1
£
o
o]
n

o
=
i)
i

GA21-9331-1

File No. S38-01

IBM System/38

IBM System/38
Functional Reference Manual

Second Edition (February 1981)

This is a major revision of, and makes obsolete, GA21-9331-0. This revision
contairis information about the 3203-5 Printer, secondary SDLC station support,
and miscellaneous changes. Because the changes and additions are extensive, this
publication should be reviewed in its entirety.

The information in this publication applies to the IBM System/38 Instruction Set.
The information herein is subject to change. These changes will be reported in
technical newsletters or in new editions of this publication.

Use this publication only for the purpose stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980, 1981

This publication describes the System /38 instruction
set. It describes the functions that can be performed by
each instruction and also the necessary information to
code each instruction. It provides reference information
for the systems engineer and the program support
customer engineer.

The information in this publication is arranged as
follows:

» Chapter 1 describes the basic information for coding
instructions.

« Chapters 2 through 19 contain detailed descriptions
of all the instructions.

« Chapter 20 contains explanations for the possible
exceptions that error conditions may signal.

« Chapter 21 contains detailed descriptions of the
events that the user can monitor.

« Chapter 22 contains the attributes; specifications; and
ODT (object definition table), ODV (ODT directory
vector), and OES (ODT entry string) formats for each
program object of the machine interface.

« Chapter 23 provides the information to create the
objects necessary to support the input/output
devices.

« Chapter 24 provides information for communication
line connections.

« Chapter 25 provides the information to create the
objects necessary to support the load/dump functiqn.

» Appendix A describes the functions used for machine
initialization.

« Appendix B provides a summary of all the
instructions and an abbreviated format for each
instruction.

Preface

It is assumed that you have read the Functional Concepts
Manual in its entirety. The Functional Concepts Manual
provides information for the machine interface and its
functions. :

How To Use this Publication

Refer to Chapters 2 through 19 to find the information
needed to code the various instructions.

Refer to Chapters 20 through 22 to find detailed
specifications for the exceptions, events, and program

objects.

Refer to Chapters 23 through 25 to find specific
information required to create the various objects
necessary to support the input/output devices.

Refer to Appendix A for descriptions of the various
functions used for machine initialization.

Refer to Appendix B for a summary of all instructions,
which contains the abbreviated description of the
instruction and the page number where the detailed
description of the instruction can be found.

Prerequisite Publication

IBM System/38 Functional Concepts Manual, GA21-9330

Related Publications

IBM Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic, SC30-3112

IBM Synchronous Data Link Control General Information
Manual, GA27-3093

CHAPTER 1. INTRODUCTION 1-1

Instruction Format 1
Operation Code Field 1
Operation Code Extender Field 1-
Instruction Operands 1

Instruction Format Conventions Used in This Manual . . 1-

Definition of the Operand Syntax 1-

CHAPTER 2. COMPUTATION AND BRANCHING

INSTRUCTIONS 21
Add Logical Character (ADDLC) 2-1
Add Numeric (ADDN) e 2-2
And (AND) oL Lo 2-4
Branch(B) 2-5
Compare Bytes Left- Ad]usted (CMPBLAB or CMPBLAI) 2-6
Compare Bytes Left-Adjusted with Pad

(CMPBLAPB or CMPBLAPY) 2-8
Compare Bytes Right-Adjusted

(CMPBRAB or CMPBRAI) 2-9
Compare Bytes Right-Adjusted with Pad

(CMPBRAPB or CMPBRAPI) 2-11
Compare Numeric Value (CMPNVB or CMPNVIE) 2-12
Compute Array Index (CAI) 2-14
Concatenate (CAT) 2-15
Convert Character to Hex (CVTCH) 2-16
Convert Character to Numeric (CVTCN) 2-17
Convert External Form to Numeric Value (CVTEFN) . . 2-19
Convert Hex to Character (CVTHC) 2-21
Convert Numeric to Character (CVTNC) 2-22
Copy Bytes Left-Adjusted (CPYBLA) 2-23
Copy Bytes Left-Adjusted With Pad (CPYBLAP) 2-24
Copy Bytes Overlap Left-Adjusted (CPYBOLA) . . . 2-25
Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP) 2-26
Copy Bytes Repeatedly (CPYBREP) e e 2-27
Copy Bytes Right-Adjusted (CPYBRA) 2-28
Copy Bytes Right-Adjusted With Pad (CPYBRAP} . . . 2-29
Copy Hex Digit Numeric to Numeric (CPYHEXNN) . . . 2-30
Copy Hex Digit Numeric to Zone (CPYHEXNZ) 2-31
Copy Hex Digit Zone to Numeric (CPYHEX2ZN) 2-32
Copy Hex Digit Zone to Zone (CPYHEXZZ) 2-33
Copy Numeric Value (CPYNV) 2-34
Divide (DIV) o 2-36
Divide with- Remainder (DIVREM) 2-38
Edit (EDIT) « « . . . o o 2-40
Exchange Bytes (EXCHBY) 2-48
Exclusive OR(XOR) 2-49
Extract Magnitude (EXTRMAG) 2-51
Multiply (MULT)« 2-52
Negate (NEG) 2-54
No Operation (NOOP) 2-56
Not (NOT) o . v o v v v 2-56
Or(OR) e e e e e e e e 2-58
Remainder (REM) 2-59
Scale (SCALE) 2-61
Scan (SCAN)o o 2-63

Contents

Search (SEARCH) 2-65
Set Instruction Pointer (SETIP) e e e e e e 2-66
Subtract Logical Character (SUBLC) 2-67
Subtract Numeric (SUBN) 2-69
Test and Replace Characters (TSTRPLC) 2-71
Test Bits under Mask (TSTBUMB or TUSTBUMI}) . . . 2-72
Translate (XLATE) 2-73
Verify (VERIFY) o 2-75

CHAPTER 3. POINTER/NAME RESOLUTION
ADDRESSING INSTRUCTIONS 31
Compare Pointer for Object Addressability
(CMPPTRAB or CMPPTRAI) 3-1
Compare Pointer Type (CMPPTRTB or CMPPTRTI) . . 3-3
Copy Bytes with Pointers (CPYBWP) 3-4
3-5
3-8

Create Context (CRTCTX)
Destroy Context (DESCTX)

Materialize Context (MATCTX) 3-9
Modify Addressability (MODADR) 3-12
Rename Object (RENAME) 314
Resolve Data Pointer (RSLVDP) 3-15°
Resolve System Pointer (RSLVSP) 3-17
CHAPTER 4. SPACE OBJECT ADDRESSING

INSTRUCTIONS v oo oo 41
Add Space Pointer (ADDSPP) 4-1
Compare Pointer for Space Addressability

(CMPPSPADB or CMPPSPADI) 4-2
Compare Space Addressability

(CMPSPADB or CMPSPADI) 4-3

Set Data Pointer (SETDP) 4
Set Data Pointer Addressability (SETDPADR) 4
Set Data Pointer Attributes (SETDPAT) 4-7
4
4

Set Space Pointer (SETSPP)

Set Space Pointer with Displacement (SETSPPD) . . . -9
Set Space Pointer from Pointer (SETSPPFP) 4-10°
Set Space Pointer Offset (SETSPPO) 4-11
Set System Pointer from Pointer (SETSPFP). 4-12
Store Space Pointer Offset (STSPPO) 4-14
Subtract Space Pointer Offset (SUBSPP) 4-15
CHAPTER 5. SPACE MANAGEMENT INSTRUCTIONS 5-1
Create Space (CRTS}) 5-1
Destroy Space (DESS) 5-4
Materialize Space Attributes (MATS) 5-5
Modify Space Attributes (MODS) 5-8
CHAPTER 6. INDEPENDENT INDEX INSTRUCTIONS . 6-1
Create Independent Index (CRTINX) 6-1
Destroy Independent Index (DESINX) 6-5
Find Independent Index Entry (FNDINXEN} 6-6
Insert Independent Index Entry (INSINXEN) 6-8
Materialize Independent Index Attributes (MATINXAT) . 6-10
Remove Independent Index Entry (RMVINXEN) 6-13

CHAPTER 7. AUTHORIZATION MANAGEMENT
INSTRUCTIONS
Create User Profile (CRTUP)
Destroy User Profile (DESUP)
Grant Authority (GRANT)..
Materialize Authority (MATAU)
Materialize Authorized Objects (MATAUOBJ)
Materialize Authorized Users (MATAUU)
Materialize User Profile (MATUP)
Modify User Profile (MODUP)
Retract Authority (RETRACT)
Test Authority (TESTAU)
Transfer Ownership (XFRO)

CHAPTER 8. PROGRAM MANAGEMENT

INSTRUCTIONS
Create Program (CRTPG)
Delete Program Observability (DELPGOBS)
Destroy Program (DESPG)
Materialize Program (MATPG)

CHAPTER 9. PROGRAM EXECUTION
INSTRUCTIONS
Activate Program (ACTPG)
Call External (CALLX)
Call Internal (CALL))
De-activate Program (DEACTPG)
End(END)
Modify Automatic Storage Allocation (MODASA)
Return External (RTX)
Set Argument List Length (SETALLEN)
Store Parameter List Length (STPLLEN)
Transfer Control (XCTL)

CHAPTER 10. EXCEPTION MANAGEMENT
INSTRUCTIONS

Materialize Exception Description (MATEXCPD)

Modify Exception Description (MODEXCPD)

Retrieve Exception Data (RETEXCPD)

Return from Exception (RTNEXCP)

Sense Exception Description (SNSEXCPD)

Signal Exception (SIGEXCP) .

Test Exception (TESTEXCP)

CHAPTER 11. PROCESS MANAGEMENT
INSTRUCTIONS
Create Process Control Space (CRTPRCS)
Destroy Process Control Space (DESPCS)
Initiate Process (INITPR)
Materialize Process Attributes (MATPRATR)
Modify Process Attributes (MODPRATR)
Resume Process (RESPR)
Suspend Process (SUSPR)
Terminate Process (TERMPR)

CHAPTER 12. QUEUE MANAGEMENT

INSTRUCTIONS e e e e e e e e e e e
Create Queue (CRTQ) -. . . .
Dequeue (DEQ, DEQB, or DEQI)
Destroy Queue (DESQ) . .
Enqueue (ENQ)
Materialize Queue Attributes (MATQAT)

vi

CHAPTER 13. RESOURCE MANAGEMENT
INSTRUCTIONS
Create Access Group (CRTAG)
Create Duplicate Object (CRTDOBJ)
Destroy Access Group (DESAG)
Ensure Object (ENSOBJ)
Materialize Access Group Attributes (MATAGAT)
Materialize Resource Management Data (MATRMD) .
Modify Resource Management Controls (MODRMC) .
Set Access State (SETACST)
Suspend Object (SUSOBJ)

CHAPTER 14. OBJECT LOCK MANAGEMENT
INSTRUCTIONS
Lock Object (LOCK)
Lock Space Location (LOCKSL)
Materialize Object Locks (MATOBJLK)
Materialize Process Locks (MATPRLK)
Materialize Selected Locks (MATSELLK)
Transfer Object Lock (XFRLOCK)
Unlock Object (UNLOCK)
Unlock Space Location (UNLOCKSL)

CHAPTER 15. EVENT MANAGEMENT
INSTRUCTIONS
Cancel Event Monitor (CANEVTMN)
Disable Event Monitor (DBLEVTMN)
Enable Event Monitor (EBLEVTMN)
Modify Process Event Mask (MODPEVTM)
Monitor Event (MNEVT)
Retrieve Event Data (RETEVTD)
Signal Event (SIGEVT)
Test Event (TESTEVT, TESTEVTB or TESTEVTI) . .
Wait on Event (WAITEVT)

CHAPTER 16. DATA BASE MANAGEMENT
INSTRUCTIONS+«...
Activate Cursor (ACTCR)
Copy Data Space Entries (CPYDSE)
Create Cursor (CRTCR)
Create Data Space (CRTDS)
Create Data Space Index (CRTDSINX)
Data Base Maintenance (DBMAINT) .
De-activate Cursor (DEACTCR)
Delete Data Space Entry (DELDSEN)
Destroy Cursor (DESCR)
Destroy Data Space (DESDS)
Destroy Data Space Index (DESDSINX)
Ensure Data Space Entries (ENSDSEN)
Insert Data Space Entry (INSDSEN)
Insert Sequential Data Space Entries (INSSDSE) . . .
Materialize Cursor Attributes (MATCRAT)
Materialize Data Space Attributes (MATDSAT)
Materialize Data Space Index Attributes (MATDSIAT)
Release Data Space Entries (RLSDSEN)
Retrieve Data Space Entry (RETDSEN)
Retrieve Sequential Data Space Entries (RETSDSE)
Set Cursor (SETCR)
Update Data Space Entry (UPDSEN) . .

CHAPTER 17. SOURCE/SINK MANAGEMENT
INSTRUCTIONS
Create Controller Description (CRTCD)
Create Logical Unit Description (CRTLUD)
Create Network Description (CRTND)
Destroy Controller Description (DESCD)
Destroy Logical Unit Description (DESLUD)
Destroy Network Description (DESND)
Materialize Controller Description (MATCD)
Materialize Logical Unit Description (MATLUD)
Materialize Network Description (MATND)
Modify Controller Description (MODCD)
Modify Logical Unit Description (MODLUD)
Modify Network Description (MODND)
Request 1/0 (REQIO)

CHAPTER 18. MACHINE OBSERVATION
INSTRUCTIONS,
Cancel Invocation Trace (CANINVTR)
Cancel Trace Instructions (CANTRINS) . . .
Materialize Invocation (MATINV)
Materialize Pointer (MATPTR)
Materialize Pointer Locations (MATPTRL)
Materialize System Object (MATSOBJ)
Trace Instructions (TRINS)
Trace Invocations (TRINV)

CHAPTER 19. MACHINE INTERFACE SUPPORT

FUNCTIONS INSTRUCTIONS)
Diagnose (DIAG) e e e e e e e e
Materialize Machine Attributes (MATMATR)
Modify Machine Attributes (MODMATR)
Reclaim Lost Objects (RECLAIM)
Terminate Machine Processing (TERMMPR)

CHAPTER 20. EXCEPTION SPECIFICATIONS

Machine Interface Exception Data)

Exception List.
02 AccessGroup oL L
04 Access State
06 Addressing L
08 Argument/Parameter
OA Authorization
OC Computation
OE Context Operation
10Damage « o v o o . ..
12 Data Base Management
14 Event Management
16 Exception Management . .
18 Independent Index
1A Lock State
1C Machine-Dependent Exception
1E Machine Observation
20 Machine Support
22 Object Access«
24 Pointer Specification
26 Process Management
28 Process State
2A Program Creation
2C Program Execution.
2E Resource Control Limit
32 Scalar Specification
34 Source/Sink Management
36 Space Management

38 Template Specification 20-47
3A Wait Time-Out 20-48
3CServiceo e 20-49
CHAPTER 21. EVENT SPECIFICATIONS 211
Event Definition Elements 211
Event ldentification 21-1
Compare Value Qualifier 21-1
Event-Related Data 21-1
Event Definitions 21-3
0002 Authorization 21-3
0004 Controller Description 21-3
0007 DataSpace « « ¢ 4 v e e . 21-4
0008 Data Space Index 21-5
O00A Lock & v o e 21-5
000B Logical Unit Description 21-6
000C Machine Resource e e e e e 21-8
000D Machine Status 21-9
O0OE Network Description 21-10
O00OF Ownership 21-11
0010 Process v . 0 . 21-11
0012 Queue v . e e 21-12
0014 Timer « « « o v v e e 21-13
0016 Machine Observation 21-13
0017 Damage Set 21-16
0019 Service o .o e 21-17
CHAPTER 22. PROGRAM OBJECT SPECIFICATION 221
General ODT Description 22-1
ODV e e 22-1
OES 22-2
ODT Entries InDetail 22-3
Data Object 22-3
Entry Pointo 22-13
BranchPoint 22-14
Instruction Definition List 22-14
Operand List 22-15
Constant Data Object 22-17
Exception Descriptions 22-19
References to OES Offsets Greater than 64 K-1 22-21
CHAPTER 23. SOURCE/SINK SPECIALIZATION
AND PROGRAMMING CONSIDERATIONS FOR
LOCALDEVICES 231
Machine Console Programming Considerations 23-1
Machine Console Create Logical Unit
Description (CRTLUD) Template 23-2
Machine Console Modify Logical Unit
Description (MODLUD) 23-2
Machine Console Request |/O Instruction
(REQIO) o o e e e e e e 23-2
Source/Sink Request (SSR) 23-3
Source/Sink Data (SSD) Area 23-6
Feedback Record (FBR) 23-9
Events00 23-14
Exceptions R 23-14
5424 Programming Considerations 23-15
Create Logical Unit Description (CRTLUD)
Instruction 23-15
Modify Logical Unit Description (MODLUD)
Instruction 23-15
Request 1/0 (REQIO) Instruction 23-16
Feedback Record and Error Recovery Procedure . . . 23-19
Events e e e 23-24
Exceptions 23-25

vii

3262/5211 Printer Programming Considerations . . . 23-25

3262/5211 Printer Create Logical Unit :
Description (CRTLUD) Template 23-26

3262/5211 Printer Modify Logical Unit .

Description (MODLUD) 23-26
LUD Device-Specific Area 23-27

3262/5211 Printer Request /0 (REQIO)

Instruction, 23-27
Print SCS Data Command (hex 41) 23-28
Continue Printing After Error (hex 42) . 23-28

Standard Character Stream (SCS) 23-29
SCSCommands 23-29
Null Command (hex00) 23-29
Interchange Record Separator Command (hex 1E) 23-29
Line Feed Command (hex 25) 23-29
Form Feed Command (hexOC) 23-29
Carriage Return Command (hexOD) 23-29
New Line Command (hex 15) 23-29
Format Command (hex 2B) 23-30
Bell Command (hex 2F) 23-30
Presentation Position (PP) Command (hex 34) 23-30
SCSExample 23-32
Standard Character Stream 23-32
Printed Qutput 23-32
3262/5211 Feedback Record and Error Recovery

Procedure 23-33
Events 23-39
Exceptions 23-40

Diskette Magazine Drive Programming Considerations 23-40
Diskette Magazine Drive Create Logical Unit

Description (CRTLUD) Template -. 23-41
Retry Values 23-41
Error Threshold Values 23-41
Device-Specific Contents: Char(528) 23-42

Diskette Magazine Drive Modify Logical Unit
Description (MODLUD) Instruction 23-44
Diskette Magazine Drive Request 1/0 (REQIO)

Instruction e e e e e 23-45
Request Descriptor, 23-46
Feedback Record and Error Recovery Procedures . 23-54
Diskette Magazine Drive End-of-Volume Handling

for Data Interchange 23-62

The Diskette Magazine Drive End-of-Volume Handling

for Load/Dump 23-62
Events 23-63
Exceptions - 23-63

3410/3411 Programming Conslderatlons - 23-64
3410/3411 Create Controller
Description (CRTCD) Template 23-64
3410/3411 Create Logical Unit
Description (CRTLUD) Template 23-64
Retry Values e e e e e 23-65
Error Threshold Values - 23-65
Device-Specific Contents: Char(80) 23-65
3410/3411 Modify Controller
Description (MODCD) Instruction 23-66
3410/3411 Modify Logical Unit
Description (MODLUD) Instruction 23-66
3410/3411 Request 1/0 Instruction (REQIO)
Instruction L. 23-67
Request Descriptor 23-68
3410/3411 Feedback Record and Error
Recovery Procedures 23-72
Events 000 23-79
Exceptions 23-80

viii

3203-5 Printer Programming Considerations 23-80
3203-5 Create Logical Unit Description
(CRTLUD) Template 23-80
3203-5 Printer Modify Logical Unit
Description (MODLUD) 23-81
LUD Device-Specific Area 23-81
3203-5 Printer Request 1/0 (REQIO) Instruction . 23-82
Print SCS Data Command (hex 41) 23-82
Continue Printing After Error (hex 42) 23-83
Standard Character Stream (SCS) 23-83
SCSCommands 23-83
3203-5 Feedback Record and Error Recovery
Procedure 23-84
Events o0 23-88
Exceptionso 23-89
CHAPTER 24. COMMUNICATIONS AND LOCALLY
ATTACHED WORK STATIONS 241
Machine Services Control Point (MSCP) 24-1
Modification of Source/Sink Objects 24-1
MSCP Operation R 24-3
COMMUNICATIONS DEVICE MANAGEMENT 24-8
Programming Considerations 24-8
Instructions 24-9
MODND (Vary On/Off) 24-9
MODND (Enable/Disable} 24-9
MODND (Manual Answer/Abandon Call) 24-9
MODND (Start Data) 24-9
MODCD (Dial/Abandon Connection) 24-9
MODCD (Vary On/Off) 24-9
MODLUD (Vary On/Off) 24-9
MODLUD (Activate/De-activate) 24-9
MODLUD (Quiesce) e e e e 24-9
MODLUD (Reset) 24-10
MODLUD (Suspend) 24-10
MODLUD (Suspend, De-activate, and Activate) . 24-10
Request I/0O Instruction 24-10
Feedback Record 24-15
Events Signaled by Communications Support 24-18
Network Description Events 24-18
Controller Description Events 24-18
Logical Unit Description Events 24-19
Exceptions Signaled for Communication Devices . . . 24-20
Object Creation Data for Supported Devices 24-21
CD Template Data for 5251 Work Station. 24-21
Logical Unit Description Template Data for
65261 Display 24-23
Logical Unit Description Template Data for the
5262 Display 24-24
Logical Unit Description Template Data for the
5256 Printer 24-25
CD Template Data When System/38 Is Attached as
a Secondary Station 24-26
Logical Unit Description Template When
System/38 Is Attached as a Secondary Station . 24-29
Communications Lines Specialization 24-30
Communications Error Recovery Procedures . . 24-33
WORK STATION CONTROLLER MANAGEMENT
(LOCALLY ATTACHED) 24-42
Programming Considerations 24-42

Instructions e e e e e 24-43 APPENDIX A. MACHINE INITIALIZATION

MODCD (Vary On/Off) 24-43 Machine Initialization
MODLUD (Vary On/Off} 24-43 Machine Initialization Terms and Definitions
MODLUD (Activate/Deactivate) 24-43 Machine Initialization Overview
MODLUD (Quiesce) 24-43 Machine-To-Programming Transiton Ce
MODLUD (Reset) 24-43 AIPL Source Data
MODLUD (Suspend) 24-44 IPL Encapsulated Data
MODLUD (Suspend, De-activate, and Actlvate) . 24-44 AIPL/IPL Machine Attributes
REQIO 24-44, Initial Process Definition Template
Feedback Record 24-49 Machine Initialization Status Record Machine Attnbute
Events Signaled by Work Station Controller
Support oo e e e e 24-52 APPENDIX B. INSTRUCTION SUMMARY
Logical Unit Description Events 24-52 Numberof Operands
Controller Description Events 24-53 ExtenderUsage
Exception Codes Signaled by Work Station Controller Resulting Conditions
Support L. e e 24-53 OptionalForms
Object Creation Data for Supported Devices 24-54 Instruction Stream Syntax
Work Station Controller 24-54 Program Object Definitions
) System Object Declarations
CHAPTER 25. LOAD/DUMP OBJECT Resulting Conditions Definitions
MANAGEMENT 25-1 Instruction Summary (Alphabetical Listing by
Load/Dump Commnands 25-1 Mnemonic} L L L0 0o oo
Session Types 25-1
Sequence of Operatlons 25-1 INDEX & i i i e e e e e e e e e e
Dump Command (D} 25-2
Load Commanc! (L} 25-2
Create and Load Command (CL) 25-4
Set User Profile Command (SUP) 25-5
Set Context Commmand (SCTX) 25-5
Read Object Identification Command (ROID) 25-5
Load/Dump Request I/O(REQIO) 25-6
Request Descriptor (RD) 25-6
Load/Dump Modify LUD 25-8
Load/Dump Feedbiack Record 25-9
Load/Dump Error Processing 25-9
Processing a Modify LUD (Reset) Instruction . . . 25-13
Load/Dump Events: 25-13
Load/Dump Authority e e e e 25-14
Load/Dump Data Base Networks 25-14
Load/Dump Performance 25-16
Load/Dump interruppted for Data Interchange 25-16
Load/Dump Object Availability 25-17
Commands e e 25-17
Errors Encountered 25-17

Load/Dump Object ‘Status after a System Failure . . 25-18

ORI
POWOWWNN=S=S =

DWW OPwmD

il
o

ABI
ABO
ACTLU
ACTPU
ACU
AIMPL
AIPL
ALU

Bin
BOT
BSTAT

CA

CD

Char
CRC
CRT
CSA
CTS

DAF
DBI
DCE
DS

DSI
DSR
DSTAT
DTR

EOF
EOT
EOV
EPA
ERP

FBR
FIFO
FOB
FMD

address bus in

address bus out

activate logical unit

activate physical unit

auto-call unit

alternate initial microprogram load
alternate initial process load
arithmetic and logic unit

byte

binary

beginning of tape
basic status

channel address
controller description
chdracter

cyclic redundancy check
cathode-ray tube
control storage address
clear to send

destination address field

data bus in

data communications equipment
data space

data space index

data set ready

device status

data terminal ready

end of file
end of tape

-end of volume

encapsulated program architecture
error recovery procedure

feedback record

first in, first out
function operation block
function manager data

IAR

IC

IDL
1/0
10C
I0M
IMPL
IMPLA
IPL

L/D
LEAR
LENR
LIFO
LSRD
LSRO
LSUP
LU
LUD

MB
MCR
MDT
MISR
MPL
MSCP

ND
NBL
NRZI

oDT
obv
OEM’
OES
oMT
ORE
ou
oug

Abbreviations and Acronyms

instruction address register

insert cursor

instruction definition list
input/output /

input/output controller

input/output manager

initial microprogram load

initial microprogram load abbreviated
initial program load

1024 bytes

load/dump

lock exclusive allow read
lock exclusive no read
last in, first out

lock shared read

lock shared read only
lock shared update
logical unit

logical unit description

megabyte

machine configuration record
modified data tag

machine initialization status record
multiprogramming level

machine services control point

network deséription
name resolution list
non-return-to-zero (inverted)

object definition table

ODT directory vector

original equipment manufacture
ODT entry string

object mapping table

operation request element
operational unit

operational unit number

Abbreviations and Acronyms

Xi

PAG
PASA
PCO
PDEH
PSSA
PU

RD
RH
RI
RIU
RNR
ROS
RPS
RTS
RU

xii

process access group

process automatic storage area

process communication object

process default exception handler

process static storage area
physical unit

request descriptor
request/response header
ring indicator N
request information unit
receive not ready
ready-only storage
rotation position sensor
request to send
request/response unit

SBA
SCS
SDLC
SNA
S-PTR
SSCP
SSD
SSR

TH

VAT
VTOC

WSC

XID

set buffer address

standard character stream
synchronous data link control
system network architecture
system pointer

system service control point
source/sink data
source/sink request

transmission header

virtual address table
volume table of contents

work station controlier

exchange identification

This chapter contains the following:

« Detailed descriptions of the System/38 instruction
fields and the formats of these fields

« A description of the format used in describing each
instruction

« A list of the terms in the syntax that define the
characteristics of the operands

You should read this chapter in its entirety before
attempting to write instructions.
INSTRUCTION FORMAT

This section describes the formats for the three fields in
an instruction. The three fields are:

« Operation code

« Operation code extender

« Operand

See the Functional Concepts Manual for an explanation of
how particular instruction fields are used, the

relationships between the fields, and other basic
concepts concerning instructions.

Chapter 1. Introduction

Operation Code Field

The operation code field of an instruction is a 2-byte
field that supplies information about the instruction
format, the instruction status, and the basic operation to
be performed by the instruction.

The format of the operation code field is as follows:

Bits
01234 5. 15
~ o e

Operation flag field (bits 0-4):

® Reserved

® Branch target

® Format specifications
— Computational format
— Noncomputational format

® Extender field present

Operation specification field (bits 5-15)

The format of the operation specification field is as
follows for the computational format (bit 3 equals 1):

Bits

Optiona! instruction forms (bits 5-7):

® Extender specification
— Branch form
— Indicator form

® Round form

® Short form

Basic functions (bits 8-15)

For the noncomputational format (bit 3 equals 0), bits
5-15 define the basic function.

Introduction 1-1

Operation Flag Field (Bits 0-4)

The operation flag field (bits 0-4) specifies the

following:

Bits

0-1

2

1-2

Meaning

These bits are reserved. They must be 00.
Branch target

0 = This instruction is not a branch targei.

1 = This instruction is a branch target
operand in some branch instructions
elsewhere in the instruction stream.
This branch target includes branch
points defined in the ODT (object
definition table), branch targets defined
in an IDL {instruction definition list),
branch targets assigned to an
instruction pointer, immediate
instruction numbers used as branch
operands, and instructions referenced
as entry points.

Note: The bit encoding of the operation
code for each instruction assumes a O for
this bit.

Format specification

0]

Noncomputational — The instruction
does not have the format of the
computational instructions and does
not allow any optional forms. The
definition of the operation and the
format of the instruction are completely
defined by the operation code
specification field (bits 5-15).

Computational — The instruction has
the computational instruction format.
The basic operation is defined in the
basic function field (bits 8-15) of the
operation code. However, the
instruction may allow one or more of
the optional instruction forms (indicated
by bits 5-7) that define additional
information about the operation to be
performed, the number of operands, or
the format of the instruction.

Extender field present

0]

The instruction does not have an
operation code extender field.

The instruction has an operation code
extender field.

Operation Cocle Specification Field (Bits 5-15)

The operation code specification field contains
information clescribing the operation to be performed by
the instruction and possibly information about the
instruction. lts contents depend upon whether this
instruction has a computational or a noncomputational
format.

« Computational format:
Bits Meaning

5 Izxtender specification — The extender field
Joresent flag must be on (bit 4 equals 1)
lbefore this field has meaning. If bit 4 equals
{0, then bit 5 must equal O.

0 = Indicator form —~ The format of this
instruction is an indicator form of the
computational format. An indicator
form instruction uses an operation
extender field and a character scalar
indicator(s) to specify the conditional
indicator option(s) and the indicators to
be set, respectively.

1 = Branch form — The format of this
instruction is a branch form of the
computational instruction form. A
branch form instruction uses a standard
format operation extender field and
branch target operand field(s) to
specify the conditional branch option(s)
and location(s), respectively.

6 Round form
0 = This instruction is not a round form.

1 = The fractional portion of the result of
the operation defined for this
instruction is to be rounded before
being truncated and placed in the field
specified by the receiver operand field.

7 Short form

0 = This instruction is not a short form.
The format of this instruction is in its
normal form with all its required
operand fields present.

1 = The format is in the optional short form
in which the receiver operand field acts
as the first source operand field and is
not duplicated as an operand.

8-15 Basic function — These bits indicate the
operation to be performed by this instruction
(for example, add numeric).

. Nonéomputational format:
Bits Meaning

5-15 Basic function — These bits indicate the
operation to be performed by this instruction
(for example, create program or set space
pointer).

Operation Code Extender Field

The operation code extender field of an instruction is a
2-byte field that further defines the operation to be
performed by the instruction and/or the format of the
instruction. The extender field is indicated by a 1 in bit
4 of the operation code.

The format and contents of this field are determined by
the specific instruction in which it appears. The two
types of operation codes extender fields, branch options
and indicator options, are described on the following
pages.

Introduction 1-3

Branch Options

The branch options operation code extender field
contains information needed by instructions that involve
conditional branching (comparison instructions and -
optional branch forms of computational instructions).
This field indicates how many branch target operand
fields are in the instruction and which of the resulting
status conditions relate to each of these target
operands.

The following are allowed as branch targets:
« Branch point‘

« Absolute instruction number (unsigned immediate
operand value)

+ Relative instruction number (signed immediate
operand value)

« Instruction pointer (simple operand that is not an
element of an array)

Up to three mutually exclusive status conditions can be
specified for a given instruction. The status conditions
can be one of the following: ’

« Ignored

« Associated with a branch target operand field such
that:
— The branch occurs if the condition occurs.
— The branch occurs if the condition does not occur.

Only one of these three actions can be specified for
each condition. Only those conditions meaningful for a
particular instruction can have the last two actions
specified for them. Conditions that have either of the
last two actions specified for them are associated with
their branch target operands in left-to-right order.

Branch option operation code extender fields consist of
four 4-bit fields. Each of the fields defines one branch
condition. The fields must be specified in left-to-right
order and correspond to the order of the branch target
operands. A field of hex O indicates that no branch
target is associated with this condition and that no more
conditions are defined in any field to the right.

The following codes are valid for branch conditions:

Bit Hex Meaning

0000 O No branch target, no further fields
are checked

0001 1 High, positive, mixed, zero and carry

0010 2 Low, negative, ones, not-zero and
no carry, exception ignored

0011 3 Reserved

0100 4 Equal, zero, zeros, zero aind no carry,
signaled, exception deferred,
dequeued, authorized

0101 5 Reserved

0110 6 Reserved

o111 7 Unequal, not-zero and carry

1000 8 Reserved

1001 9 Not high, not positive, not mixed,
not-zero and carry

1010 A Not low, not negative, not ones, not
not-zero and no carry

1011 B Reserved

1100 C Not equal, not-zero, not zeros, not
dequeued, not-zero and na carry,
not signaled, not authorizecl

1101 D Reserved

1110 E Reserved

1111 F Not unequal, not not-zero and carry

The branch options specified for an instruction must be
mutually exclusive. The user must not specify a branch
to more than one branch target on the same condition;
that is, two 4-bit fields cannot specify the same:
condition.

A not condition refers to any condition other than the
one specified. That is, not equal is satisfied with a high
or low condition. Therefore, the same condition cannot
be specified as negative and positive in the same
extender (for example, not equal and high cannot be
specified together).

The same branch target can be used for multiple
conditions. For example, if branch conditions high and
equal are specified separately, each of the
corresponding branch targets can reference the same
instruction. A not low condition with a single branch
target accomplishes the same function.

Examples

Hex 4000 means:

» One branch target is present in the instruction.

« Branch to the first branch target operand if an equal
condition occurs.

« Otherwise, execute the next sequential instruction.
Hex 1900 means:
« Two branch targets are present in the instruction.

« Branch to the first branch target operand if a high
condition occurs.

« Branch to the second branch target operand if a high
condition does not occur.

Hex 1210 is not allowed because branch condition 1
(high) is specified twice.

Hex 1AQ0 is not allowed because condition 1 (high) is
also specified as part of condition A (not low).

Indicator Options

The indicator options operation code extender field
contains information needed by instructions that allow
conditional indicator setting (comparison instructions and
optional indicator forms of computational format
instructions). The field indicates how many indicator
operand fields are in the instruction and which of the
resulting status conditions relate to each of these
indicator operands.

The preceding discussion of the usage, conditions,
ordering, and encoding of branch options also applies to
indicator options.

If a condition that is being monitored by the indicator
option occurs, the leftmost byte of the associated

. indicator target is assigned a value of hex F1; otherwise,

the leftmost byte of the indicator target is assigned a
value of hex FO.

Example
Hex 4000 means:
« One indicator target is present in the instruction.

« Assign a value of hex F1 to the indicator target if the
equal condition occurs.

« Assign a value of hex FO to the indicator target if the
equal condition does not occur.

In this example, the indicator form of the operand must
be a character or a numeric scalar data object. Only the
first byte of the operand is used. This operand must be
a simple operand and cannot be a compound subscript
operand, a compound substring operand, or a compound
based operand.

Introduction = 1-5

Instruction Operands

Each instruction requires from zero to four operands.
Each operand may consist of one or more 2-byte fields
that contain either a null operand specification, an
immediate data value, or a reference to an ODT object.

Null Operands

Certain instructions allow certain operands to be null. In
general, a null operand means that some optional
function of the instruction is not to be performed or that
a default action is to be performed by the instruction.

Immediate Operands

The value of this type of operand is encoded in the
instruction operand. Immediate operands may have the
following values:

« Signed binary — representing a binary value of
negative 4096 to positive 4095.

» Unsigned binary — representing a binary value of O to
8191. :

» Byte string — representing a single byte value from
hex 00 to hex FF.

« Absolute instruction number — representing an
instruction number in the range of 1 to 8191.

» Relative instruction number — representing a
displacement of an instruction relative to the
instruction in which the operand occurs. This operand
value may identify an instruction displacement of
negative 4096 to positive 4095.

ODT Object References

This type of operand contains a reference (possibly
qualified) to an object in the ODT. Operands that are
ODT object references may be simple operands or
compound operands.

1-6

Simple Operands: The value encoded in the operand
refers to a specific object defined in the ODT. Simple
operands consist of a single 2-byte operand entry.

Compound Operands: A compound operand consists of a
primary (2-byte) operand and a series of one to three
secondary (2-byte) operands. The primary operand is an
ODT reference to a base object while the secondary
operands serve as qualifiers to the base object.

A compound operand may have the following uses:
« Subscript references

An individual element of a data object array, a pointer
array, or an instruction definition list may be
referenced with a subscript compound operand. The
operand consists of a primary reference to the array
and a secondary operand to specify the index value
to an element of the array.

« Substring references

A portion of a character scalar data object may be
referenced as an instruction operand through a
substring compound operand. The operand consists
of a primary operand to reference the base string
object and secondary references to specify the value
of an index (position) and a value for the length of
the substring. :

« Explicit base references

An instruction operand may specify an explicit
override for the base pointer for a based data object
or a based addressing object. The operand consists
of a primary operand reference to the based object
and a secondary operand reference to the pointer on
which to base the object for this operand. The
override is in effect for the single operand. The
displacement implicit in the ODT definition of the
primary operand and the addressability contained in
the explicit pointer are combined to provide an
address for the operand.

The explicit base may be combined with either the
subscript or the substring compound operands to
provide a based subscript compound operand or a
based substring compound operand.

Format of Instruction Opérand

The format for an instruction operand (primary or

secondary) field is as follows:

Operand Field (bits 0-15)

Type Specification

Operand Specification

Type Specification Field: The type specification field

occupies bits 0-2 of the operand. It indicates whether
the operand is an immediate data value, a simple ODT
reference, or a compound ODT reference.

The following illustration shows the type specifications
allowed for primary operands and secondary operands.
Secondary operands may be simple ODT references or
immediate data values.

Operand Function Primary Operand Secondary Operand
Number of
Type Secondary
Bits Operand Operand 1 2 3

Simple ODT Reference or 000 ODT reference or 0
Null Operand null
Unsigned Immediate Value 001 Unsigned 0

immediate value
Subscript Compound 010 Array ODT 1 Index
Operand reference
Substring Compound 011 String ODT 2 Index Length
Operand reference
Explicit Base Compound 100 Based ODT 1 Base pointer
Operand ' object reference
Signed Immediate Value 101 Signed ()

immediate value
Explicit Based Subscript 110 Based array ODT 2 Base pointer | Index
Compound Operand reference
Explicit Based Substring 11 Based string 3 Base pointer |Index Length
Compound Operand ODT reference

Introduction 1-7

Operand Specification Field: The operand specification
field occupies bits 3-15. It can be an ODT reference or
an immediate value. The ODT reference occupies bits
3-15 of the operand field. It contains a binary integer
value indicating which ODV (object definition vector)
entry in the ODT to use for this operand’s definition.
This value is an index value for the one-dimensional
array ODV, not a byte displacement into the ODT. Thus,
a maximum of 8191 ODV objects are addressable in any
program. The first ODT reference is 1. If the value of
the operand specification field is O, the operand is nuil.

The following primary operands are allowed:
« ODT reference (type bits equal 000)

The operand consists of a simple ODT reference. The
value of bits 3-15 of the operand defines an index
into the ODT. The range of this value may be from 1
to the size of the ODT (maximum size of 8191).

o Null (type bits equal 000)

A null operand consists of a O value for bits 3-15 of
the operand. The null operand is used in several
instructions to indicate that a function is not to be
performed or that a default action is to occur.

« Unsigned immediate value (type bits equal 001)

The operand is interpreted as an unsigned immediate

data value. Three uses can be made of this form:

— For numeric operands, an unsigned binary value
from O to 8191 can be specified in bits 3-15 of
the operand. ’

~ For character (or byte) operands, a single 8-bit

value can be specified in bits 8-15 of the operand.

— For branch target operands, an unsigned binary
value of 1 to 8191 can be specified in bits 3-15;
that value is interpreted to contain an instruction
number. A value of O is invalid.

1-8

« Array ODT reference (type bits equal 010)

When the operand type bits are 010, the operand
specification (bits 3-15) must be an ODT reference to
an array of scalars, an array of pointers, or an
instruction definition list.

A secondary operand is required to specify the array
index value.

.« String ODT reference (type bits equal 011)

When the operand type bits are 011, the operand
specification (bits 3-15) must be an ODT reference to
a data object, data pointer, or a constant data object
that has the attributes of a character scalar. The
substring operation refers to a portion of this ODT
object.

Two secondary operands are required: one for the
index (position) and one for the length of the
substring.

« Based ODT object reference (type bits equal 100)
When the operand type bits are 100, this operand
specification (bits 3-15) must be an ODT reference to

a data object with based addressability.

A secondary operand is required to specify the
overriding base pointer.

« Signed immediate value (type bits equal 101)

The operand is interpreted as a signed immediate
data value. Negative values are represented in twos
complement form in bits 3-15. Bit 3 is the sign bit.
Two uses can be made of this form:

— For numeric operands, a signed value can be
specified in the range of negative 4096 to positive
4095.

— For branch target operands, a signed binary value
of negative 4096 to positive 4095 can be
specified, and it is interpreted as a relative
instruction number.

Based array ODT reference (type bits equal 110)

When the operand type bits are 110, the operand
specification (bits 3-15) must be an ODT reference to
an array of scalars or an array of pointers with the
array based on a space pointer. Explicit basing and
array indexing are performed for the operand.

Two secondary operands are required: one for the
base pointer and one for the index value.

Based string ODT reference (type bits equal 111)

When the operand type bits are 111, the operand
specification must be an ODT reference to either a
character scalar data object based on a space pointer
or a character scalar data pointer based on a space
pointer. Explicit basing and the substring function are
performed for the operand.

Three secondary operands are required: a base
pointer, an index value, and a length value.

The following are allowed as secondary operands. (Note
that secondary operands cannot be compound
operands.)

Index

A secondary operand representing an index value

may be one of the following:

— An ODT reference to a binary data object (type
bits equal 000)

— An ODT reference to a binary constant data object
(type bits equal 000)

— An unsigned immediate binary value (type bits
equal 001)

An exception is signaled if the value of the index is
not greater than O or if it is greater than the size of
the primary operand (number of bytes for strings,
number of elements for arrays, or number of
elements for an instruction definition list). The user
can suppress the verification of this valid index value
for substrings of character strings and elements of
arrays by specifying the appropriate constraint
attribute when the program is created.

Length

A secondary operand representing a length value may

be one of the following:

— An ODT reference to a binary data object {type
bits equal 000)

— An ODT reference to a binary constant data object
(type bits equal 000)

— An unsigned immediate binary value (type bits
equal 001)

An exception is signaled if the value of the length is
not greater than O or if the value of the index plus
the value of the length is greater than the number of
bytes in the primary operand. The user can suppress
verification of this valid index value for substrings of
character strings by specifying the appropriate
constraint attribute on program creation.

Base pointer
If the primary operand is a data object, the base

pointer secondary operand must be an ODT reference
to a space pointer (type bits equal 000).

Introduction 1-9

Examples

The following are examples of instruction operands:

Operand Values

(hex) Meaning

0007 A simple ODT reference to
ODT object 7

0000 A null operand

2000 An unsigned immediate
value of O (type bits equal
001)

3FFF ; An unsigned immediate
value of 8191 (type bits
equal 001) ‘

A000 A signed immediate value
of O (type bits equal 101)

AFFF A signed immediate value
of 4095 (type bits equal
101)

BFFF A signed immediate value
of minus 1 (type bits equal
101)

400A2006 A subscript compound

operand reference to array

element 6 of the array

defined in ODT object 10
EO09000800070006 An explicit based substring
compound operand:

« ODT object 9 is a based
string.

« ODT object 8 is a space
pointer.

+« ODT object 7 is a binary
data object that provides
the index.

- ODT object 6 is a binary
data object that provides
the length. ‘

INSTRUCTION FORMAT CONVENTIONS USED IN
THIS MANUAL

The user of this manual must be aware that not every
instruction uses every field described in this section.
Only the information pertaining to the fields that are
used by an instruction is provided for each instruction.

In this manual, each instruction is formatted with the
instruction name followed by its base mnemonic.
Following this is the operation code (op code) in
hexadecimal and the number of operands with their
general meaning.

Example:

ADD NUMERIC (ADDN)

Op Code Operand Operand Operand
(hex) 1 2 3

1043 Sum Addend 1 Addend 2

This information is followed by the operands and their
syntax. See Definition of the Operand Syntax later in this
chapter for a detailed discussion of the syntax of
instruction operands.

Example:

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms: The mnemonics and bit encodings for
the optional instruction operation codes are given along
with a brief description of the options.

The optional forms are short form, round form, branch
form, and indicator form. For a more detailed
description of these forms see Operation Code Field
earlier in this chapter.

Extender: A brief description of the extender options is
given.

Description: A detailed description and a functional
definition of the instruction is given.

Authorization Required: A list of the object authorization
required for each of the operands in the instruction or
for any objects subsequently referenced by the
instruction is given.

Lock Enforcement: Describes the specification of the
lock states that are to be enforced during execution of
the instruction.

The following states of enforcement can be specified for
an instruction:

« - Enforcement for materialization

Access to a system object is allowed if no other
process is holding a locked exclusive no read (LENR)
lock on the object. In general, this rule applies to
instructions that access an object for materialization
and retrieval.

» Enforcement for modification

Access to a system obiject is allowed if no other
process is holding a locked exclusive no read (LENR)
or locked exclusive allow read (LEAR) lock. In
general, this rule applies to instructions that modify
or alter the contents of a system object.

« Enforcement of object control

Access is prohibited if another process is holding any
lock on the system object. In general, this rule
applies to instructions that destroy or rename a
system object.

Resultant Conditions: These are the conditions that can
be set at the end of the standard operation in order to
perform a conditional branch or set a conditional
indicator.

Events
The Events sections contain a list of events and the
corresponding event numbers (in hexadecimal form) that

"can be caused by the instruction.

A detailed description of the events is in Chapter 21.

Exceptions

The Exceptions sections contain a list of exceptions that
can be caused by the instruction. (The detailed
description of exceptions is in Chapter 20.) Exceptions
related to specific operands are indicated for each
exception by the Xs under the heading operand. An
entry under the word, Other, indicates that the

exception applies to the instruction but not to a
particular operand.

DEFINITION OF THE OPERAND SYNTAX

Syntax consists of the allowable choices for each
instruction operand. The following are-the common
terms used in the syntax and the meanings of those
terms:

o Numeric: Numeric attribute of binary, packed
decimal, or zoned decimal

« Character: Character attribute

« Scalar:

— Scalar data object that is not an array (see note 1)
Constant scalar object
Immediate operand (signed or unsigned)
Element of an array of scalars (see notes 1 and 2)
Substring of a character scalar or a character
scalar constant data object (see notes 1 and 3)

« Data Pointer Defined Scalar:
— A scalar defined by a data pointer
— Substring of a character scalar defined by a data
pointer (see notes 1 and 3)

o Pointer:
— Pointer data object that is not an array
(see note 1)
— Element of an array of pointers
(see notes 1 and 2)

o Array: An array of scalars or an array of pointers
(see note 1)

« Variable Scalar: Same as scalar except constant

scalar objects and immediate operand values are
excluded.

Introduction 1-11

Data Pointer: A pointer that is to be used as a data

pointer.

— If the operand is a source operand, the pointer
storage form must contain a data pointer when the
instruction is executed.

— If the operand is a receiver operand, a data pointer

is constructed by the instruction in the specified
area regardless of its current contents (see note 4).

Space Pointer: A pointer that is to be used as a

space pointer.

— If the operand is a source operand, the pointer
storage form must contain a space pointer when
the instruction is executed.

— If the operand is a receiver operand, a space
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see note 4).

System Pointer: A pointer that is to be used as a

system pointer.

— If the operand is a source operand, the specified
area must contain a system pointer when the
instruction is executed.

— If the operand is a receiver operand, a system
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see note 4).

Relative Instruction Number: Signed immediate
operand.

Instruction Number: Unsighed immediate operand.

Instruction Pointer: A pointer object that is to be

used as an instruction pointer.

— If the operand is a source operand, the specified
area must contain an instruction pointer when the
instruction is executed.

— If the operand is a receiver operand, an instruction
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see notes 4 and 5).

Instruction Definition List Element: An entry in an
instruction definition list that can be used as a branch
target. A compound subscript operand form must
always be used (see note 5).

Notes:

1.

An instruction operand in which the primary operand
is a scalar or a pointer may also have an operand
form in which an explicit base pointer is specified.

See ODT Object References earlier in this chapter for
more information on compound operands.

. A compound subscript operand may be used to

select a specific element from an array of scalars or
from an array of pointers.

See ODT Object References earlier in this chapter for
more information on compound operands.

. A compound substring operand may be used to

define a substring of a character scalar, a character
constant scalar object, or a character scalar defined
by a data pointer. Character scalar operands can be
in the substring compound operand form, but variable
length secondary operands are not always allowed.
The secondary operand can be a constant data object
or an immediate operand value.

See ODT Object References earlier in this chapter for
more information on compound operands.

. A compound subscript operand form may be used to

select an element from an array of pointers to act as
the operand for an instruction.

See ODT Object References earlier in this chapter for
more information on compound operands.

. Compound subscript forms are not allowed on branch

target operands that are used for conditional
branching. Selection of elements of instruction
pointer arrays and elements of instruction definition
lists may, however, be referenced for branch
operands by the Branch instruction.

Alternate choices of operand types and the allowable
variations within each choice are indicated in the syntax
descripticns as shown in the following example.

Operand 1: Numeric variable scalar.
Operand 2: Numeric scalar.

Operand 3: Instruction number, branch point or instruction
pointer.

Operand 1 must be variable scalar. Operands 1 and 2
must be numeric. Operand 3 can be an instruction
number, branch point or instruction pointer.

When a length is specified in the syntax for the
operand, character scalar operands must be at least the
size specified. Any excess beyond that required by the
instruction is ignored.

Scalar operands that are operated on by instructions
requiring 1-byte operands, such as pad values or
indicator operands, can be greater than 1 byte in length;
however, only the first byte of the character string is
used. The remaining bytes are ignored by the
instruction.

Introduction 1-13

Chapter 2. Computation and Branching Instructions

This chapter describes all the instructions used for
computation and branching. These instructions are
arranged in alphabetic order. For an alphabetic summary
of all the instructions, see Appendix B. Instruction
Summary.

ADD LOGICAL CHARACTER (ADDLC)

Op Code Operand Operand Operand
(hex) 1 2 3
1023 Sum Addend 1 Addend 2

Operand 1: Character variable scalar (fixed-length).
Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (hex) Form Type
ADDLCS 1123 Short
ADDLCI 1823 Indicator
ADDLCIS 1923 Indicator, Short
ADDLCB 1C23 Branch

ADDLCBS 1D23 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The unsigned binary value of the addend 1
operand is added to the unsigned binary value of the
addend 2 operand and the result is placed in the sum
operand.

The length of the operation is equal to the length of the
longer of the two source operands. The length can be a
maximum of 256 bytes. The shorter of the two
operands is padded on the right with binary O’s.

The addition operation is performed according to the
rules of algebra. The result value is then placed
(left-adjusted) in the receiver operand with truncating or
padding taking place on the right. The pad value used in
this instruction is a byte value of hex 0O0.

If operands overlap but-do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: The logical sum of the character
scalar operands is zero with no carry out of the leftmost
bit position, not-zero with no carry, zero with carry, or
not-zero with carry.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-1

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

2-2

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 : Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

OC Invalid operand ODT reference
Program Execution

04 Branch target invalid

Operands
12 3 Other
X X X
X X X
X X X
X X X
X X X X
X X X X
X
X
X
X X X
X X X
X X X
X X X
X X X
X
X X X
X X X
X X X
X
X X X
X X X
X

ADD NUMERIC (ADDN)

Op Code Operand Operand Operand .
(hex) 1 2 3
1043 Sum Addend 1 Addend 2
Operand 1: Numeric variable scalar.
Operand 2: Numeric scalar.
Operand 3: Numeric scalar.
Optional Forms

Op Code
Mnemonic (hex) Form Type
ADDNS 1143 Short
ADDNR 1243 Round
ADDNSR 1343 Short, Round
ADDNI 1843 Indicator
ADDNIS 1943 Indicator, Short
ADDNIR 1A43 Indicator, Round
ADDNISR 1B43 Indicator, Short, Round
ADDNB 1C43 Branch
ADDNBS 1D43 Branch, Short
ADDNBR 1E43 Branch, Round
ADDNBSR 1F43 Branch, 'Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the addend 1
operand is added to the numeric value of the addend 2
operand, and the result is placed in the sum operand.

All operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

For a decimal operation, alignment of the assumed
decimal point takes place by padding with O’s on the
right end of the addend with lesser precision.

The operation uses the lengths and the precision of the
source and receiver operands to calculate accurate
results.

The addition operation is performed according to the
rules of algebra.

The result of the operation is copied into the sum
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the sum, aligned at the
assumed decimal point of the sum operand, or both
before being copied. Length adjustment and decimal
point alignment are performed according to the rules of
arithmetic operations outlined in the Functional Concepts
Manual. If nonzero digits are truncated on the left end
of the resultant value, a size exception is signaled.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overiapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

If a decimal to binary conversion causes a size
exception to be signaled, the binary value contains the
correct truncated result only if the decimal value
contains 15 or fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar sum operand is positive, negative, or O.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands

Exception 12 3 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
08 Argument/Parameter
01 Parameter reference violation X X X
OC Computation
02 Decimal data ' X X
03 Decimal point alignment X X
OA Size X
10 Damage Encountered
04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-Dependent Exception |

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

05 Invalid op code extender field X

06 ‘Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

0C Invalid operand ODT reference X X X
2C Program Execution
04 Branch target invalid X

Computation and Branching Instructions 2-3

AND (AND)

Op Code Operand Operand Operand
(hex) 1 2 3
1093 Receiver Source 1 Source 2
Operand 1: Character variable scalar.
Operand 2. Character scalar.
Operand 3. Character scalar.
Optional Forms

Op Code
Mnemonic {hex) . Form Type
ANDS 1193 Short
ANDI 1893 Indicator
ANDIS 1993 Indicator, Short
ANDB 1C93 Branch
ANDBS 1D93 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately foilow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean AND operation is performed
on the string values in the source operands. The
resulting string is placed in the receiver operand. The
operands must be character strings that are interpreted
as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00 values. This assigns hex 00 values to the results for
those bytes that correspond to the excess bytes of the
longer operand.

2-4

The bit values of the resuit are determined as follows:

Source 1 Source 2 Resuit
Bit Bit Bit

1 1 1

0 1 0

1 0 0

0 0 0

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in thls instruction is a
byte value of hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variabie subscripts), the
results are not always predictable.

Resultant Conditions: The bit values for the bits of the
scalar receiver operand is either all zero or not all zero.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

0C Invalid operand ODT reference
Program Execution

04 Branch target invalid

Operands

1 2

3

x

X X

BRANCH (B)

Op Code Operand
(hex) 1

1011 Branch Target

Operand 1: Instruction number, relative instruction number,
branch point, instruction pointer, or instruction definition list

element.

Description: Control is unconditionally transferred to the
instruction indicated in the branch target operand. The
instruction number indicated by the branch target
operand must be within the instruction stream
containing the branch instruction.

The branch target may be an element of an array of
instruction pointers or an element of an instruction
definition list. The specific element can be identified by
using a compound subscript operand.

Events

000C Machine resource
- 0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-5

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

09 Invalid branch target operand

OC Invalid operand ODT reference -

Program Execution
04 Branch target invalid

Operand
1 Other

X

X X

X X X X

x

COMPARE BYTES LEFT-ADJUSTED
(CMPBLAB or CMPBLAI)

Op Code Operand Operand Operand
(hex) Extender 1 2 3[4, 5]
1CC2 Branch Compare Compare Branch
options operand 1 operand 2 target
18C2 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3 [4, 5]:

« Branch target — Instruction number, relative instruction
number, branch point, or instruction pointer.

« [Indicator target — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two left-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done). Based on the
comparison, the resulting condition is used with the
extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands

Exception 1 2 3[4,5] Other
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
08 Argument/Parameter

10

1C

20

22

24

2A

2C

01 Parameter reference violation X X X
Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

Machine-Dependent Exception

03 Machine storage limit X

exceeded
Machine Support

02 Machine check X
03 Function check X

Object Access

01 Object not found X X X
02 Object destroyed
03 Object suspended X X X
Pointer Specification

01 Pointer does not exist
02 Pointer type invalid X X X
Program Creation

X
X
x

X
X
x

05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
OA Invalid operand length X X X

0C Invalid operand ODT reference X X X
Program Execution

04 Branch target invaiid X

Computation and Branching Instructions

2-7

COMPARE BYTES LEFT-ADJUSTED WITH PAD
(CMPBLAPB or CMPBLAPI)

Op Code Operand Operand Operand Operand
(hex) Extender 1 2 3 4[5, 6]
1CC3 Branch Compare Compare Pad Branch
options operand 1 operand 2 target
18C3 Indicator Indicator
options target

Operand 7: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3: Numeric scalar or character scalar.
Operand 4 [5, 6]:

» Branch target — Instruction number, relative instruction
number, branch point, or instruction pointer.

« [ndicator target — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two left-adjusted compare operands {(padded if
needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison,

the resulting condition is used with the extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
{branch form).

» Assign a value to each of the indicator operands
{indicator form).

The compare operands can be either character or

numeric. Any numeric operands are interpreted as
logical character strings.

2-8

The compare operands are compared byte by byte, from
left to right with no numeric conversions being
performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the right
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of each of the compare operands and
proceeds until all the bytes of the longer of the two
compare operands have been compared or until the first
unequal pair of bytes is encountered. All excess bytes in
the longer of the two compare operands are compared
to the pad value.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set ;
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range
Argument/Parameter

01 Parameter reference
violation

Damage Encountered

04 System object damage
state

44 Partial system object
damage

Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check
Object Access

01 Object not found
02 Object destroyed
03 Object suspended
Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
Program Creation

05 Invalid op code extender
field

06 Invalid operand type

07 Ihvalid operand attribute

08 Invalid operand value range

09 Invalid branch target
operand

OA Invalid operand length

0C Invalid operand ODT
reference

Program Execution
04 Branch target invalid

Operands

1 2 3 415, 6]

X X
b s
x
x

X X

X X

X X

COMPARE BYTES RIGHT-ADJUSTED
(CMPBRAB or CMPBRAI)

Op Code Operand Operand Operand
(hex) Extender 1 2 3[4, 5]
1CC6 Branch Compare Compare Branch
options operand 1 operand 2 target
18C6 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3 [4, 5]:

e Branch target — Instruction number, relative instruction
number, branch point, or instruction pointer.

« [Indicator target — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by
the instruction. The extender field is required along with
from one to three branch targets (for branch option) or

one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the

extender field and the allowed syntax of the branch and

indicator operands.

Computation and Branching Instructions

2-9

Description: This instruction compares the logical string
values of two right-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done}. Based on the
comparison, the resulting condition is used with the
extender field to:

» Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either string or numeric.
Any numeric operands are interpreted as logical
character strings. :

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3[4,5] Other
06 Addressing
01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
08 Argument/Parameter

10

1c

20

22

24

2A

2C

01 Parameter reference violatton X X X

Damage Encountered

04 System object damage state X X X X
44 Partial system object damage
Machine-Dependent Exception

X
x
x
x

03 Machine storage limit X
exceeded

Machine Support

02 Machine check X

03 Function check X

Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

Program Creation

05 Invalid op code extender field X

06 Invalid operand type) X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X

0C Invalid operand ODT reference X X X
Program Execution
04 Branch target invalid X X

COMPARE BYTES RIGHT-ADJUSTED WITH PAD
(CMPBRAPB or CMPBRAPI)

Op Code Operand Operand Operand
(hex) Extender 1 2 3
1CC7 Branch Compare Compare Pad
options operand 1 operand 2
18C7 Indicator
options

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3: Numeric scalar or character scalar.
Operand 4 [5, ‘6]:

e Branch target — Instruction number, relative instruction
number, branch point, or instruction pointer.

« [Indicator target — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by
the instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of the right-adjusted compare operands (padded
if needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison,

the resulting condition is used with the extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. ‘

Operand
415, 6]

Branch
target

Indicator
target

The compare operands are compared byte by byte, rrom
left to right with no numeric conversions performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the left
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of the longer of the compare operands.
Any excess bytes (on the left) in the longer compare
operand are compared with the pad value. All other
bytes are compared with the corresponding bytes in the
other compare operand. The operation proceeds until all
bytes in the longer operand are compared or until the
first unequal pair of bytes is encountered.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions = 2-11

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range

08 Argument/Parameter

01 Parameter reference
violation

10 Damage Encountered

04 System object damage
state

44 Partial system object
damage

1C Machine-Dependent Exception -

03 Machine storage limit
exceeded

20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
2A Program Creation

05 Invalid op code extender
field

06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range

09 Invalid branch target
operand

OA Invalid operand length

0OC Invalid operand ODT
reference

2C Program Execution
04 Branch target invalid

Operands
1 2 3 4[5,6]

X
x
x
X

X
X
X
X

X
X
x
X

Other

COMPARE NUMERIC VALUE
(CMPNVB or CMPNVI)

Op Code " Operand Operand Operand
(hex) Extender 1 2 3 [4. 5]
1C46 Branch Compare Compare Branch
options operand 1 operand 2 target
1846 Indicator Indicator
options target

Operand 1: Numeric scalar.
Operand 2: Numeric scalar.
Operand 3 [4, 6]:

o Branch target — Instruction number, relative instruction
number, branch point, or instruction pointer.

« [Indicator target — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: The signed numeric value of the first

compare operand is compared with the numeric value of
the second compare operand. Based on the comparison,
the resulting condition is used with the extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

Both the compare operands must be numeric with any
implicit conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual. For a decimal operation, alignment of
the assumed decimal point takes place by padding with
O’s on the right end of the compare operand with lesser
precision.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two operands is adjusted to the length of the longer
operand according to the rules of arithmetic operations
outlined in the Functional Concepts Manual.

Resultant Conditions: The first compare operand has a
higher, lower, or equal numeric value than the second
compare operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

oc

10

1Cc

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

03 Decimal point alignment
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0C Invalid operand ODT reference
Program Execution

04 Branch target invalid

Computation and Branching Instructions

1 2 3[4,5]

COMPUTE ARRAY INDEX (CAIl)

Op Code Operand Operand Operand Operand
(hex) 1 2 3 4
1044 Array index Subscript A Subscript B Dimension

Operand 1: Binary(2) variable scalar.
Operand 2: Binary(2) scalar.
Operand 3: Binary(2) scalar.

Operand 4: Binary(2) constant scalar object or immediate
operand.

Description: This instruction provides the ability to
reduce multidimensional array subscript values into a
single index value which can then be used in referencing
the single-dimensional arrays of the system. This index
value is computed by performing the following
arithmetic operation on the indicated operands.

Array Index = Subscript A + {{Subscript B -1) X

Dimension)

The signed numeric value of the subscript B operand is
decreased by 1 and multiplied by the numeric value of
the dimension operand. The result of this multiplication
is added to the subscript A operand and the sum is
placed in the array index operand.

All the operands must be binary with any implicit
conversions occurring according to the rules of
arithmetic operations. The usual rules of algebra are
observed concerning the subtraction, addition, and
multiplication of operands.

This instruction provides for mapping multidimensional
arrays to single-dimensional arrays. The elements of an
array with the dimensions (d1, d2, d3, ..., dn) can be
defined as a single-dimensional array with
d1*d2*d3*...*dn elements. To reference a specific
element of the multidimensional array with subscripts
(s1,82,s3,...sn), it is necessary to convert the multiple
subscripts to a single subscript for use in the
single—d’imensional System/38 array. This single
subscript can be computed using the following:

s1+((s2-1)*d1)+(s3~1)*d1*d2)+...+((sn-1)*d*d2*d3*...*dm),
where m=n-1

The CAl instruction is used to form a single index value
from two subscript values. To reduce N subscript values
into a single index value, N-1 uses of this instruction
are necessary.

Assume that S1, S2, and S3 are three subscript values
and that D1 is the size of one dimension, D2 is the size
of the second dimension, and the D1D2 is the product
of D1 and D2. The following two uses of this
instruction reduce the three subscripts to a single
subscript.

CAIl INDEX, St, S2, D1 Calculates s1+(s2-1)*d1
CAI INDEX, INDEX, S3, D1D2 Calculates s1+(s2-1)
‘ *d1+(s3-1)*d2*d1

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands

Exception 1234
06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X
08 Argument/Parameter

10

1C

20

22

24

2A

01 Parameter reference violation X X X X
Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X
Machine-Dependent Exception

03 Machine storage limit
exceeded '

Machine Support
02 Machine check
03 Function check
Object Access

01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
Pointer Specification

01 Pointer does not exist X X X X
02 Pointer type invalid X X X
Program Creation

06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X
OC Invalid operand ODT reference X X X X

Other

CONCATENATE (CAT)

Op Code Operand Operand Operand
{hex) 1 2 3

10F3 Receiver Source 1 Source 2

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Description: The character string value of the second
source operand is joined to the right end of the
character string value of the first source operand. The
resulting string value is placed (left-adjusted) in the
receiver operand.

The length of the operation is equal to the length of the
receiver operand with the resulting string truncated or is
logically padded on the right end accordingly. The pad
value for this instruction is hex 40.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

- 0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-15

Exceptions

Exception

06

08

10

1c

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference

Operands

123

x
x
X

x
x

X X X X X
X X X X X
X X X X X

x

x

Other

CONVERT CHARACTER TO HEX (CVTCH)

Op Code Operand Operand
(hex) 1 2
1082 Receiver Source

Operand 1: Character variable scalar.

Operand 2: Character -scalar.

Description: Each character (8-bit value) of the string
value in the source operand is converted to a hex digit
(4-bit value) and placed in the receiver operand. The
source operand characters must relate to valid hex digits
or a conversion exception is signaled.

Characters Hex Digits
Hex FO-hex F9 Hex O-hex 9
Hex C1-hex C6 = Hex A-hex F

The operation begins with the two operands
left-adjusted and proceeds left to right until all the hex
digits of the receiver operand have been filled. If the
source operand is too small, it is logically padded on the
right with zero characters (hex FO). If the source
operand is too large, a length conformance or an invalid
operand length exception is signaled.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

oc

10

iCc

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Computation

01 Conversion

08 Length Conformance
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference

Operands
1 2 Other

X X
xX X

X X X X X
X

CONVERT CHARACTER TO NUMERIC (CVTCN)

Op Code Operand Operand Operand
(hex) 1 2 3
1083 Receiver Source Attributes

Operand 7: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Character scalar or data-pointer-defined character
scalar.

Operand 3: Character(7) scalar or data-pointer-defined
character scalar. '

Description: The character scalar specified by operand 2
is treated as though it were a numeric scalar with the
attributes specified by operand 3. The character string

source operand is converted to the numeric forms of the

receiver operand and moved to the receiver operand.
The value of operand 2, when viewed in this manner, is
converted to the type, length, and precision of the
numeric receiver, operand 1, following the rules for the
Copy Numeric Value instruction.

The length of operand 2 must be large enough to
contain the numeric value described by operand 3. If it
is not large enough, a scalar value invalid exception is
signaled. If it is larger than needed, its leftmost bytes
are used as the value, and the rightmost bytes are
ignored.

Normal rules of arithmetic conversion apply except for
the following. If operand 2 is interpreted as a zoned
decimal value, a value of hex 40 in the rightmost byte
referenced in the conversion is treated as a positive sign
and a zero digit.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Computation and Branching Instructions 2-17

The format of the attribute operand specified by Exceptions
operand 3 is as follows:

Operands
« Scalar attributes Char(7) Exception 12 3 Other
— Scalar type Char(1)
Hex 00 = Binary 06 Addressing
Hex 02 = Zoned decimal 01 Space addressing violation X X X
Hex 03 = Packed decimal 02 Boundary alignment X X X
— Scalar length Bin(2) 03 Range X X X
If binary: ‘ 04 External data object not found X X X
Length (L) Bits 0-15 08 Argument/Parameter
(where L=2 or 4) 01 Parameter reference violation X X X
_If zoned decimal or packed 0C Computation
decimal: 02 Decimal data X X
Fractional digits (F) Bits 0-7 OA Size) X
Total digits (T) (where Bits 8-15 10 Damage Encountered
1<T<3andO0O<F<T) 04 System object damage state X X X X
— Reserved (binary 0) Bin{4) 44 Partial system object damage X X X X
1C Machine-Dependent Exception
03 Machine storage limit exceeded X
Events 20 Machine Support
02 Machine check X
000C Machine resource 03 Function check X
0201 Machine auxiliary storage threshold exceeded 22 Object Access
01 Object not found X X X
0010 Process 02 Object destroyed X X X
0701 Maximum processor time exceeded 03 Object suspended X X X
0801 Process storage limit exceeded 24 Pointer Specification
01 Pointer does not exist X X X
0016 Machine observation 02 Pointer type invalid X X X
0101 Instruction reference 2A Program Creation
06 Invalid operand type X X X
0017 Damage set 07 Invalid operand attribute X X X
0401 System object damage set 08 Invalid operand value range X X X
0801 Partial system object damage set OA Invalid operand length X X
OC Invalid operand ODT reference X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attribute invalid X
03 Scalar value invalid X

2-18

CONVERT EXTERNAL FORM TO NUMERIC VALUE
(CVTEFN)

Op Code Operand Operand Operand
(hex) 1 2 3
1087 Receiver Source Mask

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Character scalar or data-pointer-defined character
scalar.

Operand 3: Character(3) scalar, null, or data-pointer-defined
character(3) scalar.

Description: This instruction scans a character string for
a valid decimal number in display format, removes the
display character, and places the results in the receiver
operand. The operation begins by scanning the
character string value in the source operand to make
sure it is a valid decimal number in display format.

The character string defined by operand 2 consists of
the following optional entries:

« Currency symbol — This value is optional and, if
present, must precede any sign and digit values. The
valid symbol is determined by operand 3. The
currency symbol may be preceded in the field by
blank (hex 40) characters.

« Sign symbol — This value is optional and, if present,
may precede any digit values (a leading sign) or may
follow the digit values (a trailing sign). Valid signs are
positive (hex 4E) and negative (hex 60). The sign
symbol, if it is a leading sign, may be preceded by
blank characters. If the sign symbol is a trailing sign,
it must be the rightmost character in the field. Only
one sign symbol is allowed.

« Decimal digits — Up to 31 decimal digits may be
specified. Valid decimal digits are in the range of hex
FO through hex F9 (0-9). The first decimal digit may
be preceded by blank characters (hex 40), but hex 40
values located to the right of the leftmost decimal
digit are invalid.

The decimal digits may be divided into two parts by
the decimal point symbol: an integer part and a
fractional part. Digits to the left of the decimal point
are interpreted as integer values. Digits to the right
are interpreted as a fractional values. If no decimal
point symbol is included, the value is interpreted as
an integer value. The valid decimal point symbol is
determined by operand 3. If the decimal point
symbol precedes the leftmost decimal digit, the digit
value is interpreted as a fractional value, and the
leftmost decimal digit must be adjacent to the
decimal point symbol. If the decimal point follows
the rightmost decimal digit, the digit value is
interpreted as an integer value, and the rightmost
decimal digit must be adjacent to the decimal point.

Decimal digits in the integer portion may optionally
have comma symbols separating groups of three
digits. The leftmost group may contain one, two, or
three decimal digits, and each succeeding group must
be preceded by the comma symbol and contain three
digits. The comma symbol must be adjacent to a
decimal digit on either side. The valid comma symbol
is determined by operand 3.

Decimal digits in the fractional portion may not be
separated by commas and must be adjacent to one
another.

Examples of external formats follow. The following
symbols are used.

$ — currency symbol
— decimal point
— comma

D - digit (hex FO - hex F9)

b — blank (hex 40)

+ — positive sign

- — negative sign

Format Comments

$+DDDD.DD Currency symbol, leading sign,
no comma separators

DD,DDD- Comma symbol, no fraction,
trailing sign

-.DDD No integer, leading sign

$DDD,DDD- No fraction, comma symbol,
trailing sign

b$b5+HDD.DD Embedded blanks before digits

Computation and Branching Instructions 2-19

Operand 3 must be a 3-byte character scalar. Byte 1 of
the string indicates the byte value that is to be used for
the currency symbol. Byte 2 of the string indicates the
byte value to be used for the comma symbol. Byte 3 of
the string indicates the byte value to be used for the
decimal point symbol. If operand 3 is null, the currency
symbol (hex 5B), comma (hex 6B), and decimal point
(hex 4B) are used.

If the syntax rules are violated, a conversion exception is
signaled. If not, a zoned decimal value is formed from
the digits of the display format character string. This
number is placed in the receiver operand following the
rules of a normal arithmetic conversion.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-20

Exceptions

Exception

06

08

oC

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

01 Parameter reference violation
Computation

01 Conversion

OA Size

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Objeét Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

0A Invalid operand length

0OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

02 Scalar attribute invalid

Operands

123

X X X X
X X X X
X X X X

x
x
x

x
X

x
x

X X X X X

X X X X X

s
X

X

CONVERT HEX TO CHARACTER (CVTHC)

Op Code Operand Operand
(hex) 1 2
1086 Receiver Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Description: Each hex digit (4-bit value) of the string
value in the source operand is converted to a character
(8-bit value) and placed in the receiver operand.

Hex Digits Characters
Hex 0-9 = Hex FO-F9
Hex A-F = Hex C1-C6

The operation begins with the two operands
left-adjusted and proceeds left to right until all the
characters of the receiver operand have been filled. If
the source operand contains fewer hex digits than
needed to fill the receiver, the excess characters are
assigned a value of hex FO. If the source operand is 100
large, a length conformance or an invalid operand length
exception is signaled.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

ocC

10

1c

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Computation

08 Length conformance
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
02

Computation and Branching Instructions

Operands

1

X
x

x
x

X X X X X
X X X X X

2

x

Other

2-21

CONVERT NUMERIC TO CHARACTER (CVTNC)

Op Code Operand Operand Operand
(hex) 1 2 3
10A3 Receiver Source Attributes

Operand 1: Character variable scalar or data-pointer-defined
character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric
scalar.

Operand 3: Character(7) scalar or data-pointer-defined
character(7) scalar.

Description: The source numeric value (operand 2) is
converted and copied to the receiver character string
{operand 1). The receiver operand is treated as though it
had the attributes supplied by operand 3.

Operand 1, when viewed in this manner, receives the
numeric value of operand 2 following the rules of the

Copy Numeric Value instruction.

The format of operand 3 is as follows:

« Scalar attributes Char(7)
— Scalar type Char(1)
Hex 00 = Binary
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
— Scalar length Bin(2)
If binary:
Length (L) Bits 0-15
(where L=2 or 4)
If zoned decimal or packed
decimai:
Fractional digits (F) Bits 0-7 .
"Total digits (T) (where Bits 8-15
1<T<31andO<F<T)
— Reserved (binary 0) Bin{4)

2-22

The byte length of operand 1 must be large enough to
contain the numeric value described by operand 3. If it
is not large enough, a scalar value invalid exception is
signaled. If it is larger than needed, the numeric value is
placed in the leftmost bytes and the unneeded rightmost
bytes are unchanged by the instruction.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process .
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions COPY BYTES LEFT-ADJUSTED (CPYBLA)

Operands Op Code Operand Operand
Exception 1 2 3[4,5] Other (hex) 1 2
06 Addressing 10B2 Receiver Source
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Character variable scalar, numeric variable scalar,
03 Range X X X data-pointer-defined character scalar, or data-pointer-defined
04 External data object not found X X X numeric scalar.

08 Ar ent/Paramete .
8 gument/Parameter Operand 2: Character scalar, numeric scalar,

01 Parameter reference violation X X X data-pointer-defined character scalar, or data-pointer-defined
0C Computation numeric scalar.
02 Decimal data X
OA Size X
10 Damage Encountered Description: The logical string value of the source
04 System object damage state X X X X operand is copied to the logical string value of the
44 Partial system object damage X X X X receiver operand (no padding done).
1C Machine-Dependent Exception
03 Machine storage limit X The operands can be either character or numeric. Any
ex.ceeded numeric operands are interpreted as logical character
20 Machine Support .
02 Machine check X strings.
29 ooij::tnzt:;:s(s:h%k X The length of the operation is equal to the length of the
. shorter of the two operands. The copying begins with
01 Ob'_eCt not found X X X the two operands left-adjusted and proceeds until the
02 Ob!ect destroyed X X X shorter operand has been copied.
03 Object suspended X X X
24 Pointer Specification
01 Pointer does not exist X X X Events
02 Pointer type invalid X X X

2A Program Creation 000C Machine resource

06 Invalfd operand typ? X X X 0201 Machine auxiliary storage threshold exceeded
07 Invalid operand attribute X X X
gi :nva:!: operanj ;ralu:hrange § X ;((0010 Process
oc |nva|!d operand gg?r " X X X 0701 Maximum processor time exceeded
nvall c%p.era‘n reference 0801 Process storage limit exceeded
32 Scalar Specification
01 Scalar typ? "Wa!'d . X X X 0016 Machine observation
02 Scalar attribute invalid X 0101 Instruction reference
03 Scalar value invalid X

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-23

Exceptions

Exception

06

08

10

1Cc

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

2-24

Operands

1

X X X X
X X X X

x
x

X
x

X
x

X X X X X

X X X X X

X
X

2

x

COPY BYTES LEFT-ADJUSTED WITH PAD
(CPYBLAP)

Op Code Operand Operand Operand
(hex) 1 2 3
10B3 Receiver Source Pad

Operand 1: Character variable scalar or numeric variable

~ scalar, data-pointer-defined character scalar, or

data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the leftmost bytes of the receiver operand, and each
excess byte of the receiver operand is assigned the
single byte value in the pad operand. If the pad operand
is more than 1 byte in length, only its leftmost byte is
used. If the source operand is longer than the receiver
operand, the leftmost bytes of the source operand
(equal in length to the receiver operand) are copied to
the receiver operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

Operands
123

X X X X

X
x

x
x

X
x

x
X

X X X X X

X X X X X

x
b

X X X X

COPY BYTES OVERLAP LEFT-ADJUSTED
(CPYBOLA)

Op Code Operand Operand
(hex) 1 2
10BA Receiver Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two operands. The copying begins with
the two operands left-adjusted and proceeds until the
shorter operand has been copied. The excess bytes in
the longer operand are not included in the operation.

Predictable results occur even if two operands overlap
because the source operand is, in effect, first copied to
an intermediate result.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-25

Exceptions

Exception

06

08

10

1c

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

2-26

Operands

123

X X X X
X X X X

x
x

x

x
x

x
x

X X X X X

X X X X X

x
x

x

COPY BYTES OVERLAP LEFT-ADJUSTED WITH
PAD (CPYBOLAP)

Op Code Operand Operand Operand
(hex) 1 2 3
10BB Receiver Source Pad

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings. ‘

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the leftmost bytes of the receiver operand and each
excess byte of the receiver operand is assigned the
single byte value in the pad operand. If the pad operand
is more than 1 byte in length, only its leftmost byte is
used. If the source operand is longer than the receiver
operand, the leftmost bytes of the source operand
(equal in length to the receiver operand) are copied to
the receiver operand.

Predictable results occur even if two operands overlap
because the source operand is, in effect, first copied to
an intermediate result.

Events

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter -

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference

Operands
12 3

bed
X
X

xX X
X X
xX X

X X X X X
X X X X X
X

Other

COPY BYTES REPEATEDLY (CPYBREP)

Op Code Operand Operand
(hex) 1 2
10BE Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The logical string value of the source
operand is repeatedly copied to the receiver operand
until the receiver is filled.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

.

The operation begins with the two operands

left-adjusted and continues until the receiver operand is
completely filled. If the source operand is shorter than
the receiver, it is rereatedly copied from left to right (all
or in part) until the receiver operand is completely filled.

If the source operand is longer than the receive operand,
the leftmost bytes of the source operand (equal in

length to the receiver operand) are copied to the receiver -
operand.

Events

000C Machine resource.
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
- 0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-27

Exceptions

Exception

06

08

10

1c

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference

2-28

Operands

1

X
X X

x
x

X X

X X X X X

2

xX X

X X X X X

COPY BYTES RIGHT-ADJUSTED (CPYBRA)

Op Code Operand Operand -
{hex) 1 2
10B6 Receiver Source

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined

numeric scalar.

Descfiption: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done). .

The operands.can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two operands. The rightmost bytes (equal
to the length of the shorter of the two operands) of the
source operand are copied to the rightmost bytes of the
receiver operand. The excess bytes in the longer
operand are not included in the operation.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction referen(_:e

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

Operands

1

X X X X

x
X

b s
x

x
x

X X X X X

X X X X X

X
bod

2

X X X X

X

x

COPY BYTES RIGHT-ADJUSTED WITH PAD
(CPYBRAP)

Op Code Operand Operand Operand
(hex) 1 2 3
10B7 Receiver Source Pad

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed)._,

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the rightmost bytes of receiver operand, and each
excess byte is assigned the single byte value in the pad
operand. If the pad operand is more than 1 byte in
length, only its leftmost byte is used. If the source
operand is longer than the receiver operand, the
rightmost. bytes of the source operand (equal in length
to the receiver operand) are copied to the receiver
operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-29

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded

Machine Support

02 Machine check
03 Function check
Object Access

01 Object not found
02 Object destroyed
03 Object suspended
Pointer Specification

.01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

Operands

123

X X X X
X X X X

x
x

x

x

X
X
X

x
x
X

X X X X X
X X X X X
X X X X X

X
X

x

x

COPY HEX DIGIT NUMERIC TO NUMERIC
(CPYHEXNN)

Op Code: Operand Operand
{hex) 1 2
1092 Receiver Source

Operand 7: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4
bits) of the leftmost byte referred to by the source
operand is copied to the numeric hex digit value
(rightmost 4 bits) of the leftmost byte referred to by the
receiver operand.

The operands can be either character strings or numeric.
Any numeric opefands are interpreted as logical
character strings.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process ;
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

o8

10

1C

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference

Operands

1

X
x

x
X

x
X

X X X X X
X X X X X

2

x

COPY HEX DIGIT NUMERIC TO ZONE {CPYHEXNZ)

Op Code Operand Operand
(hex) 1 2
1096 Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4
bits) of the leftmost byte referred to by the source
operand is copied to the zone hex digit value (leftmost 4
bits) of the leftmost byte in the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-31

Exceptions

Exception

06

08

10

1Cc

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference

Operands

1

x
x

X
x

X X X X X

2

X X X X X

COPY HEX DIGIT ZONE TO NUMERIC (CPYHEXZN)

Op Code Operand Operand
(hex) 1 2
109A Receivef ‘Source

Operand 7: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar {fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the source operand is
copied to the numeric hex digit value (rightmost 4 bits)
of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference

Operands

1

X

x
x

X
x

X X X X X
X X X X X

2

x

COPY HEX DIGIT ZONE TO ZONE (CPYHEXZZ)

Op Code Operand Operand
(hex) 1 2
109E Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the source operand is
copied to the zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference
0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-33

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Paramieter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference

2-34

Operands

1

x

X X
X X

X X X X X
X X X X X

2

x

COPY NUMERIC VALUE (CPYNV)

Op Code Operand Operand
{hex) 1 2
1042 Receiver Source

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Numeric scalar or data pointer-defined-numeric
scalar. ’

Optional Forms

Op Code
Mnemonic (hex) Form Type
CPYNVR 1242 Round
CPYNVI 1842 Indicator
CPYNVIR 1A42 Indicator, Round
CPYNVB 1C42 Branch

CPYNVBR 1E42 Branch, Round

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the aliowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the source
operand is copied to the numeric receiver operand.

Both operands must be numeric. If necessary, the
source operand is converted to the same type as the
receiver operand before being copied to the receiver
operand. The source value is adjusted to the length of
the receiver operand, aligned at the assumed decimal
point of the receiver operand, or both before being
copied to it. Length adjustment and decimal point
alignment are performed according to the rules of
arithmetic operations outlined in the Functional Concepts
Manual. If significant digits are truncated on the left end
of the source value, a size exception is signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar receiver operand is positive, negative, or O.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

oc

10

1c

20

22

24

2A

2C

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

OA Size

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0C Invalid operand ODT reference
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid

Computation and Branching Instructions

Operands

1

X X X X
X X X X

x

2

Other

2-35

DIVIDE (D1V)

Op Code Operand Operand Operand
(hex) 1 2 3
104F Quotient Dividend Divisor

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type
DIVS 114F Short
DIVR 124F Round
DIVSR 134F Short, Round
DIvi 184F Indicator
DIVIS 194F Indicator, Short
DIVIR 1A4F Indicator, Round
DIVISR 1B4F Indicator, Short, Round
DIVB 1C4F Branch
DIVBS 1D4F Branch, Short
DIVBR 1E4F Branch, Round
DIVBSR 1F4F Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands will immediately follow the
last operand listed above. See Chapter 1. Introduction
for the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

2-36

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand, and the result is placed in the quotient
operand.

All of the operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

If the divisor has a numeric value of O, a zero divide
exception is signaled. If the dividend has a value of O,
the result of the division is a zero value quotient.

For a decimal operation, alignment of the assumed
decimal point takes place if the dividend operand is of
lesser precision than the precision of the divisor plus the
precision of the quotient or if the divisor is of lesser
precision than the precision of the dividend minus the
precision of the quotient. The dividend is padded on the
right with.0’s to align it to the precision of the divisor
plus the precision of the quotient. The divisor is padded
on the right with O’s to align it to the precision of the
dividend minus the precision of the quotient.

If the dividend operand is shorter than the divisor
operand, it is logically adjusted to the length of the
divisor operand.

The division operation is performed according to the
rules of algebra.

The result of the operation is copied into the quotient
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the quotient operand, aligned
at the assumed decimal point of the quotient operand,
or both before being copied to it. Length adjustment
and decimal point alignment are performed according to
the rules for arithmetic operations as outlined in the
Functional Concepts Manual. If significant digits are
truncated on the left end of the resultant value, a size
exception is signaled. A decimal point alignment
exception is also signaled when a division operation is
performed in decimal and one of the following
conditions occurs:

« The dividend operand is aligned, and the number of
fractional digits specified in the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

« The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the divisor operand exceeds 31.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar quotient operand is positive, negative, or Q.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

oc

10

1Cc

20

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument / Parameter

01 Parameter reference violation
Computation

02 Decimal data

03 Decimal point alignment

OA Size

OB Zero divide

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OC Invalid operand ODT reference
Program Execution

04 Invalid branch target

Computation and Branching Instructions

Operands
12 3

X
x
X

Other

2-37

DIVIDE WITH REMAINDER (DIVREM)

Op Code Operand Operand Operand = Operand
{hex) 1 2 3 4
1074 Quotient Dividend Divisor Remainder

Operand 7: Numeric variable scalar.
Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4: Numeric variable scalar.

Optional Forms

(The optional forms apply to the quotient only.)

Op Code
Mnemonic (hex) Form Type
DIVREMS 1174 Short
DIVREMR 1274 Round
DIVREMSR 1374 Short, Round
DIVREMI 1874 Indicator
DIVREMIS 1974 Indicator, Short
DIVREMIR 1A74 Indicator, Round
DIVREMISR 1B74 Indicator, Short, Round
DIVREMB 1C74 Branch
DIVREMBS 1D74 Branch, Short
DIVREMBR 1E74 Branch, Round
DIVREMBSR 1F74 Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options. -

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

2-38

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand; the quotient is placed in the quotient operand;
the remainder is placed in the remainder operand.

The operands must be numeric with any implicit
conversions occurring according to the rules for
arithmetic operations as outlined in the Functional
Concepts Manual. .

If the divisor operand has a numeric value of O, a zero
divide exception is signaled. If the dividend operand has
a value of O, the result of the division is a zero value
quotient and remainder.

For a decimal operation, alignment of the assumed
decimal point takes place if the dividend operand is of
lesser precision than the precision of the divisor operand
plus the precision of the quotient operand or if the
divisor operand is less than the precision of the dividend
operand minus the precision of the quotient operand.
The dividend operand is padded on the right with O’s to
align it to the precision of the divisor operand plus the
precision of the quotient operand. The divisor operand
is padded on the right with O’s to align it to the
precision of the dividend operand minus the precision of
the quotient operand.

If the dividend operand is shorter than the divisor
operand, it is logically adjusted to the length of the
divisor operand.

The division operation is performed according to the
rules of algebra. The quotient result of the operation is
copied into the quotient operand. If this operand is not
the same type as that used in performing the operation,
the resultant value is converted to its type. If necessary,
the resultant value is adjusted to the length of the
quotient operand, aligned at the assumed decimal point
of the quotient operand, or both before being copied to
it. Length adjustment and decimal point alignment are
performed according to the rules of arithmetic
operations as outlined in the Functional Concepts Manual.
If significant digits are truncated on the left end of the
resultant value, a size exception is signaled. A decimal
point alignment exception is also signaled when a
division operation is performed in decimal and one of
the following conditions occurs:

« The dividend operand is aligned, and the number of
fractional digits specified in the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

« The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the division operand exceeds 31.

After the quotient numeric value has been determined,
the numeric value of the remainder operand is calculated

as follows:

Remainder = Dividend - (Quotient*Divisor)

If the optional round form of this instruction is being
used, the rounding applies to the quotient but not the
remainder. The quotient value used to calculate the
remainder is the resultant value of the division. The
resultant value of the calculation is copied into the
remainder operand. The sign of the remainder is the
same as that of the dividend operand unless the
remainder has a value of O, in which case its sign is
positive. If the remainder operand is not the same type
as that used in performing the operation, the resuitant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the remainder operand,
aligned at the assumed decimal point of the remainder
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations as
outlined in the Functional Concepts Manual. If significant
digits are truncated off the left end of the resultant
value, a size exception is signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar gquotient is positive, negative, or O.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-39

10

1C

20

22

24

2A

2C

OA Size X
0B Zero divide

Damage Encountered

04 System object damage state X
44 Partial system_object damage X
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support
02 Machine check
03 Function check
Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended » X
Pointer Specification

01 Pointer does not exist , X
02 Pointer type invalid X

Program Creation _
05 Invalid op code extender field

06 Invalid operand type X
07 invalid operand attribute X
08 Invalid operand value range X
09 Invalid branch target operand
0C Invalid operand ODT reference X
Program Execution

04 Branch target invalid

2-40

Exceptions
Exception . 12
06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range _ X X
‘08 Argument/Parameter o
01 Parameter reference violation X X
0C Compuation '
‘ 02 Decimal data X
03 Decimal point alignment X

EDIT (EDIT)

Op Code Operand Operand Operand
(hex). . 1 2 3

10E3 Receiver Source Edit mask

Operand 1: Character variable scalar or _data-pointer~defined
character scalar. :

Operand 2: Numeric scalar or data-pointer-defined numeric
scalar.

Operand 3: Character scalar or data-pointer-defined character
scalar.

Description: The value of a numeric scalar is
transformed from its internal form to character form
suitable for display at a source/sink device. The
following general editing functions can be performed
during transforming of the source operand to the
receiver operand:

« Unconditional insertion of a source value digit with a
zone as a function of the source value’s algebraic
sign

« Unconditional insertion of a mask operand character
string

» Conditional insertion of one of two possible mask
operand character strings as a function of the source
value’s algebraic sign :

« Conditional insertion of a source value digit or a mask
operand replacement character as a function of
source value leading zero suppression

« Conditional insertion of either a mask operand
character string or a series of replacement characters
as a function of source value leading zero
suppression

« Conditional floating insertion of one of two possible
mask operand character strings as a function of both
the algebraic sign of the source value and leading
zero suppression

The operation is performed by transforming the source
(operand 2) under control of the edit mask (operand 3)
and placing the result in the receiver (operand 1).

The mask operand (operand 3) is limited to no more
than 256 bytes.

Mask Syntax: The source field is converted to packed
decimal format. The edit mask contains both control
character and data character strings. Both the edit mask
and the source fields are processed left to right, and the
edited result is placed in the result field from left to
‘right. If the number of digits in the source field is even,
the four high-order bits of the source field are ignored
and not checked for validity. All other source digits as
well as the sign are checked for validity, and a decimal
data exception is signaled when one is invalid.
Overlapping of any of these fields gives unpredictable
results.

Ten types of control characters can be in the edit mask,
hex AA through hex B3. Four of these control
characters specify strings of characters to be inserted
into the result field under certain conditions; one
indicates the end of a string of characters; and the other
five indicate that a digit from the source field should be
checked and the appropriate action taken.

A significance indicator is set to the off state at the start
of the execution of this instruction. It remains in this
state until a nonzero source digit is encountered in the
source field or until one of the four unconditional digits
(hex AA through hex AD) or an unconditional string (hex
B3) is encountered in the edit mask.

When significance is detected, the selected floating
string is overlaid into the result field immediately before
(to the left of) the first significant result character.

When the significance indicator is set to the on state,
the first significant resuit character has been reached.
The state of the significance indicator determines
whether the fill character or a digit from the source field
is to be inserted into the result field for conditional
digits and characters in conditional strings specified in
the edit mask field. The fill character is a hex 40 until it
is replaced by the first character following the floating
string specification control character (hex B1).

When the significance indicator is in the off state:

« A conditional digit control character in the edit mask
causes the fill character to be moved to the result
field.

« A character in a conditional string in the edit mask
causes the fill character to be moved to the result
field.

When the significance indicator is in the on state:

« A conditional digit control character in the edit mask
causes a source digit to be moved to the result field.

« A character in a conditional string in the edit mask is
moved to the result field.

The following control characters are found in the edit
mask field.

End-of-String Character

Hex AE This control character indicates the end of a
character string and must be present even

if the string is null.

Static Field Character

Hex AF This control character indicates the start of
a static field. A static field is used to
indicate that one of two mask character
strings immediately following this character
is to be inserted into the result field,
depending upon the algebraic sign of the
source field. If the sign is positive, the first
string is to be inserted into the result field;
if the sign is negative, the second string is
to be inserted.

Static field format:

Hex AF positive string. . .hex AE negative
string. . .hex AE

Computation and Branching Instructions 2-41

Floating String Specification Field Character

Hex B1

This control character indicates the start of
a floating string specification field. The first
character of the field is used as the fill
character; following the fill character are
two strings delimited by hex AE (the
end-of-string control character). If the
algebraic sign of the source field is positive,
the first string is to be overlaid into the
result field; if the sign is negative, the
second string is to be overlaid.

The string selected to be overlaid into the
result field, called a floating string, appears
immediately to the left of the first
significant result character. If significance is
never set, neither string is placed in the
result field.

Conditional source digit positions (hex B2
control characters) must be provided in the
edit mask immediately following the hex B1
field to accommodate the longer of the two
floating strings; otherwise, a length
conformance exception is signaled. For
each of these B2 strings, the fill character
is inserted into the result field, and source
digits are not consumed. This ensures that
the floating string never overlays bytes
preceding the receiver operand.

Floating string specification field format:

Hex B1 fill character positive string. . .hex
AE negative string. . .hex AE hex B2. ..

Conditional String Character

Hex BO

2-42

This control character indicates the start of a
conditional string, which consists of any
characters delimited by hex AE (the
end-of-string control character). Depending
on the state of the significance indicator,
this string or fill characters replacing it is
inserted into the result field. If the
significance indicator is off, a fill character
for every character in the conditional string
is placed in the result field. If the indicator
is on, the characters in the conditional string
are placed in theresult field.

Conditional string format:

Hex BO conditional string. . .hex AE

Unconditional String Character

Hex B3

This control character turns on the
significance indicator and indicates the start
of an unconditional string that consists of
any characters delimited by hex AE (the
end-of-string control character). This string
is unconditionally inserted into the result
field regardless of the state of the
significance indicator. If the indicator is off
when a B3 control character is
encountered, the appropriate floating string
is overlaid into the result field before (to the
left of) the B3 unconditional string (or to
the left of where the unconditional string
would have been if it were not null).

Unconditional string format:

Hex B3 unconditional string. . .hex AE

Control Characters That Correspond to Digits in the
Source Field

Hex B2

This control character specifies that either
the corresponding source field digit or the
floating string (hex B1) fill character is
inserted into the result field, depending on
the state of the significance indicator. If
the significance indicator is off, the fill
character is placed in the result field; if the
indicator is on, the source digit is placed.
When a source digit is moved to the result
field, the zone supplied is hex F. When
significance (that is, a nonzero source digit)
is detected, the floating string is overlaid to
the left of the first significant character.

Control characters hex AA, hex AB, hex AC, and hex AD
turn on the significance indicator. If the indicator is off
when one of these control characters is encountered,
the appropriate floating string is overlaid into the result
field before (to the left of) the result digit.

Hex AA

Hex AB

Hex AC

Hex AD

This control character specifies that the
corresponding source field digit is
unconditionally placed in the 4 low-order
bits of the result field with the zone set to
a hex F.

This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the sign of the source field is positive, the
zoned portion of the digit is set to hex F
(the preferred positive sign); if the sign is
negative, the zone portion is set to hex D
(the preferred negative sign).

This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
positive, the zone portion of the result is
set to hex F (the preferred positive sign);
otherwise, the source sign field is moved to
the result zone field.

This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
negative, the zone is set to hex D (the
preferred negative sign); otherwise, the
source field sign is moved to the zone
position of the result byte.

Computation and Branching Instructions

2-43

The following table provides an overview of the results
obtained with the valid edit conditions and sequences.

Mask
Character

AF

AA

AB

AC

AD

Figure 2-1 (Part 1 of 2). Valid Edit Conditions and Results

2-44

Previous
Significance
Indicator

Off/On
Off/On
Off

Off

On
Off

Off

On
On
Off

Off

On

Off

Off

On
On

Source
Digit
Any
Any
0-9

0-9

0-9
0-9

0-9

0-9
0-9
0-9

0-9

0-9
0-9
0-9

09

0-9
0-9

Source
Sign

. Positive

Negative

Positive

Negative

Any

Positive

Negative

Positive
Negative

Positive

Negative

Positive
Negative

Positive

Negative

Positive

Negative

Result Character(s)}
Positive string inserted
Negative string inserted

Positive floating string overlaid;
hex F, source digit

Negative floating string overlaid;
hex F, source digit

Hex F, source digit

Positive floating string overlaid;
hex F, source digit

Negative floating string overlaid;
hex D, source digit

Hex F, source digit
Hex D, source digit

Positive floating string overlaid;
hex F, source digit

Negative floating string overlaid;
source sign and digit

Hex F, source digit
Source sign and digit

Positive floating string overlaid;
source sign and digit

Negative floating string overlaid;
hex D, source digit

Source sign and digit

Hex D, source digit

Resulting
Significance
Indicator

No Change
No Change
On

On

Mask
Character

BO

B1
(including
necessary
B2s)

B2 (not for
a B1 field)

B3

Figure 2-1 (Part 2 of 2). Valid Edit Conditions and Results

Notes:

Previous
Significance
Indicator
Off

On
Off

Off

Off

Off

Off

Off

On

Source
Digit
Any

Any
Any

0-9
Any

Any

Any

Source
Sign
Any

Any
Any

Any

Positive

Negative

Any

Positive

Negative

Any

Result Character(s)

Insert fill character for each BO
string character

Insert BO character string

Insert the fill character for each
B2 character that corresponds
to a character in the longer of
the two floating strings

Insert fill character

Overlay positive floating string
and insert hex F, source digit

Overlay negative floating string
and insert hex F, source digit

Hex F, source digit

Overlay positive floating string
and insert B3 character string

Overlay negative floating string
and insert B3 character string

Insert B3 character string

1. Any character is a valid fill character, including hex AE.
2. Hex AF, hex B1, hex BO, and hex B3 strings must be terminated by hex AE even if they are null

strings

Resulting
Significance
Indicator

- Off

On
No Change

Off

On

On

On

On

3. If a hex B1 field has not been encountered (specified) when the significance indicator is turned on,
the floating string is considered to be a null string and is therefore not used to overlay into the result

field.

4. If the positive and negative strings of a static field are of unequal length, additional static fields are
necessary to ensure that the sum of the lengths of the positive strings equal the sum of the lengths
of the negative strings; otherwise, a length conformance exception is signaled because the receiver
length does not correspond to the length implied by the edit mask and source field sign.

Computation and Branching Instructions

2-45

The following figure indicates the valid ordering of
control characters in an edit mask field.

AA, AB, AC, AD

Control Character Y

AF BO Bt B2 B3

(0] 0 2 2 2 0

AF |0 |0 0 0 0 0

BO 1 0 0 2 0 1

Control
Character X B1 1 0 1 3 1 1

B2 1 0 0 2 0 1

B3 0 0 2 2 2 0

Explanation:
Condition Definition
0 Both X and Y can appear in the edit mask field in either order.
1 Y cannot precede X.
2 X cannot precede Y.
3 Both control characters (two B1’s) cannot appear in an edit mask field.

Violation of any of the above rules will result in an edit mask syntax exception.

Figure 2-2. Edit Mask Field Control Characters

2-46

The following steps are performed when the editing is
done:

« Convert Source Value to Packed Decimal
— The numeric value in the source operand is
converted to a packed decimal intermediate value
before the editing is done. If the source operand
is binary, then the attributes of the intermediate
packed field before the edit are caiculated as
follows:

Binary(2) = packed (5,0) or
binary(4) = packed (10,0).

« Edit
— The editing of the source digits and mask insertion
characters into the receiver operand is done from
left to right.

« Insert Floating String into Receiver Field
— If a floating string is to be inserted into the
receiver field, this is done after the other editing.
Edit Digit Count Exception
An edit digit count exception is signaled when:
« The end of the source field is reached and there are
more control characters that correspond to digits in

the edit mask field.

« The end of the edit mask field is reached and there
are more digit positions in the source field.

Edit Mask Syntax Exception

An edit mask syntax exception is signaled when an
invalid edit mask control character is encountered or
when a sequence rule is violated.

Length Conformance Exception
A length conformance exception is signaled when:

« The end of the edit mask field is reached and there
are more character positions in the result field.

+ The end of the result field is reached and more
positions remain in the edit mask field.

« The number of B2s following a B1 field cannot
accomodate the longer of the two floating strings.

Events

000C Machine resource .
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-47

Exceptions

Exception

06

08

oc

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

04 External data object not found
Argument / Parameter

01 Parameter reference violation
Computation

02 Decimal data

04 Edit digit count

05 Edit mask syntax

08 Length conformance
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

2-48

Operands

12 3

X X X X
X X X X
X X X X

x
X
X

xX X

X X X X X

X

x

xX X

X X X X X

x

EXCHANGE BYTES (EXCHBY)

Op Code ‘ Operand Operand
{hex) 1 2
10CE Source 1 Source 2

Operand 1: Character variable scalar {fixed-length) or numeric
variable scalar.

Operand 2: Character variable scalar (fixed-length) or numeric
variable scalar.

Description: The logical character string values of the
two source operands are exchanged. The value of the
second source operand is placed in the first source
operand and the value of the first source operand is
placed in the second operand.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings. Both operands must have the same length.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06
08
10
1C

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference

Operands

1

x

xX X x

X X X X X
X X X X X

2

xX X

EXCLUSIVE OR (XOR)

Op Code Operand Operand Operand
(hex) 1 2 3
109B Receiver Source 1 Source 2
Operand 1: Character variable scalar.
Operand 2: Character scalar.
Operand 3: Character scalar.
Optional Forms

Op Code
Mnemonic (hex) Form Type
XORS 119B Short
XORI 189B Indicator
XORIS 1998 Indicator, Short
XORB 1C9B Branch
XORBS 1D9B Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second.- source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean EXCLUSIVE OR operation is
performed on the string values in the source operands.
The resuiting string is placed in the receiver operand.

The operands must be character strings and are
interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is padded on the right. The operation
begins with the two source operands left-adjusted and
continues bit by bit until they are completed.

Computation and Branching Instructions 2-49

The bit values of the result are determined as follows:

Exceptions
Source 1 Source 2 Result Operands
Bit Bit Bit Exception 123 Other
1 1 0 06 Addressing
0 0 0 01 Space addressing violation X X X
1 0 1 02 Boundary alignment X X X
0 1 1 03 Range X X X
08 Argument/Parameter
The result value is then placed (left-adjusted) in the 01 Parameter reference violation X X X
receiver operand with truncating or padding taking place 10 Damage Encountered
on the right. 04 System object damage state X X X
44 Partial system object damage X X X
The pad value used in this instruction is a hex 00. 1C Machine-Dependent Exception
03 Machine storage limit exceeded
If operands overlap but do not share all of the same 20 Machine Support
bytes, results of operations performed on these 02 Machine check
operands are not predictable. If overlapped operands 03 Function check
share all of the same bytes, the results are predictable 22 Object Access
when direct addressing is used. If indirect addressing is 01 Object not found X X X
used (that is, based operands, parameters, strings with 02 Object destroyed X X X
variable lengths, and arrays with variable subscripts), the 03 Object suspended X X X
results are not always predictable. 24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
Resultant Conditions: The bit values for the bits of the 2A Program Creation
scalar receiver operand are either all zero or not all zero. 05 Invalid op code extender field
06 Invalid operand type X X X
07 Invalid operand attribute X X X
Events 08 Invalid operand value range X X X
09 Invalid branch target operand
000C Machine resource ‘ OA Invalid operand length X X X
0201 Machine auxiliary storage threshold exceeded 0C Invalid operand ODT reference X X X

0010 Process »
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-50

2C

Program Execution
04 Branch target invalid

EXTRACT MAGNITUDE (EXTRMAG)

Op Code Operand Operand
(hex) 1 2
1052 Receiver Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type
EXTRMAGS 1152 Short
EXTRMAGI 1852 Indicator

EXTRMAGIS 1952 Indicator, Short
EXTRMAGB 1C52 Branch
EXTRMAGBS 1D52 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand). '

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands {for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The numeric value of the source operand is
converted to its absolute value and placed in the
numeric variable scalar receiver operand.

The absolute value is formed from the source operand
as follows:

« Binary
— Extract the numeric value and form twos
complement if the source operand is negative.

« Packed/Zoned
— Extract the numeric value and force the source
operand’s sign to positive.

The result of the operation is copied into the receiver
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the receiver operand, or
aligned at the assumed decimal point of the receiver
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations outlined
in the Functional Concepts Manual. If significant digits
are truncated on the left end of the resultant value, a
size exception is signaled. An attempt to extract the
magnitude of a maximum negative binary value to a
binary scalar of the same size also results in a size
exception.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the receiver
operand is either positive or 0.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-51

Exceptions

Exception

06

08

ocC

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

OA Size

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid -

Program Creation

05 Invalid op code extender field
06 Invalid operand type '

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0C Invalid operand ODT reference
Program Execution

04 Branch target invalid

2-52

Operands
1 2 Other
X X
X X
X X
X X
X
X
X X X
X X X
X
X
X
X X
X X
X X
X X
X X
X
X X
X X
X X
X
X X
X

MULTIPLY (MULT)

Op Code Operand Operand Operand
{hex) 1 2 3
104B Product Mulitiplicand Multiplier

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric 'scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type
MULTS 114B Short
MULTR 124B Round
MULTSR 134B Short, Round
MULTI 184B Indicator
MULTIS 194B Indicator, Short
MULTIR 1A4B Indicator, Round
MULTISR 1B4B ‘Indicator, Short, Round
MULTB 1C4B Branch
MULTBS 1D4B Branch, Short
MULTBR 1E4B Branch, Round
MULTBSR 1F4B Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the
multiplicand operand is multiplied by the numeric value
of the multiplier operand and the result is placed in the
product operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

If the multiplicand operand or the multiplier operand has
a value of O, the result of the multiplication is a zero
product.

For a decimal operation, no alignment of the assumed
decimal point is performed for the multiplier and
multiplicand operands.

The operation occurs using the specified lengths of the
multiplicand and multiplier operands with no logical zero
padding on the left necessary.

The multiplication operation is performed according to
the rules of algebra.

The result of the operation is copied into the product
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the product operand, aligned at
the assumed decimal point of the product operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual. If significant digits are truncated on
the left end of the resultant value, a size exception is
signaled.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resuitant Conditions: The algebraic value of the numeric -
scalar product is positive, negative, or 0.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set :

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-53

Exceptions

Operands

Exception 12 3[4 5]
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
08 Argument/Parameter .

01 Parameter reference violation X X
0C Computation

02 Decimal data X X

~ OA Size : X
10 Damage Encountered

04 System object damage state X X X

.44 Partial system object damage X X X
1C Machine-Dependent Exception

03 Machine storage limit

exceeded

20 Machine Support

02 Machine check

03 Function check -
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

05 Invalid op code extender field

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand

0C Invalid operand ODT reference X X X

2C

Program Execution

04 Branch target invalid

2-54

NEGATE (NEG)

Op Code Operand - Operand
(hex) 1 2

1056 Receiverr Source
Operand 71: Numeric variable scalar.

Operand 2: Numeric scalar.

Optional Forms

Op Code

Mnemonic (hex) Form Type
NEGS 1156 Short

NEGI 1856 Indicator
NEGIS 1956 Indicator, Short
NEGB 1C56 Branch

NEGBS 1D56 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specifiéd in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The sign of the numeric value in the source
operand is changed as if it had been multiplied by a
negative one (-1). The result is placed in the receiver
operand.

The sign changing of the source operand value (positive
to negative and negative to positive) is performed as
follows:

» Binary
— Extract the numeric value and form the twos
complement of it.

- Packed/Zoned
— Extract the numeric value and force its sign to
positive if it is negative or to negative if it is
positive.

The result of the operation is copied into the receiver
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the receiver operand, aligned
at the assumed decimal point of the receiver operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual. If significant digits are truncated on
the left end of the resultant value, a size exception is
signaled. An attempt to negate a maximum negative
binary value to a binary scalar of the same size also
results in a size exception. If a packed or zoned O is
negated, the result is always positive O.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the receiver
operand is positive, negative, or O.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands

Exception 1 2 Other
06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X
08 Argument/Parameter

01 Parameter reference violation X X
0C Computation

02 Decimal data X

OA Size X
10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check - X
22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X
2A Program Creation ;

05 Invalid op code extender field X

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

09 Invalid branch target operand X
OC Invalid operand ODT reference X X

2C Program Execution
04 Branch target invalid X

Computation and Branching Instructions 2-55

NO OPERATION (NOOP)

Op Code
(hex)

0000

Description: No function is performed. The instruction
consists of an operation code and no operands. The
instruction may not be branched to and is not counted
as an instruction in the instruction stream.

The instruction may be used for inserting gaps in the
instruction stream. These gaps allow instructions with
adjacent instruction addresses to be physically
separated.

The instruction may precede or follow any machine

instruction except the End instruction, and any number
of No Operation instructions may exist in succession.

2-56

NOT (NOT)

Op Code Operand Operand
(hex) 1 2

108A Receiver Source
Operand 1: Character variable scalar.

Operand 2: Character scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type
NOTS 118A Short
NOTI 188A Indicator
NOTIS 198A Indicator, Short
NOTB 1C8A Branch
NOTBS 1D8A Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean NOT operation is performed
on the string value in the source operand. The resulting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
source operand.

The bit values of the result are determined as follows:

Source ' Result
Bit Bit

1 0

0] 1

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00 byte.

Resultant Conditions: The bit values for the bits of the
scalar receiver operand are either all zero or not all zero.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

ic

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

0C Invalid operand ODT reference
Program Execution

04 Branch target invalid

Computation and Branching Instructions

OR (OR)

Op Code Operand

Operand Operand
(hex) 1 2 3
1097 Receiver Source 1 Source 2
Operand 1: Character variable scalar.
Operand 2: Character scalar.
Operand 3: Character scalar.
Optional Forms

Op Code

Mnemonic (hex) Form Type
ORS 1197 Short
ORI 1897 Indicator
ORIS 1997 Indicator, Short
ORB 1C97 Branch
ORBS 1D97 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
{second source operand).

Extender: Branch or Indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean OR operation is performed on
the string values in the source operands. The resulting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00. The excess bytes in the longer operand are
assigned to the results.

2-58

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1 1

0 1 1

1 0 1

0 0 0

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: The bit values for the bits of the
scalar receiver operand are either all zero or not all zero.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1Cc

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

OC Invalid operand ODT reference
Program Execution

04 Branch target invalid

Operands
123

Other

REMAINDER (REM)

Op Code Operand Operand Operand
(hex) 1 2 3
1073 Remainder Dividend Divisor
Operand 1: Numeric variable scalar.
Operand 2: Numeric scalar.
Operand 3: Numeric scalar.
Optional Forms

Op Code
Mnemonic (hex) Form Type
REMS 1173 Short
REMI 1873 Indicator
REMIS 1973 Indicator, Short
REMB 1C73 Branch
REMBS 1D73 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand, and the remainder is placed in the remainder
operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

Computation and Branching Instructions 2-59

If the divisor has a numeric value of O, a zero divide
exception is signaled. If the dividend has a value of O,
the result of the division is a zero value remainder.

For a decimal operation, alignment of the assumed
decimal point takes place if the dividend operand is of
lesser precision than the divisor or if the divisor is of
lesser precision than the dividend. The dividend is
padded on the right with O’s to align it to the precision
of the divisor. The divisor is padded on the right with
0’s to align it to the precision of the dividend.

If the dividend is shorter than the divisor, it is logically
adjusted to the length of the divisor.

The division operation is performed according to the
rules of algebra. Before the remainder is calculated, an
intermediate quotient is calculated. The attributes of this
quotient are derived from the attributes of the dividend
and divisor operands as follows:

Intermediate
Dividend Divisor Quotient
IM,SIM, or BIN(2) IM,SIM, or BIN(2) BIN(2)
IM,SIM, or BIN(2) BIN(4) BIN(4)
IM,SIM, or BIN(2) DECIMAL(P2,Q2) DECIMAL(5+Q2,0)
BIN{4) IM,SIM, or BIN(2) BIN(4)
BIN{4) DECIMAL(P2,Q2) DECIMAL(10+Q2,0)
DECIMAL(P1,Q1) IM,SIM, or BIN{(2) DECIMAL(P1,0)
DECIMAL(P1,Q1) BIN(4) DECIMAL(P1,0)
DECIMAL(P1,Q1) DECIMAL(P2,Q2) DECIMAL(P1-Q1+Q,0)
Where Q = Larger
of Q1 or Q2

IM = IMMEDIATE
SiM = SIGNED IMMEDIATE
DECIMAL = PACKED OR ZONED

After the intermediate quotient numeric value has been
determined, the numeric value of the remainder operand
is calculated as follows:

Remainder = Dividend - (Quotient*Divisor)
The sign of the remainder is the same és that of the
dividend unless the remainder has a value of 0. When

the remainder has a value of O, the sign of the
remainder is positive.

2-60

The resultant value of the calculation is copied into the
remainder operand. If this operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the remainder operand,
aligned at the assumed decimal point of the remainder
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations as
outlined in the Functional Concepts Manual. If significant
digits are truncated on the left end of the resultant
value, a size exception is signaled.

An exception is also signaled when a decimal division
operation is performed and one of the following
conditions occurs:

» The dividend is aligned, and the number of fractional
digits specified in the divisor plus the number of
fractional digits specified for the quotient plus the
number of significant integer digits in the dividend
exceeds 31.

« The divisor is aligned, and the number of fractional
digits specified for the dividend minus the number of
fractional digits specified for the quotient plus the
number of significant integer digits in the divisor
exceeds 31.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar remainder is positive, negative, or O.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage object
0801 Partial system object damage set

Exceptions

Exception

06

08

ocC

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

03 Decimal point alignment

OA Size

OB Zero divide

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 invalid operand attribute

08 Invalid operand value range
09 Invalid branch target

0C Invalid operand ODT reference
Program Execution

04 Branch target invalid

Operands

12

3

x

SCALE (SCALE)

Op Code Operand Operand Operand

(hex) 1 2 3

1063 Receiver Source Scale
factor

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Binary(2) scalar.

Optional Form

Op Code

Mnemonic (hex) Form Type

SCALES 1163 Short

SCALEI 1863 Indicator

SCALEIS 1963 Indicator, Short

SCALEB 1C63 Branch

SCALEBS 1D63 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Computation and Branching Instructions 2-61

Description: The scale instruction performs numeric
scaling of the source operand based on the scale factor
and places the results in the receiver operand. The
numeric operation is as follows:

Operand 1 = Operand 2 *(B**N)
where:

N is the binary integer value of the scale operand.
It can be positive, negative, or 0. If N is O, then
the operation simply copies the source operand
value into the receiver operand.

B is the arithmetic base for the type of numeric
value in the source operand.

Base Type B

Binary 2
Packed/Zoned 10

The operands must be of the numeric types indicated
with any implicit conversions occurring according to the
rules of arithmetic operations as outlined in the
Functional Concepts Manual. The scale operation is a
shift of N binary, packed, or zoned digits. The shift is to
the left if N is positive, to the right if N is negative.

If the source and receiver operands have different
attributes, the scaling operation is done in an
intermediate field with the same attributes as the source
operand. If the scaling operation causes nonzero digits
to be truncated on the left end of the intermediate field,
a size exception is signaled.

The resultant value of the calculation is copied into the
receiver operand. [f this operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the receiver operand,
aligned at the assumed decimal point of the receiver
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations outlined
in the Functional Concepts Manual. If nonzero digits are
truncated off the left end of the resultant value, a size
exception is signaled.

2-62

A scalar value invalid exception is signaled if the value
of N is beyond the range of the particular type of the
source operand.

Source Operand Type Maximum Value of N

Binary(2) -14'<Ng14
Binary(4) -30 < N <30
Decimal(P,Q) -31 < N <31

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Condition: The algebraic value of the receiver
operand is positive, negative, or O.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

ocC

10

1Cc

20

22

24

2A

2C

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

OA Size

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Obiject destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target

OC Invalid operand ODT reference
Program Execution

04 Branch target invalid

Scalar Specification

03 Scalar value invalid

Operands

12 3 Other

X
X
x

SCAN (SCAN)

Op Code Operand Operand Operand

(hex) 1 2 3

10D3 Receiver Base Compare
operand

Operand 1: Binary variable scalar or binary array.

Operand 2: Character scalar.

Operand 3: Character scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (hex) Form Type
SCANI 18D3 Indicator
SCANB 1CD3 Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along\with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The character string value of the base
operand is scanned for occurrences of the character
string value of the compare operand.

The base and substring operands must both be
character strings. The length of the substring operand
must not be greater than that of the base string.

The operation begins at the left end of the base string
and continues character by character, from left to right,
comparing the characters of the base string with those
of the substring operand. The length of the comparisons
are equal to the length of the substring value and
function as if they were being compared in the Compare
Bytes Left-Adjusted instruction.

Computation and Branching Instructions 2-63

If a set of bytes that match the. compare operand is
found, the binary value for the relative location of its
leftmost base string character is placed in the receiver
operand.

If the receiver operand is a scalar, only the first
occurrence of the substring is noted. If it is an array, as
many occurrences as there are elements in the array are
noted. :

The operation ‘continues until no more occurrences of
the substring can be noted in the receiver operand or
until the number of characters (bytes) remaining to be
scanned in the base string is less than the length of the
substring operand. When the second condition occurs,
the receiver value is set to 0. If the receiver operand is
an array, all its remaining elements are also set to O.

Resultant Conditions: The numeric value(s) of the
receiver operand is either O or positive.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process ,
0701 Maximum processor time exceeded
0801 Process control limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-64

Exceptions

Exception

06

08

10

1C

20

22

24

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Nbject Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target

OA Invalid operand length

OC Invalid operand ODT reference
Program Execution

04 Branch target invalid

Operands

123

x

b

SEARCH (SEARCH)

Op Code Operand Operand Operand Operand
(hex) 1 2 3 4
1084 Receiver Array Find Location

Operand 1: Binary variable scalar or binary variable array.
Operand 2: Character array or numeric array.

Operand 3: Character scalar (fixed-length) or numeric scalar.

Operand 4: Binary scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type
SEARCHI 1884 Indicator
SEARCHB 1C84 Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The portions of the array operand indicated
by the location operand are searched for occurrences of
the value indicated in the find operand.

The operation begins with the first element of the array
operand and continues element ’by element, comparing
those characters of each element (beginning with the
character indicated in the location operand) with the
characters of the find operand. The location operand
contains an integer value representing the relative
location of the first character in each element to be used
to begin the compare.

The integer value of the location operand must range
from 1 to L, where L is the length of the array operand
elements. A value of 1 indicates the leftmost character
of each element.

The array and find operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. The compares between these
operands are performed at the length of the find
operand and function as if they were being compared in
the Compare Bytes Left-Adjusted instruction.

The length of the find operand must not be so large that
it exceeds the length of the array operand elements
when used with the location operand value. The array
element length used is the length of the array scalar
elements and not the length of the entire array element,
which can be larger in noncontiguous arrays.

As each occurrence of the find value is encountered, the
integer value of the index for this array element is
placed in the receiver operand. If the receiver operand is
a scalar, only the first element containing the find value
is noted. If the receiver operand is an array, as many
occurrences as there are elements within the receiver
array are noted.

The operation continues until no more occurrences of
elements containing the find value can be noted in the
receiver operand or until the array operand has been
completely searched. When the second condition
occurs, the receiver value is set to 0. If the receiver-
operand is an array, all its remaining elements are also
set to O.

Resultant Conditions: The numeric value(s) of the
receiver operand is either O or positive.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-65

Exceptions

Operands
Exception 1234

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
08 Argument/Parameter
01 Parameter reference violation X
0C Computation
08 Length conformance
10 Damage Encountered
04 System object damage state X
44 Partial system object damage X
1C Machine-Dependent Exception

03 Machine storage limit
exceeded

20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found X

02 Object destroyed X

03 Object suspended X
24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X
2A Program Creation :

05 Invalid op code extender field

06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X
09 Invalid branch target operand
OA Invalid branch length
OC Invalid operand ODT reference X
2C Program Execution
04 Branch target invalid
32 Scalar Specification
01\ Scalar type invalid X
OA Invalid operand length X

2-66

X

X X X

x

SET INSTRUCTION POINTER (SETIP)

Op Code Operand Operand

(hex) 1 . 2
1022 Receiver Branch
target

Operand 7: Instruction pointer.

Opeiand 2: Instruction number, relative instruction number, or
branch point.

Description: The value of the branch target (operand 2)
is used to set the value of the instruction pointer
specified by operand 1. The instruction number
indicated by the branch target must provide the address
of an instruction within the program containing the Set
Instruction Pointer instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
~ 0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OC Invalid operand ODT reference
Program Execution

04 Branch target invalid

SUBTRACT LOGICAL CHARACTER (SUBLC)

Op Code Operand Operand Operand
(hex) 1 2 3

1027 Difference Minuend Subtrahend

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (hex) Form Type
SUBLCS 1127 Short
SUBLCI 1827 Indicator
SUBLCIS 1927 Indicator, Short
SUBLCB 1C27 Branch
SUBLCBS 1D27 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Computation and Branching Instructions 2-67

Description: ‘The unsigned binary value of the
subtrahend operand is subtracted from the unsigned
binary value of the minuend operand, and the result is
placed in the difference operand.

The length of the operation is equal to the length of the
longer of the two source operands. The length can be a
maximum of 256 bytes. The shorter of the two
operands is padded on the right with O's.

The subtraction operation is performed as though the
ones complement of the second operand and a
low-order 1-bit were added to the first operand.

The result value is then placed (left-adjusted) into the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
byte value of hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: The logical difference of the
character scalar operands is zero with carry out of the
high-order bit position, not-zero with carry, or not-zero
with no carry.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-68

Exceptions

Exception

06

08

10

1c

20

22

24

2A

2C

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System Object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target

OA Invalid operand length

OC Invalid operand ODT reference
Program Execution

04 Branch target invalid

Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

Operands

123 Other.

SUBTRACT NUMERIC (SUBN) Description: The signed numeric value of the subtrahend
operand is subtracted from the numeric value of the

Op Code Operand Operand Operand minuend operand, and the result is placed in the

(hex) 1 2 3 difference operand.

1047 Difference Minuend Subtrahend The operands must be numeric with any implicit
conversions occurring according to the rules of

Operand 1: Numeric variable scalar. arithmetic operations as outlined in the Functional

Operand 2: Numeric scalar. Concepts Manual.
Operand 3: Numeric scalar. For a decimal operation, alignment of the assumed

decimal point takes place by padding with O's on the
right end of the source operand with lesser precision.

Optional Forms
The- operation uses the length and the precision of the

Op Code source and receiver operands to calculate accurate
Mnemonic (hex) Form Type results.
gﬂgmi : ;:; gzz: d The subtract operation is performed according to the
SUBNSR 1347 Short, Round rules of algebra.
SUBNB 1C47 Branch
SUBNBS 1D47 Branch, Short The result of the operation is copied into the difference
SUBNBR 1E47 Branch, Round operand. If this operand is not the same type as that
SUBNBSR 1F47 Branch, Short, Round
SUBNI 1847 indicator used in performing the operation, the resultant value is
SUBNIS 1947 Indicator, Short converted to its type. If necessary, the resultant value is
SUBNIR 1A47 Indicator, Round adjusted to the length of the difference operand, aligned
SUBNISR 1B47 Indicator, Short, Round at the assumed decimal point of the difference operand,

or both before being copied to it. Length adjustment

If the short instruction option is indicated in the op and decimal point alignment are performed according to
code, operand 1 is used as the first and second the rules of arithmetic operations outlined in the
operational operands (receiver and first source operand). Functional Concepts Manual. If significant digits are
Operand 2 is used as the third operational operand truncated on the left end of the resultant value, a size

(second source operand). ‘ exception is signaled.

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Computation and Branching Instructions 2-69

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. if overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar difference is positive, negative, or O.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-70

Exceptions

Operands

Exception 1 2 3[4,5]
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
08 Argument/Parameter

01 Parameter reference violation X X X
0C Computation

02 Decimal data X X

03 Decimal point alignment X X

OA Size X
10 Damage Encountered

1C

20

22

24

2A

2C

04 System object damage state X X X

44 Partial system object damage X X X
Machine-Dependent Exception
03 Machine storage limit

exceeded
Machine Support
02 Machine check
03 Function check
Object Access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
Program Creation
05 Invalid op code extender field
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X

09 Invalid branch target

OC Invalid operand ODT reference X X X
Program Execution

04 Branch target invalid

Other

TEST AND REPLACE CHARACTERS (TSTRPLC)

Op Code Operand Operand
{hex) 1 2
10A2 Receiver Replacement

Operand 1: Character variable scalar.

Operand 2. Character scalar.

Description: The character string value represented by
operand 1 is tested byte by byte from left to right. Any
byte to the left of the leftmost byte which has a value in
the range of hex F1 to hex F9 is assigned a byte value
equal to the leftmost byte of operand 2.

Both operands must be character strings. Only the first
character of the replacement string is used in the
operation.

The operation stops when the first nonzero zoned
decimal digit is found or when all characters of the
receiver operand have been replaced.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference

Computation and Branching Instructions

Operands

1

X

x

X
X

X
X

X X X X X
X X X X X

2

x

Other

2-711

TEST BITS UNDER MASK
(TSTBUMB or TSTBUMI)

Op Code Operand Operand Operand
(hex) Extender 1 2 3[4, 5]
1C2A Branch Source Mask Branch
options target
182A Indicator Indicator
options target

Operand 1: Character scalar or numeric scalar.
Operand 2: Character scalar or numeric scalar.
Operand 3 [4, 5]:

» Branch target — Instruction number, relative instruction
number, branch point, or instruction pointer.

« Indicator target — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with from one to three branch targets (for
branch option) or one to three indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operands 4 and
5. See Chapter 1. Introduction for the bit encoding of
the extender field and the allowed syntax of the branch
and indicator operands.

2-72

Description: Selected bits from the leftmost byte of the:
source operand are tested to determine their bit values.
Based on the test, the resulting condition is used with
the extender field to:

« - Transfer control conditionally. to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The source and the mask operands can be character or
numeric. The leftmost byte of each of the operands is
used in the operands. The 6perands are interpreted as
bit strings.

The testing is performed bit by bit with only those bits
indicated by the mask operand being tested. A 1-bit in
the mask operand specifies that the corresponding bit in
the source value is to be tested. A O-bit in the mask
operand specifies that the corresponding bit in the
source value is to be ignored.

Resultant Conditions: The selected bits of the bit string
source operand are all zeros, all ones, or mixed ones
and zeros. A mask operand of all zeros causes a zero
resultant condition.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded .

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions TRANSLATE (XLATE)

Operands Op Code Operand Operand Operand Operand
Exception 1 2 3{4,5] Other {hex) 1 2 3 4
06 Addressing 1094 Receiver Source Position Replacement
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Character variable scalar (fixed-length).
03 Range X X X
08 Argument/Parameter Operand 2: Character scalar (fixed-length).
01 Parameter reference violation X X X Operand 3: Character scalar or null (fixed-length).
10 Damage Encountered
04 System object damage state X X X Operand 4: Character scalar (fixed-length).
44 Partial system object damage X X X
1C Machine-Dependent Exception
03 Machi(r;edstorage limit Description: Selected characters in the string value of
20 M e;ceese the source operand are translated into a different
achine Support encoding and placed in the receiver operand. The
02 Machine check .
- . heck characters selected for translation and the character
22 Obi un:t'on chec values they are translated to are indicated by entries in
b’eCt_ ceess the position and replacement strings.
01 Object not found X X X
02 Obl_eCt destroyed X X X All the operands must be character strings. The source
03 Object suspended X X X .
24 Poi Soecificati and receiver values must be of the same length. The
O'"te'_' pecification position and replacement operands can differ in length.
01 Pointer does not exist X X X . L.
02 Poi irvalid X X X If operand 3 is null, a 266-character string is used,
ointer type inval ranging in value from hex 00 to hex FF (EBCDIC
2A Program Creation .
.) coliating sequence).
05 Invalid op code extender field }
gs :nva:g operan: typ?b § § i The operation begins with all the operands left-adjusted
08 |nva|!d operand attln ute X X X and proceeds character by character, from left to right
nvalid operand value range until the character string value of the receiver operand is
09 Invalid branch target
. completed.
OA Invalid operand length X X
20 gc lnval"é operénd ODT reference X . X X Each character of the source operand value is compared
rogram Execution with the individual characters in the position operand. If
04 Branch target invalid X

a character of equal value does not exist in the position
string, the source character is placed unchanged in the
receiver operand. If a character of equal value is found
in the position string, the corresponding character in the
same relative location within the replacement string is
placed in the receiver operand as the source character
translated value. If the replacement string is shorter
than the position string and a match of a source to
position string character occurs for which there is no
corresponding replacement character, the source
character is placed unchanged in the receiver operand.
If the replacement string is longer than the position
string, the rightmost excess characters of the
replacement string are not used in the translation
operation because they have no corresponding position
string characters. If a character in the position string is
duplicated, the first occurrence (leftmost) is used.

Computation and Branching Instructions 2-73

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable. :

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-74

Exceptions

Operands
Exception 12 3 4
06 Addressing
01 Space addressing violation XX X X
02 Boundary alignment X X X X
03 Range X X X X
08 Argument/Parameter

10

1C

20

22

24

2A

01 Parameter reference violaton X X X X
Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support
02 Machine check

' 03 Function check

Object Access

01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
Pointer Specification

01 Pointer does not exist X X X X
02 Pointer type invalid X X X X

Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OA Invalid operand length X
0C Invalid operand ODT reference X

X X X X X

X X X X X
X X' X X X

Other

VERIFY (VERIFY)

Op Code Operand Operand Operand
{hex) 1 2 3
10D7 Receiver Source Class

Operand 1: Binary variable scalar or binary array.

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (hex) Form Type
VERIFYI 18D7 Indicator
VERIFYB 1CD7 Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: Each character of the source operand
character string value is checked to verify that it is
among the valid characters indicated in the class
operand.

The operation begins at the left end of the source string
and continues character by character, from left to right.
Each character of the source value is compared with the
characters of the class operand. If a match for the
source character exists in the class string, the next
source character is verified. If a match for the source
character does not exist in the class string, the binary
value for the relative location of the character within the
source string is placed in the receiver operand.

If the receiver operand is a scalar, only the first
occurrence of an invalid character is noted. If the
receiver operand is an array, as many occurrences as
there are elements in the array are noted.

The operation -continues until no more occurrences of
invalid characters can be noted or until the end of the
source string is encountered. When the second
condition occurs, the current receiver value is set to O.
If the receiver operand is an array, all its remaining
entries are set to O's.

Resuiltant Conditions: The numeric value(s) of the
receiver is either O or positive.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-75

Exceptions

. Operands
Exception 123 Other
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered
04 System object damage state =~ X X X X
44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check v ' X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer Specification ‘ ‘
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program Creation
05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
0A Invalid operand length X X

0C Invalid operand ODT reference X X X
2C Program Execution
04 Branch target invalid X

2-76

Chapter 3. Pointer/Name Resolution Addressing Instructions

This chapter describes the instructions used for pointer
and name resolution functions. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix B. Instruction Summary.

COMPARE POINTER FOR OBJECT
ADDRESSABILITY
(CMPPTRAB or CMPPTRAI)

Op Code Operand Operand Operand
{hex) Extender 1 2 31[4]
1CD2 Branch Compare = Compare Branch
options operand 1 operand 2 target
18D2 Indicator Indicator
options target

Operand 1: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 2: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 3 [4]:

o For Branch Form — Instruction number, relative instruction
number, branch point, or instruction pointer.

e For Indicator Form — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with one or two branch targets (for
branch option) or one or two indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operand 4. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: The object addressed by operand 1 is
compared with the object addressed by operand 2 to
determine if both operands are addressing the same
object. Based on the comparison, the resulting condition
is used with the extender to transfer control (branch
form) or to assign a value to each of the indicator
operands (indicator form).

If operand 1 is a data pointer, a space pointer, or a
system pointer, operand 2 may be any pointer type
except for instruction pointer in any combination. An
equal condition occurs if the pointers are addressing the
same object. For space pointers and data pointers, only
the space they are addressing is considered in the
comparison. That is, the space offset portion of the
pointer is ignored.

For system pointer compare operands, an equal
condition occurs if the system pointer is compared with
a space pointer or data pointer that addresses the space
that is associated with the object that is addressed by
the system pointer. For example, a space pointer that
addresses a byte in a space associated with a system
object compares equal with a system pointer that
addresses the system object.

For instruction pointer comparisohs, both operands must
be instruction pointers; otherwise, an invalid pointer type
exception is signaled. An equal condition occurs when
both instruction pointers are addressing the same
instruction in the same program. A not equal condition
occurs if the instruction pointers are not addressing the
same instruction in the same program.

A pointer does not exist exception is signaled if a
pointer does not exist in either of the operands.

Pointer/Name Resolution Addressing Instructions 3-1

Resultant Conditions: Equal, not equal. Exceptions

Operands
Authorization Required ’ Exception 1234 Other

06 Addressing
01 Space addressing violation X X X X
02 Boundary élignment
03 vRange . X X
08 Argument/Parameter
01 Parameter reference violation X X X X
0A Authorization
01 Unauthorized for operation X X
10 Damage Encountered
04 System object damage state X X X X X
44 Partial system object damage X X X X X
1A Lock State

0002 Authorizatidn 01 Invalid lock state X X
0101 Object authorization violation 1C Machine-Dependent Exception

+ Retrieve
— Contexts referenced for address resolution

X
X
X X
x

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

Events

03 Machine storage limit X
. exceeded
000C Machine resource .
0201 Machine auxiliary storage threshold exceeded 2 Machine Support
chine auxiliary storage tnreshold exceeae 02 Machine check X
03 Function check X
0010 Process .
. . 22 Object Access
0701 Maximum processor time exceeded .
0801 Pr toraae limit ded 01 Object not found X X X X
ocess storage limit exceede 02 Object destroyed X X X X
. . 03 Object suspended X X X X
0016 Machine observation L) . .p g
0101 Instructi P 24 Pointer Specification
nstruction reterence 01 Pointer does not exist X X X X
02 Pointer type invalid X X X X
0017 Damage set typ.
A 2A Program Creation
0401 System object damage set . .
1 Partial t biect d " 05 Invalid op code extender field X
lal system object damage se 06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X
09 Invalid branch target operand X X
OA Invalid operand length X X
0C Invalid operand ODT reference X X X X

COMPARE POINTER TYPE
(CMPPTRTB or CMPPTRTI)

Op Code Operand Operand Operand
(hex) Extender 1 2 3 [4]
1CE2 Branch Compare Compare Branch
options operand 1 operand 2 target
or null
18E2 Indicator Indicator
options target

Operand 1: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 2: Character(1) scalar or null.
Operand 3 [4]:

o For Branch Form — Instruction number, relative instruction
number, branch point, or instruction pointer.

o For Indicator Form — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with one or two branch targets (for
branch option) or one or two indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operand 4. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: The instruction compares the pointer type
currently in operand 1 with the character scalar
identified by operand 2. Based on the comparison, the
resulting condition is used with the extender to transfer
control (branch form) or to assign a value to each of the
indicator operands (indicator form).

If operand 2 is null or if operand 2 specifies a
comparison value of hex 00, an equal condition occurs if
a pointer does not exist in the storage area identified by
operand 1.

Following are the allowable values for operand 2:
Hex 00 — A pointer does not exist at this location
Hex 01 — System pointer
Hex 02 — Space pointer

Hex 03 — Data pointer
Hex 04 — Instruction pointer

Resultant Conditions: Equal, not equal.

Authorization Required

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource ‘
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

" 0016 Machine observation

0101 Instruction reference
0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Pointer/Name Resolution Addressing Instructiohs 3-3

Exceptions

Exception

06

08

OA

10

1C

20

22

24

2A

32

3-4

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check
Object Access

01 Object not found
02 Object destroyed
03 Object suspended
Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
Program Creation

05 Invalid op code extender
operand

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

Operands

123

x

x
X X X X X X
X X X X X X

OC Invalid operand ODT reference X X

Scalar Specification
03 Scalar value invalid

X

4

COPY BYTES WITH POINTERS (CPYBWP)

Op Code Operand Operand
~ (hex) 1 2
0132 Receiver Source

Operand 1: Ché.racter variable scalar, space pointer, data
pointer, system pointer, or instruction pointer.

Operand 2: Character variable scalar, space pointer, data
pointer, system pointer, instruction pointer, or null.

Description: The value of the byte string specified by
operand 2 is copied to the byte string specified by
operand 1 (no padding done).

The byte string identified by operand 2 can contain the
storage forms of both scalars and pointers. Normal
pointer alignment checking is not done. The only
alignment requirement is that the space addressability
alignment of the two operands must be to the same
position relative to a 16-byte multiple boundary. A
boundary alignment exception is signaled if the
alignment is incorrect. The pointer attributes of any
complete pointers in the source are preserved if they
can be completely copied into the receiver. Partial
pointer storage forms are copied into the receiver as
scalar data. Scalars in the source are copied to the
receiver as scalars. The length of the operation is equal
to the length of the shorter of the two operands. The
copying begins with the two operands left-adjusted and
proceeds until completion of the shorter operand.

If operand 2 is null, operand 1 must define a pointer
reference; otherwise, an exception is signaled. When
operand 2 is null, the byte string identified by operand 1
is set to the system default pointer does not exist value.

Events

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands
Exception 1 2
06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range) X X
08 Argument/Parameter
01 Parameter reference violation X X
10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X
20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X
24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X
2A Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X
08 Invalid operand value range X X
OA Invalid operand length X
0OC Invalid operand ODT reference X X

Other

CREATE CONTEXT (CRTCTX)

Op Code Operand Operand

{hex) 1 2
0112 Pointer for Context
address- template
ability to
created
context

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The instruction creates a context with the
attributes of the context template specified by operand
2 and returns addressability to the created context in a
system pointer stored in the storage area specified by

operand 1.

The format of the context template is:

« Template size specification
— Number of bytes provided

— Number of bytes available for

materialization

« Object identification
— Object type
— Object subtype
— Object name

» Obiject creation options
— Existence attributes

0 = Temporary

1 = Permanent

Space attribute

0 = Fixed-length

1 = Variable-length

Reserved (binary 0)

Access group

1

0 = Do not create as member

of access group

1 = Create as member of

access group
Reserved (binary 0)

« Recovery options
— Automatic damaged
context rebuild option

0 = Do not rebuild at IMPL

1 = Rebuild at IMPL
— Reserved (binary 0}

Char(8)
Bin(4)*
Bin(4)* -

Char(32)
Char(1)*
Char(1)
Char(30)
Char(4)
Bit O

Bit 1

Bit 2
Bit 3

Bits 4-31

Char(4)
Bit O

Bits 1-32

Pointer/Name Resolution Addressing Instructions

3-5

« Size of space Bin(4)

« Initial value of space Char(1)
« Performance class Char(4)
— Space alignment Bit O

0 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
. performance class.
1 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the the space.
— Reserved (binary 0) Bits 1-4
— Main storage pool selection Bit 5
0 = Process default main storage
pool is used for object.
1 = Machine default main storage
pool is used for object.
— Reserved (binary 0) Bit 6
— Block transfer on implicit Bit 7.
access state modification
0 = Transfer the minimum storage
transfer size for this object.
This value is 1 storage unit.
1 = Transfer the machine default
storage transfer size. This
value .is 8 storage units.

— Reserved (binary 0) Bits 8-31

« Reserved (binary 0) Char(23)
« Access group System
pointer

Note: The values of the template entries annotated by
an asterisk are ignored by the instruction.

The template identified by operand 2 must be 16-byte
aligned.

If the created context is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the context. The storage occupied by the
created context is charged to this owning user profile. If
the created context is temporary, there is no owning
user profile, and all authority states are assigned as
public. Storage occupied by the created context is
charged to the creating process.

The object identification specifies the symbolic name
that identifies the context within the machine. A type
code of hex 04 is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
the machine.

The existence attribute specifies whether the object is to
be created as a permanent or a temporary object. A
temporary context, if not explicitly destroyed by the
user, is implicitly destroyed when machine processing is
terminated. Permanent contexts have addressability
inserted in the machine context. Temporary contexts’
addressability may not be inserted in any context.

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated depends on an algorithm

- defined by a specific implementation. A fixed size space

of zero length causes no space to be allocated. Each
byte of the space is initialized to a value specified by
the initial value of space entry. When the space is
extended in size, this byte value is also used to initialize
the new allocation. This entry is ignored if no space is
to be allocated.

If the access group creation attribute entry indicates that
the context is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the context is to be
created. The existence attribute of the context must be
identical to the existence attribute of the access group.
If the context is not to be created in an access group,
the access group entry is ignored.

The recovery options field indicates the rebuild option.
A binary 1 indicates the context is to be rebuilt if
damaged. This option is not available for temporary
objects. The Materialize Context instruction may be
used to materialize the rebuild recovery option for a
context.

Note: If the machine context becomes damaged or
destroyed, it is implicitly rebuilt and/or recreated at IPL
time. If a permanent context becomes damaged, and
the context was created with the rebuild recovery
option, the context is implicitly rebuilt at IPL time.

The performance class parameter provides information
allowing the machine to more effectively manage a
context considering overall performance objectives of
operations involving the context.

Authorization Required

+ Ingert
— User profile of creating process

« Object Control
— Operand 1 if being replaced

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Modify
— User profile of creating process
— Access group identified by operand 2

« Object Control
— Operand 1 if being replaced

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Pointer/Name Resolution Addressing Instructions 3-7

Exceptions

Exception

02

06

08

0A

OE

10

1A

1C

20

22

24

2A

2E

38

3-8

Access group

01 Object ineligible for access group

02 Object exceeds available space
Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Context Operation '

01 Duplicate object identification
Damage Encountered

02 Machine context damage state
04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
04 Object storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Resource Control Limit

01 User prbfile storage limit
exceeded

Template Specification
01 Template value invalid

Operands

1

X X

2

X X X X

X X X X X

x

Other

x

DESTROY CONTEXT (DESCTX)

Op Code
(hex) Operand 1
0121 Context

Operand 1: System pointer.

Description: The context addressed by the system
pointer specified by operand 1 is destroyed. If the
context contains addressability to any system object, no
exception is signaled. The context is destroyed and the
objects are, therefore, not addressed by any context. If
the context is a permanent object, the context is deleted
from the machine context. The system pointer identified
by operand 1 is not modified by the instruction, and a
subsequent reference to the context through the pointer
results in the object destroyed exception.

Authorization Required
« Object control
— Operand 1
Lock Enforcement
« Modify
— Access group

— User profile of object owner

« Object control
— Operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operand

Exception 1 Other
06 Addressing

01 Space addressing violation X

02 Boundary alignment X

03 Range X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

02 Machine context damage state X

04 System object damage state X X

44 Partial system object damage X X
1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X

02 Object destroyed X

03 Object suspended X
24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid object X
2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

MATERIALIZE CONTEXT (MATCTX)

Op Code Operand Operand Operand
(hex) 1 2 3
0133 Receiver Permanent Materialization
context, options
temporary
context,
or machine
context

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 3: Character scalar (fixed-length).

Description: Based on the contents of the materialization
options specified by operand 3, the symbolic
identification and/or system pointers to all or a selected
set of the objects addressed by the context specified by
operand 2 are materialized into the receiver specified by
operand 1. If operand 2 is null, then the machine
context is materialized. '

The materialization control information requirements field
in the materialization options operand specifies the
information to be materialized for each selected entry.
Symbolic identification and system pointers identifying
objects addressed by the context can be materialized
based on the bit setting of this parameter. The
materialization control selection criteria field specifies the
context entries from which information is to be
presented. The type code, subtype code, and name
fields contain the selection criteria when a selective
materialization is specified.

When type code or type/subtype codes are part of the
selection criteria, only entries that have the specified
codes are considered. When a name is specified as part
of the selection criteria, the N characters in the search
criteria are compared against the N characters of the
context entry, where N is defined by the name length
field in the materialization options. The remaining
characters (if any) in the context entry are not used in
the comparison.

Pointer/Name Resolution Addressing Instructions 3-9

The materialization options operand has the following
format:

« Materialization control Char(2)
— Information requirements Char(1)
(1 = materialize)
Reserved (binary 0) Bits 0-5
System pointers Bit 6
Symbolic identification Bit 7
— Selection criteria Char(1)

Hex 00 — All context entries

Hex 01 — Type code selection

Hex 02 — Type code/subtype
code selection

Hex 04 — Name selection
Hex 05 — Type code/name
selection
Hex 06 — Type code/subtype
code/name selection
« Length of name to be used for Bin(2)

search argument

+ Type code Char(1)
« Subtype code Char(1)
« Name Char(30)

If the information requirements parameter is binary O,
the context attributes are materialized with no context
entries.

The first 4 bytes of the materialization output identify
the total number of bytes available for use by the
instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A
value of less than 8 causes the materialization length
exception to be signaled. The instruction materializes as
many bytes and pointers as can be contained in the
receiver. If the byte area identified by the receiver is
greater than that required to contain the information
requested for materialization, the excess bytes are
unchanged. No exceptions are signaled in the event that
the receiver contains insufficient area for the
materialization, other than the materialization length
exception signaled above.

The format of the materialization is as follows:

Materialization size specification

— Number of bytes provided for
materialization

~ Number of bytes available for
materialization

Context identification
— Obiject type

— Object subtype

— Object name

Context options

Existence attributes

0 = Temporary

1 = Permanent

Space attribute

0 = Fixed-length

1 = Variable-length

Reserved (binary 0)

Access group

0 = Not a member of access
group '

1 = Member of access group

Reserved (binary 0)

Recovery options

~— Automatic damaged
context rebuild option
0 = Do not rebuild at IMPL
1 = Rebuild at IMPL

Size of space

Initial value of space

Char(8)
Bin(4)

Bin(4)
Char(32)
Char(1)
Char(1)
Char(30)
Char(4)
Bit O

Bit 1

Bit 2
Bit 3

Bit 4-31

Char(4)
Bit O

Bin{4)

Char(1)

« Performance class Char(4) The context entry object identification information, if

— Space alignment Bit O requested by the materialization options parameter, is
0 = The space associated with present for each entry in the context that satisfies the

the object is allocated to search criteria. If both system pointers and symbolic
allow proper alignment of identification are requested by the materialization
pointers at 16-byte align- options operand, the system pointer immediately follows
ments within the space. if the object identification for each entry.
no space is specified for
the object, this value must The order of the materialization of a context is by object
be specified for the type code, object subtype code, and object name, all in
performance class. ascending sequence.

1 = The space associated with
the object is allocated to

allow proper alignment of Authorization Required
pointers at 16-byte align-

ments within the space as + Retrieve

well as to allow proper — Operand 2

alignment of input/output
buffers at 512-byte align-

ments within the the space. Lock Enforcement

— Reserved (binary 0) Bits 1-4
— Main storage pool selection Bit 5 « Materialization
0 = Process default main storage — Operand 2

pool is used for object.
1 = Machine default main storage

pool is used for object. Events
— Reserved (binary 0) Bit 6
- Block transfer on implicit Bit 7 0002 Authorization
access state modification 0101 Object authorization violation
0 = Transfer the minimum storage
transfer size for this object. 000C Machine resource
This value is 1 storage unit. 0201 Machine auxiliary storage threshold exceeded
1 = Transfer the machine default
storage transfer size. This 0010 Process
value is 8 storage units. 0701 Maximum processor fime exceeded
— Reserved (binary 0) Bits 8-31 0801 Process storage limit exceeded
» Reserved (binary 0) Char(7) 0016 Machine observation
0101 Instruction reference
+ Reserved (binary 0) Char(16)
0017 Damage set o
« Access group System 0401 System object damage set
pointer 0801 Partial system object damage set
« Context entry (repeated for Char(16-48)

each selected entry)
— Object identification (if requested) Char(32)

Type code Char(1)

Subtype code Char(1)
Name Char(30)

— Object pointer (if requested) System

pointer

Pointer/Name Resolution Addressing Instructions 3-11

Exceptions

Exception

06

0A

10

1A

1c

20

22

24

2A

32

38

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

02 Machine context damage ‘state
04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length.

OC Invalid operand ODT reference
Scalar Specification

02 Scalar attributes invalid

03 Scalar value invalid

Template Specification

03 Materialization length exception

Operands
12 3«

x

X X X

X X X X X

X

X X' X X X X X

X X

- Other

X

MODIFY ADDRESSABILITY (MODADR)

Op Code Operand Operand
(hex) 1 2 .
0192 Receiving - System

context object

Operand 1: System pointer or null.

Operand 2: System pointer.

Description: The system object referenced by operand 2
has its addressability inserted into a context, deleted
from a context, or transferred from one context to
another. If operand 1 addresses a temporary or
permanent context, addressability to the object is
inserted into the specified context. If the object is
currently addressed by another context, this
addressability is removed. If the object is currently
addressed by the context referenced by operand 1, no
operation takes place.

If operand 1 is null, addressability is removed from the
context that addresses the system object defined in
operand 2. If the object referenced by operand 2 is not
currently addressed by a context, no operation takes
place. :

If operand 2 refers to an object that may only be

addressed by the machine context, an object ineligible
for context exception is signaled.

Authorization Required

¢ Insert
— Operand 1
« Delete

— Context currently addressing object

« Object management
— Operand 2

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Modify
— Operand 1
— Operand 2
— Context currently addressing object

« Materialize
— Contexts referenced for address resoiution
Events

0002 Authorization
0101 Object authorization violation

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands
Exception 1 2 Other
06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
08 Argument/Parameter
01 Parameter reference violation X X
OA Authorization
01 Unauthorized for operation X X
OE Context Operation
01 Duplicate object identification X
02 Object ineligible for context X
10 Damage Encountered
02 Machine context damage state X
04 System object damage state X X X
44 Partial system object damage X X X
1A Lock State
-01 Invalid lock state X X
1C Machine-Dependent Exception

20

22

24

2E

03 Machine storage limit exceeded X
04 Object storage limit exceeded X

Machine Support

02 Machine check X
03 Function check X
Object Access

01 Object not found X X

02 Object destroyed X
03 Object suspended . X X
Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X
03 Pointer addressing invalid object X
Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X
Resource Control Limit

01 User profile storage limit X
. exceeded

x

x

X X X X

Pointer/ Name Resolution Addressing Instructions

3-13

RENAME OBJECT (RENAME)

Op Code Operand Operand
(hex) 1 2
0162 Object to New symbolic

be renamed identification
Operand 1: System pointer.

Operand 2: Character scalar (fixed-length).

Description: The permanent or temporafy system object
addressed by the system pointer specified by operand 1
is assigned the symbolic identification (name and/or
subtype code) specified by operand 2. All objects that
can be addressed by a system pointer can be renamed.
System pointers currently addressing the object are not
affected by the instruction. The symbolic identification is
changed in the context (machine, temporary, or
permanent), if any, that addresses the object.

If the new symbolic identification is not unique in the
context currently addressing the object, a duplicate
object identification exception is signaled, and the object
is not renamed. '

The format of operand 2 is:

+ Rename option (1 = rename) Char(1)

— Subtype code Bit O

— Name Bit 1

- Reserved (binary 0) Bits 2-7
. Reserved (binary 0) Char(1)
« Subtype code Char(1)
« Name Char(30)

Note: If either the subtype or the name is not to be
changed by the instruction, the corresponding entry on
the template is ignored.

Authorization Required

« Retrieve
— Contexts referenced for address resolution

« Object management
— Operand 1

« Update
— Context that addresses operand 1

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

+ Modify
— Context that addresses operand 1

« Object Control
— Operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

OA

OE

10

1A

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Authorization

01 Unauthorized for operation
Context Operation

01 Duplicate object identification
Damage Encountered

02 Machine context damage state
04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

03 Scalar vailue invalid

Operands

1

X

2

X X X X X X X

X X

Other

X X

RESOLVE DATA POINTER (RSLVDP)

Op Code Operand Operand Operand

{hex) 1 2 3
0163 Pointer for Data object Program
address- identi-
ability to fication
data object

Operand 1: Data pointer.

Operand 2: Character(32) scalar (fixed-length) or null.

Operand 3: System pointer or null.

Description: A data pointer with addressability to and
the attributes of an external scalar data element is
returned in the storage area identified by operand 1.

The following describes the instruction’s function when
operand 2 is null:

« If operand 1 does not contain a data pointer, an
exception is signaled.

« If the data pointer specified by operand 1 is not
resolved and has an initial value declaration, the
instruction resolves the data pointer to the external
scalar that the initial value describes. The initial value
defines the external scalar to be located and,
optionally, defines the program in which it is to be
located. If the program name is specified in the initial
value, only that program’s activation entry is searched
for the external scalar. If no program is specified,
programs associated with the activation entries in the
process static storage area are searched in reverse
order of the activation entries, and operand 3 is
ignored.

« If the data pointer is currently resolved and defines

an existing scalar, the instruction causes no
operation, and no exception is signaled.

Pointer/Name Resolution Addressing Instructions 3-15

The following describes the instruction’s function when
operand 2 is not null:

« A data pointer that is resolved to the external scalar
identified by operand 2 is returned in operand 1.
Operand 2 is a 32-byte value that provides the name
of the external scalar to be located.

« Operand 3 specifies a system pointer that identifies
the program whose activation is to be searched for
the external scalar definition. If operand 3 is null, the
instruction searches all activations in the process,
starting with the most recent activation and
continuing to the oldest. The activation under which
the instruction is issued also participates in the
search. If operand 3 is not null, the instruction
searches the activation of the program addressed by
the system pointer.

If the external scalar is not located, the object not found
exception is signaled. If an unresolved system pointer is
encountered when the program searches the activation
entries, the pointer not resolved exception is signaled. If
the PSSA chain being modified bit is on when this
instruction is executed, a stack control invalid exception
is signaled.

Authorization Required

* Retrieve

— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
04 External data object not found
08 Argument/Parameter
01 Parameter reference violation
OA Authorization
01 Unauthorized for operation
10 Damage Encountered
04 System object damage state
44 Partial system object damage
1A Lock State ‘
01 Invalid lock state
1C Machine-Dependent Exception
03 Machine storage limit exceeded
20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
04 Pointer not resolved
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
04 Pointer not resolved
2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand ODT reference
OC Invalid operand ODT reference
2C Program Execution
03 Stack control invalid
32 Scalar Specification
01 Scalar type invalid
02 Scalar attributes invalid
03 Scalar value invalid

Operands

123

X X X X

x

X

X X X X X X

X

X

RESOLVE SYSTEM POINTER (RSLVSP)

Op Code Operand Operand Operand Operand

(hex) 1 2 3 4
0164 Pointer for Object Context Authority
address- identi- through to be set
ability to fication which
object and object is to
required be located
author-
ization

Operand 1: System pointer.
Operand 2: Character(34) scalar (fixed-length) or null.

Operand 3: System pointer or null.

Operand 4: Character(2) scalar (fixed-length) or null.

Description: This instruction locates an object identified
by a symbolic address and stores the object's
addressability and authority in a system pointer. A
resolved system pointer is returned in operand 1 with
addressability to a system object and the requested
authority currently available to the process for the
object.

Note: The ownership flag is never set in the system
pointer.

Operand 2 specifies the symbolic identification of the
object to be located. Operand 3 identifies the context to
be searched in order to locate the object. Operand 4
identifies the authority states to be set in the pointer.
First, the instruction locates an object based on
operands 2 and 3. Then, the instruction sets the
appropriate authority states in the system pointer.

Pointer/ Name Resolution Addressing Instructions 3-17

The foliowing describes the instruction’s function when
operand 2 is null:

« If operand 1 does not contain a system pointer, an
exception is signaled. ‘

« If the system pointer specified by operand 1 is not
resolved but has an initial value declaration, the
instruction resolves the system pointer to the object
that the initial value describes. The initial value
defines the following:

— Object to be located (by type, subtype, and name)

— Context to be searched to locate the object
(optional)

— Minimum authority required for the object

If a context is specified, only that context is
referenced to locate the object, and operand 3 is
ignored. If no context is specified, the context(s)
located by the process name resolution list is used to
locate the object, and operand 3 is ignored. If the
object is of a type that can only be addressed
through the machine context, then only the machine
context is searched, and the context (if any) identified
in the initial value or identified in operand 3 is
ignored.

If the minimum required authority in the .initial value is
not set (binary 0), the instruction resolves the
operand 1 system pointer to the first object
encountered with the designated type code, subtype
code, and object name without regard to the
authorization available to the process for the object.
If one or more authorization {(or ownership) states are
required (signified by binary 1's), the context(s) is
searched until an object is encountered with the
designated type, subtype, and name and for which
the process currently has all required authorization
states.

» If the system pointer specified by operand 1 is
currently resolved to address an existing object, the
instruction does not modify the addressability
contained in the pointer and causes only the authority
attribute in the pointer to be modified based on
operand 4.

If operand 2 is not null, the operand 1 system pointer is
resolved to the object identified by operand 2 in the
context(s) specified by operand 3. The format of
operand 2 is as follows:

« Object specification Char(32)
— Type code Char(1)
— Subtype code Char(1)
— Object name Char(30)
« Required authorization (1 = required) Char(2)
— Object control Bit O
— Object management Bit 1
— Authorized pointer Bit 2
— Space authority Bit 3
— Retrieve Bit 4
— . Insert Bit 5
— Delete Bit 6
— Update Bit 7
— Ownership Bit 8
— Reserved (binary 0) Bits 9-15

The allowed type codes are as follows:

Hex 01 = Access group

Hex 02 = Program

Hex 04 = Context

Hex 08 = User profile

Hex OA = Queue

Hex OB = Data space

Hex OC = Data space index

Hex OD = Cursor

Hex OE = Index

Hex 10 = Logical unit description
Hex 11 = Network description
Hex 12 = Controller description
Hex 19 = Space

Hex 1A = Process control space

All other codes are reserved. If other codes are
specified, they cause a scalar value invalid exception
to be signaled.

Operand 3 identifies the context in which to locate the
object identified by operand 2. If operand 3 is null, then
the contexts identified in the process name resolution
list are searched in the order in which they appear in the
list. If operand 3 is not null, the system pointer
specified must address a context, and only this context
is used to locate the object. If the object is of a type
that can only be addressed through the machine
context, then only the machine context is searched, and
operahd 3 and the process name resolution list are
ignored.

If the required authorization field in operand 2 is not set

(binary O’s), the instruction resolves the operand 1
system pointer to the first object encountered with the
designated type code, subtype code, and object name
without regard to the authorization currently available to
the process. If one or more authorization (or ownership)
states are required (signified by binary 1's), the context
is searched until an object is encountered with the
designated type, subtype, name, and the user profiles
governing the instruction’s execution that have all the
required authorization states.

Once addressability has been set in the pointer, operand
4 is used to determine which, if any, of the object
authority states is to be set into the pointer.

If operand 4 is null, the object authority states required
to locate the object are set in the pointer. This required
object authority is as specified in operand 2 or in the
initial value for operand 1 if operand 2 is null. If the
process does not currently have authorized pointer
authority for the object, no authority is stored in the
system pointer, and no exception is signaled.

If operands 2 and 4 are null and operand 1 is a resolved
system pointer, the authority states in the pointer are
not modified.

If operand 4 is not null, it specifies the object authority
states to be set in the resolved system pointer. The
format of operand 4 is as follows:

« Requested authorization Char(2)

{1 = set authority)

— Object control Bit O

— Object management Bit 1

— Authorized pointer Bit 2

— Space authority Bit 2

— Retrieve : Bit 4
— Insert Bit b
— Delete Bit 6
— Update Bit 7
— Reserved (binary 0} Bits 8-15

The authority states set in the resolved system pointer
are based on the following:

o The authority already stored in the pointer can be
increased only when the process has authorized
pointer authority to the referenced object. If this
authority is not available and the pointer was resolved
by this instruction, the authority in the operand 1
system pointer is set to the not set state, and no
exception is signaled. If operand 2 is null, if operand
1 is a resolved system pointer containing authority,
and if authorized pointer authority is not available to
the process, additional authorities cannot be stored in
the pointer.

« |f the process does not currently have ail the
authority states requested in operand 4, only the
requested and available states are set in the pointer,
and no exception is signaled.

« The object authority currently available to the process
is cumulative based on the following:

— Authority stored in a resolved system pointer. This
authority applies to this instruction when operand
2 is null and operand 1 is a resolved system
pointer with authority stored in it.

— Public authority for the object.

— Private authority specifically granted to the process
user profile or the most current adopted user
profile. :

— All object special authority available to the process
user profile or the most current adopted user
profile.

Pointer/Name Resolution Addressing Instructions 3-19

Authorization Required
« Retrieve
— Contexts referenced for address resolution
(including operand 3)
Lock Enforcement
« Materialization
— Contexts referenced for address resolution
(including operand 3)
Events

0002 Authorization ‘ .
0101 Object authorization violation

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set ‘
0801 Partial system object damage set

3-20

Exceptions

Operands
Exception 123 4

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X

03 Range =~ X X X X
08 Argument/Parameter o

01 Parameter reference violation X X X X
OA Authorization

01 Unauthorized for operation X X
10 Damage Encountered

02 Machine context damage state

04 System object damage state X X X X

44 Partial system object damage X X X X
1A Lock State o

01 Invalid lock state X X
20 Machine Support

02 Machine check

03 Function check
22 Object Access .

01 Object not found X X X X

x
X

02 Obiject destroyed X X X X

03 Object suspended X X X X
24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid = X X X X

04 Pointer not resolved’
2A Program Creation

06 Invalid operand type X X X X
07 ‘Invalid operand attribute X X X X
08 Invalid operand value range X X X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X X
32 Scalar Specification '

02 Scalar attributes invalid X X

X X

03 Scalar value invalidr

Other

Chapter 4. Space Object Addressing Instructions

This chapter describes the instructions used for space
object addressing. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions,
see Appendix B. Instruction Summary

ADD SPACE POINTER (ADDSPP)

Op Code Operand Operand Operand

(hex) 1 2 3

0083 Receiver Source Increment
Pointer pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Description: This instruction adds a signed value to the
offset of a space pointer. The value of the binary scalar
represented by operand 3 is algebraically added to the
space address contained in the space pointer specified
by operand 2, and the result is stored in the space
pointer identified by operand 1. Operand 3 can have a
positive or negative value. The space object that the
pointer is addressing is not changed by the instruction.

Operand 2 must contain a space pointer when the
execution of the instruction is initiated; otherwise, an
invalid pointer type exception is signaled. When the
addressability in a space pointer is modified, the
instruction signals a space addressing exception only
when the space address to be stored in the pointer has
a negative offset value or when the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.
Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent of the space cause the
space addressing exception to be signaled.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands

Exception 1 2 3[46] Other

06 Addressing
01 Space addressing violation X X X
02 Boundary alignment X
03 Range X X X
08 Argument/Parameter
01 Parameter reference violaton X X X
10 Damage Encountered

X
X

04 System object damage state X X X X
44 Partial system object damage X X X X
1C Machine-Dependent Exception
03 Machine storage limit X
exceeded
20 Machine Support
02 Machine check X
03 Function check X
22 Object Access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program Creation
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OC Invalid operand ODT reference X X X

Space Object Addressing Instructions 4-1

COMPARE POINTER FOR SPACE ADDRESSABILITY
(CMPPSPADB or CMPPSPADI)

Op Code Operand Operand Operand
{hex) Extender 1 2 3 [4-6]
1CE6 Branch Compare Compare Branch
options operand 1 operand 2 target
18E6 Indicator Indicator
options target

Operand 1: Space pointer or data pointer.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, space pointer,
or data pointer.

Operand 3 [4-6]:

e For Branch Form — Instruction number, reiative instruction
number, branch point, or instruction pointer.

o For Indicator Form — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with from one to four branch targets (for
branch option) or one to four indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operands 4-6.
See Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

vDescription: The space addressability contained in the
pointer specified by operand 1 is compared with the
space addressability defined by operand 2.

The value of the operand 1 pointer is compared based
on the following:

« If operand 2 is a scalar data object (element or array),
the space addressability of that data object is
compared with the space addressability contained in
the operand 1 pointer.

« If operand 2 is a pointer, it must be a space pointer
or data pointer, and the space addressability
contained in the pointer is compared with the space
addressability contained in the operand 1 pointer.

4-2

Based on the results of the comparison, the resulting
condition is used with the extender to transfer control
(branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are
not in the same space, the resultant condition is
unequal. If the operands are in the same space and the
offset into the space of operand 1 is larger or smaller
than the offset of operand 2, the resultant condition is
high or low, respectively. ‘An equal condition occurs only
if the operands are in the same space at the same
offset. Therefore, the resultant conditions (high, low,
equal, and unequal) are mutually exclusive.
Consequently, if you specify that an action be taken
upon the nonexistence of a condition, this results in the
action being taken upon the occurrence of any of the
other three possible conditions. For example, a branch
not high would result in the branch being taken on a
low, equal, or unequal condition.

Resultant Conditions: High, Low, Equal, Unequal

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1Cc

20

22

24

2A

Operands
1 2 3[4a€]

Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X
04 External data object not found X
Argument/Parameter

01 Parameter reference violation X
Damage Encountered

04 System object damage state X
44 Partial system object damage X
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found X
02 Object destroyed

03 Object suspended
Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
Program Creation

05 Invalid op code extender field

06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
09 Invalid branch target operand

OC Invalid operand ODT reference X

X X

X X X X

x

x

X

X X

X X X X X

COMPARE SPACE ADDRESSABILITY
(CMPSPADB or CMPSPADI)

Op Code Operand Operand Operand
(hex) Extender 1 2 3 [4-6]
1CF2 Branch Compare Compare Branch
options operand 1 operand 2 target
18F2 Indicator Indicator
options target

Operand 1: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, pointer, or
pointer array.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, pointer, or
pointer array.

Operand 3 [4-6):

o For Branch Form — Instruction number, relative instruction
number, branch point, or instruction pointer.

o For Indicator Form — Numeric variable scalar or character
variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with from one to four branch targets (for
branch option) or one to four indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operands 4-6.
See Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Space Object Addressing Instructions 4-3

Description: The space addressability of the object. - Exceptions

specified by operand 1 is compared with the space

addressability of the object specified by operand 2. = Operands

Based on the results of the comparison, the resulting Exception 1 2 3[46] Other
condition is used with the extender to transfer control
(branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are
not in the same space, the resultant condition is
unequal. If the operands are in the same space and the
offset of operand 1 is larger or smaller than the offset
of operand 2, the resultant condition is high or low,
respectively. Equal occurs only if the operands are in

06 Addressing)

01 Space addressing violation

02 Boundary alignment

03 Range X X X
08 Argument/Parameter

01 Parameter reference violation X X X
10 Damage Encountered

X X
xX X
X X

the same space at the same offset. Therefore, the 04 System object damage state X X X X
resultant conditions (high, low, equal, and unequal) are 44 ‘Partial system object damage X X X X
mutually exclusive. Consequently, if you specify that an 1c Mach'"e‘_Depende"t E'xc.eptlon
action be taken upon the nonexistence of a condition, 03 g(ach'":dsm'age fimit X
this results in the action being taken upon the) '
. .. 20 Machine Support
occurrence of any of the other three possible conditions. 02 X
For example, a branch not high would result in the M :
branch being taken on a low, equal, or unequal 03 Function check X
condition. ' 22 Object Access
01 Object not found X X X
- . . ; 02 Object destroyed X X X
Resultant Conditions: High, Low, Equal, Unequal 03 Object suspended X X X
24 Pointer Specification
01 Pointer does not exist - X X X
Events 02 Pointer type invalid X X X
. 2A Program Creation
000C Machine resource 05 Invalid op code extender field X
0201 Machine auxiliary storage threshold exceeded 06 Invalid operand type X X X
07 Invalid operand attribute X X X
0010 Process .) . . 08 Invalid operand value range X X X
0701 Maximum processor time exceeded 09 Invalid branch target operand X
0801 Process storage limit exceeded |0C Invalid operand ODT reference X X X X

0016 Machine observation
0101 Instruction reference

0017 Damage set {
0401 System object damage set
0801 Partial system object damage set

SET DATA POINTER (SETDP)

Op Code Operand Operand
(hex) 1 2
0096 Receiver Source

Operand 1: Data pointer.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, or character variable array.

Description: A data pointer is created and returned in
the storage area specified by operand 1 and has the
attributes and space addressability of the object
specified by operand 2. Addressability is set to the
low-order (leftmost) byte of the object specified by
operand 2. The attributes given to the data pointer
include scalar type and scalar length. If operand 2 is a
substring compound operand, the length attribute is set
equal to the length of the substring. If operand 2 is a
subscript compound operand, the attributes and
addressability of the single array element specified are
assigned to the data pointer. If operand 2 is an array,
the attributes and addressability of the first element of
the array are assigned to the data pointer. A data
pointer can only be set to describe an element of a data
array, not a data array in its entirety.

When the addressability in the data pointer is modified,
the instruction signals the space addressing exception
when one of the following conditions occurs:

« When the space address to be stored in the pointer
would have a negative offset value.

« When the offset would address an area beyond the
largest space allocatable in the object. This maximum
offset value is dependent on the size and packaging
of the object containing the space and is independent
of the actual size of the space allocated.

If the exception is signaled by this instruction for one of
these reasons, the pointer is not modified by the
instruction.

Attempts to use a pointer whose offset value lies
between the currently aliocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set
0401 System object damage set’

0801 Partial system object damage set

Exceptions

Exoeptidn

06

08

10

1c

20

22

24

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

08 Invalid operand value range
OC Invalid operand ODT reference

Space Object Addressing Instructions

Operands

1

X X
X X X

2

X X X

X X X

Other

4-5

SET DATA POINTER ADDRESSABILITY
(SETDPADR)

Op Code Operand Operand
(hex) 1 2
0046 Receiver Source

Operand 1: Data pointer.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, or character variable array.

Description: The space addressability of the object
specified for operand 2 is assigned to the data pointer
specified by operand 1. If operand 1 contains a resolved
data pointer at the initiation of the instruction’s
execution, the data pointer’s scalar attribute component
is not changed by the instruction. If operand 1 contains
an initialized but unresolved data pointer at the initiation
of the instruction’s execution, the data pointer is
resolved in order to establish the scalar attribute
component of the pointer. If operand 1 contains other
than a resolved data pointer at the initiation of the
instruction’s execution, the instruction creates and
returns a data pointer in operand 1 with the
addressability of the object specified for operand 2, and
the instruction establishes the attributes as a
character(1) scalar.

When the addressability is set into a data pointer, the
space addressing exception is signaled by the instruction
only when the space address to be stored in the pointer
has a negative offset value or if the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

Events

000C Machine resource

00

00

00

0201 Machine auxiliary storage threshold exceeded

10 Process
0701 Maximum processor time exceeded
0801 Process control limit exceeded

16 Machine observation

0101 Instruction reference

17 Damage set

0401 System object damage set

0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
04 External data object not found
Argument/Parameter
01 Parameter reference violation
Damage Encountered

\04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support
02 Machine check
03 Function check
Object Access
01 Object not found
02 Object destroyed
03 Object suspended
Pointer Specification
01 Pointer does not exist
02 Pointer type invalid

2A Program Creation

06 Invalid operand type
08 Invalid operand value range
OC Invalid operand ODT reference

Operands

1

X X X X

x

x

2

X X

SET DATA POINTER ATTRIBUTES (SETDPAT)

Op Code Operand Operand
{(hex) 1 2
004A Receiver Attributes

Operand 1: Data pointer.

Operand 2: Character(7) scalar (fixed-length).

Description: The value of the character scalar specified
by operand 2 is interpreted as an encoded
representation of an attribute set that is assigned to the
attribute portion of the data pointer specified by operand
1. The addressability portion of the data pointer is not
modified. If operand 1 contains an initialized but
unresolved data pointer at the initiation of the
instruction’s execution, the data pointer is resolved in
order to establish the addressability in the pointer. The
attributes specified by the instruction are then assigned
to the data pointer. If operand 1 does not contain a
data pointer at the initiation of the instruction’s
execution, an exception is signaled.

The format of the attribute set is as follows:

Char(7)
Char(1)

« Data pointer attributes
— Scalar type
Hex 00 = Binary
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
— Scalar length
If binary or character:
Length (only 2 or 4 for binary)
If zoned decimal or packed
decimal:
Fractional digits (F)
Total digits (T)
(where 1 < T<31,0<F<T
If character:
Length (L, where 1 < L < 32767)
— Reserved (binary 0)

Bin(2)

Bits 0-7
Bits 8-15

Bin(4)

Events

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
08 Argument/Parameter

01 Parameter reference violation
10 Damage Encountered

04 System object damage state

44 Partial system object damage
1C Machine-Dependent Exception

X X X X
X X X

X
X

X X

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length
0OC Invalid operand ODT reference X
32 Scalar Specification
02 Scalar attributes invalid
03 Scalar value invalid

xX X X X X X
X X X X X

X X X X X

x X

Space Object Addressing Instructions

Other

4-7

SET SPACE POINTER (SETSPP)

Op Code Operand Operand
(hex) 1 2
0082 Receiver Source

Operand 1: Space pointer.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, pointer, pointer

array.

Description: A space pointer is returned in operand 1
and is set to address the lowest order {leftmost) byte of
the byte string identified by operand 2.

When the addressability is set in a space pointer, the
instruction signals the space addressing exception when
the offset addresses beyond the largest space
allocatable in the object or when the space address to
be stored in the pointer has a nonpositive offset value.
This offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

4-8

Exceptions.

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

Operands

1

x
x

x
x

X X X X X

X X X X X

X
x

2

SET SPACE POINTER WITH DISPLACEMENT
(SETSPPD)

Op Code Operand Operand Operand
(hex) 1 2 3

0093 Receiver Source Displacement

Operand 1: Space pointer.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, pointer, or
pointer array.

Operand 3: Binary scalar.

Description: A space pointer is returned in operand 1
and is set to the space addressability of the lowest
(leftmost) byte of the object specified for operand 2 as
modified algebraically by an integer displacement
specified by operand 3. Operand 3 can have a positive
or negative value.

When the addressability is set in a space pointer, the
instruction signals the space addressing exception when
the space address to be stored in the pointer has a
negative offset value or when the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

Events

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands

Exception 12 3 Other
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
08 Argument/Parameter

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OC Invalid operand ODT reference X X X

Space Object Addressing Instructions

4-9

SET SPACE POINTER FROM POINTER (SETSPPFP)

Op Code Operand Operand
(hex) 1 2
0022 Receiver Source pointer

Operand 1: Space pointer.

Operand 2: Data pointer, system pointer, or space pointer.

Description: A space pointer is returned in'operand 1
with the addressability to a space object from the '
pointer specified by operand 2.

The meaning of the pointers allowed for operand 2 is as
follows: ’
Pointer Meaning
Data pointer.or The space pointer returned
space pointer in operand 1 is set to address
. the leftmost byte of the byte string

addressed by the source pointer for
operand 2. _

System pointer The space pointer returned in
operand 1 is set to address the first
byte of the space contained in the
system object addressed by the
system pointer for operand 2. The
space object addressed is either the
created system space or an
associated space for the system
object addressed by the system
pointer. If the operand 2 system
pointer addresses a system object
with no associated space, the invalid
space reference exception is
signaled.

4-10

Authorization Required

« Space authority
— ‘Operand 2 (if a system pointer)

* Retrieve
— Contexts referenced for address resolution

Lock Enforcement

o Materialize
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

O0A

10

1A

1C

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
05 Invalid space reference
Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference

Operands

1

X X X
X X X X X

2

x X%

X X X X

Other

SET SPACE POINTER OFFSET (SETSPPO)

Op Code Operand dperand
(hex) 1 2
0092 Receiver Source

Operand 1: Space pointer.

Operand 2: Binary scalar.

Description: The value of the binary scalar specified by
operand 2 is assigned to the offset portion of the space
pointer identified by operand 1. The space pointer
continues to address the same space object.

Operand 1 must contain a space pointer at the initiation
of the instruction’s execution; otherwise, an.invalid
pointer type exception is signaled.

When the addressability in the space pointer is
modified, the instruction signals a space addressing
exception when one of the following conditions occurs:

« When the space address to be stored in the pointer -
has a negative offset value.

+ When the offset addresses beyond the largest space
allocatable in the object. This maximum offset value
is dependent on the size and packaging of the object
containing the space and is independent of the actual
size of the space allocated.

If the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.

Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

Space Object Addressing Instructions 4-11

SET SYSTEM POINTER FROM POINTER (SETSPFP)

Op Code Operand Operand
(hex) 1 2
0032 Receiver Source pointer

Operand 1: System pointer.

Operand 2: System pointer, space pointer, data pointer, or
instruction pointer.

Description: This instruction returns a system pointer to
the system object address by the supplied pointer.

If operand 2 is a system pointer, then a system pointer
addressing the same object is returned in operand 1
containing the same authority as the input pointer.

If operand 2 is a space pointer or a data pointer, then a
system pointer addressing the system object that
contains the associated space.addressed by operand 2
is returned in operand 1.

If operand 2 is an instruction pointer, then a system
pointer addressing the program system object that
contains the instruction addressed by operand 2 is
returned in operand 1.

If operand 2 is an unresolved system pointer or data
pointer, the pointer is resolved first.

4-12

Authorization Required
+ Retrieve

— Contexts referenced for address resolution
Lock Enforcement
« Materialization

— Contexts referenced for address resolution
Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

OA

10

1A

1Cc

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
Argument/Parameter

" 01 Parameter reference violation

Authorization

01 Unauthorized for operation
Damage Encountered

02 Machine context damage

04 System object damage state
44 Partial system object damage
Lock state

01 Invalid lock state
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

Operands

1

X X X X
X X X X

X X

X X X X

X X X X

X
x

2

X X

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06
08
10
1Cc
20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference

Space Object Addressing Instructions

Operands

1

x
X

bed
X

X X X X
X X X X

2

Other

4-13

STORE SPACE POINTER OFFSET (STSPPO)

Op Code Operand Operand
(hex) 1 2
00A2 Receiver Source

Operand 1: Binary variable scalar.

Operand 2. Space pointer.

Description: The offset value of the space pointer
referenced by operand 2 is stored in the binary variable
scalar defined by operand 1.

If operand 2 does not contain a space pointer at the
initiation of the instruction’s execution, an invalid pointer
type exception is signaled. If the offset value is greater
than 32 767 and operand 1 is a binary(2) scalar, a size
exception is signaled.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

4-14

Exceptions

Exception

06

08

oc

10

1C

20

22

24

2A

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/ Parameter

01 Parameter reference violation
Computations

OA Size

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 ‘Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Obiject destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0C Invalid operand ODT reference

Operands

1

X X X X

X X X X

2

x

[

SUBTRACT SPACE POINTER OFFSET (SUBSPP)

Op Code Operand Operand Operand

(hex) 1 2 3

0087 Receiver Source Decrement
pointer pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Description: The value of the binary scalar specified by
operand 3 is algebraically subtracted from the space
address contained in the space pointer specified by
operand 2; the result is stored in the space pointer
identified by operand 1. Operand 3 can have a positive
or negative value. The space object that the pointer is
addressing is not changed by the instruction. If operand
2 does not contain a space pointer at the initiation of
the instruction’s execution, an invalid pointer type
exception is signaled.

When the addressability in the space pointer is
modified, the instruction signals a space addressing
exception when one of the following conditions occurs:

« When the space address to be stored in the pointer
has a negative offset value.

« When the offset addresses beyond the largest space
allocatable in the object. This maximum offset value
is dependent on the size and packaging of the object
containing the space and is independent of the actual
size of the space allocated.

If the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.

Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands

Exception 123 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
08 Argument/Parameter
01 Parameter reference violation X X X
10 Damage Encountered
04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X

08 Invalid operand value range X X X

0C Invalid operand ODT reference X X X
32 Scalar Specification

01 Scalar type invalid X X X

03 Scalar value invalid X X

Space Object Addressing Instructions 4-15

4-16

Chapter 5. Space Management Instructions

This chapter describes the instructions used for space The template identified by operand 2 must be 16-byte
management. These instructions are in alphabetic order. aligned in the space. The following is the format of the
For an alphabetic summary of all the instructions, see space creation template:
Appendix B. Instruction Summary.
« Template size specification Char(8)*
— Size of template Bin(4)*
CREATE SPACE (CRTS) — Number of bytes available for Bin(4)*

materialization

Op Code Operand Operand

(hex) 1 2 « Obiject identification Char(32)
— Object type Char(1)*
0072 Pointer for Space — Object subtype Char(1)
space creation — Object name Char(30)
address- template
ability . . .
« Object creation options Char(4)
Operand 1: System pointer. — Existence attribute Bit O
0 = Temporary
Operand 2: Space pointer. 1 = Reserved
— Space attribute Bit 1
0 = Fixed-length
Description: A space object is created with the 1 = Variable-length
attributes that are specified in the space creation — Initial context Bit 2
template specified by operand 2, and addressability to 0 = Addressability is not
the created space is placed in a system pointer that is inserted into context
returned in the addressing object specified by 1 = Addressability is
operand 1. inserted into context
— Access group Bit 3
Space objects, unlike other types of system objects, are 0 = Do not create as member
used to contain a space and serve no other purposes. of access group
1 = Create as member of
access group
— Reserved (binary 0) Bits 4-31
« Reserved (binary 0) Char(4)
« Size of space Bin{4)
« Initial value of space Char(1)

Space Management Instructions 5-1

« Performance class :
— Space Alignment

0 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.

1 = The space associated with
the object is allocated to
aliow proper alignment of
pointers at 16-byte align-
ments within the space
as well as to allow proper
alignment of input/output
buffers at 512-byte
alignments within the space.

Reserved (binary 0)

Main storage pool selection

0 = Process default main storage
pool is used for object.

1 = Machine default main storage
pool is used for object.

Transient storage pool selection

0 = Default main storage pool
(process default or machine

- default as specified for main
storage pool selection) is used
for object.

1 = Transient storage pool is used
for object.

Block transfer on implicit

access state modification

0 = Transfer the minimum storage
transfer size for this object.
This value is 1 storage unit.

1 = Transfer the machine default
storage transfer size. This
value is 8 storage units.

Unit number

Reserved (binary 0)

« Reserved (binary 0)

« Context

« Access group

5-2

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6

Bit 7

Bits 8-15
Bits 16-31

Char(7)

System
pointer

System
pointer

Note: The instruction ignores the values associated with
template entries annotated with an asterisk (*).

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifes the space within the machine. A type
code of hex 19 is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attributes specify whether the space is to
be created as temporary or permanent. A temporary
space, if not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated. A permanent space exists in the machine
until it is explicitly destroyed by the user.

The space may have a fixed size or a variable size. The
initial allocation is as specifed in the size of space entry.
The machine allocates a space of at least the size
specified. The actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
size space of zero length causes no space to be
allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended in size, this byte value is also used to initialize
the new allocation.. If no space is allocated, this value is
ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created space is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

If the access group creation attributes entry indicates
that the space is to be created in an access group, the
access group entry must be a system pointer that
identifies the access group in which the space is to be
created. Since access groups may be created only as
temporary objects, the existence attribute entry must be
temporary (bit O equals 1) when the access group object
is created. If the space is not to be created into an
access group, the access group entry is ignored.

The performance class parameter provides information
allowing the machine to more effectively manage the
space object considering the overall performance
objectives of operations involving the space. The unit
number field indicates the auxiliary storage unit on
which the space should be located, if possible.

. Authorization Required

« Insert
— User profile of creating process
— Context identified in operand 2

+ Retrieve . ‘ .
— Context referenced for address resolution

« Object Control
— Operand 1 if being replaced

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Modify
— Context identified in operand 2
— User profile of creating process
— Access group identified in operand 2

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Space Management Instructions 5-3

Exceptions

Exception

02

06

08

0A

OE

10

1A

1C

20

22

24

2A

2E

38

5-4

Access Group

02 Object exceeds available space
Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Context Operation

01 Duplicate object identification
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception
03 Machine storage limit exceeded
04 Object storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference
Resource Control Limit

01 User profile storage limit
exceeded

Template Specification
01 Template value invalid

Operands

1

X X X
X X X

X X X
X X X

2

XX X X X X X

x

DESTROY SPACE (DESS)

Op Code Operand 1
(hex)
0025 Space to be destroyed

Operand 1: System pointer.

Description: The designated space is destroyed, and
addressability to the space is deleted from a context if it
is currently addressing the object. The pointer identified
by operand 1 is not modified by the instruction, and a
subsequent reference to the pointer causes an object
destroyed exception.

Authorization Required

« Retrieve
— Contexts referenced for address resolution

« Object control
— Operand 1

Lock Enforcement

« Modify
— User profile owning object
— Context addressing object
— Access group containing object

« Object Control
— Operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operand

Exception 1 i Other
06 Addressing

01 Space addressing violation X

02 Boundary alignment X

03 Range Xv
08 Argument/Parameter

01 Parameter reference violation = X
OA Authorization ; . .

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X

44 Partial system object damage X X
1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X

02 Object destroyed X

03 Object suspended X
24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid object
2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X

OC Invalid operand ODT reference X

MATERIALIZE SPACE ATTRIBUTES (MATS)

Op Code Operand Operand
(hex) 1 2
0036 Receiver Space object

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The current attributes of the space object
specified by operand 2 are materialized into the receiver
specified by operand 1.

The first 4 bytes that are materialized identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes a materialization length exception.

The second 4 bytes that are materialized identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the recéiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception desdribed previously)
are signaled in. the event that the receiver contains
insufficient area for the materialization.

Space Management Instructions 5-5

Materialization size specification

~ Number of bytes provided for
materialization

— Number of bytes available for
materialization (always 96 for
this instruction)

Object identification
- Object type

— Object subtype
— Object name

Object creation options

— Existence attributes

0 = Temporary

1 = Permanent

Space attribute

0 = Fixed-length

1 = Variable-length

Context »

0 = Addressability not in context

1 = Addressability in context
Access group

0 = Not member of access group
1 = Member of access group
Reserved (binary 0)

I

Reserved (binary 0)
Size of space

Initial value of space

5-6

The template identified by operand 1 must be 16-byte
aligned in the space. The format of the materialization is
as follows:

Char(8)
Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)
Char(4)
Bit O

Bit 1

Bit 2

Bit 3

Bits 4~-31
Char{4)
Bin(4)

Char(1)

Performance class
— Space Alignment

0 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.

1 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space
as well as to allow proper
alignment of input/output
buffers at 512-byte
alignments within the space.

— Reserved (binary 0}
— Main storage pool selection

0 = Process default main storage
pool is used for object.

1 = Machine default main storage
pool is used for object.

— Transient storage pool selection

0 = Default main storage pool
(process default or machine
default as specified for main
storage pool selection) is used
for object.

1 = Transient storage pool is used
for object.

— Block transfer on implicit

access state modification

0 = Transfer the minimum storage
transfer size for this object.
This value is 1 storage unit.

-1 = Transfer the machine default
storage transfer size. This
value is 8 storage units.

— Unit number
— Reserved (binary 0)

Reserved (binary 0)

Context

Access Qroup

Char(4)

Bit O

Bits 1-4
Bit 5

Bit 6

Bit 7

Bits 8-15
Bits 16-31

Char(7)

System
pointer

System
pointer

Authorization Required

« Operational or space authority
— Operand 2

« Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Operand 2
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

0A

10

1A

1C

20

22

24

2A

38

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state

" 44 Partial system object damage

Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

0C Invalid operand ODT reference
Template Specification

03 Materialization length exception

Space Management Instructions

Operands

1

x
x

X X X X X X X X

X

2

Other

5-7

MODIFY SPACE ATTRIBUTES (MODS)

Op Code Operand Operand

(hex) 1 2

0062 System Space modification
object template

Operand 1: System pointer.

Operand 2: Binary scalar.

Description: The space associated with the system
object identified by operand 1 is set to equal the size
specified by operand 2. Operand 1 may address any
system object that has an associated space with the
variable-length attribute.

Operand 2 is a binary value that specifies the total
number of bytes that are to be addressable within the
space. The extension and truncation of a space is done
in multiples of 512 bytes. The size of a space is equal
to the current size of the space plus or minus the
number of 512-byte blocks necessary to retain a space
of at least the requested size.

If the space associated with the object referenced by
operand 1 has a fixed size, or if the value of operand 2
is negative, or if the value indicates a size larger than
the largest space that can be associated with the object,
the space extension/truncation exception is signaled.

Authorization Required

« Object management
— Operand 1

« Retrieve .
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Object control
— Operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Ins_truction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

CA

10

1A

1C

20

22

24

2A

2E

36

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Resource Control Limit

01 User profile storage limit
exceeded

Space Management
01 Space extension/truncation

Operands

1

X X X
X X X

X X X X X X
X X X

X X X
X X X X X

2

x X

Space Management Instructions

5-9

5-10

This chapter describes the instructions used for indexes.

These instructions are in alphabetic order. For an
alphabetic summary of all the instructions, see .
Appendix B. Instruction Summary.

CREATE INDEPENDENT INDEX (CRTINX)

Op Code Operand Operand

(hex) 1 2
0446 Index Index description
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: This instruction creates an independent
index based on the index template specified by operand
2 and returns addressability to the index in a system
pointer stored in the addressing object specified by
operand 1. The maximum length allowed for the
independent index entry is 120 bytes.

The format of the index description template described
by operand 2 is as follows (must be aligned on a
16-byte multiple):

« Template size specification Char(8)
— Number of bytes provided Bin{4)*
— Number of bytes available for Bin(4)*

materialization

« Object identification Char(32)

"~ Object type Char(1)*
— Object subtype Char(1)
— Object name Char(30)

Chapter 6. Independent Index Instructions

« Object creation options Char(4)
— Existence attributes Bit O
0 = Temporary
1 = Permanent
— Space attribute Bit 1

0 = Fixed-length
1 = Variable-length

— Initial context Bit 2
0 = Do not insert addressability
in context
1 = Insert addressability in context
— Access group Bit 3

0 = Do not create as member
of access group

-1 = Create as member
of access group
— Reserved (binary 0) Bits 4-31
« Reserved (binary 0) Char(4)
« Size of space Bin(4)
« [Initial value of space Char(1)

Independent Index Instructions 6-1

+ Performance class

Space alignment

0 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, O must be
specified for the
performance class.

1 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the the space.

Reserved (binary 0)

Main storage pool selection

0 = Process default main storage
pool is used for object.

1 = Machine default main storage
pool is used for object.

Reserved (binary 0)

Block transfer on implicit

access state modification

0 = Transfer the minimum storage
transfer size for this object.
This value is 1 storage unit.

1 = Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

+ Reserved (binary 0)

+ Context

« Access group

6-2

Char(4)

Bit O

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31
Char(7)

System

- pointer

System
pointer

Char(1)
Bit O

o Index attributes

— Entry length attribute
0 = Fixed-length entries
1 = Variable-length entries

— Immediate update Bit 1
0 = No immediate update
1 = Immediate update

— Key insertion .
0 = No insertion by key
1 = Insertion by key

— Entry format Bit 3
0 = Scalar data only
1 = Both pointers and scalar data

- Optimized processing mode Bit 4
0 = Optimize for random references

Bit 2

1 = Optimize for sequential
references ‘
— Reserved (binary 0} Bits 5-7
« Argument length Bin(2)
« Key length Bin(2)

This instruction ignores the values associated with the
entries annotated with an asterisk (*).

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the space within the machine. A type
code of hex OE is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attribute specifies that the index is to be
created as a temporary object. A temporary index, if
not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated.

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated is dependent on an algorithm
defined by a specific implementation. Each byte of the
space is initialized to a value specified by the initial
value of space entry. When the space is extended in
size, this byte value is also used to initialize the new
allocation. If no space is allocated, this value is ignored.

If the initial context creation attribute entry indicates that
addressability is to be placed in a context, the context
entry must be a system pointer that identifies a context
where addressability to the newly created object is to be
placed. If the initial context indicates that addressability
is not to be placed in a context, the context entry is
ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the object is to be
created. The existence attribute of the object must be
identical to the existence attribute of the access group.
If the object is not to be created in the access group,
the access group entry is ignored.

The performance class parameter provides information
allowing the machine to more effectively manage the
object considering the overall performance objectives of
operations involving the index.

If the entry length attribute field specifies fixed-length
(bit 0 = 0), the entry length of every index entry is
established at creation by the value in the argument
length field of the index description template. If the
length attribute field specifies variable-length, then
entries will be variable~length (the length of each entry
is supplied when the entry is inserted), and the
argument length vaiue is ignored.

If the immediate update field specifies that an
immediate update should occur (bit 1 = 1), then every
update to the index will be written to auxiliary storage
after every insert or remove operation.

If the key insertion field specifies insertion by key (bit 2
= 1), then the key length field must be specified. This
allows the specification of a portion of the argument
(the key), which may be manipulated in either of the
following ways in the Insert Index Entry instruction:

« The insert will not take place if the key portion of the
argument is already in the index.

« The insert will cause the nonkey portion of the
argument to be replaced if the key is aiready in the
index.

The entry format field designates the index entries as
containing both pointers and scalar data or only scalar
data. The both pointers and scalar data entry can be

used only for indexes with fixed-length entries. If the
index is created to contain both pointers and data

(bit 3 = 1), then:

« Entries to be inserted must be 16-byte aligned.
« Each entry retrieved by the Find Independent Index
Entry instruction or the Remove Independent Index

Entry is 16-byte aligned.

« Pointers are allowed in both the key and nonkey
portions of an index entry.

« Pointers need not be at the same location in every
index entry.

« Pointers inserted into the index remain unchanged.
No resolution is performed before insertion.

If the index is created to contain only scalar data, then:

« Entries to be inserted need not be aligned.

« Entries returned by the Find Independent Index Entry
instruction or the Remove Independent Index Entry

instruction are not aligned.

« Any pointers inserted into the index will be
invalidated.

The optimized processing mode index attribute field is
used to designate whether the index should be created
and maintained in a manner that optimizes performance
for either random or sequential operations.

Independent Index Instructions 6-3

The key length must have a value less than or equal to
the argument length whether specified during creation
{for fixed-length entries) or during insertion (for variable
length). The key length is not used if the key insertion
field specifies no insertion by key (bit 3 = 0).

Authorization Required

« Insert
— Context identified by operand 2
— User profile of creating process

« Object Control
— Operand 1 if being replaced

+ Retrieve -
— Contexts referenced for address resolution

Lock Enforcement

« Modify :
— Access group identified by operand 2
— User profile of creating process
— Context identified by operand 2

« Materialize
~ Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference -

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

02

06

08

0A

OE

20

22

24

2E

38

Access Group

01 Obiject ineligible for access group
02 Object exceeds available space
Addressing

01 Space addressing violation

02 Boundary alignment -

03 Range)
Argument/Parameter

01 Parameter reference violation
Authorization ’
01 Unauthorized for operation
Context

01 Duplicate object identification
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
04 Object storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference
Resource Control Limit

01 User profile storage limit
exceeded

Template Specification
01 Template value invalid

Operands

1 2 Other

x
X X X

X X X X

x

DESTROY INDEPENDENT INDEX {DESINX)

Op Code Operand 1
(hex)
0451 Index

Operand 1: System pointer.

Description: A previously created index identified by
operand 1 is destroyed, and addressability to the object
is removed from any context in which addressability
exists. The system pointer identified by operand 1 is not
modified by the instruction, and a subsequent reference
to the destroyed index through the pointer results in an
object destroyed exception.

Authorization Required

« Object control
— Operand 1

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Object Control
— Operand 1

« Modify
— Access group which contains operand 1
— Context which addresses operand 1
— User profile which owns index

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
-0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
1 Other

Exception
06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
08 Argument/Parameter
01 Parameter reference violation X
OA Authorization
01 Unauthorized for operation X
10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X
1A Lock State
01 Invalid lock state . X
1C Machine-Dependent Exception
03 Machine storage limit exceeded X
20 Machine Support .
02 Machine check ' X
03 Function check X
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X
2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
X
X

X X X

X X X

08 Invalid operand value range
0C Invalid operand ODT reference

Independent Index Instructions 6-5

FIND INDEPENDENT INDEX ENTRY (FNDINXEN)

Op Code Operand Operand Operand Operand

(hex) 1 2 3 4

0494 Receiver Index Option Search
list argument

Operand 1: Space pointer.
Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Description: This instruction searches the independent
index identified by operand 2 according to the search
criteria specified in the option list (operand 3} and the
search argument (operand 4); then it returns the desired
entry or entries in the receiver field {(operand 1). The
maximum size of the independent index entry is 120
bytes.

The option list is a variable-length area that identifies
the type of search to be performed, the length of the
search argument(s), the number of resultant arguments
to be returned, the lengths of the entries returned, and
the offsets to the entries within the receiver identified by
the operand 1 space pointer. The option list has the
following format:

« Rule option Char(2)
« Argument length Bin(2)
« Argument offset Bin{2)
« Occurrence count Bin{2)
» Return count Bin(2)

Each entry that is returned to the receiver operand
contains the following:

« Entry length Bin(2)

« Offset Bin(2)

6-6

The rule option identifies the type of search to be
performed and has the following meaning:

Search Value

Type (hex) Meaning

= 0001 Find equal occurrences of
operand 4.

> 0002 Find occurrences that are
greater than operand 4.

< 0003 Find occurrences that are
less than operand 4.

> 0004 Find occurrences that are greater
than or equal to operand 4.

< 0005 Find occurrences that are less
than or equal to operand 4.

First 0006 Find the first index entry or
entries.

Last 0007 Find the last index entry or entries.

Between 0008 Find all entries between the two

arguments specified by operand 4
(inclusive).

The option to find between limits requires that operand
4 be a 2-element vector in which element 1 is the
starting argument and element 2 is the ending argument.
All arguments between (and including) the starting and
ending arguments are returned, but the occurrence count
specified is not exceeded.

If the index was created to contain both pointers and
scalar data, then the search argument must be 16-byte
aligned. For the option to find between limits, both
search arguments must be 16-byte aligned.

The rule option and the argument length determine the
search criteria used for the index search. The argument
length must be greater than or equal to one. The
argument length for fixed-length entries must be less
than or equal to the argument length specified when the
index is created.

The argument length entry specifies the length of the
search argument (operand 4) to be used for the index
search. When the rule option equals first or last, the
argument length entry is ignored. For the option to find
between limits, the argument length option specifies the
lengths of one vector element. The lengths of the vector
elements must be equal.

The argument offset is the offset of the second search
argument from the beginning of the entire argument
field {operand 4). The argument offset field is ignored
unless the rule option is find between.

The occurrence count specifies the maximum number of
index entries that satisfy the search criteria to be
returned. This field is limited to a maximum value of
4095. If this value is exceeded, a template value invalid
exception is signaled.

The return count specifies the number of index entries
satisfying the search criteria that were returned in the
receiver (operand 1). If this field is O, no index
arguments satisfied the search criteria.

There are two fields in the option list for each entry
returned in the receiver (operand 1). The entry length is
the length of the entry retrieved from the index. The
offset has the following meaning:

« For the first entry, the offset is the number of bytes
from the beginning of the receiver (operand 1) to the
first byte of the first entry. '

« For any succeeding entry, the offset is the number of
bytes from the beginning of the immediately

preceding entry to the first byte of the entry returned.

The entries that are retrieved as a result of the Find
Independent Index Entry instruction are always returned
starting with the entry that is closest to or equal to the
search argument and then proceeding away from the
search argument. For example, a search that is for <
(less than) or < (less than or equal to) returns the
entries in order of decreasing value.

All the entries that satisfy the search criteria (up to the
occurrence count) are returned in the space starting at
the location designated by the operand 1 space pointer.

If the index was created to contain both pointers and
scalar data, then each returned entry is 16-byte aligned.

If the index was created to contain only scalar data,
then returned entries are contiguous.

Every entry retrieved causes the count of the find
operations to be incremented by 1. The current value of
this count is available through the Materialize Index
Attributes instruction.

Authorization Required

« Retrieve
— Operand 2
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Operand 2
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Independent Index Instructions 6-7

Exceptions

Exception

06

08

0A

10

1A

1C

20

22

24

2A

38

Operands

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range X
Argument/Parameter

01 Parameter reference violation X
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state X
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found X

02 Object destroyed X

03 Object suspended X

Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid

object

Program Creation

06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X
X
X

X X

x

OA Invalid operand length

0C Invalid operand ODT reference
Template Specification

01 Template value invalid

X X
X
X

X X
X X

X X X X X X X

X X X X X
X X X X X

x
x

123 4

INSERT INDEPENDENT INDEX ENTRY (INSINXEN)

Op Code Operand Operand Operand
(hex) 1 2 3

04A3 Index Argument Option list

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Description: This instruction inserts one or more hew
entries into the independent index identified by operand
1 according to the criteria specified in the option list
(operand 3). Each entry is inserted into the index at the
appropriate location based on the EBCDIC value of the
argument. The maximum length allowed for the
independent index entry is 120 bytes.

The argument (operand 2) and the option list (operand
3) have the same format as the argument and option list
for the Find Independent Index Entry instruction.

The rule option identifies the type of insert to be
performed and has the following meaning:

Insert Value
Type (hex) Meaning Authorization
Insert 0001 Insert unique Insert
argument
Insert 0002 Insert argument, Update
with replacing the
replacement nonkey portion
if the key is
already in the
index
Insert ‘0003 Insert argument Insert
without only if the
replacement key is not
already in
the index

The insert rule option is valid only for indexes not
containing keys. The insert with replacement rule option
and the insert without replacement rule option are valid
for indexes containing either fixed- or variable-length
entries with keys. The duplicate key argument exception
is signaled for the following conditions:

« |f the rule option is insert and the argument to be
inserted (operand 2) is already in the index

« If the rule option is insert without replacement and
the key portion of the argument to be inserted
(operand 2) is already in the index

The argument length and argument offset fields are
ignored. '

The occurrence count specifies the number of
arguments to be inserted. This field is limited to a
maximum value of 4095. If this value is exceeded, a
template value invalid exception is signaled.

If the index was created to contain both pointers and
data, then each entry to be inserted must be 16-byte
aligned. If the index was created to contain
variable-length entries, then the entry length and offset
fields must be specified in the option list for each
argument in the space identified by operand 2. The
entry length is the length of the entry to be inserted.

If the index was created to contain both pointer and
scalar data, the offset field in the option list must be
supplied for each entry to be inserted. The offset is the"
number of bytes from the beginning of the previous
entry to the beginning of the entry to be inserted. For
the first entry, this is the offset from the start of the
space identified by operand 2.

The return count specifies the number of entries inserted
into the index. If the index was created to contain only
data, then any pointers inserted are invalidated.

Authorization Required

« Insert or update depending on insert type
— Operand 1

« Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Modify
— Operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Independent Index Instructions 6-9

Exceptions MATERIALIZE INDEPENDENT INDEX ATTRIBUTES

(MATINXAT)
Operands
Exception 123 Other Op Code Operand Operand
(hex) 1 2
02 Access Group
02 Object exceeds available space X 0462 Receiver Index
06 Addressing
01 Space addressing violation X X X Operand 1: Space pointer.
02 Boundary alignment X X X
03 Range X X X Operand 2: System pointer.
08 Argument/Parameter
01 Parameter reference violation X X X
OA Authorization Description: The instruction materializes the creation
01 Unauthorized for operation X attributes and current operational statistics of the
10 Damage Encountered independent index identified by operand 2 into the
04 System object damage state X X X space identified by operand 1. The format of the

44 Partial system object damage X X X attributes materialized is as follows:
18 Independent Index
01 Duplicate key argument in index X « Materialization size specification Char(8)
1A Lock State — Number of bytes provided for Bin(4)
01 Invalid lock state X materialization
1C Machine-Dependent Exception — Number of bytes available for Bin{4)
03 Machine storage limit exceeded materialization
04 Object storage limit exceeded X
20 Machine Support » Object identification Char(32)
02 Machine check — Object type Char(1)
03 Function check — Object subtype Char(1)
22 Obiject Access - Object name Char(30)
01 Object not found X X X
02 Object destroyed X X X » Object creation options Char(4)
03 Object suspended X X X — Existence attributes Bit O
24 Pointer Specification 0 = Temporary
01 Pointer does not exist X X X 1 = Reserved
02 Pointer type invalid X X X — Space attribute Bit 1
03 Pointer addressing invalid object X 0 = Fixed-length
2A Program Creation 1 = Variable-length
06 Invalid operand type X X X — Context Bit 2
07 Invalid operand attribute X X X 0 = Addressability not in context
08 Invalid operand value range X X X 1 = Addressability in context
OC Invalid operand ODT reference X X X — Access group Bit 3
2E Resource Control Limit 0 = Not a member of access group
01 User profile storage limit X 1 = Member of access group
exceeded — Reserved (binary 0) Bits 4-31
38 Template Specification
01 Template value invalid X « Reserved (binary 0) Char(4)
02 Template size invalid X
« Size of space Bin(4)

Initial value of space

Performance class
— Space alignment

0 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.

1 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the the space.

— Reserved (binary 0)
— Main storage pool selection

0 = Process default main storage
pool used for object.

1 = Machine default main storage
pool used for object.

— 'Reserved (binary 0)
— Block transfer on implicit
access state modification

0 = The minimum storage
transfer size for this
object is a value of 1
storage unit.

1 = The machine default
storage transfer size
for this object is a
value of 8 storage units.

— Reserved (binary 0)

Reserved (binary 0)

Context

Access group

Index attributes

Char(1)

Char(4)
Bit O

Bits 1-4
Bit b

Bit 6
Bit 7

Bits 8-31
Char(7)

System
pointer

System
pointer

Char(1)

« Argument length Bin(2)

« Key length Bin(2)

« Index statistics Char{12)
— Entries inserted Bin(4)
— Entries removed Bin(4)
— Find operations Bin(4)

The number of arguments in the index equals the
number of entries inserted minus entries removed. The
value of the find operations field is initialized to O each
time the index is materialized. The value may not be
correct after an abnormal system termination.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged.

No exceptions other than the materialization length
exception described previously are signaled in the event
that the receiver contains insufficient area for the
materialization.

The template identified by the operand 1 space pointer
must be 16-byte aligned. Values in the template remain
the same as the values specified at the creation of the
independent index except that the object identification,
context, and size of the associated space contain current
values.

If the entry length is fixed, then the argument length is
the value supplied in the template when the index was
created. If the entry length is variable, then the
argument length entry is equal to the length of the
longest entry that has ever been inserted into the index.

Independent Index Instructions 6-11

Authorization Required Exceptions
« Operational Operands
— Operand 2 Exception 12 Other
« Retrieve 06 Addressing
— Contexts referenced for address resolution 01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X
Lock Enforcement 08 Argument/Parameter
01 Parameter reference violation X X
« Materialize 0A Authorization
— Operand 2 01 Unauthorized for operation X
— Contexts referenced for address resolution 10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X
Events 1A Lock State '
01 Invalid lock state X
0002 Authorization 1C Machine-Dependent Exception
0101 Object authorization violation 03 Machine storage limit exceeded
20 Machine Support
000C Machine resource 02 Machine check
0201 Machine auxiliary storage threshold exceeded 03 Function check
22 Object Access
0010 Process 01 Object not found X X
0701 Maximum processor time exceeded 02 Object destroyed X X
0801 Process storage limit exceeded 03 Object suspended X X
24 Pointer Specification
0016 Machine observation 01 Pointer does not exist X X
0101 Instruction reference 02 Pointer type invalid X X
03 Pointer addressing invalid object X
0017 Damage set 2A Program Creation
0401 System object damage set 06 Invalid operand type X X
0801 Partial system object damage set 07 Invalid operand attribute X X
08 Invalid operand value range X X
0C Invalid operand ODT reference X X
38 Template Specification
01 Template value invalid X
03 Materialization length exception X

6-12

REMOVE INDEPENDENT INDEX ENTRY
(RMVINXEN)

Op Code Operand Operand Operand Operand
(hex) 1 2 3 4
0484 Receiver Index Option Argument

list
Operand 1: Space pointer or null.
Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Description: The index entries identified by operands 3
and 4 are removed from the independent index
identified by operand 2 and optionally returned in the
receiver specified by operand 1. The maximum length of
an independent index entry is 120 bytes.

The option list (operand 3} and the argument {(operand
4) have the same format and meaning as the option list
and argument for the Find Independent Index Entry
instruction. The return count designates the number of
index entries that were removed from the index.

The arguments removed are returned in the receiver field
if a space pointer is specified for operand 1. If operand
1 is null, the entries removed from the index are not
returned. If neither space pointer nor null is specified
for operand 1, the entries are returned in the same way
that entries are returned for the Find Independent Index
Entry instruction.

Every entry removed causes the occurrence count to be
incremented by 1. The current value of this count is
available through the Materialize Index Attributes
instruction. The occurrence count field must be less
then 4096.

Authorization Required

« Delete
— Operand 2

« Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Modify
— Operand 2

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Independent Index Instructions 6-13

Exceptions

Operands
Exception 123 4
02 Access Group
02 Object exceeds available space X
06 * Addressing '
01 Space addressing violation X X X X
02 Boundary alignment X X X X
03 Range X X X X
08 Argument/Parameter
01 Parameter reference violation X X X X
OA Authorization
01 Unauthorized for operation X
10 Damage Encountered
04 System object damage state X X X X
44 Partial system object damage X X X X
1A Lock State
01 Invalid lock state X
1C Machine-Dependent Exception
03 Machine storage limit
exceeded
04 Object storage limit exceeded X
20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
24 Pointer Specification
01 Pointer does not exist X X X X
02 Pointer type invalid X X X X
03 Pointer addressing invalid X
object
2A Program Creation
06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand valuerange X X X X
OC Invalid operand ODT reference X X X X
2E Resource Control Limit
01 User profile storage limit X
exceeded
38 Template Specification
01 Template value invalid X

6-14

Other

Chapter 7. Authorization Management Instructions

This chapter describes the instructions used for
authorization management. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix B. Instruction Summary.

CREATE USER PROFILE (CRTUP)

Op Code Operand Operand
{hex) 1 2
0116 User User
profile profile
creation
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A user profile is created in accordance with
the user profile template specification. A system pointer
addressing the created user profile is returned in the
addressing object specified by operand 1.

A privileged instruction exception is signaled if the user
profile(s) governing the execution of the process is not
authorized to create’ a user profile. An exception is
signaled if the new user profile is either for a privileged
instruction or for a special authorization state that is not
authorized the user profile(s) that governs the execution
of the instruction.

The template identified by operand 2 must be 16-byte
aligned in the space. Following is the format of the user
profile template:

« Template size specification Char(8)*
» Size of template Bin(4)*
+ Number of bytes available for Bin(4)*
materialization
« Obiject identification Char(32)
— Object type Char(1)*
— Obiject subtype Char(1)
— Object name Char(30)
« Object creation options Char(4)
— Existence attribute Bit 0
1 = Permanent (required).
— Space attribute Bit 1
0 = Fixed-length
1 = Variable-length
— Reserved (binary 0) Bits 2-31
« Reserved (binary 0) Char(4)
« Size of space Bin(4)
« Initial value of space Char(1)

Authgorization Management Instructions 7-1

« Performance class Char(4) « Special authorizations Char (4)
— Space alignment Bit O (1 = authorized) . ;
0 = The space associated with the — All bbject authority Bit O
_ object is allocated to allow — Load (unrestricted) Bit 1
proper alignment of pointers ~ Dump (unrestricted) Bit 2
;’:; :;:;’: ?fh?,gns‘;gisewnhm — Suspend object (unrestricted) Bit 3
is specified for the object, ~ Load (restricted) Bit 4
this value must be specified — Dump (restricted) Bit 5
for the performance class. — Suspend (restricted) Bit 6
1 = The space associated with the — Process control Bit 7
object is allocated to allow — Reserved (binary 0) Bit 8
proper alignment of pointers — Service authority Bit 9
at 16-byte alignments within — Reserved (binary 0) Bits 10-23
_ the space as well as to allow — Modify machine attributes. Bits 24-31
proper alignment of Group 2 Bit 24
ot winin o senca T Group 3 Bit 25
i withi e space. : .
~ Reserved (binary 0) Bits 1-4 Group 4 Bit 26
— Main storage pool selection Bit 5 Group 5 Bft 27
0 = Process default main storage Group 6 Bit 28
pool is used for object. Group 7 Bit 29
1 = Machine default main storage Group 8 Bit 30
pool is used for object. Group 9 Bit 31
— Reserved (binary 0) ‘Bit 6 - . :
— Block transfer on implicit Bit 7 Note: Group 1 requires no authorization.

access state modification

0 = Transfer the minimum storage « Storage authorization — the Bin(4)
T raximum ameurt of aueiary
1 = Transfer the machine default storage, (in units of 1024 bytes)
storage transfer size. This that can be allocated for the
value is 8 storage units. storage of objects owned by this
~ Reserved (binary 0) Bits 8-31 user profile
« Reserved (binary 0) Char{39) - Storage utilization — the. Bin{4)
current amount of auxiliary
« Privileged instructions Char(4) storage (in units of 1024 bytes)
(1 = authorized) . allocated for the storage of
— Create logical unit description Bit O objects owned by this user profile
— Create network description Bit 1
: g::::: ﬁg::rgygalgescrlptlon EB;:: g Note: The values associated with the template
— Modify user profile Bit 4 parameters identified by an asterisk (*) are ignored by
— Diagnose Bit 5 the create user profile instruction.
— Terminate machine processing Bit 6
~ Initiate process Bit 7 The created user profile is owned by the user profile
— Modify resource management Bit 8 governing process execution. All private object

control authorization states are implicitly assigned to the owning
— Reserved (binary 0) Bits 9-31 user profile. No user profile is charged for the storage
occupied by the newly created user profile.

7-2

The object identification specifies the symbolic name
that identifies the user profile within the machine. An
object type of hex 08 is implicitly supplied by the
machine. The object identification is used to identify the
object for materialize instructions as well as to locate
the object through the machine context. The object
identification for a user profile must be unique
throughout the machine.

The user profile is created as a permanent object and
exists until explicitly destroyed. Addressability to the
created user profile is implicitly inserted into the
machine context.

A space may be associated with the created user profile.

The size of the space may be fixed or variable. The

initial allocation is as specified in the size of space entry.

The machine allocates a space of at least the size
specified. The actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
space size of zero length causes no space to be
allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation.

When a permanent object is created, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
associated space is charged to the owning user profile.

The performance class parameter provides information
that allows the machine to more effectively manage the
object by considering the overall performance objectives
of operations involving the context.

Authorization Required
« Privileged instruction

« Privileges and special authorizations being granted to
the created user profile

« Insert
— User profile of creating process

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

+ Modify
— User profile of creating process

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Authorization Management Instructions 7-3

Exceptions

Exception

02

06

08

0A

OE

10

1A

1C

20

22

24

2E

38

7-4

Access Group

01 Obiject ineligible for access group

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
02 Privileged instruction

05 Create/modify user profile
beyond level of authorization

Context Operation

01 Duplicate object identification

Damage Encountered

02 Machine context damage state

04 System object damage state

44 Partial system object damage

Lock State

01 Invalid lock state

Machine-Dependent Exception

03 Machine storage limit exceeded

04 Object storage limit exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

0C Invalid operand ODT reference

Resource Control Limit

01 User profile storage limit
exceeded

Template Specification

01 Template value invalid

Operands

1

x

2

xX X X

X X X X

X

DESTROY USER PROFILE (DESUP)

Op Code
{hex) Operand 1
0125 User profile

Operand 1: System pointer.

Description: The user profile specified by operand 1 is
destroyed, and addressability to the profile is deleted
from the machine context. The system pointer specified
by operand 1 is not modified by the instruction, and any
future reference to the destroyed user profile through
the pointer causes an object destroyed exception.

If the referenced user profile owns any object (other
than itself) when the Destroy User Profile instruction is
executed, an object not eligible for destruction exception
is signaled and the user profile is not destroyed. The
exception is also signaled if the process executing the
instruction is controlled by the user profile to be
destroyed.

Because a user profile is implicitly locked (LSRD) by the
machine when a process is initiated by the user profile,
an invalid lock state exception is signaled if any process
is currently initiated by the referenced user profile and
an attempt is made to destroy the user profile.

Authorization Required

« Obiject control
— Operand 1

Lock Enforcement

» Modify
— User profile of owner of operand 1

« Object control
— Operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

0A

10

1A

1C

22

24

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

02 Machine context damage state
04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine~-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

06 Object not eligible for destruction

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0C Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

Operand
1

X

X X X X

Other

X X

Authorization Management Instructions

7-5

GRANT AUTHORITY (GRANT)

Op Code Operand Operand Operand

(hex) 1 2 3

0173 User System Authorization
profile object template

Operand 1: System pointer or null.

Operand 2: System pointer.

Operand 3: Character(2) scalar (fixed-length).

Description: This instruction grants authority to a
specified object. This authority may include all new
authority codes or a new authority code to be added to
the authority codes previously granted. Public authority
for an object can also be granted. If operand 1 is
addressing a user profile, that user profile will be
granted the private authorization states specified by
operand 3 for the system object specified by operand 2.
If the user profile previously had no authority for the
specified object, the object and the specified
authorization states are added to the user profile’s set of
authorized objects. If the user profile previously had
some authority for the specified object, then the
authorization states specified by operand 3 are logically
ORed to those authorization states previously held. If no
private authorization states that apply to the designated
object type are defined in the authorization template
then no change is made to the user profile’s
authorization.

If operand 1 is null, the instruction grants public
authorization. If public authorization has been previously
granted for the object, then the authorization states
specified by operand 3 are logically ORed to those
public authorization states previously granted. Operand
3 is a 2-byte character scalar and employs the following
bit representations to designate the authorization states:
(1 = authorized)

« Authorization template Char(2)
— Object control Bit O
— Object management Bit 1
-~ Authorized pointer Bit 2
— Space authority Bit 3
-~ Retrieve Bit 4
— Insert Bit 5
— Delete Bit 6
— Update Bit 7
- Reserved (binary 0) Bits 8-15

7-6

The four authorities (bits 4-7) — retrieve, insert, delete,
and update — constitute the operational authorities.
Granting any of these four authorities is sufficient for
instructions requiring operational authority. For those
objects (except space objects) that do not support these
operational authorities individually, all four of these
authorities must be granted when operational authority
is to be granted. The operational authority provided by
these bits is considered reserved for objects that do not
have any distinction between them.

The user profile governing the execution of the
instruction {process user profile or most current adopted
user profile) must have object management authority as
well as any authority state being granted for the object,
or it must indirectly have authority through the all-object
authority special authorization or through ownership of
the object.

Ownership or all-object authority is required in order to
grant object management authority. The owner is
always allowed to grant any authority, even if it has
been retracted from him. A nonowner must have the
authorities he is granting in addition to object
management authority. Authorization bits that do not
support any function for a particular object type are
considered reserved.

Authorization Required
« Authorities being granted with object management or
ownership

— Operand 2

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Modify
— Operand 2

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

0A

10

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation

03 Attempt to grant/restrict
authority state to that which is
not authorized

Damage Encountered
02 Machine context damage state

. 04 System object damage state

1A

1C

20

22

24

2A

32

44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
04 Object storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation .

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

03 Scalar value invalid

Operands

123

X X X
X X X
X X X

X X X
xX X X

X X X

X X X

X X X X X X X

X X X

Other

X X X

Authorization Management Instructions

7-7

MATERIALIZE AUTHORITY (MATAU)

Op Code - Opei'a'nd Operand Operand

(hex) 1 2 3
0153 Receiver System . User
object provfi‘le

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: System pointer or null.

Description: This instruction materializes. the specific
types of authority for a system object available to the
specified user profile. The private authorization that the
user profile specified by operand 3 is assigned to the
permanent system object specified by operand 2, and
the object’s public authorization is materialized in
operand 1. If operand 3 is null, then only the object’'s
public authorization is materialized, and the private
authorization field in the materialization is set to

binary O. '

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception. '
The second 4 bytes of the materialization identify the
total number of bytes available to be materialized (12 for
this instruction). The instruction materializes as many
bytes as can be contained in the area specified as the
receiver. If the byte area identified by the receiver is
greater than that required to contain the information
requested, then the excess bytes are unchanged. No
exceptions (other than the materialization length
exception) are signaled in the event that the receiver
contains insufficient area for the materialization.

7-8

The format of the materialization is as follows:

« Materialization size specification
— Number of bytes provided for
materialization
— Number of bytes available for
materialization (contains a value
of 12 for this instruction)

« Private authorization
(1 = authorized)
— Object control
— Object management
— Authorized pointer
— Space authority
~ Retrieve
— Insert
—~ Delete
— Update
— Ownership (1 = yes)
— Reserved (binary 0)

« Public authorization
(1 = authorized)
— Object control
— Object management
— Authorized pointer
— Space authority
— Retrieve
— Insert
— Delete
— Update
— Reserved (binary 0)

Char(8) -
Bin(4) -

‘Bin(4) -

Char(2)

Bit 0

Bit 1

Bit 2
Bit 3
Bit 4
Bit b
Bit 6
Bit 7
Bit 8
Bits 9-15

Char(2)

Bit O
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

Any of the four authorizations — retrieve, insert, delete,
or update — constitute operational authority.

If this instruction references a temporary object, all

public authority states are materialized. Private authority

states are not materialized.

Authorization Required

« Operational
— Operand 3

e Retrieve

— Contexts referenced for address resolution
Lock Enforcement
o Materialize

— Operand 2

— Operand 3

— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands

Exception 12 3 Other
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
08 Argument/Parameter

01 Parameter reference violation X X X
OA Authorization

01 Unauthorized for operation X X
10 Damage Encountered

02 Machine context damage state X

04 System object damage state X X X X

44 Partial system object damage X X X X
1A Lock State

01 Invalid lock state X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Obiject suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

03 Pointer addressing invalid object X X

38

Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA invalid operand length X

0C Invalid operand ODT reference X X X

Template Specification
03 Materialization length exception X

Authorization Management instructions

7-9

MATERIALIZE AUTHORIZED OBJECTS

(MATAUOBJ)

Op Code Operand Operand Operand

{hex) 1 2 3

0153 Receiver User Materialization
) profile options

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(1) scalar (fixed-length).

Description: This instruction materializes the
identification and the system pointers to system objects
that are privately owned or that are owned by a
specified user profile. The materialization options
(operand 3) for the user profile (operand 2) are returned
in the receiver (operand 1). The materialization options
for operand 3 have the following format:

_Value
(hex) Meaning

1 Materialize count of owned objects with no
description.
12 Materialize count of authorized objects with

no description (excludes owned objects).

13 Materialize count of all authorized and owned
objects with no description.

21 Materialize identification of owned objects
with short description.

22 Materialize identification of authorized
objects with short description (excludes
owned objects.)

23 Materialize identification of all authorized and
owned objects with short description.

31 Materialize identification of owned objects
with long description.

32 Materialize identification of authorized
objects with long description (excludes
owned objects).

33 Materialize identification of all authorized and
owned objects with long description.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The order of materialization is owned objects (if
requested by the materialization options operand)
followed by objects privately authorized to the user
profile (if requested by the materialization options
operand). No authorizations are stored in the system
pointers that are returned.

The template identified by operand 1 must be 16-byte
aligned in the space. It has the following format:

« Materialization size specification Char(8)
— Number of bytes provided for Bin(4)
materialization
— Number of bytes available for Bin(4)
materialization
« Number of objects owned by Bin(2)
user profile
« Number of objects privately Bin(2)
authorized to user profile
« -Reserved (binary 0) Char(4)

If no ‘description is requested in the materialization
options parameter, the above constitutes the information
available for materialization. If a description (short or
long) is requested by the materialization options
parameter, a description entry is present (assuming there
is a sufficient sized receiver) for each object materialized
into the receiver. Either of the following entries may be
selected.

- Short description entry Char(32) Authorization Required

— Type code Char(1)
— Subtype code Char(1) « Operational
— Private authorization Char(2) — Operand 2
(1 = authorized)
Object control Bit 0 . Retrieve
Object management Bit 1 — Contexts referenced for address resolution
Authorized pointer Bit 2 — Operand 2 if materializing owned objects
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6 Lock Enforcement
Update Bit 7
Ownership (1 = yes) Bit 8 » Materialize
Reserved (binary O) Bits 9-15 — Contexts referenced for address resolution
— Reserved (binary 0) Char(12) — Operand 2 if materializing owned objects
— System object System
pointer
L Events
» Long description entry Char(64)
— Type code Char(1) 0002 Authorization
— Subtype code Char(1) R L A
— Object name Char(30) 0101 Object authorization violation
— Private authorization Char(2)
(1 = authorized) 000C Machine resource
Object control Bit O 0201 Machine auxiliary storage threshold exceeded
Object management Bit 1
Authorized pointer Bit 2 0010 Process
Space authority Bit 3 0701 Maximum processor time exceeded
Retrieve Bit 4 0801 Process storage limit exceeded
Insert Bit 5
Delete Bft 6 0016 Machine observation
Update Bit 7 0101 Instruction reference
Ownership (1 = yes) Bit 8
Reserved (binary 0) Bits 9-15
— Public authorization Char(2) 0017 Damage set
(1 = authorized) 0201 Machine context damage set
Obiject control Bit O 0401 System object damage set
Object management Bit 1 0801 Partial system object damage set
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Reserved (binary 0) Bits 8-15
— Reserved (binary 0) , Char(12)
— System object System
pointer

Authorization Management Instructions 7-11

Exceptions MATERIALIZE AUTHORIZED USERS (MATAUU)

Operands
Exception 12 3 Other Op Code Operand Operand Operand
(hex) 1 2 3
06 Addressin .
ressing . . . 0143 Receiver System Materialization

01 Space addressing violation X X X N .

. - object options
02 Boundary alignment X X X
03 Range X X X R
08 Argument/Parameter Operand 1: Space pointer.

01 Par.am‘eter reference violation X X X Operand 2: System pointer.
OA Authorization

01 Unauthorized for operation X Operand 3: Character(1) scalar (fixed-length).
10 Damage Encountered i

02 Machine context damage state X

04 System object damage state X X X X D intion: The i . iali h

44 Partial system object damage X X X X escr/;_)tlop. The instruction Tnatel_'a.a |z§s the

1A Lock State : authorization states and the identification of the user

01 Invalid lock state X profile(s). The materialization options (operand 3) for the

1C Machine-Dependent Exception system object (operand 2) are returned in the receiver

03 Machine storage limit exceeded X (operand 1). The materialization options for operand 3

20 Machine Support have the following format:

02 Machine check X

03 Function check X Value

22 Obiject Access (hex) Meaning

01 Object not found X X X

02 Object destroyed X X X L . . .

03 Object suspended X X 11 Mateflalfze public authority with no’

24 Pointer Specification description.

01 Pointer does not exist X X X

02 Pointer type invalid X X X 12 Materialize public authority and number of

03 Pointer addressing invalid object X privately authorized profiles with no

2A Program Creation description.

06 Invalid operand type X X X

07 Invalid operand attribute X X X 21 Materialize identification of owning profile

08 Invalid operand value range X X X with short description.

OA Invalid operand length X

0C Invalid °_p,eraf'd ODT reference XX X 22 Materialize identification of privately

32 Scalar Specification thorized il ith short descriptio

03 Scalar value invalid X authorized profiles with s escription.

38 Template Specification o . .

03 Materialization length exception X 23 Materialize identification of owning and
privately authorized profiles with short
description.

31 Materialize identification of owning profile

with long description.

32 Materialize identification of privately
authorized profiles with long description.

33 Materialize identification of owning and
privately authorized profiles with long
description.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The order of materialization is an entry for the owning
user profile (if requested by the materialization options
operand) followed by a list (O to n entries) of entries for
user profiles having private authorization to the object (if
requested by the materialization options operand). The
authorization field within the system pointers will not be
set.

The template identified by operand 1 must be 16-byte
aligned in the space and has the following format:

« Materialization size specification Char(8)
— Number of bytes provided for Bin(4)
materialization
— Number of bytes available for Bin{(4)
materialization
« Public authorization Char(2)
(1 = authorized)
— Object control Bit O
— Object management Bit 1
— Authorized pointer Bit 2
— Space authority Bit 3
— Retrieve Bit 4
— Insert . Bit b
— Delete Bit 6
— Update Bit 7
— Reserved (binary 0) Bits 8-15
« Number of privately authorized Bin(2)
user profiles
+ Reserved (binary 0) Char(4)

If no description is requested by the materialization
options operand, the template identified by operand 1
constitutes the information available for materialization.
If a description (short or long) is requested by the
materialization options operand, a description entry is
present (assuming there is a sufficient sized receiver) for
each user profile materialized or available to be
materialized into the receiver. Either of the following
entry types may be selected.

« Short description entry

User profile type code
User profile subtype code
Private authorization
(1 = authorized)
Object control

Object management
Authorized pointer
Space authority
Retrieve

Insert

Delete

Update

Ownership (1 = yes)
Reserved (binary 0)
Reserved (binary 0)
User profile

« Long description- entry

User profile type code
User profile subtype code
User profile name
Private authorization
(1 = authorized)
Object control

Object management
Authorized pointer
Space authority
Retrieve

Insert

Delete

Update

Ownership

Reserved (binary 0)
Reserved (binary 0)
User profile

Char(32)
Char(1)
Char(1)
Char(2)

Bit O

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8
Bits 9-15
Char{12)
System
pointer

Char(64)
Char(1)

- Char(1)
- Char(30)

Char(2)

Bit O

Bit 1

Bit 2

Bit 3

Bit 4

Bit b

Bit 6

Bit 7

Bit 8
Bits 9-15
Char(14)
System
pointer

If this instruction references a temporary object, all
public authority states are materialized. The privately
authorized user and owner profile(s) description is not
materialized (binary 0).

Authorization Management Instructions 7-13

Authorization Required

+ Retrieve

— Contexts referenced for address resolution

« Object management
— Operand 2
Lock Enforcement
+ Materialize
— Operand 2
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

7-14

Exceptions

Exception

06

08

0A

10

1A

1Cc

20

22

24

32

38

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
Scalar Specification

03 Scalar value invalid

Template Specification

03 Materialization length exception

Operands

123

X X X
X X X
X X X

X X X
X X X

x X

X X X X X

X X X

X X X

MATERIALIZE USER PROFILE (MATUP)

Op Code Operand Operand

(hex) 1 2

013E Receiver User
profile

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The attributes of the user profile specified
by operand 2 are materialized into the receiver specified
by operand 1.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
"causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The receiver identified by operand 1 must be 16-byte
aligned in the space. The following is the format of the
materialized information:

« Materialization size specification Char(8)
— Number of bytes provided for Bin(4)
materialization
— Number of bytes available for Bin(4)
materialization
« Object identification Char{32)
— Object type Char(1)
— Object subtype Char(1)
— Object name Char(30)
« Object creation options Char(4)
— Existence attribute Bit O
1 = Permanent
— Space attribute Bit 1

0 = Fixed-length
1 = Variable-length
— Reserved (binary 1) Bit 2

— Reserved (binary 0) Bits 3-31
« Reserved (binary 0) Char(4)
« Size of space Bin(4)
« Initial value of space Char(1)
« Performance class Char{4)
« Reserved (binary 0} Char(7)
» Reserved (binary O} Char(16)
« Reserved (binary 0} Char(16)
« Privileged instructions Char(4)

(1 = authorized)

— Create logical unit description Bit O

— Create network description Bit 1

— Create controller description Bit 2

— Create user profile Bit 3

— Modify user profile Bit 4

— Diagnose Bit 5

— Terminate machine processing Bit 6

— Initiate process Bit 7

— Modify resource management Bit 8

control
— Reserved (binary 0) Bits 9-31

Authorization Management Instructions 7-15

« Special authorizations Char(4)

(1 = authorized)

— Al object authority Bit O

— Load (unrestricted) Bit 1

— Dump (unrestricted) Bit 2

~ Suspend object (unrestricted) Bit 3

— Load (restricted) Bit 4

— Dump (restricted) Bit 5

— Suspend object (restricted) Bit 6

— Process control Bit 7

— Reserved (binary 0) Bit 8

— Service authority Bit 9

— Reserved (binary 0) Bits 10-23

— Modify machine attributes Bits 24-31
Group 2 Bit 24
Group 3 Bit 25
Group 4 Bit 26
Group 5 Bit 27
Group 6 : Bit 28
Group 7 Bit 29.
Group 8 Bit 30
Group 9 Bit 31

Note: Group 1 requires no authorization.

« Storage authorization — the Bin(4)
maximum amount of auxiliary
storage (in units of 1024 bytes)
that can be allocated for the
storage of objects owned by this
user profile

« Storage utilization — the Bin{(4)
current amount of auxiliary
storage (in units of 1024 bytes)
allocated for the storage of
objects owned by this user
profile

The attributes that the instruction can materialize are
described in the Create User Profile instruction.

7-16

Authorization Required

« OQOperational
— Operand 2

Lock Enforcernent

« Materialize
— Operand 2

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

0A

10

1A

1C

20

22

24

38

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
Template Specification

03 Materialization length exception

Operands

1

bd
X

bd
X

X X X X X

x

2

X X X

X X X

MODIFY USER PROFILE (MODUP)

Op Code Operand Operand
(hex) 1 2
0142 User User
profile profile
modification
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The user profile specified by operand 1 is
modified in accordance with the user profile modification
template specified by operand 2. The instruction
replaces the privileged instruction authorizations, special
authorizations, and resource authorization values in the
user profile with the new values specified in the user
profile template. All other values in the user profile are
unchanged.

A privileged instruction exception is signaled if the
instruction is operating under a user profile(s) that does
not have the modify user profile privileged instruction
authorization. If the instruction attempts to set a
privileged instruction authorization or special
authorization state for which its governing user profile(s)
is not authorized, an exception will also be signaled.

No exception is signaled when the resource
authorization parameter is set to a value that is less than
the amount of auxiliary storage currently allocated for
the storage of permanent objects owned by the user
profile specified by operand 1. An exception is signaled
when storage is being allocated for a permanent object
and the new total exceeds the limit established by the
resource authorization parameter.

Following is the format of the user profile modification
template:

« Template size specification Char(8)*
— Number of bytes provided Bin(4)*
— Number of bytes available for Bin(4)*

materialization

« Object identification Char(32)*
— Object type Char(1)*
— Object subtype Char(1)*
— Object name Char(30)*

« Object creation options Char(4)*

Authorization Management Instructions 7-17

« Reserved (binary 0) , Char(4)*

« Size of space Bin(4)*
« Initial value of space Char(1)*
» Performance class Char(4)*
« Reserved (binary 0) Char(39)*
« Privileged instructions Char{4)
(1 = authorized)
— Create logical unit description Bit O
— Create network description Bit 1
- Create controller description Bit 2
— Create user profile Bit 3
— Modify user profile Bit 4
— Diagnose Bit 5
— Terminate machine processing Bit 6
— Initiate process Bit 7
~ Modify resource management Bit 8
control i
— Reserved (binary 0) o Bits 9-31
« Special authorization Char(4)
(1 = authorized)
— All object authority Bit O
— Load (unrestricted) Bit 1
— Dump (unrestricted) Bit 2
— Suspend object (unrestricted) Bit 3
— Load {restricted) Bit 4
~ Dump (restricted) Bit 5
— Suspend (restricted) Bit 6
— Process control Bit 7
— Default owner Bit 8
— Service authority Bit 9
— Reserved (binary 0) Bits 10-23
— Modify machine attributes Bits 24-31
Group 2 Bit 24
Group 3 Bit 25
Group 4 Bit 26
Group 5 Bit 27
Group 6 Bit 28
Group 7 Bit 29
Group 8 Bit 30
Group 9 Bit 31

Note: Group 1 requires no authorization.

« Storage authorization — the Bin(4)
maximum amount of auxiliary
storage (in units of 1024 bytes)
that can be allocated for the
storage of permanent objects
owned by this user profile

« Storage utilization — the Bin(4)*
current amount of auxiliary
storage (in units of 1024 bytes)
allocated for storage of objects
owned by this user profile

Note: The template parameters identified by an asterisk
(*) are ignored by the Modify User Profile instruction.

The attributes defined in the template are included in the
description of the Create User Profile instruction.

Authorization Required

« Object management
— Operand 1

« Privileged instruction

Lock Enforcement

« Modify
— Operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

0A

10

1A

1C

20

22

24

2A

38

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
02 Privileged instruction

05 Create/modify user profile
beyond level of authorization

Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference
Template Specification

01 Template value invalid

Operands

1

X

2

X X X X X X

X

RETRACT AUTHORITY (RETRACT)

Op Code Operand Operand Operand

(hex) 1 2 3

0193 User System Authorization
profile object template

Operand 1: System pointer or null.

Operand 2: System pointer.

Operand 3: Character(2) scalar (fixed-length).

Description: When operand 1 is addressing a user
profile, the private authorization states (operand 3) for
the permanent system object (operand 2) will be
retracted from the specified user profile. Authorization
may be retracted from the owning user profile.

When operand 1 is null, the instruction is retracting
public authorization. The process user profile or adopted
user profile(s) currently governing the execution of the
instruction when public or private authorization is being
retracted must own the object specified by operand 2,
have object management authority in addition to the
authority being retracted, or have the all object authority
special authorization.

Authorization Management Instructions 7-19

Authorization may be retracted from the owning user
profile. Ownership does not imply default authorization
to a specific object except as it applies for a specific
instruction. An object owner may, however, grant any
object authority to any user profile, including himself.

Operand 3 is a 2~byte character scalar and employs the
following bit representations to designate the
authorization states to be retracted:

(1 = retract authorization)

« Authorization template Char(2)
— Object control Bit O
— Object management Bit 1
— Authorized pointer Bit 2
~ Space authority Bit 3
— Retrieve Bit 4
— Insert Bit 5
~ Delete Bit 6
— Update Bit 7
— Reserved (binary 0) Bits 8-15

Note: Authority can be effectively retracted only if
pointer authorization has never been granted to the
object. A pointer with authority stored in it may be
saved and used after authority has been retracted.

If this instruction references a temporary object, no
operation is performed, and no exception is signaled.

7-20

Authorization Required

« Ownership or object management with authorization
states being retracted
— Operand 2

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

+ Materialize
— Contexts referenced for address resolution

» Object control
— Operand 2

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

OA

10

1A

1Cc

20

22

24

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation

03 Attempt to grant/retract authority

state to that which is not
authorized

Damage Encountered

02 Machine context damage state
04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Obiject destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

02 Scalar attributes invalid

03 Scalar value invalid

Operands

123

xX X X
X X X
X X X

X X X
X X X
X X X

X X X X X X

X X X
X X X X X

x X

X X

Other

X X X

TEST AUTHORITY (TESTAU)

Op Code Operand Operand Operand

(hex) 1 2 3

10F7 Available System Required
authority object authority
template template
receiver

Operand 1: Character(2) scalar or null (fixed-length)

Operand 2: System pointer.

Operand 3: Character(2) scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (hex) Form Type
TESTAUI 18F7 Indicator
TESTAUB 1CF7 Branch

Extender: Branch or indicator options

If the branch option is specified in the op code, the
extender field must be present along with one or two
branch targets. If the indicator option is specified in the
op code, the extender field must be present along with
one or two indicator operands. The branch or indicator
operands immediately follow operand 3. See Chapter 1.
Introduction for the encoding of the extender field and
the allowed syntax of the branch and indicator operands.

Authorization Management Instructions 7-21

Description: This instruction verifies that the object
authorities and/or ownership rights specified by operand
3 are currently available to the process for the object
specified by operand 2. If operand 1 is not null, all of
the authorities and/or ownership specified by operand 3
that are currently available to the process are returned in
operand 1. The required authorities and/or ownership
are specified by the required authority template of
operand 3. This template includes a test option that
indicates whether all of the specified authorities are
required or whether any one or more of the specified
authorities is sufficient. This option can be used, for
example, to test for operational authority by coding a
template value of hex OFO1 in operand 3. Using the any
option does not affect what is returned in operand 1. If
operand 1 is not null and the any option is specified, all
of the authorities specified by operand 3 that are
available to the process are returned in operand 1. If the
required authority is available, one of the following
occurs.

« Branch form indicated
— Conditional transfer of control to the instruction
indicated by the appropriate branch target
operand.

« Indicator form specified
— The leftmost byte of each of the indicator
operands is assigned the following values.

Hex F1 — If the result of the test matches the
corresponding indicator option

Hex FO — If the result of the test does not match
the corresponding indicator option.

If no branch options are specified, instruction execution
proceeds to the next instruction. If operand 1 is null and
neither the branch or indicator form is used, an invalid
operand type exception is signaled.

The format for the available authority template
(operand 1) is as follows: (1 = authorized)

« Authorization template Char(2)
— Object control Bit0
— Object management Bit 1
— Authorized pointer Bit 2
— Space authority Bit 3
—~ Retrieve Bit 4
= Insert . _ - Bitb5
— Delete Bit 6
— Update Bit 7
— Ownership (1 = yes) Bit 8
— Reserved (binary 0) Bits 9-15

The format for the required authority template
(operand 3) is as follows: (1 = authorized)

« Authorization template Char(2)
— Object control Bit O
— Object management Bit 1
— Authorized pointer Bit 2
— Space authority Bit 3
— Retrieve Bit 4
— Insert Bit b
~ Delete Bit 6
— Update Bit 7
— Ownership (1 = yes) Bit 8
— Reserved (binary 0) Bits 9-14
— Test option Bit 15

0 = All of the above authorities
must be present.

1 = Any one or more of the above
authorities must be present.

The authority available to the process is accumulated
from the following sources:

« Authority stored in the operand 2 system pointer

« Public authority to the object

« Process user profile and adopted user profiles

Private authorization held by these user profiles
Ownership, if any, if one of these user profiles
owns the object

All authorities implied by all object special
authority in any of these profiles

This instruction will tolerate a damaged object
referenced by operand 2 when the reference is a
resolved pointer. The instruction will not tolerate
damaged contexts or programs when resolving pointers.
Damaged user profiles contribute no authority to the
process and are ignored.

Resultant Conditions:
« Required authority is available. Bin 0100

« Required authority is not available. Bin 1100

Authorization Required

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

+ Materialize
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands

Exception 12 3
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X
08 Argument/Parameter

01 Parameter reference violation X X X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

02 Machine context damage state X

04 System object damage state X X X

44 Partial system object damage X X X
1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception ’

03 Machine storage limit exceeded
20 Machine Support

02 Machine check

03 Function check
22 Object Access

01 Object not found X X X

02 Object destroyed X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

05 Invalid op code extender field

06 Invalid operand type X X X

07 Invalid operand attribute X X

32

09 Invalid branch target operand

0OC Invalid operand ODT reference X X X
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid X X X
03 Scalar value invalid X

Authorization Management Instructions

Other

X X X X X

7-23

TRANSFER OWNERSHIP (XFRO)

Op Code Operand Operand

(hex) 1 2

01A2 User System
profile object

Operand 1: System pointer.

Operand 2: System pointer.

Description: The ownership of a system object (operand
2} is transferred to the user profile (operand 1). A user
profile with all object authority may always transfer
ownership of an object. If a program which adopts a
user profile is being transferred, all object authority is
required. After ownership is transferred, the former
owning user profile retains the private object authorities
it had before the transfer. The new owner is implicitly
granted all of the object authorities to the transferred
object. All other user profile authorities are unchanged
as a result of this instruction.

An attempt to transfer ownership of a temporary object
causes the object ineligible for operation exception to be
signaled.

Authorization Required

« Object control
~ Operand 2

Retrieve
— Contexts referenced for address resolution

.

« Delete
— User profile owning operand 2

« Insert
— Operand 1

7-24

Lock Enforcement

» Materialize
— Contexts referenced for address resolution

« Modify
— Operand 1
— Operand 2
— User profile owning the object referenced by
operand 2

Events

00OF Ownership
0101 Ownership changed

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

02

06

08

0A

10

1A

1C

20

22

24

2A

Access Group

02 Object exceeds available space
Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

02 Machine context damage state
04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
04 Object storage limit exceed
Machine Support :

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference

Operands

1

X X X

2

x

x

X X

X X X X

Other

X %X

Authorization Management Instructions

7-25

7-26

Chapter 8. Program Management Instructions

This chapter describes all instructions used for program — Program creation options Char(4)
management. These instructions are in alphabetic order. Existence attributes Bit O
For an alphabetic summary of all the instructions, see 0 = Temporary
Appendix B. Instruction Summary. 1 = Permanent

Space attribute Bit 1

0 = Fixed-length

CREATE PROGRAM (CRTPG) 1 = Variable-length
Initial context Bit 2
Op Code Operand Operand 0 = Do not insert addressability
(hex) 1 2 into context.
1 = Insert addressability
023A Program Program into context.
Template Access group Bit 3

0 = Do not create as a member

Operand 1: System pointer. of an access group.

. 1 = Create as a member of
Operand 2: Space pointer.
an access group.
Reserved (binary 0) Bits 4-31
. L. . - i Char(4
Description: A program is created from the program _ gie;e;e: (::::ary 0) Bin(zl())
template (operand 2), and a system pointer to the L. P
created program is returned in operand 1 ~ Initial value of space Char(1)
prog P) — Performance class Char(4)
— Space alignment Bit O

The program template (operand 2) has the following

0 = The space associated with
format:

the object is allocated to
allow proper alignment of

Control information . .
* Lontro ° ° pointers at 16-byte align-

— Template size specnflcgtlon C_har(8) ments within the space. If
Number of bytes provided Bin(4) no space is specified for
Number of bytes available Bin(4)* P P

the object, a zero value
must be specified for the
performance class.

for materialization (used only
when the program is materialized)

— Program identification Char(32) 1 = The space associated with
Type Char(1)* . .
the object is allocated to
Subtype Char(1) allow proper alignment of
Name Char(30) proper alig

pointers at 16-byte align-
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the the space.
— Reserved (binary 0) Bits 1-4
— Main storage pool selection Bit b
0 = Process default main storage
pool is used for object.
1 = Machine default main storage
pool is used for object.

Program Management Instructions 8-1

8-2

Transient storage pool selection
Default main storage pool
{process default or machine
default as specified for main
storage pool selection) is used
for object.

Transient storage pool is used
for object.

Block transfer on implicit

access state modification

Transfer the minimum storage
transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.
Reserved (binary 0)

Reserved (binary O)

0 =

0 =

1 =

Context

Access group

Program attributes
Adopted user profile
0 = No adoption of user profile

1

Adopt program owner’'s
user profile on invocation.

Array constraint
0 = Arrays are constrained.

1

Arrays are not constrained.

String constraint

0 = Strings are constrained.

1 = Strings are not constrained.
User exit

0 = Not allowed as user exit

1

Allowed as user exit

Adopted user profile propagation

0]

1

Adopted user profile
authorities are not
propagated to external
invocations.
Adopted-user profile
authorities are propagated
to all subinvocations.

Bit 6

Bit 7

Bits 8-31
Char(7)
System
pointer
System
pointer
Char(2)
Bit 0

Bit 1

Bit 2

Bit 3*

Bit 4

Static storage Bit 5
0 = Initialize storage to
binary O.
1 = Do not initialize storage
to binary 0.
Automatic storage Bit 6
0 = Initialize storage to
binary O.
1 = Do not initialize storage
to binary 0.
Reserved (binary 0) Bits 7-15
— Optimization options Char(1)

Hex 00 = No optimization
Hex 80 = Optimization
— Observation attributes Char(1)
Hex 00 = Program data cannot
be materialized
Hex FC = Program data can
be materialized

— Size of static storage Bin(4)
— Size of automatic storage Bin(4)
— Number of instructions Bin(2)
— Number of ODV entries Bin(2)

— Offset (in bytes) from beginning Bin(4)
of template to the instruction
stream component

— Offset (in bytes) from beginning of Bin(4)
template to the ODV component

— Offset (in bytes) from beginning of Bin(4)
template to the OES component

— User data part 3 Char(4)

— Length of data part 1 Bin(4)

— Offset (in bytes) from beginning of Bin(4)
template to the user data part 1

— User data part 4 Char(4)

— Length of user data part 2 Bin(4)

—~ Offset (in bytes) from beginning of Bin(4)
template to the user data part 2

— Offset (in bytes) from beginning of Bin(4)*
template to the object mapping
table (OMT) component

« Program data
— Instruction stream component
— ODV component
- OES component

» User data parts 1 and 2
« Object mapping table*
Note: The value associated with the template entry

annotated with an asterisk (*) is ignored by the
instruction.

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The existence attribute specifies whether the object is to
be temporary or permanent. A temporary program
object, if not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated. A permanent program object exists in the
machine until explicitly destroyed by the user.

The program identification specifies the symbolic name
that identifies the program within the machine. A type
code of hex 02 is implicitly supplied by the machine.
The program identification is used to identify the
program on materialize instructions as well as to locate
the program in the context that addresses it.

A space may be associated with the created program.
The space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated depends on an algorithm
defined for a specific implementation. A fixed size
space of zero length causes no space to be allocated.

Each byte of the space is initialized to the value
specified by the initial value of space entry. When the
space is extended, this byte value is also used to
initialize the new allocation. If no space is allocated, this
value is ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created program is to be placed. Addressability is
inserted into the context based on the object
identification (type, subtype, and name). If addressability
is not to be inserted into a context, the context entry is
ignored. S :

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must contain a system pointer that
identifies an access group in which the object is to be
created. The existence attribute of the object must be
temporary because access groups are temporary objects.
If the object is not to be created in an access group, the
access group entry is ignored. '

The performance class parameter provides information
that allows the machine to more effectively manage the
program by considering overall performance objectives
of operations involving the program.

The order and location of the program data and the user
defined data in the template are established by the
control information parameters. The entries in the
parameter need not be contiguous, but the number of
bytes provided entry must include any unused bytes
between entries.

The size of static storage entry consists of a 4-byte
binary value that defines the total amount of static
storage required for this program’s static data. A value
of 0 indicates that the amount of static storage required
is to be calculated by the Create Program instruction
based upon the amount of static data specified for the
program. A value greater than O specifies the amount of
static storage required, and that value must be sufficient
to provide for the amount of static data specified for the
program. If it is not, a create program exception is
signaled. :

The size of automatic storage entry consists of a 4-byte
binary value that defines the total amount of automatic
storage required for this program’s automatic data. A
value of O indicates that the amount of automatic
storage required is to be calculated by the Create
Program instruction based upon the amount of
automatic data specified for the program. A value
greater than O specifies the amount of automatic storage
required, and that value must be sufficient to provide for
the amount of automatic data specified for the program.
If it is not, a create program exception is signaled.

Program Management Instructions 8-3

The ODV (object definition vector) component consists
of a 4~byte binary value that defines the total length of
the ODV and a variable-length vector of 4-byte entries.
Each entry describes a program object either by a
complete description or through an offset into the OES
(object entry string) to a location that contains a
description. If no program objects are defined, the ODV
can be omitted, and its absence is noted with a value of
0 in the offset to ODV component entry. The ODV is
required if the OES is present.

The OES consists of a 4-byte binary value that defines
the total length of the OES and a series of
variable-length entries that are used to compiete an
object description. Entries in the ODV contain offsets
into the OES. The OES is optional, and its absence is
indicated with a value of O in the offset to OES
component entry.

The format of the ODT (object definition table) (ODV
and OES) is defined in Chapter 22. Program Object
Specifications.

The instruction stream component consists of a 4-byte
binary value that defines the total length of the
instruction stream component and a variable-length
vector of 2-byte entries that defines the instruction
stream. The 2-byte entries define instruction operation
codes, instruction operation code extenders, or
instruction operands.

The format of the instructions is defined in Chapter 1.
Introduction. The instruction stream component is
optional (that is, instructions need not be defined), and
its absence is indicated by a value of O in the offset to
instruction stream component entry. If the instruction
stream is not present, an End instruction is assumed
and, should the program be executed, an immediate
Return External instruction results.

The user data components can be used by compilers to
relate high-level language statement numbers to
instruction numbers and high-level language names to
ODT numbers. The format of the user data components
is defined by the user. :

If the observation attribute is specified, the program

data in the program template is available through the
Materialize Program instruction.

8-4

Less storage is used by the program when the program
is created without the capability to materialize. If the
program is created without the capability to materialize,
the program data (instruction stream, ODV, OES, break
offset mapping table, symbol table, and object mapping
table components) cannot be materialized by the
Materialize Program instruction.

If the adopted user profile attribute is specified, any
reference to a system object from an invocation of this
program uses the user profile of the owner of this
program and other sources of authority to determine the
authorization to system objects, privileged instructions,
ownership rights, and all authorizations. If the adopted
user profile propagation attribute is specified, then the
authorities available from the adopted user profile are
available to any further invocations while this program is
invoked. If the adopted user profile propagation
attribute is not specified, then the authorities available to
the program’s owning user profile are not available to
further subinvocations and are available only to this
invocation. These attributes do not affect the
propagation of authority from higher existing
invocations. The adopted user profile propagation
attribute must not be specified if this program does not
have the adopted user profile specified; otherwise, a
template value invalid exception is signaled.

If constrainment (string or array) is not specified, the
references are assumed to be within the defined bounds
of the array or string. No execution time checks are
performed to ensure this is the case. However, if the
reference is outside the defined bounds, unpredictable
results may occur. There may be significant savings in
performance if constrainment is not specified.

The user exit attribute is ignored when the program is
created, but is an attribute that can be materialized by
specifying that the program is allowed to be referenced
as a user exit program.

When a new invocation or activation for a program is
allocated, the automatic or static storage areas are
initialized to binary O0's. The overhead for this service
can be eliminated with two program attribute options
which specify that this initialization is not to be done for
this program.

The object mapping table is a component constructed
by the machine and is available through the Materialize
Program instruction. It describes the location of pointers
and scalars that are defined in the program. See the
Materialize Program instruction for a description of this
component.

Whenever a new invocation or activation is allocated,
the automatic or static storage areas are initialized to
bytes of binary O’s, respectively. The static storage and
automatic storage program attributes control this default
initialization. There is a significant performance
advantage when these areas are not initialized by
default. However, initial values specified for individual
data objects are still set.

Authorization Required

« Insert
— User profile of creating process
— Context identified by operand 2

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Modify
— User profile of creating process
— Context identified by operand 2
— Access group identified by operand 2

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object
0801 Partial system object damage set

Exceptions

Exception

02

06

08

OA

OE

10

1A

1Cc

20

22

24

2A

2E

38

Access Group

01 Object ineligible for access group
Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Context Operation

01 Duplicate object identification
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state)
Machine-Dependent Exception
02 Program limitation exceeded
03 Machine storage limit exceeded
04 Object storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

01 Program header invalid

02 ODT syntax error

03 ODT relation error

04 Operation code invalid

05 Invalid op code extender field
06 Invalid operand type

07 Iinvalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

OB Invalid number of operands
0C Invalid operand ODT reference
Resource Control Limit

01 User profile storage limit
exceeded

Template Specification
01 Template value invalid
02 Template size invalid

Program Management Instructions

Operands

1

X X X
X X X

X X X
X X X

X X X
XXX XX XXX XXXX

2

X X X

X X X

X

Other

8-5

DELETE PROGRAM OBSERVABILITY (DELPGOBS)

Op Code Operand 1
(hex)

0211 Program

Operand 1: System pointer.

Description: The instruction eliminates the capability to
materialize the components, other than the control
information component, of the program template
associated with the program identified by operand 1.
After deleting observability, only the control information

component of the program template can be materialized.

In general, the instruction causes the amount of storage
used by the referenced program to be decreased. The
amount of storage released is equal to the size of the
program template and all of its components.

Authorization Required

« Object Control
— Operand 1

« Retrieve
— Contexts referenced for address resolution
Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Object Control
— Operand 1

Events

0002 Authorization
.0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
08 Argument/Parameter
01 Parameter reference violation X
OA Authorization
01 Unauthorized for operation X
10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X
1A Lock State
01 Invalid lock state X
1C Machine~Dependent Exception
03 Machine storage limit exceeded X
20 Machine Support
02 Machine check X
03 Function check X
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object
2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length
OC Invalid operand ODT reference

X X X

X X X X X X

X X X X X

DESTROY PROGRAM (DESPG)

Op Code Operand 1
(hex)
0221 Program

Operand 1: System pointer.

Description: The program referenced by the system
pointer specified by operand 1 is destroyed. The
program’s identification is deleted from the context
currently addressing the object if it is addressed by a
context. The system pointer identified by operand 1 is
not modified by the instruction. Any subsequent
reference to the destroyed object through the pointer
causes the object destroyed exception.

If the referenced program is currently activated in some
process, an attempt to invoke the program causes the
object destroyed exception to be signaled. If the
referenced program is currently invoked in some
process, execution of the next instruction in the program
causes the object destroyed exception. Any use of an
unresolved pointer that has its initial value specified by
this referenced program causes an object destroyed
exception.

Authorization Required

« Object control
— Operand 1

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

« Object control
— Operand 1

« Modify
— Access group containing operand 1
— Context which addresses operand 1
— User profile owning operand 1

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
1

Exception Other

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
08 Argument/Parameter
01 Parameter reference violation X
OA Authorization
01 Unauthorized for operation X
10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X
1A Lock State
01 Invalid lock state X
1C Machine-Dependent Exception
03 Machine storage limit exceeded X
20 Machine Support
02 Machine check X
03 Function check X
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object
2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
X
X

X X X

X X X

X X X

08 Invalid operand value range
OC Invalid operand ODT reference

Program Management Instructions 8-7

MATERIALIZE PROGRAM (MATPG)

Op Code Operand Operand

(hex) 1 2

0232 Attribute Program
receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The program identified by operand 2 is
materialized .into the template identified by operand 1.

Operand 2 is a system pointer that identifies the
program to be materialized. The format of the
materialization is identical to the program template
identified on the Create Program instruction. The values
in the materialization relate to the current attributes of
the materialized program. Components of the program
template, other than the control information component,
may not be available for materialization because they
were removed by the Delete Program Observability
instruction or because they were absent from the Create
Program instruction.

The template identified by operand 1 must be 16-byte
aligned.

The first 4 bytes of the materialization template identify
the total number of bytes in the template. This value is
supplied as input to the instruction and is not modified.
A value of less than 8 causes the materialization length
exception to be signaled.

The second 4 bytes of the materialization template are
modified by the instruction to contain a value identifying
the template size required to provide for the total
number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified by the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

8-8

The following attributes apply to the materialization of a
program: k

+ The existence attribute indicates whether the program
is temporary or permanent. ‘

« The observation attribute entry specifies the template
components of the programs that currently can be
materialized.

« |f the program has an associated space, then the A
space attribute is set to indicate either fixed- or
variable-length; the initial value for the space is
returned in the initial value of space entry, and the
size of space entry is set to the current size value of
the space. If the program has no associated space,
the size of space entry is set to a zero value, and the
space attribute and initial value of space entry values
are meaningless.

« If the program is addressed by a context, then the
context addressability attribute is set to indicate this,
and a system pointer to the addressing context is
returned in the context entry. If the program is not
addressed by a context, then the context
addressability attribute is set to indicate this, and
binary O’'s are returned in the context entry.

« If the program is a member of an access group, then
the access group attribute is set to indicate this, and
a system pointer to the access group is returned in
the access group entry. If the program is not a
member of an access group, then the access group
attribute is set to indicate this, and binary O’s are
returned in the access group entry.

« The performance class entry is set to reflect the
performance class information associated with the
program.

« The user exit attribute defines if the referenced
program is allowed to be used as a user exit
program.

The program data cannot be materialized if a Delete
Program Observability instruction has been issued for
this program. If the program was created with an
observation attribute that cannot be materialized, the
program data (instruction stream, ODV, OES, user data,
and object mapping table components) cannot be
materialized by this instruction. If the program data
cannot be materialized, O's are placed in the fields of
the program template that describe the size and offsets
to the program data components. The only information
that can be materialized is that part of the program
template up to and including the offset to the OMT
(object mapping template) entry.

The offset to the OMT component entry specifies the
location of the OMT component in the materialized
program template. The OMT consists of a
variable-length vector of 6-byte entries. The number of
entries is identical to the number of ODV entries
because there is one OMT entry for each ODV entry.
The OMT entries correspond one for one with the ODV
entries; each OMT entry gives a location mapping for
the object defined by its associated ODV entry.

The following describes the formats for an OMT entry:

Char(6)
Char(1)

« OMT entry

— Addressability type

Hex 00 = Base addressability

is from the start of
the static storage
area.
Base addressability is
from the start of the
automatic storage area.
Base addressability is
from the start of the
storage area addressed
by a space pointer.
Base addressability is
from the start of the
storage area of a
parameter.
Base addressability is
from the start of the
storage area addressed
by the space pointer
found in the process
communication object
attribute of the process
executing the program.
Base addressability not
provided. The object is
contained in machine
storage areas to which
addressability cannot be
given, or a parameter has
addressability to an object
that is in the storage of
another program.
— Offset from base ;

For types hex 00, hex 01, hex 02,

hex 03, and hex 04, this is a 3-byte

logical binary value representing

the offset to the object from the

base addressability. For type hex FF,

the value is binary O.
— Base addressability ~ - Bin(2)

For types hex 02 and hex 03,

this is a 2-byte binary field

containing the number of the

OMT entry for the space pointer

or a parameter that provides

base addressability for this

object. For types hex 00, hex 01,

hex 04, and hex FF, the value

is binary O.

Hex 01

Hex 02

Hex 03

Hex 04

Hex FF

Char(3)

Program Management Instructions 8-9

Authorization Required

« Retrieve
— Operand 2
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Operand 2
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

0A

10

1A

1Cc

20

22

24

2A

38

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Template Specification

03 Materialization length exception

Operands

1 2 Other

X X X X X x
x X

x

This chapter describes the instructions used for program
execution control. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions,
see Appendix B. Instruction Summary.

ACTIVATE PROGRAM (ACTPG)

Op Code Operand Operand
(hex) 1 2
0212 Program ‘Program

or program

activation

entry

Operand 1: Space pointer or system pointer.
Operand 2: System pointer.

?

Description: This instruction allocates and initializes
storage for static objects that are declared for a
specified program within the executing process. The
program identified by operand 2 is activated in the
executing process. The program is activated by
allocating an area in the PSSA (process static storage
area) to contain the program static storage. This static
storage is then available each time the program is
invoked within the process. The pointer object specified
\by operand 1 receives a space pointer addressing the
activation of the referenced program. The activation
consists of storage for the program’s static objects as
well as a system pointer to the associated program, a
space pointer to the next activation entry (if one exists)
in the PSSA, a space pointer to the preceding activation
entry in the PSSA, and attributes specifying the status
of the activation.

Chapter 9. Program Execution Instructions

Each activation entry in the PSSA is 16-byte aligned
and has the following format:

« Previous activation entry poinier Space
{the first activation entry locates pointer
the PSSA base entry)

« Next activation entry pointer Space
{undefined if this activation is pointer
last in the PSSA chain)

« Associated program pointer System

pointer

« Activation number Bin(2)

« Activation attributes Char(2)
— Activation status Bit O

0 = Not currently active
1 = Currently active
— Reserved (binary 0) Bits 1-15

« Reserved (binary 0) Char{2)

« Invocation count Bin(2)

« Activation mark Bin(4)

« Length of this PSSA entry Bin(4)

'« Program static storage Char(*)

Program Execution Instructions

9-1

The PSSA is located by a space pointer specified when
the process was initiated. The location identified by the
space pointer is considered to be the beginning of the

PSSA and must be 16-byte aligned. At this location is a

96-byte PSSA base entry that consists of the following:

« Last activation entry in process PSSA Space
chain (addresses the base entry if no pointer
programs are activated)

-« First activation entry in process Space
{ignored if no programs are activated} pointer

« Next available storage location Space
in current space containing PSSA pointer

» Reserved Char(16)

« PSSA control Char(1)

— Chain being modified Bit O
0 = Chain not being modified
1 = Chain being modified

— Chain was modified. Bit 1
0 = Chain was not modified.
1 = Chain was modified.

— Reserved (binary 0) \ Bits 2-7

» Reserved (binary O} Char(31)

The user must properly initialize the PSSA base entry
before the first program is activated in the process.

A space pointer locating the PSSA can be materialized
using the Materialize Process instruction.

If the chain being modified bit is on and an attempt is

made to activate or de-activate a program with static
storage, a stack control invalid exception is signaled.

9-2

The program is activated by allocating an area.in the
PSSA space sufficient to contain the activation entry.
The area used for allocating the first activation in a
space is located by the next available storage location
pointer in the PSSA base entry; otherwise, this pointer
locates the first free byte after all activation entries in
the space. This pointer must address a 16-byte aligned
area in the space, or a boundary alignment exception is
signaled. The pointer may be set to address beyond the
currently allocated storage in the space, which is
implicitly extended, and no exception is signaled. If the
space is not currently large enough to contain the entry
and if it is extendable, it is implicitly extended by the
machine. The owner’s authority to the space is included
with the authority of the extending process when
checking for object management authority when the

space is extended. If the space is of a fixed size or

cannot be extended to contain the entry, a space
extension truncation exception is signaled.

The new activation entry is initialized as follows:

« The previous activation entry pointer is copied from
the most recent activation entry in the PSSA base
entry.

« The next activation entry pointer field is unchanged
by the instruction (the last activation is process
pointer in the PSSA base entry specifies the last
activation on the chain).

« The associated program pointer is copied from the
operand 2 system pointer.

« The activation number is set to a value one greater
than the activation number entry in the previous
activation.

« The activation is marked as active (the activation
status is set to binary 1).

« The invocation count is set to 0.

« The activation mark is obtained by incrementing the
mark counter field in the PSSA base entry by one
and copying the resulting value.

« The length field is set to the number of bytes of
storage occupied by the PSSA header and the static

data following it.

« The reserved fields are set to binary O.

A space pointer addressing the new activation entry is
stored in the last activation entry- pointer of the PSSA
base entry, and the next available storage location in the
PSSA base entry is set to address the next available
16-byte aligned area beyond the new activation entry.

If the referenced program’s activation already exists
within the process PSSA chain when the Activate
Program instruction is executed, the program'’s static
storage is reused if the activation was active, and may
or may not be reused if the activation was inactive. In
either case, the storage is reinitialized, the activation is
set to the active state, and the operand 1 space pointer
is set to the reinitialized activation. No chain pointers
are modified, and the activation entry remains at the
same relative location in the chain of PSSA entries.

When a new activation is allocated or an existing
inactive allocation is reactivated, the mark counter in the
PASA (process automatic storage area) base entry is
incremented by 1 and the resulting value is copied to
the active mark field of the activation. If an attempt is
made to activate an already active activation, the
activation mark and mark counter fields are not updated.

When a new activation is allocated, space occupied by
other activations in the inactive state may be used for
the new activation. The current PSSA space is the
space located by the next available location pointer
within the PSSA base entry.

PSSA entries that have all the following conditions are
removed from the PSSA chain:

« Inactive

« Reside in the current PSSA space

« Have an invocation count of O

« Have no active activations or activations with a
nonzero invocation count at a higher address in the

current PSSA space

« Appear as the last entries in the linked PSSA chain

The new activation is placed at the lowest address
within the current PSSA space that is higher than both
the address of any activation in the chain which is in the
current PSSA space and the address of any unallocated
space between previously existing noncontiguous
activations. If no previous activations remain in the
current PSSA space (after being removed under the
above conditions), the new activation is placed at the
lowest address (in the current PSSA space) of the
removed activations. If no previous activations existed in
the current PSSA space, the next available location
pointer in the PSSA base entry specifies the location
where the new activation is to be allocated.

If the program addressed by the operand 2 system
pointer addresses a program that requires no static
storage, no activation entry is allocated, and the operand
2 system pointer is copied to the operand 1 pointer.

Authorization Required

« Operational
— Program referenced by operand 2

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Program Execution Instructions 9-3

Exceptions

Exception

06

0A

10

1A

1C

20

22

24

2A

2C

36

94

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object state
Lock State

01 Invalid lock state
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0OC Invalid operand ODT reference
Program Exception

03 Stack control invalid

Space Management

01 Space extension/truncation

Operands

1

x
X

2

X X

X X

X X X X

CALL EXTERNAL (CALLX)

Op Code Operand Operand Operand
(hex) 1 2 3

0283 Program Argument Return

list list
Operand 1: System pointer.

Operand 2: Operand list or null.

Operand 3: Instruction definition list or null.

Description: The instruction preserves the calling
invocation and causes control to be passed to the
external entry point of the program specified by
operand 1. Operand 1 is a system pointer addressing
the program that is to receive control.

The instruction ensures that the program is properly
activated in the process, if required. The following
conditions are allowed:

« If the referenced program requires no static storage,
the program is invoked, and no activation is created.

o If operand 1 is a system pointer to a program that
requires static storage, the program is implicitly
activated. The chain of activation entries located by
the PSSA (process static storage area) is searched for
an entry for the referenced program. if an entry is
located that is not active, it is set to the active state,
and the static storage is reinitialized based on the
program definition. If no activated entry exists for the
program, a new entry is allocated and initialized. See
the Activate Program instruction for a definition of
this function. The activation mark value for a newly
created activation will be the same as the invocation
mark value described later.

After any needed static storage has been allocated or
located, automatic storage is allocated and initialized for
the newly invoked program. The automatic storage is
obtained from the PASA (process automatic storage
area).

Each invocation entry in the PASA is 16-byte aligned
and has the following format:

The PASA is located by a space pointer specified when
the process is initiated. The location identified by the
space pointer is considered to be the beginning of the
PASA and must be 16-byte aligned. At this location is
a 64-byte PASA header entry that consists of the
following:

Current invocation entry in process Space
(if no programs are invoked, this pointer
pointer must address the PASA
base entry)
First invocation entry in process Space
(ignored if no programs are invoked) pointer
Next available storage location Space
pointer
Reserved Char(16)
Reserved (binary 0) Char(12)
Mark counter Bin(4)
Reserved (binary 0) Char(16)

« Previous invocation entry pointer Space
(the first invocation entry pointer
addresses the PASA base entry)

« Next invocation entry pointer Space
(not defined for the current pointer
invocation entry)

« Associated program pointer (O for System
data base select/omit program) pointer

« Invocation attributes Char(8)
— Invocation number Bin(2)
— Invocation type Char(1)

‘Hex 00 = Data base select/omit
program
Hex 01 = Call external
Hex 02 = Transfer control
Hex 03 = Event handler
Hex 04 = External exception
handler
Hex 05 = Initial program in
process problem state
Hex 06 = Initial program in
process initiation state
Hex 07 = Initial program in
process termination
state
— Reserved (initialized to binary 0) Char(1)
— Invocation mark Bin(4)
« User area Char(8)
« Program’s automatic storage Char(*)

The PASA base entry must be initialized by the user
before the process is initiated.

A space pointer locating the PASA can be materialized
by using the Materialize Process instruction.

The program is invoked by allocating an area in the
PASA space sufficient to contain the invocation entry.
The area used for allocation is located by the next
available storage location pointer in the PASA base
entry. This pointer must address a 16-byte aligned area
in the space, or a boundary alignment exception is
signaled. If the space is not currently large enough to
contain the entry and if it is extendable, it is implicitly
extended by the machine. The owner’s authority to the
space is included with the authority of the process when
checking for object management authority when the
space is extended. If the space is of a fixed size or
cannot be extended enough to contain the entry, a
space extension/truncation exception is signaled.

Program Execution Instructions - 9-5

The new invocation entry is updated as follows:

« The previous invocation entry pointer is copied from
the most recent invocation entry in the PASA base
entry. This pointer locates the calling invocation
entry. :

« The next invocation entry is not modified.

» The associated program pointer is copied from the
operand 1 system pointer.

« The invocation number is incremented by 1 beyond
that in the calling invocation. The first invocation in
the current process state has an invocation number
of 1.

« The invocation type value is set to hex 01 to indicate
how the program was invoked.

« The mark counter in the PASA base entry is
incremented by 1 and the new value is copied to the
invocation mark field.

« The user area field is set to binary 0.

« The program’s automatic storage is initialized as
defined in the program definition. -

+ The invocation count, if any, in the associated
activation is incremented by 1.

A space pointer (addressing the new invocation entry) is
stored in the next invocation entry pointer of the
invoking invocation. :

A space pointer (addressing the new invocation entry) is
stored in the current invocation entry pointer of the
PASA base entry, and the next available storage location
in the PASA base entry is set to address the next
available 16-byte aligned area beyond the new
invocation entry.

A program with no automatic data has a PASA entry
created for it. The created PASA entry consists of only
a stack control entry.

The user defines the invocation attribute entry. This
entry is not used after the program is initialized.

Following the allocation and initialization of the
invocation entry, control is passed to the invoked
program.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the invocation entry to be
called. If operand 2 is null, no arguments are passed by
the instruction. A parameter list length exception is
signaled if the number of arguments passed does not
correspond to the number required by the parameter list
of the target program.

Operand 3 specifies an IDL (instruction definition list)
that identifies the instruction number(s) of alternate
return points within the calling invocation. A Return
External instruction in an invocation immediately
subordinate to the calling invocation can indirectly
reference a specific entry in the IDL to cause a return of
control to the instruction associated with the referenced
IDL entry. If operand 3 is null, then the calling
invocation has no alternate return points associated with
the call.

Authorization Required

« Operational
— Program referenced by operand 1

+ Retrieve
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource ,
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

OA

10

1A

1C

20

22

24

2A

2C

36

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
02 Parameter list length violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference
Program Execution

03 Stack control invalid

Space Management

01 Space extension/truncation

Operands

1

x

X X X

x

X

xX X

X X X X

23

X X
X X

CALL INTERNAL (CALLI)

Op Code Operand Operand Operand

(hex) 1 2 3

0293 Internal Argument Return
entry list target
point

Operand 1: Internal entry point.

Operand 2: Operand list or null.

Operand 3: Instruction pointer.

Description: The internal entry point specified by
operand 1 is located in the same invocation in which the
Call Internal instruction is executed. A subinvocation is
defined, and execution control is transferred to the first
instruction associated with the internal entry point. The
instruction does not cause a new invocation to be
established. Therefore, there is no allocation of objects,
and instructions in the subinvocation have access to all
invocation objects.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the subinvocation. If
operand 2 is null, no arguments are passed. After an
argument has been passed on a Call Internal instruction,
the corresponding parameter may be referenced. This
causes an indirect reference to the storage area located
by the argument. This mapping exists until the
parameter is assigned a new mapping based on a
subsequent Call Internal instruction. A reference to an
internal parameter before its being assigned an
argument mapping causes a parameter reference
violation exception to be signaled.

Operand 3 specifies an instruction pointer that identifies
the pointer into which the machine places addressability
to the instruction immediately following the Call Internal
instruction. A branch instruction in the called
subinvocation can directly reference this instruction
pointer to cause control to be passed back to the
instruction immediately following the Call Internal
instruction.

Program Execution Instructions 9-7

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands

Exception 12 3 Other

06 Addressing

01 Space addressing violation X

02 Boundary alignment

03 Range X
08 Argument/Parameter

01 Parameter reference violation X
10 Damage Encountered

04 System object damage state X X

44 Partial system object damage X X
1C Machine-Dependent Exception

03 Machine storagé limit exceeded X
20 Machine Support

02 Machine check X

03 Function check . X
24 Pointer Specification '

01 Pointer does not exist X

02 Pointer type invalid X
2A Program Creation .

06 Invalid operand type X X X

09 Invalid branch target X

OB Invalid number of operands X

OC Invalid operand ODT reference X X X

x

X X
X

9-8

DE-ACTIVATE PROGRAM (DEACTPG)

Op Code
(hex) Operand 1
0225 Program

Operand 1: System pointer or null.

Description: The instruction locates the activation entry
addressed through operand 1 and marks it as inactive if
the appropriate conditions are satisfied.

If operand 1 is null, the program issuing the instruction
is to be de-activated. An activation in use by invocation
exception is signaled if the activation entry’s invocation
count is not equal to 1.

If operand 1 is a system pointer to a program, then that
program’s activation entry is de-activated if its
invocation count is 0. Otherwise, an activation in use by
invocation exception is signaled. ‘

In the previous two cases, if the program has no static
storage or no activation, no operation is performed and
no exception is signaled.

The activation is de-activated when the activation status
is set to not currently active (0). When the activation is
not active and its invocation count is O, the storage
occupied by the activation is subject to reuse for
allocating other activations.

If the user de-activates a program by setting the
activation status bit with an instruction other than the
De-activate Program instruction, the following steps
must be taken to ensure proper stack operation:

1. The chain being modified and the chain was
modified bits must be turned on in the PSSA base
entry.

2. The contents and linking of the PSSA chain of
activation headers can be modified as necessary.

3. The chain being modified bit must be turned off.

4. The machine subsequently turns off the chain was
modified bit.

If the chain being modified bit is on and an attempt is
made to activate or de-activate a program with static
storage, a stack control invalid exception is signaled.

Authorization Required
« Retrieve

— Contexts referenced for address resolution
Lock Enforcement
+ Materialize

— Contexts referenced for address resolution
Events

0002 Authorization
0101 Object authorization violation

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operand

Exception 1 Other
06 Addressing

01 Space addressing violation X

02 Boundary alignment X

03 Range X
08 Argument/Parameter

01 Parameter reference violation X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X

44 Partial system object damage X X
1A Lock State

01 Invalid lock state X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X

02 Object destroyed X

03 Object suspended X

24

2A

2C

32

Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid

03 Pointer addressing invalid object

X X

Program Creation

06 Invalid operand type

07 Invalid operand attribute

OA Invalid operand value range
OC Invalid operand ODT reference
Program Execution

X X X X

03 Stack control invalid X

05 Activation in use by invocation X
Scalar Specification
01 Scalar type invalid X

Program Execution Instructions

9-9

END (END)

Op Code
{hex)

0260

No operands are specified.

Description: The instruction delimits the end of a
program’s instruction stream. When this instruction is
encountered in execution, it causes a return to the
preceding invocation (if present) or causes termination of
the process phase if the instruction is executed in the
highest-level invocation for a process. The End
instruction must appear only as the last instruction of a
program; it delineates the end of the instruction stream.
When it is encountered in execution, the instruction
functions as a Return External instruction with a null
operand. Refer to the Return External instruction for a
description of that instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0202 Process terminated
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference
0301 Invocation reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set
Exceptions
Exception Other

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X

9-10

MODIFY AUTOMATIC STORAGE ALLOCATION
(MODASA)

Op Code Operand Operand
{hex) 1 2
02F2 Storage Modification

allocation size
Operand 1. Space pointer or null.

Operand 2: Binary scalar.

Description: The size of automatic storage assigned to
the invocation of the currently executing program is
extended or truncated by the size specified by operand
2. A positive value indicates that the storage allocation
is to be extended; a negative value indicates that the
storage allocation is to be truncated. The instruction
also returns addressability of the allocated or deallocated
storage area in the space pointer identified by operand
1. When allocating additional space, the space pointer
locates the first byte of the allocated area. If space is
deallocated, the space pointer locates the first byte of
the deallocated area. If operand 1 is null, the storage is
allocated or deallocated but no addressability is
returned. The space pointer identified by operand 1
always addresses storage that is on a 16-byte
boundary.

This instruction modifies the next available storage
location pointer in the PASA (process automatic storage
area) base entry. If it is necessary to extend the space
containing the PASA because of an extension of the
current invocation, the instruction implicitly extends this
space to contain the additional area.

The owner’s authority to the space is included with the
authority of the process when a space is extended and
when checked for object management authority.

If the space is extended, the new bytes contain the
initial value for the space; otherwise, no initialization is
done to the allocated area.

A space extension/truncation exception is signaled if the
space containing the PASA cannot be extended. A
scalar value invalid exception is signaled if truncation
causes the next available storage location pointer in the
PASA to point to a location that precedes the beginning
of the data of the automatic storage entry for the
executing invocation.

The storage allocated with this instruction is not
initialized to any value. If implicit space extension
occurs, however, the extended portion is initialized to
the default value specified for the space when it was
created.

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1Cc

20

22

24

2C

32

36

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
04 Object storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 - Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Program Execution

03 Stack control invalid

Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

03 Scalar value invalid

Space Management

01 Space extension/truncation

Program Execution Instructions

Operands

1

x
x

X
x

X
x

X X X X X
X X X X X

2

X X

Other

9-11

RETURN EXTERNAL (RTX)

Op Code
(hex) Operand 1
02A1 Return point

Operand 1: Binary (2) scalar or null.

Description: The instruction terminates execution of the
invocation in which the instruction is specified. All
automatic program objects in the invocation are
destroyed by removing the returning program’s
automatic storage from the PASA (process automatic
storage area) by the updating of the PASA chaining
pointers.

A Return External instruction can be specified within an
invocation’s subinvocation, and no exception is signaled.

If a higher invocation exists in the invocation hierarchy,
the instruction causes execution to resume in the
preceding invocation in the process’ invocation hierarchy
at an instruction location indirectly specified by operand
1. If operand 1 is binary O or null, the next instruction
following the Call External instruction from which control
was relinquished in the preceding invocation in the
hierarchy is given execution control. If the value of
operand 1 is not 0, the value represents an index into
the IDL (instruction definition list) specified as the return
list operand in the Call External instruction, and the
‘value causes control to be passed to the instruction
referenced by the corresponding IDL entry. The first IDL
entry is referenced by a value of one. If operand 1 is
not O and no return list was specified in the Call
External instruction, or if the value of operand 1 exceeds
the number of entries in the IDL, or if the value is
negative, a return point invalid exception is signaled.

The instruction sets the current invocation entry in the
PASA base entry to address the immediately preceding
invocation, and it also sets addressability to the
returning invocation into the next available storage
location entry in the PASA header.

If a higher invocation does not exist, the Return External
instruction causes termination of the current process
state. If operand 1 is not O and is not null, the return
point invalid exception is signaled. Refer to the
Terminate Process instruction for the functions
performed in process termination. ‘

If the returning invocation has received control to
process an event, then control is returned to the point
where the event handler was invoked. In this case, if
operand 1 is not O and is not null, then a return point
invalid exception is signaled.

If the returning invocation has received control from the
machine to process an exception, the return instruction
invalid exception is signaled.

If the returning invocation has an activation, the
invocation count in the activation is decremented by 1.

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

10

1ic

20

22

24

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Program Execution

01 Return instruction invalid

02 Return point invalid

Operand

X X X

X X

X X

X X X X X

Other

SET ARGUMENT LIST LENGTH (SETALLEN)

Op Code Operand Operand

(hex) 1 2

0242 Argument Length
list

Operand 1: Operand list.

Operand 2: Binary scalar.

Description: This instruction specifies the number of
arguments to be passed on a succeeding Call External
or Transfer Control instruction. The current length of the
variable-length operand list (used as an argument list)
specified by operand 1 is modified to the value indicated
in the binary scalar specified by operand 2. This length
value specifies the number of arguments (starting from
the first) to be passed from the list when the operand
list is referenced on a Call External or Transfer Control
instruction.

Only variable-length operand lists with the argument list
attribute may be modified by the instruction.

The value in operand 2 may range from 0 (meaning no
arguments are to be passed) to the maximum size
specified in the ODT definition of the operand list
(meaning all defined arguments are to be passed).

The length of the argument list remains in effect for the
duration of the current invocation or until a Set
Argument List Length instruction is issued against this
operand list.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Program Execution Instructions

Exceptions

Exception

06

10

1C

20

22

24

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation

03 Argument list length modification
violation i

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA ' Invalid operand length

OB Invalid number of operands
OC Invalid operand ODT reference
Scalar Specification

03 Scalar value invalid

Operands
1 2

x

x

xX X

X X X X

x

STORE PARAMETER LIST LENGTH (STPLLEN)

Op Code
{hex) Operand 1
0241 Length

Operand 1: Binary variable scalar.

Description: A value is returned in operand 1 that
represents the number of parameters associated with
the invocation’s external entry point for which arguments
have been passed on the preceding Call External or
Transfer Control instruction. ‘

The value can range from O (no parameters were
received) to the maximum size possible for the
parameter list associated with the external entry point.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1c

20

22

24

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Obiject not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

Operand
1 Other

x

X X X X X xX X x

xX X

TRANSFER CONTROL (XCTL)

Op Code Operand Operand

(hex) 1 2

0282 Program Argument
list

Operand 1: System pointer.

Operand 2: Operand list or null.

Description: The instruction destroys the calling
invocation and causes control to be passed to the
external entry point of the program specified by operand
1. Operand 1 is a system pointer addressing the
program that is to receive control.

The invocation count in the activation (if any) of the
calling program is decremented by 1. The instruction
ensures that the called program is properly activated in
the process, if required. See the Activate Program
instruction for a definition of this activation verification
process.

After any needed static storage has been allocated or
located, the invocation entry to the program issuing the
Transfer Control instruction is made available for the
new invocation. The new invocation’s stack control
entry and automatic storage overlay that of the
invocation issuing the Transfer Control instruction. The
new invocation entry is allocated beginning at the same
location as that of the current (transferring) invocation.
See the Call External instruction for a definition of a
PASA (process automatic storage area) entry.

Program Execution Instructions 9-15

The new invocation’s stack control entry is initialized as
follows:

« The previous invocation entry pointer and the next
invocation entry pointer are the same as that of the
invoking program’s entry.

« The associated program pointer is copied from the
associated activation entry (or from the operand 1
system pointer if no activation entry exists).

« The invocation number entry is unchanged.

« The invocation type value is set to indicate that the
program was invoked via a Transfer Control
instruction (hex 20).

« The program’s automatic storage is allocated and
initialized as specified in the program definition.

The invocation entry for the preceding invocation is
unchanged by the instruction. The current invocation
entry pointer in the PASA base entry is unchanged by
the instruction. The next available storage location entry
in the PASA base entry is set to address the next
available 16-byte aligned area beyond the new
invocation entry.

The program is invoked by allocating an area in the
PASA space that is sufficient to contain the invocation
entry. The area used for allocation is located by the
next available storage location pointer in the PASA base
entry. This pointer must address a 16-byte aligned area
in the space, or a boundary alignment exception is
signaled. '

The maximum addressable location in the PASA space
limits the amount of storage that may be allocated for
PASA storage. If this limit is exceeded, the process
storage limit exceeded exception is signaled. If the
maximum addressable location entry does not address
the same space as that addressed by the next available
storage location entry, the stack control invalid exception
is signaled.

If insufficient space is available in the PASA for the
entire new entry, the PASA space is implicitly extended
by the machine. If the space is fixed size or may not be
extended enough to contain the entry, a space
extension /truncation exception is signaled.

9-16

Following the allocation and initialization of automatic
storage, control is passed to the invoked program.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the invocation to which
control is being transferred. Automatic objects allocated
by the transferring invocation are destroyed as a result
of the transfer operation and, therefore, cannot be
passed as arguments. A parameter list length exception
is signaled if the number of arguments passed does not
correspond to the number required by the parameter list
of the target program.

If the transferring invocation has received control to

process an exception or an event, the return instruction
invalid exception is signaled.

Authorization Required

« Operand 1
— Operational

+ Retrieve ,
— Contexts referenced for address resolution

Lock Enforcement

« Materialize
— Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

OA

10

1A

icC

20

22

24

2A

2C

36

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
02 Parameter list length violation
Authorization

01 Unauthorized for operation
Damage Encountered

04 System object damage state
44 Partial system object damage
Lock State

01 Invalid lock state
Machine-Dependent Exception
02 Program limitation exceeded
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object
Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OC Invalid operand ODT reference
Program Execution

01 Return instruction invalid

03 Stack control invalid

Space Management

01 Space extension/truncation

Operands

1

2

X X

Other

Program Execution Instructions

9-17

9-18

Chapter 10. Exception Management Instructions

This chapter describes all instructions used for exception
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix B. Instruction Summary.

MATERIALIZE EXCEPTION DESCRIPTION
{MATEXCPD)

Op Code Operand Operand Operand

{hex) 1 2 3

03D7 Attribute Exception Materialization
receiver description option

Operand 1: Space pointer.

Operand 2: Exception description.

Operand 3: Character(1) scalar.

Description: The instruction materializes the attributes
(operand 3) of an exception description {operand 2) into
the receiver specified by operand 1.

The template identified by operand 1 must be a 16-byte
aligned area in the space if the materialization option is
hex 00.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver operand contains insufficient area
for the materialization.

Operand 2 identifies the exception description to be
materialized.

Exception Management Instructions 10-1

The value of operand 3 specifies the materialization
option. If the materialization option is hex 00, the
format of the exception description materialization is as

follows:

« Template size
‘— Number of bytes provided

for materialization
— Number of bytes available
for materialization -

« Control flags
— Exception handling action

000

001

010

100

101

= Do not-handle.
(Ignore occurrence of
exception and continue
processing.)
=" Do 'not handle.
(Disable this exception
description and continue
to search this invocation
for another exception
description to handle
‘the exception.)
Do not handle.
(Continue to search for
an exception description
by resignaling the ex-
ception to the preceding
invocation.)
= Defer handling.
(Save exception data for
later exception handling.)
= Pass control to the
specified exception
handler. I

— No data

0]

1

= Exception data is
returned

= Exception data is not
returned

— Reserved (binary 0)
— User data indicator

0
1

= User data not present
= User data present

— Reserved (binary 0)
— Exception handler type

00
01
10

= External entry point
Internal entry point
Branch point '

1]

~ Reserved (binary 0)

10-2

" Char(8) -
-+ Bin(4)

Bin{4)

Char(2)
Bits 0-2

Bit 3

Bit 4
Bit 5

Bits 6-7
Bits 8-9

Bits 10-15

Instruction .number to be given
control (if internal entry point
or branch point; otherwise, 0)

Length of compare value
(maximum of 32 bytes)

Compare value (size established
by value of length of compare
value parameter)

Number of exception 'I Ds

System pointer to the exception
handling program if an external
exception handler is specified

Pointer to user data (not present
if value of user data indicator
is binary 0)

Exception ID (one for each
exception ID dictated by the
number of exception IDs attribute)

Bin(2)

Bin(2)
Char(32)
Bin(2)
System

pointer

Space
pointer

Char(2)

If the materialization option is hex 01, the format of the
materialization is as follows:

« Template size Char(8)
— Number of bytes provided Bin(4)
for matérialization
— Number of bytes available Bin(4}

for materialization

« Control fiags Char(2)
— Exception handling action Bits 0-2
000 = Do not handle.

(lgnore occurrence of
exception and continue
processing.)

001 = Do not handle.

(Disable this exception
description and continue
to search this invocation
for another exception
description to handie
the exception.)

010 = Do not handle.
(Continue to search for
an exception description
by resignaling the ex-
ception to the preceding
invocation.)

100 = Defer handling.

(Save exception data for
later exception handling.)

101 = Pass control to the
specified exception
handler.
— No data Bit 3
0 = Exception data is
returned
1 = Exception data is not
returned)
— Reserved (binary 0) . Bit 4
— User data indicator Bit 5
0 = User data not present
1 = User data present
— Reserved (binary Q) Bits 6-15

If the materialization option is hex 02, the format of the
materialization is as follows:

« Template size Char(8)
— Number of bytes provided Bin(4)
for materialization ‘
— Number of bytes available Bin{4)

for materialization

. Compare value length Bin(2)
(maximum of 32 bytes)

« Compare value Char(32)

Events

0002 Authorization

0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Exceptions

Exception

06
08
10

1C

20

22

24

2A

32

38

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
Scalar Specification

03 Scalar value invalid

Template Specification

03 Materialization length exception

Exception Management Instructions

Operands
12 3
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X
X

Other

10-3

MODIFY EXCEPTION DESCRIPTION (MODEXCPD)

Op Code Operand Operand Operand
(hex) 1 2 3
O3EF Exception Modifying Modification

description attributes option
Operand 1: Exception description.
Operand 2: Space pointer, or character(2) constant.

Operand 3: Character(1) scalar.

Description: The exception description attributes
specified by operand 3 are modified with the values of
operand 2.

Operand 1 references the exception description.

Operand 2 specifies the new attribute values. Operand 2
may be either a character constant or a space pointer to
the modification template. Operand 2 cannot be
specified as a character constant when operand 3 is not
a constant.

10-4

The value of operand 3 specifies the modification
option. If the modification option is hex 01 and operand
2 specifies a space pointer, the format of the modifying
attributes pointed to by operand 2 is as follows:

« Template size Char(8)
— Number of bytes provided for Bin{(4)
materialization (must be at least 10)

~— Number of bytes available for Bin(4)*
materialization
« Control flags Char(2)
— Exception handling action Bits 0-2

000 = Do not handle.

{Ignore occurrence of
exception and continue
processing.)

Do not handle.

(Disable this exception
description and continue
to search this invocation
for another exception
description to handle

the exception.)

Do not handle.

{Continue to search for

an exception description
by resignaling the ex-
ception to the preceding
invocation.)

Defer handling.

(Save exception data for
later exception handling.)
Pass control to the
specified exception
handler.

— No data Bit 3
Exception data is
returned.
Exception data is not
returned.

— Reserved (binary 0)

001 =

010 =

101 =

Bits 4-15

If the exception description was in the deferred state
prior to the modification, the deferred signal, if
present, is lost.

When the option to not return exception data is
selected, no data is returned for the Retrieve Exception
Data or Test Exception instructions, and the number of
bytes available for the materialization field is set to O.
This option can also be selected in the ODT definition of
the exception description.

If the modification option of operand 3 is a constant
value of hex 01, then operand 2 may specify a character
constant. The operand 2 constant has the same format
as the control flags entry previously described.

If the modification option is hex 02, then operand 2
must specify a space pointer. The format of the
modification is as follows:

« Template size Char(8)
— Number of bytes provided Bin{4)
(must be at least 10 plus the
length of the compare value in
the exception description)

— Number of bytes available for Bin(4)*
materialization
» Compare value length Bin(2)*
(maximum of 32 bytes)
« Compare value Char(32)

Note: Entries shown here with an asterisk (*) are
ignored by the instruction.

The number of bytes in the compare value is dictated by
the compare value length specified in the exception
description as originally specified in the object definition
table.

An external exception handling program can be modified
by resolving addressability to a new program into the
system pointer designated for the exception description.

The presence of user data is not a modifiable attribute
of exception descriptions. If the exception description
has user data, it can be modified by changing the value
of the data object specified in the exception description.

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions k

Operands

Exception 12 3 Other

06 Addressing

01 Space addressing violation X X
03 Range X X
08 Argument/Parameter
01 Parameter reference violation X X
10 Damage Encountered
04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X
2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X

0OC Invalid operand ODT reference X X X

32 Scalar Specification

X

03 Scalar value invalid

38 Template Specification
01 Template value invalid X
02 Template size invalid X

Exception Management Instructions. 10-5

RETRIEVE EXCEPTION DATA (RETEXCPD)

Op Code Operand Operand

{hex) 1 2

03E2 Receiver Retrieve
options

Operand 1: Space pointer.

Operand 2: Character(1) scalar (fixed-length).

Description: The data related to a particular occurrence
of an exception is returned and placed in the specified
space.

Operand 1 is a space pointer that identifies the receiver
template. The template identified by operand 1 must be
16-byte aligned in the space.

The value of operand 2 specifies the type of exception
handiler for which the exception data is to be retrieved.
The exception handler may be a branch point exception
handler, an internal entry point exception handler, or an
external entry point exception handler.

An exception state of process invalid exception is
signaled to the invocation issuing the Retrieve Exception
Data instruction if the retrieve option is not consistent
with the process’s exception handling state. For
example, the exception is signaled if the retrieve option
specifies retrieve for internal entry point exception
handler and the process exception state indicates that
an internal exception handler has not been invoked.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the

excess bytes are unchanged. No exceptions (other than’

the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

10-6

After an invocation has been destroyed, exception data
associated with a signaled exception description within
that invocation is lost.

The format of operand 1 for the materialization is as
follows: :

« Template size Char(8)
— Number of bytes provided Bin{(4)
for retrieval
— Number of bytes available Bin(4)
for retrieval :
« Exception identification Char(2)
« Compare value length Bin(2)
{maximum of 32 bytes) '
« Compare value Char(32)
« Reserved (binary 0) Char(4)
Exception specific data Char(*)
» Signaling program invocation Space
pointer
Signaled program invocation Space
pointer

« Signaling program instruction address Bin(2)
« Signaled program instruction address Bin(2)

« Machine-dependent data Char{10)

The signaling program invocation address entry locates
the invocation entry in the PASA (process automatic
storage area) that corresponds to the invocation that
caused the exception to be signaled. For machine
exceptions, this space pointer locates the invocation
executing when the exception occurred. For
user-signaled exceptions, this space pointer locates the
invocation that executed the Signal Exception
instruction. The signaling program instruction address
entry locates the instruction that caused the exception to
be signaled.

The signaled program invocation entry locates the
invocation entry in the PASA that is signaled to handle
the exception. This invocation is the last invocation
signaled or resignaled to handle the exception. For
machine exceptions, the first invocation signaled is the
invocation incurring the exception. For user-signaled
exceptions, the Signal Exception instruction may initially
locate the current or any previous invocation. If the
invocation to be signaled handies the exception by
resignaling the exception, the immediately previous
invocation is considered to be the last signaled
invocation. This may occur repetitively until no more
prior invocations exist in the process and the signaled
program invocation entry is assigned a value of binary O.
If an invocation to be signaled handles the exception in
any manner other than resignaling or does not handle
the exception, that invocation is considered to be the
last signaled.

The signaled program instruction address entry specifies
the number of the instruction that is currently being
executed in the signaled invocation.

The machine extends the area beyond the exception
specific data area with binary 0's so that the pointers to
program invocations are properly aligned.

The operand 2 values are defined as follows:

« Retrieve options Char({1)
— Hex 00 = Retrieve for a branch

point exception handler

— Hex 01 = Retrieve for an internal
entry point exception
handler

— Hex 02 = Retrieve for an external

entry point exception
handler

If the exception data retention option is. set to 1 (do not
save), the number of bytes available for retrieval is set
to 0.

Exception data is always available to the process default
exception handler.

Events

0002 Authorization
0101 Object authorization violation

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object d