCITY 
01370138 C STATE 
01390143 CZIPCD 
Ol440loS SCITY 
Olo6Ulo7 SST ATE 
01&eo112 Slli'CO 
01730182 CPOl'.IO 
01830184 CSLSl'.IO 
Ol8S0186 ELINE 
Jl87019Z ITEMNO 
01930198 '.JTY 
0199021!1 DESCR 
OZ190ZZ4 PIHCE 
OZ.i!'>JZ3Z AMOul\IT 

KS •011ose i 
CUSlllO ll006 
ORL:llllO OOlZ 
ERR"ISG OOoO 

11.8 'URDSE3 
CUSNO 0006 
ORll"IO OOlZ 
ClllA"'E OOH 
S'JAME 0062 
CAODR 0087 
SAOOR OllZ 
CCITY 0134 
CSTATE 0136 
CZIPCD Ol<tl 
>CITY 0163 
SSTATE Olo5 
SZ IPCD 0170 
CPO"IO 0180 
CSLSNO QUIZ 
Ell NE 0184 
I TEM·~n 0190 
.iTY 0196 
OESCk ut.'16 
PR!Cc JU? 
Al'l)lJ"4T 0230 
ERRM>G 0278 

KA 'JllJSE4 
L INE'r~O 00;.J? 
CU>NU 000'1 
..,r{ 001'5 
Jf!.C" OOl'S 
PRICE: J044 
AMT JCS'!\ 

Figure 6-28. Listing of ORDITM RPG II Program 

5-56 



TESTLIB MEMAER DATE 12/29/78 Tl .. E l7eS7 

TYPE 'llAlllE DISK ADDR TUTAL NUM TEXT/RECORD ATTRIBUTES lll'iK ADOR/"lUM ST14T RLD 01 SP El'iUY AO~R PROG SILE fllRT LEVEL 

FILES 22187't/0362Al 7/0007 9b/oO 000000 71/0047 

0001 FCMAST IC F 128 128R oAl 4 DISK 
0002 FSMAST IC F 128 1281( 6Al 4 DI SK 
0003 FI MAST UC. F 128 128R bAl 4 1>ISK 
0004 FT RANS UC. F 128 12AR DISK 
ODDS FTRANSLO:iUC F 128 l28R 01 SK 
0006 ltMAST MA 11 1 C."l 2 C.A 3 c 
0007 I l Z CREC.C.D 
0008 I 3 3 CDELET 
0009 I 4 90CUSNO 
0010 I 10 34 C.NAME 
0011 I 35 S9 CADOR 
0012 I oO 81 CCITY 
0013 I lt2 83 CSTATE 
OOlt,> l 84 880CllPCO 
0015 I 89 900C.SLSNO 
0016 I SMAS T SA lZ 1 cs 2 CA 3 c 
0017 I 1 2 SRECCO 
0018 I 3 3 SDELET 
0019 l 4 90SC.USl'i0 
00?0 I 10 34 SNAMf 
0021 I 3; 59 SADDR 
0022 I bO !tl SC.lTY 
0023 I 8Z 83 SSTATE 
0024 l 84 880Sl IPCO 
0025 IIMAST IT 13 l (. [ Z CT 3 c 
0026 I l 2 IRECCO 
0027 I 3 3 IDELET 
0028 I 4 90IT14ND 
0029 I 10 29 IOESCR 
0030 I 30 3321PRICE 
0031 I 3" 38 Iij'4LDC. 
0032 ITRANS Qu 01 
0033 I 1 2 OREC.C.O 
0034 I 3 50RRIH 
0035 I 6 80RR#2 
0036 I 9 l l0Rk#3 
0037 I cu l 5 1 cc z cu 3 (. 
0038 l l 2 ORECCO 
0039 I 3 3 OOELET 
0040 I 4 90CUSl'i0 
0041 I 10 1500RONO 
0042 I 16 40 CNA .. E 
0043 I 'tl o5 C.AOi>R 
0044 I 06 87 CCITY 
0045 I 88 89 CSTATE 
0046 I 90 940C.lIPCO 
0047 I 95 9bOCSLSNO 
0048 I 97 10& CPONO 
0049 I cs lb l cc 2 cs 3 c 
0050 l l 2 RC.JOE 
0051 l 3 3 OOELET 
0052 I 4 90CUS'!O 
0053 I 10 1500ROHO 
005t,> l 16 4'.l SNAME 
0055 I 41 65 SAOOR 
0050 I 06 87 SC tTY 
0057 I 88 89 SSTATE 
0058 I 90 940SlIPCO 
0059 1 rT 17 l Cl 2 CT 3 (. 
0060 I l 2 ORECCO 
0061 I 3 3 ODELET 
0062 1 4 90CUS'l0 
0063 I 10 1500ROND 
0064 I 16 l 700LINE 
0065 I 18 2301T"l'l0 
0066 I 24 43 IDESCR 
0067 I 44 4900,jTY 
0068 I 50 S520PIHCE 
0069 I 56 6320A~T 

0070 I 64 68 Ifl'4LOC. 
0071 I 18 

Figure 5-29. Listing of File Specifications 

Sample Applications 5-57 



TES TL lfl MEMflE~ DATE 12/29/78 Tl"lc 17.57 

TYPE 'lAME DISK AOLIR TOTAL NUM TEXT/RECORD ATTRIBUTES L 1 NI(. AOOR/'1"14 ST''IT RLO 01 SP ENH.Y AJ)R DitO:> SIZE "IRT LE'VEL 

OROHOR ZZ1881/036Zfl9 17/0011 96/60 000000 170/00AA 

0001 H 05 OROHOR 
0002 F SCREEN CP F 1000 WORKHN 
0003 FCMAST IC F 128 128R 6AI 4 DISK 
0004 FS14AST IC F 128 lZ!IR 6AI 4 DISK 
0005 FTRANS UC F 128 l28R DISK 
0006 ICMAST 14A 11 1 CM Z CA 3 c 
0001 I l CRECCO 
0009· I 3 3 COELET 
0009 I 4 90CUS'l0 
0010 I 10 34 CNAME 
0011 I 35 59 CA0i)R 
0012 I 60 81 CCITY 
001.3 I 82 83 CSTATE 
0014 I 84 880ClIPCO 
0015 I 89 900CSLSNO 
0016 ISMAST SA 12 l cs Z CA 3. c 
0017 [ l Z SRECCO 
0018 ·I 3 3 SOELET 
0019 I 4 90SCUSNO 
0020 I 10 34 SNAME 
0021 I 35 59 SAOOR 
0022 I 60 81 SCITY. 
0023 I 82 83 SSTATE 
0024 J 84 880SZIPCO 
0025 ITRANS QU 01 
0026 I 1 2 ORECCO 
0027 I 3 50RRIH 
0028 I 6 80RR#2 
0029 J 9 llORR#3 
0030 I cu 15 1 cc 2 cu 3 c 
0031 I l 2 ORECCO 
0032 I 3 3 OOELET 
0033 I 4 90CUS'l0 
0034 I 10 l500RONO 
0035 I 16 40 CNAME 
0036 I 41 o5 CAOOR 
0037 I 66 87 CCITY 
0038 I 88 89 CSTATE 
0039 I 90 940CZIPCO 
0040 I 95 960CSLSNO 
0041 I 97 106 CPJNO 
0042 I cs 16 l cc z cs 3 c 
0043 I l 2 RCOOE 
0044 I 3 3 OOELET 
0045 I 4 90CUSl<.IO 
004t! I 10 1500ROl<.IO 
0047 I 16 40 SNAME 
0048 I 41 65 SAOOR 
0049 I 66 iH SCITY 
0050 I 88 89 SSTATE 
0051 I 90 940SZIPCO 
0052 I IT 17 1 CI Z CT 3 c 
0053 I l Z ORECCO 
0054 I 3 3 ODELET 
0055 I 4 90CUS1'40 
0056 I 10 1500R0'lO 
0057 I 16 l 700L INE 
0058 I 18 Z30ITMNO 
0059 I Z4 43 IOESCR 
0060 I 44 't900QTY 
0061 I 50 5520PRICE 
006Z I 56 6320A14T 
0063 I 64 68 hlHLOC 
0064 I ld 
0065 I<' FORMAT- JR OS El 
0066 I SCREEN 01 1 CF 2 Cl 
0067 I OOOlOOOZ SCOuE 
0068 I 00030008 CUS''40 
0069 I 00090014 OR01'40 
0070 I<' FORMAT- OROSEZ 
0071 I oz 1 CE 2 CZ 
001Z I 00010002 SClOE 
0073 I 00030008 CUSNO 
0014 I 00090014 ORONO 
0075 I 00150039 CNAME 
0076 I 00400064 SNAME 
0077 I 006';0089 CA DOR 
0078 I 00900114 SAOOR 
0079 I 0115013& CCITY 
0080 I 01370138 CSTATE 
0081 I Ol39Jl't3 CZIPCO 
008Z I 01440165 SCITY 
0083 I 01660167 SSTATE 
0084 I Jl680172 Sl IPCO 
0085 I 01730182 CP01~0 
0086 I 01830184 CSLSNO 
0087 I 10 
0088 I<' FORMAT- OROSE3 
0089 I 00010002 SC JOE 
0090 I 00030008 CIJSl'lO 
0091 I 00090014 ORD.'40 
0092 I 00150039 Cl'lA"IE 
0093 I 00400064 SNAME 
0094 I 00650089 CAO:>R 
0095 I 00900114 SA DOR 
0096 I Dll5Jl3!> CCI TY 
0097 I 01370138 CS TA TE 
0098 I 01390143 CZIPCO 
0099 I Ol't4Jlo5 SC ITY 

Figure 5-30 (Part 1 of 2). Partially Coded ORDHDR Program 

5-58 



0100 I Olbb0lb7 SS TA TE 
0101 I Olb60172 Sl I PC D 

0102 I Ol73Jl62 CPO'lO 
0103 I OlB301B4 CSLSNO 
0104 I 01B5018b EL l:~E 
0105 I Old7019Z ITl'MNO 
OlOb I 0193019B :irv 
0107 I 01990216 OESCR 
OlOB I 02190224 PRI:E 
0109 I 02250232 AM'.JUNT 
0110 C* IF SCREEN El, START, CHECK FOR CANCEL 
0111 c 01 EXSR BEGIN 
0112 C.* IF SCRREN E2t llR !TE REC.JRO ANO SETON LR 
0113 c 02 EXSR WRITE 
Oll't C* 
0115 c Bl'Gl'I BEG SR 
Ollb c CUSNO CHAl1'CMAST 99 
0117 c E'IJ SR 
OllB C* 
0119 (. WR I TE l:lEGSR 
0120 c C.USfllO CHAl'lSMAST 21 
0121 c E'IOSt< 
0122 C* PUT OUT SCREEN t:l IF SCREE:fll El lj AS READ A'lD TtiEr(E IS A"I ERROR, 99 Q.'j 

0123 JSCRHN D 01 99 
0 l2't 0 KB 'ORJSEl 
0125 0 CUSNO OOOb 
0 l2b a uROfllO 0012 
01?7 J 99 OObO ' I~VALIO 

01?.B O* PUT OUT SCREEN E2 IF SCREEN El WAS READ ANO CKl WAS PRESSED, KA ON 
0129 0 01 '<A 
0130 0 KB 'URl>SE2 
r) 131 Q SC ODE 0002 
0132 0 CUS'IO 0008 
0133 0 URDNO 0014 
0134 Q CNA'4E 0039 
0135 0 SNA'4E 00b4 
el 3o 0 CADDR OOB'l 
0137 J SAO!:lR 0114 
'.ll 3B 0 CCI TY 013b 
0139 0 CSTATE 0136 
0140 0 CZ!PCD 0143 
'.ll41 0 SCITY Olb5 
1)142 0 SS TATE Olb7 
0143 J 'il I PCD 0172 
0 l4't 0 CPO"IO 01!!2 
0145 0 CSLSNO 1)184 
014b 0'' PUT OUT SCREEN E 3 WHE 'l UN SCREE1'l t: 1 Ct<.l WAS NOT PRFSSEDt OR FROM E2 
')147 0 0 0 l'li'<A 
0148 0 OR JZ 
Ol't9 J KB 'URDSE3 
01o;o 0 CUS'IO OOOb 
01o;1 0 URO"IO 0012 
01 o;2 0 L.NA'IE 0037 
'll 53 0 SNA'4E 00b2 
0154 0 CA DOR OOB7 
0155 0 SAD DR 0112 
Ol';b 0 C.CITY 0134 
01o;7 0 CSTATE 0136 
0156 a CZ I PCD Ol'tl 
'.1159 0 SCI TY Olb3 
0160 0 SS TATE 0165 
0161 0 SZIPCD 0170 
0162 0 CPONO OlBO 
0163 Q CSL SNO 01B2 
')164 0 Elll\IE 0184 
0165 0 ITE'4NO 0190 
0166 0 \JTY 0196 
0167 0 OESCR 0216 
0166 0 PRICE 0222 
0169 0 AMOU'lT 0230 
0170 O* 9'1 ERR"ISG 0278 

Figure 5-30 (Part 2 of 2). Partially Coded ORDHDR Program 

Sample Applications 5-59 



5-60 

Coding with COBOL 

You can also use COBOL (Common Business Oriented Language) to read data 
from and write data to a display station. You define the constants and fields 
that appear on the display screen with display screen format specifications. 
You can either enter the display screen format specifications explicitly or 
generate these specifications by using the Screen Design Aid. COBOL also 
allows your program to pass data to and read data from another application 
Jjrogram through the use of the Interactive Communications Feature (SSP-ICF). 
Your program can communicate with a program running on the same 
System/34 or with a program running on another system. For more 
information on the SSP-ICF feature, refer to Chapter 2 in this manual or to the 
Interactive Communications Feature Reference Manual. For more information on 
using COBOL to read and write data from a display station, refer to Transaction 
File Considerations in the COBOL Reference Manual. 

IBM System/34 COBOL-Supplied Procedures 

IBM supplies several library procedures for use with System/34 COBOL. 
When the operator enters an appropriate command statement, the 
IBM-supplied library procedure is either executed or placed on the input job 
queue. For information on how to place a job on the input job queue, refer to 
the Operator's Guide. 

Library procedures provide for COBOL compilation and link-editing, execution 
of COBOL programs, movement of a diagnosed source file to a library, and 
screen prompts, by using the following command statements: 

• COBOL-compile a COBOL program. 

• COBOLCG-compile and execute a COBOL program. 

• COBOLG.:....execute a COBOL program with user-provided procedure for 
additional OCL statements. 

• COBSYSIN-compile and link-edit a COBOL program entered from the 
current SYSIN device. 

• COBMOVE-move a COBOL diagnosed source file to a library. 

• COBOLP-provide screen prompts for entering, compiling, executing, and 
correcting COBOL programs. 



TESTING THE PROGRAMS 

To test the programs, procedures are built using SEU. The procedure name to 
execute a program is called by the same name as the program. 

II t>Ruhll'T hlthlofK-URi.JH[JRt-hl,FuRMAf-uQt)5E:t ,PLJATA-Vt'i 
I I LfJA') 1KOrlD« 
II FILE NAMt-LMi<ST,ul:,P-Sr1R 
II flLE "'Ahlt-SMAST,UISP-SHR 
II FILE "'AME-TllA'IS,u!S"-5rl~ 
11 kU;< 

~ 

II ATTR MKTMAA-3 
11 L '.lAD ORD !TM 
II FILE NA"lt-TPANS,l)!:,P-SrlR 
II flLE NAMt-fRANSLJG,JlSP-S~« 
II l'ILF 'IA"1i::-!"1AST,JISP-Srl~ 
I I KUN 

~ 

II L0AI) OKOPRT 
II HLF 'IA"1t-TRA'l!>LUG,')15P-'.>'N 
II k!IN 

The entire order entry procedure will be called by the procedure named 
ORDERS. 

ORDERS 

O BUILD TkANS Fllt lF 'luT PKF~ENT 
II lFF OAT AF I-TRANS E'L'.'l~ ILf To<A"iS,'.l,RtCuRDS,5(10,1£8 
II lFF DAfAH-TKA .. SLO.; oLJF!Lt fRANSLUG,O,RtCJRus,2uou.12a 
O FXELUTE OKDcR HcAuEK PRJ~«AM, AN S~T 

011.DrlOK 
''' TrlF·'< THt LINF ITEM PRuC.i\AM, A.~ MRT 
Or<Ol TM 
O RELtAS< Trlf Tt~MINAL A'li.J LALL Po<l~T PKO~RA"l, AN 'IKT 
II ATTR RtltA>E-VcS 
OkDPR T 
II IF' S.ilTCr11-l CA'ILfL 
I I KE :,ET LJRUEKS 

Before executing any procedure, the files used by each procedure must be on 
the system. DFU is used to build sample master files. Only a very small 
sample is entered. 

Because the TRANS and TRANSLOG files are new files, they could be built 
using: 

BLDFILE TRANS,D,RECORDS,500, 128 
BLDFILE TRANSLOG,D,RECORDS,2000, 128 

These statements are part of the final order entry procedure, ORDERS. 

Sample Applications 5-61 



5"'.'62 

Considerations for Program Testing 

Program testing is an important factor in the development of your application. 
Program testing is the process of running a program with the· intent of finding 
errors in the program. By testing your program, you can verify if: 

• Your program is correctly accepting input data. 

• Your program is correctly processing the input data. 

• Your program is generating output correctly, whether the output is a file, 
screen format, or a report. 

• Your program can handle unexpected and erroneous data. 

You should be aware of the following considerations when you begin to test 
your programs. 

Adequate Time for Testing 

Allow. plenty of time for testing your programs. If you have a complex 
program, you may need more time than you did to write the program. 

Test Schedule and Testing Logbook 

Documenting the testing process is important. You should have a written 
record of the level of testing that your program was subject to. When you 
document your testing, be sure you have, for all cases, a description of the test 
data used as. input to the program and a description of the correct output you 
expected for the test data. You should also assign some unique identification 
to each task in the testing process to aid you in the logging of the testing 
process. 

Manageable Tasks 

Divide the testing process into manageable tasks that proceed from the simple 
to the complex in terms of the functions performed in the program. Each task 
should build upon the functions of the preceding task. For example, if your 
program has to read three different record types, you should test to see if the 
program can read one, two, and then all three record types. Generally, the first 
task you should perform is an inspection of the code contained in the program 
for errors in logic or syntax. 



Appropriate Test Data 

Test your programs with data that checks whether the program is correctly 
performing its intended functions. In most cases, your program cannot be 
tested in a single test because certain functions must be tested individually. 
You must also check the way these functions interconnect in your program. 
Label your test data for each test, and retain this data for future use in the 
event that you have to modify your program due to errors found in it during 
testing. 

Your test data should cover the following conditions: 

• Normal and expected data 

• Error and unexpected conditions 

Normal and Expected Data 

When you test normal and expected conditions, use data that is representative 
of the real data that you will be using in the program. For example, in testing 
an order entry application, data could be used to test the following conditions: 

• Opening of a new account 

• Updating an existing account 

• Closing an existing account 

• Updating multiple existing accounts 

• Generating a picking slip report 

Error and Unexpected Conditions 

Use data in testing for error and unexpected conditions that is not 
representative of the data that you would use in running your program. Error 
data is important because you may discover that your program is generating 
errors when used in a new or unexpected way. By using data that is erroneous 
or unexpected, you will have a way of seeing whether your program performs 
predictably. Some examples of error condition testing are: 

• Attempting transactions against nonexistent account numbers. 

• Updating closed accounts. 

• Using input data with invalid dates, incorrect totals, or invalid ranges of 
values in key fields. 

• Using combinations of data that have multiple errors or data that has a 
combination of valid and invalid values. 

Sample Applications 5-63 



5-64 

Some examples of unexpected condition testing are: 

• Using no data as input to a program 

• Running two days' worth of data as one day's 

• Running a program with the wrong inputs 

It is important when you are testing error conditions to ensure that your 
program is issuing error messages that describe the errors encountered in 
testing. 

Other Tes ting Considerations 

Check the following when you are testing a program: 

• Have you successfully tested the restart or recovery procedures? 

• Are the personnel who have to use the program familiar with the procedures 
needed to use or run the program? 

• Does the program pass the right data to other programs that have to use 
the program's output? 

• Are the system operators familiar with the requirements for the program? 

• Has the program been tested for all phases of processing? For example, if 
the program has to generate weekly and monthly reports, have you merely 
tested for weekly report generation? That is not a sufficient level of testing. 

Program coding and testing should continue until all program functions are 
coded and tested. Using the DEBUG operation in complicated programs can 
shorten testing. If DEBUG is used, condition each DEBUG operation with an 
external indicator (for example, US). Thus, the program can be tested with or 
without debugging without recompiling it. 

As each program is being developed, changes may have to be made to the 
original specifications. For example, it may be easier to keep a field of 
information on the screen rather than in the control record. This would mean 
changing the screen and the logic of the program. 



DOCUMENTING THE APPLICATION PROGRAM 

This section provides some guidelines that you can use when documenting 
your application programs. Documentation of your programs can serve to 
provide the following functions: 

• Definition of the purpose of the application program. 

• Definition of the inputs to the program, such as screen formats, type of 
records, and organization of the inputs. (Are the inputs sequential on disk or 
diskette? Is the input passed from another application program?) 

• Definition of the outputs from the program. (Is the output in the form of a 
screen format? Is the output a file on disk or a report and if so what is the 
format of the file or report?) 

• Written documentation of the logic of the current version of the program. 

• A history of the revisions that have been made to the program. 

• Program accounting information. 

• List of persons to contact for further information regarding the application 
program. 

When documenting your program(s), you should establish a program packet 
that is readily accessible to persons who have to work with the application 
program. This program packet should be in a central location. Figure 5-31 
shows items that you could place in your program packet. 

Sample Applications 5-65 



5-66 

• General program descriptions 

Program name 

Run frequency 

General input descriptions 

General output descriptions 

Purpose of program 

• Flow diagram of input and output to the program 

• Detailed record layouts of input and output to the program 1 

• Printer layout of output report(s) 

• Screen format descriptions of program input and output 

• Narrative description of program logic 

• Program source listing 

• Sample of output 

• OCL to run the program, or procedures necessary to run the program 

• Operator instructions 

• Program modification history log 

• Message identification codes used by the program 

Description of what these codes mean 

- Procedures to follow when these codes occur 

• Restart/ recovery information 

__ • I nstructio_ri~- f_()~_t~-~ dist_~i-~_~!i_<?._rl ~f _()_l:'!PU! __ repg_r~~ ---------····----------- ------~ 

1You may wish to have all record descriptions in a central location to facilitate revising 
these record descriptions and to make sure that each program has an up-to-date 
record description. 

Figure 5-31. Sample Program Packet list 

The following eight pages make up a sample program packet for the ORDPRT 
program. 



COMPUTER PROGRAM DESCRIPTION SHEET 

Documentation Reference Program Name Library Account Number Version Date 
OR-03 ORDPRT ORDLIB 11801 01 07/29/80 

Language/Utility Run Frequency Input Format Input From Program 

RPG DAILY J&1 Disk 
ORD I TM 

Input Screen Formats 

l l l l l 
Output Report Number Output Report Name Output File Name Output Used by Program 

6311-A 
Name Documentation 

PICKING SLIP TRANS LOG .I Reference __ --
User Contact Department 

AG SMITH INVENTORY 

Program Used by Responsible Programmer 

ORDER ENTRY, WAREHOUSE DEPARTMENTS AG SMITH 

GENERAL FLOW DIAGRAM 

TRANS LOG 
ORDPRT r Trans- 7 
Print - -- action - -Picking Hold 
Slip File 1 

'~ 

PICKING TWO-PART PAPER 
Slip FORM: 6311-Y 
6311-A REPORT NUMBER: 6311-A 

........ _ 

Sample Applications 5-67 



Documentation Reference 
OR-03 

Narrative Description: 

COMPUTER PROGRAM DESCRIPTION SHEET 

Program Name 
Print Picking Slip (ORDPRT) 

Program Segment ____ P_u_r_p_o_s_e ___ _ 

Date 
08/01/80 

The purpose of the print picking slip program is to produce 

the picking slip by reading the TRANSLOG file and, for each 

order contained in the file, to produce a picking slip. 

PAGE----
OF __ _ 

5-68 



COMPUTER PROGRAM DESCRIPTION SHEET 

Documentation Reference 
OR-03 

Program Name 
Print Picking Slip (ORDPRT) 

Program Segment ____ I_N_P_U_T ____ _ 

NARRATIVE DESCRIPTION 

1. TRANSLOG File (Transaction Hold File) 

File Organization: Direct 

Record Length: 128 characters 

Sequence: Record Code, Customer Number 

Date 
08/01/80 

PAGE----
OF __ _ 

Sample Applications 5-69 



Record Name TRANSACTION HOLD 

INPUT/OUTPUT Record Description 

System SY STEM/ 3 4 

File No. ------

Page __ _ of __ _ 

File Name Trans log 

File Organization Direct 
~ Disk D Diskette Date -------

Sequence Record Code, Customer Number Prepared by A. Smith 

Record Length _1_2_8 _______ _ Key Customer Number Ke.v Length_6 _______ _ 

Created by 0 RD I TM Used by ORDITM, ORDPRT Updated by _O_R_D_P_R_T _____ _ 

Values Field Description Field Name Length Decimal Format 
Location 

Pos. From To 
Relative Record Number 128 N 1 128 

*Customer Record Information 
CV Record Code OCODE 2 A 1 2 
D or blank Delete Code ODELET 1 A 3 3 

Customer Number CUSNO 6 N 4 9 
Order Number ORDNO 6 N 10 15 
Customer Name CNAME 25 A 16 40 
Customer Address CAD DR 25 A 41 65 
Cit_y CCI TY 22 A 66 87 
State CSTATE 2 A 88 89 
z~ Code CZIPCD 5 N 90 94 
Salesman Number CSLSNO 2 N 95 96 
Purchase Order Form CPONO 10 A 97 106 

*Shi-2_ to Record Information 
cs Record Code OCODE 2 A 1 2 

Delete Code ODE LET 1 A 3 3 
Customer Number CUSNO 6 N 4 9 
Order Number ORD NO 6 N 10 15 
Shi-2_-TO Name SN AME 25 A 16 40 
Shi-2_-To Address SAD DR 25 A 41 65 
Ci t_y~ SCI TY 22 A 66 87 
State SSTATE 2 A 88 89 
Zip Code SZIPCD 5 N 90 94 

*Line Item Record occurs 1 to 3 times for each Customer Record 
Record Code 2 A 1 2 
Delete Code 1 A 3 3 
Customer Number 6 N 4 9 
Order Number 6 N 10 15 
Order Line Number 2 N 16 17 
Item Number 6 N 18 23 
Item DescriB_tion 20 A 24 43 
Quantity Ordered 6 N 44 49 
Price 6 N 50 55 
Amount Extended 8 N 56 63 
Warehouse Location 5 A 64 68 

5-70 



COMPUTER PROGRAM DESCRIPTION SHEET 

Documentation Reference 
OR-03 

Program Name 
PRINT Picking Slip (ORDPRT) 

Date 
08/01/80 

Program Segment Switch Settings and Local Data Areas 

Narrative Description: 

Switch Settings Used: None 

Local Data Area Use: None 

PAGE ___ _ OF __ _ 

Sample Applications 5-71 



COMPUTER PROGRAM DESCRIPTION SHEET 

Documentation Reference 
OR-03 

Narrative Description: 

Program Name 
Print Picking Slip (ORDPRT) 

Program Segment _O_U_T_P_U_T _______ _ 

1. Picking Slip Report 
Form Number: 6311Y 
Report Number: 6311-A 
Two-Part Paper 
Frequency: Daily 

2. TRANSLOG File 

5-72 

File Organization: Direct 
Record Length: 128 characters 
Sequence: Record Code, Customer Number 

Date 
08/01/80 

PAGE----
OF __ _ 



I I 1}1 1 I I 1JJ1J1l2 2 2 J2T212TJ2 2 3 3 3 3 3 313 3 313 4 4 4l41414 4 4 4 4[5 5 5 5 5 5r5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 717 7T7 7 1 7 8 8 8 8 8 8 818 al:I: 9 9 
1 2 3 4 5 6 1 819 o 1 2 3 4 5 6 1la 9 o 1 2 3l~5l6J7Ja 9 o i 2 3 4 5j& 1 rij9 o 1 21R~~ 6 1 a 9Jo 1 2 3 4 ~16 1 a 9 o 1 2 3 4 5 & 1 a 9 o i 2 tl• ~6 1 a 9 o i 2 3 4 5 ~J7 8~~ 1 2 

pin T N!O]: '3111- , i~ .. .-1-l-+-' 1 T ._, 1 1 1 ! 1 r , l r:, , 1 , .... 111n1~1 ~ · 1 11 H-

ti r I( N~ 'S1L[B_ ! ! l T I:! .oJRJE iE!NltatR:I!S!EiSI J_ ' ' l l l ' ' I I l ip A(.; 1-:_, 1n;~ ' l 
· i r . . :.:l·t 1 'SiOUTH S'TlBE11-.'T ! ! ' 1 ' · ~· T' I ·~ t-t-

T I T : I ' ' ' ! I ' : : : 

........-+-+-+-+--+-+-+-+-+--<--+-+-!, +:· +:, -+-11 --+-+-i-f--1.--+---~, ;+- th--+.-+--+-<!-+-.,_ ___ .,_~ •··- ~-·t··• ·+-;·-~ ~r-t-··+--r+ ·-t~ --t--t-i·-t--+-T~-t-+--+·T+-+-....-+--~ + 

......... +-+-+-+--+-+-+-+-+-<--+-+-+--+--+--+-t·......-;--..-+-+-+-+-+-+--.-+-.__~.,._--~-+-<--1-+-~+-~~ +-+-+--+---~-+--·+-l+-+--~----i : ' i -+-
1 · _j_ j I I f : l . . 

._..+-+-+-+-+-+--+-+-<-T+-_ +-. ...._+-' +-
1 

+, +T--+-+-i-+---+-+---+--r t-t;-+--r-+---+-+-+-t------+-......-+------;----~-.,....--f-t---+--+--+--t ~--+-+--+-<,.....-+-+-....+-+-+-....-+......-+·-+--+--.- -t---
.l ' ; ! µ I ! , ' I .~~-'--· -----+-+--+->--+--+-+-+-++----~-+----t-..--+-........--·---r-<--+j-

' T' '
: .--+-1 '~. :.· ·.·~~· +-+-+-+-+--·-~·++-+-+-+---i--+-+ ...... ...-+--~-+-t---+.+-+-.----...++·--+.-T 

i ! ' '_;_ ! 
_! :l ' I! T '. I 

i--+-+-+-+-+--+-+-+-+-+--+-+-+---+-+---+-t-.----.--........,._+++·r--~ ..,..., +j-+-+-+------++-+-+--+-+-+-<-+-<-+-+-l. +-+-+-+--+---t--+-+---<-t·+-··--+----+-T-+---t--+--+--+--+-+-·~•- -4-

,, I"Tii 'l _i:J_: l '· -+f-::: 
I I 

! I ' I l _i I " I ' I I '. . T' ! ' ' i 

1--+-+-+-+-+-+-+-+-++-+-;~!! :. '· , =~tt' . , ; ! ' ; I : , f ; ) l 1 ! i : ! : ' ...i.. , ' ! : ! 
I ! : ! : ' T' l : : : T:: I : I : : i 1 I 'T ' 

+:· 

T T , i: r , ' ·1 ' 'r, :. i ' '. 

i 

I I 

l 

.:• , :.l ii ,,;, .: .I:i!::!i 1 n.:1 i :·..J..:~ 
T! ! Ii i T ' I ' ; I T ' ' : I : 'II ! ! JTT T [ : 11 ! -1 : ' I ' ' 

1 l ! : : ' l ! L I I 'l: l i ' i I : : i Li.IT l 111 ; : : I l 
1 1 1 1 111 , J, '1f1 2 2 2 JzT2f~IJ2 2 3 3 3 3 3 31313 3f3 4 4 .141414 4 4 4 415 5 5 5 5 JB 5 5 ul& & 6 ,,, a & 6 1 111111T1 1 1 1aaa1 a a ,Ta a a19 '9 ~ 

1 2 3 4 s & 1 a 9 o 1 2 3 4ufJal9 o 1 2 314J51~1.la 9 o 1 2 3 B_i611 ~9 o i 2J3J415 & 1 a ij_o 1 2 3 4 516 1 89 o 1 2 34 5 6 1 • 9 o i 2 3J• &Ju a 9 o 1 2 3 4 5 6J7 a ~o 1 2 : 

Sample Applications 5-73 



COMPUTER PROGRAM DESCRIPTION SHEET 

Documentation Reference 
OR-03 

Program Name 
Print Picking Slip (ORDPRT) 

Date 
08/01/80 

Program Segment Processi_ng Logic 

Narrative Description: 

1. Open input file and outputs. 

2. ,Read the control record of the TRANSLOG file to find the 

last record printed. 

3. Read each record for each order in the file and, for each 

record, produce a line on the picking slip report (6311-A). 

4. At the end of the order, update the control record with the 

relative record number of the last record printed. 

PAGE ___ _ OF __ _ 

5-74 



System Test 

When each application program has been tested and is working properly with 
minimum data, the application is ready for a system test. 

The system test is the final phase in the development of an application. The 
system test makes sure that the application meets the objectives it was 
designed for and tests whether the system can be run as operational. During 
system testing you can test for the following items: 

• Are the programs easy to use? 

• Are the error messages provided by the programs meaningful? 

• Is the final output correct? 

• Does the system run as fast as it was intended to on the computer? 

• Does the system meet its goals in terms of response time for display station 
operations? 

• Do the recovery or restart functions work correctly? 

By the end of the system test, you should have detailed instructions for the 
system operator and a set of instructions for the people who have to use the· 
application. 

User's Run Book 

You should develop a user's run book after your application has been tested 
and implemented. A user's run book is written for people who have to use the 
application but were not involved in programming the application. The user's 
run book explains how the application works and gives detailed instructions for 
using the application. 

Some of the items you should have in a user's run book are: 

• A general description of the application and how the application works 

• A description of the input to the application 

• A description of the output of the application 

• A detailed description of the procedures required to run the application 

• Samples of all forms or documentation used by the application 

• Error correction procedures 

Sample Applications 5-75 



5-76 

Operator Program Run Book 

The operator program run book contains the procedures to be carried out when 
you run the application program on the computer. You should have procedures 
to run every program so that the system operator can obtain the proper inputs 
to the program, set up the inputs correctly, and make sure the job executes 
correctly. Generally, entries in an operator program run book can be contained 
on one 8 1 /2 by 11 inch sheet of paper and should contain information 
necessary for proper execution and setup of the program. 

Sample items that can be included in an operator program run book are: 

• A system flowchart of the application 

• A list of the inputs used by the program 

• Procedures for the setup of the job 

• Procedures for error handling 

• Procedures describing output distribution that can be used by either the 
system or subconsole operator 

• Procedures for restarting or rerunning the job 

Figure 5-32 is a sample of an operator program run book entry. 



OPERATOR INSTRUCTIONS 

PROGRAM NAME: PR85 l LIBRARY USED: PAYROLL 

PROGRAM PURPOSE: This program is responsible for writing a Deduction Register 

T T : I T 

I FILE FILE DISK/DIS KETTEi I I 
DISPOSITION I I 

I I I I 
NAME MEDIUM I LABEL I DRIVE I AFTER USE I I 

I I I I 

FILES ~-------T-------T-----------+------+--------
I DEDUCT I DISK I NIA I N/A I REMAINS 

USED I I I I I 
I I I I ON DISK 
I I I I I 

...1.. _J_ 

PRINTER USED FORMS USED DISTRIBUTION 

SYSTEM 3-PART STOCK Original and one copy to 
payroll; one copy remains 
in the file. 

PREREQUISITE NEXT 
RUN FREQUENCY PROGRAM PROGRAM 

BIWEEKLY as a part of each payroll cycle. NONE PR87 

INSTRUCTIONS REQUIRED TO RUN THE PROGRAM 

II LOAD PR85 II MENU DEDUCT, PAYROLL 
II FILE NAME-DEDUCT OR USE OPTION 6 
II RUN 

EXPECTED ERRORS/RECOVERY 

UNIDENTIFIED RECORD IN THE FILE-take recovery option 1 and continue 

UNEXPECTED ERRORS/RECOVERY 

WRITE DOWN ERROR MESSAGE CODE, THE MESSAGE TEXT, AND TAKE RECOVERY OPTION 0 OR 
1. IF 0 OR 1 ARE NOT VALID OPTIONS, CONTACT THE PROGRAMMER OR MANAGER. 

OPERATOR NOTES: 

COMPARE CONTROL TOTALS TO THOSE 1.N THE. CONTROL BOOK ••• 
I 

ALERT PAYROLL IF THE'i DON'T BALANCE , DON'T RUN PR87 

COMM,~~1ND 

1. JOURNAL ENTRIES 
2. INQURIY-JOURNAL FILE 
3. MASTER FILE LISTING 
4. EDIT TIME CARDS 
5. ALLOWABLE VARIANCE 
6. DEDUCTION REGISTER 
7. PAYROLL CHECKS 
8. PAYROLL REGISTER 
9. COPY PAYROLL FILE 

:to ... 
:I. :1. ·' 
:t:::: .\ 

ENTER NUMBER, COMMAND, OR OCL. 

Figure 5-32. Operator Program Run Book Entry 

MENU: :OE:OUCT 
:I. :3 •'• 
:t4 ,\ 
:I. ~::; .. . 
:1.6 .. . 
:1.7 .•. 
:t ~::: .\ 
:1.9., 
20., 
2:1. ... ... .,, .. , 
.-:: .. -:: . ... 
... :. -~! 
~: .. · ... • .\ 
24., 

Sample Applications 5-77 



5-78 



Appendix A. Display Station Operations Requested by Basic Assembler Programs 

This appendix describes the basic operations that can be requested by a Basic 
Assembler program when it calls work station data management. When the 
program calls work station data management, two bytes in a data area called 
the DTF (define the file} determine the requested operation. These two bytes 
can request a combination of the basic operations. An example is the 
put-no-wait with invite operation. This operation is a combination of the 
put-no-wait and invite input operations. 

The following information lists and describes the operations that can be 
requested by a Basic Assembler program when it calls work station data 
management. The macro instruction, operation code, or operation modifier that 
is used to perform an operation is listed in parenthesis beneath the operation. 
Refer to the Basic Assembler and Macro Processor Reference Manual for further 
information. 

Operation 

Open 
($OPEN) 

Put 
(PUT) 

Put-no-wait 
(PNW) 

Description 

Prepares for the processing of all display station 
operations requested by the user program. During 
the open operation, work station data management 
builds an index that points to all display screen 
formats in the display screen format load member 
used by the program. If specified in the DTF, work 
station data management builds a table containing 
information supplied on the WORKSTN OCL 
statements. In Basic Assembler programs, you must 
request an open operation before you request any 
other operations for the display station file. 

Sends data to a specified display station. Work 
station data management returns control to the user 
program when the data transfer is complete. 

Sends data to a specified display station. Control 
returns to the user program when the operation is 
scheduled. The program can then change its record 
area, indicators, or DTF without affecting the 
scheduled operation. If the program attempts a 
second put-no-wait operation to the same display 
station, work station data management waits for the 
first operation to be completed before it schedules 
the second operation. 

Display Station Operations Requested by Basic Assembler Programs A-1 



A-2 

Operation 

Put for 
read-under-format 
(PRUF) 

Description 

Sends dc;ita to a display station and allows the next 
job step to read the data back in. Two types of 
PRUF operations can be requested: 

• Auto PRUF, which can only be requested from a 
Basic Assembler program. An auto PRUF 
operation uses the display screen to temporarily 
store data between job steps. The keyboard is 
locked when the format is displayed. Th~ format 
is returned to the next job step in response to 
the first accept input operation requested from 
the step. To perform an auto PRUF operation, 
the Basic Assembler program must request an 
auto-PRUF-put-no-wait-invite operation. 

• Interactive PRUF. An interactive PRUF operation 
occurs if the last display station operation before 
termination of a job step is an invite type 
operation. The keyboard is unlocked for an 
interactive PRUF operation, and the operator can 
key information while the next step is loading. 
After the operator enters the display, work 
station data management returns the format to 
the next job step in response to the first accept 
input operation requested from the job step. 

Note: Either PRUF operation can occur when going 
from (1) an MRT program to another MRT program, 
(2) an MRT program to an SRT program, (3) an SRT 
program to an MRT program, or (4) an SRT 
program to another SRT program. After requesting 
a PRUF operation, an MRT program should release 
the display station. After requesting a PRUF 
operation, an SRT program should end. 



Operation 

Put override 
(OVR) 

Unformatted request 
(UNF) 

Description 

Sends data to a specified work station but transmits 
only indicator-controlled output fields and attributes. 
A program uses a put override operation to override 
(change) information previously displayed without 
retransmitting the entire format. During a put 
override operation, the following events occur: 

• If a field had an indicator specified in the output 
data entry (columns 23 and 24 of the D 
specification) and that indicator is off, the data in 
the field is unchanged. If data was entered in the 
field, that data is unchanged. Any field that had 
Y, N, or blank specified in columns 23 and 24 is 
also unchanged. 

• If a field had an indicator specified in the output 
data entry (columns 23 and 24 of the D 
specification) and that indicator is on, the field is 
retransmitted and contains data from the 
program. Any data that was entered in the field 
by the operator is lost. Output information is 
displayed from the same location in the output 
record area as for a normal put operation. 

• For all fields, the use of indicator-controlled 
attributes, such as highlight or reverse image, is 
determined by the state of that indicator. All field 
attributes that are not controlled by indicators are 
unchanged. 

Note: If an indicator is specified in the protect field 
entry (columns 37 and 38 of the D specification), 
that indicator is ignored during the override 
operation. 

Modjfies any of the put operations and informs 
work station data management that the information 
in the program's record area is in a format suitable 
for transmission to the display station. (The 
information already contains all the required control 
information and attribute characters.) Work station 
data management transmits the information to the 
display station without formatting the information. 

Display Station Operations Requested by Basic Assembler Programs A-3 



A-4 

Operation 

Invite input 
(INV) 

Get 
(GET) 

Accept 
(ACI) 

Stop invite input 
(STI) 

Acquire 
(ACQ) 

Description 

Signals the display station that the program is ready 
to receive data. The invite input operation is in 
effect until (1) the program issues a get input 

. operation for the display station, (2) an accept input 
operation receives data from the display station, (3) 
the program requests a stop invite operation for the 
display station and the stop invite is successful, or 
(4) the program requests an output operation to the 
display station. 

Note: A display station operator can interrupt an 
MRT program (by pressing the Attn key) only while 
an invite input operation is in effect for the display 
station. 

Receives data from a specified display station. After 
placing the data in the program's record area, work 
station data management returns control to the user 
program. 

Receives data from any display station that 
responded to a previous invite input operation. For 
example, if a program issues three invite input 
operations for three display stations (W1, W2, and 
W3) and then issues an accept input operation, the 
data the program receives can be from any one of 
those display stations. Work station data 
management places the ID of the display station 
that returned the data in the program's DTF. 

Cancels a previous invite input operation to a 
specified display station. If the display station 
operator enters the display before the stop invite 
input operation is performed, work station data 
management informs the user program via a return 
code in the DTF. The program can then request a 
get or accept operation to read the information 
entered by the operator, or the program can request 
an output operation to the display station. If the 
program requests an output operation, the 
information the operator entered is lost. 

Note: The user program does not have to issue a 
stop invite operation to override an invite input 
operation. For example, a program can issue two 
consecutive put with invite operations. However, 
any information the operator enters in response to 
the first invite operation is lost. 

Allocates the specified display station to the 
program that requests the operation. If the acquire 
operation fails, a return code is passed back to the 
user program. 



Operation 

Release 
(REL) 

Write error 
(ERROR) 

Get attributes 
(GTA) 

Extended get 
attribute 
(EGTA) 

Print 
(PRINT) 

Roll 
(ROLL) 

Erase 
(ERS) 

Clear 
(CLR) 

Description 

Releases the specified display station from the 
program that requests the operation. A release 
operation is valid only from an M RT program. 

Writes up to 78 high-intensity characters of data on 
the bottom line of the display screen. The keyboard 
locks, and the operator must press the Error Reset 
key to restore the previous contents of the bottom 
line. 

Places an 8-byte string of data in the user 
program's record area. The data string is a series of 
bytes that describes the attributes of the specified 
work station. 

Places a 16-byte string of data in the user program 
record area. The data string is a series of bytes that 
describes the attributes of the specified 
ideographic-capable display station. 

Note: The get attributes (GTA) operation can also 
be used for an ideographic-capable display station, 
but some of the attributes for the specified display 
station will not be returned. 

Prints, on a specified printer, the contents of a 
specified display screen. 

Rolls a specified group of lines up or down on the 
display screen. The user program's DTF specifies 
the starting and ending line numbers of the area to 
be rolled, the number of lines to roll, the direction 
of the roll, and whether or not vacated lines should 
be blanked out. 

Erases (blanks out) the contents of the input fields 
on the display. An erase operation instead of a put 
operation is performed when you specify erase input 
fields (columns 31 and 32 of the S specification). If 
an invite or get operation is not requested along 
with the erase operation, the keyboard is locked 
following an erase operation. Otherwise, the 
keyboard is reset. 

Erases (blanks out) the entire display screen, 
including attribute bytes. You can request the clear 
operation only from a Basic Assembler program. 

Display Station Operations Requested by Basic Assembler Programs A-5 



A-6 

Operation 

Status inquiry 
(SIO) 

Description 

Causes work station data management to set a DTF 
return code, which indicates: 

• Whether any invite. input operations have 
completed. 

• Whether the system operator has used the STOP 
SYSTEM command to cause shutdown of system 
operations. 

Note: Status inquiry can also be requested by 
passing to work station data management a value of 
hexadecimal 'FFFF' in index register 2. Work station 
data management returns the status information in 
index register 2. 



abnormal termination: A system failure that does not 
allow an operator to sign off successfully. For example, 
an abnormal termination occurs after a message that 
has only a 3 option or after a failure that stops the 
system but does not cause a message to be displayed. 

active program: A program that is in main storage or 
in the swap area on disk. 

active program list: A system-maintained list of all 
active programs. 

active user library: The library used by most functions 
performed during execution of a customer-written 
program. If a required member is not in the active user 
library, the system library (#LIBRARY) is searched for 
the member. 

application: A particular data processing task such as 
inventory control or payroll. 

assign/free area: The available space in the supervisor 
for control areas. 

audit trail: A general recording of who did what and in 
what sequence. 

autowriter: A function that causes the spool writer 
program to be loaded without operator intervention 
whenever output exists in the spool file. 

BASIC (Beginners All-Purpose Symbolic Instruction 
Code): An interactive programming language designed 
for ease of use. 

basic display station configuration record: A disk 
record that contains the basic display station 
configuration information on the IBM-supplied PID 
diskettes. 

batch classification: A classification assigned to 
programs by the System/34 swapping function. A 
program is assigned the batch classification when it 
executes for longer than a system-determined time limit 
without accepting input from a display station. See also 
interactive c/assif ication. 

Glossary 

batch processing: A method of running jobs that does 
not require continuous operator attention; that is, 
processing that is not interactive. Contrast with 
interactive processing. 

block: A 10-sector unit of disk storage that contains 
2560 bytes. A block is also a group of records, treated 
as a logical unit, that is read or written by the computer. 

COBOL (Common Business Oriented Language): A 
standardized business language for programming a 
computer. 

command display station: A display station that can 
request and initiate jobs. 

command mode: A mode that a display station can be 
placed in. In command mode, a display station is 
capable of requesting jobs or initiating jobs. 

command processor: The SSP function that initially 
processes information entered by the operator. 

data communications configuration record: A disk 
record that contains information about the data 
communications configuration. Each command display 
station has an associated data communications 
configuration record. 

DFU (Data File Utility): Part of the Utilities Program 
Product used to create, maintain, and display or print 
data files. 

direct file: A disk file in which records are assigned 
specific record positions. Regardless of the order in 
which records are put in a direct file, they always 
occupy the assigned position in the file. 

directory: See library directory. 

disk data management: The SSP function that controls 
the flow of data to and from disk files. 

dispatching function: The System/34 function that 
allows multiple programs in main storage to share 
processing time. 

Glossary B-1 



display screen format: A table that defines a display 
presented by work· station data management. 

display station local data area: A 256-byte area on 
disk that can be used to pass information between jobs 
and job steps during a session. A separate local data 
area exists for each command. display station. 

erase input operation: A work station data 
management operation that erases (blanks out) the 
contents of the input and output/input fields on the 
display screen. 

external indicators: Eight indicators (U1-U8) that are 
normally set by the SWITCH OCL statement before job 
execution. These indicators can be tested and changed 
during execution. 

fixed-format menu: A type of menu generated by the 
$BMENU utility program. A fixed-format menu contains 
two columns of menu items, with 12 items in each 
column. 

FORTRAN (formula translation): A programming 
language primarily used to express arithmetic formulas 
via computer programs. 

free-format menu: A type of menu generated by the 
$BMENU utility program. For a free-format menu, the 
programmer defines the contents of lines 3 through 20. 

history file: An area on disk in which a log of specified 
types of system actions and operator responses is 
recorded. 

IFILE: An attribute of an indexed file that allows 
sequential-by-key access to added records without 
sorting the keys. 

initiator: The SSP function that reads and processes 
OCL statements from the system input device. 

inquiry: 1. A request (entered from a display station) 
for information in storage. 2. A request for information 
that puts the system in inquiry mode. (The operator 
initiates an inquiry by pressing the Attn key.) 

inquiry latch: An indicator that informs an interrupted 
program of an inquiry request. The operator causes the 
inquiry latch to be set on by selecting option 4 on the 
Inquiry display. 

8-2 

interactive classification: A classification assigned to 
programs by the System/34 swapping function. If a 
program executes for longer than a system-determined 
time limit without accepting input from a display station, 
the program loses its interactive priority. See batch 
classification. 

interactive processing: A method of processing in 
which each operator action causes a response from the 
system or a program, as in an inquiry system or an 
airline reservation system. See batch processing. 

I PL (initial program load): A sequence of events that 
loads the system programs and prepares the system for 
execution of jobs. 

job: One or more related procedures or programs 
grouped into a first-level procedure. 

job file: A disk file created with a retain parameter of J. 
A job file can be used by all the job steps in a job. The 
job file is defined only within the job and does not exist 
after the job ends. 

job region: The amount of main storage ensured by the 
SSP for use by a job. The job region is specified by the 
REGION OCL statement, the SET procedure, or the 
$SETCF utility program. 

job step: A unit of work represented by a single 
program. The LOAD OCL statement, RUN OCL 
statement, and other OCL and utility control statements 
define the job step within a procedure. 

library: An area on disk that can contain load members, 
procedure members, source members, and subroutine 
members. 

library control sector: The first sector in a library 
directory. The library control sector contains a record of 
the used and available space in the library. 

library directory: A variable-sized area that contains 
information, such as name and location for each 
member in the library. 

library member: A named collection of records or 
statements in a library. 

line printer (5211 or 3262 printer): A device that prints 
all characters of a line in a single operation. Contrast 
with serial printer, matrix line printer. 



linkage editor: A program that prepares subroutines or 
the output of language translators for execution. The 
linkage editor resolves symbolic cross-references, 
generates overlay structures on request, and produces 
executable code (a load member) that is ready to be 
loaded into main storage. 

load member: A collection of instructions that the 
system can execute to perform a particular function, 
regardless of whether the function is requested by the 
operator or specified in an OCL statement. Load 
members can also contain screen formats and message 
members. Load members are stored in a library. 

local data area: See display station local data area. 

LR (last record) indicator: An RPG II indicator that 
signifies when the last data record is processed; the LR 
indicator is used to condition all operations that are to 
be done at the end of the program. 

master file: A collection of permanent information, 
such as a customer address file, that is often processed 
along with a transaction file. 

matrix line printer (5225): A device that prints all the 
characters of a line in a single operation, and each 
character is formed by a matrix of wires. 

menu: A displayed list of items (usually jobs) from 
which the operator makes a selection. 

memo updating: An interactive file updating technique. 

MRT (multiple requestor terminal) procedure: A 
procedure that calls an MRT program. 

MRT (multiple requestor terminal) program: A 
program that can process requests from more than one 
requesting display station concurrently. 

multibatch processing: The processing of two or more 
batch programs concurrently. 

NEP (never-ending program): A program that uses 
system resources for a long period of time and was 
defined as a never-ending program (NEP-YES) on the 
COMPILE OCL statement. 

nonswappable storage: The amount of user storage 
used by nonswappable programs. 

NRT (non-requestor terminal) program: A program 
that is evoked by another procedure or program or has 
no requesting display stations allocated to it. Contrast 
with SRT and MRT. 

OCL (operation control language): A progamming 
language used to identify a job and its processing 
requirements to the SSP. 

operator control command: A command statement 
used by an operator to control system or display station 
operation. A control command does not run a 
procedure and cannot be used in a procedure. 

override fields operation: A work station data 
management operation that allows a program to override 
(modify) fields on a display without retransmitting the 
entire display. 

password security: An optional SSP function that 
helps prevent the unauthorized use of a display station. 

permanent file: A file that remains in existence until 
deleted by using the $DELET utility. A permanent file is 
created with a retain parameter of P for disk or 999 for 

diskette. 

PIO: Program information department. An IBM group 
responsible for distributing programs and publications. 

print intercept routine: The routine that causes printer 
output to be placed in a spool file in disk storage rather 
than going to the printer. 

print spooling: A part of the SSP that provides 
temporary storage of print data on disk. 

printer data management: The SSP function that 
controls the flow of information to the printer. 

priority processing: A method used in a 
multiprogramming environment that determines the 
sequence in which programs are processed by the 
system. 

priority program: A program to which the priority 
attribute was assigned by the operator or programmer. 

procedure: A set of related OCL statements and, 
possibly, utility control statements, that cause a specific 
function or set of functions to be performed. A 
procedure in a library is called a procedure member. 

Glossary B-3 



procedure command: A command statement that runs 
a procedure. A procedure command is a special form of 
the INCLUDE OCL statement. 

procedure member: A procedure that is stored in a 
library. 

production run: The normal operational running of an 
application system. 

program ready list: A system-maintained list of 
programs that are in main storage and ready to execute. 

put override: See override fields operation. 

record mode: A method of operation in which data is 
transferred by the SSP one record at a time. 

resource security file: A file that contains information 
about each protected file or library. 

RPG II: A commercially oriented programming language 
specifically designed for writing application programs 
that meet common business data processing 
requirements. 

scratch file: A file that can be used only by the job 
step creating it. A scratch file does not exist after the 
job step ends if the file is created with a retain 
parameter of S. 

SDA (screen design aid): A part of the Utilities 
Program Product used to create, change, and delete 
display screen formats and menus. SDA can also be 
used to build RPG II programs and WSU programs. 

sector: 1. A 256-byte area on disk reserved to record 
data. 2. The smallest amount of data that can be 
written to or read from a disk or diskette during a single 
read or write operation. 

sector mode: A method of operation in which data is 
transferred by the SSP one sector at a time. 

serial printer (5256 Printer): A printer that prints 
characters one at a time. Contrast with line printer, 
matrix line printer. 

session: 1. The time during which programs or devices 
can communicate with each other. 2. The elapsed time 
that starts when an operator signs on the system and 
ends when the operator signs off the system. 

SEU (source entry utility): A part of the Utilities 
Program Product used by the operator to enter, update, 
and print procedures and source programs in a library. 

B-4 

single program mode: A method of ~per~tion during 
which one job (either batch or interactive) 1s completely 

processed before another job is begun. 

source member: A collection of records (such as RPG 
II specifications or sort sequence specifications) that is · 
used as input for a program. Source members are 
stored in a library. 

SRT (single requestor terminal) program: A program 
that can have only one requesting display station at a 
time. 

· SSP: System support program product. 

standby mode: A method of operation in which a 
display station is waiting to be acquired and used by a 
program running on the system. 

subroutine member: A subroutine that needs to be 
link-edited before being loaded for execution. 
Subroutine members are stored in a library. 

SUBR22: An IBM-written subroutine that allows an 
RPG II program to read records from a transaction file 
created by a WSU program. 

SUBR95: An IBM-written subroutine that allows an 
RPG II program to perform an inquiry function. 

supervisor: A program that manages system resources 
such as the printer(s), display station(s), main storage, 
input job queue, and spooling. 

suppress input operation: A work station data 
management operation that does not invite input from a 
display station. 

swapping function: The System/34 function of placing 
programs or segments of programs temporarily on disk; 
swapping allows the total amount of user storage 
required by concurrently executing programs to exceed 
the amount of main storage normally available for user 
programs. 

system library: The library containing members that are 
part of the SSP in addition to non-SSP members. The 
system library is labeled #LIBRARY and cannot be 
deleted from disk. 

system list function: An SSP function that prints 
output for some SSP utility programs and service aids. 



system printer: The printer, named at system 
configuration time, that is used for system and display 
station printed output unless the output is specifically 
directed to another printer. 

temporary file: A file that cannot be automatically 
deleted until after its expiration date. A temporary file is 
created with a retain parameter of T for disk or 001 
through 998 for diskette. 

terminator: The System/34 function that performs the 
system action necessary to end a job or job step. 

transaction file: A file containing relatively transient 
data that, for a given application, is processed together 
with the appropriate master file. 

user storage: The area of main storage that is not used 
by the SSP. 

work station data management: The SSP function 
that enables a program to present data on a display 
screen by providing only a string of data fields and a 
format name. 

WSU (work station utility): A part of the Utilities 
Program Product that performs an interactive data entry 
and edit function. 

Glossary B-5 



8-6 



II* 2-12 

abnormal termination 
affect on 

file updates 2-67 
files with key sort 2-19 
new files 2-19 
nonshared files 2-19 
records added to shared files 2-62 

description 2-19 
access algorithm 

deriving relative record numbers 2-54 
determining 3-39 
examples 3-42 

access methods 
affect on physical 1/0 3-35 
description 2-53 

acquired display station 
for MRT program 2-112 
for SRT program 2-107 
releasing from a job 2-118 
releasing from an MRT program 2-112 
releasing from an SRT program 2-107 
status during an inquiry 2-107 

active program 2-29 
active program list 2-29 
active user library 

changing 2-96 
description 2-97 
saving a diskette 2-99 
specifying 2-79 

activity 
disk 3-61 
file 3-24 

add files, sharing 2-63 
added records, accessing 

after key sort 2-68 
among logical files 2-71 
in a shared file 2-62 

ADDROUT file, using for relative record 
numbers 2-54, 2-56 

adjust/fill editing 3-57 
advantages of print spooling 2-81 
algorithm, access 

deriving relative record numbers 2-54 
determining 3-39 
examples 3-42 

allocation of file space 2-74 
alphameric fields 3-27 

application 
design 3-49 
example design 5-1 

Assembler program 
ending 2-114 
specifying number of display 
stations 2-113 

stopping a never ending 2'-115 
assign/free area 2-4 
assign/free space 3-60 
A TIN Key to release display station from 
MRT program 2-115 

ATTR OCL statement 2-23, 2-111, 2-113 
attributes, field 2-42 
attributes, program 

affect on disk activity 3-61 
choosing 3-57 
description 2-105 

autocall capabilities 2-132 
autowriter option 

backup and recovery 3-65 
badge reader as data entry device 3-54 
badge security 2-123 
batch program, on active program 
list 2-24 

block 3-32 
block length 3-32 
block number locations on disk 2-74 
blocking records 

advantages 3-32 
considerations for random 
processing 3-33 

description 3-32 
minimizing physical 1/0 3-34 

buffer 
sharing 3-38 
work station 2-43, 3-81 

cancelling a MRT progral)'I 2-115 
changing and aligning forms 2-86 
checkpoint facility 2-139 

considerations 2-140 
restrictions 2-141 

Index 

Index X-1 



Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

COBOL program 
ending 2-114 
number of display stations 2-113 
procedures supplied 5-59 
stopping if never ending 2-115 

coding techniques 4-1 
color for display formats 

column separators 3-12.5 
field attributes used 3-12. 1 
underlining attribute 3-12.5 

command key 
displaying error information 3-10 
in RPG II program 4-20, 4-26 
legend 3-8 

command processor 2-10 
communications with office products 1-2 
compatibility editing 3-57 
COMPILE OCL statement 

for MAT program 2-112 
for SAT program 2-106 
indicating a never-ending program 2-115 
specifying a maximum number of display 
stations 2-113 

COMPRESS procedure 2-70 
conditional output field 2-46 
consecutive processing 

description 2-53 
for active files 3-24 

CONSOLE file 3-52 
control field as relative record 
number 3-39 

controlling print spooling 2-82 
cursor position 3-8 

data 
passing to an MAT program 2-111 
passing via PROMPT OCL 4-12 

data display station 2-105 
data entry programs 

comparison of coding methods 3-50 
DFU 3-50 
editing 3-54 
input forms design 3-19 
RPG II 3-52 
WSU 3-51 

data management 
disk 2-17 
printer 2-79 
SSP-ICF 2-129 
work station (see work station data 
management) 

data processing security 3-69 
data security 3-69 

X-2 

data accuracy 3-70 
input controls 3-70 

data processing security (continued) 
data security (continued) 

limited access to data 3-70 
output controls 3-70 
processing controls 3-70 

fire protection 3-69 
limited access to the computer 3~69 
physical location 3-69 
physical security 3-69 

data stream, reducing for remotes 3-80 
data structure 

for multiple line displays 4-19 
for the local data area 4-5 

date editing 3-57 
deadlock condition 

description 2-64 
preventing 2-65 

default printer 2-78 
default value editing 3-56 
delete-capable files 2-56 
delete code 3-27 
DFU program, data entry 3-50 
direct file 

access algorithm 3-39 
adding records 3-24 
advantages 3-20 
control record 3-23 
des'cription 2-54 
processing consecutively 2-54 
relative record numbers 3-39 
synonym records 3-40 

direct organization 
for master files 3-21 
for transaction files 3-22 
for volatile files 3-24 

directory 
changing its size 2-94 
description 2-94 
size 2-94 

disk accesses 
factors affecting number of 3-61 
for attaching display stations 3-61 
for loading programs 3-61 

disk data management 2-17 
disk drive implementation for extended 
capacity 2-74 

disk file (see file) 
dispatching 2-26 
display 

accepting input from 2-44 
acknowledging operator input 3-9 
consistency 3-6 
design considerations 3-2 
documenting 3-10 
error correction 3-9 
headings 3-3 
inquiry for an MAT program 2-113 
inquiry for an SAT program 2-108 
multiple line 4-19 
operator responses 3-8 



display (continued) 
printing copies of 3-10 
providing error information 3-10 
readable 3-4 
sending a format to 2-43 
showing via PROMPT OCL statement 4-7 
single idea 3-8 
title 3-2 

display screen format 
data fields 2-40 
field attributes 2-42 
programmer definition 2-38 
sending multiple 2-49 
sending to remote work station 2-44 
transmission time 3-81 
used by work station data 
management 2-38 

using color with 2-42, 3-12 
display station 

acquiring in an MRT program 2-112 
acquiring in an SRT program 2-107 
attaching to an MRT program 2-110 
data 2-105 
disk activity for attaching 3-59 
local data area (see local data area) 
maximum number for an MRT 
program 2-113, 3-59 

releasing from a job 2-107 
releasing from an MRT 
program 2-112, 2-114 

releasing from an SRT program 2-107 
distributed disk file facility 2-149 
documentation 

for backup/recovery procedures 3-67 
for displays 3-10 
for program testing 5-61 
for programs 5-65 
record description 3-28 
record formats 5-20 
run book 5-75 
system flowchart 5-28 
system operator run book 5-76 
user run book 5-75 

DROP operation code 
releasing acquired display station from 
an MRT 2-112 

releasing acquired display station from 
an SRT 2-107 

releasing requesting display station from 
an MAT 2-114 

duplication 3-57 

Page of SC21-7742-3 
Issued 27 August 1982 
By TNL: SN21-9074 

editing 
data entry program 3-54 
WSU program 3-52 

EJ indicator 2-115 
erase input fields operation 2-46 
error correction 3-9 
error message 

display design considerations 3-9 
displaying via a put override 
operation 3-81 

execution priority 2-23, 2-25, 2-26, 2-27, 
2-29, 2-30 

execution time limit 2-29 
EXTEND parameter 2-57 
extendable disk files 2-57 
external indicators 

accessing from an M RT program 2-111 
for no-requestor-terminal program 2-118 
reading and updating 3-67 
testing and setting 3-67 

field 

file 

alphameric 3-27 
attributes 2-42 
conditional output 2-46 
editing 3-55 
erase input 2-46 
in display screen format 2-40 
input 2-40 
length 3-26, 3-27 
naming 3-27 
nondisplay 3-6 
numeric 3-26 
output 2-41 
output/input 2-42 
ownership 4-16 
placement on printer forms 3-16 
size 3-26 

activity 
affect of number on disk 
activity 3-61 

factor for choosing file 
organization 3-24 

reducing 3-24 
allocation rules 2-74 
backup 3-71, 4-4 
delete-capable 2-54 
design 3-20, 5-12 
direct (see direct file) 
disk, using as two or more logical 2-71 
extendable 2-55 
groups 2-51 
indexed (see indexed file) 
labels 2-51 
logical 2-71 

Index X-3 



file (continued) 
master (see master file) 
offline multivolume 2-73 
organization 

design considerations 3-20 
file activity considerations 3-24 
for master file 3-21 
for transaction file 3-22 
types 2-52 

password security 2-120 
processing methods 2-54 
rebuild 2-69 
record mode 2-98 
recovery 2-69, 3-71 
resource security 2-126, 2-127 
saving 2-99, 5-32 
sector mode 2-99 
security 2-126 
sequential 2-52 
sharing 

accessing added records 2-62 
affect of abnormal termination 2-62 
affect on physical 1/0 3-38 
considerations 2-63 
in multiple program mode 2-62 
record blocking consideration 3-34 
updating technique 2-67 

types that can be shared 2-62 
types that cannot be shared 2-62 
update program 2-65, 3-59 
volatility 3-24 

file and library security 2-125 
file locking and IFILIE'S 2-60 
finance support subsystem 2-133 
fixed format menu 2-100 
format (see display screen format) 
forms 

backup 3-72 
design 3-16 
input 3-19 
output 3-16 
printer 3-16 

free format menu 2-100 
function control keys 4-26 

headings, display 3-3 
help, providing for a display 3-10, 4-26 
HISTCRT procedure 3-79 
history file 

event review 3-76 
performance consideration 3-60, 3-79 

home location 3-39 
home record 3-39 

X-4 

1/0 
logical 3-35 
physical 3-35 
shared 3-38 

IFILE support 2-58 
index 2-52 
indexed file 

adding records 3-24 
advantages 3-20 
description 2-52 
key sort 2-68 
processing consecutively 2-54 
processing sequentially by key 3-24 
reconstructing an index 2-69 
records-within-limits processing 2-54 
total-file-by-key processing 2-54 
with IFILE attributes 2-58 

indicator 
EJ 2-102 
external (see external indicators) 
for conditioning a displayed 
message 3-9 

for conditioning field attributes 3-9 
for positioning cursor 3-9 
LR 2-114 

initiating a program 2-25 
for never-ending programs 2-25, 2-115 
initiation time 
shortening 3-61 

initiator 
functions 2-11 
MRT procedure processing 2-12 

inpuiry programs and IFILE'S 2-73 
input 

acknowledging 3-9 
inviting 2-38 

input field 2-40 
input forms, designing 3-19 
input job queue priority 2-24 
input job queue program 2-118, 2-119 
inquiry display 

for an MRT program 2-113 
for an SRT program 2-114 

inquiry latch 2-108 
inquiry program 

design 3-59 · 
file processing allowed 2-72 
file usage in single program mode 2-72 

inquiry request 
for an MRT program 2-113 
for an SRT program 2-108 

interactive communications feature 2-128 
sample applications 5-61 

interactive program 
data entry 3-50 
file update 3-59 
inquiry 3-59 
typical 3-49 

IPL file rebuild 2-69 



job 
assigning priority 2-36 
description 2-2 
file 2-111, 2-118 
priority 2-36 
processing 2-3 
starting 2-10 
stop 2-3, 2-18 
without a requestor 2-105 

job management 2-23 
job scheduling 2-23 
JOBQ control command 2-105 

key 
length 3-26 
sorting 2-68 

keys, standardizing use 3-6 
KEYSORT procedure 2-68 
keysorts and !FILE'S 2-61 

length 
field 
record 

library 

3-28 
3-29 

list 

active user 
changing 2-97 
description 2-97 
specifying 2-97 

changing size 2-94 
control sector 2-94 
description 2-93 
directory 2-94 
format 2-94 
member 

storing in a file 2-98 
reusing space 2-96 
search order 2-97 
security 2-126 
sharing 2-98 
size 2-94 

active program 2-29 
program ready 2-27 

list check editing 3-56 
listings of sample procedures 5-33 
load member 2-93 
local data area 

accessing from an MRT program 
accessing via SUBR21 4-5 
example of using 3-67 
extracting data from 3-67 
for no-requestor-terminal program 

2-112 

2-118 

local data area (continued) 
loading for an MRT program 4-5 
loading for an SRT program 4-5 
performance considerations 2-12 
providing input 3-67 
used by RPG II 3-67 
used by SDA 3-67 
used by SMF 3-67 
used by WSU 3-67 
using to increase Sort flexibility 4-16 

local inquiry program 5-78 
LOCAL OCL statement 3-67 
logging OCL, performance 
consideration 2-13 

logical file 
accessing added records 2-71 
description 2-71 
updating records 2-71 

logical 1/0 operation 3-35 
LR indicator 2-114 

magnetic stripe format 
main storage 

used by MRT program 3-62 
mandatory field entry 3-56 
mandatory fill 3-57 
mandatory menu 2-110 
master file 

memo update 4-1 
organization 3-21 
reducing activity 3-24 

master security officer 2-121 
member, library 2-93 

memo updating 4-1 
menu 

chaining 3-13 
description 2-100 
design 3-13 
displaying 2-100 
fixed format 2-102 
free format 2-102 
items 3-13 
mandatory 2-123 
on 1920-character display 2-103, 2-104 
on 960-character display 2-103, 2-104 
security 2-123 

message 
display design consideration 3-9 
from input job queue 2-118, 2-119 
waiting-for-resource 2-1i8 

M RT procedure 
calling 2-109 
considerations 2-112 
creating 2-110 
initiator processing 2-3, 2-11 

Index X-5 



MAT program 
accessing external indicators 2-112 
accessing requestors local data 
area 2-112 

acquiring a data display station 2-112 
authorization to run 2-126 
calling 2-109 
cancelling 2-115 
changing number of requests 2-110 
coding 2-112 
COMPILE OCL statement 2-110 
considerations 2-111 
deciding when to use 3-59 
description 2-109 
disk activity for loading 3-61 
ending 2-114 
file update considerations 2-67 
initiating 2-109 
inquiry into 2-113 
maximum number of display 
stations 2-113, 3-60 

MRTMAX parameter 2-112 
never ending 2-115 
passing data to 2-112 
protecting records from concurrent 
updates 4-12, 4-15 

reducing swapping 3-59 
releasing display stations 2-112, 2-114 
using A TIN key to release display 
station 2-115 

using job files 2-111 
using the local data area 4-5 

M RTMAX parameter 
for an MAT program 2-112 
for an SAT program 2-106 

multiple line displays 4-19 
multiple program mode, file sharing 2-62 
multiple requestor terminal program (see 
MRT program) 

NEP (see never ending program) 
NEP-YES 2-115 
never ending program 

coding 2-115 
deciding when to use 3-59 
disk activity for loading 3-61 
ending 2-116 
input job queue program 2-115 
MAT program 2-115 
SAT program 2-115 

no-outstanding-invites return code 2-114 
no-requestor-terminal jobs 2-118 
nondisplay field 3-6 
nonrestartable job step 2-144 
nonswappable program 2-37 
nonswappabl_e storage 2-37 

X-6 

normal termination 
affect on disk VTOC 2-18 
affect on job files 2-18 
affect on system data areas 2-18 
affect on system resources 2-18 
affect on the requesting display 
station 2-18 

nucleus 2-3, 2-5 
numeric field 3-26 

0 member 2-93 
OCL 

minimizing processing time 
performance considerations 
showing a display 3-64 
testing and setting external 
switches 3-67 

officer 
master security 2-121 
security 2-122 

offline multivolume files 2-73 
operation 

erase input 2-46 
logical 1/0 3-44 
modified work station data 
management 2-46 

normal work station data 
management 2-44 

override fields 2-46 
physical 1/0 3-39 
suppress input 2-49 

2-12 
2-12 

operator input, acknowledging 3-9 
operator response 3-8 
organization, file (see file organization) 
output field 

conditional 2-46 
in display screen format 2-41 

output forms, designing 3-16 
output/input field 2-42 
output, spooling to remote printer 3-81 
overflow area, index 2-52 
overlays, versus swapping 3-62 
override fields operation 5-4 
ownership field 4-15 

P member 2-93 
packed field 3-26 
parameters, passing via PROMPT OCL 4-8 
password security 

description 2-120 
file 2-121 



PDATA parameter 
for passing data 4-12 
for passing parameters 4-9 

performance consideration 2-87 
performance considerations 

disk accesses 3-61 
excessive headings 3-3 
interval polling of remote display 
stations 3-81 

library sharing 2-98 
OCL considerations 2-12 
overlapping keying and program 
initiation 3-64, 4-12 

overlays 3-63 
override fields operation 2-13 
physical 1/0 3-35 
polling remote work stations 3-81 
program attributes 3-57 
program size 3-60 
reducing amount of data 
transmitted 3-80 

remote work stations 3-80 
RUF (read under format) 3-64 
sequential processing 3-38 
work station buffer size 2-43, 3-81 

performance considerations for 
!FILE'S 2-61 

physical I I 0 
description 3-35 
factors affecting 3-35 

polling 
interval 3-81 
nonproductive 3-81 

primary area, index 2-52 
print intercept routine 
printer 

changing default 2-79 
data management output 2-79 
default 2-79 
forms design 3-16 
spooling (see spooling) 
system 2-77 
system list output 2-79 
types 2-77 
work station 2-77 

printer data management 
output 2-79 
programs that use 2-79 

printer, remote 3-81 
priority assigning 2-25 

execution priority 2-23, 2-36 
input job queue 2-24 

procedure 
call an MRT 2-109 
creating an MRT 2-110 
member 2-93 
passing parameters to 4-8 

processing jobs 2-10 

processing method 
consecu~ve 2-54 
random 2-54 
records within limits 2-54 
sequential 2-54 
sequential by key 2-54 
total file by key 2-54 

processor, command 2-10 
PROF procedure 2-121 
profile, password security 2-121 
program 

active 2-29 
attribute 

affect on disk accesses 3-61 
choosing 2-105, 3-59 
description 2-105, 3-59 

batch 3-49 
data entry 3-50 
disk activity for attaching display 
stations 3-61 

disk activity for loading 3-61 
documenting 5-63 
execution time limit 2-29 
file update 2-67, 3-59 
initiating 

description 2-25 
overlapping with keying time 3-66, 
4-11 

input job queue 2-24, 2-25, 2-118 
inquiry 2-72, 3-59 
interactive 3-49 
MRT (see MRT program) 
never ending (see never ending program) 
nonswappable 2-37 
read-under-format 3-64 
ready list 2-26 
size 3-61 
SRT (see SRT program) 
swapping in 2-27 
swapping out 2-28 
updating using SEU 5-29 
user 2-17 
using the local data area 3-65, 4-5 

program ready list 2-26 
program testing considerations 5-60 
PROMPT OCL statement 

format 4-7 
PDATA parameter 4-8, 4-11 
performance considerations 2-13 
UPSI parameter 4-7 
using to show a display 3-64, 4-8 

protection 
against concurrent record 
updates 2-63, 4-13, 4-15 

sector 2-63 
PRTY control command 2-23, 2-119 
public access level 2-126 
put override operation 3-81 

Index X- 7 



R member 2-93 
random file processing 2-54 
range check editing 3-56 
read under format 3-64 
rebuild, IPL file 2-69 
record 

accessing those added to a shared 
file 2-63 

adding to a direct file 3-24 
adding to an indexed file 3-24 
blocking 3-32, 3-35 
delete code 3-28 
design 3-25 
documenting layout 3-29 
extra space 3-28 
home 3-40 
layout 3-29 
length 2-12, 3-29 
naming fields 3-28 
number, relative (see relative record 
number) 

protection from concurrent 
updates 4-13, 4-15 

relative number (see relative record 
number) 

removing 3-28 
synonym 3-40 
updates in logical files 2-67 

record mode file 2-98 
records-within-limits file 
processing 2-54 

recovery 3-67 
region size 3-62 
REL operation code 

for an MRT program 2-114, 2-116 
for an SRT program 2-107 

relative record number 
assigning 3-39 
description 2-54, 2-55 
determining with an access 
algorithm 3-39 

using an ADDROUT file 2-54 
RELEASE-YES parameter 2-118 
releasing 

a display station 2-107, 2-114, 2-116, 
2-118 

a sector 2-65 
remote inquiry program 5-80 
remote printers, spooling 3-81 
remote work station 

avoiding unnecessary data 3-4 
considerations 3-80 
nonproductive polling 3-81 
performance considerations 3-80 
receiving input from 2-44 
transmitting a format to 2-44 
using erase input fields operation 2-46 
using override fields operation 2-46 

REQD-YES parameter 2-107, 2-114 

X-8 

requesting display station, 
releasing 2-115,2-121 

required field entry 3-56 
resource conflicts, avoiding 3-59 
resource security file 2-126 
response time 

affected by acknowledging operator 
input 3-9 

affected by file organization 3-20 
affected by unnecessary data 3-4 
direct file advantage 3-22 
shortening by assigning priority 2-36 
shortening by using two MRT 
procedures 2-112 

shortening via MRT programs 3-59 
shortening via SRT programs 3-60 

restart facility 2-142 
return code, 
no-outstanding-invites 2-115, 2-120 

RPG II program 
data entry 3-52 
ending 2-114 
number of display stations 2-113 
stopping a never ending 2-116 

RUF (read under format) 3-64 

S member 2-93 
sample inquiries using SSP-ICF 5-77 
sample procedures, listings of 5-33 
sector 

deadlock 2-64 
description 2-63 
protection 2-63 
release 2-66 

sector-mode file 2-99 
sector protection and !FILE'S 2-65 
security-file listing 2-127 
security, system 

classifications 2-121 
description 2-120 
file and library 2-126 
officers 2-121 
public access level 2-126 
resource file 2-126 
sign on 

badge 2-123 
menu 2-123 
password 2-120 

self check editing 3-57 
separator pages 2-87 
sequential-by-key processing 2-53 
sequential file 

advantages 3-20 
description 2-53 
processing consecutively 2-54 
processing randomly 2-54 



sequential processing 
affect on physical I I 0 activity 3-38 
method 2-54 

SET /KEY data entry method 3-52 
shared file (see file sharing) 
shared 1/0, affect on physical 1/0 3-38 
shared libraries 2-98 
shared processor time 2-26 
sign-on security 

badge 2-123 
menu 2-124 
password 2-120 

single program mode, file usage 2-72 
single requestor terminal program (see SRT 
program) 

sort program 2-54, 4-17 
sorting keys 2-69 
source member 2-93 
spool commands 2-88 
spool file 2-82 
spool file size 2-83 
spool intercept buffer 2-84 
spool intercept routine 2-84 
spool writer program 2-85 
spool writer programs 
spooling 

description 2-81 
remote printers 3-81 

spooling options during 
configuration 2-82 

SRT program 
acquiring a display station 2-107 
coding 2-106 
COMPILE OCL statement 2-106 
deciding when to use 3-59 
description 2-106 
disk activity for loading 3-59 
interrupting 2-108 
MRTMAX parameter 2-106 
never ending 2-116 
passing data to 2-106 
releasing display stations 2-107 

SSP-ICF 2-129 
sample application 5-78 

STOP SYSTEM command 2-68, 2-115 
storage 

index 3-35 
nonswappable 2-37 
swappable 2-37 

storage concepts 
disk storage 

task work area 2-2 
main storage 

assign/free 2-4 
assign/free size 2-4 
nucleus size 2-5 
system nucleus 2-3 
transient area 2-3 
user area 2-5 

storage contents 3-35 

subconsole operator 2-122 
subroutine 

member 2-93 
reading and updating external 
indicators 3-67 

SUBR21 4-5 
SUBR22 3-51 
suppress input operation 

description 2-49 
for remote work stations 3-81 

swap area 2-29 
swappable storage 2-28 
swapping 

affect on performance 3-62 
description 2-27 
of priority jobs 2-28 
reducing via MRT programs 3-59 
time taken 2-35 
using active program list 2-32 
versus overlays 3-62 

SWITCH OCL statement 3-67 
switches parameter of the PROMPT OCL 
statements 4-8 

synonym records 
description 3-40 
example 3-42 

system input (SYSIN) processing 2-3, 2-21 
system list, programs using 2-78 
system operator security 
classification 2-122 

system printer 2-77 
system security 2-1 21 
system testing 5-75 
system/34 and distributed 
processing 2-146 

System/34 as host system 2-147 
System/34 as PEER connection 2-149 
System/34 as processor terminal 2-146 
System/34 as subhost system 2-148 

table lookup editing 3-58 
task work area 2-2 
termination, abnormal (see abnormal 
termination) 

termination, normal 2-18 
terminator 2-18 
testing 

program testing 5-61 
system testing 5-75 

third and fourth disk drives 
total-file-by-key processing 

2-74 
2-54 

transaction file 
backup 3-67 
choosing a file organization 
created by a WSU program 
organization 3-22 

transmission rate 3-81 

3-22 
3-22, 3-51 

Index X-9 



update file, sharing 
update program, file 
updates, file 

2-62 
2-67, 3-58 

common errors 2-67 
in logical files 2-71 
memo updating 4-1 
protecting against concurrent 
updates 4-13, 4-15 

technique 2-67 
UPSI 3-67 
user library, active 

changing 2-97 
description 2-97 
specifying 2-97 

user program 2-17 
U1 through U8 3-67 

vertical line spacing 2-80 
volatility, file 3-24 
VTOC, verifying entries 2-69 

work station buffer 2-43, 3-81 
work station data management 

description 2-38 
input operations 2-43 
modified operations 2-46 
normal operations 2-44 
operations requested by Assembler 
programs A-1 

output operations 2-43 
work station printer 2-77 
WORKSTN file 3-52 
WORKSTN OCL 2-107, 2-110 
WSREL operation 2-107, 2-110, 2-112 
WSU program 

data entry 3-51 
ending 2-114 
local data area usage 3-66 
never ending 2-116 
stopping a never ending 2-116 

X.21 interface 2-133 

X-10 

zoned decimal field 

3262 printer 3-16 
5211 printer 3-16 

3-26 

5225 printer 2-80, 3-16 
5256 printer 3-16 



I BM System/34 
READER'S COMMENT FORM 

Concepts and Design Guide 

Please use this form only to identify publication errors or to request changes in publications. Direct any requests 

for additional publications, technical questions about IBM systems, changes in IBM programming support, and so 

on, to your IBM representative or to your nearest IBM branch office. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box 
and do not include your name and address below. If your comment is applicable, we will include it 

in the next revision of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

SC21-7742-3 

Please contact your nearest IBM branch office to request additional 
publications. 

IBM may use and distribute any of the information you supply 
in any way it believes appropriate without incurring any 
obligation whatever. You may, of course, continue to use the 
information you supply. 

No postage necessary if mailed in the U.S.A. 

Name 

Company or 

Organization --....------------------

Address 

City State Zip Code 



SC21-7742-3 

Fold and tape 

Fold and tape 

Please do not staple 

111111 

BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 40 

POSTAGE WILL BE PAID BY ... 

IBM CORPORATION 
General Systems Division 
Development Laboratory 
Publications, Dept. 245 
Rochester, Minnesota 55901 

Please do not staple 

ARMONK, N. Y. 

Fold and tape 

NO POSTAGE 
NECESSARY IF 
MAI LED IN THE 
UNITED STATES 

Fold and tape 



--- ------ ----- - --- - ---- -------------·- Technical Newsletter This Newsletter No. SN21-9074 
® 

Date 27 August 1982 

I BM System/34 
Concepts and Design Guide 

©IBM Corp. 1979, 1980, 1981, 1982 

Base Publication No. SC21-7742-3 

File No. S34-34 

Previous Newsletters None 

This technical newsletter applies to release 8, modification 0 of the IBM System/34 and provides 
replacement pages for the subject publication. These replacement pages remain in effect for 
subsequent releases unless specifically altered. Pages to be inserted and/or removed are: 

iii through viii 
2-41, 2-42 
3-3, 3-4 
3-11, 3-12 
3-12.1 through 3-12.6 (added) 
X-1 through X-4 

Changes to text and illustrations are indicated by a vertical line at the left of the change. 

Summary of Amendments 

• Support for 5292 Color Display Station 

Note: Please file this cover letter at the back of the manual to provide a record of changes. 

IBM Corporation, Information Development, Department 245, Rochester, Minnesota 55901 

©IBM Corp. 1982 Printed in U.S.A. 



E> 

11111111 
·II•· 

11111111 

11:11:11 
flm•ll 

IBM Sy~tem/34 Concepts and Design Guide (File No. 534-34) Printed in U.S.A. SC21-7742-3 

M 
N 
"""' ,...... 
~ -N 
(.) 
en 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	replyA
	replyB
	xBack



