

- - - GA21-9330-4 - - -" - - - - -.~ - -- File No. S38-01 - ---- - - ---- - --- - • -

IBM System/3S

L

IBM System/3S
Functional Concepts Manual

Fifth Edition (September 1985)

This major revision makes obsolete GA21-9330-3. Changes or additions to the
text and illustrations are indicated by a vertical line to the left of the change or
addition. See About This Manual for a summary of changes.

The functions described in this publication apply to the IBM System/38 machine
interfaca. Changes are periodically made to the information herein; any such
changes will be reported in subsequent revisions or Technical Newsletters.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible. the examples include
names of individuals. companies. brands. and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

References in this publication to IBM products. programs. or seNices do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM
publications should be.made to your IBM representative or to the IBM branch
office seNing your locality.

This publication could contain technical inaccuracies or typographical errors. A
form for reader's comments is provided at the back of this publication. If the form
has been removed. comments may be addressed to IBM Corporation. Information
Development. Department 245. Rochester Minnesota. U.S.A. 55901. IBM may use
or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

©Copyright International Business Machines Corporation 1980. 1982. 1983. 1984.
1985

ABOUT THIS MANUAL
Summary of Changes .
What You Should Know
If You Need More Information

Communications .
Device Operation
Problem Handling.
Machine Interface Programming Information

CHAPTER 1. INTRODUCTION
Object Concepts
Integrity and Authorization . . .

CHAPTER 2. OBJECT CONTROL FUNCTIONS
OBJECT MANAGEMENT. . .
System Objects

System Object Descriptions .
System Object Characteristics
Common Attributes of System Objects

Program Objects
Data Objects.
Constant Data Objects
Entry Point
Branch Point
Instruction Definition List
Operand List.
Exception Description . .
Space Pointer Machine Object

ADDRESSING
ODT Addressing

Pointer Addressing .
Pointer Data Objects
Space Pointer Machine Object
Space Pointer .
Data Pointer . . .
System Pointer. .
Instruction Pointer

System Object Addressing
Symbolic Address
System Pointer Addressing
System Object Address Resolution

Space Addressing
Data Object Addressing
Data Object. Address Resolution
Array Addressing . . .
Substring Addressing
Space Extent Checking

Argument and Parameter Addressing
Arguments ..
Parameters
Argument Lists .
Parameter Lists .
Argument/Parameter Correspondence.

Process Addressing . .
Instruction Addressing .

Instruction Numbers
Instruction Pointers .
Instruction Definition Lists

vii
vii
viii
viii
viii
viii
viii
viii

1-1
1-1
1-4

2-1
2-1
2-1
2-1
2-6
2-8
2-9

2-10
2-22
2-22
2-22
2-23
2-23
2-23
2-24
2-26
2-26
2-26
2-26
2-27
2-27
2-29
2-29
2-29
2-30
2-30
2-30
2-30
2-32
2-32
2-35
2-37
2-37
2-38
2-39
2-39
2-39
2-40
2-41
2-41
2-43
2-43
2-43
2-43
2-43

Contents

CONTEXT MANAGEMENT 2-44
Kinds of Contexts 2-44

Machine Context 2-44
User-Defined Context. 2-44

Context Management Functions 2-44
Materializing Contexts . 2-45

Context Authorizations 2-45
AUTHORIZATION MANAGEMENT 2-46
User Profiles 2-46

Adopted User Profile 2-47
Object Authorization 2-48
Special Authorizations . 2-55
Resource Authorization 2-56
Privileged Instructions 2-56

Authorization Functions 2-56
Enrolling Users . 2-56
Modifying Authorization 2-57
Materializing Authority 2-58
Authority Verification 2-58

CHAPTER 3. PROGRAM FUNCTIONS 3-1
PROGRAM MANAGEMENT 3-1
Program Creation 3-1

Instruction Stream 3-1
Object Definition Table 3-2
User Data 3-3
Program Optimization 3-3

Program Destruction . 3-4
Program Materialization 3-4

Object Mapping Table. 3-4
Program Observability Deletion 3-4
COMPUTATION AND BRANCHING 3-5
Computational and Branching Capabilities 3-5
Computational Operands 3-5
Computational Characteristics . 3-5

Computational Instructions and Data Descriptions . 3-5
Generic Computational Operations 3-6
Attribute Binding 3-7
Operand Overlap 3-7
Avoiding Invalid Results 3-11
Optional Computational Instruction Forms 3-12

Arithmetic Operations 3-14
Binary Computation . 3-14
Packed Decimal Computation 3-14
Zoned Decimal Computation 3-14
Floating- Point Computation 3-15
Floating-Point Overflow 3-21
Floating-Point Underflow 3-22
Floating-Point Zero Divide . 3-23
Floating-Point Inexact Result. 3-23
Floating- Point Invalid Operand 3:"24
Arithmetic Instructions 3-25

Character String Operations . 3-25
Character String Instructions 3-25

Boolean Operations 3-27
Boolean Instructions 3-27

Comparison Operations 3-28
Comparison Instructions 3-28

Contents iii

Object Movement and Conversion Operations
Movement Instructions
Conversion Instructions

Branching Operations
Unconditional Branching
Conditional Branching
Variable Branching

Editing Operations . . .
Editing Instructions .

Logical Character Operations
Array Index Operations .
No Operation
PROGRAM EXECUTION
Program Activation

Activation Creation .
Activation Destruction

Program Invocation
Invocation Creation .
Invocation Destruction
Invocation Example . .
Subinvocations

Arguments and Parameters
Interinvocation Communications
Intrainvocation Communications
Interprocess Communications

CHAPTER 4. SUPERVISOR AND CONTROL
FUNCTIONS. • . ..•..

PROCESS MANAGEMENT
Establishing a Process . .

Process Control Space
Process Definition Template
Process Structure. . .
Process Initiation Steps
Process Domain

Process States
Process Phases

Sequencing through Process Phases
Process Authorization
Object Address Resolution

External Data Object Resolution
Process Management Instructions .

Process Control Space Instructions
Process Control Instructions . . .
Authority for Process Control Instruction Usage

Process Attributes
Process Control Attributes . . .
Resource Management Attributes
Process Pointer Attributes . . .
Process Status Indicators
Process Resource Usage Attributes
Subordinate Processes Identification
Process Performance Attributes

Interprocess Communication
Object Locks
Process Exception Handling. . . .
Process Control Instruction Characteristics
EVENT MANAGEMENT
Events

Event Identification
Event Monitoring

iv

3-29
3-29
3-30
3-33
3-33
3-34
3-34
3-34
3-35
3-35
3-35
3-35
3-36
3-36
3-36
3-38
3-38
3-38
3-42
3-45
3-47
3-48
3-49
3-53
3-53

4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-4
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-8
4-9
4-9

4-10
4-10
4-11
4-12
4-12
4-12
4-12
4-13
4-14
4-14
4-15
4-15
4-15
4-16

Event Signaling
Machine Event Signaling
Signaling by Signal Event Instruction
Signaling an Event to a Process
Conditions for Signaling an Event Monitor

Event Handling
Asynchronous Event Handling
Synchronous Event Handling

Event- Related Data
Event Rules.
EXCEPTION MANAGEMENT
Exception Descriptions . . .
Exception Detection and Signaling
Locating an Exception Description
Exception Handling

Ignored Exceptions
Deferred Exception Handling .
Immediate Exception Handling
Retrieving Exception-Related Data Option

Returns from Exception Handling
Exception-Related Data

Exception-Related Data Option
RESOURCE MANAGEMENT
Resources

Processor Resource
Storage Resource.
System Objects

Control and Monitoring Functions
Multiprogramming Level Control
Storage Resource Functions
Process Attributes

System Object Locks
Types of System Objects That Can Be Locked
Lock Request Granting Algorithm . .
Sharing Data Within a System Object
Implicit Locks
Transferring Locks
Locking a Space Location .
Unlocking a Space Location
Materializing Locks . . .
Unlocking System Objects .
Deadlock
Deadlock Detection and Resolution

CHAPTER 5. DATA FUNCTIONS .•......•
DATA BASE MANAGEMENT
Major Data Base Objectives and Characteristics
Data Base Objects. . . .
Using Data Base Functions

Creating a Data Space
Creating a Cursor.
Activating a Cursor . .
Inserting an Entry. . .
Finding an Entry without a Data Space Index.
Retrieving an Entry
Updating an Entry
Deleting an Entry .
De-activating a Cursor
Destroying a Cursor. .
Destroying a Data Space
Creating a Data Space Index
Finding an Entry with a Data Space Index
Destroying a Data Space Index .
Copying Data Space Entries
Shared Data Spaces

4-18
4-18
4-18
4-19
4-19
4-19
4-19
4-20
4-21
4-22
4-23
4-23
4-25
4-25
4-26
4-26
4-27
4-27
4-28
4-29
4-31
4-31
4-32
4-33
4-33
4-33
4-34
4-35
4-35
4-37
4-40
4-41
4-41
4-41
4-44
4-44
4-44
4-44
4-44
4-44
4-45
4-45
4-47

5-1
5-1
5-1
5-2
5-3
5-3
5-3
5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-5
5-5
5-6
5-6
5-6
5-7

Multiple Locked Entries 5-8 System to System Attachment (Using
Ensuring Changes 5-8 SNA On an X.25 PSDN) 6-7
Data Space Index Maintenance . 5-9 Binary Synchronous Communications
Materialization of Data Base Object Attributes Attachments (Point to Point) 6-8

and Statistics 5-9 Binary Synchronous Communications
Modification of Data Base Object Attributes 5-9 Attachments (Multipoint Tributary) 6-9
Recovery Considerations . 5-9 Multi-leaving Telecommunications Access
Performance Considerations 5-10 Method Support for MRJE 6-10
Data Base Maintenance Functions 5-12 System to System Attachment (SNA) 6-11

Data Spaces 5-12 System to System Attachment (for DHCF) 6-12
Data Space Organization 5-14 System to System Attachment (SNA) 6-13

Data Space Indexes 5-14 Configurations and States of Source/Sink Objects. 6-14
Types of Addressing for Data Space Indexes. 5-15 Configurations 6-14
Data Space Index Keys 5-15 Forward and Backward System Pointers 6-15
Index Addressability to Subsets of Data Configurations Defined 6-15

Space Entries . 5-17 Configuration Information. 6-17
Example of Data Space Index Ordering 5-17 Machine Configuration Record 6-17

JOURNAL MANAGEMENT 5-21 Materialize Machine Configuration Record 6-17
Journal Objects 5-21 Object Modification Limitations . 6-17

Journal Port 5-21 Switched Network Considerations 6-17
Journal Space 5-22 Switched Forward and Backward Pointers 6-18

Specifying Objects to Be Journaled 5-22 Network Description Candidate Lists 6-18
Journal Entries 5-23 Controller Description Eligibility List . 6-18
Applying Journaled Changes 5-24 Object Contents . 6-18
Journal Status During IMPL 5-24 Common Elements in LUD, CD, NO . 6-20
Load/Dump 5-25 Specific Elements in LUD, CD, and NO 6-20
Commit Management 5-25 Object States 6-20
Commit Object 5-25 Source/Sink Instructions . 6-26

Commit Block 5-25 Instruction Usage . 6-26
Commit Description 5-26 Exclusive Locks on Source/Sink Objects 6-26
Commit Operation. 5-26 Events 6-27
Decommit Operation. 5-27 Create/Destroy Instructions-Hierarchy Rules 6-27
INDEX MANAGEMENT 5-29 Configuration Hierarchy Rules 6-28
Uses for Independent Indexes 5-29 Materialize Instructions 6-28

Searching for Index Entries 5-29 Modify Instructions 6-30
Inserting Index Entries 5-30 LUD Session State Changes 6-33
Performance Considerations 5-30 Request I/O Instruction 6-37
QUEUE MANAGEMENT 5-31 Source/Sink Exceptions and Events 6-43
Queues 5-32 Communications Error Recovery . 6-43

Queue Instructions 5-32 Systems Network Architecture Concepts
Queuing Functions 5-33 for System/38 . 6-43
Moving Messages 5-34 Application Layer (PGM) . 6-43
Materialize Queue Messages 5-34 Function Management Layer (PGM) . 6-44

SPACE MANAGEMENT 5-35 Transmission Management Layer (MI) 6-44
Spaces. 5-35 SNA Transmission Management Layer 6-44
Space Functions 5-35 Advanced Program-to-Program Communications 6-45

Space Creation . 5-36 Display Station Pass Through 6-46
Space Attribute Materialization 5-36 SNA Supervisory Services Support (MI) 6-48
Space Attribute Modification 5-36 Machine Services Control Point. 6-48
Space Destruction 5-36 MSCP Role (Primary Station) . 6-49

Space Data. 5-36 MSCP Role (Secondary Station) 6-50
Space Data Views 5-36 MSCP Role (Peer Station) 6-51
Space Addressing 5-37 Binary Synchronous Communications Concepts
Dump Space Management. 5-37 for System/38 . 6-52
Dump Space Functions 5-37 Application Layer (PGM) . 6-52
Space Data Modification 5-39 Function Management Layer (PGM) 6-52

I/O Management Layer (MI) 6-52
CHAPTER 6. SOURCE/SINK FUNCTIONS. 6-' X.25 Communciations Concepts For System/38 . 6-53
Source/Sink Objects. 6-1 Load / Dump Considerations . 6-54

Object Types. 6-2 LD Commands 6-55
Local Device . 6-3 Session Types 6-56

C
Local Subsystem Devices 6-4 Sequence of Operation 6-56
Remotely Attached Devices 6-5 REQIO (Request I/O) Instruction 6-56
System to System Attachment (SNA) 6-6 RD (Request Descriptor) . 6-57

Contents v

Modify LUD Sessions for LUD
LD Error Processing.
Processing an MODLUD (Reset) Instruction
Feedback Record
Load/Dump Authority
Data Base and Load/Dump Networks.
Load/Dump Performance
Load/Dump Journal Entries
Dumping and Loading Journal Spaces .

Source/Sink Object Recovery
IPL Cleanup ...
Damaged Objects
Partial Damage . .
Partial Damage Recovery

Source/Sink Examples . . .
Shared Usage of Source/Sink Objects

. Configuration Changes
Activation of Switched Networks . . .
Session State Changes
Request I/O Operations-Error Recovery Examples

CHAPTER 7. MACHINE SUPPORT FUNCTIONS. .
SYSTEM/38 SUPPORT FUNCTIONS
Machine Attributes
Machine-to-Programming Transition. .
Terminate Machine Processing Function
Machine Check Function

Machine Checks
Diagnostic and Service Functions . . .
MACHINE OBSERVATION FUNCTIONS
Observation Functions

Inherent Machine Observation Functions .
Trace Functions

Inherent Machine Observation Instructions
Tracing
Materialize Instructions .
RECOVERY FUNCTIONS
Recovery Capabilities

Data Base Recovery Capabilities
System Recovery Capabilities

GLOSSARY.

INDEX . ..

vi

6-61
6-61
6-62
6-62
6-62
6-62
6-64
6-64
6-65
6-66
6-66
6-66
6-67
6-67
6-68
6-68
6-69
6-78
6-81
6-82

7-'
7-1
7-1
7-1
7-1
7-2
7-2
7-3
7-4
7-4
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-6
7-7

G-'
X-'

The purpose of this publication is to help the reader gain
an understanding of the functions provided by the
System/38 machine interface. The level of information
contained in this publication is above that of the
individual instruction operational characteristics;
therefore, the reader is expected to be familiar with
programming in both machine and high-level languages.
Individual instructions are included but only for the
purpose of explaining their major function. (The details
for each instruction are included in the System/38
Functional Reference Manual.)

This publication contains the following major parts:

• Chapter 1, Introduction, contains general information
about the System/38 machine interface.

• Chapter 2, Object Control Functions, introduces
System/38 as an object oriented system. An
overview of the program objects and system objects,
how to address these objects, and the authorization
required to use them are also contained in this
chapter.

• Chapter 3, Program Functions, defines the
components of a program. Program functions
contains information about the two logically distinct
operations that occur during the execution of a
program. This chapter also contains information
about the computational and the branching
instructions.

• Chapter 4, Supervisor and Control Functions, contains
information about the event management functions
and the instructions used to monitor the occurrence
of a set of events and take action based on the
occurrence of some or all of that set of events. This
chapter also provides the user with information
about: managing certain machine conditions called
exceptions, the contents of a process and how to
manage a process, and the system resources and the
available facilities to manage these resources.

About This Manual

• Chapter 5, Data Functions, contains information about
the operations required to address and use data
stored in the data base. This chapter also describes
data spaces, data space indexes, keys, and access
techniques.

• Chapter 6, Device Support Functions, provides
information about the instructions that are used to
control devices. These instructions manipulate and
control the I/O devices, manage the attachment
network facilities, and define the configuration details
of the system.

• Chapter 7, Machine Support Functions, provides
information about the instructions that assist in
problem determination and system observation.

This publication also contains a glossary of System/38
instruction terminology.

Note: This publication follows the convention that he
means he or she.

SUMMARY OF CHANGES

Miscellaneous changes have been made throughout this
manual. Information has been added to this manual to
support the following:

• Dump space object

• Scan instructions

• Cipher instructions

• Terminate instruction

• Dump space management

X.25 communications

• Distributed host command facility (DHCF)

About This Manual vii

WHAT YOU SHOULD KNOW

You should know the information contained in the IBM
System/38 Introduction, GC21-7728, because it
provides a summary of what the IBM System/38 is and
how it can be used to meet the data processing needs
of an organization.

IF YOU NEED MORE INFORMATION

Communications

• IBM System/38 Data Communications Programmer's
Guide, SC21-7825

Describes how to configure communications lines,
control units, and devices for use in binary
architecture (SNA) communications.
Identifies the configuration commands used to
define communications lines, control units, and
devices for SNA or BSC communications.

- Describes the use of data description
specifications (DDS) for communications. Also,
describes' the Create Communications File
(CRTCMNF) and Create BSC File (CRTBSCF)
commands.

viii

Identifies communications programming
considerations and contains examples of RPG III
and COBOL programs for communications with
BSC and SNA devices and systems.
Describes error handling for communications.
Identifies the device-dependent considerations for
supported SNA hosts, and BSC devices and
systems.

Device Operation

• IBM System/38 Operator's Guide, SC21-7735
Describes operator / service panel controls and
indicators
Describes system console screen and keyboard
Describes diskette magazine drive controls
Describes how to handle diskettes
Describes how to load and unload diskettes and
diskette magazines
Describes how to remove diskettes from the drive
station
Describes error recovery for printers

Problem Handling

• IBM System/38 Diagnostic Aids, SY21-0584
Describes problem symptoms and causes

- Describes initial problem determination

Machine Interface Programming Information

• IBM System/38 Functional Reference Manual-Volume
1, GA21-9331

Describes functions that are performed by each
machine interface instruction.

- Identifies information needed to code each
machine interface instruction.

- Describes events and exceptions that are signaled
by each machine interface instruction.

- Describes attributes and specifications of the ODT
(object definition table!. ODV (ODT directory
vector), and OES (ODT entry string).

• IBM System/38 Functional Reference Manual-Volume
2, GA21-9800
- Describes input/output devices

Describes communications line connections
Describes load / dump functions

- Describes machine initialization

The high-level machine interface of System/38 is the

primary characteristic that identifies this system as a
major advance in computer system architecture. In
addition, many of the basic supervisory and resource
management functions previously found in computer
operating systems are included in the System/38
instruction set.

Note: In this book the terms machine interface and
instruction set are interchangeable.

The object-oriented architecture of the interface is
fundamental to the overall design of the functions
provided by System/38. An object is a named entity
that is described by its set of attributes. (The attributes
define a set of functions or operations that can be
performed on the object.)

The high-level operations performed by System/38
instructions provide the desired logical functions without
dependence on their machine implementation. The
power of these instructions is illustrated by data base
operations that retrieve, update, and logically sort data
records.

The access path to objects is machine controlled. This
feature permits effective authority enforcement and
automatic serialization of concurrent operations on the
same object. Pointers, which are used to address

objects, cannot be counterfeited. This feature prevents
unauthorized addressability to objects or to virtual
storage. These two features provide greater data
integrity and security than available on previous systems.

System/38 executes each user's programs as an
independent process. The machine resources
(processor, storage, devices) that are shared by
processes are also managed by the machine.
Interprocess communication is accomplished through
queues and event signals. Locks can be applied to
objects to control and serialize concurrent access to
those objects being shared by several processes.

Chapter 1. Introduction

Programs are translated into microcode to achieve
greater efficiency. Program variable attributes cause the
machine to automatically perform data-type conversions
and allocate program work storage for these variables.

Input/output operations offer greater device
independence through the use of the source/sink
function and SNA (systems network architecture). The
intricacies of the channel, communication networks, and
asynchronous device operations are handled by the
machine.

System/38 incorporates all of these features, and more,
into the machine hardware and microcode. This high
level of function is standard on every machine model
regardless of storage size, processor type, or device
configuration.

OBJECT CONCEPTS

Typical machine instruction sets for traditional systems
provide bit and byte string manipulation capabilities. The
System/38 instruction set provides similar functions and
also provides machine instructions that operate on
complex data structures to accomplish high-level
functions.

In System/38 some of the data structures, such as
programs and data files, are similar to the programs and
data files in conventional systems. Other data structures
are unique to System/38. The data structures that are
presented in the instruction interface are collectively
categorized as objects.

Most objects must be created through use of a Create
instruction. Other objects are implicitly created by the
machine. Through a template, the user provides a set
of attributes and values that apply to the new object.
The new object also has operational characteristics that
define the set of functions that can be accomplished
through it.

Introduction 1-1

An object consists of a functional portion and an
associated space. The functional part of an object is
used to implement a particular construct. For example,
the functional part of a program object is created by the
translation of System/38 instructions into microcode.
The program is said to be encapsulated because there is
no direct access to the storage that is used to support
the program. Instead, the object is manipulated at a
high level through the instruction set. In this way,
encapsulation ensures the functional integrity of all
objects.

The associated space portion of an object is a region of
bytes that can be directly manipulated by the user. The
space is associated with the functional part of the object
and provides a convenient way of storing additional
user-defined data that is pertinent to the usage of that
object.

Addressability to an object is obtained when the object
is created or when the symbolic name of an object is
resolved to form a pointer. (A pointer is data that is
used for addressing either objects or bytes in spaces.) A
system pointer, for example, enables a user to address
an object for the purpose of destroying, materializing, or
modifying an object through the instructions associated
with that object type. A space pointer provides
addressability to bytes within a space object or
associated space.

Functional Portion

• Program

• Process

• Data Base File

• Index

Pointers are controlled through pointer manipulation
instructions. (Pointer validity is maintained through a
hardware protection mechanism.) A pointer is
invalidated when a computational instruction is used to
modify that pointer.

1-2

--

Contents of Space -
• System Pointer

• Space Pointer

- Packed Decima! -

l

l

One type of object. called a space object. has no
functional part. Its associated space is used to provide
storage for control blocks. buffers. pointers. and other
data.

Functional Portion Space Portion

• Not Used Region of Bytes

Users need not be concerned with the addressing
structures of main storage or auxiliary storage. or aware
of multiple levels of storage. because the storage used
for all objects is allocated and managed by the machine.
That is. except for a possible degradation of
performance. it makes no difference in the System/3S
instruction set where an object. or portions of it. resides.
Thus. the total address space of System/3S consists of
objects that are uniformly addressable by pOinters.

Similar constructs shield the user from dependencies
upon channel and I/O device addresses and low-level
communication protocols.

Introduction 1-3

INTEGRITY AND AUTHORIZATION

Improved system integrity and authorization mechanisms
is one advantage of the object-oriented approach. All
user information is stored in objects. Access to that
information is through System/38 instructions that
ensure the integrity of the objects. An attempt to
misuse an object is, therefore. detected and causes the
execution of the instruction to be terminated and an
exception condition to be signaled.

Authorization capabilities are likewise enhanced by the
object-oriented interface. Each user of the machine is
identified by a user profile. which is itself an object.
Permanent objects in the system are owned by a user
profile, and the owner or an appropriately authorized
user profile may delegate to other user profiles various
types of authority to operate on the objects.

Owner

.. -------- User
Profile --------~ I

I
I
I
I
I
I

User
Profile

Legend:

All
Authorities

Delete

(authorized)

------. ~ Delegates authority

• ~ Authority to object

A process (unit of multiprogramming) executes under
control of a specific user profile (in the name of a user),
and functions executed under the process verify that the
referenced objects are properly authorized to that user.

1-4

I
I
I
I
I
I
I

Even though System/38 provides improved system
integrity and authorization mechanisms. the user is
responsible for overall controls and security. For these
mechanisms to be effective. proper user implementation
should be accompanied by other control practices, such
as physical security and division of duties.

When implementing the security functions, special
attention should be given to authorization of
system-wide functions such as save/restore. creation of
programs. and debug functions. Physical security
considerations include the system console, save/restore
diskettes. security officer password, and controls over
machine-to-machine movements of data and programs.

System/38 instructions provide two modes of
addressing. First, pointers allow varying addressability to
objects and to bytes within space objects. Second,
dictionary addressing deals with program references to
values within a space object.

The operands in a program instruction are defined in a
dictionary portion of the program that is separate from
the instructions themselves. Instruction operands are
index references to these dictionary entries that define
the operand characteristics such as data type and
length.

Operand
Dictionary
Portion

Instruction
Operation
Code

System/38 Instructions

Instruction
Operands

Binary, zoned decimal. packed decimal. character, and
pointer data types are examples of operand
characteristics that can be defined. The dictionary
entries do not contain the operand values. They do,
however, control the general type of location
characteristics, (for example, relative to the area
addressed by a pointer or relative to the storage area
allocated for program variables within the executing
process).

Additional capability, relative to low-level instruction
interfaces, is provided by having instructions refer to
dictionary entries that describe operand characteristics.
For example, the following high-level capabilities are
provided:

• Computational instructions are generic with respect to
data type and length. For example, there is only one
Add Numeric instruction in the System/38 instruction
set; the Add Numeric instruction operates on
whatever data is defined in the ODT (object definition
table). This enables the use of source and receiver
operands of varying type, length, and decimal
positioning with all conversions and scaling being
performed by the machine.

• Arrays can be defined in System/38 programs.
Instruction operands support array indexing to locate
specific elements of the array.

• Because applications often allow operations on
multiple formats of data, some System/38
instructions (for example, the copy instructions)
support attribute binding during execution time.

In addition to these types of high-level data operations,
the System/38 instruction set provides and, in some
cases requires, functions intended to directly support
programming constructs more directly than in traditional
machines. For example, programs are invoked through
Call and Return machine instructions.
Machine-controlled argument and parameter functions
provide communications from one program to another.
Allocation and initialization of storage for program
variables within a process is performed by the machine.

Multiprogramming is supported through the concept of
processes. A process is similar to a task in other
systems and is the basis for managing work in the
machine. The user controls the number of processes
currently initiated, the priority of each process, and the
relationship of one process to another with respect to
processor usage and storage usage. The machine then
allocates the processor and storage resources based on
these parameters as well as on the current status of the
process.

Introduction 1-5

This level of multiprogramming support provides the
following advantages:

• A single resource management mechanism is applied
to all processing across all system activities. This
reduces overhead and provides better management of
resources in a complex and dynamic environment.

• Efficient resource management mechanisms can be
used by taking advantage of hardware characteristics
without requiring hardware- related dependencies in
the programming.

Similarly, System/38 instructions provide the basic
functional building blocks for a high-function integrated
data base. Data base objects are provided with a
complete set of functions that support different access
mechanisms, file sharing, record format definition and
mapping, efficient record retrieval, update, add, and
delete. This support allows, for example, a data base
file structure, which maps a single logical file into
records with multiple formats and content, to be
defined. In addition, a single physical data base file can
have multiple indexes (access paths) defined over it, all
of which are concurrently updated when the file is
changed. Users of the file can view the data in a form
suitable to their application needs.

1-6

Data base support provides the same types of
advantages as are provided by multiprogramming
support: efficient management of resources across a
multi-user environment without requiring programming
dependency upon hardware and machine implementation
details.

J

Object Management

An object is a named entity whose attributes and
functional location are either described by a data view
(the definition of a program object) or created by a
System/3S Create instruction (if a system object).

The following discussion defines the two classes of
objects (system and program) used in System/3S
instructions.

SYSTEM OBJECTS

System objects are explicitly created by the user in order
to perform some operation defined by the machine.
System objects can be known and addressed throughout
the entire system. They generally have no relationship to
one another (as viewed by the machine), and their
existence is generally independent of one another.

The following objects are system objects:

• Access group

• Commit block

• Context

• Controller description

• Cursor

• Data space

• Data space index

• Dump space

• Index

• Journal port

• Journal space

l. . logical unit description

Chapter 2. Object Control Functions

• Network description

• Process control space

• Program

• Queue

• Space

• User profile

System Object Descriptions

The following is a brief description of each system
object.

Access Group

Access groups are system objects that enable a user to
specify (as a group) those system objects that are used
together. Then, when required by an operation, the
entire contents of the access group can be moved from
one type of storage (auxiliary or main) to another,
thereby optimizing the movement of objects. The
movement of the access group can occur because of an
explicit request by the user or an implicit request by the
machine. A reference to an individual object contained
in the access group causes only that object (or part of it)
to be moved.

To be a member of an access group, a system object
must be created into that access group.

For more information concerning access groups, refer to
Resource Management in Chapter 4.

Object Control Functions 2-1

Commit Block

A commit block is a permanent system object that holds
information concerning the changes made to objects
under commitment control. The commit block contains a
list of the objects under commitment control. a list of
data space record lock identifiers, a list of objects that
have undergone changes in the current commit cycle,
and the commit 10.

Context

A context is an object that contains addressability by
name, type, and subtype to other system objects; that
is, a context relates the symbolic identification of an
object to an internal machine representation of the
location of the object.

The machine context is implicitly created and maintained
by the machine. It contains exclusive addressability to
all user profiles, permanent contexts, logical unit
descriptions, controller descriptions, and network
descriptions.

Other contexts can be created to user specifications by
a Create Context instruction. A user-created context
can address any system object except those system
objects whose addressability is restricted to the machine
context (see preceding paragraph).

Each object that is addressed by a context must have
(within the context) a unique symbolic identification.
This unique symbolic identification includes object type,
object subtype, and object name.

System objects, other than those restricted to the
machine context, need not be addressed by any context.
If such addressability exists, it is limited to only one
context.

The user can obtain addressability to a system object by
using the name resolution function. This function causes
addressability to a system object to be returned in a
system pointer.

For more information concerning contexts, refer to
Context Management later in this chapter.

2-2

Controller Description

A controller description is an object that represents
either an I/O controller for a cluster of I/O devices or a
station that attaches groups of communications devices
over the same data link.

Controller descriptions are created for every
communications station or device controller that can be
attached to System/38. The object contains a
description of the controller, a pointer to the logical unit
descriptions associated with it, and the current status of
the controller.

For more information concerning controller description
objects, refer to Source/Sink Management in Chapter 6.

Cursor

A cursor is a system object used to provide access to
the entries residing within a data space. A cursor is the
user's only interface to these entries.

A cursor can directly locate any entry in a data space; a
cursor can also indirectly locate any entry in a data
space through a data space index. A cursor, then,
serves as the interface for retrieving data from and
storing data into the data space.

For more information concerning cursors, refer to Data
Base Management in Chapter 5.

Data Space

A data space is a system object that serves as the basic
unit of storage for a user's data. A data space consists
of a collection of entries, each of which may contain a
given number of similarly formatted data fields.

A data space entry is the lowest level that can be
addressed in accessing the contents of the data space.
Each field in an entry is described by scalar type (binary,
zoned decimal. packed decimal, and character) and
length. When entries are retrieved or modified, the
scalar attributes and length are used to transform the
data to or from the format of the data presented in the
user's program.

For more information concerning data spaces, refer to
Data Base Management in Chapter 5.

Data Space Index

A data space index is a system object that is used to
provide a logical ordering of the entries in a data space.
Through use of a data space index. the entries in a data
space can be accessed independently of the physical
organization of the data. A data space index can be
created for one or more data spaces for which a
relationship can be expressed through a collection of key
fields. The key field consists of one or more data fields
that are selected from the data space entries to specify
an ordered sequence.

For more inforrt:lation concerning a data space index.
refer to Data Base Management in Chapter 5.

Dump Space

A dump space is a system object that serves as a
storage area for a dump of other system objects. It
provides an online storage alternative to the commonly
used offline storage media for dumps of system objects.

A dump space is used to distribute the dumped objects
it contains to other systems. but does not require offline
media (such as tape or diskette). A dump space
provides temporary backup of the dumped objects it
contains. Because a dump space resides in the online
storage of the machine. it has the same exposure to
damage or loss due to failures of online storage that
other system objects have. Therefore. a dump of
system objects performed to provide a backup for
recovery purposes can be performed from the dump
space or directed to offline media.

A dump of system objects can be set into a dump
space through a source/sink dump operation. Dump
data can then be retrieved and inserted into another
dump space on the originating system or on another
system. The system objects in a dump contained within
a dump space can be loaded back into a usable state on
the machine through a source/sink load operation.

For more information concerning dump space objects.
refer to Dump Space Management in Chapter 5.

Index

An index is a system object that can be used for storage
and retrieval of data based on some key value. Scalar
values and pointers can be inserted into the index with a
portion of the value interpreted as the key field. The key
value can subsequently be used to locate and retrieve
one or more entries from the index.

The index can be used for table look-up functions such
as symbol tables. cross-reference lists. or dictionaries.

For more information concerning index objects. refer to
Index Management in Chapter 5.

Journal Port

A journal port is a system object used to link objects to
journal spaces. Only those objects having their changes
journaled are linked to a journal space.

A journal port contains the definition of the prefix data
associated with each change entry in the journal space.

\ Time-
stamp

Process
Name

Prefix
Data

User Profile
Name

Journal Entry
in Journal Space

Program
Name

ID

Entry
Specific
Data

Object Control Functions 2-3

Journal Space

A journal space is a system object used to contain the
changes to those objects specified as journaled objects.
When a journal space is attached to a journal port, all
changes that occur to the objects attached to that
journal port are sequentially entered in the journal space.
These change entries are of variable length.

Journal Journal
Entry Sequence
Length Number

..

Entry
Type

Entry
Status

Subtype

Journal Entry in
Journal Space

Journal
Prefix

The user may insert entries in the journal space by using
the Journal Data instruction.

The user may read the changes through the Retrieve
Joumaled Entries instruction.

Logical Unit Description

An LUD (logical unit description) is an object that
represents a physical I/O device or an end-use
mechanism such as another program in the device or
system represented by this LUD.

A logical unit description must be created not only for
every I/O device attached to the machine, but for every
end-use mechanism that will communicate with this
machine. This system object contains unique
information to identify the device and determine its
current status. The object is also used to control the
I/O operations for that device.

For more information concerning logical unit
descriptions. refer to Source/Sink Management in
Chapter 6.

2-4

Entry
Journal Specific
10

Data

Network Description

A network description is an object that represents a
communications network port on the system. A network
description object must be created for each
communications port on a machine.

For more information concerning network description
objects, refer to Source/Sink Management in Chapter 6.

Process Control Space

A process control space is a system object that is used
by the machine to control process execution.

The user must create a process control space before the
initiation of a process. The process control space is
then associated with that process for the entire period
that the process exists. The machine uses the process
control space for machine work areas and storage
related to process execution.

For more information concerning process control space,
refer to Process Management in Chapter 4.

Program

A program is a system object that forms the basic
executable unit of the machine. The execution of a
program causes a series of functions to be performed
against a set of objects. A program is the encapsulated
and executable form of a program template and logically
contains both the function definition and object
definitions from the program template.

The program can be executed once it is activated
(storage is allocated and initialized for static data) within
a process and invoked (storage is allocated and
initialized for automatic data).

For more information concerning programs, refer to
Program Management in Chapter 3.

Queue

A queue is an object that can be used for storage and
retrieval of data, called messages. Messages can be
stored (enqueued) in a queue for later retrieval
(dequeued) by the same process or by a different
process.

A process can test for a message on a queue and either
wait or continue execution if the message is not
available.

Messages can be inserted on and removed from a
queue based on a key value, or they can be processed
based on order of arrival, either FIFO (first-in-first-out)
or LIFO (last-in-first-out).

For more information concerning queues, refer to Queue
Management in Chapter 5.

Object Control Functions 2-5

Space

A space object contains only a space. It is used to store
scalars and pointers and serves no other purpose.

A space is implemented with special hardware tag bits
that identify the data in the space as a pointer. The
machine instructions that establish, copy, and modify a
pointer ensure that the pointer is valid by turning on,
maintaining, and checking these tag bits. If a machine
instruction overlays the pointer data in the space (for
example, with a Copy Bytes instruction), the tag bits are
turned off, thereby invalidating the pointer. This
prevents any illegal use of a pointer and also ensures
that a pointer is not counterfeit. (An attempt to use this
data as a pointer results in an exception, and the
instruction is not completed.) This scheme provides data
integrity and security because pointers can contain
authorization information as well as addresses.

For more information concerning space objects, refer to
Space Management in Chapter 5.

User Profile

A user profile is the system object that identifies a valid
user to the machine. A user profile also defines the
user's rights of use to system objects, machine
resources, privileged instructions, special machine
functions, and certain machine attributes.

Each process executes under (or in the name of) a user
profile (user). This user must have authorization to
perform the various functions specified in the process.
The user profile provides the mechanism for granting
this authorization and for verifying that proper
authorization exists.

For more information concerning user profiles, refer to
Authorization Management later in this chapter.

2-6

System Object Characteristics

The following list is a summary of the characteristics of
system objects:

• Each system object must be explicitly created. There
are specific Create instructions (for example, Create
Program and Create Context) for each type of system
object.

• The Create instruction references a user-supplied
template. The template provides a set of attributes
and values to be assigned to the system object when
it is created.

• System/38 instructions enable the user to determine
the current attributes of the object.

• All system objects have a name. The name is part of
a symbolic address that can be used to locate the
object.

• System objects are created as either temporary or
permanent objects.

Temporary system objects are implicitly destroyed
when an IPL (initial program load) is performed unless
they have already been destroyed by the user.

Permanent system objects must be explicitly
destroyed by the user because they are not implicitly
destroyed by the machine.

• All system objects (except temporary contexts) can
be addressed by another system object called a
context. (A context relates the name of an object
with the address of that object.)

Certain types of system objects (for example
permanent contexts. user profiles. controller
descriptions. logical unit descriptions. and network
descriptions) can only be addressed by the machine
context.

All other system objects (except a temporary context)
can be addressed from a temporary or permanent
context or from no context at all. For these objects.
the user may specify (as a creation attribute) a
context that is to initially address the object. If a
context is not specified. addressability is not placed
in any context. The user may subsequently insert
object addressability into a context. move object
addressability from one context to another. or delete
object addressability from a context. A system object
cannot be addressed by more than one context.

• A system pointer provides addressability to a system
object.

In order to reference a system object for any
operation. a system pointer must be specified as an
operand of the instruction or implied as a field in a
template.

A system pointer can be created by using the name
resolution functions provided through contexts
(symbolic address) or using machine functions that
return a system pointer to an object (for example.
create. materialize. and retrieve functions).

• System objects can be explicitly destroyed by using
the appropriate destroy instruction (for example.
Destroy context). or temporary system objects can be
implicitly destroyed by the machine.

• All system objects can have an associated space that
is used to store pointers and data. The contents of
the space are defined by the user and may be set or
tested by any of the operations that operate on space
data.

Spaces associated with system objects are located
through a reference to the system object. Such
spaces exist only as long as the containing system
object exists.

The size of the associated space is defined when the
system object is created. If the space is defined as
variable in length. it may be extended or truncated at
some later time.

• Temporary system objects can be placed in access
groups. Access groups (which are also system
objects) allow system objects that are used together
to be transferred as a group from and to different
types of storage. Access groups cannot. in turn. be
contained in access groups.

• The right to use a system object is monitored by the
machine. The authorization management functions
verify specified users' rights of use to the object. An
object can have an owner (identified by a system
object called the user profile) who is initially granted
all rights of use to the object; however. the object
authorization rights of the owner may be retracted.
Only appropriately authorized users can grant
authorization rights to other users.

The machine prohibits the use of the object unless
the proper authority has been granted.

• Object use can be synchronized through use of object
locks. Locks are enforced based on the operation to
be performed on the object. Locks are not required
in order for an object to be referenced by an
instruction. However. a process is not allowed to use
an object if any other process holds a conflicting
lock.

Object Control Functions 2-7

Common Attributes of System Objects

Each system object is created based on the attributes
defined in a template. The format of the template is
unique for each type of system object with each
template containing a different set of attribute types.
However, each template also contains a set of attributes
that are common to all system objects. These common
attributes are:

• System object identification

• Existence

• Space

• Context addressability

• Access group membership

• Performance class

The format of each template and the unique attributes
for each object are described in the System/38
Functional Reference Manual. The common attributes, in
general, are not discussed with each instruction but are
described in the following text.

System Object Identification

System object identification provides a symbolic
identification that is associated with the object. The
object identification is the basis for the symbolic address
of the object and can be used to locate the object
through a context.

Object identification is contained in a 32-byte string.
Object type is a 1-byte field implicitly assigned by the
machine during object creation. Object subtype is a
1-byte field supplied by the creator of the object. The
value in the subtype field can be used, based on user
convention, to further qualify the object type; any byte
value is allowed. Object name is a 30-byte entry
assigned by the user during object creation. Any byte
values are allowed in the name entry.

The object subtype and object name can be modified by
the Rename instruction.

2-8

Existence

The existence attribute specifies whether the object is to
be a temporary or permanent object. A temporary
object, if not explicitly destroyed by the user, is implicitly
destroyed when an IPL is performed. A permanent
object exists in the machine until explicitly destroyed by
the user.

Space

A space can be associated with the created object. The
size of the space can be either fixed or variable. The
initial allocation is specified in the size of space entry.
The machine then allocates a space at least the size
specified (the actual size is dependent on an algorithm
defined by a specific implementation). A fixed size
space of zero length causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended in length, this byte value is also used to
initialize the new allocation.

Context Addressability

Addressability to a newly created object can optionally
be inserted into a context as part of object creation.
(Objects that are addressable by the machine context
always have their addressability implicitly inserted into
that context.)

Access Group Membership

Access groups contain only temporary objects and are
used to store objects so that the objects that are used
together can be moved between main storage and
auxiliary storage as a group. Objects are placed into an
access group during object creation.

Performance Class

The performance class attribute provides information
that allows the machine to more effectively manage the
object. The values allowed and their significance are
attributes discussed in the System/38 Functional
Reference Manual.

J

PROGRAM OBJECTS

A class of objects called program objects is defined in
the ODT (object definition table). During execution of
the Create Program instruction, the ODT, the instruction
stream, and the other components of the program
template are presented to the Create Program
instruction. This instruction creates the program and
makes the objects defined in the ODT part of that
program. The ODT entry for a program object is,
therefore, a declaration for the object rather than the
actual object.

The entry in the object definition table that describes a
program object is called a view. A view defines the
type, attributes, functional location and, possibly, a
permanent value or an initial value of the object.

An ODT contains a view for each program object to be
used in a program. Each ODT entry contains the view
for a single program object. System/3S instruction
operands reference these views contained in the ODT.
This means that the instruction is to perform a specified
function by using one or more program objects
referenced as operands.

Functionally, the created program contains two major
parts, the function definition (from the instruction
stream) and the object definitions (from the ODT).

The ODT definition of an object contains no storage
allocation for the object. The ODT definition does
specify whether storage for the object is to be allocated
as a part of program execution and when that storage is
to be allocated. The created program maintains these
storage allocation definitions but does not contain any
allocated objects. If storage is to be allocated, the
allocation is done as part of the activation of a program
(for static storage) or as part of the invocation of a
program (for automatic storage).

These objects are considered to be program objects:

• Data object
Scalar data object

- Pointer data object

• Constant data object

• Entry point

• Branch point

• Instruction definition list

• Operand list

• Exception description

• Space pointer machine object

The following describes each program object that can be
defined by a view, and describes the attributes that can
be specified with that object.

Object Control Functions 2-9

Data Objects

A data object is a program object that provides
operational and possibly representational characteristics
to byte strings in spaces for use as instruction operands.
Data objects are defined in the ODT by data views. The
data view establishes the attributes of the data object,
its functional location, and its initial values. The smallest
data object that can be mapped onto a byte string and
addressed directly is a data element. A data object can
be an aggregate of identical data elements to be
operated on as a group (this is a data array). The two
general classes of data element attributes are defined as
scalar data attributes and pointer data attributes.

Scalar Data Objects

Scalar data objects provide support for operations on
values in spaces. The scalar object provides the byte
string it is mapped to through a scalar view with
representation and operational characteristics.

For example, assume a scalar data object with the
following definition:

x BINARY(2) ELEMENT

A reference to X assumes the storage addressed by X
contains a value stored as a 2-byte binary number.

2-10

Attributes

Space

Byte String

Addressability to
the Byte String in
a Space

View of a
Scalar Data Object

Only scalar data objects can have a bit or character
string representation defined. By defining a numeric
scalar object and a character scalar object onto the
same byte string, the user can manipulate the character
scalar object and get a predictable result on the numeric
scalar object. Instructions that reference scalar data
objects depend on proper representations and likewise
produce results that have predictable representations.

Scalars can be numeric or character types. Numeric
type scalars include binary, zoned decimal, and packed
decimal.

Binary Elements: Binary elements have the following
characteristics:

• Binary elements are stored as a series of 16 or 32
binary digits (0 or 1).

• Binary elements represent signed values with the sign
encoded in the leftmost binary digit.

A leftmost binary digit of 0 represents a positive
value
A leftmost binary digit of 1 represents a negative
value

Two binary lengths are defined:
Binary (2HTwo bytes or 15 binary digits for the

value and one sign digit.)
Binary (4)-(Four bytes or 31 binary digits for the

value and one sign digit.)

• The range of values for binary numbers is:
Binary (2) _2 '5 to 2 '5 -1

- Binary (4) _231 to 231 -1

• Negative binary values are stored in twos
complement form.

Zoned Decimal Elements: Zoned decimal elements have
the following characteristics:

• Zoned decimal values are stored as a series of zoned
decimal digits.

Zoned decimal digits are stored in 8-bit bytes and
are encoded with a 4-bit zone in the leftmost four
binary digits of the byte and a true form decimal digit
encoded in the rightmost four binary digits of the
byte.

• The sign of the field is encoded in the zone field of
the rightmost byte of the value. For example, a
positive decimal value of 5 678 is encoded as
follows:

Byte 2 3 4
Hex Value F5 F6 F7 F8

t
Sign Position

• The following binary encodings are valid signs:
Positive-llll, 1100, 1110, 1010. The binary
encoding 1111 is the preferred positive sign. (The
preferred sign is the encoding that an operation,
other than copy, uses for the result.) The Copy
Numeric Value instruction also sets the preferred
sign.
Negative-l101, 1011. The binary encoding 1101
is the preferred negative sign.

• Zoned decimal numbers can contain from 1 through
31 decimal digits with any number of these digits
specified as fractional positions.

• The zone field in all bytes of a zoned decimal
number, other than the rightmost byte, can have any
value. During an arithmetic operation (including the
Copy Numeric Value instruction), the zone field for all
bytes of a result field, except the rightmost byte, is
set to the binary value, 1111.

Packed Decimal Elements: Packed decimal elements
have the following characteristics:

• Packed decimal numbers represent signed values and
are stored as a series of decimal digits.

• Each decimal digit is encoded in true form as a 4-bit
binary value. Consequently, two decimal digits can be
accommodated in ~ single byte except for the byte
that contains the sign. The algebraic sign of a packed
decimal field is encoded as a 4-bit binary value and
must appear in the rightmost four bits of the
rightmost byte in the field. For example, a positive
value of 1 234 in a packed decimal view can be
contained in 3 bytes as follows:

Byte 2 3
Hex Value 01 23 4F

t
Sign Position

• The following binary encodings are valid signs:
- Positive-ll11, 1010, 1100, 1110. The binary

encoding 1111 is the preferred positive sign.
Negative-11 01. 1011. The binary encoding 1101
is the preferred negative sign.

• Packed decimal numbers can contain from 1 through
31 decimal digits. A packed decimal value (31 digits)
is stored in 16 bytes. Any number of these digits can
be specified as fractional digits.

Floating-Point Elements: Floating-point elements contain
the storage representations of binary floating-point
values. As such, the elements exist in storage and have
a physical storage format, but the binary floating-point
values are conceptual because they 'are the values
operated on or produced by mathematical calculations
performed in floating-point. A significant amount of the
function performed in floating-point calculations relates
to the implicit transformations that occur between a
conceptual floating-point value and its representation,
which exists in a floating-point element. In this sense, it
is important to understand the concept of floating-point
values as contrasted with their physical representation in
storage.

The following diagram illu~trates the concept of binary
floating-point arithmetic and the physical binary
floating-point storage elements.

Object Control Functions 2-11

Conceptual Floating-Point Arithmetic
J

Input Output
Floating-Point Values Operations Floating-Point Values

• Floating-Point Numbers • Add • Floating-Point Numbers
- Normalized Numbers • Subtract - Normalized Number
- Denormalized Numbers • Multiply - Denormalized Numbers
- Signed Zero - Signed Zero

•
• Divide

I

• Infinity • Convert • Infinity
• Not-a-Numbers • Math • Not-a-Numbers

Function

Physical Storage Representations

Floating-Point Elements

Input
Short Format

Output

I •

I Long Format I

2-12

L Binary Floating-Point Values

This section describes the characteristics of the binary
floating-point values. which the floating-point elements
represent. A binary floating-point value is one of the set
of values supported in binary floating-point calculations.
This set of values is composed of binary floating-point
numbers. infinity. and not-a-numbers. Binary
floating-point values have the following characteristics:

• A binary floating-point number is a conceptual
numeric value that contains a signed significand and
a signed exponent. Its numeric value is the signed
product of its significand and 2 raised to the power
of its exponent. In addition to the sign. the
significand of a binary floating-point number is
composed of binary digits. which contain one integer
digit to the left of the binary point and one or more
fraction digits to the right.

An arbitrary notation to express a binary
floating-point number is

(snnnn NUM sb.bbbbbbbb)

where: snnnn specifies the signed exponent value as a
signed decimal integer; NUM acts as a separator
between the exponent and the significand; sb.bbbbbbbb
specifies the signed significand as a signed binary
number expressed as a variable-length sequence of
binary digits (values of 0 or 1) with an embedded binary
point between the first and second digits. For example.

(+nnn NUM -b.bbbbbbbb)

would specify a binary floating-point number of value.

(-b.bbbbbbbb * 2**+nnnn)

where * denotes multiplication. and ** denotes
exponentiation.

Binary floating-point numbers are either normalized
numbers. denormalized numbers. or signed O.

A normalized floating-point number is a number whose
significand integer digit has a value of 1. For example, a
value of 2 is expressed as

(+1 NUM +1.0).

A denormalized floating-point number is a nonzero
number whose significand integer digit has a value of 0
and whose signed exponent has a value of -126 or
-1022. Denormalized numbers provide for a gradual
underflow toward zero of numbers representable in a
storage format. For example. a value of 2**-127 is
expressed as

(-126 NUM +0.1).

Signed 0 is 0 with an associated sign. It can be thought
of as having a significand of 0 and an exponent of O.
Although 0 has an associated sign. positive 0 is always
considered equal to negative O. For example. positive 0
is expressed as

(+0 NUM +0.0) or as (+0).

• Infinity is a conceptual value that has an associated
sign and is mathematically greater in magnitude than
any binary floating-point number. An arbitrary
notation can be used to express infinity where:
+infinity specifies positive infinity and -infinity
specifies negative infinity.

• Not-a-Number (NaN) is a conceptual value. not
interpreted as a mathematical value. that contains a
mask state and a sequence of binary digits. The
mask state can be either masked or unmasked. The
binary digits have no specific meaning other than to
give the NaN a unique value. An arbitrary notation to
express not-a-number is

(m/u NaN bbbbbb)

where: m/u specifies the mask state (m for masked. u
for unmasked); NaN acts as a separator between the
mask state and the binary digits; bbbbbb specifies the
variable-length sequence of binary digits associated with
the NaN. For example.

(m NaN 10101010101010101010101)

specifies a masked NaN with a binary digit sequence of
10101010101010101010101.

Object Control Functions 2-13

Floating-point elements have the following
characteristics:

• Floating-point elements have a fixed-length storage
format, which can be either a short (4-byte) format
or a long (S-byte) format.

The short format. as shown by the following
illustration, is a 32-bit string in which bit 0 is the sign
field (S), bits 1 through S are the S-bit exponent field
(E), and bits 9 through 31 are the 23-bit fraction field
(F).

Short Format

I Sign (S) I Exponent (E) I Fraction (F)

o S 31

The long format, as shown by the following illustration,
is a 64-bit string in which bit 0 is the sign field (S). bits
1 through 11 are the 11-bit exponent field (E), and bits
12 through 63 are the 52-bit fraction field (F).

Long Format

I Sign (S) I Exponent (E) I Fraction (F)

o 11 63

• The sign field value indicates the sign of the
significand of the numeric value represented or the
sign of the infinity value represented. A value of 0
indicates a positive sign. A value of 1 indicates a
negative sign. The sign field does not have a defined
meaning for NaN representation.

• The exponent field value indicates which type of
binary floating-point value is represented. The
exponent field value is a binary integer value; it
contains either a reserved value or a biased exponent.
A reserved value is one of the set of maximum and
minimum exponent field values of 0 and 255 for the
short format or 0 and 2047 for the long format.
These values identify representations of denormalized
numbers, signed 0, infinity, and NaNs. A biased
exponent is one of the set of values between the
maximum and minimum exponent field values. The
range of biased exponent values is 1 through 254 for
the short format or 1 through 2046 for the long
format. These values identify representations of
normalized numbers.

• The fraction field contains a sequence of binary digits
whose meaning is dependent upon the binary
floating-point value represented.

2-14

Both the short and long formats provide for
representation of numbers, NaNs, or infinity. The bit
encoding of the representations vary with the binary
floating-point value represented and have the following
cha racteristics:

• A normalized number is represented when the
exponent field contains a biased exponent. The
biased exponent is the non-negative sum of the
signed exponent of the represented number and a
constant value (bias). The bias is 127 for the short
format or 1023 for the long format. The signed
exponent of the number represented is calculated by
subtracting the bias from the biased exponent value.
The significand of the number represented has an
integer value of 1, which is implied, and a fraction
value from the fraction field. For example, the
normalized number (+1 NUM +1.0), which is the
value 2, is represented in the short format by hex
40000000.

• A denormalized number is represented when the
exponent field contains a reserved value of 0, and the
fraction field contains a nonzero value. The
significand of the number represented has an integer
value of 0 which is implied, and a fraction value from
the fraction field. The reserved value of 0 in the
exponent field indicates that the value of the signed
exponent of the number represented is -126 for the
short format or -1022 for the long format. For
example, the denormalized number (-126 NUM +0.1),
which is the value 2**-127, is represented in the
short format by hex 00400000.

• Signed 0 is represented when the exponent field
contains a reserved value of 0, and the fraction field
contains all O's. For example, the value +0 is
represented in the short format by hex 00000000.

• Infinity is represented when the exponent field
contains the format's maximum reserved value (255
for short format or 2047 for long format), and the
fraction field contains all 0' s. For example, the value
-infinity, is represented in the short format by hex
FFSOOOOO.

J

• Not-a-number (NaN) is represented when the
exponent field contains the format's maximum
reserved value (255 for short format or 2047 for long
format), and the fraction field contains a nonzero
value. The sign field value does not have a defined
meaning.

The leftmost bit position of the fraction field, bit 9 in
the short format or bit 12 in the long format,
indicates the mask state. A value of 1 in this bit
position indicates that the NaN is masked. A value of
o in this bit position indicates that the NaN is
unmasked. Unmasked NaNs in a floating-point
operand force the detection of the invalid
floating-point operand exception. Masked NaNs in a
floating-point operation are moved into the result
field, but do not force detection of the invalid
floating-point operation exception.

The remaining bit positions of the fraction field
contain the sequence of binary digits associated with
the NaN. The values of these binary digits have no
defined meaning.

For example, the not-a-number (m NaN
10101010101010101010101) is represented in the
short format by either hex 7FD55555 or hex
FFD55555 because the value of the sign field has no
meaning for the representation of a NaN.

The system default NaN returned for certain
floating-point exceptions is a masked NaN with a
sign field value of 0 and a fraction value of 1 in the
leftmost bit position (the masked state), followed by
all O's. For example, hex 7FCOOOOO is the system
default NaN for the short format, and hex
7FF8000000000000 is the system default NaN for
the long format.

A NaN can represent the results of incorrect
combinations of operands in floating-point
operations. A potential usage of these NaN values is
to set them into uninitialized floating-point fields.
This allows the system to detect a reference to a
field that has not been set with a value by the time it
is accessed.

The following information provides a summary of the
binary floating-point values that can be represented in
floating-point elements. In the following formulas,S
represents the sign field value; E, the exponent field
value; and F, the fraction field value of a floating-point
element as previously described. Additionally, the ••
characters denote exponentiation, the x character
denotes multiplication, and the .., character denotes a
logical not.

Short Format

The values that can be represented are:

• Normalized number
(For 0<E<255, value = (-1)··5 x 2··(E-127) x 1.F)

• Denormalized number
(For E=O & F..,=O, value = (-1)··5 x 2··(-126) x O.F)

• Signed zero
(For E=O & F=O, value = (-1)··5 x 0)

• Infinity
(For E=255 & F=O, value = (-1)··5 x infinity)

• Not-a-number
- (For E=255 & F..,=O (bit 9)=1, value =

masked NaN)
- (For E=255 & F.., =0 & (bit 9)=0, value =

unmasked NaN)

Object Control Functions 2-15

Long Format

The values that can be represented are:

• Normalized number
(For 0<E<2047, value = (-1)**S x 2**(E-1023) x 1.F)

• Denormalized number
(For E=O & F.,=O, value = (-1)**S x 2**(-1022) x O.F)

• Signed zero
(For E=O & F=O, value = (-1)**S x 0)

• Infinity
(For E=2047 & F=O, value = (-1)**S x infinity)

• Not-a-number
- (For E=2047 & F.,=O & (bit 12)=1, value =

masked NaN)
- (For E=2047 & F...,=O & (bit 12)=0, value =

unmasked NaN)

The range covered by the magnitude (M) of
floating-point numbers that can be represented is:

• In the short format:
- Normalized numbers

2**-126 ~ M ~ (2-2**-23) x 2**127
or

1.17549435 x 10** -38 ~ M ~ 3.40282347 x
10**38

- Denormalized numbers

2**-149 ~ M ~ (1-2**-23) x 2**-126
or

1.40129846 x 1 0**-45 ~ M ~ 1.17549422 x
10**-38

• In the long format:
- Normalized numbers

2**-1022 ~ M ~ (2-2**-52) x 2**1023
or

2.2250738585072013 x 10**-308 ~ M
~ 1.7976931348623158 x 10**308

- Denormalized numbers

2-16

2**-1074 ~ M ~ (1-2**-52) x 2**-1022
or

4.9406564584124654 x 10**-324 ~ M
~ 2.2250738585072009 x 10**-308

The following chart shows the formulas and hexadecimal
representations for:

• Plus and minus normalized floating-point numbers

• Plus and minus denormalized floating-point numbers

• Plus and minus zero

• Plus and minus infinities

• Masked NaNs

• Unmasked NaNs

J

Short Format (4-bytes) Long Format (S-bytes)

Hex 7FSOOOOO +infinity Hex 7FFOOOOOOOOOOOOO
~ ... ,

No representation No representation

Maximum ((2-2---23) x 2--127)
Hex 7F7FFFFF

Normalized

Minimum (2"-126)
Hex 008000OO

Maximum ((1-2---23) x 2---126)
Hex oo7FFFFF

Denormalized

Minimum (2"-149)
Hex 00000001

No representation

(+0)

+

Maximum ((2-2---52) x 2--1023)
Hex 7FEFFFFFFFFFFFFF

Normalized

Minimum (2---1022)
Hex 0010000000000000

Maximum ((1-2---52) x 2---1022)
Hex OOOFFFFFFFFFFFFF

Denormalized

Minimum (2---1074)
Hex 0000000000000001

I •
I No representation I

Lr Hex OOOOOOOO

IL~:~ J---1
I (+0) I

°H=t~==H I
I
I
I
I
I

I I
I I

I No representation
I

I
I
I
I
I
I
I
I
I
I

! No representation I

Maximum -(2---1074) I
I

Hex 8000000000000001
Maximum -(2---149)
Hex 80000001 Denormalized

Denormalized Minimum -((1-2---52) x 2---1022)
Hex BOOFFFFFFFFFFFFF

Minimum -((1-2---23) x 2---126)
Hex 807FFFFF Maximum -(2---1022)

Hex 801 OOOOOOOOOOOOO
Maximum -(2---126)
Hex 8080000O

Normalized Normalized

Minimum -((2-2---23) x 2--127)
Hex FF7FFFFF

Minimum -((2-2"-52) x 2--1023)
Hex FFEFFFFFFFFFFFFF

No representation No representation

Hax FFSOOOOO -infinity Hex FFFOOOOOOOOOOOOO

Hex 7FCOOOOO
Hex 7FFFFFFF -

Masked NaN minimum -
Masked NaN maximum -

Hex 7FBOO010 - Unmasked NaN minimum -
Hex 7FBFFFFF - Unmasked NaN maximum -
Note: Use of sign field bit value of 0 is arbitrary.

Hex 7FF8000000000000
Hex 7FFFFFFFFFFFFFFF
Hex 7FFOOOOOOOOOOOO1
Hex 7FF7FFFFFFFFFFFF

Object Control Functions 2-17

Pointer Data Objects

Pointer data objects provide addressability to both
program and system objects.

Spaces are designed with special tag bits that identify
the data in a space as a pointer. The machine
instructions that establish, copy, and modify a pointer
ensure that the pointer is valid by turning on,
maintaining, and checking these tag bits. If a machine
instruction overlays the pointer data in the space (for
example, with a Copy Bytes Left-Adjusted instruction),
the tag bits are turned off, thereby invalidating the
pointer. This prevents any illegal use of a pointer and
also ensures that a pointer is not conterfeit. (An attempt
to use this data as a pointer results in an exception, and
the instruction is not completed.) This scheme provides
data integrity and security because certain types of
pointers can contain authorization information as well as
storage addresses.

Four pointer data types are defined: space pointer, data
pointer, system pointer, and instruction pointer.

Space Pointer: An SPP (space pointer) provides
addressability for based data objects. The entry in the
ODT (object definition table) for the based data object
can specify a particular space pointer as its base. The
space pointer can then be changed in order to provide
data object addressability to a specific location in a
space.

A space pointer logically consists of a pointer to the first
byte of the space and an offset value that addresses a
specific byte within the space. (The space pointer can
address any space and any byte within that space.) The
Set Space Pointer instruction can refer to a space
through a space pointer, a data object, or a data pointer
to obtain this addressability. In addition, the offset value
can be changed separately (set, stored, added,
subtracted) by using special instructions that refer to the
space pointer.

No data attributes are associated with the storage
addressed through a space pointer. A reference to a
space pointer has no representation and operational
characteristics other than as a space pointer. However,
for a based data object, the based data object provides
the view, and the space pointer provides addressability.

2-18

Data Pointer: A data pointer contains scalar data
element attributes and addressability to a location in a
space. The attributes can define any of the scalar data
and element attributes that can be specified for scalar
data objects.

Data pointers provide a means of accessing external
data objects for use as instruction operands.

A data pointer can be resolved to an external scalar data
object or set to describe a local scalar data object.

System Pointer: A system pointer is used to address
any system object.

A reference to a system pointer as an instruction
operand refers to the system object addressed by the
system pointer (except for the Create, and Resolve
System Pointer instructions in which the system pointer
acts as the receiver for the instruction).

Instruction Pointer: An instruction pointer can be used
to define variable branch targets within the instruction
stream for a single program.

An instruction pointer can be set to address an
instruction and, at some later time, execute a branch
operation using the instruction pointer to define the
target instruction. The instruction pointer can be set to
an instruction number, a relative instruction number, or a
branch point.

An instruction pointer can be used as a return target for
an internal subinvocation. The Call Internal instruction
sets an instruction pointer to address the next sequential
instruction.

Common Attributes of Data Objects

A data object is defined through a data view that
specifies a particular combination of data object
attributes.

The following chart shows the valid attribute
combinations for a data view of a data object.

Static

Automatic

f;"''V S I Zoned ca ar
Packed
Character-

Floating-point -Data
Object r- -Parameter

r'" P . t Instruction -om er
System
Space I- Based

Defined

Attributes

The following major data object attributes are discussed
as separate topics:

• Element and array attributes.

• The mapping attribute (direct on static or automatic,
defined, parameter, and based).

• Initial values ..

• External scalar data views.

All other attributes are discussed where appropriate.

Array Initial
Boundary

Space
Pointer

PCO

Scalar

Pointer

~
Addressing Information Attributes

Object Control Functions 2-19

Element and Array Attributes

Scalar data can be defined as elements (single elements)
or arrays of elements (a grouping of data elements in
which all elements have the same characteristics).

Data Element Views: A data view declared as an
element describes the smallest data object that can be
directly addressed.

An element has no directly addressable subelements.
For example:

• X BINARY(4) ELEMENT

X represents a single binary number stored in 4
bytes. Anytime X is referred to, the entire 4-byte
number is used.

• Y CHARACTER(12) ELEMENT

Y represents a single character string stored in 12
bytes. Any reference to Y refers to all 12 bytes.

• Z POINTER ELEMENT

Z represents a pointer object that is stored in 16
bytes (pointer objects are always contained in 16
bytes). Any reference to Z refers to all 16 bytes.

Arrays of Elements: An array view defines a data
organization that is a collection of data elements, all of
which have identical attributes. An element of an array
view can be used as a scalar value or a pointer in an
instruction. A compound array element operand selects
a specific element of an array to be used in the
instruction.

2-20

The number of elements contained in an array is
specified in the .array size entry in the data view; from 1
through 16 777 215 elements can be defined. Individual
elements can be contiguous or noncontiguous. For
contiguous arrays, the last byte of one element is
immediately followed by the first byte of the next
element. For noncontiguous arrays, individual elements
are not immediately adjacent to one another. The
number of bytes from the first position of one element
to the first position of the next element is specified in
the array element offset attribute and need not be the
same number of bytes as is in an individual element.
Noncontiguous arrays are allowed only for defined data
views.

Assume the following declaration:

X BINARY(2) ARRAY(4)

X would have the following storage mapping.

Byte

X(1) X(2) X(3) X(4)

I I I I
357

Assume the following declaration:

Y POINTER ARRAY(6)

Y would have the following storage mapping because a
pointer is always contained in 16 bytes.

Y(1) Y(2) Y(3) Y(4) Y(5) Y(6)

I I I I I
Byte 17 33 49 65 81

Assume the following declarations:

X CHARACTER (16)

A BINARY(2) ARRAY(4) ARRAY ELEMENT
OFFSET(4)
DEFINED(X) POSITION(1)

B BINARY(2) ARRAY(4) ARRAY ELEMENT
OFFSET(4)
DEFINED(X) POSITION(3)

The following mapping would result.

x
I

A(1) 8(1) A(2) 8(2) A(3) 8(3) A(4) 8(4)

I~~ I I I 11·1
3 5 7 9 11 13 15

Data Object Mapping Attribute

Data views provide a mapping of a data object onto a
byte string in a space. The mapping attributes (direct on
static, direct on automatic, defined, based, and
parameter) establish the functional location of the data
object.

Direct Data Views (Static and Automatic): Direct data
views provide a mapping relative to the static or
automatic storage allocation. The functional location of
the data object is dependent on the allocation of the
static or automatic storage. A data view mapped direct
on automatic, for example, causes the location of the
data object to be determined relative to the allocation of
the automatic storage in the PASA (process automatic
storage area) for the process in which the program is
invoked.

Defined Data Views: Defined data views provide a
mapping relative to a previously defined data view. The
functional location of the defined data view depends on
the location of the base data view. The base data view
can have a direct. based, defined, or parameter mapping
attribute.

Based Data Views: Based data views provide a mapping
relative to the addressability contained in a space
pointer. The value of the space pointer, then, defines
the functional location of the data object. The space
pointer on which the data object is based can be
optionally declared in the based data view. This
declaration is for the duration of the program unless it is
overridden for a single operand that specifies the explicit
base compound operand. If a base is not declared, the
based data view must be referenced in an explicit base
compound operand where a space pointer is specified
as a base for a single operand.

Parameter Data Views: Parameter data views provide a
mapping that corresponds to an argument passed on a
Call External, Call Internal. or Transfer Control
instruction.

Data objects can be passed as arguments and received
as parameters. If a data object is passed, the functional
location of the parameter data object is the same as the
argument data object.

The characteristics defined by the parameter data object
are applied to the storage area defined by the
corresponding argument. The functional location of the
corresponding arguments is used, and no position value
can be specified.

Initial Values

An initial value can be specified if the data object is
located relative to a static or automatic storage
allocation. This initial value overrides the original value
assigned to the space and any previously declared data
views that are positioned wholly or partially in the same
space location.

The initial value can be specified as a single byte string
of a length and format equivalent to that required to
initialize the data view or, alternately, as one or more
byte strings that are used repeatedly by the machine
(based on user specification) to form the initial value for
the data view.

The initial value for a space pointer can be specified as
a data object to be addressed, or the initial value for an
instruction pointer can be specified as an instruction
number.

The initial symbolic value for a system pointer is
specified as the name of the system object that the
system pointer is to address. The name can be further
qualified by specifying the name of the context to be
searched for the system object. For more details on
system pointer initial values, refer to Address Resolution
Functions later in this chapter.

The initial value for a data pointer is specified as a
symbolic value. This symbolic value specifies the name
of the external scalar data object that the data pointer is
to address. This name can be further qualified by
specifying the name of the program to be searched for
the data object. For more information about data pointer
initial values, refer to Data Object Address Resolution
later in this chapter.

Object Control Functions 2-21

External Attribute

A scalar data view mapped onto static storage can be
declared as external. This specifies that the view can be
known outside the declaring program.

The external scalar data view is assigned a name that
becomes the symbolic address of the external data
object. When this name is qualified by the name of the
containing program, the fully qualified name of the
external data object is formed. A data pointer in another
program can gain addressability to the external data
object by using the name resolution functions. This data
pointer then adop.ts (assumes) the scalar data object
attributes (functional location and current value) of the
external scalar data object. A reference to the data
pointer is functionally identical to a reference to the
external scalar data object.

Constant Data Objects

A constant data object is a program object that defines
a scalar data view that remains the same throughout the
existence of a program.

The same scalar attributes that can be specified for a
data object can also be specified for the constant data
object (array attributes cannot be specified).

The location of a constant data object cannot be
specified because it is implicitly located by the machine
at a position that provides optimum execution
performance.

Space pointers cannot address constant data objects.

2-22

Entry Point

An entry point is a program object that references an
instruction as the target of the program invocation
functions.

When the program is invoked, the instruction defined in
the external entry point for the program is given control.

When a subinvocation within the invocation is invoked,
the instruction referenced in an internal entry point is
given control.

An operand list that defines a parameter list can be
specified in order to allow the passing of one or more
arguments to the invocation or subinvocation.

Branch Point

A branch point is a program object that references an
instruction as a possible target of a branching
instruction.

Associated with the branch point is an instruction
number that refers to an instruction in the instruction
stream. A branch point can be referred to in a
branching instruction or in an instruction definition list.

Instruction Definition List

An IDL (instruction definition list) is a program object
that contains an ordered list of instruction stream
references. These references can be either instruction
numbers or references to branch points.

The IDL can be used as an operand to determine the
target instruction in the Branch instruction or as a return
list to allow a variable return target for the Call External
instruction. In each case, an index value selects one of
the entries in the IDL as a branch target.

Operand List

An operand list is a program object that provides a
means of grouping references to data objects. These
references define either an argument list to be passed to
an invocation or subinvocation, or a parameter list to
receive objects in an invocation or subinvocation.

An operand list that is used as an argument list passes
the addressability of each data object contained in the
list to the corresponding parameter in the invocation or
subinvocation. The length of the list (number of entries)
can be fixed or variable. A fixed-length argume.nt list
always passes the same number of arguments; a
variable-length argument list can pass different numbers
of arguments up to a maximum number. The number of
arguments to be passed can be modified by the Set
Argument List Length instruction. The contents of the
operand list (the references to the data objects) cannot
be changed.

An operand list that is used as a parameter list receives
the addressability of a data object. This addressability is
received during the invocation of the program or the
subinvocation. The parameter list can require that either
a fixed number or a variable number of arguments be
passed. The number, if variable, can range from a
specified minimum to a maximum value.

Exception Description

An exception description is a program object that
defines the action for the machine to take when an
exception occurs. An exception description entry must
appear in the ODT in order for the program to specify
that the exception is to be handled.

The exception description contains the following
information:

• A list of the exception identification numbers to be
monitored by this exception description.

• A compare value to further qualify the exception
identification.

• The action to take when the exception occurs (for
example, defer handling, call internal handler, or
ignore exception).

• The target location where control is to be passed
when the exception occurs. The location can be an
entry point external to the containing program, an
internal entry point, or a branch point (internal). This
allows the exception condition to be handled either
by another program or internally by the defining
program.

Object Control Functions 2-23

Space Pointer Machine Object

A space pointer machine object is a program object that
provides addressability for based data objects. The
entry in the ODT (object definition table) for the based
data object can specify a particular space pointer
machine object as its base. The value in a space pointer
machine object can then be changed in order to provide
data object addressability to a specific location in a
space.

A space pointer machine object has essentially the same
operational characteristics as a space pointer data
object. However, it exists only within the invocation of a
program and it has no visible storage form, that is, no
representational characteristics.

The location of a space pointer machine object cannot
be specified because it is implicitly located by the
machine at a position that provides optimum execution
performance. Space pointer machine objects cannot be
addressed by space pointer data objects or space
pointer machine objects because space pointer machine
objects are contained in internal machine storage rather
than a space.

In general, space pointer machine objects provide better
execution performance for addressing space data than
do space pointer data objects. This is accomplished
through internal performance benefits that can be
realized because there is no defined storage form
(representational characteristic) for space pointer
machine objects.

Additionally, internal optimizations may be performed for
some of the space pointer machine objects used in a
program. The optimizations that may be performed are
an attribute of the particular implementation of the
machine.

2-24

Verification of Space Pointer Machine Objects

The optimizations performed on space pointer machine
objects cause the detection of certain exception
conditions to occur differently than from detection of the
same conditions for space pointer data objects. These
exception conditions are:

• Object destroyed

• Optimized addressability invalid

• Parameter reference violation

• Pointer does not exist

These exception conditions are detected for space
pointer data objects when an operation requires access
to or the setting of a value in a pointer. However, these
same conditions for space pointer machine objects are
not detected when an operation requires access to or
the setting of a value in a pointer. Those operations that
do not access the space data located by the value in a
pointer do not detect these exception conditions. Some
examples of these operations are pointer modification
and comparison instructions. These conditions are
always detected for operations that attempt to access
the space data pointed to by the pointer's value. An
example of this is copying space data where the
pointer's value serves as the basing addressability for
the data to be copied. For additional detail on these
exceptions, refer to the System/38 Functional Reference
Manual.

Optimization Priority Attribute

In general, space pointer machine objects provide better
performance than do space pointer data objects. This is
because space pointer machine objects do not have
representational characteristics. The performance
characteristics of pointers are also influenced by certain
internal optimizations that may be performed for them.

Normally, optimizations are performed on pointers
according to a priority established by a machine analysis
of pointer usage within the program. If this machine
analysis fails to properly prioritize a space pointer
machine object, the optimization priority attribute allows
the pointer to be given a priority attribute that overrides
the normal priority established by the machine when
programs are created. Through this attribute, space
pointer machine objects can be specified as having high
optimization priority even though the analysis performed
by the machine would determine the space pointer
machine object to be of low usage within the program.
A specified priority value indicates that the pointer is of
higher priority than those pointers with a lower value or
those pointers for which no value is specified. A
particular priority value can be specified for multiple
pointers to indicate that they are of equal priority.

If no priority attribute is specified, the normal priority of
space pointer data objects and space pointer machine
objects controls the optimizations performed on them.
When the priority attribute is specified, its effect
depends upon the particular implementation of the
machine. A positive effect can only be realized for some
of the pointers having the priority attribute due to
constraints on the optimizations that can be performed
for a particular machine.

The priority attribute should be used with caution. The
positive effects of the normal machine optimizations can
potentially be negated through incorrect prioritization of
pointers relative to their influence on the performance of
a program.

Object Control Functions 2-25

Addressing

The following forms of addressing are defined and
supported.

• ODT

• Pointer

• System object

• Space
Space pointers
Data views
Data pointers

• Argument and parameter

• Process

• Invocation

• Instruction

ODT ADDRESSING

All instruction operands, with the exception of
immediate operands, refer to object views in the object
definition table. An object view defines a set of
attributes for the machine to use when the view is
referenced as an instruction operand. This set of
attributes includes the functional characteristics of the
object as well as its functional location. The functional
characteristics of the object determine how the object
can be used by an instruction. The functional location of
the object defines if, when, and where storage is to be
allocated for the object as well as how the machine is to
locate the object when it is referenced as an operand
during instruction execution.

The ODT entry for a program object is, therefore, a
description of the object rather than the actual object
itself. The machine assumes the responsibility for
binding operand references to the actual objects via the
ODT entries.

2-26

POINTER ADDRESSING

Pointers enable objects to be addressed indirectly
because a reference to the pointer is considered to be a
reference to the object. For example, space pointers
address spaces and, where necessary, act as an indirect
reference for spaces on instruction operands or
templates.

Pointers can be modified during the execution of a
program in order to address different objects. Thus, for
a given set of instructions in a program, the pointer may
address a different object each time the instruction set
is executed. The object addressed by the pointer can be
within the program or outside the program.

Pointer Data Objects

Pointer data objects are stored in byte strings and have
a length of 16 bytes. The boundary alignment for each
byte string that contains a pointer is a multiple of 16.
The alignment starts with the first byte in the space.
The following pointer data objects are defined:

• Space pointer

• Data pointer

• System pointer

• Instruction pointer

A pointer data object that contains direct addressability
to an object is considered to be resolved. A pointer data
object that contains symbolic addressability to an object
is considered to be unresolved.

Note: Because the format and the assignment of bit
values within a pointer are subject to change at any
time, the bit content of any pointer is unpredictable and
must not be used as data by any program. The
Materialize Pointer instruction must be used to
determine the attributes of a pointer data object.

l The following instructions perform functions that apply
to the manipulation and testing of all pointer data
objects.

• The Copy Bytes with Pointers instruction copies both
data and pointers from one string of bytes to
another.

• The Compare Pointer for Object Addressability
instruction compares two pointers to determine
whether they are addressing the same object or
instruction.

• The Compare Pointer Type instruction compares the
current type of pointer to a scalar comparison value.

Pointer data objects can also be set by materialization
functions. For example, the Materialize Context
instruction stores system pointers into the receiver
space; these system pointers address the same system
objects that are addressed by the context.

Space Pointer Machine Object

Space pointer machine objects are stored in internal
machine storage areas; these objects have no defined
representational characteristics other than their internal
machine storage requirements. These internal storage
requirements are dependent upon the particular
implementation of the machine.

Space pointer machine objects provide the same
addressability to byte strings in spaces as that described
earlier under Pointer Data Objects.

In general, the instructions that can be used to change a
space pointer machine object are the same as those
used to change a space pointer data object.

The abnormal value attribute defined for space pointer
data objects does not apply to a space pointer machine
object because this attribute cannot be modified in a
way that is not detectable by the machine.

Space Pointer

A space pointer provides addressability to a specific
byte in the space associated with a system object
(including a space object). This addressability can then
be used as a base for one or more based data objects.
The value (addressability) contained in the space pointer
can be modified to provide variable addressability to the
data object.

The addressability contained in a space pointer consists
of two parts. Part 1 contains addressability to the space
associated with an object (logically the first byte in the
space); part 2 contains an offset into the space. This
value locates a specific byte within the space.

The following instructions can be used to manipulate a
space pointer:

• The Set Space Pointer instruction initializes a space
pointer to address a specific byte location within the
space in a system object.

• The Set Space Pointer with Displacement instruction
initializes a space pointer the same as the Set Space
Pointer instruction, but the resultant offset value in
the pointer is modified by a signed binary value (the
displacement).

Object Control Functions 2-27

• The Set Space Pointer Offset instruction assigns a
value only to the offset portion of the space pointer.
The space pointer addresses the same space.

• The Add Space Pointer instruction adds a signed
binary value to the offset portion of a space pointer
and stores the value in the receiving space pointer.

• The Subtract Space Pointer instruction subtracts a
signed binary value from the offset portion of a space
pointer and stores the value in the receiving space
pointer.

• The Store Space Pointer Offset instruction assigns
the offset value of the space pointer to a binary
scalar.

• The Set Space Pointer from Pointer instruction
initializes a space pointer to an address in a space
based on the addressability contained in a system
pointer, a data pointer, or another space pointer.

• The Set System Pointer from Pointer instruction
initializes a system pointer to address the system
object that contains the space addressed by any
pointer.

2-28

Abnormal Value Attribute

Data objects used in more than one System/38
instruction can all receive their addressability from the
same space pointer. The machine optimizes the fetching
of the pointer by using the value fetched during the
execution of one instruction to locate the objects
referenced by subsequent instructions. The machine
also monitors the pointer for modification during the
execution of these instructions. When modification of
the pointer is detected, the machine once again fetches
the pointer to get the updated addressability.

It is possible, though, to modify the contents of a
pointer in such a way that the machine does not detect
the change. For example, undetected modification to a
pointer occurs when more than one view of the pointer
is used and the pointer is changed through one of the
views. When this occurs, the updated addressability is
not fetched and the desired results might not be
achieved.

To prevent the situation just described, the abnormal
value attribute can be specified on the pointer. This
attribute tells the machine that undetected modification
situations might exist and that the base addressability
must be fetched each time the pointer is referenced.

A based pointer can be modified asynchronously by
event handlers, exception handlers, other processes, or
source / sink operations. I n these situations, even though
the abnormal value attribute is specified, the new
addressability might not be used until the next
instruction is executed. The abnormal value attribute
only assures that addressability is not assumed to be
the same (unchanged) from one instruction to another.

Data Pointer

A data pointer provides addressability to a specific byte
in a space and provides scalar data object attributes
such that the data pointer may be referenced as a scalar
element.

A data pointer can address any byte in a space and can
also contain any set of attributes that can be specified
for a scalar data object.

A data pointer can be assigned a value as follows:

• The Set Data Pointer instruction assigns the scalar
data element attributes of the source scalar object or
the data pointer operand to the attribute portion of
the data pointer. Either the space address of the
referenced scalar object or the space address
contained in the source data pointer is assigned to
the target data pointer.

• The Set Data Pointer Addressability instruction
assigns to the space addressability portion of the
receiver data pointer a value equal to the space
address of a source scalar object or the space
address contained in a source data pointer. The
attributes of the receiver data pointer remain
unchanged.

• The Set Data Pointer Attributes instruction assigns to
the attributes portion of the receiver data pointer a
set of scalar data element attributes based on the
value of an attribute template.

• The name resolution function enables a data pointer
to be set to address an external scalar object located
in the activation entry for a program.

System Pointer

A system pointer is used to address system objects. A
reference to a system pointer as an operand or as an
element of an attribute template is considered to be an
indirect reference to the system object addressed by the
system pointer.

For more information about setting system pointers and
referencing system pointers, refer to System Object
Address;ng later in this chapter.

A system pointer can also contain object authorities.
The authority stored in the pointer in addition to the
authority available to the process through the governing
user profile(s) is the total authority available to the
process. The authority attribute is explicitly set by the
Resolve System Pointer instruction.

Instruction Pointer

An instruction pointer is used to indirectly address an
instruction in a program. The value of an instruction
pointer can be modified with a Set Instruction Pointer
instruction. An instruction pointer can be referenced as
a branch operand to provide for variable branch targets.

Object Control Functions 2-29

SYSTEM OBJECT ADDRESSING

System object addressing locates and references system
objects. The following addressing characteristics are
common to all system objects:

• System objects can be known to the machine by their
symbolic address. The symbolic address consists of
the object's name. type. and subtype. This symbolic
address is used to locate the object in the machine.

• System objects may be addressed either by one
context or by no context. If a context contains
addressability to the object. it is by the object's
symbolic address (type. subtype. and name).

• System pointers may contain addressability only to
system objects. All operand references and template
references to system objects are through system
pointers that address the system object. Once
addressability to a system object is set into a system
pointer. a reference to the pointer is an indirect
reference to the object.

Symbolic Address

A symbolic address for an object consists of the
object's name. type. and subtype. The symbolic address
of an object can be used to locate the object through
the system object address resolution functions.

The symbolic address of an object is modified by the
Rename Object instruction. The object name. object
subtype or both the object name and subtype can be
modified by this instruction. The object is then known
by the new symbolic address in the context that
currently addresses that object.

System Pointer Addressing

A system pointer is used to address system objects. It
provides a reference to a system object when the
pointer is used as an instruction operand or the pointer
is contained in an attribute template.

2-30

Addressability is established in the system pointer when:

• A system object is created. A system pointer is
referenced as a receiver operand in the Create
instruction; once the object is created. addressability
to that object is returned in the system pointer.

• The system object address resolution functions locate
a named system object and place addressability to it
in the system pointer.

• A value is copied from another system pointer.

• A machine instruction (for example. one of the
materialize instructions) returns addressability to a
system object in the system pointer.

System Object Address Resolution

The address resolution functions cause the entries of
one or more contexts to be searched in order to locate a
specific system object. Once the proper entry is located.
the system pointer. acting as the receiver of the address
resolution function. is assigned addressability to the
system object.

The system object to be located through the address
resolution functions is designated by a qualified
symbolic address. A qualified symbolic address consists
of:

• The symbolic address of the context to be used to
locate the system object. The context can be
implicitly specified based on either the object type or
the contents of the current name resolution list.

• The symbolic address (type. subtype. and name) of
the object to be located.

• A minimum authorization qualifier for the object. This
specifies a minimum authorization that must be held
by a user before address resolution is performed.

Address Resolution Functions

System object address resolution can occur either
explicitly based on user request or implicitly based on a
reference to an unresolved system pointer.

Explicit Address Resolution: The Resolve System Pointer
instruction explicitly causes system object address
resolution. In this instruction, the system pointer is
resolved based on the specified symbolic address.
Optionally, the requested private object authorities
available to the current governing user profiles can be
stored into the system pointer.

The symbolic address can be specified as an operand of
the instruction or as an initial value of the system
pointer.

Implicit Address Resolution: If a system pointer is
referenced as a source operand and is not resolved, the
machine implicitly attempts to resolve addressability to a
system object. If an initial value was declared for the
system pointer and the system pointer has never been
resolved, the initial value is used as a symbolic address
of the system object to be located. If no system object
is located, an exception is signaled.

If object addressability is resolved implicitly,
addressability to the object is placed in the system
pointer, and the system pointer is used in the operation.

Context Addressing

A context can be addressed through a system pointer or
by its symbolic address (permanent contexts only). The
symbolic address of the context consists of its name,
object type (context), and subtype.

For system object address resolution functions, contexts
are specified as follows:

• Implicitly based on object type

When the object type specifies a type that can be
addressed only by the machine context, the machine
context is searched to locate the object. If the object
is not located in that context. an exception is
signaled.

• Context qualifier in the symbolic address

The symbolic address of the object can be qualified
by the symbolic address of the context to be
searched to locate the object. The context is
specified as a symbolic address in an initial value of a
pointer, or as a pointer either in the NRL (name
resolution list) or the Resolve System Pointer
instruction.

The symbolic address of the object can be specified
as the initial value of the system pointer or as an
operand in the Resolve System Pointer instruction.

Only the specified context is searched. If the context
does not contain addressability to the object, an
exception is signaled.

• Contexts addressed in the name resolution list

If no context is identified in the symbolic address of
the object (either implicitly by object type or explicitly
by context symbolic address or pointer), the
context(s) identified by the process N RL (name
resolution list) is searched.

Each context is searched in the order specified by the
NRL. If no object is found in any of the contexts
specified in the NRL, an exception is signaled.

Object Control Functions 2-31

Name Resolution List

The NRL (name resolution list) specifies the contexts to
be searched when a context is not specified as part of
the symbolic address of an object and the object is not
of the type addressed only by the machine context.

Whenever the Initiate Process instruction initiates a
process, a space pointer specifies an NRL (name
resolution list). This space pointer points to a region in a
space that contains a count and a vector of system
pointers to contexts. The count indicates the number of
system pointers to contexts contained in the NRL. (The
format of the NRL is described under the Initiate
Process instruction.) The contexts are searched in the
same order as they are specified in the vector. The NRL
can be dynamically altered, not only by the process that
contains the NRL but by another process, as long as the
count is always updated to indicate that all pointers in
the NRL are valid entries.

Note: All system pointers in the NRL must be
previously resolved when the NRL is used for address
resolution; otherwise, an exception is signaled.

Object Authorization Qualifier

The symbolic address of an object used for address
resolution may be qualified by a minimum authority
requirement. The minimum authorization can specify
that addressability is to be returned only if the user
profiles governing execution have at least the required
authorization states.

If no authorization is required, addressability is returned
to the first object located of proper type, subtype, and
name. If authorization is required, when an object is
located of proper type, subtype, and name but the
required authorization states are not authorized, the
search continues for an object with the proper type,
subtype, name, and authority.

2-32

SPACE ADDRESSING

A space contains a set of bytes that can be referenced
Singly or in groups through operand references to data
objects. Data objects provide the definition of scalars
and pointers to be used when referencing a string of
bytes as well as specifying the functional location of
these bytes within a space.

Space pointers provide addressability to individual bytes
within a space. However, space pointers have no scalar
or array attributes. Nevertheless, space pointers can be
associated with scalar data objects by the based
mapping attribute. Then the scalar or pointer attributes
of the data object and the addressability contained in
the space pointer provide variable addressing in a space
for scalars and pointers.

Data Object Addressing

A data object is a program object that provides
operational and possibly representational characteristics
to byte strings in spaces for use as instruction operands.
A data object is defined in the OOT by a data view. It
provides a logical mapping of a data view onto a set of
bytes in the space. This section discusses the functional
location of the set of bytes mapped to by the data view.

The data view location attribute defines the functional
location of the data object. A data object may be
located in a space at some particular space offset. The
location of the data object is considered to be the
leftmost byte of the bytes mapped to by the data view.
For example, for a BINARY(4) scalar data object
described to be located at offset 100 in a space, the
data view maps to bytes 100 through 103 of the space.

The data view attributes that provide the functional
location of a data object in a space are:

• Direct on static-which is mapped to a particular
offset in the allocation of static storage for a program
activation.

• Direct on automatic-which is mapped to a particular
offset in the allocation of automatic storage for a
program invocation.

• Based-which is mapped to a particular location
relative to the space address contained in a space
pointer.

• Defined-which is mapped relative to another data
object.

• Parameter-which is mapped to a data object that is
passed as an argument from an invoking program.

Direct Data Views

Direct data views provide a mapping relative to the
static or automatic allocation in a space. The functional
location of the data object is dependent on the
allocation of static storage from the process static
storage area, or on the allocation of automatic storage
from the process automatic storage area. A data view
mapped direct on automatic storage, for example,
causes the location of the data object to be determined
relative to the allocation of the automatic space.

The location of the data object within the allocation is
determined by the position attribute, the boundary
attribute, or the machine default position.

If a position value is specified, the data object is located
at that position (byte) in the allocation. The first byte in
the allocation is position 1.

For example:

C DIRECT STATIC POSITION(126) BINARY(2)
ELEMENT

C defines a BINARY(2) view of bytes 126 and 127 of
the allocation of static storage for the program's
activation entry in the process static storage area.

If the position attribute is not specified, the machine
attempts to locate the data object at the next available
space location. If a byte boundary is specified or if no
boundary is specified, the data object is assigned to a
location that is 1 byte beyond the highest assigned
location. If any other boundary alignment requirement
other than byte is specified, the machine assigns the
data object to the next highest starting location that
meets the boundary requirement. Bytes are allocated
from the starting location (specified or computed) for the
length specified for the object.

For example:

C DIRECT STATIC POSITION(126) BINARY(2)
ELEMENT

D DIRECT STATIC CHARACTER(4) ELEMENT

Because no position is specified for D, the machine
assigns D to bytes 128 through 131 of the static
allocation.

Object Control Functions 2-33

Based Data Views

Based data views provide a mapping relative to the
addressability contained in a space pointer. The value of
the space pointer, then, defines the functional location
of the data object. This value in the space pointer can
be modified to provide a different functional location for
the data object.

The space pointer on which the data object is to be
based can optionally be declared in the based data view.
This declaration is for the duration of the program
(unless overridden for a single operand using the explicit
base compound operand). If a base is not declared, the
based data view must be referenced in an explicit base
compound operand where a space pointer is specified
as a base for a single operand.

A position attribute can be specified that locates the
based data object at some offset from the location
addressed by the space pointer. If no position is
specified, the machine assumes the location addressed
by the space pointer.

Consider the following declarations:

X DIRECT AUTOMATIC CHARACTER(100)
POSITION(50)

P SPACE POINTER
Z BASED(P) CHARACTER(18)

Executing the following Set Space Pointer instruction
causes P to be set to address byte 50 of the
invocation's automatic storage area. Z then will address
bytes 50 through 67 of the invocation's automatic
storage area.

SETSPP P,X

Executing the following Add Space Pointer instruction
causes Z to address bytes 65 through 82 of the
invocation's automatic storage area.

ADDSPP P,P,15

2-34

Defined Data Views

Defined data views provide a mapping relative to a
previously specified data view. The functional location
of the defined data object is dependent on the location
of the base data object. The base data view may have a
direct, defined, parameter, or based location attribute.

A position attribute locates the defined data object at
some offset from the starting location of the base date
object. If no position is specified, the machine assumes
the starting location of the base data object.

The following example illustrates defined data views:

C DIRECT STATIC POSITION(10) CHARACTER(4)
P SPACE POINTER
D BASED (P) BINARY(4)
E DEFINED (C) BINARY(4)
F DEFINED (E) POSITION(3) BINARY(2)
G DEFINED (D) CHARACTER(4)

A reference to E refers to the same byte string as C
(starting at position 10 in the static allocation) but with a
BINARY(4) view.

A reference to F refers to bytes 3 and 4 of E, giving a
BINARY(2) view of those two bytes. This, in turn, maps
to positions 12 and 13 in the static storage area.

A reference to G refers to the same byte string as D
(which is based on P) but with a CHARACTER(4) view.

Parameter Data Views

Parameter data views provide a mapping that
corresponds to an argument passed on a Call External.
Call Internal. Transfer Control, or Initiate Process
instruction.

Scalar data objects and pointer data objects can be
passed as arguments and be received as parameter data
objects. When a data object is passed. the functional
location of the parameter data object is the same as the
argument data object. The parameter data view defines
the operational characteristics to be applied to that
functional location. That is, no type checking is
performed to ensure that scalar data objects are passed
to corresponding scalar objects of the same type, or that
pointer data objects are passed to pOinter data objects.
The function location of the corresponding argument is
used. and no position value can be specified.

Data Object Address Resolution

The data object address resolution functions enable a
scalar data object with the external attribute to be
located by name and have its addressability and
attributes placed in a data pointer.

External Data Objects

Scalar objects that are located in static spaces and are
not defined as arrays can be declared as external. These
external scalar objects can then be known outside the
program. but within the same process. where the scalar
object is declared.

Each external scalar object must be assigned a name.
This name. along with the name of the containing
program. defines the symbolic address of the object.

When a program is activated. static storage is allocated
and the external scalar object is assigned addressability.
As long as the activation exists. the external scalar
object can be located through the data object address
resolution functions.

Data Pointer

Data pointers can be resolved to an external scalar data
object. When resolution occurs, the space addressability
and the scalar data object attributes (type and length) of
the external scalar object are assigned to the data
pointer. A subsequent reference to the data pointer
causes the bytes of the external scalar data object to be
referenced or manipulated as though the scalar data
object had been referenced.

The data pointer. then, assumes the attributes of the
external data object. For example, a data pointer
resolved to a binary scalar data object takes on the
characteristics of a binary object when referenced as a
scalar instruction operand. The machine performs the
indicated operation based on the current attributes and
space addressability contained in the data pointer.

The attributes and addressability in data pointers can
also be directly set.

Object Control Functions 2-35

Data Object Address Resolution

Data object address resolution causes the external scalar
data object to be located by its symbolic address in
some program activation within the process. The
addressability and scalar data object attributes of the
object are also stored in a data pointer. Data object
address resolution can occur as follows.

• Resolve Data Pointer instruction

The Resolve Data Pointer instruction causes an
external scalar data object to be located in an
activation of a program in the process and also
causes its addressability and its attributes to be
stored in the data pointer.

The external data object is located by its symbolic
address that consists of a 32-byte data object name.
The name can be qualified by a reference to a
program.

If a program qualifier is specified, only its associated
activation is searched. Otherwise, all activation
entries in the process, from the most recently
activated to the least recently activated are searched
until the external scalar data object is either located,
or if the object is not located, an exception is
signaled. The activation of the program executing the
instruction also participates in the search.

The program qualifier can be specified as a system
pointer operand of the instruction or through a
symbolic name as an initial value of the data pointer.

2-36

Some cases when the symbolic address is not
specified as an operand are as follows:

If the data pointer has never been resolved but
has an initial value declaration, the Resolve Data
Pointer instruction resolves the data pointer to the
external data object described by the initial value.
If no data object is located, the machine signals an
exception.
If the specified storage area does not contain a
data pointer, the machine signals an exception.
If the data pointer is currently addressing an
existing scalar object, the Resolve Data Pointer
instruction causes no operation, and no exception
is signaled.

• Implicit address resolution
When a data pointer is referenced as a source
operand and the data pointer has never been
resolved, the machine implicitly attempts to resolve
addressability to an external scalar data object.
The initial value declared for the data pointer is
used as a symbolic address of the external scalar
data object to be located. If no data object is
located, an exception is signaled.

If the data pointer is implicitly resolved, addressability
to the object and the attributes of the object are
placed in the data pointer, and the data pointer is
used in the operation.

Array Addressing

An array is a group of data elements that have the same
attributes. Scalar and pointer data views can define
arrays. Each element of the array is addressable by the
subscript compound operand form where a variable
scalar operand or a pOinter is allowed.

The subscript compound operand form consists of a
primary operand (base) and a secondary operand (index)
as follows:

• A base array.

• An index value that selects a specific element of the
base array. The first element in the array has an
index value of 1.

Arrays can optionally be constrained through use of
the array constraint attribute on the create program
template. This means that a range exception is
signaled when a referenced element is outside the
bounds of the declared array. When arrays are
unconstrained, a referenced element is assumed to
be within the defined bounds of the array.

A reference to an element that is outside an
unconstrained array yields an unpredictable result. A
range exception might be signaled depending on how
certain internal functions of the machine have been
implemented.

Note: An improvement in performance might be
realized if the array constraint attribute is not
specified.

The index value must be positive. The index
secondary operand can be immediate, constant, or
variable. However, the index secondary operand itself
cannot be a compound operand.

Individual elements of an array can be contiguous or
noncontiguous. That is, an element is adjacent to the
next element in the array (contiguous), or there is a
uniform spaCing between elements that is not the same
as the length of an individual element (noncontiguous).
For noncontiguous arrays, the array element offset
attribute defines the number of bytes from the beginning
of one element to the beginning of the next element.

For example, consider the following declarations:

A CHARACTER(36)
8 (2) CHARACTER(18) DEFINED (A)
C (2) ZONED(8) ARRAY ELEMENT OFFSET(18)

DEFINED (A)
D (2) CHARACTER(10) ARRAY ELEMENT

OFFSET(18) DEFINED (A) POSITION(9)

The following mapping occurs:

Byte 36
..... _--------A--------.....

Byte 1819 36
...... 1----8(1) --____ ~"----8(2) ----I

Byte 1 89 18 19 2627
-+-C(1) ~D(l)~C(2) .. Of

36
D(2)~

In the previous example, A, 8(1), 8(2), D(l), and D(2)
can be referenced as scalar operands where character
strings are allowed, and C(l) and C(2) could be used as
scalar operands where zoned decimal operands are
allowed.

Substring Addressing

A substring is a scalar operand that addresses a portion
of a declared string. A substring of the string of bytes
mapped to by a character data view or a data pointer
can be defined as a scalar operand by using the
substring compound operand form.

The substring compound operand consists of a primary
operand (base) and two secondary operands (index and
length) as follows:

• A base character string.

• An index value that specifies the beginning position
(in bytes) within the string. The first byte in the base
string has an index value of 1.

• A length (in bytes) for the substring operand.

Object Control Functions 2-37

As a program attribute, a substring can be optionally
constrained. This means that the index and length
entries must be positive and must not locate any bytes
outside the base string; otherwise, an exception is
signaled. The index and length secondary operands can
be immediate, constant, or variable, but they cannot be
compound operands. When substrings are
unconstrained, a referenced substring is assumed to
locate bytes only inside the base string. A reference to
a substring that locates bytes outside the base string
yields an unpredictable result. The machine might signal
a range exception in this case depending on the
particular implementation of the machine.

Note: An improvement in performance might be
realized if the byte string constraint attribute is not
specified.

Consider the following declaration:

x CHARACTER(100)

The substring compound operand X(10,7) references
bytes 10 through 16 of X. The substring compound
operand X(I,7) references 7 bytes beginning at position I
in X. The current value of I is determined when the
instruction containing the substring compound operand
is executed.

The substring compound operand X(I,J) defines a
substring where the position (I) and the length (J) are
determined at the time the instruction is executed.

A substring compound operand can optionally allow or
disallow references to a substring with a length value of
zero (null substring).

Null substring references are supported on only a subset
of the instructions that support character data as
operands. To determine if a particular instruction
provides this support, refer to the instruction definitions
in the System/38 Functional Reference Manual.

2-38

Space Extent Checking

Once addressability to a space has been established, the
machine supports certain offset calculations within the
space. For example, the Add Space Pointer and
Subtract Space Pointer instructions can manipulate the
offset portion of the space address contained in the
space pointer.

The machine prohibits the calculation of a space offset
that cannot exist. That is, neither a negative offset nor
an offset larger than the maximum size to which the
space can be allocated can be calculated for a space
pointer.

The machine additionally prohibits a variably addressed
scalar or pointer operand from referencing outside the
range of the space. That is, a reference to a data object
based on a space pointer causes a space addressing
violation exception if the addressability of the data
object is beyond the end of the allocated space (even
though the space pointer contains a valid space
address). A subscript compound operand or a substring
compound operand can also cause the same exception if
all or part of the element to be addressed is beyond the
end of the allocated space.

ARGUMENT AND PARAMETER ADDRESSING

The function of arguments and parameters is to provide
a means to communicate information between two
execution units. The information can be transferred from
an initiating process to an initiated process, a calling
invocation to a called invocation, an invocation to a
subinvocation, or from a subinvocation to a
subinvocation in the same invocation.

The input to a program can vary from one execution of
the program to the next. Because of this variance,
parameters and arguments are used to provide a simple
and uniform method of referring to this input or output
data.

A parameter is a data object that is mapped onto an
argument at the time of invocation. A parameter is not
bound prior to invocation and is an indirect reference to
a data object provided by the invoking program.

The parameters associated with an entry point are
referenced in a program object called an operand list
(used as a parameter list). The operand list is referenced
by an entry point definition.

An argument is a data object that is similar to any other
data object, except that it is specified in an operand list
(used as an argument list).

The operand list (used as an argument list) is a set of
references to other data objects that are to be passed
as arguments. It is the operand of a Call External,
Transfer Control, Call Internal, or Initiate Process
instruction and the mechanism whereby arguments
(references to actual objects) are mapped to parameters
(indirect references).

During invocation, the operand list being referenced by
the invoking instruction is matched with a corresponding
operand list being used as a parameter list at the called
entry point. For the duration of the invocation,
references to the parameters in the invoked
programming code refer to the corresponding arguments
in the calling invocation.

Arguments

Arguments are those data objects that can be used to
communicate between invocations. Arguments specify
input values to the called invocation or receive output
values as a result of executing the called invocation.

Passing an argument implies that the addressability to
the data object is available to the succeeding invocation.
Both scalar and pointer data objects can be passed as
arguments.

There is no special attribute to cause an object to be
considered as an argument; a reference to a data object
in an argument list causes that data object to be an
argument.

Parameters

Parameters are those data objects that the program
receives when it is invoked. Parameter data objects
allow indirect references to argument data objects
passed during invocation. Addressability to the
argument data object is available through a reference to
the parameter data object.

A reference to a parameter object is actually a reference
to the argument. Because of this implied reference,
parameters are given a special parameter attribute in the
ODT (object definition table). This specifies the
following:

• No storage is allocated for the parameter object when
the program is invoked. A reference to the parameter
gains addressability to the corresponding argument as
defined at the time of the invocation.

• A reference to the parameter as a source operand
causes the value of the corresponding argument to be
used. A reference to a parameter as a target operand
causes the value of the corresponding argument to be
modified.

Both the scalar and pointer data objects can be defined
as parameters.

Object Control Functions 2-39

Argument Usts

An argument list (an operand list with a type of
argument) is an ordered list that defines all of the
arguments to be passed to a succeeding invocation on a
Call External, Call Internal, Transfer Control. or Initiate
Process instruction.

The argument list can cause a fixed or variable number
of arguments to be communicated. A fixed-length
argument list causes all of the data objects defined in
the list to be passed to the succeeding invocation. A
variable-length argument list allows the invoking
program to determine the number of arguments to be
passed from the list.

The Set Argument List Length instruction changes the
number of arguments to be passed. If the instruction
specifies that a definite number of arguments are to be
passed, a reference to that argument list on a Call
External or Transfer Control instruction passes only that
number of arguments in the list. Argument lists
referenced by the Call Internal instruction must be
fixed-length.

An initial length must be specified in the argument list
definition. This length remains in effect until it is
modified. Ukewise, once the length is modified, it
remains in effect until further modification. The modified
length can be from zero through the maximum size of
the argument list.

2-40

The argument list definition must contain a reference to
a data view for each possible data element in the list.
These argument list references remain in effect for the
life of the program. The only change that can occur in
the argument list is in the number of these references
that are to be communicated to a succeeding invocation
or in the values of the actual data elements.

An argument list entry can reference any scalar data
objects or pointer data objects. Any reference to a data
object with a based, defined, direct, static, automatic, or
parameter attribute is allowed; however, a reference to
an array object or a substring is not allowed.

Multiple argument list entries can reference the same
data view.

Addressability to an argument is established in the
argument list at the time the instruction referencing the
argument list is executed. The address of a variably
addressed argument can be changed prior to invocation
but not by the called invocation. For example, if a based
data object and its base (a space pointer) were both
passed as arguments, changing the value of the space
pointer in the called invocation.would not change the
addressability of the parameter data object as known to
the called invocation.

Parameter Lists

A parameter list (an operand list with the type of
parameter) is an ordered list that defines all the
parameters that are to be received from the preceding
invocation.

The length of a parameter list can be fixed or variable.
A fixed-length parameter list specifies that the entry
point expects to receive exactly the number of
parameters defined. Otherwise, an exception is signaled.
A variable-length parameter list specifies that the
external entry point expects to receive at least a
minimum number of parameters but no more than the
maximum number of parameters defined.

A fixed-length parameter list can receive arguments
from a fixed-length or a variable-length argument list
until the actual number of arguments is equal to the
number the parameter list is expecting. Similarly, a
variable-length parameter list can receive arguments
from a fixed-length or variable-length argument list
(providing that the actual number of arguments is within
the dimensions allowed for the variable-length
parameter list).

Parameter lists can be defined as internal or external.
Internal parameter lists are referenced by internal entry
points, and the lists must be fixed in length.

The parameter list definition must contain a reference to
a data view for each possible data element in the list.
Each data view that is referenced must have the
parameter attribute. Two entries in the same parameter
list cannot reference the same parameter data view. A
parameter cannot be referenced in more than one
parameter list (internal or external).

Argument/Parameter Correspondence

When an argument list is specified on an instruction, the
individual arguments are intended to correspond one for
one with the parameters in the parameter list. This
correspondence includes the number of arguments and
parameters (as stated under Argument Lists and
Parameter Lists); however, the machine does not verify
that the parameter and the argument are of the same
type.

Figure 2-1 shows the relationships between
argument-parameter binding. This figure shows the
high-level language form and the machine interface
program template form of two programs, X and Y.

When program Y is invoked by program X, parameters
A, B, and C are bound to corresponding arguments U,
V, and W. The Add Numeric instruction adds the values
of V and Wand stores the result in U.

Object Control Functions 2-41

High-Level Language Form J
Program X Program Y

PROC PROC(A,B,C)

DCl U DCl A PARM

DCl v DCl B PARM

DCl W DCl C PARM

CAll Y(U,V,W) A= B+C

END x END Y

Program X

Instruction
Object Definition Table Stream

Entry Point X Instruction 1 External ·
U Scalar Data Object ·
V Scalar Data Object CALL E,Z

W Scalar Data Object ·
E System Pointer Initialize Program Y ·
Z Operand List Argument List (Fixed,3,U,V,W) ·

Program Y

Instruction
Object Definition Table Stream

Entry Point Y Instruction 1 External Operand List (D) ·
A Scalar Data Object Parameter ·
B Scalar Data Object Parameter ADDN

A,B,C

C Scalar Data Object Parameter ·
D Operand List-Parameter List (Fixed,3.A,B,C) ·

Figure 2-1. Argument/Parameter Relationship

2-42

PROCESS ADDRESSING

Processes are identified by a reference to the process
control space associated with the process.

INSTRUCTION ADDRESSING

Program instructions are numbered sequentially
beginning with the value one for the first instruction,
two for the second, and so on. This sequential order is
the basis for addressing instructions through the ODT
and in branching instructions.

Instruction Numbers

Instruction numbers provide the most basic form for
addressing instructions. Instruction numbers can be
used as immediate branch targets, indirect branch point
references, return point references, instruction pointer
references, and instruction definition lists.

Immediate instruction numbers can be absolute or
relative. Absolute instruction numbers refer to the
sequential number of the instruction relative to the
beginning of the instruction stream. Relative instruction
numbers refer to a sequential number of the instruction
relative (positive or negative) to the instruction where
the reference is made (relative instruction 0). All
instruction stream references must be within the range
of the instructions defined in the instruction stream of
the program template.

Branch points are defined in the ODT and refer to
absolute instruction numbers. Branch points can be
referenced as branch targets.

Instruction Pointers

Instruction pointers provide variabie addressability to
instructions within a program. An instruction pointer can
be set by the Set Instruction Pointer instruction with a
branch target ODT entry as an operand or with an
immediate value (absolute instruction number or relative
instruction number). The actual value in the pointer is
the number of a machine interface instruction. An
instruction pointer can be specified as the target of any
branching instruction. In a branch instruction, a
reference to the instruction pointer results in a branch to
the instruction to which the pointer is set. An instruction
pointer can address an instruction only in the program in
which it is set, and an instruction pointer can be used as
a branch operand only in that program.

Instruction Definition Lists

An I DL (instruction definition list) defines a set of
instruction numbers and refers to branch points. An IDL
is specified in the ODT and can be referred to by the
instruction stream but not modified. Instructions
referred to in an IDL must be within the range of the
program instruction stream in which the IDL is used
(lDLs cannot be referred to outside a program).

An IDL can be used in a compound operand of a branch
operand. The index suboperand furnishes an integer
value that is used as an index into the IDL to determine
the branch target (one for the first element of the I DL,
two for the second, and so on).

For example, with the following definitions:

II Branch Point
l2 Branch Point
IOU IDl(5,Ll,l2)

An I D L consisti ng
of an instruction
number (5) and two
branch points (ll
and l2J.

the following Copy Numeric Value and Branch
instructions cause a branch to the third element of
the IDL, which is set to label L2.

DCl
CPYNV
B

C BINARY(2)
C,3
IDL(C)

In a similar manner, a return list can be defined for a
Call External instruction. The return list is an I DL and
allows the caller to specify the list of return targets
allowed based on certain situations that may be
detected in the called program or subprogram. The
called program can select a return target based on an
index value specified on the Return External instruction.
If no value is specified, control returns to the instruction
following the Call External instruction. Otherwise, a
target is selected from the return list and control is
passed to that instruction. The ordering of return targets
and of conditions detected is dependent on user
conventions.

Object Control Functions 2-43

Context Management

A context is a system object that contains addressability
by symbolic address to other system objects.
Addressability to a system object can be placed in a
context, and the context can then be used to locate the
system object by its symbolic address. A temporary
context is not inserted in the machine context and
therefore cannot be symbolically addressed. The
symbolic address of an object used for context
addressing is by type, subtype, and name. The symbolic
addresses of all objects addressed by a single context
must be unique. For example, two objects named ABC
of the same type and subtype cannot be addressed by
the same context. A maximum of one context can be
used to address a system object.

KINDS OF CONTEXTS

There are two kinds of contexts in the machine: the
machine context and user-defined contexts.

Machine Context

The machine context is implicitly created and maintained
by the machine. It contains addressability to the
following types of objects: user profiles, contexts,
logical unit descriptions, controller descriptions, and
network descriptions. When an object of this type is
created, addressability to the object is implicitly inserted
into the machine context. No other context can address
these types of objects as they are always addressed by
the machine context. The user can never obtain a
system pointer to the machine context.

User-Defined Context

A user-defined context is created explicitly through use
of the Create Context instruction. This kind of context
can address any system object except those that are
restricted to the machine context or those system
objects already addressed by a context (only one context
can address a system object). Permanent and temporary
system objects can be addressed by permanent or
temporary contexts.

2-44

CONTEXT MANAGEMENT FUNCTIONS

Context management functions are defined as context
creation, context destruction, and addressability
modification.

• Context creation-Contexts are created by the Create
Context instruction. The machine context is implicitly
created by the machine.

• Context destruction-Contexts are destroyed by the
Destroy Context instruction.

• Addressability modification-Addressability can either
be implicitly inserted into a context when the object
is created or be explicitly inserted into a context by
the Modify Addressability instruction. Addressability
to an object is implicitly deleted from a context when
the object is destroyed, or it may be deleted from a
context by the Modify Addressability instruction.

Objects addressable by the machine context have
addressability inserted into that context when they are
created and deleted when they are destroyed; these
objects cannot be addressed by any other contexts.

The Create instruction for system objects can specify a
context where addressability is to be inserted when the
object is created. If no context is specified,
addressability is not placed in any context unless the
object is of the type that must be addressed by the
machine context.

Object addressability contained in a context is implicitly
deleted when the object is destroyed.

The Modify Addressability instruction causes the object
addressability contained in a system pointer to be
inserted into or transferred to a specific context (if
specified) and removed from the context currently
addressing the object (if any).

Object addressability contained in a specific context for
a specific object is explicitly deleted when a Modify
Addressability instruction is executed. Addressability
cannot be deleted if the object is addressed by the
machine context.

Materializing Contexts

The current contents of a context can be materialized.
All of the context entries or some subset of the context
entries can be materialized by the Materialize Context
instruction. If only a subset of the context entries is
materialized, the selection can be based on type, type
and subtype, name, type and name, or type, subtype,
and name.

All entries that satisfy the search criteria are materialized
(for example, all queues in the context). When an object
name is specified as the search criteria, the number of
characters in the context entry is compared to the
number of characters in the name (the compare
operation starts with the leftmost character). Therefore,
entries for objects AB, AC, ABC, and ACB can be
materialized with a search criteria of A.

For each object selected, a system pointer addressing
the object, the object's symbolic address, or both, can
be materialized.

CONTEXT AUTHORIZATIONS

The contents of a context can be controlled by the
following object authorizations:

Authorization Operations

Retrieve Materializing context.

Insert

Delete

Update

Resolving addressability through a
context.

Creating object with initial context
addressability.
Context receiving addressability via
the Modify Addressability
instruction.

Context losing addressability via the
Modify Addressability instruction.
Destroying an object does not
require delete authority to the
addressing context.

Rename Object instruction.

Note: There is no authority requirement for the
operations involving the machine context.

Object Control Functions 2-45

Authorization Management

Authorization management controls the use of objects,
resources, certain instructions, and various machine
attributes. System /38 provides this control by:

• Preventing some users access to an object while
permitting other users restricted or complete use of
the object.

• Limiting the quantity of a resource that a user is
allowed to use.

• Selecting the users that can issue certain instructions.
A user can be given the authorization to any
combination of these instructions.

• Selecting the users that can modify certain machine
attributes. This authorization is given by the machine
attribute group. A user can be given the authorization
to modify machine attributes in any combination of
these groups.

• Selecting the users that can control the use of the
machine.

USER PROFILES

The authorization to use the system resources is
controlled by a system object called a user profile. Each
user of the system is identified by a user profile (a user
is considered to be one or more users associated with a
single user profile).

2-46

User profiles are created with initial values that define a
portion of the user's processing environment and are
subsequently updated to include the entire scope of
authorization. A user profile has a name, type, and
subtype that identifies a user to the machine in one of
the following manners:

• All users of the system can be identified to the
system by the same user profile.

• A group of users can share a single user profile.

• Each user of the system can have a unique user
profile.

Each process in the machine executes under control of a
user profile. (A user profile is specified as a process
attribute.) When the machine executes an instruction,
references an object, or requests a resource, it is done
in the name of the user. Therefore, the user profile
associated with the process is checked for the authority
to use that item. An authorization exception is signaled
when a process attempts to exceed its authorization by
requesting the use of an object, function, or resource for
which its user profile is not authorized.

When a process creates a permanent system object, the
user profile associated with the process (referred to as
the process user profile) is assigned ownership of and
all rights to that object. Temporary objects are not
owned by any user profile because when a temporary
object is created, all object authorities are granted to the
public. In addition, object authorities can neither be
granted to nor retracted from a temporary object.

Adopted User Profile

A process can gain additional authority via an adopted
user profile. A program can have an attribute to indicate
that while the program is executing, the process has the
authority to use the program owner's user profile in
addition to the process's user profile. In other words,
the user profile that owns the program can be adopted
by the process as a second source of authority.

The adopted user profile propagation program attribute
indicates whether the adopted user profile authorities
are to be available to programs called by the adopting
program; when this attribute is specified, the adopted
user profile is propagated to subsequent invocations.

The following diagram illustrates the range of authority
provided by the adopted user profile with respect to
invocations of other programs with or without an
adopted user profile:

Process User Profile A
Authority Available to
Executing Program

Invocations

I Program I

Propagate adopted user
profile B

... Adopted user profile C
but no propagation

A

A+B

A+B

A+B+C

A+B

The adopted user profile's authority is available to
succeeding invocations of other programs unless the
program attribute indicates no propagation. All
authorizations come from the process user profile and
the adopted user profiles except for the resource
authorization, which is obtained only from the process
user profile.

Object Control Functions 2-47

The authorizations and/or resources associated with
user profiles are:

• Object authorizations: A system object can be
collectively or individually authorized to users for
specified types of operations.

• Special authorizations: Special authorizations allow
certain implicit authorities that are not necessarily
associated with one specific instruction or object.

• Resource authorizations: Resource authorizations
control the amount of system resource that the user
can utilize.

• Privileged instructions: A user can be authorized to
execute certain privileged instructions.

• Owned objects: Certain authorities are implied to the
owner of a system object. The storage resources
consumed by system objects are charged against the
owner's resource authorization.

Object Authorization

Instructions that involve system objects usually require
certain authorities to those objects before a process can
complete the operation. During the execution of a
program, instructions may require one or more of the
following specific object authorities, which can be
granted to users in any combination:

• Object control-for example, destroying an object or
transferring ownership of the object.

• Object management-for example, grant/retract
authority, or modify addressability.

• Authorized pointer-for setting the authority attribute
in a system pointer.

• Space-for obtaining a space pointer addressing the
object's associated space from a system pointer
addressing the object.

2-48

• Retrieve-for example, retrieving entries in a data
space or finding entries in an index.

• Insert-for example, inserting new entries into a data
space or enqueing messages on a queue.

• Delete-for example, removing entries from a data
space or removing addressability from a context.

• Update-for modifying entries in a data space or
replacing an entry in an index.

A process has four principal sources for object
authorities:

• Authority stored in a system pointer.

• The object's public authorization.

• Implicit authority through all object special authority.

• Private authorization.

When a permanent system object is created, the user
profile of the creating process becomes the owner of
the object and is implicitly granted all of the object
authorities to that object as a private authorization. The
object is not authorized to any other user profile on
creation.

Two instructions (Grant Authority and Retract Authority)
are used to modify object authorizations. These
instructions grant the object authorities to a specific user
profile or to all user profiles, that is, the public.

The Grant-Like Authority instruction grants authority for
all objects in a referenced user profile to another user
profile.

l
'-'

A system object has two principal classes and recipients
of authorizations: public and private. Public authorization
is a general authorization supplied to every user profile
without the profile being individually authorized. Private
authorizations enable certain user profiles to be
authorized with specific authorizations to a system
object. The authorization granted to the owner is a
special case of the private authorizations. The Grant
Authority, Grant-Like Authority, and Retract Authority
instructions require certain object authorizations to the
object being authorized. The owner does not require the
necessary object authorizations to an object in order to
successfully grant/ retract authority to or from it. The
owner may desire to protect his own object from
accidental modification by retracting all but the
necessary authority from himself. In this way, it is
unlikely that an inadvertent reference to an object during
a modify function could damage that object.

For efficiency, the authority available to a user can be
stored in the system pointer to the object. If the
required authorization is contained in the pointer, no
further authority checking is required. Storing authority
in the pointer has performance benefits even though
there are some functional disadvantages. For example,
an authorized system pointer can be saved indefinitely.
This renders the Retract Authority instruction ineffective
for such cases. Furthermore, a user can pass an
authorized pointer to a nonauthorized user. If this
security exposure is undesirable, at the cost of efficiency
the user can prevent the storing of authority in the
system pointers. For this reason, one of the object
authorizations governs the ability to store the authority
in the pointer.

All-object authority is a special authorization that allows
a user unlimited access to all objects. Whsrever object
authority of any kind is required, this special authority is
sufficient. and no other object authorities are required.

When the authorization for an object is checked, the
authority is considered to be cumulative with respect to
all sources of authority. For example, part of the
required authority can be obtained from the object's
public authority, while the remaining part can be
obtained from private authorization. Each source may
not have the required authorization alone, but when
object authority is checked, all available object
authorizations are combined. If the program being
executed adopts a user profile, the adopted user
profile's authority is also combined with all other
sources of authority.

Object Control Functions 2-49

Object Authorization States

The object authorities are subdivided into three distinct
categories (Figure 2-2):

D Object control-which controls ownership and
existence of objects.

II Object management-which controls access and
availability of objects.

II Data-related authorities-which control reading,
writing, and general usage of system objects.

Notice that these categories are for different purposes;
neither object control nor object management authorities
allow the contents of an object to be read; neither the
object control nor the data-related authorities allow
authority to be granted or addressability to be affected.
Only the object control authorities allow the ownership
or the existence of an object to be changed.

o
~--------~------~
Object Control Authorityl

IJ

fJ
~---------=~----------~

Object Management Authority!
Authorized Pointer l

~------~~------~
Data·Related

'Object authorization which can be granted

Figure 2·2. Hierarchy of Object Authorization

2-50

In addition to being data related, the retrieve, insert,
delete and update authorities are also known as
operational authorities because a process has an implied
operational authority when it has one or more of these
authorities. Operational authority is required for
operations that are not within the previous categories.
For example, operations such as materializing object
attributes require operational authority. Some objects
do not have any instructions that require any of the four
authorities but rather require operational authority. For
such objects, operational authority is granted by granting
all four of the operational authorities. When all four
authorities are not granted for these types of objects
(except a space object), an exception is signaled. The
operational authorities of a space object can be used for
user-defined purposes.

Object Control: Object control authorization is required
to modify the ownership and the existence of an object.
The following operations require this authority to the
object:

• Destroy object-Object control authority to an object
is required in order to destroy that object. However,
there are no authorities required to the addressing
context, the owning user profile, or the access group
that contains the object to be destroyed.

• Transfer ownership-Object control authority to the
object, delete authority to the old owning user profile,
and insert authority to the new user profile are
required to transfer ownership of an object. After the
transfer operation is completed, all user profiles retain
the same authorities to the object; only the ownership
changes. The resource authorization on the new
owner's user profile is observed when determining
whether the transfer is possible. A program that
adopts a user profile cannot have its ownership
transferred unless the process user profile has
all-object special authority. This restriction provides
control over a user who might be able to transfer
such a program to another user profile, which would
then have authorities the transferring user was not
intended to obtain. Then the user could execute the
restricted program with those authorities obtained
through the adopted user profile.

• Suspend object-Object control authority and
restricted suspend special authority are required to
suspend an object. If the process has unrestricted
suspend special authority, object control is not
required.

• Load object-Object control authority and restricted
load special authority are required to load an object
(replace an existing object). If the process has
unrestricted load authority, object control authority is
not required.

Object Control Functions 2-51

•

Object Management: Object management authority is
required to control the accessability and availability of
system objects. The following operations require this
authority:

• Modify addressability-Object management authority
to the object, delete authority to the old addressing
context, and insert authority to the new addressing
context are required to change the addressability of
an object. The addressability of objects addressed by
the machine context cannot be modified because no
authority is available to the machine context.

• Grant authority-Object management authority and the
object authorities to be granted are required for a
nonowner to grant authority to an object. Only the
owner of an object, or a user profile with all-object
special authority, is allowed to grant object
management authority. The owner can always grant
any of the object authorities.

• Retract authority-Object management authority and
the object authorities to be retracted are required for
a nonowner to retract authority to an object. The
owner can always retract any of the object
authorities.

• Rename-Object management authority to the object
and update authority to the addressing context are
required to rename an object.

• Create cursor-Object management authority is
required for the data space(s) over which the cursor
is being created. A cursor exercises a type of access
control to data space entries because all access to a
data space entry must be through a cursor.
Additionally, a cursor determines the fields of a data
space entry that can be operated upon.

• Data base maintenance-Certain data base
maintenance options require object management
authority to the data space or data space index.

• Modify attributes-Object management authority is
required to modify object attributes.

• Initiate process-Object management authority is
required for the user profile under whose control the
process is to execute (unless it is the same user
profile as that of the initiating process).

2-52

Different Object Management Authority

User
Profile

Initiating Process
--- -- - - - --

D D

User
Profile

Process

Must Have
Obje ct Manage­

t Authority men

D D

Same Object Management Authority

User
Profile

Initiating Process Process ---------- ---------

D D 0 D

Authorized Pointer: The amount of system time required
to check the authorizations of an object can be
decreased by storing these authorizations in the system
pointer. The authorization stored in the system pointer
is examined when determining the process's authority to
the object. Also, storing an authorization in the pointer
has other functional implications. For example, pointers
can be saved in spaces indefinitely and retain any
authority stored in these spaces even though the
authorities have been retracted by the Retract Authority
instruction. Therefore, the Retract Authority instruction
is rendered ineffective for the cases where authority is
stored in the pointer. In addition to saving authorized
pointers, a user can pass them to other users who have
not been explicitly authorized to use an object. An
implicit granting capability is therefore possible with
authorized pointers. The passing and saving of
authorized pointers may be a desirable function in some
applications. For applications in which this is not
desirable, the storing of authority in system pointers can
be prohibited by not granting authorized pointer
authority to the object. That is, a process must have
authorized pointer authority to the object in order to
have any authority stored in a system pointer pointing to
that object.

Space: Any system object can have an associated
space. (A space object is an object with nothing but an
associated space.) All data in the associated space is
referenced via a space pointer. Space authority allows a
user (if desired) to access the object and not the space.
In order to obtain a space pointer for the space
associated with a system object, the process must have
space authorization to that object. After the space
pointer is obtained, there is no further control on the
access to the space.

Retrieve: Retrieve authority is required in a wide variety
of instructions. It permits retrieval, examination, or
reading of the object's contents. Some examples of
these contents are data space entries in a data space,
entries in an index, objects addressed by a context,
objects owned by a user profile, messages on a queue,
members of an access group, and instructions in a
program.

Insert: Insert authority is required by instructions that
add new entries to objects. Some examples are
inserting an entry into a data space or index, enqueuing
a message on a queue, placing addressability to an
object into a context, and making a user profile the
owner of an object.

Delete: Delete authority is required by instructions that
remove existing entries from an object. Some examples
are removing a data space entry or an index entry,
dequeuing a message from a queue, and removing
addressability from a context.

Update: Update authority is required by instructions that
modify existing entries in an object. Some examples are
updating a data space entry, replacing an index entry, or
renaming a context entry.

Operational: The object authorities (retrieve, insert,
delete, and update) are known as operational authorities.
If the process has anyone or more of these operational
authorities to an object, the process has operational
authority. Many instructions only require operational
authority because either the operation is not one that is
categorized into one of the operational authorities, or the
object does not support any distinction between them.

If desired, programs can be restricted to execute-only
authorization. This restriction is possible because
retrieve authority is required to materialize the source
template of the program and only operational authority
is required for execution of the program. If it is desired
that users only execute the program, one or more of the
operational authorities, except retrieve, should be
granted.

Object Control Functions 2-53

Figure 2-3 shows the object authorities that are
supported for each object.

Object Object
Object Type Control Mgmt

Access group X X

Commit block' X X

Context X X

Controller description' X X

Cursor' X X

Data space X X

Data space index' X X

Dump space X X

Index X X

Journal port X X

Journal space X X

Logical unit description' X X

Network description' X X

Process control space' X X

Program X X

Queue X X

Space X X

User profile X X

X = Supported

Object Authorities

Authorized
Pointer Space Retrieve

X X X

X X a
X X X

X X a
X X a
X X X

X X a
X X X

X X X

X X X

X X X

X X 0
X X a
X X a
X X X

X X a
X X a
X X X

a = Not specifically supported but used for indicating operational authority

, Operational authorities must be granted and/or retracted with all 1's (ones) or O's (zeros).

Figure 2-3. Valid Object Authorities

2-54

Insert Delete Update

X X X

0 0 a
X X X

0 a a
0 a 0
X X X

0 0 a
X a a
X X X

X a a
X a X

a a a
a a a
0 a a
0 0 a
X X 0

0 0 0
X X X

Special Authorizations

Special authorizations that can be assigned to a user are
implicit object authorizations, function authorizations,
and machine attribute modification authorizations.

Special authorizations allow a user to perform certain
special functions such as operate on objects using
implied authorizations and modify machine operation. (A
user in a supervisory role over machine operation might
be granted such an authorization.) A user can be given
any combination of the following special authorizations:

• All-object authority-This special authorization
provides the user with authority to use any object in
the machine without public or private object
authorization being granted for the object. A user
profile with this authority has no need for any other
implicit or explicit object authorization. A user profile
without this authority must have separate object
authority to perform any function against an object.
All-object authority does not imply load or dump
special authorities.

• Load-This special authorization allows the user to
perform the load function in order to copy an object
from a load/dump medium onto the machine. This
authorization has two options:

Load restricted-specifies that the user may
execute the load function for objects that can be
loaded and for which the user is the owner, has
object control authority, or has all-object authority.
Space authority is also required when the object
has an associated space.
Load unrestricted-specifies that the user may
execute the load function for any object that can
be loaded. No object authorization is required.

• Suspend object-This special authorization allows the
user to execute the Suspend Object instruction. This
authorization has two options:

Suspend restricted-specifies that the user may
execute the instruction for objects that can be
suspended and for which the user has either
object control authority or all-object authority.
Suspend unrestricted-specifies that the user may
execute the instruction for any objects that can be
suspended. No object authorization is required.

• Dump-This special authorization allows the user to
perform the dump function in order to copy an object
from the machine to a load/dump medium. This
authorization has two options:

Dump restricted-specifies that the user may
execute the dump functions, but only for objects
that can be dumped and for which the user has
either object management (if a data space is to be
dumped). space (if the object has an associated
space). and retrieve authorities, or all-object
special authority.
Dump unrestricted-specifies that the user may
execute the dump function for any object that can
be dumped. No object authorization is required.

• Process control-This special authorization allows a
user, other than the original initiator of a process, to
perform the following operations on that process:

Materialize process attributes
Modify process attributes
Suspend a process
Resume a process
Terminate a process

• Service-This special authorization allows machine and
I/O device maintenance operations to be initiated
through the Request I/O instruction.

Nine groups of machine attributes describe the actual
characteristics or status of the machine. Group 1
contains attributes that can be modified without special
authority; groups 2 through 9 contain attributes that
cannot be modified without special authority. To modify
a machine attribute in groups 2 through 9, authority is
required for the group in which the machine attribute
appears. The Modify Machine Attributes instruction
allows a subset of a group of machine attributes to be
selected. The group is selected through the attribute
section operand.

Object Control Functions 2-55

Resource Authorization

Resource authorization is used to limit the amount of
auxiliary storage that can be allocated for storing
permanent objects owned by a user profile.

Privileged Instructions

Most System/38 instructions are available to all users of
the machine; that is, the machine does not prevent
users from executing these instructions. However, the
machine does limit the use of some System/38
instructions called privileged instructions.

Privileged instructions are used to restrict creation or
attribute modification of certain types of system objects.
Privileged instructions also limit the use of certain
functions. The user profile is granted authorization to
privileged instructions through use of the Create User
Profile instruction or the Modify User Profile instruction.

The following are privileged instructions:

• Create Logical Unit Description

• Create Network Description

• Create Controller Description

• Create User Profile

• Modify User Profile

• Terminate Machine Processing

• Initiate Process

• Modify Resource Management Controls

A user profile that is authorized to use the Create User
Profile or Modify User Profile instruction can provide to
other user profiles the authority to use any of the
privileged instructions for which the user profile is itself
authorized.

A privileged instruction exception is signaled when an
unauthorized user attempts to execute a privileged
instruction.

2-56

AUTHORIZATION FUNCTIONS

Authorization functions involve making a user known to
the system and having that user's authorization
monitored and controlled by the machine.

Enrolling Users

New users are enrolled in the machine when a user
profile is created in their behalf. A user profile is
created through use of the Create User Profile
instruction. The user profile owning the process that
executes the instruction becomes the owner of the new
user profile.

The authorizations that can be initially assigned to the
new user profile are privileged instruction, special, and
resource.

The user profile (which includes the process user profile
and any currently adopted profiles) that is controlling the
process when the new user profile is created must have
authority for the Create User Profile privileged
instruction. Additionally, the new user profile cannot be
granted more privileged instructions or more special
authorizations than owned by the creating user profile.

The only context with addressability to the user profile is
the machine context. Therefore, the name and subtype
specified for a user profile must be unique when
compared to all other user profiles.

To remove a user profile from the machine, the Destroy
User Profile instruction is executed. The user profile
being destroyed cannot own any objects that currently
exist except itself, and no processes can be executing
under its control.

J

Modifying Authorization

After a user profile is created, the authorizations held by
that user can be changed. The following functions
change the authorizations available to the user profile.

Modify User Profile Instruction

Privileged instructions, special authorizations, and
resource authorizations can be modified to add or retract
the authorization(s) held by the user profile.

The Modify User Profile instruction is a privileged
instruction.

Object Creation

When a permanent object is created in a process, the
user profile under which the process is executing is
made the owner of the object. The owner is initially
granted all object authorities to the object.

Grant Authority Instruction

A user profile with object management authority for an
object can grant some of its object authority for that
object (except object management) to another user
profile or the public. The owner can always grant any
object authority for the object, even to himself. Only the
owner of an object or a user profile with all-object
special authority can grant object management authority.

Grant-Like Authority Instruction

This instruction grants authority from a referenced user
profile to a receiving user profile. The authorities for all
objects in the referenced user profile are granted. All
new authority codes can be granted if the receiving user
profile has no authority to the object. In addition, new
authority codes can be added to authority codes
previously granted.

Retract Authority Instruction

A user profile with object management authority for an
object can retract its object authority for that object
from another user profile or the public. The owner can
always retract any object authority for the object, even
from himself.

Transfer Ownership Instruction

The ownership of an object is transferred from the
current owner to another user profile. All object
authorizations that any user profile (including old owner)
had before the transfer remain unchanged.

The user profile transferring ownership of an object
must have object control authority for the object whose
ownership is being transferred.

A user profile that has private authority for an object
retains private authority even though ownership to the
object is transferred. The new owner is given all private
authorities.

Testing for Authority

The Test Authority instruction is used to test or retrieve
the object authority that is currently available to the
process.

Object Control Functions 2-57

Materializing Authority

The current authorization status in the system can be
made available anytime during machine operation. The
following instructions are used to determine this
authorization.

Materialize User Profile Instruction

The Materialize User Profile instruction materializes the
current authorization status of the user profile. The
authorization status includes:

• Authorizations for privileged instructions

• Special authorizations

• The amount of auxiliary storage allocated and used
by this user profile

Materialize Authority Instruction

The Materialize Authority instruction materializes the
specific types of object authority for a system object
available to a user profile. Public authority for the object
can also be materialized.

Materialize Authorized Objects Instruction

The Materialize Authorized Objects instruction
materializes optional information about the objects
owned by the user profile, the objects privately
authorized to the user profile, or both the objects owned
by the user profile and the objects privately authorized
to the user profile.

2-58

Materialize Authorized Users Instruction

The Materialize Authorized Users instruction materializes
the list of all user profiles that have private or ownership
authority to a specific system object; the public authority
is also materialized. The following items are materialized
for each user-listed profile:

• System pointer to the user profile

• User profile name (optional)

• User profile subtype

• Private authority

Authority Verification

During the execution of a process, the machine verifies
that the process has sufficient authority to perform the
following functions:

• Reference a system object

• Perform a function requiring special authorizations
(for example, modify machine attributes)

• Create or extend a permanent system object

• Execute a privileged instruction

Authority verification can occur through any of the
following means:

• Public authority (only for object authorizations)

• Process user profile

• Process adopted user profiles

• Adopted user profiles

• System pointer authority attribute (only for object
authorizations)

J

l Public Authority

Public authority relates to the object authority granted to
all user profiles in the machine. When public authority is
granted for an object, no user profile is specified; the
authority specified is given to all user profiles. When
the new user profiles are created, they are given
authority to all objects with public authority.

All of the object authorities do not have to be granted
as public authority. Public authority can be granted, for
example, for operational authority, but the owner can
withhold public rights to object control and object
management authorities. In this example, any user
profile in the machine can functionally use the object but
cannot destroy the object, put addressability into
another context, or grant any private authority to the
object.

Process User Profile

Each process executes under control of a user profile
called a process user profile. A process user profile can
be used to verify all authorizations required by the
process including object authorizations, special
authorizations, resource authorizations, and privileged
instruction authorizations.

A process user profile is specified when the process is
originally initiated. The process user profile can be
changed by the Modify Process Attributes instruction.
The user profile of the initiating or modifying process
must have object management authority for the
specified user profile unless it is the same user profile.
A user profile must also have process control special
authorization in order to modify a process not originally
initiated by the user.

A process can have its governing user profile replaced
with another user profile if authority to do that was not
specifically disallowed when the process was originally
initiated.

Process Adopted User Profiles

A process can gain additional authority through process
adopted user profiles. These process adopted user
profiles are associated with the adopting process until it
is terminated (unless modified by a Modify Process
Attributes instruction). All authorities granted to these
user profiles are available to the adopting process. The
ownership of objects created by the process are always
reflected in the process user profile. Event and
exception handlers maintain authorities available through
process adopted user profiles.

One reason for adopting user profiles on a process basis
is that certain user profiles could be considered as group
profiles. This means that objects created under these
user profiles or authorities granted to these user profiles
may be available to a large number of users without
granting authority for each object to each individual user.

Program Adopted User Profiles

In addition to the authority provided by the process user
profile and the process adopted user profiles, a process
can also adopt other user profiles and, therefore, use
any additional authority available to these user profiles.

The means available for a process to adopt other user
profiles are as follows:

• When a program is created, the creator can specify
that the program is to have the adopted user profile
attribute.

• When the program is invoked, the user profile is
adopted by the process, and the authorization rights
of the owner of the program are temporarily available
to the process.

• When a program is created with the adopted user
profile attribute, this same program can also have the
propagate adopted user profile attribute. When a
program with these two attributes calls another
program, its adopted user profile authorities are also
available to the called program as well as any
additional called programs.

• When authority is to be verified, the authority
available to the adopted user profile and the authority
available to the process user profile is checked.

If an invoked program or a process does not adopt a
user profile, then only the process user profile is used.

Object Control Functions 2-59

Adopted user profiles allow a function to be defined by
a user. This ensures that all authorizations required by
the function are available. It also allows other users to
be authorized to the function by authorizing them to the
first program in the function. If the first program
invoked by the function adopts the definer's user profile,
all programs invoked for the function have the benefit of
the definer's authorization.

An external event or exception handler does not receive
the authorization from any previously adopted user
profiles. The exception handler program may, however,
adopt a user profile.

Adopted user profiles are used for all authorizations
except resource authorization. Only the process user
profile is used for resource authorization.

If the ownership of a program is transferred to a new
owner (user profile), the user profile of the new owner is
used as the adopted user profile when the program is
subsequently invoked. The ownership of a program with
the adopt user profile attribute cannot be transferred
unless the process transferring the ownership has
all-object special authority. A transferred program that
has the adopt user profile attribute and is currently
invoked continues to use the old owner's adopted user
profile until a new invocation occurs.

System Pointer Authority Attributes

A system pointer can contain addressability to a system
object as well as object authorities for using the object.

When an object is referenced through a system pointer,
the authorization attributes in the system pointer can
provide sufficient authority for the object to allow its use
in the instruction. If the system pointer does not contain
enough authority for the operation, public authorization,
the process user profile, and any current adopted user
profiles are used for further verification.

A user can request that the system pointer be resolved
and/or the authority be stored in the system pointer by
using the Resolve System Pointer instruction. This
instruction can also cause the authority attribute not to
be stored (meaning no authority in the system pointer).

The user controls system pointer authority. This
authority is not stored by the machine unless requested
by the user.

2-60

A system pointer with the authority attribute can be
copied outside the process and thereby cause implicit
granting of authority to another process that may use
the pointer or a copy of the pointer. This function can
occur when the system pointer is copied to a permanent
space object, enqueued as part of a message on a
queue, contained in a space object used as
event-related data, passed as an argument to an
initiated process, or passed to an initiated process as an
element of the process communication object. The
authority cannot be stored in the system pointer unless
the process has authorized pointer object authorization
to that object. By not granting this authority, the user
can control the implicit granting of authority.

Test Authority Instruction

The Test Authority instruction verifies that the object
authorities and/or ownership rights for an object are
currently available to a process. The authorities and
ownership rights are contained in a template that is
specified as an operand on the instruction. The contents
of the template are tested against the authorities
currently available to the process. The results of the test
provide the following options (if specified by the
instruction) :

• Transfer control conditionally to the instruction
indicated in a branch target (branch form).

• Assign a value to each indicator operand (indicator
form).

If no branch options are specified, program execution
continues with the next sequential instruction.

The Test Authority instruction also returns the object
authorities and/or ownership rights (as specified in the
authority template) to a receiver operand (if specified).

L Authority Verification Summary

Several functions can be used to verify proper
authorization. The authority verification functions obtain
authorization information from one of several places.
The following describes where authorization information
is obtained for specific authorizations.

• Object authorization

The following are used for authority verification of
system objects.

System pointer authority attribute
Public authority for the object
Private authority of current or propagated adopted
user profiles in the process
Private authority for the process user profile

If the process user profile or any of the current or
propagated adopted user profiles have the all-object
special authorization, any object authorizations
required by the operation are implicitly met, and the
operation can be performed. When ownership of an
object is required for a particular instruction, either
the current or propagated adopted user profile or the
process user profile can be the owner of the object.

• Special authorizations

If the process user profile or the current or
propagated adopted user profiles have the required
special authorization, the function can be performed.

• Privileged instruction authorization

If the process user profile or the current or
propagated adopted user profile has the required
privileged instruction authorization, the instruction can
be executed.

• Resource authorization

When a system object is created, the amount of
auxiliary storage required for that object is credited to
the process user profile. Then, if a user profile
exceeds the amount of auxiliary storage allowed, an
exception is signaled. The adopted user profiles do
not participate in resource authorization.

Object Control Functions 2-61

2-62

Program Management

A program is the basic unit of execution in System/38.
A program is also the encapsulated and executable form
of a program template and logica"y contains both the
function definition and object (data) definitions from the
program template. The execution of a program causes a
series of functions to be performed against a set of
objects. System/38 provides instructions to create,
manage, and destroy programs.

PROGRAM CREATION

Programs are created by means of the Create Program
instruction. This instruction:

• Accepts the program template as the definition of the
program

• Syntax checks the program template according to the
syntax rules

• Generates a system object called a program

• Returns diagnostic information through the exception
handling mechanism

• Returns a system pointer that addresses the
generated program

The program template describes the program to be
created. The following descriptive items are provided by
this operand:

• The template header is fixed at the beginning of the
template and contains the creation attributes of the
program and the directory to each of the components
that make up the program template.

• The template components follow the header and
provide the specifications of the program template.
Each component is optional and, if present, its
location is indicated by the offset values specified in
the template header. The components are:

Instruction stream
Object definition table (ODT)
User data

Chapter 3. Program Functions

Instruction Stream

The instruction stream defines the set of operations to
be performed by the program. It is composed of a
series of instructions in an operator-operand format. An
instruction can be viewed as a vector of entities, where
each unit can be an:

• Instruction operation code (required)

• Operation code extender field (optional)

• Operand of an instruction (zero to four per
instruction)

Instruction Stream

) Instruction)

r------~ -------l--~(

Operation Operation
Code Extender
Field Field

Optional

Operand
Field 1

Operand
Field n

Zero or More
Operand Fields

The last 2 bytes of the instruction stream must be an
End instruction operation code. This operation code
indicates the physical end of an instruction stream and.
if executed. functions as a Return External instruction.

Program Functions 3-1

Object Definition Table

The ODT (object definition table) is the means for
defining all objects that are referenced by the operands
in the instruction stream. The ODT consists of an ODV
(ODT directory vector) and an OES (ODT entry string).

An ODT definition of an object does not actually allocate
storage for the object; it does, however, define when
and how much storage is to be allocated, as well as
define the attributes of the ston~ge.

ODT
(object
definition
table)

ODV
(ODT
directory
vector)

OES
(ODT
entry
string)

Entries in
ODV are 4 bytes
(fixed-length) .

Description of
Object

\

Description of
Object

, ,

Partial

Offset to
OES
~
,
I
I

Descrip- :
I

tion of I
I

Object I
I

r::
I

~ ____ ~ ____ J"' ______ -y ______ ~

Entries in OES are
variable-length

Each ODV entry defines a program object. Operand
fields in instructions (other than implicit references)
contain index values to entries in the ODV. These index
values are used as program object references; that is,
the ODV extent (number of entries) is the address space
for an associated instruction stream. An ODV entry can
completely specify the attributes for an object, or it can
have a partial description of an object and an offset into
the OES to an entry that completes the object
description. The ODV and OES appear as parts of the
program template.

3-2

Description of
Object

1

\

The following illustration shows the relationship between
the instruction and the ODT.

Add
Numeric

OOT
(object
definition
table)

User Data

OOV
(OOT

Instruction
Stream

directory
vector)

OES
(ODT
entry
string)

ADDN

2

The user must define the format and contents of the
user data area. The machine then maintains this area as
part of the program. (The user data can be retrieved by
materializing the program.)

Program Optimization

The user can request program optimization by specifying
the appropriate creation attribute in the program
template header. This optional attribute allows for
additional processing during program creation, which
produces a program that requires less system resource
when executed. Program optimization allows a trade-off
between the amount of processing required to produce
a program and the amount of processing required for its
execution.

In general, programs that will be used often should be
created with program optimization. The initial cost of
creating the program is soon offset by the savings
acquired through repeated execution of the program.

Index
Value into ODT

362

Program Functions 3-3

PROGRAM DESTRUCTION

The Destroy Program instruction explicitly destroys a
program. Program destruction removes all future
references to the program from the machine.

PROGRAM MATERIALIZATION

The Materialize Program instruction materializes the
components of a specified program template into a
target string. The following is a list of the components
that can be materialized:

• General program attributes

• Instruction stream

• ODT directory vector (ODV)

• ODT entry string (OES)

• User data

• Object mapping table (OMT)

When a program is materialized, the format of the
resulting template is identical to the one used on the
Create Program instruction.

3-4

Object Mapping Table

The system does default positioning for static and
automatic data objects. When a program is created, an
OMT (object mapping table) is also created. An entry
for each ODT element that maps to a space, whether
through a direct or based view, is placed in the OMT.

The OMT consists of a variable-length vector of 6-byte
entries. The number of entries in the OMT is identical to
the number of ODV entries. Each OMT entry provides a
location mapping for the object defined by its associated
ODVentry.

PROGRAM OBSERVABILITY DELETION

The Delete Program Observability instruction deletes all
of the observable components of a program template,
thereby increasing the amount of storage available for
programs.

The following components of a program template are
deleted:

• Instruction stream

• ODT directory vector (ODV)

• ODT entry string (OES)

• User data

• Object mapping table (OMT)

L Computation and Branching

COMPUTATIONAL AND BRANCHING
CAPABILITIES

The basic computational and branching capabilities are
provided by the following types of instructions:

• Arithmetic instructions compute numeric results.

• Character string-oriented instructions provide special
processing for character string operands.

• Boolean instructions perform Boolean (logical)
operations on character strings.

• Comparison instructions test the relationship between
data items.

• Object movement and conversion instructions copy
data from one data item to another.

• Branch instructions change the sequence of program
execution either unconditionally or conditionally based
on some computational operation.

• Edit instructions change the form of data items for
the purpose of displaying the value external to the
machine.

COMPUTATIONAL OPERANDS

Computational instructions deal with the numeric and
character data residing in spaces. The operands in
computational instructions reference data objects, data
pointers, and constant data objects. These program
objects are defined in the ODT (object definition table).
Additionally, an operand can contain a value that is
interpreted as an immediate data value.

The operands defined in the ODT specify how
addressability is to be established to a set of bytes in a
space and how those bytes are to be viewed (attributes)
for that operand.

The operands referenced in computational instructions
define numeric or character data. Numeric data includes
binary, zoned decimal, and packed decimal. Most
instructions require operand references to data elements
(an element of a data object or an element of an array
data object). Some instructions operate on entire arrays;
other instruction operands can reference either elements
or arrays.

COMPUTATIONAL CHARACTERISTICS

Computational Instructior.s and Data Descriptions

The data attributes of the instruction operands govern
the behavior of the computational instruction set. These
data attributes are determined by the definition of the
object in the ODT (object definition table). The operation
code defines the basic operation to be performed while
the operands of the instruction define the exact
operational characteristics of the instruction.

For example, if operands A, B, and C are binary scalars,
the instruction,

ADD NUMERIC A,B,C

adds two binary values, operands Band C, and stores
the result in binary form in operand A. However, if
operands A, B, and C are zoned decimal, the instruction
adds two zoned decimal values, Band C, and stores the
result in a zoned decimal form in A. There is only one
Add Numeric instruction, and it operates on any type of
numeric data.

Additionally, the data description provides information
concerning the operand length. In the previous example,
operands A, B, and C could have been defined as either
2- or 4-byte binary values, or zoned decimal values with
1 to 31 digits. Also, some number of these digits can
be considered as fractional digits.

Program Functions 3-5

Instructions with operands that can be defined as
character or numeric allow any of the numeric data
types or the character data type. These instructions (for
example, Copy Bytes Right-Adjusted) treat the operand
as a string of bytes with a length (in bytes) equal to that
defined in the operand's data description. The following
examples show how the data length is implied by the
data description.

Data Description

Character (2)
Binary (4)
Zoned decimal (5,2)
Packed decimal (5,2)
Packed decimal (6,2)

Implied Length (bytes)

2
4
5
3
4

Generic Computational Operations

Instructions that can operate on data items with anyone
of several formats are called generic instructions. Many
of the computational instructions are generic and thus
allow operands of different types, lengths, or precisions.

Computational instructions that allow generic operations
have three similar attributes: scalar type, precision, and
length.

Scalar Type: Computational instructions with numeric
operands, unless otherwise restricted, allow any of the
numeric data types (binary, zoned decimal, or packed
decimal) on any of the operands with the numeric scalar
syntax. For an instruction with multiple numeric
operands, the operands need not be of the same type.
For example, in the Add Numeric instruction, the
receiver can be zoned decimal; the source operands can
be binary and packed decimal.

The operation is performed according to the definition of
the instruction taking into consideration the formats of
the source operands and the format of the result in the
receiver.

Precision: Numeric operands, unless otherwise noted,
can be defined with any of the precisions allowed for
that data type. A binary operand can be 2 bytes or 4
bytes. A decimal operand can specify from 1 to 31
decimal digits. Any number of these decimal digits can
be considered as fractional digits.

3-6

Computational operations are performed according to
the definition of the instruction taking into consideration
the precisions of the source operands and yielding a
result corresponding to the precision of the receiver or
receivers. This means that the number of integer digits
and the number,of fractional digits participating in the
operation (for decimal) are implicitly accounted for in
numeric operations.

Length: String operands in computational instructions
can be of equal or unequal lengths.

String instructions with operands of unequal length
specify one of the following to occur:

• Extra bytes of an operand may be ignored. The
length of the shorter operand is chosen as the length
of the operation, and extra bytes in the longer
operand are ignored (for example, Copy Bytes
Left-Adjusted). The operation determines whether
the bytes on the left or right end of the operand are
ignored.

• Extra (pad) bytes may be supplied to an operand.
The length of a longer operand is chosen as the
length of the operation, and the shorter operand is
padded to this length with some byte value. Each
byte in the pad area is given the same byte value.
Some instructions allow a user-specified value
(Compare Bytes Right-Adjusted with Pad), while
other instructions pad with a value specified by the
instruction (AND) may be applied to the left or right
end of the value depending on the operation being
performed.

Additionally, some instructions require an operand to be
a minimum length. These instructions use the leftmost
bytes to the size required and then ignore all other. This
requirement applies to pad operands and indicator
operands, which require at least 1 byte and ignore all
other bytes in the operand.

Attribute Binding

Attribute binding associates a set of attributes (data
view) with the operand of an instruction. Attribute
binding typically occurs when a program is created and
the attributes of operands are determined from the
object de·finition in the ODT. However, operands in
computational instructions can have their data views
determined at a time other than at the time a program is
created. The attributes of such operands that are not
known during program creation time must be supplied
to the instruction prior to execution.

The means of supplying a set of attributes to
computational operands that refer to data pointers are
as follows:

• A data pointer can receive a set of attributes when it
is resolved to an external data object. The resolution
causes the addressability and attribute set of the data
object to be made available through the data pointer.

• A data pointer can be assigned a set of attributes
through a Set Data Pointer instruction. The
addressability and attributes of the data object
addressed by the instruction are assigned to the data
pointer.

• A data pointer can be assigned a set of attributes
through a Set Data Pointer Attributes instruction. The
value of an attribute template specifies the attribute
set to be assigned to the data pointer.

The compound substring operand form allows the length
attribute to be bound during instruction execution time.
The length suboperand can reference a data object
whose value may be varied during execution time. The
compound operand reference uses the current value as
the operand length for a particular execution of the
instruction.

Operand Overlap

Operand overlap is a situation in which an operand
shares some or all of its space storage with another
operand on the same instruction. An operand is
nonoverlapping if it does not share any of its space
storage with another operand on the same instruction.

Operand overlap can affect the results of an instruction's
operation. In situations involving operand overlap,
results are valid if they are the same as those obtained
when the instruction is executed with nonoverlapping
operands; results are invalid if they are different from
those obtained when the in!'ltruction is executed with
nonoverlapping operands. Operand overlap between
source operands on an instruction always gives valid
results because source operands are not modified by an
instruction. But. because receiver operands are modified
by an instruction, some cases of operand overlap
between receiver and source operands might give invalid
results. In cases where it is identified that an operation
might give invalid results, it is not guaranteed that
invalid results will occur. This is only meant to indicate
that the results of such an operation are unpredictable.

Operand overlap can be divided into two subsets, partial
overlap and coincident overlap.

Partial Overlap

Partial overlap is a situation in which two operands on
an instruction share some, but not all, of their space
storage.

Coincident Overlap

Coincident overlap is a situation in which two operands
on an instruction share exactly the same space storage.

Program Functions 3-7

Operands having coincident overlap can be divided into
two subsets.

Identical Operands: This is a situation in which
coincident overlap is established through operands that
are specified on an instruction with equivalent operand
specification fields. Equivalent operand specification
fields are the following:

• Equivalent simple operands are those specified with
the same ODT reference.

• Equivalent subscripting operands are those specified
with the same base ODT reference and an equivalent
index. Immediate values specified as an index are
equivalent to constants of the same value specified
as an index. Indexes specified with the same ODT
reference are equivalent.

• Equivalent substringing operands are those specified
not only with the same base ODT reference but also
with the same equivalent positions and lengths. A
position or length specified as an immediate value is
equivalent to a corresponding reference to a constant
of the same value. Positions or lengths specified with
the same ODT references are equivalent.

• Equivalent based operands are those specified with
the same base ODT reference and the same basing
pointer ODT reference through either implicit or
explicit basing. This criterion is combined with that
defined for subscripting and substringing in
determining equivalency of based subscript or
substring operands.

3-8

Nonidentical Operands: This is a situation in which
coincident overlap is established through operands
specified on an instruction with unequivalent operand
specification fields. Unequivalent operand specification
fields are those that map operands to the same space
storage through use of:

• Defined, parameter, or based addressability attributes.

• Variable index, position, or length values on
subscripting or substringing operations.

• Constant index, position, or length values specified as
separate fields on subscripting or substringing
operations.

Overlapping Receiver and Source Operands-Valid and
Invalid Results

The following identifies when valid results will occur and
when invalid results might occur for cases of operand
overlap between receiver and source operands on an
instruction.

Overlap Instructions

Overlap instructions, CPYBOLA (Copy Bytes Overlapped
Left-Adjusted) and CPYBOLAP (Copy Bytes Overlapped
Left-Adjusted With Pad) give valid results for all cases
of overlapping operands. They operate as if the source
operand was moved to a work area prior to its
assignment into the receiver.

J

Nonoverlap Instructions

Nonoverlap instructions give results for overlapping
operands as follows:

Partial Overlapping Operands: All nonoverlap
instructions might give invalid results for operands
with partial overlap.

Coincident Operands: All standard, (not short form)
two operand nonoverlap instructions give valid results
for coincident operands.

Nonoverlap instructions with more than two operands
for their standard form, including short forms of them,
give results for coincident operands as follows:

Identical Coincident Operands: All nonoverlap
instructions give valid results for identical coincident
operands.

Nonidentical Coincident Operands: The coincident
operand overlap program optimization option can
ensure that certain nonoverlap instructions will
provide valid results even though these instructions
contain nonidentical coincident operands. This option,
which is specified on the Create Program instruction,
causes these nonoverlap instructions to be
encapsulated in such a way that the machine will
assure valid results. However, additional processor
resources are required to assure valid results.
Therefore, for this reason, if invalid results can be
tolerated when these instructions contain nonidentical
coincident operands, the option should not be
specified.

Refer to the Create Program instruction in the
System/38 Functional Reference Manual for a list of the
instructions affected by the option.

Those MI instructions that have two or more operands
and not included in the list. are not affected by the
option. and therefore. are encapsulated in a way that
they might produce invalid results when the operands
are nonidentical coincident.

Program Functions 3-9

Examples of Operand Overlap

Assume the following data objects.

DCl B BIN(2)
DCl BOB BIN(2) DEFINED(B) POSITION(l)
DCl B2 BIN(2)
DCl B3 BIN(4)
DCl BDB3 BIN(2) DEFINED(B3) POSITION(2)
DCl BA BIN(2) ARRAY(25)
DCl BB BIN(2) BASED(P)
DCl BB2 BIN(2) BASED(P2)
DCl BBA BIN(2) BASED(P) ARRAY(20)
DCl C CHAR(200)
DCl CDC CHAR(200) DEFINED(C) POSITION(l)
DCl C2 CHAR(200)
DCl C3 CHAR(6) INTI(,ABCDEF)
DCl CDC3 CHAR(3) DEFINED(C3) POSITION(3)
DCl CA CHAR(200) ARRAY(30)
DCl CB CHAR(200) BASED(P)
DCl CBA CHAR(200) BASED(P) ARRAY(50)
DCl P SPP
DCl P2 SPP
DCl TEN BIN(2) CONSTANT(10)
DCl MYTEN BIN(2) CONSTANT(10)

Overlapping operands on overlap instructions: Valid
results will be obtained from the following operation.

Identical coincident operands on three operand
instructions: Valid results will be obtained from the
following operations.

CPYBOlA CDC3,C3 (Operands 1 and 2
partially overlap)

This gives a result of CDC3 = . ABC'.

Partially overlapping operands: Invalid results might be
obtained from the following operations.

CPYBLA
ADDN
OR

CDC3,C3
B3,BDB3,B
CDC3,C,C3

(Operands 1 and 2)
(Operands 1 and 3)

Coincident operands on two operand instructions: Valid
results will be obtained from the following operations.

CPYBLA

SETSPP
CPYBLA

3-10

C,C

P,C
C,CB

Identical simple operand references:

ADDN
OR

B,B2,B
C,C,CA(l)

(Operands 1 and 3)
(Operands 1 and 2)

Identical subscripting operand references:

ADDN
ADDN
ADDN
OR

BA(B),B,BA(B)
BA(10),BA(TEN),B
BA(TENI. BA(TEN), B
CA(l),CA(lI.C

(Operands 1 and 3)
(Operands 1 and 2)
(Operands 1 and 2)
(Operands 1 and 2)

Identical substringing operand references:

OR
OR
OR

C(B,BB),CB,C(B,BB) (Operands 1 and 3)
C(TEN,ll,C(10,lI.C2 (Operands 1 and 2)
C(1.10),CA(1),C(1,10) (Operands 1 and 3)

Identical based operand references:

ADDN BB,BB,B (Operands 1 and 2)
ADDN P->BBA(TEN),B,P->BBA(10) (Operands 1

and 3)
OR P->CB,C,CB (Operands 1 and 3)

OR CB(TEN, 1l,CB(10, 1),C
OR CBA(TENl,CB,CBA(10)
OR CBA(Bl,CB,P->CBA(B)

(Operands 1 and 2)
(Operands 1 and 3)
(Operands 1 and 3)

OR P->CB(1,10l,C,P->CB(1,10) (Operands 1 and

3)

Nonidentical coincident operands on three operand
instructions: Invalid results might be obtained from the
following operations.

Nonidentical simple operand references:

ADDN
OR

B,BDB,BA(1)
C,CA(1)'CDC

(Operands 1 and 2)
(Operands 1 and 3)

Nonidentical subscripting operand references:

CPYNV B,1
ADDN BA(1),B2,BA(B) (Operands 1 and 3)
CPYNV B,10
CPYNV B2,10

ADDN BA(B),BA(5),BA(B2) (Operands 1 and 3)

OR CA(TEN),CA(MYTENl,C (Operands 1 and 2)

Nonidentical substringing operand references:

CPYNV
OR
CPYNV
CPYNV

B,1
C(1,5),C(B,5),CA(5)
B,10
B2,10

(Operands 1 and 2)

OR C(B,5),C2,C(B2,5) (Operands 1 and 3)

OR C(TEN,1),C(MYTEN, 1),C2 (Operands 1 and
2)

Nonidentical based operand references:

SETSPP
ADDN
ADDN
SETSPP
SETSPP

ADDN
ADDN

ADDN

P,B
BB,B,BA(1) (Operands 1 and 2)

B,BBA(1),B2 (Operands 1 and 2)
P,B
P2,B

BB,P2->BB,BA(1) (Operands 1 and 2)
BB,BB2,BA(1) (Operands 1 and 2)

P2->BB,B,P2->BB2 (Operands 1
and 3)

Avoiding Invalid Results

The invalid results that might occur in the execution of
instructions that do not allow for operand overlap can
be avoided if the source operands are moved to a
temporary area.

Where

ADDN B3,BDB3,BA(1)

might give invalid results due to partial overlap
between operands 1 and 2,

CPYNV
ADDN

B2,BDB3
B3, B2, BA(1)

will give valid results.

The following is another way to avoid invalid results.

For those instructions that do not allow for nonidentical
coincident operand overlap, invalid results can be
avoided through use of the coincident operand overlap
program optimization option. This option, when
specified on the Create Program instruction, causes
certain instructions to be encapsulated in a way that
ensures that they produce valid results should
nonidentical coincident operand overlap occur.

Refer to the Create Program instruction in the
System/38 Functional Reference Manual-Volume 1 for a
list of the affected instructions.

Program Functions 3-11

Optional Computational Instruction Forms

Many System/38 computational instructions have
optional forms that allow additional functions of the
base instruction. Each optional form has common
syntax and common operational rules independent of the
base instruction function. The fact that the instruction is
an optional form is specified in the operation code.

The functions of the optional forms are independent of
one another. This allows a single instruction to make
use of more than one form.

Short Form

The short form can be used with some of the arithmetic,
Boolean, and character string instructions that perform
an operation on source operands and place the result in
a receiver operand. The short form does not alter the
operation of the base instruction.

The short form is indicated in the operation code of the
instruction by including the character S with the
mnemonic of the base instruction.

The short form of an instruction is used when one of
the source operands is specified as the receiver operand
and thus need not be specified twice. The standard
form of the instruction, in contrast, requires a separate
specification of the source operand and the receiver
operand. For example:

• To perform the addition operation: A = A + B

AD ON AAB (Standard form)

or

ADDNS A.B (Short form)

• To perform the AND operation: X = X & V

AND XXV (Standard form)

or

ANDS X,V (Short form)

3-12

Round Form

Some arithmetic instructions that operate on decimal
operands allow optional round forms. When the round
form is specified, the result of the operation is rounded
before being placed in the receiver operand.

The standard form of the arithmetic instruction, after
decimal point alignment, truncates any fractional digits
as required in the receiver operand. The round form
alters the operation of the base instruction by rounding
the value of the result if the most significant digit of the
truncated fraction is greater than or equal to 5. The
rounding operation involves adding a value of 1 to the
least significant digit of the truncated result. The carry
(if any) is propagated to the left in the result. If the
result is negative, the rounding operation involves a
subtraction rather than an addition. Rounding of the
result occurs before any size exception checks are
made.

The round form is indicated in the operation code of the
instruction by adding the character R to the end of the
mnemonic of the base instruction. For example, assume
three numeric elements with the following values:

A
B

C

ZONED(5,2)
PACKED(4,3)
PACKED(5.4)

'123.45'
'1.324'
'4.2312'

Executing the Add Numeric instruction produces the
following result:

ADDN A,B,C (Standard form)

would be A = 005.55

Executing the Add Numeric (Round) instruction
produces the following result:

ADDNR A.B,C (Round form)

result is A = 005.56

J

Branch Form

Some System/38 computational instructions have
branch forms that allow multiway conditional branching
based on the status of the instruction execution. This
form is in addition to the standard form of the
instruction that does not include branching. For
example:

ADDN A,B,C

or

ADDNB (P) AB,C,Z

(Standard form-add and
leave no status about result)

(Branch form-add and
branch to Z if result is
positive)

The fact that an instruction is a branch form is indicated
in its operation code by adding the character B to the
mnemonic of the base instruction. The extender field
and one or more branch target operands are used in a
common fashion for all optional branch form instructions
to define the branch options and the branch locations,
respectively.

For more details on the branch forms of instructions,
refer to Conditional Branching later in this chapter.

Indicator Form

In addition to branching based on the result of an
instruction, the user can set one or more switches that
can be tested later.

These switches (called indicators) can be set based on
the results of an instruction. Some instructions allow an
indicator form in which one or more 1-byte character
strings can be set. For example:

ADDN

or

ADDNI (P)

A,B,C (Standard form-add and
leave no status about the
result)

A,B,C,D (Indicator form-add and
assign a value of hex F1 to
D if the result is positive or
a value of hex FO if the
result is not positive)

The indicator form is an option in the instruction
operation code and is indicated by adding the character
I to the mnemonic of the base instruction. The extender
field defines the number of indicator operands to be
used and the conditions to be tested in order to assign
values to the indicators.

If the resulting status of the instruction matches the
condition specified in the extender field, the indicator
operand is given a value of hex F1. If the status does
not match the tested condition, the indicator operand is
given the value of hex FO.

The indicator form and the branch form are mutually
exclusive.

Some instructions require either the branch or the
indicator form (for example, the Compare instructions).
These instructions require the operation code extender
field and at least one branch or indicator target.

Program Functions 3-13

ARITHMETIC OPERATIONS

System/38 arithmetic instructions are primarily designed
to compute numeric results; they operate on numeric
scalars of the following types: binary, zoned decimal,
and packed decimal.

The result of an arithmetic operation is placed in the
receiver based on the characteristics of the result and
the attributes of the receiver.

Binary Computation

The following rules apply to binary operands in
arithmetic instructions:

• An attempt to complement the maximum negative
value causes a size exception.

• Truncation is performed on the left; a size exception
is signaled when significant high order digits are lost.
Significant high-order digits are lost if all of the bits
truncated on the left are not equal to the sign bit of
the truncated result. The rightmost 16 or 32 bits of
the result are placed in the receiving field for 2-byte
and 4-byte binary receivers, respectively.

• Padding is done on the left by propagating the sign
from the high-order bit.

• A zero result in a computation has a positive sign.

Packed Decimal Computation

The following rules apply to packed decimal operands in
arithmetic instructions.

• All digits are checked for valid encoding of hex 0
through hex 9. If an invalid digit is detected, a
decimal data exception is signaled.

• All signs are checked for valid encoding as follows:
Hex B or hex D means the value is negative.
Hex A, hex C, hex E, or hex F means the value is
positive.

An invalid sign causes the decimal data exception to
be signaled.

3-14

• If alignment is necessary, source operands are
aligned based on the assumed decimal point by
truncating digits or padding with zeros on the right.
Fractional digits that can affect the value to be placed
in the receiving field participate in the calculation of
the result.

• If necessary, the operands are expanded to the length
needed to perform the operation by padding with
zeros on the left.

• When aligning a source operand, if more than 31
decimal digits are required to contain the aligned
value, a decimal point alignment exception is
signaled. The exception is signaled when nonzero
digits must be truncated from the left end of the
aligned value to conform to a 31-digit field.

• Length adjustment and decimal point alignment are
performed at the left and right ends of the result,
respectively, by truncating digits or padding with
zeros to match the precision of the receiver operand.
If nonzero digits are lost in truncating at the left, a
size exception is signaled. If the optional round form
of an instruction is being used, rounding on the right
end occurs if any digits are truncated.

• The sign of a receiver operand value is always set
independently of any truncation and / or padding that
could have taken place (that is, in the rightmost 4 bits
of the rightmost byte of the result).

• Arithmetic results are given the preferred sign (hex F
for positive and hex D for negative). Zero values are
given the preferred positive sign.

• The four high-order bits of the leftmost byte of a
packed receiver field contains a value of hex 0 when
the field contains an even number of digits.

Zoned Decimal Computation

The rules for zoned decimal operands in arithmetic
instructions are the same as those for packed decimal
operands. In addition, the zone portion of each
nonsigned digit in the receiver operand is set to a hex F.

Floating-Point Computation

The following rules apply to floating-point operands in
computational instructions.

• Floating-point operations are performed for
instructions for which any of the operands are
specified as floating-point. Fixed-operations are
performed for instructions for which all operands are
specified as either fixed-point binary or fixed-point
decimal.

• Certain computational attributes for floating-point
operations can be controlled on a process basis
through use of the Store and Set Computational
Attributes instruction. A default set of computational
attributes is in effect when a process is initiated. The
computational attributes can be set by an invocation
and are in effect for subsequent invocations unless
changed with the Store and Set Computational
Attributes instruction. When processing returns to an
invocation from subsequent invocations, the
computational attributes are reset to the attributes
that were in effect when the invocation gave up
control. Refer to the Store and Set Computational
Attributes instruction in the System/38 Functional
Reference Manual for details about managing the
computational attributes for a process.

• Alignment of the binary point, if necessary, is
performed according to the requirements of the
particular operation. Refer to the System/38
Functional Reference Manual for the algorithm used by
specific instructions.

• The operands are expanded to the length needed, or
converted to the type needed according to the
requirements of the particular operation. This occurs
when an intermediate result is formed.

When all operands are floating-point and of the same
length, operations are performed as if to infinite
precision. This occurs unless specified otherwise in
the particular instruction. These operations are only
subject to one rounding error when the result is
stored in the receiver.

When at least one of the operands is floating-point,
but all operands are not floating-point of the same
length, operations may not be performed as if to
infinite precision. The result is formed using the short
or long format, depending upon the precision
required, to adequately provide for the requirements
of the specified operation. Conversions of input
values to the floating-point format appropriate for the
operation are subject to rounding errors when the
input value is not an integer value. This can only
occur for decimal fields with fractional digit positions.
The calculation of the result is also subject to a
rounding error. A rounding error can also occur when
the result is stored in the receiver. Therefore, these
operations are subject to multiple rounding errors in
the value stored in the receiver.

• Floating-point operations produce an intermediate
result that is a normalized number, signed zero,
infinity, or an NaN floating-point value.

When the result is a normalized number, it is
produced as if it were infinitely precise and unlimited
in exponent range, unless stated otherwise in the
specific instruction, or the operation involved
conversions as previously stated. The normalized
number may be the result of internal calculations that
produced an internal result that did not satisfy the
definition of a normalized number. In this case, a
normalization operation is performed on the internal
result; this operation appropriately shifts the bits of
precision, while adjusting the exponent, until the
leading one bit is just to the left of the binary point.
The exponent is regarded as if its range were
unlimited.

For an intermediate result value of signed 0, infinity,
or an NaN, assigning this result to the receiver simply
means representing its value in the receiver format.

Program Functions 3-15

If the receiver is fixed-point. an infinity or an NaN
value causes the invalid floating-point conversion
exception to be signaled. See the discussion of
floating-point exceptions. which follows for details. A
signed 0 value. is represented as the appropriate 0
value in the receiver format.

If the receiver is floating-point. the assignment of the
result does not alter the result value to another type
of floating-point value. as can happen for an
intermediate result that is a normalized number.

When an intermediate result value of a normalized
number is assigned to the receiver. the result may
require an adjustment because it is outside the range
of normalized numbers that can be represented in the
receiver.

If the receiver is fixed-point. the normalized number
is converted to the format of the receiver. Also. it is
adjusted to the precision of the receiver under control
of the rounding mode currently in effect for the
process unless overridden by specifying the optional
round form of an instruction. The optional round
form of an instruction is only allowed for operations
that specify fixed-point receivers. Due to the
possible adjustment in precision. the floating-point
inexact result exception condition can be detected.
Additionally. the assignment of the result value to the
receiver can result in the signaling of the invalid
floating-point conversion exception.

3-16

If the receiver is floating-point. the system performs
several steps to provide for properly representing the
normalized number in the receiver.

The initial step is to check for the floating-point
underflow condition. This is done by verifying that
the signed exponent of the result is not less than the
minimum value (-126 for short format or -1022 for
long format) for representation of normalized
numbers in the receiver format. If it is not less than
the minimum value. the operation continues with the
rounding step. If it is less than the minimum value. a
floating-point underflow exception condition mayor
may not be detected depending upon the mask state
of the exception. When the exception is masked. the
intermediate result is adjusted. as if to infinite
precision. to a denormalized number appropriate for
the format of the receiver. and the operation
continues with the rounding step. The intermediate
denormalized result is produced by shifting the
significand of the intermediate result right and
incrementing the exponent until the exponent attains
the receiver format's fixed value for denormalized
numbers (-126 for short format or -1022 for long
format). As a result of the rounding step. the
floating-point underflow occurrence indicator is set if
the intermediate denormalized result cannot be
represented in the receiver format. In this case. the
intermediate denormalized result may be adjusted
back to a normalized number. to signed O. or remain
a denormalized number. In any case. the result is no
longer exact and. therefore. forces the floating-point
underflow occurrence indicator to be set.

The next step, rounding, chooses a representation in
the format of the result field for the intermediate
result. The intermediate result is regarded to be of
infinite precision. The rounding mode currently in
effect controls the adjustment of the result value. If
the adjustment of the result value causes a loss of
nonzero digits from the significand, a floating-point
inexact result exception condition is detected. As
previously noted, detection of the inexact result
condition on the adjustment of an intermediate
denormalized result forces the setting of the
floating-point underflow occurrence indicator
regardless of the value to which the result is
adjusted. In conjunction with the process of
rounding, a check for the floating-point overflow
condition is performed. This is done by verifying that
the signed exponent of what is the rounded result, or
what would have been the rounded result if the
exponent range was unlimited, is not greater than the
maximum value (127 for short format or 1023 for
long format) for representation of normalized
numbers in the receiver format. If it is not, the
operation continues with the final step, which assigns
the value of the intermediate result into the receiver.
If it is, the floating-point overflow exception
condition is detected. See the discussion of
floating-point exceptions provided below for details.

The final step is to represent the value of the
adjusted intermediate result in the floating-point
element specified as the receiver. The adjusted value
of the intermediate result may still be a normalized
number, or it may have been altered to a
denormalized number or signed O.

• Floating-point fields can only represent numeric
values as normalized numbers, denormalized
numbers, or signed O. Therefore, the concept of an
un normalized number (one which would allow for a
variable exponent in conjunction with one or more
leading 0 bits prior to the first significand 1 bit) does
not exist and cannot be represented.

• Four floating-point rounding modes are supported.
For example, assume y is the infinitely precise
number that is to be rounded. In addition, assume
that y is bracketed most closely by x and z, where x
is the largest representable value less than y, and z is
the smallest representable value greater than y. Note
that x or z may be infinity. The following diagram
shows this relationship of x, y, and z on a scale of
numerically progressing values where the vertical bars
denote values representable in a floating-point
format.

x y z
smaller ••J.'_---.J'--_l...-_...L..._....L._....l._. larger

If y is not exactly representable in the receiving field
format, the rounding modes change y as follows:

Round to nearest with round to even in case of a
tie is the default rounding mode in effect when a
process is initiated. For this rounding mode, y is
rounded to the closer of x or z. If they are equally
close, the even one (the one whose least
significant bit is a 0) is chosen. For the purposes
of this mode of rounding, infinity is treated as if it
were even. Except when y is rounded to a value
of infinity, the rounded result will differ from the
infinitely precise result by at most half of the least
significant digit position of the chosen value. This
rounding mode differs slightly from the decimal
round algorithm performed for the optional round
form of an instruction. This rounding mode would
round a value of 0.5 to 0, whereas the decimal
round algorithm would round that value to 1.
Round toward positive infinity mode indicates that
directed rounding upward is to occur. For this
mode, y is rounded to z.
Round toward negative infinity mode indicates that
directed rounding downward is to occur. For this
mode, y is rounded to x.
Round toward zero mode indicates that truncation
is to occur. For this mode, y is rounded to the
smaller (in magnitude) of x or z.

Program Functions 3-17

• Conversions between floating-point integers and
fixed-point integer formats (binary or decimal with no
fractional digits) will be exact, unless the number of
significant digits of a source decimal value exceeds
the precision constraints of a floating-point receiver.

• Conversions between floating-point numbers and
fixed-point decimal numbers are performed such that
all the decimal digits specified for the decimal
number are either used in or produced from the
conversion. However, the precision provided by
floating-point fields is not as great as that provided
by decimal fields. The short format provides unique
representation of a maximum of 7 significant decimal
digits of precision, and the long format provides for a
maximum of 15. The leftmost nonzero digit of the
decimal number is considered the start of the
significant digits of the number.

3-18

When the system converts a fixed-point decimal
value to floating-point, significant digits of the
source decimal field beyond 7 (for short format) or
15 (for long format) may not be saved in the
floating-point field; their only function is to
provide for rounding and uniqueness of the
conversion.
When the system converts a floating-point value
to fixed-point decimal, significant digits produced
in the receiver beyond the first 7 (for short format)
or the first 15 (for long format) are correct relative
to the specific source floating-point value. These
digits, which exceed the precision constraints of
the floating-point field, serve to provide for
uniqueness of conversion and should be
considered only as precise as the calculations that
produced the floating-point number. The
floating-point inexact result exception provides a
means of detecting loss of precision in
floating-point calculations.
When a round to nearest operation occurs,
conversion from floating-point to decimal and
back to floating-point is identical as long as the
decimal string provides for a precision of 9
significant decimal digits for short format
conversions and 17 significant decimal digits for
long format conversions.

• The sign of a product or a quotient is the exclusive
OR of the operands' signs. The sign of a sum or of a
difference differs from at most one of the operands'
signs following the standard rules of algebra. The
previous rules apply even when operands or results
are 0 or infinite. The only exception is when the sum
of two operands with opposite signs (or the
difference of two operands with like signs) is exactly
0; the sign of that sum (or difference) depends on
the current rounding mode for the process.

For round toward negative infinity mode, the sign
is -.
For all other rounding modes, the sign is +.

Conversion operations, including those between
floating-point and fixed-point, preserve the sign of 0
if the result of the conversion operation can be
represented in the receiver. This cannot be done for
conversion of a negative zero value into a fixed-point
binary field, as that data type has no representation
for negative zero.

• Masked NaNs in source operands are moved into
floating-point receivers. Unmasked NaNs in source
operands are changed to masked NaNs and moved
into floating-point receivers when the floating-point
invalid operand exception is masked. If more than
one source operand is a NaN, then the NaN moved
into the receiver is the NaN with the largest fraction
field value. For the purpose of the comparison, all of
the input NaNs are considered masked. Additionally,
if the floating-point receiver is longer than the source
field that supplied the NaN, the resulting masked
NaN is set with the fraction field value from the
source padded with 0 bits on the right out to the
float receiver fraction field length. The sign field of
the NaN set into the receiver is preserved with the
value it contained in the source.

• Unmasked NaNs in source operands force detection
of the floating-point invalid operand exception. An
exception to this is when a numeric value operation
copies the value represented in a source
floating-point element to a receiver of the same
format. This is defined as a simple move operation
and the invalid floating-point operation exception is
not detected if the source represents an unmasked
NaN.

• Infinity values in source operands can be used in
arithmetic operations according to the standard rules
of algebra. They produce a correctly signed infinity
value in the receiver, unless otherwise specified by a
specific instruction. Negative infinity compares less
than every finite value, and every finite value
compares less than positive infinity.

The following are examples of floating-point
computations. See the discussion of floating-point
elements for an explanation of the syntax used in these
examples.

• This example shows an add operation (A = B + C)
executed as an Add Numeric instruction (ADDN
A,B,C) involving all short format operands.

C

B

A

Initially, the add operation is shown as:

Element Value In
Hexadecimal

3F800000

4040000O

40800000

Conceptual Numeric Value

o NUM +1.()()()()()()()(

+1 NUM +1.1000000000000000

+2 NUM +1.()()()()()()()(

Internally, the addition operation is shown as:

C

B

A

+1. NUM + 0.1000000000000000

+1. NUM + 1.1()()()()()()()(

+ 1 N U M + 1 O.()()()()()()()(XlOCXXlOOlOOCOO)()()O

•

+2 N U M + 1.()()(XlOCXXlOOlOOOOO)()()()()()()()OO

+2 NUM +1.()()()()()()()(

Comments

Value of C, +1

Value of B, +3

(add operation produces)

Result value +4

Aligned value of C

Value of B

(add operation produces)

The internal result

(normalization operation
produces)

The intermediate result

(rounding operation produces)

Value of A

Program Functions 3-19

• This example shows an add operation (A = B + C)
executed as an Add Numeric instruction (ADDN
A.B.C) involving all short format operands with the
round to nearest rounding mode in effect.

Initially. th~ addition operation is shown as:

C

B

Element Value In
Hexadecimal

3FFFFFFE
407FFFFC

A 40BFFFFE

Conceptual Numeric Value

o NUM +1.11111111111111111111110

+1 NUM +1.11111111111111111111100

+2 NUM +1.01111111111111111111110

Internally. the addition operation is shown as:

C

B

A

3-20

+1 NUM + 0.111111111111111111111110

+1 NUM + 1.11111111111111111111100

+1 NUM +10.111111111111111111110110

+2 NUM +1.0111111111111111111110110

•
+2 NUM +1.01111111111111111111110

Comments

Value of C. almost +2

Value of B. almost +4

(add operation produces)

Result value. almost +6

Aligned value of C

Value of B

(add operation produces)

The internal result

(normalization operation
produces)

The intermediate result

(rounding operation produces)

Value of A

L
The following floating-point exception conditions can be
detected during floating-point operations:

• Floating-point overflow

• Floating-point underflow

• Floating-point zero divide

• Floating-point inexact result

• Floating-point invalid operand

Associated with each of these exceptions is a set of
mask and occurrence bits.

The mask bit determines whether an exception is
signaled. If the mask bit is 0, the exception is
considered to be masked and is not signaled. If the
mask bit is 1, the exception is considered to be
unmasked and is signaled. When a process is initiated,
the default mask bit values specify that the
floating-point inexact result is masked, and all other
exceptions are unmasked. The mask bits can be tested
and set with the Store And Set Computational Attributes
instruction. The result of float exceptions can vary
depending upon whether the exception is masked or
unmasked.

The occurrence bit records the occurrence of the
exception condition whether or not the exception is
masked when it is detected. A value of 1 is set to
indicate an exception condition has occurred. A value of
o indicates that the exception condition has not
occurred. When a process is initiated, the default
occurrence bit values are all O's. The occurrence bits
can be set (0 or 1) with the Store And Set
Computational Attributes instruction.

Conversion operations from binary floating-point to
other than binary floating-point format can cause the
invalid floating-point conversion exception to be
signaled. This exception cannot be masked and has no
associated occurrence bit. For details on this exception,
refer to the System/38 Functional Reference Manual.

Floating-Point Overflow

A floating-point overflow condition is detected
whenever the largest finite number that can be
represented in the format of the floating-point receiver
is exceeded in magnitude by what would have been the
rounded floating-point result if the range of the
exponent was unlimited. For this to occur, the signed
exponent of the result must exceed 127 for a short
format receiver or 1023 for a long format receiver.

The occurrence of the floating-point overflow condition
is indicated through the setting of the floating-point
overflow occurrence bit.

The setting of the floating-point overflow mask affects
the result of the operation as follows:

• If the exception is masked, the exception is not
signaled, the floating-point inexact result is detected,
and the result of the operation is determined by the
rounding mode and the sign of the intermediate result
as follows:

Round to nearest mode produces infinity with the
sign of the intermediate result.
Round toward zero mode produces the receiver
format's largest finite number with the sign of the
intermediate result.
Round toward negative infinity mode produces the
receiver format's largest finite number for positive
overflows, and negative infinity for negative
overflows.
Round toward positive infinity mode produces the
receiver format's most negative finite number for
negative overflows, and positive infinity for
positive overflows.

Program Functions 3-21

• If the exception is not masked, the exception is
signaled, the value of the receiver operand is
unpredictable, and the exception data available
depends upon the operation being performed.

An overflow detected on a conversion operation
from the long to the short floating-point format
results in a long format value rounded to a short
format precision to be provided in the exception
data.
An overflow detected on a conversion operation
from a decimal form of a floating-point value, on
the scaling operation performed in the Scale
instruction, or on certain cases of the Compute
Math Function instruction causes a long format
system default masked NaN value to be provided
in the exception data.
An overflow detected on an arithmetic operation
causes a long format value to be provided in the
exception data. For a short format receiver, the
long format value provided is rounded to short
format precision. For a long format receiver, the
long format value provided is a correctly rounded
significand, a correct sign, and a modified
exponent. The modified exponent is set from the
overflowed normal biased exponent minus a bias
adjust value of 1536. This bias adjust value (1536)
translates overflowed biased exponents as nearly
as possible to the middle of the representable
biased exponent range for the long format. An
exception handler can then be provided with
appropriate information for later reconstruction of
the correct result. The following diagram
summarizes the relationships among the
overflowed values for the signed exponent, the
normal biased exponent, and the modified biased
exponent.

Overflowed Exponent

Normal Modified
Signed Biased Biased

Minimum
Value 1024 2047 511

Maximum
Value 2047 3070 1534

3-22

Floating-Point Underflow

A floating-point underflow condition may be detected
when a result that is not 0 is·examined prior to rounding
and is found to have too small an exponent to be
represented in the format of the receiver without being
denormalized. For the underflow condition to exist, the
signed exponent of the result must be less than -126
for a short format receiver or less than -1022 for a long
format receiver.

The value (0 or 1) of the floating-point underflow mask
bit affects the detection of the exception condition as
well as the result of the operation.

• If the exception is masked (bit value equals 0), the
underflow condition is only detected and indicated
through the setting of its related occurrence bit if the
denormalized number for the intermediate result
cannot be exactly represented in the floating-point
receiver. In this case, the floating-point receiver is
set with a value that is produced by first
denormalizing the unrounded result, then rounding,
then moving the result to its receiver. Only the
occurrence bit for underflow is set, the underflow
exception is not signaled.

• If the exception is not masked (bit value equals 1).
the floating-point underflow condition is indicated
through the setting of the floating-point underflow
occurrence bit and the exception is signaled
whenever the signed exponent of the result is too
small for a normalized number to be represented in
the receiver. The value of the receiver operand is
unpredictable, and the exception data available
depends upon the operation being performed.

A long format value rounded to short format
precision is available if an underflow condition is
detected on a conversion operation from the long
to the short floating-point format.
A long floating-point system default masked NaN
value is available if an underflow condition is
detected on a conversion from a decimal form of a
floating-point value, on the scale operation
performed for the Scale instruction, or on the
Compute Math Function instructions.

A long format value is available if an underflow
condition is detected on an arithmetic operation.
For a short format receiver, the long format value
available is rounded to short format precision. For
a long format receiver, the long format value
available is a correctly rounded significand, a
correct sign, and a modified exponent. The
modified exponent is set from the underflowed
normal biased exponent plus 1536. This bias
adjust value translates underflowed biased
exponents as nearly as possible to the middle of
the representable biased exponent range for the
long format. This provides the appropriate
information to an exception handler for later
reconstruction of the correct result. The following
diagram summarizes the relationship between the
underflowed values for the signed exponent, the
normal biased exponent, and the modified biased
exponent.

Underflowed Exponent

Normal Modified
Signed Biased Biased

Maximum
Value -1022 1 1537

Minimum
Value -2148 -1125 411

The maximum underflowed exponent value in the
previous diagram occurs when rounding of the
underflowed value increases its value back above
the underflow threshold.

The minimum underflowed exponent value in the
previous diagram occurs when two minimum
valued denormalized numbers are multiplied
together to produce an intermediate result with a
signed exponent of the indicated value.

Floating-Point Zero Divide

A floating-point zero divide condition is detected for
floating-point division if the divisor is zero and the
dividend is a finite nonzero number. The floating-point
zero divide condition is indicated through the setting of
the floating-point zero divide occurrence bit. The setting
of the floating-point zero divide mask bit affects the
result of the operation.

• If the exception is masked (bit value equals 0), the
result of the operation is a correctly signed infinity
value (exclusive OR of the operands' signs). and the
exception is not signaled.

• If the exception is not masked (bit value equals 1).
the operation is suppressed, and the exception is
signaled.

Floating-Point Inexact Result

A floating-point inexact result condition is detected (in
the absence of the floating-point invalid operand
exception condition) if the rounded result of an
operation is not exact.

• The rounded result of an operation is not exact when
the rounding operation on an intermediate result
causes a loss of nonzero significand digits in
representing the value of the result in the receiver.
This applies to fixed-point receivers of floating-point
operations as well as to floating-point receivers.

• The result of an operation is not exact when a
floating-point overflow condition occurs while that
condition is masked. The receiver is set at either
infinity, or the receiver format's largest magnitude
finite number.

The floating-point inexact result condition is indicated
by the floating-point inexact result occurrence bit.

If the floating-point inexact result exception is either
masked or unmasked, the rounded or overflowed result
is moved to the receiver. If the exception is masked (bit
value equals 0), the exception is not signaled. If the
exception is not masked (bit value equals 1). the
exception is signaled.

Program Functions 3-23

Floating-Point Invalid Operand

A floating-point invalid operand condition is detected
when an operand is invalid for the operation to be
performed:

• A source operand is an unmasked NaN.

• Addition of infinities of different signs or subtraction
of infinities of the same sign.

• Multiplication of 0 times infinity.

• Division of 0 by 0, or infinity by infinity.

• Computing a math function for certain operand
combinations. Refer to the System/38 Functional
Reference Manual for details concerning the Compute
Math Function instructions.

• Floating-point values compare unordered, and no
branch or indicator options are specified for the
unordered, negation of unordered, equal, or negation
of equal conditions when the Compare Numeric Value
instruction is executed.

• An unordered resultant condition occurs on a
computational instruction when the result is a NaN,
and branch or indicator conditions are specified, but
none of the unordered, negation of unordered, zero,
or negation of zero conditions are selected.

The floating-point invalid operand condition is indicated
by the floating-point invalid operand occurrence bit.

3-24

The value (0 or 1) of the floating-point invalid operand
mask bit affects the result of the operation.

• If the exception is masked (bit value equals 0), the
exception is not signaled.

If the exception condition is detected on a
comparison operation, and the condition is caused by
an invalid operand associated with the specified
branch or indicator options, the receiving field (if
applicable) is left intact with the calculated result of
the operation.

If the exception is detected during an operation in
which a floating-point result is to be stored, the
result of the operation is a masked NaN value.

If the exception was due to one or more operands
being an unmasked NaN, then the input NaN with
the largest fraction field value is propagated into
the receiver with its mask state set to masked. All
of the input NaNs are considered masked for the
compare operation. Additionally, if the receiver
format is longer than the source field that supplied
the NaN, the resulting masked NaN is set with the
fraction field value from the source, and padded
with 0 bits on the right out to the float receiver
fraction field length.
If the exception was not due to an operand being
an unmasked NaN, then the resulting masked NaN
that is propagated into the receiver is the system
default NaN which is appropriately represented in
the receiver format.

• If the exception is not masked, the exception is
signaled and the value of the receiver operand is
unpredictable. The exception data available indicates
whether or not the exception was detected due to an
invalid branch or indicator option.

L

Arithmetic Instructions

The following table shows the function of each
arithmetic instruction; in each case, the result is placed
in the receiver operand. For a detailed instruction
description, refer to the System/38 Functional Reference
Manual.

Instruction

Add Numeric

Function

Forms the algebraic sum of two
numeric values.

Subtract Numeric Forms the algebraic difference of two
numeric values.

Multiply

Divide

Divide with
Remainder

Remainder

Extract
Magnitude

Negate

Scale

Compute Math
Function Using
One Input Value

Forms the algebraic product of two
numeric values.

Forms the algebraic quotient of two
numeric values.

Forms the algebraic quotient and the
remainder of two numeric values.

Forms the algebraic remainder as the
result of dividing two numeric values.

Forms the value of a numeric operand
as a positive quantity.

Changes the sign of a numeric
operand (positive values become
negative and negative values become
positive).

Multiplies a numeric operand by B**n.
The quantity B is 10 for decimal, and
2 for binary. The quantity n is the
scale factor.

Computes a floating-point result by
applying the mathematical function
requested in the controls operand to
the specified source operand.

Compute Math Computes a floating-point result by
Function Using applying the mathematical function
Two Input Values requested in the controls operand to

the specified source operands.

CHARACTER STRING OPERATIONS

The character string instructions operate on strings of
characters. String operations are performed by
considering corresponding bytes of the source
operand(s} and the receiver operand.

Source string operands that are shorter than the receiver
length are padded on the right end with a pad value of
hex 40 (blank).

Source string operands longer than the receiver are
truncated on the right to the length of the receiver.

Operands in string instructions can include a compound
operand that defines a substring of a character string.
This operand. includes the string, an index value, and a
length value. These compound substring operands can
be used as source operands or receiver operands.

Compound substring operands optionally allow or
disallow references to a substring with a length value of
zero (null substring). Null substring references are
supported on only a subset of the instructions that
support character data as operands. To determine if a
particular instruction provides this support, refer to the
System/38 Functional Reference Manual.

Character String Instructions

The following instructions operate on character strings.

Concatenate: This instruction forms a character string by
joining the second operand string to the right of the first
operand and placing the result in the receiver operand.

Translate: This instruction transforms strings of
characters from one encoding to another.

Four character string operands are specified:

• Receiver string

• Source string

Program Functions 3-25

• Position string

• Replacement string

Characters of the source string are compared with a
position string for equality. If a match is found, the
character in the corresponding position in the
replacement string is copied to the receiver string;
otherwise, the source character is moved to the receiver.

Scan: This instruction searches a character string for the
first occurrence of a specified substring. The binary
element receiver is set to a binary value indicating the
relative location of the leftmost character of the
matching string. If no match is found, a zero value
occurs. If the locations for multiple occurrences of the
substring are desired, the receiver must be a binary
array.

Scan with Control: This instruction searches a character
string for a character code that has a specified relation
(high, equal, or low) to a specified character code value.
This instruction can scan for 1- or 2-byte character
codes. The user can specify that the string that will be
scanned should contain both 1- and 2-byte character

. codes with special mode control characters indicating
which mode (1- or 2-byte) should be used to interpret
the string. The user can also specify that the string that
will be scanned should contain only one type of
character code, all 1-byte or all 2-byte, with no
imbedded mode control characters. An optional escape
can be requested on 1-byte values less than hex 40.

Extended Character Scan: This instruction searches a
character string for a specified character code. This
instruction can scan for 1- or 2-byte character codes.
The user can also specify that the string that will be
scanned should contain both 1- and 2-byte character
codes with special mode characters indicating which
mode (1- or 2-byte) should be used to interpret the
string. An optional escape can be requested on 1-byte
values less than hex 40.

3-26

Search: This instruction searches through the elements
of an array, checking specified portions of each element
for the first occurrence of a specified value. The array
can be defined as a character array or as a numeric
array. The elements of the numeric array are treated like
character strings. The relative index value for each
element that contains a match is placed in the receiver
operand. If the receiver is a data element, only the first
element containing a match is noted. If the receiver is a
data array, multiple occurrences of matches can be
noted.

Verify: This instruction searches the source string to
ensure that it is composed solely of characters from a
chosen set. The relative location of the first character of
the source that is not from the chosen set is returned in
the receiver; otherwise, a zero value is returned. If the
locations of multiple occurrences of characters not from
the chosen set are desired, the receiver must be a
binary array.

Translate With Table: This instruction copies selected
bytes from a table to a receiver string. Instruction
execution begins with the leftmost byte of a source
string and proceeds byte-by-byte, left-to-right. The
machine locates the selected byte in the table by adding
the value in a source string byte to the table location.
The byte from the table is copied to the receiver string
at the same relative location as the source string byte.

Trim Length: This instruction determines what the
resultant length (in bytes) of a source string would be if
the bytes with a specific hexadecimal value were
trimmed from the rightmost end of the source string.

Instruction execution begins with the rightmost byte of
the source string and proceeds byte-by-byte,
right-to-Ieft. Each byte of the source string is
compared to a specific trim value. If the two values are
equal, the resultant length value of the source string is
reduced by 1.

Instruction execution ends when the two compare values
are unequal or the length value is reduced to O.

Note: This instruction does not change the values in the
source string bytes or the trim byte.

BOOLEAN OPERATIONS

The Boolean instructions operate on strings of
characters. They perform their functions logically bit by
bit on the corresponding bits of each of the source
strings and the receiver string.

Boolean Instructions

System/38 supports the AND, OR, EXCLUSIVE OR
(XOR), and NOT Boolean (or logical) instructions.

The source bit and the result bit value for each Boolean
instruction is summarized as follows:

Source Bit Value Result Bit Value

OPERAND 1 OPERAND 2 AND OR XOR NOT'

1 1 0 0
1 0 0 0
0 1 0 1 1
0 0 0 0 0

, NOT refers only to source operand 1.

Program Functions 3-27

COMPARISON OPERATIONS

The Compare instructions test the relationship of the
value of data items to each other and perform some
action based on the results of the test.

The extender field and one or more branch or indicator
operands define the branch or indicator options and the
branch or indicator locations, respectively.

The compare instructions support three types of
comparison:

• Arithmetic comparison is a sign and magnitude test
between corresponding numeric scalars.

• Byte comparison is a byte-by-byte test between
corresponding character or numeric scalars in which
each byte is treated as an unsigned 8-bit binary
value. Left or right adjusting of the operands along
with right or left padding is optional before
comparison.

• Bit comparison is a bit-by-bit test of selected bits of
a 1-byte string scalar (numeric or character) as
indicated by a byte string mask operand.

Comparison Instructions

The following System/38 instructions perform
comparisons.

Compare Numeric Value: This instruction performs an
arithmetic comparison of two numeric operands. The
operation code specifies whether the branch or indicator
option is to be used. The extender field specifies the
conditions for which branches or indicator assignments
are made.

3-28

Compare Bytes: Compare byte instructions perform
logical comparisons. The various instructions provide the
following options on the alignment of string operands
prior to the comparison.

• Left-adjusted with no padding-The comparison
considers the leftmost bytes of each operand. The
length of the operation is equal to the number of
bytes in the shorter operand.

• Left-adjusted with padding-The shorter operand is
logically padded (on the right) to the length of the
longer operand. The length of the operation is equal
to the number of bytes in the longer operand.

• Right-adjusted with no padding-The comparison
considers the rightmost bytes of each operand. The
length of the operation is equal to the number of
bytes in the shorter operand.

• Right-adjusted with padding-The shorter operand is
logically padded (on the left) to the length of the
longer operand. The length of the operation is equal
to the number of bytes in the longer operand.

The operation code specifies whether the branch or
indicator option is to be used. The extender field
specifies the conditions for which branches or indicator
assignments are made.

Test Bits under Mask: This instruction checks specific
bits in the leftmost byte of the source operand to see
whether they are binary 1 or binary O. The bits to be
checked are indicated by a 1 in the corresponding bit of
the mask operand. The comparison is performed bit by
bit. The operation code specifies either the branch or
the indicator option is to be used. The extender field
specifies the conditions for which branches or indicator
assignments are made.

L

OBJECT MOVEMENT AND CONVERSION
OPERATIONS

The movement and conversion instructions move a
source operand to a receiver operand. These
instructions move hex digit values, numeric values, byte
strings, and character strings.

Byte string movement instructions operate on either
character or numeric operands. The operation is a
logical operation with no value conversion implied. The
length of the operation is determined from the operands.
Implicit or explicit padding or truncation is performed as
described with the instruction.

Movement Instructions

The following instructions perform the movement of
values.

Copy Numeric Value: This instruction copies the numeric
value of an operand to another operand and provides
any type of data conversion and precision adjustment
needed.

Copy Operation: The copy operation copies logical byte
strings from one operand to another. Four instructions
provide the following options for the copy operation:

• Copy Bytes Left-Adjusted with No Padding-The
leftmost bytes of the source operand are copied to
the leftmost bytes of the receiver. The length of the
operation is equal to the shorter of the two operands.

• Copy Bytes Left-Adjusted with Padding-The leftmost
bytes of the source operand are copied to the
leftmost bytes in the receiver. The length of the
operation is equal to the number of bytes in the
receiver. If the receiver is longer than the source, the
excess bytes in the receiver (at the right) are assigned
a value equal to the pad value.

• Copy Bytes Right-Adjusted with No Padding-The
rightmost bytes of the source operand are copied to
the rightmost bytes of the receiver. The length of the
operation is equal to the length of the shorter of the
two operands.

• Copy Bytes Right-Adjusted with Padding-The
rightmost bytes of the source operand are copied to
the receiver. The length of the operation is equal to
the length of the receiver. If the receiver is longer
than the source, the excess bytes in the receiver (at
the left) are assigned a value equal to the pad value.

Copy Bytes with Pointers: This instruction copies both
scalars and pointers from the byte string specified by
the source operand to the byte string specified by the
receiver operand. The validity of the pointers in the
source operand is maintained when copied into the
receiver operand.

Copy Bytes Repeatedly: This instruction performs the
same function as the Copy Bytes Left-Adjusted
instruction except with the additional function of the
source operand being repeatedly copied until the
receiver operand is filled.

Copy Bytes Overlap: This instruction performs the same
functions as the Copy Bytes instruction with the
additional feature of having predictable results should
the two operands be unaligned and overlapping. The
various instructions have the following two options for
this operation: left-adjusted (no padding) and
left-adjusted (with padding).

Exchange Bytes: This instruction exchanges the logical
character string value of two equal length operands.

Program Functions 3-29

Copy Hex Digit: This instruction has four versions that
can copy a specific 4-bit hex digit from the leftmost
byte of the source operand to a specific 4-bit portion in
the leftmost byte in the receiver operand. This
instruction provides the following copy options:

• Numeric to numeric

• Numeric to zone

• Zone to numeric

• Zone to zone

The zone portion of a byte is defined as the leftmost 4
bits (bits 0-3); the numeric portion of a byte is defined
as the rightmost 4 bits (bits 4-7).

Copy Bits with Left Logical Shift: This instruction copies
the bit string value of the source operand to the bit
string defined by the receiver operand. A left logical
shift of the source string occurs under control of the
shift control operand.

Copy Bits with Right Logical Shift: This instruction
copies the bit string value of the source operand to the
bit string defined by the receiver operand. A right logical
shift of the source string occurs under control of the
shift control operand.

Conversion Instructions

The following instructions perform explicit conversion.

Convert Character to Hex: This instruction converts the
characters of the source operand into hex digits and
places them in the receiver operand. The following are
valid characters that can be converted to hex digits:

From Characters

Hex FO-hex F9
Hex Cl-hex C6

To Hex Digits

Hex O-hex 9
Hex A-hex F

An attempt to convert any characters other than these
signals a conversion exception.

3-30

Convert Hex to Character: This instruction converts the
hex digits of the source operand into characters and
places them in the receiver operand.

Convert External Form to Numeric Value: This instruction
scans a character string that represents a valid decimal
number in display format, removes the display
characters, and places the resulting zoned decimal scalar
in the receiver operand.

Convert Character to Numeric: This instruction treats the
character string source operand as if it were the numeric
scalar described by the attributes operand, and places
the result in the receiver operand. If the character string
source operand is identified as zoned, a blank (hex 40)
is allowed for the sign byte.

Convert Numeric to Character: This instruction converts
the numeric value of the source operand to the type
indicated in the attributes operand and places the result
in the receiver operand.

Convert Character to BSC: This instruction uses the data
compression technique in order to decrease the length
of a character string.

Data compression occurs as the source string operand is
copied to the receiver string operand. Any string of
three or more blanks (hex 40) in the source string is not
copied, but it is replaced by a 2-byte blank compression
entry in the receiver string.

The source string is not changed by this instruction.

Convert BSC to Character: This instruction:

• Copies a source string to a receiver string

• Detects the presence of blank compression entries in
the source string

• Interprets the blank compression entries

• Adds the correct number of blanks (hex 40) in the
appropriate location of the receiver string

The characters associated with the blank compression
entries are not copied to the receiver string.

The source string is not changed by this instruction.

Note: The format of the source string should be the
same as that produced by the Convert Character to BSC
instruction.

Convert Character to MRJE: This instruction uses the
data compression technique in order to decrease the
length of a character string.

The data compression options are either full
compression or truncate trailing blanks.

Data compression occurs as the source string operand is
copied to the receiver operand.

When the full compression option is specified, the bytes
of the source string are interrogated to locate the blank
character strings (two or more consecutive blanks),
identical character strings (three or more consecutive
identical characters), and nonidentical character strings
in the source.

When the truncate trailing blanks option is specified, the
bytes of the source string are interrogated to determine
if a blank character string exists at the end of the source
string. If one exists, those characters prior to it are
treated as one string of nonidentical characters.

The system builds a string control byte in the receiver to
describe each encountered string.

The source string is not changed by this instruction.

Convert MRJE to Character: This instruction
decompresses a source string and puts the result in a
receiver string. To accomplish decompression, this
instruction:

• Detects the presence of string control byte entries in
the source string

• Interprets the string control bytes

• Builds a receiver string as determined by the string
control bytes

The source string is not changed by this instruction.

Note: The format of the source string should be the
same as that produced by the Convert Character to
M RJ E instruction.

Program Functions 3-31

Convert Character to SNA: This instruction converts
source data from character to the SNA (systems
network architecture) format.

The source data is described (through certain controlling
data) as being composed of one or more fixed length
fields. The data fields can be separated by fixed length
gaps of characters which are ignored during the
conversion operation.

Source data:

Data processed as source records:

The source data can be specified as a single string of
data or as a group of data records.

The optional fucntions that can be performed on the
source data are trailing blank truncation, data
transparency, and compression. An algorithm modifier
specifies the optional functions to be performed.

Convert SNA to Character: This instruction converts
source data from the SNA (systems network
architecture) format to character.

The conversion operation is performed either on a
record-by-record or on a string basis and is determined
by the functions selected in the controlling data.

The optional functions that can be selected are record
separator conversion, decompression, data transparency
conversion, and blank padding.

Note: The format of the source data should be the
same as that produced by the Convert Character to SNA
instruction.

3-32

Cipher: This instruction uses the ANSI (American
National Standards Institute) DEA (Data Encryption
Algorithm) to encipher or decipher the data in the source
operand and to place it in the receiver.

Cipher Key: This instruction uses the ANSI DEA to
optionally perform one of the following:

• Generate a random key and place the result in the
receiver

• Decipher a source cipher key

• Encipher the cipher key value and place the resulting
key value in the receiver

• Verify the master key and return a verification code in
the receiver

• Generate a PIN (Personal Identification Number) and
return the result in the receiver

• Verify a PIN

• Translate a PIN and return the result in the receiver

BRANCHING OPERATIONS

Branching is the means of altering the sequential flow of
instruction execution. The instructions in a program are
numbered sequentially beginning with 1 for the first
instruction. The operand of a branch instruction must
identify the instruction number of the target instruction.
The number of the target instruction must be within the
instruction stream containing the branch instruction.

An operand that is designated as a branch target can be
one of the following:

• Instruction number-A signed immediate operand
indicating the number of the target instruction.

• Relative instruction number-A signed immediate
operand indicating the displacement (in instructions)
to the target instruction from the instruction being
executed.

• Branch point-An object defined in the ODT with a
value indicating the target instruction number.

• Instruction pointer-An object defined in the DDT
serving as a variable pointer containing instruction
numbers that can be altered during execution.

There are two kinds of branching: unconditional and
conditional.

Unconditional Branching

The Branch instruction unconditionally transfers control
to the instruction indicated in the branch target operand.
The branch operand can be an immediate (absolute or
relative) instruction number, a branch point, an
instruction pointer, or an element of an IDl (instruction
definition list).

If the IDl element is specified, the Branch instruction
unconditionally transfers control to one of the
instructions indicated in an IDL. The IDl is defined in
the ODT as a list of branch targets with each one
identifying an instruction within the instruction stream
containing the IDL. Each entry in the IDl can be an
instruction number of a branch point. The entry selected
for use in the branch is determined by the value of the
index suboperand in a subscript compound operand in
the Branch instruction.

For example, assume the following declarations:

DCl A BRANCH POINT VALUE (4)
DCl C BRANCH POINT VALUE (7)
DCl X BIN (2)
DCl TABLE IDl (A,5,17,C)

Executing the following instructions results in an
unconditional branch to the indicated instruction
numbers:

• CPYNV X,3
B TABlE,X

• B TABlE,4

(Instruction number 17)

(Instruction number 7)

Program Functions 3-33

Conditional Branching

Conditional branching can be specified for instructions
that allow the optional branch form.

These instructions use branch targets as operands. They
conditionally transfer control to the instruction indicated
by the branch target based on the status of the
instruction execution. Branch points, instruction
pointers, instruction numbers, relative instruction
numbers, or elements of an IDL can be specified as
branch targets.

Up to four mutually exclusive resultant conditions are
defined by these instructions (for example: high, low, or
equal). Each instruction that allows conditional
branching has a set of resultant conditions. If
conditional branching is desired, these instructions
include the extender field and one or more branch target
operands in addition to the normal operands. The
extender field specifies the instruction status branch
options for which branches are to occur; the branch
target operands specify the branch locations.

Each resultant condition can be ignored or associated
with one of the branch target operands so that the
branch occurs regardless of whether the condition does
or does not occur.

A single branch operand can be associated with the
presence of a given condition or the absence of this
condition. A branch operand can be associated, for
example, with an equal condition or with a not equal
condition (implying high or low).

The extender field is composed of four 4-bit fields, each
of which defines a branch option for which a branch
may occur. Each branch option subfield corresponds to
a branch target. After the basic instruction is executed,
the branch options are compared with the resultant
condition. Based on the result of the comparison, a
branch may be executed to the corresponding branch
target.

3-34

Variable Branching

A branch target operand can cause control to be passed
to one of several locations based on the previous
execution of the program. This can be accomplished by
either using the Branch Indexed instruction as previously
described, or using an instruction pointer as the target
of a Branch instruction or as one of the target operands
for the branch form of an instruction.

The instruction pointer can be given a value with a Set
Instruction Pointer instruction and can then be referred
to as a branch target. The Set Instruction Pointer
instruction can be set to a branch point, an instruction
number, or a relative instruction number (relative to the
Set instruction).

EDITING OPERATIONS

Editing is the process of changing the value of a scalar
from an internal form to an EBCDIC form that is more
suitable for display on an output device.

Editing Instructions

Edit: The Edit instruction performs the following editing
functions while transforming the source operand to the
receiver operand:

• Unconditional insertion of a source value digit with a
zone as a function of the source value's algebraic
sign

• Unconditional insertion of a mask operand character
string

• Conditional insertion of one of two possible mask
operand character strings as a function of the source
value's algebraic sign

• Conditional insertion of a source value digit or a mask
operand replacement character as a function of a
source value leading-zero suppression

• Conditional insertion of either a mask operand
character string or a series of replacement characters
as a function of a source value leading-zero
suppression

• Conditional floating insertion of one of two possible
mask operand character strings as a function of both
the source value algebraic sign and leading-zero
suppression

Test and Rep/ace Characters; The Test and Replace
Characters instruction scans a character string in a
left-to-right manner. All characters encountered prior to
the first nonzero zoned decimal digit are replaced with a
specified fill character.

LOGICAL CHARACTER OPERATIONS

A Logical Character instruction performs unsigned binary
arithmetic functions. The operands added by the Add
Logical Character instruction or subtracted by the
Subtract Logical Character instruction must be character
scalars. The length of the operands can be a maximum
of 256 bytes.

ARRAY INDEX OPERATIONS

Single dimensioned arrays are supported. The CAl
(Compute Array Index) instruction can be used to reduce
the subscript value of a multidimensional array to a
single index value. This single index value can be used
to address a single dimensioned array.

Following is an example of the use of the CAl
instruction. Assume that in a high-level language a
three-dimensional array is declared with five elements in
the first dimension, four in the second, and three in the
third.

DCL A(5,4,3)

This is equivalent to a declare of a single dimension
array of 60 elements.

DCL A(60)

If A(I,J,K) is to be located, where 1=4, J=2, and K=3, the
instructions that would be used are:

CAl X,I,J,5
CAl X,X,K,20

X=4+(2-1)*5 = 9
X=9+(3-1)*20 = 49

A reference to A(X) locates the 49th element of the
array.

Note: The operands on the Compute Array Index
instruction are restricted to a BINARY(2) element.

NO OPERATION

The No Operation and the No Operation And Skip
instructions do not perform any function. They do,
however, insert gaps in the instruction stream, thereby
preventing adjacent instruction addresses (numbers)
from being physically adjacent.

These instructions are not assigned an instruction
number. Therefore, they cannot be the target of a
branch instruction. Additionally, these instructions are
not counted as instructions in the instruction stream.

The No Operation and the No Operation and Skip
instructions can precede or follow any System/38
instruction and can be repeated an unlimited number of
times in succession.

Program Functions 3-35

Program Execution

Program execution causes the instructions in the
encapsulated program to be performed within a process.
These instructions operate against the objects defined in
the program and any secondary objects referenced by
these objects.

Program execution consists of two logically distinct
operations:

1. Activating the program causes the static storage
for the program to be allocated and initialized
within the process.

2. Invoking the program causes the automatic storage
defined in the program to be allocated and
initialized. This operation also causes control to be
passed to the external entry point of the program.

PROGRAM ACTIVATION

Program activation makes the program ready for use by
the activating process. The result is an activation entry
through which values saved across program invocations
can be stored, and through which references can be
made to the program by other programs within the
process.

A program can be explicitly activated by the Activate
Program instruction, or implicitly activated by referencing
that program for invocation if it has not already been
activated within the process.

A program is always activated before it is invoked.
However, programs that require no static storage are
considered to be permanently activated and do not
require activation prior to invocation.

3-36

Activation Creation

When a program is activated, an area in the PSSA
(process static storage area) of the process is allocated
to contain the program's static storage. The contents of
this static storage area is then available each time the
program is invoked within the process. This storage
contains the static objects for the program, a space
pointer to the next activation entry (if one exists) in the
PSSA, and attributes specifying the status of the
activation. Objects that do not have program-defined
initial values can optionally be given the system default
initial value (hex (0). This option is selected through use
of a program attribute on the create program template.

Note: An improvement in performance might be
realized if the PSSA is not initialized by default, even
though the initial values specified for individual data
objects are still set.

Activating a program also makes the external data
objects that are defined in the program available to
other programs in the process.

Each activation entry in the PSSA has the following
format (see Figure 3-1):

• A space pOinter that locates the previous activation
entry (the first activation entry locates the PSSA
header)

• A space pointer that locates the next activation entry
(unchanged for the last activation entry)

• A system pointer that locates the associated program

• A number that identifies the activation in the chain

• An activation status bit that indicates whether the
activation is currently active

• An invocation count that indicates how many
invocations are currently invoked and using this
activation

• An activation mark that indicates the relative time
during which the activation was activated

• A number that specifies the total length of the
activation

• Static storage for the program

The PSSA is located by a space pointer that was
specified when the process was initiated. The location
identified by the space pointer is considered to be the
beginning of the PSSA and must be 16-byte aligned. At
this location is a 96-byte PSSA base entry that consists
of the following:

• A space pointer that locates the last activation entry
in the process (addresses the base entry if no
programs are activated)

• A space pointer that locates the first activation entry
in the process (ignored if no programs are activated)

• A space pointer that locates the next available
storage location in the PSSA space

• PSSA chain control bits that are used when programs
explicitly alter the status of the PSSA chain with
direct bit manipulation

The user must initialize this PSSA base entry before the
first program is activated in the process. (The
Materialize Process Attributes instruction can be issued
to locate the PSSA.)

When a program is activated, an attempt is made to
allocate enough space in the PSSA to contain the
activation entry. If the PSSA space is extendable and is
currently not large enough to contain the entry, the
PSSA is implicitly extended by the machine. If the
PSSA is fixed in size or cannot be extended to contain
the entry, an exception is signaled.

The following occurs when the new activation entry is
initialized:

• The previous activation entry pointer is set to address
the most current activation entry.

• The associated program pointer is set to address the
activated program.

• The activation is marked as active.

• Static storage for the program is initialized as defined
in the program definition.

• The invocation count is set to zero.

• The activation mark is obtained by incrementing the
mark counter value (which is carried internally in the
machine) by one and copying the resulting value.

• The length field is set to the number of bytes of
storage occupied by the PSSA header and the static
data following it.

The next available storage location in the PSSA base
entry is set to address the next available 16-byte
aligned area beyond the new activation entry.

Last Activation Entry (address of base
PSSA
Base
Entry

First
Entry

Current
Entry

entry if no programs are activated)
(space pointer)

First Activation (space pointer)
Next Available Location (space pointer)
PSSA Control

Address of PSSA Base Entry (space
pointer) •

Next Entry (space pointer)
Associated Program (system pointer)
Activation Number
Activation Status
Invocation Count
Activation Mark
Length of Entry
Static Allocation

Previous Entry
Associated Program
Activation Number
Activation Status
Invocation Count
Activation Mark
Length of Entry
Static Allocation

-:-

Figure 3-1. Process Static Area Structure

Program Functions 3-37

If the activation of a program already exists within the
process chain and is active when the Activate Program
instruction is executed, the static storage of the program
is reused. (The static storage of the program mayor
may not be reused if the activation is inactive.) In either
case (active or inactive), the static storage of the
activation is reinitialized, the activation is set to the
active state, and a space pointer is set to address the
reinitialized activation.

When a new activation is allocated, the space that is
occupied by inactive activations may be used for the
new activation. All PSSA entries (activations) that are
inactive, have an invocation count of 0, and appear as
the last entries in the linked PSSA chain may be
removed from the PSSA chain. The space occupied by
them can then be used to allocate new activations.

The new activation is allocated space starting at the
lowest possible address in the PSSA. However, this
address must be higher than the address of any active
activation in the chain.

If no activations remain (after being removed under the
previous conditions), the new activation is placed at the
lowest address of the removed activations. Note that in
the previous cases the next available location pointer in
the PSSA base entry is not used to determine the
address at which to allocate a new activation. If the last
activation in the PSSA chain is not removed at the
beginning of execution of the Activate Program
instruction, then the next available location pointer in the
PSSA base entry specifies the location at which the new
activation is to be allocated.

If the program to be activated does not require static
storage, no activation entry is allocated.

3-38

Values of static objects in the activation can be
modified. These values remain modified even though
the activation may not be currently invoked.

Note: The static storage area of a process must be
modified by only that process. Otherwise, the process
may produce unpredictable results.

Activation Destruction

The Deactivate Program instruction can designate an
activation entry as not active. When this occurs, an
activation entry must be reactivated before it can be
invoked. The machine implicitly reactivates a not active
entry when the associated program is to be invoked.

Only those activations with a zero invocation count can
be de-activated. A program can de-activate itself if it is
the only invocation of that program in the process.

PROGRAM INVOCATION

The program invocation functions control synchronous
execution within a process. These functions allow
control to pass from one program instruction stream to
another and also allow for a subsequent return of
control when a function is complete.

Invocation Creation

When a program is invoked, the following occurs:

• The execution of the invoking program is suspended,
and the current status is saved pending return of
control.

• An invocation entry for the invoked program is
allocated in the PASA (process automatic storage
area). This entry contains an allocation for each
object that has the direct on automatic allocation
attribute.

J

• The automatic objects are assigned initial values as
follows:

Objects with program-defined initial values are
given those values.
Objects that do not have program-defined initial
values can be optionally given the system default
initial value (hex 00). This option is selected
through use of a program attribute on the create
program template.

Note: An improvement in performance might be
realized if the PASA is not initialized by default,
even though the initial values specified for
individual data objects are still set.

• Exception descriptions defined in the program
become active and thereby exercise control over
exception handling functions for the associated
exceptions.

• Parameter objects defined in the invoked program are
resolved to argument objects passed by the invoking
program.

• If the referenced program specifies the adopt user
profile attribute, the program owner (user profile) is
used to supplement the authority available to the
process. This authority can be propagated to
subsequent invocations if the program also specifies
the propagate adopted user profile attribute.

• The program to be invoked receives control at its
external entry point. Instruction execution is
sequential except where modified by a branching
instruction, an instruction that causes control to pass
from the invocation (for example, a Call External
instruction or a Return External instruction), exception
handling, or event handling.

Programs can be invoked in the following instances:

• During the process initiation phase, a process
definition can specify a program to be invoked.

• A process definition must specify the first program to
be invoked in the problem phase. When process
initiation enters the problem phase, this program is
given control.

• A Call External instruction suspends execution of the
invoking program and passes control to the
referenced program.

• A Transfer Control instruction suspends execution of
the invoking program and deallocates the invocation
of that program; control is then passed to the
referenced program. When control returns from the
referenced program, execution resumes in the
invocation that immediately preceded the transferring
invocation in the process hierarchy. For example, in
the following illustration, program A executes a Call
External instruction to program B; program B
executes a Transfer Control instruction to program C;
program C then executes a Return External instruction
thereby causing control to be returned implicitly to
program A.

Program A

Call External

Program B Program C

Transfer Control Return External

• An exception description can specify a program to be
invoked when a specified exception occurs.

• An event monitor can specify a program to be
invoked when a specified event occurs.

• A process definition can specify a program to be
invoked as part of a process phase termination.

• An invocation exit program can be invoked if the
requesting invocation is bypassed because of normal
exception handling actions or because of process
termination.

Program Functions 3-39

Each invocation entry in the PASA has the following
format:

• Space pointer locating the previous invocation entry
(the first invocation entry addresses the PASA
header).

• Space pointer locating the next invocation entry (not
modified for the most current invocation entry).

• System pointer to the associated program.

• Invocation attributes. A value that specifies the
number of the invocation relative to the number of
programs currently invoked in the process. The first
invocation entry is number one. The type of
invocation is also provided to indicate how the
program was invoked.

• Invocation mark. A number that indicates the relative
time of invocation of the program.

• Program's automatic storage.

The update PASA stack program attribute (which was
specified on program creation) indicates whether or not
the program requires that the PASA stack information,
which is contained in both the PASA base entry and the
invocation entries, be updated.

Upon invocation of a program that requires the stack be
updated, it is possible that prior invocations may exist

The PASA is located by a space pointer that was
specified when the process was initiated. The location
identified by the space pointer is the beginning of the
PASA and must be 16-byte aligned. The 96-byte PASA
base entry consists of the following (see Figure 3-2):

• A space pointer that locates the current invocation
entry in the process. (If no programs are invoked,
this pointer must address the PASA base entry.)

• A space pointer that locates the first invocation entry
in the process (ignored if no programs are invoked).

• A space pointer that locates the next available
storage location in the space containing the PASA.

• A mark counter that is incremented for each
activation and invocation to indicate the relative time
of their allocation.

PAS A
Base
Entry

Current Invocation Entry in Process
(if no programs are invoked, this
pointer must address the PASA base
entry) (space pointer)

First Invocation (space pointer)
Next Available Location (space pointer)
Mark Counter

Address of PASA Base Entry
(space pointer)

that did not require the stack update. These prior First
Next Invocation Entry (space pointer)
Associated Program (system pointer)

invocations would not have their associated stack Entry
information updated to reflect the current chain of
invocations active in the PASA. If necessary, the PASA
stack information in the PASA base entry and the prior
invocation entries are updated with the current status
prior to continuing with the invocation of a program
requiring update of the PASA stack.

Current
Entry

Invocation Attributes
Invocation Mark
Automatic Storage for Program

Previous Invocation Entry
Next Invocation Entry
Associated Program
Invocation Attributes
Invocation Mark
Automatic Storage for Program

Figure 3·2. Process Automatic Storage Area Structure

3-40

The PASA base entry must be initialized by the user
before the process is initiated. (The user can issue the
Materialize Process Attributes instruction to locate the
PASA.) The current invocation entry in process, next
available storage location, and mark counter values are
accessed as input to the machine only during the
initiation of the process. Thereafter, the machine
maintains these values internally. The PASA base entry
fields are optionally updated on each program
invocation. This update is dependent upon whether or
not the program being invoked has specified the update
PASA stack program attribute.

A space pointer that locates the PASA invocation entry
for the currently executing program can be materialized
by the Materialize Invocation Entry instruction.

When a program is invoked, enough space is allocated
within the PASA to contain the invocation entry. When
the initial program in the process is invoked, the space
used for the allocation is located by the next available
storage location pointer in the PASA base entry. For all
other invocations of programs within the process, the
space used for the allocation is located by an internal
machine value which is maintained with the space
address of the next available storage location. This
value must address a 16-byte aligned area in the space
or a boundary alignment exception is signaled.

When the space is currently not large enough to contain
the entry and the size of the space is extendable, it is
implicitly extended. If the size (length) of the space is
fixed or the size cannot be extended enough to contain
the entry, an exception is signaled.

When a program is created with the update PASA stack
attribute and the program requires that the PASA stack
be updated, the new invocation entry is updated as
follows:

• The previous invocation entry pointer is set from the
current invocation entry in process address value.
This value is carried internally and locates the calling
invocation entry.

• The next invocation entry is not modified.

• The associated program pointer is copied from the
associated activation or the operand 1 system pointer
if no activation exists.

• The invocation type value is set to indicate how the
program was invoked.

• The value of the mark counter (which is carried
internally) is incremented by one and the new value is
copied to the invocation mark field. The new value is
also copied to the activation mark field of the
program's activation if the activation was initialized by
this instruction.

• The user area field is set to binary zero.

• The program's automatic storage is initialized as
defined in the program definition.

Program Functions 3-41

When a program is created with the update PASA stack
attribute and the program does not require that the
PASA stack be updated, the new invocation entry is
updated as follows:

• The value of the mark counter (which is carried
internally) is incremented by one. The new value is
copied to the activation mark field of the program's
activation if the activation was initialized by this
instruction.

• The PASA stack information that is necessary for
subsequent program invocations or updating of stack
information for this invocation is stored internally.
This includes values associated with this invocation
for the previous invocation entry address, next
available storage location, program pointer, invocation
number, invocation type, and mark counter.

• The program's automatic storage is initialized as
defined in the program definition.

When a program is created with the update PASA stack
attribute and the program requires that the PASA stack
be updated, a space pointer addressing the new
invocation entry is stored in the next invocation entry
pointer of the invoking invocation.

When a program is created with the update PASA stack
attribute and the program requires that the PASA stack
be updated, a space pointer addressing the new
invocation entry is stored in the current invocation entry
pointer of the PASA base entry. The next available
storage location in the PASA base entry is set to
address the next available 16-byte aligned area beyond
the new invocation entry.

The PASA entry created for a program with no
automatic data consists only of a stack control entry.

After the static and automatic storage allocation and/or
initialization function is completed, control is passed to
the invoked program.

3-42

Invocation Destruction

When an invoked program yields control to another
program, its invocation is deallocated with the following
results:

• Execution of the invoked program is suspended.

• Automatic objects are deallocated. The invocation
entry is removed from the PASA chained list. The
current invocation entry in process entry in the PASA
base entry is set to address the immediately
preceding invocation and addressability to the current
invocation is set into the next available storage
location entry in the PASA header. Storage in the
space containing the PASA is not deallocated and is
available for allocation for future invocations.

• Exception descriptions associated with the invocation
no longer exercise control over exception handling
functions.

• Depending on the mechanism used to destroy the
invocation, control is passed to another program
executing in the process, or the process is destroyed
if there is no higher level invocation.

An invocation may give up control and subsequently be
destroyed with a Return External instruction, Transfer
Control instruction, or with exception returns.

With a Return External instruction, the invocation is
destroyed, and control passes to the immediately
preceding invocation. If the invoking Call External
instruction (in the preceding invocation) specified a
return list, a value can be specified in the Return
External instruction to select a return target in the
preceding invocation.

Return
Instruction
Number "-

r-

Program A

Cali External

r--..
(120)

Program B

--+ •
Return External ~

If no return target is specified, control returns to the
instruction immediately following the invoking Call
External instruction.

Program A Program B

Call External r •
-+ •

Return External -

If the Return External instruction is executed in the
highest invocation in either the process initiation phase
or the process problem phase, the next phase of the
process is entered. If the instruction is executed in the
highest invocation of the process termination phase, the
process is terminated.

If the Return External instruction is executed in the
highest invocation in an event handling sequence,
control returns to the next sequential instruction in the
process that experienced the event.

If the instruction is executed in an invocation of a
program that caused a user profile to be adopted, the
user profile is no longer used for authority verification in
the process.

When a Transfer Control instruction is executed, the
invocation of the program that contains the instruction is
destroyed, and the referenced program is invoked.

Control is returned from a transferred-to invocation in
the same manner as from the transferring invocation.
The return point selection function refers to the
immediately preceding invocation.

If the Transfer Control instruction is executed in an
invocation of a program that caused a user profile to be
adopted, the user profile is no longer used for authority
verification in the process.

The Return from Exception instruction causes control to
be returned to a specified invocation from an exception
handling sequence. This instruction can only be
executed during the initial invocation in the exception
handling sequence. It causes that invocation to be
destroyed. Control is passed to an invocation in the
process related to the occurrence of the exception, the
exception handling sequence, and the specific Return
from Exception instruction.

Invocations can also be destroyed without a program
executing a Return External, Transfer Control, or Return
from Exception instruction. The exception management
functions can cause an invocation to be destroyed when
they give control to a higher level invocation to handle
an exception or when they return control from an
external exception handler to another program. Process
termination causes implicit destruction of all invocations
in the process.

Program Functions 3-43

Invocation Exit Programs

The Set Invocation Exit instruction establishes an
invocation exit program that is to be given control if its
associated invocation is destroyed because of normal
exception handling actions or because of process
termination. Normal exception handling actions are
considered to be those actions that result from
executing the Return From Exception instruction or the
Signal Exception instruction.

The following occurs if any invocations are to be
destroyed because of normal exception handling actions:

• An invocation exit program is given control if its
associated invocation is to be destroyed. Exception
management gives control to all such invocation exit
programs before giving control to the exception
handler or returning to the appropriate invocation.

• An event is signaled if the invocation to be destroyed
is an invocation exit program. The exception handling
in progress is aborted, the invocation exit program
and its associated invocation are destroyed, and
processing resumes with the exception handling
action or with the process termination that caused
this invocation exit program to be invoked in this
process.

3-44

The following occurs if any invocations are to be
destroyed when a process is terminated and the process
is not in termination phase:

• An invocation exit program is given control if its
associated invocation is to be destroyed.

• An event is signaled if the invocation to be destroyed
is an invocation exit program. The invocation exit
program and its associated invocation are destroyed,
and process termination continues.

The invocation exit program established for an
invocation is implicitly cleared when this program is
given control.

The Clear Invocation Exit instruction disassociates the
invocation exit program that was established for an
invocation. No exception is signaled if an invocation exit
program was not specified by its associated invocation.

Invocation Example

Figure 3-3 is an example of the invocation of programs
within a process.

The flow of control throughout the process is indicated
with numbered lines. These lines represent program
execution functions performed within a process. The
process is represented to be in one of three phases
(initiation. problem. or termination). The indicated
functions are allowed for all three phases.

.. Program A is invoked as the first invocation in the
process.

B Program A executes a Transfer Control instruction
to pass control to program B. The invocation for
program A is destroyed (but not the activation).
and program B is invoked and given control.

II Program B executes a Call External instruction to
invoke program C.

.. An exception is signaled in program C. and the
execution of program C is suspended in order to
process the exception. The external exception
handler. EX1. is invoked based on the associated
exception description.

II Program EX1 executes a Call External instruction
to invoke program EX2.

II Program EX2 executes a Return External
instruction to cause its invocation to be destroyed
and control to be passed to program EX1 at the
instruction following the Call External.

II The Return from Exception instruction is executed
in program EX1. This causes its invocation to be
destroyed and control returned to program C at an
instruction based on the instruction address
specified by the exception return.

III Program C executes a Call External instruction to
invoke program D.

• Program D executes a Transfer Control instruction
to pass control to program E. The invocation for
program D is destroyed (but not the activation).
and program E is invoked and given control.

II Program E executes a Call External to invoke
program F.

II During the execution of program F. an event
occurs that is monitored within the process.
Execution of program F is suspended and the
event handler. program EV1. is invoked.

II A Return External instruction in the event handler
is executed. The invocation for program EV1 is
destroyed. and control is passed to the proper
instruction in the suspended invoking program
(program F).

II Program F executes a Return External instruction.
The invocation of Program F is destroyed. and
control passes to the instruction following the Call
External instruction in program E.

III Program E executes a Return External instruction
to pass control to the instruction following the Call
External instruction in program C.

II Program C executes a Return External instruction.
The invocation of program C is destroyed. and
control returns to the instruction following the Call
External instruction in program B.

II Program B executes a Return External instruction.
The invocation of program B is destroyed and
because it is the highest level invocation in the
process. control returns to the process. If the
process is in the initiation phase or the problem
phase. execution continues in the next phase. If
the process is in the termination phase. the
process is terminated.

Program Functions 3-45

Process

-1-- - - -I- - - - - -- -- - - - --

~r-___ pr_o_g_ra_m __ A __ ~

Transfer Control JfJ ,...----f
Program B

Call External

Return External I--im----'

II

L Program C Program EXl

+-0-11, II Call External Call External

I Return External ~ Return from Exc1
I--

II Program EX2 II
iII L.

Program D Program E i rm---+ Return External
--+

Transfer Control Call External
Return External

1m

L Program F Program EVl

-m~ ill
+-16- Return External

Return External -

1 Return from Exception Instruction

Figure 3-3. Program Invocation

3-46

Subinvocations

Subinvocations are internal invocations that occur within
invocations of programs. This group of instructions can
be specified only once in the instruction stream but can
be executed more than once as a subinvocation.

A Call Internal instruction can invoke a subinvocation
from any point in the program. A Call Internal
instruction is actually a branch to an internal entry point
with return linkage and optional arguments. The return
linkage consists of setting an instruction pointer to
address the instruction immediately following the Call
Internal instruction.

Subinvocation

• Branch

Instruction
Pointer

No new automatic objects are allocated. A
subinvocation has addressability to the same objects as
the calling invocation.

The entry point target of the Call Internal instruction
must be in the same instruction stream.

The subinvocation executes until it is terminated based
on user specification. If desired, the instruction pointer
set by the Call Internal instruction can be used as a
branch operand to return to the previously executing
instruction sequence; however, the machine does not
enforce the return because a branch can be made to an
alternate location.

The Call Internal instruction enables the calling
invocation to bind one of· several sets of arguments to
the entry point parameter with each set of arguments
corresponding to a different call. Simultaneously, the
called invocation can use any object that is defined
within the calling invocation.

After being set, the parameters remain bound to
arguments until they are rebound with another Call
Internal instruction or until the containing invocation is
destroyed. A parameter can be associated with only one
internal entry point in a program.

The Call Internal instruction without arguments does not
provide processing of arguments because it uses the
same objects as the caller.

When a Return External instruction is executed while a
subinvocation is invoked, the entire invocation, including
the subinvocations, is destroyed and control is passed
as previously described.

Subinvocations can also be invoked through exception
handling. If an exception occurs in an invocation and an
exception description defined to handle that exception
specifies an internal exception handler, a subinvocation
is invoked. Control is passed to the internal entry point
and execution continues until a Return from Exception
instruction is executed. This instruction terminates the
subinvocation and the exception handling sequence.
Control is passed to the invocation and the instruction
location within that invocation as specified by the
instruction. The Return from Exception instruction is
required to terminate the exception handling sequence.

Program Functions 3-47

ARGUMENTS AND PARAMETERS

Arguments and parameters provide a means of
communicating information between two execution
units. The information can be transferred from a
creating process to a created process, from a calling
invocation to a called invocation, from an invocation to a
subinvocation, and between subinvocations of the same
invocation.

Program X
(calling invocation)

Proc
DCl U
DCl V
Del W

Call Y (U,V,w) f--

Program Y
(called invocation)

Proc (A,B,C)-
Del APARM
DCl BPARM
DCl CPARM

.....- Parameters A, B, and
C are associated with
U, V, and W arguments.

A parameter is mapped onto an argument during
invocation. A parameter is not bound prior to invocation
and is an indirect reference to an object provided by the
invoking program.

The parameters associated with an entry point are
referenced in a program object called an operand list
(used as a parameter list). The operand list is, in turn,
referenced by an entry point definition.

An argument is specified in an operand list (used as an
argument list).

The operand list (used as an argument list) is a set of
references to other program objects. It is the operand
of a Call External or Transfer Control instruction and the
mechanism whereby arguments (references to actual
objects) are mapped to parameters (indirect references).

3-48

During invocation. the operand list being used as an
argument list is referenced by the invoking instruction
and matched with a corresponding operand list being
used as a parameter list at the called entry point. For
the duration of the invocation. references to the
parameters in the invoked instructions refer to the
corresponding arguments in the calling invocation.

DCl U
DCl V
DCl W

Argument
Operand
List

Proc
Del
DCl
mCl

The operational characteristics and functions vary
slightly for interinvocation. intra invocation. and
interprocess communication. Because of this variance.
they are presented in separate sections in the following
text.

Interinvocation Communications

Arguments

The user specifies arguments as objects to be
communicated to a succeeding invocation. Arguments
can be used to specify input values to the called
invocation or to receive output values that result from
the execution of the called invocation.

Passing an argument implies that addressability to the
argument and. therefore. the value contained in the
argument is available to the succeeding invocation.
Scalar and pointer data objects can be passed as
arguments.

There is no special attribute to be specified in order for
an object to be considered as an argument; a reference
to an object in an argument list causes that object to be
an argument.

Corres pondi ng
Parameter
Operand list

Program Functions 3-49

Parameters

The user specifies parameters as objects to be received
when the program is invoked. Parameters allow indirect
references to arguments passed during invocation. This
implies that addressability to an argument and,
therefore, the value of the argument is available through
a reference to a parameter.

A reference to a parameter is actually a reference to the
argument. Because of this implied reference, parameters
are given a special parameter attribute in the ODT. This
attribute specifies the following:

• No storage is allocated for the parameter object when
the program is invoked. A reference to the parameter
gains addressability to the corresponding argument as
defined at the time of the invocation.

• The machine does not validate any correspondence of
argument type. The location addressed by the
argument is referenced when the parameter is
referenced. The attributes of the parameter view are
used by the instruction.

• A reference to the parameter as a source operand
causes the value of the corresponding argument to be
used. A reference to a parameter as a target operand
causes the value of the corresponding argument to be
modified.

Scalar and pointer data objects can be defined as
parameters.

3-50

Argument Lists

An argument list (an assumed type operand list) is an
ordered list defining all of the arguments to be passed
to a succeeding invocation or subinvocation on a Call
External, Call Internal, or Transfer Control instruction.

The length of the argument list can be fixed or variable.
A fixed-length argument list causes all of the objects
defined in the list to be passed to the succeeding
invocation. A variable-length argument list allows the
program to determine the number of arguments to be
passed from the list. The Set Argument List Length
instruction changes the number of arguments to be
passed. If the instruction specifies that n arguments are
to be passed, a reference to that argument list on a Call
External or Transfer Control instruction passes only the
first n arguments in the list.

An initial length must be specified in the argument list
definition. This length remains in effect until modified.
Likewise, once the length is modified, it remains in
effect until further modification. The modified length
may vary from zero to the maximum size of the
argument list.

The argument list definition must contain a reference to
a program object for each possible eleemnt in the list.
The only variability in the argument list is in the number
of these references that are to be communicated to a
succeeding invocation or in the values of the actual
program object.

An argument list entry can reference any objects of the
types specified in the definition. A reference is allowed
to an object with a biased, defined, direct. static,
automatic, or para mater attribute. A reference is not
allowed to an array element or substring.

Multiple argument list entries can reference the same
ODT object.

Addressability to an argument is established in the
argument list during the execution of the Call External or
Transfer Control instruction. The address of a variably
addressed object can be changed prior to invocation but
cannot be changed by the called invocation. For
example, if a based data object and its base (a space
pointer) were both passed as arguments, changing the
value of the space pointer in the called invocation would
not change the addressability of the parameter data
object as known to the called invocation.

Note: Objects with the direct on automatic attribute
cannot be passed as arguments by the Transfer Control
instruction.

Parameter Lists

A parameter list (a parameter type operand list) is an
ordered list that defines all of the parameters that are to
receive information from the preceding invocation.

The length of a parameter list can be fixed or variable.
A fixed-length parameter list specifies that the entry
point expects to receive exactly the number of
parameters defined. Otherwise, an exception is signaled.
A variable-length parameter list specifies that the entry
point expects to receive at least a minimum number of
parameters but no more than the maximum number of
parameters defined.

A fixed-length parameter list can receive arguments
from a fixed-length or variable-length argument list as
long as the actual number of arguments corresponds to
the number the parameter list is expecting. Similarly, a
variable-length parameter list may receive arguments
from a fixed-length or variable-length argument list as
long as the actual number of arguments is within the
range of that allowed for the variable parameter list.

Parameter lists must be defined as internal or external.
Internal parameter lists are referenced by internal entry
points, and the lists must be fixed in length, as
described under Intrainvocation Communications later in
this chapter.

The parameter list definition must contain a reference to
a program object for each possible element in the list.
Each of the referenced objects must have the parameter
attribute. Two entries in the same parameter list must
not reference the same parameter object. A parameter
must not be referenced in more than one parameter list
(internal or external).

Argument / Parameter Correspondence

When an argument list is specified. on a Call External or
Transfer Control instruction, the individual arguments are
intended to correspond one. for one with the parameters
in the parameter list. This correspondence includes the
number of arguments and parameters but does not
include the types of objects referenced as arguments
and parameters.

The following illustration shows argument/parameter
binding. Shown on the example are the high-level
language form and the program template form of two
programs, X and Y.

When program Y is invoked by program X, parameters
A. B, and C in program Yare bound to corresponding
arguments U, V, and W in program X. The Add
Numeric instruction adds the contents of V and Wand
stores the sum in U.

Program Functions 3-51

High-level language Form

Program X Program V

PROC PROC(A,B,C)

DCl U DCl A PARM

DCl v DCl B PARM

DCl w DCl C PARM

CAll V(U,V,W) A = B+C

END x ENDY

Program X

Instruction
Object Definition Table Stream

,

Entry Point X Instruction 1 External ·
U Scalar Data Object ·
V Scalar Data Object CAll E,Z

W Scalar Data Object ·
E System Pointer-Initialize Program Y ·
Z Operand List-Argument List (Fixed,3,U,V,W) ·

Program V

Instruction
Object Definition Table Stream

Entry Point Y Instruction 1 External Operand List (D) ·
A Scalar Data Object Parameter ·
B Scalar Data Object Parameter ADDN A,B,C

C Scalar Data Object Parameter ·
D Operand List-Parameter List (Fixed,3,A,B,C) ·

3-52

L

Intrainvocation Communications

As with interinvocation communications associated with
Call External and Transfer Control instructions,
arguments can be passed on an internal call. A Call
Internal instruction can reference an argument list that
specifies the arguments to be passed. An internal entry
point can reference an internal parameter list that
specifies which parameters are to be received at the
entry point.

Execution of a Call Internal instruction causes the
parameters specified at the entry point to be associated
with the arguments passed on the Call Internal
instruction.

Argument lists and parameter lists for internal calls must
be fixed in length.

A parameter cannot be referenced in both an internal
and an external parameter list. However, a parameter
can be referenced by more than one internal parameter
list.

Once a parameter is associated with an argument, this
association remains until one of the following conditions
occurs:

• Another Call Internal instruction specifies an entry
point that references the parameter. In this case, a
parameter is once again associated with the
argument.

• A Return External instruction is executed. In this
case, all arguments and parameters are deallocated.

Interprocess Communications

Interprocess communications through the
argument/ parameter mechanism is supported by the
Initiate Process instruction to the initial program in the
problem phase of the process.

Argument and parameter functions associated with
interprocess communications are as defined for
interinvocation communications. As in interinvocation
communications, only addressability is provided to the
initiated process.

Program Functions 3-53

J

3-54

Chapter 4. Supervisor and Control Functions

Process Management

Process management supports the existence and
management of multiple concurrent and asynchronous
units of work in the machine.

A process controls the accomplishment of the units of
work within the machine. Multiple asynchronous
processes can exist concurrently and compete for the
resources of the machine.

The resources allocated to processes include objects,
auxiliary storage, main storage, and the processor.
These resources, in addition to program activations and
invocations allow the units of work to be done.

The attributes of a process provide information relative
to the limitations and to the importance of that process
when using the machine resources. For example, these
attributes limit the amount of processor resource a
process can consume, limit the amount of temporary
auxiliary storage it may consume during its existence,
and also limit its access to objects (authorization).

While processes may coexist as independent entities in
the machine, they may also require synchronization and
communication with other processes that concurrently
exist in the machine. These facilities are provided
through queue and event management functions.

ESTABLISHING A PROCESS

A process is established by the Initiate Process
instruction. The operands of this instruction specify the
process control space and the process definition
template, which are the fundamental elements of the
process structure.

Process Control Space

The pes (process control space) is a system object that
must be supplied as a machine work area to support the
execution of a process. The system pointer to the
process control space is used as the target operand
when referencing a process in process control
instructions and also when signaling process-directed
events to a process.

The pes can be used by only one existing process at a
time and cannot be destroyed while it is associated with
a process. A pes is associated with a process when it
has been specified as the process control space operand
on an Initiate Process instruction. When additional work
area is required during the existence of a process, the
machine implicitly extends the pes.

Process Definition Template

The PDT (process definition template) specifies the set
of attributes that establishes the framework for control
of the process. These attributes are made up of both
pointers and scalars. The pointers address objects that
are used by the process for authorization verification.
program work areas. programs to be invoked, and
address resolution. The scalar attributes represent
resource limits, process control information, and process
characteristics.

Process Structure

Two key constructs are required for process initiation.
One. the process control space, has been previously
discussed. The second, the PASA (process automatic
storage area), is specified as an attribute in the PDT and
is represented by a space pointer that addresses the
base entry. The PASA is used to allocate space for
program objects with the automatic attribute.

Another construct, the PSSA (process static storage
area), is also specified in the PDT, and is required prior
to activating a program within the process that has
static program objects. The PSSA is represented by a
space pointer that addresses the base entry.

Supervisor and Control Functions 4-1

Process Initiation Steps

The initiation of a process occurs in two steps,
synchronous and asynchronous. The synchronous
initiation step is executed as part of the process that is
causing the new process to be initiated. In addition, the
synchronous initiation step uses the resource attributes
currently in effect for the initiating process. In this step,
certain key attributes are verified. Problems detected
during the step are communicated to the initiating
process as exceptions.

The asynchronous initiation step is executed as an
independent unit of work and operates under the
resource attributes for the new process. During this
step, the new unit of work (process) attributes are
verified. Any problems detected during this step are
communicated via events. At the successful completion
of both initiation steps, the process is said to exist and
can then be the target of other process management
functions and process-directed event signals.

Process Domain

When initiated, a process is defined to be either
dependent on or independent of the existence of its
initiator. Once established, the dependent/independent
attribute cannot be altered for a process.

The domain of a process is defined as the set of
processes that include the process itself and all
dependent processes initiated by the process or by any
subordinate dependent processes. In addition to
controlling the existence of a process, the domain
concept is used to determine the extent of the process
suspend and resume operations.

PROCESS STATES

After being successfully initiated, a process enters an
external existence state called the active state. On the
initial entry of the process into this state, the machine
provides the control for sequencing the process through
three internal processing phases: initiation, problem, and
termination. These phases establish a problem solving
environment, solve the problem, and then complete the
problem solving activity.

4-2

Upon completion of the appointed work or in anyone of
the internal processing phases, a process can be either
terminated (in which case the process is purged from
the machine) or placed in the external existence state
(called the suspended state). In the suspended state, a
process retains control of the designated resources that
were acquired while in the active state. A suspended
process can either reenter the active state and be
sequenced through the remaining internal processing
phases or be terminated. A process in the suspended
state consumes none of the processor resources and
consumes only enough main storage to maintain its
existence as a process.

A process in the active state is defined to be at all times
in one of four substates: ineligible wait, current
multiprogramming level (MPL), instruction wait, or
instruction wait in current MPL (see Figure 4-1).

Figure 4-1 is a state transition diagram that shows the
external existence states and the active substates of a
process. The required actions for the transitions to take
effect are also shown.

.. Ineligible wait (not in current MPL)-A process is in
this substate when it is neither executing nor in an
instruction wait substate. The process is placed in
this substate as a result of applying MPL rules.

B Current MPL (eligible)-A process is in this substate
when it is currently executing; that is, the process
is externally viewed as consuming the processor
resource.

• Instruction wait (not in current MPL)-A process is
in this substate if it is suspended or waiting for a
resource, an event, a queue message, or an update
access to a data space entry, and user direction
has caused it to be removed from the current
MPL.

• Instruction wait (in current MPL)-A process is in
this substate if it is waiting for the arrival of a
message on a queue and if the user has explicitly
directed the machine to make exception to the
normal MPL rules by allowing the process to
remain in the MPL during the wait interval.

For more information about the active substates of a
process, refer to Resource Management Attributes later in
this chapter.

r- -
I

I

Active Active

D
I (not in current MPL) \1,;-----, iF Ineligible Wait

Initiate

Process

III
>

'+l
u «

I
I
I
1

~--

I

16

-
MPL

Rules
Satisfied l

r--

1., ~ Current MPL ~
'---+-'11'...,...... (eligible) --y'

Terminate
Process I(

'I

../"~

Active

I r
Resume Process

..('i"-

MPL Rules
Not Satisfied l

/~
Time Slice
End

Instruction
Waitl

Instruction

Wait (in
current MPL)

MPL Rules

Satisfied l

Wait
Satisfied l

n
U

(
'I

Suspend Process

d ~
Suspended

'-- State

'-----L-_----1
1 Action(s) required for the transition to occur.

Figure 4-1, State Transition Diagram

) ,

MPL Rules
Not Satisfied
Wait
Satisfied l

D
Instruction
Wait (not in
current MPL)

-

f---

____ ...J

Active

Supervisor and Control Functions 4-3

PROCESS PHASES

The internal processing phases (initiation, problem, and
termination) are presented to the machine in the form of
programs to be invoked as the sequencing proceeds.
These programs are specified as process attributes
contained in the process definition template.

The three process phases support the following major
objectives:

• Minimize the required program modification so that a
program can either be invoked directly within the
process for synchronous execution, or be invoked as
the root program in a new process for asynchronous
execution.

• Allow for monitor type program functions to be
performed by the process without having a monitor
program invocation as the first program invocation in
the problem phase.

• In all normal and abnormal conditions that can cause
a process to be terminated, ensure that control can
be acquired by supervisory programs executing within
the process to complete the required termination
functions before the process is destroyed.

The problem phase is the basic process phase in which
problem solving work is done. The first program
invoked in the problem phase has access to arguments
passed to the process from the initiator of the process.
The argument/ parameter capability is functionally
identical to the capability available between invocations
within a process.

4-4

The initiation, problem, and termination phases are
optional in terms of their use during the execution cycle
of a process. In all cases, a process can enter either the
initiation phase or the problem phase. Entry into the
initiation phase is determined by the setting of the
process attributes at the time the process is initiated.
Within the initiation phase, there is no restriction in
terms of the functions that can be performed. The only
functional difference between the initiation and problem
phases is that during the initiation phase, external
arguments are not presented to the first invocation. In
all cases, the user must specify either the initiation
phase or the problem phase attribute. If needed,
however, both the initiation and the problem phase
attributes can be specified.

Work completed during the initiation phase can, in three
basic ways, influence subsequent processing in the
problem phase. First, the process attributes may be
altered, including the specification of the first program
to be invoked in the problem phase. Second, functions
performed in the initiation phase have a process-wide
persistence; that is, system objects created, locks
obtained, and event monitors established are in effect
when the problem phase is entered. Finally, programs
executed in the initiation phase can force a process to
the termination phase without entry into the problem
phase.

Process management allows a process to enter the
termination phase at the completion of normal execution
in either the initiation or the problem phase based on an
explicit instruction or as a result of any abnormal
situation within the process. Additionally, in most
situations in which a process termination is forced by an
.external action, the process can enter the termination
phase. The external action referred to is a Terminate
Process instruction issued from one process to another
process.

J

Sequencing through Process Phases

As discussed previously, a process in the active state
can be sequenced through three internal processing
phases: initiation, problem, and termination.

During the initiation of the process, the machine
determines whether the current process attributes
specify the execution of a program in the initiation
phase. If so, the program designated by the current
process attributes is invoked. The process executes in
this phase until either a Return instruction is issued from
the highest level invocation or a situation or instruction
is encountered that forces process termination.

After completion of execution in the initiation phase or if
the process attributes specify no execution of programs
in the initiation phase, the process automatically
sequences to the problem phase. If the problem phase
program is specified, the program designated by the
current process attributes is invoked. Again, the process
executes in the problem phase until either a Return
instruction is issued from the highest level invocation or
a situation or instruction is encountered that forces
process termination.

After completion of execution in the problem phase or
when any situation or instruction forces process
termination, the process automatically sequences to the
termination phase. If the current process attributes
specify entry into the termination phase, the designated
program is invoked. The process executes in the
termination phase until either a Return instruction is
issued from the highest level invocation or a situation or
instruction is encountered that forces process
destruction. In either of the preceding cases or if no
programs are executed in the termination phase, the
process is terminated.

PROCESS AUTHORIZATION

When a process is initiated, the process definition
template is provided by the Initiate Process instruction.
A system pointer, which is contained in the template,
addresses a user profile that is used to govern the
execution of the process. The user profile that currently
governs the initiating process must have object
management authorization for the user profile of the
initiated process.

The process user profile provides the basic authorization
control for the process. Also, permanent system object
storage allocation and ownership of objects created by
the process are reflected in the process user profile
currently active at the time that a permanent system
object is created.

While the process is in either the active or suspended
state, a new process user profile can be specified for a
process with the Modify Process Attributes instruction.
In addition to the required process control eligibility
required to specify the instruction, the user profile
currently governing the process that issues the Modify
Process Attributes instruction must have object
management authorization for the new user profile.

A system pointer to the current process user profile is
made available through the Materialize Process
Attributes instruction. Any authorization set in the
system pointer when it was last specified is returned
when the process user profile pointer attribute is
materialized.

The authorization for a process can be augmented
through the invocation of programs created with the
adopt user profile attribute. Adopted user profiles are
used in conjunction with the process user profile to
determine the eligibility of a process to access existing
objects, privileged instructions, or special authorizations.
When authorization verification is required, one or more
currently adopted user profiles are used in combination
with the current process user profile to determine the
eligibility of a process for a restricted object or
operation. These currently adopted user profiles
augment the authorization of a process so long as the
adopting program is currently invoked within the
process.

Supervisor and Control Functions 4-5

OBJECT ADDRESS RESOLUTION

System and data pointers can be resolved within the
process structure. System pointers can be resolved
through the facilities of the N RL (name resolution list).
Data pointers are resolved through program activations
within the process.

The NRL is a process attribute specified in the process
definition template. The NRL contains a count of the
number of entries followed by the list of entries. The
entries are resolved system pointers addressing
contexts.

The NRL establishes both the identity and the sequence
in which contexts are searched in attempting to resolve
a system pointer to a system object. The NRL controls
the system object address resolution when a specific
context is not designated either in a system pointer with
an initial value or in the Resolve Addressability
instruction context operand.

The contexts in the NRL are searched in their order of
appearance until an addressability entry for the proper
object type, subtype, and object name is located, or until
the list is exhausted.

The entries in the list can be modified at any time. In
addition, an entirely new NRL can be specified by
modifying the process attribute with the Modify Process
Attributes instruction.

4-6

External Data Object Resolution

A data pointer defined in a program that is invoked
within a process can be resolved to assume the address
and attributes of a symbolically identified variable. The
subject variable must have been defined with the
external attribute and must reside in an activation entry
that exists in the process when the resolution is
attempted.

During data pointer resolution, if a program is specified
in addition to the variable name, then only the activation
associated with the identified program is searched for
the specified variable. If no program is specified, then
all programs associated with activation entries in the
process are searched, starting with the most recent
activation and continuing to the oldest. When no
specific program is specified (or if the program specified
is the current activation), the activation that contains the
instruction causing address resolution also is included in
the search. The activation entries are contained in the
PSSA (process static storage area).

J

PROCESS MANAGEMENT INSTRUCTIONS

There are two categories of process management
instructions. One category provides capabilities for
creating and destroying the process control space, which
is the basic element of the process structure. The
second category provides functions for controlling the
existence and states of processes (process control).

Process Control Space Instructions

The Create Process Control Space instruction creates
the work area required by the machine to support
program execution within a process. The size of the
work area is determined by the machine and, if required,
is implicitly extended by the machine. Once a process is
associated with the PCS (process control space), the
system pointer that addresses the PCS can be used as
the process identifier on all process control instructions.

The Destroy Process Control Space instruction destroys
the specified PCS. A process control space cannot be
destroyed while it is associated with a process; that is,
the PCS has been specified for a currently existing
process.

Process Control Instructions

The Initiate Process instruction causes a new process to
be established within the specified process control
space. The attributes for the process are specified in
the PDT (process definition template). The system
pointer that addresses the PCS is then used for process
identification on the Terminate Process, Terminate
Instruction, Suspend Process, Wait on Time, Resume
Process, Materialize Process Attributes, and Modify
Process Attributes instructions.

The Terminate Process instruction causes the internal
processing phase of a process to be altered to the
termination phase. The termination phase program is
invoked if the process is not already in that phase. If
the process is already in the termination phase, this
instruction can cause the process to be terminated, or
the process can optionally be left in the termination
phase.

Once a process no longer exists, the process control
space formerly associated with the process can be
specified for the initiation of a new process.

The Terminate Instruction instruction causes certain
long-running MI instructions in a process to terminate.
This instruction tries to terminate an instruction that is
currently executing.

Only the following instructions, which require a relatively
long execution time, are subject to termination:

• Activate Cursor (ACTCR)

• Apply Journaled Changes (APYJCHG)

• Copy Data Space Entries (CPYDSE)

• Create Data Space Index (CRTDSINX)

• Create Program (CRTPG)

• Data Base Maintenance (DBMAINT)

• Insert Sequential Data Space Entries (INSSDSE)

• Modify Data Space Index Attributes (MODDSIA)

• Request I/O (REQIO)

• Retrieve Journal Entries (RETJENT)

• Retrieve Sequential Data Space Entries (RETSDSE)

• Set Cursor (SETCR)

• Signal Exception (SIGEXCP)

The Signal Exception instruction can also signal the
terminate exception, but it is not actually subject to
termination because it is not a long-running instruction.

If one of these instructions is not the current instruction
executing, the termination request is ignored. When an
instruction is terminated, it signals an exception.

Supervisor and Control Functions 4-7

The Suspend Process instruction causes a process to be
placed in the suspended state. In this state, the process
is not eligible to compete for the processor resource. A
suspended process can be terminated or modified; it
can also hold locks, receive transferred locks, and
receive event signals.

The Wait On Time instruction causes the process to
wait for a specified time interval.

The Resume Process instruction causes a process to be
placed in the active state. In this state, the process can
compete for the processor resource under the normal
MPL (multiprogramming level) rules.

The Materialize Process Attributes instruction causes
materialization of the current attributes of the process.
In addition to the attributes supplied on process
initiation or modification, there are resource usage,
subprocess identification, and process performance
attributes that can be materialized. Some examples of
this information are:

• Total processor time used by the process

• Total temporary auxiliary storage used by the process

• Number of locks held by the process

• List of process control space system pointers for
immediately subordinate processes

• Number of transitions into ineligible wait state

• Number of transitions into instruction wait

• Number of transitions into ineligible wait from
instruction wait

• Time stamp upon entering last ineligible wait state

The Modify Process Attributes instruction causes one of
the defined set of process attributes to be modified.
Depending on the attribute, the modification may
manifest itself immediately, or there may be a time delay
before the attribute is referenced by the machine.

4-8

Authority for Process Control Instruction Usage

Two categories of authority allow the use of process
control instructions. First, there is an implied authority
granted to the initiator of a process that allows the
initiator to terminate, suspend, resume, modify, or
materialize an immediately subordinate process without
restriction. This implied' authority is also granted to a
process taking action against itself, excluding process
attribute modification that places restrictions on when
internal modification can be allowed.

In all other cases, the process issuing the process
control instruction must have process control special
authorization in either the most current adopted user
profile or the process user profile.

Additionally, a process issuing the Initiate Process
instruction must have privileged instruction authorization
for the instruction, or an exception is signaled.

PROCESS ATTRIBUTES

Process attributes refer to the required information for
the machine to establish the framework for the control
of a process. The attributes are established via the
process definition template (PDT) when a process is
initiated. Most process attributes are eligible for
modification (with certain limitations) either by the
process itself or by other processes.

The following information describes the significance of
each process attribute and the associated machine
functions.

Process Control Attributes

The process control attributes control those actions
taken by the machine for certain temporary conditions
encountered by the process. Some of these attributes
establish the relevance of other process attributes.

The process type attribute specifies whether the
existence of the new process is to be dependent on or
independent of the existence of its initiator.

The instruction wait access state control attribute
provides a process level capability to disallow the
modification of the access state of the process's access
group upon entry to and exit from an instruction wait
even though the instruction specifies access state
modification.

The time slice end access state control attribute allows
specification of whether or not the access state of the
access group for the process is to be modified at the
end of a time slice for the process.

The time slice event option attribute specifies whether
the event is to be signaled when a process has
exhausted its time slice without having entered an
instruction wait.

The initiation phase option attribute specifies whether
the initiation phase program attribute is supplied and,
consequently, whether the initiation phase is to be
entered.

The problem phase option attribute specifies whether
the problem phase program attribute is supplied and,
consequently, whether the problem phase is to be
entered.

The termination phase option attribute specifies whether
the termination phase program attribute is supplied and,
consequently, whether the termination phase is to be
entered.

The process default exception handler option attribute
specifies whether a process default exception handling
program is supplied. If supplied, this program is invoked
when an exception occurs that is not handled by the
invocation to which the exception was signaled.

The process name resolution list option attribute
specifies whether the name resolution list pointer
attribute is supplied and, consequently, can be used by
the machine for object address resolution through the
context specifications.

The process static storage option attribute specifies
whether the PSSA pointer attribute is supplied. A PSSA
pointer must be supplied prior to activating or invoking
the first program with static storage requirements.

The process access group option attribute specifies
whether the process access group pOinter attribute is
supplied, and can therefore be referenced by the
machine during access state modification as a result of
the process leaving or entering the MPL.

The signal event control mask attribute allows the
signaling of events to be conditioned at a process level.
By appropriately setting the mask, the process can
preclude the conditional event signals coming from
within the process while unconditional signals are
allowed to occur.

The number of event monitors attribute allows the
machine to more effectively manage event monitors.
This performance variable is not a maximum value;
however, when this performance variable is used in
relation to the event monitors signaled most frequently
within the process, it achieves a positive performance
impact.

Supervisor and Control Functions 4-9

Resource Management Attributes

The resource management attributes define resource
consumption limitations, relative importance of a process
in the presence of other processes, and direct the
machine to place the process in the proper subdivision
of processes contending for like resources.

The process priority attribute establishes the importance
of one process in relation to all other processes in the
machine. At the most fundamental level. the priority of
a process establishes its position in the order of
competing processes.

The process storage pool identification attribute defines
the identification of the main storage pool from which
the main storage demands for the process are satisfied.

The maximum temporary auxiliary storage allowed
attribute places a limit on the amount of auxiliary
storage consumed during the existence of a process
relative to the creation and extension of temporary
objects. An event is signaled when this limit is
exceeded.

The time slice interval attribute specifies the maximum
amount of processor time a process can consume
before involuntarily relinquishing control of the processor
resource.

The default wait time-out interval attribute specifies a
real time interval representing the maximum amount of
time a process will wait for an object lock, the arrival of
a message on a queue, or an event to be signaled in the
absence of a wait interval specified on the applicable
instruction. An exception is signaled if the interval
expires prior to satisfying the conditions causing the
wait.

The maximum processor time allowed attribute limits the
amount of processor time a process can consume
throughout its existence. A machine event is signaled
when this limit is exceeded.

4-10

The process multiprogramming level class ID attribute
specifies the identification of the MPL class to which the
process is to be associated. MPL classes allow the set
of existing processes to be divided into subsets. The
elements of the subset then compete for the machine
resources only with other elements of the subset. For
more information about MPL classes, refer to Resource
Management later in this chapter.

The modification control indicators serve to control the
modification of the attributes of a process either by the
process itself or by an external process. The
modification can be allowed or disallowed in internal
processing phases based on the indicator settings. A
set of indicators exists for each modifiable process
attribute.

Process Pointer Attributes

The process pointer attributes are a set of system and
space pointers that address the various objects required
for the execution of a process; for example,
addressability to programs, a user profile, and process
storage areas.

Process User Profile: The user profile provides the
authorizations for privileged instruction usage and object
access. It is also used to limit and record the amount of
auxiliary storage used for the creation of permanent
objects for all processes using the user profile.

Process Communication Object (PCO): This attribute is a
user convention and is not validated by the machine.
The PCO can be used to pass information from one
process to another outside the conventional interfaces
such as queues or events. If the peo is a space pointer,
programs executed in the process can have variables
declared based on this pointer.

Process Name Resolution List (NRL): The NRL is a list
of contexts used for system object address resolution
when a context is not specified on initial-valued system
pointers or resolve addressability operands.

Initiation Phase Program: When specified, this program
is the first program invoked when the process enters the
initiation phase.

Termination Phase Program: When specified. this
program is invoked when the process enters the
termination phase due to: an exception not being
handled by the process. a Return External instruction
being issued by the problem phase program. or a
Terminate Process instruction being issued against the
process.

Problem Phase Program: When specified. this program
is invoked when the process enters the problem phase;
either the initiation phase program or the problem phase
program must be specified.

Process Default Exception Handler: When specified. this
program is invoked when the signaled invocation does
not handle the exception.

Process Automatic Storage Area: This space is used for
automatic program object allocation upon invocation of a
program.

Process Static Storage Area: This optional space is used
for static program object allocation during program
activation. It must be specified prior to activation of a
program requiring static storage.

Process Access Group: This attribute designates an
access group that is transferred to and from auxiliary
storage as the process exits and enters the current MPL.
The access state modification (transfer) is conditioned
by the following options: instruction wait access state
control indicator. time slice end access state control
indicator. and the instruction wait access state
modification. For more information about access groups.
refer to Resource Management later in this chapter.

Process Status Indicators

The process status indicatots reflect information relating
to the external existence state. internal processing phase
and. possibly. termination status. More specifically. the
indicators denote the following types of information that
relate to the current status of a process:

• Active or suspended. If the process is active. its
active substate is: ineligible wait. instruction wait. or
currently in M PL.

• Internal processing phase (initiation. problem. or
termination).

• Process interrupt pending status (for example.
terminate process pending. suspend process pending.
or transfer lock pending).

• Process termination status. The reason for
termination of the process (return from first
invocation in problem phase. exception not handled.
or terminate process affected) and the termination
code.

This information is returned via a Materialize Process
Attributes instruction option.

Supervisor and Control Functions 4-11

Process Resource Usage Attributes

The following attributes reflect the current consumption
of resources by a process. These attributes are returned
via a Materialize Process Attributes instruction.

The total temporary auxiliary storage used attribute
specifies the amount of temporary auxiliary storage
currently allocated to a process as a result of temporary
object creation and extension during the existence of a
process.

The total processor time used value represents the
current consumption of the processor resource by a
process.

The number of locks currently held by the process value
denotes the number of locks held on system objects.
This value includes implicit locks acquired by the
machine.

Subordinate Processes Identification

This attribute is represented by a list of system pointers
that address process control spaces associated with
immediately subordinate processes. Preceding the list is
a count of the number of immediately subordinate
processes. This attribute is available via a Materialize
Process Attributes instruction.

Process Performance Attributes

These attributes provide an indication of how the
process is proceeding by showing the number of times
the process has voluntarily relinquished its place in the
current MPL and the number of times the process was
displaced in contention for a place in the current MPL.
These attributes are returned via a Materialize Process
Attributes instruction.

4-12

INTERPROCESS COMMUNICATION

Interprocess communication can be effected at process
initiation and dynamically during process execution.

The two vehicles for communicating information to a
process during initiation time are the PCO (process
communication object) and the argument/parameter list
interface. The PCO is specified as a process attribute in
the PDT (process definition template), and its attribute is
a user convention. The new process accesses the PCO
through use of the Materialize Process Attributes
instruction.

The argument/parameter interface provides the same
function as that for program invocation. The argument
list is specified as an operand on the Initiate Process
instruction and is only mapped to the problem phase
program. This function allows the program represented
by the problem phase program to be invoked as an
asynchronous or synchronous unit of work without
requiring the program to have knowledge of this
characteristic.

A more dynamic means for interprocess communication,
and also affording synchronization capabilities, are those
functions provided by queue and event management.

A queue is an object that provides the capability for a
process to wait until the required data becomes
available. In addition, the function to synchronously test
for the availability of the required data is also provided.
The required data is typically a message enqueued to
the queue by another process. Some messages,
however, come from the machine as in the case of a
message generated in response to a device support
request (I/O operation). The process requiring the data
attempts to dequeue a message from the appropriate
queue and when the message is available, the process
can be made eligible to enter the MPL. For more
information about queues, refer to Queue Management in
Chapter 5.

J

Event management provides a similar but expanded
function; the data is an event signal. Like queues, the
process can both wait and test for the occurrence of the
event signal. Two additional features are provided by
events: the process interruption and the broadcast event
signals.

The process interruption facility allows the temporary
suspension of the normal execution sequence of a
process. A process can be interrupted at an instruction
boundary, in an instruction wait (Lock, Dequeue, and
Wait on Event). or in a long-running interruptible
instruction when an event signal occurs. When the
event occurs, a program (event handler) can be invoked
to handle the event signal. When the event handler
function is completed, process execution is resumed at
the point of interruption.

The broadcast capability allows an event signal to be
received by multiple processes; each process can then
take action appropriate to its function.

OBJECT LOCKS

Objects are locked at the process level; that is, a
process is considered to be the holder of a lock. In
addition to the dynamic acquisition of locks afforded by
resource management instructions, locks can be
transferred to a new process during the time the
process is initiated. The locks to be transferred are
represented by an operand of the Initiate Process
instruction. Rules for lock transfers that apply to the
Transfer Lock instruction apply also during process
initiation; for example, the initiator of the process must
be the holder of the lock. Lock states that cause
conflicts cannot be transferred.

An implicit lock is acquired during process initiation for
the user profile of a new process.

For more information about locks, refer to Resource
Management later in this chapter.

Supervisor and Control Functions 4-13

PROCESS EXCEPTION HANDLING

Exceptions are either machine-defined errors detected
during instruction execution or user-defined conditions
detected by user programs. Generally, exceptions are
error conditions, but they can be a means for
communicating information to other invocations that
currently exist within the process.

Exception description program objects specify the action
to be taken when an exception is signaled or resignaled
to a program invocation; exceptions are signaled or
resignaled only to a specific invocation. If the exception
is not handled by the signaled invocation, control is
given, if specified, to the PDEH (process default
exception handler).

The PDEH, as mentioned in the explanation of process
attributes, is identified by a system pointer addressing a
program in the PDT (process definition template). The
PDEH is given control under the following conditions:

• The signaled invocation does not handle the
exception (refer to Exception Management later in this
chapter for the concepts of exception handling).

• An exception is signaled or resignaled from the only
currently existing invocation in the process.

The PDEH is invoked as an external program following
the most recent program invocation, and the Return
from Exception instruction must be issued to exit from
the PDEH.

For more information about exception-related functions,
refer to Exception Management later in this chapter.

4-14

PROCESS CONTROL INSTRUCTION
CHARACTERISTICS

The concept of a synchronous/asynchronous step
characteristic for the initiation of a process is described
under Process Initiation Steps earlier in this chapter.
That is, a portion of the initiation function is
accomplished under the resources of the initiator, and
the remainder is performed under the new unit of work
(process). The following process-related instructions
also have this characteristic:

I · Terminate Instruction

• Terminate Process

• Suspend Process

• Resume Process

• Modify Process Attributes

This means that when control is returned to the next
sequential instruction following one of the previous
instructions, the function has already been scheduled.
The point at which the function will be completed is
dictated by resource management constraints such as
priority, MPL rules. and main storage availability.

J

Event Management

Event management functions provide the user with the
capability to monitor the occurrence of a set of events
and take action based on the occurrence of some or all
of that set of events.

EVENTS

Events relate to and define activities that occur during
machine operation that may be of interest to users of
the machine. Event management enables a process to
monitor these events and perform specific functions
based on their occurrence. The events being monitored
can represent conditions either internal or external to the
monitoring process; that is, one process can be
monitoring conditions caused by the same process, by
other processes that are currently in the machine, or by
some condition not directly related to the existence of
any process in the machine.

Machine events are signaled as a result of certain
conditions detected by the machine. Explicitly signaled
events can be defined (based on user protocol),
signaled, and monitored through the event management
facilities. Events can be signaled to event monitors in all
processes or to a specific process. Generally, a process
monitors an event so that some function, which is
related to the conditions that caused the event, can be
performed.

There are two major classifications of machine events:
object-related and machine-related.

Object-related events are conditions directly related to
the values and the attributes of an object. For example,
the message limit is reached on a queue, or a network
description line failure occurs.

Machine-related events are conditions that are not
directly related to a system object. For example, a
specific timer interval has elapsed, or a machine error
has occurred.

For a complete list of machine events, refer to Event
Specifications in the System/38 Functional Reference
Manual.

In addition, there is a group of events that have no
meaning to the machine because they are defined
outside the machine range. These events are based on
user protocol. The same event management facilities
available for machine events are also available for
explicitly signaled events and, therefore, may be used
for intra process monitoring and interprocess
communication and synchronization.

Event Identification

Events are identified by the following components.

• Event class-The class of events is generally related to
a specific type of object, a machine function, or a
condition. For example:

Queue events
Authorization events
Machine status events

• Event type-Type is the subclassification of the event
within a class to further identify the event. For
example, subtypes are defined for the class of
machine status events, the machine check, machine
power, and error log full.

• Event subtype-Subtype is a further subclassification
of the event within the type. For example, within the
machine power type, the subtype specifies the
machine power status such as a power controller
failure.

A specific event can be monitored by specifying the
entire event identification (class, type, and subtype).
Events can also be monitored generically. Generic
monitoring can be by class (the occurrence of any event
within the class without regard to type or subtype) or by
type (the occurrence of any event within a particular
class and type without regard to subtype).

Supervisor and Control Functions 4-15

Event monitoring can be further limited by specifying a
qualifier. The qualifier is termed a compare value and
can be a reference to a system object (through a system
pointer) or a scalar.

Events related to system objects can be monitored for
all occurrences of an event (for example, the message
limit reached on any queue). Events can also be
qualified (by specifying the appropriate event monitor
compare value) such that monitoring occurs only if the
event occurs for a specific system object (for example,
the message limit is reached on queue XYZ).

Events that have associated compare values can be
monitored so that their occurrence is detected only if a
specified compare value matches the condition (compare
value) in the event. For example, timer events are
signaled if the time interval specified in a compare value
has elapsed or if the time of day specified in a compare
value has been reached.

EVENT MONITORING

The occurrence of an event can be monitored by
establishing an event monitor that describes which
conditions are to be monitored and how the event is to
be handled when it occurs. The event monitor is
explicitly established by the Monitor Event instruction.
The event monitor can be terminated explicitly by the
Cancel Event Monitor instruction or implicitly by process
termination.

The specific attributes and values of an event monitor
are as follows.

4-16

Event Identification: Events are identified by the
following components:

• Event class-(For example, queue events, process
events, LUD events.) The event class is represented
by a value from hex 0001 through hex 7FFF.

• Event type-Type of event within a class to further
identify the event (for example, create, modify, or
destroy). The event type is represented by a value
from hex 00 through hex FF.

Type 00 is never signaled; this value is restricted to
support the technique of generic monitoring for any
event type within a class.

• Event subtype-The various differences within each
type to further identify the event. The event subtype
is represented by a value from hex 00 through hex
FF.

Subtype 00 is never signaled; this value is restricted
to support the technique of generic monitoring for
any event subtype within an event type. If a generic
event type is specified (value of zero), the event
subtype must also be generic (value of zero).

Compare Value Qualifier: There are certain classes of
machine events that allow or require a compare value to
be specified when an event monitor is established. This
compare value further qualifies the event monitor.

For process events, the compare value represents the
process identification that is used to monitor the change
in the status of a specific process. The compare value
can contain a system pointer, but the system pointer
must be located in the first 16 bytes of the compare
value.

For timer events, the compare value specifies the
time-of-day or real-time interval and optional user data
to cause the event monitor to be signaled.

Event Monitor Priority: Specifies the importance of this
event in relation to other events being monitored by the
process. When multiple events occur, this value
establishes the order that event handlers will be
scheduled; the event with the highest priority is
scheduled first. In addition, when a process is waiting
for a specific event monitor, this value determines
whether that process can handle a different event
monitor.

Enabled/Disabled State: Specifies whether the event
monitor is enabled for receiving. The state can be
altered by the Enable Event Monitor and Disable Event
Monitor instructions.

Signal Retention Option: Specifies whether signals are to
be retained while the event monitor is disabled. When
specified, this option overrides the maximum number of
signals to be retained value.

Short Form Option: Allows the event monitor to specify
that only part of the event-related data is to accompany
the signal.

Note: An improvement in performance might be
realized if this option is specified.

Maximum Number of Signals to be Retained: Defines the
number of signals and associated event-related data to
be retained while the process is masked, the event
monitor is disabled, or the event monitor is enabled with
the events not being handled as rapidly as they are
signaled. This number and the signal retention option,
not the disabled / masked states of the event monitor or
process, are the controlling factors relative to the
machine discarding signals.

Event Handler Specification: Identifies the event handling
routine to be given control when an event occurs. The
event handler specification is a system pointer that
addresses a program or the activation of a program.
The event handler specification is optional, but it must
be defined for the event monitor if the associated event
is to be handled asynchronously.

Monitor Domain: This attribute defines whether the
event monitor is to be informed of events that are
signaled machine-wide or only those events that are
directed to the process with which the event monitor is
associated. If the monitor domain is specified as
process directed, it will be signaled only if the event is
signaled directly to the process that contains the event
monitor.

Supervisor and Control Functions 4-17

EVENT SIGNALING

The event signaling portion of event management
defines the occurrence of an event, and then
communicates that occurrence to a process through an
event monitor. (All qualifying monitors are made aware
of the event.) Any process that is monitoring for the
occurrence of the event is notified through the event
signaling mechanism.

Events can be signaled implicitly by the machine or
explicitly by the Signal Event instruction.

Machine Event Signaling

The occurrence of machine events is made known either
to a specific process or to any process monitoring for
the event. The event monitor must correspond to the
event being signaled. This correspondence is as follows:

• The event identification must match or specify a
generic type or subtype that contains the signaled
event.

• The compare value qualifier (if present) must match,
for the length specified in the event monitor, the
value in the event being signaled.

• The event monitor must define a machine event.

When an event is signaled to an event monitor, the data
associated with the occurrence of the event is collected
by the machine and saved for presentation to an event
handling routine.

4-18

Signaling by Signal Event Instruction

Events can be defined to represent any specific
condition established by a protocol. These events (both
user-defined and machine) can be signaled to any event
monitor in any process, or they can be signaled to a
specific process by the Signal Event instruction. The
Signal Event instruction specifies an event identification,
a conditional signal mask, a signal domain, a compare
value, and event-related data.

A nonzero value in the conditional signal mask causes
the associated event to be conditionally signaled based
on a comparison of the conditional signal mask and the
signal event control mask process attribute. The signal
event control mask can be modified from inside or
outside the process in order to control the signaling of
events. This capability allows groups of events to be
selectively signaled on a process level basis.

An event with a machine-wide signal domain indicator
is made available to all machine-wide event monitors in
any process (including the signaling process) that
corresponds as follows:

• The event identification must match or specify a
generic type or subtype that contains the signaled
event.

• The compare value (if present) must match (for the
length specified in the event monitor) the value in the
event being signaled.

If the event is signaled to any event monitor, the
event-related data specified for the instruction is saved
for presentation to an event handling routine.

Signaling an Event to a Process

Certain machine events are signaled directly to a
process. User-defined events can also be signaled
directly to a process. The Signal Event instruction can
. be used to confine a machine event to a specific
process even though the event monitor is assigned a
machine-wide domain. The Signal Event instruction with
a process as the signal domain causes an event monitor
in the specified process to be placed in the signaled
state in the same manner as if the machine had signaled
the event.

Event-related data is provided with the instruction and
is saved by the machine for presentation to the event
handling routine.

Conditions for Signaling an Event Monitor

When an event occurs (coming from the machine or
based on an explicitly signaled event), the machine
locates all event monitors in the processes qualified to
receive the signal for that event. The following
conditions must exist to activate a monitor, invoke a
handler routine, or add to the pending signals for a
monitor:

• The event identification, the compare value, and the
event type must correspond as previously described.

• If the process is not masked and the event monitor is
enabled, the event monitor is signaled.

• If the event monitor is disabled, the signal retention
attribute of the event monitor determines whether
signaling of the event monitor is to occur. If the
signal retention attribute option is set to retain signals
while the event monitor is disabled, the event monitor
retains the signal until either the event monitor is
enabled or a Test Event instruction is issued.

• If it is determined that the event monitor is to be
signaled based on the previous conditions but the
number of signals pending value of the event monitor
is currently equal to the maximum number of signals
to be retained, the event is not signaled to the event
monitor. Otherwise, the event monitor is signaled,
the number of signals pending value is incremented
by one, and the event-related data is saved for later
retrieval by the event handling routine.

EVENT HANDLING

Event handling refers to the portion of event
management functions that relate to the scheduling of
asynchronous invocations to the signaled process or to
the synchronous testing for signaled events .

Asynchronous Event Handling

Asynchronous event handling refers to the invocation of
a program to handle an event. This invocation occurs
during program execution at a point dependent on the
occurrence of one or more events rather than during the
execution of a particular instruction.

The following conditions must be met before an event
handling program is invoked:

• The event monitor must have defined an event
handling program.

• The event monitor must have at least one signal
pending.

• The event monitor must be enabled.

• The process must not be masked.

• There cannot be any enabled event monitors in the
process with event handling programs of a higher
priority and in the signaled state. There may be,
however, higher priority but disabled monitors that
have been signaled.

• The process cannot be waiting for an event monitor
of higher priority to be signaled.

When an event monitor is signaled and the previous
conditions are met. instruction execution is interrupted,
and the event handling program is invoked in the
process. Based on the conditions necessary for an
event handling program to be invoked, the invocation
can occur if all of the following conditions exist:

• An event is signaled to an event monitor.

• The process is unmasked.

• An event monitor is enabled.

Supervisor and Control Functions 4-19

On entry to the event handling program, the process is
placed in a masked state and no other events can
interrupt the execution of the event handler. However,
the event handler can choose to execute the Modify
Process Event Mask instruction to allow other event
handlers (including itself) to be invoked. The event
handler can then be interrupted for other event handling.

The event handling invocation can execute the Retrieve
Event Data instruction to determine the conditions that
caused the signal. The instruction presents the data
related to the oldest signaling of the event associated
with the event monitor. Once event-related data is
retrieved for a signaled event, it is discarded by the
machine and the number of signals pending count is
decremented by one. When the number of signals
pending count reaches zero, the event monitor is no
longer considered to be in the signaled state.

If the associated event monitor has multiple signals
pending, the Test Event instruction can be executed in
an event handler as many times as there are signals, in
order to retrieve multiple sets of event-related data.

When the event handling sequence is complete, a
Return External instruction must be executed to return
control to the point following the instruction that was
executed before the interruption for event handling. At
this time, if the event-related data associated with the
current signal has not been retrieved, the data is
discarded and the number of signals pending is
decremented. The process is implicitly unmasked when
the Return External instruction is executed.

4-20

Synchronous Event Handling

Synchronous event handling refers to the explicit testing
for the occurrence of an event at predefined locations
during process execution. The occurrence of the event
can be tested by the Test Event instruction or the Wait
on Event instruction.

The event monitor can be in the signaled state if it was
signaled and one of the following conditions exist:

• The process is masked.

• The event monitor is disabled.

• The event monitor has specified that no event
handling program is to be invoked.

• The process is waiting for an event signal.

The Test Event instruction causes the current signal
status of an event monitor to be tested. If the event
monitor is in the signaled state, the event-related data
retrieved from the event monitor is the data associated
with the oldest event that was signaled. The
event-related data for that event is discarded, and the
number of signals pending count is decremented by one.
When the count reaches zero, the event monitor is set
to the not signaled state. A branch can be taken, or
indicators can be set based on the signaled or not
signaled state of the event monitor.

If the Test Event instruction does not reference a
specific event monitor, the highest priority event
currently in the signaled state is tested. If no event
monitor is currently signaled, the not signaled resultant
condition is used for branching or for setting an
indicator.

The Wait on Event instruction allows for the signal
status of an event monitor to be tested, and if the event
monitor has not been signaled, the instruction waits for
the signal.

L If the event monitor is in the signaled state when the
instruction is executed, event-related data is retrieved by
the instruction. The number of signals pending count is
decremented by one, and if the count becomes zero, the
event monitor is set to the not signaled state.

If the event monitor is not in the signaled state, the
Wait on Event instruction causes the process to wait for
the signal to occur. If the event monitor is not signaled
within a specified amount of time, an exception is
signaled.

The Wait on Event instruction can wait for a signal to
any event monitor or to one particular event monitor. If
the wait is for any event monitor, a signal to any
monitor without an event handler satisfies the wait. If
the event monitor has an event handler that is enabled,
the event handler is invoked. After control returns from
the event handler, execution continues at the instruction
following the Wait on Event instruction. If an event
handler is invoked, no event-related data is available
through the Wait on Event instruction.

When the wait is for any event, a signal to any event
monitor in the process that does not have an event
handler causes the wait to be satisfied.

When the Wait on Event instruction is executed while
the process is masked, an exception is signaled.

The Wait on Event instruction cannot be satisfied by an
event monitor in the disabled state. Disabled event
monitors can, however, be signaled while the process is
waiting for an enabled event to be signaled.

When the Wait on Event instruction is waiting for a
specific event monitor to be signaled, the signaling of an
event monitor with a higher priority than the waited for
event monitor causes the event handler for the higher
priority event monitor to be invoked (if one is specified).
When the event handler is complete, the wait continues.

EVENT-RELATED DATA

Event-related data is that information relating to the
conditions for which the event was signaled.

When an event is received by a process, the
event-related data is saved for presentation to an event
handling program at some later time. Once the
event-related data is retrieved for a signaled event, the
data is no longer available from the machine.
Event-related data is made available by the following
instructions.

• Retrieve Event Data-Event-related data is presented
to an event handling invocation. The data is
associated with the event that was signaled to the
event monitor and, in turn, caused the event handler
to be invoked.

• Test Event-Event-related data is presented through
the instruction if the tested event monitor is currently
in the signaled state. The event-related data is
associated with the oldest event signaled to the event
monitor.

• Wait on Event-Event-related data is presented
through the instruction when the conditions causing
the wait are satisfied. The data is associated with the
event that was signaled to the event monitor that
satisfied the wait.

Supervisor and Control Functions 4-21

Event-related data consists of standard and
event-specific data. The standard data includes the
following:

• The number of signals pending

• The time of the event signal

• The identification of the process causing the signal (if
applicable)

• The event identification

• The compare value (if applicable)

• The origin of the signal (machine or user via the
Signal Event instruction)

Event-specific data contains information unique to each
event. For a description of the event-specific data, refer
to the System/38 Functional Reference Manual.

The following standard event-related data is not
available if the event monitor has specified the short
form option:

• Number of signals pending

• Time of the event signal

• Identification of the process causing the signal (if
applicable)

In addition, no event-specific data is available.

4-22

EVENT RULES

The interaction between synchronous and asynchronous
event handling, the instructions that control event
monitors, and the special characteristics of the timer
result in rules for users of events. These rules are
summarized as follows:

• Timer events cannot be signaled through the Signal
Event instruction.

• When an invocation is in a wait on event state and
the waited on event is canceled by an event handler,
then the wait will never be satisfied. The same
situation is true of a disabled event monitor if another
event handler does not enable the event monitor.

• When an event monitor is canceled while in the
signaled state, all signals are lost. Establishing
another monitor for the same event will not restore
the signals.

• When the timer interval is too small, all processing in
the machine could be consumed in servicing the
timer. Consequently, there is a restriction on the
minimum value for the time interval.

• Monitor event and cancel event monitor sequences
can appear anywhere within a process. Thus, it is
possible to establish an event monitor within the
initiation phase of a process to execute its event
handler in the initiation, problem, and termination
phases and to cancel the event monitor in the
termination phase of the process.

• Event handlers are scheduled on the basis of the
priority established through the Monitor Event
instruction. During the time between the start of the
schedule of an event handler and the actual
invocation of the event handler, a higher priority
event may be signaled to the process. Even so, the
schedule of the lower priority event handler is not
interrupted in deference to the higher priority event
handler.

L

L

Exception Management

Exceptions are either errors detected by the machine as
a result of executing an instruction or conditions
detected by user programs. Exception management
relates to the detection and signaling of exceptions by
the machine and the monitoring for and handling of
user-defined exceptions.

Two major classes of exceptions are defined: machine
and user.

Machine-defined errors are detected during instruction
execution. The errors that can be detected for a given
instruction are contained in the System/38 Functional
Reference Manual. The identification values reserved for
machine exceptions range from hex 00 through hex 7F.
However, a user is not prohibited from signaling a
machine exception in order to simulate the occurrence of
a machine exception.

User-defined conditions are detected by user programs.
These conditions are defined outside the range of and
have no meaning to the machine. Exception
management facilities can be used to communicate,
monitor, and handle these exceptions.

Exception management monitors both the occurrence of
unexpected errors or conditions and the occurrence of
expected errors or conditions that occur at unexpected
times. A user can monitor any number of exceptions
and, based on their occurrence, ignore the exception,
note the occurrence of the exception, or attempt to
recover from the exception. When the occurrence of an
exception is not monitored, the machine takes a default
action, which includes invoking a process default
exception handler (defined as a process attribute). or
terminating the process if no process default exception
handler is defined.

EXCEPTION DESCRIPTIONS

The user monitors for the occurrence of an exception
through an exception description.

An exception description is a program object and,
therefore, is defined as an object in the ODT (object
definition table). The exception description relates the
execution of the program (or possibly a program invoked
by the program) to the possible occurrence of an error.
Exception descriptions monitor exceptions only when the
defining program is invoked.

Exception descriptions define the set of exceptions to be
monitored. An exception description can monitor for the
occurrence of:

• All exceptions

• A class of exceptions

• A specific exception

Multiple exception IDs can be specified in an exception
description to allow the monitoring of multiple classes,
multiple exceptions, or both.

Supervisor and Control Functions 4-23

The exception description specifies an action to be
performed based on the occurrence of one of the
exceptions defined in the exception description. One of
the following actions can be selected:

• Do not handle-Ignore the exception and continue
instruction execution at the point where the exception
occurred.

• Do not handle-Continue the search within the
signaled invocation for another exception description
monitoring the exception.

• Do not handle-Continue the search for another
exception description monitoring the exception by
resignaling the exception to the immediately
preceding invocation.

• Defer handling of the exception by specifying that the
machine is to record the occurrence of the exception
so that its occurrence can lead to an action being
performed at a later time. Execution of the instruction
continues at the point where the exception occurred.

• Act immediately upon the exception by invoking
another program in the process, invoking a
subinvocation in the same program where the
exception description is defined, or causing a branch
to be executed to a designated instruction in the
program where the exception description is defined.

If the exception is to be handled immediately, the
exception description must define the exception handling
mechanism by specifying one of the following options:

• Branch to a specific instruction when the exception
occurs.

• Invoke an internal subinvocation when the exception
occurs.

• Invoke a program when the exception occurs.

4-24

The exception description can further qualify the
monitoring of exceptions by specifying a compare value
(a maximum of 32 bytes). When the compare value is
specified, the exception description monitors the
exception only if the exception is signaled by the Signal
Exception instruction, and a compare value is specified
in the instruction which corresponds to the compare
value in the exception description.

An exception description, which qualifies to handle an
exception based on its exception 10, need not specify a
compare value even though a compare value was
specified in the Signal Exception instruction.

Each machine exception has an identification (hex values
()()()() through 7FFF are reserved for machine
exceptions). User-defined exceptions have
identifications as specified by user conventions.

Once the defining program is invoked, the current
attributes and values of the exception description can be
materialized or modified. The Materialize Exception
Description instruction can be used to materialize an
exception description, and the Modify Exception
Description instruction can be used to modify an
exception description.

The following exception description attributes can be
materialized or modified:

Attribute Materialized Modified

Exception handling action Yes Yes

Exception handler specification Yes No

Exception identification Yes No

Compare value Yes Yes

The exception handler specification defines whether the
exception is handled by a branch, an internal
subinvocation, or an invocation. The exception handler
specification cannot be modified, but if the exception is
to be handled by an invocation, the system pointer
referenced by the exception description can be changed
to locate a different program.

J

EXCEPTION DETECTION AND SIGNALING

Exceptions signaled by the machine are based on error
conditions detected during instruction execution. The
execution of a System/38 instruction is stopped and not
completed when an error is detected. Various
System/38 instructions that detect a particular exception
do not necessarily perform the same amount of function
prior to stopping execution. However, a particular
instruction consistently performs the same amount of
function for a particular exception. Consistent results
ensure system integrity and reliability. Functions
performed before exception detection are inherent to the
definition of the exception or are specified in the
individual instruction de.finition.

Once the machine detects an exception, an attempt is
made in the signaled invocation to locate an exception
description defined to handle that exception. If such an
exception description is found, the exception handling
function is performed as defined by that exception
description. Otherwise, the PDEH (process default
exception handler) is invoked (if one is specified).

In a similar manner, user-defined functions or
subroutines can use the machine exception functions to
signal the detection of an error to the current invocation
or to a previous invocation. A user can employ the
Signal Exception instruction to simulate the occurrence
of a machine exception or a user-defined exception.
This instruction causes the machine to process the
exception as though it had signaled the exception.

The Signal Exception instruction can cause a new
exception to be signaled or a previously signaled
exception to be resignaled. The resignal option is
allowed only when the signaling invocation has been
invoked by the exception management functions to
handle an exception.

LOCATING AN EXCEPTION DESCRIPTION

Once the exception is detected, the machine must first
locate the exception description that has been defined to
handle the exception. Each exception description in the
signaled invocation is examined (in order of definition in
the ODT) to determine whether it qualifies to monitor
the signaled exception.

For machine-signaled exceptions, the invocation that is
currently executing is considered to be the signaled
invocation.

For user-signaled exceptions, the invocation to which
the signal is to be presented must be specified. This
invocation can be any existing invocation including the
signaling invocation.

If no qualifying exception description is located in the
signaled invocation, the process default exception
handler is invoked. The process default exception
handler is also invoked when the qualifying exception
description attempts to immediately handle the
exception with an internal subinvocation and the internal
subinvocation is currently handling an exception.

Two exception handling actions can be specified that
cause the machine to continue to search for another
exception description. Either the exception description
may be disabled, or the exception description may
specify that the exception is to be resignaled to the
previous invocation.

If an exception description is signaled and the signaled
invocation has another exception description defined for
the same exception, the machine will not attempt to
locate the other exception description if the same
exception occurs again. This is because the search is
terminated when the signaled description is encountered
even though the other description is enabled and would
qualify if declared first in the ODT.

If the exception description is disabled, the machine
continues to search for a qualifying exception
description in the same invocation.

Supervisor and Control Functions 4-25

A compare value further qualifies the exception. When
the length of the compare values specified in the
exception signal and in the exception description are not
identical, the length of the compare value in the
exception description determines the length of the
compare operation with the following considerations:

• A zero length compare value in the exception
description allows the exception description to handle
any exception to which the exception identification
matches.

• If the length of the compare value in the exception
description is less than or equal to that of the
exception signal, the compare operation starts with
the leftmost byte and continues to a length equal to
that in the exception description. If the compare
values match, the exception description is considered
to handle the exception.

• If the length of the compare value in the exception
description is greater than that in the signaled
exception, the exception description does not qualify
to handle the exception.

If the exception is to be resignaled, it is signaled to the
immediately preceding invocation. If the machine locates
an exception description that defines this action, the
machine considers the immediately preceding invocation
to be the signaled invocation and examines it for a
qualifying exception handler. If no prior invocation exists
in the process, the PDEH (process default exception
handler) is invoked, unless the do not invoke PDEH
option is specified on the Signal Exception instruction.

The Sense Exception Description instruction causes the
machine to search a specified invocation for an
exception description that matches an exception
identifier and a compare value. When a match is
detected, information about the exception description is
returned (materialized).

4-26

EXCEPTION HANDLING

When the machine locates the proper exception
description, the description is examined to determine
how the exception is to be processed.

Ignored Exceptions

All exceptions can be ignored. If the exception
description specifies that the occurrence of the
exception is to be ignored:

• No record is maintained that an exception occurred.

• No invocation is notified that an exception occurred.

• No information about the exception is available to the
user.

Instruction execution continues at the point where the
exception occurred unless the exception was signaled by
the Signal Exception instruction, and a branch option
testing for the exception ignored condition is specified.
Control is then passed to the specified instruction.

L Deferred Exception Handling

All exceptions can be deferred. An exception description
can specify that exception processing is to be deferred
when a defined exception occurs. The machine records
the occurrence of the exception in the exception
description and saves the exception data, if specified,
for later retrieval. Instruction execution continues at the
point where the exception occurred unless the exception
was signaled by the Signal Exception instruction, and a
branch option testing for the exception deferred
condition is specified. Control is then passed to the
specified instruction.

The user can determine the occurrence of an exception
by executing a Test Exception instruction that references
the specific exception description. If the exception
description has been signaled while in the deferred
state, the exception-related data is presented to the
user. The signaled state of the exception description is
canceled, and the exception-related data is no longer
available from the machine. The Test Exception
instruction can specify either branching or indicator
setting based on the signaled status of the exception
description.

If an exception is signaled to an exception description
already in the signaled state, the recording of the first
exception is lost, and its exception-related data is
replaced with data from the latest exception.

Immediate Exception Handling

The exception description can also specify immediate
exception handling. When a defined exception occurs,
the machine interrupts the execution sequence of the
excepting invocation and gives control to the
user-specified exception handler. The exception
description can specify one of the following:

• A branch is to be executed to some instruction in the
defining program.

• A subinvocation in the defining invocation is to be
invoked.

• A program is to be invoked to handle the exception.

Branch Point Exception Handling

When an exception occurs, the exception description
can specify that the machine is to cause control to be
immediately passed to an instruction in the same
invocation as the exception description.

If an exception is signaled to an invocation that specifies
branch point exception handling, all following
invocations except this defining invocation are
destroyed. Control is then passed to the specified
instruction in the defining invocation.

The defining invocation continues in normal execution as
though no exception had occurred. Exception-related
data is optionally available to the defining invocation
through the Retrieve Exception Data instruction. Once
the defining invocation is destroyed, exception-related
data is no longer available from the machine.

Supervisor and Control Functions 4-27

Internal Exception Handling

When an exception occurs, the exception description
can specify that the machine is to give control to an
internal subinvocation that is in the same invocation as
the exception description.

If the exception occurred in an invocation different from
the defining invocation, all following invocations except
the defining invocation are destroyed. This can occur
when the following invocations resignal the exception to
previous invocations until an invocation is located that
immediately handles the exception. None of the
implicitly destroyed invocations receive control prior to
destruction. Control is then passed to the specified
internal entry point.

If an exception is signaled to an invocation that specifies
an internal subinvocation, all following invocations,
except the defining invocation, are destroyed.

Exception-related data is optionally available through the
Retrieve Exception Data instruction. Once the exception
handling subinvocation is terminated, exception-related
data is no longer available from the machine.

4-28

External Exception Handling

The exception description can specify that when an
exception occurs, the machine is to invoke a program
identified by a system pointer referenced by the
exception description.

The machine invokes the program as an exception
handling routine; no invocations are destroyed prior to
the invocation of the exception handling routine. If no
activated program (activation) exists in the process, an
activation is implicitly created prior to invocation. If the
invoked exception handler program has the adopt user
profile attribute, the owner's user profile is used for
authority verification. Normal execution in the new
invocation is allowed except that the Return from
Exception instruction is required to cause control to be
returned from the exception handler.

Exception-related data is optionally available through the
Retrieve Exception Data instruction. Once the external
exception handling invocation is destroyed, the
exception-related data is no longer available from the
machine.

Retrieving Exception-Related Data Option

Exception-related data is optionally available. This
means that when the no data retained option is
specified in the exception description, the number of
bytes available for retrieval field on the Retrieve
Exception Data and the Test Exception instructions is
set to zero. Consequently, no exception data is returned
by these instructions.

This option can be altered by the Modify Exception
Description instruction and interrogated by the
Materialize Exception Description instruction.

Note: An increase in system performance might be
realized when exception data is not retained (for
retrieval).

RETURNS FROM EXCEPTION HANDLING

The Return from Exception instruction terminates an
internal exception handler subinvocation or an external
exception handler invocation. This instruction specifies a
target invocation in the PASA and an action code.
Control is passed to the target invocation, and execution
resumes at the instruction determined by the action
code, except when a Return from Exception instruction
returns to an invocation that was interrupted by an
event.

The current instruction in an invocation is defined as the
instruction that caused another invocation to be created.

Invocation

Exception Signaled ~
Current
Instruction

I

Exception Handler
Invocation

If the specified action code is 0, then the current
instruction of the addressed invocation is reexecuted.

Action code was 0

Invocation

Exception Signale~

r------
____ J

I
I
I
I
I
I Exception Handler
I
I
L----o(>

Return from
Exception
Instruction

-----Current
Instruction

If the specified action code is 1, execution resumes with
the instruction following the current instruction of the
addressed invocation.

Action code was 1

r----

Invocation

Exception Signaled
r-------­------c:.-::._,

I

Current
Instruction

I
I
I
I
I
I
I
I
I

Instruction Following
Current Instruction

Exception Handler
L.. __

Return from
Exception
Instruction

When control is returned (via the Return from Exception
instruction) to an invocation that was interrupted by an
event, the action code specified on the instruction is
ignored, and execution continues from the point of
interruption. (The interrupted instruction is completed as
if no interruption occurred.)

Interrupted
Instruction

Event
Signaled

Exception
Signaled

Invocation

,..--------
I
I
I
I

I 1. __

Event Handler
Invocation

I
I
I
I
I

r - - -- - - _.J
I Exception
: Handler
I Invocation
I
L._

Return from
Exception
Instruction

Supervisor and Control Functions 4-29

If a significance or a size exception is signaled and the
signaling is not a direct result of the Signal Exception
instruction. the current instruction is completed when
control is returned to the addressed invocation.

The Return from Exception instruction can be issued
only from the initial invocation of an external exception
handling sequence or from an invocation that has an
active internal exception handler.

If the instruction is issued from an invocation that is not
an external exception handler and the invocation has no
internal exception handler subinvocations. an exception
is signaled.

The following table shows the results of executing or
attempting to execute a Return from Exception
instruction:

Return from Exception Instruction

Status of Invocation Handling Addresses
Return from Exception Addresses Own Higher
Instruction Invocation Invocation

Not Handling exception Invalid' Invalid'

Handling internal exception(s) Valid 2 Valid3

Handling external exceptions Invalid' Valid3

Handling external exception and Valid2 Valid3

internal exception(s)

'A return instruction invalid exception is signaled. If no more internal
exception handler subinvocations are active and this invocation is not
an external exception handler, then the instruction cannot be issued.

2The current internal exception handler subinvocation is terminated.
3AII invocations after the addressed invocations are terminated, and
execution proceeds within the addressed invocation. Invocation exit
programs that have been established for the terminated invocations are
given control prior to proceeding within the addressed invocation.

The action code associated with the Return from
Exception instruction is ignored when execution is
returned to an invocation that was interrupted by the
occurrence of an event. Execution is resumed at the
point in the instruction where the interrupt occurred.

4-30

Whenever an invocation is terminated, the invocation
count in the corresponding activation entry (if any) is
decreased by one.

A Return from Exception instruction is not used or
recognized in conjunction with a branch point exception
handler.

L
EXCEPTION-RELATED DATA

Once an exception has occurred. data related to the
exception is optionally available from the machine. The
option is defined on the exception description and
specifies whether exception-related data is to be
retrieved.

The following data is available for all exceptions when
the default value (binary 0) is specified:

• Exception identification

• Compare value

• Signaling invocation address

• Signaling instruction number

• Signaled invocation address

• Signaled instruction number

• Machine-dependent data identifying the machine
component that caused the exception to be signaled

In addition to the preceding data. certain
exception-specific data is available based on the
exception being signaled. The data can include scalar
and pointer data. The maximum size of
exception-related data that is to accompany a signal is
32 608 bytes. The specific data for each exception is
contained in the System/38 Functional Reference
Manual.

When a user signals an exception. exception data can
optionally be passed to the exception handler. This data
is in addition to the standard exception data that is
dependent on where the Signal Exception instruction
was executed.

The exception data can be materialized by the Retrieve
Exception Data instruction. This instruction selects
exception-related data based on the type of exception
handling (branch point. internal. or external) being
performed. If. for example. internal exception handling
data is selected. the data for the last exception signaled
to an internal exception handler is retrieved. If no
exception handler of that type was invoked. an
exception is signaled.

Exception-related data cannot be retrieved once the
exception handler returns control from the exception
handling sequence. The exception-related data for a
branch point exception handler is retained until the
containing invocation is destroyed or until the exception
description is signaled for another exception. whichever
occurs first. The exception-related data for internal and
external exception handlers is available only until the
exception return is executed for the subinvocation or
invocation invoked as the exception handler.

Exception-related data for deferred exceptions can be
materialized by the Test Exception instruction. If the
exception was signaled. exception-related data is
materialized. The same information is available as for
nondeferred exceptions. Exception-related data for
deferred exceptions is maintained until the Test
Exception instruction is executed or until the invocation
that defined the exception description is destroyed.

Related data for nontested deferred exceptions is not
discarded until process termination.

Exception-Related Data Option

When the no data retained option on the exception
description of the ODV is specified. the number of bytes
available for retrieval field on the Retrieve Exception
Data and the Test Exception instructions is set to zero.
Consequently. no exception data is returned by these
instructions.

This option can be modified by the Modify Exception
Description instruction and interrogated by the
Materialize Exception Description instruction.

Note: An increase in system performance might be
realized when exception data is not retrieved.

Supervisor and Control Functions 4-31

Resource Management

Resource management provides facilities to observe and
control the use of and the contention for system
resources. System resources include processor
resources, storage resources, and system objects.

Resource management functions allow work priorities to
be established and resources to be explicitly allocated.
Resource management functions also enable users to
communicate the characteristics of their workload to the
machine, thereby permitting the machine to make
efficient use of resources. These capabilities are
provided through control functions and monitoring
functions.

Control functions are provided through the following
facilities:

• Resource management instructions specifically
request the allocation of resources (locking
instructions), control the overall level of work in the
machine and the apportioning of resources (modify
resource management controls), and provide for
better utilization of storage resources (access group
instructions and access state instructions).

• Process attributes affect the apportioning of
resources in conjunction with resource management
controls and also limit a process's consumption of
resources.

• Object attributes affect the performance of programs
that use the object.

4-32

Monitoring functions are provided through the following
facilities:

• Resource management instructions provide data on
the utilization of and contention for resources
(materialization instructions).

• Process attributes provide data relative to the
consumption and allocation of resources to a process.

• Machine events Signal when user-specified resource
utilization thresholds are exceeded.

• Exceptions indicate that a resource is not available or
that use of a resource has exceeded a limit.

The following illustration shows a summary of the
resource management facilities and the control and
monitoring functions they perform.

Function

Resource Management
Facility Control Monitoring

Resource management X X
instructions

Process attributes X X

Object attributes X

Machine events X

Exceptions X

RESOURCES

This section discusses the particular resources managed
by the control and monitoring functions. The
subsequent section contains more detailed descriptions
of the means by which these functions are provided.

Processor Resource

Processes compete for the processor on the basis of the
priority process attribute. Priority does not guarantee to
the various processes that they will receive relative
amounts of processor resources over an interval of time;
priority only serves to order the competing processes.
Much of the time. processes are not competing for the
processor but are waiting instead for other resources.
However. priority may be used in conjunction with
controls over the number of concurrently executing
processes to enable an orderly sharing of the processor.
The maximum processor time allowed attribute limits the
total processor resource consumed by a process. To
monitor consumption of the processor resource.
processor time used may be materialized on a process
or machine-wide basis.

Storage Resource

Machine storage is composed of various physical
storage media. differing from each other in capacity and
access speed. These media fall into two levels of
storage. main storage and auxiliary storage. Instruction
execution requires that instructions and referenced data
be present in main storage. Processes compete for
storage resources and for the access mechanisms by
which data is transferred between media. The machine
automatically manages this allocation and data transfer
on a demand basis. However. this management entails
machine overhead. involves delay to the requesting
process. and directly affects the relative performance of
competing processes. Therefore. resource management
provides a variety of tools for communicating to the
machine additional information affecting the
management of the storage resource.

Multiprogramming Level Control

The machine provides facilities for limiting the number
of processes that concurrently compete for the machine
resources. These facilities can directly limit the
contention both for main storage and for access
mechanisms. This enables the user to prevent situations
in which this contention could adversely affect the total
work accomplished by the system. The machine
maintains the number of data transfers to and from
main storage to assist the user in determining the
appropriate limits.

Main Storage Control

Main storage pools are the primary means for
apportioning the main storage resource among
processes. The machine provides a means for dividing
the available resource into pools of designated sizes and
for assigning processes to these pools. The machine
then satisfies a process's requirements for main storage
from the assigned pools. Information regarding the
amount of data transferred to and from each pool is
provided.

Data Transfer

Several functions are provided to enable more efficient
transfer of data between levels of storage. and for
providing the machine with explicit information on when
objects are needed for instruction execution and when
they are no longer required. These functions enable
better use of resources both by reducing contention for
physical access mechanisms and by making main
storage resources more readily available for other uses.

The access state of an object refers to the speed with
which it can be accessed and is. thus. determined by
the characteristics of the storage media on which it
resides. The Set Access State instruction provides a
mechanism for altering the access state of an object in
anticipation of subsequent use of the object. This
instruction can be used to inform the machine that one
or more objects will be needed in main storage for
instruction execution. or that one or more objects are no
longer needed and should be placed on a slower
medium. The instruction enables the machine to
efficiently transfer the object as one or more large
blocks and/or to make the associated main storage
available for other uses.

Supervisor and Control Functions 4-33

Access groups provide a mechanism for physically
collecting objects to more efficiently use the storage
facilities. They enable the machine to transfer a set of
objects as a single, larger object. Additionally, by
designating a process access group, the user can
identify to the machine a set of objects, which need not
be present in main storage when the associated process
is not active and which the machine can efficiently
transfer to and from main storage.

Further control can be applied at the object level.
Through the block transfer indicator contained in the
performance class attribute of an object, the user can
specify that a reference to an object will automatically
cause a block of data (whose size is machine- and
object-dependent) to be made available in main storage.
Space objects, data spaces, and data space indexes,
which typically represent a large proportion of the data
transferred, can be assigned to a particular unit of
auxiliary storage when created through the unit
parameter in the create template.

Auxiliary Storage Control

If the machine typically runs sufficiently below a
condition of fully allocated auxiliary storage and if
dynamic requests for space can always be honored,
contention for space on auxiliary storage normally does
not occur. The machine signals an event if a process
exceeds the limit on the amount of temporary storage
that can be allocated by the process. (The limit is set
during process initiation.) Because permanent objects
normally exist beyond the life of a process, control of
the allocation of permanent space is enforced through
the user profile that owns the object, rather than
through the process itself. Finally, the machine signals
the auxiliary storage threshold exceeded event whenever
the amount of available (unallocated) space falls below a
user-specified threshold.

The machine makes available to the user the amount of
unallocated space existing on each unit of auxiliary
storage as well as how many data transfers occur to
and from each unit.

4-34

System Objects

A system object can be shared by processes if these
processes have no requirements to complete a specific
series of instructions on that object. That is, the
machine guarantees the correct execution sequence of
individual instructions, but not of a series of instructions.
Because the execution of a specific series of instructions
is frequently required, the machine provides instructions
for locking objects to processes. A lock on an object
determines which locks on the object may concurrently
be held by other processes and which types of access
(materialize, modify, or control) may be granted to other
processes executing instructions against the object.
Thus, the locking instructions provide:

• A mechanism whereby processes can observe a
protocol for synchronizing access to objects

• A means to prevent other processes, not observing a
lock protocol. from accidentally or intentionally
accessing an object temporarily not available to them

L

CONTROL AND MONITORING FUNCTIONS

This section describes the various functions provided by
resource management.

Multiprogramming Level Control

Multiprogramming level (MPL) controls can limit the
number of concurrently executing processes. When
used in conjunction with the time slice process attribute,
priority process attribute, and the process access group,
multiprogramming level controls provide the primary
means for sharing of resources.

Basic Concepts

In the absence of resource management controls (MPL
rules), a process may be in one of the following states:
instruction wait state, suspended state, or active state.

A process is placed in the instruction wait state in the
following circumstances:

• When the Wait on Event instruction is issued

• An unsatisfied lock exists (synchronous wait option)

• When the Set Cursor instruction is issued for update
or modify and the affected data space entries are
locked by another process

• When a Dequeue instruction with the wait option is
issued

A process is in the suspended state if a Suspend
Process instruction has been issued against the process.
For purposes of this discussion, the suspended state
and the instruction wait state are treated as equivalent.
When a process is not in one of these states, it is in the
active (executable) state. MPL controls allow the user to
specify the number of processes that can concurrently
be in the active state. When this number is exceeded,
one or more processes are placed in a fourth state
called the ineligible state (according to MPL rules).

To provide a further level of control, processes can be
assigned to MPL classes. For each MPL class, the user
can specify a maximum M PL; that is, a maximum
number of processes, assigned to a class, which can be
concurrently executing. Thus, a process can be
constrained both by its class M PL limit and by the
machine-wide MPL limit. Through the use of these
controls, a user can specify, for example, that no more
than six processes are to execute concurrently in the
machine and that no more than four processes in class
A and three in class B are to execute concurrently.

Machine-wide and class MPL controls are established
by the Modify Resource Management Controls
instruction. Processes are assigned to a particular class
through the M PL class process attribute. Before
describing the actual rules involved in MPL enforcement.
two additional attributes (priority and time slice) must be
described.

The priority attribute is a process attribute that was
briefly described in connection with the processor
resource. Processes can be ordered by priority when
they are:

• Waiting for the processor or for certain serialized
internal machine functions

• Waiting for a lock, a locked data base record, or a
message on a queue

• In the ineligible state

The time slice attribute is a process attribute that
specifies an amount of processor time during which a
process can execute instructions before being subjected
to the application of M PL rules.

Supervisor and Control Functions 4-35

MPL Rules

When a process is placed in the wait state or when it
terminates, the machine-wide and class MPLs
(multiprogramming levels) are decremented. (The
Dequeue instruction can be made exempt from this rule
when a minimal wait is anticipated.) Processes in the
ineligible state are examined in priority sequence to see
whether any can be made active without exceeding the
machine-wide or class MPL maximum values. If so, the
selected process is made active.

When a process is initiated or leaves the wait state,
resource management determines whether the process
can be made active without exceeding the
machine-wide or class MPL limits. If so, it is made
active; if not, it is placed in the ineligible state. It does
not preempt processes of a lower priority currently in
the active state.

When the time slice amount for a process expires,
signifying that it has received a specified amount of
processing unit time, resource management determines
whether there is a process of equal or higher priority in
the ineligible state that could be made active according
to the machine-wide or class MPL limits; if so, the
current process (the process whose time slice expired) is
placed in the ineligible state, and the selected process is
made active; if not, the current process is allowed
another time slice. Thus, processes of equal priority
share the processor according to the M PL rules. A
higher priority process preempts a lower priority process
only when the time slice for the lower priority process
has expired.

4-36

Processing When Entering or Leaving the Active State

When a process is in the active state, instructions and
data are needed in main storage for execution. When
the process leaves the active state, portions of this
process may still be required by other currently
executing processes (for example, programs shared by
processes). Other unshared data will not be needed until
the process reenters the active state. Normal
management of storage by the machine eventually
makes the main storage occupied by this unshared data
available to other processes. However, the machine
enables the user to expedite this process through use of
a process access group.

A process access group is an access group that is
designated as a process attribute on the Initiate Process
instruction. It contains a set of objects used almost
exclusively by the process with which it is associated.
This set of objects is transferred from main storage to
auxiliary storage (purged) when a process leaves the
active state. This same set of objects is then transferred
back to main storage when a process reenters the active
state.

A process can leave the active state to enter either the
wait state or the ineligible state. During these two state
transitions, two process attributes, instruction wait
access state control and time slice end access state
control, designate whether the process access group is
to be transferred upon leaving the active state.
Additionally, instructions that place a process in wait
state specify whether the access group is to be purged.
(These same instructions also specify whether to
transfer the process access group to main storage when
the wait is completed.) The purge of the access group
occurs during the wait state only if both the process
and the instruction indicate that the purge is to occur.

The purge indicators are thus used to indicate that the
wait could be long enough so that the overhead of
freeing main storage resources is justified. Whenever
the process access group is purged, the time slice
amount for the process is reset so that when the
process next enters the active state, the process will be
allowed the full time slice amount. If the purge does not
occur, the time slice is not reset.

Ineligible Threshold

If a large number of processes are in the ineligible state
because of machine-wide or MPL class controls, then
the machine may be overcommitted or one or more MPL
limits may be set to inappropriate values. The user can
specify threshold values, machine-wide and by MPL
class, which, if exceeded by the number of processes in
the ineligible state, cause the ineligible state threshold
exceeded event to be signaled. The threshold values are
specified by the Modify Resource Management Controls
instruction.

Monitoring MPL Activity

The Materialize Resource Management instruction
provides data on both a machine-wide and MPL class
basis, on the total number of processes, on the number
of processes in the ineligible state, and on the number
of state transitions.

Storage Resource Functions

This section describes the functions provided to make
better use of storage resources.

Main Storage Pools

Main storage pools provide a way for competing
processes to share main storage resources. The Modify
Resource Management Controls instruction can be used
to partition main storage into several pools. The
machine then reserves the designated amount of main
storage in the specified pools. Processes are assigned
to specific pools by the main storage pool process
attribute. When instruction execution for a process
requires that data be placed in main storage, resources
are allocated from the assigned pool.

Initially, the main storage resource is assigned to the
machine main storage pool. Main storage required for
internal machine functions is allocated from this pool.
The user can then assign portions of the remaining
resource to other pools; however, a machine-dependent
minimum amount of main storage must always remain in
this pool. Certain objects (for example, operating system
programs) can be treated as machine objects shared by
processes. The user may force such objects to be
allocated main storage from the machine main storage
pool through the main storage pool selection indicator in
the performance class attribute. The Set Access State
instruction, when used to request transfer of data to
main storage, can specify that storage is to be allocated
from a particular pool. In the absence of such
specification, main storage is allocated from the pool
assigned to the requesting process.

Some objects, such as those objects required to handle
an exception, might be required to be in main storage
for only a short time. When these objects are paged
into the machine pool or any storage pool shared by
users, they might displace certain data needed for
normal processing. To minimize this condition, the user
can specify a transient pool and designate (via the
performance class attribute) objects as transient. Then,
when these transient objects are paged into main
storage, they are allocated storage from the transient
pool. This way, transient objects can replace other
transient objects rather than those objects used for
normal processing.

Main storage pools, however, do not enable the user to
precisely manage the contents of main storage. Rather,
the intent is to provide the user with sufficient control to
divide the resource among processes and categories of
work so that the desired work priorities, throughput, and
response time objectives can be achieved.

Supervisor and Control Functions 4-37

Access Groups

Access groups provide a means of collecting temporary
system objects to enable more efficient use of storage
resources. Members of an access group are located
next to other members on the auxiliary storage media so
that they can be efficiently transferred as a single, large
object. Access group transfers may be initiated explicitly
through the Set Access State instruction, or implicitly
when a process is going to or from the active state if
the access group was identified as the process access
group. Reference to objects within an access group
does not require transferring the entire access group;
only the required data need be transferred.

An access group is created by the Create Access Group
instruction. An object can be placed in an access group
by specifying the access group operand in the create
template of the object when it is created. An object is
removed from an access group when the object is
destroyed. The space that was occupied by the object
can be reset by the Reset Access Group instruction.
This instruction effectively compresses the space
occupied by the access group.

The access group itself is destroyed by the Destroy
Access Group instruction. But, an access group cannot
be destroyed until all objects are removed. Finally, the
Materialize Access Group instruction can be used to
materialize the attributes of an access group and a list
of the objects contained in the access group.

4-38

Set Access State

The Set Access State instruction is used to temporarily
alter the access state of an object (that is, the access
speed implied by the storage level) in anticipation of the
subsequent use of that object. The options available
and uses for the instruction are dependent on the
storage configuration of the machine. In all machines,
however, an object (or portion of an object) can be
designated as required in main storage. The instruction
implies no guarantee of how long the access state
specification is in effect, as this is partially a function of
resource demand by other processes in the machine.
When requesting that data be available in main storage,
the user may optionally designate a main storage pool
from which storage is to be allocated for the object.

The Set Access State instruction optionally can cause a
pseudo retrieve object operation to be performed from
auxiliary storage. This means that the instruction causes
a specified object to be placed in main storage without
regard to the contents of the object. When this option
is used to retrieve an object, access to auxiliary storage
is reduced.

The Set Access State instruction can also cause an
object to give to another object the space it occupies in
main storage. For additional information about the
options for this instruction, refer to the System/38
Functional Reference Manual.

J

System Object Attributes

Certain system object attributes that are specified when
the object is created (but not, in general, modifiable),
affect the performance of the processes that use the
object. The performance class is the principal means of
specifying these attributes. Fields within the
performance class, in turn, specify the following:

• The main storage pool selection attribute causes the
object to be allocated main storage from the machine
pool.

• The transient attribute causes the object to be
allocated main storage from the transient storage
pool. If a transient storage pool is not specified, the
object is allocated main storage depending on the
status of the main storage pool selection attribute.

• The block transfer attribute causes the machine to
make available in main storage a larger portion of the
object than is required for execution of the immediate
instruction. This is useful when subsequent
instructions will reference other portions of the
object. The size of the block is machine- and
object-dependent.

The unit parameter can be specified only for spaces,
data spaces, and data space indexes. The user then has
some control over allocating these objects to specific
auxiliary storage units. This capability makes possible
the balancing of the data transfer load among access
mechanisms. (Normally, objects are allocated to a unit
according to internal algorithms.)

Storage Limits

The machine enforces certain limits on the use of
auxiliary storage. The user is thus prevented from
accidentally or intentionally overcommitting storage so
that normal operations cannot proceed.

The process auxiliary storage limit process attribute
provides a means to limit the total space that can be
allocated to objects created by the process with the
temporary attribute. When this limit is exceeded, an
event is signaled.

The permanent auxiliary storage limit is a user profile
resource authorization that limits the total space that
may be allocated to permanent objects owned by the
user profile. When this limit is exceeded, an exception
is signaled to the requesting process.

When the amount of unallocated auxiliary storage falls
below the value specified by the auxiliary storage
threshold, the auxiliary storage threshold exceeded event
is signaled. This value is set by the Modify Resource
Management Controls instruction. No exception is
signaled.

Machine storage limit exceeded is an exception that is
signaled when an instruction cannot be completed
because of insufficient auxiliary storage space.

Supervisor and Control Functions 4-39

Process Attributes

Process attributes are specified in the process definition
template. These attributes are used by the Initiate
Process instruction and modified by the Modify Process
Attributes instruction. A subset of the process
attributes, which follows, applies to resource
management functions. Most of these attributes have
already been described with the multiprogramming level
functions (refer to Multiprogramming Level Control earlier
in this chapter).

• Time slice.

• Priority.

• Instruction wait access state control.

• Time slice end access state control.

• Process access group.

• Process multiprogramming level class ID.

• Storage pool ID (described in connection with main
storage pools).

• Total processor time allowed specifies the amount of
processor time that a process may consume. When
this limit is reached, an event is signaled.

• Maximum temporary auxiliary storage allowed limits
the total space that can be allocated to objects with
the temporary attribute.

• Default time-out interval applies to instructions that
can place a process into a wait. It specifies (in the
absence of an explicit specification in the instruction
itself) the maximum time the process is to remain in
the wait state. If this limit is exceeded, an exception
is signaled. (Note that the use of the time-out
function is a means to break deadlocks arising from
conflicting lock requests by two or more processes.)

Process external existence state describes the current (at
the instant of the materialize) state of the process:
active, ineligible, suspended, or in a wait.

4-40

The following values can be materialized by the
Materialize Process Attributes instruction, but they
cannot be modified.

• Process auxiliary storage used.

• Total processor time used.

• Number of locks currently held.

• Number of transitions into ineligible wait state.

• Number of transitions into instruction wait state.

• Number of transitions into ineligible wait state from
instruction wait state.

• Number of synchronous read operations to the data
base portion of auxiliary storage.

• Number of read operations from auxiliary storage that
are not associated with the data base.

• Number of write operations to auxiliary storage.

• Additionally, the modifiable attributes previously
described may be materialized.

SYSTEM OBJECT LOCKS

System object locks are used to:

• Ensure the integrity of system objects and operations
involving them when they are shared by two or more
processes

• Provide for the allocation of system objects to
processes

• Provide for the transfer of the allocation of system
objects from one process to another process

The Lock Object, Unlock Object, and Transfer Object
Lock instructions allow direct control of the use or
allocation of system objects. Instructions that operate
on a system object ensure that the use of that object is
not in conflict with any lock held by another process; if
this conflict exists, the operation is not performed and
an exception is signaled. A process can also lock an
object in a way that guarantees the use of the object

. without conflict. The Lock Object instruction provides
the capability to wait for other processes to remove any
incompatible locks on an object.

Types of System Objects That Can Be Locked

Locks control three classes of operations on objects:
materialize, modify, and control.

The lock states guarantee a process the ability to
perform various combinations of these classes of
operations while prohibiting certain combinations to
other processes. For more information on locks and
classes of operations for each instruction, refer to Lock
Enforcement in the System/38 Functional Reference
Manual.

All temporary and permanent system objects can be
locked by a process with one or more of the following
lock types.

Lock Shared Read (LSRD): This lock guarantees the lock
holder the ability to perform materialize operations on
objects. Other users may materialize or modify but not
control the object.

Lock Shared Read Only (LSRO): This lock guarantees the
lock holder the ability to perform materialize operations
on the object. Other users may only perform materialize
operations.

Lock Shared Update (LSUP): This lock guarantees the
lock holder the ability to perform materialize and modify
operations on the object. Other users may materialize
and modify but not control the object.

Lock Exclusive Allow Read (LEAR): This lock guarantees
the lock holder the ability to perform materialize and
modify operations on the object. Other users may only
materialize the object.

Lock Exclusive No Read (LENR): This lock guarantees
the lock holder the ability to perform any operation on
the object. Other users may not operate on or lock the
object .

Lock Request Granting Algorithm

The basic allocation rules are:

• Only one process can hold an LENR lock on a system
object at any time. No other process can hold any
other lock on that same object.

• Only one process can hold an LEAR lock on an
object, but other processes can simultaneously hold
LSRD locks on that object. LEAR is not compatible
with the LSUP, LEAR. LSRO, or LENR locks held by
other processes.

• One or more processes can hold an LSUP lock on an
object while other processes are also holding LSRD
or LSUP locks on that object. LSUP is not
compatible with the LSRO, LEAR, or LENR locks
allocated to other processes.

• One or more processes can hold an LSRO lock on an
object while other processes are holding LSRO or
LSRD locks. An LSRO lock is not compatible with
the LSUP, LEAR or LENR locks allocated to other
processes.

Supervisor and Control Functions 4-41

• One or more processes can hold an LSRD lock on an
object while other processes are holding LSRD,
LSRO, LSUP or LEAR locks. An LSRD lock is not
compatible with an LENR lock held by any other
processes.

• A process can hold object locks of one or more lock
types on an object if the previous rules are not
violated. Therefore, a process can be allocated all
five types of locks on an object if, and only if, it is
the only process that holds any object lock on the
object.

Table of Lock States: The lock granting rules are
summarized in the following table:

Lock State Lock States Unavailable to Other
Requested Processes

LENR LENR. LEAR, LSUP, LSRO, LSRD

LEAR LENR, LEAR, LSUP, LSRO

LSUP LENR, LEAR. LSRO

LSRO LENR, LEAR. LSUP

LSRD LENR

A maximum of 57 344 locks, implicit locks, and data
base entry locks can exist at anyone time.

Lock Coexistence Graph: An arrow between two lock
types indicates possible coexistence by different
processes.

4-42

Guaranteed Operations
to This Process

Materialize, modify, control

Materialize, modify

Materialize, modify

Materialize

Materialize

J

Operations Allowed to Other
Processes

None

Materialize

Materialize, modify

Materialize

Materialize, modify

Lock Exclusion Graph: An arrow between two lock
types indicates a conflict by different processes.

.- _ - No __

".. -" __ -No_ _ ...
"....

tf .. " ,

N8 LE,NR ~NO -e.JNSR:! Q , \ 0.J.=T
\ \ I

" No N~
" '"No I

No '.. I "... '~ /' --- ... ~'
A lock may be granted or refused, but a lock can never
preempt an existing lock on a system object.

Any -combination of lock types is allowed when only one
process is holding locks on a system obje~t. For
example, the process can lock a system object with all
five lock types. The process can unlock each lock in any
sequence. A process may also lock an object multiple
times with the same lock type. Each of these multiple
locks must be individually unlocked.

Two or more processes can each hold more than one
lock type on a system object as long as these lock types
are allowed to coexist. The processes can unlock the
more restrictive lock at a later time when only the less
restrictive lock type is needed.

The requesting process is put into the lock-wait state if
the wait option is specified by the requesting process
when a lock being requested conflicts with a lock held
by another process. Otherwise, an invalid lock state
exception is signaled.

When multiple processes are waiting for lock requests
to be granted, the lock request granting algorithm is as
follows:

• For all processes that are requesting a lock on a
system object, dispatch the processes in their
process priority if there is no lock holder on the
system object.

• If there are one or more lock holders on the system
object, dispatch the processes to determine whose
requesting lock types can coexist with the existing
locks on the system object. Dispatching is based on
priority.

Figure 4-2 shows an example of a process unlocking an
object for which other processes are contending. When
process P1 deallocates system object A by unlocking its
LEAR lock, processes P3, P4, and P5 are dispatched.
However, process P5 resumes waiting because the
LENR lock is not allowed to coexist with any other lock
type. The machine attempts to grant the lock request to
the process (P3 or P4) with the higher dispatching
priority. The process not granted its lock request
resumes waiting.

LEAR

P1

Lock-Holding
Processes

Waiting
Process

t
I
I
I
I I
I I
I I

LSRD

P2

I L::P II L::R II ~::R I
Competes by

Priority

I

Figure 4-2. Multiple Lock Holding and Waiting Processes

Supervisor and Control Functions 4-43

Sharing Data Within a System Object

There is no lock enforcement on bytes or strings of
bytes within a space object or a space associated with a
system object. Even though a space object is locked
with an LEN R lock, any process can still operate on the
data in the space. In this case, the user must follow his
own conventions in order to serialize operations.

When the entries in a data space system object are to
be updated, the cursor effectively locks them.

Implicit Locks

Certain instructions cause locks to be implicitly applied
on system objects. These implicit locks represent an
implied allocation of these objects to a process. For
example, the Activate Cursor instruction causes an
implicit lock to be applied to the cursor. This lock is
implicitly removed when the cursor is deactivated. The
user cannot explicitly unlock an implicit lock with the
Unlock Object instruction. Implicit locks, as well as
user-applied explicit locks, can be materialized to
determine how the system objects are allocated among
processes.

Transferring Locks

Use the Transfer Lock instruction to transfer a lock on a
system object from its present lock holder to another
process.

Transferred locks must not create a conflict with other
process locks. For example, if a process has both an
LSRD and an LEN R lock on the same object, neither of
these two locks can be transferred because that would
create a violation of the locking rules. Because the
transfer of locks is performed one lock at a time, a
request to have both locks transferred by one instruction
is not allowed. In this case, unlock the less restrictive
lock (LSRD) and transfer only the most restrictive lock.
Transferring locks is logically equivalent to the sending
process unlocking the object, one lock at a time, and the
receiving process locking it without having to wait.

Locks can also be transferred by the Initiate Process
instruction from the initiating process to a new process.
Implicit locks cannot be transferred.

4-44

Locking a Space Location

The Lock Space Location instruction applies a symbolic
lock to a specific space location. However, even though
the location is locked, this does not prevent any byte
operation from referencing or modifying that location,
nor does it prevent the space from being extended,
truncated, or destroyed. Otherwise, space location locks
follow the normal locking rules with respect to conflicts
and waits.

Unlocking a Space Location

The Unlock Space Location instruction removes locks
from a space location. The locks must be held by the
process that issues the instruction. Otherwise, an
exception is signaled. When multiple locks of the same
lock state for the same space location need to be
removed, this instruction must be issued a number of
times up to the number of locks held for the space
location.

The space location need not exist when this instruction
is issued, but the space pointer must be a valid pointer.

Materializing Locks

The Materialize Selected Locks instruction causes the
locks (for either objects or space locations held by the
process issuing the instruction) to be materialized.

The Materialize Object Locks instruction causes the
current lock status of either an object (identified by a
system pointer) or a space location (identified by a
space pointer) to be materialized.

The Materialize Process Locks instruction causes the
lock status either of a process identified by a system
pointer or of the process that issues the instruction to
be materialized.

The Materialize Data Space Record Locks instruction
causes the current lock status of a data space record to
be materialized.

The Materialize Process Record Locks instruction causes
the current allocated data space record locks held by a
process to be materialized.

J

Unlocking System Objects

The process that is the current holder of a system
object lock is allowed to unlock that system object lock.
Any number of the locks held by a process on a system
object can be unlocked with one unlock instruction.
Each removed lock reduces by one the lock count of
that lock type held by that process. Therefore, if the
process had locked the system object with one lock
type more than once, the same number of unlock
requests must be issued to remove all locks of that
type. When a process is holding a lock and that process
is terminated, then all objects locked by that process are
released.

Implicit locks held by any process cannot be unlocked
with the Unlock Object instruction. These locks are
implicitly unlocked according to conditions under which
the instruction applies these locks. Implicit locks and
user-applied locks that are held by a process are always
unlocked during the termination of that process.

When an object is destroyed, all locks for that object are
released.

Deadlock

Deadlock occurs when two or more processes are
waiting to use an object without which they cannot
continue, but that object is presently locked to one of
the other waiting processes. The processes are
deadlocked because each is waiting for one of the other
processes.

Approach to Reducing Deadlock Situations

In deadlock detection, an algorithm is used to determine
whether a deadlock between two or more processes
would occur when a process goes into a wait for a lock.

In deadlock prevention, if waiting for a certain lock
could result in a deadlock, the lock is not granted, the
process does not wait, and therefore the deadlock is
prevented. This implies deadlock detection at allocation
time, but does not imply that the machine is
deadlock -free.

Deadlock-free means that deadlocks are not only
detected and prevented, but all processes are allowed to
proceed to completion without getting into deadlocks
and without knowledge of the existence of other
processes during their execution.

Supervisor and Control Functions 4-45

The basic approach for deadlock prevention is to reduce
the possibility of deadlocks by requiring System/38
programs to follow certain programming conventions
and by being able to detect deadlocks.

Because sharing of objects is allowed, only processes
that require exclusive use of objects can get into
deadlocks. By observing certain programming
conventions, the possibility of deadlock is reduced in
what is basically a demand allocation machine.

The following two programming conventions do not
imply preallocation of all resources required by a
process; they apply only to the known resource
requirements at the time the resources are needed.
Each convention has the same effect in reducing the
occurrence of deadlocks due to sequence of resource
allocation; the second convention requires an allocation
order be established and observed by all programs for
all system objects.

• All known system objects that are required before a
process can continue its processing are allocated
collectively; if anyone allocation request is not
granted, all system objects that are already allocated
are deallocated. The request for allocation is repeated
at a later time until all system objects are collectively
allocated.

• Before a process can continue processing, all known
and required system objects should be allocated in
the same order by all programs. This allows a
process to wait for the unavailable system object.

The use of these programming conventions can reduce
deadlock situations and detect deadlocks due to
sequence of resource allocation. This approach,
however, does not ensure that the machine is
deadlock-free.

4-46

Deadlock Due to Sequence of Lock Application

The simplest case of interlocking deadlock is shown in
Figure 4-3. Process Pl is holding object B and waiting
for object A; at the same time, process P5 is holding
object A and waiting for object B. Because preemption
does not occur, processes Pl and P5 are deadlocked
with objects A and B.

Notice the deadlocked loop that exists from P5, to
Object A, to Pl, to Object B, and back to P5. This loop
represents the deadlock between processes Pl and P5
over objects A and B.

Wait
P5 +-----------------,

I
I
I
I

Hold I
I
I
I

Hold

Pl

Figure 4-3. Deadlocked Processes (P1 and P51

J

J

J

Figure 4-4 shows that for a process to be deadlocked
with another process or processes, the process must be
simultaneously holding a lock on a system object as well
as be waiting with a lock request for another system
object. Therefore, in Figure 4-4 processes P2, P3, P4,
P7, and P8 cannot be deadlocked with other processes
because, individually, none of them is both holding and
waiting for system objects. However, two deadlocked
loops do exist:

• P1, object B, P5, object A

• P1, object D, P6, object B, P5, object A

The first loop D is the simple case; the second loop II
involves the deadlock of three processes with three
system objects.

o
t
I
I
I
I
I
I

.,.,.!,,,.

Legend:

----+= Wait
-----. = Hold

'P~
t
I
I
I
I
I
I
I

Figure 4-4. Deadlocked Processes (P1, P5 and P6)

Deadlock Detection and Resolution

Because resources are allocated either when needed or
on demand, a deadlock situation is not known until it
occurs.

Deadlock situations can be resolved when a lock-wait
time-out occurs. At this time, the wait by a process for
a lock is released.

When a deadlock occurs, isolate the source of the
deadlock. Check all processes for the necessary
conditions for a deadlock (a process that is
simultaneously holding a lock and waiting for another
one). Processes that satisfy the necessary conditions
should be further checked with the process-object
sequence test as illustrated in Figure 4-4. If one or
more closed loops are found, a deadlock has occurred.
Terminating anyone of the processes in each loop
eliminates the deadlock situation.

Object C

P6
A-
I
I
I
I
I
I
I
I

Supervisor and Control Functions 4-47

J

Data Base Management

The data base management functions enable the user to
store, manage, and use data.

Data is made up of individual data fields. Groups of
data fields are stored as entries (records) in objects
called data spaces. An entry is the basic unit of a data
space with each entry having the same format as all
other entries in that data space. Entries can be inserted,
retrieved, updated, and deleted. Through use of a
cursor, the user can specify a view (definition) of the
entry to be a subset of the actual fields, to be in a
different order, or to have different attributes than the
actual entry in the data space.

When specifying views for retrieving data, the following
additional functions are supported. The user can
specify:

• Selected entries (selection criteria) to view.

• A view in the form of a derived entity (for example,
multiply the contents of a field by 10).

• A joined view that allows mapping and/or deriving of
entities from multiple data space entries into a single
logical view.

• Group-by functions that allow clustering of one or
more data space entries into a single image the user
can view. The image is comprised of cumulative
results of specific fields from each entry (for example,
return the sum of salaries for a group of employees,
or return the maximum salary of a group of
employees).

Through use of the data space index, the user can caUSf.
the entries to appear to be ordered differently than they
actually are. Data spaces and data space indexes can be
shared among concurrent processes.

Chapter 5. Data Functions

MAJOR DATA BASE OBJECTIVES AND
CHARACTERISTICS

The major data base objectives are to:

• Provide the basic functions for the management of
data (the ability to insert, retrieve, update, and delete
data).

• Provide late bound views of data to meet the
changing needs of application programs. Late bound
view attributes include the organization, location, and
attributes of the data.

• Provide multiple views of data. Different applications
can view the same data differently without
duplication of the data. Multiple views include
multiple orderings of the same data as well as
transformations between the stored representation
and the user's view of the data.

• Provide representation independence of managed
data through the use of symbolic addressing of data
and transformation capabilities. This enables the user
to be independent of the internal representation of
data.

• Provide security of managed data by accessing the
data only via interfaces that are part of the
architecture and through support of system
authorization.

• Provide integrity of managed data by storing and
enforcing the user-defined description of individual
fields in the managed data. Data integrity is also
provided via interlocks for shared access to managed
data in a multiprogramming environment and through
automatic recovery procedures in case of machine
failure.

Data Functions 5-1

DATA BASE OBJECTS

The following system objects are used by the data base:

• Data spac&-An object containing entries that can be
inserted, updated, retrieved, or deleted by a program.
An entry is an ordered collection of fields, each with
a type and length. All entries in a data space are
homogeneous; that is, all entries in a data space have
identical field definitions.

Entries in a data space are positioned by arrival
sequence with each entry having a permanently
assigned ordinal number identifier. Deleted entries
continue to occupy space because the system will not
reuse a deleted entry until a user explicitly uses that
space.

• Data space index-An object that can logically order
data space entries independently of their physical
order in the data space. A data space index can be
created over more than one data space, and more
than one data space index can exist for a data space.
The creation of a data space index is similar to, but
much more powerful than, a sort of the data. With a
data space index, minimal duplication of data occurs,
and the new ordering is permanently maintained by
the system. Changing a data space entry results in
automatically updating all data space indexes that
reference that data space.

5-2

• Cursor-An object that provides access to data space
entries. A cursor is not only the user's interface to
the data base but, in addition, it contains the
definition of the user's view of the data. This
definition directs the mapping that takes place to and
from the user's buffers. The user's view of the data
can be made up of a subset of the fields, and with
different field attributes (data type and length) from
those in the data space entry. The mapping,
conversion, selection, joining, grouping, and derive
operations are done implicitly from the information
contained in the cursor object.

Cursors can provide access to data space entries in
the same order as they are stored in the data spaces
or through the logical ordering provided by a data
space index. Cursors can be created over multiple
data spaces. The use of cursors permits concurrent
access to the same data space by more than one
process.

A cursor has two states, activated and de-activated.
The creation of a de-activated cursor effectively
prebinds a set of data (data spaces), a logical
ordering of the entries (a data space index), and the
user's view of the various entries (data mapping).
The activation of a cursor binds these elements to a
specific process and maintains information specific to
that process, (for example, the location of the
currently addressed entry). An activated cursor can
be used only by the process that caused its
activation.

J

J

L USING DATA BASE FUNCTIONS

Creating a Data Space

A data space is created by building a data space
template and then issuing a Create Data Space
instruction. The data space template describes the entry
format for the data space, the number of fields, their
order within a data space entry, and the attributes (type
and length) of each field. Optionally, a default values
entry can also be provided. These values are used for
fields not present in the user's view of the entry when
an entry is being inserted into the data space.

Creating a Cursor

A cursor is created by building a cursor template and
then issuing the Create Cursor instruction. The cursor
template specifies the data to be accessed through the
cursor (the data spaces). whether the user will see the
data as actually ordered or as seen through a data space
index, and specifies the user's view of the various data
space entries.

Associated with each data space is a mapping template
that defines the user's view. The user can specify both
an in- and an out-mapping for each data space. The
in-mapping is used for inserting and updating entries,
while the out-mapping is used for retrieve operations.
The in- and out-mapping can be either identical or
different. The in- or out-mapping specification can be
identical to the physical entry; or it can specify a subset
of the fields, a different order of the fields, or different
attributes for any or all fields. Through proper definition
of the mapping attributes, the resultant cursor can be
created so that individual fields can either be retrieved
and not inserted, or be inserted and not retrieved.

In conjunction with out-mapping, derived field
processing can be performed on fields from the entry
(for example, multiply a field by 5).

Optionally associated with each data space is a selection
template that filters out entries that should not be
addressed via the specific cursor. Without this selection
template, each entry in the data space is available for
retrieval. With selection criteria specified, only those
data space entries that satisfy the selection criteria are
retrievable and available for viewing. This selection
criteria is associated only with data retrieval.

A user can specify to join data space entries when
creating the cursor. Joining is the process of using
multiple data space entries as sources for fields in a
single resultant 'joined entry: The data spaces
associated with the cursor are the sources of the data
space entries to be joined. Each data space contributes
an entry, with fields extracted as defined at cursor
creation. The resulting image, or 'joined entry: is then
returned and viewed as a single entry. The joining
criteria is specified ina cursor creation time template.
Equal joins are allowed.

Join is supported only for retrieval operations (read only
join).

The user can specify a join that joins multiple data
spaces to one data space (many to one) and a join that
joins multiple data spaces to multiple data spaces (many
to many).

The user can optionally specify group-by operations
when creating the cursor. Group-by allows clustering of
one or more data space entries into a single image for
viewing.

Group-by can be specified for both join and non-join
cursors. Group-by can also be specified for cursors
using data space indexes and for those without.

Group-by is performed only through the Retrieve
Sequential Data Space Entries MI instruction. The user
can specify selection criteria according to the results of
the group-by operation. Therefore, only those results
that interest the user will be returned (for example,
return the maximum salary of different groups of
employees only when the maximum is greater than
$200,(00). The group-by selection criteria is specified
by a selection template to the Create Cursor instruction.

Although the data base supports security only on the
object level. differences in the authorizations required to
use the Create Cursor and Activate Cursor instructions
allow the implementation of field level security through
the use of a subset of the fields and/or different in­
and out-maps.

Data Functions 5-3

Activating a Cursor

A cursor is activated by the Activate Cursor instruction.
Activating the cursor binds the cursor. data spaces. and
data space index (if used) to the process.

The activated cursor can be used only by the activating
process. but the data spaces and data space index can
be shared among multiple processes. The activated
cursor. in addition to controlling the mapping to and
from the user's view. also contains process-dependent
information. The activated cursor contains the current
position of the cursor (which is the entry to be retrieved)
and the starting position to use in order to locate the
next or previous entry.

Data space entries can be locked to a cursor and.
therefore. to a process in order to control their access
between the time their values are retrieved and the time
they are subsequently updated or deleted.

Inserting an Entry

A new entry is inserted into the data space via an
activated cursor and the Insert Data Space Entry
instruction. The system determines the location for the
new entry and then maps the data into the data space
according to the field descriptions in the data space and
the user's view of the data as defined in the cursor. The
user selects the data space into which the entry is
inserted by specifying that data space in the option list
of the Insert Data Space Entry instruction or the Insert
Sequential Data Space Entries instruction. The Insert
Data Space Entry instruction inserts a single data space
entry into the specified data space. The Insert
Sequential Data Space Entries instruction inserts as
many entries as requested into the specified data space.
When the entries are inserted. all valid data space
indexes over the data space are updated to reflect these
entries. Inserting an entry does not require or change
the positioning of the cursor.

5-4

Finding an Entry without a Data Space Index

To retrieve. update. or delete any data space entry or
joined entry. the cursor must first be positioned to that
entry. An activated cursor is positioned to an entry by
the Set Cursor instruction. If the entry is to be updated
or deleted, the user also specifies that the entry is to be
locked.

The options available in positioning a cursor (without a
data space index) are: first, last. next, previous. same.
relative. and ordinal. The cursor can be positioned to
the first or last entry in any data space. The next or
previous entry can be found from the current position of
the cursor. The relative option allows positioning of the
cursor relative to the current position of the cursor (for
example, here-plus-ten or here-minus-four). Ordinal
positioning specifies a specific entry (for example.
forty-third entry).

Retrieving an Entry

Retrieving a Single Entry

The Retrieve Data Space Entry instruction retrieves the
entry indicated by the current position of the cursor.
The system retrieves the entry from the data space and
maps it into the program's storage area according to the
field descriptions in the data space and the user's view
of the entry as defined in the cursor.

Retrieving Multiple Entries

The Retrieve Sequential Data Space Entries instruction
provides the functions of multiple set cursor and retrieve
data space entry operations. During the retrieve
operation. the system sets the cursor to the adjacent
entry in the data space and then maps the entry into the
program's storage area.

Retrieve Sequential allows the positioning and retrieval
of data in a next or previous direction.

J

Updating an Entry

The Update Data Space Entry instruction causes an
update of the entry that has been locked to the cursor
for the longest time. In order for an entry to be
updated, the entry must first be locked via the Set
Cursor instruction. Then the entry can be retrieved via
the Retrieve Data Space Entry instruction. The user
processes the retrieved data (if any) and modifies it in
the user program. The user then requests, via the
Update Data Space Entry instruction, that the
replacement of the updated data be moved back into
the data space. The system maps the data back into the
original entry in the data space according to the field
descriptions in the data space and the user's input view
of the entry (as defined by the input mapping definitions
associated with the cursor. If the update causes a
change in the value of a key field, all valid data space
indexes that refer to the data space are updated to
reflect the change. The entry is then unlocked from the
cursor.

Deleting an Entry

The Delete Data Space Entry instruction selects the data
space entry that has been locked to the cursor for the
longest time and deletes it from the data space in which
it resides. An entry is deleted from a data space in a
two-step operation: the user must lock the desired
entry in the data space via the Set Cursor instruction;
the user then requests the deletion of the entry from the
data space via the Delete Data Space Entry instruction.
All valid data space indexes over the data space are
updated to reflect the deletion of the entry. (The entry
cannot be retrieved after deletion.) The entry is then
unlocked from the cursor. A deleted entry leaves a void
in the data space that can only be reused through a
special option on the Set Cursor and Update Data Space
Entry instructions.

De-activating a Cursor

A cursor can be explicitly de-activated through use of
the De-activate Cursor instruction or implicitly through
use of the Destroy Cursor instruction. De-activating a
cursor causes all entries locked to the cursor to be
unlocked and the cursor, data spaces, and data space
index to be detached from the process. De-activating a
cursor ensures that all inserts, updates, and deletes are
reflected in auxiliary storage.

Destroying a Cursor

A cursor is removed from the system through use of the
Destroy Cursor instruction. If the cursor is not active,
the cursor is destroyed. If the cursor is active to the
current process, the cursor is first de-activated and then
destroyed.

Destroying a Data Space

A data space is removed from the system through use
of the Destroy Data Space instruction. No active cursors
or data space indexes can be over the data space when
the Destroy Data Space instruction is executed.

Creating a Data Space Index

A data space index is created by providing an index
template and issuing a Create Data Space Index
instruction. The index template contains a complete
description of the index to be built, points to all data
spaces covered by this index, and defines a composite
key for each data space. A composite key is made up
of fields from the data space entry and, optionally,
single-character constants called fork characters.

The Data Base Management user can optionally specify
to create the index from an existing data space index. A
data space subset under the existing data space index is
specified as a subset to be associated with the data
space index the user will create.

The data space index provides a logical ordering for
entries in the data spaces by defining a key for each
entry from each data space and then ordering the keys
based on their values. Ordering attributes such as
ascending or descending sequence, internal form,
algebraic or absolute value, zone or digit force, and
alternate collating sequence may be specified for each
field from the entry in the key. The only difference
between the keys for different entries from the same
data space are the values of the fields in the entry that
are used in the key.

The user can optionally define derived mapping
operations to be performed on the fields before building
the keys from them.

Data Functions 5-5

The fork characters and ordering attributes are the same
for every entry within a data space. But they need not
be the same for different data spaces or for different
views of the same data space in a data space index.
After the keys are built according to the field attributes
and fork characters, the keys for all entries in all data
spaces addressed by the data space index are ordered
in ascending sequence. This sequence defines the
logical ordering of the entries as seen through the data
space index.

A data space index does not have to contain a key for
every data space entry und er it. A selection routine can
be supplied in order to determine whether or not a key
should be included. This optional routine (supplied when
the data space index is created) is permanently bound to
the data space index. The selection criteria may also be
supplied in the form of a Selection Template without
providing a separate routine.

Each time an additional entry is inserted into the data
space or an entry is modified within a data space,
selection determines, based on the values of fields
within the entry, whether the index is to address the
entry.

Finding an Entry with a Data Space Index

When a data space index is used to retrieve, update, or
delete any entry, the cursor must first be positioned to
that entry through use of the Set Cursor instruction.
This is necessary because the positioning options are
quite different from those without a data space index.
The possible options are: first, last, next, previous, next
unique, previous unique, next equal, previous equal,
same, relative, ordinal, and five kinds of keyed
operation. The relative and ordinal options function just
as they do without an index.

The first, last, next, and previous operations find the
appropriate entries with respect to their logical order as
designated by the index rather than with respect to their
physical order. The next unique and previous unique
operations find the next or previous entry whose key
differs from the key associated with the currently
addressed entry. The next equal and previous equal
operations find the next or previous entry whose key is
equal to the key associated with the currently addressed
entry. The key operations work with a user-provided
key and find the entry whose key is before, equal or
before, equal, equal or after, or after the specified key.
All other functions, such as the locking of an entry,
work the same with or without a data space index.

5-6

Retrieving Multiple Entries with a Data Space Index

The Retrieve Sequential Data Space Entries instruction
can be used even though the cursor addresses data
space entries through a data space index. Multiple set
cursor and retrieve data space entry operations are
performed in the logical order designated by the data
space index. Data space entries are not locked for
update through the Retrieve Sequential Data Space
Entries instruction.

Destroying a Data Space Index

A data space index is removed from the system through
use of the Destroy Data Space Index instruction.

Copying Data Space Entries

The Copy Data Space Entries instruction allows the user
to copy data space entries. Entries in one data space
can be copied to another data space. In addition, entries
can also be copied from a data space back to the same
data space. This instruction allows various options such
as:

• Remove deleted entries

• Limit the number of entries to be copied

• Locate the entries to be copied

• Copy the entries in the logical order provided by a
data space index or in the physical order of the
entries in the data space

j

Shared Data Spaces

Data spaces and data space indexes are objects that
can be shared. Multiple user processes can access a
shared data space or a data space index concurrently.
There are six lock states that a data space can assume:

Other Processes Can
Lock State Have

No lock 1, 2, 3, 4, 5, 6

2 Shared read (LSRD) 1, 2, 3,4, 5

3 Shared read only 1, 2, 3
(LSRO)

4 Shared update 1, 2, 4
(LSUP)

5 Exclusive-allow read 1, 2
(LEAR)

6 Exclusive no read 1 only
(LENR)

The Lock Object instruction is used to lock a data space
to a process. This instruction can be issued before or
after the Activate Cursor instruction. (A data space can
be used even though it is not explicitly locked to a
process.) The activation of a cursor applies an implicit
shared read lock on the data space index, and an
implicit lock on the data spaces with the level identified
in the activate cursor template; the default is a shared
read lock. This prevents data space indexes and data
spaces from being destroyed by other processes.

Lock states 1 and 2 (no lock and shared read) permit
multiple processes to concurrently update the same data
space. This means that some further level of lock
protection must exist at the entry level. Data base
management, therefore, locks the entry to the cursor
between the time the cursor is positioned and the time
the entry is updated or deleted. This guarantees that
only one process can be changing the entry. Figure 5-1
is an example of a shared data space.

1. User A is
updating
entry 1.

3. User C is
inserting
newentri

-

-

es.

Data Space

4 Entry 1

Entry 2

Entry 3

Entry n

4

Figure 5-1. A Shared Data Space

-

2. User B is
retrieving
entry 1.

III
4. U ser 0 wants to

pdate entry 1
must wait until
ser A is finished).

u
(

u

The Set Cursor (for update) instruction applies an
implicit shared update lock on the data space (if the
Activate Cursor instruction applied a shared read lock or
a shared read-only lock on the data space), and an
implicit exclusive-allow read lock on the data space
entry. This lock arrangement prevents other users from
attempting to concurrently update the data space entry;
but the locked entry can be retrieved by a different
process if its Set Cursor instruction does not specify
that the entry be locked. While an entry is being
updated, data base management prevents any other
access to the entry to ensure that a partially updated
entry cannot be retrieved by a different process.

Data Functions 5-7

Multiple Locked Entries

Multiple entries can be locked before they are updated.
This function is useful in a shared environment because
a program can guarantee that all entries to be updated
are actually available (not held by another program)
before starting to update them. The lock on the entry is
applied when the entry is addressed via a Set Cursor
instruction that specifies the lock for update option.
Addressability to the entry is put in a queue that
identifies all entries that have been locked through the
cursor. The entry can be added to the beginning or the
end of the queue. When an Update Data Space Entry
instruction or a Delete Data Space Entry instruction is
issued, addressability to the first entry referenced via the
queue (the entry that is locked at the beginning of the
queue) is removed and then used to address the entry
to be modified.

If an operation consists of five entries to be modified,
issuing a Set Cursor instruction for each entry locks all
the entries before any changes are made. The entries
can then be changed in the data space by issuing five
successive Update Data Space Entry instructions or five
successive Delete Data Space Entry instructions. This
procedure automatically clears addressability to the
entries from the queue in FIFO order.

A potential deadlock situation exists anytime a process
sequentially locks more than one resource. Deadlocks
can occur when locking data space entries because data
space entries are considered to be a resource (from the
standpoint of locks). Resource management provides
the basis of a deadlock prevention mechanism by way
of the lock wait time-out exceptions. When such an
exception occurs, it can mean that a potential deadlock
has occurred. Generally, the user should respond to a
lock wait time-out exception by releasing all resources
held by the process and then once again attempt the
lock operations.

5-8

The user can constrain the order in which locks are
acquired. This creates an environment where only
locked data space entries need to be released and
relocked when a time-out occurs while an attempt is
being made to lock a new data space entry.

Unlike other resources in the machine, a single process
cannot hold more than one lock at a time on a data
space entry. It is possible, then, for a process to appear
to deadlock itself by attempting to lock an entry that it
has already locked. To assist in diagnosing this
condition in the user program, data base management,
when signaling the lock wait time-out exception, returns
an indication that the entry is already locked to the
current process.

Ensuring Changes

Ensuring changes is the process of guaranteeing that
changes to the data base are in auxiliary storage as
protection against a system failure. Data base
management provides several methods of ensuring
changes to the data base.

Ensuring One Entry at a Time: The Set Cursor
instruction has a forced write option that is specified
when a data space entry is locked. Specifying this
option causes the corresponding update or delete
operation to force the entry to auxiliary storage before
completion of the instruction. This option is also
available on the Insert Data Space Entry instruction.

Ensuring Multiple Inserts: The Insert Sequential Data
Space Entries instruction has a forced write option that
causes all of the entries inserted by the instruction to be
forced to auxiliary storage before completion of the
instruction.

Ensuring Multiple Entries: The Ensure Data Space
Entries instruction causes data spaces that had entries
changed through the specified cursor to be transferred
to auxiliary storage.

Note: The Ensure Data Space Entries instruction does
not necessarily ensure the data space indexes that
reference the data space.

J

L De-activate Cursor: The De-activate Cursor instruction
performs the same function as the Ensure Data Space
Entries instruction would perform on the same cursor.

Ensure Object: The Ensure Object instruction can be
used at any time to ensure a data space or a data space
index. If the object is a data space, it will be transferred
to auxiliary storage. If the object is a data space index,
it will be transferred to auxiliary storage along with all
associated data spaces.

Data Space Index Maintenance

Data base management guarantees that every valid data
space index correctly identifies the entries in the data
spaces it addresses. To do this, data base management
automatically maintains every valid data space index in
the system.

To maintain this guarantee, data base management must
invalidate a data space index any time there is any
question as to its correctness. During execution time. an
event is used to indicate to the user that the data space
index was invalidated; the object recovery list is used for
this same purpose during the recovery portion of an IPL
(initial program load).

A unique keyed data space index might become invalid
during execution time. If this occurs. data base
management does not allow any inserts or updates to
the data spaces under the invalid data space index. This
restriction assures that the data space index can be
rebuilt.

Note: This restriction does not apply to data spaces
under explicitly (user-requested) invalidated data space
indexes.

Indexes are rebuilt through the Data Base Maintenance
instruction; if a user does not want to have a data space
index maintained. he can either invalidate it through use
of the Data Base Maintenance instruction. or initially
create the data space index invalid so that it will not be
continually maintained.

Data base management also supports a delayed
maintenance option on data space indexes (except when
the data space index requires unique composite keys).
That is. if a data space index needs maintenance and no
active cursor references that specific index. then
maintenance is delayed until either a cursor that
references the index is made active or until the index is
explicitly rebuilt by the Data Base Maintenance
instruction.

Materialization of Data Base Object Attributes and
Statistics

A materialize instruction can be issued for each data
base object. This allows the user to materialize either
the creation template for the object or the current
statistics for that object.

Modification of Data Base Object Attributes

A modification instruction can be issued for the Data
Space and Data Space Index data base objects. which
allows the user to modify certain creation and
operational attributes for that object.

Recovery Considerations

Changes to Data Space Entries: Data base management
guarantees sequentiality of inserts but does not
guarantee the integrity of updates or deletes for data
spaces active at the time of a system failure. Insert
sequentiality means that. after recovery. if an inserted
entry is in the data space. every previously inserted
entry in that data space is also present.

Data Functions· 5-9

Data Space Entry Locks: All data space entries that are
locked when a system failure occurs are automatically
unlocked when an IPL is performed.

Implicit Locks: All implicit locks on data base objects are
automatically removed during an IPL.

Data Space Indexes: A data space index, which contains
addressability to an active data space during a system
failure, may be invalidated or damaged during an IPL.
The invalidated or damaged data space index is listed in
the object recovery list during IPL.

Active Cursors: A cursor that is active during a system
failure will appear to be de-activated following an IPL
and will be recovered and activated when the next
Activate Cursor instruction is issued to that cursor.

Temporary Objects: All temporary objects are destroyed
when an IPL is performed.

Creates: All data base objects being created at the time
of system failure are destroyed when an IPL is
performed.

Data Space Indexes Being Rebuilt: Any data space index
being rebuilt at the time of the system failure is
invalidated and listed in the object recovery list when an
IPL is performed.

Data Space Being Reorganized: When a system failure
occurs while a data space is being reorganized through
the Copy Data Space Entries instruction, that data space
will be either unchanged or completely reorganized when
an IPL is performed. Data space indexes over the data
space might be invalidated during the IPL.

Data Spaces Being Copied To: Any data space that is
the receiver for a Copy Data Space Entries instruction
during a system failure, might contain all the copied
entries, some of the copied entries. or none of the
copied entries after an IPL is performed. If some of the
copied entries are contained in the receiving data space,
the sequentiality of inserts applies.

5-10

Data Spaces Being Journaled: Any data space that is
being journaled will be synchronized with the journal
during an IMPL (initial microprogram load). All changes
for the data space that have been entered in the journal
space are then reflected in the data space.

User Information after IPL: After recovery, the following
data base information can be materialized by the
Materialize Machine Attributes instruction:

• Objects detected as damaged during IPL (data
spaces, data space indexes, and permanent cursors).

• Data spaces active during a system failure.

• Data space indexes that are invalidated when an IPL
is performed.

• Any activity that was performed as a result of
synchronizing a data space with the journal.

• Any failure to synchronize the data space with the
journal.

Performance Considerations

The following considerations may improve performance
of the data base:

Overlapped Data Base Operations: A program can
process current entries in main storage while fetching
additional entries from auxiliary storage.

Unit of Transfer: When a cursor is created or activated,
the user can specify a unit of transfer. This is used
when the entries not in main storage are to be
processed sequentially. It means that when an entry is
fetched, the adjacent n -1 entries are fetched at the
same time because they are also likely to be used.

Processing Mode: When a cursor is created or
activated, processing mode can be specified to indicate
whether the keys in the data space index and/or the
actual data space entries are to be processed randomly
or sequentially. Processing mode is used by data base
management as an aid in bringing and purging pages to
improve data base paging characteristics.

J

Unit Specification: When a data space or a data space
index is created, a preferred unit can be specified. Data
base management attempts to keep the object on the
preferred unit and indicates, as a return value in both
the create and materialize creation template options,
whether or not the object is all on the preferred unit.
This allows the user to place different data base objects
on separate units in order to control disk loading.

Contiguous Return Bit: When a data space is created,
the user can optionally specify the allocation of a
contiguous space for the data area. At this time or
when the creation template of the data space is
materialized, a contiguous return bit is available to
indicate whether or not the data area of the data space
is contiguous. If the data area is contiguous,
performance in sequential accessing situations may be
improved.

Direct Map: Even though mapping and conversion are
optimized as much as possible, a view that is identical
to the physical format of the entry requires less
processor time than a complicated user's view of the
entry.

Retrieve Sequential Data Space Entries: This instruction
may provide better machine performance than multiple
Set Cursor and Retrieve Data Space Entry instructions
under anyone of the following conditions:

• Numerous entries are to be retrieved from the data
space by the process.

• The number of entries to be retrieved for each
instruction is not excessive relative to the process
storage pool size.

• The entries are to be retrieved in either increasing or
decreasing ordinal number sequence.

This instruction may provide better machine performance
than a combination of one Set Cursor and one Retrieve
Data Space Entry instruction under the following
conditions:

• The entries are to be retrieved in either increasing or
decreasing ordinal number sequence.

• The amount of processing for each entry is minimal.

Insert Sequential Data Space Entries: This instruction
may provide better machine performance than multiple
Insert Data Space Entry instructions under anyone of
the following conditions:

• The size of the interface buffer and the number of
entries to be inserted match the storage pool size.

• Numerous entries are to be inserted into the data
space by the process.

• Duplicate key conditions are not expected.

Optimizing Data Space Index Usage: When a data space
index is created, the user can specify that the index is to
be used for either random or sequential retrieval of
entries through a cursor over the index. Improved
machine performance may result if the processing of the
data space entries through the index is predominately of
the specified type.

Delayed Maintenance: When delayed maintenance is
specified for a data space index, improved machine
performance may result when an insert. delete, or
update operation is performed on the data space entries
under that index. However, the creation or activation of
a cursor over this data space index may require
additional time because the maintenance of the index is
performed at this time. This option is not available
when the index requires unique composite keys.

Journaled Data Spaces: Journal operations (such as
making the journal entries that are related to data space
changes) can cause degradation of machine
performance.

If machine performance is decreased, the user should
determine if the increased processor time is worth the
advantages provided by journal management.

The user should also review the data base management
plan to determine if certain operations (such as Ensure
Data Space) are still being utilized even though they are
no longer needed because of journal operations.

Data Functions 5-11

Data Base Maintenance Functions

The Data Base Maintenance instruction provides six
general functions to aid in maintaining data spaces and
data space indexes.

Rebuild Data Space Index: This function rebuilds an
invalid data space index from the data spaces under it.
Automatic or delayed index maintenance is resumed.

Invalidate Data Space Index: This function invalidates a
data space index. This causes automatic or delayed
index maintenance to stop and the index to be unusable.
The index must be either rebuilt or destroyed.
Invalidating a data space index frees system space for
other uses and also reduces the amount of time required
for index maintenance.

Reset Data Space: This function causes the data space
to be reset so that it no longer contains any entries.

Reset Data Space with Number of Entries Specified: This
function causes the data space to be reset so that the
data space does not contain any entries. In addition,
space is allocated for the specified number of entries.

Increment Maximum Number of Entries: This function
causes the user-specified maximum number of entries
for a data space to be incremented by the amount
specified by the user.

Insert Deleted Entries: This function adds a
user-specified number of deleted entries to the end of
the data space.

Insert Default Entries: This function adds a
user-specified number of entries to the end of the data
space. Each entry contains the default values for all
fields in the entry.

5-12

DATA SPACES

A data space is a system object in which entries of data
reside. An entry is composed of an ordered set of fields
with each field having an associated set of attributes.
(The field is the smallest unit that is recognized by the
data base.) All entries in a data space are
homogeneous; that is, each entry has the same field
attributes as all other entries in that data space. A
program can insert a new entry into a data space; or a
program can update, retrieve, or delete an existing entry.

The Create Data Space instruction is used to create a
data space. This instruction provides a description of all
the fields contained in an entry. This description
remains constant for the life of the data space and
describes how the data is actually stored in the data
base.

When a cursor is created to use a data space, the user
must provide another description called the mapping
t~mplate. The mapping template describes how the user
wants the entries to appear to the user program. The
mapping template is the vehicle used for achieving late
binding, multiple views, and data independence. A
mapping template allows the user to assign different
attributes to fields, rearrange the perceived order of the
fields in an entry, and extract a defined subset of fields
from an entry for use in the using program. The user
may provide two mapping templates when the
transformation of data is different for retrieval than for
insert or update. Thus, the program may be able to
retrieve fields it cannot update and/or insert.
Conversely, the program may be able to update and/or
insert fields it cannot retrieve.

Figure 5-2 shows a data space and the associated
attributes of each of the fields in the data space. This
figure also shows a view of the data space as seen
through a mapping template. Notice that the mapping
template view of the data is different from the actual
data in the data space. The user's view contains only
three fields that appear in a rearranged order and have
different attributes than those actually stored in the data
space.

J

The user's view of entry 2 differs from the actual data in
the data space:

• In the user's view, only three fields are mapped for
retrieval.

• The attributes of field B are represented differently.

• The three fields in the view are in a different order.

User's View

Fields A D B

Attributes
Character Decimal Decimal
(10) (5.2) (5)

Values Jack Jones 123.45 00032

Data Space

Fields A B C

Attributes
Character Binary Binary
(10) (2) (4)

Entry 1

Entry 2 Jack Jones Hex 0020 Hex 00000002

3

4

Entry n

Figure &-2. Data Space and Associated Attributes

D E

Decimal Character
(5.2) (5)

123.45 ABCDE

Data Space Organization

Entries in a data space are stored according to arrival
sequence. (The n+1 entry is stored after the nth entry in
the data space.) A data space can be accessed directly
or indirectly (through use of a data space index). When
accessed directly, the relative positioning and ordinal
positioning types of addressing are allowed.

Relative positioning means that the address of an entry
is based on the address of the currently addressed
entry. Relative positioning can be either forward or
backward. Fetching the previous entry, the next entry,
or the fourth entry after the current entry are examples
of relative positioning.

Ordinal positioning means addressing an entry by its
absolute entry number in the data space. Ordinal
positioning can only be forward (positive) from the start
of the data space. Fetching the tenth entry is an
example of ordinal positioning.

A data space can be created with a limit on the number
of entries to be allowed in the data space. The presence
of this limit can be used to prevent runaway situations.
For example, when the Insert Data Space Entries or
Insert Sequential Data Space Entries instruction
attempts to exceed the limit, an exception occurs. The
Data Base Maintenance instruction can be executed
(with the increment maximum number of entries option
specified) to cause the maximum number of entries to
be incremented by the specified amount. The instruction
that caused the exception can be reissued; the entry or
entries are then inserted.

5-14

DATA SPACE INDEXES

A data space index is a system object that is used to
logically reorder the entries in one or more data spaces.
A data space index accesses the data space
independently of the physical ordering of the entries.
Multiple data space indexes can provide different logical
orderings of the same data. Data space indexes provide
a wide range of functions needed to cover differing
applications. Some of these functions are:

• Addressing by key

• Addressing by generic key

• Relative positioning

• Differing-length composite keys

• Ascending versus descending order with respect to
the key field value

• Signed and unsigned numeric key fields

• Ordering duplicate keys (between data spaces and
within a data space)

• Alternate collating sequence on any key field

• Index addressability to subsets of entries within data
spaces, as defined by the user's selection criteria

• Automatic index maintenance

Types of Addressing for Data Space Indexes

The following types of addressing are allowed with a
data space index:

Key: An entry can be accessed on the basis of its
composite key value.

Generic Key: An entry can be accessed on the basis of
a leading portion of the composite key value.

Sequential: The next or previous entry addressed by the
data space index can be accessed.

Sequential Unequal: The next or previous entry with a
key value not equal to the key value of the current entry
can be accessed.

Sequential Equal: The next or previous entry with a key
value equal to the key value of the current entry can be
accessed.

Approximate Key: If the exact search argument does not
exist in the data space, the entry with the next higher or
lower key value than the key value used as the search
argument is accessed.

Data Space Index Keys

Data space index keys are composed of one or more
fields from the data space entry. The key for one data
space under a data space index is not required to have a
format identical to the composite key for another data
space under the same data space index. In other words,
variable-length keys can exist between data spaces for
the same data space index.

The user can specify logical keys. Normally, the key
fields are taken from the contents of the specified data
space entry field. With logical keys, derived field
operations can be performed on the key field. The
resulting field is used as the key field in the index (for
example, key field = area code field concatenated to
local telephone number field).

The key fields that comprise the composite key can
specify certain attributes to force an ordering. Each key
field can have the following modification attributes:

• Arrange in ascending order-No change is made to
the field.

• Arrange in descending order-The field is modified (in
the index) so that the values appear in reverse order
in the index.

• Algebraic-Valid only for numeric fields. The machine
does whatever is necessary for each numeric "type to
force the values to be ordered from minus infinity to
zero to plus infinity. (Without this, different internal
representations would be ordered differently; for
example binary numbers would be ordered
0,1, ... ,+infinity,-infinity, ... ,-1.)

• Absolute value-Valid only for numeric fields. The
machine does whatever is necessary for each numeric
type to ensure that the values are ordered in absolute
value order.

• Internal form-Neither absolute nor algebraic.

• Alternate collating sequence-Valid only for character
and zoned decimal fields. The machine causes a
character or zoned decimal field to be translated by
the user-supplied alternate collating template.

• Zone or digit force-Valid only for character or zoned
decimal fields. The machine causes the zone or digit
bits of every byte in a character or zoned decimal
field (in the index) to be forced to zeros.

Data Functions 5-15

The same key field cannot be arranged in both
ascending and descending order. Neither can an
algebraic and an absolute value be specified for the
same field. However, other combinations are valid. For
example, if algebraic and descending order are specified
for a numeric field, it would be ordered:
+infinity, ... ,+1,0,-1, ... ,-infinity.

A forced ordering of keys between data spaces can be
achieved through the use of fork characters. A fork
character is a single character constant that is defined
for a specific position in the key of a data space. The
fork character is not contained in the data space entry
itself, but is inserted into the key for that data space
entry when the key is built by the system. The fork
character is the user's way of controlling the ordering of
the index between data spaces. For example, with an
order header file and an order item file, fork characters
can be used to cause the order header entry to appear
before the order item entries for that order when
accessed through the data space index sequentially. To
do this, the following key templates can be defined:

Order Header File Key

Field Fork Character

ORDER NUMBER o

Order Item File Key

Field Fork Character

ORDER NUMBER

5-16

When the entries are accessed sequentially through the
index, the entries appear in the following order:

Key Entry

325 0 ACE HARDWARE, BROOKLYN, NY
325 1 SCREWS 325-106795
325 1
3260
326 1

NAILS 600-239479
JONES HARDWARE, AMES, IOWA

NAILS 1800-239479

Within a data space, the ordering of two or more entries
with duplicate keys is determined by the specification of
one of the following duplicate key rules.

• LIFO (last-in-first-out)-The entry with the highest
ordinal (last inserted) is placed first in the data space
index.

• FI FO (first-in-first-out)-The entry with the lowest
ordinal (earliest inserted) is placed first in the data
space index.

• Unique-Duplicate keys are not allowed. There cannot
be a duplicate key of the same defined length
anywhere in the index.

J

Index Addressability to Subsets of Data Space
Entries

Normally, a data space index contains a key for each
entry in each of the data spaces to be addressed by that
data space index. The user can, however, construct a
data space index that does not contain keys for all of
the entries in the data space(s), but only for a selected
subset of the entries. To accomplish this, the user must
provide a selection routine that determines whether or
not an entry is to be addressed by the data space index.
Or the user can elect to use a selection template to
determine if an entry should be addressed by the data
space index. Either method can be used. The effect of
using the selection template is the same as if the
selection routine was used. A user cannot specify both
of these when creating the index. The user must also
provide a description of the data space entry fields that
are to be passed to the selection routine for each data
space.

Each time the index is updated, the machine calls the
selection routine and the identified fields mapped from
the data space entry are passed to the selection routine.
The selection routine makes a yes or no decision and
then, if the decision is yes, the index maintenance
mechanism updates the data space index.

This allows a data space index to be used as an access
path to any subset of the data in the underlying data
spaces. Because the selection criteria are
user-determined and user-controlled, there is virtually
no limit to the type of selection criteria that can be
applied to an entry except that the decision must be
based entirely on the data in that entry.

Example of Data Space Index Ordering

The following shows the effect of different key
characteristics on the ordering of a data space index.
Assume that a data space index is to be built over the
three data spaces shown in Figure 5-3. The data
spaces represent the following information:

• Data space 1 contains employee master entries that
are indexed by Employee Number.

• Data space 2 contains employee job history entries
that are indexed by Employee Number and Code.

• Data space 3 contains employee education entries
that are indexed by Employee Number and Date.

The intent is to construct the index so that the three
data spaces appear as a hierarchical structure in which
the machine can retrieve an employee master entry,
followed by all of the job history entries, and then by
the education entries for that employee.

Data Functions 5-17

Data Space 1
Employee Master

Employee
Number Data

122

123

Data Space 2
Employee Job History

Employee
Number Code

122 02

123 02

122 04

123 05

122 06

Data Space 3
Employee Education

Employee
Number Date

122 011271

123 010572

122 022072

122 030173

123 040573

Data

Data

Figure 5-3. Data Space Examples for Index Ordering

5-18

The entries are to appear as follows:

Employee Master
Job History

Job History
Educational History

Educational History
Employee Master

This ordering can be achieved by creating an index and
specifying the appropriate fork characters between the
fields of the composite keys as follows:

1. For data space 1 (employee master). the key is:

2.

Employee Number I 0 I

For data space 2 (employee job history), the key
is:

Employee Number I 1 I Code

3. For data space 3 (employee education). the key is:

Employee Number I 2 I Date

J

After the data space has been created, the entries will
be ordered by the index as follows:

Portions of the Key Supplied by the
User

Employee Fork
Number Character Code or Date

122 0

122 1 02

122 1 04

122 1 06

122 2 011271

Data Space 122 2 022072

Index Keys 122 2 030173

123 0

123 1 02

123 1 05

123 2 010572

123 2 040573

Notice that each data space has a different key format;
however, this does not mean that the formats could not
have been the same. The key format for each data
space might have been identical (for example, Employee
Number!. and the fork characters might not have been
used. In that case, the ordering of duplicate keys
(Employee Number) would have been by data space and
within a data space would have been ordered by arrival
sequence.

Notice that the key fields are in ascending order. If the
Employee Number key field had a descending order
attribute specified, the keys with Employee Number 123
would appear before the keys with Employee Number
122. The ordering among the keys with Employee
Number 123 would not change, however, because the
attribute only affected the Employee Number field. The
same is true of the Code field. If it had a descending
order attribute, the three keys with Code 02, 04, and 06
would be reversed as would the two keys with Code 02
and 05. The rest of the ordering would be unaffected.

Portions of the Key
Appended by the Machine

Ordinal
Data Space Entry
Number Number

1 1

2 1

2 3

2 5

3 1

3 3

3 4

1 2

2 2

2 4

3 2

3 5

The fork characters utilized in this example exhibit
significant control over the order among entries
containing the same employee number. The employee
master entries come first, followed by all of the job
history entries for that employee, followed by all of the
educational history entries for that employee. Without
the use of the fork characters, it would not be possible
to maintain this degree of control over the ordering of
the index with respect to a hierarchy of record types.

Data base management automatically inserts the
user-defined fork characters into the keys when
updating or searching the data space index. There can
be multiple fork characters within anyone key, and they
do not have to be between every field. This permits
having many different levels of fork characters and thus
many levels of a hierarchical structure.

Data Functions 5-19

The user must determine what fork characters are
needed and where they are to be located in the
composite keys. Notice the 0 fork character on the end
of the key for data space 1; the data base appends
internal information to the end of a key in creating the
key. Without the fork character, the appended
information will interfere with the ordering. The 0 fork
character is not needed if there are no key definitions
that are longer, as in data spaces 2 and 3.

Notice that the data space index has no duplicate
entries. Duplicate entries can be inhibited by creating the
data space index with the unique attribute. For example,
duplicate keys may be generated during the execution of
an Insert Data Space Entry or an Update Data Space
Entry instruction; but if this occurs while the machine is
updating any of the data space indexes marked unique,
the insert or update is rejected and the data space
remains unchanged.

If the data space index allows duplicate keys and if the
ordering is FIFO, the duplicate keys appear in the same
order as they do in the data spaces. Entries for data
space 1 are first according to their order in the data
space, followed by entries for data space 2. If LIFO was
specified, the entries for data space 1 would still appear
before the entries for data space 2, but duplicates within
a data space would appear in the opposite order.

5-20

Because the key formats might differ between the
composite keys for multiple data spaces, the user must
specify which data space to use when the composite
key is generated for retrieval purposes. This is
necessary so that the data base can determine which
fork characters to insert into the key and what ordering
modifications to make on the key fields before searching
the data space index. It is not necessary to specify the
data space when retrieving sequentially via the data
space index. Thus, in the preceding example, to retrieve
all of the entries for employee 123, the user must
specify that the entry from data space 1 is desired and
the key is 123. After retrieving this entry, the user
simply gets the next entry until the value for the
Employee Number field changes.

Journal Management

Journal management provides a journal (record) of the
current changes made to selected system objects. The
journal can then be used as an activity trail or be used
during a recovery operation.

Journal management:

• Records changes to those objects that are having
their changes journaled. The information supplied
with each journal entry indicates when the change
was made, which process made the change, what
user caused the change, and the user program that
was executing when the change was made.

• Performs various operations (during IMPL) to correct
any mismatch between the changes on the journal
space and the changes to the appropriate objects.

• Allows the machine interface user to place entries in
the journal space.

• Provides a variety of search criteria for retrieving
entries from the journal space.

• Recovers an object by using the changes entered in
the journal space.

• Provides enhanced recovery capabilities.

JOURNAL OBJECTS

The journal port and journal space system objects are
used by the journal management functions.

Journal Port

A journal port provides the mechanism for linking those
objects specified as journaled objects to journal spaces.
A journal port also provides a definition of the prefix
data associated with each entry in the journal space.
Additional prefix data can come from the object being
changed, the user's MI program, the process that
caused the change, and the user profile controlling the
execution of the process.

Data Functions 5-21

Journal Space

A journal space can receive entries after it is attached to
a journal port. Thereafter. all changes being journaled
through the port are entered in the journal space.

Either one or two journal spaces can be attached to a
journal port. When two journal spaces are attached.
they must be attached at the same time. During journal
operations their contents will be identical unless a failure
occurs. If a failure occurs while the system is adding
entries to one of the journal spaces. and the system can
place the entry on the second journal space. no
exception is signaled. Journal management continues to
make entries only in the undamaged journal space.

Once a journal space is detached from a journal port. it
cannot be attached to a journal port again. However.
the search function as well as the recovery procedures
can still be executed against the detached journal space.

The following illustration shows M I (machine interface)
objects A and B being journaled through journal port
JP1. Journal space JS1 is attached to journal port JP1
and. therefore. is being used to record change entries
for objects A and B. Each entry is sequentially recorded
in the journal space. Serialization of operations on all
the objects is maintained in the journal space entries
regardless of the operation performed. the process
performing the operation. or the object being operated
on.

Journaled
\

\
\

MI \
\

Object A \

'------
" 'I , I

" I , I
I

I
Journaled I

I
MI I

I
Object B I

I

5-22

JPl

Journal
Port

\
\
\

\
\
\
\
\
\
\
\

JSl
Journal Space

First Change for A

Second Change for A

---'
First Change for B

Third Change for A

User Entry

Second Change for B

SPECIFYING OBJECTS TO BE JOURNALED

The Journal Object instruction causes the machine to
start or stop journaling changes to a jounaled object.

If a jounal port and an object that can be journaled are
specified on this instruction. a link is established
between the object to be journaled and the specified
journal port. Once the link is established. changes to the
object are journaled through the port until either the
object being journaled is destroyed or the Journal Object
instruction is reissued without the journal port being
specified.

An object can be specified as a journaled object an
unlimited number of times but there can be only one link
between the object and a port. An object cannot be
jounaled through more than one port at a time.

This instruction also allows the user to specify whether
certain optional changes are to be made to the journal
object.

L JOURNAL ENTRIES

Single or multiple entries are created and placed in the
journal spaces through a journal port for each change
made to those objects whose changes are being
journaled. (The journal spaces must be attached to a
journal port.) The entries are not placed in the journal
space until all checking has been performed and the
journal operation is not completed if an error is
detected. Once the entry is placed in the journal space,
the operation will be completed.

The Retrieve Journal Entries instruction can be used to
view selected entries in the journal spaces. Each entry
in the journal space contains the following information.

Journal Journal
Entry Journal Journal

Entry
Entry Sequence

Entry
Status Specific

Length Number
Type Subtype Prefix ID

Data
~ ________________________ y~ _________________________ J

Journal Entry in
Journal Space

• The length of the entry, which designates the entire
length of the journal entry, including the entry length
field itself.

• The sequence number, which is increased by one for
each entry inserted into the journal space. It is set to
one when the reset sequence number option is used
on the Modify Journal Port instruction.

• The type of entry, which for system objects is the
object type. For example, this 1-byte value is a hex
OB when the entry is related to a data space system
object. User entries are the hex 00 type; entries
concerning the journal are the hex 09 type ijournal
port).

• The entry subtype, which specifies the exact type of
entry. For user entries this 2-byte value is specified
by the user. For entries inserted by the machine, the
subtype defines the format (but not the length) of the
entry data. For example, the start journaling object
value, which is inserted by the machine, is hex 0010.

• The status, which specifies the journal ID option for
this entry.

• The journal prefix, which is made up of the following
optional items and whose length is specified by the
Create Journal Port instruction:

The timestamp, which represents the time that the
entry was placed in the journal space.
The process name, which is the name of the
process control space that is making the change.

- The user profile name, which is the name of the
user profile under which the process making the
change is executing.

- The program name, which is the name of the
program that made the change.

• The journal ID, which identifies the object to which
the change was made. The ID is chosen by the user
and is associated with the object at the time
journaling is started. It stays with the object even
after journaling has stopped.

User entries do not require a journal ID. However, as
a user, you may want to specify an ID in order to
record a change you made to an object (for example,
an important status change to an object's associated
space).

• The entry data, which is defined by the type and
subtype of the entry. Its length can be determined by
subtracting the prefix length from the entry length.

Data Functions 5-23

APPLYING JOURNALED CHANGES

The Apply Journaled Changes instruction provides the
user with a facility to reapply changes to or delete
changes from an object. One use of this instruction is
recovering objects.

Object Recovery Methods

One method of recovery consists of returning the object
to a previous level (load/dump, copy, create) and then
updating the object by applying the changes recorded in
the journal space for that object.

Another method of recovery returns the object to some
previous level. This is accomplished by applying to the
object the before images of the changes recorded in the
journal space. (A before image is a copy of the data in
an object before a change is made.) The before images
object journal attribute must be specified on the Journal
Object instruction before this method of recovery is
used.

The Apply Journaled Changes instruction is terminated if
an error occurs when the machine is trying to apply
changes to an object. The machine tries to return
enough information to the user in order to restart the
operation.

5-24

JOURNAL STATUS DURING IMPl

A system failure can cause the various storage facilities
of the machine to be inconsistent with each other.
During IMPL, journal management performs the
following actions so that the entries in the journal space
and the changes to objects are consistent:

• The last entry is found in the journal space and all
header information in the journal space is updated to
be consistent with that last entry.

• Any attached journal space that is damaged, partially
damaged, unusable, or for which the threshold value
has been exceeded is placed on the object recovery
list. This list can be obtained through the Materialize
Machine Attributes instruction.

• The journal port is corrected to match the journal
spaces attached to it.

• If there are two journal spaces attached to the journal
port, they are corrected so that their contents are
identical.

• If the last operation specified on the journal was to
either start recording the changes to an object or
stop recording the changes to an object, then the
operation is completed.

• An IMPL entry is placed on each journal port that has
journal spaces attached.

• For those objects with journaled changes, the
changes are applied from the last point that the
journal and object were known to be consistent up to
the end of the journal entries. This causes all
journaled objects to be consistent both with the
journal and with the other journaled objects.

• All journal ports are reported in the object recovery
list.

In order to guarantee consistency between the journal
and its associated objects, the machine must ensure that
the journal entries reach nonvolatile storage before the
associated object change. Journal management does
not allow a journal space to be destroyed, suspended, or
loaded over an existing journal space if it is needed for
recovery.

J

J

LOAD/DUMP

A journal space can be dumped and loaded. A journal
space can be dumped at any time. A journal space can
be loaded over an existing journal space if it is empty,
suspended, or if the dumped version has the same first
sequence number and a last sequence number that is at
least as large as the version in the machine.

COMMIT MANAGEMENT

Commit management, in conjunction with journal
management, assists the MI user in maintaining the
integrity of the data base management system.

Commit management allows the MI user to group a set
of data base changes so that:

• The changes can be committed; that is, the changes
made to an object under commitment control are
made permanent and are ready for modification by
the rest of the system.

• The changes that have not been committed can be
decommitted; that is, the reverse image is applied
(the changes are backed out) to an object whose
changes were made under commitment control.
Committed changes cannot be decommitted.

• If a process terminates without committing or
decommitting the changes, they are implicitly
decommitted.

• If a system failure occurs, any changes that have not
been committed are implicitly decommitted during the
subsequent IMPL.

The changes that can be committed or decommitted are
insert, update, and delete data space entry.

COMMIT OBJECT

The commit block system object is used by commit
management functions.

Commit Block

A commit block is a permanent system object that holds
information concerning the changes made to objects
under commitment control. The commit block contains a
list of the objects under commitment control, a list of
data space record lock identifiers, a list of objects that
have undergone changes in the current commit cycle,
and the commit description.

The following MI instructions are used to manage the
commit block.

The Create Commit Block instruction is used to create a
commit block.

The Destroy Commit Block instruction is used to destroy
a commit block. A commit block cannot be destroyed if
it is attached to a process.

The Modify Commit Block instruction is used to:

• Attach the commit block to a process. The commit
block cannot be attached if it is already attached to
any process. Whenever a commit block is attached
to a process, only that process can modify it.

• Detach a commit block from a process. The commit
block cannot be detached if a start commit entry has
been placed in the journal but no commit or
decommit operation has been performed. In addition,
a commit block cannot be detached if there are any
objects still under commitment control (objects still
remain in the commit object list).

Data Functions 5-25

• Place objects under commitment control. One or
more objects can be placed under commitment
control.

The only objects that can be under commitment
control are cursors. However, it is the changes to the
data spaces under the cursor that can be committed
or decommitted. The data spaces themselves then
are not under commitment control. Another cursor,
which is not under commitment control, can be over
these same data spaces, and the changes made via
this cursor are not under commitment control.

All objects changed under the control of the same
commit block must have their changes journaled to a
single journal port and that port must be the same
port to which the commit block is journaled. For
more information about journal objects, refer to
Journal Management earlier in this chapter.

A cursor cannot be holding any data space entry
locks when the cursor is placed under commitment
control.

• Remove specific objects (cursors) from commitment
control. The cursors cannot hold any data space
entry locks.

• Remove all objects (cursors) from commitment
control. The cursors must not hold any locks required
by commitment control.

The Materialize Commit Block instruction returns either
the creation template with current commit block
attributes or the commit block status.

COMMIT DESCRIPTION

A commit description is a variable-length string of data
that is specified on the Commit instruction. A commit
description is not used by the machine because it
contains only the data specified by the MI user. When
the Commit instruction is executed, the commit
description is placed in both the journal space and the
commit block.

The Materialize Commit Block Attributes instruction can
be used to materialize the commit description associated
with the last successful execution of the Commit
instruction.

5-26

COMMIT OPERATION

A commit operation can be performed only when the MI
Commit instruction is executed.

The MI Commit instruction causes the changes to
system objects, made under the control of a specific
commit block, to be made permanent and available for
modification by the rest of the system. The commit
block must be attached to the process that issues the
Commit instruction; otherwise, an exception is signaled.

The following occurs when a commit operation is
performed:

• A start commit entry is placed in the journal space if
a commit cycle has not been started.

• An entry, which contains the commit description, is
placed in the journal space.

• The commit description is placed in the commit
block.

• The data space index keys that were reserved to this
commit block are removed.

• The data space entry locks that are held by the
commit block are released.

• The data space entry locks that are held by all
cursors under commitment control are released.

• The position of cursors under commitment control is
not altered.

• The in-use count is decremented for any data space
that had its count previously incremented by data
base operations performed in the commit cycle prior
to the current commit operation.

• The LSUP lock is released for any data space that
had been previously locked by the data base
operations performed in the commit cycle prior to the
current commit cycle.

J

DECOMMIT OPERATION

A decommit operation can be explicitly or implicitly
performed.

A decommit operation is explicitly performed when the
MI Decommit instruction is executed and a start commit
entry has been placed in the journal space. If the start
commit entry has not been placed in the journal space.
no decommit operation is performed.

A decommit operation is implicitly performed during the
termination of a process if a start commit entry has
been placed in the journal space. A decommit operation
is implicitly performed during an IMPL if any process
from a prior IMPL has placed a start commit entry in the
journal space.

The following occurs when a decommit operation is
performed:

• All changes that have not been committed are
replaced with before-images. Indexes are
maintained. but any error associated with an index
results in the index being invalidated and the
decommit operation continues. The changes to
perform the decommit operation are journaled with an
entry subtype. which indicates that the change was
caused by a decommit operation.

• A decommit entry is placed in the journal space.

• The data space index keys that were reserved to this
commit block are removed.

• The data space entry locks that were held by this
commit block are released.

• The data space entry locks that were held by all
cursors under commitment control are released.

• The position of cursors under commitment control is
reset to the position the cursor had when the commit
operation started. Those cursors that were placed
under commitment control after the commit operation
started are reset to the position they had when
placed under commitment control. Those cursors that
were removed from commitment control before the
decommit operation started are not repositioned.

• Each data space modified by the decommit operation
is forced to nonvolatile storage because the changes
by the decommit operation are not recorded in a
cursor. Consequently. the changes are not forced to
nonvolatile storage when the cursor is de-activated.

• The in-use count is decremented for any data space
that had its count previously incremented by the data
base operations performed in the commit cycle prior
to the current decommit operation.

• The lock shared update (L5UP) lock is released for
any data space that had been previously locked by
the data base operations performed in the commit
cycle prior to the current decommit operation.

• The journal use-count is decremented.

Data Functions 5-27

The following chart shows a summary of the commit
and decommit operations.

Commit
Cycle

5-28

Release previously
acquired data
space record locks

Place commit
entry in journal
space

Add or remove
cursors from
commitment
control

Commit
transacti on
boundary

Place start
commit entry
in journal space

Obtain lock on
data space record
to be changed

Place before- and
after-images of
changed data space
record in journal
space

Release previously
acquired data
space record locks

Place decommit
entry in journal
space

Index Management

An independent index is an object that provides search
functions and automatically arranges data based on the
value of that data. The length of entries in an
independent index can be either fixed or variable.

An independent index functions like a table that can be
searched for a specific value. It is designed to minimize
the:

• Search time to find an entry

• Space that the entry occupies

• Time required to insert an entry

• Time required to delete an entry

USES FOR INDEPENDENT INDEXES

An independent index can be used wherever there is a
requirement for table searching, argument-function
association, cross referencing, and ordering of data.

Searching for Index Entries

An independent index provides many search functions.
More than one index entry can be returned in the user's
program as a result of the search operation with the
maximum number of entries to be returned specified by
the user.

The following types of searches can be performed on an
independent index:

Search Type

Find equal

Find greater than

Find greater than or
equal

Find less than

Find less than or
equal

Find first

Find last

Find between
(inclusive)

Result of Search

All entries equal to the search
argument

All entries greater than the
search argument

All entries greater than or
equal to the search argument

All entries less than the
search argument

All entries less than or equal
to the search argument

The first (least) entry in the
index

The last (greatest) entry in
the index

All entries between two
search arguments

The search argument size can be less than the size of
the index entries (referred to as a generic or partial
search argument). With generic search arguments, the
leading (leftmost) portion of the index entry is matched
against the search argument.

Data Functions 5-29

For all types of searches, one or more index entries can
be returned to the requestor; however, the number of
index entries that are returned depends on how many
entries match the search criteria. But this number can
never exceed the number of entries specified by the
requestor. The returned index entries are always the
complete entry that was originally inserted into the
independent index. A count of zero is returned if a
match is not found.

The entries matching the search criteria are either
returned to the user (find independent index entry) or
removed from the index and optionally returned to the
user (remove independent index entry).

INSERTING INDEX ENTRIES

One or more entries can be inserted into an index by the
Insert Independent Index Entry instruction. (The
maximum length of an index entry is 120 bytes.) An
entry cannot be inserted, however, if a duplicate entry of
the same length and value already exists in the index.

When an index is created, the leading portion of an
index entry can be specified as the key. Searching the
index is not limited to the key because any leading
portion of the entry can be used against the search
argument. But the key is useful for inserting values.
Options on insert allow the key portion of the entry to
make the insert conditional. When a key is specified,
the options are:

• If the key portion of the argument is already in the
index, the argument is not inserted into the index.

• If the key portion of the argument is already in the
index, the non key portion of the argument replaces
the non key portion of the entry in the index.

An entry can consist of a combination of pointers and
data (for example, a descriptor and a pointer to related
data in an associated space, or only data). In addition,
pointers can appear in the key or non key portion of the
entry. However, because the value of a pointer is not
known, unpredictable results can occur if it is used as a
search argument. Pointers cannot be inserted into
independent indexes that contain variable-length entries.

5-30

PERFORMANCE CONSIDERATIONS

The Modify Independent Index instruction can turn the
immediate update attribute for independent indexes on
or off. The performance of the system may be
increased if this attribute is turned off when many
updates are being done on an index.

Queue Management

Queues are system objects used to pass information
between processes or to synchronize processing
between processes.

The information transmitted to a queue is contained in a
message. A process builds a message and enqueues it
to a queue. Enqueuing a message implies that a copy
of the message is stored in the queue in some ordering
specification. Any process wishing to access the
information in the message, dequeues the message from
the queue. Dequeuing the message implies locating the
desired message entry, copying the message into a user
work area, and removing the message entry from the
queue.

In the following illustration, a message is built by
process 1 and enqueued to a queue; process 2
dequeues the message.

Process 1

Program
A

Queue

When a message is enqueued, there mayor may not be
a process waiting for that message. If no process is
waiting for the message, the message is stored in the
queue for later retrieval by some process. When one or
more processes are waiting for the message, only one
process can receive it; the remaining processes continue
to wait for subsequent messages.

When a process attempts to dequeue a message from a
queue, a message mayor may not be there. If the
message is there, it is dequeued; if it is not there, the
process may be placed into a dequeue wait state or may
immediately continue execution in the program based on
optional branch or indicator settings.

Process 2

Program
B

Data Functions 5-31

QUEUES

A queue is a system object that has message elements
enqueued to it and then dequeued from it by processes.
Queue messages can be enqueued and dequeued in a
sequence defined as an attribute of the queue during
queue creation. The sequence can be FIFO
(first-in-first-out). LIFO (last-in-first-out). or keyed.

First-in-first-out and last-in-first-out queues order the
message entries based on the time of arrival.

When a queue has the keyed attribute. each message
contains a key element. The message key is used to
order the message entry relative to other messages in
the queue. Each message key is treated as though it
were character data. When pointers are contained in the
message key. they are operationally treated as character
scalar data; that is, byte values are used but any pointer
characteristics are ignored. It is not possible to take a
pointer view of the key that results from a message
dequeue. All message keys for a keyed queue must be
the same length.

All messages in a queue must be less than or equal to
some user-specified size. This value is specified during
queue creation.

A queue contains an attribute that specifies the number
of messages that can be enqueued at anyone time.
Another queue attribute defines the action the machine
is to take when the current message limit is exceeded;
the queue can be implicitly extended to contain more
messages. or the queue message limit exceeded
exception and event can be signaled when the enqueue
is attempted.

Another attribute of a queue identifies whether
messages on the queue may contain pointers. If the
queue contains messages without pointers. a pointer
contained in an enqueued message loses its pointer
characteristics when dequeued.

Queue Instructions

The three instructions in queue management used to
establish and maintain queues are Create Queue.
Materialize Queue Attributes. and Destroy Queue.

5-32

Creating a Queue

The Create Queue instruction establishes a system
object called a queue (the maximum size of a queue is
16 777 216 bytes). The following information must be
provided as attributes of the Create Queue instruction:

• A message content indicator that identifies the
presence of pointers in the message text.

• A queue type indicator that identifies the queue as
keyed. LIFO, or FIFO. This information establishes
the basic sequence in which messages will be
received from the queue.

• Maximum number of messages that can be enqueued
to the queue at anyone time.

• A queue overflow action indicator that specifies the
action to be taken if the maximum number of
messages is exceeded.

If the indicator specifies a fixed size queue. a
queue message limit exceeded exception is
generated during an enqueue attempt.
If the indicator specifies an extendible queue, the
maximum message value is extended, and a queue
extended event is signaled.

• An extension value that specifies the increment to the
maximum number of messages. This value is
specified only if the overflow action indicator
specifies queue extension.

• A key length that specifies the size of the key for the
queue. For a keyed queue. this value must be greater
than zero and not more than 256.

• A maximum size of messages to be enqueued that
specifies the largest number of bytes that can be
contained in anyone message enqueued to the
queue. For optimum performance, this value should
not be larger than necessary for the messages to be
enqueued.

Materializing Queue Attributes

The Materialize Queue Attributes instruction allows the
user to determine the attributes that were specified
when the queue was created. In addition, the current
maximum number of messages allowed on the queue
and the current number of messages on the queue can
also be determined. This information is used to identify
the status of a queue at a specific time.

L Destroying a Queue

The Destroy Queue instruction removes the queue from
the machine. All messages currently enqueued to the
queue are also destroyed. All processes currently in a
dequeue-wait on the queue are notified, via the object
destroyed exception, that the queue has been destroyed.

Any subsequent reference to the queue results in an
object destroyed exception.

Queuing Functions

Each message to be enqueued to or dequeued from a
queue has a specific format. The format contains two
parts, the message prefix and the message text.

Enqueuing Messages

When a message is to be enqueued, the message prefix
and the message text must provide the following
information:

• Message prefix
Size of message text: The number of bytes to be
contained in the queue message entry.
Message key: The message key used for ordering
the message entry relative to other entries in the
queue. The length specified in the key length
attribute (defined during queue creation) is
assumed by the instructions. This entry is required
for keyed queues.

• Message text
The message text is a byte string containing the
information to be stored in the queue entry. There
is no restriction on the scalar data attributes or
pointer types that make up the message text. The
length must not exceed the message text length
specified in the maximum size of messages to be
enqueued attribute specified during queue creation.
(The maximum size of a queue message is 64 K
bytes.)

Dequeuing Messages

When a message is to be dequeued, the user must
provide a message prefix area and a message text area.
During the initiation of the Dequeue instruction, the
message prefix must be initialized with some information
that is required by the instruction. After a successful
dequeue, the message prefix and the message text
areas contain the following:

• Message prefix
Time of enqueue (machine-supplied): The time
stamp value supplied by the machine when the
message was enqueued.

- Dequeue wait time-out value (user-supplied): The
maximum amount of time the instruction should
wait for a message entry to be dequeued before
signaling the dequeue-wait-time-out exception.
Size of message dequeued (machine-supplied):
The actual number of bytes contained in the
dequeued message.
Access state modification and multiprogramming
level options (user-supplied): Allows the user to
control allocation of main storage and processor
resources to other processes should the process
enter the wait state until a message is available to
the process.

- Search key (user-supplied): The key value to be
searched for in a keyed queue.

- Search criteria: The specification of how the
search key is to relate to the actual key in a queue
entry (for example, equal, greater than, or less
than). The search key and the entry key are
treated as unsigned binary bit strings for the
operation.

- Actual message key (machine-supplied): The value
of the key associated with the message entry
actually dequeued.

• Message text
- The message text is a byte string that contains the

message entry after a successful dequeue (scalars
and pointer data). If pointers are contained in the
message text, the queue must have been created
with the attribute that permits pointers in the
message text and the message text area must be
16-byte aligned in the space. Otherwise, a pointer
contained in an enqueued message is dequeued as
scalar data.

Data Functions 5-33

Moving Messages

Two instructions (Enqueue and Dequeue) are used to
move messages between queues and processes. The
Enqueue instruction causes a message to be placed on a
queue and allows any process that may be waiting for
the message to be made eligible for dispatching. The
Dequeue instruction removes a message from a queue
or causes a dequeue wait until a message is available.

Enqueuing a Message

The Enqueue instruction causes a message to be
enqueued to a queue and makes any process waiting for
the message eligible for processor resources (subject to
multiprogramming level constraints). Note that if a
message satisfies more than one process waiting for a
queue, only the highest priority process waiting the
longest receives the message. Any other process
continues to wait for the next message.

The ordering of messages in the queue is determined by
the queue attributes (LIFO, FIFO, or keyed) and the
order of enqueue or the key values used for each
Enqueue instruction. If keyed sequence is specified, the
messages are ordered in ascending sequence, and last
within equal key. Ordering of keys is in binary collating
sequence. FIFO and LIFO queues can contain keys, but
the keys are considered only additional text and do not
enter into the enqueue/dequeue criteria. Keyed queues
may only be operated on with key values.

Note that for a given queue, all message keys are
considered to be character data and of identical length.

The message text is specified as an operand on the
Enqueue instruction. The Enqueue instruction copies the
data fields specified in the message text source
operand.

5-34

Dequeuing a Message

The Dequeue instruction allows a process to remove a
message from a queue.

If a message cannot be found that satisfies the dequeue
criteria, the process is put into a dequeue wait until
either a message arrives to satisfy the Dequeue
instruction or the dequeue wait time-out value is
exceeded. If a dequeue wait time-out occurs, a
dequeue wait time-out exception is signaled to the
waiting process. The Dequeue instruction allows an
override to the dequeue wait time-out value specified as
the process default wait time-out. If no wait time-out
value is specified (in either the Dequeue instruction or as
a process attribute) an immediate wait time-out
exception is signaled.

If the Dequeue instruction is used with branch or
indicator options and no message is on the queue to
satisfy the dequeue criteria, the process is not put into a
dequeue wait. Instead, control is given to the instruction
specified as a branch target in the Dequeue instruction,
or the specified indicators are set. This procedure
allows polling for messages on multiple queues without
having to wait.

The Create Queue instruction can create a queue that
allows retrieval by keyed selection. The keyed option
allows retrieval by any of the following relations
between a message key and a user-specified compare
operand:

Message Key

Relation
>

<

Materialize Queue Messages

Compare Operand

The Materialize Queue Messages instruction can
materialize one or more messages on a queue.

The amount of key and message text data materialized
for each message is controlled by a message selection
template.

J

J

Space Management

A space is a contiguous set of bytes that provides a
storage area for data objects (scalar and pointer). A
space can be contained in any system object and its
contents addressed and manipulated on a byte-by-byte
basis. The creation template of the object allows the
user to specify the size of the space to be allocated for
the object.

All system objects except the space object serve other
functions in addition to containing a space. The space
object consists of only the associated space and
provides no other function.

A space contains a contiguous string of 8-bit bytes.
The maximum length of a space is dependent on the
system object it is associated with. up to a maximum of
16 777 184 bytes. Data views can be defined in order
to superimpose certain attributes onto the data at
desired locations within a space. These data views have
representational as well as certain operational
characteristics that allow them to be referred to as
operands in System/38 instructions. The data for an
operand resides in the space, but the attributes for the
data are determined by the data view definition.

SPACES

Spaces exist in association with system objects. All
system objects may optionally have an associated space.
Each system object then. has a functional capability plus
an additional capability of containing a space. A space
object is unique in that it has no other function other
than the capability to contain a space. By associating a
space with a system object. the user has the capability
to store data values associated with the object in an
area addressable through the system object itself (a
system pointer or a symbolic address); that is. once the
object is located. its data values are available.

All spaces (those in space objects as well as those in
other system objects) have the following characteristics:

• Spaces can be fixed or variable in size.
Variable-length spaces can be extended or truncated
by the Modify Space instruction. Fixed-length spaces
remain the size that was specified during their initial
allocation.

• The size of the allocated space is at least as large as
requested. This size is dependent on the packaging
of the object that contains the space. When the
object size is materialized. the space size reflects the
current allocation, not the requested size. All of the
allocated bytes can be used for data object
manipulation.

• When spaces are allocated or extended. each byte of
the allocation is given an initial value that was
specified at object creation time. (Spaces are
extended in multiples of 512 bytes.) If the object has
no space. the initial value attribute is ignored.

• The maximum size of a space is dependent on the
type and characteristics of the object containing the
space; the maximum size is 16777 184 bytes.

SPACE FUNCTIONS

As previously indicated. spaces can be created as
independent system objects. As such. there are
instructions that operate only on these objects. For
example. the Create Space. Destroy Space. Materialize
Space Attributes. and Modify Space Attributes
instructions refer to spaces rather than the byte strings
contained in the spaces.

These instructions address space objects through a
system pointer. Once a system pointer addresses a
system object (in this case. a space object), the system
pointer assumes the attributes as well as the address of
the system object. A future reference to the system
pointer ensures that the system object referred to is of
the proper type.

Data Functions 5-35

Space Creation

The Create Space instruction creates and allocates a
space system object according to the attributes specified
in a template operand.

The space contains the number of bytes specified in the
creation template. Unlike other system objects that
contain spaces, a space object has no other function.

Addressability to the newly created space is returned in
the system pointer specified in the. Create Space
instruction. Future references to the space object are
made through the system pointer. Individual bytes of
the space can be referenced through a space pointer.

Space Attribute Materialization

The Materialize Space Attributes instruction can be used
to materialize the attributes of a space object into a
string in order to determine current attributes.

The attributes of a space associated with a system
object can be materialized either through use of the
Materialize instruction for the system object it is
associated with or through the use of the Materialize
System Object instruction.

Space Attribute Modification

The Modify Space Attributes instruction changes the
various attributes of the space associated with a system
object. Attributes that can be changed include the initial
value of the space, whether or not the space is allocated
any space storage, and whether or not the size of the
space can be changed.

If the space is extended, the bytes are initialized to the
initial value specified for the space.

Space Destruction

A space system object can be destroyed by the Destroy
Space instruction. Future attempts to refer to the space
through the system pointer result in an object destroyed
exception. Addressability to the space is removed from
the addressing context (if there is one).

5-36

SPACE DATA

Space Data Views

Space data views provide a means of defining and using
scalar and pointer data objects within a space. Data
views are defined in the ODT (object definition table) of
a program.

Data views provide a logical mapping of certain
attributes onto a portion of a space. The attributes
provide the data view with representational and
operational characteristics. In addition to the attributes,
the data view logically consists of addressability to a
byte string in the space. A reference to a data view
logically associates the attributes with the byte string.

Data views imply the following for spaces:

• For scalar operands, the attributes define the
representation (format) for the area defined by the
data view. For source operands, the byte values are
assumed to have the required format (for binary and
character data) or are verified to ensure that valid
data exists at that location (for zoned and packed
decimal data). For receiver operands, the attributes
define the format of the data to be stored at that
location.

• For pointer operands, the attributes specify that the
16 bytes defined by the area are to be considered to
contain a pointer. For source operands, the area is
verified to ensure that a pointer of the proper type is
contained in the area. For receiver operands, a
pointer of the proper type is constructed in the area.
Storing scalar data into an area containing a valid
pointer causes the machine to no longer consider the
area to contain a pointer.

J

Space Addressing

Addressability of data views consists of two parts:
which space is being referred to and the location (offset)
into the space that is to be referred to. The first byte in
the space has an offset value of zero.

Each byte in the space is separately addressable and
can be referenced through a data view defined in the
program. The reference can be to a location relative to:
the allocation of static or automatic storage for a
program within a process, the space addressability
contained in a space pointer, or to an argument data
object passed from a preceding program.

Dump Space Management

Dump Space Management provides the MI user with an
online storage medium (a dump space) for a dump of
system objects. It also provides the MI user with the
ability to perform simple manipulation of data contained
in a dump.

A dump of system objects can be put into a dump
space through a source/sink dump operation. System
objects within a dump in a dump space can 'be loaded
back on the machine through a source/sink load
operation.

The dump data in a dump space can be retrieved and
inserted into another dump space. The target dump
space can exist on the system where the dump
originated. or on a system where the dump data was
transmitted.

Dump Spaces

A dump space is a system object that serves as a
storage area for a dump of other system objects. It
provides an online storage alternative to the commonly
used offline storage media for dumps of system objects.

A dump space contains a storage area for a contiguous
string of 8-bit bytes. The storage area varies in size,
but is no larger than 2 013 204 480 bytes, which equals
almost 2 gigabytes. The user can first specify the size
of a dump space when the space is created. The space
size can be internally extended by the machine for dump
and insert operations and can be externally reset
through a modify operation.

Dump space objects store only dump data; unlike data
spaces and space objects. which store any type of
general data.

Dump Space Functions

The following instructions help manipulate the dump
space, not the dump data which may be contained
within the space.

Dump Space Creafion

The Create Dump Space instruction creates and
allocates a dump space system object according to the
attributes specified in a template operand. The dump
space can then be used as a storage area for a
source/sink dump of system objects.

Addressability to the newly created dump space is
returned in the system pointer specified on the
instruction. Future references to the dump space are
made through the system pointer. The dump data put
into a dump space through a source/sink dump can be
manipulated through insert and retrieve operations
defined later in this section.

Data Functions 5-37

Dump Space Materialization

The Materialize Dump Space instruction can be used to
materialize the attributes that relate specifically to a
dump space into a string in order to determine their
current value.

The Materialize System Object instruction can be used
to materialize common system object attributes of a
dump space in order to determine their current value.

Dump Space Modification

The Modify Dump Space instruction can be used to
modify certain attributes that relate specifically to a
dump space. The allocation size of the dump space can
be reset back to the size of the dump data contained in
it. The dump space can be reset to a state indicating
that it contains no dump data.

Dump Space Destruction

The Destroy Dump Space instruction destroys a dump
space and frees up the storage allocated to the object.
Future attempts to refer to the dump space through the
system pointer result in the object destroyed exception.
Addressability to the dump space is removed from the
addressing context (if there is one).

Dump Space Data

The format and meaning of the dump data contained
within a dump space is not defined, other than to
provide for its retrieval from a dump space and
subsequent insertion into a dump space. Dump data is
initially set into a dump space through a source/sink
dump operation to dump system objects into the dump
space. Subsequently, the system objects contained in
the dump data can be loaded back into existence in the
machine through a source/sink load operation. The
format of the dump data produced by a dump operation
is an internal characteristic of the specific
implementation of the machine and is not defined for
the MI user.

Retrieve and insert operations are supported for dump
data to provide for movement of the dump data from
one dump space to another, where the target dump
space can be on a different machine than the source
dump space.

5-38

Load/Dump Functions

The Request Path Operation instruction can be used to
perform source/sink dump or load operations to or from
a dump space. A dump operation sets the appropriate
dump data into a dump space to back up the current
state of the specified system objects in a form that
provides for the subsequent loading of them back into
the machine. A load operation operates on the dump
data produced from a prior dump operation to load the
system objects contained in the dump space back into
existence on the machine.

The Request I/O instruction can be used to perform
source/sink load or dump operations on a dump space.
A dump operation saves the dump space to an LD
(load/dump) storage media. A load operation restores
the dump space from an LD storage media. Objects
contained in a dump space dumped to an LD media can
be directly loaded from the LD media. See the
Load/Dump Considerations section, under the Set
Load/Dump Parameter command in Chapter 6, for more
information.

Dump Space Data Retrieval

The Retrieve Dump Data instruction can be used to
retrieve dump data contained in a dump space. The
retrieval is performed through a simple relative block
access of the dump data. The format of the dump data
retrieved is undefined, other than its size and that it is
packaged with a small amount of additional data used
for verifications when the data is inserted into a target
dump space.

J

J

L Dump Space Data Insertion

The Insert Dump Data instruction can be used to place
dump data previously retrieved from a dump space into
a target dump space. The insertion of dump data is
performed in a simple progression of fixed-length
blocks of dump data, starting with the first block of data
retrieved from the source dump space and continuing in
ascending order out to the end of the dump data
retrieved.

The format of the dump data to be inserted is undefined
other than its size and that it is packaged with a small
amount of additional data used for verifications during
its insertion. The verifications performed on the data are
done to ensure the dump data is valid for the current
attributes and usage of the target dump space. These
verifications help to ensure machine integrity when the
objects are loaded back into the machine and referenced
during machine operations on them.

Space Data Modification

The value of a space is the value of the byte strings
contained in the space. All or part of the value can be
changed with System/38 instructions.

As discussed under Computation and Branching in
Chapter 3, the computational instructions operate on
scalar data objects. These scalar data objects, then,
provide for modification of only certain parts of the
space value. Even though these data objects have
certain representations, when seen as part of a space
they are only strings of 8-bit bytes.

As discussed under Addressing in Chapter 2, pointers
are contained in spaces. The instructions used to
manipulate pointers (for example, Set Space Pointer or
Resolve System Pointer) cause pointers to be created
and stored in spaces. These pointers can then be used
in subsequent operations.

Certain instructions, for example, return templates that
consist of scalar and pointer data. These templates are
located by a space pointer. The first 4 bytes of the
template identify the number of bytes that may be
modified. These bytes are assigned values based on the
characteristics of the materialization.

Data Functions 5-39

J

5-40

Source/sink management provides a set of system
objects and a set of instructions that operate on those
objects. Source/sink objects define the various external
I/O devices and the methods of attaching the devices to
the system.

The source/sink instructions manipulate and control the
use of the I/O devices, manage the attachment
network' mechanisms, and define the configuration
details of the system.

SOURCE/SINK OBJECTS

Source/sink management is based on three fundamental
system objects (logical unit description, controller
description, and network description) that characterize
three basic aspects of how all I/O devices relate to a
system.

Figure 6-1 shows the components that make up some
of the I/O and communications networks that are
available on System/38. These components are used as
follows:

• The I/O device or end-use-mechanism is the
ultimate object of I/O transactions and is called the
LU (logical unit).

'The term network has several meanings. A public network is
a network established and operated by common carriers or
telecommunications administrations for the specific purpose of
providing circuit-switched, nonswitched-circuit, or packet
switched services to the public. A user application network is
a configuration of data processing products (such as
processing units or work stations) established and operated by
users for the purpose of data processing or information
exchange; such a network may use transport services offered
by common carriers or telecommunications administrations.

Network, as used in this publication. refers to a user
application network except in those cases where it specifically
mentions telecommunications networks (for example. X.25
packet switching data networks).

Pscket switching data network (PSDNj .refers to a
communications network that uses packet switching as a
means of transmitting data.

Chapter 6. Source/Sink Functions

• The device controller is either the I /0 controller for
clusters of I/O devices grouped together or the
station that attaches groups of communications
devices over the same data link.

I • When System/38 is the primary station, the
controller:

Can be a separate unit, or it can be physically
packaged within one of the devices it supports.
Has separate characteristics and requirements
from the device.
Can have a telephone number if it is a station on a
switched communications line or can have a
remote network address if it is a controller on a
packet switching network.
Can have a channel address if it represents a
channel-attached control unit.

• When System/38 is the secondary station. the
controller:

Is the host system line controller.
Has a control program that controls the
communications network to which System/38 is
attached.
Has separate characteristics and requirements
from the host system.
Can have a telephone number if System/38 is
connected to the host system via a switched
communications line or can have a remote network
address if it is a controller on a packet switching
network.

• When System/38 is a peer station, the controller:
Can be a separate unit, or it can be physically
packaged within one of the devices it supports. or
it can be the system line controller.
Has separate characteristics and requirements
from the device or system.
Can have a telephone number if System/38
connects to the controller via a switched telephone
line or can have a remote network address if it is a
controller on a packet switching network.

Source/Sink Functions 6-1

• The network port on a system is the hardware that
supports attachment of I/O devices and controllers.
The characteristics of a network port must match the
characteristics of the controllers or stations that
attach to that port. Some of these port
characteristics are:

Type of modem or hardware interface used
Data rates supported
Communications protocols used (SDLC, X.25, or
BSC)

- Operating modes
Communication role (primary station or secondary
station)

The characteristics of the network port for X.25 must
match those of the local DCE-not those for the
controller. The role of data link for X.25/HDLC is peer;
that is, it allows connection of both primary and
secondary stations.

For more information about System/38 communications
facilities, refer to the Data Communications Programmer's
Guide.

Object Types

The source/sink objects that correspond to the
components of the I/O network (shown in Figure 6-1)
are:

• Logical unit description (LUD)

• Controller description (CD)

• Network description (ND)

LUDs are the control objects upon which source/sink
management is built. An LUD is directly involved in
actual input/output operations and must be created for
every I/O device or end-use-mechanism on the system.
These objects contain enough information about each
device to uniquely identify that device. Typical contents
are LUD name, device type, physical address of the
device, device features, characteristics, operating
parameters, and device status.

6-2

In some cases, the end-use-mechanism is not
considered to be an I/O device. Rather, an
end-use-mechanism is considered to be the ultimate
destination point for the data being transmitted through
the I/O network. For example, in the case where a
System/38 is defined as being the secondary device
and is communicating with a host primary system (such
as a System/370), then an LUD represents the
end-use-mechanism in the host system. The
end-use-mechanism in this case could be an application
program in the host system that is communicating with
an application program in System/38.

CDs must be created for every communications station
or device controller that can be attached to the system
(this includes switched communications lines). CDs
contain the information to uniquely identify each station
or controller. Typical contents are CD name, controller
unit type, station address, station identification,
operating parameters, and controller status. This
information can also be used for authorization and
identification procedures. In addition, for X.25, the CD
describes the run time features of the virtual circuit
used.

NOs must be created for every communications port on
the system. Typical contents are NO name, physical
address of the port, network characteristics, and status
of the port.

LOCe\ oevice S'lstem/38

-------.--~-----------~
cnannell
Processor

Adapter

_-~L-------""

\Iooevice
~ LOgical Unit
. - oescriptiOn1 , .---.

,,,....,...... 0"''' In me $,...",/38 """,_""n •• uo _ thO ",,,,,,,on"''''' OhV~"" _nt In thO I/O """"",. --­
source/SinK function. 6-3

Local Subsystem Devices

Controller
Description! r---

Channel!
Processor

Adapter

System/38

I/O Controller
Logical Unit
Description!

1

Logical Unit
Description'

2

Logical Un it
Description!

3

Logical Unit
Description!

4
\
\

I

\\
\\
\\
\\
\\
\\ \ \ /\ 1\
\ \ \ / \ 1 \
\ \ \ \\ / \ 1 \
\\ \\/ \ I \
\\ \/ \ 1 \

\ \F..~~~~~~/~~~~L~\~/~~~\~/~~~\
\ 23

\ 0

\

3430 3430 3430
Model Al Model 81 Model 81 Model 81
Magnetic tape Magnetic tape Magnetic tape Magnetic tape
Unit and Unit Unit Unit
Control

lThese system objects in the System/38 programming support represent the corresponding physical elements
in the I/O network.

Figure 6-1 (Part 2 of 11). Input/Output Network Components

6-4

J

Remotely Attached Devices

System/38

._-----L. ___ ------,......
./

Display Station
(remote controller)

Pr inter

Communications
Controller

1-12 Lines

Network
-- Description I

(NO)

Remote TP Line

Station

(common carrier-leased, circuit-switched,
or packet switching data networks)

}
Controller

-- Description l

(CD)

t Logical Unit
- Description I

(LUD) 1
\........-----l

I/O Device }
Logical Unit

-- Description I
(LUD) 2

\........-----l

'These system objects in the System/38 programming support represent the corresponding physical elements
in the I/O network.

l.. Figure 6-1 (Part 3 of 11). Input/Output Network Components

Source/Sink Functions 6-5

System to System Attachment (SNA)

LUD
(logical unit
description) ,

CD
(controller
descri pti on) ,

ND { (network -----
..... _d_es_c_ri ... p_ti_o_n ...) '_..,

1

1

I

I

Application Program ~ Application Program
:

IMS/CICS (information management
system/customer information
control system)

VT AM (virtual telecommunications
access method)

r SsCP (system s;':Vices-
I control point)

Channel

Network
Control
Program 37X5

Modem 1

~
Multipoint ~
Line

"'-.

Modem I Modem I Adapter I I Adapter I
11-12 Lines 1 1

l;ommunlcatlons Channel I Controller

Processor

LJI{!~cD i.D~ ~J!t.VJ.c,1!15(2'ltrC2!.r...oj 01
VMC (vertical microcode)

CPF (control program facility)

Application I Application i Application
Program I Program I Program

System/370
(primary station)

System/38

Modem I

System/38
(secondary station)

'These system objects in the System/38 programming support represent the corresponding physical elements in the I/O network.

Figure 8-1 (Part 4 of 11). Input/Output Network Components

6-6

System to System Attachment (Using SNA On an X.25 PSDN)

LUD
(logical unit
description) 1

CD
(controller
description) 1,2

ND { (network -----
descriptions)3

I

Application Program : Application Program I
I

I MS/CI CS (information management
system/customer information
control system)

VT AM (virtual telecommunications
access method)

i sSCP (system se-;:~ces-
I control point)

Channel

Network
Control
Program 37X5

Modem I

....... ~
..........

X.25 PSDN ,)
..........

~

Modem I Modem I Adapter I I Adapter J
I 1·2 Lines I I

Communications Channel J Controller

Processor

LiI1,!cb (rI~ 1i~Q'iC~l~2'lt,[<l'J:o.l Q!.
VMC (vertical microcode)

CPF (control program facility)

Application I Application i Application
Program I Program I Program

System/37 o
tation) (primary s

System/38

Modem 1
(primary station)

Modem I
System/38

(secondary station)

System/38
(primary or s econdary station)

'These system objects in the System/38 programming support represent the corresponding physical elements in the I/O network.
2The CD for X.25 takes on an additional role. Not only does it describe the remote controller characteristics, it also describes the run
time characteristics of the virtual circuit connection to the DCE at the controller's location. This includes user facilities, flow control
options, charging options, closed user groups, and so on.

3The ND for X.25 takes on an additional role. Not only does it describe the physical line features to the local DCE, as other NDs do,
it also describes the X.25 packet switching data network (PSDN) subscription as agreed to by the PSDN vendor. This includes
logical channel descriptions, link start-up procedures, and so on.

Figure 6-1 (Part 5 of 11). Input/Output Network Components

Source/Sink Functions 6-7

Binary Synchronous Communications Attachments (Point-to-Poind

Each network
requires an
LUD
(logical unit
description) 1

Application BSC
Program (binary

43xx synchronous
BT AM-DOSNSE System/370 communications)
BT AM/TCAM-OSNS 303x Devices

Channel
Each network
requires a CD
(controller
description)l Emulation

Program

Modem

inary
onous

BSC(b
syncbr
comm
Line

un ications) V

Each network
requires an NO
(network
descri pti on) 1

-
Modem

~I

3081

I Modem I

37X5

V

Series 1
BSC (RPS,EDX)
(binary System/3
synchronous (CCP,RPGII)
communications) System/32
Systems (RPGII)

Modem I System/34 or
System/36
(RPGII,SSP-

II ICF/BSCEL)

Modem I J Modem

i it
Communications Controller

I

3741
5110
5120
5230
5260
5280

Application
Program

CPF (control
program facility)

VMC (vertical
microcode)

pJachTrieServices
i Control Point

Communications
Controller

Modem I
V

I Modem

L
L~'!.c.bln..!!_§~r'!l~.!.f.P.Lll.r2l'p"qJ!lt

VMC (vertical microcode)

CPF (control program facility)

Application Application Application Application
Progra~ Program Program Program

RPG/COBOL RPG/COBOL RPG/COBOL RPG/COBOL

"

System/38

System/38

'These system objects in the System/38 programming support represent the corresponding physical elements in the I/O network.

Figure 6-1 (Part 6 of 111. Input/Output Network Components

6-8

Binary Synchronous Communications Attachments (Multipoint Tributary)

l LUO! -------{
LUO (logical I-

unit descriPtion)!

CD (controller -----------
description)!

Host
System

Application
Program(s)

BT AM-OOS/VSE
BT AM/TCAM-OS/vS

I Channel I

Emulation
Program

43xx
System/370
303x
3081

Host
System

BSC
(binary
synch ronous

Series 1
(RPS/EOX) }~X5 communications) System/3

Modem J systems (CCP/MLM P)

I Modem I

1\ \ "" /1····· ·····1
I Modem I I Modem I
System/38 System/34

Modem I ,.-----,
Modem I r------,

I Modem I I Modem: L ______ .J L ______ ...

NO (network 't f description)1

Communications Controller

J l VMC (vertical microcode) JL,
'r , r

System/38

CPF (control program facility)

lJ lJ l:J
,

~rB GJ litlj u L
Application Application Application
Programs Programs Programs

lThese system objects in the System/38 programming support represent the corresponding physical elements in the I/O network.

Figure 6-1 (Part 7 of 111. Input/Output Network Components

Source/Sink Functions 6-9

Multi-leaving Telecommunications Access Method Support for MRJE

I LUD1 I Application Programs

•
--------{ • Readers Printers Punches Console 43xx

I LUD! Keyboard System/370
and Display 303x

LUD (logical 3081
unit description)! RES, JES 2, JES 3, RSCS

I Channel I

CD (contro"er -----
description)!

Emulation }~X5 Program

l Modem I

I J

I Modem I
\

NO (network r
description)! ~-

Horizontal Microcode I
Communications Controller

VMC (vertical microcode) I
MTAIYJI/O Manager

BSC Function Manager
System/38

CPF (control program facility) /\
RJEF Utility I

+ + + + + + , •
Reader Reader I ~~nsole jl l Console I Pri~ter 1 •• 1 Pri~ter l PU~Ch J-I PU~Ch

1 n Keyboard Display

Appl ication Programs

'These system objects in the System/38 programming support represent the corresponding physical elements in the I/O network.

Figure 6-1 (Part 8 of 11). Input/Output Network Components

6-10

L

System to System Attachment (SNA)

I

Application Program ~ Application Program
I

IMS/CICS (information management
system/customer information
control system) System/370

(primary station)

VTAM (virtual telecommunications
access method)

i SSCP Tsyste~ se~vices-
I control point)

Channel

Network
Control
Program 37X5

1 Modem 1

3274

~
~ Controller

Point-to-Point, Switched,
or Multipoint Line;
or X.25 Packet Switching Data Network

I

I Modem I Modem I I Adapter I I Adapter I
11-12 Lines 1 1

Work
Station

I Commun ications Channel I Controller

Processor System/38

t~~cbi!l~.?§tylC,1l!~2'lt.rQ.U:ojQt.
(secondary station)

VMC (vertical microcode)

CPF (control program facility)

SRJE I 3270 I Application
I Emulation I Program

System/38 can coexist with 3270 devices on the same SNA link and also
support multiple sessions of LU-1 3770 emulation; LU-1, LU-2, or LU-3 3270
emulation; SRJE; APPC; and DHCF on the same link.

Figure 6-1 (Part 9 of 111. Input/Output Network Components

3270
Devices

Source / Sink Functions 6-11

System to System Attachment (for DHCF)

I LUD 1

LUD
(logical unit
description) 1

CD
(controller
description) 1

----I

1

~
Application Program ~ Application Program

I

HFC (host command facility)

VT AM (virtual telecommunications
access method)

i sscp (system se~~ces-
I control point)

Channel

Network
Control
Program 37X5

Modem 1

System/370
(primary stati

""
Point-to-Point, Switched, or Multipoint Line;

ntrol
d

Co
an
Da ta

or K25 Packet Switching Data Network

ND {
I Modem I Modem L Adapter I L Adapter I

11-12 Lines I I
I Communications I Controller Channel

(network -----
,--......;.d_es_c_ri.;..p_ti_o_n);..l_~

Processor

L 111 ,!cb i!,~ §~ ry ,Lc,1!§' .c~1l 1!ClI_,!-oj 121
VMC (vertical microcode)

CPF (control program facility)

I
Work
Station

System/38

on)

1These system objects in the System/38 programming support represent the corresponding physical elements in the I/O network.

Figure 6-1 (Part 10 of 11). Input/Output Network Components

6-12

System to System Attachment (SNA)

Application I Application I Application
Program : Program ~ Program

CPF (control program facility)

~~c~i!!..e"§~~c.!:.s.f~.!.!"ol ~oin!..
VMC (vertical microcode)

Processor
System/38

I Communications
Channel Controller

1-12 Lines I I I
I Modem 1 I Modem I I Adapter II Adapter

J
I Work

Point-to-Point, Switched, Station
or Multipoint Line;
or X.25 Packet Switching
Data Network

I Modem I Modem I AdapterJ l AdapterJ
~ 11-12 Lines 1

I Communications Channel J Controller

Processor

V
l~,!cni.D~~~l"iC~i f:2'ltLQ!J:oj at

VMC (vertical microcode)

CPF (control program facility)

Application I Application I Application
Program I Program I Program

I
I Modem I I Modem I I Adapter I I Adapter J Work

11-12 Lines 1 1
Station

I Communications I Controller
Channel

Processor System/38

L~ ,!cn i!l~ ~~l".LC~i f:2'lt,rQ!}:oj at
VMC (vertical microcode)

CPF (control program facility)

Application I Application I Application
Program ~ Program I Program

System/38 advanced program-to-program communications (APPC) (LU 6.2)
peer support allows multiple systems to be connected on a multipoint SOLC
link. The System/38 display station pass-through function uses APPC to
logically connect (through intermediate nodes) a display station to a remote
System/38.

Figure 6-1 (Part 11 of 11). Input/Output Network Components

I
Work
Station

System/38

Source/Sink Functions 6-13

CONFIGURATIONS AND STATES OF
SOURCE/SINK OBJECTS

Configurations

Source/Sink Object Subtypes

The three source/sink object types represent physical
elements within a typical system. The following
illustration shows the ordered relationship among the
three object types.

-r ... r

CO CD

LUO LUO LUO

The linkage of one object type to another object type is
in the order shown in the previous illustration. Multiple
CDs can attach to NOs. Multiple lUOs, in turn, can
attach to each CD, but the order of object attachment is
preserved because the lUO is always the ultimate end
object.

Source/sink object subtypes exist because all object
types (NO, CD, and lUO) are not required for every
device configuration. For example, if a configuration
does not require a description of any controller or port
characteristics, then an lUO can exist without the
support of an associated CD and NO. Similarly, a CD
can exist without the support of an NO.

6-14

J

NO

CD

I I I

LUO LUO LUO

The source/sink objects and object subtypes must be
arranged in a topological structure that shows the
relationship among the objects. This structure must
represent a valid configuration of I/O devices and show
whether objects exist in support of these devices. This
structure is defined by a set of system object pointers
contained within each of the objects.

Forward and Backward System Pointers

Each system object can have a forward pointer or a list
of backward pointers or both. A forward pointer always
points to an object higher in the structure; a backward
pointer always points to objects lower in the structure.
For example, in a CD object a forward pointer points to
the ND to which this CD is attached. The backward
pointer list in the CD points to all the LUDs that are
attached to this CD. Forward and backward pointers do
not exist for the respective top and bottom objects in
the structure. Depending on the source/sink object
subtypes, there are several types of forward-backward
pointer combinations allowed.

Configurations Defined

The object type and object subtype definitions provide
several possible configurations of source/sink objects.
However, based on their hardware characteristics, the
system supports the configurations and their respective
pointer arrangements as shown in Figure 6-2.

Source/Sink Functions 6-15

6-16

System/38

r ~- "j ,- t-- r _L-

1
I I I 1 I I r --~, I r - - '-- r -,

I 1 I : I I I I
I

1 I I I I I I
LUD 1 I CD I ND 1

I...J I _J-J Type 00 _.J Type 00 1_...1 Type 00

..

Object Type

ND Type 00

tD Type 00

CD Type 10

LUD Type 00

LUD Type 10

LUD Type 30

--

rtJ
I I

r -- -I I
rt J1
1 1 r --, I

I I I
I I

LUD 1--'
Type 10 _J

1 I I
I 1

CD 1_ J
Type 10~_J

I I r!-J
r -- -t 1
I I I

I I

LUD
I I
L_J

Type 30 _J

Forward Pointer I Backward Pointer List

None Pointers to CDS2

Null 1 Pointers to LUDs

Pointer to ND2 Pointers to LUDs

Null l None

Pointer to CD None

Pointer to CD None

lThis forward pointer position must be null (binary zero).
2This position can contain system pointers or be null for switched

networks.

Figure 6-2. System Configuration and Pointer Arrangement

J
J

L

CONFIGURATION INFORMATION

The following paragraphs describe other aspects that are
necessary to completely define the source/sink
configuration facilities.

Machine Configuration Record

Each system has a machine configuration record that
contains the internal configuration of the system. This
configuration record provides the system with sufficient
integrity to allow only the creation of source/sink
objects for which system hardware and internal system
support were physically installed. The content of the
machine configuration record provides source/sink
object integrity for the following conditions:

Condition Conditions Checked

Creation of all LUD. Internal system support
CD. and ND objects must exist.

Creation of aliND Internal system hardware
objects must exist.

Creation of all CD type Devices must be attached
00 and LUD type 00 to system.
objects

Creation of CD type 10
objects and LUD types
10. and 30

No additional checking is
done. Actual physical
existence is not confirmed.

Materialize Machine Configuration Record

The Materialize Machine Attributes instruction can be
used to materialize the machine configuration record.
For information about the machine configuration record.
refer to the System/38 Functional Reference Manual.

Object Modification Limitations

The source/sink Modify instructions do not support
modification of any elements within the LUD. CD. and
N D objects that correspond to physical hardware
changes to devices. controllers. I/O ports. or physical
installation of internal system support for this hardware.

If physical configuration changes are made to the
hardware. then the source/ sink Destroy and Create
instructions are used first to destroy the appropriate
source/sink object. and then to create a new object that
includes the corresponding physical I/O configuration
change.

SWITCHED NETWORK CONSIDERATIONS

All configuration information and object linkage
mechanisms previously discussed were indicated as
static information because the linkages established
during object creation time do not change during the use
of the objects. In the case of switched communications
networks. these linkages must be dynamic because the
hardware connections cannot be uniquely defined except
for the duration of time when a switched network
connection is active. A separate group of dynamic
pointers. which are called switched forward and
backward system pointers. are defined for this purpose.

Source/Sink Functions 6-17

Switched Forward and Backward Pointers

Generally, each station in a switched public telephone
network or packet switched data network can be
connected through different ports on a system (each
station can call in on a different telephone number);
conversely, each port can be connected to many
different stations at different times. Consequently, the
ND and CD objects, which are created to represent
these ports and stations, cannot have their respective
forward and backward system pointers uniquely
established. Switched forward and backward pointers,
therefore, are dynamically assigned and inserted into the
ND and CD objects at the time that switched
connections are actually made.

When a switched connection is made, an event is
signaled. The CD contact event is a result of a previous
Modify CD instruction (vary on) for dial in operations or
a result of a Modify CD instruction (dial out) for dial out
operations. By this time, the forward and backward
pointers have been inserted into the objects. When a
Modify CD instruction (abandon connection) is executed,
the switched connection is dropped, and the pointers
are deleted from the objects.

In an X.25 packet switching data network (PSDN), the
procedures are similar but handled within the network
on switched virtual circuit connections.

Network Description Candidate List

Each controller description contains a network
description candidate list that is used to control
switched network connections. The sequential list of
ports (NDs) to which each station can be connected is
defined by the user.

When switched connections are initiated from the
system out to the station (called dial-out), the system
makes the connection through the first available ND (ND
enabled on) in the ND candidate list. When switched
connections are initiated by the station on SDlC or X.25
data links (called dial-in), the candidate list within the
CD for this calling station is searched to determine
whether this station is allowed to be connected through
the port (ND) on which the station called in. On BSC
data links, the ND candidate list is not used for dial-in
operations, but it is used only for dial-out operations.

6-18

Controller Description Eligibility List

A controller description eligibility list in the network
description object is used (instead of the ND candidate
list) to establish the switched connection for BSC dial-in
switched operations. The machine searches for the
appropriate CD by comparing the XID (exchange
identification) in each eligible controller description with
the XID received from the remote station. The search
operation ends when a match is found. The appropriate
CD is then connected to the ND for the line that
received the incoming call.

OBJECT CONTENTS

Each object type (LUD, CD, and ND) consists of several
elements. Each element can have varying data, type,
and size. These elements include system pointers, lists
of system pointers, and various types of scalar data.
Although there are several elements that are indicated
as variable in size, once created, each object is fixed in
size. For example, two different LUDs for different I/O
devices can be different sizes, but each LUD remains
fixed in size after it is created. See Figure 6-3 for an
example of the elements contained in a LUD. Note that
each element within the object that can be materialized
and modified is identified by an option value. This value
is used in the operands of the Materialize and Modify
instructions to specify those elements that are to be
either materialized or modified.

J

Materialize
Sub or Modify

Element Element Option
Elements Contained in an LUD Template Length Length Values

Common D Template size specification Char(S)
Elements

Reserved (for all templates Char(S)
except those that include
object header data)

II Object header data (includes Char(96) 1003
template siz&-Char [16])

• LUD definition data Char(16) 1007

• Pointer group data Char(16) 1005

• Physical definition data Char(16) 1009

II State/status definition Char(16) zOO 1

Specific Session definition data Char(32) z002
Elements

Load/dump definition data Char(16) zOO4

Specific characteristics Char 1012
(y + 2)

Retry value sets Char zOOS
(6y + 2)

Error threshold sets Char z010
(8y + 2)

Device-specific contents Char z020
(y + 4)

y = Variable length of an element.
z = Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize or modify this element as part of a group of

modifiable elements.

Figure 6-3. Elements Contained in the LUD Template

Source/Sink Functions 6-19

Common Elements in LUD, CD, ND

The common elements in the LUD, CD, and NO are as
follows (see Figure 6-3):

.. Template Size Specification

Template size specification contains the number of
bytes of data supplied in the template for
whatever operation (create, modify, materialize) is
to be performed, and the number of bytes
available to be materialized (used as an output
field for Materialize instructions). Every input
template for any Create, Modify, or Materialize
instruction must contain these 8 bytes of character
data as the first 8 bytes within the data area of
that template.

II Object Header Data (includes template size)

The object header data entry contains information
common to all objects.

• LUD Definition Data

LUD, CD, and NO type-This element defines the
source/sink object subtype. It indicates how each
object is adapted into an I/O configuration.

LUD, CD, and NO identification-Specifies the
symbolic name of the object.

.. Pointer Group Data

Forward and backward object pointers describe
the I/O configuration by defining how the
source/sink objects relate to one another.

Switched connection forward and backward object
pointers are used only for switched networks.
These pointers are used in a dynamic operation to
relate the source/sink objects to one another.

II Physical Definition Data

6-20

Each object contains this address field to uniquely
correlate the source/sink object with the physical
hardware it represents.

II State/Status Definition

This element presents the status or operational
state of the object when viewed through a
Materialize instruction. This element, when
included in a Modify instruction, also serves as a
command field to indicate a requested change of
state.

Specific Elements in LUD, CD, and ND

Additional elements that are unique to each object type
are not further defined here. These unique elements are
defined in the System/38 Functional Reference Manual.
Each element listed in Figure 6-3 is present in all
objects of that type and subtype even though the
contents are defined specifically for each device. For
example, all LUDs have an element called session
definition data even though some devices may not
require this data. In this case, their respective LUDs
have a null entry for this element.

Object States

Each source/sink object contains an element called the
state change/status field. When the object is
materialized, this field becomes a status indicator to
indicate the current operational state of that source/sink
object (see the following example). When the object is
modified, this field becomes a state change request
(command) field that allows the user to change the
operating state of that source/sink object. There is not
a one-to-one correspondence between the bit
assignments in the Modify and Materialize instructions
for each object due to the fundamental difference
between status and commands.

J

The following is an example of a state change/status
field for an LUD object.

State Change/Status Field

Materialize (State/Status)

Byte(s) Bit(s) Meaning

0 State/Status

0-6 Reserved

7 Active session state

1 State/Status

0 Suspended session state

1 Quiesced session state

2 Reset session state

3 Varied on/no session state

4 Vary on pending state

5 Reserved

6 Power on/vary off state

7 Power off state

2 State/Status

0 Diagnostic state

1 Diagnostic active indicator

2-7 Reserved

3·5 Reserved

0 Recovery/resource activation
definition

0 Inoperative pending state

1 Normal pending state

2 Normal cancel state

3 Normal continue state

4 Normal activation pending state

5-6 Reserved

7 Normal active state

1 Reserved

Each object has a set of state change rules to define
which commands are allowed in each respective state of
that object. These rules are described under
Source/Sink Management in the System/38 Functional
Reference Manual.

Modify (Commands)

Byte(s) Bids) M&aning

0 Commands

0-6 Reserved

7 Activate session

1 Commands

0 Suspend session

1 Quiesce session

2 Reset session

3 De-activate session

4 Vary on

5 Vary off .
6 Power on

7 Power off

2 Commands

0 Set diagnostic mode

1 Reset diagnostic mode

2-7 Reserved

3·5 Reserved

0 Recovery/resource activation
definition

0-1 Reserved

2 Cancel

3 Continue

4-7 Reserved

1 Reserved

Source/Sink Functions 6-21

Object Control States

Each object can exist in several operational states.
These states are arranged in a sequence with the states
higher in the sequence usually associated with
increasing activity at the device itself. The states lower
in this sequence are called control states because they
are synonymous with control of, management of, or
authorization of the use of these devices. Examples of
these states are power control states, vary off-vary on
states, and diagnostic states.

Object Usage States

The states higher in the state sequence are called usage
states because they are synonymous with how the
device is generally used. These states are sometimes
controlled directly by instructions operating on that
object. For example, session states (active session) in
the LUD object result from a Modify LUD (activate
session) instruction execution. At other times, session
states are controlled indirectly through operations on
related objects, such as the network active state in the
NO. This state can result from activity occurring on CD
objects associated with that NO.

Recovery jResource Activation State

The recovery / resource activation state indicates the
status of the communications link. This status area
indicates whether error recover is necessary.
Recovery / resource activation state changes normally
occur asynchronous to any modify instruction. For
example, the CD object recovery/resource activation
state changes to inoperative pending when a line failure
occurs. However, the recovery/resource activation state
sometimes changes because an instruction was issued.
For example, the MODCD (continue) instruction modifies
the recovery/resource activation state to normal
continue and starts error recovery after a failure. Note
that the recovery / resource activation state is
independent of the object state.

6-22

Related Instructions

The source/sink instructions associated with object
state changes are Modify NO, Modify CD, Modify LUD
and Request I/O. All state instruction accomplished
through use of the Modify instructions. The Request
I/O instruction is dependent on the operational state of
the LUD object because this instruction can only be
issued to an LUD that is in the active session state.

States of the LUD

The sequence of states maintained for the LUD object is
as follows.

• Usage states:
Active session state
Suspended session state
Quiesced session state
Reset session state

• Control states:
Varied on/no session state
Vary on pending state
Varied off/power on state
Power off state
Diagnostic state

The progression through these states for normal
operation is from power off, to varied off/power on, to
varied on/no session, to active session, and back down
in reverse order.

Suspended, quiesced, and reset session states are a
group of inactive session states used for deferring the
operation or doing error recovery for I/O requests within
a session.

The vary on pending state exists only for devices in
communications environments. It indicates that the
device has been logically varied on by an MODLUD
(vary on) instruction but that physical contact has not
yet been established because dial in or dial out
connections have not yet occurred or because station
contact has not been made at the CD associated with
this LUD.

Diagnostic state is used in conjunction with the control
states. This state indicates that the LUD is not available
for normal use because it is dedicated to the
maintenance functions within the system.

J

L

Recovery / Resource Activation State of the LUD

The recovery / resource activation states defined for the
LUD object are the following:

• Normal active state

• Normal activation pending state

• Normal continue state

• Normal pending state

• Normal cancel state

• Inoperative pending state

Normal active, normal activation pending, and normal
continue states indicate that the LUD can operate
normally. No error recovery is necessary.

The normal pending state indicates that one of the
following conditions is true:

• The Request Disconnect or Disconnect SDLC
command was received from the far end.

• For LU1, the MSCP-to-LU session is not active.

• For a work station, the device is not available
(powered off).

The normal cancel state indicates an MODND, MODCD,
or MODLUD (cancel) instruction was issued to suspend
error recovery.

The inoperative pending state indicates a failure has
occurred, and error recovery is necessary.

States of the CD

The sequence of states maintained for the CD object is
as follows.

• Usage states:
Controller active-LUDs in session state

- Controller active-varied on LUDs state

• Control states:
Varied on state
Dialing out state
Vary on pending (with LUDs pending) state
Vary on pending state
Varied off state
Diagnostic state

The normal progression through the states is from
varied off to varied on, to controller active (varied on
LUDs), to controller active (LUDs in session). and back
in reverse order. For the CD object, the control state
changes are made through Modify CD instructions, but
the usage state changes occur as a result of MODLUD
instructions to vary on LUDs or to activate sessions on
LUDs associated with this CD.

Controller active (LUDs in session) state indicates that
one or more LUDs attached to this CD are in a session
state.

Controller active (varied on LUDs) state indicates that
one or more LUDs attached to this CD are in a varied
on state, but no LUDs are in a session state.

Dialing out state occurs only for CDs in switched
communications environments and only for switched
dial-out operations or X.25 switched virtual circuit
operations. It indicates that the MODCD (dial out)
command was issued and dial connections are in
process but not yet completed, or that an X.25 CALL
REQUEST packet has been sent but processing has not
completed. (A CD event is raised when the connection
is completed.)

Vary on pending states exist only in the communications
environment and are similar to those described for the
LUD object.

Diagnostic state is used (as in the LUD) to indicate that
maintenance functions have made the controller
unavailable for normal use.

Source/Sink Functions 6-23

Recovery jResource Activation State of the CD

The recovery/resource activation states defined for the
CD object are the following:

• Normal active state

• Normal activation pending state

• Normal continue state

• Normal pending state

• Normal cancel state

• Inoperative pending state

Normal active, normal activation pending, and normal
continue states indicate that the CD can operate
normally. No error recovery is necessary.

The normal pending state indicates the Request
Disconnect or Disconnect SDLC command was received
from the far end. For X.25, the equivalent logical link
command was received from the far end.

The normal cancel state indicates an MODND or
MODCD (cancel) instruction was issued to suspend error
recovery.

The inoperative pending state indicates a failure has
occurred, and error recovery is necessary.

States of the ND

The states for the network description object are as
follows.

• Usage states:
Network active state

- Manual dial start state
- Manual answer start state

Manual answer state
Dial pending state

• Control states:
Switched enable state

- Varied on state

6-24

Varied off state
Diagnostic state

The progression through the states of an NO depends
on whether the NO is:

• Nonswitched (SDLC or BSC)

• Switched dial out (SDLC or BSC)
- Manual dial
- Auto dial

I • Switched answer (SDLC or BSC)
Manual answer

- Auto answer

I • X.25

The NO for a particular line must first be explicitly varied
on (via the Modify Network Description instruction)

I before a CD is varied on; otherwise, an exception is
signaled.

The normal progression through the states for a
nonswitched NO is from varied off to varied on, and
then to network active. The network active state means
that one or more CDs attached to this NO are either in a
varied on pending state or in a higher state.

The normal progression through the states for a
switched dial out NO (manual dial) is from varied off to
varied on, to switched enable, to dial pending, to manual
dial start, and then to network active.

The normal progression through the states for a
switched dial out NO (auto dial) is from varied off to
varied on, to switched enable, to dial pending, and then
to network active.

The normal progression through the states for a
switched answer NO (manual answer) is from varied off
to varied on, to swit~hed enable, to manual answer, to
manual answer start, and then to network active.

J

The normal progression through the states for a
switched answer NO (auto answer) is from varied off to
varied on, to switched enable, and then to network
active.

The normal progression through the states for an X.25
NO is from varied off to varied on, to dial pending (only
if a switched virtual circuit call out is attempted), to
network active.

Switched enable state occurs only for NOs in switched
communications environments. It indicates that the
MOONO (enable) command was issued to initialize the
communication line in preparation for dialing out or
answer operations. Switched enable state does not
occur for an X.25 NO.

Oial pending state occurs only for NOs in switched
communications environments and only for switched
dial-out operations and X.25 switched virtual circuit
call-out operations. It indicates that an MOOCO (dial
out) command was issued and the related line was
selected for establishing the dial connection to the
desired station.

Manual dial start state occurs only for NOs in switched
communications environments and only for switched
manual dial-out operations. It indicates that the
MOONO (manual start data) command was issued after
the manual dialing was completed on the data set.
Manual dial start state does not occur for an X.25 NO.

Manual answer state occurs only for NOs in switched
communications environments and only for switched
manual answer operations. It indicates that the MOONO
(manual answer) command was issued after the data set
was manually answered by the system operator. Manual
answer state does not occur for an X.25 NO.

Manual answer start state occurs only for NOs in
switched communications environments and only for
switched manual answer operations. It indicates that the
MOONO (manual start data) command was issued after
the data set was manually answered, the MOONO
(manual answer) command was issued, and the data set
was set into data mode. This operation then completes
the manual answer sequence. Manual answer start state
does not occur for an X.25 NO.

Network active state (switched networks) is the
conclusion of the machine operation after the various
commands have been issued and the various functions
performed.

Recovery/Resource Activation State of the ND

The recovery / resource activation states defined for the
NO object are the following:

• Normal active state

• Normal continue state

• Normal cancel state

• Inoperative pending state

The normal active and normal continue states indicate
that the NO can operate normally. No error recovery is
necessary.

The normal cancel state indicates an MOONO (cancel)
instruction was issued to suspend error recovery.

The inoperative pending state indicates a line failure has
occurred, and error recovery is necesary.

Vary On/Off Sequence

The required sequence to vary on source/sink objects
is:

1. NO

2. CO

3. LUO

The required sequence to vary off source/sink objects
is:

1. LUO

2. CO

3. NO

Source/Sink Functions 6-25

SOURCE/SINK INSTRUCTIONS

Each of the three source/sink object types is supported
by four System/38 instructions: Create, Destroy,
Materialize, and Modify. These instructions configure
and manage the network of I/O devices on the system.
One additional instruction, Request I/O, is the
instruction through which device functions are actually
requested.

Instruction Usage

The Create and Destroy instructions define the I/O
configuration of each system. The source / sink objects
that support the I/O configuration can be created as
part of the system during manufacture and also created
when the system is installed. When additional or
replacement hardware is installed, these objects may be
destroyed and new objects created. Each Create
instruction ensures that the actual hardware and support
is installed on the system before allowing the
source/sink object to be created.

Each system defines a base set of source/sink objects
that were created when the system was built. This
procedure facilitates system installation and system
specialization. Additional information about the objects
that are created when the system is built is contained in
the System/38 Functional Reference Manual.

Modify instructions are used primarily for managing the
network and device facilities. Some typical functions
accomplished through use of the Modify instruction are:
controlling which devices can be used and which
devices are unavailable, or which stations are allowed to
call in on which ports.

The Request I/O and Modify LUD instructions are used
to control I/O devices. The Modify LUO instruction
controls the operational state of the LUO and also
controls the device usage parameters. The Request I/O
instruction requests device functions. The request I/O
functions are, in general, device dependent. Each
system maintains a record of its installed I/O devices,
its configuration, and the corresponding device
operational commands and capabilities as supported
through the Request I/O instruction. For more
information about the Request I/O instruction, refer to
Source/Sink Configuration in the System/38 Functional
Reference Manual.

6-26

The Materialize instructions are used to determine the
I/O configuration and the operational states of the
system hardware components.

The Request Path Operation instruction can be used to
establish an internal path between objects and functions
supported within the machine. It can be used to request
that a path be established between two logical unit
descriptions specified in the template input to the
instruction. It can also be used to request that a path
be established between the load dump support provided
within the machine to a dump space specified in the
template input to the instruction. Additionally, load or
dump operations utilizing this path can be initiated
through use of the instruction.

The template specifically describes the transaction and
contains the data involved with the transaction. The
template also specifies the queue (request path
operation response queue) to which an asynchronous
message (called a feedback record) is to be sent by the
machine when the transaction requested by this
instruction is complete.

Exclusive Locks on Source/Sink Objects

The integrity of source/sink objects and the integrity of
the operations involving these objects when they are
shared by two or more processes is ensured by system
object locks. However, when source/sink objects are
locked exclusive, not all elements within these objects
necessarily remain unchanged for the duration of the
lock. For example, the state change/status elements of
all LUO, CD, and NO objects are subject to being
changed independently of any process actions taking
place. These elements can be changed (even though
they are locked) because of the usage of source/sink
objects. The changes can occur due to actions within
the machine not directly associated with any process.
For example, an NO object representing a switched line
in answer mode will change to active state if an
incoming call occurs and the call is not directly
associated with any user operations on this NO object.

J

Events

Asynchronous events are used to indicate conditions
that occur in the network independently from (although
related to) the source/sink instructions. Asynchronous
events exist for all three object types: LUD, CD, and
ND.

Create/Destroy Instructions-Hierarchy Rules

Create Instructions

Uniqueness: The Create Logical Unit Description
(CRTLUD), Create Controller Description (CRTCD). and
Create Network Description (CRTND) instructions create
the source/sink objects that define and control the
hardware I/O components within the system and the
network of devices.

These objects must be created to be unique in the
following ways:

Unit (Device) Type, Model, and Source/Sink Object
Subtype: Each System/38 model supports certain unit
types and the corresponding source/sink object
subtypes for these units. An exception is signaled if the
unit type, model number, and source/sink object
subtype do not correspond. The data related to these
unit types and object subtypes is contained in the
System/38 Functional Reference Manual.

Corresponding Physical Hardware: When a source/sink
object is created, the machine configuration record
within the system is used to verify that physical
hardware and system support capabilities exist for the
object. If the physical hardware and the system support
capabilities cannot be verified (based on physical
address, unit type, model number, and other elements).
an exception is signaled.

Note: The physical hardware that is external to the
system does not have an entry in the machine
configuration record and cannot be confirmed.

Unique Physical Address within Each Object Type: No
two source/sink objects of the same type (for example,
two LUDs) can use the same physical address on the
system. Because these same unique addresses are also
assigned to physical hardware components, the
assignments allowed to the source/sink objects are
likewise checked for uniqueness. In the case of ND and
LUD objects, this uniqueness checking is based only on
the physical address field within each object. In the
case of CD objects for SDLC communications
controllers, this uniqueness is based on the XID
(exchange identification) field (work station, APPC) and
SSCPID field (LU1).

Regarding CD objects for X.25 communications
controllers, the logical channel I D is used for this
uniqueness checking for a permanent virtual circuit. For
a switched virtual circuit CD, the remote network
address and network connection password are used for
uniqueness checking.

Multiple objects (NDs, CDs, and LUDs) with duplicate
physical addresses can be created for communications
networks. For example, you can create up to 10 NDs
with operational unit 20 as the physical address
(System/38 communications line 1). These multiple
objects are used uniquely at vary on time because only
one set of objects for each physical configuration can be
active at one time.

Physical address checking for BSC controllers is
bypassed because the CD objects can represent a
generic class of BSC stations as well as one unique
station.

Destroy Instructions

The three unique destroy instructions-Destroy Logical
Unit Description (DESLUD), Destroy Controller
Description (DESCD), and Destroy Network Description
(DESND)-are used to destroy the source/sink objects.
When a source/sink object is destroyed, the related
source/sink objects referenced by the forward or
backward object pointers are searched. If these related
objects exist, their corresponding backward or forward
object pointers to this object are nullified.

Source/Sink Functions 6-27

Configuration Hierarchy Rules

Creation and/or destruction of source/sink objects
occurs primarily as part of system specialization during
the time a system is built and installed. Source/sink
objects must also be created and destroyed to reflect
hardware changes and additions that occur during the
lifetime of a system.

Object creation and destruction should occur in a
preferred sequence to minimize the user's involvement
in defining the forward and backward chaining of
source/sink objects. The preferred sequence is to
create NOs. CDs. and then LUDs in that order within
each related set and to destroy them in reverse
order-LUDs. CDs. and lastly NOs.

When the NO. CD. and LUD objects are created in the
preferred sequence. the user need only supply the
forward pointers within each create template. No
backward pointer lists need be supplied because the
system builds these lists as part of creating the
subsequent objects on the chain.

For those source/sink objects that are created out of
sequence. the user has the additional obligation of
supplying the list of backward pointers so that the
system has enough information to complete the chaining
of the objects and can insert the corresponding forward
pointers in these related objects.

When the objects are destroyed in reverse order, the
system methodically removes the entries from the
backward lists and thus minimizes the number of
source/sink objects that are left in a disconnected,
unusable state. Although the preferred sequence is
recommended. it is not mandatory.

The secondary requirement for configuration changes is
the need to not be forced into destroying all lower
objects within an object chain in order to destroy the
higher object in the chain. For example, if new hardware
features or capabilities are added to a controller and a
CD is being destroyed so that a new CD can be created
in its place to reflect these additions, then it is not
necessary to destroy all attached LUDs before
destroying this CD. You must, however, preserve the
forward pointer and the list of backward pointers to the
LUDs. destroy the original CD, and recreate the new CD
supplying the forward pointer and the list of backward
pointers preserved from the original CD.

6-28

Source/sink objects that do not have proper forward
chaining can exist in the system even though objects
existing in this state are not usable until their forward
chaining is properly established. These objects can be
materialized or have their parameters modified, but a
Modify instruction issued to change the state (status
field) of that object results in a configuration invalid
exception. The exception occurs until such time as that
object's forward and backward chaining is properly
established. The chaining is properly established when
the required objects are created.

Materialize Instructions

Three unique materialize instructions-Materialize Logical
Unit Description (MATLUD), Materialize Controller
Description (MATCD), and Materialize Network
Description (MATND)-are used to materialize
source / sink objects.

Each Materialize instruction has a 2-byte character
scalar operand that identifies the element or group of
elements to be materialized. Each element within the
object has an associated option value that can be
inserted into this operand to materialize that element.
Other option values allow multiple elements as well as
the entire group of elements to be materialized.

Refer to Figure 6-4 and note the materialize option
value assigned to each element. The digit 1 in the
leftmost position of the option value indicates that only
this single element can be materialized on one
instruction. The Z character (which can have a value of
either 1 or 4) in the leftmost position indicates that a
single element (1) or a group of elements (4) can be
materialized.

A group of elements can be materialized on one
instruction by specifying an option value that is the
result of performing a logical OR on the option values of
the desired elements. (The digit 4 must also be
sustituted for the Z.) For example, an option value of
hex 4018 specifies that the retry value sets (hex 4008)
and the error threshold sets (hex 4010) elements will be
materialized on one Materialize instruction.

Note: All elements are materialized on one instruction
when an option value of hex 8000 is specified, except
for X.25 runtime statistics.

For a complete description of the LUD, NO, and CD
templates, refer to the Systemj38 Functional Reference
Manual, Volume 1.

Sub Materialize
Elements Contained in the Template ILUD types 00. Element Element Option
10.30) for Materialize LUD Length Length Values

Template size specification CharlS)
Reserv.ed (for all materialize templates except ones Char(S)
including object header data)
Object header data (includes template size) Char(96) 1003
LUD definition data Char(16) 1007
Pointer group data Char(16) 1005
Physical definition data Char(16) 1009
State/status definition Char(16) z001

· Object state Char(6)
Byte(s) Bit(s) MfNlning
0 State/Status

0-6 Reserved Bit(7)
7 Active session state Bit(1)

1 State/Status
0 Suspended session state Bit(1)
1 Quiescad session state Bit(1)
2 Reset session state Bit(1)
3 Varied on/no session state Bit(1)
4 Vary on pending state Bit(1)
5 Reserved Bit(1)
6 Power on/vary off state Bit(1)
7 Power off state Bit(1)

2 State/Status
0 Diagnostic state Bit(1)
1 Diagnostic active indicator Bit(1)
2-7 Reserved Bit(6)

3-& Reserved Char(3)
• Recovery/resource activation definition Char(2)

0
0 Inoperative pending state Bit(1)
1 Normal pending state Bit(1)
2 Normal cancel state Bit(1)
3 Normal continue state Bit(1)
4 Normal activation pending state Bit(1)
5-6 Reserved Bit(2)
7 Normal active state Bit(1)

1 Reserved Char(1)

· Reserved ChartS)
Session definition data Char(32) z002
Load/dump definition data Char(16) zOO4
Specific characteristics Char 1012

(y + 2)
Retry value sets Char zOOS

(6y +2)
Error threshold sets Char z010

(Sy + 2)
Device-specific contents Char z020

(y + 4)

y - Variable length of an element.
z - Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize this element as part of a group of modifiable elements.

Figure 1-4. Materialize LUD Template

Source/Sink Functions 6-29

-------------------------- ------

Modify Instructions

The three unique modify instructions-Modify Logical
Unit Description (MODLU Modify Controller Description
(MODCD). and Modify Network Descriptions
(MODND)-are used to modify the source/sink objects.

Each modify instruction has a 2-byte character scalar
operand that identifies the element or multiple elements
to be modified. Each modifiable element within the
object has an associated option value that can be
inserted into this operand to modify that element.
Multiple elements can be modified as a group by
logically ORing together those individual option values to
be included in the group.

Refer to Figure 6-5 and note the option value assigned
to each element. You can modify, for example, the
state/status definition element by specifying the option
value assigned to the element (hex 4001). You can also
modify multiple elements (such as, the session definition
data (hex 4002), the retry value sets (hex 4008). and the
device-specific contents (hex 4020)) as a group by
specifying an option value of hex 402A, which is the
result of performing a logical OR operation on the option
values assigned to these elements.

6-30

Elements Contained in the LUD Sub Modify
Template (LUD types 00,10,30) for Element Element Option
Modify Length Length Values

Template size specification Char(S)
Modify time-out value Char(S)
State/status definition Char(16) 4001
• Object state change Char(6)

Byte(s) Bit(s) Meaning
0 Commands

0-6 Reserved Bit(7)
7 Activate session Bit(1)

1 Commands
0 Suspend session Bit(1)
1 Quiesce session Bit(1)
2 Reset session Bit(1)
3 De-activate session Bit(1)
4 Vary on Bit(1)
5 Vary off Bit(1)
6 Power on Bit(1)
7 Power off Bit(1)

2 Commands
0 Set diag mode Bit(1)
1 Reset diag mode Bit(1)
2-7 Reserved Bit(6)

3·5 Reserved Char(3)
• Recovery/resource activation Char(2)

definition

0 Status
0-1 Reserved Bit(2)
2 Normal cancel Bit(1)
3 Normal continue Bit(1)
4-7 Reserved Bit(4)

1 Reserved Char (1)

· Reserved Char(S)
Session definition data Char(32) 4002
Load/dump definition data Char(16) 4004
Retry value sets Char 4008

(6y +2)
Error threshold sets Char 4010

(Sy + 2)
Device-specific contents Char 4020

(y + 4)

Note: A combination of elements can be modified on the same Modify
instruction by supplying a value that is the result of performing a logical OR on
the modify option values of the desired elements.
y = Variable length of an element.

Figure 6-5. Modify LUD Template

Source/Sink Functions 6-31

Modification Sequences

The modifiable elements contained within each
source/sink object are separated (based on use) into
two distinct categories. The first category contains the
state change / status element with all its associated
subelements. This element provides the method to
control the state of each source/sink object. The
second category contains all other modifiable elements
within an object. These elements (referred to as
operational parameters) can be changed, as required, to
provide different operational functions for each
source/sink object.

The Modify instructions, consequently, have two basic
functions to perform. First, for the state change/status
element, only certain state changes or state change
sequences are allowed. The Modify instructions enforce
these state change transition rules.

For the second category of elements, the operational
parameters can be changed only when the object is in a
state that allows the change. The Modify instructions
enforce the allowable state change rules for operational
parameter elements. Each operational parameter has a
rule to indicate in which states that parameter can be
modified. It can then be modified in all states lower
than this state.

6-32

Because of these two categories of modifiable elements,
modify operations must be performed in a specific
sequence when a Modify instruction specifies an option
value for a group of elements to be modified together.
If this was not done, ambiguous cases could exist as to
when state change rules apply to each modifiable
element. The sequence for all object types for
performing a Modify instruction with a group of
elements is always as follows:

1. All state change requests that cause a transition to
a lower state are completed first. These changes
themselves are performed in sequence from the
highest state downward.

2.

3.

All requested operational parameter elements are
modified in a sequence defined for each object
type.

All state change requests that cause a transition to
a higher state are performed in an upward
sequence.

J

J

L

LUD Session State Changes

The session states in the LUD objects were previously
defined as the usage states for the LUD. This concept
of a session with an LUD implies usage or control of the
related device. The session states control the operations
that are performed by that LUD by controlling the
execution of the Request I/O instruction and the
disposition of outstanding Request I/O instructions
during session state changes.

Activating a Session

Sessions can first exist only in the active session state.
A Modify LUD instruction to activate a session causes
the LUD to move from the varied on/no session state to
the active session state. Only in the active session state
can a Request I/O instruction be issued to this LUD.
The session can be de-activated from this state by an
MODLUD (de-activate) instruction. which changes the
LUD to the quiesced state first and then to the varied
on/no session state. The three other inactive
states-suspended. quiesced. and reset--can only be
entered from the active session state. These states
represent various ways of controlling the activity taking
place at the LUD by defining different dispositions for
any request I/O operations that were issued to this
session when it was an active session and that are
currently outstanding to this session.

Suspending a Session

An active session that is suspended with an MODLUD
(suspend) instruction causes the system to stop
processing any further Request I/O operations posted to
this session and to complete any request I/O activity
already started in the network. When the suspend
operation is completed. all previously issued request I/O
operations are either completed properly and so
indicated or are still suspended within the system. The
session can be reactivated by an MODLUD (activate)
instruction that causes the LUD to return to the active
session state and processing to resume with no loss in
continuity. The session can be de-activated from the
suspend session state by an MODLUD (de-activate)
instruction. This causes the LUD to first go to the reset
state and from there to the varied on/no session state.

Quiescing a Session

An active session can be quiesced by an MODLUD
(quiesce) instruction. A transition to the quiesce state
causes the system to complete all previously issued
request I/O operations normally before the LUD is put
into a quiesced state. The quiesced session can be
reactivated by an MODLUD (activate) instruction that
returns the LUD to the active session state and
continues normal processing. The session can be
de-activated from the quiesced state by an MODLUD
(de-activate) instruction. This causes the LUD to change
to varied on/no session state. Before issuing an
MODLUD (quiesce) instruction. a user should be aware
of the particular request I/O operations that may be
pending for the device in question. Otherwise. excessive
time can occur before the instruction is completed. For
example. if the pending operations include a long wait
for an I/O operation (such as a read from keyboard
command). the quiesce operation will not complete until
either the wait is satisfied by the I/O device or the
modify time-out interval has expired.

Resetting a Session

An active session can be reset by an MODLUD (reset)
instruction that causes the system to immediately stop
processing any request I/O operations in process and to
complete that request I/O and all subsequent request
I/O operations abnormally and immediately return them
with a reset status condition indicated. A session can
be reactivated by an MODLUD (activate) instruction from
the reset state. but processing is neither completed nor
continued for request I/O operations issued before the
reset condition. The session can also be deactivated by
an MODLUD (de-activate) instruction that returns the
LUD to the varied on/no session state.

Source/Sink Functions 6-33

De-activating a Session

Sessions can be de-activated from the active session
state or any of the three inactive states (suspended,
quiesced, or reset). When sessions are de-activated
from the acti~e or suspended states, previous request
I/O operations may still be in process within the system
because the Request I/O instruction is asynchronous to
the actual request to the device.

When a session is de-activated from an active session
state, the session de-activation goes through a quiesced
state to allow request I/O operations (if any) to
complete normally before moving the LUD to a no
session state. This sequence establishes the proper
protocol for ending all session (or usage) activity on the
LUD. The Reset Session command must be used to
de-activate a session when any abnormal requirements
exist.

When a session is de-activated from a suspended state,
the session goes through a reset state that causes
suspended request I/O operations (if any) to be
terminated abnormally and so indicated in their status.

State Change Transition Rules

Figure 6-6 is an example of the state change transition
rules for an LUD (logical unit description) and the bit
designation within the state change field that must be
specified on a Modify instruction to cause the transition
to occur.

6-34

Multiple state transitions can occur on a single Modify
LUD instruction by specifying the correct bits in the
state change field of the LUD template. Source/sink
management causes the transitions to occur in a valid
sequence if the correct bits are specified. When the
state transitions cannot occur in a valid sequence, an
exception is signaled.

The state of the object can be determined by issuing a
Materialize instruction with the state/status definition
element specified (option value hex 1(01). Figure 6-6
(Part 1 of 2) shows the relationship of the bits in the
state change field (Materialize instruction) and the state
of the object.

Additional information about the state transitions for the
CD (controller description), ND (network description),
and the LUD (logical unit description) is contained in the
System/38 Functional Reference Manual.

Figure 6-6 (Part 2 of 2) shows the operational
parameter elements of an LUD and the states of the
object that allow the parameter to be modified. The
elements and the sequence in which the modifications
occur are determined by the modify option value. For
example, if an option value of hex 4036 is specified, the
session information, load/dump indicator, error
threshold sets, and the device-specific contents
operational elements are modified in the sequence as
shown in the figure. (The hex 4036 option value is the
result of performing a logical OR operation on hex 4002,
4004, 4010, and 4020.)

J

Metnlize Instruction

State Change/Status FIeld

• Byte 0 status
- Bits O~ reserved

• - Bit 7 Active session state

• Byte 1 status

ml __ ~~ ::: ~ ~~~~:;e~~e:::~i~:t:::te
Bit 2 reset session state
Bit 3 varied on/no sessIon state
Bit 4 vary on pending state

- Bit 5 reserved

• - Bit 6 power on/vary off state
• - Bit 7 power off state

• Byte 2 status

• - Bit 0 diagnostic state

~_-;-fY-,nw-ud-;on------~l~
State Change/Status Field

• Byte 0 commands

- Bits ~6 reserved

- Bits 7 activate seSSIon

• Byte 1 commands

- Bit 0 suspend session

- Bit 1 Quiesce session

- Bit 2 reset session

- Bit 3 deactivate session

- Bit 4 vary on

- Bit 5 vary off

- Bit 6 power on

- Bit 7 power off

CD
o
I
I • •

• Byte 2 commands
- Bit 0 set diagnostic mode •

- Bit 1 reset diagnostic mode I)

I
, •

Diagnoltic I
State

Power
Off IPo_. On I VI •• On I V •• ;oc! Onl I

Vary Off I P.nding No Seaio"
R
Session

Suopond _n I Active
Snlion

Power On
-------.. G
Power Ofl ------- Vary

Vary On

On
--------. 0

Off

--------- .,
Set
Diagnostic

C!) -+-------

Vary Off o -.-------

Sel DiagnostIc

., ·::~~;:-~fO--- -----
Reset Diagnostic

----------- -------+- .,

CD ConnectIon
+++ Made
CD Abandon Connection ---

Activate Sessiol'1 ------ ----t----------- --------••
Deactivate Session I o -+------- ----------1-+------.... _ .. ____ ._+~~~~~~~o~

Activlte Su,ion Ia. ----------- ----------r--------~

• .!~~~~:~t~_ Quinc.

o -+-------1---------·
Deactivate
Session

~ 01+--------- ---------- Suspend

41) ... ------­
Activate

Deactivate2 --------.~ •

~~--~-----L----~------L---~.~-+~-~--~--~--~-·~I-+~·=--=--~--=--~--=--=--~-=--~-L-____ L-__ ~
Meaning of Symbols

. -------------- State transitions due to
MODLUD operations

- -----.. State transitions due to
MOOCO on the (elated
CD

+ + + + +~ State transitions by

system on behalf of
MODCD

II Deactivate from actIve stale causes a state change first to Quiesced state and then to vari~d on state.
2 Deactivate from suspended slate causes a state change first to reset state and then to vaned on state .

Figure 8-8 (Part 1 of 2'. Summary of Stete Change Transition Rules (LUD'

Source/Sink Functions 6-35

Allowable States for Modifying LUD Elements

Varied
Operational Element Hex Diagnostic Power Power On Vary On On/No Reset Quiesce Suspend
Modify Sequence Value Mode Off Vary Off Pending Sessio Sessio Session Session Active

1. Session information 4002 No Ves Ves No No No No No No

2. Load/dump 4004 No Ves Ves Ves Ves Ves' Ves' Ves/No' No
indicator

3. Retry value sets 4008 No Ves Ves Ves Ves Ves Ves Ves Ves

4. Error threshold 4010 No Ves Ves Ves Ves Ves Ves Ves Ves

5. Device-specific 4020 No Ves Ves Ves Ves Ves Ves Ves Ves
contents

lean be modified only if the load/dump device can be interrupted. Refer to the System/38 Functiona/Reference Manua/ for
additional information about the load/dump indicator.

Figure 6-6 (Part 2 of 2). Summary of State Change Transition Rules (LUD)

6-36

Nonsupported Session State Changes

No other changes between session states are supported.
For example, attempting to move from the suspended
state to the quiesced state is not a valid transition. An
MODLUD instruction that specifies such a transition
causes an exception to occur.

Modify Time-Out Values

The modify time-out value field is used to specify the
desired length of time (in standard time units) that the
machine should allow for the modification operation to
complete. If the modify operation does not complete
within the specified time, the operation is terminated,
and the partial system object damage exception is
signaled. Error recovery procedures must be invoked to
perform any shutdown or cleanup operations if this
exception occurs.

If a time-out value of zero is specified in the modify
template, a default value is used. Any nonzero time-out
value supplied must fall within the time-out limits. This
time-out value should not be construed as a maximum
length of execution time for the Modify instruction. The
time-out is only used internally to time some arbitrary
portion of the operation to prevent the Modify
instruction from never completing. Time-out will not
occur in less than the specified time-out value.
However, a valid execution may last much longer than
the time-out value when several elements are included
in one Modify instruction because each of the element
operations is timed separately.

The minimum, maximum, and default time-out values
are contained in the System/38 Functional Reference
Manual.

Request I/O Instruction

Request I/O Functions

The Request I/O instruction schedules work to the
devices within the source/sink network. The
fundamental types of work achieved by the Request I/O
instruction are as follows:

• The normal request I/O operation allows a unit of
work to be scheduled to an I/O device in the
network. This device must be represented by an LUD
object in the active session state and also be the
target of the request I/O operation.

• The Request I/O instruction for the load / dump
operation is similar to a normal request I/O in that it
involves an LUD and its associated device as the
target object. But it differs in the type of work it
does within this active session on that LUD. The LD
(load/dump) function enables the user to save
(backup) certain permanent objects by dumping these
objects to an LD media (such as diskettes) and then
restoring or loading these objects as needed.

• The Request I/O instruction for an MSCP (machine
services control point) operation allows a request to
be sent directly to the MSCP to provide network
support services on behalf of any LUD or CD within
the system.

• The Request I/O instruction for a service operation
allows a request to be sent to the service
(maintenance) components within the system to
initiate various service functions on behalf of the I/O
device.

Source/Sink Functions 6-37

The Request I/O instruction executes asynchronously to
the actual performance of the work requested by that
instruction. At the time the Request I/O instruction has
completed, the work has been scheduled to the system;
however, no direct relationship can be established
concerning when the work is actually completed. When
the work is completed, the system posts a feedback
record to the request I/O response queue. The user can
then obtain this message by issuing a Dequeue
instruction against that queue.

The general sequence used to perform work on an I/O
device is as follows:

1.

2.

Create a request I/O response queue.

Lock the LUD object (optional) for the intended
device.

3. Modify the LUD to establish an active session.

4. Issue a Request I/O instruction that specifies (via
a source/sink request): the LUD to be used, the
request I/O response queue on which to post the
feedback record results, the type of work to be
done (normal, load/dump, service, or MSCP), the
unit of work to be done (command or commands),
and the associated data areas for this work.

5. Dequeue from the request I/O response queue to
determine the disposition of the work requested
(successfully accomplished or unsuccessful for
specified reasons).

6.

7.

8.

Reissue Request I/O and Dequeue instruction
pairs (4 and 5) for the remaining work to be
completed.

Modify the LUD to de-activate the session.

Unlock the LUD to make the device available for
the next user.

9. Destroy the request I/O response queue (if no
longer needed).

Variations to this sequence are possible within the
checks that are enforced by the Request I/O instruction.
For Request I/O instructions issued to the service
processor, an LUD object is not directly associated with
the Request I/O; therefore, the Lock LUD, Modify LUD,
and Unlock LUD instructions (steps 2, 7, 8) are not
necessary.

6-38

The Request I/O instruction relates to the request I/O
response queue in the same way the Enqueue
instruction relates to any other queue. The Request I/O
instruction does, indeed, take on many of the
characteristics of the Enqueue instruction. But the
Request I/O instruction is also fundamentally different
because it represents an indirect path from the user out
through the I/O device and back before a message is
enqueued to the request I/O response queue.

Request I/O Syntax

The Request I/O instruction consists of an operation
code with one operand:

Operation Code Operand 1

REQIO Space pointer to an SSR

Operand 1 references a template called the SSR
(source/sink request). The SSR contains all the
information associated with each request I/O operation.
The feedback record, which is a message enqueued to
the request I/O response queue when the actual
requested operation is completed, contains a pointer to
this same SSR. This pointer can be used to obtain all
the information from the SSR associated with the
request.

The target object of a request I/O operation can be an
LUD for normal and load/dump requests, an LUD or CD
for MSCP (machine services control point) network
services requests, or an LUD, a CD, an ND, or a null
pointer for service function requests. For more
information about MSCP, refer to Machine Services
Control Point (MSCP) later in this chapter. For normal
request I/O, load/dump, and MSCP requests, a system
pointer to the LUD or CD is the first element in the
SSR. The location of the MSCP is implicitly known to
the machine.

Contents of Source/Sink Request

Source/Sink Request: The SSR consists of pointers and
data that contain the following:

• Data
Template size specification: This entry defines the
standard template header data. The size of the
template field must indicate a sufficient number of
bytes to contain all entries in the SSR.
Request I/O time-out: This field is used to
specify the desired length of time (in standard time
units for the system model being used) that the
machine should allow for a synchronous request
I/O (with task switching) operation to complete.

• Pointers
First pointer: System pointer to an LUO for normal
and load/dump request I/O operations. System
pointer to an LUO or a CD for MSCP request I/O
operations. System pointer to an LUO. a CD. an
NO. or a null pointer for service function request
I/O operations.

- Second pointer: System pointer to the request I/O
response queue.
Third pointer: Space pointer to a SSO
(source/sink data area).

- Fourth pointer: This space is reserved for an
optional pointer. When not used. this space is
treated as reserved and must contain binary zero.

• Data
Request I/O timestamp: This field is set by the
machine to indicate (in standard time units for the
system) the time when this request was
processed. The request I/O response queue
contains a standard enqueue timestamp that is
also set to indicate the time of actual completion
of the resulting I/O operation.
Request priority: This field is used to establish the
priority of each Request I/O instruction relative to
each other. This key is used to establish priority of
the request as it is issued to the machine and as
the requested operation is scheduled. Priority
values are established with hex 0000 being the
highest priority and hex FFFF being the lowest
priority.

Request 10: This field is used to assign any
unique identification to each source/sink request.
This identification enables a user to associate
feedback records with the Request I/O instruction
that generated them. This 10 is inserted into the
message area supplied for the Dequeue instruction
that retrieves the feedback record from the request
I/O response queue. The message area can then
be inspected to associate the message with the
originating Request I/O instruction.
The request 10 field is also used to control the
signaling of the request I/O completed event.
When bit 0 of this field is equal to 1. the request
I/O completed event is signaled at the time the
feedback message is enqueued. This indicates that
the processing of this request is completed. When
bit 0 of this field is equal to zero. no event is
signaled.
Function field: This field specifies the request I/O
type. Bits 0-3 define the type of request; bits 4-7
are function-dependent and are uniquely defined
for each device. For more information about the
function field. refer to Source/Sink Management
Instructions in the System/38 Functional Reference
Manual.

- Request control field: This field is used to define
request I/O control functions. For more
information about the request control field. refer to
Source/Sink Management Instructions in the
System/38 Functional Reference Manual.

The Request I/O (continue) instruction defines the
treatment for previously issued Request I/O
instructions when error situations have been
encountered within the machine. Certain error
situations can arise that cause feedback records
(which indicate the error) to be posted for those
requests. This means that terminating errors have
occurred; all further processing of scheduled
request I/O operations was suspended. and the
machine is waiting for further information on
disposition of these suspended requests. If
additional normal Request I/O instructions are
issued during this time. they are executed (no I/O
function occurs) and enqueued to the stack of
suspended requests.

Request I/O (continue) instructions can be
executed at this time to control certain error
recovery situations. A Request I/O (continue)
instruction causes the machine to restart normal
operations immediately after posting a feedback
record corresponding to this Request I/O
(continue) instruction.

Source/Sink Functions 6-39

The priority field in the SSR can be used on these
Request I/O (continue) instructions just as in
normal Request I/O instructions for the user to
establish priority. However, internally these
operations are assigned a higher priority than the
normal request I/O operation so that the request
I/O (continue) operations always take priority over
outstanding normal I/O requests.

- Key length: This field indicates the length of the
request key field in this SSR. The value specified
in this field must also match the key length
attribute of the response queue specified in this
SSR.

- Offset to key field: This field locates the request
key field within the SSR. The positive value
contained in this field defines a location that starts
from the beginning of the SSA.

- Request key: This field is used by the machine to
post the feedback record onto the response queue.
Then the Dequeue instruction can use this same
key value to retrieve the feedback record
corresponding to this Request I/O instruction.

- Request descriptor count: This field indicates the
number of request descriptor fields that follow in
this SSA.

- Offset to request descriptors: This field locates
the request descriptor field within the SSA. The
positive value contained in this field must define a
location that is either 2-byte aligned for normal,
MSCP, or service requests or 16-byte aligned for
load/dump requests. The offset starts from the
beginning of the SSA.

- Request descriptor: The RD (request descriptor)
fields are the command operations for the I/O
device or the message description to be sent to a
communication device. The request descriptors are
either 96-byte entries for load/dump operations or
16-byte entries for all other operations. The RD
contents are uniquely defined for each type of I/O
device on the system.

- Offset to variable parameters: This field indicates
the location within the SSR where the variable
parameters (if any) have been placed. This offset
is defined as a positive value offset from the
beginning of the SSR and must define a 16-byte
aligned location.

- Request I/O variable parameter: This variable
parameter area is used by certain devices or
support mechanisms to define additional data
which is necesary for their support.

6-40

Source/Sink Data

The SSD (source/sink data) is a space that contains the
data areas (I/O buffers) associated with the operations
requested by the request descriptors within the SSA.
For normal request I/O operations, the SSD is a space;
however, the SSD optionally need not be present if no
data is read or written. The SSD is further subdivided
into elements called RIUs (request information units)
that correspond to the request descriptors in the SSR
(source/sink request). (The load/dump request I/O
operation does not use an SSD.) The contents of the
SSD are defined in the System/38 Functional Reference
Manual.

Request I/O Response Queue and Feedback Record

The request I/O operation requires an LUD object and a
request I/O response queue object. The LUD represents
the device. The response queue contains the messages
generated by the machine (asynchronous to the Request
I/O instruction). These messages indicate the final
disposition of the requested unit of work that was
specified by that Request I/O instruction.

The messages on the request I/O response queue,
which are retrieved by a standard Dequeue instruction,
are called FBRs (feedback records).

Request I/O and Request I/O Response Queue
Relationship

The following information describes the special
relationship between the request I/O operation and the
response queue. the special considerations when
creating and using a queue as the request I/O response
queue. and the format and contents of the feedback
records.

A request I/O operation acts as an Enqueue instruction
on a keyed queue because request I/O operations are
processed in binary collating key sequence (subject to
time of arrival considerations). For example. internal
request I/O processing occurs on the request with the
highest priority of all requests that were issued
(enqueued) up to that time. However. a user cannot be
assured of any given request I/O operation taking
precedence over any previously issued Request I/O
instructions because it cannot be determined (unless an
error exists or the LUD is suspended) whether
processing on that previous request has already been
started. Whether or not processing on a request has
started can be determined when an error condition is
encountered for which the feedback record is marked
terminating error. Then. after the user causes all
feedback records to be dequeued from the response
queue. remaining request I/O operations outstanding are
not started. and subsequent Request I/O instructions
are enqueued according to key sequence with the
outstanding requests until a Request I/O (continue)
instruction causes resumption of normal processing.

Dequeue of messages from the request I/O response
queue can be done with any key compare operand
supported by the Dequeue instruction. These operations
are allowed because the request I/O operation sends
messages to this queue in keyed sequence and time of
arrival sequence within key just like a normal enqueue to
a keyed queue. A Dequeue instruction with a less than
«) compare operand retrieves messages in key
sequence. FIFO within key.

Request I/O and dequeue operations are asynchronous
because there is no established relationship as to when
a Dequeue instruction should be issued to receive the
results of a previous Request I/O instruction. (The
Dequeue instruction can be deferred as long as desired
after the Request I/O is issued.) Conventional dequeue
and branch. or dequeue and wait techniques must be
applied as in any other queue relationship.

Source/Sink Functions 6-41

Special Considerations for the Request I/O Response
Queue

The request I/O response queue must be created and
defined as any other queue, except it must be defined
with certain attributes. Refer to Queue Management in
Chapter 5 for more information about how to create and
define queues.

When a user creates a request I/O response queue, the
following restrictions apply:

• The queue must be a keyed message queue (rather
than LIFO or FIFO).

• The length of the key can be from 10 through 256
bytes.

• The messages must allow pointer and scalar data.

• The size of the message data area must be a
minimum of 64 bytes.

When any of these restrictions are violated, the Request
I/O instructions that reference this response queue
signal an exception at the time the instruction is
executed (before the request is processed).

The response queue can be created as either fixed in
size or extendible. In either case the request I/O
operation signals an exception when the queue message
limit is violated (for fixed size queues) or when the
machine storage limit is exceeded (for extendible
queues).

When a message is dequeued from a request I/O
response queue, the message contains the request 10
information from the SSR for this request. All elements
within the message prefix are as defined for other
queues. The enqueue time stamp element represents
the time when the Request I/O instruction was
executed.

6-42

Format and Contents of the Feedback Record

The message associated with a Dequeue instruction is
called a feedback record whenever the enqueued
message is a result of a request I/O operation. The
space that is specified as an operand on the Dequeue
instruction has the following information inserted into it
to form the feedback record.

• Space pointer-identifies the SSR (source/sink
request) that was supplied by the issuer of the
Request I/O instruction as its space operand. This
SSR can optionally have new data inserted into it by
the machine (based on the request I/O operation that
was performed).

• Request ID-is the same as the one in the original
SSR.

• Error summary field-indicates the final disposition of
the request I/O operation.

• RD number-indicates the request descriptor within
the Request I/O instruction that is appropriate for the
ending status of that instruction. Normally, it is the
last RD in the request and, in terminating errors, it is
the RD on which the failure occurred.

• RIU segment count-indicates a further breakdown to
the segment within the RI U (request information unit)
associated with the above RD number.

• Device-dependent status field-indicates further status
associated with the error summary field and is
defined uniquely for each type of device supported
on the system.

J

SOURCE/SINK EXCEPTIONS AND EVENTS

Some of the exceptions and events associated with
source/sink instructions are applicable throughout the
system. Other exceptions and events, which are
system-wide, can have unique meanings when applied
to source/sink objects; still others are uniquely defined
for the source/sink objects. For a complete description
of all exceptions and events for each instruction, refer to
the System/38 Functional Reference Manual.

COMMUNICATIONS ERROR RECOVERY

Communications error recovery is available to the
machine interface (MI) user of communications or local
work stations to reestablish a connection and/or
recontact a remote device or system after a line, station,
device, or LUD failure has occurred. A Modify
ND/CD/LUD (vary off) and Modify ND/CD/LUD (vary
on) instruction sequence is not always required to
reestablish a connection and/or recontact a remote
device or system.

During a connection, errors may occur because of a
line/station failure or a device/LUD failure. For these
failures, the MI user is notified through events and/or
an error request I/O feedback record. The failure events
contain data that indicates the line, controller, device, or
LUD on which the failure occurred and the cause of the
failure. The error request I/O feedback record indicates
the cause of the failure. When notification of a failure is
given through a Request I/O Feedback Record, the MI
user must issue the Modify LUD (reset) and Modify LUD
(de-activate) instructions.

To reestablish the connection and contact the remote
device or system after a line, station, or device!LUD
failure, the MI user must issue an appropriate Modify
ND (continue), Modify CD (continue), or Modify LUD
(continue) instruction. The Modify ND (continue)
instruction allows the line to be reused after a line
failure. The Modify CD (continue) instruction allows the
controller and its attached devices/LUDs to be reused
after a line or station failure by reestablishing contact
with the controller and its attached devices/LUDs.

The Modify LUD (continue) instruction allows the
device/LUD to be reused after a device/LUD failure by
reestablishing contact with the device/LUD.

To suspend the reconnection and reuse of the
communications connection after a line, station, or
device/LUD failure, the MI user must issue an
appropriate Modify ND (cancel), Modify CD (cancel), or
Modify LUD (cancel) instruction.

To reestablish the connection and contact the remote
device or system after a Modify ND/CD/LUD (cancel)
instruction has been issued, an appropriate Modify ND
(continuel. Modify CD (continue), or Modify LUD
(continue) instruction must be issued. The Modify ND
(cancel) instruction is used to suspend the reuse of a
line after a line failure. The Modify CD (cancel)
instruction is used to suspend the reuse of a controller
and its attached devices!LUDs after a line or station
failure. The Modify LUD (cancel) instruction is used to
suspend the reuse of a device/LUD after a device/LUD
failure.

SYSTEMS NETWORK ARCHITECTURE CONCEPTS
FOR SYSTEM/38

A· key function of SNA is the division of the
communications system functions into a set of
well-defined logical layers. The major functional layers
defined by SNA are:

• Application layer

• Function management layer

• Transmission management layer

These functions are performed by either the machine
(indicated by MI) or the controlling program (indicated
by PGM).

Application Layer (PGM)

The application layer is only concerned with application
functions. This layer performs the user's application
processing in such a manner that the user need not be
involved in the protocols or the procedures for
controlling a communications line or routing data units
through the network.

Source/Sink Functions 6-43

Function Management Layer (PGM)

The application layer employs a set of requests to
invoke the services of the function management layer.
The function management layer is concerned with the
presentation of information between the application layer
and the transmission management layer.

Transmission Management Layer (Mil

The transmission management layer is concerned with
the routing and movement of data units between origins
and destinations. The transmission management layer
does not examine, use, or change the contents of the
data units passed from the function management layer.
This separation, where the routing of a data unit is
independent of the contents of the data unit, means that
a change in the method of transmission between units
requires no change in the data unit itself. Therefore, the
support provided by the function management layer can
be used across a variety of physical connections. The
paths through the network can be shared by many
applications. The transmission management layer
provides the control necessary to manage these shared
resources.

6-44

SNA Transmission Management Layer

In SNA terminology, the transmission management layer
is called the transmission subsystem.

Transmission Subsystem (MI)

The transmission subsystem provides information
exchange between NAUs (network addressable units)
and the three types of elements (data link control. path
control, and transmission control) that make up the
transmission subsystem.

Data link control elements manage the links between the
units. Path control elements provide routing of data
units over the paths between network addresses.
Collectively, the path control and data link control
elements make up the shared common network.

Transmission control coordinates the transmissions,
including sequence numbering and rate control. when
two network addressable units are connected.

Data Link Control (MI)

The data link control elements manage an individual data
link. The data link control in each unit manages the data
link attached to that unit. Data link control may function
as either a primary or secondary station, or as a peer
connection for X.25 (depending upon the physical
configuration). The procedures and protocols used to
transmit data depend on the type of data link being
controlled.

J

Advanced Program-to-Program Communications

Advanced program-to-program communications (APPC)
is an extension of the existing communications support.
Instead of the more traditional host/work station
relationship, APPC allows a System/38 to communicate
not only with another System/38, but also with other
systems that have compatible support through
SNA/SDlC or SNA/X.25 on a peer (equal) basis.
System/38 APPC uses the SNA-defined logical unit 6.2
(lU6.2), which allows either system to start
program-to-program sessions and to initiate programs
on the remote system.

In the APPC support, logical unit descriptions (lUDs)
assume a new role. For example, an lUD does not
represent a device such as a 5250. In APPC, an lUD
represents a group of parallel paths to another
processing unit; when more than one group of parallel
paths are attached to a CD, they represent a set of
parallel independent path groups to another processing
unit.

These paths are referred to as assignable sessions. This
means that, in APPC, an lUD contains no device-unique
data in it such as model number or screen size, but it
does have unique SNA bind information. When a user
program opens a file with an lUD defined for APPC
use, a conversation on an available session is allocated
to that file. Other sessions on the same lUD are still
available to be used by other files under the same or
other processes.

The lUD must be configured, through the configuration
commands, to represent the conversations and sessions
by specifying the maximum number of conversations
and sessions to be run concurrently under that lUD.
The lUD must also specify the number of sessions to
bind automatically when the lUD is varied online and
contact is made with the other system (PREBNDSSN =
number of prebound sessions). The maximum number
of sessions that this side can bind is also specified
(MAXSRCSSN = maximum source sessions). If the
maximum number of source sessions is greater than the
number of prebound sessions, the remainder of the
sessions are reserved for either dynamic initiation or
initiation by the remote processing unit. An APPC
logical unit description (lUD) can be attached to either
PU2 controllers or peer controllers (APPC). When the
APPC lUD is attached to a PU2 controller, only one
session and one active conversation is allowed per
device.

In APPC, a controller description (CD) describes the peer
processing unit characteristics, SNA transmission
parameters, and the peer processing unit configuration.
The peer processing unit characteristics consist of its
station address and its connection technique. The SNA
parameters indicate the physical unit type, number of
buffers, size of the buffers, and the transmission header
type. The peer processing unit configuration consists of
a chained list of logical units attached to the CD. The
logical units can ony be APPC peer lUDs.

Source/Sink Functions 6-45

Display Station Pass Through

Display station pass-through provides a convenient
means for a user at a source system to sign on a target
system. This System/3S function uses the APPC link,
and is always initiated at a display station that is
physically attached (either local or remote) to the source
system. When the source and target systems are
attached (via the APPC link), the display station at the
source system appears to be physically attached to the
target system.

System/38 System/38

Source System Target System

I APPC APPC I
I

Display
Station

There can also be one or more intermediate systems
between the source and target systems. For example:

System/38

Source System

Display
Station

System/38

Intermediate System

The source and target systems must each contain a
logical unit description that describes a display station.
However, the logical unit description at the source
system describes a physical device, while the logical unit
description at the target system describes a logical
(virtual) device.

6-46

System/38

Target System

...- __ .1.. __ ,
I Virtual I
I Display I
I System I ------

J

J

The following is an overview of a display station
pass-through operation.

The pass-through link will connect a System/38 in
Chicago, one in Atlanta, and one in Denver.

Before a display station pass-through operation can
occur, all logical unit descriptions, controller
descriptions, and network descriptions associated with
the pass-through operation must be in a vary on state.

Source (Chicago) Intermediate (Atlanta)

Display Station

The Request Path Operation instruction is used for
multiple purposes. Two of these purposes are for
starting and for stopping a pass-through operation.

When the Request Path Operation instruction is issued
at the source system (Chicago). communication is
started between the display station I/O manager (10M)
and the advanced program-to-program 10M. A path
now exists from the display station to the APPC I/O
manager in the intermediate system (Atlanta).

The Request Path Operation instruction is now issued at
the intermediate system, and communciation is started
between the two APPC I/O managers. A path now
exists from the display station to the APPC I/O manager
in the target system (Denver).

The Request Path Operation instruction is now issued at
the target system, and communication is started
between the APPC I/O manager and the virtual I/O
manager. A path now exists from the display station to
the virtual I/O manager in the target system. The
display station appears to be locally attached to the
target system because it is represented at the target
system by a virtual logical unit description.

Target (Denver)

Application

Control Program Facility

~--+--- MI--~~~

r----

:0:
I I ____ .J

Virtual
Display Station

Source/Sink Functions 6-47

The application program in the target system can now
communciate with the display station by accessing the
virtual logical unit description.

The pass-through operation is normally terminated by
the target system issuing another REOPO instruction.
However, any source, intermediate, or target system can
terminate the pass-through operation by issuing the
REOPO instruction.

For additional information about display station
pass-through, refer to the Functional Reference
Manual-Volume 2, and the Data Communications
Programmer's Guide.

SNA Supervisory Services Support 1M!)

SNA supervisory services designate the set of services
provided within the machine to control the shared
resources of the communications network. The machine
services control point (MSCP) is the portion of the
machine that provides services and coordinates service
requests between users of the network.

The supervisory services represent those services
necessary to support the SNA implementation on this
system and do not necessarily imply support of all SNA
functions.

6-48

Machine Services Control Point

The MSCP provides services and coordinates the
processing of supervisory service requests for users of
the source/sink resources. Service requests to the
MSCP are divided into two categories:

• Implicit requests to support the source/sink
instructions

• Explicit Request I/O instruction to the MSCP

The first category is applicable for all source/sink
components because the MSCP provides assistance in
supporting all the Modify (LUD, CD, and NO)
instructions. These MSCP functions are not directly
visible to the user but are included in the description of
each individual instruction.

The second category is applicable only to SNA devices
supporting or initiating supervisory service requests.
Supervisory services, which are used to control the
shared communications network resources, involve all
components: LUs (logical units), PUs (physical units),
the MSCP, and the user. Figure 6-7 shows the logical
flow of requests and responses, and the mechanism for
conveying these messages between the various
components.

J

Request/Respons
(REGia)

e

System/38 User

I

MSCP

Request
(Event)

Request/Response
(MSCP-to-LU)

Request/Response
(MSCP-to-PU)

Figure 6-7. Supervisory Service Request Flow

The user directs requests or responses to the MSCP by
using the Request I/O instruction with the function field
set to indicate that it is an MSCP request. The format
of the SSR (source/sink request) space and the SSD
(source/sink data) space used with the MSCP REGia
instruction is the same format used for an REGia
instruction to SNA communications devices. The system
pointer to a source/sink object in the SSR specifies an
LUD or a CD to indicate the LU or PU with which the
request is to be associated. The MSCP then uses an
existing MSCP-to-LU or MSCP-to-PU session to route
the message for action. An MSCP REOIO operation
always results in a feedback record being enqueued to
the request I/O response queue specified in the SSR.
As an option. data can be placed in the byte space
portion of the SSD.

The MSCP establishes contact with the remote
controller by interacting with the System/38 SDLC
support (primary or secondary line 10M) to establish a
switched connection. if necessary. and to effect
link-level identification with the remote station.

I

Logical
Unit -

Physical
Unit

-

Knowledge of the current states of all network
components is required in order to control the shared
network resources and enforce network protocol. The
MSCP maintains a record of the state of all logical units,
physical units, and data links within its domain of
control. In addition, MSCP knows the existence of
sessions between users and logical units.

MSCP Role (Primary Station)

When the MSCP receives a request from an LU (logical
unit) or a PU (physical unit) that requires interaction with
a user, an event is signaled with supporting information
made available. Supervisory service requests received by
the MSCP from an LU as a result of operator action (for
example, initiated via the System Request key) will be
presented to the user. When the event is signaled to a
user, the MSCP always sends a positive response to the
initiator of the request.

Source/Sink Functions 6-49

MSCP to Physical Unit (Primary Station)

The MSCP is responsible for establishing and
terminating sessions with the physical units it controls.
If required, the MSCP sends the ACTPU (activate
physical unit) session control message at the time the
secondary station is initially contacted. The ACTPU
establishes the MSCP-to-PU session and provides
information about the rules that apply to the session.
The ACTPU parameters are obtained from the
appropriate entries in the CD. As long as the
MSCP-to-PU session is active, the CD representing the
physical unit is in the varied on state.

If the MSCP-to- PU session has been established, the
MSCP sends the DACTPU (de-activate physical unit)
control message when it is necessary to terminate the
MSCP-to- PU session.

The MSCP-to-PU session is primarily used by the
MSCP to control the orderly allocation and use of
network components. However, an REQIO instruction to
the MSCP with a system pointer resolved to a CD
indicates that a message is to be sent on the
MSCP-to-PU session.

MSCP to Logical Unit (Primary Station)

To establish an MSCP-to-LU session, the MSCP sends
an ACTLU (activate logical unit) control message at the
time the SNA device is physically in the varied on state.
The ACTLU parameters are retrieved from the LUD and
used to specify the rules to be enforced for users of this
session.

While the MSCP-to-PU session is primarily used by the
MSCP, the messages concerning the MSCP-to-LU
session are usually directed between a user program
and a logical unit operator. The MSCP is still
responsible for coordinating requests and controlling
messages concerning this session. Incoming requests
are signaled as events, and outgoing requests are
directed to the LU by providing the appropriate LUD
system pointer (which is contained in the SSR of an
REQIO instruction) to the MSCP.

The MSCP sends the DACTLU (de-activate logical unit)
control message when it is necessary to terminate the
MSCP-to-LU session.

6-50

MSCP Role (Secondary Station)

In a secondary role, the MSCP provides services for the
logical unit (LU) and the physical unit (PU). The services
consist of signaling events when control messages (such
as ACTPU, ACTLU, DACTPU, and DACTLU) are
received from the host system. When the event is
signaled to a user, the MSCP sends either a positive or
negative response to the sender of the control message.

Negative responses are sent for the following condtions:

• ACTPU control message.
CD (Control Description) is not in the varied on
pending state.
SSCP ID does not match the ID contained within
the CD.
The ND associated with the line is not in the ND
candidate list of the CD.

• ACTLU control message.
The LUD (logical unit description) is not in a varied
on or higher state.
The LUD (logical unit description)
recovery / resource activation state is inoperative
pending or normal cancel.

SSCP to Physical Unit (Secondary Station)

The host system (SSCP) is responsible for establishing
and terminating sessions with the physical units
(System/3S) it controls. The ACTPU control message
establishes the SSCP-to-PU session and also provides
the rules that apply to the session. The MSCP provides
the supervisory services that enforce the rules.

When an SSCP-to-PU session is established, the CD
that represents the physical unit is moved to the varied
on state. It remains in this state until it is explicitly
varied off.

The SSCP-to-PU session terminates when the host
system sends the DACTPU control message.

SSCP to Logical Unit (Secondary Station)

The host system (SSCP) is responsible for establishing
and terminating an SSCP-to-LU session. The ACTLU
control message establishes the session and also
provides the rules that apply to the session. When the
session is established, the LUD that represents the
logical unit is moved to the varied on state where it
remains until it is explicitly varied off. The SSCP-to-LU
session becomes inactive within System/38 when the
LUD is explicitly varied off. However, this session
becomes active within the host system until a DACTLU
control message is received at the secondary station.
The SSCP-to-LU session resumes if the LUD is once
again moved to the varied on state.

While the SSCP-to- PU session is primarily used by the
MSCP, the messages (such a LOGON and LOGOFF)
related to the SSCP-to-LU session are usually directed
between a System/38 application program and a host
system application program. However, the MSCP is still
responsible for the messages concerning this session.
Incoming requests are signaled as events; outgoing
requests are directed to the LU by providing the
appropriate LUD system pointer (which is contained in
the SSR of an REQIO instruction) to the MSCP.

The SSCP-to-LU session terminates when the host
system sends the DACTLU control message.

MSCP Role (Peer Station)

When System/38 is a peer station, the MSCP assumes
one of three distinct roles, depending upon the role of
System/38 at the SDLC level (primary or secondary) and
the node type (2 or 4) of the remote controller. Type 2
nodes are the SNA PU.T2.1 defined facilities, and type 4
nodes are the SNA PU.T4 defined facilities.

Systemj38 Primary SDLC Station, Remote Controller
Type 2 Node

The MSCP establishes contact with the remote
controller by interacting with the primary line 10M to
establish a switched connection, if necessary, and to
obtain and verify the identity of the remote station via
the SDLC XID sequence.

For this mode of peer operation, there are no
MSCP-to-PU or MSCP-to-LU sessions. Instead, the
user can activate any LUD attached to a CD when
contact is made with the remote controller. Events are
signaled to the user at this time for the CD and all LUDs
attached to the CD that are in vary on pending or a
higher state.

After an LUD is activated, the user (operator or
application program) can place the LUD in the active
session and establish LU-to-LU sessions.

Systemj38 Secondary SDLC Station, Remote Controller
Type 2 Node

The MSCP establishes contact with the remote
controller by interacting with the secondary line 10M to
establish a switched connection, if necessary, and to
obtain and verify the identity of the remote station via
the SDLC XID sequence.

For this mode of peer operation, there are no
MSCP-to-PU or MSCP-to-LU sessions. Instead, the
user can activate any LUD attached to a CD when
contact is made with the remote controller. Events are
signaled to the user at this time for the CD and all LUDs
attached to the CD that are in vary on pending or a
higher state.

After an LUD is activated, the user (operator or
application program) can place the LUD in the active
session and establish LU-to-LU sessions.

Source/Sink Functions 6-51

System/38 Secondary SDLC Station, Remote Controller
Type 4 Node

The MSCP establishes contact with the remote
controller by interacting with the secondary line 10M to
establish a switched connection, if necessary, and to
obtain and verify the identity of the remote controller via
the SSCP-ID in the ACTPU command sent by the
remote SSCP.

The control messages ACTPU, ACTLU, DACTPU, and
DACTLU are sent by the SSCP and are processed by
System/38 in the same way as previously described
under MSCP Role (Secondary Station).

The connection becomes a peer connection only after
the SSCP-to-LU session has been established. The
LOGON and LOGOFF messages are not used. Instead,
LU-to-LU sessions are established by the remote
system (for example, CICS), and these sessions use the
LU 6.2 protocol.

For more information about System/38 communications
facilities, refer to the Data Communications Programmer's
Guide.

BINARY SYNCHRONOUS COMMUNICATIONS
CONCEPTS FOR SYSTEM/3S

The System/38 BSC support contains some of the
same organizational concepts as SNA. For example,
both BSC and SNA have an application layer and a
function management layer.

The basic layers for the BSC communications functions
are:

• Application layer

• Function management layer

• I/O management layer
- BSC

MTAM (MULTI-LEAVING telecommunications
access method)

These functions are performed either by the machine
(indicated by Mil or by the application program
(indicated by PGM).

6-52

Application Layer (PGM)

The application layer is only concerned with application
functions. This layer performs the user-application
processing in such a manner that the user need not be
involved in the protocols or the procedures for
controlling a communications line or routing data units
through the network.

Function Management Layer (PGM)

The application layer employs a set of requests to
invoke the services of the function management layer.
The function management layer is concerned with the
presentation of information between the application layer
and the I/O management layer. Some of the functions
provided by the function management layer are:

• Prepares the file for I/O operations

• Performs record blocking or deblocking

• Performs record compression or decompression

I/O Management Layer (M!)

System/38 supports the BSC point-to-point, BSC
tributary, BSC MULTI-LEAVING telecommunications
access method protocols (modes). and 3270 emulation
using multipoint tributary.

Each BSC protocol requires a unique 10M (I/O
manager). However, even though they are unique, some
functions are supported by all BSC 10Ms. They are:

• Performs error recovery-including hardware errors

• Assists in establishing switched network connections

• Logs errors

• Keeps statistics about the communications link
operation

L Functions that are supported for each BSC protocol are:

• BSC point-to-point
Point-to-point switched and nonswitched lines
One LUD attached to one controller description

- One controller description attached to one line
description
EBCDIC to ASCII translation
Online test

• BSC tributary
BSC multipoint protocol as the tributary station on
nonswitched lines
Multiple sessions-one session for each LUD
32 LUDs attached to one controller description
One controller description attached to one line
description

- EBCDIC to ASCII translation
- Online test (except for 3270 emulation)

• BSC MULTI-LEAVING telecommunications access
method
- MRJE binary synchronous communications with

multiple reader, printer, and punch sessions
supported
Point-to-point switched or nonswitched operations
Multiple LUDs attached to one controller
description

- EBCDIC character code

• BSC 3270 emulation
3271 controller and 3277 display devices
Nonswitched lines

- 32 LUDs attached to one controller description
- One controller description attached to one line

description
Program interface support
EBCDIC to ASCII translation

An 10M is active for each BSC line that is in the varied
on state.

X.25 COMMUNICATIONS CONCEPTS FOR
SYSTEM/38

The System/38 X.25 support replaces the DLC layer of
SNA (normally SDLC) with the CCITT -defined X.25
packet protocol.

The MI user is aware of X.25 only through the addition
of a new ND type and through parameter changes
within the CD. All existing SNA types will run on X.25.

CPF {

v:~{ -------+--------+----

IMPI{
HMC

-------------------Channel

Remote
Controller

Remote
Controller

The key features of System/38 X.25 support are:

• Two line connections (ports) supported with line
speeds up to 64 kilobits, each.

AAJ001 ·0

• Up to 32 virtual circuits per port allowing up to 32
simultaneous SNA link connections (sessions); any
mix of PVC and SVC.

• Support data packet sizes from 64 to 1024 bytes.

• Support for SNA primary and secondary CDs on the
same ND.

Source/Sink Functions 6-53

LOAD/DUMP CONSIDERATIONS

The load/dump (LD) function enables the user to save
(back up) certain permanent objects by dumping these
objects to LD media (such as tape, diskette, or dump
space). In addition, if objects are dumped to a dump
space, and the dump space is then dumped to an
external media, the original objects can be loaded back
directly from the resulting media.

When the specified operation is load or dump, the RD
(request descriptor) field in the SSR identifies the
object(s) to be loaded or dumped.

The objects that can be processed by the LD function
are data spaces, journal spaces, data space indexes,
programs, space objects, dump spaces, and independent
indexes.

These objects can be dumped, loaded over an existing
object (except programs), or loaded onto a system
where they currently do not exist (are not created). An
existing program object cannot be overlaid (loaded) on
the system unless the program is loaded with the Create
and Load command.

6-54

The interface to LD is through the Request I/O, Modify
LUD, and Request Path Operation instructions. REOIO
and MODLUD are used when the target is offline media
(such as tape or diskette). REOPO is used when the
target is a dump space. For simplicity in the following
section, only the REOIO and MODLUD instructions are
mentioned. The following chart lists the REOPO
instruction to correspond to REOIO and MODLUD.

When the text uses:

Request I/O (Normal)

Request I/O (Continue)

MODLUD Activate

MODLUD Reset

MODLUD Suspend

MODLUD Ouiesce

MODLUD De-activate

The equivalent REOPO
function is:

REOPO I/O Request

REOPO I/O Request
(Continue)

8EOPO Initiate Path

REOPO Reset Path

REOPO Suspend Path

REOPO Ouiesce Path

REOPO Terminate Path

J

LD Commands

The LD function uses unique commands (which are
specified in the request descriptor) to process the
objects. Any LD command will process any LD object.
The LD commands are as follows:

• Dump command-The Dump command copies an
object to the LD medium (magnetic tape or diskette).

• Load command-The Load command copies an object
from the LD medium to overlay an object on the
system. The object ID field (in the request descriptor)
is compared to the object ID on the LD medium.
When a match is found, that object is loaded to the
address contained in the pointer field of the RD
(request descriptor). A value in the compare length of
the RD specifies the number of positions to be
compared.

• Create and Load command-The Create and Load
command creates an object in the system. The
current file on the LD medium is searched for the
object to be created by comparing the object ID field
in the RD to the object ID on the LD medium. When
a match is found, the system allocates space for the
object and then loads the object into this space.
Addressability to the object is placed in the context
specified by the previous Set Context command only
if the context bit in the object control field in the RD
is equal to binary O. The LD function provides
addressability to the created object by unconditionally
inserting a system pointer in the pointer field of the
RD. Ownership of the object is assigned to the user
profile specified by the previous Set User Profile
command. If changes to the object were being
journaled when it was dumped and if the journaling
bit in the object control field is a binary 0, then the
changes for the object are journaled through the
journal port that was specified on the previous Set
Journal command.

• Set User Profile command-The Set User Profile
command must precede any Create and Load
command within a normal REalO instruction because
it specifies a user profile for the object(s) created by
the Create and Load command. The pointer field in
the RD must contain a system pointer that has
addressability to the desired user profile. After a Set
User Profile command is processed, all subsequent
Create and Load commands use that user profile until
another Set User Profile command is processed.

• Set Context command-The Set Context command
selects a specific context that can receive
addressability to the object(s) created by the Create
and Load command. Within a normal REalO
instruction, the Set Context command must precede
the first Create and Load command that has a value
of binary 0 in the context bit of the object control
field. This requirement exists because the binary 0
value directs the LD function to put addressability to
the created object in a context. The pointer field in
the RD must contain the address of this context.
After a Set Context command is processed, all
subsequent Create and Load commands with the
context bit in the object control field equal to binary 0
use that same context until another Set Context
command is processed.

• Read Object ID command-The Read Object ID
command retrieves only the data in the ID portion of
an object on the LD medium and inserts the data into
the ID field of the request descriptor. The retrieved
data can then be used to compile a listing of the
objects (I D only) on the file.

• Set Journal Command-The Set Journal command
selects the journal port through which the changes to
certain objects are to be journaled. The Set Journal
command should be issued before any Create and
Load commands of objects whose changes were
being journaled at the time they were dumped. When
a Set Journal command is encountered, all
subsequent Create and Load commands involving
objects whose changes are being journaled (in the
same Request I/O instruction) use that journal port
until another Set Journal command is encountered.

• Set Journal Data command-The Set Journal Data
command contains journal data that LD uses to build
the entry-specific portion of journal entries. The Set
Journal Data command should be issued prior to any
LD command that causes journal entries to be made.

Source/Sink Functions 6-55

• Set Load / Dump Parameters command-The Set
Load/Dump Parameters command communicates
information about the Request I/O instruction from
the machine interface to the load/dump function.

When the machine interface user defines network
boundaries within a Request I/O instruction, the user
must issue this command with the networking bit
equal to binary 1 before any Load, Dump, or Create
and Load commands are issued in subsequent
request descriptors.

All subsequent Load, Dump, and Create and Load
commands must have their network boundary bits set
in the object control field to indicate network
boundaries and non-network objects. The request
descriptor in the Set Load/Dump Parameters
command is not counted in the
8()()()··request-descriptor limit.

If the system does not encounter a Set Load/Dump
Parameters command before encountering a Dump,
Load, or a Create and Load command, the network
boundary bits in the object control field on the Load,
Dump, and Create and Load request descriptors are
ignored. In this case, the load/dump function
defines the network boundaries.

When the machine interface user wants to load
objects out of a dump space that was saved to
media, the user must issue the Set Load/Dump
Parameters command with the 'load out of dumped
dump space' bit set. When this bit is on, the media
must be positioned at the start of a dump space. The
remaining request descriptors in the Request I/O
describe the objects originally saved in the dump
space. The compress bits in the remaining request
descriptors specify whether compression was used
when dumping the objects into the dump space, not
whether compression was used when dumping the
dump space. If compression was used when
dumping the dump space, the 'load out of dumped
dump space' option will result in an 'invalid
descriptor' feedback record summary.

If the system encounters a Set Load / Dump
Parameters command after encountering a Dump,
Load, or a Create and Load command, an exception
is signaled.

6-56

Session Types

For the LD function, there can be two session types
(dump or load). Only the Dump, Set Load/Dump
Parameters, and Set Journal Data commands are
allowed for the dump session; all LD commands, except
Dump, are allowed for the load session. When the Read
Object I D command (load session) is issued, the only
other command type allowed in the Request I/O
instruction is the Set Load/Dump Parameters command.

Sequence of Operation

The following is an overview of the load/dump function:

1. A load/dump modify LUD (activate) session is
issued to open the load / dump session.

2.

3.

A Request I/O instruction is issued that points to
an SSR that contains commands and pointers to
the objects to be loaded or dumped from the LD
medium.

The load/dump function checks the Request I/O
instruction for errors and processes all commands.

4. The load/dump function sends a feedback
message to the request I/O response queue to
indicate the completion of the function.

5. A modify LUD (de-activate) session is issued to
close the load/dump session.

REalO (Request I/O) Instruction

The user's interface to the load/dump function is the
REQIO (Request I/O) instruction. Two types of REQIO
instructions are used: the normal Request I/O and
Request I/O (continue). The normal Request I/O
instruction contains commands and the needed
information to load objects to the system and dump
objects from the system. The Request I/O (continue)
instruction is used for recoverable error processing; it
indicates that processing of the next normal Request
I/O instruction should continue from the point where
the error occurred. For continued operation, the user
must reissue the SSR that contains the original
unprocessed request descriptors associated with the
Request I/O instruction that experienced the error.

L

If a nonrecoverable error is detected. a Modify LUD
(reset) instruction must be issued. The LD function uses
the standard format of the SSR (source/sink request)
and an extended RD (request descriptor). An SSD
(source/sink data) object is not used.

RD (Request Descriptor)

The format of the load/dump RD (request descriptor) in
the SSR is as follows:

Command
(1 character)

Compare Length
(1 character)

RD Number for Exception
(2 bytes. binary)

Object Control
(1 character)

Reserved for LD
(11 characters)

16 Bytes 64 Bytes
r,.---Jo"----.\ -- - , a Pointer Data I Object ID J

Journal Data or LD Parameter Data I
, , .

80 Bytes

Command-Specific
--~ (80 characters)

The length of each RD must be 96 bytes and located on
a 16-byte boundary.

Each RD must contain the necessary information to
process at least one object. For load/dump. the
combined number of load. dump. and create and load
RDs within the SSR is limited to 8000.

Request descriptors are always processed by the
load/dump function in the order they appear in the
source/sink request; that is. the first request descriptor
is processed first. and the last request descriptor is
processed last.

Source/Sink Functions 6-57

Command Field

The user must specify one of the following commands
for each RD:

• Load

• Create and Load

• Dump

• Set User Profile

• Set Context

• Read Object 10

• Set Journal

• Set Journal Data

• Set Load/Dump Parameters

Compare Length Field

If the command is Load or Create and Load, the
compare length field specifies how many bytes of the
object 10 on the LD medium are to be compared with
the object 10 field. The compare length can be any
value from 0 through 64. A length of 0 indicates that
the next object on the LD medium should be loaded. A
length of 64 indicates that an exact match of the object
10 is required before the load can occur.

If the command is Set Journal Data, the compare length
field specifies the length of the journal data.

Note: Because load dump media is read serially, the
user should exercise care when a compare length of less
than 64 bytes is specified. This is because the device
starts searching for a match on the 10 field from where
the device was last positioned. It is possible for the
system to load the wrong object if the user does not
know the exact data in the object IDs and the sequence
of the objects on the device.

RD Number for Exception Field

If an exception error code is generated by an REQIO
instruction, this field can contain the RD number that
caused the exception. This field is used only in the first
RD of the SSR.

6-58

Object Control Field

The contents of this field are meaningful only when the
associated command is Dump, Load, Create and Load,
or Read Object 10. For all other commands, this field is
reserved and must be set to O.

The context bit in this field determines whether
addressability for the object being created will be placed
into the context specified by the last Set Context
command.

The journal bit in this field determines whether the LD
function should continue the journal functions after the
object is loaded. The journal functions are continued
only if changes to the object were being journaled when
the object was dumped. The changes are journaled
through the journal port specified in the previous Set
Journal command.

The compress bit in this field determines whether the
LD function compresses or decompresses the data. If
the compress bit is on, LD compresses the data on a
Dump command and decompresses the data on a Load,
Create and Load, or Read Object 10 command.

The network boundary bits in this field specify the
relationship of an object to an LD network as follows:

• The object is not part of an LD network.

• The object defines the beginning boundary of an LD
network.

• The object is a member of an LD network and is
contained within the beginning and ending
boundaries.

• The object defines the ending boundary of an LD
network.

The load associated space bit in this field determines
whether the associated space of this object will be
loaded. If this bit is set on (that is, the associated space
bit is not loaded), it is valid only for Load commands
and will result in an exception if set on for a Dump,
Create and Load, or Read Object 10 command.

J

L Command-Specific Field

The command-specific field has a length of 80 bytes
and is used for multiple purposes. For some lD
commands, the 16 leftmost bytes provide addressability
to some of the objects associated with the lD function.
For other lD commands, these 16 bytes contain data
associated with a specific command.

The remaining 64 bytes of the command-specific field
are used either for an object ID or for a continuation of
the data associated with a specific command.

The object ID consists of an object name (30
characters), object type (1 character). object subtype (1
character). and an ID extension (32 characters).

The data contained in the command-specific field for
each of the following lD commands is:

Dump Command: A system pointer to the object that is
to be dumped and an object ID. The object name, type,
and subtype must be supplied. The ID extension is
optional; however, the entire object ID (64 bytes) is
dumped with the object.

Load Command: A system pointer to the object that is to
be overlaid by the object from the lD medium and an
object ID. The object ID is used during the search of
the lD medium for the correct object(s). The search
operation compares the object ID on the lD medium to
the object ID in the request descriptor until an equal
condition occurs. The number of characters compared in
the search operation is determined by the value in the
compare length field of the request descriptor.

Create and Load Command: Any value (pointer or data)
when the request descriptor is built and an object ID.
The lD function inserts a system pointer after the object
has been created and loaded. The pointer contains
addressability to the created object; no authority is
placed in this pointer.

The object ID is used during the search of the lD
medium for the correct object(s). The search operation
compares the object ID on the lD medium to the object
ID in the request descriptor until an equal condition
occurs. The number of characters compared in the
search operation is determined by the value in the
compare length field of the request descriptor.

Set User Profile Command: A system pointer to the user
profile that is given ownership of the object(s) on all
subsequent Create and load commands within the same
normal Request I/O instruction. The remaining 64 bytes
are not used.

Source/Sink Functions 6-59

Set Context Command: A system pointer to the context
where addressability can be inserted for the objects
created by the Create and Load command.
Addressability is inserted under control of the context bit
in the object control field. The remaining 64 bytes are
not used.

Read Object ID Command: A 64-byte object 10 that is
read from the LD medium and inserted into the
command-specific field. The leftmost 16 bytes of the
field are not used.

Set Journal Command: A system pointer to the journal
port through which the changes to selected objects will
be journaled. The remaining 64 bytes are not used.

Set Journal Data Command: Specific data associated
with this command when the system is making journal
entries.

Set Load/Dump Parameters Command: Specific data
associated with this command. The networking bit in
the leftmost byte determines whether LD network
boundaries are explicitly defined by the user or implicitly
defined by the system. The remaining 79 bytes are not
used.

6-60

The following diagram is a summary of the data within
the command-specific field.

Command Command-Specific Field (SO bytes)

Load System Pointer Object 10 (64 bytes)
(16 Bytes)

Create and System Pointer Object 10 (64 bytes)
Load (16 Bytes)

Dump System Pointer Object 10 (64 bytes)
(16 Bytes)

Set User System Pointer Not used
Profile (16 Bytes)

Set Context System Pointer Not used
(16 Bytes)

Read Object Not Used Object 10 from LD
10 Medium (64 bytes)

Set Journal System Pointer Not Used
(16 Bytes)

Set Journal Used by LD while making journal
Data entries

Set Load / Dump Parameters
Load/Dump
Parameters

J

J

Modify LUD Sessions for LD

The LD function conforms to the normal operation for
the various modify LUD sessions except when the
session is changed from load to dump or from dump to
load. To change the sessions from load to dump or
dump to load the user must:

1. Issue an MODLUD (de-activate) instruction.

2. Change the operation mode byte in the LUD.

3. Issue an MODLUD (activate) instruction.

The MODLUD (reset) session (which may be required
after an error condition) causes the LD function to
immediately stop processing the current normal REQIO
instruction and send a feedback record for the
associated normal REQIO instruction. Included in the
feedback record is the proper error code and an
indicator stating how many RDs have already been
processed. LD then flushes the unprocessed REQIO
instructions by sending feedback records for each
REQIO instruction with the proper error code. After the
LD queue has been flushed, the MODLUD (reset)
operation is completed. The LD function will do a
cleanup, if necessary, on the RD it was processing when
the MODLUD (reset) request was received. The
MODLUD (reset) session state can stop the LD medium
at an abnormal position; therefore, it is the user's
responsibility to correctly position the LD medium after
an MODLUD (reset) instruction is processed.

The MODLUD (suspend) session is to interrupt the LD
function so that processing can be halted. The modify
LU D (suspend) session causes the load / dump function
to stop processing the current Request I/O (normal)
instruction on a network boundary. A feedback record is
sent for the associated Request I/O (normal) instruction
after the suspend session has occurred.

LD Error Processing

In LD processing, there are four types of errors:
exceptions, severe errors (nonrecoverable), recoverable
errors (such as end of volume and end of file). and other
errors. How these errors are processed depends on the
type of error encountered.

Exceptions

The exception errors are detected by the Request I/O
instruction. They result in an exception being generated
and sent to the user's program. At this time, I/O
operations have not started. To recover from an
exception, correct the error and retry the REQIO
(Request I/O) instruction.

Severe Errors

Severe errors are nonrecoverable errors and they seldom
occur until after an I/O operation has started. A Modify
LUD (reset) or Modify LUD (de-activate) instruction
must be issued if this type of error occurs. The normal
Request I/O and Request I/O (continue) instructions will
not be processed.

Recoverable Errors

When a recoverable error occurs (for example, end of
volume or end of file). the LD function returns the
feedback record with the status of the error. The
load / dump function does not process any other normal
Request I/O instructions until a Modify LUD (reset) or a
Request I/O (continue) instruction is issued.

If the error can be corrected (for example, by positioning
the LD medium at the beginning of the file). the same
normal Request I/O instruction that encountered the
error must be returned unmodified and ahead of (lower
value in the request priority field of the SSR header) all
other normal Request I/O instructions that have been
previously issued. A Request I/O (continue) instruction
must then be issued.

An MODLUD (reset) instruction must be issued when
the error cannot be corrected.

Use the Request I/O (continue) instruction to cause
load/dump function to finish processing the next normal
Request I/O instruction from the point where the
recoverable error occurred.

Other Errors

Other types of errors only indicate status. They do not
terminate the LD function or take it into or out of error
mode.

Source/Sink Functions 6-61

Processing an MODLUD (Reset) Instruction

During the processing of an MODLUD (reset) instruction
after a severe error or a recoverable error, the LD
function will execute a cleanup procedure on the object
that was being processed when the error occurred, if
necessary. The LD function then returns a feedback
record for each pending REQIO instruction
(unprocessed) and completes processing the MODLUD
(reset) instruction. The LD function is then ready to
process additional Request I/O instructions. (The user
must reposition the LD medium at the correct starting
location after an MODLUD (reset) instruction is
processed.)

Cleanup Procedure

The cleanup procedure (if required) is performed only for
the Load and the Create and Load commands.

Load Command: If the object was partially loaded at the
time the error occurred, the object is flagged and logged
as damaged because the data portion of the object is
left in an unknown state.

Create and Load Command: If space for an object was
already allocated when the error occurred, that space is
destroyed.

Feedback Record

For every REQIO received, the LD function responds
with a standard feedback record that contains the status
of that REQIO. The feedback record is made visible to
the user when a Dequeue instruction is processed.

Load/Dump Authority

The normal Request I/O instruction determines whether
or not the proper authority is available for each
load/dump command. If the proper authority is not
available, an exception is generated.

6-62

Data Base and Load/Dump Networks

A data base network consists of one or more data
space indexes and all the data spaces associated with
each data space index. When a network is dumped, the
LD function saves the information that links a network
together.

A load / dump network consists of request descriptors
that are grouped together. A load/dump network may
contain one or more data base networks.

A load/dump network can be implicitly or explicitly
defined. Load / dump networks are implicitly defined
when the networking bit in a Set toad/Dump
Parameters command is off (0) or when a Set
Load/Dump Parameters com>mand is not encountered
before the first Dump, Load, or Create and Load
command is encountered. In this case, the LD function
compares the position of each object in the RD (request
descriptor) list with that of other objects in the RD list.
A network is started with the first data space in the RD
list following a previous network. A network is ended
with the RD that is immediately before the next
non-data-base object or the next data space that
follows a data space index. The networking bits in the
object control field are set to reflect the network
boundaries implicitly defined by the LD function.

The following restrictions apply when LD networks are
implicitly defined.

• All data spaces must precede all associated data
space indexes in a network.

• Intertwined networks can be dumped, loaded, or
created and loaded as long as there are no
non-data-base objects between them.

L The user can explicitly define those groups of objects
that are to be treated as a load / dump network. The
networking bit (set load/dump parameters RD) and the
network boundary bits (object control field) are used for
this purpose. The value and meaning of these bits are
as follows:

• Networking bit

Binary
Value Meaning

o

1

Network boundaries are not defined by
the user.

Network boundaries are defined by the
user.

• Network boundary bits

Binary
Value Meaning

00

01

11

The object is not part of an LD boundary.

The object defines the beginning
boundary of an LD network.

The object is contained within an LD
network.

10 The object defines the ending boundary
of an LD network.

The following restrictions apply when LD networks are
explicitly defined.

• Only one set load/dump parameters request
descriptor is allowed for each Request I/O
instruction.

• The set load/dump parameters request descriptor
must precede all dump, load, and create and load
request descriptors.

• The object control field must have a hex 00 value for
all commands other than Dump, Load, or Create and
Load.

• A non-data-base object can be defined as the
beginning boundary of a load/dump network, as an
object within a load/dump network, as independent
of a network, or as the ending boundary of a
load/dump network.

• In an LD network. all data space indexes must follow
their associated data spaces. Data space indexes
may precede data spaces with which they are not
associated in the LD network.

• A load/dump network cannot contain duplicate
objects.

The following example shows how the network
boundary bits are used to define LD networks.

• Objects to be processed:
Space object
Network A

- Data space (non-network)
- Program
- Network B

Network A

Network Boundary
Bits (binary value)

00

Network A {~~
10
00
00

Network B { ~~
11
10

Network B

Processed Objects

Space object
DS (A1)
DS (A2)

DSI (A1)
Data space (non-network)
Program
DS (B1)
DSI (B1)
DS B2)
DSI (B2)

Source/Sink Functions 6-63

The following restrictions apply when LD networks are
implicitly or explicitly defined.

• Other (non-network) objects can be processed in the
Request I/O instruction.

• LD networks are supported by all LD commands.

• A data space index cannot be dumped or loaded by
itself; all of its associated data spaces must be
dumped or loaded along with it.

• When a data space index within a network is loaded,
the links to the data space(s) within the same
network are connected.

• Any data space that is being loaded and all data
space indexes over that data space must be loaded in
the same Request I/O instruction; otherwise, the
data space index is invalidated. An event is signaled
whenever a data space index is invalidated.

• An active cursor cannot be over a data space or data
space index on a Load command.

• When a data space is loaded, no data space indexes
over that data space can be in use, damaged, or
destroyed.

• When a data space index is loaded, the data space
key specification in the data space index to be
overlaid must match the data space key specification
in the data space index to be loaded.

• A data space index is not loaded if any of the data
spaces under the data space index are created and
loaded.

• When a data space index is loaded, the same data
spaces must be under both the data space index to
be loaded and the data space index to be overlaid.
These data spaces must also be in the same internal
order in the data space index.

• A load/dump network cannot contain duplicate
objects.

6-64

Load/Dump Performance

To achieve maximum performance from the LD function,
the objects should be loaded in the same order as they
were dumped. For example, if objects A. B, and Care
dumped in alphabetic order, then objects A. B, and C
should be loaded in the same order.

A group of objects defined as a network can be
processed faster than if the objects are individually
defined as independent.

Load/Dump Journal Entries

The LD function makes entries in a journal space about
its operations. The following information discusses
which entries are made for each LD command.

Dump Command

The object dumped entry is made in a journal space
after an object has been successfully dumped. If the
entry is not made, an event is signaled. The dump
operation continues until it is successfully completed.
The LD function continues processing the Request I/O
instruction.

Load Command

The object loaded entry is made in a journal space after
the load operation has started but before the object
becomes available.

If the load operation fails after the object loaded entry is
made, the entry remains in the journal space. The object
may be marked as damaged.

If the object loaded entry is not made, an event is
signaled and the load operation is terminated with an
unrecoverable error.

J

Create and Load Command

The start journaling object entry is made in a journal
space when LD determines that changes to the object
can be journaled. The journal space in which the entry
is made was attached to the journal port specified in the
previous Set Journal command request descriptor.

The object loaded entry is made immediately after
journaling is started for the loaded object.

If a failure occurs after journaling for the loaded object
has started, LD attempts to make an object destroyed
entry in a journal space. This action, along with the
destruction of the partially loaded object, occurs during
the execution of a Modify LUD (reset) instruction.

If neither entry, start journaling object nor object loaded,
is made in a journal space, an event is signaled and the
create and load operation is terminated with an
unrecoverable error. If the event indicates that some
type of recovery action can be initiated, the action
should occur before the Modify LUD (reset) instruction
is issued. If this sequence is followed, the possibility is
increased that LD will be able to successfully make an
object destroyed entry in a journal space.

Dumping and Loading Journal Spaces

Attached or unattached journal spaces can be dumped
but only unattached journal spaces can be overlaid
during a load operation. All of the entries in an
unattached journal space are dumped. However, those
entries that are added to an attached journal space after
a dump operation has started are not dumped.

Dumping Unattached Journal Spaces

Journal spaces can be dumped either before they are
attached to or after they are detached from a journal
port. All of the entries in a journal space are dumped if
the journal space is detached prior to the dump
operation.

Loading Unattached Journal Spaces

Any journal space that was empty at the time it was
dumped will still be empty after the load or create and
load operation.

A journal space is in a detached state after a load or
create and load operation regardless of whether it was
detached or attached at the time it was dumped. The
journal space being overlaid must either be empty or
match the journal space on the LD medium. They match
if all of the following are true:

• The starting sequence numbers are equal.

• The ending sequence number is less than or equal to
that of the journal space on the LD medium. This
check is done to avoid overlaying a newer version of
a journal space with a back-level copy.

• The prefix lengths are equal.

Dumping Attached Journal Spaces

Journal spaces can be dumped while they are attached
to a journal port. The number of entries to be dumped
is determined at the time LD starts processing the
attached journal space. The journal port with which the
journal space is associated becomes unavailable while
LD is determining the number of entries to be dumped.
Entries that are added to the journal space after the
dump operation has started are not dumped. The
journal space cannot be destroyed or detached while it
is being dumped.

Dumping attached journal spaces can result in some
unpredictable situations. These situations occur because
the attached journal space can change between the time
LD determines how much is to be dumped and the time
at which the journal space is written onto the LD
medium. For example, the journal space can increase in
size as more entries are added, become damaged, or
become partially damaged.

Source/Sink Functions 6-65

New entries can be added to the attached journal space
before the dump operation is completed. LD dumps
only the entries that were present when it started
processing the attached journal space. The new entries
are not dumped.

The attached journal space could become damaged or
partially damaged while it is being dumped. A damaged
object cannot be accessed; a partially damaged object
can be accessed by some operations but not all
operations. If LD encounters the condition that caused
the damage, the dump operation will fail. If LD does not
encounter the condition that caused the damage, the
dump operation will be successfully completed. In some
cases the journal space on the medium is marked as
damaged or partially damaged. The load operation of
such a journal space will be successfully completed. A
partially damaged journal space remains partially
damaged after the load operation is completed. Because
the journal space will be detached after the load, the
only operation not allowed because of the partial
damage is a dump. A journal space that is marked as
damaged on the medium will be repaired after the load
and will no longer be damaged.

SOURCE/SINK OBJECT RECOVERY

IPL Cleanup

Source/sink management performs the following
cleanup operations on a source/sink object when the
object is first used after an IPL.

NO, CD, and WD Objects

The diagnostic active indicator and partial damage
indicator are set off for NO, CD, and LUD objects.

NO Object

The NO active count is set to binary zero, the object
state field is set to varied off, and the object
recovery /resource activation field is set to a normal
continue. The switched backward connection pointer is
set to binary zero.

6-66

CD Object

The CD session count and the CD active count entries in
the state change/status field are set to binary zero. The
object state field is set to either varied off state or
powered off state depending on the value in the power
control field, and the object recovery / resource activation
field is set to normal continue.

WD Object

The object state field is set to either powered off state
or powered on/varied off state depending on the value
in the power control field, and the object
recovery / resource activation field is set to normal
continue. The load/dump pending indicator is set to
binary zero.

Damaged Objects

If damage is detected and it is related to a source/sink
object, the object is marked damaged, and an exception
and an event are signaled. Normal recovery from
damaged objects is to destroy the object. Destroy CD,
NO, and LUD instructions are tolerant of damage; that
is, the Destroy instruction is executed regardless of the
damage to the object.

In some cases, the entire object network must be
destroyed before the objects can be recreated and
properly chained. If damage occurs while the objects
are in a varied on state, an IPL may have to be
performed (this sets the objects to the varied off state)
before some of the undamaged objects in the network
can be destroyed.

Damage Set by Source/Sink Instructions

Materialize instructions set object damage whenever an
invalid forward pointer is detected. These instructions
set partial object damage whenever invalid switched
forward/backward pointers are detected.

The Destroy and Create instructions do not set object
damage.

The Modify instructions set object damage if invalid
forward pointers are detected.

The Request I/O instruction does not set object
damage.

L

Partial Damage

Partial damage is set in an LUD, a CD, or an ND when
an 10M (I/O manager) malfunction is detected, an
invalid switched forward/backward pointer is detected,
or a Modify instruction time-out occurs.

When an 10M malfunction is detected, the object
associated with the 10M is marked partially damaged,
and a partial damage event is signaled. If the object is a
CD, the LUDs attached to the CD may also be marked
partially damaged, and a partial damage event is
signaled for each attached LUD.

When invalid switched forward/backward pointers are
detected by the Materialize or Modify instruction, partial
damage is set. and an exception is signaled. If the
invalid pointer is detected by a modify operation that is
tolerant to partial damage, then the partial damage is
set, and the event is signaled; however, the exception is
not signaled, and the modify operation is completed.

Some of the operations performed by a Modify
instruction are timed. This ensures that the operation is
properly completed. The user can optionally supply the
time-out value in the modify template; however, if this
value is not user-supplied, a default value is assumed.
The minimum, maximum, and default values are
contained in the System/38 Functional Reference
Manual, Volume 1. If a time-out occurs during a modify
operation, a partial damage exception and event are
signaled. The object is marked as partially damaged.

Partial Damage Recovery

Partial object damage is reset by returning the object to
the varied off state. The following modify state change
functions are tolerant of partial damage:

• Modify LUD
Reset
De-activate (when issued after a Reset command
in active state, from quiesced state, from
suspended state, or from reset state)
Vary off

• Modify CD
- Abandon connection
- Vary off

• Modify ND
Abandon call

- Vary off

These state change functions, in addition to being
tolerant of partial damage, do not signal partial damage
exception. In some cases, a partial damage event may
be signaled, but the Modify instruction is completed
without a partial damage exception being signaled.

An attempt to use the state change functions when
partial damage is set (other than those previously listed)
results in a partial damage exception being signaled. All
state change rules must be followed when recovering
from partial damage. For example, before a CD can be
varied off, all LUDs under that CD must be varied off.
State change violations result in the same exceptions
regardless of whether or not partial damage is set.

All source/sink objects associated with an attempt to
recover from partial damage should first be set in the
varied off state. Then the recovery attempt can be
made. For example. during the recovery operation from
a partially damaged LUD, another partial damaged
exception may be encountered when the LU D is varied
on even though it was first varied off. In this case. the
CD to which this LUD is attached must also be varied
off to recover from the partial damage condition.

Source/Sink Functions 6-67

SOURCE/SINK EXAMPLES

Shared Usage of Source/Sink Objects

The use of source/sink objects and instructions can
involve many different users and application programs
within an installation. Generally, a user has three distinct
responsibilities.

The first responsibility is the definition and management
of the I/O configuration of the system. This
responsibility is shared between the user and IBM
support personnel. The I/O configuration is defined and
managed through description objects (NO, CD, and
LUD). To limit the definition and management functions
to selected personnel. the instructions to create
description objects are privileged. After the creation of
description objects, the person authorized to issue the
privileged Create instruction can allow other personnel to
manipulate the created description object by granting
the necessary functional authority to those persons.

Figure 6-8 shows the relationship that is established
between LUDs, CDs, and NOs. These objects are
normally created in order from the top down. The NO
represents the characteristics of a specific I/O port on
the system including local channel attachment or
communications lines, modem characteristics, and line
protocols used. The CD represents the characteristics of
the controller (either a device control unit or a
communications controller). The LUD represents the
characteristics of the device itself. The vertical
connecting lines in the figure represent forward and
backward description object pointers contained within
each object.

6-68

LUO
1

CD 1

LUD
2

NO 1

LUO
3

NO-Network Description
CD-Controller Description
LUD-Logical Unit Description

CD 2

Figure 6-8. Source/Sink Structure

LUD
4

NO 2

CD 3

LUD
5

The second responsibility related to source/sink facilities
is system administration and system operation. This
responsibility relates to activating the system for
scheduled usage. For example, activating the system
includes modifying the description objects to perform
such functions as power up devices, bring devices
logically online, and IPL devices or controllers.

The third responsibility is to produce the set of
application programs that conduct either I/O operations
or load / dump functions with logical units. These
application programs are not concerned with the
configuration or activation details of the network. These
programs modify the logical units to define the device
operational characteristics appropriate for this session
(for example: batch or interactive session, record sizes
to be used, forms control, and chain type to be used by
a printer). These programs issue all of the Request I/O
instructions to the devices (logical units) for performing
and controlling either the I/O operations or the
load/dump functions.

Each user has the additional responsibility to properly
terminate the appropriate elements. For example,
programs must terminate sessions when operations are
complete; system operations must also modify
description objects for orderly shutdown of systems.

Creating, modifying, and destroying description objects
when devices are added to, modified, or removed from
the system are related to the first responsibility because
this activity is considered to be managing the I/O
configuration.

Configuration Changes

Previous information in this chapter explained the
creation and destruction of source/sink objects and the
hierarchical considerations for building or altering an I/O
configuration. That information defined a preferred
sequence for the creation and destruction of source / sink
objects that minimizes the user's involvement in
supplying configuration linkage through forward object
system pointers and backward object system pointer
lists. Previous information also explained how to destroy
and create objects out of sequence at the expense of
additional input data requirements and additional
exception handling reconfiguring an I/O configuration.
The following examples show the alternative methods
available for creating networks and also show when it is
advantageous to operate out of the normal sequence.
These examples deal only with forward and backward
pointer chaining and do not consider other elements
within the objects.

Source/Sink Functions 6-69

Adding a Data Link

This example assumes that a new data link with two
work stations (each having a display and a printer) is to
be added to the system. This new link is represented
by:

ND 1 I/O port on system
CD 1 Station 1
LUD 1 Display on station 1
LUD 2 Printer on station 1
CD 2 Station 2
LUD 3 Display on station 2
LUD 4 Printer on station 2

LUD 2

6-70

LUD4

Creating source/sink objects in sequence:

PTRs Supplied by
Operation User .. CRTNO (1) None

1.1 CRTCO (1) PTR to NO 1

II CRTCO (2) PTR to NO 1

• CRTLUO (1) PTR to CD 1

• CRTLUO (2) PTR to CD 1

II CRTLUO (3) PTR to CD 2

• CRTLUO (4) PTR to CD 2

Resulting Action by System

NO 1 created

CD 1 created, CD 1 PTR inserted into NO 1 backward list

CD 2 created, CD 2 PTR inserted into NO 1 backward list

LUO 1 created, LUO 1 PTR inserted into CD 1 backward list

LUO 2 created, LUO 2 PTR inserted into CD 1 backward list

LUO 3 created, LUO 3 PTR inserted into CD 2 backward list

LUO 4 created, LUO 4 PTR inserted into CD 2 backward list

Source I Sink Functions 6-71

6-72

Create NO 1
.. Template

No Pointers
Supplied

Create CD 1
fJ Template

Legend:

Forward Pointer
to CD 1

- - - - -_ Pointer supplied by user

-----8
NO 1

NO 1

NO 1

---.... ~ Pointer generated by system

Backward Pointer List
(supplied by system)

Create CD 2
II Template

Forward Pointer

LUD 4

Creating source/sink objects out of sequence:

PTRs Supplied by
Step 1 Operation User Resulting Action by System

• CRTLUO (1) None LUO 1 created

• CRTLUO (2) None LUO 2 created

• CRTLUO (3) None LUO 3 created

• CRTLUO (4) None LU 0 4 created

Step 2 • CRTCO (1) PTR to LUO 1 CO 1 created. forward pointers to CD 1 inserted into
PTR to LUO 2 LUO 1 and LUO 2

• CRTCO (2) PTR to LUO 3 CD 2 created. forward pointers to CD 2 inserted into
PTR to LUO 4 LUO 3 and LUO 4

Step 3 • CRTNO (1) PTR to CD 1 NO 1 created. forward pointers to NO 1 inserted into
PTR to CD 2 CD 1 and CD 2

Source/Sink Functions 6-73

Step 1

Step 2

Create CD 1

Template

Backward
Pointers

Step 3

Legend:

D

(=\
~
I I
I Create LUD 1 I
I Template:

No Pointers
Supplied

Create ND 1
Template

Backward
Pointers

I

fI

~
I I
I Create Lud 2 I
I I
I Template I

No Pointers
Supplied

_____ Pointer supplied by user

Pointer generated by system

6-74

IJ
ND 1

GLUD3

I I
I I
II Create LUD 3 I
I I
I Template I

No Pointers
Supplied

o

D I I
Create LUD 4 I
Template l

No Pointers
Supplied

Backward Pointer
List

Create CD 2
Template

Backward
Pointers

Updating a Communications Station

This example shows how to destroy and re-create CD
objects to reflect a new capability on a station in the
network. Assume CD 1 was updated to provide new
features or capabilities (with which this example is not
concerned). It is not necessary to destroy LUD 1 and
LUD 2 before destroying CD 1 as shown in this
example.

PTRs Supplied
Operation by User Resulting System Action

Step 1 MATCD
(1)

None Provides materialization of contents of CD 1 including list of backward pointers
to LUD 1 and LUD 2.

Step 1:

Backward
Pointers

Legend:

Materialize CD 1
Template

Forward
~ , Pointer

....... - '............. .
....... -.. -:::..;.-;;...~-...,.~

-- --.. Pointer is supplied by user
----t.~ Pointer is supplied by system

ND1

LUD
4

Source/Sink Functions 6-75

PTRs Supplied
Operation by User Resulting System Action

Step 2 DESCD (1) None

Step 2:

Destroy
CD1 ------., 0-- ///;

- \ ,

6-76

-- , ~

Destroy CD is completed. Forward pointers within LUD 1 and LUD 2 are
deleted. The backward pointer in ND 1 is deleted.

-~'" ,
\

'"
'" ;;

,
I
I
I

I

r----""\ '- ____ J

LUD
2

ND1
r---'.,----.
1.._---'---1-'

Operation

Step 3 CRTCD
(1-New)

Step 3:

Create COl
Template

Legend:

PTRs Supplied
by User

PTR to ND 1
PTR to LUD 1
PTR to LUD 2
from
MATCD(1)
template

- - - - .. Pointer is supplied by user

Resulting System Action

CD 1-New is created using object lists obtained from MATCD(1). ND 1
backward list is updated to include CD 1-New. Forward pointers in LUO 1 and
LUD 2 are updated.

NOl

LUD
4

----4.~ Pointer is supplied by system

Source/Sink Functions 6-77

Activation of Switched Networks

The communications network is defined via system
objects ND (network description), CD (controller
description). and LUD (logical unit description). These
objects are created and modified to reflect the unique
features, characteristics, and capabilities of each
component of the network.

An ND exists for each of the communications line
attachments on the system. The CD is associated with
each physical station that is attached to a
communications line regardless of whether the link is a
nonswitched line, a switched network connection, an
X.25 permanent virtual circuit, or an X.25 switched
virtual circuit. An LU D must exist for each logical unit
that can be addressed through the communications
network. Some devices have a single logical unit and,
therefore, a one-to-one relationship exists between a
CD and an LUD. In other cases, a single control unit
(represented by one CD) may be the attachment station
for multiple logical units, such as interactive terminals or
printers. In this situation, many LUDs would be chained
off a single CD.

The user controls which components of the
communications network are available for use by issuing
the Modify ND, CD, or LUD instruction to vary on those
components that are explicitly made accessible to other
users. Any component not in the varied on state cannot
be allocated or used in any way until a Modify
instruction is issued by an authorized user to vary on
that component.

Vary On and Switched Enable (NO)

The first step in activating the communications network
is to use the Modify ND instruction to vary on all the
communications lines that may be used and to enable
those communications lines that have switched support.

When the attachments for nonswitched lines and local
loops are activated, the line is prepared for transmitting
to the attached devices. When the N D associated with
a communications attachment configured for switched
network support is in the enabled state, the attachment
is activated and made ready to accept incoming calls.

6-78

Vary On CD

The second step is to use the Modify CD instruction to
vary on all of the stations that are to be used on this
communications network.

Whether the varied on state for the CD is logical or
physical depends on the attachment method used for
this control unit. If the CD represents a station on a
nonswitched line or an X.25 permanent virtual circuit,
the physical connection is activated and initial contact
with the station is established. In addition, for SNA
devices requiring an ACTPU (activate physical unit)
message, the MSCP (machine services control point)
sends the ACTPU message establishing the MSCP to
PU (physical unit) session.

If the CD represents a control unit designed for
communications via a switched network or an X.25
switched virtual circuit, the CD is marked as being in the
varied on pending state with completion of the vary on
sequence to occur later when the switched connection is
established.

Vary On LUO

Finally, the Modify LUD instruction is used to vary on
the logical units that are eligible for use. Again, if an
SNA LU (logical unit) is attached to a station on a
nonswitched line or local loop and if the LU requires an
activate logical unit message, the MSCP sends the
activate logical unit message to establish the
MSCP-to-LUD session. It is this MSCP-to-LU session
on which unformatted system services requests (for
example, logon) can flow as an unsolicited incoming
message (as far as the user is concerned).

However, if the LU is attached to a controller in a
switched network and the connection has not been
established, the LUD is marked as being in the varied on
pending state with completion of the vary-on sequence
to occur later when the switched connection is
established.

J

Dial In (SOLC or BSC)

For dial in devices, all pending conditions exist until an
activated switched line attachment accepts an incoming
call or until the logical unit and the controller are moved
to the varied off state. When an incoming call is
completed, the XID (exchange ID) or SSCPID for
support of SDLC primary stations protocol is observed.
The ID information received (or sent) is used to identify
the calling controller. Checks are made to determine
that it is a valid call (a CD exists in the system), that this
controller is allowed to call in at this time (the CD is in a
varied on pending state), and that the controller is
allowed to use this particular switched connection (the
ND associated with the line is in the ND candidate list
of this CD) or the CD is in the eligibility list of the ND (if
the BSC protocol is being used). When all of these
conditions are met, the pending conditions associated
with the CD and attached LUDs are completed. Then
the event, CD contact, is signaled. The event-related
data contains a system pointer to the CD that dialed in.
The listener of the event must then take the appropriate
steps to service the needs of the caller. If the listener
does not wish to (or is not able to) service the caller, a
Modify CD instruction can be issued to abandon the
connection. If there are no listeners for this event or if
all the conditions checked are not satisfied, then the
switched connection is terminated (the handset is placed
in the cradle).

Dial Out (SOLC or BSC)

The system initiates a dial procedure to establish a
switched connection at the time that a Modify CD (dial
out) instruction is issued to a controller whose CD
contains a dial telephone number and is in the varied on
pending state. In attempting to complete a dial out
connection, the NO candidate list in the CD is again
referenced.

The ND candidate list is used in first-to-Iast sequence.
Each ND is checked to determine whether it is in a
varied on state, a not-in-use condition, and that the CD
and N D are in the same mode (for example, both are in
BSC or both are in SDLC). When all of these conditions
are satisfied, the dial out procedure is attempted on the
corresponding line. If an autodial unit is installed, the
call is initiated with no involvement of the operator or a
process. However, if the line does not have an autocall
unit, then an event (CD manual intervention) is signaled.
The event-related data contains sufficient information
(for example, telephone number and line attachment) to
instruct the operator to perform the dia! operation.
When the connection is made either manually or by
autodial and the ID information has validated the proper
connection, all necessary operations are performed as
required to satisfy pending conditions, and an event (CD
contact) is signaled.

If the manual connection cannot be established by the
operator, a Modify CD instruction (abandon connection)
should be issued. If an autodial is not successful, the
event (CD contact) is signaled indicating unsuccessful
contact of the station.

Note: For work station and APPC, the ID is the SOLC
XID (exchange ID). For LU1, the ID is the SSCPIO
associated with the ACTPU control message. For BSC,
the ID is the XID entry from the remote XIO list.

Source/Sink Functions 6-79

X.25 Switched Virtual Circuit Call In

For X.25 call in services, all pending conditions exist
until an activated X.25 line accepts an incoming call
request packet or until the logical unit and the controller
description are moved to the varied off state.

When a call request packet is received, the X.25 packet
switching data network (PSDN) DTE address and the
PSDN connection password are used to identify the
calling controller. Checks are made to determine that it
is a valid call request (a CD exists in the system), that
this controller is allowed to call in at this time (the CD is
in a varied on pending state), and that the controller is
allowed to use this particular X.25 line (the ND
associated with the line is in the ND candidate list of
this CD). In addition, if reverse charging was requested
in the X.25 call request, the CD is checked to verify that
reverse charging can be accepted from the remote
controller. Also, the logical link protocol requested in the
call request must match the logical link protocol
specified in the CD.

When all the previous conditions are met, a positive call
request response is sent back to the remote station and
the XID (exchange ID) or SSCPID for support of SNA
primary stations protocol is observed. Checks are made
to verify that the XID or SSCPID of the remote
controller matches that of the CD.

When the XID or SSCPID conditions are met, the
pending conditions associated with the CD and attached
LUDs are completed. Then the event, CD contact, is
signaled. The event-related data contains a system
pointer to the CD that called in.

The event listener must then take the appropriate steps
to service the caller. If the listener does not wish to (or
is not able to) service the caller, a Modify CD instruction
can be issued to abandon the connection. If all the
conditions checked are not satisfied, the switched virtual
circuit is terminated (a clear packet is sent to the remote
station).

6-80

X.25 Switched Virtual Circuit Call Out

The system initiates a call out procedure to establish a
switched virtual circuit at the time that a Modify CD (dial
out) instruction is issued to a controller whose CD
contains an X.25 remote PSDN DTE address and is in
the varied on pending state. In attempting to complete
a dial out connection, the ND candidate list in the CD is
again referenced.

The ND candidate list is used in first-to-Iast sequence.
Each ND is checked to determine whether it is in a
varied on state, is not in an inoperative status, and that
both the CD and ND are X.25 objects. Also, the default
packet size and the maximum PIU size in the CD must
not be greater than the maximum packet size or the
PSDN maximum PIU size in the ND. Furthermore, the
default window size in the CD must not be greater than
7 if N D indicates a modulo 8 X.25 network and a
switched logical channel must be available to call out
on. When an ND is found that satisfies all of these
conditions, a CALL REQUEST packet is sent out on the
X.25 PSDN. When a positive response to the call .
request is received, the ID information must be
validated. The CD contact event is signaled when the ID
information is validated. If the call request is not
successful. an event (X.25 Call Request rejected) is
signaled.

Note: For work station and APPC, the ID is the XID
(exchange ID). For LU1, the ID is the SSCPID
associated with the ACTPU control message.

Summary: The procedure for using the switched
communications network includes the following steps:

1.

2.

3.

4.

5.

6.

7.

8.

Vary on NO

Vary on CD

Vary on LUD

Dial out CD (dial out network only)

Listen for CD contact event

Listen for LUD contact event

Activate session

Request I/O (perform an SNA bind sequence or
BSC bid sequence)
Request I/O (data operations)
Request I/O (perform an SNA unbind sequence)

9. De-activate session

10. Abandon connection (CD)

11. Vary off LUD

12. Vary off CD

13. Vary off NO

Note: Calls from devices that dial in are accepted at
any time following step 2; the call must be completed
before step 6 can be initiated. Calls initiated by the
system, (dial out) are made after step 4 and must be
completed before step 6 can begin.

Session State Changes

The Modify LUD instruction, when used to change a
session state for that LUD, is a synchronous instruction;
the Request I/O instruction is asynchronous. The
significance of this contrast is that any number of
Request I/O instructions may have been issued (and
executed) without having those requested operations
completed; rather, they are simply scheduled to be
processed as if they were enqueued on a process
queue. However, only a single Modify LUD instruction
can be outstanding at anyone time. For example, a
Modify LUD (quiesce) remains in an execution state until
all request I/O operations outstanding to the session are
completed normally and all corresponding feedback
records are posted to the source/sink response queue.
Only after all of this is completed can the Modify LUD
instruction be completed. The session state changes
through a Modify LUD instruction are synchronous to
ensure that all dispositions of request I/O operations are
completed by some determinate time, specifically the
point when the Modify LUD instruction completes.

Limitations

Because there are instances when the request I/O
operation is stopped, there are limitations on when the
synchronous session state changes can be allowed to
proceed. A deadlock situation could result if the state
changes were to be allowed because they are
dependent on completion of the stopped request I/O
processing. The two defined cases of stopped request
I/O operations that offset the Modify LUD session state
change commands are operator intervention and
terminating error feedback record.

Source/Sink Functions 6-81

Operator Intervention: After signaling an operator
intervention required event, processing of subsequent
requests is suspended until the intervention is resolved
or until a Reset Session command is received.

Terminating Error Feedback Record: After indiceting a
terminating error, further processing of request I/O
operations is suspended until a Request I/O Continue
instruction or a Reset Session command is received.

The allowable cases are summarized in the following
table. The rejected commands result in a resource not
available exception to the Modify LUD instruction.

Modify LUD Operator Terminating
Command Intervention Error

Suspend Rejected Allowed

Quiesce Rejected Rejected

Reset Allowed Allowed

De-activate Rejected Rejected-if LUD is
active
Allowed-if LUD is
suspended or reset

6-82

Request 1/0 Operations-Error Recovery Examples

These examples show various error recovery techniques
for different conditions that can exist during request I/O
operations to an active session on an LUD.

Operator Intervention Required Event

When this event is signaled, it indicates a condition,
which can be corrected by intervention at the I/O
device. The type of intervention required is identified by
the event-related data that is provided when the event
is signaled. The definitions of this data and the
circumstances under which this event is signaled are
defined for each device supported on a system in model
dependent documentation.

Some examples of device conditions that can cause this
event to be signaled and the required action are listed in
the following chart:

Device Condition Required Action

Device not ready Start device

Hopper empty Reload input

Out of forms Reload printer

Stacker full Empty stacker

When the operator intervention required event is
signaled, processing is suspended on the request I/O
operation that experienced the condition. All subsequent
requests that may have been issued remain on the
queue to await processing. Additional Request I/O
instructions are accepted and scheduled for processing
but also queued. Normal processing of the requests
resumes as soon as the device status indicates that the
device condition is corrected and the device is once
again operational (presumably as a result of the manual
intervention). If manual intervention is not possible, a
Modify LUD (reset session) instruction must be issued.
This instruction causes all suspended request I/O
operations to be terminated abnormally and feedback
records for each of these operations posted to the
source/sink response queue.

Terminating Error Conditions

Whenever the machine has completed a request I/O
operation with a terminating error indicated in the
feedback record, all outstanding requests are
suspended, and no further processing takes place until
certain actions occur at the machine interface. A Modify
LUD (reset session) instruction or a Request I/O
(continue) instruction cause processing to be restarted.
Normal Request I/O instructions can be issued after a
terminating error condition and, as in the previous
example, they are scheduled but processing on them will
not begin.

When a Request I/O (continue) instruction is issued
after a terminating error condition, normal processing
resumes immediately, and a feedback record for a
continue-response is posted to the response queue.
This procedure can be used to resume processing if the
user chooses to ignore the terminating error. However,
this procedure can be used also as a method of
recovery if the user diagnoses the cause of the
terminating error, makes the necessary correction, and
reissues (with a higher priority key and prior to issuing
the Request I/O (continue)) the Request I/O (normal)
instruction that experienced the terminating error. The
reissued Request I/O instruction will be the first I/O
instruction to be processed after the system is restarted
with the Request I/O (continue) instruction.

A Modify LUD (reset session) instruction issued after a
terminating error causes all suspended request I/O
operations to be abnormally terminated. The
corresponding feedback records are posted to the
response queue, and the session on the LUD is changed
from the active state to the inactive state. Then, no
further Request I/O instructions are accepted. This
method can be used to recover from the terminating
error condition when a total restart is desired.

A summary of the Request I/O instructions, which are
allowed in each of the recovery states mentioned in the
previous examples, is shown in the following table.

Command

Request I/O (normal)
Request I/O (continue)

Operator Terminating
Intervention Error

Accepted
Rejected

Accepted
Accepted

The rejected cases result in feedback records that
indicate the request was not acceptable for the current
condition of the machine.

Source/Sink Functions 6-83

6-84

System/38 Support Functions

System/38 support functions aid in the initialization,
operation, maintenance, and servicing of the machine
interface. The support functions are:

• Machine attributes

• Machine-to-programming transition

• Terminate machine processing

• Machine check

• Diagnostic and service aids

MACHINE ATTRIBUTES

Machine attributes are those attributes that have the
same value and same meaning throughout the entire
machine. These attributes are available to all processes
within the machine and have meaning independent of
the process that materializes or modifies them. Machine
attributes can be modified by a user to govern the
operation of the machine, or they can be materialized to
determine the current status of a particular aspect of the
machine. (For more information about the machine
attributes and their formats, refer to the Systemj38
Functional Reference Manual.)

MACHINE-TO-PROGRAMMING TRANSITION

The IMPL (initial machine program load) function can be
activated by the machine power-on sequence or from
the machine console. After the machine has been
initialized, the machine-to-programming transition
function provides the user with the capability of initiating
a process from the data that exists either on the primary
load/dump device or in auxiliary storage. For more
information about the IMPL function, refer to the
Systemj38 Operator's Guide.

Chapter 7. Machine Support Functions

TERMINATE MACHINE PROCESSING FUNCTION

The TMPF (terminate machine processing function)
performs any of the following options when machine
processing is terminated:

• Enters the machine into the check stopped state.

• Destroys all processes and turns off the machine
power supply.

• Suspends all processes and enters the machine into
the check stopped state.

The process that invokes the TMPF via the Terminate
Machine Processing instruction must have special
authority to destroy all processes within the machine.
The TMPF is invoked whenever the Terminate Machine
Processing instruction is issued.

When the process that issued the Terminate Machine
Processing instruction is terminated, all machine
resources are returned to the machine.

Once machine processing is terminated or suspended, it
can only be reactivated through machine initialization.

An optional function performed by the TM PF is that of
turning off the machine power. This option is specified
in the Terminate Machine Processing instruction. If the
machine power supply is not turned off, the last
function performed by the TM PF is that of putting the
machine in the check stopped state.

Another optional function performed by the TMPF is
that of regenerating the internal supply of machine
addresses. The supply of addresses used for only
temporary objects or both temporary and permanent
objects can be renewed through this function.

The suspend option does not destroy the processes, but
keeps them in an internal state to provide information
for diagnostic purposes.

Machine Support Functions 7-1

The primary power supply can be turned off not only as
the result of a process request, but also as the result of
some action external to the machine. For example, an
abnormal machine power off can occur as a result of a
power fault.

The Terminate Process instruction is used to destroy
one or more processes with the procedure consistent
during the destruction of each process.

MACHINE CHECK FUNCTION

The MCF (machine check function) provides a
mechanism whereby machine malfunctions are reported
by a machine check exception, a machine check event,
or both.

The machine check function is provided to:

• Minimize the possibility of the machine becoming
inoperative as a result of a machine malfunction.

• Initialize recovery for instructions causing machine
malfunctions when possible.

• Record machine malfunctions internally within the
machine.

• Signal machine malfunctions to the machine interface.

Because of its recovery capability, the machine check
function minimizes the possibility of the machine
becoming inoperative. Only the process that incurs an
unrecoverable machine check is terminated (destroyed);
all other active processes are not terminated unless the
cause of the machine check is determined to jeopardize
further execution.

If possible, the machine check function recovers from
machine malfunctions. This dynamic recovery capability
aids in minimizing the possibility of the machine
becoming inoperative.

All machine malfunctions are logged internally if the
machine is still operable. The logged malfunctions can
be accessed by using the concurrent diagnostic service
functions.

A machine malfunction is reported to the machine
interface as an exception or an event.

7-2

Machine Checks

Machine checks are machine malfunctions from which
recovery mayor may not be possible. A program
monitors a machine check exception or event. As a
response to the exception or event, a program can
perform some user-defined recovery functions, such as
keeping a record of the machine malfunction or
destroying the process that incurred the machine
malfunction.

Machine checks fall into two categories:

• Soft (recoverable) machine checks

• Hard (unrecoverable) machine checks

All active processes are deactivated when a machine
malfunction. occurs. The machine determines whether
the malfunction is recoverable; if so, the machine saves
the recovered machine-related data in its internal
storage, activates all processes that were de-activated,
and signals the machine check event.

If an unrecoverable machine check occurs because of a
System/3S instruction, the machine saves
machine-related data in its internal storage, reactivates
all processes that were active when the machine check
occurred, and signals a machine check exception to the
process that incurred the machine check. Execution of
the instruction is not completed, and the exception can
be handled by the user in the same manner as any other
exception.

The service aid functions are used to retrieve the
machine-check data saved by the machine.

J

J

The machine check exception is signaled to inform a
process that it has incurred a permanent machine
malfunction. The process determines whether it should
terminate itself or perform some recovery operation as a
result of the permanent machine check. The machine
check exception and related data are defined in the
System/38 Functional Reference Manual.

Each process that wants to be notified of an
unrecoverable machine check that occurred in an
instruction it was executing must monitor the machine
check exception.

The machine check event is also signaled when a
machine check occurs. Any process can monitor a
machine check event if it wants to be notified of any
machine checks occurring within the machine. The
machine check event-related data contains information
about the nature and severity of the machine check and
referencing the process incurring the machine check.

Machine check event- related data is described under
Event Specifications in the System/38 Functional
Reference Manual.

DIAGNOSTIC AND SERVICE FUNCTIONS

The diagnostic and service aid functions provide the
service representative with the capability of servicing the
machine. These functions can be activated via the
Request I/O instruction. Additional information about
the diagnostic and service aid functions is contained in
the System/38 Diagnostic Aids Manual and the
System/38 Service Guide, SY31-0523.

Machine Support Functions 7-3

Machine Observation Functions

Machine observation functions observe the activity of
the machine at the machine interface level. Also, these
functions are used as a tool to aid in problem
determination and to allow observation of machine
execution to distinguish its anticipated operation from its
actual operation.

Machine observation is explicitly provided through use
of the Trace and Materialize instructions and implicitly
provided through use of the inherent facilities. Trace
instructions are available to monitor the execution of
programs and to observe System/38 instructions.
Machine activity is observed by monitoring machine
events that have event descriptions.

The observation functions provided at the machine
interface level are:

• Tracing the execution sequence of a process by
monitoring the Call and Return instructions

• Tracing the execution sequence of a program by
monitoring instruction execution and program object
references

• Tracing the reference to or modification of system
objects by using the occurrence of machine events
and user-defined events

• Materializing the addressability of pointers

OBSERVATION FUNCTIONS

Observation functions include inherent machine
observation functions, trace functions, and
materialization capabilities.

Inherent Machine Observation Functions

Certain System/38 instructions monitor machine
activities by monitoring the machine events (machine
events are defined by event descriptions). Event
monitors can monitor the creation and destruction of
processes, queues, and other objects. For example, by
monitoring the time-of-day clock it is possible to
periodically start a machine observation sampling
routine.

7-4

Trace Functions

A process or a program can be monitored by a
monitoring program that specifies the expected event
during the execution of the monitored process or
program. The following types of trace functions are
allowed:

• The Trace Invocation instruction generates an event
whenever control is passed from an identified
invocation to invoke another program or when control
is given up by an identified invocation and control
returns to a preceding invocation.

• The Trace Instructions instruction generates an event
each time a System/38 instruction is executed by a
monitored program.

INHERENT MACHINE OBSERVATION
INSTRUCTIONS

System/38 provides programs that monitor and observe
events. You may want to use these programs to inform
a process when an event occurs. The event could be,
for example, a change in the value of an object. Some
events can be monitored when:

• A process is initiated or terminated

• A message is enqueued or dequeued

• A limit is reached on a queue

• A time interval is expired

This list shows only some of the events that can be
monitored. For more information about event monitors,
refer to Event Management in Chapter 4.

J

TRACING

Tracing provides a record of the execution of a program
and exhibits the sequences in which the instructions
were executed.

The types of tracing provided by System/38 instructions
are instruction and invocation. The Trace instructions
are:

• Trace Instructions

• Trace Invocations

• Cancel Trace Instructions

• Cancel Invocation Trace

The Trace Instructions instruction identifies a specific set
of instructions in a program and when one of those
instructions is executed, the instruction reference event
is signaled.

The Trace Invocations instruction causes an invocation
reference event to be signaled whenever a specific
invocation gives up control to either invoke another
program or return to a preceding invocation. When an
invocation is being traced, the following conditions
cause the invocation reference event to be signaled:

• The invocation calls another program.

• The invocation transfers control to another program.

• The invocation is interrupted to handle an event.

• An exception is signaled to the invocation and an
external exception handler is invoked.

• The invocation returns to a preceding invocation.

• The invocation terminates processing of an exception
and through the Return from Exception instruction
passes control to a preceding invocation.

• The invocation is terminated in order to terminate a
process phase.

• An invocation exit program is given control.

During the monitoring of these events, it is possible to
examine and to modify data in the executing program
and return to that program to continue executing with
the changed data.

MATERIALIZE INSTRUCTIONS

Materialize instructions can obtain the current values and
attributes of system objects. System objects can be
materialized into template form by using specific
materialize instructions.

The type of object referenced by a system pointer can
be determined by using the Materialize System Object
instruction. This instruction provides the name, type,
owner's name, and other general information about any
system object. Each instruction and materialization is
described in the section dealing with the object it
materializes.

The Materialize Pointer instruction can be used to
materialize the current addressability contained in a
pointer.

The Materialize Pointer Locations instruction determines
which locations within a space contain pointers and
provides a bit mapping of their relative location.

The Materialize Invocation instruction allows the
program objects not stored in the program's static or
automatic storage to be materialized. This information
includes the current status of an exception description
and the current addressability of internal or external
parameters. The object to be materialized is identified
by the ODT (object definition table) address and the
program invocation number within the process.

The Materialize Invocation Entry instruction can be used
to materialize the attributes of a specific invocation entry
within the process that issues the instruction.

The Materialize Invocation Stack instruction can be used
to materialize the current invocation stack within a
specific process.

Machine Support Functions 7-5

Recovery Functions

System/38 provides for integrity of system operation
and content. However, unexpected failures may occur
within the machine and on the part of its users.
Because of this, facilities are provided to protect against
irrecoverable loss, detect abnormal situations and
contain their impact, and to provide recovery
mechanisms when failures occur.

RECOVERY CAPABILITIES

The recovery capabilities can be divided into two
categories: those related to the data base and those
that are general system capabilities.

Because the data base represents the most critical user
resource in the system, various recovery capabilities
provide the user with the means to protect and recover
certain portions of the data base.

Data Base Recovery Capabilities

System/38 instructions provide the following data base
recovery capabilities.

Ensure Data Space Entries

In a virtual storage system such as System/38, recent
changes to data in main storage may exist and yet these
changes may not be reflected in auxiliary storage. If this
condition exists, and a power failure or other abnormal
system termination causes loss of the data in main
storage, the changes will be lost. The Ensure Data
Space Entries instruction can help protect against such a
loss by ensuring that all changes made via the specified
cursor up to that time are recorded in auxiliary storage.
This instruction should be used at meaningful intervals
in an application to reduce the quantity of critical data
that is subject to loss.

Any changes made subsequent to the instruction mayor
may not be reflected in auxiliary storage.

7-6

Forced Write Option

The forced write option on the Set Cursor, Insert Data
Space Entry, and Insert Sequential Data Space Entries
instructions assures that individual changes to the data
base are protected against loss of main storage
contents.

Insert Sequentiality

If multiple users (cursors) are inserting (adding) to a file
and one user ensures his entries, then all inserts prior to
his last entry are also ensured. Updates by other users,
however, are not ensured.

Certain types of malfunctions cause a loss of main
storage data-for example, a loss of external power.
When this type of failure occurs, all data spaces are
examined for internal consistency. This procedure
enables data base management to guarantee the
following attributes of each data space.

• If only insert operations have been performed against
the data space, and if the size of the entries within
this data space is equal to or less than 512 bytes, all
recovered entries now residing in the data space are
complete and in sequence.

• Unensured inserts can be lost from the end of the
data space, but no ensured inserts can be lost.

• All ensured updates are complete. Unensured
updates might exist in a variety of recovery states (for
example, not updated at all, partially updated, or
completely updated). In each state, however, the
data space entry can still be retrieved.

• All ensured deletes are complete. Unensured deleted
entries might, in some instances, reappear as
retrievable entries.

J

Object Recovery List

Following abnormal system termination, the object
recovery list can be obtained through use of the
Materialize Attributes instruction (the machine
initialization status record must be requested). This list
identifies the data base objects that were detected
during IPL as damaged or potentially damaged (for
example, the data spaces active at the time of the
abnormal system termination and data space indexes
invalidated due to abnormal system termination). The
object recovery list may also identify damaged data base
objects following a normal termination.

Invalidation

Following an abnormal system termination, all data
space indexes which might not be consistent with the
data spaces they address are invalidated and identified
in the object recovery list. These indexes may then be
rebuilt by using the rebuild option of the Data Base
Maintenance instruction.

File Positioning

Cursors can be positioned to any desired location to
begin processing. This capability is useful in case
operation on a file is unexpectedly interrupted during
processing and must be resumed at an arbitrary point.

System Recovery Capabilities

The following system recovery capabilities are provided.

Ensure Object

The Ensure Object instruction ensures that prior changes
to an object residing in main storage are not lost due to
an abnormal system termination.

Automatic Ensure

Changes made to certain critical objects are
automatically protected against abnormal system
termination. This includes addressability changes to
contexts, ownership changes to user profiles, structural
relationships between data spaces and data space
indexes, objects loaded by the load/dump function, and
source/sink configuration changes. All created objects
are also automatically ensured.

Load/Dump

The capability is provided to dump certain objects to an
external media and then reload these objects from this
same external media via source/sink management. This
capability provides protection from catastrophic damage
within the system and also provides the ability to
transfer objects to other systems.

Abnormal Termination Indicator

Following IPL, an indicator is available via the machine
attributes. The indicator indicates whether or not the
previous termination of the machine was normal.

Damaged Contexts

A damaged or destroyed machine context is implicitly
rebuilt or recreated when an IPL is performed.

A damaged permanent context that was created with
the rebuild recovery option is implicitly rebuilt when an
IPL is performed. The Materialize Context instruction is
used to materialize the rebuild recovery option for a
context.

Machine Support Functions 7 - 7

Damage

Abnormal occurrences within the machine can result in
damage to system objects or the operational capability
of the machine itself. Following abnormal termination,
the machine attempts to restore its operational
capability. During the restore operation, certain
operations and relationships are designed to be tolerant
of damage that has occurred (this includes both machine
operations and instruction processing).

When instruction processing cannot be properly
completed, an attempt is made to nullify the processing
performed by the instruction or to isolate the damage.

Object Isolation

When it is possible to determine that abnormal
instruction operation is due to damage to an object, that
object is placed in the damaged state. Then, damage
exceptions and events are generated. When an object is
in the damaged state, the Destroy, Lock, Unlock,
Transfer Lock, Materialize System Object, Rename, and
Modify Addressability instructions can operate on it.
Attempts by other instructions to operate on a damaged
object may result in a damaged object exception.

7-8

Process Isolation

Unexpected occurences are isolated to a process
whenever possible and, if not handled by the process,
only the process is terminated.

Reclaim Lost Objects

When damage occurs within the machine, especially
abnormal machine termination, the ownership of objects
(as determined by user profiles) can be lost. Such
objects are referred to as lost objects. Also, space
allocated to severely damaged or destroyed objects may
not be properly released. The Reclaim instruction
releases space that cannot be associated with a valid
object, and also returns a list of lost objects. The
Transfer Ownership instruction can then be used to
restore object ownership to a user profile.

access group: A system object that is a collection of
other system objects, which are transferred to/from
auxiliary storage as a group. The access group is used
to improve storage management efficiency by specifying
which system objects are used together.

activation: The allocation of static storage to a program
in a process. A program is activated either implicitly on
the first call to a program or explicitly with an Activate
Program instruction.

active cursor: A cursor that is currently bound to a
process and is thereby available exclusively to this
process for purposes of accessing entries residing within
data spaces. Only one process can activate any given
cursor at a time.

activity trail: A record of operations that is used to
identify what activities have been done, the order in
which they were done, and who performed the
activities.

addressability: The ability to obtain a pointer to a
system object or to bytes in a space.

adopted user profile: The user profile that owns the
program that has been created with the adopt user
profile attribute. The adopted user profile supplements
the process with its authorities as long as the process is
executing that program. See also propagated user
profile.

advanced program-to-program communication
(APPCI: Data communications support that allows a
System/38 to communicate with other systems having
compatible communications support. APPC is the
System/3S implementation of the SNA/SDLC LU6.2
protocol. Using APPC, System/3S can start programs
on another system, or another system can start
programs on the System/38.

after-image: The image of a record in an object after
the data has been modified by a write or an update
operation. Contrast with before-image.

Glossary

American National Standards Institute: An
organization sponsored by the Computer and Business
Equipment Manufacturers Association for the purpose of
establishing voluntary industry standards. Abbreviated
ANSI.

ANSI: See American National Standards Institute.

APPC: See advanced program-to-program
communication.

apply: For journaling, the process of placing
after-images of records into an object. The
after-images are recorded as entries in a journal.

argument list: A program object that provides a means
of transferring object addressability from an invoking
program to an invoked program. It contains a list of
ODT references that specify the objects whose
addressability is to be passed and the order in which the
arguments are to be associated with their corresponding
parameters. See also parameter list.

arithmetic instructions: Instructions designed primarily
to compute numeric results, for example, operations of
addition, subtraction, multiplication, and division.

associated space: A space allocated as part of a
system object. This is a byte addressable region of
storage that is addressed through ODT entries, space
pointers, or data pointers.

atomic: Indivisible. An operation or instruction is
atomic if its action appears to be instantaneous.

attached: Pertaining to a journal space that is
connected to a journal port and is receiving journal
entries for that journal port.

attribute: Information that describes the characteristics
of system objects or program objects.

authority: The right to access system objects,
resources, or functions.

authorization: The process of giving a user either
complete or restricted access to a system object,
resource, or function.

Glossary G-1

automatic: One of the attributes of a program object
indicating that it is to be mapped into the storage
allocated at every program invocation.

auxiliary storage: All addressable storage space other
than main storage. Auxiliary storage is located on the
system nonremovable disk enclosures. Unlike main
storage, auxiliary storage can retain data while machine
power is off.

back out: To remove changes from an object in the
inverse chronological order from that in which the
changes were originally made.

base: The number system in which an arithmetic value
is represented.

before-image: The image of a record in an object
before the data has been modified by a write, an
update, or a delete operation. Contrast with
after-image.

bias: In binary floating-point storage formats, the
constant value that. when added to the signed exponent
of a number, produces a non-negative biased exponent.
The bias for short format is 127 and for long format is
1023.

biased exponent: (1) In binary floating-point storage
formats, the non-negative sum of the signed exponent
of a binary floating-point number and a constant value
(bias). (2) A value between the maximum and minimum
field values that is used to represent the signed
exponent of a normalized binary floating-point number.
The range of biased exponent values is 1 through 254
for the short format and 1 through 2046 for the long
format. Contrast with signed exponent.

binary digits: The numbers zero and one, which are
used to represent a value in the numbering system that
has 2 as its base.

G-2

binary floating-point number: (1) In CPF the form of a
numeric value that contains a signed significand and a
Signed exponent. The number's numeric value is the
signed product of the number's significand and 2 raised
to the power of the number's exponent. (2) Internally,
the conceptual form of a numeric value that contains a
signed significand and a signed exponent. The number's
numeric value is the signed product of the number's
significand and 2 raised to the power of the number's
exponent. Contrast with long format and short format.
which are used to represent binary floating-point
numbers in storage. A binary floating-point number can
be a normalized number, a denormalized number, or a
signed zero.

binary floating-point value: One of the set of
conceptual values supported for binary floating-point
operations. The set of values supported is composed of
binary floating-point numbers, infinity, and
not-a-numbers.

binary point: The point that separates the integer digits
from the fraction digits in the numbering system that
has 2 as its base, similar to decimal point.

binary synchronous communications: A flexible form
of line control that provides a protocol for
communication between two stations. Abbreviated BSC.

binding: The explicit or implicit resolving of
addressability by assigning the addressability for an
object to an instruction operand or pointer that refers to
the object.

bit: A unit of computer information equivalent to the
result of a choice between two alternatives (such as
on-off, 0-1, or yes-no).

Boolean instructions: Instructions that are designed to
perform Boolean or logical operations on byte strings.

branch form: An optional form of a standard format
instruction that has an operation code extender field and
branch target operand(s). The operation code extender
field indicates the branch condition(s) to be considered,
and the branch target operand(s) indicate the
instruction(s) to be branched to if the condition exists.

branch point: A program object that defines the target
instruction in a program's instruction stream for some
branching instruction.

L branching instructions: Instructions that optionally
change the sequence of program execution based on
some computational operation.

BSC: See binary synchronous communications.

byte: A sequence of eight adjacent binary digits that
are operated upon as a unit and that constitute the
smallest addressable unit in the system.

CD: See controller description.

commit block: A system object that records and holds
the changes made to an object under commitment
control.

commit cycle: The commit processing that occurs after
a start commit entry (but before a commit or decommit
entry) is placed in a journal space.

commit identifier: A 4OOO-byte area in the commit
block object in which user-supplied data is placed when
the Commit instruction is performed.

commit transaction boundary: For commit, a
transaction boundary exists when there are no data base
changes that can be committed or decommitted.

commitment control: An object is under commitment
control when the commit function is being used to
record the changes made to the object.

communications device: A device attached to the
system via a communications line through which data
can be transmitted to and from the system.

communications system: All of the elements in all of
the nodes supporting user-to-user communication. SNA
defines the logical structure, formats, protocol, and
operation sequences among elements of the
communications system.

comparison instructions: Instructions that are
designed to test the relationship between items of data.

compound OOT reference: A form of instruction
operand that is defined by using references to a base
operand and one or more suboperands. Several types of
compound references are possible to allow explicit
pointer basing, subscript references and substring
references.

connection point manager: The SNA (systems
network architecture) component that provides a
common mechanism by which session control, network
control. and NAUs communicate with their
corresponding elements through the communications
network. The units of information that the connection
point manager receives from the NAUs (network
addressable units), session information to construct the
transmission headers and request units. Abbreviated
CPM.

constant data: A program object that defines a scalar
with fixed attributes and value.

constrained: An attribute of a program indicating that
the index and length values used in a reference to a
vector ora string are to be checked to assure that the
reference is not outside the range of the program object.

context: A system object that contains addressability to
system objects by name. It is used in system pointer
resolution to obtain system pointers to system objects.

controller description: A system object that defines
and describes a device controller or communications
station. There is one controller description for each
device controller or communications station on the
system. The controller logically represents a physical
I/O controller to the system. Abbreviated CD.

convert: The process of changing the value of a scalar
to correspond to a different set of attributes. For
example, a decimal scalar could be converted to a binary
scalar.

cursor: A system object used with the data base
facility. A cursor provides a path to access a data base,
performs field mapping and conversion, and retains
information about the current status of its use by a
process. See also active cursor.

data base: A structure of files and indexes that holds
data and the relationship among the data. In
System/38, a data base is composed of a combination
of the following system objects:

• Data space-file of entries (records)

• Data space index-provides logical ordering of entries
in data spaces

• Cursor-path to entries in data spaces

Glossary G-3

data circuit-terminating equipment (DCE): The
equipment installed at the user's premises that provides
all the functions required to establish, maintain, and
terminate a connection, and the signal conversion and
coding between the data terminal equipment and the
line. Abbreviated DCE. See also data terminal
equipment.

data pointer: A pointer that provides addressability to a
specific byte location in a space and associates scalar
attributes with the data addressed.

data space: A system object in which data space
entries (records) are stored. Once a data space has
been created, new entries can be inserted and existing
entries can be updated, retrieved, or deleted.

data space entry: An ordered set of fields (record) that
is contained within a data space (file). All entries within
a data space have the same number of fields and
identical attributes.

data space index: A system object that is used to
logically order entries in one or more data spaces.

data terminal equipment: That part of a data station
that enters data into a data link, receives data from a
data link, and provides for the data communication
control function according to protocols. Abbreviated
DTE.

DCE: See data circuit-terminating equipment.

deadlock: An impasse that occurs when multiple
processes form a loop, each waiting for the availability
of a resource that will not become available because it
is being held by another process that is also waiting in
the loop.

default rounding mode: The mode that is put in effect
upon the initiation of a process. The default rounding
mode is round to nearest.

G-4

denormalized number: (1) In binary floating-point
concepts, a nonzero number whose significand integer
digit has a value of binary zero and whose signed
exponent has a value of -126 or -1022. Denormalized
numbers provide for a gradual underflow toward zero of
numbers representable in a storage format. (2) In binary
floating-point storage formats, a denormalized number
is represented by an exponent field that contains a
reserved value (zero) at the format's minimum and a
fraction field whose value is greater than zero. The
significand of the number represented has an integer
value of zero, which is implied by the storage
representation and a fraction value from the fraction
field. The sign of the number represented is positive for
a sign field value of binary 0 and negative for a sign
field value of binary 1. The reserved value of zero in the
exponent field indicates that the value of the signed
exponent (power of 2) is decimal -126 for the short
format and decimal -1022 for the long format.

dequeue: An operation for removing messages from
queues. Contrast with enqueue.

destination: See result field.

detached: Pertaining to a journal space that is not
connected to a journal port and is not receiving entries
for that journal port.

DHCF: See distributed host command facility.

distributed host command facility: That part of a
System/38 that helps to create the communication link
between a System/370 terminal and a System/38
application. Abbreviated DHCF.

DTE: See data terminal equipment.

dump: To copy the contents of a system object to
diskette. The system object is loaded by reading it from
the diskette and then replacing an existing system object
or creating a new object.

editing instructions: Instructions that are designed to
allow the programmer to change the format of data
items.

eight-byte format: Same as long format.

J

encapsulation: The process of translating data (such as
a program in the form of a template) into an internal and
machine usable form. Nonencapsulated system objects
are visible in both format and function to the System/38
user. Encapsulated system objects are visible to the
user in function, but not in format. An independent
index is an example of an encapsulated system object
while a space is not encapsulated.

enqueue: An operation for placing messages on a
queue. Contrast with dequeue.

ensure: Writing all changes made to a system object to
auxiliary storage.

entry: See data space entry.

entry point: A program object used to define the target
instruction in an instruction stream.

event: An asynchronous signal that a process can
intercept.

event handler: A program, specified in an event
monitor, that is to receive control when the event
occurs.

event monitor: A specification of event(s) to be
intercepted by a process and the event handler program
to be invoked as a result.

exception: The occurrence of a machine or
user-defined condition that can be monitored and is
directly associated with the execution of a particular
function within a process. Exceptions generally
represent an abnormality detected in the machine or in a
program. Exceptions are signaled to an exception
description within the associated process.

exception description: A program object that is used
to contain information pertaining to the handling of an
exception.

exchange identification: A unique identification of the
physical unit that a controller description object
represents. Abbreviated XID.

existence: An attribute of a system object that is
specified at the time the system object is created. A
permanent system object exists until it is explicitly
destroyed by a Destroy instruction. A temporary system
object exists until it is explicitly destroyed or until the
next machine termination, whichever occurs first.

exponent: A number, indicating to which power
another number (the base) is to be raised.

exponent range: In binary floating-point storage
formats, the set of integer exponents for normalized
numbers that can be represented in a particular format.
The representable signed exponent range is decimal
-126 through + 127 for short format and decimal -1022
through +1023 for long format.

external: One of the attributes of a named data
program object indicating that it can be referred to by a
program other than the program in which it is defined.
Data pointers are used to refer to external program
objects.

external entry point: Defines the first instruction to be
executed in a program when it is invoked.

feedback record: A message placed on a queue
indicating the status of a completed operation initiated
by the Request I/O instruction.

field: A portion of a data space entry that serves as the
basic unit of data transfer to and from data spaces.

floating-point format: In binary floating-point
representation the storage format used to represent a
binary floating-point value. See also long format and
short format.

fork character: One or more characters included in the
composite keys in a data space index. These characters
serve as key modifiers, providing particular ordering of
entries with the same key but residing in different data
spaces.

format's maximum: In binary floating-point storage
formats, the value of 255 (short format) or 2047 (long
format) in the exponent field. This value indicates that
either a signed infinity (value of the fraction field equals
zero) or a not-a-number (value of the fraction field does
not equal zero) is represented in the storage format.

format's minimum: In binary floating-point storage
formats, the value of zero in the exponent field. This
value indicates that either a zero, floating-point value
(value of the fraction field equals zero) or a denormalized
number (value of the fraction does not equal zero) is
represented in the storage format.

Glossary G-5

forward recovery: The process of recovering a data
base file from a known point by restoring a previous
version of the file and then applying the changes to that
file in the same chronological order in which they were
originally made.

four-byte format: Same as short format.

fraction: (1) In binary floating-point number concepts,
the value to the right of the binary point in the
significand. (2) In binary floating-point storage formats,
the value contained in the fraction field.

function check: A type of exception that indicates the
malfunction of a specific System/38 instruction.

generic instruction: Those instructions that accept
various types of system objects or program objects as
operands.

hex: See hexadecimal.

hexadecimal: Pertains to a number system with a base
of 16. (Valid digits range from 0 through F, where F
represents the highest units position-15.) Abbreviated
hex.

I/O manager: A programming module (or program) that
controls the flow of data and control information to and
from an I/O unit. Abbreviated 10M.

I/O port: The system hardware that supports the
attachment of I/O devices.

IDL: See instruction definition list.

immediate data operand: An operand that contains the
data within the instruction. An immediate data operand
contains the description and value for either branch
targets (instruction number or relative instruction
number) or scalar data (binary, character, or bit).

implicit leading bit: In binary floating-point formats, a
bit that does not appear in the storage representation of
a binary floating-point number. This bit is understood to
be to the left of the assumed binary point. See also
significand.

independent index: A system object that provides for
ordering byte data according to the value of the data.

independent process: A process that can exist after its
initiator has terminated.

G-6

indicator form: An optional form of a standard format
instruction that has an operation code extender field and
indicator operand(s). The operation code extender field
indicates which resulting conditions are to cause the
indicator values to be set to the requested values.

inexact result: In binary floating-point operations, a
state that occurs when bits of the significand are lost in
rounding the intermediate result to the precision of the
result field or when a number or infinity is stored as the
result of a masked overflow.

infinity: (1) In binary floating-point concepts, a value
with an associated sign that is mathematically greater in
magnitude than any binary floating-point number. (2) In
binary floating-point storage formats, infinity is
represented by an exponent field that contains a
reserved value at the format's maximum (255 for short
format and 2047 for long format) and a fraction field
value of zero. The sign of infinity is positive for a sign
field value of binary 0 and negative for a sign field value
of binary 1.

infinity arithmetic: In binary floating-point operations,
the adding, subtracting, multiplying, dividing, and
comparing of values that involve infinity values. In
infinity arithmetic, negative infinity is less than every
number and every number is less than positive infinity.

instruction definition list: A program object used to
describe an ordered list of instruction numbers and
branch point references. It is used with an index value
to accomplish branch table functions. Abbreviated IDL.

instruction stream: A string of System/38 instructions
that define an execution time function. The instruction
stream is used in conjunction with an ODT to create a
program. Each instruction is in operator-operand format
with a 2-byte operation code field, an optional 2-byte
operation extender field, and from 0 to n 2-byte
operand fields.

integrity: (1) The protection of data and programs from
inadvertent destruction or alteration. (2) The assurance
that a system object is not misused. This assurance is
based on associating instructions with specific system
object types.

intermediate denormalized floating-point number: In
binary floating-point operations, an intermediate
unrounded form of the result in which a value that is too
small to be represented in the floating-point format of
the result has had the significand's digits shifted right
(zeros are supplied on the left) and the exponent
incremented until the exponent attains the format's
assumed value for denormalized numbers (-126 for
short format and -1022 for long format).

intermediate result: In floating-point concepts, the
normalized number produced prior to the adjustments
required to store it in the result field.

invocation: An invocation is the execution of a
program. It represents the status of the process after
the program is invoked. When one program calls
another program, the two programs are said to be in
different invocations. The invocation of a program that
is called a second time by the same calling invocation is
also considered to be a different invocation. Automatic
storage is allocated for a program at every invocation.

10M: See I/O manager.

journal: (1) A chronological record of the changes made
to a set of data; the record may be used to reconstruct
a previous version of the set. (2) To record transactions
against a data set so that the data set can be
reconstructed by applying transactions in the journal
against a previous version of the data set.

journal entry: A record in a journal space. The record
contains information about selected actions against an
object being journaled.

journal entry-specific data: The user-generated or
system-generated data in a journal entry. This data is
unique to the operation that generated the journal entry.

journal port: An object through which entries are
placed in a journal space when a change is made to an
object. The system uses the journal port to record
information about the attached journal spaces and the
objects being journaled through the journal port.

journal space: The object that contains journal entries.

local work station: A work station that is connected
directly to the data processing system (channel) without
need for data transmission facilities. Contrast with
remote work station.

lock: A control applied to a system object (in behalf of
a process) that guarantees the ability for 8 process to
perform certain types of operations while prohibiting
other processes from performing certain types of
operations. The five types of locks are:

• LSRD-Lock for shared read

• LSRO-Lock for shared read only

• LSUP-Lock for shared update

• LEAR-Lock for exclusive use but allow read in other
processes

• LENR-Lock for exclusive use with no read in other
processes

logical unit description: A system object that defines
and describes an I/O device on the system. There is
one logical unit description for each I/O device on the
system. Abbreviated LUD.

long format: (1) In CPF, in binary floating-point storage
format. the 64-bit representation of a binary
floating-point number, a not-a-number, or infinity. (2)
Internally, in binary floating-point storage formats, the
64-bit representation of a binary floating-point number,
a not-a-number, or infinity. The long format is a bit
string in which bit zero is the sign field, bits 1 through
11 are the 11-bit exponent field, and bits 12 through 63
are the 52-bit fraction field.

LUD: See logical unit description.

machine attribute: Information pertaining to the overall
system; for example, date, time of day, and machine
configuration.

machine check: A type of exception that indicates a
malfunction of the machine.

machine context: A system object implicitly created
and maintained by the machine for maintaining
addressability to certain types of system objects.

machine interface: The instruction set interface to the
System/38 machine. Abbreviated MI.

machine services control point: The machine
component that provides services and coordinates the
processing of supervisory services.

Glossary G-7

machine termination: The termination of all processes
in the machine with the intent of turning power off or
performing an initial microprogram load (lMPL).

magnitude: The relative size of a number.

main storage: The high-speed portion of machine
storage used for objects and processes when they are
being referred to or when they are being executed.
Main storage cannot retain data while machine power is
off. Contrast with auxiliary storage.

mapping: The reordering, conversion and selection of
fields in data space entries when referred to by a
program through the use of a cursor.

materialize: The reverse of the process of
encapsulation. Materialization is the process of
retrieving encapsulated data and presenting it in the
form of a template of byte data in a space.

message: A communication sent from one person or
program to another. In particular, a message is
enqueued on a queue by one process and dequeued by
another process.

MI: See machine interface.

name resolution: (1) The function of resolving
addressability to system objects. An unresolved system
pointer specifies the symbolic name of a system object.
At first reference, an unresolved system pointer is
resolved as follows. The machine searches for the
symbolic name in contexts until it is found and then sets
addressability to the corresponding system object into
the pointer, thereby making it a resolved system pointer.
The contexts to be searched are contained in the name
resolution list. (2) Also, the function of resolving
addressability to external program objects defined in
programs within a process.

name resolution list: A process attribute that is a
vector of resolved system pointers to the contexts that
are searched for name resolution. See also name
resolution.

NaN: See not-a-number.

NO: See network description.

negative infinity: See infinity.

G-8

network: The term network has several meanings. A
public network is a network established and operated by
common carriers or telecommunications administrations
for the specific purpose of providing circuit-switched,
and nonswitched-circuit services to the public. A user
application network is a configuration of data processing
products (such as processing units or work stations)
established and operated by users for the purpose of
data processing or information exchange; such a
network may use transport services offered by common
carriers or telecommunications administrations.

Network, as used in this publication, refers to a user
application network.

See also packet switching data network.

network addressable unit: A port provided for user
access to the communication system in SNA. A network
addressable unit is either the origin or destination of
information units flowing in the communications system.
Abbreviated NAU.

network description: A system object that defines and
describes an I/O port and communications line for
remotely attached I/O devices. The network description
logically represents the I/O port to the system.
Abbreviated NO.

network port: The system hardware that supports the
attachment of communications lines.

normalized number: (1) In binary floating-point
concepts, a number whosesignificand's integer digit has
a value of 1. (2) In binary floating-point storage
formats, a normalized number is represented by an
exponent field that contains a biased exponent. The
significand of the number represented has an integer
value of 1, which is implied by the storage
representation, and a fraction value from the fraction
field. The sign of the number represented is positive for
a sign field value of binary 0 and negative for a sign
field value of binary 1. Note that the exponent field
values of 0 and 255 for the short format and 0 and
2047 for the long format are used to indicate the
representations of infinity, not-i!-number, denormalized
number, and Signed zero.

not-a-number: (1) In binary floating-point concepts, a
value, not interpreted as a mathematical value, which
contains a mask state and a sequence of binary digits.
The mask state can be either masked or unmasked. The
binary digits have no meaning attached to them other
than to give the not-a-number a unique value. (2) In
binary floating-point storage formats, a not-a-number is
represented by an exponent field that contains a
reserved value at the format's maximum (255 for short
format and 2047 for long format) and a fraction field
whose value is greater than zero. The leftmost bit
position of the fraction field, bit 9 for the short format
and bit 12 for the long format, indicates the mask state.
A leftmost bit value of 1 indicates masked, 0 indicates
unmasked. The remaining bit positions of the fraction
contain the sequence of binary digits associated with the
not-a-number. The sign field value does not have a
defined meaning. (3) In binary floating-point operations,
unmasked not-a-numbers force detection of an
exception condition when they are input to an operation.
Masked not-a-numbers do not force an exception
condition, but are moved into the result field. A
not-a-number may represent the result of incorrect
combinations of operands in a floating-point operation.

object: A term referring to either a system object or a
program object. Objects are referred to by instructions
through their operands.

object authority: The right to use a system object.
There are eight object authorities:

• Object control-to control existence

• Object management-to control access and use

• Authorized pointer-to allow storing authority in a
system pointer

• Spac&-to control access to the associated space

• Retriev&-to allow retrieving elements

• Insert-to add new elements

• Delet&-to remove old elements

• Updat&-to modify existing elements

Contrast with lock.

object authorization: A specification that indicates
which system objects a user can access and what rights
of use have been granted relative to those system
objects. See also object authority.

object definition table: A part of a program definition
template that defines the program objects associated
with the instructions in its instruction stream. Operands
of an instruction refer to entries in the ODT.
Abbreviated ODT.

object owner: The user profile that owns a permanent
system object. The storage occupied by the system
object is charged against the owner's storage resource
authorization. The owner also retains certain implied
authorization rights to the system object.

ODT directory vector: One of the components of the
object definition table (ODT). The ODV consists of a
series of 4-byte entries. These entries are referred to by
the operands of instructions and provide a description of
the program object. The ODT entry string (OES) is used
to complete the description when it cannot be
completely described with the 4-byte ODV entry.
Abbreviated ODV.

ODT extender string: One of the components of the
object definition table (ODT). The OES contains
variable-length entries specifying attributes, initial
values, and other items necessary for defining program
objects. OES entries are not directly referred to by
System/38 instructions, but are referred to via the ODT
directory vector (ODV) entries. Abbreviated OES.

ODV: See ODr directory vector.

OES: See ODr extender string.

operand field: In an instruction, a field specifying the
program object associated with a given instruction
operand. The field is an index into the object definition
table, which describes the program object. Instructions
have from zero to four operands.

operand overlap: The situation in which source
operands of an instruction share at least a portion of
their space storage with the receiver operand of the
instruction.

operation code extender field: In an instruction, an
optional 2-byte field that follows the operation code
field and that further defines the operation to be
performed and the instruction format.

Glossary G-9

operation code field: The first field in an instruction.
This 2-byte field defines the basic operation to be
performed, basic information about the instruction
format, and miscellaneous status information for the
instruction.

ordinal entry number: The absolute entry number of a
data space entry in a data space. An ordinal entry
number is one way to refer to a particular entry in a
data space.

parameter list: A program object that provides a
means of associating addressability of program objects
defined in an invoked program to program objects in the
invoking program. It consists of a list of OOT references
specifying the program objects that must obtain
addressability and the order in which they are to be
associated to their corresponding arguments. See also
argument list.

pointer: A special kind of data contained in a space
which is distinguishable from ordinary data by the
machine. A pointer can be generated only by specific
machine instructions. If the contents of a pointer are
altered, the machine no longer recognizes it as a pointer.
There are four types of pointers:

• System pointer-addresses system objects

• Space pointer-addresses a byte location in a space

• Data pointer-describes and addresses a byte location
in a space

• Instruction pointer-addresses an instruction in a
program

positive infinity: See infinity.

power: The number of times as indicated by an
exponent that a number occurs as a factor in a product.

primary station: In SNA, the station on an SOLC data
link that is responsible for control of that data link.

priority: The relative significance of one process to
other processes. Priority specifies the relative order of
resource allocation when there is competition for a
resource.

private authority: The object authority to a system
object granted to a specific user profile.

G-10

privileged instructions: Those instructions that have
the designation of being privileged. Authorization for the
use of privileged instructions by a user is defined in
each user's profile.

process: An execution sequence (a task) in the
machine. Programs are executed in a process in behalf
of a user. Processes may communicate with each other
through the use of events, messages on queues, or
other common data areas.

process control space: A system object used to
support the execution of a process and as a means of
addressing a process.

processor eligibility definition class: An attribute of a
process that defines the relative eligibility of the process
to contend for processor time when the process is
dispatchable (not waiting) and not otherwise suspended
from execution.

program: An executable system object that incorporates
both the instruction stream and the data definitions for
the instruction operands.

program object: One of two object classifications.
Program objects are the operands of program
instructions. Program objects are described by object
definition table entries and are either contained in
spaces or are constant items defined within the
program. Contrast with system object.

propagated user profile: An adopted user profile
whose authority is propagated to other invocations.
Propagation is determined by an attribute that is
specified when the program is created.

PSDN: See packet switching data network.

public authority: The object authority to a system
object granted to all users.

PVC: See permanent virtual circuit.

queue: A system object consisting of an ordered list of
messages that communicate information to other
processes.

quiesce: In source/sink operations, the process of
completing all outstanding source/sink operations and
freeing the device for a new use.

J

receiver operand: An instruction operand into which
the results of the operation are placed. The receiver
operand can be the same as one of the source
operands.

record: See data space entry.

recovery: The actions taken in response to an error or
failure.

relative positioning: A method for referring to data
space entries in a data space relative to the position of
other entries in the data space.

remote work station: A work station whose
connection to a data processing system uses modems
and common carrier or private data transmission
facilities. Contrast with local work station.

remove: In journaling, the process of replacing the
records in a data space with their before-images as
recorded in a journal space.

reserved: A field in a template that must contain binary
zeros on input and contains binary zeros on output.
Input other than zero may cause an exception or
unpredictable results.

reserved values: In binary floating-point storage
formats, the exponent field values of 0 and 255 for the
short format and 0 and 2047 for the long format that
are used to indicate representations of infinity,
not-a-number, denormalized number, and zero.

reset session: In source/sink operations, the process
of quiescing but without regard for the disposition of
outstanding source / sink operations.

response queue: A queue that is used as a container
for indicating the results of a requested source/sink
operation.

result field: That part of storage in which the result of
a calculation is stored.

round to nearest: In binary floating-point operations,
the rounding mode that modifies an intermediate result
to the nearest representable value. However, if the value
of the significand of the intermediate result is exactly
halfway between the two representable values, the value
chosen is the one whose least significant digit is even.

round toward negative infinity: In binary
floating-point operations, the rounding mode that
modifies an intermediate result to the representable
value that is closest to but no greater than the
intermediate result. The result may be negative infinity.

round toward positive infinity: In binary floating-point
operations, the rounding mode that modifies an
intermediate result to the representable value that is
closest to but no less than the intermediate result. The
result may be positive infinity.

round toward zero: In binary floating-point operations,
the rounding mode that modifies an intermediate result
to the representable value that is closest to and no
greater in absolute value than the intermediate result.
The result may be zero.

rounding: In binary floating-point operations, the
process of choosing a representation in the format of
the result field for an intermediate result regarded to be
of infinite precision.

rounding mode: In binary floating-point operations,
one of the four selectable modes in which rounding is
performed. The four rounding modes are: round to
nearest, round toward negative infinity, round toward
positive infinity, and round toward zero.

scalar: A single numeric or character value. For
example, a scalar can be a 2-byte binary number but
not a pointer. Contrast with pointer and vector.

SOle: See synchronous data link control.

secondary station: In SNA, any station on an SOLC
data link that is not the primary station. It can exchange
data only with the primary station; there is no data
traffic from secondary station to secondary station.

select/omit: A program may be associated with a data
space index that includes or excludes (based on the
contents of the entries) data space entries in the index.

Glossary G-ll

session: (1) The period of time during which
communication is established between the system and a
user. (2) The formal bound pairing that must be
established between two network addressable units
before their users can communicate.

short form: An optional form of a standard instruction
in which one of the first operand acts as both a source
operand and a receiver operand.

short format: (1) In CPF, in binary floating-point
storage format, the 32-bit representation of a binary
floating-point number, not-a-number, or infinity. (2)
Internally, in binary floating-point storage formats, the
32-bit representation of a binary floating-point number,
not-a-number, or infinity. The short format is a bit
string in which bit zero is the sign field, bits 1 through 8
are the 8-bit exponent field, and bits 9 through 31 are
the 23-bit fraction field.

sign: In floating-point representation, the leftmost bit of
the format is the sign of the significand.

signed exponent: In floating-point operations, the
arithmetic representation of the exponent value of the
floating-point number. Contrast with biased exponent.

signed zero: (1) In binary floating-point concepts, the
number zero with an associated sign. It can be thought
of as having a significand value of zero and an exponent
value of zero. (2) In binary floating-point storage
formats, signed zero is represented by an exponent field
that contains a reserved value (zero) at the format's
minimum and a fraction field value of zero. The sign of
zero is positive for a sign field value of binary 0 and
negative for a sign field value of binary 1; however,
positive zero is always considered equal to negative
zero.

significand: (1) In CPF, in binary floating-point, the part
of a number that contains the integer and fraction. (2)
Internally, in binary floating-point concepts, the part of a
binary floating-point number that is composed of binary
digits that contain one integer digit to the left of the
binary pOint and one or more fraction digits to the right.
(3) In binary floating-point storage formats, the
significand is represented in the fraction field, in that the
value of the integer digit is implied by the number
represented, zero for denormalized numbers and 1 for
normalized numbers, and the fraction digits are
contained in the fraction field.

simple ODT reference: A single 2-byte operand entry
that refers to a program object defined in the ODT.

G-12

SNA: See systems network architecture.

source operand: An instruction operand containing data
to be operated on by the instruction. Contrast with
receiver operand.

source/sink: Devices capable of originating or
accepting data signals to or from a transmission device
and the data management components supporting such
devices. Source/sink devices include locally and
remotely attached, batch and work station devices, but
not the internal storage of the system.

source/sink request: The operand of a source/sink
Request I/O instruction that specifies the I/O operation
to be performed, the characteristics of the data to be
used in the operation, and the data to be used in the
operation.

source/sink resource: A system resource allocated and
deallocated in units described by logical unit descriptions
(device descriptions) to the process requiring the
resource.

space: (1) The associated space of a system object.
This is a byte-addressable region of storage that is
addressed through ODT entries, space pointers, or data
pointers. (2) A system object that has no functional part
but is used only for its associated space.

space pointer: A pointer with addressability to a byte
within a space.

static: One of the attributes of a program object.
Objects having the static attribute are allocated space
and are initiated when the program containing the
program object is activated.

string: A linear sequence of bytes such as a character
string.

suspend: (1) A system object is suspended if its
storage is truncated to a minimum required to maintain
its existence in the machine. A suspended system
object is not functionally usable until it is loaded. (2) A
source/sink session is suspended to terminate
outstanding I/O operations. (3) A process is suspended
if it is made ineligible to compete for processor or main
storage resources.

J

symbolic name: The name of a system object or an
external program object. The input to a name resolution
function whereby an instruction operand referring to an
object by name outside its program is bound to the
actual object. System pointers are resolved to system
objects; data pointers are resolved to externally defined
program objects.

synchronize: (1) To cause to occur at the same time.
(2) To ensure that two objects contain exactly the same
information.

synchronous data link control: A discipline for the
management of information transfer over the data
communications channel. Transmission exchanges can
be duplex or half-duplex; the communications channel
configuration can be point-to-point, multipoint, or loop.
Abbreviated SOLC.

system default not-a-number: (1) In binary
floating-point operations, the not-a-number value set as
the result for certain combinations of invalid operands.
It is masked with a binary digit sequence of all zeros.
(2) In floating-point storage formats, it is represented
with a sign field value of zero, and a fraction field value
of a leading one bit (to indicate the masked state),
followed by all zeros.

system object: A functional part and an associated
space part. The functional part of a system object is a
construct whose internal format is not visible. Programs,
queues, contexts, and user profiles are examples.
System/38 instructions are used to perform high-level
logical functions on system objects. System objects can
optionally contain an associated space. System objects
are referred to through system pointers.

system pointer: A pointer that provides addressability
to a system object.

systems network architecture: The total description
of the logical structure, formats, protocols, and
operational sequences for transmitting information units
through the communications system. Abbreviated SNA.

template: A contiguous string of byte data in a space
organized as a specific data structure typically used for a
System/38 instruction operand for source and result
data.

temporary object: A system object that is
automatically destroyed at machine termination.

unbiased exponent: See signed exponent.

unordered: In binary floating-point concepts, the
relationship that can exist between two values that
indicates that they cannot be ordered according to
relative value. The relationship between two values is
unordered either when a not-a-number is compared to
any value or when infinity in projective mode is
compared to any value other than infinity.

user profile: A system object identifying a system user
and containing authorization, auxiliary storage limitations,
and object ownership information for that user.

vector: A number of scalars or pointers, each of which
has the same attributes, located in contiguous bytes of a
space.

view: The definition or description of a program object.
See object definition table and program object.

work station: Elements of data processing equipment
through which a system's end user has access to a
computer as required for the performance of his job
(work) at the physical location (station) where he
performs job tasks. Examples are display/keyboard
devices and printer/keyboard devices. See also local
work station and remote work station.

XID: See exchange identification.

X.25: In data communications, a specification of the
CCITT that defines the interface to an X.25
(packet- switching) network.

Glossary G-13

J

G-14

A

abandon call 4-33, 4-33, G-7, 4-33, 4-39,
4-33, 06-067

abandon connection 6-67
abnormal termination indicator 7-7
abnormal value attribute 2-28
absolute instruction numbers 2-43
absolute value 5-15
access group

category 2-1
definition G-1
description 2-1
membership 2-8
storage resource function 4-37

access path to objects 1 -1
access state of an object 4-33
access to data space entries 5-3
accessing shared data spaces 5-6
achieve maximum performance from the LO
function 6-64

action code for return from
exception 4-29

action to take when exception occurs 2-23
actions specified by exception
description 4-24

activated state of cursor 5-3
activating

a cursor
a session

5-4
6-33

the communications network 6-78
the program 3-36

activation creation 3-2, 3-36
activation destruction 3-38
activation functions 3-35
activation of switched networks 6-78
activation, definition of G-1
active cursor, definition of G-1
active cursors 5-10
active or suspended status 4-11
active session state 6-22
active state 4-2
activity trail, definition of G-1
ACTLU (activate logical unitl control
message 6-SO

ACTPU (activate physical unitl session
control message 6-50

adding a data link 6-70
adding the authorizations held by user
profile 2-57

address of a variably addressed
argument 2-40

address resolution
functions 2-30, 2-31
object 4-6

addressability
contained in a space pointer 2-27
definition G-1
modification 2-44
provided by pointer data objects 2-18
to a newly created object 2-8
to a system object 2-5
to an object 1-2

addressing
a context 2-31
argument and parameter 2-39
by generic key 5-14
by key 5-14
characteristics common to all system
objects 2-30

each byte in a space 5-37
instruction 2-43
OOT 2-26
pointer 2 - 26
process 2-43
space 2-32
system object 2-30
system objects 2-29

adopted user profile
attribute 4-5
authorities 2-47
authority verification 2-59
definition G-1
process authorization
use of 2-47

4-5

advanced program-to-program communications
(APPCI 6-45

advantages of creating source/sink objects
in sequence 6-28

advantages of multiprogramming
support 1-6

after image, definition of G-1
algebraic key field 5-15
all object authorities 2-46
all-object authority 2-49
all-object authority attribute 2-55
alter access state of object 4-38
altering an I/O configuration 6-69
altering the NRL 2-32
alternate collating sequence 5-15
alternate collating sequence on any key
field 5-14

APPC (advanced program-to-program
communicationsl 6-45

application layer 6-43
apply, definition of G-1
applying journaled changes 5-24

Index

Index X-1

apportioning the main storage
resource 4-33

approach to reducing deadlock
situations 4-45

approximate key addressing 5-15
argument and parameter, addressing
form 2-26

argument data elements 2-39
argument list

definition G-1
entry 2-40
interinvocation communications 3-49
interprocess communication 4-12
reference 2-40
use of 2-40

argument/ parameter
correspondence 2-41, 3-51

arguments
addressing 2-39
interinvocation communications 3-49
use of 3-48

arithmetic instructions
definition G-1
description 3-25

arithmetic operations 3-14
arrange in ascending order, key
field 5-15

arrange in descending order, key
field 5-15

array
addressing 2-37
attributes 2-20
index operations 3-35
size entry 2-20

arrays of elements 2-20
ascending order with respect to the key
field 5-14

assignable sessions 6-45
2-27

6-28
1-2

assigning a value to a data pointer
associated option value, source / sink
associated space portion of an object
associated space, definition of G-1
associating scalar data objects with a
space pointer 2-32

asychronous
event handling 4-19
events 6-27
initiation step 4-2

atomic, definition of G-1
attached journal spaces, load/dump
attached, definition of G-1
attribute

binding
definition

G-1
2-33

attributes associated with a data
view 2-33

6-65

authorities granted to the public 2-46
authorities related to contents of a
context 2-45

X-2

authorities supported for each
object 2-54

authority
associated with user profiles 2-48
definition G-1
for process control instruction
usage 4-8

in a system pointer 2-49
requirement for machine context 2-45
verification 2-58

authorization
definition
exception
functions

G-1
2-46
2-56

management 2-46
authorization for external event
handler 2-60

authorization for external exception
handler 2-60

authorization to use the system
resources 2-46

authorizations assigned to new user
profile 2-56

authorizations associated with user
profiles

object authorizations 2-48
owned objects 2-48
privileged instructions 2-48
resource authorizations 2-48
special authorizations 2-55

autocall unit 6-79
autodial unit 6-79
automatic

attribute 4-1
definition G-1
ensure 7-7
index maintenance 5-14
storage 3-33

auxiliary storage control 4-34
auxiliary storage resource 4-33
auxiliary storage threshold exceeded
event 4-34, 4-39

auxiliary storage, definition of G-1
availability of exception related
data 4-28

avoiding invalid results, operand
overlap 3-10

B

back out, definition of G-1
backward system pointer 6-15
base, definition of G-1
based data views 2-21, 2-34
basic computational and branching
capabilities 3-5

basic functions for the management of
data 5-2

basic functions of modify
instruction 6-32

basic process phase 4-4
before-image, definition of G-1
bias, definition of G-2
biased exponent, definition of G-2
binary computation 3-14
binary digits, definition of G-2
binary elements 2-10
binary floating-point number, definition
of G-2

binary floating-point value, definition
of G-2

binary floating-point values 2-13
binary point, definition of G-2
binary synchronous communications (see BSC)
binding operand references to the actual
objects 2-26

binding, definition of G-2
bit, definition of G-2
block transfer attribute 4-39
Boolean

instructions 3- 27
instructions, definition
operations 3-27

boundary attribute 2-33
branch form, computational
instruction 3-13

branch form, definition of
branch or indicator options
branch point

and instruction pointers
definition G-2

G-2

G-2
5-33

2-18

exception handling 4-27
view 2-22

branching instructions, definition of G-2
branching operations 3-33
broadcast capability, event signals 4-13
BSe binary synchronous communications)

concepts 6-52
controller description eligibility
list 6-18

definition G-2
network description candidate list 6-18
physical address checking 6-27

building a data space template 5-3
building an I/O configuration 6-69
byte, definition of G-2

c

CAl (compute array index) 3-33
categories of machine checks 7-2
categories of object authorities

authorized pointer 2-53
data related authorities

delete authority 2-53

categories of object authorities (continued)
data related authorities (continued)

insert authority 2-53
retrieve authority 2-53
space authority 2-53
update authority 2-54

object control
destroy object 2-51
load object 2-51
modify damage state 2-51
suspend object 2-51
transfer ownership 2-51

object management
create cursor 2-52
data base maintenance 2-52
grant authority 2-52
initiate process 2-52
modify addressability 2-52
modify attributes 2-52
rename 2-52
retract authority 2-52

categories of objects 2-1
categories of service requests to the
MSCP 6-48

CD (controller description)
active count 6-66
contact event 6-18,6-79
definition G-2
description 2-2
event 6-23
manual intervention event 6-79
object 6-23, 6-66
session count 6-66

change offset value in space pointer 2-18
changed in-use data spaces 7-6
changes to data space entries 5-9
changing elements within source / sink
objects 6-26

changing the number of arguments to be
passed 2-40

character string 3-25
characteristics of a network port 6-1
characteristics of controllers 6-1
characteristics of space object 5-35
cipher instructions 3-33
class MPL limit 4-35
classes and recipients of
authorizations 2-49

classes of exceptions 4-23
cleanup procedure, load/dump 6-62
coexistence of locks 4-42
coincident operand overlap 3-8
coincident overlap

identical operands 3-8
nonidentical operands 3-8

command specific field 6-58
commit

decommit operation 5-27
description 5-26
flow chart 5-28

Index X-3

commit (continued)
instructions 5-25
management 5-25
object 5-25
operation 5-26

commit block
category 2-1
definition G - 2
description 2-2

commit cycle, definition of G-2
commit identifier, definition of G-2
commit management

commit block 5-25
commit cycle 5-27
commit description 5-26
commit object 5-25
commit operation 5-26
decommit operation 5-27
use 6-22

commit transaction boundary, definition
of G-2

commitment control, definition of G-2
common attributes of data objects 2-19
common attributes of system objects

access group membership 2-8
context addressability 2-8
existence attribute 2-8
performance class 2-8
space attribute 2-8
system object identification 2-8

common elements in LUO, CO, NO 6-20
communications

BSC 6-8, 6-52
OHCF 6-13
SNA

diagrams 6-6, 6-11
overview 6-44, 6-48

X.25 6-8, 6-54
communications device, definition of G-2
communications error recovery 6-43
communications system, definition of G-3
compare length field 6-58
compare value qualifier 4-16
compare value, exception
description 2-23, 4-31

comparison instructions 3-28
definition G-3
list 3-28

comparison operations 3-28
components of a program template 3-4
composite key, data base 5-5, 5-15
compound OOT reference, definition of G-3
compound operand reference 3-7
compound substring operand form 3-7
compound substring operands 3-25
compress access group space 4-38
computation, floating-point 3-15
computational

characteristics 3-5
instructions 3-5

X-4

computational (continued)
operands 3-5

computational and branching
capabilities 3-5

compute array index (CAl) 3-33
concepts, BSC 6-52
conditional branching 3-34
conditions for signaling an event
monitor 4-19

conditions that signal the invocation
reference event 7-5

configuration
changes 6-69
hierarchy rules 6-28
information 6-17
invalid exception 6-28
record 6-17

configurations and states of source/sink
objects 6-14

configurations defined, source/sink 6-15
configurations of source / sink
objects 6-15

conflicting locks 4-43
connection point manager, definition
of G-3

considerations for the request I/O response
queue 6-42

constant data objects 2-22
constant data, definition of G-3
constrained array 2-37
constrained substring 2-38
constrained, definition of G-3
contents of

an independent index entry 5-30
exception description 2-23
journal entry 2-4, 5-23
machine configuration record 6-18
message prefix 5-33
message text 5-33
operand list 2-23
request I/O timestamp 6-39
source/sink components 6-39
space 2-32
space object 5-35
SSR 6-39
symbolic address 2-30

context
addressability 2-8
addressed in the name resolution
list 2-31

addressing 2-31
authorizations 2-45
creation 2-44
definition G-3
description 2-2
destruction 2-44
management 2-44
management functions 2-44
qualifier in the symbolic address 2-31

contiguous arrays 2-20

contiguous return bit 5-11
control and monitoring functions 4-35
control function facilities 4-32
control state changes 6-23
control states, source/sink 6-22, 6-22
controller active--LUOs in session
state 6-23

controller active--varied on LUOs
state 6-23

controller description (see CO)
controller description, definition of G-3
controls provided by authorization
management 2-46

conversion instructions 3-30
conversion operations 3-29
convert sse to character 3-30
convert character to sse 3-30
convert character to MRJE 3-31
convert character to SNA 3-31
convert MRJE to character 3-31
convert SNA to character 3-31
convert, definition of G-3
copying date space entries 5-6
correct execution sequence of individual
instructions 4-34

create and load command
object 10 field, load/dump 6-59
reset instruction 6-61
use of 6-55

create and load, load/dump 6-59
create/ destroy instructions- -hierachy
rules 6-27

create process control space 4-6
creating

a cursor 5-3
a data space 5-3
a data space index 5-5
a dump space 5-38
a journal 5- 21
a program 2-9
a queue 5-32
source/sink objects in
sequence 6-2a 6-71, 6-72

source/sink objects out of
sequence 6-73, 6-74

user-defined contexts 2-44
credited auxiliary storage, resource
authorization 2-61

cumulative authority 2-49
current instruction in an invocation 4-29
current MPL (eligible) 4-2
current multiprogramming level (MPL) 4-2
current process attributes 4- 5
current process user profile 4-5
cursor

activated state 5-3
creating 5-3
de-activated state 5-3
definition G-3
description 2-2

cursor (continued)
system object

cursor, definition of

o

2-1
G-3

damage set by source / sink
instructions 6-66

damage to system objects 7-8
damaged contexts 7-7
damaged objects 6-66
data

descriptions 3-6
element views 2-20
functions 5-1
objects 2-10

data attributes of the instruction
operands 3-5

data base
definition G-3
journal management 5-21
maintenance functions 5-12
management 5-2
modifying object attributes 5-9
objectives 5-1
objects 5-1
performance considerations 5-10
recovery capabilities 7-7
recovery considerations 5-9
using functions 5-3

data link control 6-44
data object address resolution 2-35, 2-36
data object addressing 2-32
data object location attribute 2-32
data option. exception-related 4-31
data pointer

address resolution 2-35, 4-6
contents 2 -19
definition G-4
use of 2-29

data pointers resolved to an external
scalar data object 2-35

data-related authorities 2-50
data space

category 2-1
definition G-3
description 2-2
function 5-12
organization 5-14
reorganized 5-10
template 5-3
used by data base 5-1

data space entry locks 5-10
data space entry, definition of G-3
data space index

addressing 5-15
definition G-3
description 2-3

Index X-5

data space index (continued)
entry selection routine 5-17
function 5-14
functions 5-14
keys 5-11,5-15
maintenance 5-9
ordering example 5-17
recovery considerations 5-9
used by data base 5-3

data space indexes being rebuilt 5-10
data spaces being journaled 5-10
data spaces indexes marked unique 5-20
data transfer 4-33
data types

binary 2-10
computation 3-14
floating point (see floating point)
packed decimal 2-20
zoned decimal 2-10

data view declared as an element 2-20
de-activate cursor 5-8
de-activate logical unit control message
(DACTLU) 6-50

de-activated state of cursor 5-3
de-activating

a cursor 5-5
a session 6-34

deadlock
cause 4-45
definition G-4
detection and resolution 4-47
due to sequence of lock
application 4-46

examples 4-46, 4-47
prevention 4-46
prevention rule 5-8

default initial value 3-38
default rounding mode, definition of G-3
default time-out interval 4-40
default time-out value 6-37
default wait time-out interval
attribute 4-10

deferred exception handling 4-27
defined data views 2-21, 2-34
definition of argument 2-39
definition of exceptions 4-23
definition of object 2-1
definition of parameter 2-39
delayed maintenance option, data space
index 5-11

deleting an entry 5-5
denormalized number 2-14
denormalized number, definition of G-4
dequeue of messages from the request I/O
response queue 6-41

dequeue sequence 5-32
dequeue wait state 5-31
dequeue, definition of G-4
dequeuing the message 5-31
describing a data space 5-12

X-6

descriptions of system objects 2-1
destination, definition of G-4
destroy instructions 6-27
destroy process control space 4-6
destroying

a cursor 5-5
a data space 5-5
a data space index 5-6
a dump space 5-6
a queue 5-33
a user profile 2-56
exception related data 4-28

detached, definition of G-4
determining the state of a source/sink
object 6-34

device controller 6-1
device-dependent status field 6-42
DHCF (see distributed host command
facility)

diagnostic active indicator 6-66
diagnostic and service functions 7-3
diagnostic state, source/sink 6-22, 6-23
dial in

devices 6-79
operations 6-18

dial out
operations 6-18
procedure 6-79

dial pending state 6-24
dialing out state 6-23
dictionary entries 1-5
differing-length composite keys 5-14
direct data views 2-33
direct data views (static and
automatic) 2-21

direct map 5-11
direct on automatic 2-21
direct on static 2-21
disabled exception description 4-25
disadvantages of authority in
pointer 2-49

dispatching processes 4-43
display station pass-through 6-46
dispositions of request I/O
operations 6-81

distributed host command facility
(DHCF) 6-13

dividing available resource into
pools 4-33

domain of a process 4-2
dual role of state change/status field,
source/sink 6-20

dump attribute 2-55
dump command 6-59
dump restricted 2-55
dump space

data 5-37
explanation 2-3, 5-37
function 5-37
management 5-37

dump unrestricted 2-55
dump, definition of G-4
duplicate data space index keys 5-20
duplicate key rules 5-16
duplicate physical addresses 6-27
dynamic recovery capability 7-2

E

editing instructions 3-35
editing instructions, definition of G-4
editing operations 3-34
efficient transfer of data between levels
of storage 4-33

eight-byte format, definition of G-4
element and array attributes 2-19
elements contained in a LUO 6-18
elements passed as arguments 2-39
enabled / disabled state 4-17
encapsulated program 1-2
encapsulation, definition of G-4
enqueue

definition G-4
sequence 5-32

enqueuing a message
function 5-33
moving messages 5-34
use of 5-31

enrolling users 2-56
ensure

changes to data base 5-8
data space entries 7-6
definition G-4
multiple entries 5-8
multiple inserts 5-8
object 5-9, 7-7
one entry at a time 5-8

entry in data space 5-1
entry in journal space 5-23
entry point 2-22
entry point, definition of G-4
entry, definition of G-4
error recovery, communications 6-43
error situations that cause feedback
records 6-39

error summary field 6-42
establish a switched connection 6-79
establishing a process 4-1
establishing addressability to system
object 2-30

event class 4-15, 4-16
event handler specification 4-17
event handler, definition of G-4
event handling 4-19
event identification 4-15, 4-16
event management 4-15
event monitor priority 4-17
event monitor, definition of G-4

event monitoring 4-15, 4-16
event-related data 4-21, 6-79
event rules 4-22
event signaling 4-18
event subtype 4-15, 4-16
event type 4-15, 4-16
event. definition of G-4
events 4-15, 6-27
examples

data space and associated
attributes 5-13

data space index ordering 5-17
instruction and OOT 3-3
instruction stream 3-1
journal entry 2-3, 5-23
OOT 3-2
shared data space 5-7
state change/status field 6-21
state change transition rules 6-34

exception compare value 4~26

exception description 2-23
attributes 4-24
definition G-4
examples 4-23

exception detection and signaling 4-25
exception errors 6-58
exception handler specification 4-24
exception handling 4-26
exception handling actions 4-25
exception identification 2-23, 4-31
exception management 4-23
exception occurrence flag 2-23
exception-related data 4-31
exception-specific data 4-31
exception, definition of G-4
exceptions 4-14, 6-61
exceptions and events, source/sink 6-43
excessive time required to complete I/O
instruction 6-33

exchange 10 (XID) protocol 6-79
exchange identification, definition
of G-4

exclusive-allow read lock 5-7
exclusive locks on source/sink
objects 6-26

execute-only authorization 2-53
existence attribute 2-8
existence, definition of G-4
explicit address resolution 2-31
explicit request I/O instruction to the
MSCP 6-48

exponent range, definition of G-4
exponent, definition of G-4
extendable queue 5-32
extension value 5-32
external data object resolution 4-6
external data objects 2-35
external entry point, definition of G-5
external exception handling 4-28
external existence state 4-2

Index X-7

---------------------------------- ---

external scalar data views 2-19
external scalar objects 2-35
external, definition of G-4

F

FBR (feedback record)
contents 6-42
definition G-5
format and contents 6-42
load/dump 6-62
special considerations 6-42
use 6-40

feedback record (see FBR)
feedback record, definition of G-5
field, definition of G-5
FIFO (first in, first out) 5-16
FIFO (first in, first out) queue 5-8
FIFO ordering 5-20
file positioning 7-7
finding an entry with a data space
index 5-6

finding an entry without a data space
index 5-4

first pointer 6-39
first-to-Iast sequence 6- 79
fixed-length argument list 2-23, 2-40
fixed size queue 5-32
floating point

characteristics 2-14
computation 3-15
conversions 3-18
elements 2-11
exception conditions 3-21
inexact result 3-23
invalid operand 3-24
long format 2-14
operands 3-15
overflow 3-21
rounding 3-17
short format 2-14
underflow 3-22
values 2-13, 2-16
zero divide 3-23

floating-point elements
contents 2 -11
exponent field 2-14
format 2-14
fraction field 2-14
illustration 2-12
sign field 2-14

floating-point format, definition of G-5
floating-point short format 2-14
flushing unprocessed REQIO
instructions 6-61

forced ordering of keys between data
spaces 5-16

X-8

forced write option 5-8, 7-6
fork character 5-5, 5-16
fork character, definition of G-5
format and contents of the feedback
record 6-42

format of the RD (request
descriptor) 6-57

format of zoned decimal elements 2-10
format's maximum, definition of G-5
format's minimum, definition of G-5
forms of addressing

argument addressing 2-39
ODT addressing 2-26
parameter addressing 2-39
pointer addressing

data pointer 2-29
instruction pointer 2-29
space pointer 2-27
system pointer 2-29

process addressing 2-43
space addressing 2-32
system object addressing 2-30

forward and backward object pointers 6-20
forward and backward system pointers 6-15
forward recovery, definition of G - 5
forward system pointer 6-15
four-byte format, definition of G-5
fraction, definition of G-5
function authorizations 2-55
function check, definition of G-5
function field 6-39
function management layer (PGM) 6-44
function of arguments and parameters 2-39
functional location of data object 2-33
functional part of object 1-2
functions of data space index 5-13
functions of request I/O 6-37
functions used to verify proper
authorization 2-61

G

generic computational instructions
generic computational operations
generic instruction, definition of
generic key addressing 5-15

1-5
3-6

G-5

generic operations attributes 3-6
generic search arguments 5-29
grant-like authority
instruction 2-48, 2-57

group-by operations 5-4
group of elements 6-28
group of elements materialized on one
instruction 6-28

J

H

hard (unrecoverable) machine checks 7-2
hexadecimal, definition of G-5
hierarchy of object authorization 2-50
high-level machine interface 1-1
high-level operations 1-1
homogeneous data space entries 5-1

I/O instruction requires excessive
time 6-33

I/O manager (see 10M)
I/O manager, definition of G-5
I/O port, definition of G-5
identification of processes 2-43
IDL (instruction definition list)

definition G-6
used as an operand 2- 23
used in a compound operand of a branch
operand 2-43

ignored exceptions 4-26
immediate branch targets 2-43
immediate data operand, definition of G-5
immediate data value 3-5
immediate exception handling 4-27
immediate instruction numbers 2-43
IMPL (initial machine program load)
function 7-1

implicit address resolution 2-31
implicit leading bit, definition of G-5
implicit locks 4-44, 5-10
implicit object authorizations 2-55
implicit requests to support source/sink
instructions 6-48

implied reference to arguments 2-39
in- and out-mapping specification 5-3
inactive session states 6-22
increment maximum number of entries 5-12
increment maximum number of entries
option 5-14

independent index, definition of G-5
independent process, definition of G-5
index addressability to subsets of data
space entries 5-17

index management 5-29
index system object 2-3
indexing to subsets of entries within data
spaces 5-14

indicator form, computational
instruction 3-13

indicator form, definition of G-5
ineligible threshold 4-37
ineligible wait 4-2
ineligible wait (not in current MPL) 4-2

inexact result, definition of G-5
inexact result, floating point 3-23
infinity arithmetic, definition of G-6
infinity, definition of G-6
infinity, floating-point 2-14
inherent machine observation
functions 7-4

inherent machine observation
instructions 7-4

initial value
for a pointer 2-21
journal sequence number 5-23
of space entry 2 - 8

initial values 2-19
initiate process 4-8
initiating supervisory service
requests 6-48

initiation phase 4-2
initiation phase option attribute 4-9
initiation phase program 4-10
input / output network components

binary synchronous communications
attachments 6-8

local device 6-3
local subsystem devices 6-4
Multi-leaving Telecommunications Access
Method

Multipoint Tributary 6-9
remotely attached devices 6-5
Support for M RJ E 6-10
system to system attachment (SNA) 6-6

insert default entries 5-12
insert deleted entries 5-12
insert sequentiality 7-6
inserting an entry 5-4
inserting dump space data 5-28
inserting entries in independent
indexes 5-30

inserting index entries 5-30
instruction addressing

instruction definition list (lOL) 2-43
instruction numbers 2-43
instruction pointers 2-43

instruction definition list (see IOL)
instruction number 2-18
instruction operation code 3-1
instruction pointer 2-18
instruction stream 3-1
instruction stream, definition of G-6
instruction tracing 7-5
instruction wait 4-2
instruction wait access state control
attribute 4-9

instructions that address space
objects 5-36

instructions that manipulate a space
pointer 2-27

integrity and authorization 1-4
integrity of source/sink objects 6-26
integrity of source/sink operations 6-26

Index X-9

integrity, definition of G-6
interinvocation communications 3-49
intermediate denormalized floating-point
number, definition G-6

intermediate result, definition of G-6
internal exception handling 4-28
intemal form 5-15
internal machine configuration 6-17
internal processing phases 4-4
interprocess communication

arguments and parameters 3-53
during events 4-15
when effective 4-12

intrainvocation communications 3-53
introduction 1 -1
invalid data space indexes 5-9
invalid lock state exception 4-43
invalid operand, floating-point 3-24
invalid pointer detected by a modify
operation 6-67

invalid results, operand overlap 3-11
invalid switched forward/backward
pointers 6-67

invalidate data space index 5-12
invalidating a pointer 2-18
invalidating the pointer 2-6
invalidation (recovery capability) 7-6
invocation

addressing form 02-02
creation 3-38
definition G-6
destruction 3-42
example 3-45
exit programs 3-44
reference event 7-5
tracing 7-5

invocation functions 3-38
invoking the program 3-35
10M (I/O manager) malfunction 6-67
10M malfunction is detected 6-67
IPL cleanup 6-66

J

journal
applying changes 5-24
entry 2-3, 5-23
management 5-21
object recovery 5-24
objects 5-21
port 2-3, 5-21
space 2-4, 5-22
status during IMPL 5-24

journal entries 5-23
journal entry-specific data, definition
of G-6

journal entry, definition of G-6
journal port, definition of G-6

X-10

journal space, definition of G-6
journal, definition of G-6
journaled data spaces 5-11

K

key
addressing 5-15
constructs 4-1
field modification attributes 5-15
function of SNA 6-43
length 5-32

keyed message queue 6-42
kinds of contexts

machine context 2-44
user-defined context 2-44

L

late bound views of data 5-1
LO (load) commands

create and load command 6-55
dump command 6-55
load command 6-55
read object 10 command 6-55
set context command 6-55
set journal command 6-55
set joumal data command 6-55
set load/dump parameters command 6-56
set user profile command 6-55

LO commands
command-specific field 6-58
error processing 6-60
object 10 field 6-59

LEAR (lock exclusive allow read)
length of a parameter list 2-41
length of binary elements 2-10
length of exception compare value 4-26
length of RO 6-57
length of the key 6-42
length suboperand 3-7
LENR (lock exclusive no read) 4-41
levels of storage 4-33
LI FO (last in, first out) 5-16
LIFO ordering 5-20
limit of temporary storage allocated by a
process 4-34

limiting the number of concurrently
executing processes 4-35

limiting the number of processes 4-33
limiting the total space allocated to
objects 4-39

linkage of one object type to another
object type 6-14

list of return targets 2-43
listener of the event 6-79

J

J

load attribute 2-55
load command 6-59
load command, cleanup procedure 6-62
load/dump (LD)

authority 6-62
commands 6-55
compress bit, object control field 6-58
considerations 6-54
context bit object control field 6-58
data base networks 6-62
function 6-54
functions 5-38
journal bit, object control field 6-58
journal entries 6-64
journal spaces 6-64
load / dump networks 6-62
networks 6-62
performance 6-64
recovery 7 - 7
session types 6-56

local work station, definition of G-6
locating an exception description 4-25
location of a constant data object 2-22
location where control is passed when
exception occurs 2-23

lock
a data space to a process 5- 7
a space location 4-44
allocation rules 4-41
coexistence graph 4-42
definition G-7
exclusion graph 4-43
exclusive allow read (LEAR) 4-41
exclusive no read (LENR) 4-41
materialize 4-44
request granting algorithm 4-41
shared read (LSRD) 4-41
shared read only (LSRO) 4-41
shared update (LSU P) 4-41
states for a data space 5-7

lock a space location 4-44
locking instructions 4-34
locking multiple entries 5-8
locking objects to processes 4-34
logical character operations 3-35
logical unit description (see LUD)
logically reorder data space entries 5-14
long format values 2-16
long format, definition of G-7
LSRD (lock shared read) 4-41
LSRO (lock shared read only) 4-41
LSUP (lock shared update) 4-41
LU (logical unit) 6-1
LUD (logical unit description)

definition G-7
object 6-66
session state changes 6-33
states 6-22

LUD, CD, and ND identification 6-20
LUD, CD, ND type 6-20

M

machine attribute modification
authorizations 2-55

machine attribute, definition of G-7
machine attributes 7-1
machine check

definition G-7
event 7-3
event-related data 7-3
exception 7-3
function(MCF) 7-2

machine checks 7-2
machine configuration record 6-16
machine context 2-2
machine context, definition of G-7
machine default position 2-33
machine-dependent data 4-31
machine event signaling 4-18
machine exception identification 4-24
machine interface, definition of G-7
machine main storage pool 4-37
machine observation functions 6-17, 7-4
machine-related events 4-15
machine resources 1-1
machine services control point (see MSCP)
machine services control point, definition
of G-7

machine-signaled exceptions 4-25
machine storage 4-33

G-7
machine support functions 7-1
machine termination, definition of
machine-to-programming transition
machine-wide and class MPL controls
machine-wide MPL limit 4-35

7-1
4-35

machine-wide signal domain indicator 4-19
magnitude, definition of G-7
major data object attributes

data object mapping attribute 2-21
element and array attributes 2-20
external attribute 2-22
initial values 2-21

major functional layers defined by
SNA 6-43

major parts of a program 2-9
managing dump spaces 5-38
managing the network and device
facilities 6-26

manual answer state
manual dial start state
manual start data state
mapping

attribute 2 -19
attributes 2-21
definition G-7
template 5-3

6-24
6-24
6-25

materialization of data base object
attributes 5-9

Index X-11

materialization of data base object
statistics 5-8

materialize
definition G-7
instructions 6-28, 7-5
journal entries 5-23
LUD template 6-29
machine configuration record 6-17
option value aSSigned to each
element 6-28

process attributes 4-7
source/sink objects 6-28

materialize locks 4-43
materialize queue messages 5-34
materialize, definition of G-7
materializing authority 2-58
materializing contexts 2-45
materializing queue attribute 5-32
materializing space data 5-38
maximum

length of
a space 5-35
an index entry 5-30

number of
locks 4-42
messages 5-32
processes, assigned to a class 4-35
signals to be retained 4-17,4-18

size of
a queue 5-32
a queue message 5-33
exception-related data 4-31
messages 5-32

temporary auxiliary storage
allowed 4-40

temporary auxiliary storage allowed
attribute 4-10

time-out value 6-37
maximum process time allowed
attribute 4-10

MCF (machine check function) 7-2
membership in access group 2-8
message content indicator 5-32
message key 5-33
message prefix 5-33
message text 5-33
message, definition of G-7
messages on the request I/O response
queue 6-40

messages, source/sink 6-42
method of recovery 6-83
method used to recover from the terminating
error condition 6-83

minimum authority requirement 2-32
minimum time-out value 6-37
MODCD (dial out) command 6-24
modes of addressing 1-5
modifiable element 6-30
modification control indicators 4-10
modification sequences 6-32

X-12

modify CD 6-67
modify instruction functions 6-32
modify instruction issued after
error 6-83

modify instructions 6-30
modify LUD 6-67
modify LUD sessions for LD 6-61
modify LUD template 6-31
modify NO 6-67
modify process attributes 4-8, 4-14
modify source/sink objects 6-30
modify time-out values 6-37
modifying an instruction pointer 2-29
modifying authorization 2-56
modifying data base object attributes 5-9
modifying multiple elements 6-30
modifying pointers 2-26
modifying space data 5-37
modifying the symbolic address of an
object 2-30

monitor domain 4-17
monitoring events for system objects 4-16
monitoring exceptions 4-23
monitoring functions facilities 4-32
monitoring MPL Activity 4-37
move messages between queues and
processes 5-34

movement instructions 3-29
moving data units between origins and
destinations 6-44

moving messages
dequeuing a message
enqueuing a message

MPL
classes 4-35
process states 4-2
rules 4-36

5-34
5-34

MSCP (machine services control point)
definition G-7, 6-48
peer station 6-51

primary 6-49
secondary 6-50

role 6-50
sessions 6-50

multiple argument list entries 2-40
multiple locked entries 5-8
multiple processes lock request granting
algorithm 4-43

multiple state transitions 6-34
mUltiple views of data 5-1
multiprogramming level control 4-33, 4-35
multiprogramming support 1-5

N

name resolution function
name resolution list (NRL)

2-2
2-31

name resolution list, definition of G-7
name resolution, definition of G-7
NaN, definition of G-8
NO (network description)

candidate lists 6-18
definition G-7
description 2-5
object 6-22
object category 2-1
object type 6-2

NO active count 6-66
NO object 6-66
negative infinity, definition of G-7
network active states 6-24
network addressable unit, definition
of G-8

network boundary bits 6-63
network description (see NO)
network port 6-1
network port, definition of G-8
network, definition of G-8
networking bit 6-63
no operation (NO OP) 3-35
no operation and skip 3-35
noncontiguous arrays 2-20
nonoverlap instructions 3-9
nonrecoverable error detected,
load/dump 6-56

nonsupported session state changes 6-37
nonzero time-out value 6-37
NOOP (No Operation) 3-35
normal recovery from damaged objects 6-66
normalized number 2-14
normalized number, definition of G-8
not-a-number, definition of G-8
not-a-number, floating-point 2-14
NRL (name resolution list) 2-31, 4-6
null substring 2-38
number of elements contained in an
array 2-20

number of event monitors attribute 4-9
number of locks currently held by the
process value 4-12

number of ROs within the SSR 6-57
number of signals pending value 4-19

o

object address resolution 4-6
object authorities

authorized pointer 2-48
delete 2-48
insert 2-48
object control 2-48
object management 2-48
retrieve 2-48
space 2-48
update 2-48

object authority, definition of G-8
object authorization 2-48, 2-61
object authorization qualifier 2-31
object authorization states 2-50
object authorization, definition of G-9
object concepts 1-1
object contents 6-18
object control

authorities 2-50
functions 2-1
states 6-22

object creation and destruction 6-28
object definition 2-1
object definition table (see OOT)
object destroyed exception 5-33, 5-36
object header data 6-20
object identification 2-8
object isolation 7-8
object locks 4-13
object management authorities 2-50
object management authority

authority 2-52
authorization 2-48
hierachy 2-50
operations 2-52

object mapping table 3-4
object modification limitations 6-17
object movement 3-29
object name 2-8
object-oriented architecture 1-1
object owner, definition of G-9
object recovery list 7-7
object-related events 4-15
object states 6-20
object subtype 2-8
object subtype, load/dump 6-59
object type 2-8
object type, load/dump 6-59
object types

controller description (CO) 6-2
logical unit description (LUO) 6-2
network description (NO) 6-2

object usage states 6-22
object, definition of G-8
objects addressable by the machine
context 2-44

Index X-13

objects that can be processed by the LD
function 6-54

objects. transient 4-37
observation functions 7-4
observation of machine execution 7-4
obtaining addressability to system
objects 2-2

occurrence of machine events 4-18
ODT (object definition table)

definition of an object 2-9
directory vector. definition of G-9
extender string. definition of G-9
use 3-2

ODV (ODT directory vector) 3-2
ODV. definition of G-9
OES (ODT entry string) 3-2
OES. definition of G-9
offset calculations within space 2-38
offset to variable parameters 6-40
oldest event 4-20
OMT (see object mapping table)
operand field. definition of G-9
operand list 2-23
operand list (if used as an argument
list) 2-39

operand list used as a parameter
list 2-23

operand of an instruction 3-1
operand overlap

definition G-9
description 3-7
examples 3-10

operands defined in the ODT 3-5
operands in computational
instructions 3-5

operands referenced in computational
instructions 3-5

operation code extender field 3-1
operation code extender field. definition
of G-9

operation code field. definition of G-9
operational authorities 2-51. 2-53
operational parameter elements 6-36
operational parameters 6-32
operations that cause processing to be
restarted 6-83

operations that require object control
authorization 2-51

operations that require object management
authority 2-52

operator intervention 6-82
operator intervention required event
optimizing data space index usage
option value 6-16
optional computational instruction
forms 3-12

optional function of TM PF 7-1
optional round forms 3-12
optional user data 4-16

X-14

6-82
5-11

options available in positioning a
cursor 5-4

options defined by exception
description 4-24

options on insert 5-30
options on inserting entries in independent
indexes 5-30

order of processing for request
descriptors 6-57

ordered relationship among object
types 6-14

ordering attributes 5-5
ordering duplicate keys 5-14
ordering of keys in binary collating
sequence 5-34

orderly shutdown of systems 6-69
ordinal entry number. definition of G-9
ordinal number identifier 5-1
ordinal positioning 5-14
organization of data space 5-14
other errors 6-61
outstanding requests 6-83
overflow. floating-point 3-21
overlap instructions 3-8
overlapped data base operations 5-10
overview of the load/dump function 6-56
ownership of objects 2-46

p

packed decimal
computation 3-14
elements 2-20
format 2-20
numbers 2-20

packet switching data network (PSDN)
definition 6-2
SNA example 6-6
source/sink example 6-68
SVC 6-81
switched pointers 6-18
X.25 example 6-55

parameter
data elements 2-40
data views 2-21. 2-35
list 2-41. 3-51
list definition G-9. 2-41

parameter list. definition of G-9
parameter lists defined as internal or
external 2-41

parameters 2-39. 3-48
partial damage

exception and event 6-67
indicator 6-66
recovery 6-67

partial overlap 3-7
partial search argument 5-29

partial system object damage
exception 6-37

partitioning main storage 4-37
PASA (process automatic storage area)

contents 3-40
size 3-40
updating 3-40
use 3-38, 4-1

passing an argument 2-39
passing exception data 4-31
peo (process communication
object) 4-10, 4-12

pes (process control space)
category 2-1
definition G-10
description 2-5
instructions 4- 7
use of 4-1

POEH (see process default exception
handler)

PDT (process definition template) 4-1
peer station 6-1, 6-51
performance class 2-8
performance considerations, data
base 5-10

permanent auxiliary storage limit 4-39
permanent object 2-8
physical address 6-20
physical I/O configuration changes 6-17
pointer (PTRI. definition of G-9
pointer arrangements 6-15
pointer data objects 2-18, 2-26
pointer data types 2-18
pointer types 2-26
pointers as search arguments 5-30
pointers contained in enqueued
messages 5-32

polling for messages on multiple
queues 5-34

position attribute 2-33
positioning of cursors 7-7
positioning options without data space
index 5-6

positive infinity, definition of G-9
potential deadlock situation 5-8
power off state 6-22
power, definition of G-9
preferred sequence for creating source/sink
objects 6-28

preferred sequence for destroying
source/sink objects 6-28

preventing deadlock situations 5-8
primary SOLe station 6-51
primary station, definition of G-9
priority attribute 4-35
priority attribute, optimization 2-25
priority field in the SSR 6-39
priority process attribute 4-33
priority, definition of G-9
private authority, definition of G-9

private authorizations 2-49
privileged instruction

authorization 2-61
definition G-10
description 2-56
exception 2-56

problem determination 7-4
problem phase 4-2, 4-4
problem phase option attribute 4-9
problem phase program 4-11
procedure for using the switched
communications network 6-81

process access group 4-11
process access group option attribute 4-9
process adopted user profile 2-59
process attributes 4-9, 4-40
process authorization 4-5
process automatic storage area (see PASA)
process auxiliary storage limit process
attribute 4-39

process communication object (peO) 4-10,
4-12

process control attribute 2-55
process control attributes 4-9
process control instruction
characteristics 4-14

process control instructions 4-7
process control space (see peS)
process default exception handler
(PDEH) 4-11

process default exception handler option
attribute 4-9

process definition template (PDT) 4-1
process domain 4-2
process events 4-16
process exception handling 4-14
process external existence state 4-40
process initiation steps 4-2
process interrupt pending status 4-11
process interruption facility 4-13
process isolation 7-8
process management 4-1
process management instructions 4-6
process multiprogramming level class 10
attribute 4-10

process name resolution list (NRL) 4-10
process name resolution list option
attribute 4-9

process performance attributes 4-12
process phases 4-4
process pointer attributes 4-10
process priority attribute 4-10
process- related instructions 4-14
process resource usage attributes 4-12
process states 4-2
process static storage area (see PSSA)
process static storage option
attribute 4-9

process status indicators 4-11

Index X-15

process storage pool identification
attribute 4-10

process structure 4-1
process termination status 4-11
process type attribute 4-9
process user profile

authority verification 2-59
general information 2-47
pointer attribute 4-10
process authorization 4-5

process, addressing form 2-26
process, definition of G-10
processing an MODLUD (reset) instruction,
load/dump 6-62

processing mode 5-10
processing order of request
descriptors 6-57

processing when entering or leaving the
active state 4-36

processor eligibility definition class,
definition of G-lO

processor resource 4-33
program

activation 3-36
category 2-1
creation 3-1
definition G-10
description 2-5
destruction 3-4
execution 3-35
functions 3-1
management 3-1
materialization 3-4
object descriptions 2-9
objects 2-9
observability deletion 3-4
optimization 3-3
qualifier 2-36
template 3-1
variable attributes 1 -1

program adopted user profile 2-59
program defined initial value 3-38
programming conventions for reducing
deadlocks 4-46

progression through states 6-22
propagated adopted user profile 2-61
propagated user profile, definition
of G-10

propagation of adopted use~rofile
authorities 2-47

properly terminate the appropriate
elements 6-69

PSDN (see packet switching data network)
PSSA (process static storage area)

contents 3-37
extending 3-37
locating 3-37
use 3-35, 4-1

PTR (pointer) G-9
public authority 2-46, 2-59

X-16

public authority, definition of G-10
purged access group 4-36
purpose of object authorities 2-50

Q

qualified symbolic address 2-30
qualifying events 4-16
qualifying exception description 4-25
queue

category 2-1
definition G-10
description 2-5
extended event 5-32
functions 5-33
instructions 5-32
management 5-31
message limit exceeded exception 5-32
overflow action indicator 5-32
type indicator 5-32
use of 4-12

queue, definition of G-10
queuing functions

dequeing messages 5-33
enqueuing messages 5-33

quiesce, definition of G-10
quiesced session state 6-22
quiescing a session 6-33

R

RD (request descriptor)
count 6-40
number 6-42
number for exception field 6-58

reactivating a quiesced session 6-33
read object ID command 6-59
read object 10, load/dump 6-59
reason for locking objects to
processes 4-34

rebuild data space index 5-12
receiver operand, definition of G-10
reclaim lost objects 7-8
recommended sequence for creating
source/sink objects 6-28

recommended sequence for destroying
source/sink objects 6-28

record, definition of G-10
recoverable error 6-61
recoverable error processing,
load/dump 6-56

recovery capabilities
data base 7 - 7
system 7-7

recovery from partial damage 6-67
recovery functions 7-7

recovery method 6-83
recovery / resource activation state

CO 6-24
indication 6-22
LUO 6-23
NO 6-25

recovery. definition of G -1 0
reducing deadlocks 4-45
referencing parameter objects 2-39
referring to a system object 2-7
relationships between argument- parameter
binding 2-41

relative instruction number 2-18. 2-43
relative positioning 5-14
relative positioning. definition of G -1 0
remote work station. definition of G -10
remove. definition of G-10
removing a queue 5-33
REQRQ (request I/O response queue) 6-40
request control field 6-39
request descriptor (see RO)
request descriptor count 6-40
request I/O

continue instruction 6-39
error recovery examples 6-82
function 6-37
instruction 6-37
response queue 6-38
response queue and feedback
record 6-40

syntax 6-38
request I/O and request I/O response queue
relationship 6-41

request I/O variable parameter 6-40
request 10 6-39. 6-42
request information unit (see RIU)
request key 6-40
request path operation 6- 26
request priority 6-39
requests or responses to the MSCP 6-49
requirement for operational
authorities 2-53

reserved values. definition of G-10
reserved. definition of G-10
reset

access group 4-38
data space 5-12
partial object damage 6-67

reset session
command 6-34
definition G-10
process 6-33
state 6-22

resignaled exception 4-25
resolved pointers 2-26
resource authorization 2-56. 2-61
resource management 4-32
resource management attributes 4-10
resource management control
functions 4-32

resource management monitor
functions 4-32

resources associated with user
profiles 2-48

resources managed by the control and
monitoring functions 4-33

resources. control and monitoring 4-33
response queue. definition of G-10
responsibilities of the user of source/sink
objects 6-68

restrictions for request I/O response
queue 6-42

result field. definition of G-10
results of ignored exceptions 4-26
resume process 4-8. 4-14
retracting the authorizations held by user
profile 2-57

retrieve exception related data 4-28
retrieving an entry 5-1. 5-4
retrieving dump space data 5-38
retrieving multiple entries 5-4
return from exception action code 4-29
return list 2-43
return target 2-43
returns from exception handling 4-29
rights to an object 2-46
RIU (request information unit)

segment count 6-42
use 6-40

round form. computational
instruction 3-12

round to nearest. definition of G-11
round toward negative infinity. definition
of G-11

round toward positive infinity. definition
of G-11

round toward zero. definition of G-11
rounding mode. definition of G-11
rounding. definition of G-11
routing data units between origins and
destinations 6-44

runaway situations 5-14

s

scalar data objects 2-10
scalar objects located in static
spaces 2-35

scalar. definition of G-11
scan instructions 3-28
search argument size 5-29
searching for index entries 5-29
second pointer. source/sink 6-39
secondary requirement for configuration
changes 6-28

secondary SOLC station 6-51
secondary station. definition of G-11
select/omit. definition of G-11

Index X-17

selection criteria, data space
entries 5-17

selection routine for data space index
entries 5-17

sequence for performing a modify
instruction 6-32

sequence of load/dump operation 6-56
sequence of states maintained for the
CO 6-23

sequence of states maintained for the LUO
object 6-22

sequence to vary off source/sink
objects 6-25

sequence to vary on source/sink
objects 6-25

sequence used to perform work on an I/O
device 6-38

sequencing through process phases 4-5
sequential addressing 5-15
sequential list of ports (NOs) 6-18
sequentiality of updates 7-6
service attribute 2-55
service requests to the MSCP 6-48
session is changed from load to dump or
dump to load 6-61

session state changes 6-81
session states in the LUO objects 6-33
session, definition of G-11
set access state 4-38
set context 6-58
set context command 6-59
set journal data, load/dump 6-59
set journal, load/dump 6-59
set user profile 6-58
set user profile command 6-59
severe errors 6-60
severely damaged or destroyed objects 7-7
shared data spaces 5-7
shared read lock 5-7
shared usage of source/sink objects 6-68
sharing data within a system object 4-44
sharing system objects 4-34
short form

computational instruction 3-12
definition G-11
option 4-17

short format values 2-15
short format, definition of G-11
sign, definition of G-11
signal event control mask attribute 4-9
signal retention option 4-17
signaled instruction number 4-31
signaled invocation address 4-31
signaling an event to a process 4-19
signaling by signal event
instruction 4-18

signaling instruction number 4-31
signaling invocation address 4-31
signed and unsigned numeric key
fields 5-14

X-18

signed exponent, definition of G-11
signed zero, definition of G-11
significance of synchronous and
asynchronous instructions 6-81

significand, definition of G-11
simple deadlock 4-46
simple OOT reference, definition of G-11
single character constants 5-5
size of message data area 6-42
size of message text 5-33
size of response queue 6-42
SNA (systems network architecture)

concepts 6-44
control messages

MSCP to logical unit (primary)
MSCP to physical unit (primary)
SSCP to logical unit (secondary)
SSCP to physical unit
(secondary) 6-50

definition G -12

6-50
6-50
6-51

supervisory services support (MI) 6-48
transmission management layer 6-44

soft (recoverable) machine checks 7-2
source operand, definition of G -12
source / sink

create instructions 6-27
data (550) 6-40
definition G -12
examples 6-68
functions 6-1
instruction usage 6-26
instructions 6-26
instructions that set object
damage 6-66

management 6-1
object recovery 6-66
object state changes 6-22
object subtypes 6-14
object types 6-26
objects 6-1
objects that support the I/O
configuration 6-26

request (SSR) 6-39
user responsibilities 6-68

source/sink data (550) 6-40
source/sink management 6-1
source/sink request (see SSR)
source/sink request, definition of G-12
source/sink resource, definition of G-12
source/sink, definition of G-12
sources for object authorities 2-48
space

addressing 2-26
authorization 2-48
category 2-1
description 2-6, 2-7

space addressing violation exception 2-38
space attribute materialization 5-36
space attribute modification 5-36
space creation 5-36

J

space data 5-36
space data modification 5-37
space data views 5-36
space destruction 5-36
space extent checking 2-39
space functions 5-35
space management 5-35
space object 1-3
space object characteristics 5-35
space pointer (SPP)

contained in feedback record 6-42
data type 2-18
definition G-12
use of 2-27

space pointer machine object
description 2-24
optimization priority attribute 2-25
pointer addressing 2-27
verification 2-24

space pointer, definition of G -12
space, definition of G-12
spaces 5-35
special authorizations

assigned to user 2-55
associated with user profile 2-48
summary 2-61

specific elements in LUD, CD, NO 6-20
specific event monitoring 4-15
specifying a context during object
creation 2-44

specifying contexts for system object
address resolution 2-31

specifying objects to be journaled 5-22
SPP (see space pointer)
SSD (source/sink data)

contents 6-40
definition 6-40

SSR (source/sink request)
contents

data 6-39
pointers 6-39

definition G-12
use 6-38

standard feedback record, load/dump 6-62
state change functions tolerant or partial
damage 6-67

state change rules 6-22
state change/status field 6-20
state change transition rules 6-34
state transition diagram 4-2
states in which optional parameters can be
modified 6-32

states of a process 4-35
states of the CD 6-24
states of the LUD 6-22
states of the ND 6-24
static storage 3-35
static, definition of G-12
station in a switched network 6-18
status of process 4-11

storage limits 4-39
storage resource 4-33
storage resource functions 4-37
string, definition of G-12
subinvocations 3-47
subordinate processes identification
subscript compound operand form
substring addressing 2-37
substring compound operand 2-37
summary

event rules 4-22
lock granting rules 4-42
option attribute 4-9
program 4-10
state change transition rules
(LUD) 6-35

4-12
2-37

supervisor and control functions 4-1
supervisory service request flow 6-49
supplying a set of attributes to
computational operands 3-7

support for multiprogramming 1-5
support for source/sink object types 6-26
supported authorities for each
object 2-54

suspend object attribute 2-55
suspend process 4-7, 4-14
suspend restricted 2-55
suspend unrestricted 2-55
suspend, definition of G-12
suspended session state 6-22
suspended state 4-2
suspending a session 6-33
switched connection 6-18
switched connection forward and backward
object pointers 6-20

switched enable state 6-23
switched forward and backward
pointers 6-18

switched network considerations 6-17
symbolic address 2-30
symbolic address of an object used for
context addressing 2-44

symbolic address of context 2-31
symbolic address of external scalar
object 2-35

symbolic address of the external data
object 2-22

symbolic name, definition of G-12
synchronize, definition of G-12
synchronous and a synchronous
instructions 6-81

synchronous data link control, definition
of G-12

synchronous event handling 4-20
synchronous initiation step 4-2
synchronous session state changes 6-81
system default not-a-number, definition
of G-12

system integrity 1-4

Index X-19

system object
access group 2-1
address resolution 2-30, 4-6
address resolution functions 2-30, 2-31
attributes 2-8, 4-39
characteristics 2-6
commit block 2-1,2-2
context 2-1
controller description 2-1
cursor 2-1
data space 2-1
data space index 2-1
definition G-12
descriptions 2-1
dump space 2-1, 2-4
index 2-1
journal port 2-1, 2-3
journal space 2-1, 2-4
locks 4-41
logical unit description 2-1
network description 2-1
object authorities 2-54
process control space 2-1
program 2-1
queue 2-1
space 2-1
user profile 2-1

system pointer
addressing 2-30
authority attributes 2-60
definition G -12
initial values 2-21

system recovery capabilities 7-7
System/38 instruction set 1-1
System/38 support functions 7-1
systems network architecture (see SNA)
systems network architecture, definition
of G-12

T

tag bits 2-6
target invocation 4-29
target object of a request I/O
operation 6-38

template components 3-1
template header 3-1
template size specification 6-20
template, definition of G-12
temporary object 2-8
temporary object. definition of G-12
temporary objects 5-10
terminate instruction 4-8, 4-14
terminate machine processing function
(TMPF) 7-1

terminate process 4-8. 4-14
terminating error conditions 6-83
terminating error feedback record 6-82

X-20

terminating error indicated in the feedback
record 6-83

termination phase 4-2
third pointer, source/sink request 6-39
threshold values 4-37
time-out value 6-67
time slice

attribute 4-35
end access state control attribute 4-9

timer events 4-16
TMPF (terminate machine processing
function) 7-1

TM PF optional function 7-1
total processor time allowed 4-40
total processor time used value 4-12
total temporary auxiliary storage used
attribute 4-12

trace functions 7-4
tracing instructions 7-5
tracing invocations 7-5
transferring locks 4-44
transferring ownership of program 2-60
transient attribute 4-39
transient pool 4-37
transmission management layer (M/) 6-44
transmission subsystem (M/) 6-44
treatment for previously issued request I/O
instructions 6-39

two or more entries with duplicate
keys 5-16

type of intervention required 6-82
types of addressing for data space
indexes 5-15

types of objects addressed by machine
context 2-7

types of searches 5-29
types of system objects that can be
locked 4-41

types of tracing 7-5
typical contents of LUD 6-18

u

ultimate end object 6-14
ultimate object of I/O transactions 6-1
unattached journal spaces, load / dump 6-65
unbiased exponent. definition of G-12
unconditional branching 3-33
underflow. floating-point 3-22
unique key rule 5-16
unique name for user profile 2-56
unique physical address within each object
type 6-27

unique symbolic identification 2-2
uniqueness checking 6-27
uniqueness of space object 5-35
uniqueness, object type 6-27
unit of transfer 5-10

L unit specification 5-11
unlock a space location 4-44
unlocking system objects 4-45
unordered, definition of G-13
unpredictable results in instructions 3-7
unrecoverable machine check 7-2
unresolved pointers 2-26
updating a communications
station 6-75, 6- 76, 6- 77

updating an entry 5-5
updating the PASA 3-40
usage states 6-22
use of modify instruction 6-26
use of modify time-out value 6-37
use of request I/O instruction 6- 26
use of source/sink objects and
instructions 6-68

use of the materialize instruction 6-26
user data 3-3
user data, timer events 4-16
user-defined events 4-18
user-defined recovery functions 7-2
user information after IPL 5-10
user profile 2-6

definition G-13
description 2-6, 2-46
event option attribute 4-9
interval attribute 4-10

user-signaled exceptions 4-25
user specified queue size 5-32
user's interface to the load / dump
function 6-56

user's processing environment 2-46
uses for independent indexes 5-29
uses for resource management 4-32
uses of system object locks 4-41
using data base function 5-3
using pointers as data 2-26
using the NRL for address resolution 2-32

v

valid sign encoding 2-11
values materialized by Materialize Process
Attributes instructions 4-40

variable addressability to
instructions 2-43

variable branch targets 2-18
variable branching 3-34
variable-length argument list 2-23, 2-40
variable-length keys 5-15
varied off / power on state 6-22
varied off state 6-23
varied on/no session state 6-22
varied on state 6-24
vary off 6-67
vary off source/sink objects
sequence 6-25

vary on all of the stations 6-78
vary on all the communications lines 6-78
vary on/off sequence 6-25
vary on pending (with LUDs pending)
state 6-23

vary on pending state 6-22
vary on source/sink objects sequence 6-25
vary on the logical units that are eligible
for use 6-78

vector, definition of G -13
verifying object authorities 2-60
view 2-9
view, definition of G-13

w

Wait on Time instruction 4-8
when the operator intervention required
event is signaled 6-83

work station, definition of G-13

x

X.25 communications
basic concepts 6-55
N D states 6- 26
source/sink management 6-1
SVC 6-81

XID (exchange identification) 6-27

z

zero divide, floating-point 3-23
zone or digit force 5-15
zoned decimal

computation 3-14
elements 2-10

Index X-21

J

J

X-22

IBM System/38
Functional Concepts
Manual GA21-9330-4

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications_ Direct
any requests for additional publications, technical questions about IBM systems, changes in IBM
programming support, and so on, to your IBM representative or to your nearest IBM branch office. You
may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error) check this box
and do not include your name and address below. If your comment is applicable, we will
include it in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s) :

No postage necessary if mailed in the U.S.A.

Please contact your nearest IBM branch office to request
additional publications_

Name

Company or
Organization

Address

Phone No.

City State Zip Code

Area Code

o
S-

f
t:'

Fold and tape. Please do not staple. ffi
._---,

BUSINESS REPLY MAn..
FIRST CLASS / PERMIT NO. 40 / ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
Rochester, Minnesota, U.S.A. 55901

I
I

NO POSTAGE :
NECESSARY I
IF MAILED IN THE :
UNITED STATES I

._---~

---------- -------- - ---- - - -----------'-

10
Fold and tape. PIe do not staple. 1 S-

I ~ Ig
110
It:'

ffi

J

J

