"
93
zo
~o
No
i

e ——— SC21-7742-3
[—
re———

File No. $34-34

IBM System/34
Concepts and Design Guide

Program Numbers 5726-SS1
5726-AS1
5726-FO1
5726-RG1
5726-UT1
5726-CB1
5726-BA1

Fourth Edition (January 1982)

This is a major revision of, and obsoletes, SC21-7742-2. New material includes
System/34 storage concepts, IFILE programming considerations, print spooling,
the X.21 interface, and data processing security. Changes or additions to the text
are indicated by a vertical line to the left of the change or addition.

This edition applies to release 08, modification 0 of IBM System/34 and to all
subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

Changes are periodically made to the information herein; changes will be reported
in technical newsletters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country. (For example, ideographic support is available only in Far
East countries.)

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979, 1980, 1981, 1982

This manual is primarily for System/34 designers,
analysts, and programmers who are changing a
centralized operating environment to a work station
operating environment. The reader should understand
how System/34 functions can be used in a centralized
environment. The System/34 Implementation course,
S$2020 provides one way to obtain this information.

The manual is divided into the following segments:

Chapter 1. Introduction: Explains the need for careful
design and programming on System/34 in a work
station environment.

Chapter 2. System/34 Concepts: Reinforces many
concepts that are important in either a centralized or
work station environment and presents additional
concepts that should be understood before design and
programming in a work station environment begins.

Chapter 3. Design Considerations: Describes designing
displays, input documents, printer forms, files,
programs, and security and integrity for a work station
system.

Chapter 4. Coding Techniques: Presents coding

examples that illustrate concepts explained in Chapters 2

and 3.

Chapter 5. Sample Applications: Presents a sample order

entry application and sample inquiry applications.

Appendix A. Display Station Operations Requested by
Basic Assembler Programs: Describes the work station

data management operations that can be requested from

an assembler program.

Note: This manual follows the convention that he means

he or she.

Prerequisite Publications
IBM System/34 Introduction, GC21-5153

IBM System/34 Planning Guide, GC21-5154

Preface

Related Publications

« IBM System/34 System Support Reference Manual,
SC21-5155

« IBM System/34 Operator's Guide, SC21-5158

« IBM System/34 Command and OCL Statements
Reference Summary, GX21-7690

« IBM System/34 Data File Utility Reference Manual,
SC21-7656

« IBM System/34 Source Entry Utility Reference
Manual, SC21-7657

« IBM System/34 Sort Reference Manual, SC21-7658

« IBM System/34 Work Station Utility Reference
Manual, SC21-7663

« IBM System/34 RPG Il Reference Manual, SC21-7667

« IBM System/34 Installation and Modification Reference
Manual, SC21-7689

« IBM System/34 Data Communications Reference
Manual, SC21-7703

« IBM System/34 Interactive Communications Feature
Reference Manual, SC21-7751

- IBM System/34 Basic Assembler and Macro Processor
Reference Manual, SC21-7705

« IBM System/34 Screen Design Aid Programmer’s
Guide and Reference Manual, SC21-7716

- IBM System/34 Overlay Linkage Editor Reference
Manual, SC21-7707

» IBM 5211 Printer Models 1 and 2 Component
Description and Operator’s Guide, GA24-3658

« IBM 3262 Models Al and B1 Component Description
and Operator’s Guide, GA33-1530

« IBM 5224 Printer Models 1 and 2 Setup Procedures

Page of SC21-7742-3
lssued 27 August 1982
By TNL: SN21-9074

IBM 5224 Models 1 and 2 Operator’'s Guide,
GA34-0092

IBM 5256 Printer Operator's Guide, GA21-9260
IBM 5225 Printer Operator's Guide, GA34-0089

IBM System/34 FORTRAN IV Reference Manual,
SC21-7706

IBM System/34 COBOL Reference Manual,
SC21-7741

IBM System/34 Installation Manual—Physical Planning,
GA21-9242

IBM System/34 Physical Planning Template,
GX21-9280

IBM System/34 BASIC Reference Manual, SC21-7835

IBM System/34 System Measurement Facility
Reference Manual, SC21-7828

IBM 5292 Color Display Station Operator's Guide,
GA21-9416

IBM 5292 Color Display Station Programmer's Guide
to Using Color, GA21-9413

CHAPTER 1. INTRODUCTION 11

CHAPTER 2. SYSTEM/34 CONCEPTS 2-
SYSTEM/34 STORAGE CONCEPTS
Disk Storage 000 0.
Task Work Area
Main Storage 0000 e
Transient Area« . o . ..
System Nucleus
Control Area . .
Assign/Free Area
Assign/Free Size
Nucleus Size
UserArea « « v v v v v o o
SYSTEM/34 JOB PROCESSING
Jobs and Job Steps on System/34
Functions Performed During Job Processing e
Command Processor 2-10
Initiator
User Program« 2-17
Terminator 00 e .. 2-18
System Input (SYSIN) Processing 2-20
System Input Processing Example 2-21
JOB MANAGEMENT AND JOB SCHEDULING
ONSYSTEM/34« v v oo 2-23
Execution Priorites 2-23
Placement of Jobs on the Input Job Queue
Changing the Position of a Job Within

1
OO UTNPPDBDWWWNNN=

NNNNNNI})NNNNNNN

the InputJob Queue 2-24
Execution Priorities of Jobs in the
InputJobQueueo .. 2-25
Initiating @ Program 2-25
Dispatching 2-26
Swapping o e e e e e e e e e e 2-27
Active Program List 2-29
How the Swapping Function Uses the
Active Program List 2-32
Swapping Times« . .. 2-35
Job Priority00 2-36
Execution Priority Hints 2-37
Nonswappable Programs 2-37
WORK STATION DATA MANAGEMENT 2-38
Data Fields in a Display Screen Format 2-40
Field Attributes . e e e e e e e e e e 2-42
Work Station Data Management Operations 2-43
The Work Station Buffer 2-43
Normal Operations 2-44
Modified Operations 2-46
Operations Requested by Basic Assembler
Programs o000 2-49
FILECONCEPTS« .« o« 2-50
File identification 2-51
File Organization « . « .. 2-52
File Processing 2-53
Delete-Capable Files 2-55
Extendable Disk Files 2-57
Indexed Files With the IFILE Attributes 2-58

Contents

PROGRAMMING ATTRIBUTES OF IFILES 2-60
File Locking and IFILES 2-60
Performance Considerations 2-61
Keysorts and IFILES 2-61

File Sharing in Multiple Program Mode 2-62
Types of Files That Can Be Shared 2-62
Type of File That Cannot Be Shared 2-62
Accessing Records Added to Shared Files 2-62

File Sharing Considerations 2-63

Sector Protection 2-63

File Update Programs 2-66

Key Sorting for Indexed Files 2-68

IPL File Rebuild Function 2-69

Using a Disk File as Two or More Logical Files 2-71

Use of a File by an Inquiry Program in Single

Program Mode 2-72
Inquiry Programs and IFILES 2-73

Offline Multivolume Files 2-73

Third and Fourth Disk Drive Implementation

Considerations 2-75

PRINTER CONCEPTS 2-77
Printer Data Management Qutput 2-79
System List Qutput 2-79
Example of Directing Printer Data Management

Output and System List Output 2-79
Vertical Line Spacing Support for the 5225 Printer . 2-80

PrintSpooling. 2-81
Advantages of Print Spooling 2-81
Spooling Options During Configuration 2-82
Control of Print Spooling 2-82
Spool File 2-82
Spool Intercept Routine 2-84
Spool Writer Programs 2-85
Performance Considerations 2-87
Spool Commands 2-88
Identifying Your Spool Output 2-89
The COPYPRT Command 2-89

Using the STATUS PRT and COPYPRT Commands . 2-90
Using Procedure Members and the

COPYPRTCommand 2-91
Related Spooling Documentation 2-92
LIBRARIES« . v 2-93
Types of Library Members 2-93
Library Format 2-94
Directory oo e e e 2-94
Library Sizeo 00000 2-94
Reuse of Library Space 2-96
Active User Library 2-97
Library Sharing« o 2-98
Storing Library Members in Disk or Diskette Files . . . 2-98
Record-Mode Files 2-98
Sector-Mode Files 2-99
Saving a Library on Diskette 2-99
MENUS oo . 2-100
Fixed-Format and Free-Format Menus 2-102
PROGRAM ATTRIBUTES 2-105

Contents v

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

SRT (Single Requestor Terminal) Program 2-106
Coding SRT Programs 2-106
Acquiring a Display Station in an SRT Program . . 2-107
Releasing Display Stations from an SRT Program . 2-107
Interrupting an SRT Program 2-108

MRT (Multiple Requestor Terminal) Program 2-109
Coding MRT Programs 2-112
Acquiring a Display Station in an MRT Program 2-112
Releasing an Acquired Display Station from

an MRT Program 2-112
Interrupting an MRT Program 2-113
Maximum Number of Display Stations for an

MRT Program 2-113
Releasing Requesting Display Stations from

MRT Programs 2-114
Ending MRT Programs 2-114
Canceling an MRT Program 2-115
Using the Attn Key to Release a Display Station
from an MRT Program 2-115

Never-Ending Program (NEP) 2-115
Coding Never-Ending Programs 2-117
Ending a Never-Ending Program 2-117

JOBS THAT RUN WITHOUT A REQUESTING

DISPLAY STATION 2-118

SYSTEM-PROVIDED SECURITY - 2-120

Password Security 2-120
Security Classifications 2-121

Badge Security 0oL 2-123
Format of the Magnetic Stripe 2-123

Menu Security 2-124

File and Library Security 2-125

Security File Listing 2-127

INTERACTIVE COMMUNICATIONS FEATURE

(SSP-ICF) e e e e 2-128
SSP-ICF Sessions 2-129
Locally Initiated Sessions 2-129
Remotely Initiated Sessions 2-130
SSP-ICF Data Management 2-131
Autocall Capabilities e e o o000 2-132
System /34 Finance Support Subsystem 2-133

Data Communications and the X.21 Interface 2-133
Communications Support Available with the
X2linterface 2-135

SAMPLE iNQUIRY APPLICATION USING SSP-ICF 2-136
Local Inquiry Program 2-136
Remote Inquiry Program 2-138

CHECKPOINT FACILITY (FOR COBOL AND

ASSEMBLER PROGRAMS AND SUBROUTINES) . 2-139
Checkpoint Restrictions 2-140
Checkpoint Considerations 2-141

RESTART FACILITY 2-142
Restart Considerations 2-142
Printed Qutput 2-144
Nonrestartable Job Step 2-144
Removing Checkpointed Jobs 2-144
Operator Considerations 2-145
System/34 and Distributed Data Processing

Environments 2-146
Systen/34 as a Processor Terminal 2-146
System/34 as a Host System 2-147
System/34 as a Subhost System 2-148
System/34 as a Peer Connection 2-149

Distributed Disk File Facility 2-149

vi

CHAPTER 3. DESIGN CONSIDERATIONS

DISPLAYDESIGN
Identify the Displays
Provide Meaningful Headings
Plan Readable Displays
Display a Small Amount at One Time
Maintain Consistencies Among Displays
Keep Operator Responses Short
Provide One Idea for Each Display
Acknowledge Operator Input
Make Error Correction Easy
Provide a MeansforHelp
Make the Operator Feel Productive
Document the Displays
Make the Screen Look Line the Source Document
Use SDA as a Documentation Aid
Use Color if Possible
The Display Format is Easier to Read
UsingColor
Error Conditions Are Easier to Identify
Specifying Color for Display Formats
Column Separators and Underlining with Color . .
MENUDESIGN
FORMS DESIGN
Design Considerations for Output Forms
Design Considerations for Input Forms
FILEDESIGN
File Organization
Master File Organization
Transaction File Organization
Volatility of Files
Activity of the Files
Record Design
Determining Field Size
Providing for a Delete Code
Providing Extra Space -
Naming Fields
Documenting Record Layout
Record Blocking
Physical 1/0 and Logical I/O
Blocking Records to Minimize Physical 1/0
Access Method
Storage Index
Sequential Processing
File Sharing
Shared 1/0
Access Algorithms for Direct Files
Determining an Access Algorithm
Handling Synonym Records
Examples
APPLICATION DESIGN
Data Entry Programs e
DFU Data Entry Programs
WSU Data Entry Programs
RPG Il Data Entry Programs
The Badge Reader as a Data Entry Device
Editing in Data Entry Programs
Inquiry Programs
File Update Programs
Program Attributes
Disk Activity for Loading Programs and Attaching
Display Stations to Them
Minimizing Disk Activity to Increase Throughout
on the System

...................

...........

w
1
-l

1 IO
QOO PWNN

wwwwc?:wwwww

3-10

Program Size .
Read-Under-Format (RUF)
Display Station Local Data Area .
External Indicators . . .
DATA PROCESSING SECURITY AND ACCURACY
Physical Security .
Physical Location . .
Limited Access to the Computer
Fire Protection
Data Security .
Limited Data Access .
Backup and Recovery Consnderatuons
Method 1
Method 2
Method 3
History File
HISTCRT Procedure
Considerations For Remote Work Statlons

CHAPTER 4. CODING TECHNIQUES

Memo Updating . .
Program Communlcatlon wnth the Local Data Area .
Using the PROMPT OCL Statement .
Using the PROMPT OCL Statement wnth
PDATA-NO - e
Using the UPSI Parameter of the
PROMPT OCL Statement . .
Using the PROMPT OCL Statement wnth
PDATA-YES ..
Protecting Records from Concurrent Updates
in an MRT Program ..
Protecting Records from Concurrent Updates
by Muitiple MRT Programs
Using the Local Data Area to Increase Sort
Program Flexibility .
Using Data Structures for MuItlpIe Lme Dnsplays
Accessing a Function Control Key or Command Key
in an RPG Il Program . .

CHAPTER 5. SAMPLE APPLICATIONS

SAMPLE ORDER ENTRY APPLICATION
Documenting Application Functions
Designing the Screens .
Designing Disk Files .

Master Files

Transaction Files
Designing the Report . .

Considerations for De3|gnmg Output Reports .
Determining Program Requirements

System Flowchart
Building a Development lerary
Building a Development Menu
Creating Development Procedures .

Using SEU to Update and Recomplle

a Program (ZSEUR)
Saving Disk Files (ZSAVEF)
Changing the Session Library and/or
Menu (ZLIBCHNG) .

Listings for Sample Development Procedures .

Creating Display Screen Formats

RO
QO PAPN-=00LVOOVOONIOPN

wwwwwwwwwclowwwwwwww
ONSNNSNNNSNYNDOODDDHIOODOOND O

.P

R
NO= o

‘F 1
- =]

o aoa
[

I
WNNNNNN= =22

0101010101?101010101
COWON—_LOORNNDPN=

e
w
o

Page of SC21-7742-3
Issued 27 August 1982

By TNL: SN21-9074

Coding the Programs
Coding with RPG Il . .
Coding with COBOL
Testing the Programs . .
Considerations for Program Testmg .
Documenting the Application Prcgram
System Test .
User’s Run Book . . .
Operator Program Run Book .
SAMPLE INQUIRY APPLICATIONS USING SSP ICF
Local Inquiry Program .
Remote Inquiry Program .

APPENDIX A. DISPLAY STATION OPERATIONS
REQUESTED BY BASIC ASSEMBLER PROGRAMS .

GLOSSARY e

O'IUI(.H(.HO'IO'IC'HU'IU'IUIO'I(JI
ONNNNNOOOO D OO
COOOOUCICIOIN-=0OWW

A-1

Contents vii

viii

Chapter 1. Introduction

IBM System/34 is a general-purpose system that can be designed to operate
in a work station environment. In this environment, the system is available to
users via display stations and printers that are in their departments. A major
advantage of this environment is that users have access to current, correct
information in the system. Also, users can enter data directly into the system
and find and correct errors that might otherwise be overlooked.

Designing a system and applications that fit your business needs requires
activities such as planning displays, menus, input documents, output forms,
files, programs, and security and integrity procedures. Some of this planning
would be required for any type of system, but some additional planning must
be done especially for a work station environment. This manual provides
important information that you should know in order to design a system in that
environment.

A well-designed system should have the following characteristics:

Easy to Use: System/34 operators should not need to understand how the
system or its programs work. If the displays are understandable, if applications
are divided into logical steps, if written operator instructions are clear, and if
operator data entry is minimized, operators can be productive and make few
mistakes.

Provide Adequate Throughput: Throughput is the amount of work done by the
system during a period of time. You could determine for example, the number
of invoices, orders, and inquiries that should be processed over a period of
time and design a system that can realistically meet those requirements.

Provide Satisfactory Response Times: Response time requirements can vary
significantly. For example, a 15-second response time might be adequate for
an inquiry program that is used occasionally, but a 2-second response time
might be required for an order entry application that is used for an hour or
more at a time.

Able to Change and Grow: A well-designed system allows for future
expansion. For example, the design should allow for additions of display
screens, printers, and new applications. Be aware that a design might be
adequate initially but might require major rework when the work load increases
or additional applications are installed.

Introduction 1-1

Provide Security and Integrity: System security and integrity should be planned
for the system so that information required for an audit can be maintained,
recovery from system failures can occur, and the system cannot be used
without proper authorization.

This manual has been written to help you design a system that has these
characteristics. Chapter 2, System/34 Concepts provides information that
shouid help you design and code applications that use system resources
efficiently. Chapter 3, Design Considerations provides considerations for many
of the design activities that you will do. Chapter 4, Coding Techniques
describes techniques that should be of interest to programmers. Chapter 5,
Sample Application describes the design and development of a sample order
entry application. These chapters can give you a better understanding of your
System/34 and of designing applications to meet the objectives you set.

If you are an experienced designer of work station systems, you would already
know much of the information in Chapter 3 and might want to skip that
chapter. If you thoroughly understand how System/34 works and are
interested mainly in designing the system, you might skip Chapter 2 and begin
reading Chapter 3.

Binary synchronous communications (BSC) between the System/34 and some
office product devices are available with an RPQ. These office product devices
are:

« 6640 Document Printer

+ 0S/6 Information Processor

« Magnetic Card ll-Communicating

o 6670 Information Distributor

« 6240 Magnetic Card Typewriter~Communicating

Chapter 2. System/34 Concepts

This chapter describes concepts of System/34 that are important in a work
station environment. Understanding these concepts can help you plan your

design more confidently and evaluate the design considerations presented in
Chapter 3. The following concepts are described in this chapter:

« System/34 storage concepts: Describes the storage areas used by the
System/34.

« System/34 job processing: Describes how the SSP (System Support
Program) processes jobs and job steps.

« Dispatching and swapping: Defines dispatching and swapping and explains
how the priority capabilities of the system affect dispatching and swapping.

« Work station data management: Defines work station data management and
explains how it works.

« File concepts: Describes important System/34 file concepts such as file
sharing and sector protection.

« Printer concepts: Describes spooling and the differences between the
system list function and the printer data management function.

« Libraries: Describes library members, library size, and active user libraries.

« Menus: Describes fixed-format and free-format menus.

« Program attributes: Describes single requestor terminal {(SRT) programs,
multiple requestor terminal (MRT) programs, never-ending programs (NEPs),
and programs that release the requesting display station.

« Security: Describes the security functions provided by System/34.

« Interactive Communications Feature (SSP-ICF): Lists the communications

interfaces supported by SSP-ICF, describes the concept of sessions, and
briefly describes the SSP-ICF data management function.

System/34 Concepts 2-1

2-2

System/34 Storage Concepts

Understanding the storage areas used by the System/34 helps you use the
system efficiently. The following diagram illustrates the important storage
areas of the System/34.

Main Storage

Transient
Area
System
Nucleus
Task Work
User
. Area
Disk
Storage

DISK STORAGE

Disk storage is used by the system as a storage place for both programs as
well as files and libraries.

Task Work Area

Programs are moved from main storage to disk and from disk to main storage.
After they are removed from main storage, programs or portions of programs
are stored in the task work area (TWA) of the disk. Also contained in the TWA
are work areas used by active programs and control information used by the
system.

The size of the TWA depends upon:
« Number of display stations being used
« Number of programs running within the system

If a program tries to acquire more disk space than is available within the TWA,
the system attempts to allocate disk storage space. If there is enough
additional space, the system expands the TWA, although this reduces the
amount of space available for your files and libraries. An active program waits
until the necessary amount of disk space is available when there is not enough
room to expand the task work area.

MAIN STORAGE

Main storage contains programs, data, or instructions to the computer. It also
contains work areas used by both application programs and the system.

The following diagram shows the basic parts of main storage.

Transient Area

Control Area

System programs and system work areas System NUCLEUS

Assign/Free

Share work area for system and user programs

User Area

User programs, extended disk data management
and terminator.

Transient Area
System programs not required to be in main storage all of the time are called
transient programs. There is a 2 K area of main storage called the transient
area which is used to contain these programs. Transients are loaded into the
transient area from the system library.

System Nucleus
The system nucleus manages system resources such as:
« Disks
* Printers
« Display stations
There are two main areas of the system nucleus:

« Control area

« Assign/Free area

System/34 Concepts

2-3

2-4

Control Area

The control area contains the programs and work areas used by the system.
Some of the items within the control area are:

« The SSP

+ Work space used by the spool writer and spool intercept routine
« Work space used by the work stations

« The system routines that control your libraries and files on disk

« The system routines that control work station operations

Assign/Free Area
The assign/free area contains temporary storage space for both user and
system programs. The more programs you have executing the more the
system attempts to increase the size of the assign/free area by reducing the
size of the user area. The system issues a message when the assign/free area
can no longer be expanded.

Assign/Free Size

The maximum size of the assign/free area is 32 K bytes. The size of the
assign/free area is affected by:

« Number of active tasks
« Number of never ending programs (NEPs)
_+ Number of multiple requestor tasks (MRTs)
« Number of work stations varied on or signed on

« Number of open files

Nucleus Size
The size of the nucleus you create on your system is important in three ways:

« The smaller your nucleus, the more main storage you can use for your
programs.

» The larger your nucleus, the more system resource you can use at the same
time. A resource is either a program, a file, an NEP/MRT, and so on.

« The system can potentially provide better response time and throughput as
the nucleus increases in size.

You want to have a nucleus size that gives you the maximum amount of
main storage while obtaining the most work possible from the System/34.

The maximum nucleus size is 50K bytes.

User Area

System/34 loads your programs into the user area of main storage before
running them. The user area also contains extended disk data management.

For more information about the nucleus size and performance, refer to Chapter
12 of the Planning Guide.

System/34 Concepts 2-5

System/34 Job Processing

A basic understanding of the steps in System/34 job processing can help you
design and code applications that more efficiently use System/34. This section
defines the differences between jobs and job steps and describes the major
functions performed during job processing. The following diagram shows the
major SSP functions that are used to process your job.

JOBS AND JOB STEPS ON SYSTEM/34

On System/34, a job is a2 unit of work initiated by an operator at a display
station or by a remote program that communicates with System/34 via the
Interactive Communications Feature (SSP-ICF). One or more programs can be
executed as part of a job. The execution of each program within a job is called
a job step. Any of the following methods can be used to start a job on
System/34:

« Entering OCL statements from the keyboard. When OCL statements are
entered from the keyboard, the execution of a single program is considered
to be a job. The LOAD and RUN statements, any OCL statements entered
between them, and any utility control statements are processed as part of
the job. OCL statements that are not entered between LOAD and RUN
statements are processed as individual jobs. For example, the setting of
switches via a SWITCH OCL statement that is not entered between a LOAD
statement and a RUN statement is a job on System/34.

+ Running a procedure. The operator can cause a procedure to be run by:
— Entering a procedure command from the keyboard
— Selecting an item from a menu
— Placing the procedure on the input job queue

The execution of the procedure requested by the operator is a job on
System/34. If the requested procedure runs other procedures, those
procedures are part of the job. :

« Using the EVOKE OCL statement to evoke a different job from within a
procedure.

« Evoking the job from a remote program that is communicating with
System/34 via SSP-ICF. '

The SSP (System Support Program) assigns a unique job name to each job
that the operator submits. The SSP-assigned job name has the following
format:

wwhhmmss

where ww is the work station ID of the requesting display station or the
session ID of the associated SSP-ICF session, and hhmmss is the time the job
was submitted in hours, minutes, and seconds based on the 24-hour clock,
which is set by the system operator.

System Control Flow Overview

Starting
the
System PL

<—___J> Work Station Display
C —v M Station

Processor

:

Job Control
Processing OCL from Display Station Batch — Batch Job Procedures < >
Commands < Batch
v Job
| » Messages, Prompts, Responses : :
Svsin Initiator
>
Keyboard (‘ ocL > Messages and Responses
SYSIN - ~
Reader/ SYSLOG
Interpreter
—
oct Source
SYSIN
File Names
K vroc &
Responses Disk tor .
Starti hrocedure tnitie (Cmem— L]
arting Librar: ibrary
e ! c/io MSG MBRS, |~ A
Job . User PGMS) ,
Object
Library
Active Disk Files] ::ls;ory
:ﬁ SWORK Put
Pr?,g"f" for Sort
Initiation Local L
Area Task
C——‘—‘% o
. Area
[|active 1 L 2~
Disk Files
Assign/Free -
Device
$WORK Allocate
Pointers
Open o—
?
Data
Management
i User
Running Program
a
'l SYSLIST
Active Disk Files Termination Close
>
Close files and update VTOC.
Step (;
Terminating Termination
a
Job
Keysort
for Index File
Job
Termination
Control Flow
Data Fiow

 E—

System/34 Concepts 2-7

2-8

FUNCTIONS PERFORMED DURING JOB PROCESSING

When the operator enters a statement or command on a command display or
when he selects an item from a menu, the SSP function called the command
processor processes the entry. If a remote program requests a job to be run,

the command processor also processes the procedure command.

If the statement entered is a control command, the command processor

Job Request
from
Operator

or

Procedure Command
from
Remote Program

Command
Processor

performs the requested function. If the statement entered is not a control

command, the command processor either passes control to the initiator

function of the SSP or attaches the display station to an active MRT program

if the procedure command is for an already active MRT program.

The initiator reads and processes OCL statements for the job. When it

Job Request
from
Operator

or

Procedure Command
from
Remote Program

Command
Processor

MRT Program

initiator

processes a RUN OCL statement, the initiator loads the requested program and
passes control to it. The RUN statement is the last OCL statement in a job

step.

Job Request
from
Operator

or

Procedure Command

Command
Processor

MRT Program

from
Remote Program

Initiator

User

Program

When the step ends, the SSP terminator function performs system actions
necessary to end the step. If more job steps follow, the terminator returns
control to the initiator. If no other job steps follow, the terminator ends the job
and either returns control to the command processor for locally initiated jobs or

terminates the SSP-ICF session for remotely initiated jobs.

' MRT
Program

Job Request Command
from Se——— ot
Operator
or
Procedure Command
from N
Remote Program r Initiator
End of Job Steps
But Not
End of Job
User
Program
End 9
of
Job
or Termi
Terminate o erminator
the SSP-ICF {———
session.

The following paragraphs provide more detailed information about the
functions performed by the command processor, the initiator, the user

program, and the terminator.

System/34 Concepts

2-9

Command Processor

The command processor is the SSP function that initially processes information
that the operator enters. When (1) the operator enters a command or selects
an item from the menu, or (2) a remote program sends a procedure command
request via SSP-ICF, the command processor checks the command entered or
checks the statement associated with the selected mehu item to determine
whether a job should be initiated.

If the associated statement is an operator control command, such as the
STATUS control command, the command processor does not initiate a new
job. Instead, the command processor gives control to the SSP routines that
immediately execute the control command.

If the associated statement is not an operator control command, the command
processor next checks to see if the procedure command is a request for a
currently active MRT program. If it is, the command processor attaches the
display station or SSP-ICF session to the active MRT program. If it is not a
request for an active MRT program, the command processor passes the
statement to the initiator.

Initiator

The initiator uses the SSP system input function to read and process OCL
statements from the system input device, which can be either the keyboard at
the display station or procedure members in a library. During OCL processing,
the initiator checks each OCL statement for valid parameters. The initiator
function contains a routine for processing each of the OCL statements. These
routines are loaded and executed when required by the initiator.

Functions provided as part of the initiator function include:

« Processing substitution expressioris and condition tests. (This function is
performed by the SSP system input function.)

« Checking the syntax of each OCL statement.

« Ensuring that required load members exist in the active user library or the
system library.

« Ensuring that required files exist and are compatible with the parameters on
the FILE OCL statement.

« Ensuring that required source and work files are available.

« Acquiring display stations for which REQD-YES is specified on the
WORKSTN OCL statement.

« Releasing the requesting device if RELEASE-YES is specified on the ATTR
OCL statement.

« Ensuring that the available user main storage is at least as large as the job
region size. User storage occupied by nonswappable programs is not
available.

« Allocating the SSP work areas required for the job.

If the processed procedure does not request an active MRT procedure via an

INCLUDE OCL statement, the initiator loads the requested program and passes

control to it.

The initiator executes in the user area of main storage at the same priority level
as the program that is using the initiator.

System/34 Concepts 2-11

If the initiator processes a procedure call for an MRT procedure, the actions
performed by the initiator depend upon whether or not the MRT program is
already executing. If the MRT program is already executing, the initiator
attaches the display station to the executing program; if the maximum number
of requestors is already attached, the initiator queues the display station to the
program. If the MRT program is not already active, the initiator processes the
statements {up to and including the RUN statement) in the MRT procedure,
loads the MRT program, attaches the display station to the program, and
passes control to the MRT program. When the MRT program releases the
display station, the initiator regains control and returns to the calling procedure.
For further information about MRT procedures and programs, refer to MRT
(Muitiple Requestor Terminal) Program later in this chapter.

The suggestions listed under OCL Performance Considerations, which follows,
should help minimize OCL processing time.

OCL Performance Considerations

Minimizing OCL statement processing time is a good practice because
excessive processing of these statements can increase job initiation time. The
foliowing suggestions should help minimize OCL statement processing time:

« Use defauits whenever possible. For example, code:

L[]
// |FTLIE INAME-TINVTIY
il

[

~

LLLLL L L]
7 Flge%ﬂﬂqe-lmqrv %NbT-FL, ABEIL-TINVTY
|

« Avoid using comments on OCL statements.
« Group OCL statements. For example, all WORKSTN statements should be
grouped together. Grouping statements allows the system to load individual

OCL processing routines once instead of loading them many times.

« Avoid continuation lines. For example, code:

[[1] | L | L []]
[//| IRIILIE[INAME|-[DTSIKTP,|DI/SIPl~SHR,, L EL-qB]D'FR‘
I%Fﬂf l [11] SHR
not '
[]] l
[\/| [FLILEE E-DLSKIP,
i 'Ei‘aﬁ’“ eq
R

« Use the local data area only when necessary. Processing information in the
local data area requires additional disk accesses and can significantly
increase OCL statement processing time.

Use external switches rather than the local data area to condition the
execution of steps in a procedure.

When a sort is executed after it is tested, use the 3 print option, which
prints only severe errors.

After a procedure is tested, do not log OCL statements to the history file.
Logging requires that every OCL statement processed by the system be
written to the history file. Therefore, logging can significantly increase OCL
processing time.

For interactive applications, avoid using the // * statement to inform the
display station operator that a procedure has started. Instead, use the first
format displayed by the program to present that information.

Limit the number of conditional expressions that are processed within a
procedure. The GOTO and TAG statements should help you limit the
number of conditional expressions that are processed.

Use the PROMPT OCL statement to prompt for data that will be passed to
the program when it begins processing. Using the PROMPT statement in
this way allows the operator to key data into the first display while the SSP
processes the rest of the OCL statements for the job step.

Use the PROMPT OCL statement to prompt for procedure parameters
instead of using the // * statement to issue operator messages and then
prompting for input with ?nR? or ?nR'mic’? expressions. The // * statement
and substitution expressions require more system activity than that required
to display prompts and input fields with a display screen format. For
example, a procedure displays selected records from a selected file. If the
/[* statement and substitution expressions are used to prompt for input,
the procedure could be coded as follows:

JTHT L] TLARELT
/[ILFL 7IR?/| 60 0R
IER RECO R
T 2R/ 16070, ERROR il
/b6 [NENTER EN ECORD NUMB T
V17 T 73R/ b END! (0| [FITLE] ASISUMED! il
DISPLAN (7117, RECORDL 21271.737
7/ RET [T
/ ROR
PAUSE |'RED, PARAMETER - -PROE CANCELILED! [T

System/34 Concepts

2-13

When this procedure is executed, the operator is prompted for one parameter

at a time. The operator presses the Enter/Rec Adv key after entering each

parameter. The same procedure could be coded to use the PROMPT OCL

statement. The procedure then could be coded as follows:

A/ TA djl L] |
p FH.FIOR LAV
: i £

0Tio] ISTIARIT PR

0
P%[?Ig~,| WID,?Z?,?3?

In this case, the display screen formats, DISPLAY1 and ERROR, are both in a
load member called TRYFM. Figure 2-1 shows the S and D specifications for
the two displays. (Instead of coding S and D specifications, you could use the
Screen Design Aid (SDA) to create the display screen formats.) When
DISPLAY1 is displayed, the operator is prompted for all three parameters. The
operator enters all three parameters and presses the Enter/Rec Adv key.
Figure 2-2 shows the display screen when DISPLAY1 is displayed.

i
(o
—

F
ERI-

—
|

— =S

2[00

SIS

SN
[=)
O~

—t

L

Note: The check for null entries, which is coded in this example, would not be
required if the fields were defined as mandatory-enter fields (Y in column 29
of the D specification).

=37 Second Edition GX21-9253 U/M 050"
. [- Use this coding sheet only to define display screen formats for WSU Printed in U.S.A.
s S em/34 DlSplaY screen Format Spec'f'cat'ons and $SFGR. This coding sheet could contain typographical errors. *No. of sheets per pad may vary slightly.
WSU Only
= @
g N % E 5’33; Review Inserv
3 b) 3 Sequence| Mode Mode
§ g8 ° HE S]lol s i Record Record
Sequence Format 2|35 5 | e(BlEl 11323 2 Identifying | Identifying | Reserved Key Mask
Number | 8] Name ol eis |s 2| §3 5 IS{El 2] 5| & | £ |Reserved 3 @l Indicators Indicators
$ 21 212131512 2 1218l 5] 2l | 2 el e 3
= i SB[l Sl S =) 8 £ WPEEH g
HMHE 2l 2 " 212
£ AR HEE R EEH B R Elo|E(8lB(a(B 1)2 3] f2]3 i
2 Cla|zelSielez| B |olG| & |w|S | & w2 | &8 | & <
' 2 3 4 s|e|7 8 9101112131415 16]17 18]19 20]21(22|23 24f25 26}27]28| 20 30[31 3233 34|35 3637 38 39 40]a1[a2fa3fa 7|8 a9f50 51}52 53|54 55]56 57|58 59}60 61 62 63j64 65 66 67 68 6970 7172 73 7475 76 77 78 798!
(T
11171spT L1111 ERRRRRRRANR 111 HEARERERRARRERREEREN
n Starting
Field Location ~ - §
3 x| "
Name § S z R 2 s
Fetd | Bl § ol |ZlE Bl 25 =2 g §| Reserved Constant Data 2
Number Length | & 5 =12 2 >|el=l 3 18oi8] 2 z 3 = 3
g 2 € S sto|g| BBl 3IZ 3l848l & = < ¢ g
& 2 £ SIBlRISIBR1EE| 8 IS8 5 5| & 23|k g S
F| wsu gm z N 38-'-%%0;'5 Bi=le g s | % s| 8|5 i 8
€| FieldName |53 @ | £ 1=lgle 219122 5 SlElgl e8| & = H 2 2
5 2 3] sl &3 218818881 € |58l £ | £] @ 2|58 Sl 23 4567 8 91011171314 1516 1718 19 20 2122 29
123 45[6]7 8 9101112h13141516 17 18|19 20|21 22|23 8{20130{ 31|32 33]3435|36]37 38|30 40]41 42J43 4afas a6le7 a8)a9fs0 5152 53 54 55]56]57 58 59 60 6162 63 64 65 66 67 68 6970 7172 73 74 7576 77 78 79 8
: RN DISP
° F
D
-
ofFIL 2 qq; N
olF] M6 Y EEEEE
<
o 31 S ING! C
olUMB 2
D
3 81 N || A Y [N VERRNRRER |
JELgpe || 3113 NG RECIORD! NUYX
o 2
D
o 134 Yl N
D
[y

Figure 2-1 (Part 1 of 2). S and D Specifications for DISPLAY 1 and ERROR

2-14

Second Edition GX21-9253 U/M050°
Use this coding sheet only to define display screen formats for WSU Printed in U.S.A.

SYStem/34 Display SCreen FOI’mat Specifications and $SFGR. This coding sheet could contain typographical errors. *No. of sheets per pad may vary slightly,

WSU Only
= 213 Enter
S 3| Mode Review fnsery
S| B g Xlo 3 Sequence Mode Mode
| E|e ° ‘5 g 2lely i Record Record
Sequence Format 2 g] 5 §A elg E 5 ‘: s |2 = Identifying tdentifying | Reserved Key Mask
Number | &l Name ol 515 [=(2[83| & g§ g g | S |Reserved 3] 2| Indicators Indicators
2 M LA R IR ERE z||3[2(8 3
£ A R EHHHE slel2I& 5|58 « [2] 3|1]2]s i
S S| &|Zef3(cE| B [G[S[&) u|S|A | G(S|e) ¢ |&)& L4
' 23 45087 8 91011121314)1516[17 18]19 20[21]22]23 24|25 26]27(28]29 30} 31 32|33 34{35 36{37 38 39 40]41(a2]a3]aa)as [46]a7a8 4a9i50 51[52 53[54 55156 57[58 59|60 61 62 63|64 65 66 67 68 6970 7172 73 74 75 76 77 78 79|80
' OR | EERERERRRERRENERERERRNRERDED|
[[[sIERROR [[LTTT]] REREEN [

w
5%
82
=5
gla

Field 3 ig
[“»
feme =S S1g § .
. Z > |2 s |12 s g
P A 2 =] 3 4 8
Field S8 s |Bl3 RS ¢l |23 = & §| Reserved Constant Data 2
Number o | Lenath .g p= §“§K>’5E 3 |5l & 2 El 28 = g
o 2(8| 5[5 81| T [3[28] © : I £ £
wsu 23 2|5 igft;ﬁgsag BERE L 2 HI 2 5
Fieid Name |33 el 5| SleldlzlBlEnis 2 (BlEIS 2|2 2|5 E| 213 H
23 St 2| 3IBIEIGIEIZBR| € |G|S|I’| £ |2l @|Z2|x|> 12345678 91011121314151617 18 19 20 21 22 23

1 23 4-5|6]7 8 9101112131415 1617 18]19 20|21 2223 7|28[29130| 31|32 3334[35|36]37 38|39 40]41 42}a3 4445 46147 48| 4ofs0 5152 53 54 55}s6[57 58 59 60 61 62 63 64 65 66 67 68 6970 7172 73 74 75 76 77 78 79 80)

D

DUOOQQOUOQDUDODUUUUUMFON’ITVE

Figure 2-1 (Part 2 of 2). S and D Specifications for DISPLAY 1 and ERROR

System/34 Concepts 2-15

DISPLAY SELECTED RECORDS FROM A FILE

ENTER FILE NAME ---> WORK
ENTER STARTING RECORD NUMBER ---> 00000001
ENTER ENDING RECORD NUNMBER ---> 00000010

\

Figure 2-2. DISPLAY1 After the Operator Enters Parameters

User Program

Each program allocates and opens the files that it uses. In RPG II, WSU (work
station utility), and FORTRAN programs, the programmer does not explicitly
code these operations. After opening the files, the user program begins
processing. Some of the services the SSP provides during execution of a user
program are:

- Disk data management, which controls the flow of information to and from
disk files. For information about disk files and disk file processing, refer to
File Concepts later in this chapter.

« Printer data management, which controls the flow of information to the
printer. For more information, refer to Printer Concepts later in this chapter.

» Optional spooling functions, which intercept printer commands and place
them in disk storage, creating a spool file. When requested, the spooling
function retrieves records from the spool file and prints them. For
information about spooling, refer to Printer Concepts later in this chapter.

« Work station data management, which enables the user program to present
data on a display screen by providing only a string of data fields and a
format name. Work station data management then displays the data in the
predefined format. For information about display screen formats and work
station data management, refer to Work Station Data Management later in
this chapter.

« SSP-ICF data management, which enables the program to communicate
with programs on the same System/34 (INTRA subsystem) or with
programs on another system. For more information, refer to SSP-ICF Data
Management later in this chapter.

After the user program completes processing, it closes the files it used and

passes control to the SSP terminator function. The RPG I, WSU, or FORTRAN

programmer does not explicitly code these operations.

System /34 Concepts 2-17

Terminator

Normal Termination
When the user program goes to end of job or when the operator selects option
2 in response to a displayed error message, the terminator function replaces
the user program in main storage. The terminator performs the following
steps:

« Updates the disk VTOC entries

- Frees system resources, such as main storage and assign free area (system
queue space), that the program used B

« Updates and initializes system data areas so that the SSP can initiate the
next job step

» Terminates all previously acquired SSP-ICF sessions established by the
program

If more job steps remain in the job, the terminator reloads the initiator so that
the next step can be run.

If the step just ended is the last step in the job, the terminator also performs
the following steps:

» Deletes all job files (RETAIN-J files) used by the job

« Deletes the reserve area that was requested for the job

« Releases the requesting display station if it is still attached to the job and
returns control to the command processor so that the operator can request

another job

» Terminates the requesting SSP-ICF session if the program was requested
by a remote program and if the session is still active

» Frees the remaining system resources that were used by the job

Abnormal Termination

Abnormal termination of a program occurs when any of the following operator
actions are taken:

« The operator selects option 3 in response to a displayed error message.

« The operator interrupts the executing program and selects option 2 or option
3 from the Inquiry display for all programs except MRT programs. For MRT
programs, option 2 releases the display station from the MRT program and
continues with the next job step; option 3 releases the display station from
the MRT program and cancels the remaining job steps.

« The system operator uses the CANCEL control command to cancel the job.

« A program check occurs.

« The system detects an error condition during normal termination.

The CANCEL keyword is executed in a procedure.

When an abnormal termination occurs for non-MRT programs, the terminator
is loaded. Any remaining job steps in the job are not performed. If option 2
was selected from an Inquiry display, the files that were being used by the
terminated job are closed. For all other types of abnormal termination, files are
not closed, and the following statements are true:

« Files contain all updates made before the abnormal termination.

« Any additions made to nonshared files do not remain in the file unless the
file is an IFILE.

« New files are not added to the disk VTOC.
« If keys were being sorted when the termination occurs, the file is marked as
~ unusable. The index will be rebuilt by the IPL file rebuild function, which is
described later in this chapter.
When the terminator function ends, it returns control to the command
processor or terminates the SSP-ICF requestor session depending upon how

the job was initiated.

The terminator executes in the user area of main storage.

System/34 Concepts

2-20

SYSTEM INPUT (SYSIN) PROCESSING

The SYSIN (system input) function reads records from the input job stream,
which is either entered from the keyboard or read from a procedure member.
After reading a statement, SYSIN performs all substitutions and performs the
functions specified by the statements that control SYSIN processing. The
statements and expressions that control SYSIN processing are IF, IFT, IFF,
RESET, ELSE, CANCEL, RETURN, END, GOTO, and TAG. For information
about these statements and expressions, refer to Chapter 5 of the SSP -

Reference Manual.

After processing a statement, SYSIN gives the statement to the calling SSP
function. During job initiation, the calling function is the initiator; therefore, all
statements-up to and including the RUN OCL statement are passed 1o the
initiator. After a job is initiated, the statements are passed to the system utility
program or the user program that requested system input processing.

The following example shows how SYSIN processes a typical statement. The
example is intended to give a general idea of how SYSIN works, and is not
intended to show the detailed logic of SYSIN processing. Before reading the
example, you should be aware of the fundamental rules of system input
processing:

« SYSIN processes a statement one field at a time from left to right. Fields
are delimited by blanks.

« Each time a substitution operation is performed, SYSIN goes back to the
first field in the record and begins processing the record again. This must
be done to allow for nested substitution. :

« After all substitutions are performed, the length of the generated statement
must be less than or equal to 120 characters. The actual length of the
statement before substitution can be up to 240 characters.

« If substitution expressions follow the RUN OCL statement, job initiation time
increases due to increased disk read and write operations required by
SYSIN. You should use GOTO statements to make sure that conditional
expressions and substitution expressions that follow.the RUN statement are
evaluated only if necessary.

System Input Processing Example

In this example, the following record is read from the input job stream:

IF DATAF1-217?2??FILE, SWITCH X1XX00X
/\/ka L i -’/ &—T_J \1_T0__§

Field1 Field 2 Field 3 Field 4 Field 5

Assume that when this statement is read parameter 1 is undefined and
parameter 2 has a value of AR. The system input function then performs the
following steps:

Step 1. Identifies the first field as //b (b represents a blank).
Step 2. Identifies the second field as a valid system input expression (IF).

Step 3. Examines the third field and determines that the field contains a
nested substitution expression. For a nested substitution
expression, the innermost substitution is performed first. Therefore,
SYSIN substitutes the value of parameter 2 (AR) into the
expression. After the substitution, the record looks like this:

// IF DATAF1-21'AR?FILE SWITCH X1XX00XX
N v / Ny
N l | .
Field 1 Field 2 Field 3 Field 4 Field 5

Because a substitution was performed, SYSIN goes back and begins
processing the record at field 1.

Step 1. Identifies the first field as //b.

Step 2. Identifies the second field as a valid system input expression (IF).

Step 3. Examines the third field and determines that the field contains a
substitution expression. SYSIN performs the substitution. In this

case, parameter 1 is undefined and the value AR is substituted.
The resulting record now looks like this:

/ JE DATAF1-ARFILE SWITCH X1XX00XX

Field 1 Field 2 Field 3 Field 4 Field 5

System/34 Concepts 2-21

Again, because a substitution was performed, SYSIN goes back and begins
processing the record at field 1.

Step 1. ldentifies the first field as //b.
Step 2. ldentifies the second field as a valid system input expression (IF).

Step 3. Identifies the third field as an existence test. SYSIN performs the
test and, in this case, determines it to be true.

Step 4. Evaluates the conditional expression formed by fields 2 and 3. The
conditional expression specifies that because a disk file labeled
ARFILE exists the remainder of the record should be processed.
SYSIN discards the IF test (fields 2 and 3) and processes the
remainder of the statement, which now looks like this:

// SWITCH X1XX00X
00XX
Field 1 Field 2 Field 3
After checking each field and determining that no further substitution or SYSIN

processing of the statement is required, the statement is passed to the
initiator.

Note: If the conditional expression is not satisfied, that is, ARFILE does not
exist on F1, SYSIN discards the remainder of the record and reads the next
record from the input stream.

2-22

Job Management and Job Scheduling on System/34
The IBM System/34 lets you assume an important role in the management
and scheduling of your jobs. You can affect the order in which your jobs are
presented to be executed by the use of different job queue priorities in the
input job queue. You can affect the swapping and main storage processor
utilization of your programs by the use of different execution priorities.
EXECUTION PRIORITIES
You can specify four different execution priorities for your job or job steps.
These execution priorities may affect the swapping and the way your program
gains control of the main storage processor from the dispatcher. The
dispatcher is responsible for allocating the main storage processor to your
program. The four execution priorities are:
« High
« Medium
« Normal

« Low

If you do not specify an execution priority for your job, the system assigns
your job a normal priority.

To specify the execution priority of your job(s), you can use the following:
« PRTY command

- // ATTR OCL statement

For further information about using the PRTY command and // ATTR OCL

statement with execution priorities, refer to either the SSP Reference Manual or
to the Operator's Guide.

System/34 Concepts 2-23

Placement of Jobs on the Iinput Job Queue

The input job queue has five different priority levels numbered 1 to 5. Priority
level 5 is the highest priority and priority level 1 is the lowest. By assigning job
queue priority levels to your jobs, you can:specify the placement of jobs on the
input job queue and control the order in which your jobs are presented to the
dispatcher to be executed. Jobs are placed on the input job queue on a
first-in, first-out basis within job queue priority level. This means that all jobs
with a level 5 job queue priority are presented for execution before jobs with a
level 4 priority, and that before a priority 4 job can be considered for execution,
all jobs with a job queue of 5 must have been dispatched. If you do not
specify a job queue priority for a job that is using the input job queue, the
system assigns your job a level 3 priority. The following illustration shows the
order in which your jobs are presented for execution based upon placement in
the input job queue.

Placement in Job Queue

by Job Queue Priority Job Order Presented
for Execution
Priority .
Job Job Job Job Job A
5 F B A
Job B
Job
4 C Job D
Job Job F
3 E , : > e
Job C
Job
2 G Job E
Job Job G
1 H
Job H

2-24

Changing the Position of a Job Within the Input Job Queue

You can place a job in a higher or lower priority within the input job queue by
using the CHANGE JOBQ command. The execution priority associated with
the job is not changed.

Execution Priorities of Jobs in the Input Job Queue

The execution priority of a job placed in the input job queue is normal unless
you use the PRTY command. If you use the PRTY command before placing a
job in the input job queue, the execution priority is equal to the value specified
on the PRTY command. If you use the PRTY command and do not specify a
value, your job is assigned the high execution priority.

If you use a procedure to place a job in the input job queue, your job has the
same execution priority as the procedure.

From the system console you can use the PRTY command to change the
execution priority of a job in the input job queue. When you change the
execution priority of a job, the job queue priority and its position within the job
queue priority are not affected.

Initiating a Program

When a.new program is to be initiated, the system arranges the programs by
execution priority in the active program list and begins initiation of the
programs with the highest execution priority.

The initiator on the system takes into account the following items regarding
execution priority:

« Execution priority may be specified multiple times in a job by the use of the
PRTY command or the // ATTR OCL statement. Each job step may have
its own priority. The priority specified becomes effective as soon as the
syntax of the OCL statements are validated by the initiator.

« When you have an NRT (no requestor terminal) program, the priority of the
program is the same as the job that initiated the NRT program.

« When a job is started by the use of the // EVOKE OCL statement, the
priority of the job evoked is the same as the job that evoked it.

» |If you do not specify an execution priority for an MRT (multiple requestor
terminal) program, the MRT program has the same priority as the job prior
to the inclusion of the MRT program. If you attach a job to an MRT
program, your job has the same priority as the MRT program. When a job
is released from an MRT program, the job has the priority that was in effect
prior to the inclusion of the MRT program.:

System/34 Concepts 2-25

2-26

DISPATCHING

Systems that allow only one program in main storage at a time waste
considerable processor time. For example, when the executing program waits
for an |/O operation, the. processor is idle until the operation is complete.
System/34, on the other hand, provides a dispatching function that allows
multiple programs in main storage to share processing time. When a program
that is using the main storage processor waits for the completion of an I/0
operation or has executed for longer than a system-defined time limit, the
system dispatcher gives control to another program in main storage that is
ready to execute. The system dispatcher determines which program uses the
main storage processor next. :

To determine which program should use the processor next, the system
maintains a list of programs that are in main storage and ready to execute.
That list is callied the program ready list. The dispatcher gives control to the
program on the list with the highest execution priority. Programs are
dispatched on a priority first-in, first-out basis. The following chart lists the
dispatching sequence used by the System/34.

Execution Priority Dispatching Sequence

-

System
High
Medium
Normal

Medium-~iow

o A W W N

Low

Note: The medium-low priority and system priorities are determined by the
SSP and cannot be specified by the user.

At certain times, the system assigns a priority 6ther than what you have
specified. This assignment is temporary and is used to accommodate special
situations such as termination of a job.

SWAPPING

Even though dispatching enables two or more programs in main storage to
share the main storage processor, processing time can still be wasted. For
example, if a program is so large that no other program can fit in main storage,
the time that program spends waiting for 1/0 operations is wasted. Even if
two or more programs fit into main storage, considerable amounts of time can
still be wasted. For example, assume that two operators are running programs
that require those operators to enter information from their display stations and
that together the two programs, A and B, occupy all the available user storage.
While one of the programs waits for an operation such as a disk or display
station operation to be completed, the System/34 dispatching function allows
the other task to execute.

Display Station W1 Main Storage

@

Display Station W2 I
ammmwns) B
I

In this situation, the main storage processor is not used continuously. For
example, after Program A requests input from display station W1, that program
waits in storage while the operator enters the input. If both programs wait for
input from display stations at the same time, the processing unit might be idle
for several seconds.

To make better use of processing time, System/34 provides a swapping
function that allows the total amount of user storage required by concurrently
executing programs to exceed the amount of main storage available for user
programs. During swapping, the system temporarily removes a program or a
segment of a program from main storage when the program cannot continue
to execute because it is waiting to use some resource on the system. The
system saves this program or segment of the program on disk so that another
program can use main storage.

Note: The systenmi swaps the program only if the main storage area is needed
by another program.

The swapping function uses the execution priority of a job to help it determine
which jobs are to be swapped. The lower priority jobs in most cases are
swapped first, leaving the higher priority jobs in main storage for as long as
possible. The following chart lists the swapping sequence.

Execution Priority Swapping Sequence
Low 1
Medium-low 2
Medium 3
Normal 3
High 4

System/34 Concepts 2-27

2-28

Ordinarily, swapping requires only fractions of a second. Most of the time, the
operator at a display station is not even aware that the job is sharing the
system with other jobs. :

The following example shows how swapping can increase the total amount of
work that concurrently executing programs can perform.

Assume that programs A, B, and C are executing concurrently and have the
same execution priority. The programs are the same size. Programs A and B
are in main storage; program C has been moved to the swap area on disk and
is waiting to resume processing.

Display Station W3

User
Program
[

Display Station W1 Main Storage
User | Swap Area
Program
A A

Display Station W2 |

User \ ¢ummmeml B

Program !
B

The system knows that program C is waiting to execute when program A
requests input from display station W1. Program A will be inactive until the
operator enters information. Therefore, the system transfers program A to the
swap area on disk and transfers program C into main storage. Programs B and
C share the main storage processor until program A is ready to be swapped
back into main storage. In this example, the main storage processor will be
idle only when all three programs are waiting for work station input.

Display Station W3

Main Storage

| Swap Area
c .

Display Station W2 I
User '\ ¢ B
Program l
B

The following paragraphs further describe swapping on a general level, but
they are not intended to be a complete discussion of the topic. The
information presented, though not essential for successful use of System/34,
provides a general understanding of how swapping works and how it can
affect response time.

Active Program List

To keep track of the status of all active programs, the system maintains a list
(or queue) of all active programs. An active program can be either in main
storage or in the swap area on disk. The system uses the position of the
program along with the execution priority to decide which programs to swap in
and out of main storage.

Normally, programs on the active program list are in sequence by their
execution priority. All high priority jobs precede medium priority jobs, and
medium priority jobs precede low priority jobs. Low priority jobs are last on the
active program list. For example, if programs A and D are high priority jobs,
programs B and E are medium priority jobs, and programs C and F are low
priority jobs, the list of active programs might look like this:

Execution

A Priority

r High
D
B

4 Medium
E

1

c

> Low
F

If you do not specify an execution priority or you specify normal execution
priority for your job, the system assigns a normal execution priority to your job.
The normal execution priority is considered equivalent to medium by the
system. The system can change this system-assigned medium execution
priority to a medium-low execution priority. This change occurs only when you
do not specify an execution priority and your program executes for longer than
a system-determined time limit without performing a display station read
operation. The time limit, called the interactive time limit, is approximately
(N+1) x 1/2 second (1/2 second=500 milliseconds), where N is the number of
display stations attached to the program. The interactive time limit also
deducts 1/0O processing time as well as main storage processor time.

For more information about the interactive time limit, refer to the System
Measurement Facility Reference Manual.

Systemn /34 Concepts 2-29

The following examples show how a program’s position on the active program
list can be changed, when you have specified an execution priority.

« When you specify an execution priority and your program performs a display
station read operation, that program is moved to the bottom of the list of
programs with the same priority.

Execution
Priority
D High
Display Station Read
B
Medium
E
F Low
Display Station Read

« When you specify an execution priority and your program exceeds the
interactive time limit, that program is moved to the bottom of the list of
programs with the same priority.

Execution
Priority
D High
Exceeds Interactive Time Limit
E Medium
Exceeds Interactive Time Limit
C
Low
F

2-30

The following examples show how a program’s position on the active program
list changes when you do not specify an execution priority and you let the
system assign normal priority to your program. You should be aware that the
system initially considers normal priority equivalent to medium priority.

« When your program exceeds the interactive time limit, that program is
moved to the top of a system defined list with medium-low priority. Only
the system can specify a medium-low priority for your program.

Execution
Q Priority
Medium
Exceeds Interactive Time Limit E
Y Medium-low
z
C
Low
F

Your program remains in this medium-low classification until a display station
read operation is performed by your program. When your program performs a
display station read operation, the program is moved by the system to the
bottom of the list of the medium priority programs.

Execution
E Priority
Medium
Y Medium-low
z
Display Station Read Operation
C
Low
F

System/34 Concepts

2-31

2-32

Your program remains at the bottom of the list of programs with the same
priority until programs ahead of it perform display station read operations or
exceed their interactive time limit. When these conditions happen, your
program is moved up on the list. The following diagram shows the movement
of program C on the active program list.

Display Interactive
~¢——— Station B — Time Limit C
Bt Read ct Exceeded A

ct @1 B

" How the Swapping Function Uses the Active Program List

The System/34 swapping function is activated whenever the status of an
active program changes such that swapping may occur. For example,
swapping can occur when a program issues a display station read operation.

As the first step in swapping, the system starts at the top of the list of active
programs and checks the status of the programs to determine whether a
program is waiting to be swapped in. The first swapped-out program of the
highest priority the system finds that is ready to swap back in is the program
that will be swapped in. For example, suppose that seven programs are on the
list. Of those programs, 2, 4, and 7 are swapped out, and 2 and 7 are ready to
run. If the active program list looks like this:

Execution
Priority
Active
High Program List Status of Program
L R Swapped out, not ready
[R R I I IR I In main storage, waiting for display station input
Order A R eI I I S Swapped out,
of Y B e I I I TS R In main storage, waiting for display station input
Search
for I R I IR I In main storage, executing
Swapping 2 - e Swapped out, -M'
|n g 0] .
R B I I NN N A In main storage, waiting for printer operation
Low

then program 7 is the program that will be swapped in.

If a program is ready to swap in, the system must determine which program or
programs to swap out. To determine which programs to swap out, the system
starts at the bottom of the active program list and searches for programs in
main storage that are waiting for input from a display station. The system
swaps out the first program it finds that satisfies the search and swaps in the
other program if enough storage is made available. The system might have to
swap out two or more programs to free enough main storage for the program
to be swapped in. In the preceding example, program 7 is to be swapped in.
As shown in the example, programs 3 and 6 are both waiting for display
station input. The system will swap out program 3, which has the lowest
priority on the list, and swap in program 7.

Execution
Priority
Active
High Program List Main Storage

Order
of
Search
for
Swapping
Out

Swap Area

CENWNO D

Low

If swapping out program 3 does not free up enough space for program 7, the
system continues searching until it finds another program or programs to swap
out along with program 3. In this example, program 6 is also waiting for
display station input and could be swapped out along with program 3.
Program 7 could then be swapped in.

System/34 Concepts

2-33

2-34

If the system does not find any programs waiting for display station input or if
the amount of storage used by the programs and the amount of unused
storage is not large enough to contain the program to be swapped in, the
system goes back to the bottom of the active program list and searches for
programs that have been executing in main storage for longer than 1/2
second, including 1/0 time. Such a program can be swapped out only if it is a
lower priority on the active program list than the program to be swapped in.
By allowing a program to execute for at least 1/2 second, the system avoids
constantly swapping a program in and out while the program uses little or no
processor time. For example, assume the following:

« Programs A, C, and D are in main storage.

« Of the programs in main storage, program A is waiting for display station
input, and program D had been executing for longer than 1/2 second.

« Programs B, E, and F are swapped out.

» Of the swapped-out programs, programs E and F are ready to be swapped
in.

« The active program list is as follows:

B B In main’ storage, waiting for display station input

LI B i I IR A Swapped out, waiting for display station input

R I A I A Swapped out,

----------------- In main storage, ready

B R I I I Swapped out,

B L I I I In main storage, executing

O mMOoO T w >

The system begins with the highest priority program at the top of the active
program list and searches for a swapped out program that is ready to resume
processing. In this example, the first such program that the system finds is
program F. Therefore, program F is the program that will be swapped in.

Now, the system begins searching for a program or programs to be swapped
out to make room for program F. The system begins at the bottom of the
active program list with the lowest priority program and searches for programs
in main storage that are waiting for display station input. Program A is the only
such program and will be swapped out. If enough space still does not exist for
program F, the system returns to the bottom of the list and searches for
programs that have been executing for longer than 1/2 second. The first such
program the system finds is program D. Because program D is of lower
priority than program F on the active program list, program D can also be
swapped out to make room for program F.

Active
Program List Main Storage Swap Area
A A »
B ~
F
D C
E -
c D

The swapping and dispatching activity just described is controlled by programs
that execute in control storage; therefore, the swapping and dispatching
functions are executing at the same time as the programs that are using the
main storage processor.

Swapping Times

The amount of time System/34 takes to swap a program or segment of a
program is directly related to the size of the program. The System/34 swaps
only as many 2 K byte segments of a program as is necessary. For example, a
12 K byte program might require about 90 milliseconds to swap in and about
130 milliseconds to swap out. By comparison, a 24 K byte program might
require about 140 milliseconds to swap in and about 230 milliseconds to swap
out. The actual swapping time will vary depending upon the disk drive being
used and other disk activity within the system.

System/34 Concepts 2-35

2-36

Job Priority

When assigning jobs to different priority levels within the input job queue and
specifying different levels of execution priority, your main goal is to process the
maximum number of jobs in the least amount of time.

You may want to use the input job queue and execution priorities to establish
groups of jobs with certain characteristics. For example, you may want to
assign all nonswappable jobs a specified job queue priority with a specific
execution priority, so that jobs that use display stations have been executed
before your nonswappable programs begin to execute. You may want to run
your testing jobs with one execution priority and your production programs
with a higher execution priority. You may want t0 assign execution. priority to
programs based upon the following criteria:

« Main storage size of the program. You may want to assign a lower
execution priority to programs that use a larger amount of main storage. .

« Whether the program can be run as an interactive or batch program. You
may decide to assign higher execution priority to interactive programs than
to batch programs, depending on your processing requirements.

« Amount of main storage processing time the program uses. You may decide
that a program that uses a large amount of main storage processor time
should have a lower execution priority than a program that does not use as
much main storage processor time.

« How much elapsed time it takes the program to run. You may want to
assign a high execution priority for a job that does not take a long time to
execute and complete its processing on the system.

« What kinds of demands the program.makes on system resources, .such as
disk files. You may want to base your assignment of execution priority to a
job based on the total demands it makes on the system. For example, a
program that uses four files and a printer may have a lower priority assigned
than a program that uses only one file and does not use a printer.

« How important the program is to your data processing requirements and
deadline schedules. You may want programs that are extremely important to

your organization assigned a high priority every time they are run.

You may also let the system set the job queue and execution priorities for you.

Execution Priority Hints

In general, let the system assign execution priorities to your job(s): the normal
defaults can usually handle your job needs. However, you should be aware of
the following when setting your own execution priorities:

« Assign high priority to jobs requiring either fast response time at a display
station or quick throughput.

« Assign low priority to batch jobs that will run for a long time.

« Assign medium priority to interactive jobs that could be reclassified as batch
jobs by the system, based upon the processing requirements of the
program.

Nonswappable Programs

When you run the overlay linkage editor, you can specify that a FORTRAN,
COBOL, or assembler program is nonswappable. You cannot define an RPG II,
BASIC, or WSU program as nonswappable. A nonswappable program, once it
is initiated, remains in storage until the program completes. Because a
nonswappable program decreases the amount of main storage available to
other programs, the amount of swapping usually increases when a
nonswappable program is being run. Therefore, the performance of other jobs
can be degraded when a nonswappable program is run. Because the
performance of all other programs may be adversely affected and the capability
of the system to initiate new jobs restricted, the nonswappable attribute should
be used only when absolutely necessary.

When a nonswappable program is run, the amount of main storage available
for swappable programs is diminished. The amount of storage used by a
nonswappable program is called nonswappable storage. The remaining user
storage is called swappable storage.

System/34 Concepts 2-37

2-38

Work Station Data Mlanagement

User programs that communicate with display stations use a system function
called work station data management to write to and read from a display
station. A display screen format defines to work station data management
what information should be displayed and read from the display station. When
a program requests an operation, the program supplies to work station data
management the name of the format that defines the display. Formats used by
a program are kept in a library load member separate from the program. The
formats do not have to be kept in the library that contains the program. One
display format load member can contain up to 32 formats. For an RPG Il
program, the default name of the display format load member consists of the
program name followed by the characters FM. For example, if the RPG !l
program is called INV, the default display format load member is named
INVFM. The FMTS continuation option on the file description specification
allows you to specify a different name for the format load member or *NONE
if only interactive communications formats are used.

Display screen formats are generated automatically by some programs or must
be defined by programmers for other programs. Examples of automatically
generated formats are those used by DFU (Data File Utility) and the RPG Hi
CONSOLE file. Examples of formats that must be explicitly defined by the
programmer are the formats used with RPG Il WORKSTN files and the formats
used by WSU, COBOL, FORTRAN, and BASIC programs.

If you are programming in RPG I, screen formats do not have to be defined as
the program name followed by the characters FM. You can also use the same
format member in more than one program.

The programmer defines display screen formats by:

« Using SDA (Screen Design Aid) to interactively define the formats. Detailed
information about SDA is in the SDA Reference Manual.

« Creating S and D specifications. The programmer can use SEU to place
these specifications in a source member. For programs other than WSU
programs, these S and D specifications are used as input to the $SFGR SSP
utility program, which generates the actual display screen format and places
it in a library load member. For WSU programs, the S and D specifications
are included as part of the specifications for the program. The WSU
procedure calls $SFGR to process those specifications and generate the
display screen format. For detailed information about the entries on the S
and D specifications, refer to the SSP Reference Manual and the WSU
Reference Manual.

To use the functions provided by work station data management, the
programmer should know what kinds of information he supplies when he
defines a display screen format and how that information controls the
operations performed by work station data management. The following
sections describe:

« How information supplied by the programmer affects individual data fields

« How information supplied by the programmer affects the operations
performed by work station data management

Note: If you define a screen format that is larger than the screen size of the
display station that you are using, an error condition occurs. For example, if
your screen format is 1000 characters and you are using a 960-character
screen size, an error condition occurs.

System/34 Concepts 2-39

2-40

DATA FIELDS IN A DISPLAY SCREEN FORMAT

When the programmer defines a display screen format, he defines it in terms
of the fields on the display. He specifies each field as an input field, an output
field, or an output/input field.

Input fields are fields into which the operator can enter data. When a program
displays a format, input fields are normally blank. The contents of input fields
are sent to the program when the operator presses (1) the Enter/Rec Adv key,
(2) an enabled user command key, or (3) an enabled roll key or when the
operator exits from a field for which auto-record-advance was specified.

Input Fields

Note: The verticai lines in the input fields are column separators, which can be
requested by the programmer when he defines the format.

Output fields contain data that the display station operator cannot change. The
contents of output fields are not returned to the program when the operator
enters the display. '

The program can supply the information displayed in an output field, or the
programmer can provide the information as part of the format definition.
(Prompts and constant values specified when a format is created are output

fields.)

INVENTORY RECEIPTS
TRANSACTION GQUANTITY
ITEM NUMBER

P.0./MEMO REFERENCE

ITEM DESCRIPTION STAIN, WHITE ENAMEL

LEASE VERIFY ENTRY AND ACCEPT, CORRECT, OR CANCEL

- PRESS REC ADV TO ACCEPT,

CHD KEY 1 TO CORRECT,
CHMD KEY 7 TO CANCEL

Output Fields

System/34 Concepts

2-41

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

Output/input fields contain information that is either supplied by the program
when it displays a format or specified by the programmer when he defined the
format. The display station operator may change the information in
output/input fields. The information is returned to the program when the
operator presses (1) the Enter/Rec Adv key, (2) an enabled user command key,
or (3) an enabled roll key or when the operator exits from a field for which
auto-record-advance was specified.

Output/Input Fields

(ololofajof
loblclolofollel
Altfpoi7s] | | |

Field Attributes

In addition to defining the field type, the programmer defines the location of
the field on the display and the type of data that can be entered into the field
(for example, alphameric data or only signed numeric data). Through the use of
field attributes, the programmer defines physical characteristics such as display
intensity, and whether or not the field is blinking. These field attributes also
designate various colors to be used with display formats shown on the IBM
5292 Color Display Station.

The description of the $SFGR utility program in the SSP Reference Manual,
explains each of the field characteristics that a programmer can define for both
color or noncolor displays.

Field attributes for creating both color and noncolor displays using the screen
design aid, are described in the IBM System/34 SDA manual.

Chapter 3, Design Considerations presents some considerations for both color
and noncolor displays.

2-42

WORK STATION DATA MANAGEMENT OPERATIONS

The Work Station Buffer

Work station data management uses an area in main storage called the work
station buffer (or work station queue space) as a buffer for work station
operations. For output operations, work station data management prepares a
format for transmission by merging data supplied by the program with display
control information from the format load member. The merged information is
placed in the work station buffer. Work station data management then
transmits the contents of the buffer to the display station. For input
operations, work station data management normally uses the work station
buffer as an input buffer for information received from the display station.

The size of the work station buffer is specified during system configuration.
The size of the buffer can affect system performance. If the buffer is larger
than necessary, the amount of storage available for user programs is
decreased, and more swapping might take place. If, on the other hand,
sufficient buffer space is not available for an operation, system performance
might be degraded. The action taken by the system when the buffer space is
not sufficient depends on whether the display station is a local or remote
display station.

If a format is being transmitted to a local display station and if the size of the
format exceeds the configured work station buffer size, work station data
management writes a portion of the user program to the disk and uses the
freed area as work station buffer space. After the information is transmitted,
the saved portion of the user program is returned to main storage, and the
program can resume processing. This activity affects system performance in
two ways:

« Additional disk operations are required to perform the display station output
operation. These additional operations increase the time taken to perform
the output operation.

« The space occupied by the user task becomes nonswappable until the
display station output operation is completed.

Normally, on a read operation from a local display station, the program is
swapped into main storage (if the program has been swapped out) when the
operator presses the Enter key. The SSP reads the information into the buffer
at the same time that the program is being swapped in. However, if sufficient
work station buffer space is not available, this overlapping of operations cannot
occur. Instead, the program is swapped into main storage, and work station
data management reads the data directly into the input area in the program.

System/34 Concepts 2-43

2-44

If a format is being transmitted to a remote display station and if sufficient
work station buffer space is not available for a display station output operation,
work station data management does one of the following:

« Save on disk any input information in the work station buffer and use the
freed space for the output operation.

« If enough space cannot be made available by saving input data, work station
data management writes the data onto the disk and issues the output
operation from the disk area.

When input is received from a remote display station, work station data
management normally places the received data in the work station buffer. If
sufficient work station buffer space is not available, work station data
management writes the received data onto the disk. After the program is
swapped into main storage, the data is transferred from the work station buffer
or from the disk into the program’s input/output area. '

Normal Operations

Normally, when a program requests that work station data management send a
display screen format, work station data management accepts the request and
prepares the specified format for transmission by merging data supplied by the
program and display control information from the format load member stored
in the assign/free area of main storage. Work station data management places
the merged information in the work station buffer. The user program can then
resume execution without waiting for the format to be transmitted. After
transmitting the format, work station data management invites input from the
display station. The system will not accept input from the display station until
work station data management invites input from the display station.

When the user program requests work station data management to read the
information entered on the display, work station data management performs an
accept input operation, which waits for information to be entered from an
invited display station.

Input may have been invited from more than one display station attached to
the program. When a display station operator enters data from an invited
display station, work station data management causes the input data to be
read into the user program’s buffer area. .

Figure 2-3 summarizes these steps.

Note: Work station data management does not invite input if you use the
suppress input operation, which is described later in this section. If a program
attempts to read from a display station from which input is not invited, the
display station will no longer be able to communicate with the program.

Format Name
{DISP2)

User

Work Station
Program

Data
Management

b — — —

Buffer

Data from
Program Work Station
(customer name | Data

and number) Management

User
Program

— — — —

Buffer

Format
(DISP2)

User Work Station
Program Data
Management

S ——

Buffer

Read
Request

User

Work Station
Program

Data
Management

Buffer

User .
Program Input Data ‘g:{ak Station

= — — — for Program Management
Buffer

DisP2
Cust Name ABC
Cust No. 12345
item Qty

DIsP2
Cust Name ABC
Cust No. 12345
Item Qty
1234 100

DISP2
Cust Name ABC
Cust No. 12345
Item Qty
1234 100

The user program passes to work station data
management the name of the format to be
displayed (in this case, DISP2) and a buffer

containing output data fields to be supplied by

the program (for example, as the result of a
disk file access operation).

Work station data management merges data
from the program (in this case, customer name
and number) and display station control infor-
mation with the format.

Work station data management transmits the
format and then invites input from the display
station.

The program requests work station data manage-

ment to read from the display screen.

Work station data management accepts the in-

formation entered by the operator (in this case,

item number and quantity), and places the
information in the program’s buffer area.

Figure 2-3. Steps in Normal Processing Using Work Station Data Management

System/34 Concepts

2-45

2-46

Modified Operations

When a programmer defines a display screen format, he can modify the
operations normally performed by work station data management, or he can
identify indicators that conditionally modify the operations when the format is
displayed. The following sections describe the modified operations that can be
requested. Each section refers to the columns on the S specification that:
specify the operation. If the programmer uses SDA rather than the S
specification, he requests these operations by responding to prompts.

Erase Input Fields Operation

For an erase input fields operation, which is specified in columns 31 and 32 of
the S specification, work station data management blanks out the contents of
the input and output/input fields on the display. Work station data
management then invites input from the display. The format is not sent to the
display station on an erase input fields operation. Therefore, the programmer

" might want to request the erase input fields operation when an application

requires an operator to enter information on the same screen time after time.
In such an application, the programmer should specify that the erase input
fields operation be controlled by an indicator. The first time the program
displays the format, that indicator should be off. The program should then turn
on the indicator for the next and succeeding times it issues the display. Each
time the display is issued with the indicator on, the input fields are blanked
out, and the operator can again use them for input. This technique is especially
important when a program communicates with a remote display station
because the amount of information transmitted to a remote display station
might significantly affect the performance of the jobs using the
communications line.

Override Fields Operation

For an override fields operation, which is specified in columns 33 and 34 of the
S specification, work station data management:

- Transmits the contents of conditional output fields if the output indicator is
on. A conditional output field is a field for which an indicator is specified in
columns 23 and 24 of the D specification. The field is transmitted only if
that indicator is on.

« Retransmits the attribute bytes for all field attributes controlled by indicators,
except the protect field attribute.

The override operation allows the program to override (modify) program output
fields on a display without retransmitting the entire display. Again, this
technique is especially important when a program communicates with a remote
display station, in that it reduces the amount of information transmitted over
the communications line.

An example of a program that uses the override fields operation would be the
following inquiry program. The first display issued by the program requests the
operator to enter the item number of the item to be displayed.

r A

ENTER ITEM NUMBER - (OR / TO END)

Y | y

After the operator keys an item number and presses the Enter/Rec Adv key,
the program retrieves inventory information about the item and displays it.

7~ ~,
enTER ITEM NuvBErR KL <or /7 TO ENDD
ITEM NO. DESCRIPTION PRICE ON HAND SoLD
111111 ALUNINUM BATS 2.33 20 3
e J

System/34 Concepts 2-47

2-48

If the operator enters an item number that is not in the inventory file, the
program turns on the override-fields indicator and redisplays the first display.
(The override-fields indicator is the indicator specified in columns 33 and 34 of

the S specification for the first display.) The first'display contains a message

fieldv in line 24 that is displayed o'nly when the override-fields indicator is on.
Also, the override-fields indicator could be used to redisplay the incorrect item

number as a reverse-image field.

-~
ENTER ITEM NUMBE (OR /- TO END)
ITEM NO. DESCRIPTION PRICE ON HAND SOLD
111111 ALUMINUM BATS 2.33 20 3
ITEM NOT FOUND
\

Unless the suppress input operation is requested when the override fields
operation is performed, the operator can enter another item number.

Suppress Input Operation

For a suppress input operation, which is specified in columns 35 and 36 of the
S specification, work station data management will not invite input from the
‘display station after transmitting the format to the display station. The operator
may enter information into input fields on the display, but he cannot enter the
display and return the input to the program until work station data
management invites input from the display station. The suppress input
operation should be used when multiple formats are displayed before input is
sent to the program. When multiple formats are sent, the suppress input
operation should be specified on all but the last display or the system will have
to do extra work to generate the displays.

Note: If an RPG Il MRT program transmits multiple displays and does not
suppress input on all but the last display and if the operator interrupts the
program by pressing the Attn key before the last display is transmitted, the
program will be suspended. No other requestors will be serviced during the
inquiry request. No indication that the program is suspended is given to the
operators at the other display stations.

Operations Requested by Basic Assembler Programs

Appendix A describes the operations that can be requested by a basic
assembler program when it calls work station data management.

System/34 Concepts 2-49

File Concepts
This section describes these System/34 file concepts:
« File identification
"« File organization
« File processing
« File sharing in multiple program mode
« File sharing consideration
« Sector protection
« File update programs
« Key sorting for indexed files
« IPL file rebuild function
« Using a disk file as two or more logical files

« Use of a file by an inquiry program in single program mode

2-50

FILE IDENTIFICATION

The SSP requires that you must be able to uniquely identify each file on the
disk. You can accomplish this by assigning a unique label, eight character
maximum, to each file on the disk. However, you can assign the same label to
more than one file as long as each of those files has a different creation date.

Groups of files, as well as individual files, can be uniquely identified. File labels
of files that belong to a file group contain one or more periods. The characters
preceding a period identify the file group. Examples of labels of files within a
file group are:

A.B.GO

A.B.INV

A.INV Files in file group A
A.ACCTS

A.PROLL

A1.INV
A1.ACCTS Files in file group A1
A1.PROLL

A.B.GO Files in file group A.B
A.B.INV

Only the SAVE procedure and the $SCOPY and $DELET utility programs can
process file groups.

If a file label does not contain one or more periods, the file is not a member of
a file group. User libraries cannot be processed as file groups.

Depending upon the disk storage capacity of your system, you can create up to
2008 files and libraries on your system.

System/34 Concepts 2-51

2-52

FILE ORGANIZATION

A file can have one of three types of file organization based on the
arrangement of records within the file: sequential, indexed, or direct. All three
types can be delete-capable files. For further information, refer to
Delete-Capable Files, later in this section.

In a sequential file, the position of a record depends upon the order in which
records are placed.in the file. The first record placed in the file occupies the
first record position in the file. Subsequent records are placed in the file
sequentially.

A sequential file organization usually requires less disk storage than do indexed
and direct organizations.

In an indexed file, an entry for each record is stored in a‘separate part of the
file called an index. The index has a record key and record location for every
record in the file. An index allows a program to process required records by
referring to the record keys. ’

The index is divided into a primary area and an overflow area. The entries in
the primary area are in ascending order by record key. The entries in the
overflow area are the result of added records and are not necessarily in
sequence except for IFILES. When the SSP does a key sort for the file, the
SSP merges the overflow entries into the primary area. Refer to Key Sorting
for Indexed Files later in thns section for information about when the SSP does
a key sort.

You can bypass the checking of duplicate keys when you are randomly adding
records to an indexed file by specifying BYPASS-YES on the // FILE OCL
statement. The bypass function is supported by the program-defined access
path and is not a file attribute. For example, if you have a shared file, one
access path used by one program may bypass duplicate key checking, while
the other access path used by another program may check for duplicate keys
being added to the file.

Because the BYPASS-YES parameter of the // FILE OCL statement can result
in an indexed file containing records with duplicate keys, you should have a
method of checking to see that records with duplicate keys are not present in
an indexed file. For example, you might set an L1 indicator on to- check for
records with duplicate keys when using RPG II.

FILE

In a direct file, a relationship exists between records and their positions in the
file. In a direct file, the relative position of a record might be equal to a
program counter or a field value. The relative position also might be derived by
a formula or conversion technique (known as an algorithm) that the
programmer codes. Such an algorithm might result in a number of records
producing the same relative record position. Those records are called
synonyms, and a programmer must allow for their storage and retrieval in
alternative locations within the file. If a direct file is created as delete-capable,
unused record locations are initialized to hexadecimal FFs. If a direct file is not
created as delete-capable, unused record locations are initialized to
hexadecimal 40s (blanks).

Additionally, an algorithm might result in some record positions being
unoccupied. The algorithm chosen should be the best compromise between
wasted disk space and an unnecessarily large number of synonyms.

PROCESSING

Programs process files by four basic methods: consecutive, sequential by key,
random by key, and random by relative record number. These program
processing methods should not be confused with physical file organizations.
The following table illustrates which processing methods can be used for each
file organization.

File Organization
Processing
Method: Sequential Indexed Direct
Consecutive Yes Yes' Yes
Sequential by Key No Yes No
Random by Key No Yes No
Random by Relative | Yes Yes? Yes
Record Number

'Only consecutive input processing is valid.

2Changing the key in a record when processing an indexed file randomly by
relative record number results in the key in the data record being changed and
not the index.

The consecutive method processes records in the order in which they
physically appear in a file. This method can be used for all three file
organizations. Records are read until the end of the file is reached or until the
program stops reading records. If a delete-—capabie file is processed
consecutively, any deleted records are bypassed when they are read.

Typically, sequential files are processed consecutively when all records in the
file are to be processed.

System /34 Concepts

2-53

2-54

When a direct file is processed consecutively, the contents of spaces left for
missing records are read as blank records. If a delete-capable direct file is
processed consecutively, the deleted records are bypassed when they are read.
When an indexed file is processed consecutively, the index is ignored.

Sequential-by-key processing applies only to indexed files. When an indexed
file is processed this way, records with entries in the primary index area are
processed in the order of their record keys. Records with entries in the .
overflow area are also processed when an indexed file having the IFILE
characteristic is processed this way. In a delete-capable file, the deleted
records are bypassed when they are read.

An indexed file can be processed sequentially in one of two ways: total file by
key or records within limits. Total file by key processes records in the order of
their key fields. Processing continues until all records with entries in the
primary area have been read or until the program stops reading records. If
IFILE support is used, all records can be accessed. Processing records within
limits allows a section of a file, a group of records, to be processed in key
sequence. Each section is identified by a lower limit, a starting key, and an
upper limit, an ending key.

Random processing by key allows records in an indexed file to be processed in
a sequence determined by the user. The user program specifies the record key
of the desired record. Disk data management scans the index portion of the
file until the key is found and then reads the desired record directly into the
user program. This access method allows the program to retrieve records from
the primary area and the overflow area. When a delete-capable file is
processed randomly by key, the deleted records are not available.

Random processing by relative record number allows disk records to be
processed in a sequence determined by the user. (The file is treated as a
direct file even though it is an indexed or consecutive file.) A particular record
can be processed independently of its relation to other records. All three file
organizations can be processed randomly by relative record number. Relative
record numbers are used to identify records. These numbers indicate the
positions of records within the file in relation to the beginning of the file. The
relative record numbers are not disk addresses, but positive, whole numbers
that the SSP converts to disk addresses of the records. When a
delete-capable file is processed randomly by relative record number, the
deleted records are not available.

If you want to process an indexed file both by key and by relative record
number, you can define two logical files in your program for the same physical
file. This process is described in Using a Disk File as Two or More Logical Files

" later in this chapter.

The relative record numbers can be in an ADDROUT file created by the Sort
program of the Utilities Program Product. An ADDROUT file is a record
address file that contains binary, 3-byte, relative record numbers that indicate
the relative position of records in the file to be processed. A record can be
read from the ADDRQUT file and used to access a record in the disk file.

Typically, sequential files are processed randomly when only a few of the
records in the file are to be processed and the user knows their relative
location. To process a sequential file randomly, the program should define the
file as direct. '

DELETE-CAPABLE FILES

The extended disk data management function of the System/34 SSP allows
you to create a delete-capable file. User programs can then delete records
from such a file. Any file, regardless of organization and processing method,
can be created as delete-capable. When a direct delete-capable file is created,
all bytes in the file are set to hexadecimal FFs. When a record is deleted from
a delete-capable file, the SSP fills the record with hexadecimal FFs. Also, for
an indexed file, the key is marked as deleted, not the record.

If you use an ADDROUT sort to access records in an indexed file and you
delete a record, the record is deleted, but not the key. You must reorganize
the file with a SAVE and RESTORE operation to delete the key.

When a primary, secondary, or demand file containing deleted records is
processed consecutively or sequentially, each deleted record (a record
containing hexadecimal FFs) is bypassed and the next record is read. When a
file containing deleted records is processed randomly with a CHAIN operation
by RPG II the no-record-found indicator is turned on when a deleted record is
accessed.

Note: The SSP checks the first byte of a record. If that byte contains a
hexadecimal FF, the record is bypassed.

Extended disk data management will not allow a record having hexadecimal FF
as its first byte to be written to a file during an output, add, or update
operation. If the first byte of the record contains a hexadecimal FF, an invalid
update /add /output completion code is returned to the user program.

You can add records to delete-capable sequential and direct files by using
relative record numbers. By using relative record numbers you must add a
record in the file in the place you want, if the record has been deleted before.
If you are using RPG Il, the relative record number of the record to be added
to the file must be placed in the RECNO (continuation line of the F
specification) field. The relative record number must be the record number of a
deleted record. You code output specifications that contain ADD to add
records to a file. RPG |l uses the relative record number from the RECNO field
to locate where the record is to be added to the file. If the relative record
number is not the number of a deleted record, a halt occurs and the system
issues a message that a duplicate record exists in the file.

System/34 Concepts 2-55

2-56

If you are using COBOL and specify relative organization for the file, you can
add records to delete-capable files also. When ACCESS IS RANDOM or
ACCESS IS DYNAMIC is specified, new records are inserted into the file. The
RELATIVE KEY specified for the file must contain the desired relative record
number for this record before a WRITE is issued. When the WRITE statement
is executed, the record is placed at the specified relative record number
position in the file. If the relative record number is not the number of a deleted
record, a halt occurs and a file status return code indicating that a duplicate
record exists is returned to the program.

For RPG |l programs, the delete-capable file must be defined as an update file
(U in column 15 of the file description specification) if records will be deleted.
To delete a specific record, DEL must be ‘specified in columns 16 through 18
of the main output record line. The DEL apphes to all OR extensions of the
main line.

For COBOL programs, the DELETE statement is used to delete records.
For BASIC programs, the DELETE statement is used to delete records.

When records are loaded or added to a delete-capable direct file, the specified
relative record number must be the relative record number of a record that
contains hexadecimal FFs; otherwise, an error message is dlsplayed and the
record will not be added to the file.

RPG direct files that are not delete-capable must be loaded using the CHAIN
operation.

DFU cannot be used to create delete-capable files or to delete records in the
manner described for the system delete function. DFU can, however, be used
to update, list, and inquire into delete- capable files in a manner similar to that
used for nondelete-capable files.

WSU does not allow records to be deleted. Therefore, a WSU program ends
abnormally if it tries to use a delete-capable transaction file. A WSU program
can, however, use a delete-capable master file.

EXTENDABLE DISK FILES

Specifying extendable disk files prevents your program from abnormally
terminating when there is no room in the data file to add additional records.

When you use a disk file on System/34, you can use the EXTEND parameter
on the FILE OCL statement to identify the file as being extendable. For an
extendable file, the SSP automatically attempts to allocate more space for the
file each time it becomes full. The value of the EXTEND parameter specifies
the amount of additional space that is allocated. (If the file size was originally
allocated in blocks, the value of the EXTEND parameter is in blocks; if the file
size was originally allocated in records, the value of the EXTEND parameter is
in records.) The specified value must be at least large enough to hold one
record. If a file is being shared and the various users specify different EXTEND
values, the EXTEND value for the user that caused the file to become full is
used for the extension. When a file is extended, all users can take advantage
of the additional file space, regardless of whether or not they specified
EXTEND on the FILE OCL statement.

The SSP attempts to extend an extendable file whenever it becomes full as the
result of one of the following situations:

« When an indexed or consecutive file is being created or added to.

» When a direct file is being created.

« When a record is read from a direct file for updating or is written to a
delete-capable file, and the specified relative record number is beyond the
end of the file. (If the relative record number is greater than the file size

plus the extend value, the SSP does not attempt to extend the file. In that
case, a no record found completion code is returned to the user program.)

System/34 Concepts 2-57

2-58

The following list describes how the SSP handles different types of extendable
files when they become full:

« Scratch and job files in the reserve area: The SSP displays a message when
such a file becomes full. The operator can then choose to have the SSP
copy the file into a larger space outside of the reserve area. The user
program will resume processing after the extend operation. If the operator
does not choose to extend the file, he can choose an option that returns an
end of extent completion code to the user program or an option that cancels
the user program.

« Direct and consecutive files: The SSP attempts to allocate the additional
space immediately following the file. If that is not possible, the SSP copies
the file to a larger area on disk and frees the area originally occupied by the
file.

» Indexed files: The SSP copies the file to a larger area on disk and then
frees the area originally occupied by the file.

If the SSP successfully extends the file, an informational message identifying
the file as having been extended is logged in the history file. Execution of the
user program then resumes. If the extend operation was not successful, either
because space was not available or because a disk /0 error occurred, an end
of extent completion code is returned to the user program.

INDEXED FILES WITH THE IFILE ATTRIBUTES

IFILE support allows shared indexed sequential processing of all records in an
indexed file by keeping the entries in the index overflow area in sequence.
Without IFILE support, indexed sequential processing is limited only to those
having index entries in the primary portion of the index. IFILE support requires
that both the extended disk data management and extended index data
management be selected during system configuration. Indexed files can be
given the IFILE attribute by specifying it on the FILE OCL statement or the
SETFILE or BLDFILE procedure.

The functions provided by IFILE support require additional system resources.
These resources include processing and 1/0 cycles as well as additional main
storage. Therefore even though the function requires no recompilation of
programs, you should be selective of which files you give the IFILE attribute to.
Generally, IFILE support is advantageous only in file sharing situations where
indexed sequential processing is used while indexed random adds are being
performed. Large files with a low volume of records being added to the file are
the best candidates for IFILE processing.

The following list summarizes the general functions and restrictions of the
IFILE support:

« IFILE processing allows shared indexed sequential retrieval of records that
have been added by shared indexed random users.

« [IFILE processing does not change the indexed sequential add restrictions;
that is, you still cannot specify DISP-SHR with indexed sequential add
operations.

« The indexed sequential sequence of get, add, and update data management
operations are not supported with IFILEs.

« Any binary key of hexadecimal zeros is not supported. There is no
restriction on decimal key values.

« Specifying DISP-SHR will assure that doubly defined files in one program
will have access to records added by that program.

« IFILE processing does not apply to the assembler language access method
called ISRI (indexed sequential random input).

Files having the IFILE attribute place additional demands upon system
resources. The following list summarizes some techniques you can use to help
performance on your system when using files with the IFILE attribute:

« Add records to the indexed file with the key values in ascending order if
possible.

« Use the KEYSORT procedure at either IPL or STOP system time, since
fewer entries in the index overflow area require less search time and
improve performance.

« Allocate disk space slightly larger than the expected file capacity.

Indexed files without the IFILE characteristic need to have the added keys in
the overflow area keysorted into the primary index area before.records added
to the file can be accessed sequentially by key. Refer to Key Sorting for
Indexed Files later in this chapter for more information on when the SSP does
a key sort.

System /34 Concepts

2-59

2-60

PROGRAMMING ATTRIBUTES OF IFILES

File Locking and IFILES

Beyond the normal sector protection of records being updated, IFILEs have an
additional level of file protection: the entire file is locked so that the index
entries can be maintained in sequence. This additional level of protection can
cause some problems when a program updating records and a program adding
records are sharing the same indexed file. Record update programs mark. the
file as being in use until the record update is complete and another operation is
issued by the same program. The record-adding program begins when the
operation is issued.

This condition occurs when any of the following happen:

« Specifying IFILES as extend capable files.

« Accessing data records with index entries in the overflow portion of the file.
« Accessing records in the same sector as the next record slot.

« The area in the file where the next new record is to be placed is the next
record slot.

For example, assume three programs, P1, P2, and P3, are sharing an indexed
file that is an IFILE. Program P1 uses the file first to update records. Program
P2 is adding records to the file, and program P3 is updating records. Programs
P2 and P3 wait until the record updating done by program P1 is complete and
program P1 does another operation.

Update : Add Update

P1 P2 - P3

{Wait)

=

Indexed
File

Performance Considerations
Performance with IFILEs can be slowed down by:
« A large overflow area in the indexed file
« A program that occupies a large area of main storage
+ A small user area in main storage

These three factors affect the way the system uses |/O buffers for IFILE
support.

Performance may also slow down when adding records randomly by key to an
indexed file that has not had a keysort done for some time.

Keysorts and IFILES
Specifying an indexed file as an IFILE eliminates the need for doing a keysort
each time you want to sequentially process the indexed file to gain access to
new records added to the file.
However, System/34 automatically keysorts IFILEs when:

« A job step terminates normally and the file is not a shared indexed file

« The last program using the shared index file ends

System/34 Concepts 2-61

2-62

FILE SHARING IN MULTIPLE PROGRAM MODE

System/34 supports file sharing in multiple program mode; file sharing allows
two or more programs to access the same file. DISP-SHR must be specified
on every FILE OCL statement for a file that is shared. For BASIC programs,
SHR must also be specified on the OPEN statement for the file.

Types of Files That Can Be Shared

Input and update files can always be shared. Add files, except for indexed add
files that are processed sequentially by key, can always be shared.

Types of Files That Cannot Be Shared

Files that are being created cannot be shared. An indexed add file that is
processed sequentially by key cannot be shared.

Accessing Records Added to Shared Files

Programs sharing sequential files always have access to added records.
Programs sharing an indexed file have access to added records, except in
either of the following situations:

« If records have been added to a file that is being processed sequentially by
key, the program cannot access records added to the file since the last time
the keys were sorted unless the file is an IFILE.

« |f records have been added to a file that is being processed consecutively,
the program cannot access records added to the file since the file was
allocated to the program.

Refer to Key Sorting for Indexed Files later in this section for information about
when the SSP does a key sort.

If a program that is adding records to a shared file is ended abnormally, the
records added before the abnormal termination remain in the file. If a program
that is adding records to a file that is not shared is ended abnormally, records
added before the abnormal termination are removed from the file unless the
file is an indexed file using the IFILE support. If the system unexpectedly
stops (for example, as the result of a power failure), added records can be
recovered during the IPL file rebuild process. For information about IPL file
rebuild, refer to IPL File Rebuild Function later in this section.

FILE SHARING CONSIDERATIONS

If you want to share a file among programs or if you want to allow more than
one display station to process a file concurrently, consider that:

« Programs can share only permanent or temporary files.

« If you change a temporary file to a scratch file by specifying a RETAIN-S
parameter on the FILE OCL statement, the file cannot be shared.

+ The SSP protects sectors read for possible updating by one program from
being updated by any other programs. The SSP protects sectors by
assigning them to the program doing the update. Refer to Sector Protection
in this section for further information.

» |If programs share more than one file, all programs should access the files in
the same sequence to reduce the chances of a deadlock condition. Refer to
Sector Protection in this section for a description of this deadlock condition.

SECTOR PROTECTION

Sector protection is the SSP function of assigning sectors to a program when
that program reads records in the sectors for a possible update. A sector is a
256-byte area on disk and is the smallest amount of data that can be read
from or written to disk during one operation.

How you set up record blocking within your application program affects the
number of records that are sector protected. A sector can contain more than
one record, and more than one sector can be assigned to the input blocks you
specify in your application program. Each record contained within a sector is
sector protected. For more information on how input blocks and sectors are
related, refer to Record Blocking in the next chapter.

A program that tries to update a record within a sector that is assigned to
another program must wait until the sector is released. A program releases a
sector by (1) completing the update, (2) performing an add operation, (3)
reading a different sector from the same logical file or (4) rereading the same
sector. (For information about logical files and physical files, refer to Using a
Disk File as Two or More Logical Files, later in this chapter.) Programs that
request an assigned sector for input only do not have to wait until the sector is
released.

System/34 Concepts 2-63

A deadlock condition can occur when update files are shared. For example,
assume that program A and program B are.updating two shared files, file 1
and file 2. Program A reads record 3 updating from the sector of file 1, and
program B reads record 2 for updating from the last sector of file 2.

Program A
Record | Record | Record | Record File 1
1 2 3 4
First Sector Program B

Record | Record | Record | Record | Record]| File 2
1 2 3 4 5

Last Sector '

Suppose that program A tries to read record 5 from the last sector of file 2.
Program A must wait because the sector is assigned to program B.

Record | Record | Record | Record File 1
-1 2 3 4
Program A

(waiting)

Assigned t;Program A

Program B
(waiting)

Record | Record | Record | Record | Record | File 2
1 2 3 4 b

‘ Assigned to Program B

Suppose that program B tries to read record 1 from the first sector of file 1.
Program B must wait because the sector is assigned to program A.

Record | Record | Record | Record File 1

1 2 3 4
Program A

{waiting)

Record | Record | Record | Record | File 2
3 4 5

Program B
{waiting)

Assigned to Program B

This condition of programs waiting for each other is called a deadlock. To
ensure that deadlocks do not occur and that a sector from a shared update file
is not assigned for a long time, always release a sector before reading a record
from another shared update file. A sector is released when it is rewritten to
disk, or a different sector is read.

For example, in RPG Il programs, a good way of releasing a sector is to write
an output record that has no fields (columns 32 through 71 of the RPG I
output specifications specify no data). This rewriting causes the sector to be
released and requires no physical disk accesses.

Note: If the operator selects inquiry option 1 while the interrupted program has
a sector enqueued, the system does not resume execution of the interrupted
program until all sectors are released. The system then allows the operator to
enter another command or statement.

Interrupting a program that is updating records in an IFILE can cause a file
lockout condition which prevents you from accessing records in the file. The
file lockout condition can occur when a program updating records in the IFILE
is interrupted. For example, an operator presses the ATTN key and takes
option 1. The operator starts a program to add records to the file already
opened by the program that was interrupted.

System/34 Concepts 2-65

2-66

FILE UPDATE PROGRAMS

You should use care when updating disk files in any program that supports
multiple display stations. If a single logical file is used by two or more display
stations within the same program and if the program, after reading a record for
updating, does other read operations from the same file before actually
updating the record, the following error conditions can occur:

« An update or part of an update can be lost. For example, suppose a record
is read from File X and displayed at display station 1; then the same record
is read from File X and displayed at display station 2. If File X is not
shared, the update done by one display station might be destroyed by an
update done by the other display station. If File X is shared, an error
message is issued, and the second update is not done.

« The wrong record can be updated. For example, suppose a record is read
from File X and displayed at display station 1; then a different record is read
from File X and displayed at display station 2. If display station 1 tries to
update the first record but does not reread that record, disk data
management tries to update the last record read from File X.

« An update performed by another program sharing the file can be lost. For
example, suppose a record is read from File X and is displayed at display
station 1; then a record in a different sector of File X is read by the same
program and displayed at display station 2. The second read from File X
causes the SSP to free the sector containing the first record. Another
program that is sharing File X can update the first record. If display station
1 rereads and also tries to update that record using the original field values,
the updates made by the other program might be lost.

You can avoid the preceding error conditions by using one of the following
techniques:

Before doing an update, reread the record and check that none of the fields
being updated have been changed since the record was displayed for
updating. If any of the fields were changed, redisplay the field for updating
or, if possible, do the update using the field values currently in the record.

Protect records being updated by establishing a field in the disk records to
be used as a busy indicator. After reading and displaying the record for
update, place the busy indicator in the record and write the record to disk.
(The busy indicator might be the work station ID and the program name.)
Subsequent attempts to access the same record should test for the busy
indicator and not allow access for update. The busy indicator should be
removed from the record when the update is done by the requestor or if no
update is to be done. If the possibility exists that another program might
update the same file concurrently, both programs must test and use the
same busy indicator.

If the program ends abnormally and you are not going to restart the
program, you should run another program that turns off the busy indicators
in records that were being updated by the program when it ended so that
programs that check the busy indicator can handle the record properly.

Consider defining a separate logical file for each display station. Separate
logical files protect against updates by other programs, but they do not
protect against multiple updates within a single program. For further
information, refer to Using a Disk File as Two or More Logical Files, later in
this section.

System/34 Concepts

2-67

KEY SORTING FOR INDEXED FILES

After an indexed file is created or after an indexed file has records added to it,
the added keys exist in an overflow area. If the file is to be processed
sequentially by key, the keys must be sorted to allow access to all records in
the file, unless IFILE support is ‘bein'g used. Even when IFILE support is being
used, key sorting is done by the system to limit the size of the overflow area.

The SSP sorts keys at the end of a job if the indexed file was created during
the job and the records were not placed in the file in key sequence. .
Additionally, IFILEs are keysorted at end of job when the system detects that
add operations are slow because of the size of the overflow area.

The SSP performs a special key sort at the end of a job when certain
conditions are met. The special end-of-job key sort is done if all of the

following conditions are true:

o The file is being, used exclusively by one user, or the file is being used by
the last shared user.

« There was no overflow key area for this file when the file was first
allocated.

« All keys added to the file are in ascending seqyuence,v and the value of the
added keys is greater than the highest key in the primary key area of the

file.

The SSP sorts keys when a file is allocated to a program if all the following
conditions are true:

« The file has keys out of sequence because records were added to the file.
« The file processing method to be used is sequentia‘l by key.

« The file is not shared.

The file is not being used by an interrupted program.

The system operator can request that the SSP sort keys at system shutdown.
To request a key sort, the operator can specify STOP SYSTEM or STOP
SYSTEM,SORT. The SSP sorts keys of files that (1) have had records added
to them and (2) have not had the keys sorted. That is, keys are sorted for files
‘that have overflow areas.

2-68

The SSP sorts keys during an IPL if the system operator enters Y in response
to the EXAMINE AND VERIFY THE DISK VTOC? (Y,N) prompt on the file
rebuild display and if the sort or merge flag is set on in the VTOC entry. These
flags are set during file processing whenever a duplicate key or an
out-of-sequence key is found. The flags may be set by disk data
management, diskette-to-disk copy, or index construction during IPL file
rebuild. Files might have keys out of sequence if a system shutdown was not
done before the IPL.

The SSP sorts the keys of files processed by some SSP utility programs.
When the following SSP utility programs or procedures are used to do the
indicated functions, the SSP sorts the keys in the file:

SSP Procedure SSP Utility Function

RESTORE $COPY Restore a file from diskette
DISPLAY $COPY Display an indexed file

ORGANIZE $COPY Organize a file to disk or diskette
TRANSFER $BICR Transfer a file from disk to diskette
KEYSORT $DDST Sort the keys of an indexed disk file

The SSP does not sort the keys of shared files. Therefore, records added to
those files cannot be accessed when the file is processed sequentially by key,
unless IFILE support is being used. To be able to access these added records,
you can use the KEYSORT procedure or the $DDST utility program. The
KEYSORT procedure does not execute until it has exclusive use of the file.

The KEYSORT procedure issues a warning message when records with
duplicate keys are found in an indexed file.

IPL FILE REBUILD FUNCTION

System/34 provides IPL file rebuild as a recovery function that (1) verifies the
integrity of the VTOC entry for each user data file and (2), if possible, corrects
the entry and/or the file itself. Therefore, the IPL file rebuild function should
be run during IPL following failures such as power outages and inadvertent
IPLs.

The IPL file rebuild function is controlled by options on the second IPL display.
From that display, the operator can (1) request file rebuild or bypass it, (2) limit
the function to only files that were being created or to all files, (3) request that
the labels of all files in error be displayed, (4) request that the VTOC entries for
nonrecoverable errors be deleted, and (5) request that checkpoint/restart active
files be deleted.

System/34 Concepts 2-69

2-70

If disk file reorganization (COMPRESS) had not completed when the system
failure occurred, the IPL file rebuild function calls the $FREE utility to complete
the reorganization. : '

The IPL file rebuild function then examines each entry in the VTOC. f a VTOC
entry contains any of the following errors, the entry cannot be corrected:

The file type is not sequential, direct or indexed

« The retention type is neither‘temporary nor permanent

« The record length exceeds 4096 bytes

» The file is an indexed file, and the key length is zero or exceeds 29 bytes
» The file is an indexed file, and the key position exceeds 999 bytes

« The file is an indexed file, and the key is not within the record

« The file is not located within the data file bounds .
Because System/34 initializes the data space to hexadecimal zeros for new
sequential and indexed files, to blanks for direct files, and to hexadecimal FF
for delete~capable direct files, the IPL rebuild function can update the
end-of-data pointer in the VTOC entry to reflect records that were added to
the file.

Note: Records added to a file may be written on disk or may be in a main
storage buffer. If a failure occurs, only those records written on disk can be
located in order to update the VTOC entry.

If the file is an indexed file, the entire index is reconstructed if (1) the
end-of-data pointer is updated, (2) the sort or merge flag is set on in the
VTOC entry, or (3) the number of indexes is not equal to the number of
records.

In the VTOC entry for an indexed file, a flag (sort or merge) is set on during
file processing whenever a duplicate key or an out-of-sequence key is
encountered. This flag may be set on by disk data management,
diskette-to-disk copy, or index construction during IPL file rebuild. If the flag
is set on, the IPL file rebuild function calls the key sort function.

Finally, the IPL file rebuild function ensures that all files with unique labels are
marked with the latest date indicator in the VTOC entry. For files with the
same label, the dates of creation must be unique, and only the file with the
most recent date is so marked.

The IPL file rebuild function then re~-creates the disk control block to reflect
both available space and space in use on the disk.

USING A DISK FILE AS TWO OR MORE LOGICAL FILES

Each file defined within a program is called a logical file. A program can use
one disk file as two or more logical files. An RPG 1l program, for example,
may be written to access two files called FILEA and FILEB. if the following
FILE OCL statements are used:

HEN AERNRRRRRRERD |
/| IFITILE] INAMEI-FIILEAL L ‘%Sﬂﬁ 2 [DTISIP1-ISH
/| Fi1 }N El-FIL EB:LI L’H Si ER:DI}S -5 i

then the disk file labeled MASTER is used as two different logical files by the
program.

An example of using multiple logical files could be a bill of materials program
that accesses a master file randomly by key and randomly by relative record
number.

Records added to one logical file can be accessed from a second logical file
except in the following cases:

« Records in the second logical file are being read or updated, and the file is
an indexed file being processed sequentially by key (unless the file is an
IFILE).

« The second file is an input-only file that is being processed consecutively.

If DISP-SHR is not specified on the FILE statements, records can be added or
updated in only one of the logical files. If DISP-SHR is not specified on the
FILE statements for multiple logical files, the following considerations exist:

+ Records can be added or updated through only one of the logical files.

« If the input-only file(s) is being processed sequentially by key or
consecutively, added records cannot be read. In addition, updates to
records that have already been read into the 1/O buffer are not available to
the input-only file unless it is an IFILE. For information about when records
are read into the |/O buffer, refer to Physical 1/0 and Logical 1/0 in Chapter
3.

« If the input-only file(s) is being processed randomly (either by key or by
relative record number), the file has immediate access to updated records.

« If the input-only file(s) is being processed randomly by relative record
number, added records cannot be read.

If DISP-SHR is specified, records can be added or updated in more than one
of the logical files. Care must be taken, however, because the SSP does not
protect against two logical files updating or adding to the same sector at the
same time. If two logical files are updating or adding to the same sector at the
same time, only the update or add made last will appear in the disk file.

Note: If the file is shared, the system does protect each logical file against
concurrent updates by other programs. The system does not protect against

concurrent updates from within the same program.
System/34 Concepts 2-71

USE OF A FILE BY AN INQUIRY PROGRAM IN SINGLE PROGRAM MODE

In single program mode, the SSP allows an inquiry program to access active
files for input or update. Active files are those files that were being used by
the program that was suspended by the inquiry request. Updating an active
file is allowed only if the suspended program did not open the file for an
update or add operation. Active output files can never be accessed by an
inquiry program.

Figure 2-4 summarizes the types of file processing that can be used by an
inquiry program when processing a file that was being used by the suspended

program.
Interrupted Program
File Type Abbreviation
Used : Meaning
Indexed Sequential Direct A Add
C Consecutive
Accoss IS IR C| R C R Cc R | Input
Method ult lult lolu IR : Random by key
IS Sequential by key
! n Processing by the inquiry
(o] program is not allowed
Is m o) Output
R : Random by relative record
A number
I U Update
y. Processing the inquiry
13 0 program is allowed
- IR) S
4 (V] : 5
£ A -
5 ! vy Y3y [n [¥?
T
£ o nin[n|n[nin
c 3 3 3
U niy?In [y’In |n
A n
[vy [v3ly [n|¥?
R (o] nininininin
ulyln tn In ly3nin [n {y3yv3n {y3[n{n |n {y3ln |y3[n {¥3|n |n
! The inquiry program can access all records in the file except those records added
by the suspended program.
2 Records retrieved by the inquiry program may not reflect the current status of
the file.
3 Records retrieved by the interrupted program may not reflect the current status
of the file.
“#The inquiry program cannot access records in the overflow area. -
$Shading indicates an-invalid access method.

Figure 2-4. Use of a File by an Inquiry Program in Single Program Mode

2-72

Inquiry Programs and IFILES

Suspending the execution of a program that is updating records in an indexed
file that has the IFILE designation and then executing a program that adds
records to this same indexed file may result in a condition known as an
enqueue failure. An enqueue failure is a condition where a program cannot
access the file. If an enqueue failure occurs, the Input inhibited indicator on
your work station goes on until you press the ATTN key and take either the 2
or 3 option.

OFFLINE MULTIVOLUME FILES

An offline multivolume file is a sequential file that is used as though it
completely resides on disk but, in fact, is stored on one or more diskettes. The
portion of the offline multivolume file stored on one diskette is called a file
segment. Offline multivolume file processing uses a disk file as a work area in
which the offline multivolume file is processed a segment at a time.

An offline multivolume file is created when a FILE OCL statement for a diskette
file has the same NAME parameter as that on a FILE OCL statement for a new
disk file. For example, a program creates a disk file called PAYMSTR, which
requires 800 blocks of disk storage; however, 800 blocks of disk storage are
not available. In this case, you can create the file as an offline multivolume file
by using the following FILE statements:

I/ ILlE IWNAME-IPAPISITIRL WM T-1F], B loicikS- 196, IRET Al -g
LIE| WAME-PRYIMSITR, M/ ITI-Z 4, RETA/ W-124, :
CK-& JLIOCIAT/ 0 70

Note: This example uses a diskette 1 diskette that has been initialized in the
128-bytes-per-sector format. The 96-block segment was selected to fully use
each diskette, but you might decide to specify smaller segments if disk space
is limited.

Now, when PAYMSTR is created, the system places records in the 96-block
file on disk. When all 96 blocks are full, the system copies the disk file to the
diskette in location M1.01. The system places the next record written by the
program into the first record position in the disk file. When the file is again
filled, the system copies it to the diskette in location M1.02. If all diskettes in
slot M1 are filled in this manner, the system prompts the operator to insert
another magazine in slot M1 and continue processing. (Iif AUTO-YES has been
specified, the system does not prompt the operator, but uses the magazine in
slot M2.) The system copies the last file segment to the diskette when the job
ends.

To process an existing offline multivolume file, you must again specify two
FILE statements with the same NAME parameter. The size specified on the
FILE statement for the disk file must be the same as the size specified when
the file was created.

System/34 Concepts 2-73

2-74

The following restrictions apply to offline multivolume files:
« They cannot be shared.

« They can only be sequential files and can only be processed by consecutive
processing methods.

« They can only be processed by means of the diskette magazine drive.

o Each access to an offline multivoilume file must start with the first diskette
of a magazine. Therefore, M1.01 or M2.01 must be_specified on the
LOCATION parameter of the FILE statement for the diskette file.

« Records added to an offline multivolume file must be added at the end of
the file. Therefore, the magazine containing the last segment in the file
should be inserted when an addition is to be made to the file. When
additions are made, the current program date becomes the creation date of
all the new segments and of the last segment of the old file.

+« When segments are added to an offline multivolume file, the diskettes must
not contain any other active files.

« Only one offline multivolume file at a time can be processed by a step.

« A program running in inquiry mode cannot access an offline multivolume file
that was being used by the interrupted program.

« Offline multivolume files created by System/32 cannot be processed by
System/34. The offline multivolume files created by System/34 cannot be
processed by System/32. '

» The size of the disk file cannot exceed the capacity of an individual diskette:

— For a diskette 1 diskette initialized in the 128-bytes-per-sector format,
the maximum file size is 96 blocks.)

— For a diskette 1 diskette initialized in the 512-bytes-per-sector format,
the maximum file size is 118 blocks.

— For a diskette 2D diskette initialized in the 256-bytes-per-sector format,
the maximum file size is 384 blocks.

— For a diskette 2D diskette initialized in the 1,024~bytes-per-sector
format, the maximum file size is 473 blocks.

THIRD AND FOURTH DISK DRIVE IMPLEMENTATION CONSIDERATIONS

You have additional disk capability and disk seek processing with the third and
fourth disk drives on the System/34. The SSP supports the additional disk
drives by extending the current definition of the logical name for disk drive A2.
The following chart shows how the physical configuration of the disk drives
and the logical disk name are related.

Logical Disk Name

Physical Drive Configuration A1l A2
1 1 —
1,2 1 2
1,2,3 1 2,3
1,234 | 1 2,34
At A2
~—L—" — 1 1
Drive Drive Drive Drive
1 2 3 4

Beginning Block
Number Location 25203 50406 75609

The SSP allocates space for the file you have specified on the // FILE
statement by the following rules if you did not specify a location based upon
block number:

« If you specify disk A1, the file is allocated in the first segment (lowest
address) on disk A1 that is large enough to contain the file. If not enough
space is available on drive A1, the SSP attempts to allocate the file on the
disk A2.

« If you specify disk A2, the file is allocated in the last segment (highest
address) on disk A2 that is large enough to contain the file. On a
three~-drive system, this is the last segment of drive 3. On a four-drive
system, this is the last segment of drive 4. If not enough space is available
on the last physical disk of A2, the SSP attempts to find space on the other
drives that comprise logical disk A2. If not enough space is available, the
SSP attempts to allocate the file on disk A1.

System/34 Concepts 2-75

2-76

The following chart shows the placement of files based upon file type and disk
drive configuration if you do not specify a preferred disk placement by block
number.

Number of Disk Drives
Type of File 1 2 3 4
Permanent Al A2 A2 A2
Temporary A1l A2 A2 A2
Scratch A1l Al Al Al
Job A1l Al Al A1
Notes: ‘

1. Permanent and temporary files are allocated in the
last segment of the disk large enough to contain
the file.

2. Scratch and job files are allocated in the first
segment of the disk large enough to contain the
file. :

3. If not enough space is available for placement on
a particular disk, the SSP can allocate a file that
spans the disks.

The manner in which you arrange your files on the disk can affect the
performance of your system. You should arrange the files on the disk so that
the utilization of the disk drives is approximately the same.

For more information on how you can obtain performance data about your disk
drives, refer to the System Measurement Facility Reference Manual.

Printer Concepts
Five types of printers are available with System/34: the IBM 5211 Line Printer,
the IBM 3262 Line Printer, the IBM 5224 and 5225 Matrix Line Printers, and
the IBM 5256 Serial Printer. These printers are described in the System/34

Introduction. Operating information for these printers is described in the
following manuals: :

IBM 5211 Models 1 and 2 Component:Description and Operator’s Guide
IBM 3262 Models A1 and B1 Component Description and Operator’'s Guide
IBM 5224 Printer Models 1 and 2 Operator’'s Guide
IBM 5224 Printer Models 1 and 2 Setup Procedures
IBM 5225 Printer Operator’s Guide
IBM 5256 Printer Operator's Guide
One 5211 or 3262 printer can be attached to a System/34. Multiple 5256 or
5224 or 5225 printers can be attached to a System/34, either locally or by a
communications line.
The system printer, assigned during system: configuration, should ordinarily be
located with the system unit and the system console. Any type of printer can

be the system printer. All printers other than the system printer are called
work station printers.

Display Work Station

Station Printer
Display Work Station Display Work Station
Station Printer Station Printer

) LA -

System | System
Remote | Unit Console
Display Stations

System

Printer

and Printers

Q) LA

System/34 Concepts 2-77

2-78

When a program prints information, the program uses either the system list
function or the printer data management function of the SSP. The following
diagram lists those programs that use the system list function and those
programs that use the printer data management function.

Programs That Use System List Programs That Use Printer Data
(prints on the system list device for Management (defaults to the

the session) configuration printer)
« SSP Utility Programs, except data « Print key
communications and service aid » SSP data communication

utilities. Output from the menu build,
history display, display screen format
generator, and library maintenance
procedure use system list.

Privileged user-written assembler

programs

RPG Il compiler

Utilities Program Product (SEU,
the job execution portion of
DFU, SDA, and WSU)

User-written programs

programs « SSP Service Aids
+ COBOL compiler
« The job setup portion of DFU « FORTRAN compiler
+ Assembler
« The sort portion of the Utilities . BASIC

Program Product

Printer Data Management Output

For individual files, you can direct printer data management output to a specific
printer by using a PRINTER OCL statement. If output is not directed to a
specific printer by a PRINTER OCL statement, printer data management output
is printed on the default printer assigned to the display station. The defauit
printer is assigned during system configuration and is shown as the
CONFIGURATION SYSLIST DEVICE on the second session status display. You
can use the SET procedure to change the default printer.

System List Output

System list output is printed on the system list device for the session. The
system list device for the session is shown as the SESSION SYSLIST DEVICE
on the second session status display. When an operator signs on, the default
printer becomes the system list device. The SYSLIST statement or procedure
can be used to change the system list device for a session.

If printed output is generated by a job run from the input job queue or from a
job that was run by an EVOKE OCL statement, the system printer is used
unless a PRINTER OCL statement directs output to a specific printer or unless
the printer default for released jobs is changed during system configuration.

Example of Directing Printer Data Management Output and System List
Output

In this example, printer P1 was assigned to a display station during system
configuration. Now, however, the programmer would like to redirect all printer
data management output to printer P2. The following command statement
changes the default printer to P2:

SET IIIIIPP2

After the SET statement is entered, all printer data management output is
printed on P2 unless the output is directed to another printer via a PRINTER
OCL statement. System list output continues to print on printer P1 or the
default printer for released jobs assigned during system configuration. After
the SET statement is entered, the second session status display shows P2 as
the CONFIGURATION SYSLIST DEVICE and printer P1 as the SESSION
SYSLIST DEVICE. If the operator then signed off and back on, both the
CONFIGURATION SYSLIST DEVICE and the SESSION SYSLIST DEVICE are
P2. If an IPL is performed, the default printer is not set to P1, but remains P2
(the printer specified with the SET procedure).

System/34 Concepts

2-79

2-80

Vertical Line Spacing Support for the 5225 Printer

If you have a 5225 Printer, you have the ability to specify the vertical line
spacing on your output reports without requmng the operator to set the
hardware swutch on the prlnter ’

You can specify a vertical lines-per-inch value either during system
configuration or by specifying the vertical lines-per-inch value on a FORMS or
PRINTER OCL statement or executing the LINES procedure.

The default value is six lines per inch. You can specify either four, six, or eight
lines per inch. 'If you do not specify a vertical lines-per-inch value on either
the PRINTER or FORMS OCL statements or the LINES procedure, you will

~ obtain the value specified during éystem configuration.

If you specify the vertical lines-per-inch values using OCL, you should specify
either the FORMSNQ parameter or the LINES parameter when using the
PRINTER or FORMS OCL statements. This will help in setting the correct
number of lines per page of forms mounted on the printer and helps in
maintaining the proper page alignment on the forms when you change the
vertical lines-per-inch value. You should initially run CNFIGSSP to assign the
default values for vertical line spacing for your 5225 ‘Printer. If you do not run
CNFIGSSP, the SSP assumes a value of six vertical lines per inch.

If you specify a lines-per-inch value for a printer other than the 5225 Printer,
the value you specify is ignored by the system. The only way you can specify
a lines-per-inch value on printers other than the 5225 is by the use of a
switch on the printer.

PRINT SPOOLING

Print spooling is the capability of the SSP to save printer output on disk, in an
area called the spool file, for printing at a later time. The spool intercept
routine saves the print data in the spool file, and the spoolwriter retrieves the
print data from the spool file and prints it. The operator can control the
spooling process using spool commands.

The following diagram shows the normal output process and the print spooling

process.
>rmal Output Processing Print Spooling
User User SPOOL
—> Intercept —————p
Program Program Routine SPOOL
File
Printer Pri D
i D
Management Command SPOOL
l Processor - ; Writer
Printed l
Output
Printed
\f Output

Advantages of Print Spooling

Print spooling provides several advantages over normal printing:

Programs execute faster because time does not have to be spent waiting for
the printer to print each line of data.

Muitiple programs using the printer may be run concurrently rather than
serially because they do not have to wait for the printer to become available.

Programs producing printer output can be run even if the printer is not
working.

Multiple copies of the printer output can be produced without repeated
execution of the program producing the printer output.

Different priorties can be assigned to the printer output in order to schedule
printing sequences.

System /34 Concepts

2-81

- 2-82

« In the event of a printer malfunction, printing can be restarted without
re-execution of the program that produced the printer output.

« A spool writer printing data from the spool file makes more efficient use of
the main storage processor, the printer, and the communications lines (for
remote printers) than direct printing does.

Spooling Options During Configuration

During system configuration the user can decide whether to include print
spooling in the system. [f selected, print spooling can be later cancelled via the
IPL overrides or temporarily disabled for a particular printer by using the
SPOOL-NO parameter on the // PRINTER OCL statement.

If print spooling is selected, you can specify whether all printers are to be
spooled, or just the system printer. If only the system printer is selected, the
other printer can be spooled temporarily by the use of the SPOOL-YES
parameter on the // PRINTER OCL statement.

Control of Print Spooling

Print spooling may be controlled either by the system operator or by
subconsole operators. Subconsoles are display stations assigned control during
system configuration over one or more printers. The system operator has
control over all printers and all print files in the spool file. Subconsole
operators have control over their designated printer(s) as well as all print files
in the spool files to be printed on their designated printers. Display station
operators have some control over print files they create.

Spool File

The spool file resides on fixed disk and consists of a primary file and up to five '
additional areas called extents. When spooling is active, the primary file always
exists; the extents exist only as needed. A new extent is allocated only when
the primary file and all currently allocated extents are full. When an extent
becomes empty, it is deleted.

Spool File Size

The size of the primary spool file is specified in blocks during system
configuration and by the IPL overrides. When there is sufficient disk space, the
amount specified is used to allocate the primary file and extents. Whenever
there is insufficient disk space, the largest space available is used to allocate
the primary file first.

The primary file and extents are divided into contiguous areas called spool file
segments. The size of the segments is specified in blocks during system
configuration and by the IPL overrides. The first segment of the primary file
called the spool master segment keeps track of the rest of the spool file. All
other segments of the primary file and all segments of the extents store print
data. When a printer file begins producing output, a spool file segment is
allocated to that printer file to store print data in. If there is more print data
than the segment can contain, another segment is allocated when the first one
is filled. This process continues until all the print data has been put in the
spool file. Any unused space at the end of the final segment is ignored. Once
the print file has been printed, it is removed from the spool file, and the
segments it used become available for use by another printer file.

Refer to the Installation and Modification Reference Manual to determine the
spool file and segment sizes based on the expected spool file usage. The
following explains some of the considerations that can be made:

« The recommended size for the primary spool file is one-sixth of the number
of blocks needed to contain all the print data, so that it may be spread
across the primary file and all five extents. This is done so that the spool
file occupies less disk space when there is less data in it. A larger primary
file involves more work by the system to allocate and deallocate spool file
extents. However, the spool file will occupy more disk space even when it
contains less data.

« The recommended size for the spool file segments is based on the size of
the typical printer file. Larger segments reduce the work the system does
allocating segments because fewer segments are needed. However, smaller
segments make more efficient use of spool file space by reducing the
amount of unused space in the last segment of the print files. The primary
file and extents have a limit of 800 segments, so in the cases where a large
spool file is needed, you may need to increase the segment size to keep the
number of segments from exceeding the limit.

Heavy usage of the spooi file by spool routines and other programs running on
the system can create increased demand for the disk. To help balance the
activity across the disks, you can specify a disk preference for the spool file,
both during system configuration and by the IPL overrides.

System/34 Concepts 2-83

2-84

Spool Intercept Routine

The spool intercept routine stores printer output in the spool file. Printer output
can be from multiple printer files, either from multiple programs producing
printer output or from multiple printer files within one program, or both.

Spool intercept routine handles all printer files concurrently but independently

of one another. Each printer file has its own intercept buffer to receive printer
data, its own spool file segment for storing the data in the spool file, a unique
spool ID consisting of the characters SP followed by four decimal digits.

Each printer file may be opened, closed, and reopened, etc. as desired
independently of all other printer files. When- a printer file is closed, it
becomes disassociated from the spool intercept routine. If the printer file is
reopened, the spool intercept routine treats it as an entirely new printer file.
There is no limit to the number of printer files from one or more programs that
can be handled concurrently by the spool intercept routine.

If the spool file is not large enough to contain all the print data being put into
it, a message is issued when it becomes full. You may have to wait until space
becomes available in the spool file and then respond to the message with an
option that allows processing to continue, using the newly available space. If
the spool file has no space available, you may respond to the message with an
option that will close the printer file in the spool file. When the data in the
newly closed printer file has been printed, the spool file space it used is made
available again. Processing of the printer file continues from the point at which
it was closed, reusing the spool file space. If the spool file frequently becomes
full, you should consider increasing the size of the spool file.

Intercept Buffer

Whenever one spool intercept routine intercepts a new printer file, it assigns an
intercept buffer in which to accumulate print data and a spool file segment to
write the print data into. The data in the intercept buffer is written into the
spool file when it becomes full and the buffer can then be filled with more
data.

Intercept buffers are assigned from the system assign/free area and returned
to it when the printer file is closed. The amount of assign/free area assigned
for each printer file depends on the following:

« For a printer file created by a program which has no other spobled printer
files currently open, a buffer of 512 bytes will be used if there is sufficient
assign/free area. If there is insufficient area, or eight or more programs
with printer files open a buffer of 256 bytes will be used.

» For any printer files created by a program having at least one other spooled
printer file open, a buffer size of 256 bytes is used.

In addition to the intercept buffers the spool intercept routine itself and other
related data areas increase the amount of main storage that the SSP occupies
by about 1 K bytes. The system operator should select a system assign/free
area size that will accommodate the expected spooling activity.

Spool Writer Program

The spool writer program retrieves print data from the spool file and prints it.
There is a separate spool writer program for each printer in the system.

Before a spool writer can begin printing, the spool writer program must first be
started. If the autowriter function is requested during system configuration or
by the IPL overrides, all spool writer programs will be started automatically
when you IPL the system. If the autowriter function is not requested, the
START PRT command must be entered by the system operator or subconsole
operator to start the spool writer programs.

Once a spool writer program has been started, the SSP automatically loads it
into main storage to begin printing whenever a printer file is availabie from the
spool file. When nothing is left in the spool file for the writer to print, the
writer terminates. When a change is made to the spool file so that another
print file becomes available for printing, the spool writer program is again
automatically loaded to begin printing.

The following diagram shows how the spool writer program prints jobs from
the spool file.

SPOOL
Writer

Reports

Printer

-,

The system operator or subconsole operator may enter a STOP PRT command
to stop the spool writer(s). When a spool writer is stopped, it cannot print
even if printer files are available for printing. The START PRT command must
be entered to allow the writer to print again after it has been stopped.

Printer files are placed in the spool file according to the PRIORITY parameter
of the PRINTER OCL statement. The spool writer for each printer selects
printer files for printing on a particular printer in order of decreasing priority.
Printer files having equal priority are selected according to the order in which
they were placed in the spool file. Printer files that are either held, being
copied by the COPYPRT procedure or still being intercepted are bypassed and
cannot be printed until that condition is changed. (Printer files can be printed
while they are still being intercepted if you specify the DEFER-NO parameter
on the PRINTER OCL statement or entering the CHANGE DEFER command.)

System/34 Concepts 2-85

2-86

Changing Forms

The operator and subconsole operator can reduce the number of requested
forms changes by specifying a forms number on the START PRT command
when starting the spool writer. This causes the spool writer to print only those
printer files that require the specified forms. When all files have been printed,
the START PRT command should be entered again with either a different
forms number, or without a forms number if the writer is to resume printing all
printer files.

Before printing each printer file, the spool writer ensures that the forms are
positioned at the top of a page by advancing them to line one unless they are
already at that position. 'Not advancing the forms if they are already at line one
prevents the spool writer from inserting a blank page between printer files.
However, if the previous printer file ended by printing on line one of a page
and did not move the forms afterwards, the following printer file will begin
printing on that same page and possibly overlay the information previously
printed on line one. To avoid this situation, ensure that either your programs
do not print on line one, or that they move the forms forward.

Forms Alignment

If forms alignment was requested by the printer file, either in the program that
created the file or by the ALIGN-Yes parameter of the PRINTER OCL
statement, the spool writer will print the first line of output and then issue a
message requesting the operator to align the forms. When the forms have
been aligned, the operator may respond to the message, instructing the spool
writer to reprint the same line and halt again, or to print the next line and halt
again, or to resume normal printing.

Separator Pages

The spool writer will print separator pages ahead of each printer file if desired.
The number of separator pages (0-3) may be specified during system
configuration for each printer individually, and may be changed by the
CHANGE SEP command. If separator pages are either specified during
configuration or set to a nonzero value by the CHANGE SEP command, the
spool writer issues a message asking the operator whether separator pages
should be printed whenever any of the following situations occur:

« When the first printer file is to be printed after the system is |PLed

« When the first printer file is to be printed after the spool writer has been
restarted via the RESTART PRT command

+ Whenever a printer file is to be printed that requires forms other than those
currently in the printer :

The spool writer continues printing or not printing separator pages as specified
until the operator informs it to do otherwise.

The RESTART PRT Command

If the operator stops the spool writer while it is printing a printer file, entering
the RESTART PRT command causes the writer to begin printing that printer file
again. A page number may also be entered with the command to inform the
spool writer of what page it is to begin printing on. Entering the RESTART
PRT command while the spool writer is printing a printer file causes it to start
printing the file again from the beginning or from a specific page.

Message Options

The options allowed on the messages that the spool writer issues are generally
sufficient for the operator to inform the writer of the action that is to be taken.
However, when the writer should take some action other than what is indicated
by the message options, the operator may enter the appropriate command to
inform the spool writer of the desired action, rather than responding to the
message.

Performance Considerations

During system configuration, or through the CHANGE RES command, you can
specify whether individual spool writer programs are to be swappable or
resident when loaded into main storage. Swappable spool writers may be
swapped to and from disk in order to share main storage with other programs
running at the same time; resident spool writers do not have this capability.
Making a spool writer resident can improve its performance somewhat,
because a resident spool writer is not swappable. However, doing this can
significantly reduce the amount of main storage that can be used by other
programs, as spool writers each require 8 K bytes of main storage.

Another performance factor of the spool writer is that of priority. During
system configuration, or through the CHANGE PRTY command, you can
specify whether an individual spool writer program is to have normal or high
priority when loaded into main storage. A spool writer program with high
priority executes before a program with normal priority. The performance of a
spool writer program can generally be improved by seiecting high priority rather
than normal.

In addition to the configuration option, the priority of a spool writer may be
changed by the CHANGE PRTY command.

A final factor related to the performance of the spool writer for the 5211/3262
Printer is the spool writer print buffer size. A buffer size of 1 to 4 half-K bytes
may be selected. A buffer size of one half-K (512 bytes) is usually sufficient,
but in a heavily loaded system, a larger buffer size will generally improve
performance.

System/34 Concepts

2-87

2-88

Spool Commands

Spool commands are the operator's means of controlling both the spool writers
and the printer files in the spool file. The following general rules apply to the

spool commands:

« Commands entered from the system console can apply to any spool writer
or to any printer in the spool file. :

« Commands entered from a subconsole apply only to spool writers for
printers controlled by the subconsole or to printer files that are to be printed
on printers controlled by the subconsole.

« Commands entered from a display station apply only to printer files created
by the display station operator. '

The following spool commands are used on the System/34:

CANCEL PRT

CHANGE PRTY

CHANGE RES

CHANGE SEP

HOLD PRT

RELEASE PRT

RESTART PRT

START PRT

STATUS PRT

STOP PRT

Changes the priority printing sequence of a specified printer
file in the spool file.

Changes the priority of a specified spool writer.

Changes the resident/swappable attribute of a specified
spool writer.

Changes the number of separator pages printed by a
specified spool writer.

Holds selected printer. files to prevent them from being
printed.

Releases selected printer files that were previously held to
allow them to be printed.

Restarts a specified spool writer.
Starts a specified spool writer.
Displays the status of the spool writers.

Stops a specified spool writer.

After entering a command, the operator is issued a message indicating whether
the command was successfully executed.

For more information about these commands refer to the Operator's Guide or
to the Command and OCL Statements Reference Summary.

Identifying Your Spool Output

Output for each printer has a unique six-character identification consisting of
the characters SP followed by four numbers, such as SP0042.

You can obtain the status of each job in the spool file by entering D P
(Spooled Print Status) command from either the system console, a subconsole,
or a work station. The following example illustrates the spooled print status

screen.
- ™)
SPOOLED PRINT STATUS **COMPLETE** CONSOLE W1
-BLOCKS AVAILABLE: 1106 OF 1134 --~PAGES~---
POS ID PROC JOBHAME USER PRINTER ID PRTY FORM COPY TOTAL WRT
1 5pP0042 KW1110559 RON PRINTKEY P1 Al 0001 1 1 1
2 SP0043 W1110643 RON PRINTKEY Pl 1 0601 1 1
3 SP0044 W1110655 RON PRINTKEY Pl 1 0001 1 1
ENTER F-FORWARD, I-INPUT, R-RESTART, U-UPDATE, OR E~END..uevrvoevarnnneroonns F
— ,:

For more information about the print status screen, refer to the Operator’s
Guide.
The COPYPRT Command

The COPYPRT command executes two programs, $UASF and $UASC, to do
the following:

. $SUASF cppies one or more spool entries into a disk file.
« $UASC displays the contents of the disk file at the work station.

. Both $UASF and $UASC‘can copy one or more spool entries into a disk file
and then display these entries at the display station.

The disk file can be saved on diskette and restored into the spool file for later
printing.

System/34 Concepts 2-89

Using the STATUS PRT and COPYPRT Commands
After using STATUS PRT to display spool entries in the spool file, you can use
the COPYPRT command to copy entries into a disk file according to criteria

such as spool ID or forms ID.

The following two examples show the use of the STATUS PRT and COPYPRT

commands.
r
SPOOLED PRINT STATUS *¥¥COMPLETE»» CONSOLE Wi
BLOCKS AVAILABLE: 1106 OF 1134 -==PAGES~~~
POS ID PROC JOENAME USER PRINTER ID PRTY FORM COPY TOTAL KRT
1 SpP00a2 WH1110559 ROH PRINTKEY Pl Al oool 1 1 1
2 SP0043 WI110643 RO PRIMTKEY P1 | 0001 1 1
3 SP0O0G4 W1110655 RCN PRINTKEY Pl 1 0001l 1 1

ENTER F-FORWARD, I-iNFUT, RP-RESTART, U-UPDATE, or E-EHD.....veveveccnnennans I
COPYPRT SP0O043, COPYFILE, CANCEL, CRT

This example shows the copying of a specific spool ID (SP0043). The first
entry in the file (SP0042) cannot be copied because it is being printed by the
spool writer.

2-90

4 ™
SPOOLED PRINT STATUS *¥%XCOMPLETE %% CONSOLE W1
BLOCKS AVAILABLE: 1106 OF 113% -—=PAGES~~-
PCOS ID PROC JOBNAME USER PRINTER ID PRTY FORM COPY TOTAL WRT
1 8P0042 H111055% RON PRINTKEY Pl Al 0001 1 1 1
2 SP0O043 W1110643 RON PRINTKEY Pl 1 oool 1 1
3 SP004G W1110655 ROW PRINTKEY Pl 1 gool 1 1
ENTER F-FORWARD, I-INPUT, R-RESTART, U-UPDATE, OR E-END...,..vvvveencccnnsees 1
COPYPRT F0001, COPYFILE, CANCEL, CRT
\. A
This example shows the copying of all eligible entries with a form number of
0001.
Using Procedure Members and the COPYPRT Command
A procedure member is a library file that contains commonly used control
statements. You can place the COPYPRT command into a procedure member
" and then type the name of the procedure member whenever you want to run
the COPYPRT command.
To create a procedure member, you use Source Entry Utility (SEU).
The sample procedure member called SPOOLCPY contains OCL to:
» Determine if a copy file is present.
« Delete the copy file if one exists already.
+ Prompt for the digits of the spool ID to be copied.
« Copy the spool entry and display the entry at the display station.
s
‘."!:' e
S5OTF DaTard
COPYPRT EP7
System/34 Concepts 2-91

2-92

Related Spooling Documentation

The following list should help you identify System/34 manuals that also
contain information concerning spooling:

« The Installation and Modification Reference Manual contains information about
spooling options specified during system configuration and during IPL.

o The SSP Reference Manual describes the PRINTER OCL statement in detail.
Chapter 3 also briefly describes operator control commands used for
spooling; however, the information in Chapter 3 is intended only to identify
for the programmer the operator control commands and their functions. It
should not be used as a guide for controlling spooling.

« The Operator’s Guide contains the information required to actually control
spooling from the console or from the subconsole. When you need
complete operating information, refer to this manual.

« The Command and OCL Statements Reference Summary shows the formats
and briefly describes the functions of all operator control commands.

Libraries

A library is a special kind of disk file that contains named groups of data.
These named groups are called library members. A library member occupies
physically contiguous sectors within a library. Two members cannot share a
sector.

TYPES OF LIBRARY MEMBERS
A library can contain four types of members:

+ Load members (O members). Load members usually contain instructions
that the system can execute. Link-edited load members generated by
System/34 compilers and display screen formats created by the $SFGR
utility program are examples of load members.

« Procedure members (P members). Procedure members contain collections of
frequently used control statements. You can use the $MAINT utility
program or SEU to create procedure members in a library. Also you can use
a key entry device such as a 3741 Data Entry Station or a 5280 Distributed
Data System to create a member as a diskette file and then use the TOLIBR
procedure to copy the file into the library.

For detailed information about the statements and expressions that can be
coded within a procedure, refer to Writing and Using Procedures in the SSP
Reference Manual.

« Subroutine members (R members). Subroutine members are members that
must be link-edited (joined) before System/34 can execute them. Some
members created by the COBOL compiler, FORTRAN compiler, or the Basic
Assembler are examples of subroutine members. BASIC programs can be
saved in subroutine member form.

« Source members (S members). Source members contain records such as
source specifications or program statements that are used as input to a
program or compiler. You can use the $MAINT utility program or SEU to
create source members in a library. Also, you can use a key entry device
such as a 3741 Data Entry Station or a 5280 Distributed Data System to
create a member as a diskette file and then use the TOLIBR procedure to
copy the file into the library.

Note: The REPLACE and SAVE commands for BASIC can be used to save a

BASIC program as either a subroutine member or a source member. For more
information, refer to the BASIC Reference Manual.

System /34 Concepts

2-93

2-94

LIBRARY FORMAT

A library has the following format:

Directory Library Members
) T
Library 1 Directory
Control | Entri
Sector 'l ntries
Beginning End of
of Library Library

Directory

The directory contains a library control sector and an entry for each member in
the library. The minimum directory size is two sectors, and the maximum size
is 256 sectors. The first sector in the directory is the library control sector.
Each of the remaining sectors can contain nine entries, except for the last
sector, which can contain only eight entries. If you know the maximum number
of members that you will place in the library, you can determine the required
length of the directory.

The library control sector contains a record of the used and available library
locations. Each time you add a member or delete a member from the library,
the SSP rewrites the library control sector.

The remaining sectors in the library directory contain entries for each of the
members in the library.

LIBRARY SIZE

The maximum size for a library is 6553 blocks. This size includes library
members and the directory. The maximum directory size is 256 sectors,
including the sector used for the library control sector. You can change the
size of the system library and system library directory by running the BACKUP
and RELOAD procedures. You can change the size of the system library or
decrease the size of the system library directory by using the allocate function
of the SMAINT utility program. You can change the size of any other library or
the size of its directory by using the allocate function of the $MAINT utility.
You can also change the size of any other library through the following
procedure:

1. Create a new library with more space and a name different from the old
library name.

2. Copy the contents of the old library into the new library using the
LIBRLIBR procedure.

3. Delete the old library.

4. Rename the new library with the name of the old library.

Increasing the size of a user library directory uses disk space that precedes the
library. Therefore, disk space, Q in the following diagram, must be available in
order to increase the directory size.

Directory Library Members

A\ A\

Decreasing the size of a library directory makes disk space, Q in the following
diagram, available for library members.

Directory Library Members

A A\

Disk space,), must be unused in order to decrease the directory size. The
library must be condensed in order to use this directory space for library
members.

Increasing the size of a library adds disk space to the end of the library, o
This disk space must be unused in order to expand the library member area.

Directory Library Members

/N A

Decreasing the size of a library frees space at the end of the library, Q This
library space must be unused in order to decrease the library member area.

Directory . Library Members

A N

System/34 Concepts

2-95

2-96

REUSE OF LIBRARY SPACE

A library member can reuse the sectors that were occupied by a deleted library
member only if both of the following conditions are true: o

+ The job trying to reuse the space is the only job that is using the library, or
the system is in single-program mode. ' '

» The deleted member was the last member in the library.

A new version of a library member can be copied into the space occupied by
the existing member only if all of the following conditions are met:

« The job that is copying the new version of the member into the library is the
only job using the library, or the system is in single-program mode.

« The new version fits into the space that is used by the existing member.

« The new version is being copied from a sector-mode file (refer to Storing
Library Members in Disk or Diskette Files later in this section), or the
member was created by one of the following IBM System/34 programs that
allow library members to reuse library space:

— RPG Il Compiler

— Source Entry Utility

— Assembler

— Overlay Linkage Editor
— Work Station Utility

— FORTRAN

— $MAINT SSP Utility
— COBOL

-~ BASIC

« The existing member is not an SSP load member in the system library,
#LIBRARY.

« The existing member is not a screen format load member.

Because of the conditions that control the reuse of library space, deleting or
replacing members can create unusable gaps in a library. The CONDENSE
procedure or the compress function of the $MAINT utility program collects this
unused space at the end of the library and, thereby, makes it usable for new
members. The CONDENSE procedure requires that no active users be signed
onto the library. The CONDENSE procedure cannot be run while in the inquiry
mode:

ACTIVE USER LIBRARY

Each display station session on System/34 can have an active user library
associated with it. For most functions performed during execution of user
programs, the SSP first searches the active user library for required library
members. If a required member is not in the active user library, the SSP
searches the system library, #LIBRARY. Functions for which the SSP first
searches the active user library are:

« Loading a program

« Invoking a procedure

« Displaying a menu or a display screen format

« Using a message member (MEMBER OCL statement)

For most functions performed during execution of utility programs or compilers,
the SSP searches only the system library, #LIBRARY, unless you specify a
different library. Functions that do not automatically use the active user library

are:

« Retrieving records from a message member. The SSP searches only the
library that was active when the MEMBER OCL statement was entered.

« Maintaining libraries using the $MAINT SSP utility prdgram.
« Using DFU, SEU, WSU, or SDA.
« Using RPG Il, FORTRAN, COBOL, or Basic Assembler.

« Using BASIC. (Every library used during a BASIC session is active until the
BASIC session ends.)

The operator can specify the active user library during session sign on and can
change the active user library for the session by entering the LIBRARY OCL
statement, by using the SET procedure, or by specifying a library name on the
BASIC or BASICR procedure. The active user library can be changed for the
duration of a procedure via a LIBRARY OCL statement within the procedure.

System/34 Concepts 2-97

2-98

LIBRARY SHARING

On System/34, two or more programs can fead from or write to the same
library concurrently. However, if one program writes to a library while another
uses the same library or if two or more programs concurrently write to'the
same library, performance might be significantly degraded.

Certain library functions require that no other functions use the same library
concurrently. These:library functions are:

« Compressing a library via the CONDENSE procedure.

« Deleting all library members or deleting all meémbers of one type via the
REMOVE procedure.

« Reusing library space. Refer to Reuse of Library Space earlier in this section
for further information.

STORING LIBRARY MEMBERS IN DISK OR DISKETTE FILES

Library members can be stored in disk or diskette files in record mode or sector
mode. A record-mode file on diskette can be used on other systems if it is
written as a basic data exchange file. A sector-mode file on diskette can be

-used on another System/34.

Record-Mode Files

Source and procedure members can be stored as record-mode files. Records
in a record-mode file can be from 40 to 120 characters long, but all records in
a file must be the same length. The SSP pads records with blanks
(hexadecimal 40s) or truncates records to the specified record length.

The first record in a member stored in a record-mode file on disk or diskette is
a COPY statement that defines the attributes of the member. The last record
in @ member stored in record-mode file is a CEND statement. When you use
the SMAINT utility program to copy a source or procedure member into a
record-mode file, SMAINT places the COPY and CEND statements in the file.
If you use SEU, your own program, or a key entry device to create a
record-mode file, you must place the COPY and CEND statements in the file.
If the record-mode file is organized as a direct file, you must also include an
END statement following the CEND statement that terminates the last member
in the file. The formats and descriptions of the COPY, CEND, and END
statements are included in the descriptions of record-mode files in the SSP
Reference Manual.

Note: When you use SMAINT to save a procedure member in a record-mode
file, you should specify SVATTR-YES if you also want the procedure attributes
saved. Examples of procedure attributes are MRT-YES, PDATA-YES, and
HIST-YES.

Sector-Mode Files

Any library member can be stored as a sector-mode file. All members copied
into a sector-mode file have 40 bytes of control information preceding the
member. This control record contains 28 bytes for the member’'s directory
entry, 8 bytes of PTF information that is used for diagnostic information, and 4
reserved bytes.

If you copy a System/32 sector-mode file to a System/34 library:
o System/32 SCP members are not copied to the System/34 library.

« The SSP sets the release level of the copied members to 232 to indicate
that the members came from a System/32.

e Source or procedure members copied from the sector-mode file may require
more library space than they did on System/32. More space might be
required because System/32 and System/34 use different blank character
compression schemes.

Saving a Library on Diskette

You can save your user libraries by using the SAVELIBR procedure. The
SAVELIBR procedure copies all library members (except SSP members) from a
user library to a diskette file. BLDLIBR or TOLIBR must be used to restore the
library you have saved.

Notes:

1. System/32 diskette files created by releases 1 through 4 of System/32
cannot be read by System/34 until they are updated by the System/32
CONVERT procedure.

2. You can copy subroutine members (R members) or load members (O
members) from System/32. System/32 load members cannot be run on
System/34. For example, SEU and DFU members can be copied from
System /32 to System/34, but the object message members for them
cannot be used on System/34. You should test subroutines carefully
because you might have to recompile them for use on System/34.

3. You cannot copy a System/34 sector-mode file to a System/32 library.

System/34 Concepts 2-99

Item Numbers \

Operator Enters

m
\\\\\N ENTER NUMBER, COMMAND, OR OCL.

the Selected lte
Number Here

Menus

A menu is a programmer-defined list of item numbers and brief descriptions
that appears on the display screen at a display station operator’'s request or
when the operator signs on if sivgn—on menu security is active. When the

operator selects an item number, the SSP does the function associated with
that number. The following is a sample menu:

N -
.

<- READY

Menu Name Description
{"
COMMAND) 228
\\\ MENU: TESTM
1. SDA SCREEN DESIGN 13."INITIALIZE DISKETTE
2. SDA MENU BUILD 14. .
3. 15. BACKUP LIBRARY
4. SEU PRCCEDURE 16.
5. SEU PROGRAM 17. DISPLAY RECORDS BY REL NO
6. 13. DISPLAY RECORDS BY KEY
7. COMPILE PROGRAM 19,
8. 20. LIST A FRQGRAM
9. CATALOG DISK 21. LIST A PROCEDURE
10. CATALOG A FILE 22. LIST A DIRECTORY
11. CATALOG SINGLE DISKETTE 23.
12. CATALQG MAGAZINE DRIVE 24,

Menus simplify the operator's duties. The operator needs no knowledge of the
OCL statements, procedure commands, or operator control commands required
to do a function.

The operator displays a menu by:

« Entering a menu name during signon. The requested menu appears as soon
as signon ends.

« Signing on, if sign-on menu security is active and the operator has a menu
assigned to him.

« Entering a MENU operator control command.

« Selecting a menu from another menu, which is called menu chaining.

The programmer can cause a menu to be displayed at the end of a job by
using the MENU OCL statement within the job.

Each menu has an associated program~-defined command load member. When
the operator enters a menu item number, the SSP retrieves the record
corresponding to that item number from the command load member. The
command load member is created when the menu is created. The retrieved
record can be an OCL statement, a procedure command, or an operator control
command. The SSP continues job processing just as if the operator had
entered the retrieved record from the keyboard. For further information about
job processing, refer to System/34 Job Processing earlier in this chapter.

For information about creating menus, refer to the IBM System/34 SDA
Reference Manual and the IBM System/34 SSP Reference Manual.

To leave a menu display when sign-on menu security is not active, an operator
enters a zero instead of an item number. The menu disappears, and the
COMMAND display appears.

To end a menu display when sign-on menu security is active, the operator
must sign off.

System/34 Concepts

2-101

FIXED-FORMAT AND FREE-FORMAT MENUS

System/34 provides two types of formats for menus: fixed-format and
free-format. A fixed format menu contains 24 numbered items. The
description of each item can have as many as 30 characters, including blanks.
As the following displays show, a fixed-format menu fits on one
1920-character display screen and on two 960-character display screens.
When using a 960-character display screen, the operator presses the
Enter/Rec Adv key to select the second half of the menu.

Fixed-Format Menu for a 1920-Character Display Screen

Description (maximum

Menu Name of 30 characters)
Item Numbers {
\ COMMAND
\\\ MENU: TESTM

1. SDA SCREEN DESIGN 13." INITIALIZE DISKETTE

2. SDA MENU BUILD 14.

3. 15. BACKUP LIERARY

4, SEU PROCEDURE 16,

5. SEU PROGRAM 17. DISPLAY RECORDS BY REL NO

6. 18. DISPLAY RECORDS BY KEY

7. COMPILE PROGRAM 19.

8. 20. LIST A FROGRAM

9. CATALOG DISK 21. LIST A PROCEDURE

10. CATALGG A FILE 22. LIST A DIRECTORY

11. CATALO5 SINGLE DISKETTE 23.

12, CATALOG MAGAZINE DRIVE 24.
Operator Enters
Selected Item \

ENTER NUMBER, COMMAND, OR OCL.
Number Here N\ <- READY

2-102

Fixed-Format Menu for a 960-Character Display Screen

[)
COMMAND W1
MENU: TESTM
1. SDA SCREEN DESIGN 13. INITIALIZE DISKETTE
2. SDA MENU BUILD 14.
3. 15. BACKUP LIBRARY
4. SEU PROCEDURE 16.
5. SEU PROGRAM 17. DISPLAY RECORDS BY REL NO
6. 18. DISPLAY RECORDS BY KEY
ENTER NUMBER, COMMAND, OR OCL.
- <- READY
.)
4 ™)
COMMAND Wl
MENU: TESTM
7. COMPILE PROGRAM 19.
8. 20. LIST A PROGRAM
9. CATALOG DISK 21. LIST A PROCCEDURE
10. CATALOG A FILE 22. LIST A DIRECTCRY
11. CATALOG SINGLE DISKETTE 23,
12. CATALOG MAGAZINE DRIVE 24.
ENTER NUMBER, COMMAND, OR OCL.)
- <~ READY
. >

A free-format menu on a 1920-character display screen allows the
programmer to completely define lines 3 through 20. A free-format menu on a
960-character display screen allows the programmer to completely define lines
3 through 8 of two display screens. The description of each item is not limited
to 30 characters. The operator can press the Enter/Rec Adv key to select the
second half of the menu. The following displays show free-format menus on
the 1920-character and 960-character display screens.

System/34 Concepts 2-103

Free-Format Menu on a 960-Character Display Screen

8 ' | A
COMMAND
MENU: TESTM

1. SDA SCREEN DESIGN
2. SDA MENU BUILD
3.
4. SEU PROCEDURE
5. SEU PROGRAM
6.
ENTER NUMBER, COMMAND, OR OCL

L , : . o

<- READY

r 3
COMMAND
MENU: TESTHM

7. COMPILE PROGRAM
8.
9. CATALOG DISK
10. CATALOG A FILE
1l. CATALOG SINGLE DISKETTE
12. CATALOG MAGAZINE DRIVE
ENTER NUMBER, COMMAND, OR OCL

<- READY

If a display station has a 960-character display screen and a free-format menu
for a 1920-character display screen is selected, lines 3 through 8 of the menu
are displayed. If the Enter/Rec Adv key is pressed without any data being
entered, lines 9 through 14 are displayed.

Lines 15 through 20 of the menu cannot be displayed on the 960-character
display screen.

Refer to the IBM System/34 SDA Reference Manual and the IBM System/34
SSP Reference Manual for further information about fixed-format and
free-format menus.

Program Attributes

Program attributes describe a program’s use of display stations or use of
resources on System/34.

Attributes that can be specified when a program is compiled are:

« SRT (Single Requestor Terminal). The program allows one requesting
display station and can acquire data display stations. Display stations can
be defined as data display stations during system configuration, or a
command display station can be placed in data mode via the MODE control
command.

« MRT (Multiple Requestor Terminal). This attribute allows more than one
requesting display station for a single copy of the program. The program
can acquire data display stations.

« NEP (Never-Ending Program). This attribute can be given to SRT programs
and MRT programs. Programs do not wait for nonshared resources that the
NEP uses. An MRT-NEP may wait for additional requestors when no
requestors are attached to it.

Note: The STOP system command removes the NEP attribute from an
MRT-NEP program.

This section describes the concepts of each of these attributes. For
information about choosing an attribute during program design, refer to
Application Design in Chapter 3. For information about jobs that are not
attached to a requesting display station, refer to Jobs That Run Without a
Requesting Display Station, later in this chapter.

System /34 Concepts

2-105

SRT (SINGLE REQUESTOR TERMINAL) PROGRAM

An SRT program is a program that allows only one requesting display station.
Each time the program is requested, that program is loaded into main storage.
The display station that requests the program becomes attached to that
program.

Main Storage

Requestor of
Program A

»{ Program A

If two display stations request the same SRT program, two copies of the
program will be in main storage.

Main Storage

Requestor of
Program A

»{ Program A

Requestor of [- »| Program A
Program A

Each requestor has its own local data area and external indicators which can
be used to pass data to the program.

Coding SRT Programs

The SRT attribute is given to a program when it is compiled. A program will
be an SRT program if the MRTMAX parameter is zero or is omitted from the
COMPILE OCL statement. Refer to the SSP Reference Manual for a description

of the COMPILE OCL statement. ‘

RPG Il, COBOL, FORTRAN, BASIC, and Basic Assembler programs can be

SRT programs. WSU programs are always generated as MRT programs and
cannot be changed to SRT programs.

2-106

Acquiring a Display Station in an SRT Program

An SRT program can acquire other data mode display stations, which are used
to enter data and/or display output. A display station can be acquired in either
of the following ways:

« A display station is acquired if the job step that executes the SRT program
includes a WORKSTN OCL statement. If the REQD-YES parameter is
specified on this statement, the display station is attached to the program
by the system, and the display station must be available (signed on and in
standby mode) so that the program can be initiated.

Main Storage

Acquired for
Program A

Requestor of

P A —_—
Program A rogram RS —i

Acquired for
Program A

« If the REQD parameter is NO or omitted from the WORKSTN OCL
statement, an RPG |l program or a COBOL program, instead of the system,
can acquire the display station via an operation code. An acquired display
station cannot be operated in inquiry mode. If a command display station
interrupts the program, the acquired display stations are inactive during the
inquiry request. After acquiring a data display station, the System/34 data
management handles it the same as a command display station. The SRT
program logic should be the same as the logic required for an MRT
program.

Releasing Display Stations from an SRT Program

A display station acquired by the system or by an operation code within an
SRT program can be released by the program. For example, for RPG ||
programs a display station is released via the REL operation code or via an R
entry in column 16 of the RPG Il output specification. For COBOL programs, a
display station is released via the DROP operation code.

The requesting display station cannot be released from an executing SRT
program until that program goes to end of job. End of job can occur only
when all acquired display stations have completed processing and have been
released. Therefore, the requesting display station cannot be released until all
acquired display stations have been released.

System/34 Concepts 2-107

2-108

Interrupting an SRT Program

An SRT program can be interrupted only from the display station that
requested the program. The interruption is called an inquiry request and is
caused by the operator pressing the Attn key. The SRT program stops
executing, and the Inquiry display appears. Refer to the System/34 Operator's
Guide or SSP Reference Manual for a description of the Inquiry display. The
display station operator can select one of the following options from the

Inquiry display:

Option Function

0 Resume execution of the interrupted SRT program.

1 Continue with the inquiry request. The display station enters
command mode. If the interrupted program is an RPG Il
program, option 1 appears only if the H specification permits
inquiry (column 37 contains a B).

2 End the interrupted SRT program and close the files.

3 End the interrupted SRT program and do not close the files.

4 Post an inquiry latch, or terminate a BASIC program and
return to BASIC command mode. An interrupted RPG [
program can check the inquiry latch by using the RPG Il
subroutine, SUBR95. For information about SUBR95, refer to
the RPG Il Reference Manual.

5 Display the session status.

MRT (MULTIPLE REQUESTOR TERMINAL) PROGRAM

An MRT program is a program that allows several requesting display stations
to be attached to one copy of the program at a time.

Main Storage

Requestor

Requestor - - mg;-a
ram

Requestor

An MRT program can be called only from an MRT procedure. An MRT
program cannot be called by OCL statements entered from the keyboard.

An MRT procedure can be called from either the keyboard or a non-MRT
procedure via an INCLUDE OCL statement or a procedure command.

When an MRT procedure is called, the SSP checks whether the requested
procedure is active. If the procedure is not active, the SSP loads and initiates
the MRT program. If the procedure is active and no more than the maximum
number of display stations are using the program, the requesting display
station is attached to the program. If the procedure is active and the maximum
number of display stations is attached to the program, the SSP places the
display station on a waiting-for-resources queue. Refer to Never-Ending
Program later in this chapter for further information about programs waiting for
system resources.

System/34 Concepts 2-109

2-110

OCL statements in the MRT procedure are executed for the requestor that
actually initiates the MRT program. Subsequent requestors bypass the OCL
processing and attach directly to the MRT program.

For RPG Il MRT programs, a display station attaches to the program at the
beginning of an input cycle or at the last READ operation from the WORKSTN
file; for WSU programs, a display station attaches at the
work-session-initiation processing level. For COBOL programs, a display
station attaches at the last read or call operation that executes.

Ordinarily, two different MRT procedures should not call the same MRT
program. If two such procedures are active at the same time, two copies of
the same MRT program will execute concurrently. When response times are
long because of many_display stations using the same MRT procedure, you
might allow two MRT procedures, each allowing half the total number of
requestors, to call the same program.

For WSU programs, an MRT procedure is generated when the WSU program
is generated. For RPG Il, COBOL, Basic, and Assembler programs, the
programmer must provide the MRT procedure. If SEU is used to create this
procedure, SEU prompts for the MRT attribute at the end of the SEU run. If
$MAINT is used to create this procedure, the MRT-YES parameter of the
COPY statement allows specification of the MRT attribute.

The following are additional facts about MRT procedures and MRT programs:

« Only one LOAD OCL statement and one RUN OCL statement are allowed in
an MRT procedure. Any statements that follow the RUN OCL statement are
ignored.

« An MRT procedure can be called from a higher level procedure but cannot
call a lower level procedure.

« All MRT procedure names should be unique, even if the procedures are in
different libraries.

« When an MRT procedure is originally requested from another procedure, a
new job is (in effect) started on the system. Therefore, OCL statements
such as the REGION and ATTR statements within the MRT procedure are
processed as if they were at the beginning of a job.

« The OCL statements are not processed again for subsequent requestors.

« The INCLUDE OCL statement or the procedure command statement cannot
pass parameters to the MRT procedure. However, the INCLUDE OCL
statement or procedure command can pass data to the MRT program. The
SSP passes the data to the program on the first input operation from the
requesting display station. Data passed to the program starts with the first
nonblank character following the procedure name and ends with the last
nonblank character in the statement.

If an attempt is made to call an MRT procedure when the system is in
single-program mode, the procedure runs but not as an MRT procedure.
Therefore, the SSP treats any data coded on the INCLUDE OCL statement
or the procedure command statement as parameters.

Except for WSU programs, file sharing conflicts within an MRT program are
the programmer’s responsibility. These conflicts are not handled by
System/34 file sharing logic. Refer to File Concepts earlier in this chapter
for further information.

An MRT program cannot use job (RETAIN-J) files created by previous steps
in the job. Subsequent non-MRT job steps can use those job files. In
addition, job files (RETAIN-J) created by an MRT program are treated like
scratch files. These files are not passed to subsequent job steps, and they
are deleted when the MRT program goes to end of job.

Any DATE, FORMS, MEMBER, PRINTER, or SYSLIST statement that has
been used in a previous step has no effect on a job step that runs an MRT
program. Instead, the MRT program uses values in the system configuration
record.

When the MRT program releases its last requesting display station, the
program might not immediately go to end-of-job processing. Therefore, the
MRT program might still be executing while the next statements in the job
stream of the requesting display station are being processed. For that
reason, an IF ACTIVE test that determines if the MRT procedure has been
terminated should not follow the MRT procedure call in the job stream.

An MRT program can access the requesting display station’s local data area
and external indicators. For example, RPG |l and COBOL provide
subroutines to read and modify each display station’s local data area and
external indicators. COBOL also provides language extensions for retrieving
and updating these areas.

System/34 Concepts

2-111

2-112

Coding MRT Programs

The MRT attribute is given to a program when it is compiled. A program will
be an MRT program if the MRTMAX parameter is specified on the COMPILE
OCL statement.and is not MRTMAX-0. An MRTMAX value of one is valid and
means that only one display station can be attached to the program at one
time, but that multiple copies of the program are not initiated when more than
one display station operator requests the program. Refer to the SSP Reference
Manual for a description of the COMPILE OCL statement. The maximum
number of requestors can be changed when the program is run via the ATTR
OCL statement. Program logic should be checked before increasing the
maximum number of display stations.

RPG Il, WSU, COBOL, and Basic Assembler programs can be MRT programs.
WSU programs are always generated as MRT programs and automatically
adjust their program size when the maximum number of requestors is changed
via the ATTR OCL statement. WSU programs do not have to be regenerated
to allow for an increased maximum number of requestors.

BASIC programs can also be MRTs. BASIC programs are not compiled and do
not use the // COMPILE OCL statement. Refer to the BASIC Reference
Manual for details on creating BASIC MRTs.

Acquiring a Display Station in an MRT Program

An MRT program can acquire other data display stations, which are used to
enter data and/or display output. A display station is acquired if the job step
that executes the program includes a WORKSTN OCL statement. If the
REQD-YES parameter is specified on this statement, the display station is
attached to the program by the system, and the display station must be
available so that the program can be initiated. An available display station is
one that is signed on and in standby mode. A data display station can also be
acquired by program logic. This logic must determine the actions to take if the
display station is not available. BASIC MRT programs use the OPEN statement
to acquire other display stations.)

Releasing an Acquired Display Station from an MRT Program

A display station acquired by the system or by an operation code within the
program can be released by the program. For example, for RPG Il programs a
display station is released via the REL operation code or via an R entry in
column 16 of the RPG Il output specification. For COBOL programs, a display
station is released via the DROP statement. The display station returns to
standby mode after it is released. BASIC MRT programs release the display
station by using the CLOSE statement.

Interrupting an MRT Program

A requestor can interrupt his attachment to an MRT program to do other work
while allowing the MRT and its other users to continue. The interruption is
called an inquiry request and is caused by the operator pressing the Attn key.
The Inquiry display appears, and the display station operator can select one of
the following options to:

Option Function
0 Resume use of the MRT program.
1 Continue with the inquiry request. The display station enters

command mode.

2 Release the display station from the MRT program and
continue processing the next job step in the job being run
from the display station.

3 Release the display station from the MRT program and cancel
the remaining steps in the job being run from the display
station.

5 ' Display the session status.

Maximum Number of Display Stations for an MRT Program

For RPG Il programs, the MRTMAX value on the COMPILE OCL statement, on
the ATTR OCL statement, or on the RPG command statement specifies the
maximum number of requesting display stations for an MRT program. A
continuation line of the WORKSTN file description specification specifies the
total number of requesting and acquired display stations for an MRT program.
The keyword NUM is specified, and the maximum number of display stations
is coded in positions 60-65 of the continuation statement.

For COBOL or Assembler programs, the MRTMAX value on the COMPILE OCL
statement or on the ATTR OCL statement specifies the maximum number of
requesting display stations for an MRT program. Program logic determines the
actual maximum number of display stations that are supported. Internal tables
in the program might have to be incremented in order to support an increased
maximum number of allowed requestors.

For BASIC programs, the MRTMAX value on the ATTR OCL statement
specifies the number of requesting display stations for an MRT program.

System/34 Concepts 2-113

2-114

For WSU programs, the MRTMAX value on the ATTR OCL statement is set to
the value specified on the WSU J specification when the program is generated.
If this value is changed, WSU automatically adjusts the program to its newly
required size without requiring program regeneration.

If a display station requests an MRT program while the program is handling its
maximum number of display stations, the SSP queues that display station
request to the MRT program. When the MRT program releases one of its
requestors, the SSP attaches the first queued requestor to the MRT program.
While a display station waits for its request to be honored, the display station
cannot be used unless the operator interrupts the program and releases his
display station from the MRT procedure.

Releasing Requesting Display Stations from MRT Programs

An MRT program must release a requesting display station when the program
has completed processing for that display station. If it is not released, the
display station remains allocated to the MRT program until it ends or until the
operator interrupts the program and releases the display station.

For example, for RPG Il MRT programs, a requestor can be released by the
REL operation code or by an R entry in column 16 of output specification. For
COBOL programs, a requestor can be released by the DROP operation. For
BASIC programs, a requestor can be released by the CLOSE statement.

A released requesting display station returns to the place from which the MRT
program was called. This return can be to:

« The next OCL statement in the procedure that called the MRT program
« A menu

« The command display

Ending MRT Programs

An RPG Il MRT program that is not an NEP ends when the LR indicator is set
on. This occurs when the end of file is reached for the primary input file. A
programmer should not arbitrarily end an MRT program by setting on the LR
indicator, because requestors might still be attached to the program.

A COBOL or Assembler MRT program that is not an NEP receives a
no-outstanding-invites code when no display stations are attached or when no
attached display stations have been invited.

A BASIC program ends normally when the last operator using the program
ends the session. '

The programmer must provide coding to detect the no-outstanding-invites
condition and end his program. If a request for the MRT program is made
while it is ending, another copy of the MRT program is initiated.

A WSU program ends normally when the last operator using the program ends
his session. Also, a WSU program ends if the EJ indicator is on when the
processing for a display completes. All attached display stations automatically
begin end of work session (EW) processing when they return to the WSU
program.

Canceling an MRT Program

Use the CANCEL command from the system console to cancel an MRT
program.

Using the Attn Key to Release a Display Station from an MRT Program

You should be aware of the following consideration when using the Attn key to
release your display station from an MRT program. The Attn key options do
not take effect until your MRT program issues a read command to the display
station. If, for example, you have a coding error in your MRT program, such as
a loop in your RPG CALC specifications that prevents a read command from
being issued, you cannot use the Attn key to release your display station from
the MRT program.

NEVER-ENDING PROGRAM (NEP)

The never-ending-program attribute can be assigned to MRT programs, SRT
programs, and programs run from the input job queue. This attribute can be
assigned to an MRT program to allow it to remain active when all its
requestors have been released. The program will probably be swapped out of
main storage. New requestors can attach to the program without waiting for
program initiation, which can require a significant amount of time. When a
new requestor is attached, the program is simply swapped into main storage.
(Disk activity requirés much of the time used for program initiation. For further
information, refer to Disk Activity for Loading Programs and Attaching Display
Stations to Them in Chapter 3.)

An MRT program without the never-ending-program attribute does not remain
active without requestors and is reinitiated for a subsequent request.
Therefore, MRT programs that are requested frequently might be assigned the
never-ending-program attribute to avoid this reinitiation time.

The never-ending-program attribute can be assigned to an SRT program.
Typically, this attribute is assigned to an SRT program that uses nonshared
system resources such as a printer or a nonshared disk file. If another program
that requires the nonshared resource is requested, the system waits for the
SRT program to end its use of the resource before starting the new program.
Because the SRT program has a never-ending-program attribute, the operator
that requested the new program receives a waiting-for-nonshared-resource
message. This message allows the operator to cancel the new program or
request that the SSP retry allocating the resource.

System/34 Concepts 2-115

2-116

If the SRT program had not been never-ending, the new program’s operator
would receive no indication that the program was waiting for a resource.
However, the operator could use the STATUS USERS command to see that
the program was waiting for initiation. The Status Active column on the User's
Status display contains INIT-WAIT for the new program. ‘

MRT programs and programs run from the input job queue automatically issue
the waiting-for-nonshared-resource message to the operator unless NEP-NO
is specified for the program.)

Figure 2-5 summarizes the effect of specifying the never-ending-program
attribute for an MRT program, an SRT program, and a program run from the
input job queue.

Program Never-Ending-Program Waiting-for-Nonshared- Active when
Type Attribute Resources Message No Requestors
MRT NEP-YES Yes Yes
NEP-NO No No
Not specified Yes No
SRT NEP-YES Yes -
NEP-NO No -
Not specified No -
Input job NEP-YES Yes -
queue NEP-NO No -
Not specified Yes -

Figure 2-5. Never-Ending-Program Attribute Summary

Coding Never-Ending Programs

The NEP attribute is given to a program when it is compiled by specifying
NEP-YES on the COMPILE OCL statement. The NEP attribute can be
overridden when the program is run by specifying NEP-YES on the ATTR OCL
statement. The System/34 SSP Reference Manual describes these statements.

A WSU program is not generated as never-ending, but it can be defined as
never-ending by modifying the procedure that calls the program. The NEP-NO
parameter on the ATTR OCL statement can be changed to NEP-YES to make
the program never-ending.

Ending a Never-Ending MRT Program

Typically, an MRT never-ending program is coded to accept input from a
display station, process the input, release the requesting display station, and
then accept input from any requesting display station. When the program has
no requesting display stations, the SSP places the program in a wait condition.
If the system operator enters a STOP SYSTEM command, the never-ending
program(s) receives control with an indication of the operator's request so that
the program can execute end-of-job logic.

An MRT never-ending RPG Il program is given control when the STOP
SYSTEM control command is entered by the system operator. The program
should test for this condition and end the program.

A WSU never-ending program ends either when the EJ indicator is set on in
the program or when the program is stopped by the operator.

A COBOL or Assembler never-ending program must be coded to end when
the no-outstanding-invites return code is indicated. This return code is
indicated only when the STOP SYSTEM command has been entered and the
program has released all its display stations.

System/34 Concepts 2-117

Jobs That Run Without a Requesting Display Station

Some jobs do not require interaction with a requesting display station. These
jobs can execute while the requesting display station continues with other
work. You can initiate such a job in one of three ways:

« Placing the job on the input job queue.

« Explicitly releasing the requesting display station, either with the
RELEASE-YES parameter on the ATTR OCL statement or with the release
operation code in a program.

« Evoking the job with an EVOKE OCL statement or with an
evoke-end-of-transaction SSP-ICF operation.

The following considerations apply to jobs that are not attached to a requesting
display station:

« Messages are displayed at the system console.

« Changes that such a job makes to external indicators or to the local data
area are in effect only during execution of the job. The changes are not
accessible to any other jobs.

« Except for jobs run from the input job queue, system list output goes to the
system list device that was active when such a job was initiated. System
list output for jobs run from the input job queue goes to the system printer
or the default printer for released jobs. Printer data management output
goes to the system printer, unless a printer default for released jobs was
specified during system configuration. (You can, of course, use the
PRINTER OCL statement to direct output to an individual printer.) For
information about system list output and printer data management output,
refer to Printer Concepts, earlier in this chapter.

+ When the requesting display station is explicitly released, job (RETAIN-J)
files created by previous job steps are not available to the reieased job.

« Jobs on the input job queue are processed one at a time on a first-in,
first-out basis within job class. The operator can assign different job
classes by using the JOBQ command before placing the job on the queue.
In that case, the jobs within a higher job class are started before other jobs
within lower job classes. For example, jobs in job class 5 are started by the
system before jobs in job class 4.

The operator can also assign execution priorities to jobs. Jobs with a low

execution priority are more likely to be swapped than jobs with a higher
execution priority.

2-118

« The system operator can start, stop, assign execution priority and job class,
cancel, and change the order of jobs in the input job queue. The display
station operator can assign execution priority and job class before the job is
placed in the queue or can cancel the job after it is in the input job queue.

« For jobs run from the input job queue, the display station environment at the
time the job was submitted is saved and used when the job runs. The
following information is saved:

— Printer information: Information such as session printer for the job, the
forms number used with the job, and the lines per page specified for the
session printer.

— ldentification information: Job name, user ID associated with the job,
and the date.

— Main storage information: The total region size and the job region size.

— Local data area.

— System configuration information for batch BSC jobs.

The following information is not saved when jobs use the input job queue:

— Communications configuration record.

— Print belt image. The jobs use the print belt information contained within
the configuration record.

An example of a job that runs without an attached requesting display station is
a job that prints transactions entered from many display stations.

A procedure could be coded to do the following:

1. Load a program to enter the transactions. This program ends when the
operator finishes entering transactions.

2. Load a print program to print the transactions. When the program is
loaded, its requesting display station is released.

3. Return to Step 1 to allow the operator to enter more orders.

The sample OCL in this procedure, ORDENT, is:

xS il

e e e
N IS IS

Jci=

SISO
SIS

W [N

{Rim

Jm
10lm
/
/

mox)
0
.
.

~~
[~ N

System/34 Concepts

2-119

2-120

System-Provided Security

System /34 provides sign-on security and file/library security. Sign-on security
includes password, badge, and menu security. This section describes major
aspects of these types of security. Refer to the Installation/Modification
Reference Manual for further information about security.

PASSWORD SECURITY

Password security prevents unauthorized use of a display station. To begin a
session, an operator must enter his password into a nondisplay field on the
sign-on display. Nondisplay means that the entered characters do not appear
on the display.

r'
SIGN ON W2
ENTER BADGE....0ocvenens
USER ID.vveuerenneneeae. MIR
PASSHORD + v vvevnvnnenennns
MENU (OPTIONAL)..vvunnn.
LIBRARY.evevevesveoavaes LIBRI_
g

If the operator does not enter the correct password, he cannot begin his
session. A session is the time from sign on to sign off that an operator uses a
display station.

A disk file called the password security file contains a profile for each person
that is authorized to use the system. Each profile contains:

« An 8-character user ID
e A 4-character password assigned to the user
» A badge ID if badge security is used
+ Mandatory menu indicator
« A menu name if menu security is used
« A library name (can be the library containing the menu or a default library)
« A code that identifies the user's security class
« Service aid authorization (patch, dump, setdump)
o A 20-character comment field
The password security file can be initialized and updated via the PROF or
PRMENU procedure.
Security Classifications
The security classifications are master security officer, security officer, system
operator, subconsole operator, and display station operator.
Master Security Officer

The master security officer classification is assigned during the initial definition
of password security. This officer can:

« Save and restore the password security file. The $PRSV utility saves the
file, and the $PRST utility restores the file. These utilities can be run only by
the master security officer.

 Redefine the password security file.

« Add, delete, and edit profiles of security officers, subconsole operators,
system operators, and display station operators.

« Change his own security profile information.
« Act as a system operator, subconsole operator, or display station operator.

« ldentify files and libraries to be protected and identify the owners of the
protected files and libraries. ’

« Select and remove file/library security, password security, and badge
security.

System/34 Concepts

2-121

Security Officer

Security officer classifications are assigned by the master security officer. A
security officer can: .

« Add, delete, or edit profiles of system operators and display station
operators.

« Change his own password and badge ID.
« Act as a system operator, subconsole operators, or display station operator.
« Identify the files and libraries to be protected and identify the owners of the
protected files and libraries.
System Operator
System operator classifications are assigned by the master security officer or
by a security officer. An operator designated as a system operator can operate
any display station, including the display station defined as the system console.
Subconsole Operator
Subconsole operator classifications are assigned by the master security officer
or by a security officer. An operator designated as a subconsole operator can
operate any display station except the display station defined as the system
console.
Display Station Operator
-Display station operator classifications are assigned by the master security
officer or by a security officer. An operator designated as a display station
operator can operate any display station, except the display station defined as

the system console. If a display station operator signs onto a subconsole, he is
not allowed to operate the display station in subconsole mode.

2-122

BADGE SECURITY

Badge security can be active only with password security and prevents
unauthorized use of a display station. When badge security is active, the
sign-on display has an Enter Badge prompt on it. When the sign-on display
appears, the cursor is at the Enter Badge field. The operator must move his
badge through a magnetic stripe reader, which reads but does not display the
badge ID. The operator enters the remaining fields on the sign-on display. In
order to sign on, the operator must have used the proper badge and entered
the correct password.

The master security officer uses the PROF procedure to activate badge
security. He uses the CNFIGSSP procedure to designate which display stations
have magnetic stripe readers.

Badge security requires a magnetic stripe reader at each designated display
station and the hardware support for connecting the reader to the display
station. The badge consists of special encoding of data onto a magnetic stripe
that is a part of the badge. The encoding of data onto the magnetic stripe is
based upon the American National Standard Magnetic-Stripe Encoding for
Credit Cards, ANSI X4.16-1973.

Using badge security requires that password security be on the system. The
badge IDs are stored in the password security file.

The badge ID must be eight numeric digits (0-9).

Format of the Magnetic Stripe

The data encoded onto the magnetic stripe of your badge is read by a
magnetic stripe reader.

The following diagram illustrates the general format of the magnetic stripe you
need to have when using badge security.

C d
',4’ Start Operator User Data End
',¢' Character | ldentification (Badge 1D) Character
,»" Character 8 numeric
4 ..
’ Stripe Digits (0-9)
~s- Code
~,
S
oy plsla]2|1
S 1{1]of1]o
S

Consult your local IBM branch office about the specific format used by a
magnetic stripe reader.

System /34 Concepts

2-123

2-124

MENU SECURITY

Menu security cén be used to assign a menu and session library to a user and
to optionally restrict that user to operating only from the assigned menu. The
master security officer can assign or change menus for himself and for any
other user. A security officer can assign or chahge menus only for system
operators, subconsole operators, and for work station operators. '

When a menu is assigned, it can be designated as mandatory or not
mandatory. When the menu is mandatory, the operator can enter only a menu
item number, an OFF control command, or an MSG control command after
signing on. If the user attempts to specify a different menu on the sign-on
display, the system does not allow the operator to sign on. When the menu is
mandatory, the operator can use the System/34 HELP function to display
information, but he cannot use the HELP function to run procedures. When the
assigned menu is not mandatory, the menu is a default menu, which appears
after the operator signs on but does not restrict the operator to using it.

Assigning a mandatory menu does not restrict the operator to using only that
one menu or to a limited number of menu items. The mandatory menu can
chain to other menus, and procedures run from a menu can display other
menus by using the MENU OCL statement.

If a library name and a mandatory menu are assigned, the system does not
allow thé operator to sign on if he attempts to specify a different menu or
library on the sign-on display. If a library name and a menu that is not
mandatory {or no menu) are assigned, the library becomes the session library
after sign on. The library assignment can be overridden on the sign-on display.

CAUTION

If a library and a mandatory menu are assigned, the user cannot sign on if the
menu or library does not exist on the system. If the menu and library are
specified as defaults (the menu is not mandatory), and if the menu or library
does not exist, the user can sign on by entering zeros in all positions of the
menu and library fields on the sign-on display. ‘

FILE AND LIBRARY SECURITY

File and library security prevents unauthorized use of files and libraries and can
be used only if password security is active. File and library security uses a file
called the resource security file to store information about each protected file
or library. The resource security file contains a record for each protected file
and library. Each record contains the user IDs of authorized users of the file or
library. For each authorized user, the record contains a code that identifies the
user category.

For a file, the user's authority can be any of the following:

« The user is an owner and can:

Give file access to others

Rename the file

Read, display, add, update, or delete information in the file
Delete the file

« The user can read or display the information in the file, but cannot change
the contents of the file.

« The user can read, display, and change the contents of the file.
For a library, the user’s authority can be any of the following:

« The user is an owner and can:
-~ Give library access to others
— Rename the library
— Display members in the library
— Execute members in the library
— Copy members from the library
— Update members in the library
— Delete members from the library

« The user can copy, display, execute, and change the contents of the library.

« The user can copy, display, and execute members in the library, but cannot
update the contents of the library.

» The user can only execute members in the library. The user cannot be
prevented from executing members in #LIBRARY; however, the ability to
copy, display, or change members in #LIBRARY can be controlled.

Note: If a mandatory menu is assigned, the user can execute only members
that are executed from that menu or chained menus. Therefore, a user can
be prevented from executing members in #LIBRARY if the assigned menu
and chained menus do not execute #LIBRARY members.

System/34 Concepts

2-125

2-126

A public access level can be assigned for a file or library. For example, the
public access level for a library can be assigned as execute only. In that case,
all system users can execute members from that library. However, only the
users specified in the access list can read or change the member. No user can
be restricted to a level of access lower than the public access level for the file-
or library.

An entry for a file or library can be placed in the resource security file before
the file or library is created. When an attempt is made to create a new file or
library for which an entry exists in the resource security file and resource
security is active, the system checks whether the operator is authorized to
change the contents of the file or library; the system creates the file or library
and sets a flag in the disk VTOC (volume table of contents) entry indicating
that the file or library is protected. If the operator is not authorized to change
the file or library, the system displays an error message at both the requesting
display station and at the system console; the display station operator must
cancel the job step or the job.

When an attempt is made to use a protected file or library, the system ensures
that the operator at the display station is authorized to use the file or library. If
an attempt is made to do an operation that the operator is not authorized to
do, the system displays an error message at both the requesting display station
and at the system console. The display station operator must cancel the job
step or the job.

The system makes special checks before allowing a display station to attach to
an MRT program. The system checks whether the operator at the display
station is authorized to execute programs from the active user library at the
time the MRT was originally requested. If the MRT program allocates disk
files, the system checks whether the operator is authorized to use those files.
If the operator is not authorized to use the library or one or more of the files,
the system displays an error message and does not allow the display station to
attach to the MRT program. If the MRT program later requests a file to which
the display station operator does not have authorized access, the security
function displays a message at the system console, and the system operator
must cancel the job step or the job.

Note: Operators of display stations attached to MRJE need not be authorized
for all files and libraries used by MRJE. Operators must be cleared for only
those files and libraries they use.

If a program attempts to acquire a display station, the system checks whether
the operator at the display station is authorized to use the library that contains
the program and whether the operator is authorized to use any files already
allocated by the program. If the operator is not authorized to use the library or
one or more of the data files, the system returns an error code to the program
and does not allow the program to acquire the display station. If the program
later attempts to use a file to which an operator at an acquired display station
does not have authorized access, the security function displays an error
message at the requesting display station; the operator must cancel the job
step or the job.

SECURITY FILE LISTING

You can obtain printouts of the security file in four different formats. These
different security formats are:

« System security options by user |D
« Resource security by resource name
« Resource security by owner ID

« Resource security by user ID

You obtain the printed listing of the security file either by using the PRLIST
procedure or by running $PRLT with the appropriate OCL statements. When
you run the security file listing procedure, a temporary file is created and used
to help in processing the security records. The data in this temporary file is
erased when the security file report is generated on the output printer you
specify. For more information on the security file listing, refer to the PRLIST
procedure in the SSP Reference Manual.

Notes:

1. Certain functions of the PRLIST procedure can be requested only by a
master security officer.

2. Any listing that has passwords shown should be kept in a secure place to
avoid disclosure to unauthorized persons.

3. The output from the PRLIST procedure exists as an entry of the spool file
until it is printed. This output can be copied by either the system operator
or the subconsole operator using the COPYPRT procedure. Multiple copies
of the PRLIST output can also be made by the subconsole or system
operator.

System/34 Concepts 2-127

Interactive Communications Feature (SSP-ICF)

The SSP-ICF support on the System/34 allows programs on the System/34
to establish communications with a remote system and to communicate with a
program or programs at the remote system. SSP-ICF also allows programs on
a System/34 to communicate interactively with other programs on the same
System/34.

SSP-

ICF includes a common application program interface that allows access

to data management support for specific communications subsystems. The
following remote system communications interfaces and protocols are
specifically supported by configured subsystems types:

«. SNA

System/370 IMS/VS (using SLU type-P protocols)

System /370 CICS/VS (as a 3790 fuil function logical unit)

System /370 user-written communication support using SNA profiles TSP
3 or4 and FMP 3 or 4

System /34 with SSP-ICF point-to-point

System/34 with SSP-ICF multipoint

3601 Finance Communications Controller

X.21 Public Data Network (Japan and Scandanavian countries)

Note: SNA communications to System/370 is supported through NCP/VS

and VTAM or ACF/NCP/VS and ACF/VTAM.

« BSC (point-to-point or the System/34 as a multipoint tributary)

System/370 IMS/VS via IRSS (multipoint only)

System/370 CICS/VS (as a System/3)

System/3 Model 15 CCP :

System/34 using SSP-ICF or batch BSC support (point-to-point only)

In addition, communications with the following devices and systems is
supported via BSC protocols:

3741 Models 2 and 4 (point-to-point only)
3747 (point-to-point only)

System/7 with MSP/7 (as a System/3)
System /32 (point-to-point only)
System/3 with MLMP or RPG TP

System /38 using BSC support

Series 1 (as a System/3)

0S, 0S/VS, DOS, or DOS/VS BTAM

OS or 0S/VS TCAM

5231 Model 2 (as a 3741 in transmit mode only)
3750 (World Trade only)

3705 using NCP EP or PEP

5110 (as a 3741)

5260 (as a 3741)

5280 (as a 3741)

In addition, Assembler language users running batch BSC jobs can send or
receive variable length records, blocked or unblocked.

2-128

Also provided is a subsystem that allows a System/34 to coexist on a BSC
multipoint line with 3270s. The host can be a System/360, System/ 370, or a
System/3. The user can write programs that use the current set of host
programs for 3270s. This support does not allow attaching 3270s to the
System/34. ‘

SSP-ICF also provides the Intra subsystem, which enables concurrently
executing programs on the same System/34 to communicate with each other.
No data communications line is involved.

SSP-ICF SESSIONS

A key SSP-ICF concept is that of a session. By definition, a session is the
logical connection {(or pipeline) between a System/34 application program and
a remote subsystem. Thinking in terms of display station interaction with
programs might help you understand the session concept.

Locally Initiated Sessions

As described earlier under Program Attributes, an application program can
acquire a System/34 display station. That display station remains attached to
the program until the program ends or until it releases the display station. In
exactly the same way, a System/34 application program can acquire a session.
The program itself is coded as if it were acquiring a display station for use as a
WORKSTN file. The only difference is that instead of using a WORKSTN
statement to define the requested display station, you use a SESSION OCL
statement to define the requested session. The SESSION statement identifies
the session ID used within the program and the location ID that was assigned
during SSP-ICF configuration. '

System/34 SSP-ICF Remote Remote
Application Subsystem Subsystem Application
Start a '
Session o
I ACQ ll >
L Session
Start Il Started Starts
Progr: > >
rogram A Program A Program A

A session ends when one of the following events occur:

« The program requests that the session be ended (via a release or
end-of-session operation). If a release operation is used to end the session,
the session will end only if the release operation is successful.

« The program terminates.

« An error causes abnormal termination of the session.

« A normal disconnect occurs on a switched line.

System/34 Concepts 2-129

2-130

Remotely Initiated Sessions

As described earlier, under Program Attributes, a requesting display station is
automatically attached to an SRT or an MRT program when the program is
initiated. When a procedure is evoked from a display station, that display
station is attached to each SRT and MRT program that is run during execution
of that procedure. Analogously, a program on another system for which a
session was configured and enabled can issue a procedure start request for the
System/34. The System/34 will execute the procedure and the requesting
session will be attached to each SRT or MRT program that is run as part of
that procedure. The requesting program can then communicate interactively
with the program run on System/34.

System /34 SSP-ICF Remote Remote
Application Subsystem Subsystem Application
- Start a Session
_ Session o
-7 Started g

Starts Procedure

Program B - B, which Runs
Program B

Start Procedure B

>

Interactive Data Exchange
The session ends when one of the following events occurs:
« A program issues an end-of-session operation.
« A program issues a put-end-of-transaction operation. If end of transaction is
received, the program must issue an end-of-session operation to terminate
the session.

« An error causes the session to be abnormally terminated.

When the session ends, all subsequent procedure steps, if any, execute with
no requesting display station attached.

Note: Some ICF subsystems, such as BSC 3270, do not support remotely
initiated sessions. Refer to the ICF reference manual to determine if the
subsystem you are using supports remotely initiated sessions.

SSP-ICF DATA MANAGEMENT

RPG Il programs use the WORKSTN file and COBOL programs use the
TRANSACTION file to interface with SSP-ICF support. Basic assembler
programs use assembler macroinstructions to interface with the SSP-ICF
support. BASIC programs use the OPEN, CLOSE, READ, and WRITE
statements to interface with SSP-ICF support. When a program issues an
operation for the file, SSP-ICF data management processes the request.
(SSP-ICF data management runs in the main storage nucleus area as a
subroutine of the requesting task.) If the requested operation is for an
SSP-ICF subsystem, SSP-ICF data management transforms the request into
the format required by the communications subsystem. If the request is for a
display station operation, SSP-ICF data management passes control to work
station data management. ‘

User Program

WORKSTN or
TRANSACTION
File Request

SSP-ICF Data

Management
SSPkNo Work Station
Request > Data
Management

Yes

Display Station

SSP-ICF
Subsystem

Remote System

System/34 Concepts 2-131

2-132

SSP-ICF data management and the communications subsystems use an area
of nonswappable main storage as an intermediate buffer pool for sending or
receiving data for SSP-ICF sessions. This buffer pool allows efficient
overlapping of user program operations with the communications required to
send or receive data. For output operations, SSP-ICF transforms the user
request to the format required by the communications subsystem. SSP-ICF
data management transforms the request by assigning and moving data from
the user program to the nonswappable buffer space. The communications
subsystem is informed of the request via a task post, and, if the operation
does not require waiting for successful completion, SSP-ICF data management
returns control to the user program. For input operations, the user program
issues an accept input operation, which causes SSP-ICF data management to
wait for data from either a display station or an SSP-ICF session. If data is
received for an SSP-ICF session, the data is moved from the nonswappable
main storage buffer space to the buffer in the user program.

Autocall Capabilities

The IBM System/34 autocall feature allows you to make calls automatically
over switched MLCA lines without operator intervention. With the autocall
feature, you will be able to do the following:

« Define multiple lists of phone numbers that can be accessed by the
following communications subsystems:
~ BSCEL
- BSC CICS/VS
- CCP
— SNA PEER
— SNA 3270 emulation
— SNA upline facility

« Execute both MRJE and SRJE tasks from a procedure from any work -
station, and call a phone number without system operator intervention

« Have repeated executions of both batch BSC or SSP-ICF job steps that call
multiple locations

« Acquire SSP-ICF sessions and calls placed to the location without system
operator intervention

To use the System/34 autocall support, do the following:

« Specify which lines are to be autocall lines when your service representative
configures the microcode

« Create object members containing the phone numbers of the remote
systems you wish to call

» Start the autocall task by running either a batch BSC job, an MRJE or SRJE
utility, or an SSP-ICF job

For more information on how to use the autocall feature, refer to the
Interactive Communications Feature Reference Manual if you plan to use autocall
with SSP-ICF. If you plan to use the autocall feature with either MRJE or
SRJE or batch BSC, refer to the Data Communications Reference Manual.

System/34 Finance Support Subsystem

The System/34 Finance Support subsystem allows application programs using
the interactive communications feature (ICF) to communicate with all models of
either the 3601 Finance Communication Controller or the 3694 Document
Processor. A communications adapter for SDLC communications is required to
use the finance support subsystem.

For more information about the finance support subsystem, refer to the
Interactive Communications Feature Reference Manual.

DATA COMMUNICATIONS AND THE X.21 INTERFACE
The System/34 supports features that provide an interface to public data
networks supporting digital communications. This interface is known as the
X.21 interface.
To use the X.21 feature, your system needs a multiline communications
adapter (MLCA). Each MLCA communications line can be defined as either
switched or leased when using digital communications. The line speeds
available are:
« 2400 bits per second
« 4800 bits per second
« 9600 bits per second
« 48 000 bits ber second
The X.21 interface supports up to three switched or four leased lines. If one

line is configured as a switched X.21 line, the other two lines may be
configured as either X.21 or non-X.21 switched or leased lines.

System/34 Concepts

2-133

The following table lists the communications support available with the X.21

interface:

Swiitched Lines

Communications Component Leased Lines Auto Call Auto Answer
Remote work station support Yes Yes No
Batch BSC support Yes Yes Yes
MRJE and SRJE Yes Yes Yes
SSP-ICF/BSC subsystems - - -
BSCEL Yes Yes Yes
CcpP Yes Yes Yes
Cics Yes Yes Yes
IMS/IRSS Yes No No
3270 Device Emulation Yes No No
SSP-ICF/SDLC subsystems
SNA upline Yes Yes Yes
PEER Yes Yes Yes
3270 SNA emulation Yes Yes Yes
Finance subsystem Yes No Yes

Communications Support Available with the X.21 Interface

Leased Lines
The leased lines must be defined as X.21 communications when your customer
engineer does microcode configuration.

Switched Lines
For switched lines you must do the following:

1. Define which lines are to be X.21 lines during the microcode
configuration.

2. Start the X.21 interface by running one of the previously listed
communications components.

X.21 Autocall Feature
Using the X.21 autocall feature requires you to create object members
containing the phone numbers of the remote systems. You create these object
members by using the DEFINX21 procedure.
The DEFINX21 procedure is described in the SSP Reference Manual.
For more information on using the X.21 feature refer to either:

« Interactive Communications Feature Reference Manual.

- Data Communications Reference Manual.

System/34 Concepts 2-135

2-136

Sample Inquiry Applications Using SSP-ICF

The following two examples show simple inquiry applications that use
SSP-ICF.

Local Inquiry Program

In this example, a local inquiry program evokes a remote program to answer an
inquiry. The local program could be an MRT-NEP that receives an inquiry
request from a display station and, if necessary, evokes a remote program
through an interactive communications session. After receiving the inquiry
response from the remote program, the local program releases the session and
displays the answer to the display station operator.

If the local program is an MRT-NEP, it remains active even if no display
stations or sessions are attached. The program waits for a display station to
request the program and make an inquiry. After receiving the inquiry, the local
program determines whether the information is available on the local system or
if a remote application must be evoked. If the information must come from a
remote application, then the local program performs the steps described in the
following paragraph.

First, the program acquires a session corresponding to one described on a
SESSION OCL statement. For information about acquiring a session, refer to
SSP-ICF Sessions in Chapter 2. After successfully acquiring the session, the
local application evokes the remote application. The evoke operation should be
an evoke (with data), then invite. The evoke portion of the operation activates
the remote program and includes the inquiry as data; the invite portion allows
the remote application to send the results. Multiple accepts or gets are
necessary if the response is expected to be multiple records. After receiving
the response, the local program releases the session and displays the inquiry
results to the display station operator. The program can then wait for the next
inquiry. For information about SSP-ICF operations, refer to the Interactive
Communications Feature Reference Manual.

System/34 Local Inquiry Program

Invite Display Station Input

Accept Display Station input

—-—-—'_Z/

Remote Application

Acquire

Evoke

Then Invite

Y

Accept

Release
Put Data to Display Station
Invite Display Station Input

Accept Display Station Input
[
[
[]

Reads {nquiry

Send Data (ends transaction)

System/34 Concepts

2-137

2-138

Remote Inquiry Program

A remote inquiry program is started by a remote system to answer an inquiry.
After being started, this program receives an inquiry from the remote system,
sends the response back, and terminates (or handles other inquiries if it is an
MRT program). The remote inquiry program could be the counterpart to the
local inquiry program discussed previously.

The first operation should be an accept to receive the session 1D and any data
transmitted with the request, possibly followed by a get to receive the inquiry.
The program must then perform any processing necessary to answer the
inquiry before issuing one or more put operations to transmit the response to
the remote system. The session ended when the application program
successfully sent end of transaction. If the program is an MRT-NEP, it can
issue an accept to wait for the next requestor.

System/34 Remote Inquiry Program — 7/ ___ Remote Application
Accept - Send Program Start Request
Get - Send Data (inquiry)
Put data > Get

End of Transaction
(session is ended)

Accept
®
®
[]

Checkpoint Facility (For COBOL and Assembler Programs
and Subroutines)

When a batch job will run for an extended period, you can provide for the
periodic recording of information during the run. The checkpoint facility saves
the status of the system, and preserves the associated resources used by the
job step. Thus, if the program prematurely terminates, the checkpoint facility
provides a means of restarting the program at an intermediate point. For more
information about using checkpoints in a program, refer to the Basic Assembler
and Macro Processor Reference Manual and the COBOL Reference Manual. If
you intend to use the checkpoint facility for an interactive (nonbatch) job, refer
to the restrictions and considerations for both checkpoint and restart to ensure
that the program can be restarted. The restrictions and considerations are
described later in this section.

When you use the checkpoint facility, a checkpoint record file is created for
each job step. The checkpoint record file exists until the job step terminates
normally. If a malfunction occurs, the checkpoint record file remains on disk
until the program is restarted and terminates normally. The file labels for each
checkpoint record file must be different from any other file on the disk. The
file label is specified in the program. For information about determining the
size of the checkpoint record file, refer to the Installation and Modification
Reference Manual.

Files and libraries are marked as protected (checkpoint active) when they are
being used by a program saving checkpoints. If a malfunction occurs, these
resources remain protected just as if the program were still running.

When a checkpointed job step has run successfully, the checkpoint information

is removed. The resources assigned to that job step become available for other
tasks.

System/34 Concepts 2-139

Checkpoint Restrictions
The following is a list of restrictions for a job step that requests a checkpoint:

« Disk files that are specified for the job step cannot use the DISP-SHR
option in the FILE statement.

« All files, including offline multivolume files, must be allocated and then
opened before any checkpoints are requested.

« There is enough space on the fixed disk for the checkpoint file.

« Checkpoint is not permitted if the program is using batch BSC
communication lines; however, programs can be using remote work stations
and SSP-ICF sessions.

If the requestor for the program is an SSP-ICF session, checkpoint is allowed
if (1) the program was evoked with end of transaction and (2) either
PDATA-NO (the default) was specified for the procedure that loaded the
program or the program has accepted the data sent when the program was
evoked.

The following is a list of restrictions for other users when another job step
requests a checkpoint {the CATALOG procedure can be used to display the
checkpointed status of the file):

« The total number of disk VTOC entries available for permanent and
temporary files is reduced while checkpoint active files reside on disk. The
amount of reduction is the sum of the following values: '

— The number of scratch and job files that are not allocated from the
reserve area.

— The checkpoint record file.

— The reserve area file.

« Other jobs and system functions cannot access the checkpoint active files.

« Checkpoint active files may not be used as input for $COPY functions such
as saving the file on diskettes or printing its contents.

« Checkpoint active files may not be deleted by $DELET or renamed by
SRENAM.

» Librarian functions that require dedicated use of a library are not permitted.
Therefore, a condense operation of a checkpointed library, including
#LIBRARY, cannot be requested if the checkpointed program failed and has
not yet been restarted.

Checkpoint Considerations

If you use the checkpoint facility, you should be aware of the following
programming considerations:

« If an assembler program requests a checkpoint, the first checkpoint should
be issued as soon as possible so that:
- A valid checkpoint record exists.
— The space for the checkpoint record file has been allocated.

« Each time an assembler program requests a checkpoint, the program should
check the completion code in the parameter list.

« Make sure that operator instructions are complete, so that if a malfunction
occurs, the operator knows the proper action to take. This action should
include:

— How to respond to checkpoint/restart system messages
— When to run the CRESTART procedure

« The checkpoint record file must be a new file and cannot have the same
label as an existing file. A FILE OCL statement must not be supplied for the
checkpoint record file.

« Files may be modified by additions, deletions, and updates. The checkpoint
function keeps track of the last record in the file when the checkpoint
occurred. The restart function deletes all records added after the last
checkpoint. Deletions and updates remain in effect unless the program has
some means to restore them. The COBOL Reference Manual further
describes considerations for checkpointed programs that update a disk data
file.

« If a 2 option was selected for a message and then the O option was
selected for message SYS-1314, the remaining job steps will run
immediately. If you restart the program, those steps will run again after the
checkpointed job step completes normally. If you do not want to execute
the remaining job steps when the O option is selected, you can use a
// IF 2CD?/3721 expression to branch around the remaining steps.

« The RESERVE statement is permitted for scratch and job data files. If this
statement is used, the SSP will attempt to allocate these files from the
reserve area.

« If jobs that take checkpoints terminate abnormally, all S (scratch) and J (job)

files that are not in a reserve area have VTOC entries. If a restart is not
done, these files are flagged as checkpoint active.

System/34 Concepts

2-141

2-142

Restart Facility

The restart facility is a means of resuming the execution of a program from a
checkpoint. Any operator may restart a checkpointed job step. When a
checkpointed job step is restarted, the restart facility attempts to recreate the
status of the job step as it was at the checkpoint.

The restart facility rebuilds and updates the system control blocks with the
data saved in the checkpoint record. All the resources that the job step used
are restored to the same status as at the checkpoint. This involves locating
and allocating disk files, instructing the operator to replace a diskette if offline
muitivolume processing is used, restoring printer file status, and restoring the
work station work area. The job step is then restored from the last checkpoint.

The restart facility sets the appropriate completion code in the
checkpoint/restart parameter list. The assembler programmer should check for
this completion code so as to determine whether the program is returning from
a checkpoint or a restart. Return code checking enabies the assembler
programmer to perform any further recovery operation that the particular
application may require. For further information about the checkpoint/restart
parameter list, refer to the Basic Assembler and Macro Processor Reference
Manual.

When using the restart facility, it is the user’s responsibility to acquire any
display stations that the job step requires, and to restore the proper displays
and data to those display stations.

Restart Considerations

The following list describes restart considerations:

« The job step should be restarted as soon as possible after the malfunction
because the checkpointed resources are not available for other jobs to use.

« When a checkpointed job step fails, the operator can remove the
checkpointed job from the system if the job step is not going to be
restarted. Until the job step is restarted or canceled, the job and scratch
files associated with the job step will exist along with their VTOC entries;
also, any checkpointed libraries including #LIBRARY, will appear as if they
had a user. The CATALOG procedure can be used to display the status of
checkpointed files and libraries.

« The local data area and external indicators (UPSI switches) are restored
even if the restart function is run from a display station other than the one
from which the program was checkpointed. Therefore, you should ensure
that any jobs following the restart do not depend upon data that was in the
local data area or external switches before the restart function was run.

« If resource security is active, the operator who runs the restart function
must be on the list of users for the user files and libraries for the job step
being restarted, as well as all job steps that follow the checkpointed job
step.

« A RESERVE OCL statement must not be used before the restart function is
run.

« MRT programs are restarted as SRT programs.

« If a checkpointed program has not yet been restarted, do not run the
RELOAD procedure. A restart is not possible if the RELOAD procedure has
removed message members, load members, procedures, or menus from the
system library or from a user library.

« If a checkpointed program has not yet been restarted, do not delete or
rename a checkpointed user library.

« Acquired display station sessions or acquired SSP-ICF sessions that were
active when a checkpoint occurred must be acquired again by the program
at restart time even if REQD-YES is specified on the WORKSTN OCL
statement. The program must keep track of the display screen formats and
data that were displayed at the time of the checkpoint and must restore the
displays and data.

« The diskette files for offline multivolume files are not marked as protected
by the checkpoint function. If a failure occurs, the operator should ensure
that the diskette files are not used as input or output to any other program
until the failing program has been restarted.

« If a checkpointed program is restarted and goes to normal completion or if
the checkpointed program was executed as part of a procedure and the
procedure completes normally, the following conditions occur:

— If a menu was active at the time the program or procedure was initiated,
that checkpointed menu is restored even if a different menu was active
when the restart function was run.

— The session library, menu library, and message member libraries that
were active when the program or procedure was initiated are restored
even if different libraries were active when the restart function was run.

System/34 Concepts 2-143

Printed Output

When spooling is not active during a checkpointed job step, all records up to
the latest checkpoint, including the ones following it to the point of the system
failure, are printed. When the job step is restarted, the printed records
requested after the last checkpoint are printed again. This can produce an
overlap in the output.

If print spooling is active, overlapping of printed output usually does not occur.
There is an overlap in the printed output only when DEFER-NO is specified in
the PRINTER statement even though print spooling is active. When spooling is
active, the spooled output generated after the program is restarted is placed in
a different entry in the spool file. Therefore, output from before the
malfunction and from after the restart are in two separate spool file entries.

Note: If a checkpointed program fails, the spool file should not be reformatted
before the restart function is run. If the spool file is reformatted and the
program is restarted, spooled output (the output generated from the start of
the program until the last checkpoint before the failure) is lost.

Nonrestartable Job Step

It is possible that certain conditions will prevent $RSTRT from restarting the
job step. The job step might be nonrestartable when:

« A permanent disk or diskette /0 error occurred.
« A failure occurred before the first checkpoint was complete.
« A user library was deleted.

+ The RELOAD procedure was run.

Removing Checkpointed Jobs

If a job step is nonrestartable or if the operator does not wish to restart the
job, the system operator' has the option of removing the checkpointed job from
the system. The following describes three ways in which a checkpointed job
step can be removed from the system:

« If the operator inquires out of or cancels a checkpointed job or responds
with a 2 or 3 option to any message, a SYS-1314 message is issued. By
responding with a 1 option to the SYS-1314 message, a specific
checkpointed job is canceled.

« By using the DELETE parameter in the CRESTART procedure, the operator
can cancel the checkpointed job step. For example, the checkpoint record
file for a job step was labeled CK1. To cancel the checkpointed job step,
the operator can enter:

CRESTART CK1,DELETE.
« During file rebuild, the operator is prompted about whether to remove all

checkpoint active files from the system. If the operator selects the Y (yes)
option, all checkpoint active job steps are removed from the system.

Operator Considerations

When working with checkpointed jobs, the system operator and display station
operator should be aware of the following considerations:

+ An SRT must be restarted from a work station. If the display station does
not have the same logical ID as the original requestor, the following may
occur:

— 1/0 to a specific display station will probably fail.
— History file continuity will be lost.
— ?WS? OCL substitution will cause unpredictable results.

Note: An SRT program cannot be restarted by the EVOKE operation, by the
// EVOKE OCL statement, or from the input job queue. Other types of
programs can be restarted in those ways. For example, a program that was
run from the input job queue was checkpointed and the checkpoint record
file was called CKP1. To restart the program from the input job queue, the
operator can enter:

JOBQ ,CRESTART,CKP1

« If the configuration has been modified for date format, belt image, forms
number, forms length, or translation table, a diagnostic will be issued to
which the response can be to terminate the restart or to reinstate the
previous values that were saved during the checkpoint. If the operator
chooses to reinstate the previous values, the following statements apply:
— The belt image remains changed until the next sign-on or until the SET
procedure is used to change the belt image.

— The translation table remains changed until the next sign-on or until the
SET procedure is used to change the translation table.

— The other values remain changed until the checkpointed job terminates.
At that point, they will return to the values they had before the restart.

« The tasks priority will not be restored to the value at the checkpoint.

System/34 Concepts 2-145

System/34 and Distributed Data Processing Environments

The System/34 has the data processing capabilities which allow you to use
your System/34 in a distributed data processing environment. A distributed
data processing environment is where the power of the computer is shared by
many users who may be in different locations. These locations can be in
another part of the main computer site or in a different city. You can use the
System/34 as a processor terminal, a host system, a subhost system, or a
peer connection. You can also process files that are located on a System/3
Model 15D or another System/34.

System/34 as a Processor Terminal

System/34 as a processor terminal is more applicable in firms with multiple
locations where the facilities that are remote from the central location are large
enough to require their own processing capability. in the following examples,
the remote location has a System/34 and the central installation has a
System/370 (the host system can be a System/34 or a larger system). Data
transfer is over communications lines (switched or nonswitched) between the
processors. Transmission is made to, and perhaps from, the central office’'s
system to provide summary data as well as updated file information. In some
cases, the remote processor may be used for remote job entry into a host
system. An advantage of using System/34 is that it has multiprogramming,
which allows communications programs to execute concurrently with other
programs.

’ System/34 - System/370,303X,308X
ﬁocal Work Stations \ ® BSC ® SDLC/SNA \
‘ ~IMS

—SNA UPLINE

C) P BSC/SDLC —ﬂ

or

40 =

SR(=>

{\

Remote Work Stations .
)=

- o | Y.

If the host is a System/ 370 or another System/34, communication can be via
BSC or SDLC. If the host is any other type system, communication can be
only via BSC.

2-146

System/34 as a Host System

System/34 as a host system is applicable to many common business services.
Many organizations have data that should be entered into a central control file.
Some examples are attendance reporting, customer order masters, and
inventory. Firms that have remote locations can use terminals to transmit or
receive data using nonswitched or switched communications line connection to
the host System/34. For example, a business has several remote locations.
Location A uses a System/32 for payroll processing and location B uses a
programmable 3741 to enter inventory transactions; the other locations use
online 5250 devices. Summary data from locations A and B are transmitted to
the System/34 using a switched communications line, while a nonswitched line
is used to communicate with the 5250 devices.

System/34
-a)

L Programmable 3741 ———) K /

5256
Printer

5251 <
Model 12

7

Multiprogramming is an advantage of using System/34 as a host system.

System/34 Concepts 2-147

System/34 as a Subhost System

This category is a combination of the first two. The subhost serves as a host
for some processor terminals, and also as a type of processor terminal for
another host. A subhost system provides all the ‘a’dvantages of terminal entry
to interact with centralized data files in & system and to communicate with the
central office’s system. The central (host) system has the main data files, and
each subhost has a subset of those data files that can be accessed by the
terminals attached to the subhost.

Host System

Subhost System — ‘ . System/370,303X,308X
- {Local Work Stations - BSC/SDLC - r \
<

Remote

J:l __

/————— Processor Terminal ;v
} N | /

¥—~ Programmable 3741 ——/

2-148

System/34 as a Peer Connection

System/34 as a peer connection is applicable to many common business
services with one or more remote System/34s. The peer connection allows
System/34 to utilize data on remote systems and to start remote procedures to
offload processing. A peer connection provides System/34-to~System/34
processing without having to go through a host. This processing can be done
on a point-to-point connection using BSC or SDLC, or on a multipoint
connection using SDLC.

o System/34 — N ST System/34 N
BSC/SDLC

@ @S

@E: J | Q) =

= =
B

DISTRIBUTED DISK FILE FACILITY

The distributed disk file facility allows you to access data files stored on
another System/34 or a System/3 Model 15D. You do not have to recompile
your programs to use this feature.

The distributed disk file facility is available by PRPQ only. The following is the
PRPQ number list:

« P84037 for System/34
» P84038 for System/3 Model 15D
For more information about the distributed disk file facility, refer to the IBM

System/34 and System/3 Model 15D Distributed Disk File Facility Reference
Manual, SC21-7869.

System/34 Concepts 2-149

Chapter 3. Design Considerations

During system design, you typically need to make decisions regarding the
following items:

« Displays and menus that operators use

« Input documents and printer forms

« Files

« Applications and programs

« System security and integrity

« Documentation

« Remote display stations

For example, you might need to answer questions such as:

« What information should operators see on their displays and how can |
format the information so that it is readabie?

« Should | design similar forms for the various printers? If not, how should
they differ?

+ Which file organizations should | use and when should | use them?
« How should | design the records in the files?

« What design decisions affect response times?

+ Which application should | design first?

* Which data entry programming method should | use?

+ Which programs should be SRT programs? Which should be MRT
programs? Which should be never-ending programs?

Design considerations for all these questions and more are presented in this
chapter. As you read these considerations, keep in mind that no two
businesses are likely to have the same design concerns. Therefore, the
information in this chapter is necessarily general in order to apply to as many
situations as possible.

Design Considerations 3-1

Display Design

This section describes some key elements of display design. The guidelines
presented, although representative of most display design, might not apply in
all circumstances. The topics are offered more for your consideration during
display design than for rules that you must follow.

Display design is concerned primarily with the way data is displayed to the
operator and the way that the operator responds to this data. Generally, input
displays should be designed for ease of data entry, and output displays should
be designed for ease of reading. Many displays show output as well as accept
input. These dispiays are the most challenging for the designer, who must
make tradeoffs between ease of data entry and ease of reading. This section
might help the designer make decisions about the tradeoffs.

System/34 operators might be miles from the computer room or at least far
enough away so they cannot bring their questions or problems to this room.
Therefore, displays that these operators use should be clear, complete, and
concise.

Operators should feel that their display stations are helping them be more
productive. You might help operators attain a positive attitude for using their
display stations by involving them in the display design. For example, ask for
opinions of some sample displays that you plan for them to use and ask how
they might improve them.

Experienced operators might be able to use displays that have few operator
instructions on them, and they might be more productive if the response times
are short. Inexperienced operators might need more guidance from the
displays, and they might tolerate longer response times.

As you read the following display design guidelines, you might consider the
amount of experience your display station operators have and plan your
displays accordingly.

IDENTIFY THE DISPLAYS

Each display could be identified by a title or heading and a nondisplayed ID.
The title should be as concise as possible, yet meaningful. Titles, which are
usually centered on or near the top line of the display, could be intensified or
underlined.

PROVIDE MEANINGFUL HEADINGS

Descriptive headings help operators understand what they see and do. For
example, the headings on a display for entering line items from an order might
be:

r

LINE ITEM NO QTY DESCRIPTION PRICE AMOUNT

You might need to compromise between the number of descriptive headings
you use, which makes a display easier to understand, and the length of the
response time. Too many headings might degrade performance, especially on
remote display stations. For those displays, you might want to minimize the
number of characters on each display by abbreviating or eliminating the
headings.

Design Considerations

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

PLAN READABLE DISPLAYS

3-4

The basic rule of designing displays is to make the display screen easy to read.
Display screens are the easiest to read when they are not cluttered with extra
information. You should try not to put too much information on one screen.

The following suggestions are provided to help you plan readable displays:

Use blank space to separate data items. Blank space is the most effective,
least cluttering, separator. V

Organize data in columns or lists. Text could be left-justified; numeric data
could be right-justified and aligned on the units position.

Present information in some recognizable order for ease of scanning. For
example, put historical dates in chronological order.

Use complete words rather than contractions.

Use lowercase letters in prompts. (Lowercase letters do not print on a 5211
Printer or a 3262 Printer unless it has a 96-character print belt.)

Use column separators in input fields.
Highlight new, added, or referenced information when a display is reshown.

Use blinking fields sparingly. Blinking should be used only for urgent,
attention-getting purposes.

Arrange fields so that the most frequently used fields are recorded first,
followed by less frequently used fields.

For inquiries, show only the expected data in a readable sequence.
Avoiding unnecessary information such as asterisks that outline information,
which reduces the amount of data sent from the program to the display

station.

Use color to differentiate data (if color is available).

Avoiding unnecessary data is especially important for displays shown at remote
display stations. Unnecessary data transmitted to a remote display station can
cause lengthy response times.

The following displays show use of some of these design guidelines:

Centered Title

/

Column Separators

{ / N
Blank Lines for :
Improved Read-t
ability
/Enter Customer Number it
.
Lowercase Letters]
in the Prompt
\
PRESS FIELD EXIT KEY TO CONTINUE
Operator ———-———‘—'{ PRESS COMMAND KEY 7 TO END YOUR SESSION
Instructions
. _J
a)
Reshown Data ————‘/\ ORDER ENTRY
from a Previous
Display CUSTOMER 101
SOLD TO: OBRIEN CHEMICAL SUPFLIES SHIP TO: HARCBIN INTERNATICNAL
1260 INDUSTRIAL KAY INDIAN HILLS INDUST PARK
LAKEPORT M 25555 MARIETTA GA 52182
Underlining Used
to Highlight the
Prompts; Indenta- CUST REF NO VIA
tion Used for the -
Customer Addresses
Initial Position /
of Cursor
KEY REF NO AND VIA; THEN PRESS ENTER
g S
Design Considerations 3-5

DISPLAY A SMALL AMOUNT AT ONE TIME

The displays should be kept uncluttered and include only meaningful
information. For example, do not display the entire record on an inquiry if the
operator normally looks at only one or two fields. Instead, display the
‘necessary fields and, perhaps, provide a function. that allows the operator to
display the entire record when it is required.

Large displays are not intended only for displaying more data; part of the
advantage of large displays is that they allow more formatting freedom. For
example, double-spaced lines might make a display more readable.

Certain applications accumulate data from display to display. To a point, such
an accumulation might be desirable. However, if you are not careful, the
display can get too cluttered.

You might use nondispiay fields for information that is not needed by the
operator but needed for your programs. For example, the display station ID or
a screen format ID might be needed by a program, but it might not need to be
seen by the operator.

MAINTAIN CONSISTENCIES AMONG DISPLAYS

Each application has its own display screen requirements, but good design
requires display consistencies among applications. For example, terminology,
abbreviations, and codes should be consistent from one application to another.
Consistency is particularly important when the same operator does more than
one application. The standards established within an application are even more
important than those between applications.

Use of keys should be standardized for displays and applications. For example,
avoid allowing command key 7 to end a job on one display and command key
9 to end the job on another display. Of course, a key sometimes has to be
used in an application-unique function, but a legend should teli the operator
about the nonstandard use of the key.

Reserve areas of the display for certain types of information and maintain the
areas in the same relative locations on all displays. For example, try to provide
operator instructions and display messages near the bottom of the displays.

Finally, try to highlight a field consistently, whether via underlining, blinking,
high intensity, or a reversed image.

The following display illustrates some of the consistency guidelines:

~ B
ACCOUNTS RECEIVABLE
CASH RECEIPTS
Customer Numher 000101 Nam2 OBRIEN CHEMICAL SUPPLIES
Check Number [J1111
Amount IRRRR AR
Check Date (RRRRS|
Legend Placed
Near Bottom ON PRESS ENTER TO CONTINUE
L X CMD KEY 2 TO RETRY PREVIOUS ENTRY
this Display anc.i n \ CMD KEY 3 TO ENTER NEXT CUSTOMER
the Same Relative CMD KEY 7 TO END SESSION
Position on all
Displays in the
Application . // \ -
Messages to the operator are shown Throughout the application,
on the bottom line on all displays these keys have the same
in the application. basic functions.

Design Considerations 3-7

KEEP OPERATOR RESPONSES SHORT

Whenever possible, keep operator responses short but complete. These
responses can include codes or abbreviations, but only if the operators are
trained to use them.

Cursor positioning by operators should be minimized. Instead, displays should
be designed so that operators need not frequently space over unused fields.
The cursor might be positioned by the program to avoid this skipping over
fields.

Consider blinking the cursor to draw the operator’s attention to its initial
position.

PROVIDE ONE IDEA FOR EACH DISPLAY

Whenever possible, a display should contain information concerning only a
single aspect of an application. For example, one display should not be used
to inquire into a file and perform an update at the same time. Concentrating on
a single idea at a time decreases the possibility of an operator error. The
following display is an example of allowing one function per display. The
legend of command keys at the bottom of this display shows additional
functions that the operator can select.

r”
30000 A & A GROCERY
A & A GROCERY PHONE: 312 / 555-1734%
P 0 15159 SALESHMAN 16
E. DUNDEE IL 60118
--- A/R BALANCE ---
BALANCE FORWARD
PREVIQUS BALANCE 579.04 LAST PAID ON 9/02/78
CHARGES 1,313.00
PAYMENTS 874¢.46 DETAIL FOR AMOUNT NOW DUE-
ADJUSTMENTS .00 CURRENT PERIOD 438.54%
- % AMOUNT NOW DUE 1,017.58 OVER 30 DAYS 579.04
FUTURE CHARGES .00 OVER 60 DAYS .00
* TOTAL AMOUNT DUE 1,017.58 OVER 90 DAYS .00
CREDIT LIMIT =- 1,500.00 UPAID LATE CHGS .00
COMMAND KEYS-
1 RESUME SEARCH 2 NEW SEARCH 3 BILLING DATA 4 A/R BALANCE
5 SALES DATA 6 FRICE INQUIRY 24 SIGN OFF
.

ACKNOWLEDGE OPERATOR INPUT

MAK

Valid Item — |

Invalid Item

/

Operator interaction with a display station is usually conversational; for
example, an operator makes an inquiry, and the display station shows the
requested data. For this reason, you should be concerned about how long an
operator waits for the System/34 to respond.

If a program takes a relatively long time to respond to an operator, you might
want to display an in-process message immediately after the program receives
the operator’s input. For example, you might want to do this for a program
that does extensive calculations with the operator’'s input. Acknowledging
operator responses at remote display stations might affect their response
times.

E ERROR CORRECTION EASY

On System/34, the number of input errors might be reduced by detecting the
errors as they occur and notifying the operator so that he can correct them.
One way to design a display to inform an operator of an error is to use the
lower part of the display for error messages.

You might reserve a fixed number of message positions on the next-to-last line
of the display. The bottom line of the display is usually reserved for system
error messages rather than your messages. The message field can be
conditioned by an indicator so that the proper message is an output field when
an error occurs. Indicators can be used to condition the attributes of the
message and the field(s) in error, and indicators can also be used to position
the cursor.

The following display shows the use of some of these guidelines:

r)
ORDER ENTRY
ORDER NO- 26 CUSTOMER- 47600 GERSHWIN AND SWEET
ITEM QTY]TY qTY
NUMBER ORDER SHIP B/0
L —— 2500 1 1
ITEM NOT ON FILE; REKEY OR REMOVE ITEM NUMBER
— >
Design Considerations 3-9

PROVIDE A MEANS FOR HELP

Operators should know what actions to take when problems occur. Problem
recovery steps should be included in the written operating procedures. In
addition to the written steps, further information about the error should be
available for the operator to display. This information might be requested via a
command key or function key.

MAKE THE OPERATOR FEEL PRODUCTIVE

Because the operator is using the display station as a means to do a job, the
display station should be easy to use and allow the operator to do a better job.
Application programming and display design should not bore, scare, or annoy
the operator. Try to use only as many features of the display station as are
necessary. A display that has too many blinking fields or too much underlined
data and highlighted information might only confuse and frustrate the
operators.

Whenever possible try to give the well-trained operator the chance to take
shortcuts from one display to another.

DOCUMENT THE DISPLAYS

Printed copies of your displays can be made by using the Print key. These
copies can be labeled and stored with the $SFGR utility output for the displays.
If possible, use a printer that can print lowercase letters. The 5256 and 5225
printers can print lowercase letters. The 5211 and 3262 printers can print
lowercase letters only if they are equipped with a 96-character print belt. If
lowercase characters cannot be printed, they can be changed to uppercase
characters by using translation tables. Refer to the IMAGE OCL statement
description in the SSP Reference Manual for details.

Make the Screen Look Like the Source Document

If the operators are entering data onto a screen from a particular document, try
to design the screen display to look like the document. This technique is
especially helpful if the operator’'s work includes a lot of data entry. The
following display illustrates this principle.

Audio/Eyesight
1816 West Tuckey
Phoenix, Arizona 85015

Daily Report of Items Bought

Store Number. 346

Item Description Quantity Bought Unit Price Discount Net Cost
7653 Air Wrench 2 Doz 38.95 10% 70.11
3489 Widget 1 Doz 4.00 5% ~3.80
4300 Balsam Wedges 150 Doz 12.00 10% 1620.00

/\/\/

r—

SCREEN: AE232
Store 346
ITEM Description Quantity Unit Price Discnt

Report of Items Bought

COMMAND KEYS
4 = Change previous data

= 7 = End of job
5 = Review data entered

<

Net Cost

Design Considerations

3-1

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

3-12

Use SDA as a Documentation Aid

VDO OVD U S 6~

When creating or updating screen formats you can use SDA to help document
your displays. The following example shows the documentation provided by
SDA for a newly created screen format.

SCREEN DESIGN AID DATE 07/07/84%

TIME

i5.56

| PP SO £ DN T4 I JRpie: {¢ JUPIAE SRR T JNPIE U 1 DU TP -1+ JAPE R A IR e : 10}

*%
ik ACME INC WEEKLY RILLING
*% ACCOUNT IDENTIFICATION 24-______ STATUS SCREEN

*%

%% CUSTOMER NAME o

*% STREET ADDRESS oo

%% CITY STATE __ ZIF CODE o
¥*%

®¥ INVOICE DATA SECTION

%%

*% INVOICE NUMEER INVOICE DATE INVOICE AMOUNT STATUS
*% A214302 07/06/814 $142.30

*% A411202 07/07/84 $156.78

*%

*¥%

%%

*%

%%

%%

*%

* %

%%

%%

#%CMD KEY 3 INVOICE STATUS CMD KEY 7 RETURN TO RILLING FROCESS

| AP IR 1+ SO TR Y U DO 1+ DU SR 1 IR TS 1 OIS SO 1 A CE T4 JOPON DO - 1i]

FORMAT. ... WEEKLYAR

SOURCE MEMRER NAME.... BILLING

LIBRARY . .suessaassasas DRFLIE

USE COLOR IF POSSIBLE

If you have a 5292 Color Display Station, you can specify field attributes that
define color for the fields on your display formats. The use of color on a
display format provides the following advantages.

The Display Format Is Easier to Read Using Color

Data presented in color is easier to read. An operator rarely needs to read all
the data on the display, only sections of it.

In addition, the operator can recognize various types of data better. This can
be important if differences in the following items must be recognized:

« Heading on the display and data within the display
« Detail items and totals

» Various categories of datd

NONSUV D W

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

Error Conditions Are Easier to Identify
It is important to draw the display station operator’s attention to an error
condition. Color can be very effective in doing this. Further, various categories
of errors can be identified by the use of color. For example, red can be used
to identify critical errors, yellow for less severe errors.
For more information about using color with display formats, refer to the
5292 Color Display Station Programmer's Guide to Using Color.

SPECIFYING COLOR FOR DISPLAY FORMATS

The 5292 Color Display Station uses the following field attributes to specify
colors:

« Blink
« Column separators
» High intensity

The following table lists the colors produced by using these field attributes
with the 5292 Color Display Station.

Color Field Attributes

Green None needed (default)

White High intensity

Turquoise Column separators

Yellow Column separators, high intensity

Red (nonblinking) Blink

Red (blinking) High intensity, blink
Pink Column separators, blink
Blue Column separators, high intensity, and blink

Design Considerations 3-12.1

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

3-12.2

When using color for formatting, decide which highlighting technique you will
use for the fields in a display format before writing the application. The
following chart suggests uses of color for the various parts of the display
format.

Fields Color Attributes Used
Input fields
Normal Turquoise with column Column separators
separators
Highlighted Turquoise with underscore Column separators, underscore
Yellow with column separators | Column separators, high intensity
Yellow with underscore Column separators, high intensity,
underscore
Output fields
Normal Green None (default)
Highlighted White High intensity
Headings White High intensity
White with blue underscore High intensity, underscore
Blue Column separators, blink, high
intensity
Errors (warnings) Red (blinking) Blink, high intensity
Red (nonblinking) Blink
Pink Column separators, blink
General highlighting | Pink Column separators, blink
Blue Column separators, blink, high
intensity

Using Color with Other Field Attributes

You can use color with other field attributes. For example, you may want to
define an input field that will appear turquoise and in reverse image. The
following chart shows the color/highlighting combinations that are available for
each color and the field attributes that must be specified to display them. The
column labeled Hex Value gives the hexadecimal value for each field attribute
combination. Certain programming languages, such as BASIC, use these
hexadecimal values for defining fields in color using the 5292 Color Display
Station.

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

Specify this hex value and these attributes:
Hex
Color Display Highlighting Value BL CsS HI Rl us
None 20
Reverse image 21 X
Green Underscore 24 X
Underscore, 25 X X
reverse image
None 22 X
White Reverse image 23 X X
Underscore 26 X X
None 28 X!
Reverse image 29 X' X
Blink 2A X X
Reverse image, 2B X X X
Red blink
Underscore 2C X! X
Underscore, 2D X! X X
reverse image
Underscore, blink 2E X X X
Column separators 30 X2
Reverse image, 31 X? X
column separators
Turquoise Underscore, 34 X? X
column separators
Underscore, reverse image, 35 X2 X X
column separators
None 38 X x3
Reverse image 39 X! X3 X
Pink Underscore 3C X! X3 X
Underscore, 3D X! x3 X X
reverse image
Column separators 32 X? X
Reverse image, 33 X2 X X
Yellow column separators
Underscore, 36 X2 X X
column separators
None 3A X! X3 X
Blue Reverse image 3B X! X3 X X
Underscore 3E X! x3 X X
Nondisplay 27 X X X
No color Nondisplay 2F X X X X
Nondisplay 37 X3 X X X
Nondisplay 3F X x3 X X X
1 Blink is suppressed.
2 Column separators are suppressed when reduced line spacing is used.
3 Column separators are suppressed.
Note: All other combinations of attributes are invalid. Underscore and column separators are always blue
and do not blink in blink field.

BL = Blink

CS = Column separators
HI = High intensity

Rl = Reverse image

US = Underscore

Design Considerations 3-12.3

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

The following are S and D specifications to define certain fields in color using
the 5292 Color Display Station. The following descriptions apply.

Second Edition GX21.9253- U/M050°
Use this coding sheet only to define display screen formats for WSU Printed in U.S.A.

system/34 Disp'ay Screen FOl’mat Specifications and $SFGR. This coding sheet could contain typographical errors. *No. of sheets per pad may vary slightly.

S] WU Oy
> 2
s 2 M E,{:;; Review Insert
Ol o4 3 Mode
Xl ° 3 Sequence Mode o
21 ElE ° sls 2lgly B Record Record
Sequence Format ERIER B s3] € |5 El s3] 2 2 Identifying | Identifying | Reserved Key Mask
Number | &] Name ol (5 |z § E] §§ Z| 3| & | S |Reserved g 2| Indicators Indicators o
21 25|81
4 5|2 BEEES s lele S S) REHEEH
£ AU EE R HEEEH R R RN E i
e Cfa|Ze oS O|g| @ | Wi O 3
' 23 45|67 8 9101112131415 16]17 1819 20]21122]23 24125 26]27|28]29 30| 31 32|33 34|35 36|37 38 39 40|a1]a2}a3]a4as |as|a7}as 49150 51[52 5354 55(56 5758 59]60 6162 6364 65 66 67 68 69 70 7172 73 74 75 76 77 78 79|80
IENEIE [IRERRRREEN HERRRERERRERRERRRRARNRRREARN

E Starting l

Location

Field 3 £l 8
5 [
Name H 1) N t:g s c
< £ 5 S 2
Sequence Field z 2 =g gl 15 o | 2 3 2| Reserved Constant Data K]
A ;§ Z|& gl laisl 2 3 g g =
Number Length _é = g NHAEEEREREE 8 &: 3 g E @ |& - 3
«|2]g|2(2 H - E
< Blz|g|sls|elsl ¢ (92|l = | £ & a | £le € =
wo |2 20 5 51ElR810E| B (2t B2 2l B8k 5
Field Name |5 > R EEHHE R E B L 123 K
22 12| 33E8E3R| € &[Sk & || d|2] |3 ' 2 3 45678 91011121314151617 18 19 20 2122 2
12 3 4 5{6[7 8 91011 12]1314f15 16 17 18[19 20|21 22|23 2425|26{27|28|20[3031[32 3%34[35!36]37 38|39 40|41 4243 as]as a6la7 48| agks0 51 52 53 54 55|56{57 58 59 60 61 62 6364 65 6 67 68 6970 7172 73 74 7576 77 7879 80)

0.
7.

I

[
22
g

Rt
MRXIXE

N
N

[>]
-
=

¥ O

D
=3
=<
(o)

ololojojol|glcjolo|lojojolo|o |00 |0 (C|O]|O [oFormType

Reference |Field Name Description

(1] ITEMNO Yellow with column
sepa rators

e ONHAND Turquoise reverse
image with column
separators

o PRICE White

3-12.4

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

Column Separators and Underlining with Color

When column separators are specified for a field on the display format, they
appear as blue dots below the specified field, as follows:

.F.LE.L.D.

Yellow, turquoise, pink, and blue are the only colors you can specify for a field,
if you want to use column separators. With pink or blue fields, the column
separator dots do not appear on the display.

When underscoring is specified for a field on the display format, a continuous
blue line appears beneath the characters of the field. Characters entered in a
field that is underscored appear green unless other field attributes are
specified.

When column separators and underscoring are specified together for a field,
the column separators appear in reverse image. The data in the field appears
turquoise. If high intensity is specified in addition to underscoring and column
separators, the data in the field appears yellow.

For more information about using color with display formats, refer to the 5292
Color Display Station Programmer’s Guide to Using Color.

Design Considerations 3-12.5

Page of SC21-7742-3
Issued 27 August 1982
By TNL: SN21-9074

This page is intentionally left blank.

3-12.6

Menu Design

A menu is a displayed list of functions from which an operator can select an
item. Using a menu, an operator enters a number that specifies what he wants
to do. You might have the operators use menus so that they can start their
jobs by selecting an item number rather than entering a command statement or
OCL statements. Well-designed menus can shorten the time an operator takes
to do his work and can reduce his chances for error. Your menu design might
ensure that the operator does his jobs at the proper time in the proper order.

As described under Menus in Chapter 2, System/34 provides two menu
formats: fixed and free-form. Fixed-format menus have two columns of
pre-numbered items, and you can specify descriptions for as many of the
numbered items as you want. On free-format menus, most of the lines (3
through 20) are available for you to format as you want.

For either menu, you might consider placing the most frequently selected items
near the top of the display so that the operator spends less time scanning for
them.

Menu items should not be abbreviated unless you are sure that the
abbreviations would not confuse the operators. Also, menu items should be
meaningful. For example, Order Release is a more meaningful item than,
ORDREL, the name of the program that releases orders.

Menu chaining, a good technique to use for applications on System/34, helps
organize an operator’'s work by guiding him to the displays from which he does
his jobs. This technique uses a main menu that categorizes the jobs that can
be done. For example, the following menu is a main menu for an order entry
and invoicing application. Notice that each item except Monthly Close causes a
lower-ievel menu to appear.

r’

COMMAND

ORDER ENTRY AND INVOICING
-=-MAIN MENU--

1 ORDER PROCESSING MENU
2 INRUIRY MENU
3 REFORTS MENU
4 MONTHLY CLOSE
5 FILE MAINTENANCE MENU

ENTER NUMSER, COMMAND, COR OCL

- <-READY

Design Considerations

The following figure shows some of these lower-level menus and the

commands used to chain the menus.

COMMAND

JIR'
3 REPORTS MENU
4 MOMTHLY CLOSE

COMMAND

MENU: AMBM10 ‘
ORDER ENTRY AND INVOICING
-~-ORDER PROCESSING--

. MENU: AMBMOO
ODRDER ENTRY AND INVOICING
=<MAIN MENU-~

ORDER PROCESSING MENU

5 FILE MAINTENANCE MENU

COMMAND

1 MENU AMB10

2 MENU AMB20

3 MENU AMB30

4 MENU AMB40

. <-READY

5 MENU AMB50

J

1 ORDER ENTRY

2 ORBER ENTRY-IMMEDIATE RELEASE
3 ORDER MAINTENANCE

4 ORDER RELEASE

5 DISKETTE ORDER ENTRY

6 BATCH UPDATE

7 PICK LISTS

8 ACKNOWLEDGEMENTS

9 INVOICES

10 BILLS OF LADING

11 RETURN TO OE & I MAIN MENU

COMMAMD

MENU: AMBM2O
ORDER ENTRY AND INVOICING
-=INSQUIRY~-~

1 CUSTGMER STATUS

2 CUSTOMER CROERS

3 OPEN ORDER

4 ITEM

5 BATCH STATUS

6 RETURN TO OE & I MAIN MENU

r

COMMAND

MENU: AMBM30
ENTRY AND INVOICING
--REPORTS-~

ORDER

1 OPEN ORDER BY DATES

2 OPEN ORDERS BY ITEM

3 OPEN CRDERS BY CUSTOMER
% BLANKET ORDER STATUS

5 TAXING BODY DETAIL

6 TAXING BODY SUMHMARY

7 COMMISSIONS WCRKSHEET
8 GENERAL LEDGER WORKSHEET
9 ITEM PRICE LIST

10 FILE LIST REPORTS MENU
11 PICKING SHORTAGE REFORT
12 OE & I MAIN MENU

-

COMMAND

MENU: AMBM50
ORDER ENTRY AND INVOICING
~-FILE MAINTENANCE--

CUSTOMER MASTER-MAINTENANCE 13
CUSTOMER MASTER-REORGANIZE 14
ITEM MASTER-MAINTENANCE 15

OPEN ORDER SUMMARY-REORGANIZE
OPEN ORDER MATERIAL-REORGANIZE
VALIDATE-CUSTOMER ORDER CHAINS
VALIDATE-OPEN ORDER CHAINS
VALIDATE-ITEM WHERE-USED CHAINS
FILE LIST REPORTS MENU

RETURN TO OEXI MAIN MENU

ITEM MASTER-REORGANIZE 16
SHIP-TO MASTER-MAINTENANCE 17
SHIP-TO MASTER-REORGANIZE 18
CONTRACT MASTER-MAINTENANCE 19
CCNTRACT MASTER-REORGANIZE
QUANTITY PRICE-MAINTENANCE
QUANTITY PRICE-REORGANIZE

TAXING BODY MASTER-MAINTENANCE
TAXING BODY MASTER-RECRGANIZE

V® NG DU

b
YRS

<-READY

Order Processing Menu includes entering, maintaining,
releasing, and updating of customer orders and offers
printing of pick lists, acknowledgments, invoices and bills
of lading.

Inquiry Menu includes displaying of the contents of main
master files.

Reports Menu includes printing of all report listings avail-
able in Order Entry and Invoicing except those included
under Order Processing and offers a display of the File List.
Menu, which lists contents of main master files.

File Maintenance Menu includes executing of file mainte-
nance, file reorganization and chain validation of main
master files and offers a display of the File List Menu,
which lists contents of main master files.

When an operator selects item 1 from the main menu, the MENU command is
executed and the Order Processing Menu appears. When the operator selects
an item from that menu, he sees either another lower-level menu if there are
additional order entry categories to select or a display on which he can begin
order entry.

When you chain menus, you might allow ways for operators to redisplay the
main menu. Also, you might allow ways for experienced operators to bypass
the menu chains and directly begin their jobs.

The // MENU OCL statement or the MENU control command are useful when
you are constructing a menu chain. For more information about constructing
menus, refer to the Screen Design Aid Reference Manual or to the BLDMENU
procedure in the System Support Reference Manual.

Design Considerations

3-15

Forms Design

Computer input and output forms should not be overlooked during system
design because they are important interfaces between the system and the
users of your system. These forms are possibly the only contact that some of
the business’ customers and employees have with the system; therefore, their
design can influence impressions of the system and the business.

DESIGN CONSIDERATIONS FOR OUTPUT FORMS

System /34 supports the 5211 Printer, the 3262 Printer, the 5224 Printer, and
the 5225 Printer which are line printers, and a 5256 Printer, which is a
character printer. Each printer has unique forms design considerations.

On the 5256 Printer, printing is done one character at a time by a print head
that must move to the appropriate position on the line. This head movement
takes time. Therefore, you might consider designing your forms to reduce the
amount of head movement required. For example, try not to center one or two
fields on a line if the fields need not be centered. Left-adjusting them on the
line might shorten the printing time. Placing fields in a horizontal line rather
than spacing them vertically and minimizing the horizontal space between fields
might also shorten the printing time. Planning horizontal lines so that
fixed-length fields print first and variable-length fields print last allows the
print head to advance to the next line as soon as the last character prints on
the line. For example, an item description field might be a good
variable-length field to print last on a line. Finally, using a large form and
printing a small amount of information on it might be inefficient because many
new line returns might be required to print the data. Therefore, keeping the
forms as short as possible might improve printing speed.

Figures 3-1 and 3-2 illustrate an initial design and an improved design for an
output form used by a 5256 Printer.

- e 1
SOLD TO: SHIP TO:
A B c (name) (name)
C o ° (address) {address)
(city) (city)
(state) (state)
-] . —J Putting all these
{ !] fields on one
VIA: | TERMS: | CUST. NO. l line would
SALESMAN ; shorten the form
| T I T ‘ ! and increase
ITEM I QTY. ORD. l‘ QTY. SHP. ll QTY. 80. : DESC. i LIST II AMT. printing speed.
I ! I T]
: | * | l |
' [| | |
| | { | | {
l |] Quantity back ordered is : l
l | || not always printed, so it || |
‘ | || would be better to put it || |
! | |I in the rightmost column. |l |
l | I | I |
l | | l I
| | | |
| !
| | | | |
| [| ! [
| | | | | |
| ! | | |
' | I ! |
| l ! | i |
GROSS
TAX Four lines are used for totals, causing
extra spacing. The totals on these four
DISC. lines could be printed on one line.
NET

Figure 3-1. Initial Forms Design for a 5256 Printer

Design Considerations 3-17

f—]
rTSOLD TO: SHIP TO:
(name) (name) A B C
{address) (address) c ,
O.
(city) (city)
‘._ (state) _J L (state) __|
| I i |
CUST. NO: | VIA: | TERMS: | SLSMAN: |
T T T
ITEM : DESCRIPTION } LIST : QTY. SHP. : AMT. ; QTY. ORDER { QTY. B/O
I I 1] I [
I I } I | |
[I O] [|
l I 1 | ' |
| ' I | I I
| | | | | I
I ' l | | I
| | ' [' I
I | |
| | |
I | | | |
l I | | |
l I [| | I
I : I l I :
I
| l I | | |
| I l | | I
| ; | | l [[
GROSS TAX DISCOUNT NET

Figure 3-2. Improved Forms Design for a 5256 Printer

On the 5211 Printer or the 3262 Printer, one line is printed at a time by a
character belt rather than by a print head moving from character to character
across a page. Good design techniques for a line printer should therefore
attempt to reduce the number of lines printed on each form. Increasing the
number of characters printed per line might shorten the time required to print
the form. An example of this would be to combine two lines into one print
line. Consider using as wide a form as possible and as short a form as
possible. Finally, try to space lines so that line skipping rather than line spacing
can be used because line skipping is usually faster than line spacing.

For preprinted forms such as picking slips or invoices, consider shading
alternative lines; this technique can make a long list of items more readable.
Design and order your preprinted forms well in advance of when you plan to
use them. Request a proof of the form so that you can verify its accuracy
before it is printed.

Refer to the SSP Reference Manual for information about the number of printed
lines allowed per page.

Refer to the following manuals for information about the physical dimensions
of printer forms:

o 3262 Printer Component Description and Operator's Guide
o 5211 Printer Component Description and Operator's Guide
« 5224 Printer Models 1 and 2 Operator's Guide

« 5225 Printer Operator’'s Guide

« 5256 Printer Operator’'s Guide

DESIGN CONSIDERATIONS FOR INPUT FORMS

Well-designed input forms might help shorten data entry time, reduce the
number of data entry errors, and improve operator satisfaction with the system.
Forms that will be used for data entry at a display station should match the
input displays that operators use. For example, the input fields should be in
the same order and have the same headings on the form and on the display.
Usually, the form should be designed first and then the display could be
designed to match the form.

To shorten the time required to fill out your forms, you might design them so
that the data can be recorded in the order that it is usually received. You might
consider placing mandatory entries first, followed by the optional entries, which
might minimize skipping over fields. If you use special codes, consider listing
them on the input form so that the operator does not have to look for their
meanings.

Design Considerations

3-20

File Design

One of the most important design activities is file.design. This activity can
significantly influence system performance, data security, data maintenance,
data accessibility, and data recovery in case of a system failure. This section
describes. some considerations for attaining a good file design, particularly in
the following areas:

« File organization

« Record design

« Record blocking

+ Physical 1/0 and logical 1/0

+ Access algorithms for direct files

FILE ORGANIZATION K

File organization can affect system throughput and display station response
time in an interactive environment. Because much of the file processing is
random, the choice of file organization is usually between indexed and direct.
Indexed organization offers a wide variety of processing methods; however,
direct file organization provides the following advantages that can contribute to
an efficient system design: :

« Fewer accesses to the disk can improve response times.

« File recovery in the event of a system failure is easier for direct files than for
indexed files.

« Sharing files between programs is simplified when direct files are used.

These advantages can be critical to the performance of the system, especially
for files that are frequently accessed. However, sequential and indexed files
can be used in an interactive environment. Sequential organization is useful for
files that are not processed randomly, such as some logging files. Indexed
organization might be satisfactory for master files if the file is not too active
and if short response times are not necessary.

The following information provides considerations for choosing the organization
of your files. These considerations are not rules that you must follow, but
guidelines that might help you organize each of your files so that you attain the
best system performance possible.

Master File Organization

A master file is relatively permanent and is often used in several jobs with
several other files. When you choose an organization for a master file, consider
these processing requirements for it:

« What are the organizations of the other files that are processed against the
master file? If the other files are ordered, which means that they are sorted
in the same sequence as the master file, the master file could be processed
consecutively and, therefore, a sequential or indexed organization for the
master file would be most efficient.

If the other files that you process against the master file are unordered, the
master file needs to be indexed and processed randomiy by key, or the
master file needs to be direct. Processing an indexed file randomly requires
a disk access to read the key and another disk access to read the record.
Processing a direct file randomly requires one disk access per record unless
the record has synonyms and is usually faster than processing an indexed
file.

« How do other jobs process the file? If the master file is used in several jobs
and its records are processed both in order and randomly, either an indexed
or direct organization should be a better organization than a sequential
organization.

« Does the master file require sorting? If so, consider that indexed and direct
files can be sorted, but the sorted file is a sequential file. Rather than
keeping the sorted file as the master file, you would need to keep the
original unsorted file.

« Can operators inquire into the master file? If so, consider how necessary a
short response time is. To ensure the shortest possible response times, the
file should be direct because a record can possibly be read with one disk
access. Satisfactory response times also might be attained from an indexed
file processed randomly by key because a record can be read with two disk
accesses, one for the key and one for the data. If the direct file has
numerous synonyms, multiple disk accesses can be required for each record,
and this organization might not provide shorter response times than an
indexed organization.

Design Considerations

3-21

3-22

Transaction File Organization

Transaction files are less permanent than master files and typically are used to
update master files. Transaction files are frequently logged in history files to
keep records of business activities. An example of a transaction file is a cash
receipts file for an accounts receivable application. An example of a more
permanent transaction file is an open-item accounts receivable file. These
transactions are usually maintained to show detail on reports such as
statements sent to customers and aged trial balances.

Typically, transaction files entered from display stations in an interactive
environment are direct files. The reason for using direct files is that the
operator can usually expect a short response time when doing the following
functions: paging through a file, adding records, deleting records, and
reviewing all or part of the file. '

The transaction file created by a WSU program, for example, is a direct file
that has records separated logically by display station. Several display stations
can enter transactions concurrently, and these transactions become mixed in
the file. The transactions from a display station are chained by control
information so that operators can access the records entered from his display
station. This logical separation of records requires control records and control
information in each transaction record. Subroutine SUBR22 allows an RPG Il
program to read records from a WSU transaction file.

Relative Record
Number Contents

1 Next available relative record number
Last relative record number

2 , W4 transaction 1
3 . v W1 transaction 1
4 W7 transaction 1
5 W1 transaction 2
6 W1 transaction 3
7 W4 transaction 2
8 W1 transaction 4
9 W7 transaction 2
10 W2 transaction 1
11 W1 transaction 5

A direct transaction file might also be organized so that each display station
has its own work area. For example:

Relative Record
Number

10
11
12

110
111

Contents

Next available relative record number
First relative record number
Last relative record number

Next available relative record number
First relative record number
Last relative record number

W1 transaction 1
W1 transaction 2
W1 transaction 3

W2 transaction 1
W2 transaction 2

W1 control record

W2 control record

Notice that a control record is required for the records entered from each

display station. This direct file organization reduces the possibility of

contention for the same sector of data, a condition described under File
Concepts in Chapter 2; however, the number of records that can be entered
from a display station is limited, and gaps can exist between the end of one

‘section and the beginning of the next section.

Design Considerations

3-23

3-24

Volatility of Files

The frequency of additions to and deletions from a file are important factors to
consider when you choose a file organization. This disk activity is called
volatility.

Highly volatile files might be direct files because a record can usually be added
or deleted with fewer disk accesses than for other organizations, and fewer
disk accesses should help shorten response times.

For example, adding records to indexed files requires (1) scanning the index,
including added index entries, to ensure the record does not already exist; (2)
reading the data area where the new record will reside; (3) writing the record;
(4) writing the new index entry.

Adding records to a direct file might require (1) reading a control record to find
the next available location, (2) writing the data, and (3) updating the control
record. Updating the control record after each record addition makes
programming for recovery easier but requires additional disk access.

The direct file might require disk space to allow for synonym records, and
multiple disk accesses could be required for those records. Processing the
direct file should be faster than processing a sequential file as an indexed file;
however, in some cases an indexed file might be processed faster than a direct
file that has many synonym records.

Refer to Access Algorithms for Direct Files later in this section for further
information about synonym records.

Activity of the Files

Activity, which refers to the frequency that accesses are made to the file, is
not as important a factor as how a file is used or how volatile the file is;
however, activity should be considered when you choose a file organization.

Activity is usually referred to as a percent of the number of transactions to the
number of records in the file. For example, if a file has 600 records and 1200
transactions are processed randomly per day, the activity is 200 percent.

As activity increases, consecutive processing becomes advantageous because
of the chance that the record to process is available in a buffer and the record
can be accessed without physical 1/0 activity. Therefore, very active files
could be sequential and processed consecutively or could be indexed and
processed sequentially by key. When an indexed file is processed sequentially
by key, records added since the last key sort cannot be accessed, unless the
IFILE attribute is specified.

A relatively inactive file might best be direct or indexed and processed
randomly by key.

The total activity of a master file might be reduced by sorting a transaction file
so that only one retrieval of a master record is needed for a group of
transactions that have the same key.

RECORD DESIGN

After deciding which organization to use for a file, you can design its records
and determine the file's size.

The applications determine what data is needed in the records. Study the
applications then decide on the layout of the record. Layout means the
arrangement of fields in a record. When you design a record, you should
consider processing requirements of the record then determine each field's
length, location, and name.

To illustrate these design considerations, a name and address file is described
in the following text. Each record in the file contains the following data:

Field Size (number of positions)
Customer number 6

Name 20

Street address 20

City and state 20

Record code

Delete code 1

Other fields 47

116 Positions

Design Considerations 3-25

3-26

Determining Field Size

Field size depends on the data in the field. The length of the data can vary, or
all data in a field can be the same length. In the example, Name is 20
positions. The length of each customer’'s name varies, but 20 positions should
be sufficient for most names without abbreviating them. Customer Number,
however, is six positions, and all six positions are used in each record.

Numeric Fields

If the field is numeric, you should determine whether the field is to be in a
packed or zoned decimal format. Packed format can reduce the amount of
storage required.

Be sure to allow for the maximum length for dollar-amount fields, or a
high-order position could be lost for exception conditions.

The maximum length of a packed field in RPG Ii is 15 digits (8 bytes). The
following table shows the number of bytes needed for a specified number of
characters in a packed field as compared to the number of bytes needed for
that number of characters in a zoned decimal field.

Number of Bytes Required

Number of

Characters Zoned Decimal |Packed
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
10 10 10
1" 1 1"
12 12 12
13 13 13
14 14 14
15 15 15

The maximum number of numeric digits allowed for a numeric field is shown in
the following diagram.

Programming Numeric Digits

Language Allowed Notes

BASIC 14 Long precision

BASIC 6 Short precision

COBOL 18

FORTRAN 17 Real*8 variable

FORTRAN 1No limit Decimal variable-no
limits

RPG li 15 Packed or unpacked
field

Key Length

The maximum alphameric key length is 29 positions. The maximum numeric
key length is 15 bytes or 8 bytes if the key is packed. All relative record
numbers in an addrout file are three positions long.

Alphameric Fields

No strict rules exist for determining alphameric field size. The major problem
involves fields with variable length data. For example, if the name field is
planned as 15 positions and a new customer name has 19 characters, a
problem arises when this record is added to the file. To avoid this problem, try
to estimate the maximum length of the data that will be contained in a field.
Use this length to determine field size. The maximum length of fields for
various languages is shown in the following table:

Language

RPG
BASIC
COBOL

Field Size

255 positions
255 positions
32767 bytes

Design Considerations

3-27

3-28

Providing for a Delete Code

Your program can place a delete code in a record. Then, when the file is
processed, your program can check for this code. For example, if a customer
record becomes inactive, you may not want to process the record. Thus, a
one-position field is included to provide for a delete code.

Records with a delete code are not physically removed from a file. To remove
those records, you can use the ORGANIZE SSP procedure.

Providing Extra Space

Because record length is not yet established when the record is designed, you
can allow for additions to the record. Although it may be difficult to plan what
data might be added, you should reserve some extra space. For example, you
might consider making the record length ten percent longer than initially
required in order to allow for future additions.

Naming Fields

An important consideration when choosing field names is that each name
should be meaningful. Meaningful field names contribute to better
documentation and help prevent misinterpretation or confusion during program
writing. The language you use to write your program places restrictions on the
length you can specify for your field names. The following table lists the
maximum length your field names can be by programming language:

Programming Maximum Field Length
Language {(characters)

RPG 6

COBOL 30

BASIC 8

FORTRAN 6

Documenting Record Layout

When record layouts are documented, your programs are easier to write. The
following samples show the layout of a customer master record. Record layout
includes the order of the fields in the record, the length of each field, and the

name of each field. Notice that the field names follow the field-naming

guidelines. The following diagrams show different ways of documenting your
record layout. Included in this section is a sample form you can use for such

documenting.

CRECCD CDELETE CSTATE CSLSNO BLANKS
[/ \ \
/ / CUSNO CNAME CADDR CCITY CZIPCD \
1 23 45 9 10 34 35 59 60 81 82 83 84 88 89 90 9N 128

File name: CMAST

File organization: Indexed

Key: Customer number

Record length: 128

Decimal Data Location

Field Description Length Position Format From To Field Name

Record code—MA 2 A 1 2 CRECCD

Delete code-D (blank if 1 A 3 3 CDELETE

not active) ,

Customer number 6 0 N 4 9 CUSNO

Customer name 25 A 10 34 CNAME

Customer address 25 A 35 59 CADDR

City 22 A 60 81 CCITY

State 2 A 82 83 CSTATE

Zip code 5 0 N 84 88 CZIPCD

Salesman number 2 0 N 89 90 CSLSNO

Blanks 38 A 91 128

Record Length
Although field lengths within a record may vary, the field lengths for the same
fields in each record in a file should be the same, and all records in a particular
file must be the same length. Record length is the sum of the field lengths
including reserved space. The maximum record length for a disk file is 4096
positions.
In the name and address file example in this section, the sum of the fields was
set at 90 positions. However, record length was set at 128 to reserve 38
positions for data that might be needed at a later time.
Design Considerations 3-29

, INPUT/OUTPUT Record Degggiption File No.
Record Name _Customer Record System _ Page of
File Name CMAST Disk Date
File Organization Indexed - Sequence Customer Number — Prepared by.
Record Length 128 Key Customer Number Key Length 6 _
Created by Used by. ORDHDR . Updated by
Values » Field Description_ Field ’Né:nﬂle » ‘ Le:n:gth E;zimal Format Frol_r:catio;o
MA Record Code CRECCD |- - 2 A 1 2
D, blanks Delete Code CDELETE |- 1 K A 3 3
000001-999999 [Customer Number CUSNO -6 10 N 4 9
Customer Name CNAME: - | 25- | A 10 34
Customer Address CADDR 25 A 35 59
City ~ CCITY 22 A | 60] 81
State _|CSTATE 2 A 82 83
Zip Code |CZIPCD 5 0 N 84 | 88
01-99 Salesman Number 1 CSLSNO 2 0 N 89 90
Blanks s 38 ~ A 91 | 128

3-30

INPUT/OQUTPUT Record Description File No.

Record Name System Page of
File Name O Disk [Diskette Date
File Organization Sequence Prepared by
Record Length Key Key Length
Created by Used by Updated by
" Locati
Values Field Description Field Name | Length Decimal Format ocation
Pos. From To
Design Considerations 3-31

3-32

'RECORD BLOCKING

A block is the number of characters transferred as a unit of information
between a disk file and the processing unit. Although only one record at a
time is available for processing by your program, one or several records may
be transferred in a block at one time.

The block length is used to specify the amount of main storage used for an
1/0 buffer in the user program. Block length does not affect the way that
records reside on disk, and the block length in a program does not have to
match the block length specified when loading the file.

Block length is a multiple of record length. For example, if the record length is
64, the block length could be 256. Four records would be transferred at one
time.

For efficient blocking, you should choose a record length that is either a
multiple or submultiple of 256. For example, 512 would be a multiple of 256,
and 64 would be a submultiple of 256 because it divides into 256 a whole
number of times.

This choice is best because data is always transferred in sector increments,
which are 256-byte increments, and you eliminate the chance of having records
reside in more than one sector. For example, if the record length is 64 and the
block length is 128, 2 blocks, which is one sector, would transfer with each
physical |/0O operation.

You can specify 100-character records as shown in the following example:

Sector A Sector B
100 . 100 56 144 100 100 12
N —— —

Record 1 Record 2 Record 3

To process record 3, therefore, 2 sectors must be in main storage: sector A
and sector B. The first 56 characters of record 3 reside in sector A; the
remaining 44 reside in sector B. Thus, to process 100-character records with a
block length of one hundred, 512 characters (2 sectors) must be available in
main storage.

As another example, suppose you specified 100-character records with a block
length of 400. Four 100-character records might span 3 sectors. To process
your records in this case, 768 characters (3 sectors) might be required in main
storage.

Sector B Sector C Sector D
{ 100 12| 88 100 68 l32 100 g
fp— —

Record 6 Record 7 Record 8 Record 9

—

Block Length of 400

Blocking can be an advantage if you are likely to process multiple records in
the block; by specifying a large block, you can reduce the physical 1/0 that
occurs for a logical |/0 operation.

For example, assume you read a file consecutively when the records are
blocked 100 per block. The first get operation, a logical 1/0 operation, results
in one relatively long read operation, a physical 1/0 operation, of 100 records.
However, the next 99 get operations read from the buffer in main storage that
holds the block of records and require no physical 1/0.

For files processed randomly, you should not specify a large block length
unless you are sure that more than one record will be processed in a block
before another biock is transferred.

For shared indexed or direct files that are processed randomly you should not
block records because the entire block would be transferred for each input or
output operation.

Finally, you might choose not to block records if you are trying to keep a
program from getting too large.

Design Considerations

3-33

PHYSICAL 1/0 AND LOGICAL 1/0O

Physical 1/0 operations are those operations that cause disk read and write
operations to occur. These operations take time because disk arm positioning
and moving is usually required. Therefore, during system design you normally
plan to minimize physical 1/0 operations in order to improve response times
and system performance.

Logical 1/0 operations are get and put operations that access records. The
number of physical 1/0 operations that result from logical 1/O operations is
affected by the following factors:

« Record blocking

» Access method

« Storage index

o Sequential processing

« File sharing

« - Buffer sharing

Blocking Records to Minimize Physical 1/0

By specifying a relatively large 1/0 buffer for a program, you can often
minimize the physical 1/0 activity for a set of logical 1/0 operations. A large
1/0 buffer reduces physical 1/0 activity for files that are not shared and for
shared files that are processed consecutively or sequentially by key for input
only.

For example, assume you specify a block of 100 records and use the
consecutive input access method. The first get operation causes a disk read
operation to occur that reads 100 records into the buffer. The next 99 get
operations read from the buffer and require no physica! |/0O operations.

Refer to Record Blocking in this section for further explanation.

Access Method

Another factor that affects the amount of physical 1/0 activity is the access
method that you use. When a file is accessed with an indexed access method,
each logical 1/0 operation results in a logical 1/0 operation that processes the
index entry and a logical /0 operation that processes the data record. The
amount of physical 1/0 activity that occurs depends on whether the contents
of the index buffer can be used for index entry processing and whether the
contents of the data buffer can be used for data record processing.

For example, assume that the logical |/O operation is an indexed sequential

get and the index buffer already contains the next index entry. In this situation,
physical 1/0 is not required to process the index entry, which can be read from -
the buffer by the logical operation. After the index entry is processed, the data
buffer is searched to find the associated data record. If the record is in the
buffer, the record can be read by a logical operation, and physical 1/0 does

not occur. v

In the previous example, either one or two disk read operations would have
been required if either the index or the record had not been in the buffers.

Storage Index

For COBOL, RPG li, WSU, BASIC, and Basic Assembler programs you can
request that the system create a storage index, which is an in-storage index to
the actual file index on disk. (The storage index is called a master track index
in some System/34 publications, and a key work area in BASIC.}) A storage
index can significantly reduce the amount of physical 1/0 activity required to

~ process an indexed file because the storage index enables the system to go
more directly to-a record you want.

When a storage index is not used, the system sequentially searches the file
index until it finds the entry for a requested record. This search often requires
several |/0 operations.- When you request a storage index, the system divides
the file index into segments and then creates a storage index, which points to
each of the segments. The storage index eliminates needless searching by
directing the system to the index segment containing the entry for the
requested record: o : g

If the space allocated for the storage index is large enough, the system divides
the file index into segments one track long. If enough storage index space is
not allocated for this optimal segmentation, the system divides the file index
into larger segments. Each storage index entry contains (1) the lowest key field
from the next segment in the file index and (2} a sector address that points to
a segment of the file index.

The sector addresses in the storage index are relative sector addresses which
represent a displacement sector address from the start of the file.

Note: The storage index is supported by the SETLL instruction for RPG |l and
the START instruction for COBOL.

Design Considerations = 3-35

The following chart shows the storage index for a file index that occupies four
tracks on disk. If a program requests the record with key 1541, the system
searches the storage index and determines that the requested record is on
track B. The system then scans the index entries on track B until the entry for
record 1541 is found. The sysfem can then chain directly to the data record.

Storage Index for File INDEXT

f— 48 bytes ~
le—13 bytes —|
|
| Record Ke | Record K I
000 | ' eaz . 1S5S T onon) | SSS | FFFFF...F
| |
] 1 1
N——
Distance in Sectors from Distance in Sectors from
start of File to Start of start of File to start of
Track C Track D

File Index for File INDEXT

| | |
Record Key | Record Key | { Record Key |
TRACKA / } P 345 | 346 |
| L 1
\t \t
. | I | | |
TRACKB Record Key Record Key | Record Key I Record Key = Record Key |
347 g | 349 | 1541 1542 |
|] \! |]

|
TRACK C Record Key Record Key = Record Key ! Record Key | Record Key =
1543 [1544 = 1545 Jl 2798 = 2799 {
\L 00
I I I
TRACK D Record Key Record Key | Record Key | Record Key |
2800 2801 | 2802 Jl 3173 {
aly

3-36

To calculate the amount of space required for the optimal storage index, you
should first calculate the number of tracks used by the file index. The number
of tracks used by the file index is related to the capacity of your disk. You will
use different numbers to calculate the file index if you have more than 27.1
megabyte disk capacity. To determine the number of tracks used by the file
index and the amount of space required for the storage index:

1. Use the STATUS command to determine disk capacity.
Is the disk capacity greater than 27.1 megabytes?

a. If yes, the file index will have 64 sectors per track.
b. If no (that is, if the disk capacity is less than or equal to 27.1
megabytes), the file index will have 60 sectors per track.

2. Use the CATALOG procedure to determine the number of records in the
file.

3. Add three (3) to the key length to determine the length of an entry in the
file index. (Each entry in a file index is composed of the record key plus
the 3-byte address of the record in the file.)

4. Divide 256 by the entry length to determine the number of keys in each
sector. Drop the remainder.

5. Divide the number of records in the file by the number of keys in each
sector to determine the number of sectors in the index. Round off the
result.

6. Divide the number of sectors by either 60 or 64 to determine the number
of tracks in the index. Round off to the nearest whole number any
fractional result.

7. Multiply the number of tracks in the index by the length of an entry in
the file index to determine the optimal index size.

Design Considerations

3-37

The following two examples, using an indexed file containing 8000 records
with 9-byte keys, show the calculation of the index size. The examples show
the effects of different disk capacities on the optimal size of the storage index.

Disk capacity greater than 27.1 megabytes Disk capacity less than or equal to 27.1 megabytes
8000 records 8000 records

9 + 3 = 12 bytes for the file index entry 9 + 3 = 12 bytes for the file index entry

256/12 = 21 keys in each sector B 256/12 = 21 keys in each sector

8000/21 = 381 sectors in the index g 8000/21 = 381 sectors in the index

E 381/64 = 6 tracks in the index E 381/60 = 7 tracks in the index

12 * 6 = 72 bytes for the storage index 12 * 7 = 84 bytes for the storage index

If the application program cannot accommodate the amount of storage required
for the optimal sized storage index, you can specify a smaller size, but this
smaller size results in a correspondingly smaller improvement in performance.

Sequential Processing

If record processing is sequential relative to the physical order of records on
disk, a performance advantage can be gained. For example, assume 50
records per block and sequential processing is used. Physical |/O for data
might be required only once for each set of 50 logical requests.

File Sharing

File sharing affects the amount of physical |/0 activity for each logical 1/0
operation. For most access methods, each logical 1/0 operatlon causes at
least one physical 1/0 operation.

Exceptions to this guideline occur for consecutive input-only processing and
indexed sequential input-only processing, which do not always require physical
1/0 activity for each logical 1/O operation.

Shared 1/0

Shared 1/0 allows two or more files in one job to share the same buffers and
causes a large amount of physical |/O activity because buffers must be reread
for each logical |/0 operation.

3-38

ACCESS ALGORITHMS FOR DIRECT FILES

A key to designing and implementing a direct file is defining an access
algorithm that satisfies the processing requirements for the file while preserving
the advantages of direct files.

Determining an Access Algorithm

An access algorithm is whatever fixed (programmed) method is used to
determine the position to be occupied by each record. The algorithm can be
simple or complex. In any case, the algorithm must yield a positive, whole
number as a relative record number.

In the simplest case, relative record numbers are assigned sequentiaily. The
first record placed in the file has relative record number 1, the second record
has relative record number 2, and so on.

In another simple case, a control field in each record is used as its relative
record number. For example, loan number 3456 could be used without change
as relative record number 3456. Another example of a direct technique is using
direct files to store large arrays of data. If element 10 is desired, then the
tenth record in the file is read. A control field should be used directly as a
relative record only if there is not an excessive number of unused values within
the range of values for the control field. If there are too many unused values
and, therefore, unused record positions, an algorithm should be defined to
reduce the size of the file.

A formula can be used as an algorithm to determine the record number. For
example, if loan numbers start with 1001, then loan number 3456 could be
relative record number 2456 (3456 minus 1000). The formula can be as
complex as you need to make it. Refer to Examples later in this chapter for
more information and examples.

A control field that contains alphameric data could also be used. An algorithm
must convert the alphameric data to a relative record number. Refer to
Handling Synonym Records later in this chapter for an example of using a
customer name as the control field.

The choice of an access algorithm and, ultimately, the decision whether or not
to use a direct file is usually based on how well synonym records can be
handled. A synonym record is a record in a direct file whose control field yields
the same relative record number as another control field. If the handling of
synonyms requires a significant number of additional disk accesses, one of the
important advantages of the direct file is lost. Also, because the access
algorithm and the synonym code must reside in each program that uses a
direct file, a risk is involved: if the algorithm and synonym handling are
revised, you might need to rebuild files and modify all the programs that use
those files.

Design Considerations 3-39

3-40

Handling Synonym Records
Synonyms can be handled in many ways. Some of the common ways are:
« Place synonyms in a separate part of the file, following the home locations,

which are the locations used for home records. A home record is a record
that is stored in the location indicated by its relative record number.

| ‘Home Locations Synonyms J

» Place synonyms in the next available blank location, closest to the home

location.
Synonyms
Relative
Record Numbers 53 54 56 57 59 60
| 171]
Record Positions |53l54’ 55 56157I I59I60

« Place synonyms in an area, next to the home location, that is reserved for
synonyms.

[Home ! Synonyms |Home |Synonyms lHome ISynonyms '

In the first two methods, the record in the home location must contain a
pointer to the synonym record location. If two or more synonyms exist for a
home location, the first synonym contains a pointer to the second synonym,
and so on.

In the third method, synonyms are close to the home location. For example,
assume the control field for a file is the first five characters of the customer’s
name. The file contains space for 40000 records and allowance for three
synonyms for each home record. The customer’'s name is converted to a
decimal value as follows:

SMITH
NN
EI2 D|4 Clg E|3 C|8 (EBCDIC code)
F2 F4 F9 F3 F8 (zoned decimal)
N\ [2
24938 (decimal)

The decimal value is then divided by 9999:
24938 + 9999 = 2.4940

Ignoring the whole number of the quotient, you would calculate the home
location as follows:

(4940 x 4) + 1 = 19761

Because many Smiths may be in the file, the program may have to read
records 19761, 19762, 19763, and 19764 to find the correct Smith. If extra
synonyms are required, the third synonym could point to the next available
space in the file (possibly the next home location will not require all its
synonym locations). Another possibility, to reduce the number of synonyms,
would be to accept six or more characters from the customer name.

Design Considerations

3-41

Examples

The following examples illustrate direct file approaches.

Example 1

In this example, the major goals are to build a file in which {1) the records can
be accessed with an average of slightly more than one disk access, (2) the
amount of disk space used for the file does not contain excessive unused
space, and (3) the file can grow and easily accommodate new records.

Defining the Algorithm

In this example, an indexed item file is to be converted to a direct file for an
online order entry application. The key field is a five-digit item number; four
digits are assigned by the user, and the fifth digit is a check digit. The four
digits start with 1001, and the user merely assigns the next sequential number
to new items. Deleted item numbers are not reused until item number 9999
has been taken. Approximately 20 new items are added per month, and four
items are dropped. The highest current number is 4317, but the file contains
only 2812 items.

As a first approach, the algorithm could be stated this way: the direct file
position for each record shall be equal to the four-digit item number. Assume
that the new record will be a few bytes larger than the old record and that the
file will also accommodate 12 months of growth before reorganization. The
algorithm would require a file containing 4557 record positions. The mapping
of items to direct file positions would appear as follows:

Item Number File Position
st

. Unused
1000th
1007 ——— 10015t -
1002 ——— 1002nd
1003 ——— 1003rd

4317 ——— 4317th

12
Months
Growth

45567 ——— 4557th

This first approach, while yielding no synonyms, uses only two-thirds of the
record positions, and most of the unused space is at the beginning of the file.

3-42

Assume the algorithm is revised to state: the direct file position for each
record shall be equal to the four-digit item number minus 1000. The file
requires 3557 positions with the following mapping:

Item Number File Position
1001 1st
1002 2nd
1003 3rd
4317 3317th
4557 3557th

This approach, also yielding no synonyms, uses 85 percent of the record
positions; the unused portion is embedded randomly within the file where
items have been dropped. Although each record only requires one disk access,
the file size still is 15 percent larger than the data portion of the file when
organized as an indexed file. The algorithm can be further revised.

Now assume the algorithm states: the direct file position for each record shall
be found by subtracting 1000 from the four-digit item number, multiplying the
difference by 0.85, and half-adjusting the result. The file will occupy 3023
positions with the following mapping:

Item Number File Position
1001 1st
1002 2nd
1003 3rd
4317 2819th
4557 3023rd

This approach uses 99 percent of the record positions, and the file size is only
1 percent larger than the indexed data. It has, however, introduced the
possibility of synonym records; item number 1004, if it exists, will also be
assigned to direct file record position number 3 (same as 1003). Similarly, item
numbers 4316 and 4317 conflict, as do 4556 and 4557. Thus, the refinement
of the algorithm to meet the second major goal, minimum file space, may now
have affected the first goal, minimum disk accesses, because synonym records
will take a minimum of two accesses.

Design Considerations

3-43

Handling Synonyms

Various methods of handling synonyms exist. Whatever method is used, it
must accomplish two ‘goals: minimum accesses and minimum file space. The
more immediate goal is to define (program) the manner in which a record will
find an alternate position when its first location choice is filled.

Further analysis of the previous item file example might offer some
suggestions for synonym handling. Note that a synonym in that example

occurs about once in seven records.

The previous algorithm causes the following mapping (asterisks identify

synonyms):
Item) Position Item . Position Item Position
1001 1 1009 ————— 8 1017 ————— 14*
1002 2 1010 ——————— 9* 1018 ——————— 15
1003 ————— 3% 1011 —————— 9* 1019 —————— 16
1004 3* 1012 —— 10 1020 ———s 17

1006 ——— 4

1006 ~————s 5
1007 —————+ 6

1008 ———— 7

1013 —————— 11
1014 ——————s 12
1016 —— 13

1016 ——————— 14

1021 ————» 18
1022 ———— 19
1023 ———— 20*

Approximately one in seven item numbers is unused because of deleted items;

the file is only 86 percent full. Thus, you might expect to find an unused
position in the direct file with about the same frequency as the synonyms

occur.

Assume the method of handling synonyms can be stated: a synonym record
will be placed in the next higher numbered position that is unused. Because
the file uses only 85 percent of the range of numbers, 15 percent of the
numbers will not be used because they are deleted. However, the deleted
numbers are randomly distributed through the entire range of numbers. Thus,
some positions will be available in the file for synonym records. About every
seventh number will be a synonym. Assume that of the first 40 item numbers,
items 1007, 1008, 1015, 1017, 1020, and 1039 are among those deleted

numbers.

Item Position Item Position item “Position Item Position
1001 ——m— 1 1013 ——— 11 1026 ——e— 22 1036 —— 31
1002 ——— 2 1014 — 12 1027 —————» 23 1037 ——— **
1003 ——— 3 1016 ——= 14 1028 ————— 24 1038 32
1004 ——» 6 1018 ——— 15 1029 ———— 25 1040 34
10056 —— 4 1019 —— 16 1030 ————» 26

1006 —— 5 1021 —— 18 1031 **

1009 ——— 8 1022 ——— 19 1032 ——— 27

1010 ——— 9 1023 —— 20 1033 = 28

1011 — 13 1024 — 33 1034 ——— 29

1012 ———— 10 10256 ——= 21 1035 —— 30

Note the following:
o Item number 1031 will occupy some position numbered greater than 34.

« Item number 1037 will occupy a higher numbered position than will item
number 1031.

« Record positions 7 and 17 are unused.

» After accessing a record, the program will have to verify that the record is
the one that the program really wants; if it is not, the program must access
a synonym.

o There will not be more than two items with the same relative record
number; thus, most records require no more than two disk accesses.

Note: This example assumes that records are loaded into home locations
before synonym records are loaded in a second run; this example also
assumes that there will be few added records. If records are added after
the home records and synonyms are loaded, the home locations for the
added records may be occupied by a synonym. Thus, the added record
becomes a pseudo synonym. If many records are added, most will have to
be handled as synonyms. In this situation, the technique described here
may be less useful because performance tends to be degraded as records
are added.

Design Considerations 3-45

3-46

In this synonym-handling technique, the average synonym. should be close to
the first position searched. Thus, a second access is necessary approximately
15 percent of the time, and this access should find the record not too distant
from the home location. :

At this point, the file. should be loaded (home positions only), and the
synonyms added in a second pass. As the synonyms are added in the next
available higher numbered position, a synonym pointer in the home record wiill
have to be updated to point to the synonym record position.,.

Example 2

Assume a customer master file contains three types of records (A, B, and C)
for three types of customers. These records are in an indexed file in which
type A records have keys—customer numbers from 10000 to 49999; type B
records are numbered from 60000 to 79999; . and type C records from 90000
to 99999. Each type of record is arranged alphabetically by customer name.

The file was first loaded with approximately 500 alphabetized type C\ records,
followed by 1000 alphabetized type B records, and finally about 3000
alphabetized type A records.

Additions have been made at the end of the file in the following manner: first,
the added record type is determined—-A, B, or C; then it is assigned an unused
customer number that corresponds to the alphabetic sequence of the customer
name according to a listing of the file. 'When first loaded, the contents of the
file were as follows:

Record #0001 Customer #90000
Record #0002 Customer #90020
Record #0003 Customer #90040

Type C (alphabetical
by customer name)

Record #0467 Customer #60020
Record #0468 Customer #60040
Record #0469 Customer #60060

Type B (alphabetical -
by customer name)

Record #1592 Customer #10000

Record #1593 Customer #10013{ Type A (alphabetical
Record #1594 Customer #10026 (. by customer name)
Record #1595 Customer #10039)

The file originally contained 4725 records; space was allowed for 6000.
Eighteen months later, the file contains 5638 records.

An analysis of the file indicates the following:

« The file is experiencing about 12 percent annual growth and should probably
be planned for about 6600 records to meet one year's requirements.

« Customer numbers 10000-50000 are 8 percent used, and the other numbers
are 5 percent used.

« Synonym records should be kept as close as possible to the home location.

» The best file design solution might be more than one file and more than one
type of file organization.

« [f all the customer numbers will be in one file, an algorithm must take into
account the necessity of loading type C customers at the front of the file,
followed by types B and A.

« The ratio of A:B:C types is about 6:2:1.

A trial algorithm might try to accomplish the following mapping:

Customer

Number Type File Record Number
90000-99999 C 0001-0733 (1/9 x 6600 = 733)
60000-79999 B 0734-2200 (2/9 x 6600 = 1467)
10000-49999 A 2201-6600 (6/9 x 6600 = 4400)

In order to accomplish the mapping, the algorithm must:

« Convert customer numbers 90000 to 99999 into a set of relative record
numbers from 1 to 733

« Convert customer numbers 60000 to 79999 into a set of relative record
numbers from 734 to 2200

« Convert customer numbers 10000 to 49999 into a set of relative record
numbers from 2201 to 6600

Design Considerations

3-47

One method of doing these conversions is as follows:

» [f the customer number is greater than 89999, subtract 89999 from it; then
multiply the difference by 0.0733 (the ratio of 733 positions to 10000
numbers), and use the half-adjusted product as the record position.

« If the customer number is less than 50000, subtract 9999 from it; then
multiply the difference by 0.11 (the ratio of 4400 record positions to 40000
record numbers), add the half-adjusted product to 2200, and use the sum as
the record position.

+ For all other customer names (60000 to 79999), subtract 59999 from the
number, multiply it by 0.0733 (the ratio of 1467 record positions to 20000
numbers), add the half-adjusted product to 733, and use the sum as the
record position.

The synonym-handling technique might be the same as in Example 1.

The test of success might be to implement the algorithm/synonym-handling
technique by loading the file. Then the success can be measured by another
program that attempts to retrieve all records and counts the number of
accesses necessary. The results of the second program dictate whether
modifications are necessary or desirable. To further test the file, a sample
program can be run in an interactive environment to see whether response
times at the display stations are acceptable.

Example 3

Other master files might have altogether different uses and for that reason use
different techniques. Consider a rate file in a telephone revenue accounting
application wherein one record exists for every from-to location in the United
States. A call made from number (507) 286-5688 to (518) 392-5536 would
require the retrieval of a rate record from the master file that would have a key
of 507286518392. How can such a number be equated to a relative record
position on a direct file?

One algorithm might be to multiply the numbers 507286 and 518392 and use
the second, fourth, sixth, eighth, and tenth digits of the product as the relative
record position. This technique might yield a random distribution across a file
for approximately 100 000 records. Another algorithm might be to take the
second, fourth, sixth, eighth, and tenth digits from the 12-digit key. Thus, the
first algorithm might locate the rate record in relative position 69301
(262973004112); the second algorithm might place the same record in position
02613. Some records, for a given billing location, would be far more active
than the majority of the records. These very active records might be placed in
a separate file, which may or may not be direct.

The techniques described in the previous paragraph are randomizing
techniques. Many randomizing techniques are employed by users of direct
files. Regardless of which technique is used, the concept and approach should
be well documented in each program that uses the technique.

3-48

Application Design

After the applications for the System/34 have been chosen, you can plan
which programs should be designed and implemented first. You might
consider the following factors to help you decide upon the initial programs:

» Which application best justifies the cost of the System/34? An accounts
receivable application or an order entry application might benefit the
business most quickly.

« Which application makes the user departments more productive and the
users’ jobs easier? Inquiries from display stations are typically programs that
can help the users do their jobs more effectively.

« Which application can be designed and implemented in the least amount of
time? Again, applications that have numerous inquiries are usually easiest to
plan.

« Which application are you most familiar with? If possible, starting with an
application that you have implemented or operated on another system is
usually a good idea.

A good design technique, therefore, is to begin by designing the easiest
programs and gradually add the more complex programs. Inquiry programs are
usually a good starting point because they are relatively simple and operators
can use them productively with minimal instruction. More complex programs
can be added as confidence in programming and operating the System/34
grows.

Most applications for System/34 have both batch and interactive programs.
Interactive programs communicate with one or more display stations; batch
programs do not have this interaction.

Interactive programs can be classified as data entry, inquiry, or file update. The
following examples show typical interactive programs:

Function Program Application

Data entry Order entry Order entry

Inquiry Open order inquiry

File update Inventory allocation

Data entry Cash receipts entry Accounts
receivable

Inquiry Accounts status inquiry

File update Open accounts receivable items

Data entry Inventory receipts/adjustments Inventory control

entry
Inquiry Inventory status inquiry
File update Vendor code changes

Design Considerations 3-49

3-50

DATA ENTRY PROGRAMS

DFU

Data entry programs allow one or more operators to enter data directly into the
system via display stations. Data entry programs involve nearly continuous
operation of display stations. Operators enter transactions such as order
information, cash receipt information, or inventory receipt/adjustment
information, and programs process them or save them for later processing.

Typically you will need to choose data entry programming methods. The Data
File Utility (DFU), Work Station Utility (WSU), and RPG Ii Program Product are
three methods that offer similar data entry functions. The following table and
descriptions compare these data entry methods. These three methods are not
the only ways to code interactive data entry programs. For example, COBOL,
BASIC, FORTRAN, and Basic Assembler programs can interact with display
stations. : ‘ :

Data Entry Programs

DFU programs are generally best for high-volume data entry with minimal
operator guidance and no editing other than modulus 10 and modulus 11 self
checking. DFU can create an indexed file or a direct file from the entered data.
Programming is easily done by answering a series of prompts.

DFU programs are SRT programs. Multiple operators, if they run the same
program, use separate copies of the program and unique or shared transaction
files. Refer to the System/34 DFU Reference Manual for a complete description
of the functions of DFU.

To allow several operators to enter the same type of data using common DFU
specifications, you can create a procedure that contains the required DFU
command. The file name in this command should be the file name
concatenated with the 1D of the display station that calls the procedure. This
technique resuilts in unique files for each operator. For example, creating an
order file from two display stations could be allowed by using ORD?WS? for
the file name. Two files would be created: ORDW1 from display station W1
and ORDW2 from display station W2.

WSU Data Entry Programs

WSU programs optionally create a direct transaction file from a master file or
files and the data entered from one or more display stations. WSU programs
can be front-end entry programs for programs that do final editing, processing,
updating, and printing. WSU is designed for efficient display station data entry
and processing and, therefore, does not provide printed output.

WSU programs are always MRT programs, which means they can be used
concurrently by multiple operators. The MRT program can use input from
operators, from master files, and from results of processing within the program
to create and maintain one transaction file. The program can also add records
to and update any master files that are used by the program.

Two or more different WSU programs can be running at the same time and
can share master files. For example, payroll input, job costing input, and
accounts payable can be handled by three separate WSU programs that run
concurrently. Sharing of transaction files, however, is not supported.

The transaction file that a WSU program creates is a direct file, and the
records are partitioned logically by disp|ay station. WSU formats the
transaction file with special header and trailer records to identify the records.
WSU protects each partition so that records entered from one display station
cannot be read or modified from another display station unless a special WSU
function is enabled. This special function allows you to read and modify
records entered from another display station. For more information about this
special WSU function, refer to Chapter 14 of the Work Station Utility Reference
Manual.

Because of the headers and trailers, the transaction file cannot be input to a
follow-on program until this control information has been removed or handled
in the program. RPG. Il provides a subroutine, SUBR22, that can be used to
prepare the transaction file for processing. Refer to the System/34 RPG I
Reference Manual for a description of SUBR22.

WSU also provides support for removing the control information. A rebuild
procedure for WSU allows you to copy a WSU transaction file and change it to
an indexed or sequential file. The new file can then be processed by a
subsequent program.

An extract procedure can copy specific records to another file or remove blank
records from a WSU transaction file. The extract can also be used to create a
WSU transaction file by adding control information. This function allows you to
create a file on a separate data entry device and then update the file using
WSU.

Design Considerations 3-51

3-52

RPG

A WSU program, using an indexed random or a direct access processing
method, can read from and write to as many as 20 master files. These files
can be indexed, direct, or sequential files. Master files can be reviewed,
updated, and added to by operators if the programmer codes these functions
in the program.

WSU programs can do more edit checking than DFU programs. Some
checking is done by the display station; for example, numeric data entered in
an alphabetic field will cause an error to be flagged, and the operator can
reenter the field. Some checking can be specified by the programmer on
display screen specifications; for example, mandatory fill, mandatory enter, and
self-check fields can be defined on these specifications. Additional checking
can be done within the program; for example, the calculations for a display can
check for valid entries within a range of values and reshow the display with the .
cursor positioned at the field in error.

Refer to the System/34 WSU Reference Manual for a complete description of
WSU programs.

Il Data Entry Programs

RPG 1l provides three methods of coding data entry programs:

« WORKSTN file

« CONSOLE file

« SET/KEY logic of the KEYBORD file

Programs that use a WORKSTN file have the most display design fiexibility
because these programs use display screen formats defined by the
programmer. For example, field attributes and a variable starting line number
can be specified. Also, multiple items per display can be programmed.
Programs that use a CONSOLE file are easy to code. The format of displays
are determined by RPG [l when the program is compiled. Multiple items per
display are allowed and require no additional programming.

Programs that use SET/KEY logic provide field-by~field data entry. Data is
entered on the bottom line of the display and, when entered, rolls up one line

to allow the next field to be entered on the bottom line.

Refer to the System/34 RPG Il Reference Manual for descriptions of coding
data entry programs via the previous three methods.

RPG

Function/Feature DFU WsU KEYBOARD CONSOLE WORKSTN COBOL BASIC
Display layout
Field attribute selection No Yes No No Yes Yes Yes
Variable starting line No Yes No No Yes Yes Yes
number
Multiple items per display No Yes Not Yes Yes Yes Yes
recommended
Display associated with Yes Programmable No Yes Programmable = Programmabie Programmable
record type
Function/Feature DFU WsUuU RPG COBOL BASIC FORTRAN
Printed output Yes No Yes Yes Yes Yes
Master file access LIST only Yes Yes Yes Yes Yes
Muitiple user (MRT) No Yes Yes Yes Yes No
MRT code handled - Most Some Programmable = Programmable -
Transaction file Indexed, Partitioned User-coded User-coded - -
sequential, direct
direct
Maximum record length 512 4083 4096 4096 4096 4096
Review mode Yes Yes Programmable Programmable = Programmable Programmable
Insert mode Yes Yes Programmable Programmable Programmable Programmable
Control over operator No Yes Yes Yes Yes Yes
modification
Self-check numbers Hardware Hardware Hardware Hardware Hardware Hardware
feature feature feature feature feature feature
Maximum alphameric field 60 256 256 4096 255 4096
length
Calculations Limited Yes Yes Yes Yes Yes
Number of result fields 241 Many Many Many Many Many
Arrays No No Yes Yes (3-D) Yes (2-D) Yes (3-D)
Edit checking No - Yes Yes Programmable Programmable Programmable
Batch totals with insert Yes Programmable Programmable Yes Yes Yes
and review mode
adjustments
Time of day Yes Yes Yes Yes Yes Yes
Date Yes Yes Yes Yes Yes Yes
Local data area access No Yes Yes Yes Yes Yes
User switch access No Yes Yes Yes Yes Yes
Roll keys handled Yes Yes Programmable Programmable Programmable No
Dup key handied Yes Not Programmable Programmable Programmable No
available
Roll portion of screen No No No Yes No Yes
Write on message line No Yes No Yes Yes No
Allow help key No No Yes No Yes No
Read message member via No Yes Yes Yes Yes Yes
format output
Explicit open/close No No No Yes Yes Yes
User indicators No Limited Limited Yes Yes No

Note: Yes means the function or feature is available for the programming method; No means the function or feature is not

available.

Less if more than one factor is used per result field.

Design Considerations

3-53

3-54

The Badge Reader as a Data Entry Device

You can use your badge reader as a means of entering data into the system.
The data is encoded onto a magnetic stripe which is part of the badge that is
read by your badge reader.

The encoding of this data onto the magnetic stripe involves special data
encoding considerations. Contact your local IBM branch office for more
information about encoding data for use with magnetic stripe badges.

Editing in Data Entry Programs

Data editing at the time data is entered into the system should be a primary
function of an online application. The same basic edit functions apply to data
regardless of the application involved. This section addresses some major
editing problems that you could encounter.

One or more of the following edit checks may be specified for any given data
field. '

« Field editing
— Mandatory field entry
— Every field required
— At least one field required
— Only one field required
— Default value editing
— List check editing
— Range check editing
~ Mandatory fill
— Self checking
- Adjust/fill
— Duplication

« Date editing
« Compatibility editing
« Table look-up editing

The following sections provide a detailed discussion of some of the types of
edit functions that could be considered.

Field Editing

Field editing performs basic data characteristic validation for data fields within
a transaction. Some of the key types of data characteristics possible are:

« All characters must be blank or alphabetic.

¢ All characters must be blank or numeric.

« All characters must be blank, alphabetic, or numeric.
« All characters must be numeric.

« All characters must be numeric, with leading blanks optional. Field must not
contain embedded blanks.

« All characters must be alphabetic or numeric.

« All characters must be alphabetic. Field must not contain leading or
embedded blanks.

« All characters must be alphabetic, numeric, blanks, or special characters.
« All characters must be alphabetic, special characters, or blanks.

« All characters must be numeric, special characters, or blanks.

« All characters must be special characters or blanks.

« All characters must be special characters.

« All characters must be alphabetic, numeric, or blanks, with no leading
blanks.

« All characters must be alphabetic, numeric, or blanks, with no trailing
blanks.

« All characters must be alphabetic, with no embedded blanks. Leading and
trailing blanks are permitted.

« All characters must be numeric, with no embedded blanks. Leading and
trailing blanks are permitted.

« All characters must be numeric, alphabetic, or special characters, with no
embedded blanks. Leading and trailing blanks are permitted.

« All characters must be alphabetic or special characters, with no embedded
blanks. Leading and trailing blanks are permitted.

« All characters must be numeric or special characters, with no embedded
blanks. Leading and trailing blanks are permitted.

Design Considerations

3-55

3-56

+ All characters must be special characters, with no embedded blanks.
Leading and trailing blanks are permitted.

« All characters must be alphabetic, numeric, with no embedded blanks.
Leading and trailing blanks are permitted.

Mandatory Field Entry: Specifies that a value must be entered for a field.
Blank fields that have been designated as required fields are invalid. Other
types of editing may also be done on required fields. If a field is to have a
default value, mandatory field entry should not be specified.

Required Entry of Every Field: Specifies that all fields in a logical group must
be entered if any one field of the group is entered. This capability might be
used, for example, on a mailing address to specify that if any part of the
address—street, city, or zip code—is entered, then all the mailing address fields
are required.

Required Entry of at Least One Field: Specifies that at least one field in a
logical group of fields must be entered. This editing might be used, for
example, on a list of the reasons a student has withdrawn from a university, to
ensure that at least one reason for the withdrawal has been entered.

Required Entry of Only One Field: Specifies that only one field in a logical
group may be entered. If a group of fields is mutually exclusive, but one field
is required, this type of editing would be used. This capability might be used,
for example, to prevent the scheduling of more than one surgical procedure at
a time per operating room.

Default Value Editing: Moves specified default values into a data field if
nothing is entered in that field. If data is entered in the field, the default value
is ignored, and normal editing is performed.

List Check Editing: Specifies a list of valid values for a data field. If the
content of a field is not equal to one of the values in the list, the field is
invalid.

An optional feature is to have a default value substituted for the data entered if
the value of the data entered is not in the list.

Range Check Editing: Determines whether the value contained in a given data
field is between predetermined high and low boundaries established for that
particular data field.

The range edit function could specify one of three possible conditions for data
fields that have been range edited: (1) the data value is lower than the
specified range, (2) the data value is higher than the specified range, (3) the
data value is within the specified range.

Mandatory Fill: Ensures that all positions in the field are entered. Thus, for
example, entry of only four numeric digits in a five-position code field would
be invalid. A field designated as variable, such as a 25-position name field,
need not require that all the positions be filled to be considered valid.

Self Checking: Specifies that the data entered in the field is checked by a
modulus 10 or modulus 11 algorithm after the field is entered.

Adjust/Fill: Specifies that data entered in a field can be right-adjusted and
that unused positions are filled with zeros or blanks.

Duplication: Indicates that the Dup function key can be used to fill the position
of the cursor and the positions in the field to its right with the duplication
character, which is X (hexadecimal 1C). The user program must check for these
characters and place the appropriate duplicated data in the field.

Date Editing
Date editing should validate date fields within a transaction.

Either of two types of date editing may be specified for date fields. The first
type of date edit determines, in general, whether or not a given date field is
valid: the month is between 01 and 12; the day is between 01 and 28, 01 and
29, 01 and 30, or 01 and 31 depending on the month and whether or not it is
a leap year; and the year is numeric and within a predetermined range.

The second type of date editing validates the date field as above and, if the
date is valid, determines whether the date is on or after the current system
date. This form of date editing is used when the date wanted must be either
the current date or some date in the future.

Compatibility Editing

Compatibility editing should ensure that designated data fields are compatible
with each other by cross-checking their respective contents. In other words,
the data within a given field is valid only if another field contains a specific
value or is within a specified range of values. If this is not the case, then an
error condition exists, and the first field is flagged as having failed compatibility
checking. Therefore, even if a field passed field editing, it may fail overall
editing due to incompatibility.

Design Considerations 3~57

3-58

Table Lookup Editing

Table lookup editing should provide the ability to alter the contents of a field
based on a conversion table established by the user. This is basically a
one-for-one replacement of data according to the conversion specifications
contained in the table. The table contains the values of the field to be
converted and corresponding substitution values used to replace the original
values.

When a match is found in the conversion table for a given field value, the
replacement value is placed in the edit result table, and table lookup is
considered to be successful. If the field contains a value not in the conversion
table, then the field is considered invalid and is flagged.

An optional feature of table lookup editing is to have a default value
substituted for the data entered if that entry is not in the conversion table.

Summary of Editing

Collectively, the above edit capabilities provide a powerful tool to the user of
an online system and although any or all the edits may be performed on any
given data field, the extent of editing is at the discretion of the user. Field data
editing is usually performed initially because this validates a data field before
additional editing is performed. Additional types of editing are usually not
performed if field data editing indicates a given data field is invalid.

INQUIRY PROGRAMS

Inquiry programs are the simplest of the types of interactive programs to
design and implement. They allow operators to look at information in files.
Inquiry requirements might vary from user to user: some users might need to
look at data that pertains to their department only, and other users might need
to inquire into entire master file records.

When used for inquiry, a display station is not operated continuously. Rather,
an operator typically asks a question of the system. Based on the system
response, another question might be asked. While the operator reads the
displayed information, the system can handle requests from others or can
resume processing until the operator asks another question. When an operator
finishes inquiring, the display station can be used to do other work.

FILE UPDATE PROGRAMS

Interactive file update programs update master files with transaction file data.
How and when the changes occur vary with the type of system design
implemented. An effective method of file update that provides immediate
update and efficient recovery is called memo updating. Refer to Chapter 4,
Coding Techniques, for a description of this method.

PROGRAM ATTRIBUTES

Program attributes describe a program’s use of dlsplay stations or use of
resources on System/34.

Attributes that can be specified when a program is compiled are:

« SRT (Single Requestor Terminal). The program allows one requesting
display station or SSP-ICF session.

« MRT (Multiple Requestor Terminal). The program allows more than one
requesting display station or SSP-ICF session.

« NEP (Never-Ending Program). This attribute can be given to SRT programs
and MRT programs. Programs do not wait for nonshared resources that the
NEP uses, and the NEP remains active when no requestors are attached to
it.

A program can also run without a requestor. This allows a display station to be
released from a job step after that step has been initiated if interaction
between the display station and the program is not required.

If none of the steps of a job communicate with display stations, the job can be
run from the input job queue.

For a description of each of these attributes, refer to Program Attributes in
Chapter 2.

Usually an application has a mixture of these attributes for its programs. For
example, the sample order entry application in Chapter 5 has an SRT program,
an MRT program, and a no-requestor-terminal program. The following
information provides considerations for choosing program attributes.

If a program is likely to be requested by more than one display station
concurrently, consider coding an MRT program. Coding a program as an MRT
program avoids resource conflicts that might occur if multiple copies of the
-program were run concurrently. Also, a single copy of an MRT program usually
occupies less storage than two or more copies of the same program coded as
an SRT program.

If the program runs when main storage might be overcommitted—the programs
that are running do not fit into storage at one time—an MRT program can
reduce the swapping that would occur if multiple copies of the same program
were run concurrently. Reduced swapping should shorten response times for
the display stations. :

Finally, -only the first requestor of a MRT program causes the program to be

initiated. Subsequent requestors should have a shorter sign-on time because
their display stations attach to an active program and initiation is not done.

Design Considerations 3-59

3-60

An MRT program might be more complex and use more main storage than the
same program coded as an SRT program. If a program will not be requested
by more than one operator concurrently and if the initiation time for the
program is acceptable, consider coding the program as an SRT program.

If the maximum number of requesting display stations is already attached to an
MRT program, the SSP queues a new requesting display station to the
program. While the display station waits for its request to be accepted, the
display station cannot be used unless the operator presses the Attn key and
releases the display station from the MRT procedure. To avoid this situation,
you can code the program as an SRT program or increase the maximum
number of display stations supported by the program.

If the program must do extensive input/output processing between displays
(for example, extensive array processing, multiple printed lines, or ten or more
disk accesses), shorter response times are possible when multiple copies of an
SRT program are run concurrently.

If a program is requested frequently, is active for more than a few seconds,
and uses nonshared resources such as a printer or nonshared disk files, you
might want to define the program as never-ending. (Refer to Never-Ending
Programs in Chapter 2 for a description of these programs.)

An MRT never-ending program with no active requestors will wait for a
requestor. This waiting saves program initiation time but will use system
resources such as assign/free space in order to remain active.

DISK ACTIVITY FOR LOADING PROGRAMS AND ATTACHING DISPLAY
STATIONS TO THEM

The following table shows the number of disk accesses required for loading
programs and for attaching display stations to them. Factors affecting the
number of disk accesses that are shown in this table are:

« Program attributes

« History file logging

« Read-under-format processing. This technique, a method of overlapping
data entry time and program initiation time, is described later in this chapter.

« File status: open or closed

« Number of files used by the program

Disk Accesses

for Display

Program History Files Disk Accesses for Program Station
Attribute Logging Read-Under-Format Open Load Attachment
MRT-NEP Yes No N/A N/A 9

No No N/A N/A 8

Yes Yes N/A N/A 3

No Yes N/A N/A 2
MRT Yes No No 41 + (4 x number of files) 6

No No No 30 + (2 x number of files) 5

Yes No Yes 41 + (2 x number of files) 6

No No Yes 30 5

Yes Yes No 37 + {4 x number of files) 2

No Yes No . 26 + (2 x number of files) 1

Yes Yes Yes 37 + (2 x number of files) 2

No Yes Yes 26 ’ 1
SRT Yes No ‘ No 34 + (4 x number of files) N/A

No No No 23 + (2 x number of files) N/A

Yes No Yes 34 + (2 x number of files) N/A

No No Yes 23 .

Yes Yes No 30 + (4 x number of files) N/A

No Yes No 19 + (2 x number of files) N/A

Yes Yes Yes 30 + (2 x number of files) N/A

No Yes Yes 19 N/A

Design Considerations 3-61

3-62

Minimizing Disk Activity to Increase Throughput on the System_

There are several things you can do to minimize disk activity and disk
processing.

s Call a procedure from within another procedure by using the procedure
name instead of a // INCLUDE OCL statement.

« Log entries to the history file only if they are absolutely necessary. Each
record logged to the history file requires three to four disk operations.

« Send messages to-Wwork station oberators by usihg all PAUSE OCL
statement instead of a //* statement.

+ Use the IDELETE command to suppress informational messages that may
not be necessary for a particular work station.

« Use tests for the existence of disk, diskette, or library members only when
they are necessary. These tests require reading the disk or diskette VTOC
and require additional disk activity. You should be aware of this when
coding procedures, and should branch around these expressions in your
OCL when these existence tests are not needed.

PROGRAM SIZE

If possible, programs should be designed to run in a predetermined region size
that allows more than one program to be resident in user storage concurrently.
If a program is so large that no other program can be in user storage with it,
another program can be swapped in, but these programs'cannot execute
concurrently.

A program that is larger than the predetermined region size can cause two or
more programs or segments of programs to be swapped out each time the
large program is swapped in. This swapping can affect performance because
of the additional disk actnwty that is required. Swapping, however, is more
efficient than using overlays for a program if the execution of one program
cycle results in many overlays. For example, in RPG the number of overlays is
not easily controlied by a programmer. In COBOL, Basic Assembler,
FORTRAN, BASIC, and WSU, the programmer can control the overlays and
therefore might improve performance by using overlays instead of swapping.
In addition, BASIC has a status feature in the HELP support that allows the
programmer to see how many overlays are occurring for a particular region size
and work area partition.

When you predetermine a region size and try to code your programs to fit that
region, you might have to adjust the size of the program after you have coded
it. If the program is too large, specifying the predetermined regidn size to
execute causes overlays to be built to fit the program into the region.

Each program need not be the same size in order to execute in the same
region. If the region size specified for a program is not a muitiple of 2 K bytes,
the number is rounded up to the next even 2 K byte increment. For example, if
you have a 32 K byte user memory, you might design each program so that it
executes in a 16 K byte region. Because of the rounding up that was
previously described, programs between 14 K bytes and 16 K bytes will require
this region for their execution.

Program size can vary with the number of functions and the types of functions
used and is therefore difficult to estimate before a program is coded. For
example, the following items can affect program size:

« Number of files used.”

+ File types used. For example, input-only disk files require less storage than
update-capable disk files.

« Processing method used. For example, input-only processing of disk files
require less storage than update or add capable processing.

« Storage index for indexed files.

« Amount of input processing specified. For example, the number of 1
specifications in an RPG program can affect program size.

< Record lengths, which can affect the size of input/output areas that are
reserved for files.

« Number of output specifications.

« Number and type of calculations. For example, a LOKUP operation in an
RPG program done by a subroutine. If you use this operation and a manual
search in an RPG program, you might want to use one method instead of
two in order to reduce the storage required. '

« Number and sizes of constants, data structures, fields, tables, and arrays
defined.

« The number of formats on an H specification in an RPG |l program. If a
number is not specified, 32 is assumed. The number of formats must be at
least the number of formats in the load member, even if not all of the
formats are used in the program. For each format, an additional 16 bytes is
required in your program. For example, if your program uses five formats
and you specified five formats on the H specification, 80 bytes (5 x 16) are
used for formats. If, for the same program, you used the default of 32
formats on the H specification, 512 bytes would be required. Thus, your
program would be 432 bytes larger than necessary.

Program size can be adjusted by dividing a program into several job steps and
using a technique such as the read-under-format technique to show displays.

Design Considerations

3-63

3-64

READ-UNDER-FORMAT (RUF)

Using a read-under-format technique allows an operator to enter information
onto a display while the program that uses the display is initiating. When
read-under-format is used, a program or a procedure displays the format, and
the program called next in the procedure reads it. The format is displayed by a
program or a PROMPT OCL statement with PDATA-YES specified. If an SRT
program displays the format, it then goes to end of job. An MRT program
displaying the format releases the display station. While the program is being
initiated, the operator enters information for the display. When the operator
presses the Enter key, the input from the display is sent to the second
program.

This technique can be used with all types of programs, including never-ending
programs. Read-under-format processing decreases program size because
each program might handle a few formats. This technique might increase
processing time because of the extra time the system spends initiating a
program.

The following example shows a read-under-format technique that uses two
displays and two programs. The PROMPT OCL statement is used to show
Display 1. While the operator enters information on that display, Program 1 is
being loaded. When the operator enters Display 1, his input is sent to Program
1. Before Program 1 ends, it shows Display 2. The operator can enter
information on this display while Program 2 is being loaded. When the
operator enters Display 2, his input is sent to Program 2.

Display and Program Flow

Display 1

The operator keys data and then enters the display.

/ T | Dis|pllialy
/[LoD | PHoldrals L
lRGiICIRRR
Lose e | [IRILECLL.
/1 SIWITICH .||
/| IRUN
Program 1 Ends
7 RESET [Pridairiale 17
ET [Pr
Hriog
regam2 | 7 F?‘L% RRRRu
/i |FII
VTR

N
o Program 1 shows Display 2
Program 1 and then ends
Execution
Display 2

The operator keys data and then enters the display.

N

Program 2
Execution

The sample application described in Chapter 5 also uses a read-under-format

technique.

Design Considerations 3-65

3-66

DISPLAY STATION LOCAL DATA AREA

A 256-byte local data area exists on disk for each command display station on
the System/34. This area may be used to pass information between programs
and procedures. This area is initialized to blanks at the start of a session. RPG
Il, WSU, SDA, SMF and 3270 emulation use part of the display station local
data area to control their execution. Therefore, any user data in those bytes is
destroyed when one of these programs is run. The use of the local data area
by these programs is as follows:

Program Bytes Used
ICFVERIFY 1 through 4
SDA 1 through 104
RPG I 201 through 256
SMF 220 through 256
3270 Emulation 230 through 256
WSUu 238 through 256
HELP 249 through 256

The LOCAL OCL statement may be used to put data from a procedure into the
local data area. The ?L offset,length’? substitution expression may be used to
test or extract data from the local data area in a procedure. Both COBOL and
RPG Il have subroutines available to read and update the local data area for
any attached display station. In BASIC, the local data area can be opened with
the OPEN statement and is then available to read and update.

The local data area becomes resident in main storage the first time a LOCAL
OCL statement or LOCAL substitution expression is encountered within a job
step. Each subsequent LOCAL OCL statement processed in a job step updates
the main storage resident local data area and the data area that resides on
disk. Each subsequent LOCAL substitution expression in the job step accesses
only the local data area in storage. The local data area is resident in storage
for a particular job step only until a // RUN OCL statement is encountered and
processed. The local data area can be reestablished for the next job step if
necessary. ‘

The local data area, when resident in main storage, uses the assign/free area
of the nucleus.

The following OCL statements in a procedure called PROCA would prompt the
operator to enter a starting invoice number. It would store this number in the
first six bytes of the local data area. PROC5 would execute using and updating
the first six bytes of the local data area, which contain the invoice number.
When control returns to PROCA, the updated invoice number would be
displayed to the operator and the procedure would pause until a O response is
entered.

AT ST § 1IN QJC£ ERT J6] DEGRS]
%@o SEIT-[1ly mﬂﬁ?'
7$PP ' vo&k AS| I L le[' 17
ENE

Note: If a // * statement, rather than the PAUSE statement, is used to display
the operator message, processing of the procedure continues and the message
might appear on the screen only momentarily. For that reason, if a // *
statement is used, you might want to follow it with a PAUSE statement.

EXTERNAL INDICATORS

System/34 has a set of eight external indicators (switches) available for each
display station. These switches are available to the COBOL programmer as
switches UPSI-0 through UPSI-7 and to the RPG Hl and WSU user as
indicators U1 through US8.,

Subroutines are provided for retrieving and updating the external switches of
any attached, command-capable display station in an RPG MRT program or in
an SRT or MRT program coded with the subset ANS COBOL PRPQ
(X3.23-1968). Retrieving and updating these switches is automatically done for
RPG SRT programs, WSU programs, and programs coded with the ANS
COBOL Program Product (X3.23-1974). The switches are available to BASIC
programs through the UPSI$ intrinsic function.

System/34 OCL also has the ability to test and set these switches. Thus, the
execution flow of various OCL statements in a procedure can be controlled by
the settings of various switches.

If UPSI-YES is specified on the // PROMPT statement, the current setting of
the eight UPSI switches are made available to the screen format as indicators
91 through 98. A return code that indicates which command or function key
was used can be accessed by a ?CD? substitution parameter. For more
information on using the ?CD? substitution parameter with indicators, refer to
Using the Prompt OCL Statement in Chapter 4.

Design Considerations 3-67

3-68

The following example uses the SWITCH OCL statement to set switch 1 to.an
off status and switch 2 to an on status; switches 3-8 are unchanged. PROC1 -
is called and executed. If switch 1 is on when control is returned from PROC1,
then PROC2 is called; if switch 1 is off, the ELSE statement causes PROC3 to
be executed. The last SWITCH statement sets all eight switches to an off
status. The switches are also set to an off status when a display station

- session is initiated.

ITiclH 104XX

F |SWLTICHL-\{ C2
(/I [ELISEE] PRIOC
/| ISWIITICH 1000100000

Note: A separate copy of the switch settings is kept for each requestor of an
MRT program. When a requestor gains control of the program, the switches
are automatically set to the values stored for that requestor.

Data Processing Security and Accuracy

Data processing security involves protecting both data and the equipment
needed to process the data. The major emphasis of data processing security is
to prevent the unauthorized release, modification, or destruction of your
information or data processing equipment. Data processing security is
especially important because the System/34 allows many activities to occur at
the same time, often away from as well as at the central computer site. There
are two important areas that make up data processing security: physical
security and data security.

PHYSICAL SECURITY

Place your computer in a safe location. There are several factors to consider.

Physical Location

You should not place your computer below ground level, as in the basement.
Backed-up sewer lines, broken water mains, and floods can occur.

Place the computer away from outside walls or windows. If you must place
the computer along an outside wall or window make sure the wall or window
is strong enough to protect your computer from damaging winds, hail, or other
conditions accompanying severe weather.

Limited Access to the Computer
Only people who need to use the computer to do their work should be allowed
to use the computer. If you have the computer in a special room, you may
want to limit access to the computer room through the use of special locks or
special doors.

Fire Protection

Place your computer in a building that is as fireproof as possible. Good
housekeeping is vital to maintain a fireproof environment.

Other things you can consider:

» Place some fire extinguishers near the computer and make sure the
appropriate people are trained in their use.

+ Keep a smoke detector near or in the computer room.
« Install appropriate sprinklers to put out a fire.

Because sprinklers can use water that can damage your computer, make
sure your sprinklers use chemicals that will not damage the System/34.

Design Considerations

3-70

DATA SECURITY

Limited Data Access
Limiting access to your data protects it from being read or disclosed to people
who are not authorized to use it. The System/34 provides some security
features to help you safeguard your data. These features include:
« Password security
» Badge security
« File and library security
+ Menu security
For more information about System/34 security features, refer to
System-Provided Security in Chapter 2.

Data Accuracy
You can better safeguard the accuracy of your data if you use certain data
controls to help you make sure your data is as accurate, reliable, and complete
as possible. There are three basic types of data controls:
« Input controls

» Processing controls

« Output controls

Input Controls

The following steps will help to ensure that your input data is correct.

Input Verification: Check fields on the input record to see if these fields are
correct. Some businesses have personnel check all input documents and
records before entering them into the computer.

It is necessary to make sure not only that input records are processed correctly
but that all input documents cannot be lost and the loss go undetected. You
should have some way of recording what input was entered into the computer.

Processing Controls

Processing controls are those routines that are written into a program to ensure
the program is processing data correctly.

Some common processing controls are:

« Record counts: This control counts how many input records were
processed; it can determine if any records were lost during processing.

« Sequence checking: This control checks whether records have been sorted
properly.

o Audit trails: An audit trail records what work was done on the computer
and the order in which the work was done. An audit trail should indicate
that the computer is doing the work correctly. Additionally, the audit trail
should provide information to identify any errors and their causes.

Output Controls

These controls report the results of the processing done by the computer.
These controls when combined with input controls can be especially effective
in checking such items as output totals compared to input totals. Some,
effective output controls are:

Output counts: Count of records either processed or written as output.

Program messages: Messages issued by the program when data errors occur
(for example, a message issued to the console operator when a four-digit
control number is blank and the control number is used as a key).

BACKUP AND RECOVERY CONSIDERATIONS

Because data (programs and files) can be damaged or destroyed by incorrect
modification, a system failure, operator errors, or a natural disaster such as a
fire, keeping backup copies of vital information is recommended. Backup
procedures typically involve copying the vital information kept on the system
and then storing the copy in a safe location. For example, data can be copied
to diskettes, dated, labeled, and stored in a fireproof safe. Because a disaster
such as a fire could destroy the onsite backup copy, a good practice is to store
another set of backup diskettes offsite.

Loss of data could be disastrous to most businesses using data processing.
Thus, a standard, well-documented, backup procedure should be established
and used regularly. Typically, master files and all files related to the master
files are saved at the same time. For example, if a customer master file
contains an accounts receivable sum for each customer, this file and the
accounts receivable open item file are saved and restored together.

Design Considerations

3-1

3-72

New data such as batches of transaction records can be copied to disk or
diskette after they have been entered and edited. These saved transactions can
be used during recovery procedures to make the master files current.

Recovery is a series of steps that an operator follows or procedures that an
operator runs to restore data on the system. Following recovery, programs and
files are returned to the status that they had just before the error, failure, or
disaster occurred.

Recovery procedures can require removing all or some master files, restoring
backed up master files, and reexecuting those procedures that updated files to
repost transactions in the order that they were originally processed.

Programs and procedures can be designed to restore and recover all files,
inform the operators about the last items correctly processed, and allow
operations to continue from that point. This effort might involve using
additional fields in records and using additional calculations in programs. Also,
new files, programs, and procedures might be needed, particularly for recovery
in a work station environment. The planning and programming effort might not
seem costly in light of the potential results of inadequate backup and recovery
procedures. Typically, businesses that are most dependent on their data
processing system require the shortest recovery times and thus should develop
the most elaborate backup and recovery procedures. Regardless of their
complexity, backup and recovery procedures should be well~documented so
that all operators use them correctly.

The following information describes three methods of backup and recovery.
The first method requires the least design and programming effort, but
probably requires the longest recovery time because transaction batches are
not saved. The second method requires more planning and programming, but
reduces the amount of recovery time required because reentering the
transactions is not necessary. The third method requires the most planning and
programming but provides the quickest way to recover data because the
operator’s involvement is minimized.

Method 1

This method requires the operator to periodically save master files and files
that the application updates in order to establish a point from which to recover
(restart) the application. For example, at the end of each day after all
transactions have been posted, the operator might execute a procedure that
contains SAVE commands to back up all master files and their related files on
diskette.

Operators should keep a log of the work they do on the system. This manually
kept log must be accurate if it is to be relied upon during recovery. One
method of keeping a log is to use the following sample run sheet.

RUN SHEET

Work Station ID Date Page
Menu, Item, Command, or Operator’s Start Stop OK Comments, Halts,
Procedure Name Initials Time Time Messages

Design Considerations

3-73

3-74

Another method of obtaining a log of work done on the system is to print the
history file.

This recovery method consists of the operator (1) deleting files from disk, (2)

restoring the backup copies from diskettes to establish a point from which to
recover, and (3) reprocessing all transactions that have been entered since the
last backup was done.

All of the work done since the last backup must be redone, Because they are
not saved, transaction batches must be reentered. This method might be
adequate for a business that processes low volumes of data and that
frequently backs up its data.

Method 2

This method requires the operator to (1) periodically save the master files and
their related files and (2) save batches of transactions at logical breakpoints in
the application. For example, at the end of each day after all transactions have
been posted, the operator executes a procedure that contains SAVE commands
to back up master files and their related files on diskettes. As part of the
transaction-posting procedure run during normal processing, a batch of
transactions is saved on diskette and deleted from disk. The operator labels
the diskettes that contain the transactions so that he knows the sequence in
which the batches have been saved. Also, the operator lists the names of the
procedures in the order that he runs them.

The recovery method requires the operator to (1) delete the files from disk, (2)
restore the backup copies from diskettes to establish a point from which to
recover, and (3) reprocess the application’s procedures in their original order
using the saved copies of the transaction batches. The operator uses the
information he has labeled on the diskettes to ensure that the transaction
batches are restored in the correct order.

This method eliminates the rekeying of transactions that was required in the
previous method.

Method 3

This method requires code to be included in an application’s procedures to do
the following things:

« Periodically back up the master files and their related files.

« Automatically back up batches of transactions on disk or diskettes at logical
breakpoints in the application.

« Assign names and sequence numbers to these batches of transactions.

« Keep a history of all procedures executed by the operator following the last
backup. This history is kept in a control file.

« Provide a common recovery procedure.

The recovery method consists of the operator running the common recovery
procedure, which lists the control file and restores the files. The operator uses
the listing of the control file to rerun the application’s procedures in their
original order. The common recovery procedure could prompt the operator to
insert the proper backup diskettes in the correct .sequence.

This recovery method uses a program-generated control log, which is more
accurate than a manually-kept log. Because unnecessary procedures such as
reprinting statements or reports could be skipped during recovery, this method
provides the quickest recovery of the three methods. This method is similar to
the backup and recovery procedures used in some IBM Licensed Application
Programs.

The following example shows one method of restoring a particular file from a
diskette in a magazine.

Procedure
Step Command Action
1 CATALOG Determine the file that you want to restore.
2 RESTORE Restore file to disk from diskette files kept
as backup.
3 CATALOG(optional) Verify that the file has been restored.

Design Considerations 3-75

Procedure Command Examples

1. Print a list of all files on each diskette in a magazine.
CATALOG ALL,11,M1.01,NOAUTO

2. Restore a file named ORDITEM located on diskette 07 in magazine drive

o1.
RESTORE ORDITEM,,,,M1.07

History File
The history file is an area that is located in the system area on disk
(#SYSHIST) and occupies a minimum of 120 sectors and a maximum of 9960
sectors. The size of the history file is specified during the configuration
process. The history file is an important tool you can use to review events that

have occurred on your system. Recorded in the history file are:

« All OCL statements, utility control statements, control commands, and
procedures executed by the SSP.

« All messages displayed at the display station.

« All operator responses to messages and prompts.

« Work stations being used.

« Operator's user ID.

« Job name in the form WWHHMMSS; WW is the work station ID and
HHMMSS is the time the job began running. Occasionally, there will be all
asterisks (*} in either the operator user ID or the job name. This indicates
that the entry recorded was generated by the system. Double quotes (')

indicate that the line is continued from the previous entry.

+ The time the entry was recorded in the history file.

3-76

In addition, there are entries in the history file designated as *E entries. There
are two types of *E entries: *EJ, which indicates the end-of-job recording,

and *EP which indicates the end of a spool print job. The following information

items are shown by the *E entries:

« Starting and ending time of the job

« Date the job was run

« Amount of elapsed time it took to run the job

« Operator's user ID

« Work station or printer ID

« Name of the procedure that began the job or created the print job

+ Whether the job was an MRT program

« Two-~character completion code for the *EP entries
— NC: Normal completion
— CP: The print job was canceled by either the console or subconsole

operator

— SP: The print job has been stopped by either the console or subconsole

operator

The following three printouts are samples of a listing of the history file entries.

H) STORY FILE DISFLAY WORKSTATION - Xi

STATEMENT HISTORY SYSTEM

RENAME TEMF1,WFR7V066

RENAME PROCEDURE EXECUTING
HELF SAVE

SAVE WFR7V066,999, ,WSUWSY, ,,,,,

SAVE FROCEDURE EXECUTING

SEU SAVEFILE,P,, ,WSUFT

SEU FROCEDURE EXECUTING

// LOAD $SFGR

// RUN

// LOADMER NAME-TOM

/7 INOUT INLIB-JUMGLIE,OUTLIB-JMGLIE

// UFDATE SOURCE-TOM

SAVEFILE 064,CUSMFOQL, ITEMFO02, , TRANFO4L8,58,25
DISFLAY FROCEDURE EXECUTING

// END

SYS-1598 OFTIONS (23y COCI

TRANFO18-~THIS FILE IS NOT ON DISK
SYS-5019 OFTIONS ¢ 3) SFDE

TERMINAL ERRORS IN $SFGR INFUT SFECIFICATIONS
3

3

Sba

SEU SAVEFILE,F,, ,WSUFT
SEU PROCEDURE EXECUTING
SEU-0549 OFTIONS ¢ 2) &
NOT ENOUGH ROOM IN LIBRARY
el

REFLACE MEMRER

CONDENSE WSUFT
CONDENSE FROCEDURE EXECUTING
SYS-2582 OFTIONS (123) MARC

WSUFT ==THIS LIBRARY NOT COMPRESSED, BEING USED..
3
OFF
OFF
SEU FROCEDURE EXECUTING
LDK

// LIBRARY NAME-WSUFT
CONDENSE WSUFT
CONDENSE FROCEDURE EXECUTING
// LIBRARY NAME-#LIERARY
CJR CHMENU WSUFT
OFF
SEU SAVEFILE,F,, ,WSUFT
SEVU FROCEDURE EXECUTING
SEU-0545 OFTIONS (01 3) SE

WORK FILE ALREADY EXISTS--I§ THIS A RECOVERY RUN?...
0

WS WSUFTO79,WSUFT, , REFLACE

WSU FROCEDURE EXEC NG
ROM Wik WSUFT
RON . WSUFT

USER - RON

DATE 07/24/80

TIME

14.01
WKSTN

S
e
I
-
e
X4
N
o
e
w2
Xi
w2
X1
"
e
W32
X1
Wa
I
I
o

SUBCONSOLE - PAGE- i
USER JOR NAME TINE
RON W2143606 14.36.07
v v 14.36.08
v W2143417 14.36.47
v v 14,.36.30
v v 14.36.32
o W2143700 44.37.04
v v 14.37.02
JHG X1443800 14.38.0%
v v 14.38.05
v o 14.38.14
b v 14.38.27
v e 14.38.49
RON W2143850 14.38.50
v o 14.38.52
JHG X1143800 14.38.56
RON W2143850 14.38.59
v v 14.3%.00
JMG X1143800 14.39.04
v e $4.39.04
o ‘e 14.39.05
RON W2143850 14.39.19
JMG X1143926 14.39.27
RON W2143932 14.39.32
v ‘e 14.39.34
' vt 14.40.36
v e {4.40.36
e e 14,40.41
v W2144046 14.40.44
v s 14.40.47
v v 14.40.49
v v 14.40.49
v v 14.40.52
RERKKERK HAEXRA®X 14.41.02
W W BN KN 14.41.16
JHG X1143926 14.41.24
L.DK wEnxkRR® 14,41.28
RON Wit44434 14.41.34
LDK W3144138 14.44.38
n v 14.41.39
RON Wi144440 14.41.44%
CJR #RAXRAXE 14,44 .55
HEHNNRNR EXHNXXXX 14.41.59
CJR W2144200 14.42,0%
- o 14.42.02
‘o v 14.42.07
v v 44.42.07
' v 14.42.13
vt W2144551 14.45.54
v v 14.45.53
RON XX NEN® $4.46.14
HAXRARRE AAAARER® §14.46,35

Design Considerations 3-77

HISTORY FILE DISFLAY WORKSTATION - X4 USER -~ RON DATE 07/24/80 TIME £4.03 SUBCONSOLE -~ FPAGE-

MISTORY ALL,,CURKENT, TEXTONLY
HISTORY NOLIST,RESET,,,, X2
7 % 20206
HISTORY FRO
/7 LOAD $HIST
77 KON
/7 GOTO END
/7 END
¥EJ 07.28.07 07.29.13 00.01.06 07/24/80 KON X4 .- FUKSHISR
* UL, RON NO OFERATOR COVERAGE FROM £1:30 TO £3:3011
KON COST FUESLIK
HELF HISTORY : T
/7 LDAD $HELF ,
7/ RUN ’
77 % THISTORY SYSTEM, VIEWED, NORESET, TOTAL, CONTROLS .,
HISTORY SYSTEM,VIEWED,NO ITAL (LS, Operator entry
HISTORY SYSTEM, VIEWED, NOR 'r,mm ,rumml Siires
NBME -0
“S,Fm_',:,:m,q] Generated ‘
g § OoCL .
HISTORY FROCEDURE EXECUTING System display
/7 LUAD $HIST ’
77 RUN
GOTD SYSOVFL Generated
DI WED, NORESET, TOTAL, CONTROLS, | QCL
R SLED BY INGUIRY OFTION 3 AT Xt ‘
XEJ 13.57.23 13.59.09 00.01.46 07/24/80 KON Xi_HISTORY *EJ entry
HELE HISTORY
/7 LOGD $HELF
77 RUN
/7 % 'WISTORY SYSTEM,VIEWED,NORESET, TOTAL,CONTROLS,, |,
HISTORY SYSTE WRESET, TOTAL , CONTROLS, ., .,
HISTORY SYST SET, TOTAL , CONTROLE L L |, ,
SERL-$3MS62 ‘
77 % 2074 ©R206
HISTORY FROCEDURE EXECUTING
/7 LOAD $HIST
/7 RN
77 GOTO SYSOVFL
/7 DISFLAY VIEMED,NORESET,TOTAL,CONTROLS,
/7 SYSTEM-YES
77 END
SYS-8423 SKT CANCELED BY INQUIRY OPTION 3 AT X4
MISTORY FILE DISFLAY WORKSTATION ~ X2 USER - DRF DATE 09/08/80 . TIME 11.44 SUECONSOLE - PAGE- 1
STATEHENT HISTORY ALL,,,EONLY WKSTN USER JOE NAME TIME
¥EJ 11.35.49 11.36.38 00.00.49 09/08/80 DRF X2 SEU _ X2 DRF X2113549 14.36.38

i ENTRIES DISFLAYED

3-78

During system configuration you can also specify whether you want an
automatic wraparound capability for the history file. If you specify the
wraparound capability, once the file becomes full of entries, each new entry to
the file causes the oldest entry to be deleted from the file. When the history
file is listed, the oldest entry is displayed or printed first on the output device
you specify.

You can also specify an overflow file for the history file during configuration by
taking the override options on the IPL sign-on screen. The overflow file helps
you avoid losing entries once the history file is full. The overflow file contains
one to eight segments, and each segment is the same size as the history file.
If fewer than 25 sectors remain in the history file, the system issues an
informational message to the system console and copies the contents of the
history file into an overflow file segment. Entries in the history file and the
overflow file at this time are identical.

To print or display the contents of the overflow file, use the HISTORY
procedure. You should reset the overflow file when all entries in a segment
have been displayed, so that the system can reuse that segment for another
copy of the history file. If both the overflow segment and the history file are
full of entries, the system does an automatic wraparound of entries until the
overflow file is emptied and reallocated by the RESET parameter of the
HISTORY procedure. Be very careful when using the RESET parameter
because it is possible to reset one display station’s history entries from another
display station.

Note: You cannot request all history entries for active jobs in the system
because the results would be unpredictable and the system performance would
be slowed down.

HISTCRT Procedure

The HISTCRT procedure allows you to selectively view the contents of the
history file. Using the HISTCRT procedure, you can page forward and
backwards through entries in the history file as well as view all entries,
beginning with the most current entry, that match criteria you have defined,
such as job name or work station ID.

For more information about the HISTCRT procedure, refer to the SSP
Reference Manual.

Design Considerations

3-79

3-80

CONSIDERATIONS FOR REMOTE WORK STATIONS

Program performances can be significantly affected by whether a local work
station or a remote work station is used. Local work stations communicate
with the System/34 at a rate of 1 000 000 bps (bits per second). Remote
work stations communicate at a rate of 1200 bps to 9600 bps.

Transmission of a format that contains 4000 characters, the maximum number
of characters in a format for a 1920-character display, takes at least 27
seconds on a 1200 bps line and at least 4 seconds on a 9600 bps line. These
time estimates apply to optimum line conditions. Because of this relatively
slow transmission rate, remote work stations can be a bottle~neck for system
activity. If remote work stations seem to cause poor performance, two
alternatives are available that might significantly improve performance:

« Reducing the amount of data that is transmitted over the line
« Increasing the line speed

Of these two alternatives, reducing the amount of data transferred is the only
one directly controlled by programming techniques. In most cases, you can
reduce the size of the data stream by:

« Sending only the minimum amount of data required by an operator to
efficiently use the application. If both experienced and inexperienced
operators use the application, consider sending only the information required
by the experienced operator and allowing the inexperienced operator to
request additional information.

» Avoiding the retransmission of data and prompts.

« Using multiple formats, one for constant information such as headings and
others for variable data.

« Using the erase input operation when practical rather than rewriting input
fields.

« Using variable start line numbers or rewriting the format.

« Avoiding the use of the display screen to pass information from one job
step to another. Instead, consider using a disk file, the local data area, or
data structures or arrays to pass the information.

« Using put override for RPG Il, WSERROR for COBOL, REWRITE for BASIC,
or IMSG for WSU to display error messages. These techniques avoid
retransmission of data when errors occur.

« Avoiding out-of-sequence fields on formats. Approximately two additional
characters of data are transmitted for each out-of-sequence field.

« Using PRINT NEWPAGE and TAB for BASIC rather than letting lines roll up
on the display.

« Spooling output data to remote printers. When spooled output is sent to a
printer, blanks in the data stream are compressed. When output that is not
spooled is sent to a printer, all characters, including blanks, are transmitted.

« Avoiding functions that require the contents of the display screen to be
saved and later restored. Such functions require the transfer of
approximately 3.5 K bytes of information from and to the display station.
The following functions cause the entire display screen to be saved and can
degrade performance of a remote display station:

— Using the Attn key to interrupt the job.

— COBOL programs that use work station support and DISPLAY and
ACCEPT.

— Changing the mode of a WSU program.

~ Using the WSU menu display.

— Receiving informational system messages or messages sent via // *
statements when a format is already displayed. You can suppress these
messages using the IDELETE control command.

— Using the PAUSE OCL statement.

— Using PAUSE or TRACE in BASIC when the work station file is open.

— Interrupting and resuming BASIC programs when the work station file is
open.

In addition to the time required for transmitting data, the time required to
reverse the direction of transmission can also affect performance. Because the
System/34 communication facility transmits in one direction at a time, time is
required for the turnaround from receiving to transmitting or from transmitting
to receiving.

A 1/4 second turnaround time is not unusual. When multiple formats are
displayed before the program reads from the display screen, suppressing input
on all but the last format reduces the number of line turnarounds. (Suppress
input is specified in columns 35 and 36 of the S specification.} If input is not
suppressed, several line turnarounds are required after each format is
displayed.

Another important factor that affects the performance of a system and its
remote work stations is the size of the work station buffer, which is sometimes
referred to as work station queue space or WSQS. All output to remote work
stations must pass through the work station buffer. If the buffer is too small, a
program may have to wait for a long time before buffer space is available for
an output operation. For information about how work station data management
uses the work station buffer, see The Work Station Buffer in Chapter 2.

Design Considerations

3-81

Chapter 4. Coding Techniques

This chapter presents coding techniques that can help you program more
efficiently:

+« Memo updating
« Program communication with the local data area
« Using the PROMPT OCL statement
« Protecting records from concurrent updates in an MRT program
« Protecting records from concurrent updates by multiple MRT programs
« Using the local data area to increase the Sort program’s flexibility
+ Using data structures for multiple line displays
« Accessing a command key or a function control key in an RPG 1l program
All these techniques might not apply to your situation. For those techniques
you use, you might find variations of your own that tailor the technique to your
particular job.

MEMO UPDATING
An advantage of a work station environment can be that operators always have
access to up-to-date information in the master files. For exampie, suppose an
operator enters a transaction that reduces the on-hand quantity of an item in
an inventory master file. If an inquiry is made by another operator for the
on-hand quantity of that item, he can see the value that reflects the previous
adjustment made to it.
Allowing interactive updates to files should be done carefully because recovery
from a system or program failure can be difficult if you do not know which
updates are reflected in the file and which updates need repeating.
Memo updating is a technique that allows interactive updates to your master

files and provides batch processing to check that the updates have been
applied correctly.

Coding Techniques 4-1

For this technique, master file records must allow duplicate fields for those
fields that can be updated interactively. For example, memo balance (MBAL)
could reflect interactive updates, and balance (BAL) could be used for batch
processing.

1 10 30 40 50
CONTRL DESCR BAL MBAL
Key Description Date Balance Memo Balance
Duplicates v

Initially (for example, at the beginning of the day), these two fields should be
equal. The transactions made during the day are applied only to the memo
balance field.

The following RPG input specifications and output specifications could be used
for the master file by interactive data entry and inquiry programs. Notice that
these specifications ignore the balance field. The memo balance field should
always reflect the current balance.

I 5 External Field Name) . Field
s Field Location Indicat
Filename 2 Record Identification Codes 5 s lcators
5 3 S
or - - » s 5.
° Record Name i ;é 1 2 3 From To § RPG = 1 8 &
8 = Sl] %] FieldName | T |22 2 Zero
Line SEHEE 5 s |3 & 32 § .
E g 124 B3 = § =t |8 SIE % Data Structure + 5 1228 & | rius|m
5 k- clv iti £|o it Zlal® iti Zlo] 8|2 £E
i o >T5 é H g Position zI8 g Position Sl Position S - § g §6§] Blank,
2|8 b S S &la) Length o |= e
alniolz|8|& zlo Z|Slo 215|103 1&] | Times g
Name
3 4 5(6|7 8 9 1011 12h13]1a]15|16]17]18[19 2021 22 23 24]25]26 |27 |28 29 30 31f32|33]a4|35 36 37 38|30]40far 45 46 47{48 49 5u 51{52|53 54 55 56 57 58|59 60|61 6263 64) 65 66|67 6860 0|11 72 73 74
ol'| IMASITIER | INS] | 0] [
02| |1 g ICONTR
°j3) |T id DEISCR
o)4) |1 Cisl q&& AL
ofsi |1
ols| |1
o
1= . -
o g i Output Indicators Field Name Commas ZQY':BP:::"\C% NoSign | CR | - - :ZT;:;:
s =
HB or Yes Yes 1 P A Zsegr i
il =] .+ .
2 Filename HEHR i [} EXCPT Name Yes No 2 8| K Fiald Edit | 1 efined
S or HEEE And And End Z=2ero
i ' Record Name o i & @ @] Position No Yes 3 crt Suppress
Line 1€ oleft] 5)3 8l in - No No 4 oM™
- Alo[o] & | < 3l5| oueur |5 -
olR ‘;_o' 8 ; *AUTO £l | Record [a Constant or Edit Word
AN z wia]+ 1 2 3456 7 8 9101112131416 1617 18 19 20 21 22 23 24 °
3 4 s]le|7 8 9 101112 131a)ishefr7)is[19 20|21 22|23]24)25{26 27 32 33 34 35 36 37|38[39)40 41 42 43]44]45 46 47 48 49 50 51 52 53 54 55 56 57 68 59 60 61 62 63 64 65 66 67 68 69 70171 72 73 74
— -
°I'T JoMASTIER 0 |1
oo MEA 5
of3l lof
o4 O

4-2

Later (for example, at the end of the day), the transaction file is processed by a
batch edit program. The transactions are posted to the balance fields in the
master file by a batch update program, as the following segment of the
program shows:

5 External Field Name .
I g Field Location Field
Filename $ Record Identification Codes = g | [Indicators
or - . =
28 g T g
M Record Name i d 3 1 2 3 From To & RPG 2lggl &
3 Sy R H E| Field Name 122 Zoro
Line E E |3 3| § = % > % % « Data Structure 4 %’ 22 & |pus|m
el {0 <io = = = g
i Data olr[JE g % Pasition g gg Position § §5= Position s § K 3 5 ooos e § § ggﬁ b Blank
AIN|D{Z|O | Z|S[S[B1=] n Times on i
Name
:|‘50%39wn1:-314|5wuw'omz|zz:azazszszv 28 30 31 35 36 37 4 45 46 47]48 49 5u 51|s2|63 54 55 56 57 58[69 60|61 62|63 64|65 66}67 6869 70}71 72 73 74
T T IETR) fl]] l
02| |x 4 | 40 ICONTRL Mj_,{
QONE 14/ e
o< [MASTIER | NS : |
ofs| jx N OINTRRIL] | M2
Lol r 3
of7] I
ols| |1
c |« Indicators Result Field Resulting
& indicators
3 s I —[1R Amf-mmc
:9 And And 2z Plus |Mmus| Zero
2 s 5 Factor 1 Operation Factor 2 é ot Compare Comments
B El =
Line 12 5 Name Length H 1>1<2[1=2
E*" “ ” o & |s= |Lookup(Factor 2)is]
13513 2 2 &2 Fon] Low][Eaual
3 4 sle|7 8|s|iofisfr2f1afiafis]16]17]18 19 20 21 22 23 24 25 26 27 {28 20 30 31 32]33 34 35 38 37 38 39 40 41 42]43 44 45 48 47 48] 50 51 55]56 57|58 69]60 61 62 63 64 65 66 67 63 69 70 71 72 73 74
o[oyil u BAL AL
of2| |c]
of3} |c
0 i Ski Output Indicators Zero Balances y _ | X = Remove
- E ’ P *Field Name topring | NS R PlusSign | g g
= or Y = Date
i £ Yes 1 Alg y .| User
g Flle:rame s Arlm A:I|d EXCPT Name | No 2 8| K|, =;§': Edit | Defined
= > . Y
Line § Record Name il H .g g ;:”'“"“ :: N:s i g ; Suppress
i - - ©
a]< § of Outeut |5
OIR § 8 8 *AUTO £|2| Recora |g Constant or Edit Word
AIN[D z z ui) e @+ 1 2 3 45 6 7 8 9 101112131416 16 17 18 18 20 21 22 23 24
3 4 s|e|7 8 8 101112 13f1afis|18}17]18|10 20|21 22|23)24|25]26 |27 32 33 34 35 36 37 40 41 42 43)aaJ45 a6 47 48 40 50 51 57 57 54 55 66 57 58 59 60 61 62 63 64 65 66 67 68 69 10|71 72 73 74
d o
°nf o TER_| D 2] [| Note that these
o|2| |of WO|| batances are set
]3| lol BAL | 50 equal to one
ol4] |of another.
015
0 HERREERENI

Coding Techniques 4-3

4-4

_Backup of the transaction files is required each day (or for each batch); backup

of the master files is required periodically. Recovery can be done by reloading
the master files and processing all subsequent transactions. The current
transaction file should be intact after the system IPL File Rebuild function is
run. After IPL File Rebuild runs, the master file does not reflect the current
transactions. To bring the memo balance field to its current value, run a
program that updates the memo balance field with the transactions. Then,
after the memo balance field has been updated, all current activity has been
accounted for, and normalyoperations can continue.

A variation of the memo updating technique could be to set the memo balance
field to zero at the start of the day rather than to the value of the balance field.
As for the previous method, interactive updates would be made only to the
memo balance field.

The memo balance field would reflect the day’s activity for that item. If no
transactions for the item occurred, the memo balance would remain zero. In
order to determine the current balance, an inquiry program would have to add
or subtract the memo balance from the balance in the master file.

PROGRAM COMMUNICATION WITH THE LOCAL DATA AREA

Programs can communicate with the local data area (LDA) via data structures.
For a discussion of data structures, see the System/34 RPG Il Reference
Manual. A U data structure (U in column 18) defines the LDA to the program.
This data structure (UDS) can be subdivided. For example:

IEM RPG INPUT SPECIFICATIONS GX21-9094-4 UM/050°
& international Business Machines Corporanon - Printed in US.A,
Program Keying Graphic Card Electro Number . o Program 15 76 77 78 79 89
Programmer l Date Instruction Key 9¢ Identification
s External Field Name .
I 2 Field Location In dFi(l:jt%rs
Filename '12: Record Identification Codes 5 3
2 K]
or Y » o s
of Record Name e L 1 2 3 From] To |8 RPG 2|zl &
2 Z(3]%.°] & FieldName | 3122 2 Zero
Line |e <le g " 5 s z 8 ‘Z; « Data Structure P :°' £e g Plus [Min
k] . somaAHE Position (£ 98 Position § S ; Position 1210 g i3 — § § £ HIE Blank
ructu nopHEE 2|slé 2[515] 215[61A1=| nrimes | Lenath =5| &
3 4 slef7 8 8 1011 12|i3hafis|ie|17|18]19 20{21 22 23 2a|25]26]27 |28 29 30 21 35 36 37 38a0[40]a1]42]43|a4 45 46 47|aa 49 50 51[s2[53 54 55 56 57 5850 60f61 62}63 64|65 66f67 6868 0[71 72 73 74
of'] |zp¢ UISIE THE! LDA
of2(_[1IDIS UDIS :
o) I1 1 | 215 AREA
OEE 1] | | WOBEGICK
ofs| |z 12/0PYDATE
ofs |z 1 12[TOTPAY
o7 I
alal 1+

Note: Although a filename (DSWRK) is specified in the example, this entry is
optional for data structures used as a display station local data area.

The fields can represent whatever the programmer defines and can be used as
factor 1, factor 2, or results in calculations, or the fields may be used as input
or output fields with input/output operations.

For SRT programs, a routine is provided to load the LDA into the data
structure before the first RPG Il cycle and to copy it back to the LDA following
the last RPG Il cycle. This routine is generated if the programmer specifies a U
in position 18 of the DS input control record.

A data structure can also be used with an MRT program. However, the only
LDA loaded into the data structure is that of the first program requestor.
When the program ends, no LDA is updated.

When an inquiry is requested or when a job is placed on the input job queue, a
copy of the submitting display station’s LDA and user switches is saved. The
LDA copy is updated when the program ends so that the LDA can be tested
by subsequent programs and OCL in the same job. At end of job, this LDA
copy is not saved.

A subroutine, which is mainly for MRT programs, can be used to access the
LDA of any display station that is attached to the MRT program. This
subroutine, SUBR21, allows the programmer to read or write an LDA, which is
.identified by the display station ID. SUBR21 requires the two-character display
station ID and an indication whether to read or write all 256 bytes of the
specified LDA.

Coding Techniques 4-5

The following RPG calculation lines are used for executing SUBR21 from an
RPG program:

. Indicators Result Field Resulting
3 Indicators
S I I 2 Arithmetic
g FLUA) 2 {z [Plus Towe] Zero)
§F Factor 1 Operation Factor 2 E = Compare Comments
=
une B3 & Name Length |3 §~',">'|z |<2r—1| 77
A ERERR 4N ez
HYHEE 3 2 HE e
3159Y.’IOI!l}l]l4|!|.”|0l9707'77732‘25"1’28?9303'3731”3‘“37””40"4?L3“4§“‘7“‘9505‘5754“56565!5859506'6‘1836‘%BGSIGBQIOI'I?NI‘
T T l5UBR2 TTIT
ol2! icl RLAB P
o3| fe LAB T
ol I¢ LABL CODE
ols| fe LABL E]
oje| lc
ol7{ fg|

The meanings of the OP, TNAME, RCODE, and AREA fields are as follows:

OoP One-character field that indicates the operation code. The RPG
program places this code in the field.

| = input: read from the LDA
O = output: write to the LDA

TNAME Two-character field that contains the display station ID. If
TNAME is the same label used with the ID field of the work
station file, then SUBR21 is addressing the LDA for the work
station currently being processed.

RCODE One-character field that contains the return code.
0 = successful
= unsuccessful (display station was not attached to program)

2 = unsuccessful (display station was not a requestor)

AREA Field, up to 256 characters, that is used with SUBR21 to transfer
the LDA. This field cannot be a data structure.

USING THE PROMPT OCL STATEMENT

The PROMPT OCL statement can be used to show a display directly from OCL
without loading a program. The input returned from this display can be input
to a subsequent display in the program or can be input to the procedure in
which the PROMPT OCL statement occurred.

The format of the PROMPT OCL statement is as follows:

// PROMPT MEMBER—screen format load member name,FORMAT -display screen format name

[2] [rowon-(22)]

The PROMPT statement provides a return code to indicate which command or
function key was pressed. This code can be checked by using the ?CD?
substitution expression. The following chart shows the code returned for each
key pressed:

Key Return Code
Enter/Rec Adv 0000
Command key 01-24 2001-2024
Roll Up 2090

Roll Down 2091

Help 2092
Record Backspace 2093

Coding Techniques 4-7

This example shows the use of the PROMPT OCL statement and the return
codes to set switches allowing the selective listing of library members when a
particular command key is pressed by the operator. The use of the return
codes to set switches, which indicate which library members are to be listed, is
necessitated by the fact the SSP resets the return code to 0000 whenever it
executes.a RUN OCL statement.

LIBRARY DIRECTORY LISTING

£
;7
vy
o
s
ey
s
':’l _)"“
£F
£
s
s
s/
'
v
s
s
’7
S
lf .'"!
v
v

4-8

CURRENT SESTION LIERRARY DRFLIE

FROCEDURE MEMBERS OMLY DOMMAND EEY 1
SOURCE MEMBERS ONLY COMMAND KEY 2
ORJECT MEMBERS ONLY COMMAND KEY 3
SUBROUTINE MEMBERS ONLY COMMAND KEY 4
IYETEM DIRECTORY (ONLY COMMAND KEY 35
all. DIRECTORIER COMMAND KEY &

CANCEL REQUEST COMMAND REY 7
SWITCH 00000000 24F'?SLIE?' 7 { Initialize switches and parameter 1,
TAG FROMFT which contains the session library.
FROMPT MEMBER-EXAMPLE, FORMAT~EXaMPLE, UPST~-YES
IFF 2007230000 GOTO FROMPT
TF 200272007 CANCEL ‘
IF 202220048 SWITOH 10000000 Command key 1 was pressed; set switch 1.
IF 200772002 SWITOH 01000000 Command key 2 was pressed; set switch 2,
TF 2CDPA2003 SWITOH 004006000 Command key 3 was pressed; set switch 3.
TF 2CDo/2004 SWITCH 00040000 Command key 4 was pressed; set switch 4.
IF 200372005 FWITOH QGOOL0600 Command key 5 was pressed; set switch 5.
IF 200772006 FWITOH 00000100 Command key 6 was pressed; set switch 6.
LOAD $MaINT
RLN
COoPY FROM-747,
IF SWITCHL-1 LIBRARY-F,
IF SWITCHZ-1 LIBRARY-X,
IF SWITCH3-4 LIBRARY-0O, Select correct parameter based upon
IF SWITCH4-4 LIBRARY-R, [which switch was set.
IF SWITOHS -4 LIBRARY-SYSTEM,
IF ZWITCHA-IL LIBRARY-ALL, 0—

NAME~DIR, TO-FRINT

END

Note: The PROMPT-0QCL statement cannot be used with a format that
requires more than 88 characters of execution output data. If PDATA-NO or
the PDATA parameter is not specified, the PROMPT OCL statement cannot be
used to display a screen that has more than 88 characters of input data. If
PDATA-YES is specified, the maximum amount of input data is controlled by
the user program that reads the screen.

Using the PROMPT OCL Statement with PDATA-NO

PDATA-NO is the default value for the PDATA parameter and specifies that all
input from the display is used for parameters in the procedure. The input data
is inserted into positional parameters 1 through 11 in sequence. Each
parameter contains eight bytes; therefore, the input/output data on the prompt
screen can contain up to 88 characters. Parameters can be used for
subsequent OCL processing or passed as data to other procedures or
programs.

As an example of using the PROMPT statement with PDATA-NO, consider a
user-written procedure called SEUP, which prompts the operator for the
member name, member type, and library of a member to be edited with SEU.
The PROMPT screen displayed by SEUP will show the active session library as
the default library to be used. The statements in SEUP are:

Defaults the session library

name to parameter 3.

pm————
36 40 a4 48 52

32
SEJUR [1 PT3 RISILIR?[' T2

LEMFIORMA

;

U 211

=)

Notice that parameter 3, if it is not coded on the procedure command, is
assigned the value of the current session library. Because all substitutions in a
record are performed before the record is sent to the initiator function for
processing, the assignment of the session library to parameter 3 is performed
before the prompt screen is displayed.

If a parameter is specified before the prompt screen is displayed, the
corresponding SFGR indicator is set on. For example, if parameter 2 is
specified, SFGR indicator 02 is set on.

Using the UPSI Parameter of the PROMPT OCL Statement

When UPSI-YES is specified on the PROMPT OCL statement, the settings of
the UPSI switches affects the SFGR indicators. Each of the UPSI switches U1
through U8 that is on sets on the corresponding SFGR indicator 91 through 98.
This allows control of the display by the setting of the UPSI switches in-a
previous program or SWITCH OCL statement.

Coding Techniques

The format for the prompt screen is called SEUO1 and is in a format load
member called OCLFM. The prompt screen and its S and D specifications are
as follows:

r'

SEU_PROCEDURE MAINTEMNALCE

MEMBER NAME ---> 111
MEMBER TYPE (A/R/S/F/W/P) --->
LIBRARY ---> ORLTE [}

Saecond Edition GX21.9253- U/M 050"
Use this coding sheet only to define display screen formats for WSU Printed in U.S.A.

system/34 DiSp|ay screen FOrmat spe(:ifications and $SFGR. This coding sheet could contain typographical errors, *No. of sheets per pad may vary slightly.

n V-0l
(3403]
=
<
=<
=<

=1
|
L)
)
—
x|
=)
e
v

. ” WSU Only
> B
€ N 3| E,{:,'j; Review Insert
g Xl i B Sequence Mode Mode
Se £ o) E|E e S|5 2lals] Record Record
quence ormat 3 2 (= § §—~ § 5 E 5 \: s |8 A = Identifying ldeptifying Reserved Key Mask
Number & Name ale s |z(8182] 8 g‘s g1 a|E|< eserved 3| w| Indicators indicators -
- AR R I H HWOEEH E
3 - |e3lgl5|s21 B l5|5l 2| 2| S| & HBEHEEE g
3 El5|503|2|32) s |38 £ &) &8 Elelz|&l8l588 1 | 2]3f1]|2]3 g
P | & (Ze (S 3 |GS(a(u|S|a B0)5(¢) e |&]d &
12 3 4 5|6l7 8 91011121314{1516017 1819 20[21[22|23 24125 26{27(28}29 30|31 32{33 34|35 36{37 38 30 40]41]42|a344|a5 1464 7}48 49]50 51|52 53[54 55[56 57|58 5960 61 62 63[64 65 66 67 68 69 70 7172 73 74 75 76 77 78 79]80]
' Y]] T
[[]1]s|SED [TITT EERERERERRRERNRERRARANEEREREND
E Starting
Field Location 3| s
Name al: s
= 5 z . o2 s s
Fiel g =|g 8] > 5 8
Sequence ield A8 . 2§ I8 8 2le| = § g| Reserved g“ Constant Data £
Number Length 31 2| 553 MEREH 3 §g§ 2 2 E o |& — 2
° el =1 olgl2 HEE 2) = | £ €| =
wWsU 53 s| sl s (BRIZISIEIEE S (3| 51 2] & 2| £|E g s
°g z| 2| 318[5iF181810|3| 2 [BlEle] &1 = | = s &1E 2 K]
Field Name |5 3| el £ | 2 |zIBlelslsls3 B [eElS 25| £ HA I 3 éf
2 3 S1 2|8 55052!752 IS8R || B « | > 12 34667 8 9101112131415161718 1920 2122 23
V23 45|6]7 8 9101112131415 16 17 18[10 20|21 22|23 2425}26|27{28{29{3031{32 3434 |3536{37 38{30 4041 42}43 aafas asjs7 aslagfs0 5152 53 54 s5|s6]57 58 59 60 61 62 63 64 65 66 67 68 6970 7172 73 74 75 76 77 78 79 80)

(v
>

o
(&3]

vjojolo|lo|g|/olo|ojolo|o|ojo|o|0|o |00]|O [@FormType

Each parameter requires eight bytes of input data from the screen. In this
case, however, the operator needs to enter only one character for the second
parameter (member type); therefore, a 7-byte pad field is defined. A dummy
indicator is coded in columns 23 and 24 of the D specification for the pad
field. The dummy indicator can be any value greater than 11. In this case, the
value is 99. The pad field is protected and not displayed. This field is skipped
and the operator cannot enter characters into this field. The value assigned to
the second parameter in the procedure will be the value entered by the
operator followed by the seven blanks from the pad field.

Coding Techniques 4-11

Using the PROMPT OCL Statement with PDATA-YES

The PDATA parameter, if yes, specifies that input from the display is read by a
user program on the first input request. OCL processing does not stop as it
does when PDATA-NO is specified.

Program initiation time can cause a few seconds’ delay before the operator
sees the first display in the program. Using the PROMPT OCL statement with
the PDATA-YES parameter to show the first display can minimize this delay
because an operator can enter data on the display while the program is
initiated. When it is initiated, the program waits for the operator to finish his
data entry and then reads from the display.

The PROMPT OCL statement can also be used to show the initial display for
an MRT program. The PROMPT statement must be used in an SRT procedure
that calls an MRT procedure. For example:

(7T PROMP MBER- a{g 0 -0l PORTIN-IYESS

RTPRO
//| ILIOND. MRIT| [Prlolg/ria 1]

77 RO T
I ARERERED

In the previous example, PROCA shows display D1 and then calls MRTPROC,
which is an MRT procedure. Input from display D1 can then be read by the
MRT program.

The sample application described in Chapter 5 also uses the PROMPT OCL
statement to show the initial display.

PROTECTING RECORDS FROM CONCURRENT UPDATES IN AN MRT
PROGRAM

System /34 protects files that are shared by two or more programs by not
allowing concurrent reads for updates to the same sector of data. The system
cannot, however, protect a single program from itself or two MRT programs
from each other; this means that a program that allows concurrent updates to
a file by two or more display stations might produce incorrect results.

Situations for which a program might need this internal protection arise most
often in RPG MRT programs. WSU has built-in protection of its transaction
file so that an operator can see and change only those entries that were made
from his display station. RPG MRT programs do not have this built-in
protection.

The following information describes a coding technique for protecting records
within an RPG MRT program or COBOL MRT program. This technique protects
an indexed file and, therefore, record keys are referenced. You can use the
same method to protect direct files. In that case, the references to record keys
would apply to relative record numbers.

This coding technique uses two subroutines, RESERV and RELEAS, and a
table, TABREC. The table is used to hold the key of each protected record.
The table elements, therefore, must be the same length as the key. Because a
display station can own only one record at a time, the number of elements in
the table should be the same as the maximum number of requestors of the
program.

The following subroutine, RESERY, is executed each time a record is read for a
possible update:

c] . Indicators Result Field Resulting
=3 ndicators
B l . Arithmetic
‘:‘ g .§ T | Plus [Minusl Zero
M 2z And And Factor 1 Operation Factor 2 1 Compare Comments
Line ;-_c':. Name Length ;%1>;1=2
Elg 4l . £ 1E [CookuptFactor 277
518 5|2 2 5 &2 [Tigh T Low [Eaual
3 4 51617 8|9(10|11]12[13[141518]17]18 18 20 21 22 23 24 25 26 27 {28 29 30 31 32|33 34 35 36 37 3B 39 40 41 42|43 44 45 46 47 48]49 50 51{52|53{54 55§56 57|58 59|60 61 62 63 64 65 66 67 68 63 70 71 72 73 4
o[Jc l%E%E{R‘V BEGSR| | | |
°f2) Jo | LOKUPITIABREIC 1]
ofs| jcf | N BLANK L OIKUP[T] EC 4
QORCHRNR OVEE KEY! TIABREIC
Tl e ENDSR
ofe| |
o{7] |c|

Coding Techniques 4-13

The field named BLANK is defined in the program as a blank field that has the
same length as the key. You can also use the figurative constant *BLANK,
which always has the length of the receiving field.

The RESERV subroutine checks whether or not the requested record is in use.
If this key is in the table, the record is in use, and indicator 11 turns on. The
RPG program should ask the operator to retry his request and, thus, give the
owner of the record a chance to release it. If the key is not in the table, the
record is not in use. The subroutine finds a blank element in the table in which
to store the key. Putting the key in the table establishes protection for the
record.

The following subroutine, RELEAS, is executed when an operator is finished
with a record. The subroutine finds the key in the table and then sets the
element to blanks to remove protection from that record and make it available
to other display stations.

(g

® LR, SR, ANJOR)

Indicstors . Result Field Resulting

Indicators

A'li

. N'Id

Arithmetic

[Phus [Minue] Zero

Compaere
1>2[1<2]1=2

Factor 1 Operation Factor 2 Comments

Name Length

Half Adjust (H)

Decimal Positions

[Lookup(Factor 2)is]

ko

High] Low [Equal
[

k=

10 19 20 21 22 23 24 25 26 27 28 29 30 31 32]33 34 26 36 37 38 20 40 41 42043 44 45 48 47 48]40 50

€3 | ® Form Type

56 57|58 59]60 61 62 63 64 65 66 67 68 60 70 71 72 V3 74

1]]]

K| EC])

VIEL BL

ojojo|o]o]ojw
olw]lasajlw]ln] =is

’ooa‘ﬁ'

4-14

This technique of using the table and two subroutines protects one file. To

- protect multiple files used by one RPG MRT program, you must provide one

table per file. If the lengths of the elements differ among tables, you also need
a BLANK field for each table. You can also use the figurative constant
*BLANK, which always has the length of the receiving field.

You should have record lengths that are a multiple of 256 bytes when using
this technique. Refer to File Concepts in Chapter 2 for additional information
about file sharing.

PROTECTING RECORDS FROM CONCURRENT UPDATES BY MULTIPLE MRT
PROGRAMS

When two or more MRT programs share a file and are allowed to update it,
unexpected results can occur if you do not protect records from concurrent
updates.

For example, assume that two operators at displays W1 and W3 are using
MRT Program A to update File 1. At the same time, two operators at displays
W2 and W4 are using MRT Program B to update the same file.

w1 w2
o
‘ File 1
w3 w4
o

To show how an unexpected result can occur in this situation, assume that
while W1 reads record 14 and displays an on-hand quantity, W3 reads record
60. System protection is removed from the sector that contains the first record
read (record 14) and is given to the sector that. contains the last record read
{record 60). Because of this loss of protection, the on-hand quantity in record
14 could be read and updated by another program. Program logic must be
able to handle this situation. For example, when a field is read and displayed,
its value on disk rather than its value on the display should be used for
subsequent calculations, because the disk value is more current.

When two programs allocate inventory based on the same displayed on-hand
quantity, one of the operators may make an incorrect decision because the
quantity he sees is not most current. An editing routine in the program should
display a message when an on-hand quantity is not sufficient.

Coding Techniques 4-15

4-16

If two MRT programs share a file and both ean update that file, you can
protect records from concurrent updates by adding and using an ownership
field in each record. If possible, this field should be large enough to hold the
ID of the display station that updates the record.

The ownership field should be blank until it becomes owned (read for an
update) by a program for a particular display station. To establish ownership, a
program should place its name and a display station ID in the ownership field.
If that field is already owned by another display station, a message could be
displayed indicating that the record is temporarily not available. The operator
could decide to reread the record or continue with other calculations and return
later to reread the record.

A program could remove ownership of a record by setting the ownership field
to blank; this usually would be done when the updated record is written.

This technique simplifies file recovery because the ownership field provides a
good picture of what was happening when an error occurred. If this technique
is used, a recovery program is needed to check and reset the ownership field
in all records whenever recovery is necessary, such as after a power failure.

An ownership field can also be used to prevent an operator from incorrectly
updating the same record using two different programs. For example, assume
that the operator requests a program, begins updating a record, and then
cancels the program using the Attn key and option 2 or 3 on-the Inquiry
display. If the operator requests the same record using another program, the
ownership field would indicate that the canceled program still owned the
record. The current program could allow an option to be selected that
overrides the program name of the ownership field or could display a message
instructing the operator to recall the first program and normally complete the
transaction update. . ' '

USING THE LOCAL DATA AREA TO INCREASE SORT PROGRAM FLEXIBILITY
The System/34 local data area (LDA) provides a way to increase the flexibility
of System/34 sort programs. By initializing the LDA through OCL and then
accessing this area in the sort statements, you can allow one sort source
member to serve several functions.

For example, suppose the item master file should be sorted to include:
« All items
« Only certain items

« Items within a range

The procedure format might be:

ALL
SORTITEM § ITEMS, Item-1, item-2,...item-9
‘ RANGE, low item, high item

The following procedure could be coded for this sort:

1 4 8 12 16 20 24 28 32 36 40 44 48 52
/171 T 271/ TCO[CTAIL [olFIFSIET=IL, [DATIA-T rpdcichde T 1 I
/1/| TTF 111417/RANGE! |LIOIC FIFSIET-A], DATA4* T} [CL GE|LIE’
A/ TIF [PA0/TITEMS! [LOICAL! IOIFIFISIEITI-I1/, DIATIA-* T CTIACTGCEEQ’
/\/ EQQD SIOR '
/\/| [RIILIE INAME-INAUT], LIABELFTTIEMMST
/| FIILE] NAME[-{ouriPuT, |LINBIEIL-TTMADRI; RECIORDISIIT

/\/| RIUN

HSIOIRTIA 6A

T 3R e [A 2 e 72

LM 3] 6 11?.‘L4.2"C?3?

AL AP 411710 4020, 2] 2iC |

7L b | 147U 412, 12]']71¢215]

NMTL 1312 a | 142,240 e?

AT, 6 | L0402, 2] [T

U R L], R s

2L, 3?2 b 17U 102, 12119

LN LREHE o | L0 a2, 12112 (ea?

FINC
/I/| [ENID

Coding Techniques 4-17

1 4 8 12 16 20 24
/I/ %E 7/IITIEM LIO[CAlL] [aFFISE[T
171 TiF [24)21/MENDOR_[LOICALl DFFS
/LA WG<ORT ||
T FTICE AME- TP ABEC T
/1/ FITILE INAMEF OUTIPUT], ILABELHT
/ LRUr
"HSORTA I A [7A
FNCIL' 8"
/7 END

As the previous procedure shows, you can control calls of the sort program via
parameters; such control is particularly useful when you select fields based on
variable data in a field.

As the following example shows, you can substitute nearly all sort
specifications:

By putting the length of the control field and its beginning and ending
positions in the record in the LDA, you can pass this data to the procedure
that calls the sort program.

Note that the ?L'x,y’? option truncates all leading and trailing blanks.
Therefore, any sort specification fields used in this manner should be
zero-filled (as are the item numbers in the first example).

USING DATA STRUCTURES FOR MULTIPLE LINE DISPLAYS

Using data structures in RPG programs can reduce the number of lines you

code and the amount of array processing required to display multiple lines that
have the same format. For example, a data structure might be used in an RPG
program that has the following display:

Display Screen Layout Sheet

COLUMN
1-10 11-20 ! ! 31 -40 l a1-s0 | 51.60 | 61-70 | 71-80
1]213]al5[6l7]812[0[1 12314 5]6]7]819T0 1'2345@7899 2[3[als[6]71gToTol 1121314l sTel718Telol1T213T4TsTel7T819T0l 11213141561 7]8 617181910

01
B L S N Ry PR BN SV S | PRV EVEPR DI I
02 [T RO SOV B I EURPS BN I . [IO T | I
03
AT T T B R eS AN IR RS R IO I I ISR S IO IS I
04
T N PN I IO B L N A EPUNRS EPUUDRON IO N [S
0!
o P O T P B RSN RN P RPN EUPPEY SPPIN IOV I I
06
P L P O O N D S S IO AU B I
07
O T P S IR I PN P I S SN B
08
T T L R TRt I VR UPRN EORPRRPY EUPEPR PR SPUPPNS EUPEEPR IUPENPES IR I I
09
A l....|....1..H1....1‘...1H..l....1....1....1 RS I I
ol L LN# .11Z€4_|E_LDESFRIRTJ,QM Cloeaa ., QTY. .1 PRICE LINE A T
1
XK XX XA XXX XXX XX XXXIXXXX X)L.._. IXXXXX) Loy
12
A I ...1...,LL“AL“_“1.,._]*,.4“..1... I R I DY DU D A D
€ 13
P O P e O S NS S S PR AT SR PN PP U IR EPRPRES IR MRS I B
14
R T R (R SO PR IPUPRPAN (N IVUPUN (UMD EPU VIR IUS IVRPIN SUPPRPUN I IPUPRN SPRPRPPRD SRS RSN ST S
15
P O N L L O P L L O O I R P [I
1
S VRS P A A TODUORS PP SR SV EORPVOOS IPDUPIPS [UPEUPRS S IR IDEPN IR DU VPP SV N L
L R TN IO TR IO TP PPN BN IR EPRNA S SR | | | | | L,
18
. L N RN P NN [N I U PR o e 1 A S P I P
1
o TIPS PRI IV 10 IR S T SR NIV I P O A I B
20
P ! [| ! L I A AN IR VOO VUM TN A Lo
2
0 AR AN SRS TUURR IV N NS IRDUVN SV EVEPRUS I APRS IRPRPDS SN NN DR bt
22 .
co XX XX X e X XXX I XXIKRX o XX XXX X o XX, XXX L]
23
P N A EEU U AU SO RSO RS S U VU IS B RPN B !
24
L N R I I I P I P R
1-10 11--20 21--30 31-40 41-50 51--60 61-70 71-80
112[3Ta1516]7[8[8T011213141516171818101 11213141516 17181910111213[4151617 1813T0[112131415161 718191011 T21374151617181910 1I2l$l4!5l§li|m1!2!3!4!5!6!7!8@&

Coding Techniques 4-19

Second Edition ' GX21-9253 U/M 050"
Use this coding sheet only to define display screen formats for WSU Printed in U.S.A.

S\/S‘tem/34 Display Screen FOI‘mat Specifications and $SFGR. This coding sheet could contain typographical errors. *No. of sheets per pad may vary slightly.

n _ - WSU Only
3 é § ° 5% s 8ls qB Record Record

Sequence Format 2] 2|5 sIS_ | elB|El s|]3] 8 = -] Identifying Identifying | Reserved Key Mask
Number g Name ol ?._ 32%‘5 g u§_§ g ‘i‘ @ ‘—; Reserved 3 o |8 Indicators Indicators . =

c HHE SR M HEE NEHEEED

S &l a|2el52leg| S [SlE| 5| S|o|a S R I e I R T &
1 2.3 a4 slel7 8 91011121318f15 1617 18]19 20{21[22]23 24]25 26{27|28]29 30[31 32|33 34|35 36{37 38 394041 [a2]azlaalas a6larlas asls0 5152 s3]54 5556 57[58 S9f60 61 62 63|64 65 66 67 68 8970 7172 73 74 7576 77 78 19f80)
[[T [slzwiviolslclel { T lofefafal [T TITTTITITITITTTT] 1] EREERARNARARERRINNAREN
E Starting

Field Location = o8
Name H g - df s g
Field % 3lo| |=|E 8 EE Z & g Reserved Constant Data H

Number Length | & “_o' REH ‘;“;x=_ é g:s 22 = £ w% > g

& i HEAE L R L R 5| Slgl g £

ol wo (B2 HHEE e EE BRI IR : S

5 ield Neme |22 £ 8| 3I51E5I18I51%3] & |&(8|3| €| £ 512|538 S[773 4 5 67 8 91011121314181617 18 1920 2122 24
t 23 4 5|6|7 8 91011 12]1314]15 16 17 18[19 20|21 22[23 2425}26|27|28|29]30] 31]32 393 73839 40[41 42}a3 a4|as a6f47 48]49l50 5152 53 64 55]56]57 58 59 60 61 62 63 64 65 66 67 68 6970 7172 73 74 75 76 77 78 79 80)

0 2(3(¢[p Ty LN# | I7em o] |olelslele]s[plr] /o

D 23}/ ig4olY QTlY PRt ICE| (4! ME| [TIOTAL

D|OIL N é5111 6y

ololLin2 5112 ey

D|0|L M3 51113 l6)Y

o[04 M4/ 6511 4| |6Y

olole w5 - oi51/151 lelY I

olol vl 651/ le| l6ly

olol/W|7] 65[117] l6lY

SAATE 65718 l6ly

o|oLn|? 651119 16)Y

olojlu| 710 6/5120] 6Y

ool ¢/ 65121 f&v

o0 LN/ |2 65122 6Y

D

o

D

D

D

D

This section provides a partial RPG program that uses a data structure to show
as many as 12 lines of an open order on the previous display.

On each line of the display, the following fields are shown:

Field Name Description Length
LNNO Line number 2
ITNBR Item number 6
DESCR Item description 20
QTYOR Quantity on order 4
PRICE Unit price 8
EXTEND Extended price 10
THSRRN This relative record number 5

The sample RPG program uses an array, OLN, for the fields on the display.
The number of elements in the array is 12, which is the number of lines used
on the display. The length of each element in the array is 65, which is the sum
of the lengths of one line of fields and includes blanks between the fields.

4-20

The following sample RPG program uses a data structure that corresponds to
the format of a line on the display:

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS GX21-9092 UM/050"

Printed in U.S.A,

B =
IERS
SEFSTE international Business Machines Corporation
- 1.2 75 76 77 78 79 80
’:vograrn Keying Graphic Card Electro Number PagemM Program
Programmer] Date Instruction Key i
Control Specifications
For the valid entries for a system, refer to the RPG reference manual for that system,
8 c
H : :
3 2
3 o2 2 -
=) < 4E 2|8 g
el 2 Number'% m:?-?%"\”*@ = g: 5 5
Sizeto |315]Sizeto § sl 5] loterim |2 Reserved B HE 2 g Il |.ls ol lglel_lz
. 8| Compite | 51 & Execute El o€ Positions{S M E M HE M EEREEE
= N 1 o| ¥ |B12[53|¢ 2 SEIEHEHHHEERHREBEE R
glg 2 2lz 5 glel-lslislzl2ig|=| E|lalE E{C| 8|92
3 8 3| & 2| 2|5 & € 3l g |el€lLlz]elela|ai5]|2| ElotE Elm| 8| 8]5
2 8|3 8| & |3|alslz|E 2 2 & |g|=| BIEle|2|E|R|B|2| 2|8 |2 &|a|a o)
3 4 si6l7 8 ghiolnji2 13 14]1sl16 17{18]19]20]21}22] 23 24 25}26{27 28 20 30_31 32 33 34 35 36{37]38 39}40|41]42{43|44]a5]a647{48|4950] 51|52 59 54 55[56|57 |58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
of [[[l [T1 l [HENEEEREREREN
File Description Specifications
For the valid entries for a system, refer to the RPG reference manual for that system,
F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or = Extent Exit Number of Tracks
End of File of Record Address Field S for DAM for Cylinder Overfiow
of Fi W
Record Address Type | |&| Nameof Number ot Extents
Filename Sequence i o Device Symbolic |21\ el Exit
o eofFile 3 Device 2 Tape
File Format rganization or ° .
. w & Additional Area 3 - Storage Index wamd
Line w a = H File
S g & —s Condition
= =| Block Record « {i=|Qverflow Indicator|'@
& SIE @[Length | Length 25 5 U1-us,
ta Q& B -3 [N " i Continuation Lines 2| ve
E g 3 [Iy = <= Location L | o B
2 =la |wi< External Record Name K Option Entry < &
4 51617 8 9-1011 1213 1415]16]17]18[19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38[39/40 41 42 43 44 45 46 [47 48 49 50 51 52{53{54 55 56 57 58 59 |60 61 62 63 64 65 6667682247071 72}73 74
T T T T T 'Zl—— 1] ——WT o _H—'\
02| [FWIORIKISITW| [CIP| | IF 15 ORKIS T
oo ¥
o[s| [FlojRolplelr| | |zlc| | IF] o DI/]S|K,
s/ |F
ole| [FIITEMMSIT| ZIC| | IF 2516R| 6A 3] 10[1SIK
0y7] |F
ols| |F
olg| |F
110f |F
F
F ins
71 1L 0L 69 8 (999 GO ¥0 £9 79 19 09 65 6 LG 95 55 v5 ©5 76 G 05 6b 8% Lv 9v SV b b Zb L¥ Ob 6L 8 LE OC S€ Ve £C 2€ 1 OC 62 82 L2 OZ 5 PZ S 22 12 02 61 81 L1 ST SI Wi E1 2l (101 6 8 £ 8 8§ v € £ 1

*Number of sheets per pad may vary slightly.

Coding Techniques 4-21

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS GX21-9091 UM/050°

Printed in US.A.

==
TERS
EZFZTR International Business Machines Carporation
- 12 75 76 77 78 79 80
Program Keying Graphic Card Electro Number . D] ; Program
. age o -
Proara , Date Instruction Key —_
Extension Specifications
E Record Sequence of the Chaining File
Number
N inina Fiel ol ”
lumber of the Chaining Field Tableor Z' . N'U"‘b?' Length s 3 Table or Length sia
tire |o To Filename able o ntries | o of Z|<| Array Name | of 3|2 Comments
g Array Name | Per Entries 13| (Anernating | ¢ el
= . Record | PerTable | Entry Jefsl el "y elg| &
From Filename . S12| 3| Format) Sl Els
E or Array 1 S
5 HEE] 1354 5
uw alo alo|n
3 4 s|lef7 819 1011 12 13 14 15 16 17 1819 20 21 22 23 24 25 26}27 28 29 30 31 32|33 34 35|36 37 38 39]40 41 42|a3]aa|4s {46 47 48 49 50 51)52 53 5415556 57§58 59 60 51 62 63 64 65 66 67 68 69 70 7172 73 74
o[1] |l [alRIRIAIY] [ellemleVT] IeEMETH [Zls] Ivel. | lolF] 1D/ /is|plLialy] |Plols|z|7|Zlowvs| [ON| |OINE] IL|1INE
of2| [ebE[[M0]-| lolF] [elclelmlewiTis] IZIM |ARIRIAY| IZiS| THE| MUMBIER! 0F| DIZISIPLIAlY| [/ NESS| [ViSIE|D
0i3| |E
- . B R 0 I IO O O 4
o+l Je lolun 12| 65 T _
05 E
ole| |E
of7} &
o8| e
E
L L I
E
Line Counter Specifications
L 1 2 3 4 5 6 7 8 9 10 1" 12
3 2
. 8] . £ s N
Line & Filename _ e »5 s |s [P [. U U = 5 Ll I
5 |5 5 5 5 T 5 5 [T Eles s l3s 5 |35 R R 5 |s 5 |28 s (e85 R ERS
: cB S8 22|58 of (B8] nf |EE| ef g o |F| cElEC| e |5l 2 |Ef| pE|iE] eE B e (it
5 £ 3 El €5 |28l €5 |85 e5 1235l €3 1250 €3 |85 €383 <3123 €323 =3 1|83) €3123] €32 (23
w Az 172 iz oz} 4=z |62 4z |o=2 s2Z (o2 gz joz] sz oz dz |oz] dz ozl az |(bzf az gz} Sz |z
3 4 sle [7 8 9 1011 12 13 14|15 16 17]48 19§20 21 22f23 24§25 26 27}28 2930 31 32§33 34|35 35 37|38 33|40 41 42143 44] 45 46 47 ag 49]50 51 52}53 54| 55 56 57{58 59|60 61 62}63 64|65 66 67{68 69]70 71 72|73 74
1]1) |L
1|2 L
L

*Number of sheets per pad may vary slightly,

I . % External .Fvaeld‘Name Fiod Location ' dF.ieI d
Filename g Record Identification Codes 5 P ndicators

. é Frcordame ; ; g? : - : b From b % Fiegphfume :; é !; é:

o E ;Q 5' Position ?- Q § Position gl § Position 2 g a g Do e ; g E% s Fus [:m
:::. 2:D§§§ §§ §§ iggig gc‘:‘::' Leongth E 553 E o

T I DEMTAITL TFITLE |- TEW [RECOIRD

ol2) |TIORIDIDIET] | INIS| | @3] ; | 4] (CIL ClL

o3| 1T 3 CORDNO

ole] |1 9 | AW ICUSTTING

ols| 16 | 18@anyo

b 19 Z%QéT B8R

UL 25 | 311/2[ARICE

L 25| | |219/9UDOLIAR

L 319 | 3LR2IUCENTS!

o E 32 3@ LININO

ML 1| | [H49DTHSR

12 e ITITIE EIR |RIILIE! |- LTEM IRIECORD

'[o] L TIEMMS|T] NS 5 || Al iCM || 2 (CIB

el | 9 | 218/ |DEISICR

e Il OIRKIST N[S |

tis) [z} ||

4-22

iz RPG INPUT SPECIFICATIONS Gx21.9098 U 050°
== International Business Machines Corporation 12 Printed in US.A.
75 76 77
Program Keyin Graphic Card Eiectro Number Program 78 79 80
| 9 Page of e |
Programmer I Date nstruction | ey —
I 9 External Field Name Field
5 Field Location Indicators
Filename 5 Record Identification Codes 5 <
H b1 2
or - @ - |3 =
® Record Name | »5‘?’ 1 2 3 - From To é RPG sl &
E Z 3 z,- Lf § Field Name 2|2 T Zero
tne |2 S5LE 11s |1z 2| |2]%]x| oatastcwre 3 2 |Eel & e |Minus|or
s HHH position |Z|2] 81 position [Z2|2] 8] Pposition [Ej2|BIE|2 £ z |5 ¢
2 Data olR g .g § 'osition p E 5 O ti s S 5 ositi sls| g 5[oocurs S H % H 32 Blank
ot noR&EEE z|olo z|olo 23|53 1 Times tength {0 o |20] &
345 7 8 9 10 11 12|13]iafis|rs|17]18 |19 20|21 22 23 24f25|26}27 |28 29 30 31| 32|33|34| 35 38 37 38|30]a0]a1]a2]a3[aa a5 av a7)4g 4v 5 s1|52]53 54 55 56 57 s8[s9 60f61 62|63 €4]65 6667 6BJ69 70|71 72 73 74
A
of" 0R&1A plairlal SITIRlvICITIVIRIE] [Tlo] [RIEIFILIEICIT] OIME] [Di115IPILIAY| |41 NMIE
0f2 D)
of3
\ s
04 R
0[5 R
ofe /] R
o7 gl AR
o|s

e
W

G [Ex e[~
< [~<[&[R AL WL [W[~

Ll B ER N N N al SN Y (S

NN R [EWaN[=]Ds
~

S RMmonmc ok oo N~

I

X[

[N [TRB W W[~

w
e R R R e L R e R A s N A L R L R H R A R R L R R N

I

ZL L OL 69 89 L9 99 S9 ¥9 £ Z9 19 09 65 8S LS 95 G5 S £G £5 G 05 69 8 L¥ 9% SV bb £b v Lv OV 6€ 8¢ L€ 9 S PE €L CC LE OF 62 BZ LZ OZ GL Z €2 ZZ 1L OZ 6L BLLLOLSLPLELZILL 0L 6 8 L 9 S v £ 2 1
“Number of sheets per pad may vary slightly.

Coding Techniques 4-23

RPG CALCULATION SPECIFICATIONS GX21:9093 UM/050"

EE_EE.: International Busiess Machines Corporation Printed in U.S.A.
. 1.2
rogram eyin raphic Card Electro Number rogram m”’ 76 77 78 79 80
:ro:rammu lDate :'s"":'i"" :evh " " Pageof 0_1 s ificati
c p Ilndicatori Result Field EEEESEE:
3 z % T { Plus jMinus| Zero
§§ And And Factor 1 Operation Factor 2 ?§ : = c‘::m,.,l.z Comments
Line é;: Name [Length [|olTS a1 <2[T=7
Elz 2|« - & £ - {Lookup(Factor 2)is]
2 85 2 § 2 g z High | Low {Equal
3 4 5167 sjoltof11121314|15]16§17§18 19 20 21 22 23 24 25 26 27 {28 29 30 31 32|33 34 35 36 37 3B 39 40 41 4243 44 45 46 47 4849 50 61|52{bs|v4 55|56 57|58 59|60 61 62 63 64 65 66 6/ 68 69 20 71 72 73 74
o[Tolcl¥ [Tlzl7Iz|Alz|Zle] [E]o]/[7] lclw]alklAlclTIelRlS
of2iglcl | W99 MalvIE| M|/ = kaf?
o|3|ple 9l olviel 7.7 Dioj 7|2
o[«glc] |)¢ Sle[Tloln 99
ofs|flc (
[ol6 ”lc
ol7]gle \
olslglc NITITITIAILILIZIE] [ARRIAY! ZINDEX
o9 |4ic) 2|-|A|0,0)2 X 210
[[olhc 2- Aplo|2 WXTIRRIM | 510
' |fc TIRML 6
(2 |flcpk READ| Twe| |ORDER DET AL IAZILE
|3 diC N X\ TIRIRIN CIHA/INORIODIETT] 510
4 1g1C 50 SIEITION| 41(R
15 d]c 50 5070 lEND
1[s|glchk IRE Mlp| MME| ZTEM| MIAISTIER FIiLlEl FloR| DE|ScIRTIPITZIOW
T lle TITIW6R ClWiAl MIITIEMMST 5|
"12dlel | | 151t olviE| |!IMo| |0Els|cIr] '|pie|s|c|R
'[ololcie Ilal i LIATIE] ElxTiEWDIEID] PRI IClE Sleln! Flol] olviriplviT
210 dlc QTYOR VILIT] [PIR|1ICIE EXTIENMD] | 912
2/ lc OV E|LIEXTIEVID DolLA 7
23/4lc Vie| [ENTIEM Eicewrls] | 12
24glcil Mo v TA| |si7iRlv|cTuIRE] WA | [To| lolviTlelulT] 1ARIRIAY| IEILIEMIEMT]
2i519¢ MOV IE| IOIUITIA! LN X
2' 6Mc ..J_._. T U U0 U I W — -
ZL 12 0L 69 89 L9 U9 GI ¥Y €9 2O L9 09 65 8BS LS IS SG PSS ES ZG IS OS BY 8V LY v SY YD EV ZP 1P OV 6E 8E (C YL GE PEEE ZE L€ OC 6C BZ LT ST ST WZ EZ TZ IZOZ 6L 8L L1 91 GL WL ELZL UL OL 6 B £ 89 & ¢ E Z |
*Number of sheets per pad may vary slightly.
RPG CALCULATION SPECIFICATIONS gx&s?zsiwosw
— International Business Machines Corporation : — - T - 75 76 17 78 79 80
Pro:ammev | Date 'K"e‘:'l:“g""" zev e " Pw@“ o_l P'W',a'_" i
. Indicators Result Field Res}ilting
C 5 = I I i %
2 g g And Aad Factor 1 Operation Factor 2 % : P“‘scl:’;’;:‘lz"° Comments
Lire |2 —3‘ : Name Length T‘a 3 ‘>zlﬁﬁ
ENZ 2l - - £ 12 [Eookup(Factor 211
3 4 5 f ?? f 10](1 |é’: 13 14516 17|18 19 20 27 22 23 24 25 26 27{28 29 30 3 34 8 g £ o f o [
olialchd ICMIEICIK| [Tlol [SlEle) |Zle] A7] |elnio] [ZlF] |50 olul [1]2] TTTT]
o2|2lc X colmp] 12l /12 |ARRIAY] |Zis| [Flelele
o3 |2icl | /2 ADD| | |4 X NEXIT| |BLIEMENT,
of«iZlc| | W|/j2 MX(TRIR Aplo| | |2 YITIRRM elxir| [Rlel| [Rlele
olsigicl | N[/ 1A 61070, [RIT|RINZ FO|R| |NIEIXNT] [AlIINIE
o[siZlc 7RG | EWo END| |0l [PRI0\61RIAM
o7 2 c
o8| |e
ofe| |C

4-24

RPG OUTPUT SPECIFICATIONS CX219080 UM/DG0"

Intesngtional Business Machaes Corporstion Printed in US.A.
12
Program Keying Graphic Cardl Electro Number e [D o Program lﬁlﬁruﬁﬂ[ﬁgl
Programmot Date Instruction Key *
o
o |5]space] skip Output Indicators e | Commas | 2010 Batances |y oo | en X Remove
|~ Field Name 10 Prnt Plus Sign
i 'S " |s.9
={H o y v 1 A g |Y Doue User
4| Filename HHAN | EXCPT Name " o Fuod Edit | o0
> or grz)2 And And End Yes No 2 Bl Klz zuo elined
L >(Ria]< L Pos No Yus 3 c |t
'3 al Postion Subpress
Line g Record Name oleli] & = || n . No No a bl wm
uw alolo] & | = Slof Guwar |2
olR 3 3 3 CAUTO sl Record o Constant or Edit Word
Alnlo 2 z wla @l v 2 4 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24
3 4 5 7 8 9 10112 3papsheli7)18(19 20921 22|23{24)25|26 |27 |28) 29| 3 37[38] 30040 41 42 a3|aafah 46 47 4B 49 H0 HY1 L7 H3 b4 Hh H6 47 LB 50 60 61 62 63 64 65 66 67 68 69 70|71 72 73 /4

ORKISITINV / : NS

“ILINV|O|1CIE|

O/0O0I0J0IOC[OC[/O/O|0/O/OCO[0j0o/O0O06[0(0l0 OlO[O[=

0 B
ZL 1L OL 69 B9 £9 99 G9 ¥9 £9 Z9 19 09 65 85 (G 95 S5 ¥S €5 25 1S 05 6 8 (v O SY bY € TP ¥ OF 6€ 8L (€ 9€ GE VE €€ Z€ LE O 6Z 82 L2 9T SZ ¥ €2 22 1ZOZ 61 8L L1 9L SL vL CLZLLL OL 6 B £ 9 S ¥ € Z 1t
*Number of sheets per pad may vary slightly.

Coding Techniques 4-25

4-26

ACCESSING A FUNCTION CONTROL KEY OR COMMAND KEY IN AN RPG Ii
PROGRAM

This section presents an example that briefly outlines the steps required to
access a function control key or a command key within an RPG |l program. In
this case, the Help function control key is enabled and used in the program.

In the example program, a display called DISP1 is displayed. When DISP1 is
displayed, the operator has the option of pressing the Help key for additional
information. When the Help key is pressed, the program displays help screen
called HELPO1.

In the display screen format specifications for DISP1, a Y must be entered in
column 27 and the key mask must be entered in columns 64 through 69 to
enable the desired keyl(s). (In this example, a key mask of 5 indicates that the
Help key is the only key enabled.) For further information about these
specifications and other key mask values, refer to the description of the $SFGR
utility program in Chapter 4 of the SSP Reference Manual. The following is the
S specification for DISP1:

S h N - WU oy
> 2l 8
s . e Er;te; Review Insery
5 _g P .)é K] Sequence I:ode Mode
» g o B Slal = S ecord Record
f‘equence Format g 5 :4 § §‘_ E] E - ‘: E §. 2 tdentifying identifying Reserved Key Mask
umber Name ol =|% j2(B182] 5 (5 S g1 3| | £ [Reserved g 2| indicators Indicators
> = | 5 las(8lEl88 <58 S| £l 88 1. 3|28 3
£ €l sicolElclsa| Blals| 2| 28| & slolZ(BlE[3lE 1 |2 |s]1]2]s i
2 2| &|2s|3282) 3 |28 2| 5| 8| 3 ﬁﬁﬁééEEL t
123 4]5 6|7 8 91011 12131a)1516[17 18)19 2021/22]23 2425 26]27}28}29 30|31 3233 34]35 36137 38 39 a0]a1]42}a3)44]as Jaslaz}as a9j60 51]52 53|54 55]56 5758 5960 61 62 63}64 65 66 67 68 6970 7122 73 74 75 76 77 78 79J80H
sl 'SP '
[[{IspSPl TTTTTTIETTTIITDAT[ITdIT] | IS TTTTTTTTTTTT]

In the display screen format specifications for the help screen, HELPO1, and for

all other displays issued by the program, Y should also be specified in column
27 and a key mask specified. The following is the S specification for HELPO1:

p - - WSU Only
= "E
sl M Mode Review Insery
S| &g ’é o] Sequence Mode Mode
alE|E ° HH ||« [T Record Record
Sequence Format ER R 3 5| ¢ 5% sE| S § 2 \dentifying \dentifying | Reserved Key Mask
Number g_' Name ol LR EEES 515 K 8 3l)< Reserved Ei 2| Indicators indicators
B = | S |aslBleSS| < EIS13) £ 8| 8 2| 13|58 b4
€ gl z|edlEslzal 2lElS] | 8| 5] 8 MREHEEH H
£ Sl 5|505z|88) S 1of8| 2] 2| 8|8 HEEEEELRR R ER REERE &
2 S| ajzel8e@z| QoS a|la[d]|ad o{0(5i@| 2 |&le) =
123 415 6|7 8 910 111213 14]15 16]17 18}19 20|21)22|23 24J25 26}27|28]29 30|31 32]33 34{35 36|37 38 30 40]41]a2}a3]aa|45 [a6|a7}a 4950 51]s2 53|54 55{56 57|58 5960 61 62 63[64 65 66 67 68 6970 7172 73 74 75 76 77 18 79/80)
SHELLP
[[IshELP@L [T][[]] HREAERERE! [1] EERENNRSEERNEEERRERRENERNEEEN

Within the RPG Il program itself, two WORKSTN file continuation lines must
be coded: One line identifies the INFDS data structure, and the other line
identifies the INFSR subroutine that will receive control when the Help key is
pressed. For complete information about the INFDS data structure and the
INFSR subroutine, refer to Chapter 13 of the RPG Il Reference Manual. The
following are the WORKSTN F specifications for this example:

File Description Specifications

F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or = Extent Exit Number of Tracks
Endof Fi of Record Address Field = for DAM for Cylinder Overflow
nd of File Y
2
i Soquence Record Address Type ﬁ . Symbolic ? tj:kr’r: Ei'" Number of Extents
ilename @ Device Device 3 Tape
" " _
) anle Forma 5 § s Storage Index Rewnvrd
Line &) = ; 5 File
Q 2| Block Record x [E[0verflow Indicator| 7 Condition
g Sis @l Length | Length sla Rey Feld | & U1-Us,
= S & > € 45 Starting i} Continuation Lines Nzl ver—
€ g Sl lol= 3 <z Location_| | 5
2 Sle{wle External Record Name K Option Entry 3 &
4 sl6l7 8 9:10 11 1213 14 lis|re[17]18[19 20 21 22 23 24 25 26 27 28 20 30 :uﬂg:g_:g_:_s_sswaaasao« 42 43 40 45 46 47454950%52 “l“.ﬁii’.iiﬂiﬁ%ﬂ&ﬂ“”ﬁﬂ‘m” 72|73 74
o2 |*p SIAMPLIE| [PROGIRAM [TiO, SHIOW WISIE! OF| HELP| KEY
AaNE
o[+ {-WOIRIKSTIN el | IF| || | 115 WORKSTIN
o IF KIINFSR HELPS
oe| IF KINFIDIS! [IINFIDS
of7| F \
08 F "
ole| JF 4
1o F
F
F
70 1L 0L 89 89 L0 99 99 9 £0 70 1D 09 60 65 (5 95 30 63 £ 5 15 OF 6b O Lb O ¥ vy Cv Zb 1b OF 68 8 L O ST W EC ZE 1T OE GL 60 LZ 9L 62 DL EE G2 IZ OZ GL BI L1 I SI I EIZI 1101 6 8 £ 88 P € 2 1

In this example, the INFSR subroutine is called HELPSR and the INFDS data
structure is called INFDS.

The INFDS data structure is defined in the | specifications for the program:

s External Field Name Fi
I £ Field Location | ndi;’:fm
Filename 3 Record Identification Codes & <
or e e s | B
g| Record Name wlen | € B 1 2 3 From To |8 RPG 2jsgf &
{5 |2 8 = . 53
4 SRl g 2| FiedName | 3 |2 2] B Zero
Line g ;g 8 1 & I] =] §E Data Structure b= ; 2 el E Plus IMi
ion |Z]e| € ition =018 i Zlal 8 £ £E
5 S olr |t E 3 Position " g §| Position 119 3 Position | =18 5 ag n-\; P g g] 5 3 Biank
) ru ~nlsizis1é 21516 2|ol6 2[0)8)BIT] 1\ Times | Lenath S |E8] i
me
4 567 8 9 1011 12Jiafrafisfie)17|18119 20|21 22 23 242526 [27 Jo8 29 30 31 35 36 37 45 46 47]48 49 5 51{62f53 54 55 56 57 58]0 60f61 62|63 64) 65 66}67 6s)es 10)71 72 73 74
! NEEIDED| o IEIL FUWCT!O’_M KIE

AEE]
)|

bS

l[e]o]olo]ef«
bed b e f [@
—q
>
—
: =3
(7]
2]
—
3
-
<
(2

Coding Techniques 4-27

The *STATUS subfield (shown as STATUS in this example) contains a 5-digit
code that identifies the exception condition. In this case, the code 01125 .
indicates that the Help key was pressed. Lo :

' The HELPSR subroutme whnch gets control when the Help key is pressed is
coded in the C specifications for the program: .

IBM / RPG CALCULATION SPECIFICATIONS oxarsss uos”
Pronnm@ I Keying Graphic - Card Electro Number {. Pmmof Program 75 75 77 78 79 80
Programmer Date tstruction Key .
C k Indicators : . Result Fisld Resuiing.
§E 2 Avithmetic i
2 g % And And Factor 1 Operation Factor 2 N L 5 i;— PIMSCILV"::’TG'O Comments
Line ig‘l}:’" \ e . 9"9'1" EE::: 1l:a:to1r;)?s‘
Eg‘j é g g EE High | Low [Equal
3 a slef7 sfofrofitfi2fr13[1af16[18[17[18 19 20 21 22 23 24 25 26 27 26 29 30 31 32[33 34 35 36 37 38 39 40 41 42[43 44 45 46 47 48)40 50 61 5556 57)58 59]60 61 62 63 84 65 66 67 63 69 70 71 72 73 74
o el lelRloR[[SlslRIloRt NEl: ColulﬂgL:. PIAISEED] iRl MWrleN] | HELP! 1S pnqg skl
12| 16 HIEILIP R , :
o3 c*
ol4] |c SITIATVIS CloMP| L]l 2/5 99! | HEILIP| (KE|Y!
°o5| e 9 GOTIO THIL
ois| lchq loTHIEIR IFuINMCTli oM IKEIVIS| IcCioitiD fcmecgeo S| lepiLitiomws]:] |- il
o] ek TIATUIS, | | | CoMP IILLIZIL 20 1N KEY
°|5| ek STATIVIS Co L 212 2/2l | RojLiL] viP
°l°| ic S[TATIVS COMP| 1gL(L|2i3] - 2 RoL L] Do
o] [oi TAT CoMp iL]L2le 2] | CLIEAR
] jehe STATWIS CoMNP| dLL[Z6 26| | IREIC| IBACIKSPACE
2l e XCp : ‘
s el T SETIOF 7 '
141 (9 NOTHILP; ENDSRI* ¥GETIIN' BEGI N| IMEMW CVYICIL
sl |e
18] |c|
171 ol
BEIN [~ ! v
1] jc
210 Ic
C] T
C|
C
C|
c ... L.l s—..—L._._. ___AL._
2L 1L OL 69 B9 (9 99 99 D €9 29 Loosessstseessvesszs»susevsvusvsvvveozvwovasssmst;:vtsczen:osezazL S GT PZ L CZ 1ZOZ 6L BL LI OLGL VI CLZI UL OL 6 8 L 8 8 ¥ € T +
*Number of sheets per pad may vary slightly. .

4-28

In this example, the subroutine compares the value in STATUS to 01125 to
determine if the Help key was pressed. If the Help key was pressed, indicator
99 is on. When the EXCPT operation is processed, the HELPO1 screen is
displayed. The operator can then read and use the information on the display.
Assuming there is only one help screen, the operator then presses the
Enter/Rec Adv key, and the rest of the calculations are processed.

Note: If the operator enters data on a display and then presses the Help key,
the entered data is lost when the screen is redisplayed. The screen is

redisplayed in its original form.

At the end of this subroutine, factor 2 of the ENDSR operation causes control
to return to the beginning of a new cycle. Possible values for factor 2 are:

Factor 2 Description
blank Control passes to the RPG Il error handling
routine, which in most cases causes the

program to halt.

"*GETIN’ Control returns to the beginning of
a new cycle.

'*DETC’ Control returns to the beginning of
detail calculations.

‘*CANCL’ Files are closed and the program
is canceled.

The following are the O specifications for displaying the HELPO1 screen:

; RPG OUTPUT SPECIFICATIONS GX21-9090 UM/050°
Fmes Printed in US.A.
égim' Internations’ Business Machines Corporation

K 12 75 76 77 78 79 80
Program Keying Graphic Card Electro Number e [D o Program
Programmer I Date Instruction Key _
K
0 Slspece| skip Output Indicators . Commas | 2ev0Balances | o gio tcq [- | X = Remove
I B Field Name to Print Plus Sign 5. 9=
& .
S ; o Yes Yes 1 A [g |Y=Date [,
Filename g HEN EXCPT Name |[E Yes No 2 B | K Field Edit) 5o o
Line or S5 . . End No Yes 3 c e {Z= Zewo
Record Name | & =4~ And _ And | Position No No 4 |{o|m Suppress
g FloJell] » EI2f P
e alojol 212 (3 H 3 315] outwur 3 Constant or E£dit Word
5 o[R ® | <)2 2 z “AUTO 212| Rocord |S
¢ AN . | “ 1 23 45 6 7 8 9 101112131415 16 17 1819 20 21 22 23 24 °
3 4 5|6}7 8 9 1011 12 131415]16]17{18]19 20]2¢ 22|23|2425)26 |27|28]|29{30 |31 |32 33 34 35 36 37|38 40 41 42 43]44145 46 47 48 49 50 51 52 53 54 56 56 57 58 50 60 61 62 63 64 65 66 67 68 69 70471 72 13 4
olt] [op¢ [DitIBIP{LA Y] HIELP| ISICIREIEN
ol2{ |o € qb
’
o3 fo Kol | | MHIELIPIEL
0|a o
ols| fo

Coding Techniques 4-29

4.30

Chapter 5. Sample Applications

Sample Order Entry Application
This section is an example of the steps taken during the design of a simple
order entry application. The application is not intended to be complete and
workable, but it does provide examples of some of the major design steps and
development steps. The steps described are:

« Documenting application functions)
« Designing the screens

« Designing the files T Design Steps
+ Designing the reports
« Documenting program logic J
. Building a development library)
« Building a development menu

« Creating development procedures

« Creating screen formats Development Steps
+ Coding the programs r
» Testing the programs

« Creating program documentation

« Creating production procedures

« Creating production documentation

Sample Applications 5-1

DOCUMENTING APPLICATION FUNCTIONS

Ordinarily, the first step after selecting an application is to document the major
functions to be performed by the application. In this example, a diagram is
used to document the functions. This diagram:

« ldentifies operator transactions that will be handled by the application
program. A transaction is the exchange of information between the operator
and the application program.

« ldentifies files that will be used.

« Identifies reports to be generated. In this case, the picking slip is the only
report generated.

Figure 5-1 shows the functions to be performed by this order entry application.
Notice that screen IDs are assigned to the major screens and that files are
identified on the diagram. Also, no effort is made to identify error and
exception processing. These items will be considered later as screens are
defined and as more detailed program logic is defined.

E1
Customer Number
Order Number

>

‘Master
Files

E2
Ship-to:

Miscellaneous
Information:

E3
Item:
Quantity:

Transaction
File

Transaction
Hold File

. The operator enters the customer number and order

number for the order.

. The application program reads the customer's records in

the customer master file and the ship-to master file. The
application program displays the names and addresses for
the operator to verify.

. If requested, the application program displays a screen

that allows the operator to change ship-to information
and miscellaneous information.

. The application program writes order header and ship-to

records to the transaction file.

. The operator enters the items ordered, one line at a time.

. The application program reads the item'’s record in the

item master file. For each valid item entered, the applica-
tion program writes a record to the transaction file.

. When the order is complete, the application program re-

writes the order to a transaction hold file.

. An application program prints a picking slip for each

order after it is placed in the transaction hold file.

Transaction
File

Transaction
File

Transaction
Hold File

> Picking Slip

\/ |

Figure 5-1. Order Entry Application

Sample Applications 5-3

DESIGNING THE SCREENS

After the major application functions are documehted, the screens are usually
defined. In this example, the following screen standards are used:

« The first position of a line is usually not used; this allows you to place an
attribute character in that position rather than in the last position of the
previous line when you use SDA (Screen Design Aid).

« Each screen has a unique screen ID. The first character of the screen ID
identifies the application (E indicates order entry), and the second character
is a number. The screen ID is the first output/input field on the screen and
is a nondisplay field in positions 3 and 4 of line 1. For debugging purposes,
the screen ID may be displayed and then changed to a nondisplay field after
the program has been tested.

« Screen names are formed by combining a three-character abbreviation of
the application, a one-character screen designation, and the two-character
screen ID. For example, screen E1 of an order entry application named ORD
would be ORDSE1.

« Each screen has a title, centered on line 2 and underlined.

« Each screen has a 48-character error message field on line 23 and/or line
24. Error message text is provided as a constant from within the program.
(A 48-character field was chosen to make coding of the RPG Il output field
easier because a constant of up to 24 characters can be coded on one RPG
Il output specification.)

« A legend of operator options should be shown in the lower-right corner of
the screen. If more space is required, the lower-left portion of the screen
(above the error message line) can be used. Command keys are listed in
order.

« All constants are displayed with normal intensity.
« All output/input fields are displayed with high intensity.

« When an error is diagnosed, the field in error is displayed in reverse image,
and the cursor is positioned at that field. The description of the error
condition is displayed on line 23. This error description is also displayed in
reverse image. A put override operation is used to display the error screen.
The indicator used to request the put override operation is the same
indicator used to display the error message, to reverse the image of the
field in error, and to position the cursor. '

« The screens usually do not instruct the operator to press the Enter/Rec Adv
key. The written operator instructions will indicate that the operator should
normally press the Enter/Rec Adv key to enter a screen.

« For all input fields on a screen, the operator must press the Field Exit, Field
+, or Field - key after entering information in the field.

« Automatic record advance is specified for the last input field on a screen so
that the operator need not press the Enter/Rec Adv key if all the fields are
entered.

« Numeric fields are right-adjusted and zero filled or right-adjusted and blank
filled by specifying a Z or B in the adjust/fill entry on the D specification for
the field.

Figure 5-2 shows the form that is used for laying out the screens used by this
application. An area is set aside on each sheet for programming notes that
apply to the screen. These notes are used when detailed logic of the
application programs is defined.

In this example, the screen design process further defines the requirements for
the programs. When each screen is designed, the error conditions and
exception conditions that can be handled by that screen are identified, and any
command keys required to handle those conditions are assigned.

Figure 5-3 shows the layout sheet for screen E1, the first screen. From screen
E1, the operator can:

+ Key the customer number and order number and request to enter additional
information by pressing command key 1.

« Key the customer number and order number and request the screen for
entering items ordered by pressing the Enter/Rec Adv key.

« Cancel the order entry process by pressing command key 7.

Figure 5-4 shows the layout sheet for screen E2, which is displayed only if the
operator presses command key 1 from display screen E1. Ship-to information
and miscellaneous order information can be entered from screen E2.

Figure 5-5 shows the layout sheet for screen E3. From screen E3, the operator
enters the individual line items in the order. The operator enters a line item on
line 20 of the screen. In this application, lines 13 through 18 show the last six
lines entered. In addition to being able to enter a new item, the operator can
use this display to step back through the order, to change or delete previously
entered line items, or to cancel the order.

Figure 5-6 shows screen E4. Screen E4 is used to display the previously
entered lines. Because this screen is displayed using a variable line number
and because it is an output screen only, the screen ID is not coded with the
screen. The screen ID is still assigned for documentation purposes.

After all the screens are laid out, a list of all the screens, their IDs, and where

they are used can be compiled. Figure 5-7 shows such a list for this
application. ‘

Sample Applications

5-5

Screen Name:
Description:
Screen ID:

COLUMN

Display Screen Layout Sheet

1 .
Sl R TR SAUPIN ISP PO PN EUOUUUNN BVUUIDUO PN ST SPDVINS DY SVRDIPE SUDEN NI IR
RS N P EV I E U SR I I I TR | ! Pl
03 : :

NS I Ll TN TR SO I S [| 1
04
I N DA B | I R | | I DU B
05
O T I S TR IS PUPRN ERPEVRN IV SN SRS SR SRS IEVED SN I ST
o ‘
R S I L EU A R B R IO S S ECPN IR A (U DR

07

AT P IR IR IR EUPRN EPUPPRN EUPERN I PR SN SN SN S S S
08 .

R T S (N T S SRR ST (PR IR NP PR ST VAP S BRI
09

T e O O P St A P PN (PN P B
10

R SRR RN ISR IRV IRV STSUUTUNS S RPN IR RPN EPUPIN EPUPSY IR IS SR S
n

P E Y N IO IR PP PR SIS EPEPEPITN IR PR PP PSR AR PP B
12
-3 PR RS ENN ISP PP IV RTUPOVIN DRIPUPN VEPEVEPS EPUVIPEPIS PUVEFUS EPRPRPOS ST ISP I RN
@13

P s (N S (R AP R S (P R R A N I
14

R E O DR PR PP PRI PN PSP VPSP PP PP PPN PP I
15

T L L R N P S I I I N I B
16

P S (S U P PSRN SRR PSP IR PN I SRS SV SR B
17

T N N N I S I (P IR R B e AT DR S
18

BN S N AP IS EA P SOUPND SN R APPSO AN B N S P S
19

AN PN BRI IV I E U I EDIVNN S PN ISP IPEPSS S UPRA IN ST BT
20

. I I | | | L] b] [S S B

21 :

P N E DRI ENN IV AN VU UPUN IV RN IR EPDRPENY B PN SR Pl

22 :

N ES S S R RPN PP SIS (UPEP IRV IV PO PR IR A
23 .

PN SRS BN IR IR IR BN I ST LRV (P R (PR (PR !

24 . .

N RS N BN N S R S P B PN UPFEAN IS IR I BT

1-10 11-20 21-30 31-40 41-50 51--60 61-70 71-80
112131alsT6l718]91011121314151617181gTo112131al6le 171819101 1121314l sl6 17181910l 11 2T 3TaT6 6l 71819 0112131416161 71819101 112131415761 718191011121314165161 7181910

Programming Notes:

Figure 5-2. Form Used for Laying Out Display Screens

5-6

ot
02

03

05

ROW

20

21

22

2

%]

24

Screen Name: ORDSE1

Description: Order Start Screen
Screen ID: EL

Display Screen Layout Sheet
COLUMN

51-60 61-70 i 71-80
[31a15]6171810101 121314151617 11Z131a[516[718

= N T S D D B D S S B I DO DS BT S
N U I D .‘.LlQ*A‘DlERL._H&TRY | ! | L
R TN TP I IV IS IV BTN DN I SN S DA | |
R DR T UES DU U TR ST IV DT R I e ool
oot CUSTOMER NUMBER . . XXXXXXot iaeeaduna.}. | L.
B T B N B A T B I .p,.Al“uJ““L%“_
... 1.... DRDER NUMBER 1)(XXXXAX.H; Initial .|....|..A.;,...11...; il]
P T L S A TP 'L R ol e b
e e b e L Pesition LLL..L.ﬂLL...J_l_.__._*_
DS DS S AP RPN SOUPOtINS IPRPAULS NN S IPPPIE PP ST I L
R T S T I S B B I DU I S R B
Cod ...1...,LL‘.M,LJ_L_..,,L_M,..;_L,_;.,l....1.‘..l....1...‘1..“1,.A..L.u4_‘__u_14__‘_‘_
T T L L T T T T T T L O I
T N P SN B B SIS SO ISP IV IO S RS I DT
Ce] ! A.IA..|....|..11...|....4...,1....1..‘1‘.g‘ Lot
R T N S IR A DU D DU IR S NI P
R T O RO P IO SN B IO I DU DN Dol
L.l | I I B D e [T IO I S I D
R P Y AT B I I SNUUOR D B g..A.luuLLLL,LUL; s
.MlA__LELsngMng -or- C TE C_ORDER 1
R 1._.4. el], ..1....1.‘.‘1“..;,“.,! o L
: } . ! 3 .. [CKT. . (CANCEL ORDER EMTR.Y]
_INVALTD, COSTOMER NUMBER, REENTER 1o)t oot toee oot

S I IR B E N ST P P RPN IV BN BN (N R S

1-10 T 11-20 21-30 | 31_40 41-50 51-60 61-70 71-80
112134516l 71890l [213TalsT6 7181901 [213TaT6l6 17181910 11213141516 1718190l 112131416161 71818l 1121314151617 1819T0(112131415161 718131011 1213141516l 718191 0f

Programming Notes:

- Other error messages:
INVALID ORDER NUMBER, REENTER
- The operator should exit from this screen only.
~ Control totals could be prompted for here and balanced at the ead
of the order (this will not be done in this example),
- // PROMPT will be used Yo display this ecreeu .

Figure 5-3. Layout of Display Screen E1

. Sample Applications

5-7

ROW

02

03

04

05

06

07

08

Screen Name:
Description:

Screen ID:

ORDSEZ
Ship-To or Miscellaneous Information Entry
EZ

COLUMN

Display Screen Layout Sheet

Programming Notes:

= This screen appears if CK1 was pressed when screen

was displayed .

= Ship-to information will be displayed if a ship-to record was read.
The operator can override Hhe information.

. . ! ! |
L | Al 'l. .l.J.ORqE.RI.ENTRY ' ' ! | .|
N . l A B D Cursor ! | |
(CUST. NO . .1)0000()(] jORDER NO !XXXXKX / Posmon‘ ! : L
el Lol | ‘| | ! , | ! | |
,.§0L|DTO|)(X .| .;SHIPITD& T T T T X
|.|X.| ,.;X|g IXIIT .| T - X 1.
il XXX X XXX AT .gXXXlX)(XXK
T N WP I D I I I I N S S I S D B
| CUST. PO XXXXXXXXXX, . ., SALESMAN NO XX 0. . j....loeofeilona)il
N D S B e N D D DU S D DU DU
L | A S I I S B B D DA N B S
I N I I A P B S BRI I D D D
Ll | N I VR I I I S I I E S S B B
L1 | S I I I N S I IV I B I
e 1 | A D D D D B B D D D D DU S
! N I I D B N I I SR I N DI D D
[N D I I S D I I B I U e
[N D D B D B D S BN D D S D DU
R I P B B I DU D D R B B
Lot] Lol ! I | L] !
PR TS NN IVUN I SRS I S NV B D D R | I
P A IS DA S B A R D D
el L L. L. el L, c L
1-10 11-20 21-30 31—40 41-50 51-60 61-70 71-80
1[213[a]516171810l0l1121314l5l617 18101011 12134l 61617 1818 Tol 1121 31aTslel 7180l 0l 1121314 6161718100l 1 1213141516l 7181810 1 121314l5l6l 718I8T0]

Figure 5-4. Layout of Display Screen E2

E1l

ROW

Screen Name: ORDSE?3
Description: kine Ttem Entry
Screen ID: E3

Display Screen Layout Sheet

COLUMN
1-10 11-20 T 21-30 T 31-40 41-50 51-60 61-70 71-80

112(314(516{7]81910[112]31415]617[8!9/0{112/3]4]/5]617]18]90]1]2]13]4[5l6[71819[0{1]2(314[516!7181910(1121314i5/617181910(1(2(3]4!5]6[7 1 4]5]6(7181910
.E.5‘|...|...|.‘.‘;.. L [I N I B | | A
1 ORDER, ENTRY ..\| Lo

N S D R NI I I N I] L L

... ICUST. NO IXKXXX{K ORDER NO . | XXXXXX . . | 1. .y it]
hm_l_p,‘_Lq_L_‘ PN IR RPN R RN I SN S I S N B B
_J.AS.QLID._IQ_JX_;_LJJS_‘_4J_+M,,LA_LT4F_.XL,J_*LL¢4+LMLBMWM
AAA_LJ#_;L_LJ&_LAI_H_L q:L,J__,L*J_._._;_)L PRI S R J_L,_.XLA,_L, FERY WY MU Y L;_;ﬁu_‘x_b_._._._
PR BN rIx PRI B e LMM_XMJ . ‘.4_;LA.J.A,L.I__._A_J&.‘.__._L_._J_.__L,,.J_.J,_.._J e - L;.L_‘_MX_I.XM
EPTR SPEP PR IO IDUP PO I TN TSN VU IS EUUPII EVEA EPRANN IR S
_CUST. PO KXKXNXXXXX, . . JSAL-QS.}MANNQX&_L TP RSP EV PN I I B

P EPSEN B | o I TSP SN NN SN [

LINE TTEM NQ 1. QTY.. . OESCRLOTION . 1. oot qm@gﬂww
] PP S SN PO AN AN SN SPITE I RSO EPUUVTNIN BPIPI ENSFEVIFIN R RIS W
NEPEPR PP U BT IR SR R 1_._,_1_._,_4_L_|_._'__J_._._4_4_‘_._,_4_‘_1_A___l u_l_L_.._L_‘_L_._;__._._
L Lines for displaying —.1| DI PSR PP PSS EPUIPSP PRSI N EOIP SR B B o
_ previously entered e b e L ‘LLJIIII ol

|
“items

- uﬁL.Lu#gLL,u,,LJH,,.;_,,iL.g.4+..4|. N N IR I B
2

A new item is entered
L P I IR SOV DI IS IR S N S B

on this line
01 | XXXXXX XXKXXX= . XX XXXXXXX . XXXXXXKX~ L
e \ Cursor Position ‘—*—‘—'—‘—*—‘—'—‘—L*—‘—‘—‘—I—L—‘—‘—‘—L*-‘ *‘—L‘KZL*—]E&AMR } .

l . €K3_ . PAGE BAC KMALL&ALLEMS__
IML'AL,IQ ITgM NU ﬂggg, Rgguﬂ: R I CK8 . (CANCEL THLS ORDER .

s PP PR RPN PR AT R R
1- 10 11-20 21—30 31—40 41-50 51-60 61-70 71-80
11213[45]el7[81910[112[3]a15161 7181910 1121 3]aT5[617 188101 12131415l6 17181910 11213141516l 71818l 0112131415161 71819101112131416161 71819101121 31415161 7181910

1
N IO I AU P
]
A
|

Programming Notes:

- This screen appears (1) if the Enfer/Rec Adv key wae pressed when
screen E1 was displayed, or (2) after screen E2 appears.
- Field backspace should allow the line wumber fo be entered
(used to change o line item).
- If only alire number is entered , the program should delete
the line ifem.
- Lines 13-18 ave reserved fo display up fo six previously evtered items.
- Tfem number and quantity can only be enteved for new line items .

Figure 5-5. Layout of Display Screen E3

Sample Applications 5-9

ROW

“Screen Name: ORDSELI'

0
02

03

05

22

23

24

Description: ~ Entered Items Display
Screen ID: EY

Display Screen Layout Sheet
COLUMN

1-10 71-80
11213T4] 616l 7181010 1T21314T6]61718I91011 [213]4Ts[6 1781910 1[2T3T4T sle 7 I8 IS [ol 112731 T ST6l 7181910 1121314151617 1819101 1 T21314T5T6] 7I819Tol1 [2]13TafSI6718I8I0

XX XXXKXX | XXXKX |, X mmrpmrmm X XX XXX XX XXX XXKXX=

NI I I I [[] I | !

P A A I I I [|) ! | !

1 R IR RPN I ISP N BN IS B | | 1 [

N I R I I N .1,.,ij.‘..| A I S I B
A N SN R RIS I I B U S SR SR IS S S D

I I I I I I I U I I B WM@%
I I IR VR VI VRN I I IV I) [I I

T T

S IS NPT I I IS SN VRN IV EPII N S P I I I

N AP RN R AR B RN BN ISR P PP I S I | il
NI AN I U I ST BV I | I [B ol

o LWWMWMW
RPN P I ISP PPN IV IR SN PSR I IR I I B I I

%LLALL#_LL@W_LMA.AI*...g..gbu_L.*.*luugy..|..4.4‘4....|...
R N B e 1Mgl.AunL.“L...JJ.,,.l.,.,l.....L....L. N I I

—

ISP S N RV I U IV S | I IRV VU IV I DV I
PR RN IR R I RN IV IR IR ISP N IO SR BNV I I
P I I EAUPIA RPN N R S S BN N B B IR IV
R IR N I NI R IR B I SR BN I I I I S
| | } | + !
RN RN IV R IR I I B U S I [N IS AN B S
] A IR N IR N P BN B 1 L.] L

P N I R I I I BN I AUV IAPI I I A I B

NP M IR PR B DR BV B PRI ST S I R il 1

T y +- + T

ot b v Lo L o L e b b o b e b b b o b e b e Lo

‘ 1-10 11-20 21-30 31-40 41-50 51-60 61-%0 71--80
11213[a[5]6[7[8]ol0l1121314]5T617181910(11213(4]5l6171819]01 1121314l 5l6 17181910l 1121314alSl61718Igl0l 1121314151617 1819101 112131al6161 718190 11213141561 7181910

Programming Notes:
~ Fields are displayed only after editing is done.

~Up fo © lines will be displayed.
- Variable line numbers will be used - stavt on line 13.

Figure 5-6. Layout of Display Screen E4

Screen
D

E1

E2

E3

E4

Screen
Name

ORDSE1

ORDSE2

ORDSE3

ORDSE4

Where Used

Order entry start

Ship-to override and miscellaneous information
Line item entry

Line item display (on variable line)

Note: The screen IDs are used in the input specifications for the RPG I
program to identify the screen being read and to turn on an input indicator.
The screen names are used in the S specifications for the screens and in the
output specifications for the RPG |l program to display the desired screen.

Figure 5-7. List of Display Screens Used in the Order Entry Example

Sample Applications

5-11

DESIGNING DISK FILES

At this point, disk file requirements are defined and new files designed.

Master Files
In this example, three master files are used:
» CMAST-the customer master file
« SMAST-the ship-to master file
+ IMAST-the item master file

For each of these files, the fields in the file are listed along with a field
description and the field length. Alphameric fields are denoted by an A, and
numeric fields are denoted by an N. The from and to locations and the field
names are assigned. Figure 5-8 shows the list of the fields in each of the
master files. Meaningful field names are used when possible. The first:
character of the name identifies the file.

Notes:

1. The record layouts do not show all the fields that would actually be required
in an order entry/billing application. For example, no on-hand quantities are
shown for inventory control.

2. Numeric fields are not packed in this example so that the example will be
easier to follow. In a real application, numeric fields are normally packed
{with two digits stored in each byte except the rightmost byte) to conserve
disk space.

File name: CMAST

File organization: Indexed

Key: Customer number (CUSNO)
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name
Record code—MA 2 A 1 2 CRECCD
Delete code-D (blank if not 1 A 3 3 CDELETE
active)
Customer number 6 0 N 4 9 CUSNO
Customer name 25 A 10 34 CNAME
Customer address 25 A 35 59 CADDR
City 22 A 60 81 CCITY
State 2 A 82 83 CSTATE
Zip code 5 0 N 84 88 CzIPCD
Salesman number 2 0 N 89 90 CSLSNO
File name: SMAST
File organization: Indexed
Key: Customer number (SCUSNO)
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name
Record code—SA 2 A 1 2 SRECCD
Delete code-D (blank if not 1 A 3 3 SDELET
active)
Customer number 6 0 N 4 9 SCUSNO
Customer name 25 i A 10 34 SNAME
Customer address 25 A 35 59 SADDR
City 22 A 60 81 SCITY
State 2 A 82 83 SSTATE
Zip code 5 0 N 84 88 SZIPCD
File name: IMAST
File organization: Indexed
Key: Item number (ITEMNO)
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name
Record code-IT 2 A 1 2 IRECCD
Delete code—D (blank if not 1 A 3 3 IDELET
active)
Item number 6 0 N 4 9 ITEMNO
Description 20 A 10 29 IDESCR
Price 6 2 N 30 33 IPRICE
Warehouse location 5 A 34 38 IWHLOC

v Figure 5-8. Record Layouts for Master Files

Sample Applications

5-13

Transaction Files

For this application, two transaction files are used. As an order is being built, it
" is placed in a partitioned direct file called TRANS. Because, in the example, a
maximum of three display stations can be entering orders at one time, the file
has three partitions. Each partition is assigned for the use of one of the three
possible display stations. o

TRANS

>

Order 101

Order 102
e~ —1]

Order 103

o)

After an order has been completely entered, the order is copied from the
TRANS file into a file that contains all orders that have been entered. That file
is called TRANSLOG. After the order has been copied from TRANS, the
partition that the order occupied can be used for another order. In the
following diagram, the operator at display station W2 completes an order; that
order is then written to the TRANSLOG file.

TRANSLOG
T

M Order 101 g?g::lewd
~

@ L > Order 102

@/ Order 103

N

The picking slip is printed from the information in the TRANSLOG file.

TRANSLOG

Picking
Slip
- Order 102

L0

Record 1
2

301

By using the intermediate partitioned file, the designer can achieve the faster
response times that normally result from direct file processing. Also, a simple
access algorithm is used because, after a record is written to the TRANS file,
the program simply increments the relative record number by one to determine
the location of the next record in the order. Using the two transaction files
requires less disk space than if one partitioned direct file were used. If one
partitioned transaction file had been used, each partition in that file would have
to be large enough to hold the maximum number of orders that can be entered
from any display station.

Note: An alternative to using a partitioned direct transaction file would be to
have a different transaction file for each user or display station. The unique file
names could be formed by appending the user ID or work station ID to the file
name (for example, FILE?WS?). The technique of using multiple transaction
files normally works well if the data entry program is an SRT program.

The following paragraphs briefly describe the file layout and record formats for
the transaction file.

TRANS File

TRANS file organization:

1 100 101 200 201 300 301

Area used by Area used by Area used by Control
display station 1 | display station 2 display station 3 Record

Note: If orders can be entered from several display stations, consider making
the first record of each partition a control record. This reduces the sector
contention /lockout that might occur when several users require the control
record at the same time.

Records in TRANS file:

128 Bytes
Order Customer | Customer
cu Number | Number Name Address 1 Address 2 Zip
" . Ship-to

Cs Name Address 1 Address 2 Zip

IT . " ftem Number Line Description | Quantity Price | Amount
No.

IT " o item Number | Line Description | Quantity Price | Amount
No.

Relative record number of Relative record number of Relative record number of

last record used in partition 1 last record used in partition 2 last record used in partition 3

Sample Applications

5-15

The transaction file contains three different record types:

« The customer record, which is identified by a CU in the first two positions.
The customer record contains the order number, the customer number, the
customer’s address, the salesman’s number, and the purchase order
number.

« The ship-to record, which is identified by a CS in the first two positions.
This type of record is optional.

« The item records, which are identified by an IT in the first two positions. An
item record exists for each line item entered by the operator.

All records in the file must be the same length. In this example, the records
are 128 bytes long. Because the records must all be the same length, some
disk space is wasted in each record. If the space required for different record
types differs greatly, you might want to break the longer record into segments
or place the different record types into separate files.

Figure 5-9 shows the record layout for the TRANS file.

File name: TRANS
File organization: Direct
Record length: 128

Decimal Data Location
Field Description Length Position Format From To Field Name
Record code-CU 2 A 1 2 OCODE
Delete code—D (blank if 1 A 3 3 ODELET
not active)
Customer number 6 0 N 4 9 CUSNO
Order number 6 0 N 10 15 ORDNO
Customer name 25 A 16 40 CNAME
Customer address 25 A 41 65 CADDR
City 22 66 87 CCiTY
State 2 A 88 89 CSTATE
Zip code 5 0 N 90 94 CzZIPCD
Salesman number 2 0 N 95 96 CSLSNO
Purchase order number 10 A 97 106 CPONO
Ship-to record:
Record code-CS 2 A 1 2 OCODE
Delete code—-D (blank if 1 A 3 3 ODELET
not active)
Customer number 6 0 N 4 9 CUSNO
Order number 6 0 N 10 15 ORDNO
Ship-to name 25 A 16 40 SNAME
Ship~to address 25 A 41 65 SADDR
City 22 A 66 87 SCITY
State 2 A 88 89 SSTATE
Zip code 5 0 N 90 94 SzZIPCD
Line item record:
Record code—IT 2 A 1 2 OCODE
Delete code—D (blank if 1 A 3 3 ODELET
not active)
Customer number 6 0 N 4 9 CUSNO
Order number 6 0 N 10 15 ORDNO
Order line number 2 0 N 16 17 OLINE
item number 6 0 N 18 23 ITMNO
Item description 20 A 24 43 IDESCR
Quantity ordered 6 0 N 44 49 O0QrYy
Price 6 2 N 50 55 OPRICE
Amount extended 8 2 N 56 63 OAMT
Warehouse location 5 A 64 68 IWHLOC

Figure 5-9 (Part 1 of 2). Record Layout of TRANS File

Sample Applications

5-17

Field Description

Decimal
Position

To

Field Name

Control record:
Record code—QU
Relative record
Number Used by
Display Station 1
Relative record
Number Used by
Display Station 2
‘,Relative record
Number Used by
Display Station 3

1"

RCODE
RRif1

RR#2

RR#3

Figure 5-9 {Part 2 of 2). Record Layout of TRANS File

Record 1

0 N O o d W N

TRANSLOG File

For this example, the TRANSLOG file is also a direct file. The control record,
which is the first record in the file, identifies the last record used in the file.
Orders are placed in the file as they are completed by each display station
operator. The first record of an order immediately follows the last record of
the previous order written to the file.

Note: If inquiry programs use this file, an indexed organization would probably
be better. The record key could be the order number plus the line number.
The inquiry program could locate an order by chaining to the first record of the
order. If the order file was a direct file, an inquiry program would have to
search for the first relative record number of the requested order.

TRANSLOG file organization:

Relative record number of
last record used.

cu

Ccs

IT

IT

cu

CSs

T

The record layout is the same as for the TRANS file except for the control
record.

First order
entered

Second order
entered

Sample Applications 5-19

5-20

DESIGNING THE REPORT

Figure 5-10 shows the picking slip, which is printed for each order. The top
inch of the form is reserved for the company’s name and address, the phone
number, report title and number, date and page number, and any instructions
to the customer. :

The printed lines are arranged so that as few lines as possible are printed.
Because this form is used by warehouse personnel to pick the order, some
information has to be entered by the picker. Examples of information entered
by the picker are PICKED BY, DATE, and QUANTITY SHIPPED. The form
should be long enough to list the average number of line items in an order.

Note: If warehouse locations are used, the line items could be listed in order
by location. This type of listing requires an intermediate sort step performed
by either the sort utility program or a user-written program. The example does
not sort the line items by warehouse location.

Considerations for Designing Output Reports

Certain considerations to be taken into account when you are designing the
output report:

« Leave enough space on the left edge of the report in case you have to bind
the report.

. Sepai'ate each field on the report by at least one space from an adjacent
field.

» Group information items that are similar.

« Number all pages of a report. By using page numbers you can have the
operator restart the printing of a job from a specified page number instead
of the beginning of the job in the event that you have to restart a job that
was printing a report. To restart the printing of a job on a page number
other than page one you should use print spooling or code the restart
capability in your program.

« Provide meaningful headings for the data on the report. Abbreviations,
codes, and special symbols should be avoided. If you need more space
than is available on the output design sheet, use several lines for long
headings, rather than abbreviating them.

« Remember that the appearance of the report is important. The report should
be easy to read and self-explanatory.

1 NN i[z2|212(212|2]2|2{212|3]|3|3[3]|3|3(3|3[3]|3|4|a{4|a|4|a]4]4|a14(515|515(5|5|5/5]|3[5(6]|6|6|6|6|6{6i6|6(6|7{7|7{7|7|7|7(7|7|7 sisislsl|9
2|3[a4|8]|6]|78|9|0]1|2|3|4(5]|6,7|8{9|0]1|2(3|4|5]|6|7[8]|9]|0O|1|2|3|a(5]|6[{7|8]|9]|0|1{2|3|4|5]|6]7|0}9{0]1|2|3|4|5]|6|7|8|9(0|1]|2|3|a|5|6|7|8|9]0)1|2|3]a|5|6{7|8]|9|0|1|2]|3|4|5|6]|7|8]0|0
d) DZI0/EIIESTIGHT d. %%’_
/| {181 |
PHl0 !
(16/02) 1244 -j02]
|
: | X
]
L AN NJEJIC AS
Us JOR \TE) DER | {3 ;T_g' ;
; ‘]
fevin wiilt ntid it
ber ! g e EXAGiHSatt=0
X X

Figure 5-10. Picking Slip for Order Entry Application

Determining Program Requirements

After the screens are designed, the program requirements can be further
identified. For this application, a transaction-oriented approach is used. Each
program-processes a limited type of operator transactions.

Program names are formed by combining a three-character application

abbreviation and a three-character function abbreviation. For example,

ORDHDR is a program from the order entry application, and this program

processes header records.

Program Function

ORDHDR Processes the screen on which the operator enters the
customer number and the order number. This program also
allows the operator to change miscellaneous information
about the order.

ORDITM Processes each line item after it is entered.

ORDPRT Prints a picking slip for each order after it is entered.

Sample Applications 5-21

After the program requirements are determined, some basic design decisions
can be made. In this example, the following decisions are made:

« Keying by the operator should overlap program initiation. For ORDHDR, a
// PROMPT statement will be used to display screen E1 before the
ORDHDR program is loaded. Before ORDHDR ends, it will display screen
E3 so that the operator can be keying the first order line while ORDITM is
being initiated. -

« ORDHDR wili be an SRT program. The SRT attribute .is selected because:

- Data entry overlaps program initiation; therefore, initiation time does not
significantly affect response time.

~ The program is in main storage for a relatively short time.

— All three operators will probably not initiate an order at the same time.

« ORDITM will be an MRT program. The MRT attribute was selected mainly
because the program is in storage for a long time and because all three of
the operators will often be entering line items at the same time.

« ORDPRT will be a no-requestor-terminal (NRT)} program. The NRT attribute

was chosen because ORDPRT is a resource-handling program that requires
no operator interaction.

After the program requirements are identified and some of the basic design
decisions are made, the logic of the programs can be defined and documented.
In this case, the logic documentation consists of a flowchart and a written
program description that identifies:

« Data to be keyed

« Data to be sent from the program to the display station

» Required disk accesses by type (input, output, or update)

+ Editing to be done

« Options available to the operator

« Calculations to be performed

Figures 5-11 through 5-13 show the flowcharts and program descriptions for
the programs in this example.

5-22

Order Header Program

ORDHDR

Screen E1

No Error Message

‘INVALID CUSTOMER NUMBER’

Valid
Customer #

No Error Message
‘INVALID ORDER NUMBER’

Valid
Order #

£2 \ Yes

4

Cmd Key 1

Write Header
Customer and
Ship-to Records
to Transaction File

EOJ

Figure 5-11 (Part 1 of 2). Logic Documentation for ORDHDR

Sample Applications 5-23

ORDHDR Program Description

ORDHDR is an RPG Il SRT program that performs the following functions:

-

Accept input from either screen E1 or E2.
2. Enter the customer number and order number on screen E1.

3. If command key is pressed (KG indicator on), set on external switch U1
and LR indicators. Because the program ends, skip the rest of the
calculations.

4. From screen E1:

a. Chain to the customer master file, CMAST, to read the customer’s
record and also chain to the ship-to file, SMAST.

b. If the customer’s record is not found, write the 'INVALID
CUSTOMER NUMBER, REENTER’ error message to screen E1.

c. If the order number is blank, write the 'INVALID ORDER NUMBER,
REENTER'’ error message to screen E1.

d. If the customer number and the order number are valid and if
command key 1 is pressed (KA ison), display screen E2.

5. From screen E2, accept ship-to override and/or miscellaneous order
information.

6. Write to the TRANS file by:
a. Using a table lookup to find which partition to use. For example:
Use an array to read three relative record numbers, RR1, RR2, and

RR3.
TABWS TABP
w1 1
w2 2
W3 3

b. Chaining to the control record, relative record number 301.

c. If the corresponding last used relative record number (RR#,1) is blank,
Z-ADD (1 x 100 + 1). If it is not blank, use RR#,I+1 to write the
customer order header, CU record code, including the user ID.

d. If screen E2 was used, chain to RR#,1+1 and write a second record,
the ship-to and miscellaneous record, CS record code.
e. Chain back to the control record and update the RR# array.

7. Set up the line number for the items by initializing it to 1.

8. Display screen E3 showing customer's name and address, ship-to,
miscellaneous information and headings for item entry.

9. Seton LR.

Figure 5-11 (Part 2 of 2). Logic Documentation for ORDHDR

5-24

)

ORDITM

Cancel Order;

E1l:

EOQJ

Cmd Key 8
No

End of this
Order; Rewrite

Records to
TRANSLOG

Read Items

For New Order

E4:

Backward and
Display Them

Item
Number
Entered

Validate item
by Chaining to
IMAST

Old Line
Number
Entered

Error Message: No

ITEM NUMBER AND
LINE NUMBER MISSING

Delete Record

No

With Multiple
Lines

Error Message:

Valid Item

Valid
Item with
New Line
Number

Valid
Item with
Old Line
Number

INVALID ITEM NUMBER,
REENTER

Write Record
to TRANS

Change Record
in TRANS N

Figure 5-12 (Part 1 of 2). Logic Documentation for ORDITM

E4:
Display Item

Sample Applications 5-25

ORDITM Program Description

ORDITM is an RPG Il MRT program that performs the following functions:
1. Accept input from screen E3.

2. The item number and quantity are the minimum information to be
entered.

3. Save the work station ID and indicators. Set up a field for the variable
line number and code the program for three display stations.

4. If command key 8 is pressed {(KH is on), the current order being worked
on should be canceled. Reset to zero the corresponding relative record
number in the TRANS file for the display station. The order will not be
written to the TRANSLOG file. Display screen E1 to enter another
order.

5. If command key 2 is pressed (KB is on), the order is complete. Chain to
the control record of the TRANS file to find out how many records have
to be copied to the TRANSLOG file. Chain to the control record (the
first record) of the TRANSLOG file to find the last relative record used.
Read a record from TRANS and write the record to TRANSLOG until all
records for the order have been copied. At the end, update the control
record of TRANSLOG. Display screen E1 to enter another order.

6. If command key 3 is pressed (KC is on), read the control record of
TRANS and read backwards and display one at a time using screen E4.
Display a maximum of six lines at a time. Then command key 3 can
again be pressed. Save the last relative record number displayed.

7. If an item number is entered, chain to the item master file, IMAST, to
read the item'’s record. If the item record is not found, write the
‘INVALID ITEM NUMBER, REENTER’ error message to screen E3. If
the item is found, write the record to the TRANS file, IT record code,
and update the control record of the TRANS file.

8. If a line number less than the current one is entered, a record will be
changed or deleted. If only the line number is entered, the line item is
deleted. Read the previously entered items backwards from the TRANS
file and tag the one to be deleted by placing a D in position 3.

9. Add one to the line number to indicate the next item to be entered.
Display the previously entered line on screen E4. Then display screen
E3 to accept the next line item. Be sure to check the variable line’s
value. Its initial value is 13. Add one for each line displayed until 18 is
reached, then reset to 13.

Figure 5-12 (Part 2 of 2). Logic Documentation for ORDITM

5-26

Picking Slip Program

TRANSLOG

ORDPRT
(NRT)

Picking

Slip

ORDPRT Program Description

printed.

ORDPRT is an RPG |I NRT program that performs the following functions:

1. Read the control record of the TRANSLOG file to find the last record

2. Read each record for the order and print each line.

3. At the end of the order, update the control record with the relative record
number of the last record printed.

\/ |

Figure 5-13. Logic Documentation for ORDPRT

System Flowchart

After you have completed the requirements definitions and documented the
logic needed in your programs, you should prepare a general systems flow of
your application. The system flowchart should identify the basic operations of
your programs and the resources needed by your programs, and should include
any information you find helpful in explaining the application. The system
flowchart is used to show the basic inputs, outputs, processing steps, and

processing programs.

The following diagram is a sample of a system flowchart for the order entry

application.

Sample Applications 5-27

TITLE ORDER ENTRY APPLICATION

Screen Screen
E3 E2

File No. DOR-1

5-28

CMAST
Customer
Master

File

Customer Number Ship To
Order Number Information Master

File No. DOR-2

ORDHDR
Order
Entry
Processing

I

Screen
E3

Item
Quantity

"]

Item
Quantity

ORDITM
Order TRANS

Transaction
File

Item
Processing

File No. DOR-3

ORDPRT
Print Picking
Slip

TRANSLOG
Transaction
Hold File

Picking
Slip

—

File No. DOR-4

Two-Part Paper
Form: 6311Y
Report No. 6311-A

ORG. Programming pATE 01/15/78
AUTHOR A. Programmer PAGE 1 oOF 1
Notes

Run Frequency: Daily
Volume: Approximately 500 transactions
per day

ORDHDR (OR-01)

Program Type: SRT
Est Elapsed Time: 1 hour

Accepts customer number, order
number, and ship-to information,

and writes header customer and
ship-to-records to the TRANSACTION
file.

ORDITM (OR-02)

Program Type: MRT
Est Elapsed Time: 30 minutes

Accepts item number and quantity
information, and writes an order
record to the TRANSLOG file.

ORDPRT (OR-03)

Program Type: NRT
Est Elapsed Time: 10 minutes

Generates picking slips, and
updates a control record in the
TRANSLOG file.

BUILDING A DEVELOPMENT LIBRARY

Often, the first step in application development is to build a development
library. For this example a development library called TESTLIB can be built by
entering the following procedure command: ’

BLDLIBR TESTLIB, 100,20

BUILDING A DEVELOPMENT MENU

After the development library is built, a development menu can be created. A
development menu saves much time by allowing the developer to select
often-used functions, such as modifying and compiling an RPG |l program,
from a menu.

To build a development menu called TESTM and store it in TESTLIB, enter the
following SDA command:

SDA TESTM,TESTLIB

For detailed information about how you can use SDA to interactively build
menus, refer to the SDA Reference Manual.

The development menu for this example is shown below. In this case, the
developer has taken advantage of the freedom of design that free-format
menus provide by grouping related functions and separating those groups with
dashed lines.

4 ™)
COMMAND W7
MENU: TESTM
: SDA 1. Screen Design : MENU 13. System functions :
: 2. Menu Build : 14. Other library functions :
* SEU 3. Procedure : :
3 4. Program t MISC 15. Initialize diskette :
3 e e e e 16, Backup library :
¢ COMPILE 5. RPG IX : 17. Display file records :
: 6. KSU : 18. Remove library members
e e E B PR SR : 19. Data File Utility ot
¢ CATALOG 7. Disk R 20. BASIC :
: 8. Diskette e e e e e e :
e LR PR I B 1 21. Procedure :
¢ FILE 9. Save : 22. Program :
: 10. Restore : 23. Directory :
: 11. Delete e e e e e e e i e e e e :
: 12. Rename/Reorganize @ CHANGE 24. Change Session library/menus
ENTER NUMBER, COMMAND, OR OCL.
- <- READY
. o

Sample Applications 5-29

5-30

CREATING DEVELOPMENT PROCEDURES

After building the menu, you can use SEU to create each of the procedures
used by the TESTM menu. To create each procedure, you could enter the
following command:

SEU name,P,,, TESTLIB
where name is the name of the procedure being created. Or you can use item
3, once it is created, from the TESTM procedure. The following sections

describe the procedures for three of the functions on the development menu.
The procedures described are:

« Using SEU to update and recompile a program (item 4 on the menu)

« Saving disk files (item 9 on the menu)

« Changing the session library and/or menu (item 24 on the menu)

These procedures show many of the functions that can be incorporated into
procedures to make them easier to use. For further information about coding
procedures, refer to Chapter 5 of the SSP Reference Manual.

Following the descriptions of the procedures is a section that lists the screen

format specifications for the PROMPT screens displayed by the procedures and
lists the contents of the procedures.

Using SEU to Update and Recompile a Program (ZSEUR)

A procedure called ZSEUR is called when menu item 4 is selected. The
procedure intially displays a format that prompts for the source program name.
The current session library is also displayed, but the cursor is positioned at the
source program name.

SEU UPDATE OF RPG II PROGRAM
Current session library ——— TESTLIB
Source membher name ——— PROGA
Is member an RPG II program ---> Y
.

| The RPG Il compiler is not called unless the Y is entered.

The ZSEUR procedure then calls SEU execution so the user can create or
update the program or source member. After SEU execution ends, ZSEUR
displays another PROMPT screen from which the user can compile the
program.

')

COMPILE OPTION OF RPG II PROGRAM

Current session library g TESTLIB
source program name ——=> PRDGA
Standard default compile -—D YES

Run from JOBQ (0-no,l-yes) ---> 1
XREF list req (0-no,l-yes) ---> 0
(Standard Default parameters:

Replace assumed, source and load processed from current
session library. 60 Blocks used for work files.)

. o

If the user leaves the third field as is (YES), the program is compiled using
default parameters defined within the ZSEUR procedure. If the user enters
another value (for instance, NO) in the third field, the procedure calls the
RPG Il prompt screen.

In summary, the ZSEUR procedure helps with the typical development task of
changing and recompiling a program by combining the two steps into one
procedure. The specifications for the PROMPT screens and the contents of the
ZSEUR procedure are in PROMPT screens and the contents of the ZSEUR
procedure are in Listings for Sample Development Procedures, which follows the
description of the ZSAVEF and ZLIBCHNG procedures.

Sample Applications 5-31

5-32

Saving Disk Files (ZSAVEF)

A procedure called ZSAVEF is called when menu item 9 is selected. ZSAVEF
displays the following prompt screen, which allows the user to copy all files in
a file group or to copy up to five individual files. The retention days of 999,
volume ID of IBMIRD, and location of S1 are coded as a default, but they can
be changed.

-
SAVE FILE OPTIONS
Enter: retention days (1 to 999) ---> 999
date if more than one file exists ————>
volume-ID of diskette ~~=> IBMIRD
Jocation (51,52,53,ML.nnM2.00n) ---> S1
Enter group name if desired: -—
Enter up to 5 file names: -—
- all files on diskette (ALL) —==>
- an individual file (name) --->
-
>
.

The ZSAVEF procedure allows the user to save more than one file on diskette,
unlike the SAVE procedure (described in the SSP Reference Manual), which can
only save one. The specifications for the prompt screen and the ZSAVEF
procedure are in Listings for Sample Development Procedures, which follows the
description of the ZLIBCHNG procedure.

Changing the Session Library and/or Menu (ZLIBCHNG)

A procedure called ZLIBCHNG is called when menu item 24 is selected. The
ZLIBCHNG procedure displays the current library and allows the user to change
the session library and/or the current menu. The ZLIBCHNG procedure
prompts the operator for the new session library name and the menu name.

r ™)

CHANGE SESSION LIBRARY

Current session libravy --> TESTLIB

New session library name --> LI LI L L]

Display new menu --> I it

(Enter either library name or menu hame or both)

_ | y

The specifications for the prompt screen and the contents of the ZLIBCHNG
procedure are in Listings for Sample Development Procedures, which follows.

Sample Applications 5-33

Listings for Sample Development Procedures

This section contains listings of the sample procedures just described. Along
with the listing. of procedure contents are the specifications for the prompt
screens displayed by those procedures. The screens themselves are shown in
the preceding sections.

Listings for ZSEUR

The ZSEUR procedure, which allows the user to update and recompile a
program, contains the following statements:

* PROGRAM ENTRY FOR ZSEUR

// IFF 2 1F'?SLIB? '/ PROMPT MEMBER-ZRFM , FORMAT~SEU

// IF ?232/YIF ?F3'R'

// IFF 232 /Y IF ?F3'S'?/

SEU ?2R?,?3?,,,,21?

// IF 23?/S CANCEL

// PROMPT MEMBER-ZRFM, FORMAT-COMPILE

/7 IF ?3?/YESRPG ?2?,60,60,REPLACE, ?1?,21?,,,,24?2252
// IFF 23?2 /YES HELP RPG

As shown earlier, ZSEUR issues two displays. The first display (SEU) prompts
for the session library and the source program name. The second display
(COMPILE) prompts for information required to compile the program. The
following charts are the display screen specifications for both displays.

Second Edition GX21-9253 U/M050°
Use this coding sheet only to define display screen tormats for WSU Printed in U.S.A.

System/34 Display Screen FOI’mat Specifications and $SFGR. This coding sheet could contain typographical errors. *No. of sheets per pad may vary slightly.

E WSU Only
> w3
g ™ a’:;er Review Inser
g 2|g bt =} 8 Sequence Mode Mode
a| |2 ° 8|8 2lal s B Record Record
Sequence Format ERERE = §" £ gg s| =)= g 5 Identifying Identifying | Reserved Key Mask
Number &} Name ol e|s |g|B|32] 515 sl 21 2%)% Reserved g a| indicators Indicators -
- c . alE < a @
e -gf I[85 8|c|¥ oS : l:, @ 3|2 o e 3 zl18 3
- sleisie 2 s3] x T a v > sl 3
g Els|52133|38] s (35| 2| 2|2 SleiE& B8 |2 af1)2]3 ¢
S Sla|zeS|c|eE] B |G|S| v | B[S |a o|djdilef e sl E <
1 23 456|278 9101112131a|1516]17 18|19 20{21[22)23 24f25 26]27|28]29 30| 31 32§33 34|35 3637 38 39 40|a1[a2fa3[as[45 |a6}a 78 ag)60 5152 53f64 55[56 67]58 59|60 61 62 63)64 65 66 67 68 6970 71 72 73 74 75 76 77 78 798
' NEERRERRERE . RERENN ' l EENRRRRRERRRARRERRNREN
[T LYY
p ‘ Starting B
Field Loeation = =8
z x| »
Name RN g E 5
2 z . hel
Sequence Field 2 3lel |22 g @< o | 2 % Sl Reserved & Constant Data £
s 81 < |2818] |EE g | Eis| 2 S 2 5
Number Length F N = A = ~>lx|=l 3 |S{o|8| 2 o > | E o |& - 2
& ° €| 2| c |28 5]5[8E] = |O|218] © N - el - e € &
> 22 s s 5 |31<|> 212|835 & |el3lE] B [I B I] § £
| wsu 52 2| 2| 3851518131513 2 [3|Sls] 81 = 5| 5(5 g K
€| Field Name |53 EREA P HEEE B HE R R | 213 K
E 23 Sl el 3|8 321R] € [&S|Ij« [z | d|=2|= 318 12345678 9101112131415161718 1920 2122 23
1 2 3 4 5]|6f7 8 91011 121314]15 16 17 1819 20|21 22|23 2425}26{27{28]29/30{ 31|32 3¥34|35{36|37 38]39.40|a1 a2}a3 4aas a6|a7 a8l a9l50 5152 53 54 ss{56]57 58 59 60 61 62 63 64 65 66 67 68 6970 7172 73 74 75 76 77 78 79 80
oHEAD X T \{_E F
oMEMBER ~ I
H .
oFiA 3| 9415Y urle | 8| 1libiralriy
o -
oSz 9 Y Y y | [IY
D
D
Di
D
D
D

~<-\"'l'v—?E
[
1]
]
4
—l—
-
e
R
I
3
~

olololololglololo

Sample Applications 5-35

Second Edition GX21-9253 U/M 050°
Use this coding sheet only to define display screen formats for WSU Printed in U.S.A.

S\/Stem/34 D'sp'ay Screen Format specifications and $SFGR. This coding sheet could contain typographical errors. *No. of sheets per pad may vary slightly.

p . WSU Only
. = 3 % Enter Review Inser
§ £ls M i 8 !Swe%tince Mode Mode
2| €E|E T 8§ slgls Bl ‘Record Record
Sequence Format 2 2 3 =18 | € GlEl « w % a3 £ tdentifying Identifying Reserved Key Mask
Number | %] Name ol S1s 113123 5 |SIE| 8| S| & | £ |Reserved 2] al Indicators Indicators
¢ S e |c lglE12el 2 |28 5| 2l e g af 1| I8 B
! 5|3 |B5E¥C S fele S| S 8 E WEKEH H
3 ElsiEol2i2(53] S |58l 2| 8|58 EiolZ|8g(58 0 |23] 1|23]
e Cla|ze eS| 3 |S|6| 5| w|S) 3 o |ulale| e |&| .
v 2 3 4 sl6f7 8 91011 121314015 16]17 1819 20{21[22]23 24f25 26|27|28[20 30|31 32|33 34|35 36]37 38 39 40)a1a2}aslaalas ja6|a7las as]50 5152 53|54 55[56 57[58 59|60 61 62 63[64 65 66 67 68 6970 7172 73 74 75 76 77 78 79]80)
I 1 i
[T slcloMplrieEl [[1T1] LM EERERERERERRNNRERRERRARERENAED
E Starting
Field Location 5 - §
Name § S -) fg § c
Sequence Field 3. §E ZlE 8 Eg ol 2 & 5| Reserved § Constant Data -g
Number Length | 2 21 21218 1> «=| 3 [3]el8] @ 2 3 E] . & = 2
g B AR EEEBE R R R R A S = 2
> wsu £3 ER - sl - L R S - e S B - B B BN R g £
el Fieoname 22 202 B 0scl3RCE 2 (5l 2 e] 2] 2 8| B2 g §
S eaneme 18y £l ol 31385128119 & [sls|}e|£ 8|2 |53 Ol1 2 3 4 56 78 91011121314151617 18 1920 21 22 23
' 2.3 45|67 8 81011 12[1314af151617 18]19 20|21 22|23 24025|26|27(28|29[30] 31]32 3434 [35|36{37 38|39 a0}a1 a2}as aafas a6|e7 asfaalso 6152 53 54 55{56|57 58 59 60 61 62 6364 65 66 67 68 6970 7172 73 747576 77 78 79 89
M Yl C \L PY OF
° |
b
ol Y ulr|rleln't Lol LI /Bviay]
0 .
of) 271 Y Y Y
o A\ Bource ¢ reacam o
[+
op Yl Y Y| Y
olp) 99 Y Y
ok +andlarid defiaul |
ol
olYlE %3 Y Y| Y Y ||y YES
°|PAD Y] ki
°E 2iL51LpY Riwjn| firom J (\@-Ino , 1=
UyJBS) | el |
ol ISR k{ L Y || Y]
olpalD Sl | Iy N Y
o 716 €l LiislH v _([pi-lno, 1L~
D |
olXreFl | [| pgidil1762i05 I Y NI 7

System/34 Display Screen Format Specifications

Use this coding sheet only to define display screen formats for WSU

GX21-9253- U/M 050"
Printed in U.S.A.

and $SFGR. This coding sheet could contain typographical errors. “No. of sheets per pad may vary slightly.
= ¢l 5]
<
S| 5 M "
Bl © °
= 8 i 3
21 E|lc T sle 2183] ;
2212 s(8< e (BEl 5| S22 £ Identifying [Reserved Key Mask
& of o3 |g|8L2] 8|S 2 2w | = o @ Indicators
> =l g |glElzsl 2 |28 51 & = sl ol |8 3
- s15E5I8f¥S] SISfS| 8] €] 28 HRHEEH g
ol &K1 1 1 b 22 H - 21 z
£ £ A HEEE R AR HeEEEREER 3 3
i | a|ze|3c|eS| S [S|El B | G |S| @ BGHG(2| | &|& <
6f7 8 9 101112131415 1617 18]19 20]21/22[23 24|25 26[27]28] 20 30[3132}33 34 1]a2jazlaa]as jaslar 58 59160 61 62 63|64 65 66 67 68 69 70 7172 73 74 75 76 77 78 79[80)
i 11 IEENRERERN ' HEEENNERENSRRRNRRERE
s| L] | [
> z| 8
5 = 4
§ S - s s
=3 o < = o3 s S
Field a alo| |=|E g I} > % = & Constant Data 2
sl 2] =2l |E)E £ la=l 2] % & > s
tength | B | =1 5|23 |5 >xl={ 3 {§=l5] 2 z g PRE] = H
& €l B 81218 55]8E] T 18l2|8] « 2 2| Ele € s
> wsu 51 g < |BI=|Z]2(21213] § |=|3lE| & i 21 <|E s g
= 2| s1 3[8[S|Bl5lo]5] 2 [3]2fs] & = §| 815 z 3
E| Field Name el 51 51513215(50508] B 15515 8 £ ¢ls 5
S Sl 2|3 [3leis|3|123)=] £ |S5[8)<] « @ « | > 2 3 465678 91011121314151617 18 1920 21 22 23
67 8 9101112 1516 17 18]19 20|21 22|23 24025 26| 27)28| 29{30[31]32 3334|353 41 42) 5 46}a7 agj4 5758 69 60 61 62 63 64 65 66 67 68 6970 7172 73 74 75 76 77 78 79 80)
o[p) g7 Qq Y L] 1]
of 2 2l e ol
et | | | |
o Y elalcel asishired | solurlcK
° P
e] AARSSANAY
o Cl Sess 1 iyl {

0O|0/o!lojo|Q|O0|0Ol0]|0 |0 |0 |00

Sample Applications 5-37

Listings for ZSAVEF

The ZSAVEF procedure, which allows the user to copy all files in a file group

or to copy up to five individual files, contains the following statements:

* SAVE FILES

// PROMPT MEMBER-ZXFM, FORMAT-SAVE

// IF 25?2/ GOTO SKP1

// * '?5? GROUP FILES are BEING SAVED ON DISKETTE '

SAVE ALL,?1?,?2?,?3?,25?,24?

// TAG SKP1

// IF 262/ GOTO SKP2

// * '?26? FILE IS BEING SAVED ON DISKETTE'

// LOAD $COPY

// FILE NAME-COPYIN, LABEL-?6?,UNIT-F1

// FILE NAME-COPYO,RETAIN-?1?,LABEL~?6?,LOCATION-?4?,AUTO-YES,
// PACK-?3?,UNIT-I1

// RUN '

// COPYFILE OUTPUT-DISK,REORG-NO

// END

// TAG SKP2

// IF 272 GOTO SKP3

// *'?7? FILE IS BEING SAVED ON DISKETTE'

// LOAD $COPY

// FILE NAME-COPYIN,LABEL-?7?,UNIT-F1

// FILE NAME-COPYO,RETAIN-?1?,LABEL-?7?,LOCATION-?4?,AUTO-YES,
// PACK~-?3?,UNIT-I1

// RUN

// COPYFILE OUTPUT-DISK, REORG~NO

// END

// TAG SKP3

// IF 28?2/ GOTO SKP4

// * '?8? FILE IS BEING SAVED ON DISKETTE'

// - LOAD $COPY

// FILE NAME-COPYIN,LABEL-?8?,UNIT-F1

// FILE NAME-COPYO,RETAIN-?1?,LABEL-?8?,LOCATION~-?4?,AUTO-YES,
// PACK-?3?,UNIT-I1 :
// RUN

// COPYFILE OUTPUT-DISK, REORG-NO

// END

// TAG SKP4

// IF 292/ GOTO SKP5 _

// *'29?/FILE IS BEING SAVED ON DISKETTE'

// LOAD $COPY

// FILE NAME-COPYIN, LABEL-?9?,UNIT-F1

/7 FILE NAME-COPYO,RETAIN-?1?,LABEL-?9?,LOCATION~?4?,AUTO-YES,
// - PACK-?3?,UNIT-I1

// RUN ‘

// COPYFILE OUPUT-DISK, REORG-NO

// END

5-38

// TAG SKP5

// 1IF 2102/ GOTO SKP6

// *'210? FILE IS BEING SAVED ON DISKETTE "

// LOAD $COPY

// FILE NAME-COPYIN, LABEL-?10?,UNIT-F1

// FILE NAME-COPYO,RETAIN-?1?,LABEL-?10? » LABEL-?10?, LOCATION-?47?, AUTO-YES,
// PACK-?3?,UNIT-I1

// RUN
// COPYFILE OUTPUT-DISK,REORG-NO
// END
// TAG SKP6
As shown earlier, ZSAVEF issues one display (called SAVE), which prompts for
the save file options. The following listing shows the display screen
specifications for the display:
IEx Second Edition GXZIM&? :/MUOSO;
N . ege . Use this coding sh ly to define display screen formats for WSU inted in U.S.A.
sy tem/34 Dlspl ay screen Format Speclflcatlons an: ;s‘;GR.m‘Ig‘hsisesc:d‘::gyslt:et c:‘:ld It:anat‘a'in typographical errors. *No. of sheets per pad may vary slightly.
BT WSU Only
5 ol % Enter : Insere’
2 s|S Sl e 1 COr
Sequence Format S g _E, - g € 'g g Ll e % 2 E Ideen!:ifying Idev_\tifying Reserved Key Mask
Number & Name al 2|5 2 § '§<:§; :t_‘i u§_ § 133 3 ‘; i Reserved 2| - g Indicators Indicators 2
ME A ol o AR T || 2l 2] 4
€ HHEHEEH B glol2lB5IE8 0 (2] s 0] 2]s §
K Sl al2ef3eles §I88 5| 564 5 5|5]2) &5 e
1.2 3 4 5)6})7 8 91011121314)1516[1718 IQ?OZI?IZJ?J?S[!:[! 511!303!323}134]536373839404\4" 46147]48 4950 51]52 53]54 55[56 57|58 59|60 61 62 63|64 65 66 67 68 69 70 7172 73 74 75 76 77 78 79{80f
[11]s IITTTTITTI T [ITITTT [EERENREREERRERECAERRNREEREERE
ﬂ Starting
Field Location 5 2 § .
Name s & o .: 3| § 5
) kS - =2 51 (3= 5 & Constant Data 2
Field 2 7] H 2 9 gl Reserved €
Number L:lgth IR AR > M= 318 % E i 2 é‘ & e 2
& €l S| Sls285 5 & g [OlZl8 w 2 % | £g 3 g
2| wsu §§ 2|8 §§f¢§§5§:§ 38 B2 . g 3 g 3
E| FieldName (33 HEE ééggéiié S83 (T 8 ¢[5]8 S 7 3 a5 67 8 90N i2iasTe 17 8182021 2273
12345 ‘E 7.8 91011 12|13 1415 16 17 18|19 20[21 22f23 2425{26{27]28(20]30|31{32 3334 [35{36{37 38[30 a0fa1 4243 aafas 45:14849505!525354555§[€sssseos1 626364 65 66 67 68 6970 717273 747575]17 787980
> 29[[IN Y] -
L ool EHell:] 1 Ir ArARAn
D +) - o u) .
o 1l Y Y ki
op Y Y HENI c
0 1 Hﬂl&
B N = |<l>
D Y Y Y|
D Y] Y| Y .
D, | 5 Violl b 1] iﬂfh&q
[»] -’. o
ONIOIL % Y Y. Y ﬁﬂ D
op
o n tlilo (iS4,
ol 3 [N a) =)=l
0 i
oip M Yl
DF N ! ﬂ:u:ugtzma_ L€ [deisx]
oli lrieid|:
D 1% r INEC |

Sample Applications 5-39

s =
EER Second Edition GX21-9253 U/M 050"
Use this coding sheet only to define display screen formats for WSU Printed in U.S.A.

SYStem/34 Disp'ay Screen FOI’mat SpeCiﬁcatiOﬂS and $SFGR. This coding sheet could contain ty pographical errors. *No. of sheets per pad may vary slightly.

=] - 2
% % é a’:::; Review Insery
°lil. "-2] Sequence Mode Mode
2l €18 ° Sls 2lgly B Record Record
Sequence Format 21315 “ E"‘ £ § Y A £ identifying Identifying | Reserved Key Mask
Number | g/ Name alals s § 22| & ,5 g1 g)i | £ [Reserved & a] Indicators Indicators -
g eI AR HRER
= |€8 < a3 £ T z|%
£ £ ;§0§§§8 SIafs| 21 888 Slofzl8l 5|8 v [23] [2]32 3
° S|a(2ef3|ez| B lsls| s a|S{B 5|5l 2l&le &
1 2 3 4 slef7 8 01011 121314)15 1617 18}19 20{21/22|23 2425 26|27]28]29 30]31 32]33 3f5 36]37 38 30 40fa1[a2fasle. 7)e8 a9]50 5152 53J54 55056 57]58 59j60 61 62 63164 65 66 6768 6970 7172 73 74 75 76 77 78 79]80)
T
ERENCERENENRENRRRENRERNERENRERRRRENED RENREREERERENENRRNERRRREREREDI
E Starting
Field Location - s
3 =
3 x| C @
Name 5 S . : 3 k] <
Field § 3ol (=2 8 32 > 3| Reserved Constant Data 2
sl &1 o2l |EE g 113 2 2 s
Numper | Length % 5| & |513]&l 2l 2l%lE] 8 (Slzl8l & 3 Elqld = 2
S wsu 32 El 21 S [BRIsISisiglEl s 1S1st8] 5 1 B & AEIE § H
| Foaname |23 HE 38%t§§"”i|3‘:' aizlef 2l g 2 g | &[5 2 §
me = 9 1= - =1 b3 2 = -3 =3
5 ela N 22 Sl 2 SBESS’EJ&Q Sloslzl £z a]|2|€|3]|8 ST 23 4567 8 91011121312151617181920212223
1 2.3 4 slel7 8 91011 121314|1516 17 18}19 20]21 22]23 2425 8]20130|31]32 33J3a{35{36]37 36{39 40)a1 a}es aalas aefa7 asaslso 51 52 53 54 5s}se|57 55 59 60 61 62 63 64 65 66 67 68 6970 7172 73 7475 76 77 78 79 80
v
o f Ha 15 €51 X|
ole/. <[l
o Y| Y Y Y .
.
olf| - £liles| o s ket ted
o] AL | [-[=]]>

O|l0jojol0o/Ql|ol/U]O0O[/U[0}0 |Ci0 |0
1
1
N
-
=<
<
<

5-40

Listings for ZLIBCHNG

The ZLIBCHNG procedure, which allows the user to change the session library

and/or the current menu, contains the following statements:

* PROCEDURE TO CHANGE SESSION LIBRARY (ZLIBCHNG)

// IFF ?1F'?SLIB?'?/ PROMPT MEMBER-ZRFM, FORMAT-LIB
// IFF 22?7/ LIBRARY NAME-?2?,SESSION-YES

// IFF 22?/ IFF ?3?/MENU?3?,?22?

// IF ?2?/ IFF 23?7/ MENU?3?

As shown earlier, ZLIBCHNG issues one display (called LIB), which prompts for
the session library name and the menu name. The following listing shows the

display screen specifications for the display:

Second Edition
Use this coding sheet only to define display screen formats for WSU

system/34 Display SCI’EeI’l FOI'mat specifications and $SFGR. This coding sheet could contain typographical errors,

GX21.9253- U/M 050"
Printed in U.S.A.

“No. of sheets per pad may vary slightly.

Sample Applications

WSU Only
= v
—: : 5 Eﬂ'g;; Review fnsery
S Bl . b B B Sequence Mode Mode
a €18 ° sl ®2lals © Record Record
Sequence Format 2l 2]|a =18 |1 el5lEl | E|3] 23 £ identifying \dentifying | Reserved Key Mask
Number Name ol 2|5 |z ééz S |SIEl 8| 5| i | £ |Reserved E) a| indicators Indicators
> 21 8|2, |5|5|13 5] < |28 3 2 FRE] &l 13l.l8 2
E g2 é%g&xg olelel D151 E] S ﬁgg.‘?g{ H
£ Els|5olsl2iga] S[B[5 2| &) 2| & gle|z|&lg(ss 1 {231]2]3 3
K &1 &|22|381E2| 3 |85 = |G| | 4 8515 18| &<\ <
12 3 a s5|e|l7 8 21011121318)1516]17 1819 20|21 3 24§25 26|27] '9 30]31 32|33 34[35 36437 38 39 40{41|42]43]a4|as5 Jas 7j48 <150 51|52 53f54 55]56 57158 5960 61 62 63|64 65 66 67 68 69 70 7172 73 74 75 76 77 78 19|80
T >
| shrle [] RREA [LI1] EEREERRN EERERNERRRNERNRRERENRERERREENN
E Starting
Field f.ocation 3| :§
_ x|
Name A REER &
. = =] —{E 5 2|2 s 8 <
Field <& <23 [ES 8 af‘ |2 -3 5| Reserved 1§ Constant Data -
Number Length 21 2| 5132 S >xl=l 3 |9l § © = g o |® = 2
g 3 €| £ S [sl28]5l5|8iE] = [of2|8] © & 3| E0e £ £
z| wsu 23 3| 5| 5 |8[<IlEI518%] & |2l 5| <) & gl 5|E g 3
- 52 21 | Z185 8|50l 2 [BiEls) el = | « §1 815 g 8
E| FieldName {53 el £t si=|dleislslslat 3 |8|gisl el =] £ 3 513 Kl
5 23 s 2| 3lslelzlsIszR] € |58k £ x| @ L = 12346567 8 91011121314151617 18 19 20 21 22 23
123 4 5[6]7 8 9101112131415 16 17 18|19 20|21 22|23 2425|26{27|28]29j30| 31}32 333|35{36]37 38|39 a0}a1 42a3 4ajas a6fa7 a8lagls0 51 52 53 54 s6]s6]57 58 59 60 6162 63 64 65 66 67 68 6970 7172 73 7475 76 77 78 79 80|
o | | M Y| L I
" . .
E 1JQly s {[ilblelalelyX
of |Flbl]
ol 1] yqoiLl v Y,
.
o L Y, il ipicariy
[°] ->h
> N
)] { }‘ |
o Y Y Y
0 ASEE Y
0 LMY
oiely ol TEn vl el v
o 221 Y A rly
1
ol 'Ilzla d
oicy g1l Y Y J name
ole | Y
o Y Y lhlf-th
b | Y)
D
D
5-41

5-42

- CREATING DISPLAY SCREEN FORMATS

To create the display screen formats used in this example, you could select
item 1 from the TESTM menu. All display screen formats used by one
program must be placed in a single display screen format load member. For
RPG Il programs, the member name must be the name of the program
followed by the characters FM. If you select item 1 from the menu, you will be
prompted for the name of the program that uses the formats. If you enter
ORDHDR, the following command statement is generated:

SDA ORDHDRFM,TESTLIB,ORDHDRFM

When the SDA menu appears, you could select option 1 and then enter an N
for the column indicator mode so that the first line on the screen can be used.
Using the screen formats designed earlier, enter the information from the
screen layout sheet onto the SDA blank screen. When the entire screen has
been entered, you can press command key 9.

In this example, the developer would like to be prompted for field attributes;
therefore, an * is entered in front of each input or output field, a ¢ is entered in
front of each constant,.and a t is entered after each field.

An alternative method of prompting for attributes could be used by entering a
Y for automatic prompting on the initial SDA menu. For this method, | for
input and E or B for output are used rather than asterisks. SDA automatically
prompts for additional attributes for these fields.

For screen E1 in display screen format ORDSE1, Figures 5-14 and 5-15 show
the screen entry and attribute screens.

For screen E2 in display screen format ORDSE2, Figures 5-16 and 5-17 show
the screen entry and attribute screens.

For screen E3 in display screen format ORDSE3, Figures 5-18, 5-19, and 5-20
show the S specification, screen entry, and attribute screens.

Figure 5-21 shows the $SFGR output generated when screens E1, E2, and E3
are built. All the display screen formats used by the ORDHDR program are
built in one SDA run.

If changes are later required to formats that have been built, you can use the
SDA update function to make changes. This function allows you to use SEU to
make changes and automatically regenerates formats. An alternative method of
changing formats is to use SEU directly and then use the FORMAT procedure
to regenerate the formats.

Because the next program, ORDITM, uses screens E1 and E3, which were
designed already, only screen E4 is created. Figures 5-22, 5-23, and 5-24
show the S specification, screen entry, and the attribute screens for screen E4.
The specifications for screens E1 and E3 are included using SEU. Figure 5-25
shows the $SFGR output generated when the display screen formats used by
ORDITM are built.

El
ORDER ENTRY

CUSTOMER NUMBER XXXXXX
ORDER NUMBER XXXXXX
Press ENTER REC/ADV - or ~ CK1 - TO ENTER MISC ORDER INFO

CK7 - CANCEL ORDER ENTRY
MHMHMMMMHMMEMMMMHMMEAMEMMMMMMMMMEMMMMMMME MMM

. e

Figure 5-14. Screen Entry for Screen E1

r N
*E1t
O RDER ENTRYt
cCUSTOMER NUMBERt HXXXXKXE
CORBER NUMBERt EXRXXXX L
cPress ENTER REC/ADV - or - CK1 - 7O ENTER MISC ORDER INFOt
cCK7 ~ CAMCEL ORDER ENTRYt *
MMMMMMMMHMMMMMMHMHMMMMPMMMMMMMMMMMEAM S AMMMMMMMM L
q | y

Figure 5-15. Attribute Screen for Screen E1

Sample Applications 5-43

E2
ORDER ENTRY
CUST NO XXXXXX ORDER NO XXXXXX
SOLD TO XXXXXXXXXXXXXXXKXXXXXX SHIP TO XXXXXXXXXXXXXKXXXKXXKXXXKKKK
KUXKXXKKLXXKXKXKARUXKKKKK KRKXKKXRXKKXRXXKHKKXXKKAKKKKK
XXKXKXXKXKKKKXKKKKK XK KXRXK KXXKEXXKIXEXKXKXXRKKKKK XX XKXXX
CUST PO XXXXXXXXXX SALESMAN NO XX

.

Figure 5-16. Screen Entry for Screen E2

r"

*g2t
XORDER ENTRYt

CCUST NOt %¥XXXXXXt CORDER NOt #XXXXXXt
CSOLD TORXXXXXXKXXKXKXXXXKXXXXXE CSHIP TOXXXXXXXXXXXXKXKXXXXKXKKKXXKK T
EXXXXKKKKXERXKKXAXRXKRKXKE EXRXRXKKKXKEXKKXKXKKXXK KKK KK T

CCUST PO*XXXXXXXXXXt CSALESMAN NO*XXt

-

FRXKXKXXXXXKKKKXKXXKXEKXEXKKKK T FXKXRRKAKKKKKKKEK KX KKK E XK EXKKAKA T

Figure 5-17. Attribute Screen for Screen E2

{ N
FORMAT NAME ORDSE3
WSU FORMAT ID
START LINE NUMBER
NUMBER OF LINES TO CLEAR
LOKERCASE ALLOKED
RETURN INPUT
RESET KEYBOARD
SOUND ALARM
ENABLE FUNCTION KEYS ENABLE COMMAND KEYS
BLINK CURSCR
ERASE INPUT FIELDS
OVERRIDE FIELDS 99
SUPPRES INPUT
KEY MASK
%N WSU ONLY 33334
ENTER MODE SEQUENCE
START- END- REQUIRED- REPEAT-
PRIORITY~- PREPROCESS-
REVIEW MODE INDICATORS
RECCRD ID 1- RECCRD ID 2- RECORD ID 3~
INSERT MODE INDICATORS
INSERT ID 1- INSERT ID 2- INSERT ID 3~
"~ o
Figure 5-18. S Specification Display for Screen E3
o N
E3
ORDER ENTRY
CUST NO XXXXKXK ORDER HNO XARXXKX
SOLD TO XXXXXXXKXXXXXXXKXXKXKXK SHIP TO XXXXXXXXXXXXXKXKXXKKXXXXKK
HEYXXKNYXREX KKK KX R KKK D 8.8.0.9.9 000000 VO C0.00.00.0:0:0:6:04
P 000 9.6:0.9:0.0.8.9.9.9.9.9.0.0 SO I .6 0.6 ¢ }0,6:0 0.000.0.0.0.9.00.0. 800000085 . GIb 6.6.¢.0.4
CUST PO XXXXXXXXXX SALESMAN NO -XX
LINE ITEM NO QTY DESCRIPTION PRICE AMOUNT

01 XXXXXX XXXXXX= XXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXX=
CK2 - END OF CRDER
CK3 - PAGE BACKWARDS ON ITEMS
MHMMMMMMMMMEMNMMMMMHMMMMMMMMMMMMME MMM M. CK8 - CANCEL THIS ORDER

.

Figure 5-19. Screen Entry for Screen E3

Sample Applications

5-45

5-46

r")
*E3t
*0 RDER ENTRYL
CCUST NOt *XXXXXXt CORDER NOU *XXXXXXt

CSOLD TOXXXXXXKKXXXXXXXXXXXXXKX T CSHIP TOXXXXKXXXXXXKKXXXXXXXXKXXKKKXX
LIS 000 03 01008009 9,009 ¢34 EXRXRXRXRKIXKKKXKKKKKKAKKKKRRX T
EXXXKXAXKXKXKKKKXRXKLX# XK RXKKKK T HXXKRXRXKKRXKKXKKRXKXKKKKKKK XX XAXKK

CCUST POT*XXXXXXXKXXXt CSALESMAN NO%XXt

cLINE ITEM NO QTY DESCRIPTION PRICE AMOUNTt

¥0Lt XXXXXXKE *¥XXKXXX-T #XHXXXXKKXXXXKKKXRAXKKEE EXXKKXRKE #RRKKKNXK-T
. cCK2 - END OF ORDERt :
¢CK3 - PAGE BACKWARDS ON ITEMSt
MMMMMMEMMM R MMM MMM MMM MM L R M MMM MMM t CCK8 - CANCEL THIS ORDERt

-

Figure 5-20. Attribute Screen for Screen E3

SOURCE INPUT SCREEN FORMAT SOURCE SPECIFICATIONS

O00L0SORDSEL
00020DSCODE
000300TITLE
00040NDFLO0O3
000500CUSNOD
000600FLOOOS
00C7000RDNO
0008IDFLDOOT
000900 -
001000FL0008
001100Y
00120DERRMSG

99

00020103y Y A
00210231y

00150511Y

00060531y Y Y Z¥ Y
00120711Y

00060731y Y Y R Y
03702011y

00242251Y

0043230199

EXECUTION TIME OQUTPUT BUFFER JESCRIPTION

FIELD
NAME

CUSNO
ORDNO
ERRMSG

INPUT BUFFER DESCRIPTION

FIELD
NAME

SCODE
CUSNO
ORDNO

START

LENGTH PISITION
6 1
o 7
48 13
START

LENGTH POSITION
2 1
6 3
b 9

99

A

A

(K1l - TO ENTER MISC ORDER INFO

END

DATE 0Q2/12/79 TIME 08.34

CEL

CORDER ENTRY
CCUSTOMER NUMBER

CORDER NUMBER

P ENTER ReC/ADV X

CCKT - CANCEL JRJER ENTRX

POSITIUN

[}
12
60

END

POSITION

2
8
14

SOURCE INPUT SCZREEN FURMAT SDURCE SPECIFICATIUNS

00130SORDSE2
00140DSCODE
NOY50DTITLE
001600FL0O003
00170DCUSNO
0G180DFL000S
0G190D0RONO
00200DFLOOC?
00210DCNAME
002290F L0009
00230DSNAME
00G240DCADDR
00250DSADDR
00260DCCITY
00270DCSTATE
00289DCZIPCO
00290DSCITY
00300DSSTATE
003100SZIPLD
00320DFLOO19
00330DCPONOD
003400FL0021
003500DCSLSND

00020103y Y Y
00210231Y

00070406Y

00060416Y Y Yy
00080431Y

00060442y Y Yy
00070603Y
00250611Y
00070642Y
00250650Y
00250711Y
00250750y
00220811Y
00020834Y
00050837y
00220850Y
00020873y
00050876Y
00071003y
00101011y
00111326y
00021038y ¥ Y

<< << << << =<
<
-<

<< <
<< <<<<<<=<

3
<

EXECUTION TIME OQUTPUT BUFFER UESCRIPTION

FIELD
NAME

SCODE
CUSNOD
ORDNO
CNAME
SNAME
CADDR
SADDR
cciTy
CSTATE
czieco
SCITY
SSTATE
SZIPCOD
CPONO
CSLSNO

INPUT BUFFER DESCRIPTION

FIELD
NAME

SCODE
CUSNO
ORDONO
CNAME
SNAME
CADDR
SADDR
ccITy
CSTATE
czipco
SCITY
SSTATE
SZIPLO
CPOND
CSLSNO

START
LENSTH POSITION
2 1
6 3
6 9
25 15
25 0
25 65
25 90
22 115
2 137
5 139
22 144
2 166
5 168
10 173
2 183
START
LENGTH PYSITION

2 1
6 3
6 9
25 15
25 40
25 65
25 90
22 115
2 137
5 139
22 144
2 166
5 l68
10 173
2 183

END

“F2

CORDER ENTRY
CCUST ND

CORDER NO

CSOLD TO

CSHIP TO

CCUST PO

CSALESMAN NO

POSITION

END

POSITION

2

8
14
39
64
89
114
136
138
143
165
167
172
182
184

Figure 5-21 (Part 1 of 2), $SFGR Output for Dispiay Screen Formats Used by ORDHDR

Sample Applications

5-47

5-48

SOURCTE INPUT SIREEN SORMAT SOURLE SPECIFICATIONS

00360SORDSE3 99
003730SCODE 00020103y Y Y A
0G3800TITLE 00210231y Y
00390DFL0003 00070406Y
004GO0CUSND 00060416Y Y Yy
004100FL0O005 00080431Y .
00429D0OROND 00060442y Y Yy
004300FLO007 00070603Y
004400CNAME 00250611y v Yy
004500FL0009 00070642Y
00460DSNAME 00250650y Y Y
00470DCADDR 00250711y Y Yy
004800SADDR 00250753y v Y
004300CCITY 0022281ly Y Yy
O0S00DCSTATE 00020334y v Yy
00510DCZIPCO 00050837Y v Yy
005200SCITY 00220850Y ¥ Y
00S30DSSTATE 00020873y v \4
00540DSZIPCD 00050876Y Y Y
00550D0FLO0O13 00071003Y
005600CPOND 00101011y ¥ Y
00570DFL0021 00111326Y
00580DLSLSNO 00021038Y v Y
00590DFLO001 00651203Y
006000 DESCRIPTION PRICE AMOUNT
O0510DELINE 00022003y Y Y
00620DITEMNO 00062008Y Y BY Y
006300QTY 00062017y v Y
00640DDESCR 00202026Y ¥ A
006500PRICE 00062049y Y A
0066J0AMOUNT 00082059y Y A
006TIDFLOO08 00182150V
00680DFLO009 002922507
006900 ITEMS
O0700DERRMSG 0048230199 99
00710DFLOOl1l 00232350Y
EXECUTION TIME OUTPUT BUFFER OESCRIPTION
FIELD STARTY
NAME LENGTH POSITINN
CUSND 6 1
ORONO 6 7
CNAME 25 13
SNAME 25 38
CADDR 25 63
SADDR 25 88
ccrry 22 113
CSTATE 2 135
czIpco 5 137
SCITY 22 142
SSTATE 2 lo4
SZIPLOD 5 166
CPOND 10 171
CSLSNO 2 181
ELINE 2 183
ITEMNO 6 185
ary 6 191
DESCR 20 197
PRICE o 217
AMOUNT 8 223
ERRMSG 48 231
INPUT BUFFER DESCRIPTION
FIELD START
NAME LENGTH POSITION
SCIDE '3 1
CUsSND 6 3
ORDNO 6 9
CNAME 25 15
SNAME 25 %0
CADODR 25 65
SADDR 25 90
cCITY 22 115
CSTATE 2 137
CzIPCO 5 139
SCITY 22 144
SSTATE 2 166
SZIPCD 5 168
CPONO 10 173
CSLSNO 2 183
ELINE 2 185
ITEMNG & 187
QTY o 193
DESCR 20 199
PRICE 6 219
AMOUNT 8 225
ORDHDRFM SCREEN FORMAT LUAD MEMBER

FORMAT OURDSEL REQUIRES 512 BYTES OF STORAGE
FURMAT ORDSE2 REQUIRES 768 BYTES OF STORAGE
FORMAT ORDSE3 REQUIRES 1024 BYTES OF STORAGE

Figure 521 {Part 2 of 2).

END
POSITIUN

6
12
37
62
87

112
134
136
141
163
165
170
180
182
184
190
196
216
222
230
278

ENO

DATE d2/12/79

CE3
CORDER
CCUST NO

ENTRY

CORDER NO
csgLo 10

CSHIP TO

CCusT »PO
CSALESMAN NO
CLINE

ITEM NO QTY X

CCK2 - END OF JRDER
LCK3 - PAGE BACKWARDS ONX

CCK8 - CANCEL THIS ORDER

POSITION

2

8
14
39
64
89
114
136
138
143
165
167
172
182
184
186
192
198
218
224
232

$SFGR Output for Display Screen Formats Used by ORDHDR

TIME

0834

FORMAT NAME ORDSE4
KSU FORMAT ID
START LINE KRUMBER v

NUMBER OF LINES TO CLEAR

LONERCASE ALLOKED

RETURN INPUT

RESET KEYBOARD

SCUND ALARM

ENABLE FUNCTION KEYS ENABLE COMMAND KEYS
BLINK CURSOR

ERASE INPUT FIELDS

OVERRIDE FIELDS

SUPFRES INPUT

KEY MASK
XN%HH¥ WSU ONLY 9433 2%%%
ENTER MODE SEGQUENCE
START- END- REQUIRED- REPEAT-
PRIQRITY~- PREFROCESS~
REVIEW MODE INDICATORS
RECORD ID 1- RECORD 1D 2- RECORD ID 3-
INSERT MODE INDICATORS
INSERT ID 1- INSERT ID 2- INSERT ID 3~
. »
Figure 5-22. S Specification Display for Display Screen E4
~)
XX XXXXXX XXXXXK= XRXKKXXKXXKXXKKEKKXK XX KKK KK XXX 5 XXX XX~
~ A
Figure 5-23. Screen Entry for Display Screen E4
Sample Applications 5-49

~

.

EXXTHRXXARLKTE RXXKKKK - EXKXKKKXEXEXKKXKKXKKEKK 5 KKK L XK EHXKK 5y XXX XX~

Figure 5-24. Attribute Screen for Display Screen E4

SOURCE INPUT SCREEN FIR#AT SIURCE SPECIFILATIONS

00C10SORDSEL 99

00020DSCODE 00020103Y Y \ Y
OC0300TITLE 00210231y Y
00040DFLO003 00150511Y

000S3DCUSND 00060531Y Y Y 2V Y Y
00060DFLO00S QUl2C711Y

0UO70DORDNG 00060731Y v Y B Y v
0008IDFLOOOT 00702011Y

000300 - - CKl - TOD ENTER MISC URDER INFO
D0100DFLOO0O8 00242251Y

001100Y

OC1200ERRMSG 00648230199 99
0013 D*

EXECUTION TIME QUTPUT BUFFER OESCRIPTION

JATE

lEL
COR D ER
CCUSTOMER

ENTRY
NUMBER

CORDER NUMBER
P ENTER REC/ADV X

CCK7 ~- CANCEL ORQER ENTRX

FIFLD START END

NAME LENGTH POSITION PISITIIN
CUSND 6 1 [
ORDOND Y 7 12
ERRMSG 48 13 6Q
INPUT BUFFER DESCRIPTION

FIELD START END

NAME LENGTH POSITION POSITION
SCNDE 2 1 2
CUSND 6 3 8
ORDNO o 9 14

SOURCE INPUT SCREEN FORMAT SOURCE SPECIFICATIONS

00140SJRDSE3 99
001590SC0ODE 00020103y Y Y A
0D160DTITLE 00210231Y Y
00170DFLO003 00070406Y

00180DCUSND 00060416Y Y Yy
00190DFLOO05 00080431Y

00200D3RDND 00060442Y Y Yy
00210DFLOOCT 00070603Y

0G220DCNAME 00250611y Y Yy
032300FLO0O09 00070642Y

00240DSNAME 00250650Y Y A
002500CADDR 00250711y ¥ Yy
002600DSADOR 00250750Y Y A
002700CCITY 0022081LY Y Y v
002800CSTATE 00020834Y Y Yy
002900C2IPCD 00050837Y Y Yy
003000SCITY 00220850Y Y A4
00310DSSTATE 00020373y Y Y
003230S2IPCD 00050876Y ¥ Y
00330DFLO019 00071003Y

00340DCPOND 00101011y v Y
003500FL0021 00111026Y

003600CSLSNO 00021038Y ¥ Y
0037 DFLOOOL 00651203Y

0038 D DESCRIPTION PRICE AMOUNT
0039 DELINE 00022003y Y Y
0G40 DITEMNO 00062008Y Y By Y
0041 DQTY 00062017Y ¥ Y
0942 DDESCR 00202026y Y Y
0043 OPRICE 00062049Y ¥ Y
0044 DAMDUNT 00082059y Y Y
0045 DFLOO08 001821507

0046 DFLOOCY 00292250Y

0047 D ITEMS

0048 DERRMSG 0