File No. S38-36

4
4
™
~
s
-
o
O
%)

—— a—
— a—

File No. S38-36

IBM System/38

IBM System/38
Control Language
Reference Manual

Program Number 5714-SS1

| Sixth Edition (September 1982)

This is a major revision of, and obsoletes, SC21-7731-4 and Technical Newsletter
SN21-8235. This edition applies to release 4, modification 1 of the IBM
System/38 Control Program Facility (Program 5714-SS1), and to all subsequent
releases until otherwise indicated in technical newsletters or in new editions.

Changes or additions to the text, syntax diagrams, and illustrations are indicated
by a vertical line to the left of the change or addition.

Changes are periodically made to the information herein; changes will be reported
in technical newsletters or in new editions of this publication.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
enterprise is entirely coincidental.

Use this publication only for the purpose stated in About This Manual.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1979, 1980, 1981, 1982

Contents
C

ABOUTTHISMANUAL ix Special Characters and Predefined Values 2-9
Purpose of This Manual ix Summary of Special Character Usage 2-9
Organization of This Manual ix Predefined Values 2-11
What You Should Know xi Rules for Specifying Names 2-12
If You Need More Information Xi Identifying CPF Objects 2-13
System/38 Overview Information xi Simple and Qualified Object Names 2-13
Control Language Commands Xi Generic Object Names 2-13
Data Description Specifications Xi CPF Object Naming Rules 2-14
Messages Xi Parameter Values 2-16
Languages xi Constant Values 2-17
Communications Xii Variables e e e e 2-20
Utilities « . o e e e e Xii Expressions 2-21
System Operation xii Listsof Values 2-22
Installation and Device Configuration xii Syntax Coding Rules (Summary) 2-23
Problem Determination Xii
Content and Use of System/38 Publications Xii PART 2. CONTROL LANGUAGE COMMAND
DESCRIPTIONS
PART 1. CONTROL LANGUAGE FUNCTIONS
AND SYNTAX CHAPTER 3. FORMAT OF COMMAND
DESCRIPTIONS 31
CHAPTER 1. SUMMARY OF CPF FUNCTIONS AND How Commands Are Described 3-1
OBJECTTYPES 11 Command Description 3-1
CPF Object Types 1-1 Command Syntax 3-1
CPF-Provided Libraries 1-4 Parameter Descriptions 3-2
Commands Operating on CPF Objects 1-5 Command Coding Examples 3-2
Commands Operating on Specific Object Types . . 1-6 Additional Command Considerations 3-2
o Commands Operating on Multiple Object Types 1-7 How to Interpret Syntax Diagrams 3-3
Command Groups (By Function) 1-8 Sample Syntax Diagram 3-3
Object and Library Commands 1-9 Syntax Diagram Rules 3-5
Data Base Commands 1-10
Device File Commands 1-1 CHAPTER 4. COMMAND DESCRIPTIONS 41
Device Management Commands 1-12 ADDAJE (Add Autostart Job Entry) Command . . . 4-1
Programming Commands 1-13 ADDBKP (Add Breakpoint) Command 4-3
Program Debug Commands 1-14 ADDFCTE (Add Forms Control Table Entry)
Message Handling Commands 1-14 Command e e 4-9
Input/Output Spooling Commands 1-15 ADDJOBQE (Add Job Queue Entry) Command . . . 4-17
System and Job Control Commands 1-16 ADDLFM (Add Logical File Member) Command . . 4-20
Subsystem Description, Job Description, and ADDMSGD (Add Message Description) Command . 4-25
Class Commands 1-17 ADDPFM (Add Physical File Member) Command . . 4-39
Configuration Commands 1-18 ADDPGM (Add Program) Command 4-41
Utility Commands 1-19 ADDRJECMNE (Add RJE Communications Entry)
Security Commands 1-19 Command o e e e e 4-43
Save/Restore Commands 1-19 ADDRJERDRE (Add RJE Reader Entry)
Command Definiton Commands 1-20 Command e e e 4-45
Service Commands 1-20 ADDRJEWTRE (Add RJE Writer Entry)
Remote Job Entry Facility Commands 1-21 Command v e 4-47
Master Command Matrix Chart 1-22 ADDRTGE (Add Routing Entry) Command 4-52
ADDTRC (Add Trace) Command 4-56
CHAPTER 2. CONTROL LANGUAGE SYNTAX 21 ADDWSE (Add Work Station Entry) Command . . . 4-62
PatsofaCommand 2-1
Command Label 2-1 ALCOBJ (Allocate Object) Command 4-66
Command Name 2-2
Command Parameters 2-2 ANSLIN (Answer Line) Command 4-70
Command Syntax 2-5
Command Delimiters 2-5 APYJRNCHG (Apply Journaled Changes)
; Command Continuation 2-7 Command e e 4-71
L Entering Comments 2-7 APYPGMCHG (Apply Programming Change)
Control Language Character Set 2-8 Command e e 4-77

Contents i

CALL (Call Program) Command

CHGAUJE (Change Autostart Job Entry) Command
CHGBSCF (Change BSC File) Command
CHGCMD (Change Command) Command
CHGCMNF (Change Communications File)

Command
CHGCNPA (Change CSNAP Attributes) Command
CHGCRDF (Change Card File) Command
CHGCUD (Change Control Unit Description)

Command
CHGDBG (Change Debug Mode) Command ..
CHGDEVD (Change Device Description) Command
CHGDFUDEF (Change DFU Definition) Command .
CHGDKTF (Change Diskette File) Command
CHGDSPF (Change Display File) Command
CHGDTA (Change Data) Command
CHGDTAARA (Change Data Area) Command . . .
CHGFCT (Change Forms Control Table)

Command
CHGFCTE (Change Forms Control Table

Entry) Command
CHGJOB (Change Job) Command
CHGJOBD (Change Job Description) Command
CHGJOBQE (Change Job Queue Entry)

Command
CHGJRN (Change Journal) Command
CHGLF (Change Logical File) Command
CHGLFM (Change Logical File Member

Command
CHGLIND (Change Line Description) Command . .
CHGMSGD (Change Message Description)

Command
CHGMSGAQ (Change Message Queue) Command .
CHGOBJOWN (Change Object Owner)

Command
CHGOUTAQ (Change Output Queue) Command
CHGPF (Change Physical File) Command
CHGPFM (Change Physical File Member)

Command
CHGPGMVAR (Change Program Variable)

Command
CHGPRTF (Change Printer File) Command . .
CHGPTR (Change Pointer) Command
CHGQRYDEF (Change Query Definition)

Command
CHGRJECMNE (Change RJE Communications

Entry) Command
CHGRJERDRE (Change RJE Reader

Entry) Command
CHGRJEWTRE (Change RJE Writer

Entry) Command
CHGRTGE (Change Routing Entry) Command
CHGSBSD (Change Subsystem Description)

Command
CHGSPLFA (Change Spooled File Attributes)

Command
CHGSRCPF (Change Source Physical File Member)

Command
CHGSSND (Change Session Description)

Command
CHGSYSVAL (Change System Value) Command
CHGTAPF (Change Tape File) Command e
CHGUSRPRF (Change User Profile) Command
CHGVAR (Change Variable) Command

4-245

4-247

4-250
4-255

4-259

4-262

CHGWSE (Change Work Station Entry)
Command

CHKOBJ (Check Object) Command

CLNPRT (Clean Printer) Command
CLRDKT (Clear Diskette) Command
CLRJOBAQ (Clear Job Queue) Command
CLRLIB (Clear Library) Command
CLROUTAQ (Clear Output Queue) Command ..
CLRPFM (Clear Physical File Member) Command .
CLRTRCDTA (Clear Trace Data) Command
CNLJOB (Cancel Job) Command
CNLRCV (Cancel Receive) Command
CNLRDR (Cancel Reader) Command
CNLRJERDR (Cancel RJE Reader) Command . . .
CNLRJEWTR (Cancel RJE Writer) Command . . .
CNLRQS (Cancel Request) Command
CNLSPLF (Cancel Spooled File) Command
CNLWTR (Cancel Writer) Command

CPYF (Copy File) Command
CPYSPLF (Copy Spooled File) Command

CRTBSCF (Create BSC File) Command
CRTCBLPGM (Create COBOL Program)
Command
CRTCLPGM (Create Control Language Program)
Command
CRTCLS (Create Class) Command
CRTCMD (Create Command) Command
CRTCMNF (Create Communications File)

Command
CRTCRDF (Create Card File) Command
CRTCUD (Create Control Unit Description)

Command
CRTDEVD (Create Device Description) Command .
CRTDFUAPP (Create DFU Application) Command .
CRTDFUDEF (Create DFU Definition) Command .
CRTDKTF (Create Diskette File) Command
CRTDSPF (Create Display File) Command
CRTDTAARA (Create Data Area) Command
CRTEDTD (Create Edit Description) Command
CRTFCT (Create Forms Control Table)

Command
CRTJOBD (Create Job Description) Command
CRTJOBQ (Create Job Queue) Command
CRTJRN (Create Journal) Command
CRTJRNRCV (Create Journal Receiver)

Command
CRTLF (Create Logical File) Command
CRTLIB (Create Library) Command
CRTLIND (Create Line Description) Command
CRTMSGF (Create Message File) Command
CRTMSGQ (Create Message Queue) Command .
CRTOUTQ (Create Output Queue) Command . . .
CRTPF (Create Physical File) Command
CRTPRTF (Create Printer File) Command e
CRTPRTIMG (Create Print Image) Command . . .
CRTQRYAPP (Create Query Application)

Command
CRTQRYDEF (Create Query Definition)

Command

9

CRTRPGPGM (Create RPG Program) Command
CRTRPTPGM (Create Auto Report Program)

Command
CRTSBSD (Create Subsystem Description)

Command
CRTSRCPF (Create Source Physical File)

Command
CRTSSND (Create Session Description)

Command
CRTTAPF (Create Tape File) Command
CRTTBL (Create Table) Command
CRTUSRPRF (Create User Profile) Command . . .

CVTDAT (Convert Date) Command
DATA (Data) Command

DCL (Declare CL Variable) Command
DCLDTAARA (Declare Data Area) Command . . .
DCLF (Declare File) Command

DLCOBJ (Deallocate Object) Command

DLTCLS (Delete Class) Command
DLTCMD (Delete Command) Command
DLTCUD (Delete Control Unit Description)

Command
DLTDEVD (Delete Device Description) Command .
DLTDFUAPP (Delete DFU Application) Command .
DLTDKTLBL (Delete Diskette Label) Command . .
DLTDTAARA (Delete Data Area) Command
DLTEDTD (Delete Edit Description) Command .
DLTF (Delete File) Command
DLTFCT (Delete Forms Control Table)

Command
DLTJOBD (Delete Job Description) Command
DLTJOBQ (Delete Job Queue) Command .
DLTJRN (Delete Journal) Command
DLTJRNRCV (Delete Journal Receiver)

Command
DLTLIB (Delete Library) Command
DLTLIND (Delete Line Description) Command
DLTMSGF (Delete Message File) Command .
DLTMSGQ (Delete Message Queue) Command . .
DLTOUTAQ (Delete Output Queue) Command . . .
DLTOVR (Delete Override) Command
DLTPGM (Delete Program) Command
DLTPRTIMG (Delete Print Image) Command . . .
DLTQRYAPP (Delete Query Application)

Command
DLTSBSD (Delete Subsystem Description)

Command
DLTSSND (Delete Session Description)

Command
DLTTBL (Delete Table) Command
DLTUSRPRF (Delete User Profile) Command . . .

DMPCLPGM (Dump CL Program) Command . . .
DMPJOB (Dump Job) Command
DMPJOBINT (Dump Job Internal) Command . . .
DMPOBJ (Dump Object) Command
DMPSYSOBJ (Dump System Object) Command

DMPTAP (Dump Tape) Command

DO (Do)Command

4-618

4-620
4-623
4-624

4-627

4-629
4-630

4-631
4-632
4-633
4-634
4-637
4-638
4-639

4-640
4-641
4-642
4-643

4-644
4-645
4-646
4-647
4-648
4-649
4-650
4-653
4-654

4-655

DSNDFUAPF (Design DFU Application) Command
DSNFMT (Design Format) Command

DSNQRYAPP (Design Query Application) Command

DSPACTJOB (Display Active Jobs) Command
DSPAUTUSR (Display Authorized Users)

Command
DSPBKP (Display Breakpoints) Command .
DSPCLS (Display Class) Command
DSPCMD (Display Command) Command
DSPCNPA (Display CSNAP Attributes) Command .
DSPCTLSTS (Display Control Unit Status)

Command
DSPCUD (Display Control Unit Description)

Command
DSPDBG (Display Debug) Command
DSPDBR (Display Data Base Relations)

Command
DSPDEVCFG (Display Device Configuration)

Command
DSPDEVD (Display Device Description)

Command
DSPDEVSTS (Display Device Status) Command
DSPDKT (Display Diskette) Command
DSPDTA (Display Data) Command
DSPDTAARA (Display Data Area) Command . . .
DSPEDTD (Display Edit Description) Command . .
DSPFCT (Display Forms Control Table)

Command
DSPFD (Display File Description) Command
DSPFFD (Display File Field Description)

Command
DSPJOB (Display Job) Command
DSPJOBD (Display Job Description) Command . .
DSPJOBQ (Display Job Queue) Command
DSPJRN (Display Journal) Command
DSPJRNA (Display Journal Attributes)

Command
DSPJRNRCVA (Display Journal Receiver

Attributes) Command
DSPLIB (Display Library) Command
DSPLIBL (Display Library List} Command RN
DSPLIND (Display Line Description) Command . .
DSPLINSTS (Display Line Status) Command . . .
DSPLOG (Display Log) Command
DSPMSG (Display Messages) Command
DSPMSGD (Display Message Description)

Command
DSPMSGF (Display Message File) Command . . .
DSPOBJAUT (Display Object Authority)

Command
DSPOBJD (Display Object Description)

Command
DSPOBJLCK (Display Object Lock) Command
DSPOUTAQ (Display Output Queue) Command
DSPOVR (Display Override) Command
DSPPGMCHG (Display Programming Change)

Command
DSPPGMREF (Display Program References)

Command
DSPPGMVAR (Display Program Variable)

Command
DSPRDR (Display Reader) Command
DSPRJESSN (Display RJE Session) Command . .

4-678
4-680
4-682

4-684

4-692
4-694
4-698
4-700
4-702

4-704

4-709
4-712

4-715
4-723

4-726
4-729
4-734
4-746
4-747
4-749

4-751
4-755

4-775
4-782
4-794
4-797
4-802

4-813

4-817
4-820
4-823
4-825
4-828
4-833
4-838

4-843
4-849

4-853
4-856
4-864
4-870
4-875
4-882

4-888

Contents v

Vi

DSPSBMJOB (Display Submitted Jobs)
Command
DSPSBS (Display Subsystem) Command
DSPSBSD (Display Subsystem Description)
Command e e e e e e e e e e e e
DSPSPLF (Display Spooled File) Command
DSPSPLFA (Display Spooled File Attributes)
Command e e e e e e e e e e e
DSPSRVSTS (Dlsplay Servuce Status) Command
DSPSSND (Display Session Description)
Command
DSPSYS (Display System) Command
DSPSYSSTS (Display System Status) Command
DSPSYSVAL (Display System Value) Command
DSPTAP (Display Tape) Command
DSPTRC (Display Trace) Command . . .
DSPTRCDTA (Display Trace Data) Command
DSPUSRPRF (Display User Profile) Command
DSPWTR (Display Writer) Command

DUPDKT (Duplicate Diskette) Command
EDTSRC (Edit Source) Command . .

ELSE (Else) Command
ENDCBLDBG (End COBOL Debug) Command
ENDDBG (End Debug) Command
ENDDO (End Do) Command
ENDINP (End Input) Command .
ENDJOB (End Job) Command . . .
ENDJRNPF (End Journaling Physical F|Ie Changes)
Command . e
ENDLOG (End Loggmg) Command .
ENDPGM (End Program) Command . .
ENDSRV (End Service) Command

ENTCBLDBG (Enter COBOL Debug) Command .
ENTDBG (Enter Debug) Command
FMTDTA (Format Data) Command

FMTRJEDTA (Format RJE Data) Command

GOTO (Go To) Command
GRTOBJAUT (Grant Object Authority) Command .
GRTUSRAUT (Grant User Authority) Command .

HLDJOB (Hold Job) Command . e e
HLDJOBQ (Hold Job Queue) Command ..
HLDOUTAQ (Hold Output Queue) Command
HLDRDR (Hold Reader) Command e
HLDSPLF (Hold Spooled File) Command
HLDWTR (Hold Writer) Command

IF (If) Command

INZDKT (Initialize Diskette) Command
INZPFM (Initialize Physical File Member)
Command e e e e e e e e e
INZTAP (Initialize Tape) Command

JOB (Job) Command

JRNPF (JOURNAL Physical File) Command

4-980

4-982
4-983
4-984
4-985
4-986

4-987
4-989
4-990
4-991

4-992
4-993

4-996
4-999

4-1004
4-1007

4-1009
4-1011
4-1012
4-1013
4-1014
4-1016
4-1017
4-1022

4-1029
4-1031

4-1035

4-1043

LODPGMCHG (Load Programming Change)
Command

LOGDBF (Log Data Base File) Command

LSTCMDUSG (List Command Usage) Command
LSTCNPDTA (List CSNAP Data) Command
LSTCNPHST (List CSNAP History) Command
LSTERRLOG (List Error Log) Command
LSTINTDTA (List Internal Data) Command .

MONMSG (Monitor Message) Command
MOVOBJ (Move Object) Command

OVRBSCF (Override with BSC File) Command
OVRCMNF (Override with Communications

File) Command
OVRCRDF (Override with Card File) Command . .
OVRDBF (Override with Data Base File)

Command
OVRDKTF (Override with Diskette File)
Command
OVRDSPF (Override with Display File)
Command

OVRMSGF (Override with Message File)
Command

OVRPRTF (Override with Printer File) Command

OVRTAPF (Override with Tape File) Command

PCHPGM (Patch Program) Command

PGM (Program) Command

PRPAPAR (Prepare APAR) Command
PWRCTLU (Power Control Unit) Command

PWRDEV (Power Device) Command
PWRDWNSYS (Power Down System) Command .

QRYDTA (Query Data) Command

RCLRSC (Reclaim Resources) Command
RCLSTG (Reclaim Storage) Command

RCVDTAARA (Receive Data Area) Command . . .
RCVF (Receive File) Command
RCVMSG (Receive Message) Command

RETURN (Return) Command

RGZPFM (Reorganlze Physical File Member)
Command O
RLSJOB (Release Job) Command
RLSJOBAQ (Release Job Queue) Command
RLSOUTQ (Release Output Queue) Command
RLSRDR (Release Reader) Command
RLSSPLF (Release Spooled File) Command
RLSWTR (Release Writer) Command

RMVAJE (Remove Autostart Job Entry)
Command .
RMVBKP (Remove Breakpoint) Command

4-1045 J
4-1048
4-1051
4-1053
4-1056
4-1059
4-1062
4-1064
4-1068
4-1070

4-1078
4-1082

4-1089
4-1098
4-1107
4-111
4-1113
4-1125
4-1139
4-1143 ’i'
4-1145
4-1149
4-1150
4-1151
4-1153

4-1155
4-1158

4-1161
4-1162
4-1165

4-1174

4-1175

4-1179
4-1180
4-1181
4-1182
4-1183
4-1185

4-1187

4-1188 ’

RMVFCTE (Remove Forms Control Table Entry)
Command
RMVJOBAQE (Remove Job Queue Entry)
Command
RMVJRNCHG (Remove Journaled Changes)
Command -
RMVM (Remove Member) Command
RMVMSG (Remove Message) Command
RMVMSGD (Remove Message Description)
Command
RMVPGM (Remove Program) Command
RMVPGMCHG (Remove Programming Change)
Command -
RMVRJECMNE (Remove RJE Communlcatlons
Entry) Command
RMVRJERDRE (Remove RJE Reader Entry)
Command
RMVRJEWTRE (Remove RJE Writer Entry)
Command
RMVRTGE (Remove Routing Entry) Command
RMVTRC (Remove Trace) Command
RMVWSE (Remove Work Station Entry)
Command

RNMDKT (Rename Diskette) Command
RNMOBJ (Rename Object) Command

RPLLIBL (Replace Library List) Command

RRTJOB (Reroute Job) Command

RSMBKP (Resume Breakpoint) Command

RSTAUT (Restore Authority) Command
RSTLIB (Restore Library) Command
RSTOBJ (Restore Object) Command
RSTUSRPRF (Restore User Profiles) Command . .

RTVCLSRC (Retrieve CL Source) Command ..
RTVDFUSRC (Retrieve DFU Source) Command . .
RTVDTAARA (Retrieve Data Area) Command
RTVJOBA (Retrieve Job Attributes) Command . .
RTVMSG (Retrieve Message) Command
RTVQRYSRC (Retrieve Query Source)

Command
RTVSYSVAL (Retrieve System Value) Command

RVKOBJAUT (Revoke Object Authority)

Command
SAVCHGOBJ (Save Changed Object)

Command
SAVLIB (Save Library) Command
SAVOBJ (Save Object) Command
SAVSYS (Save System) Command

SBMCRDJOB (Submit Card Jobs) Command . . .
SBMDBJOB (Submit Data Base Jobs)

Command
SBMDKTJOB (Submit Diskette Jobs)

Command
SBMJOB (Submit Job) Command
SBMRJEJOB (Submit RJE Job) Command

4-1192

4-1193
4-1198
4-1199

4-1201
4-1202

4-1203
4-1205
4-1206
4-1207
4-1208
4-1209
4-1211

4-1212
4-1215

4-1217

4-1218

4-1220

4-1221
4-1222
4-1229
4-1238

4-1242
4-1243
4-1245
4-1248
4-1251

4-1255
4-1257

4-1292
4-1298
4-1305

SIGNOFF (Sign Off) Command

SNDBRKMSG (Send Break Message) Command
SNDDTAARA (Send Data Area) Command
SNDF (Send File) Command
SNDJRNE (Send Journal Entry) Command
SNDMSG (Send Message) Command
SNDPGMMSG (Send Program Message)
Command
SNDRCVF (Send/Receive File) Command .
SNDRPY (Send Reply) Command

SRVJOB (Service Job) Command

STRCNFCHK (Start Confidence Check)
Command
STRCRDRDR (Start Card Reader) Command . . .
STRCRDWTR (Start Card Writer) Command . . .
STRDBRDR (Start Data Base Reader) Command
STRDKTRDR (Start Diskette Reader) Command
STRDKTWTR (Start Diskette Writer) Command
STRPDP (Start Problem Determination Procedure)
Command
STRPRTWTR (Start Printer Writer) Command
STRRJECSL (Start RJE Console) Command
STRRJERDR (Start RJE Reader) Command
STRRJESSN (Start RJE Session) Command
STRRJEWTR (Start RJE Writer) Command .
STRSBS (Start Subsystem) Command

TFRCTL (Transfer Control) Command
TFRJOB (Transfer Job) Command
TRCINT (Trace Internal) Command
TRCJOB (Trace Job) Command

TRMCPF (Terminate Control Program Facility)
Command

TRMRJESSN (Terminate RJE Session) Command .

TRMSBS (Terminate Subsystem) Command

VFYPRT (Verify Printer) Command

VRYCTLU (Vary Control Unit) Command
VRYDEV (Vary Device) Command
VRYLIN (Vary Line) Command

WAIT (Wait) Command

4-1310
4-1312
4-1313
4-1315
4-1317

4-1319
4-1326
4-1329

4-1331

4-1332
4-1334
4-1337
4-1341
4-1344
4-1348

4-1353
4-1356
4-1360
4-1363
4-1365
4-1367
4-1373

4-1375
4-1377

4-1379
4-1383

4-1386
4-1388
4-1390

Contents vii

CHAPTER 5. COMMAND DEFINITION

STATEMENTS v v v v 5-1
Creating User-Defined Commands 5-1
Command Definition Statement Descriptions 5-2

CMD (Command) Statement 5-2
PARM (Parameter) Statement 5-3
ELEM (Element) Statement 5-19
QUAL (Qualifier) Statement 5-32
DEP (Dependent) Statement 5-41
PART 3. APPENDIXES
APPENDIX A. EXPANDED PARAMETER

DESCRIPTIONS A-1
CLS Parameter A-2
EXCHTYPE Parameter A-4
FILETYPE Parameter A-5
FRCRATIO Parameter A-7
Operations Using Generic Functions A-8
JOB Parameter A-9
LABEL Parameter A-11
LOC Parameter A-14
MAXACT Parameter A-19
OBJ Parameter « . v . .. A-20
OBJTYPE Parameter A-21
OUTPUT Parameter A-23
PUBAUT Parameter A-24
Scheduling Priority Parameters (JOBPTY,

OUTPTY, PTYLMT) A-26
SEV Parameter A-28
SPLNBR Parameter A-30
TEXT Parameter A-31
VOL Parameter« . .. A-32
WAITFILE Parameter e e e A-36

APPENDIX B. EXPRESSIONS B-1
Operators in Expressions B-2
Priority of Operators When Evaluating

Expressions B-4
Arithmetic Expressions B-4
Character String Expressions B-5
Relational Expressions B-7
Logical Expressions B-8
9% SUBSTRING Built-in Function B-9
9% SWITCH Built-In Function B-10

APPENDIX C. USER PROFILE MATRIX CHART C1
APPENDIX D. FILES USED BY CL COMMANDS D-1
APPENDIX E. ERROR MESSAGES THAT CAN BE

MONITORED+« E-1
APPENDIX F. COMMAND AND KEYWORD

ABBREVIATIONS F-1
GLOSSARY OF TERMS AND ABBREVIATIONS . . . G-1
INDEX i it e e e e e et e e e X-1

viii

PURPOSE OF THIS MANUAL

This document is intended for use as a reference
manual to assist the System/38 programmer, data
processing manager, and system operator in using the
control language commands. The System/38 user uses
the control language commands to request functions of
the system’s Control Program Facility (CPF) and of the
various languages and utilities.

This manual does not describe all of the functions of
CPF or of the languages and utilities. That information
can be found in the manuals listed under the section If
You Need More Information.

ORGANIZATION OF THIS MANUAL

This publication is divided into three parts, consisting of
five chapters and six appendixes.

Part 1 contains the following:

Chapter 1 identifies (in chart form) the functions
performed by the control language commands, and
introduces the types of CPF objects used by the
commands.

Chapter 2 describes the control language syntax.

Part 2 contains the following:

Chapter 3 explains the format used to describe
control language commands.

Chapter 4 describes every control language
command, including commands for CPF and
commands for languages and utilities.

Chapter 5 describes the statements used for defining
commands.

About This Manual

Part 3 contains the following:

« Appendix A describes in further detail a number of

control language parameters.

« Appendix B describes the expressions and built-in

functions used in control language programs.

« Appendix C identifies which IBM-supplied user
profiles are authorized to use each command.

« Appendix D provides a cross-reference between
commands and IBM-supplied data base and device
files used by those commands.

« Appendix E lists information about
command-generated error messages that can be

monitored.

« Appendix F lists abbreviations used in control
language command names and parameter keywords

and values.

The following changes have been made to this manual
for System/38 for release 4.1:

« The following are new commands supported on

System/38:

APYJRNCHG
CHGJRN
CHGLF
CHGLFM
CHGPF
CHGPFM
CHGSRCPF
CRTJRN
CRTJRNRCV
DLTJRN
DLTJRNRCV
DMPCLPGM
DMPTAP
DSPACTJOB

DSPJRN
DSPJRNRCVA
DSPJRNA
DSPOBJLCK
DSPPGMCHG
ENDJRNPF
GRTUSRAUT
JRNPF
LSTCNPDTA
LSTCNPHST
RMVJRNCHG
RTVDTAARA
SAVCHGOBJ
SNDJRNE

About This Manual

The Journal facility provides improved function for « Miscellaneous new command parameters and
data base backup and recovery, as well as enabling technical changes support the following J
you to use an audit trail. The change file and change enhancements:
file member commands allow you to change the — Maximum objects allowed per save/restore have
attributes specified when the file or member was been increased
created. The Dump CL Program (DMPCLPGM) — Data saved by save/restore is now given an
command can be used in a CL program to dump expiration date
program variables and messages, should an ~ CLEAR option is now supported for tape
unmonitored escape message occur. The Dump Tape — Saved data can now be displayed at the member
(DMPTAP) command allows you to display or list the level
labels and/or data of a tape. The Display Active — DSPJOB menu now provides an option to show
Jobs (DSPACTJOB) command provides a summary job locks
display of jobs active in the system. The Display — DSPSYSSTS now shows percentage of machine
Object Locks (DSPOBJLCK) command displays all addresses used
locks and lock requests for a particular object. The — File displays now support scanning and windowing
Display Programming Change (DSPPGMCHG) — Program size limitation has been increased from
command provides a display of the status of 8 K to 32 K bytes
programming changes. The Grant User Authority — New concatenation operators *BCAT and *TCAT
(GRTUSRAUT) command allows a named user to be are supported
given the same authority as another named user. The — Ten line descriptions per communications line are
List CSNAP History and List CSNAP Data now supported
(LSTCNPHST and LSTCNPDTA) commands allow you — Generic names may be specified for CHGPRTF
to display current and past communications line operations
statistics. The Retrieve Data Area (RTVDTAARA) — Spanned records, undefined format records, and
command is used in CL programs to retrieve the improved error recovery are now supported for
contents of a data area and place it into a variable. tape
The Save Changed Object (SAVCHGOBJ) command — Tape may now be used as PID media and for
saves only those objects that have been changed system backup J
since a specified date/time. — |-Format is now supported for diskette
interchange
— Long-running machine instructions can now be
canceled
— Debug support has been enhanced
— The power warning feature has been enhanced
— Functional enhancements have been added to
simplify conversion from the System/34

Also, various examples have been updated and
improved.

Technical changes are noted with a vertical change bar
to the left of the changed material.

Note: This manual follows the convention that he
means he or she.

WHAT YOU SHOULD KNOW

(' To use this manual, you should understand the concepts

of the IBM System/38 Control Program Facility.
Information about those concepts can be found in the
IBM System/38 Control Program Facility Concepts
Manual, SC21-7729.

Also, you should know how to use the 5251 and 5252
Display Stations as System/38 work stations. That
information can be found in the IBM System/38
Programmer's /User's Work Station Guide, SC21-7744.

IF YOU NEED MORE INFORMATION

The following list describes other System/38
publications that explain in further detail topics related
to the information presented in this reference manual.

System/38 Overview Information

« IBM System/38 System Introduction, GC21-7728
— Summarizes the System/38 design and highlights
its major functions
— Describes System/38 licensed programs
— Describes possible System/38 configurations
~ Describes hardware device characteristics

« IBM System/38 Application Example 1, SC21-7881
— Uses a basic application to illustrate the use of
CPF, RPG lll, and the Interactive Data Base
Utilities (IDU) on System/38

Control Language Commands

« IBM System/38 Programming Reference Summary,
SC21-7734
— Contains syntax diagrams for all CL commands
— Describes object authority required for commands
and objects
— Lists the names of IBM-supplied objects
— Contains a brief description of system values

Data Description Specifications

IBM System/38 Control Program Facility Reference

Manual —Data Description Specifications, SC21-7806

— Describes in detail how to describe files using
DDS

— Provides a list of valid DDS keywords for each file
type

« IBM System/38 Screen Design Aid Reference Manual
and User's Guide, SC21-7755
— Describes how to design, create, and maintain
display record formats and menus using SDA

o IBM System/38 Programming Reference Summary,
SC21-7734
— Provides a list of valid DDS keywords for each file

type

« IBM System/38 Messages Guide: CPF, RPG lll, and
IDU, SC21-7736
— Describes each message, including the first- and
second-level text, the substitution variables, the
severity, and the system action

o IBM System/38 Messages Guide: COBOL,
SC21-7823
— Describes each message, including the first- and
second-level text, the substitution variables, the
severity, and the system action

« IBM System/38 Programmer's/User's Work Station
Guide, SC21-7744
— Describes how to send and receive messages at a
display station

Languages

« IBM System/38 RPG Il Reference Manual and
Programmer’s Guide, SC21-7725
— Describes RPG lll specifications
— Provides information on writing, testing, and
maintaining RPG |l programs

« IBM System/38 COBOL Reference Manual and
Programmer’s Guide, SC21-7718
— Describes the System/38 COBOL compiler and
language
— Provides information on writing, testing, and
maintaining COBOL programs

About This Manual xi

Communications System Operation

« IBM System/38 Data Communications Programmer’s « IBM System/38 Operator's Guide, SC21-7735 J
Guide, SC21-7825 — Describes system operator and system request
— Describes the System/38 data communications menus
devices — Describes job and system status displays
— Describes how to use the communications — Describes how to submit and control jobs through
functions job and spooling commands
— Describes how to vary or power devices on and
« IBM System/38 Control Program Facility Reference off
Manual—Data Description Specifications, SC21-7806 — Describes how to save and restore objects,
— Describes the DDS for a communications file and libraries, and the system
a BSC file — Describes diskette handling
— Describes message handling for the system
operator
Utilities
« IBM System/38 Source Entry Utility Reference Manual Installation and Device Configuration
and User's Guide, SC21-7722
— Describes how to use SEU to enter and maintain « IBM System/38 Guide to Program Product Installation
control language statements, data description and Device Configuration, GC21-7775
specifications, and command definition statements — Describes how to install and configure System/38
« IBM System/38 Data File Utility Reference Manual « IBM System/38 Remote Job Entry Facility Installation
and User's Guide, SC21-7714 Planning Guide, GC21-7924
— Describes how to use DFU to create and maintain — Describes how to install and configure a RJEF

data files network)

« IBM System/38 Query Utility Reference Manual and

User's Guide, SC21-7724 Problem Determination
— Describes how to use query to create reports from
information in data base files « IBM System/38 Problem Determination Guide,
SC21-7876
« IBM System/38 Screen Design Aid Reference Manual — Describes the procedures for resolving system
and User's Guide, SC21-7755 problems that are indicated by error messages,
— Describes how to design, create, and maintain operator/service panel lights, interactive/batch
display record formats and menus using SDA jobs or spooling functions that do not work as

expected, or devices that do not work as expected
« IBM System/38 Remote Job Entry Facility
Programmer’s Guide, SC21-7914
— Describes how to use RJEF to install, start, Content and Use of System/38 Publications
control, and terminate a remote job entry system
« IBM System/38 Guide to Publications, GC21-7726

« IBM System/38 Remote Job Entry Facility Installation — Describes the contents of System/38 publications
Planning Guide, GC21-7924
— Describes RJEF functions « IBM System/38 Glossary and Master Index,
— Describes how to install and configure an RJEF GC21-7727
network — Defines terms used in System/38 publications

— Contains index entries from frequently used
System/38 publications

xii

Part 1. Control Language Functions and Syntax

Part 1 provides an overview of the control language commands and describes
the syntax coding rules needed to code them. Over 250 commands are
provided in the control language, permitting the users of a System/38 to
request a broad range of functions from the system.

Control language (CL) commands can be entered into the system in several
forms, and they can be entered in the interactive and batch environments. The
commands can be coded in a fixed positional form that omits trailing optional
parameters, or in a free form that omits all unneeded parameters. The
commands can be entered interactively at a work station, submitted in batch
input streams, or compiled in CL programs. When entering a command
interactively, you can directly enter the complete command; or you can be
prompted by the system for each parameter value so you can change the
displayed default values and fill in the blanks. Some commands can be used
only in certain forms (such as interactively or in CL programs). These
restrictions are included in the description of the command.

Because CPF is object oriented, many of the commands are designed to create
or operate on these objects. Also, varying degrees of security can be applied
to the objects, to the commands, and to the system'’s users. If you have the
proper authority for a command to be entered and for the objects to be
operated on (in the manner specified by the command), you can request that
function of the system.

The charts in Chapter 1 introduce the CPF object types and the CL command
set. Chapter 2 describes the syntax coding rules that the user must follow to
properly enter the commands for execution. Refer to the CPF Programmer's
Guide for additional information.

Control Language Functions and Syntax

Chapter 1. Summary of CPF Functions and Object Types

The purpose of the charts in this chapter is to help you become familiar with
the functions of the CPF control language and the names of the commands.
These charts can also be used to quickly retrieve various kinds of
command-related information.

The first group of charts summarizes the CPF object types and shows the
commands that operate on the object types. The second group of charts
provides an overview of the broad range of functions that can be performed by
the control language. Finally, all of the commands are shown together in one
master matrix chart.

CPF OBJECT TYPES

CPF objects provide the means through which all of your data processing
information is stored and processed by the system. A CPF object is a named
unit that exists in (occupies space in) storage and upon which operations can
be performed by the CPF. Each object has a set of attributes that describe the
object; these attributes are defined when the object is created. For the object
to be used by the system to perform a specific function, the name of the
object must be specified in the CL command that performs that function.

Twenty-three types of CPF objects can be created and used in the control
language. They are identified in the following chart, which gives the object
type, the system-recognized identifier for the object type, and a brief
description of its purpose in CPF.

Type Identifier Description

File *FILE Contains, or provides access to, a
group of related data records in
the system. Includes: data base,
card, diskette, tape, printer, and
display files.

Program *PGM Contains the executable code
needed to perform the user’s task.
For example: CL and high-level
language programs.

Library *LIB Contains one or more objects of
the other object types. Serves as
a directory to find objects by name
when they are to be used.
Subtypes: production and test
libraries.

Summary of CPF Functions and Object Types 1-1

1-2

Type Identifier Description

Command *CMD Contains the description of a CL
command.

Data area *DTAARA Contains a data value that can be
used and changed by multiple
jobs.

User profile *USRPRF Identifies a user to the system and
specifies what system resources
and objects he can use.

Message file *MSGF Contains descriptions of
predefined messages.

Message queue *MSGQ Contains messages being sent and
received by the system and its
users.

Job queue *JoBQ Contains entries for jobs that are
to be executed by the system.

Output queue *ouTa Contains entries for spooled
output files to be written to an
output device.

Job description *JOBD Contains a set of attributes that
are used to control job execution.

Subsystem *SBSD Describes a subsystem and its

description operating environment in the
system.

Class *CLS Describes the processing
environment and attributes of
routing steps.

Table *TBL Contains a set of values used to
define a byte-by-byte translation
of data, or to define a collating
sequence.

Edit description *EDTD Describes an edit code mask used
for formatting output fields.

Print image *PRTIMG Contains an image of a printable
character set on a print belt.

Device description |*DEVD Describes a device on the system,
and its features.

Control unit *CUD Describes a control unit on the

description system, and its features.

Line description *LIND Describes a communication line on

the system, and its features.

Type

Identifier

Description

Forms control table

*FCT

Describes, for the Remote Job
Entry Facility, special processing
requirements for data received
from the host system.

Session description

*SSND

Identifies, for the Remote Job
Entry Facility, all objects and
devices associated with an RJE
operating environment.

Journal

*JRN

Contains information about
journaled data base files and
journal receivers and provides
access to journal receivers.

Journal receiver

*JRNRCV

Contains journal entries that are
generated when changes are made
to data base files.

Summary of CPF Functions and Object Types

1-3

1-4

All CPF objects have the following characteristics in common: Each object has
a set of attributes that describe the object, and specific values assigned for
those attributes. Most of the objects are stored in libraries. Five types of CPF
objects (*LIB, *DEVD, *CUD, *LIND, and *USRPRF) are actually stored in the
machine context, which is part of the internal system. However, these types
appear as if they exist in the QSYS (system) library. They can be displayed if
QSYS is specified in the DSPLIB or DSPOBJD commands.

Generally, each object exists independently of all other objects. However,
some objects must be created before other objects can be created; for
example, a logical file cannot be created if its based-on physical file does not
exist. Each object must be created before other CPF operations can be
performed using the object.

For more information on each of the object types, refer to Part 2 for the
description of each create command that creates one of the object types.
Additional information can also be found in the appropriate sections of the CPF
Programmer's Guide.

CPF-Provided Libraries

Several libraries are defined in CPF when the system is shipped. The
IBM-supplied libraries are:

« QGPL (general purpose library): Contains user-created objects, such as
programs and files, and 1BM-supplied versions of objects that a user might
create. When a user creates an object without specifying the name of the
library in which it is to be placed, the created object is placed in the QGPL
library by default.

« QSYS (system library): Contains IBM-supplied system support objects.

« QSPL (spooling library): Contains IBM-supplied objects used for spooling
data.

« QTEMP (temporary library): Automatically created for each job to contain
temporary objects that are created by that job. Each job has its own
temporary library; the library and its objects exist only as long as the job is
active in the system.

« QSRYV (service library): Used for loading IBM-supplied programming
changes and assembling data for APAR submission.

- QRECOVERY (recovery library): Contains information that is used for
recovery after a system failure.

More information about the use of libraries can be found in the CPF Concepts
Manual and the CPF Programmer’s Guide.

COMMANDS OPERATING ON CPF OBJECTS

Each of the CPF object types has a set of commands that operates on that
type. Most objects have commands that do the following:

« Create. Creates the object and specifies its attributes.

o Delete. Deletes the object from the system.

« Change. Changes the attributes and/or contents of the object.
« Display. Displays the contents of the object.

The following matrix chart (Commands Operating on Specific Object Types)
shows all of the CPF object types (in alphabetic order) and the actions that can
be performed upon them by CL commands. Both the descriptive name and the
command abbreviations for each object type are listed vertically on the left side
of the chart, and the verbs (actions) are listed across the top of the chart.
When an action can be performed on a particular object, the command
abbreviation for that verb is given on the same line as the object’s name.

The functions that can be performed on CPF objects, then, are the combination
of the verbs and the objects upon which the action is to be performed: (CPF
function = verb + object acted upon). For example, you can create, delete, or
display a class; so the verb abbreviations CRT, DLT, and DSP are printed
opposite the abbreviation for class, CLS. The result is the three commands
that can operate on a class: CRTCLS, DLTCLS, and DSPCLS.

The IBM-supplied commands are all named in a consistent manner. Generally,
three letters from each word in the descriptive command name are used to
form the abbreviated command name that is recognized by the system. For
examples of how commands and other objects supplied by IBM are named,
see Control Language in the CPF Programmer’'s Guide.

Included in the chart are the subtypes that are identified by name in CL
commands. These subtypes are shown in logical sublevels under their primary
object types, file and program. The subtypes for files are logically grouped as
spooled files, data base files (physical and logical), and device files (card,
diskette, display, and print). The chart shows, for example, that you create a
file according to its subtype (CRTCRDF, for example) and you delete it by the
object type (DLTF).

The chart also identifies (under Other Associated Commands) other commands
that are indirectly related to an object type:

« Subsystem commands associated with the subsystem description
« File-related commands associated with various file subtypes

« Device and line-related commands associated with their descriptions

Summary of CPF Functions and Object Types

9-1

Commands Operating on Specific Object Types

CPF Object Types Actions Other Associated Commands
Create Delets Change Override Display | Other Verbs
1. Class CcLs CRT DLT DSP
2. Command CMD CRT DLT CHG
3. Control unit description CuD CRT DLT CHG DSP PWRCTLU, VRYCTLU, DSPCTLSTS
4. Data area DTAARA CRT DLT CHG DSP DCL RCV SND
5. Device description DEVD CRT DLT CHG DSP PWRDEV, VRYDEV, DSPDEVSTS
6. Edit description EDTD CRT DLT DSP
7. File F DLT CPY DCL SND | CPYFI, DSPFD, DSPFFD
RCV SNDRCV
BSC file BSCF CRT CHG OVR
Spooled file SPLF DSP CNL HLD RLS CHGSPLFA, DSPSPLFA
Data base file DBF OVR LOG DSPDBR, RMVM, ENDLOG
Logical file LF CRT CHG ADDLFM, CHGLFM
Physical file PF CRT CHG JRN ADDPFM, CHGPFM, CLRPFM,
Source physical file SRCPF CRT CHG} {INZPFM. RGZPFM
Card file CRDF CRT CHG OVR
Communications file CMNF CRT CHG OVR
Diskette file DKTF CRT CHG OVR
Display file DSPF CRT CHG OVR
Printer file PRTF CRT CHG OVR
Tape file TAPF CRT CHG OVR
8. Forms control table FCT CRT DLT CHG DSP
9. Job description JOBD CRT DLT CHG DSP
10. Job queue JoBa CRT DLT DSP CLR HLD RLS
11. Joumal JRN CRT DLT CHG DSP DSPJRNA
12. Joumal receiver JRNRCV CRT DLT DSPJRNRCVA
13. Librery L8 CRT DLT DSP CLR SAV RST
14. Line description LIND CRT DLT CHG DSP VRYLIN, DSPLINSTS
15. Message file MSGF CRT DLT OVR DSP RTVMSG, ADDMSGD, CHGMSGD,
RMVMSGD, DSPMSGD
16. Message queue MSGQ CRT DLT CHG DSPMSG, RCVMSG, RMVMSG,
SNDMSG, SNDBRKMSG;
SNDPGMMSG, SNDRPY
17. Output queue ouTta CRT DLT CHG DSP CLR HLD RLS
18. Print image PRTIMG CRT DLT |
19. Program PGM DLT END CALL, TFRCTL
CL program CLPGM CRT DMP
20. Session description SSND CRT DLT CHG DSP
21. Subsystem description SBSD CRT DLT CHG DSP DSPSBS, STRSBS, TRMSBS
22. Table TBL CRT DLT
23. User profile USRPRF CRT DLT CHG DSP | RST GRTUSRAUT

¢

In addition to the commands that operate on single object types, there are
commands that operate on multiple object types; for example:

« Display object description: Displays the common attributes of an object.

« Move object: Moves an object from one library to another.

« Rename object: Specifies the new name of an object.

« Save object: Saves an object and its contents on diskette or tape.

« Restore object: Restores a saved version of the object from diskette or

tape.

The following chart shows the commands, in matrix form, that can perform an
action on many of the object types. Some of the commands, such as the
MOVOBJ command, can operate on only one object at a time, but that object
can be any one of several CPF object types; for example, the MOVOBJ
command can move a file or a job description.

Other commands, such as the DSPOBJD command, can operate on several
objects of different types at the same time. By specifying multiple objects in a
single DSPOBJD command, you can display the object descriptions of a group

of objects.

Commands Operating on Multiple Object Types

Item Actions

Object oBJ ALC, DLC, SAV, RST, CHK, MOV,
RNM, DMP

Object Authority OBJAUT DSP, GRT, RVK

Object Description |OBJD DSP

Object Lock OBJLCK DSP

Object Owner OBJOWN CHG

For more information on these commands and the object types that each one
can operate on, see the command description of each command in Part 2.

Summary of CPF Functions and Object Types

1-7

1-8

COMMAND GROUPS (BY FUNCTION)

The following sets of commands contain all of the CL commands in functional
groups and subgroups. The commands are grouped by common functions in
various ways to help you identify which commands are associated with the
major functional areas in CPF.

These groups are organized in the same manner as the groups are displayed
when the command grouping menus are requested at a work station.

If you press the prompt (CF4) key without entering a command name, the
command grouping menu is presented. From the menu, you can specify an
option number to view any of the various groups of commands that are shown
on the following pages.

(' Object

ALCOBJ
CHKOBJ
DLCOBJ
DSPOBJD

| DSPOBJLCK
MOVOBJ
RNMOBJ
RSTOBJ

| SAVCHGOBJ
SAVOBJ

Library
CLRLIB
CRTLIB
DLTLIB
DSPLIB
RSTLIB
SAVLIB

OBJECT AND LIBRARY COMMANDS

Library List
(Allocate Object) DSPLIBL
(Check Obiject) RPLLIBL

(Deallocate Object)

(Display Object Description)
(Display Object Locks)
(Move Object)

(Rename Object)

(Restore Object)

(Save Changed Obijects)
(Save Object)

(Clear Library)
(Create Library)
(Delete Library)
(Display Library)
(Restore Library)
(Save Library)

Common Functions for Library

ALCOBJ
CHKOBJ
DLCOBJ
DSPOBJD

(_, DSPOBJLCK

RNMOBJ

(Allocate Object)

(Check Object)

(Deallocate Object)

(Display Object Description)
(Display Object Locks)
(Rename Object)

Summary of CPF Functions and Object Types

(Display Library List)
(Replace Library List)

1-9

Valid for Both Physical and Logical Files

CPYF (Copy File)

DLTF (Delete File)

DLTOVR (Delete Override)

DSPDBR (Display Data Base Relations)
DSPFD (Display File Description)
DSPFFD (Display File Field Description)
DSPPGMREF (Display Program Reference)
ENDLOG {(End Logging)

LOGDBR (Log Data Base File)
OVRDBF (Override with Data Base File)
RMVM (Remove Member)

Common Functions for Files

ALCOBJ (Allocate Object)

CHKOBJ (Check Obiject)

DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ - (Move Object)

RNMOBJ (Rename Object)

RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Obijects)

SAVOBJ (Save Obiject)

DATA BASE COMMANDS

Physical File
ADDPFM
CHGPF
CHGPFM
CHGSRCPF
CLRPFM
CRTPF
CRTSRCPF
INZPFM
RGZPFM

Logical File
ADDLFM
CHGLF
CHGLFM
CRTLF

Journal
APYJRNCHG
CHGJRN
CRTJRN
CRTJRNRCV
DLTJRN
DLTJRNRCV
DSPJRN
DSPJRNA
DSPJRNRCVA
ENDJRNPF
JRNPF
RMVJRNCHG
SNDJRNE

J

(Add Physical File Member)
(Change Physical File)

(Change Physical File Member)
(Change Source Physical File)
(Clear Physical File Member)
(Create Physical File)

(Create Source Physical File)
(Initialize Physical File Member)
(Reorganize Physical File Member)

(Add Logical File Member)
(Change Logical File)
(Change Logical File Member)
(Create Logical File)

(Apply Journaled Changes)

(Change Journal)

(Create Journal)

(Create Journal Receiver)

(Delete Journal)

(Delete Journal Receiver)

(Display Journal)

(Display Journal Attributes) Ji
(Display Journal Receiver Attributes)
(End Journaling Physical File Changes)
(Journal Physical File)

(Remove Journaled Changes)

(Send Journal Entry)

DEVICE FILE COMMANDS

Valid for All Device Files

CPYF (Copy File)

DLTF (Delete File)

DLTOVR (Delete Override)

DSPFD (Display File Description)
DSPFFD (Display File Field Description)
DSPOVR (Display Override)
DSPPGMREF (Display Program References)

Common Functions for Device Files

ALCOBJ (Allocate Object)
CHKOBJ (Check Object)

DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)

RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

BSC File

CHGBSCF (Change BSC File)
CRTBSCF (Create BSC File)
OVRBSCF (Override with BSC File)
Card File

CHGCRDF (Change Card File)
CRTCRDF (Create Card File)
OVRCRDF (Override with Card File)

Communications File

CHGCMNF (Change Communications File)
CRTCMNF (Create Communications File)
OVRCMNF (Override with Communications File)
Diskette File

CHGDKTF (Change Diskette File)

CRTDKTF (Create Diskette File)

OVRDKTF (Override with Diskette File)

Display File

CHGDSPF (Change Display File)
CRTDSPF (Create Display File)
OVRDSPF (Override with Display File)

Display File (in CL Program)

CNLRCV (Cancel Receive)

DCLF (Declare File)

RCVF (Receive File)

SNDF (Send File)

SNDRCVF (Send/Receive File)
WAIT (Wait)

Printer File

CHGPRTF (Change Printer File)
CRTPRTF (Create Printer File)
OVRPRTF (Override with Printer File)
Tape File

CHGTAPF (Change Tape File)
CRTTAPF (Create Tape File)
OVRTAPF (Override with Tape File)

Summary of CPF Functions and Object Types

1-11

DEVICE MANAGEMENT COMMANDS

Device Diskette Volume
DSPDEVSTS (Display Device Status) CLRDKT (Clear Diskette)
PWRDEV (Power Device) DLTDKTLBL (Delete Diskette Label)
VRYDEV (Vary Device) DSPDKT (Display Diskette)
DUPDKT (Duplicate Diskette)
Control Unit INZDKT (Initialize Diskette)
DSPCTLSTS (Display Control Unit Status) RNMDKT (Rename Diskette)
PWRCTLU (Power Control Unit)
VRYCTLU (Vary Control Unit) Printer
CLNPRT (Clean Printer)
Line VFYPRT (Verify Printer)
ANSLIN (Answer Line)
DSPLINSTS (Display Line Status) Tape Volume
VRYLIN {Vary Line) DMPTAP (Dump Tape)
DSPTAP {Display Tape)
INZTAP (Initialize Tape)

1-12

PROGRAMMING COMMANDS

Valid for All Programs
DLTPGM (Delete Program)
RCLRSC (Reclaim Resources)

Common Functions for Programs

CHKOBJ (Check Object)

DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)

RNMOBJ (Rename Object)

RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Obijects)
SAVOBJ (Save Object)

CL Program

CRTCLPGM (Create Control Language Program)
DMPCLPGM (Dump CL Program)
RTVCLSRC (Retrieve CL Source)

CL Program Limits
ENDPGM
PGM

(End Program)
(Program)

CL Program Variable

CHGVAR (Change Variable)
CVTDAT (Convert Date)
DCL (Declare Control Language Variable)

CL Program Logii:

DO (Do)
ELSE (Else)
ENDDO (End Do)
GOTO (Go To)
IF (If)

Changing Program Control
CALL (Call Program)
RETURN (Return)

Program Control (In CL Program)
TFRCTL (Transfer Control)

RPG Ill Program (If Installed)
CRTRPGPGM (Create RPG Program)
CRTRPTPGM (Create Report Program)

COBOL Program (If Installed)

CRTCBLPGM (Create COBOL Program)
Data Area

CHGDTAARA (Change Data Area)
CRTDTAARA (Create Data Area)
DLTDTAARA (Delete Data Area)
DSPDTAARA (Display Data Area)

Data Area (In CL Program)

DCLDTAARA (Declare Data Area)
RCVDTAARA (Receive Data Area)
RTVDTAARA (Retrieve Data Area)
SNDDTAARA (Send Data Area)

Common Functions for Data Area

ALCOBJ (Allocate Object)

CHKOBJ (Check Obiject)

DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)

RNMOBJ (Rename Object)

RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Obijects)
SAVOBJ (Save Object)

Summary of CPF Functions and Object Types

1-13

PROGRAM DEBUG COMMANDS

Debug Mode

ADDPGM (Add Program)
CHGDBG {Change Debug)
DSPDBG {Display Debug)
ENDDBG (End Debug)
ENTDBG (Enter Debug)
RMVPGM (Remove Program)

Program Variable
CHGPGMVAR
DSPPGMVAR

(Change Program Variable)
(Display Program Variable)

Program Pointer

MESSAGE HANDLING COMMANDS

CHGPTR (Change Pointer)
Message

DSPMSG (Display Messages)
SNDBRKMSG (Send Break Message)
SNDMSG (Send Message)
Message (In CL Program)

MONMSG {Monitor Message)
RCVMSG (Receive Message)
RMVMSG (Remove Message)
RTVMSG {Retrieve Message)
SNDPGMMSG {Send Program Message)

SNDRPY {Send Reply)

Message Queue

CHGMSGQ {Change Message Queuse)
CRTMSGQ {Create Message Queue)
DLTMSGQ (Delete Message Queus)
Common Functions for Message Queue
ALCOBJ (Allocate Object)

CHKOBJ (Check Object)

DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOvOBJ (Move Object)

RNMOBJ (Rename Object)

Breakpoint
ADDBKP
CNLRQS
DSPBKP
RMVBKP
RSMBKP

Trace
ADDTRC
CLRTRCDTA
DSPTRC
DSPTRCDTA
RMVTRC

(Add Breakpoint)
(Cancel Request)
{Display Breakpoints)
(Remove Breakpoint)
(Resume Breakpoint)

(Add Trace)

(Clear Trace Data)
(Display Trace)
(Display Trace Data)
{Remove Trace)

COBOL Debug Mode

ENDCBLDBG
ENTCBLDBG

Message File
CRTMSGF
DLTMSGF
DSPMSGF
OVRMSGF

(End COBOL Debug)
(Enter COBOL Debug)

(Create Message File)
(Delete Message File)
(Display Message File)
{Override with Message File)

Common Functions for Message File

CHKOBJ
DSPOBJD
DSPOBJLCK
MOVOBJ
RNMOBJ
RSTOBJ
SAVCHGOBJ
SAVOBJ

(Check Object)

(Display Object Description)
(Display Object Locks)
{Move Object)

{Rename Object)

(Restore Object)

(Save Changed Obijects)
(Save Obiject)

Message Description

ADDMSGD
CHGMSGD
DSPMSGD

RMVMSGD

(Add Message Description)

(Change Message Description)
(Display Message Description)
(Remove Message Description)

Job Queue
CLRJOBQ
CRTJOBQ
DLTJOBQ
DSPJOBQ
HLDJOBQ
RLSJOBQ

INPUT/OUTPUT SPOOLING COMMANDS

(Clear Job Queus)
(Create Job Queue)
(Delete Job Queue)
(Display Job Queue)
{Hold Job Queue)
(Release Job Queue)

Common Functions for Job Queue

CHKOBJ
DSPOBJD
DSPOBJLCK
MOVOBJ
RNMOBJ

Output Queue
CHGOUTQ
CLROUTQ
CRTOUTQ
DLTOUTQ
DSPOUTQ
HLDOUTQ
RLSOUTQ

(Check Object)

(Display Object Description)
(Display Object Locks)
(Move Obiject)

(Rename Object)

(Change Output Queus)
(Clear Output Queus)
(Create Output Queue)
(Delete Output Queue)
(Display Output Queue)
{Hold Output Queue)
(Release Output Queue)

Common Functions for Output Queue

CHKOBJ
DSPOBJD
DSPOBJLCK
MOVOBJ
RNMOBJ

Spooled File
CHGSPLFA
CNLSPLF
CPYSPLF
DSPSPLF
DSPSPLFA
HLDSPLF
RLSSPLF

Job
DSPSBMJOB
SBMCRDJOB
SBMDBJOB
SBMDKTJOB

(Check Object)

(Display Object Description)
(Display Object Locks)
(Move Object)

(Rename Obiject)

(Change Spooled File Attributes)

{Cancel Spooled File)
(Copy Spooled File)
(Display Spooled File)

{Display Spooled File Attributes)

(Hold Spooled File)
(Release Spooled File)

(Display Submitted Jobs)
(Submit Card Jobs)
(Submit Data Base Jobs)
(Submit Diskette Jobs)

Reader
CNLRDR
DSPRDR
HLDRDR
RLSRDR
STRCRDRDR
STRDBRDR
STRDKTRDR

Writer
CNLWTR
DSPWTR
HLDWTR
RLSWTR
STRCRDWTR
STRDKTWTR
STRPRTWTR

(Cancel Reader)

(Display Reader)

(Hold Reader)

(Release Reader)

(Start Card Reader)
(Start Data Base Reader)
(Start Diskette Reader)

(Cancel Writer)
(Display Writer)

(Hold Writer)
(Release Writer)
(Start Card Writer)
(Start Diskette Writer)
(Start Printer Writer)

Job Stream Statements

DATA
ENDINP

Summary of CPF Functions and Object Types

(Data)
(End Input)

1-15

System
DSPSYS
DSPSYSSTS
PWRDWNSYS
TRMCPF

Subsystem
DSPSBS
STRSBS
TRMSBS

Job

CHGJOB
CNLJOB
DSPACTJOB
DSPJOB
DSPSBMJOB
HLDJOB
RLSJOB
RRTJOB
SBMCRDJOB
SBMDBJOB
SBMDKTJOB
SBMJOB
SIGNOFF
TFRJOB

SYSTEM AND JOB CONTROL COMMANDS

(Display System)

(Display System Status)

(Power Down System)

(Terminate Control Program Facility)

(Display Subsystem)
(Start Subsystem)
(Terminate Subsystem)

(Change Job)

{Cancel Job)

(Display Active Jobs)
(Display Job)

(Display Submitted Jobs)
(Hold Job})

(Release Job)

(Reroute Job)

(Submit Card Jobs)
(Submit Data Base Jobs)
(Submit Diskette Jobs)
{Submit Job)

(Sign Off)

(Transfer Job)

Job (In CL Program)

RTVJOBA

(Retrieve Job Attributes)

Job Stream Statements

JOB
ENDJOB

{(Job)
(End Job)

Log
DSPLOG (Display Log)

System Value
CHGSYSVAL
DSPSYSVAL

(Change System Value)
{Display System Value)

System Value (In CL Program)

RTVSYSVAL (Retrieve System Value)
Storage
RCLSTG (Reclaim Storage)

SUBSYSTEM DESCRIPTION, JOB DESCRIPTION, AND CLASS COMMANDS

Subsystem Description Subsystem Routing Entry
CHGSBSD (Change Subsystem Description) ADDRTGE (Add Routing Entry)
CRTSBSD (Create Subsystem Description) CHGRTGE (Change Routing Entry)
DLTSBSD (Delete Subsystem Description) RMVRTGE (Remove Routing Entry)
DSPSBSD (Display Subsystem Description)

Job Description
Common Functions for Subsystem Description CHGJOBD (Change Job Description)
ALCOBJ (Allocate Object) CRTJOBD (Create Job Description)
CHKOBJ (Check Object) DLTJOBD (Delete Job Description)
DLCOBJ (Deallocate Object) DSPJOBD (Display Job Description)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks) Common Functions for Job Description
MOVOBJ (Move Object) CHKOBJ (Check Object)
RNMOBJ (Rename Object) DSPOBJD (Display Object Description)
RSTOBJ (Restore Object) | DSPOBJLCK (Display Object Locks)
SAVCHGOBJ (Save Changed Objects) MOVOBJ (Move Object)
SAVOBJ (Save Object) RNMOBJ (Rename Object)

RSTOBJ (Restore Object)
Subsystem Autostart Job Entry | SAvCHGOBJ (Save Changed Objects)
ADDAJE (Add Autostart Job Entry) SAVOBJ (Save Object)
CHGAJE (Change Autostart Job Entry)
RMVAJE (Remove Autostart Job Entry) Class

CRTCLS (Create Class)
Subsystem Work Station Entry DLTCLS (Delete Class)
ADDWSE (Add Work Station Entry) DSPCLS (Display Class)
CHGWSE (Change Work Station Entry)
RMVWSE (Remove Work Station Entry) Common Functions for Class

CHKOBJ (Check Object)
Subsystem Job Queue Entry DSPOBJD (Display Object Description)
ADDJOBQE (Add Job Queue Entry) | DSPOBJLCK (Display Obiject Locks)
CHGJOBQE (Change Job Queue Entry) MOVOBJ (Move Object)
RMVJOBQE (Remove Job Queue Entry) RNMOBJ (Rename Object)

RSTOBJ (Restore Object)

| SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Obiject)

Summary of CPF Functions and Object Types

1-17

CONFIGURATION COMMANDS

Device Configuration
DSPDEVCFG (Display Device Configuration)

Device Description

CHGDEVD (Change Device Description)
CRTDEVD (Create Device Description)
DLTDEVD (Delete Device Description)
DSPDEVD (Display Device Description)

Common Functions for Device Description

ALCOBJ (Allocate Object)

DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)

Control Unit Description

CHGCUD (Change Control Unit Description)
CRTCUD (Create Control Unit Description)
DLTCUD (Delete Control Unit Description)
DSPCUD (Display Control Unit Description)

Common Functions for Control Unit Description

CHKOBJ (Check Object)

DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)

RNMOBJ (Rename Object)

RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Line Description

CHGLIND (Change Line Description)
CRTLIND (Create Line Description)
DLTLIND (Delete Line Description)
DSPLIND (Display Line Description)

Common Functions for Line Description
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)

Edit Code
CRTEDTD
DLTEDTD
DSPEDTD

(Create Edit Description)
(Delete Edit Description)
(Display Edit Description)

Common Functions for Edit Code

CHKOBJ
DSPOBJD
DSPOBJLCK
RNMOBJ
RSTOBJ
SAVCHGOBJ
SAVOBJ

Print Image
CRTPRTIMG
DLTPRTIMG

(Check Object)

(Display Object Description)
(Display Object Locks)
(Rename Object)

(Restore Object)

(Save Changed Objects)
(Save Object)

(Create Print Image)
(Delete Print Image)

Common Functions for Print Image

CHKOBJ
DSPOBJD
DSPOBJLCK
MOVOBJ
RNMOBJ
RSTOBJ
SAVCHGOBJ
SAVOBJ

Translate Table
CRTTBL
DLTTBL

(Check Object)

(Display Object Description)
(Display Object Locks)
(Move Object)

(Rename Object)

(Restore Object)

(Save Changed Objects)
(Save Object)

(Create Table)
(Delete Table)

Common Functions for Translate Table

CHKOBJ
DSPOBJD
DSPOBJLCK
MOVOBJ
RNMOBJ
RSTOBJ
SAVCHGOBJ
SAVOBJ

(Check Object)

(Display Object Description)
(Display Object Locks)
(Move Object)

(Rename Object)

(Restore Object)

(Save Changed Objects)
(Save Object)

J

C

Data

CHGDTA
DSPDTA
FMTDTA
QRYDTA

Source
EDTSRC
RTVDFUSRC
RTVQRYSRC

DFU
CHGDFUDEF
CHGDTA
CRTDFUAPP
CRTDFUDEF
DLTDFUAPP
DSNDFUAPP
DSPDTA

General
CHGOBJOWN
DSPAUTUSR

User Profile
CHGUSRPRF
CRTUSRPRF
DLTUSRPRF
DSPUSRPRF

(Change Data)
(Display Data)
(Format Data)
(Query Data)

(Edit Source)
{Retrieve DFU Source)
(Retrieve Query Source)

(Change DFU Definition)
(Change Data)

(Create DFU Application)
{Create DFU Definition)
{Delete DFU Application)
{Design DFU Application)
{Display Data)

UTILITY COMMANDS'

Query
CHGQRYDEF
CRTQRYAPP
CRTQRYDEF
DLTQRYAPP
DSNQRYAPP
QRYDTA

Display Formats

DSNFMT

{Change Query Definition)
{Create Query Application)
(Create Query Definition)
(Delete Query Application)
(Design Query Application)
{Query Data)

(Design Format)

Conversion Reformat Utility?

FMTDTA

SECURITY COMMANDS

{Change Object Owner)
{Display Authorized Users)

{Change User Profile)
(Create User Profile)
(Delete User Profile)
(Display User Profile)

Common Functions for User Profile

CHKOBJ
DSPOBJD
DSPOBJLCK

Object
RSTOBJ
SAVCHGOBJ
SAVOBJ

Library
RSTLIB
SAVLIB

These commands are part of the IBM System/38 Interactive Data Base Utilities Program.

(Check Object)

(Display Object Description)

{Display Object Locks)

(Format Data)

Object Authorization

DSPOBJAUT
GRTOBJAUT
GRTUSRAUT
RVKOBJAUT

SAVE/RESTORE COMMANDS

(Restore Object)
(Save Changed Objects)
{Save Object)

{Restore Library)
(Save Library)

System
RSTAUT
RSTUSRPRF
SAVSYS

{Display Object Authority)
(Grant Object Authority)
(Grant User Authority)
(Revoke Object Authority)

(Restore Authority)
(Restore User Profiles)
(Save System)

2This command is part of the IBM System/38 Conversion Reformat Utility Licensed Program.

Summary of CPF Functions and Object Types

Command
CHGCMD
CRTCMD
DLTCMD
DSPCMD
LSTCMDUSG

Job
DMPJOB
DSPACTJOB
DSPSRVSTS
ENDSRV
SRVJOB
TRCJOB

Object
DMPOBJ
DMPSYSOBJ

Device
CHGCNPA
DSPCNPA
LSTCNPDTA
LSTCNPHST
LSTERRLOG
STRCNFCHK
STRPDP

Printer
CLNPRT
VFYPRT

COMMAND DEFINITION COMMANDS

(Change Command)
(Create Command)
(Delete Command)
(Display Command)
(List Command Usage)

(Dump Job)

(Display Active Jobs)
(Display Service Status)
(End Service)

(Service Job)

(Trace Job)

(Dump Object)
(Dump System Object)

(Change CSNAP Attributes)
(Display CSNAP Attributes)

(List CSNAP Data)

(List CSNAP History)
(List Error Log)

(Start Confidence Check)

Common Functions for Command

CHKOBJ
DSPOBJD

| DSPOBJLCK
MOVOBJ
RNMOBJ
RSTOBJ

| SAVCHGOBJ
SAVOBJ

SERVICE COMMANDS

Tape Volume
DMPTAP

Internal Machine

DMPJOBINT
LSTERRLOG
LSTINTDTA
TRCINT

(Check Object)

(Display Object Description)
(Display Object Locks)
(Move Object)

(Rename Object)

(Restore Object)

(Save Changed Objects)
(Save Object)

(Dump Tape)

(Dump Job Internal)
(List Error Log)

(List Internal Data)
(Trace Internal)

Problem Reporting

PRPAPAR

(Prepare APAR)

Programming Change

APYPGMCHG
DSPPGMCHG
LODPGMCHG
PCHPGM
RMVPGMCHG

(Start Problem Determination Procedure)

(Clean Printer)
(Verify Printer)

(Apply Programming Change)
(Display Programming Change)
(Load Programming Change)
(Patch Program)

(Remove Programming Change)

¢

REMOTE JOB ENTRY FACILITY COMMANDS

Session Description

CHGSSND (Change Session Description)
CRTSSND (Create Session Description)
DLTSSND (Delete Session Description)
DSPSSND (Display Session Description)

Reader Entry

ADDRJERDRE (Add RJE Reader Entry)
CHGRJERDRE (Change RJE Reader Entry)
RMVRJERDRE (Remove RJE Reader Entry)

Writer Entry

ADDRJEWTRE (Add RJE Writer Entry)
CHGRJEWTRE (Change RJE Writer Entry)
RMVRJEWTRE (Remove RJE Writer Entry)

Communications Entry

ADDRJECMNE (Add RJE Communications Entry)
CHGRJECMNE (Change RJE Communications Entry)
RMVRJECMNE (Remove RJE Communications Entry)

Forms Control Table

CHGFCT (Change Forms Control Table)
CRTFCT (Create Forms Control Table)
DLTFCT (Delete Forms Control Table)
DSPFCT (Display Forms Control Table)

Forms Control Table Entry

ADDFCTE (Add Forms Control Table Entry)
CHGFCTE (Change Forms Control Table Entry)
RMVFCTE (Remove Forms Control Table Entry)

Reader

CNLRJERDR (Cancel RJE Reader)
STRRJERDR (Start RJE Reader)
Writer

CNLRJEWTR (Cancel RJE Writer)
STRRJEWTR (Start RJE Writer)

Session Control

DSPRJESSN (Display RJE Session)
STRRJESSN (Start RJE Session)
TRMRJESSN (Terminate RJE Session)
Console

STRRJECSL (Start RJE Console)
Job

SBMRJEJOB (Submit RJE Job)

Data

FMTRJEDTA (Format RJE Data)

Summary of CPF Functions and Object Types

1-21

MASTER COMMAND MATRIX CHART

The following chart contains all of the CL commands that have more than one
word in their descriptive names. All of the items (CPF objects and other
entities) are listed vertically on the left side in alphabetic order (that is, each
entry contains the descriptive name of the command minus the verb that
precedes the item upon which it acts). The verbs that define the actions
performed on each item are listed across the top; the verbs used on many
items are listed in separate columns, and the verbs used on a few items are
grouped together in the rightmost column.

This chart enables you to find in one place all of the functions that CL can
perform, and gives the command names that are entered to perform the
desired functions. The chart, therefore, can be used as an index that enables
you to go directly to the command descriptions in Part 2, because they are
described in alphabetic order there.

Items Actions
Item Create/ |Add/ Change/ Hold/
Items Affected Abbrev. Delete Remove |Override |Display |Release Other Actions
Active jobs ACTJOB DSP
APAR APAR PRP
Authority AUT RST
Authorized users AUTUSR DSP
Auto report program RPTPGM CRT DLT (see DLTPGM)
Autostart job entry AJE ADD RMV |CHG
Break message BRKMSG SND
Breakpoint(s) BKP ADD RMV DSP RSM
BSC File BSCF CRT CHG OVR DLT (see DLTF)
DSP (see DSPFD}
Card file CRDF CRT CHG OVR DLT (see DLTF)
DSP (see DSPFD)
Card jobs CRDJOB SBM
Card reader CRDRDR STR (see also Reader)
Card writer CRDWTR STR (see also Writer)
Changed object CHGOBJ SAV
Class CLS CRT DLT DSP
COBOL debug (mode) CBLDBG END ENT
COBOL program CBLPGM CRT DLT (see DLTPGM)
Command CMD CRT DLT CHG DSP
Command usage CMDUSG LST
Communications file CMNF CRT CHG OVR DLT (see DLTF)
DSP {see DSPFD)
Communications statistics CNPA CHG DSP LST (see LSTCNPDTA,
network analysis LSTCNPHST)
procedure attributes
Confidence check CNFCHK STR
Control CTL TFR
Control language program CLPGM CRT DLT (see DLTPGM, DMP)

Items Actions
Item Create/ |Add/ Change/ Hold/

Items Affected Abbrev. Delete Remove Override |Display |Release Other Actions

Control language source CLSRC RTV

Control Program Facility CPF TRM

Control unit CTLU PWR VRY

Control unit description CUD CRT DLT CHG DSP

Control unit status CTLSTS DSP

Data DTA CHG DSP FMT QRY

Data area DTAARA CRT DLT CHG DSP MDCL SND RCV RTV

Data base file DBF OVR CRT (see CRTLF/CRTPF)
DLT (see DLTF) LOG

Data base jobs DBJOB SBM

Data base reader DBRDR STR

Data base relations DBR DSP

Data File Utility application DFUAPP CRT DLT DSN

Data File Utility definiton DFUDEF CRT CHG

Data File Utility source DFUSRC RTV

- Date DAT CvT

Debug (mode) DBG CHG DSP ENT END

Device DEV PWR VRY

Device configuration DEVCFG DSP

Device description DEVD CRT DLT CHG DSP

Device status DEVSTS DSP

Diskette DKT DSP CLR DUP INZ RNM

Diskette file DKTF CRT CHG OVR DLT (see DLTF)
DSP (see DSPFD)

Diskette jobs DKTJOB SBM

Diskette label DKTLBL DLT DSP (see DSPDKT)
INZ (see INZDKT)

Diskette reader DKTRDR STR (see also Reader)

Diskette writer DKTWTR STR (see also Writer)

Display file DSPF CRT CHG OVR DLT (see DLTF)
DSP (see DSPFD)

Do DO END

Edit description EDTD CRT DLT DSP

Error log ERRLOG LST

File F DLT CPY DCL SND RCV
SNDRCV

File description FD DSP

File field description FFD DSP

File interactive FI CPY

Format FMT DSN

Forms control table FCT CRT DLT CHG DSP

Forms control table entry FCTE ADD RMV |CHG

Input INP END

Internal INT TRC

Internal data INTDTA LST

Summary of CPF Functions and Object Types

1-23

Items Actions
Item Create/ |Add/ Change/ Hold/

Items Affected Abbrev. Delete Remove Override | Display |Release Other Actions

Job JOB CHG DSP HLD RLS |[CNL DMP END RRT
SBM SRV TFR TRC

Job attributes JOBA RTV

Job description JOBD CRT DLT CHG DSP

Job internal JOBINT DMP

Job queue JoBQ CRT DLT DSP HLD RLS |[CLR

Job queue entry JOBQE ADD RMV |CHG

Journal JRN CRT DLT CHG DSP

Journal attributes JRNA DSP

Journal entry JRNE SND

Journal receiver JRNRCV CRT DLT DSP (see DSPJRNRCVA)

Journal physical file JRNPF END (see ENDJRNPF)

Journaled changes JRNCHG RMV APY

Library LIB CRT DLT DSP CLR SAV RST

Library list LIBL DSP RPL

Line LIN ANS VRY

Line description LIND CRT DLT CHG DSP

Line status LINSTS DSP

Log(ging) LOG DSP END

Logical file LF CRT' CHG DLT (see DLTF)
DSP (see DSPFD)
OVR (see OVRDBF)

Logical file member LFM ADD CHG

Member M RMV

Message(s) MSG RMV DSP MON SND RCV RTV

Message description MSGD ADD RMV |CHG DSP

Message file MSGF CRT DLT OVR DSP DLT (see DLTF)

Message queue MSGQ CRT DLT CHG

Object OoBJ ALC CHK DLC DMP
MOV RNM SAV
SAVCHG RST

Object authority OBJAUT DSP GRT RVK

Object description OBJD DSP

Object lock OBJLCK DSP

Object owner OBJOWN CHG

Output queue ouTa CRT DLT CHG DSP HLD RLS |[CLR

Override OVR DLT DSP

Physical file PF CRT CHG DLT (see DLTF)
DSP (see DSPFD), JRN
OVR (see OVRDBF)

Physical file member PFM ADD CHG CLR INZ RGZ

Pointer PTR CHG

Print image PRTIMG CRT DLT

'See also Data Base File.

Items Actions
Item Create/ |Add/ Change/ Hold/

Items Affected Abbrev. | Delete Remove Override |Display |Release Other Actions

Printer PRT CLN VFY

Printer file PRTF CRT CHG OVR DLT (see DLTF)
DSP (see DSPFD)

Printer writer PRTWTR STR (see also Writer)

Problem determination PDP STR

procedure

Program PGM DLT (ADD RMV END PCH

Program message PGMMSG SND

Program references PGMREF DSP

Program variable PGMVAR CHG DSP

Programming change PGMCHG RMV DSP APY LOD

Query application QRYAPP CRT DLT DSN

Query definition QRYDEF CRT CHG

Query source QRYSRC RTV

Reader RDR DSP HLD RLS |CNL

Receive RCV CNL

Reply RPY SND

Request RQS CNL

Resources RSC RCL

RJE communications entry ROECMNE ADD RMV |CHG

RJE console RJECSL STR

RJE data RJEDTA FMT

RJE job RJEJOB SBM

RJE reader RJERDR STR CNL

RJE reader entry RJERDRE ADD RMV |CHG

RJE session RJESSN STR TRM

RJE writer RJEWTR STR CNL

RJE writer entry RJEWTRE ADD RMV |CHG

Routing entry RTGE ADD RMV |CHG

RPG program RPGPGM CRT DLT (see DLTPGM)

RPT program RPTPGM CRT DLT (see DLTPGM)

Service SRV END

Service status SRVSTS DSP

Session description SSND CRT DLT CHG DSP

Source SRC EDT

Source physical file SRCPF CRT CHG DLT (see DLTF)
DSP (see DSPFD)

Spooled file SPLF DSP HLD RLS |CNL CPY
DLT (see DLTF)

Spooled file attributes SPLFA CHG DSP

Storage STG RCL

Submitted jobs SBMJOB DSP

Subsystem SBS DSP STR TRM

Subsystem description SBSD CRT DLT CHG DSP

Summary of CPF Functions and Object Types

Items Actions
Item Create/ |(Add/ Change/ Hold/
Items Affected Abbrev. Delete Remove Override |Display |Release Other Actions
System SYS DSP SAV PWRDWN
System object SYSOBJ DMP
System status SYSSTS DSP
System value SYSVAL CHG DSP RTV
Table TBL CRT DLT
Tape TAP DSP DMP INZ
Tape file TAPF CRT CHG OVR DLT (see DLTF)
DSP (see DSPFD)
Trace TRC ADD RMV DSP
Trace data TRCDTA DSP CLR
User authority USRAUT GRT
User profile(s) USRPRF CRT DLT CHG DSP RST
Variable VAR CHG
Work station entry WSE ADD RMV |CHG
Writer WTR DSP HLD RLS |CNL

Note: The following commands are all one-word commands that are also part of CL:

CALL ELSE
DATA GOTO
DCL IF

DO JOB

PGM

RETURN
SIGNOFF

WAIT

Chapter 2. Control Language Syntax

This chapter describes the control language syntax that you use to code and
enter control language commands. Each CL command is processed by the CPF
to perform the specified command function upon the CPF objects named in the
command.

PARTS OF A COMMAND

A CL command is made up of the following parts: command label (optional),
command name (mnemonic), and parameters.

Parameter
——

LABEL1: CLRLIB LIB(A)

Command Command Keyword Value
Label Name

Command Label

Command labels identify particular commands in a CL program for branching
purposes. Labels can also be used to identify statements in CL programs that
are being debugged: they can identify statements used (a) as breakpoints, and
(b) as starting and ending statements for tracing purposes.

A command label is entered just before the command name of the command
that is to be branched to. The label can contain as many as 10 characters and
follows the standard rule for specifying names (see Rules for Specifying
Names). The label must be immediately followed by a colon, and blanks
(though not required) can occur between the colon and the command name.
(START: and TESTLOOP: are examples of command labels.)

All commands can have labels. If a label is placed on a nonexecutable
command (such as the DCL command) and that label is branched to, the next
executable command following the label is executed as a result of the branch.
Only one label can be specified on a line (or in a record); if no command is on
that line, the next command is executed.

To specify multiple labels, each additional label must be on a line preceding the
command as shown:

LABEL1:
LABEL2: CMDX

No continuation character (+ or -) is allowed on the preceding label lines.

Control Language Syntax 2-1

Command Name

The command name identifies the function to be performed by the program
that is invoked when the command is executed. The command name
(mnemonic) is an abbreviation of the description of what the command does;
for example, the mnemonic MOVOBJ identifies the CL command (Move
Object) that moves an object from one library to another. (Like other CPF
objects, a command name can be optionally qualified by a library name. See
Simple and Qualified Object Names discussed later in this chapter.)

The IBM-supplied commands are all named in a consistent manner. Generally,
three letters from each word in the descriptive command name are used to
form the abbreviated command name which is recognized by the system. For
examples of how commands and other objects supplied by IBM are named,
see Control Language in the CPF Programmer's Guide.

Command Parameters

Most CL commands have one or more parameters that specify the objects and
values to be used in the execution of the commands. The user who enters the
command supplies the object names and the values to be used by the
command. The number of parameters specified depends upon the command.
Some commands (like DO and ENDJOB) have no parameters, and others have
one or more.

A parameter identifies an individual value or group of values to be used by the
command. The specification of a group of values on one parameter is
described later under Lists of Values.

Most uses of the word parameter in this reference manual refer to the
combination of the parameter keyword and its value. For example, the
MOVOBJ command has a parameter called OBJ that requires an object name
to be specified. OBJ is the parameter keyword, and the name of the object is
the value to be entered for the OBJ parameter.

A command can have parameters that must be coded (required parameters)
and parameters that do not have to be coded (optional parameters). Optional
parameters usually have a default value assigned to them by the system if a
value is not specified for the parameter when the command is entered.

Parameters in CL can be specified in keyword or positional forms, or in a
combination of the two.

Parameters in Keyword Form

A parameter in keyword form consists of a keyword immediately followed by a
value (or a list of values separated by blanks) that is enclosed in parentheses.
No blanks can occur between the keyword and the left parenthesis preceding
the value. (Blanks can occur between the parentheses and the value.) For
example, LIB(MYLIB) is a keyword parameter specifying that MYLIB is the
name of the library that is to be used in some way, depending upon which
command this LIB parameter is used in.

When the parameters in a command are specified in keyword form only, they
can be specified in any order. For example, in the CRTLIB (Create Library)
command, three of its four parameters can be specified in a number of ways,
two of which are:

CRTLIB LIB(MYLIB) TYPE(*TEST) PUBAUT(*NONE)
CRTLIB TYPE(*TEST) LIB(MYLIB) PUBAUT(*NONE)

Parameters in Positional Form

A parameter in positional form does not have its keyword coded; it contains
only the value (or values, if it is a list) whose function when executed is
determined by its position in the parameter set for that command. The
parameter values are separated from each other and from the command name
by one or more blanks. Because there is only one sequence in which
parameters can be coded positionally, the positional form of the previous
CRTLIB example is:

CRTLIB MYLIB *TEST *NONE

Each command having more than one parameter has a specific positional order
for its parameters. The correct order is shown in the syntax diagram for each
command (in Part 2). However, in the few cases where dependent (or mutually
exclusive) parameters occur in the syntax diagram and the positional order is
not readily apparent, the correct order can be easily determined from the text,
because the parameters are always described in positional order. When
parameters are entered positionally, they must be entered in the specified order
(or positions), or the parameter values will be associated with the wrong
parameters.

If you do not want to enter a value for one of the parameters, the predefined
value *N can be entered in that parameter's position. The system recognizes
*N as an omitted parameter, and either assigns a default value or leaves it null.
In the previous CRTLIB command example, if you coded *N instead of *TEST
for the TYPE parameter, the default value *PROD is used when the command
is executed, and a production library named MYLIB is created with no public
authority. (Refer to the description of the CRTLIB command in Part 2 for the
explanation of each parameter.)

Control Language Syntax 2-3

Note: Parameters may not be coded positionally beyond the positional coding
limit, designated in the syntax diagrams with the symbol . If you do
attempt to code positionally beyond that point, the system will respond with an
error message. When all parameters of a command can be coded positionally,
no positional limit symbol appears in the syntax diagram.

Entering Parameters in Both Forms

A command can also have its parameters coded in both forms. The following
examples show three ways to code the Declare CL Variable (DCL) command.

Keyword form:

DCL VAR(&QTY) TYPE(*DEC) LEN(5) VALUE(O)

Positional form:

DCL &QTY *DEC 5 O

Positional and keyword forms together:

DCL &QTY *DEC VALUE(O)

In the last example, because the optional LEN parameter was not coded, the
VALUE parameter must be coded in keyword form. There are certain
restrictions that apply when parameters are entered in both forms. Refer to the

CPF Programmer’'s Guide for details.

COMMAND SYNTAX

A command has the following general syntax. The brackets indicate that the
item within them is optional; however, the parameter set may or may not be
optional, depending upon the command.

[//1 [?] [label-name:] command-name[.library-name] [parameter-set]

The // is valid only for a few batch job control commands, such as the DATA
command. The // identifies these commands to the spooling reader that reads
the batch job input stream.

Command Delimiters

Delimiters are special characters that mark the beginning or end of a group of
characters. Delimiters are used to separate a character string into its individual
parts that together form a command: command label, command name,
parameter keywords, and parameter values (which can be constants, variable
names, lists, or expressions).

Delimiters Delimiters

TN

? LABEL1:DCL " PGMVAR(&COST) TYPE(*DEC)' LEN(5 2)

Command Command Value Value List of
Label Name Values
Keyword Keyword Keyword
Parameters

The following delimiters are used in the CPF control language.

« The colon (:) separates the command label from the command name. (For
example, LABEL1:DCL and LABEL2: DCL are both valid.)

« Blanks separate the command name from parameters and separate
parameters from each other. They also separate values in a list. Multiple
blanks are treated as a single blank except in a quoted string or comment.
A blank cannot separate a keyword and the left parenthesis for the value.

« Parentheses () separate parameter values from their keywords, group lists
of values, and group lists within lists.

« Periods connect the parts of a qualified name. For a qualified object name,
the two parts are the object name and the library qualifier (OBJA.LIBX).
Qualified object names are described in Identifying CPF Objects later in this
chapter.

« Either a period or a comma can be used as a decimal point in a decimal
value (3.14 or 3,14); only one per decimal value is allowed.

Control Language Syntax

Apostrophes specify the beginning and end of a quoted character string,

which is a combination of any of the 256 EBCDIC characters that are used J
as a constant. For example, 'YOU CAN USE $99@123.45 ()*></ and

lowercase letters’ is a valid quoted string. An apostrophe used within a

quoted string must be specified as two apostrophes.

One of four special characters can be used as date separators to separate a
date into three parts: month, day, and year (two parts for Julian dates: year
and day). The four date separators are the slash (/), hyphen (-), period (.),
and comma (,). The special character coded in a command must be the
same as the special character specified in the QDATSEP system value.

The colon (:) is the only special character that can be used as a time
separator. It can be used to separate a time value into two or three parts
(hours, minutes, and seconds).

The characters /* and */ indicate the beginning and end of a comment.

A question mark (?) preceding the command name indicates that the
command is to be prompted. If the command is specified with a label, the
question mark can precede the label, or follow the label and precede the
command name.

Within a CL program, when a question mark precedes a command name, a

prompt display is presented to the user who called the program in which the

command is encountered. The user can enter values for parameters for

which values were not specified on the command in the program. J
|

Command Continuation

Commands can be entered in free format. That is, a command does not have
to begin in a specific location on a coding sheet, on the display, or in cards. A
command can be contained entirely in one record, or it can be continued on
several lines or records. (Whether continued or not, the total command length
cannot exceed 3000 characters.) Either of two special characters is entered as
the last nonblank character on the line to indicate that a command is to be
continued: the plus sign (+) or the minus sign (-). Any blanks immediately
preceding a + or - sign are always included; any blanks immediately following
a + or - in the same record are ignored. Any blanks in the next record that
precede the first nonblank character in the record are ignored when + is
specified and included when - is specified.

The + is generally of use between parameters or values. (At least one blank
must precede the + sign when it is used between separate parameters or
values.) The difference between the plus and minus sign usage is particularly
important when continuation occurs within a quoted character string. The
following example shows the difference:

bEBINUED’) leading blanks on the next
line to be entered.

CRTLIB LIB(XYZ) TEXT(This is CON " The minus sign causes the

For -: CRTLIB LIB(XYZ) TEXT('This is CONTb6HINUED’)

For +: CRTLIB LIB(XYZ) TEXT('This is CONTINUED’)

Entering Comments

Comments can appear outside of a command, or within a command wherever
a blank is permitted; that is, both outside and inside the character string that
makes up a command. However, because a continuation character defines the
end of a line (or record), comments cannot follow a continuation character on
the same line.

For readability, it is recommended that each comment be specified on a
separate line preceding or following the command it describes, as shown here:

MOVOBJ OBJA TOLIB(LIBY)

/* Object OBJA is moved to library LIBY. */
DLTLIB LIBX

/* Library LIBX is deleted. */

Comments can include any of the 266 EBCDIC characters. However, the
character combination */ should not appear within a comment because these
characters terminate the comment.

Note: The characters /* in positions 1 and 2 of an input record from the
MFCU (multi-function card unit) is recognized as an end-of-file terminator.
The delimiter for comments should not begin in columns 1 and 2 in commands
entered via the MFCU.

Control Language Syntax

2-8

CONTROL LANGUAGE CHARACTER SET

The CPF control language uses the extended binary coded decimal interchange
code (EBCDIC) character set. For convenience in describing the relationship
between characters used in the control language and the EBCDIC character
set, the following CPF control language categories contain the EBCDIC
characters shown:

Category Characters Included
Alphabetic’ 26 letters (A-Z), a-z, and $, # and @
Numeric 10 digits (0-9)

Alphameric? A-Z,a-2,0-9, and $, # @, and __

Special All other EBCDIC characters (for those having special uses
characters in CL, see Summary of Special Character Usage)

'Lowercase letters (a-z) are accepted, but they are translated into the corresponding
uppercase letters by the system, except when included within a quoted character
string or a comment. In the Katakana EBCDIC character set, the character positions
corresponding to a-z in the US character set contain Katakana characters that can
be used as data in quoted strings or comments; if those same characters are used
outside quoted strings or comments, they are translated to A-Z.

2The underscore (__) is an alphameric connector that can be used to connect words
or alphameric characters to form a name (for example, PAYLIB__01). This use of the
underscore might not be valid in other high-level languages.

The first three categories contain the characters that are allowed in quoted and
unquoted character strings, in comments, and in CL names, such as in names
of commands, labels, keywords, variables, and CPF objects. All the special
characters, in the last category, can only be used in quoted character strings
and comments; they cannot be used in unquoted strings. However, some have
special syntactical uses when coded in the proper place in CL commands.
These uses are given in the chart under Summary of Special Character Usage.

SPECIAL CHARACTERS AND PREDEFINED VALUES

This section summarizes in chart form all of the special characters and their
uses in the CPF control language. A description of predefined values and how

they are used is also given.

Summary of Special Character Usage

The following special EBCDIC characters are used by the control language in
various ways. They are most frequently used as delimiters (which were

covered previously) and as symbolic operators in expressions (see Appendix B).

Special characters can only be used in these special ways or within quoted
character strings or comments. The special characters have the following
assigned meanings when coded in CPF control language commands:

Delimiters

Name Symbol Meanings

Blank B! Basic delimiter for separating parts of a
command (label, command name, and
its parameters), and for separating
values within lists.

Left and right () Grouping delimiter for lists and keyword

parentheses values, and for evaluating the order of
expressions.

Colon Ending delimiter for command labels.
Separates parts of time values.

Comma , In many countries, used as decimal
point in numeric values. Separates parts
of date values.?

Period Decimal point; also connects parts of
qualified names. Separates parts of
date values.?

Apostrophes ’ Quoted character string (a constant)
delimiter; apostrophes must be paired.

Slashes // Identifying characters used in positions
1 and 2 of JOB, ENDJOB, and DATA
commands in job stream. Also, a
default delimiter on inline data files.

End of file /* Indicates the end of a file on MFCU,
when in card columns 1 and 2.

Begin and end /**/ Indicates the beginning and end of a

comment comment. The comment (/*) must not
begin in column 1 of cards because the
/* in columns 1 and 2 is recognized by
the MFCU as the end-of-file delimiter.

'In this manual, b is used when necessary to represent a blank space.

2Valid only when the QDATSEP system value specifies the same character.

Control Language Syntax

2-9

Symbolic Operators

Name Symbol Meanings

Plus + Addition operator, command
continuation character, and positive
signed value indicator.

Minus (hyphen) - Subtraction operator, command
continuation character, and negative
signed value indicator. Separates parts
of date values.?

Slash / Division operator. Separates parts of
date values.3

Asterisk * Multiplication operator. Indicates a
generic name when it is the last
character in the name. Indicates CPF
reserved values (predefined parameter
values and expression operators) when
it is the first character in a string.

Not - Symbolic not relational operator.

Equal = Symbolic equal relational operator.

Less than < Symbolic less than relational operator.

Greater than > Symbolic greater than relational
operator.

And & Symbolic logical operator for AND.

Or |2 Symbolic logical operator for OR.

Concatenation [> |< Character string operator (indicates both

values are to be joined). See Appendix
B for more information on the
differences in the concatenation
operators.

In some character sets, including the multinational character set, the character A
replaces the ™ character. Either A or *NOT can be used as the logical NOT operator
in those character sets.

2In some character sets, including the multinational character set, the character !
replaces the | character. Either | or *OR can be used as the OR operator, and either
Il or *CAT can be used as the concatenation operator in those character sets.

3valid only when the QDATSEP system value specifies the same character.

Note: The symbolic operators can also be used in combinations as listed in
;the chart under Operators in Expressions in Appendix B.

Other Uses

Name Symbol Meanings

Ampersand & Identifies a CL variable name when it is
the first character in the string.

Percent % Identifies a built-in function when it is
the first character in the string.

Question mark ? Specifies a prompt request when it
precedes a command name.

Predefined Values

Predefined values are IBM-defined fixed values that have predefined uses in
the control language and are considered to be reserved in CPF. Predefined
values have an asterisk (*) as the first character in the value followed by a
word or abbreviation, such as *ALL or *PGM. The purpose of the * in
predefined values is to prevent possible conflicts with user-specified values,
such as object names. Each predefined value has a specific use in one or more
command parameters; each is described in detail in Part 2, under the
commands in which it is allowed.

Some predefined values are used as operators in expressions, such as *EQ and
*AND. The predefined value *N is used to specify a null value and can be
used for any optional parameter. A null value (*N) indicates a parameter
position for which no value is being specified; it allows other parameters that
follow it to be entered in positional form. To specify the characters *N as a
character value (not as a null), the string must be enclosed in apostrophes
("*N’) to be passed. Also, when the value *N appears in a CL program variable
at execution time, it is always treated as a null value.

Control Language Syntax 2-11

RULES FOR SPECIFYING NAMES

The standard rule for specifying names used by the control language is:

Every name must begin with an alphabetic character (A-Z, $, #, or @) and
can be followed by no more than 9 alphameric characters (A-Z, 0-9, $, #,
@, or __). No name can exceed 10 characters. Blanks are never allowed in
a name.

The standard rule applies to CPF object names, CL variable names, command
labels, system values, built-in functions, and job names. It also applies to both
parts of a qualified object name, which is described in the following section.
When you create a new command using command definition (see Chapter 5),
the names of the command and its parameter keywords must follow the same
standard rule.

Additional rules involving special characters that apply to the following types of
names (as an extra character) are:

» A command label must be immediately followed by a colon (:). Blanks can
follow the colon, but none can precede it.

e A CL variable name must be preceded by an ampersand (&) to indicate that
it is a CL variable used in a CL program.

« A built-in function name must be preceded by a percent sign (%) to indicate
that it is an IBM-supplied built-in function, which can be used in an
expression.

These special characters are not part of the name; each is an additional
character attached to a name (making a maximum of 11 characters) indicating
to the system what the name identifies.

The names of CPF objects, CL program variables, system values, and built-in
functions can be specified in the parameters of individual commands as
indicated in the syntax diagram for each command. (Instead of specifying a
constant value, a CL variable name can be used on most parameters in CL
programs to specify a value that may change during program execution.) The
names, then, identify which objects and values are to be used when the
command is executed.

IDENTIFYING CPF OBJECTS

Each of the CPF objects used by the control language has a name. The object
name specified in a CL command identifies which object is to be used by the
CPF to perform the function of the command.

Simple and Qualified Object Names

The name of a specific object can be specified in two ways: as a simple name
or as a qualified name. A simple object name is the name of the object only. A
qualified object name is the name of the object followed by the name of the
library in which the object is stored in the system. In a qualified object name,
the object name is connected to the library name by a period.

Name Type Name Syntax Example

Simple object name object-name OBJA
Qualified object name object-name.library-name OBJB.LIB1

Either the simple name or the qualified name of an object can be specified if
the object exists in one of the libraries named in the job’s library list; the library
qualifier is optional in this case. A qualified name must be specified if the
named object is not in a library named in the library list.

Note: A job name also has a qualified form, but it is not a qualified object
name because a job is not a CPF object. A job name is qualified by a user
name and a job number, not by a library name. (Refer to the expanded
description of the JOB parameter in Appendix A for a complete description of
job names.)

Generic Object Names

Another type of object name is the generic object name. This type may refer to
more than one object. That is, a generic name contains one or more characters
that are the first group of characters in the names of several objects; the
system then searches for all the objects that have those characters at the
beginning of their names and that are in the libraries named in the library list.
A generic name is identified by an asterisk (*) as the last character in the
name.

A generic name can also be qualified by a library name. If the generic name is
qualified, the system searches only the specified library for objects whose
names begin with that generic name.

Name Type Name Syntax Example

Simple generic name generic-name* oBJ*
Qualified generic name generic-name*.library-name OBJ*.LIB1

Control Language Syntax

CPF Object Naming Rules

The following rules are used to name all CPF objects used in control language
commands. Use these rules, in addition to the standard rule given for all
names, to specify the object names indicated in the CL command descriptions
in Part 2. (The syntax diagram for each CL command shows whether a simple
object name, a qualified name, or a generic name can be specified.)

« Specifying a Single Object: In the name of a single object, each part (the
simple name and the library qualifier name) can have a maximum of 10
characters. The first character in each part must be alphabetic (A-Z, $, #, or
@), and the rest must be alphameric (alphabetic, 0-9, and __). When a
library qualifier is used, a period (.) connects the object name to the library
name.

« Naming User-Created Objects: To be able to distinguish user-created
objects from IBM-supplied objects, you should not name your objects with
names beginning with Q because the names of all IBM-supplied objects
(except commands) begin with Q. Although you can use as many as 10
characters in CL object names, you may need to use fewer to be consistent
with the naming rules of the HLL (high-level language) that you are also
using. Also, the HLL might not allow underscores in the naming rules. For
example, RPG limits file names to 8 characters and does not allow
underscores.

« Specifying a Generic Object Name: In a generic name, a maximum of 9
alphameric characters can be used, not including the asterisk (*) that must
immediately follow the last character. The first character must be
alphabetic. Generic names are not valid in some commands. In commands
where a generic name is accepted, a regular name is also accepted (that is,
without the *).

Name Type Name Syntax Examples
Object Name Library Name
Simple object name object-name INVENPGM1
Qualified object name |object-name.library-name INVENPGM2.QGPL
(—

10 characters Connector

maximum

Generic name generic-‘naye* INV*
Asterisk Connector

Qualified generic name |generic-name=.library-name INV*.QGPL
- J N J

"V g

9 characters 10 characters
maximum maximum

Valid values where a generic name is accepted are INV and INV*. When the
name INV is specified, only the object INV is referenced. When the generic
name INV* is specified, objects that begin with INV are referenced, such as
INV, INVOICE, INVENTORY, and INVENPGM1.

« Object Library Qualifier Limitations: When the object being created is a
library, user profile, device description, control unit description, or line
description, no library qualifier can be specified with the name. A library
name can never be qualified because a library cannot be placed in a library.
The other object types (*USRPRF, *DEVD, *CUD, and *LIND) appear as if
they exist only in the QSYS library. When only the name of an object of
these four object types is accepted, a library qualifier cannot be specified
with the object name. On the DSPOBJD command, where any object name
is accepted, QSYS can be specified.

e Library List Qualifiers: The predefined value *LIBL (and others, such as
*USRLIBL and *ALLUSR) can be used in place of a library name in most
commands. *LIBL indicates that the libraries named in the job’s library list
are to be used to find the object named in the first part of the qualified
name.

« Duplicate Object Names: Duplicate names of objects that are of the same
type and in the same library are not allowed.

Two objects having the same name cannot be stored in the same library unless
their object types are different. Two objects named OBJA can be stored in the
library LIBX only if, for example, one of the objects is a program and the other
is a file. The following combinations of names and object types could all exist

on the system at the same time.

OBJA.LIB1 OBJA.LIB1

two files
OBJA.LIB2 $ three programs OBJA.LIB2
OBJA.LIB3 OBJA.LIB1 } one command

If more than one library contains an object by the same name (and both
libraries are in the same library list) and a library qualifier is not specified with
the object name, the first object found by that name is used. Therefore, when
you have multiple objects of the same name, you should specify the library
name with the object name or ensure that the appropriate library occurs first in
the library list. For example, if you are testing and debugging and choose not
to qualify the names, ensure that your test library precedes your production
library in the library list.

Default Libraries

In a qualified object name, the library name is always optional. If a library
name is not specified, the default given in the command’s description is used
(usually either QGPL or *LIBL). If the named object is being created, QGPL is
the default; when the object is created, it is placed in the QGPL library (the
general purpose library). For objects that already exist, *LIBL is the default for
most commands; the job’s library list is used to find the named object. The
system will search all of the libraries currently in the library list until it finds the
object name specified. (Of course, the library in which the desired object is
contained must be a part of the job’s library list.)

Control Language Syntax

PARAMETER VALUES

Parameter values are user-supplied information to be used during command
execution. An individual value can be specified in any one of these forms:

« Constant (its actual value): The types of constants are: character string
(includes names), decimal, and logical.

« CL variable name (the name of the variable containing the value): The types
of variables are: character string (includes names), decimal, and logical. The
type of variable must match the type of value expected for the parameter,
except that any type of value can be specified by a character variable. For
example, if a decimal value is expected, it can be specified by a character
variable as well as by a decimal variable.

« Expression (the value used is the result of evaluating an expression): The
types of expressions are arithmetic, character string, relational, and logical.
Expressions can be used as a value for parameters in commands in CL
programs only.

A parameter can specify one or a group of such values, depending on the
parameter’s definition in a command. If a group of values is allowed, the
parameter is called a list parameter because it can contain a list of values.
All values can be specified in the command parameters in keyword form,
positional form, or a combination of both forms. Parameter values must be
enclosed in parentheses if:

« A keyword precedes the value.

« The value is an expression.

« A list of values is specified. If only one value is specified for a list, no
parentheses are required.

A description of each type of parameter value is given in the following
paragraphs.

Constant Values

A constant is an actual numeric value or a specific character string whose value
does not change. Three types of constants can be used Ly the control
language: character (quoted and unquoted character strings), decimal, and
logical.

Character Strings

A character string is a string of any EBCDIC characters (alphameric and
special) that are used as a value. A character string can have two forms:
quoted string or unquoted string. Either form of character string can contain as
many as 2000 characters.

A quoted character string is a string of alphameric and special characters that
are enclosed in apostrophes. For example, ‘Credit limit has been exceeded.’ is
a quoted character string.

The quoted string is used for character data that is not valid in an unquoted
character string. For example, user-specified text can be entered in several
commands to describe the functions of the commands; the text must be
enclosed in apostrophes if more than one word is used in the description
because blanks are not allowed in an unquoted string.

An unquoted character string is a string consisting of only alphameric characters
and the special characters that are shown in the Unquoted String column of the
table on the following page. The special characters allow the following to be
unquoted character string values:

« Predefined values (* at the beginning)

« Qualified object names |(.)

« Generic names (* on end)

« Decimal constants (+, -, ., and ,)

Any of these unquoted strings can be specified for parameters that are defined
to accept character strings. In addition, some parameters are defined to accept

only predefined values, names, or decimal values, or a combination of the
three.

Control Language Syntax 2-17

The following table summarizes the characters valid in unquoted and quoted
character string values. An X in the column indicates the character on the left
is valid; a superscript number next to the X indicates the character is valid in
the way described in the corresponding note listed following the table:

Unquoted Quoted
Name of Character Character | String String
Blank b X
Comma , Note 1 X
Dollar sign $ X X
Number sign # X X
At sign @ X X
Letters (uppercase) A-2Z X X
Letters (lowercase) a-z Note 2 X
Digits 0-9 Note 1 X
Period . Notes 1 and 3 X
Left parenthesis (Note 4 X
Right parenthesis) Note 4 X
Ampersand & Note 5 X
Asterisk » Notes 5 and 6 X
Semicolon ; X
Minus - Notes 1 and 5 X
Slash / Note 5 X
Apostrophe ' Note 7
Equal = Notes 5 and 8 X
Less than < Notes 5 and 8 X
Greater than > Notes 5 and 8 X
Plus + Notes 1 and 5 X
Vertical bar | Notes 5 and 8 X
Not - Notes 5 and 8 X
Percent X
Question mark ? X
Colon X
Underscore _ Note 9 X
Other EBCDIC characters X

Notes:

1. An unquoted string of all numeric characters, an optional single decimal point (. or),

and an optional leading sign (+ or -) is a valid unquoted string. Depending on the

parameter attributes in the command definition, this unquoted string is treated as a

numeric or character value. On the CALL command or in an expression, this

unquoted string is treated as a numeric value; a quoted string is required if the
character representation is desired. Numeric characters used in any combination with
alphameric characters is also valid in an unquoted string.

In an unquoted string, lowercase letters are translated into uppercase letters.

A period can be used as a connector in qualified names.

In an unquoted string, parentheses are valid when used to delimit keyword values and

lists or in expressions to indicate the order of evaluation.

5. In an unquoted string, the characters +, -, *, /, &, |, 7, <, >, and = are valid by
themselves. |f they are specified on a parameter that is defined in the command
definition with the EXPR(*NQ) attribute, they are treated as character values. If they
are specified on a parameter that is defined in the command definition with the
EXPR(*YES) attribute, they are treated as expression operators.

6. In an unquoted string, the asterisk is valid when followed immediately by a name
(such as in a predefined value) and when preceded immediately by a name (such as
in a generic name).

el N

7. Because an apostrophe within a quoted string is paired with the opening apostrophe
(delimiter) and is interpreted as the terminating delimiter, an adjacent pair of
apostrophes must be used within a quoted string to represent an apostrophe that is
not a delimiter. When characters are counted in a quoted string, such a pair of
adjacent apostrophes is counted as a single character.

8. In an unquoted string, the characters <, >, =, 7, and | are valid in some combinations
with another character in the same set. Valid combinations are: <=, >=, 7=, 7> <,
I'l, I<, and |>. If the combination is specified on a parameter that is defined in the
command definition with the EXPR(*NO) attribute, then it is treated as a character
value. If it is specified on a parameter that is defined in the command definition with
the EXPR(*YES) attribute, then it is treated as an expression operator.

9. In an unquoted string, the underscore is not valid as the first character or when used
by itself.

The following are examples of quoted string constants:

Constant Value
1,2 1,2,
‘DON"T’ DON'T
‘24 12 20’ 24 12 20

The following are examples of unquoted strings:

Constant Meaning

CHICAGO CHICAGO

FILE1 FILE1

*LIBL Library list

PGMA.LIBX Program PGMA in library LIBX
1.2 1.2

Decimal Values

A decimal value is a numeric string of one or more digits, optionally preceded
by a plus (+) or minus (-) sign. A decimal value can contain a maximum of 15
digits, of which no more than nine can follow the decimal point (which can be
a comma or a period). Therefore, a decimal value can have no more than 17
character positions, including the sign and decimal point. The following are
examples of decimal values.

123. +.017
1.23 | Equivalent 6278,954374
1,23) Values -123456.987654321
-1,23 87654321.123

Control Language Syntax

Logical Values

A logical value is a single character 1 or O enclosed in apostrophes. It is often
used as a switch to represent a condition such as on or off, yes or no, and
true or false. When used in expressions, it can be optionally preceded by
*NOT or ~. The following are examples of logical values:

Constant Value Meaning
0 0 Off, no, or false
1 1 On, yes, or true

Hexadecimal Values

A hexadecimal value is a constant that is made up of a combination of the
hexadecimal digits A through F and O through 9. All character strings except
names, dates, and times can be specified in hexadecimal form. To specify a
hexadecimal value, the digits must be specified in multiples of two, be
enclosed within apostrophes, and be preceded by an X. Examples are: X' F6’
and X'A3FE'.

Note: Care should be used when hexadecimal values in the range of 00
through 3F, or the value FF, are entered. If data containing these characters is
displayed or printed, undesirable results on the device may occur, because they
may be treated as device control characters.

Variables

A variable contains a data value that can be changed during program execution.
The variable is used in a command to pass the value that it contains at the
time the command is executed. The change in value can be the result of:
receiving the value from a data area, a display device file field, or a message;
being passed as a parameter; executing a CHGVAR command within the
program; or calling another program that returns a value.

The variable name identifies a value to be used; the name points to where the
actual data value is. Because CL variables are valid only in CL programs, they
are often called CL program variables or, simply, CL variables. CL variable
names must begin with an &.

CL variables can be used to specify values for almost all parameters of CL
commands. When a CL variable is specified as a parameter value and the
command containing it is executed, the current value of the variable is used as
the parameter value. That is, the variable value is passed as if the user had
specified the value as a constant.

Because it is generally true that CL variables can be used for most parameters
of commands in CL programs, the command descriptions in Part 2 of this
manual usually do not mention CL variables. For those parameters that are
restricted to constants only (such as in the DCL command), to CL variables
only (such as all of the parameters of the RTVJOBA command), or to specific
types of variables (such as on the RTVJOBA or RTVMSG command), the
individual parameter descriptions specify those limitations. Otherwise, if the
command is allowed in a CL program, CL variables can be used in place of a
value, including parameters with only predefined values. For example, a SAVE
parameter having only predefined values of *YES and *NO can have a CL
variable specified instead; its value can then be *YES or *NO, depending on its
value at the time the command is executed.

A CL variable must contain only one value; it may not contain a list of values
separated by blanks.

The value of any CL program variable can be defined as one of the following
types:

« Character: A character string that can contain a maximum of 2000
characters. The character string can be coded in quoted or unquoted form,

but only the characters in the string itself are stored in the variable.

« Decimal: A packed decimal value that can contain a maximum of 15 digits,
of which no more than nine can be decimal positions.

« Logical: A logical value of ‘1’ or ‘0" that represents on/off, true/false, or

yes/no.
If value is: CL variable can be declared as:
Name Character
Date or time

Character string

Numeric Decimal or character

Logical Logical or character

Expressions

An expression is a group of constants or variables separated by operators that
results in a single value. The operators specify how the values are to be
combined to produce the single value or result. The operators can be
arithmetic, character string, relational, or logical. The constants or variables can
be character, decimal, or logical. For example, the expression (&A + 1)
specifies that the result of adding 1 to the value in the variable &A is to be
used in place of the expression.

Control Language Syntax 2-21

2-22

Character string expressions can be used in certain command parameters
defined with EXPR{*YES) within CL programs. An expression can contain the
built-in functions % SUBSTRING (or 9% SST) and % SWITCH, which are
covered in detail in Appendix B. The types of expressions and examples of
each are described there.

Lists of Values

A list of values is a series of one or more values that can be specified for a
parameter. Not all parameters can accept a list of values. A list parameter can
be defined to accept a specific set of multiple values that can be of one or
more types. Values in the list must be separated by one or more blanks. Each
list of values is enclosed by parentheses, indicating that the list is to be treated
as a single parameter. (Parentheses are used even when a parameter is
specified in positional form.) To determine whether a list can be specified for a
parameter, and what kind of list it can be, refer to the description of the
parameter under the appropriate command.

A list parameter can be defined to accept a list of multiple like values {a simple
list) or a list of multiple unlike values (a mixed list). Each value in either kind of
list is called a list element. List elements can be constants, variables, or other
lists; expressions are not allowed.

« A simple list parameter accepts one or more values of the type allowed by a
parameter. For example, (RSMITH BJONES TBROWN) is a simple list of
three user names.

« A mixed list parameter accepts a fixed set of separately defined values that
are in a specific order. Each value can be defined with specific
characteristics such as type and range. For example, LEN(S5 2) is a mixed
list where the first element (5) gives the length of a field and the second
element gives the number of decimal positions in the same field.

LOC(*M1 4 6) is a mixed list of three elements: the first element is a
predefined character value (*M1) that indicates a magazine location in the
diskette magazine drive; the second and third elements (4 and 6) are
numeric values that identify the starting and ending diskette positions within
the magazine identified by the first element. This example indicates that
diskettes 4, 5, and 6 in magazine 1 are to be used.

« For many parameters defined to accept lists, predefined single values can be
specified in place of a list of values. One of these single values can be the
default value, which can be specified or assumed if no list is specified for a
simple or mixed list. To determine what defaults are accepted for a given
list parameter, refer to the description of the parameter in the command
description for which the parameter is defined and used.

Note: *N cannot be specified in a simple list, but it can be specified in a
mixed list. Also, individual parameters passed on the CALL command
cannot be lists.

+ The maximum level of nesting within lists is three levels, including the first
(three nested levels of parentheses).

J

The following are examples of lists:

:(:ND() } Null lists

(A)

(A BC)

KWD(A B C)

(1 B &C)

(A B *N C) =—(assuming a list of unlike values)
((A B) (12) .
(A B)1 2) Nested lists

The last two examples contain two nested lists within a list: the first list has
values of A and B; the second has values of 1 and 2. The space between the
two nested lists is not required. Blanks are the separators between the values
within each list, and the sets of parentheses group the values into lists.

SYNTAX CODING RULES (SUMMARY)

This section contains a summary of general information needed to properly
code control language commands.

Delimiters

« Blanks are the basic separators between the parts of a command:

— Between command label and command name (not required, because the
colon (:) is the delimiter).

— Between command name and first parameter, and between parameters.

— Between values in a list of values (not required between ending and
beginning parentheses of lists within a list).

— Between the slashes and the name or label of some job control
commands, like // ENDJOB (not required).

« Blanks cannot separate a parameter's keyword from the left parenthesis
preceding its value(s). When a keyword is used, parentheses must be used
to enclose the values; blanks can occur between the parentheses and the
values. For example, KWD(A) is valid.

« Multiple blanks are treated as a single blank, unless they occur within a
quoted string or a comment.

« A colon must immediately follow a command label. Only one label can be
used on any command (LABEL1: DCLF).

« Apostrophes must be used to specify the beginning and end of a quoted
character string. (If a character string contains special characters, such as
blanks, apostrophes are required.) If an apostrophe must be used within the
quoted string, two apostrophes must be entered side by side to indicate that
it is an apostrophe and not the end of the quoted string.

Control Language Syntax

2-24

« Parentheses must be used:
— On parameters that are specified (coded) in keyword form
— To group multiple values in a single list, in a positional parameter, or
around expressions
— To indicate a list (of none, one, or several elements) within another list

« Sets of parentheses within parentheses can be entered as long as they are
paired, up to the maximum of five nested levels in logical expressions or
three nested levels in lists of values.

« Comments can appear wherever blanks are permitted, except after a
continuation character on the same line or record.

« A plus or minus sign at the end of a line indicates that the command is
continued on a following line. Blanks following a + or - sign in the same
record are ignored; any blanks in the next record that precede the first
nonblank character in the record are ignored when + is specified and
included when - is specified. One blank must precede the + sign when it is
used between separate parameters or values.

Parameters
« All required parameters must be coded.

« |If an optional parameter is not coded, the system uses its default value, if
the parameter has one. In the syntax diagram of each command, all default
values are indicated by the heavy branch lines that lead to them. If no
default value is indicated, then the default varies (depending on other
parameter values) and is described in the text, or the action taken does not
require that parameter.

« Words or abbreviations specified in capital letters in the command and
parameter descriptions must be coded as shown. This is true of all
command names (mnemonics), keywords of parameters (if used), and many
parameter values. If lowercase letters are coded that are not in quoted
strings or comments, they are translated to uppercase.

« Parameters may not be coded positionally past the positional coding limit
symbol @ found in the syntax diagrams (if applicable). If no positional
coding limit symbol appears, all parameters in the command may be coded
positionally. The order of positional coding is the order in which the
parameters are presented in the syntax diagram.

Values

The first character in all names must be an alphabetic character (A-Z, $, #,
@). Names must not exceed 10 characters. (CL variable names and built-in
function names can have 11 characters maximum, including the preceding &
or % characters.) In some commands, the names of objects can be
specified in qualified form (object-name.library-name).

Predefined values that begin with an asterisk can be used only for the
purposes intended, uniess included in comments or quoted strings. They
include predefined parameter values (*ALL, for example), symbolic operators
(*EQ, for example), and the null value (*N).

Within a CL program, a variable can be specified for all parameters, except
where explicitly restricted. The contents of the variable are passed as if the
value were specified on the command.

Within a CL program, a character string expression can be specified for any
parameter defined with EXPR(*YES). The resulting value of the expression is
passed as if the value were specified on the command.

Null (omitted) values are specified with the characters *N, which mean that
no value was specified and the default value, if one exists, should be used.
*N is needed only when another value following the omitted value is being
specified as a positional parameter or an element in a list.

Either a comma or a period can be used to indicate a decimal point in a
numeric value. The decimal point is the only special character allowed
between digits in the numeric string; there is no delimiter for indicating
thousands, for example.

When repetition is indicated for a parameter:

— A predefined value is not to be coded more than once in a series of
values.

— As many user-defined values (like names or numeric limits) can be
entered as there are different values or names, up to the maximum
number of repetitions allowed.

Note: When you are using parameters that have the same name in different
commands, the meaning of (and the values for) that parameter in each
command may be somewhat different. Refer to the correct command
description for the explanation of the parameter you are using. For some
parameters, you can also refer to the Common Parameter Descriptions in
Appendix A for both general information about a parameter and an
expanded description of its values coded in commands.

Control Language Syntax

2-25

Part 2. Control Language Command Descriptions

All of the System/38 control language commands are described in detail in
Part 2. Generally, each command is described independently of all the other
commands; they are not described in functional groupings. The commands are
in alphabetic order by their command names.

The command definition statements used for creating and changing commands
are grouped separately at the end of Part 2, in Chapter 5, Command Definition
Statements. These five statements perform a function completely independent
of the rest of the commands, namely, defining or changing the parameter
attributes of IBM-supplied or user-defined commands.

To aid you in quickly locating commands and their parameters, marginal
references (similar to that used in a dictionary) are used in the top outer corner
of each page in Part 2. Each marginal reference shows the command name
and parameter keyword of the first command and first new parameter
described on that page. More than one command can appear on one page, but
if the command from the previous page is continued, the continued command
is the one identified when a new parameter or a new section (such as
Examples) starts on the page.

Before the first command is described, an explanation of the format used to
describe each command is given. Following that, an explanation of how to
interpret the syntax diagrams is given; the diagrams graphically show the
syntax of each command.

Control Language Command Descriptions

Chapter 3. Format of Command Descriptions

HOW COMMANDS ARE DESCRIBED

Each command description follows the same format. First, the function of the
command and restrictions on its use are described. Next, a syntax diagram
presents all parameters and values that can be coded on the command. Next,
each parameter and its choice of values are described. Finally, coded examples
of the command are given. Some commands have additional information that
is supplied after the examples.

Command Description

The general description of the command briefly explains the function of the
command and any relationships that it has with a program or with other
commands. If there are restrictions on the use of the command, they are
described under Restrictions.

It should be noted that, because a command is a CPF object, each command
can be authorized for specific users or authorized for use by the public (all
users authorized in some way to use the system). Because this is true for
nearly every command, it is not stated in each command description. (Refer to
the user profile chart in Appendix C for the IBM-supplied user profiles and the
commands initially authorized for each one.)

Command Syntax

The command syntax is presented in the syntax diagram for the command.
The syntax diagram shows all parameters and values that are valid for the
command. The parameters are divided into two groups: those that must be
coded (required), and those that need not be coded (optional). Heavy branch
lines are used to indicate default values, which are used by the system for
uncoded parameters.

A complete description of the syntax diagram is provided later in this chapter
under How to Interpret Syntax Diagrams.

Format of Command Descriptions 3-1

Parameter Descriptions

Each parameter is described in the text in the same order as shown in the
syntax diagram. The syntax diagram shows the order in which the parameters
must be specified if the values are specified positionally (that is, without
keywords). If a parameter has more than one value, the values are described in
the same order as shown. The defauit value, if there is one, is always first and
is shown as an underlined heading at the beginning of the text that describes
the value.

The description of each parameter contains what the parameter means, what it
specifies, and the dependent relationships it has with other parameters in the
command. When the parameter has more than one value, the information that
applies to the parameter as a whole is covered first, then the specific
information for each of the values is described after the name of each value.

Command Coding Examples

Each command description shows at least one coded example if the command
has at least one parameter. Where necessary, several examples are provided
for commands that have many parameters and several logical combinations.

For clarity, each example is coded in keyword form only. The same examples
could, of course, be coded in positional form or in a combination of both
forms.

Additional Command Considerations

A section called Additional Considerations follows the coded examples of some
commands when there is additional useful information to be presented about
the command. For example, some of the display commands result in displays
of information that are in tabular form. This section is used to clarify the
meanings of the information displayed.

The displays shown in this manual are only representative of the format of the
items that could be displayed for a given command. That is, the manual shows
and explains all of the fields that can appear on the displays, and explains the
sequence in which the various groups of fields are presented. Xs are shown in
the areas where variable information would actually appear, and the length of
each field is determined by the number of Xs shown for that field. An actual
display, in many cases, may contain only a few of the fields that could be
displayed, but only the applicable fields are displayed.

C

HOW TO INTERPRET SYNTAX DIAGRAMS

Syntax diagrams show all the parameters and values used by each CL
command. Each syntax diagram specifies, for one command, the parameters
that can be coded in the command and the choice of values for each
parameter.

All parameters are shown in each diagram in the order that the system requires
them to be when the parameters are coded in positional form.

All required parameters precede all optional parameters. The required
parameters (if any) are boxed with the command name at the beginning of the
diagram. All the other parameters are optional and do not have to be coded; a
default value (indicated by heavy branch lines) is assumed for each uncoded
parameter, for most commands.

For each parameter that can have a repetition of values, the maximum number
of repetitions that can be entered is shown in the diagram with the parameter’'s
values. The syntax diagrams also show (by flow lines and by notes) which
parameters are mutually dependent or mutually exclusive.

Entry codes are shown in the bottom right corner of the diagram; they tell you
where the command can be entered. Notes are also included that give
information that is needed to properly interpret the syntax.

Sample Syntax Diagram

Illustrated on the following page is a sample syntax diagram. it shows the
parameter syntax of a fictitious command named SMPSYNDGM (Sample
Syntax Diagram). This command shows a number of representative parameters
that are used in the set of rules that follow the sample syntax diagram. These
parameters are used to illustrate how each kind of parameter syntax that exists
in the CL commands is to be interpreted. Included with the rules are coded
examples of these parameters.

Format ot

Command
Name (1)

Predefined
Values (7)

Parameter

(2) and (3)
Keyword (4)

Not Shown

User-Defined
Value (5)

’ e Qualified
Choice of — SMPSYNDGM: PARMA len;th—— PARMB message—identifier Object
Values (6) \ Name (8)
*CHAR *LIBL
>— PARMC *DEC PARMD program-Tame { ﬁ——s .
—— Required
\— *LGL '—/ .library—name g
Required and
Diagram | Optional Optional
Note (10) [00 - Parameters
>— PARME 'message—text' PARMP-{ > (9)
List of uverlty—codo—/
User-Defined —___| Default
Values (12) () vAME Iy Values
>- PARMG operator value PARME—{ *BLANK > (11)
et Quoted
Positional / Values (14)
Coding — >— PARMI lower—value upper—value PARMJ 'separator—character’ —>
Limit (13)
List of
. *NONE L—— Values (with
Repetition alues (wi
0 5p) — ¥VALUE1L Repetition)
*VALUE2 (16)
> PARMK——Edevica—nnme :l-———PARHL C *VALUE3 » .
4 maximum *VALUB4
user-value
3 mnximum —_ Dependent
Parameters
(18)
*NOMAX PARMN device —name
Ootional >—mmm—<:
ptiona
t - PARMO device—t,
Values in length [decimal—positions] evice ype
Lists (17)
>—PARMP job—name[.user—name[.job—number]] —»
*NONB
> PAR“Q‘Q #LIBL
dntn—bnse—file—nme{
Diagram Jibrary—name
Notes (10)\
\® The text must be enclosed in apostrophes if special characters are used. |— Entry
(@ A value for dectmal—positions is valld only it PARMC(+DEC) is specitied. Codes (19)
Job:B,I Pgm:B,I

9

9

Syntax Diagram Rules

The syntax diagrams for the CL commands are interpreted according to the
following rules.

1. Command Name

The command name appears first in the diagram. In the sample syntax
diagram, the name of the fictitious command is SMPSYNDGM.

2.© Command Labels

All coded commands can be preceded by labels; therefore, they are not shown
in the syntax diagrams. If used, a label must have a colon (:) immediately after
the last character in the label name.

3. Parameter Order

All parameters of the command are shown in the correct positional sequence.
The order goes left to right on each line and continues on the following line.
(To show the positional order of the parameters in the sample diagram, the
representative parameters have keyword names that are named in alphabetic
order, such as PARMA and PARMB; they are named in the same order as they
would have to be coded positionally if this command actually existed.)

Note: In the few cases where dependent parameter relationships are shown
(see rule 18), the positional order of those parameters may not be readily
apparent. The order may be specified in a note in the diagram, or the order
can be easily determined in the text, because all parameters in the command
are described in positional order in the text.

When coding parameters in the positional form, you must enter them in the
order shown in the diagram. If you choose not to code a parameter and
another positional parameter is to be coded after it, then you must enter *N to
represent the uncoded parameter in the positional sequence.

No parentheses are shown in the diagrams, but parentheses must be coded in

each parameter that either has the keyword coded with its value (see rule 4) or
has multiple values in one parameter (see rule 12).

Format of Command Descriptions 3-5

3-6

4. Parameter Keywords

For each parameter, the keyword is always shown first, followed by the
parameter values. Parameter keywords use uppercase letters; if you code them
in lowercase, they will be changed to uppercase.

>—PARMA len‘th_\(2_'_‘ PARMH ::AL;‘: \
[\ [

Keyword Value Keyword Values

When a parameter is coded in keyword form, its associated values must be
enclosed in parentheses. Although parentheses are not shown in the diagram,
they must be used when you are coding in keyword form. Examples of
PARMA and PARMH are:

PARMA(15) PARMH(*BLANK)

b. User-Defined Values

User-defined values are shown with lowercase characters that describe the
kind of value to be coded by the user. If more than one word is used to
describe a single value, the words are connected by hyphens:

>—PARMA length PARMB message—identifier———»

6. Choice of Values
A parameter having a choice of values of which only one can be specified is

shown with the values on different branch lines that occur after the parameter
keyword (which is on the base line), as follows:

*CHAR
>\mumc { *DEC
*LGL

base line base line

branch lines

If the second value is to be coded, it can be coded as:
PARMC(*DEC) or as *DEC
{keyword form) (pasitional form)
7. Predefined Values

Predefined values are shown exactly as they must be coded. *CHAR and *DEC
are examples of predefined values.

8. Qualified Object Names

Qualified names of CPF objects are shown as:

.*LIBL
>—PARMD program—name {

.library—name

Qualified object names have the object name followed by the optional library
qualifier. If the qualifier is not specified, the default shown by the heavy line is
used. Usually, *LIBL is the default value for a qualified object name; it means
that the library list associated with the job is used to find the object. The
syntax for PARMD shows that a qualified program name can be specified.

PARMD(PGMX.LIBA) PARMD(PGMX)

The first example shows PGMX coded in its qualified form; the parameter
specifies that the program named PGMX in library LIBA is to be used. The
second example shows the program name only; the library list must be used to
find a program by the name of PGMX.

9. Required and Optional Parameters

All required parameters, if any, occur before the optional parameters. The
required parameters, with their keywords and values, are separated from the
optional parameters by a heavy dividing line. The required parameter area is
identified by Required above the dividing line. The optional parameter area is
identified by Optional below the dividing line.

~~ ~7 ~N ~
' Required Required
Optional Optional

~s ~ A ~v

If there are no required parameters, no dividing line is used. If there are
required parameters but no optional parameters, Required is entered at the top
of the diagram.

Format of Command Descriptions 3-7

3-8

10. Diagram Notes

Any necessary notes about a parameter or value in the diagram are identified
by a circled number and explained at the bottom of the diagram.

11. Default Values

If parameters have default values, those values always lie within a heavy
branch line, except when the values are shown as a list in a box. The defauit
is always the top value in the group shown. When the values are boxed (such
as in the LOC parameter of most diskette commands) for a parameter, its
default value is underlined and is the first value in the list. Also, the default
value is underlined in the text heading that describes the value. For an example
of a boxed default value, see the LOC parameter for the Change Diskette File
(CHGDKTF) command.

00 *SAME
}pmr{ ﬁ—pmﬂ{ *BLAN9—7
severity—code 'text’

In PARMF, the default value is 00. In PARMH, it is *SAME. The default values
are assumed by the system if you do not enter other values for parameters
PARMF and PARMH.

Default values occur for most optional parameters, and for the library qualifier
portion of both required and optional parameters. The indicated default value is
assumed by the system if:

« A value is not specified for an optional parameter.

« A list element (value), in an optional parameter that allows a mixed list of
values, is not specified.

« A library name is not specified in the library portion of a qualified object
name.

12. List of User-Defined Values
If a list of user-defined values can be coded, spaces (blanks) are used to

separate the values in the list. A list of values is shown as:

>—PARMG operator v-lue—z 2—PARHI lower—value upper—value—»

Both PARMG and PARMI show a list of two values that must be coded if the
parameter is coded. Parentheses are required around the list if multiple values
are coded even if no keyword is used. PARMG and PARMI could be coded as:

PARMG(*EQ 16) PARMI(1 9999)

13. Positional Coding Limit

The point to which the command’s parameters can be coded positionally is
indicated with this symbol. An attempt to code positionally beyond this point
will result in a syntax error. If this symbol does not appear in the syntax
diagram, all parameters of the command may be coded positionally.

14. Quoted Values

User-defined values that may require that the value be enclosed in
apostrophes are shown in the diagram with apostrophes. Apostrophes are
shown where special characters are normally expected.

>—PARME ' ge—text’ PARMJ 'separator—character———»

~
Va V4

The value specified for PARME requires apostrophes if more than one word is
entered (blanks, such as between words, are not allowed in an unquoted
character string) or if special characters are used. PARMJ requires apostrophes
if a character other than an alphameric character is specified.

PARME('This is a quoted string’)
PARME('10-24-78')
PARME(102478)

The first and second values require apostrophes because they have either

blanks (spaces) or special characters (-). The third value is a date with no
separator characters, and therefore does not require apostrophes.

Format of Command Descriptions

3-9

15. Repetition

An arrow going back to the left L (n maximum) _| is used to show how many

values (shown on several branch lines following the keyword) can be specified,
or how many repetitions of one value (shown on one line) can be specified.

If a value of one kind can be specified more than once, it is shown as:
>— PARMK device—name :l-—>
—E4 maximum
As many as four device names can be specified for PARMK. The following

values could be coded:

PARMK(DSPSTN1 DSPSTN2)
PARMK(MFCU DKT1 PTR1 WSPTR1)

The first example specifies two device names, and the second example
specifies the maximum of four device names.

When repetition is indicated for a parameter:

« A predefined value should not be coded more than once in a series of
values.

» As many user-defined values (like names or numeric limits) can be entered
as there are different values or names, up to the maximum number of
repetitions allowed.

16. List of Values (with Repetition)

A parameter that can have several values specified (a list of like values) is
shown as:

*NONE

*VALUB1

/C *VALUE2 1\

>—PARML - *VALUE3 —>
\t #VALUR4 7/

user—value

3 maximum

The parameter PARML can specify one, two, or three of the values shown.
Any combination of the four predefined values and user-defined values can be
specified. The user-defined value could be any value allowed for that
parameter. Any of the following could be coded:

PARML(*VALUE1 *VALUE3)
PARML(*VALUE3 16)
PARML(16 3 12)

If PARML is not specified, the single value *NONE is the default used by the
system. Note that if *NONE is specified, none of the other values can be
specified because the heavy branch line begins on the base line before the
return point of the repetition arrow, and it returns to the base line after the
starting point of the arrow. Also, because the arrow does return to the base
line after the heavy branch line begins, *NONE cannot be specified if any of
the values within the repetition loop are specified.

17. Optional Values in Lists
A list of values in which one or more of the elements are optional is shown
with brackets ([]). The value within the brackets cannot be coded unless the

value outside the brackets is also coded. The brackets themselves are never
coded.

*NOMAX mumm
. pmuu{ ﬁ—y
length [decimal—positions]

PARMM has one optional element in a list of two values and can be coded as:

PARMM(15 5) or PARMM(7)

The first example specifies a length of 15 digits of which 5 are decimal
positions. The second example specifies a length of 7 digits with no decimal

positions. If PARMM is not specified, the single value *NOMAX is used as the

default.

>—PARMP job—name[.user—name[.job—number]] ——»

PARMP requires a job name as its value; the name can be optionally qualified.
The job name can be specified with only the first part, the first two parts, or

with all three parts. A job named JOBX owned by the user RANDY having the

job number 210742 can be coded as:

PARMP(JOBX)
PARMP(JOBX.RANDY)
PARMP(JOBX.RANDY.210742)

Format of Command Descriptions

3-11

18. Dependent Parameter Relationships

Some parameters or values have dependent relationships with other
parameters or values. Some relationships are shown by the placement of
whole parameters on one or more branch lines; others are indicated by notes
that specify the relationships. Also, where the positional order of dependent
parameters may not be readily apparent in the diagram, a note is included that
specifies the correct positional order of those parameters. The dependent
relationships must be considered in the coding process.

>_<PARMN device—name
RARMO device—type

PARMN and PARMO are dependent parameters; if a device name (PARMN) is
coded, the device type (PARMO) cannot be coded, and vice versa.

branch lines

base line

Dependencies exist between parameters when they follow one another on the
same branch line or when they are on different branch lines that have split
from the same base line. (Parameters on the same base line, which is usually
the case, do not indicate dependencies.)

An example of three parameters being dependent on one another is shown in
the syntax diagram for the Create Physical File (CRTPF) command. There, the
following relationships are shown between the SRCFILE, SRCMBR, and
RCDLEN parameters:

« |f none of the three are coded, the default values on the top branch line are
assumed: SRCFILE(QDDSSRC.*LIBL) and SRCMBR(*FILE).

« If either SRCFILE or SRCMBR is specified (or both of them), RCDLEN
cannot be specified; if RCDLEN is specified, SRCFILE and SRCMBR cannot
be specified and their defaults do not apply. The two branch lines make
them mutually exclusive.

« If SRCFILE is specified, SRCMBR may or may not be specified, and vice
versa. (In some cases, where parameters are on the same branch line, if
one parameter is specified, the following parameter may also have to be
specified.)

If the CRTPF command is used to create, for example, a physical file named
FILEX that is to have records 120 positions long, and if the first few
parameters are coded positionally (refer to Note 1 at the bottom of the CRTPF
syntax diagram) the following would be coded:

CRTPF FILEX *N *N 120

19. Entry Codes (Batch and Interactive)

The box insert in the lower right corner of each syntax diagram contains the
entry codes that specify where the command can be entered. The codes
indicate whether the command can be:

» Used within a job (outside a compiled program; Job:B and/or |). When

used in this manner, the command is considered a separate entity within the

job, and is executed by itself as a separate function (in what is called

interpretive mode). That is, commands within batch and/or interactive jobs

that are not in compiled programs are interpreted and executed one at a
time, one after the other. The function of one interpreted command in the
job is performed and completed before the next command is interpreted.

» Used within a compiled program (Pgm:B and/or I). In this case, the
command is part of the program: the command is in compiled form with
the rest of the program, and the command’s execution is dependent on
when the program is called and on the program’s logic preceding the
command. That is, a compiled command cannot be executed unless the
program is executed.

The explanations of the combinations of entry codes are shown in the

following chart:

Code

Representing

Meaning

Job:B

Batch job

Valid in batch input stream,
external to compiled CL
program

Job:l

Interactive job

Valid for interactive entry,
external to compiled CL
program

Job:B,|

Batch and interactive jobs

Valid for batch and
interactive entry, external to
compiled CL program

Pgm:B

Program, batch

Valid in compiled CL
program that is called from
batch entry

Pgm:|

Program, interactive

Valid in compiled CL
program that is called from
interactive entry

Pgm:B,I|

Program, batch and
interactive

Valid in compiled CL
program that is called from
batch or interactive entry

By looking at the entry codes at the bottom of each syntax diagram, you can
tell whether the command can be used: only within CL programs (Pgm:B,1),
only outside CL programs (Job:B,l), only within interactive jobs (Job:l), or
inside or outside a CL program within any batch or interactive job (Job:B,|

Pgm:B,l).

Format of Command Descriptions

3-13

ADDAJE

Chapter 4. Command Descriptions

ADDAJE (Add Autostart Job Entry) Command

The Add Autostart Job Entry (ADDAJE) command adds an autostart job
entry to the specified subsystem description; (the associated subsystem
must be inactive at the time). The job entry identifies the job and its
associated job description to the subsystem. Autostart jobs are jobs that are
automatically initiated when the subsystem is started.

Restriction: To use this command, you must have operational and object
management rights for the specified subsystem description.

.*LIBL —
SBSD subsystem—description—name

ADDAJE _/
.library—name

>
Ld

Required
Optional

*8BSD .
>— JOB job—name —— JOBD —< #LIBL
job—desacription—name 4<
library—name

I Job:B,I Pgm:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
to which the autostart job entry is to be added. (If no library qualifier is
given, *LIBL is used to find the subsystem description.)

JOB Parameter: Specifies the simple name of the job that is to be
automatically initiated when a subsystem is started using the subsystem
description specified in the SBSD parameter.

JOBD Parameter: Specifies the qualified name of the job description to be
used for the job that is initiated by this autostart job entry. If the job
description does not exist when the entry is added, a library qualifier must
be specified because the qualified job description name is retained in the
subsystem description.

*SBSD: The job description having the same qualified name as the
subsystem description, specified by the SBSD parameter, is to be used for
the initiated job.

qualified-job-description-name: Enter the qualified name of the job
description that is to be used for the job initiated by this autostart job entry.
If no library qualifier is specified, the library list (*LIBL) of the job in which
this ADDAJE command is executed is used to find the job description.

Command Descriptions 4-1

ADDAJE
{Example)

4-2

Example

ADDAJE SBSD(ACCTINT.ACCTLIB) JOB(ACCTINIT) +
JOBD(INITSBS.ACCTLIB)

This command adds the job ACCTINIT as an autostart job entry to the
subsystem description ACCTINT in the library ACCTLIB. In this case, the
autostart job might be used to perform certain housekeeping functions
whenever the subsystem ACCTINT is started. When the subsystem is
started, the job description INITSBS in ACCTLIB is used to obtain the
attributes for this job and a job named ACCTINIT is automatically started in
the subsystem.

C

ADDBKP (Add Breakpoint) Command

ADDBKP

The Add Breakpoint (ADDBKP) command sets one or more breakpoints in a
program. A breakpoint is a location in a program where execution of the
program stops and control is given to the user. The breakpoint is set when
a statement number or label of an HLL command or System/38 instruction
is specified. The program is stopped just before executing the statement (or
System /38 instruction) on which the breakpoint was set.

The ADDBKP command can also specify that the values of certain program
variables are to be displayed or printed when any breakpoint in the
command is reached. As many as 10 variables per breakpoint can be
specified, and as many as 10 breakpoints per command can be set.
However, the same program variables apply to every breakpoint specified in
the command. To specify different sets of variables for each breakpoint,
you must use different ADDBKP commands.

When a breakpoint is reached in the interactive debugging environment, a
display is shown to the user that identifies which breakpoint has been
reached and (optionally) the values of the specified program variables when
the program is halted. Also, information about the breakpoint only is written
to the job log. Control is given to the user so that he can enter another CL
command. The RSMBKP command or a command function key may then
be used to resume execution of the program.

When a-breakpoint is reached in the batch debugging environment, the
breakpoint information is written to the job’s output queue for printing and,
optionally, another program can be called to take action on the breakpoint
condition. The name of the called program is specified in the BKPPGM
parameter.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

Command Descriptions 4-3

ADDBKP
(Diagram)

4-4

ADDBKP — — STMT -—T—_lt-ntement—ldentlrler >
10 maximum —]

Required
Optional
*NONE
>—PGMVAR
'‘program—variable—name[(subacript)]’ ['basing—pointer—name[(subscript)]']
10 maximum
1 —
> START—{ >
starting-character—position f

v

*DCL #CHAR \ @
> LEN—< OUTFMT
displayed—character—length *HEX

tNONE
> BKPPGM{ iLIBL
program—name >—-/
‘C .library—name
‘{ *DFTPGM j—
>— PGM
program—name

v

| Job:B,I Pgm:B,I

STMT Parameter: Specifies the statement identifiers of one or more
statements or commands (or System/38 instructions) in the program at
which breakpoints are to be set. The list can contain a maximum of 10
identifiers (statement numbers, program labels, or System/38 instruction
numbers) that are valid for the program specified by the PGM parameter. At
least one identifier is needed. If a System/38 instruction number is
specified, the number must be preceded by a slash and enclosed in
apostrophes: STMT('/21’) for example.

PGMVAR Parameter: Specifies the names of one or more program variables
(if any) to be displayed that are in an HLL or MI program. The name and
the value of each program variable is displayed when any of the breakpoints
specified in the STMT parameter are reached.

*NONE: No program variables are to be displayed for any of the
breakpoints specified.

'program-variable-name’: Enter the names of one or more program variables
(no more than 10) to be displayed when a breakpoint is reached. If the
variable name contains special characters (such as the & in a CL variable
name or the hyphen (=) in a COBOL name), it must be enclosed in
apostrophes. An example is:

PGMVAR(&VAR2')

Lo o ADDBKP
An RPG indicator or an Ml ODV number can be specified instead of a PGMVAR

program variable name. An example of an RPG indicator is:
PGMVAR('*IN22’). The ODV number must be preceded by a slash:
PGMVARI(' /264’) for example.

COBOL qualified program variable names may be specified in this
parameter. These names have the following syntax:

var-name-1 OF/IN var-name-2 OF/IN varname-3...varname-N

where varname-N is the last possible variable name that will fit into the
input field of the PGMVAR parameter. The input field length for each
variable in the PGMVAR parameter is 98 characters. The subscript specified
for a qualified variable name may also be a qualified variable name. A
qualified variable name (or one with a subscript), including blanks and
parentheses, must be contained within the 98-character limit. The
98-character limit includes the necessary keywords (OF/IN) and blanks, but
does not include the enclosing apostrophes.

'program-variable-name(subscript)’: For variables in an array, enter the
name of the variable and (optionally) the subscript representing the
positional element in the array that is to be displayed. If a subscript is not
specified, all elements in the array are displayed. The subscript, if specified,
must be enclosed in parentheses, and the variable name and subscript
number must be enclosed in apostrophes. No more than 10 sets can be
specified, and blanks must separate each set. An example is:

PGMVAR('A(5)" ‘B(5)" "C(5)’)

Either an integer or another variable name can be specified for each
subscript.

For COBOL variable names, any combination of variable name length and
subscript length that will fit into the 98-character limit is valid. For example,
one qualified variable name 98 characters in length (including the keywords
OF or IN) can be used with no subscript, or a one-character variable name
may be used with a qualified variable name (used as a subscript that uses
the other 97 spaces, including parentheses).

For COBOL, the following apply:

« Variable names used in qualifying strings must be high-level language
variable names (qualification with ODVs is not allowed).

« Either keyword (OF or IN) is allowed.

« Each OF/IN keyword must be separated from adjacent variable names
by at least one blank.

« A qualified variable name can be used as a variable subscript.

« The order the variable names are specified must be from the lowest to
the highest levels in the structure.

Command Descriptions 4-5

~a

ADDBKP
START

« Structure levels may be skipped; enough levels must be specified,
however, to uniquely identify the variable.

« Qualified variable names must be enclosed in apostrophes, since they
contain blank characters.

['basing-pointer-name[(subscript)]’']: This set of values in the PGMVAR
parameter applies only to Ml or HLL programs that support based-on
variables. The values can optionally be used with either of the previous two
choices to also specify the value in an array that is based on a pointer. The
same description of the coding syntax applies here. An example is:

PGMVARI(('VAR1(5)’ ‘PTR1(9)') (VAR2(8)' "PTR2(11)'))

This example shows that one (different) element in each of two program
variables is to be displayed. The fifth element in the array named VAR1,
which is based on the ninth element in the pointer array named PTR1, and
the eighth element in the VAR2 array, based on the eleventh element in the
PTR2 pointer array, are to be displayed.

The field length for the basing pointer name is 24 characters.

START Parameter: Specifies, for character variables only, the beginning

position in the variable from which its value is to be displayed when the
breakpoint is reached. If more than one character variable is specified in the
PGMVAR parameter, the same starting position is used for each one.

1:_ The variable is to be displayed from the first position on through the
length specified in the LEN parameter.

starting-character-position: Enter the position number from which the
variable is to be displayed. The position number (as well as the combination
of START and LEN) must be no greater than the length of the shortest
variable specified in the PGMVAR parameter.

LEN Parameter: Specifies the number of bytes to be displayed from the

character variable specified in the PGMVAR parameter, starting at the
position specified in the START parameter. If more than one character
variable is specified in the PGMVAR parameter, the same length is used for
each one.

*DCL: The character variable is to be displayed to the end of the variable
or for 200 bytes, whichever is less.

displayed-character-length: Enter the number of characters that are to be
displayed. The length (as well as the combination of START and LEN) must
be no longer than the length of the shortest variable specified in the
PGMVAR parameter.

9

ADDBKP
OUTFMT Parameter: Specifies the format to be used for displaying the OUTFMT

variables.
*CHAR: Variables are to be displayed in character form.

*HEX: Variables are to be displayed in hexadecimal form.

BKPPGM Parameter: Specifies, for batch environment debugging only, the
name of the user-supplied program (if any) to be called when a breakpoint
is reached in this program. When the program is called, it is passed a
character string containing four parameters that identify the program,
invocation level, HLL statement identifier, and System/38 instruction number
at which the breakpoint occurred. The character string has the following
format:

1. Program name (10 bytes). The name of the program in which the
breakpoint was reached.

2. Invocation level (5 bytes). The invocation level number of the program
in which the breakpoint was’ reached.

3. Statement identifier (10 bytes). The high-level language program
statement identifier that was reached. This statement identifier is the
statement identifier specified in the Add Breakpoint (ADDBKP)
command that defined the breakpoint. If a System/38 instruction
number was used to specify the breakpoint, this parameter contains
the System/38 instruction number preceded by a slash (/).

4. Instruction number (5 bytes). The System/38 instruction number that
corresponds to the high-level language statement at which the
breakpoint was reached. (No slash precedes this System/38
instruction number.) If a System/38 instruction number is passed in
the third parameter, the numbers in the third and fourth parameters
are the same.

All the parameter values are left-adjusted and padded with blanks. When
the called program returns, the program being debugged resumes execution,
starting with the statement that has the breakpoint on it.

*NONE: No breakpoint-handling program is to be called when any
breakpoint specified in this ADDBKP command is reached in the batch
environment. Then the stopped program resumes execution.

qualified-program-name: Enter the qualified name of the user-supplied
program to be called when a breakpoint is reached during debug mode in a
batch environment. (If no library qualifier is given, *LIBL is used to find the
program.) The program specified here should not be the same as the
program specified in the PGM parameter. If they are the same, the resuits
are unpredictable. After the called program executes, it returns control to
the stopped program, which resumes execution.

Command Descriptions 4-7

ADDBKP
PGM

PGM Parameter: Specifies the name of the program in which the breakpoints

are to be added.

*DFTPGM.: The breakpoints are to be added to the program currently
specified as the default program in the debugging mode.

program-name: Enter the name of the program to which the breakpoints are
to be added. The specified program must already be in debug mode.

Examples

ADDBKP STMT(150 RTN1 205) PGMVAR('&TEMP’ *&INREC’)

This command establishes breakpoints at CL statement numbers 150 and
205 and the label RTN1 in the default program in the debug mode. When
any of these breakpoints is reached, the CL variables & TEMP and &INREC
are automatically displayed.

ADDBKP STMT(100) PGMVAR('AMOUNT(200)") +
PGM(MYPROG)

Assume in this example that MYPROG is an HLL program being debugged
in an interactive environment and that the program variable AMOUNT is a
250-element array in MYPROG. This command adds a breakpoint to
statement 100 in MYPROG. When MYPROG is executed, the program halts
execution at statement 100 and the value of the 200th element of the
AMOUNT array is displayed. (If AMOUNT had been entered without a
subscript, the entire array would have been displayed.) The work station
user can then enter another command. For MYPROG to resume execution,
the RSMBKP can be entered.

9

L ADDFCTE (Add Forms Control Table Entry) Command ADDFCTE

The Add Forms Control Table Entry (ADDFCTE) command adds a new
forms entry to an existing forms control table (FCT). The FCT can contain
up to 999 entries. Each FCT entry includes such forms-control attributes as:
« Host system form type

« Host system writer type

¢ Local form type

« Data base file member creation information

« First-character forms-control channel and line number associations

« Form size

« Lines and characters per inch

« Print image

¢« Number of copies

:, « User program name

Restriction: To use this command, you must have operational rights for the
FCT and read rights for the library in which the FCT is stored.

The Add Forms Control Table Entry (ADDFCTE) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

Command Descriptions 4-9

ADDFCTE
{Diagram)

ADDFCTE—FCT

#LIBL ﬂ
forma—control—table—name { »

Jibrary—name —/

>—FORMTYPE—— host—system-form—type —>
Required
Optional
*PRT iFORMTY'PE
> DEVTYPE { }—— LCLFORM‘{ _/ >
*PUN local—-form—type
*WTRE
*NONE
#LIBL
device—file—name —(
>—FILE Jibrary—name

*WTRE ﬁ

MBR *GEN —>
#FIRST 'ﬁ
member—name

#LIBL
data—baue—ﬂle-name{
library—-name

v

*WTRE *WTRE H
>-FSN~< ,—DTAFMT #*FCFC
file—sequence—number *DATA

iCMN

*FILE

>—CHLVAL
carriage—channel—-identifier line—number

*FILE
FORMSIZE { >—>
form—length form-width
12 maximum
*FILE *FILE *FILE
> LPI cpr-€ 3—PRTIMG—< .
§ print—lmue—name{

library—-name

#*PILE *WTRE
>—COPIES{ >—-Pm¢ #NONE —
number—of-copies #*LIBL
program—name
Jibrary—name
*WTRE
>—-M8GQ #*NONE
#LIBL
message—queus—name —{
library—name

#LIBL

I Job:B,I Pgm:B,I

FCT Parameter: Specifies the qualified name of the forms control table (FCT)
to which the entry is to ve added. {If no library qualifier is given, *LIBL is
used to find the FCT.)

FORMTYPE Parameter: Specifies the host system form type that is to be
associated with the FCT entry. This value (one through eight alphameric
characters in length) will be returned by the host system in a forms mount
message. A host system form type of blanks can be entered as
FORMTYPE(‘). The LCLFORM parameter can be used to change this
value to one more understandable to the System/38 user.

" ADDFCTE
DEVTYPE Parameter: Specifies the device type with which the FCT entry is DEVTYPE

to be associated.

*PRT: This FCT entry can be used only when processing printer output
streams.

*PUN: This FCT entry can be used only when processing punch output
streams.

LCLFORM Parameter: Specifies the local form type. This value is to be
substituted for the FORMTYPE value used by the host system, to make the
forms mount message more understandable to the System/38 user.

*FORMTYPE: No local form type is to be substituted for the host system
form type (therefore, the host system form type is to be used).

local-form-type: Enter the name of the local form type to be substituted for
the host system form type when the output from the job is actually
received. Valid values can be one through ten alphameric characters in
length.

FILE Parameter: Specifies the qualified name of the file that is to receive data
from the host system.

*WTRE: The file specified in the session description writer entry is to be
associated with the FCT entry.

*NONE: No file is to be associated with the FCT entry. The session
description writer entry must be used to determine where the data is to be
sent. None of the information in the FCT entry is to be used.

device-file-name: Enter the qualified name of the program-described printer
file that is to receive the data. (If no library qualifier is given, *LIBL is used
to find the device file.)

data-base-file-name: Enter the qualified name of the System/38 physical

file to receive the data. (If no library qualifier is given, *LIBL is used to find
the data base file.)

Command Descriptions 4-11

ADDFCTE e . . .
MBR MBR Parameter: Specifies the data base file member to which the output is

to be directed (if a data base file was specified either in the FILE parameter
of this command or the associated session description writer entry).

*WTRE: The data base file member is to be generated according to the
method specified in the associated session description writer entry.

*GEN: RJEF creates a member name as follows:

Affffffccc or Bffffffcce

Where:

A = file member names beginning with the character A
contain print data.

B = file member names beginning with the character B
contain punch data.

ffffff = first six characters of the forms name specified in
the FCT or received from the host system.
Note: Only characters that are valid in a System/38
name are valid in the forms type used to generate
data base file member names.

cce = three-digit sequence value controlled by the RJEF session

to maintain member uniqueness (refer also to the
FSN parameter description of this command).

If a member with this name aiready exists in the data base file, the
three-digit sequence value is incremented by one and another attempt is
made to create a member. Incrementing of the sequence value continues
until a unique name is generated and a member is created or until all
1000 possibilities have been exhausted without creating a member. If no
member is created, the RJEF operator receives a message indicating the
failure and a request to retry or cancel this file.

*FIRST: The output is to be directed to the first member of the data base
file (if a data base file is specified in the FILE parameter of this command or
in the associated session description writer entry).

member-name: Enter the name of the data base file member to which
output is to be directed (if a data base file is specified in the FILE parameter
of this command or the associated session description writer entry). If the
member does not exist when it is needed, an inquiry message is sent to the
RJEF message queue.

4-12

ADDFCTE
FSN Parameter: Specifies the initial three-digit file sequence number to be ESN

used when creating data base file member names. This parameter is
ignored unless MBR{*GEN) is specified for this command or in the
associated session description writer entry.

*WTRE: The initial file sequence number to be used is the same as the
number specified in the session description writer entry.

file-sequence-number: Enter the initial three-digit file sequence number to
be used. Leading zeros are not required for sequence numbers less than
100.

DTAFMT Parameter: Specifies the format of the output data.

*WTRE: The output data is to be in the format specified in the session
description writer entry.

*FCFC: The output data is to be in the FCFC data format, with the first
character of every record being the ANSI forms control code. Specify
*FCFC if the data is to be printed. If DEVTYPE(*PUN) is specified, *FCFC is
not valid.

The data can be written to a data base file in the FCFC data format and
then printed later by issuing the Copy File (CPYF) command and specifying
an FCFC printer file on the TOFILE parameter.

*DATA: The output data is to be in the normal data format (that is, no
FCFC characters are embedded in the data). Specify *DATA if the data is to
go to a data base file and be processed by a program. If the data is
directed to a printer file, a single space ANSI control character is the first
character in each record.

*CMN: The output data is to be in the communications data format (that is,
still compressed or truncated). *CMN can be used to decrease
communications time. However, before the data can be used, the Format
RJE Data (FMTRJEDTA) command must be used to change the data to
*FCFC or *DATA. If *CMN is specified, the output file must be a data base
file with a length of 256.

Command Descriptions 4-13

ADDFCTE
CHLVAL

CHLVAL Parameter: Specifies the printer carriage channel information.

*FILE: The carriage information specified in the device file is to be used.

carriage-channel-identifier line-number: Enter the channel identifiers and line
numbers to be used.

Each identifier can be specified only once per command invocation. The
identifiers are 1 through 12, corresponding to printer channels 1 through 12.
Single spacing is used for any channel not associated with a line number.

The maximum valid line number is 255.
The CHLVAL parameter associates the channel identifier with a page line

number; for example, CHLVAL{(1 5){(10 55)) means to associate channel 1
with line 5 and channel 10 with line 55.

FORMSIZE Parameter: Specifies the form size to be used on the System/38

printer.
*FILE: The form size specified in the device file is to be used.
form-length form-width: Enter the form length and width to be used for the

FCT entry. The maximum valid form length is 255 and the maximum valid
form width is 132.

LPI Parameter: Specifies the number of lines of print per inch to be used on

the System/38 printer.

*FILE: The number of lines of print per inch specified in the device file is
to be used.

4: The number of lines of print per inch is 4.
6: The number of lines of print per inch is 6.
8: The number of lines of print per inch is 8.

9: The number of lines of print per inch is 9.

CPl Parameter: Specifies the number of characters per inch to be used on

the System/38 printer.

*FILE: The number of characters per inch specified in the device file is to
be used.

10: The number of characters per inch is 10.

15: The number of characters per inch is 15.

J

PRTIMG Parameter: Specifies the qualified print image name to be used on
the System/38 printer.

*FILE: The print image specified in the device file is to be used.

print-image-name: Enter the qualified name of the print image to be used.
If no library qualifier is given, *LIBL is used to find the print image.

COPIES Parameter: Specifies the number of copies to be printed. This
parameter applies only for spooled files.

*FILE: The number of copies specified in the device file is to be used.

number-of-copies: Enter the number of copies to be printed.

PGM Parameter: Specifies the qualified name of a user-supplied program to
be used for processing data received from the host system.

*WTRE: The associated session description writer entry is to be used.
*NONE: No user-supplied program is to be used.

program-name: Enter the qualified name of the user-supplied program to be
used. (If no library qualifier is given, *LIBL is used to find the user-supplied
program.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF writer are to be recorded.

Note: Messages for RJEF writers are always recorded in the RJEF message
queue associated with the named RJEF session. The RJEF message queue
name depends upon the name specified in the MSGQ parameter in the
Create Session Description (CRTSSND) or Change Session Description
(CHGSSND) commands. If inquiry messages are issued by RJEF, they are
sent to the user message queue (if specified) where they must receive a
response.

*WTRE: The message queue specified in the session description writer
entry is to be used.

*NONE: No user message queue exists on which the messages for the FCT
entry are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which the messages for the RJEF writer job’s messages are to be
recorded. (If no library qualifier is given, *LIBL is used to find the message
queue.)

ADDFCTE
PRTIMG

Command Descriptions 4-15

ADDFCTE

(Examples) Examples

ADDFCTE FCT(FORMCTRL.USERLIB) +
FORMTYPE(MEDICAL) +
DEVTYPE(*PRT) +
LCLFORM(BIOCHEM) +
FILE(MEDICAL44.MEDLIB) +
DTAFMT(*FCFC) +
MSGQ(BROWN.MEDLIB)

This command adds a forms control entry named MEDICAL to an FCT
(forms control table) called FORMCTRL in library USERLIB. The forms
control table entry is to be used with print files from the host. The local
forms used when the data is printed are called BIOCHEM. The data from
the host is written to a printer device file MEDICAL44 in library MEDLIB.
The data format is first character forms control (*FCFC). Messages
produced by RJEF while referencing this forms control entry are written to
the user message queue named BROWN in library MEDLIB.

ADDFCTE FCT(FORMCTRL.USERLIB) +
FORMTYPE(MEDICAL) +
DEVTYPE(*PUN) +
FILE(MEDHISTORY.MEDLIB) +
MBR(*GEN) +
FSN(100) +
DTAFMT(*DATA) +
MSGQ(BROWN.MEDLIB)

This command adds a forms control entry named MEDICAL to an FCT
(forms control table) called FORMCTRL in library USERLIB. The forms
control table entry is to be used with punch files from the host. The data is
written to a data base file named MEDHISTORY in library MEDLIB. RJEF
will generate a new member for each host file received referencing this
entry. The file sequence number of 100 will be used to generate the first
data base member name. The first member generated by RJEF is named
BMEDICA100. Messages produced by RJEF while referencing this forms
control entry are written to the user message queue named BROWN in
library MEDLIB.

4-16

ADDJOBQE (Add Job Queue Entry) Command ADDJOBQE

The Add Job Queue Entry (ADDJOBQE) command adds a job queue entry
to the specified subsystem description (the associated subsystem must be
inactive at the time). A job queue entry identifies the job queue from which
jobs are to be selected for execution within the subsystem. Jobs can be
placed on a job queue by spooling readers or by using the following
commands:

« Submit Job (SBMJOB)

« Submit Card Jobs (SBMCRDJOB)

« Submit Data Base Jobs (SBMDBJOB)
« Submit Diskette Jobs (SBMDKTJOB)
« Transfer Job (TFRJOB)

Within a subsystem, job queues with lower sequence numbers are
processed first. For more information, refer to the SEQNBR parameter.

Restrictions: To use this command, you must have operational and object
management rights for the specified subsystem description. The specified
job queue must already exist in the system if the library qualifier is not
given. A job queue is created by the CRTJOBQ command.

ADDJOBQE

v

.#LIBLﬂ
SBSD subsystem—description—name {

library—name —/

.tuBLﬁ
>-JOBQ job—queue—name

library—name —/

>— MAXACT ‘€ *NOMAX SEQNBR‘C >—
maximum— actlve—_]obs sequence—number

v

Required
Optional

| Job:B,I Pgm:B,1

SBSD Parameter: Specifies the qualified name of the subsystem description
to which the job queue entry is to be added. (If no library qualifier is given,
*LIBL is used to find the subsystem description.)

JOBQ Parameter: Specifies the unique qualified name of the job queue that
is to be a source of batch jobs that are to be initiated by the subsystem. (If
no library qualifier is given, *LIBL is used to find the job queue.) If the job
queue does not exist when the entry is added, a library qualifier must be
specified because the qualified job queue name is retained in the subsystem
description.

Commeand Descriptions 4-17

ADDJOBQE
MAXACT

4-18

MAXACT Parameter: Specifies the maximum number of jobs that can be

concurrently active from this job queue. (For an expanded description of the
MAXACT parameter, see Appendix A.)

L Only one job from the job queue can be active at any time.

*NOMAX: There is no maximum for the number of jobs that can be
concurrently initiated through this job queue entry. However, the maximum
activity level of the routing entries might prevent routing steps from being
initiated. If *NOMAX is specified, all the jobs on the job queue will be
initiated (within the limit specified by the MAXJOBS parameter in the
subsystem description), even though the activity level of the storage pool
used might prohibit them from executing concurrently.

maximum-active-jobs: Enter a value that specifies the maximum number of
jobs that can be concurrently active from this job queue.

SEQNBR Parameter: Specifies a sequence number for this job queue, to be

used by the subsystem to determine the order in which the job queues are
to be processed.

10: A sequence number of 10 is to be assigned to this job queue.

sequence-number: Enter the sequence number to be assigned to this job
queue. The sequence number must be unique within the subsystem
description. Valid values are 1 through 9999.

The subsystem first selects jobs from the job queue with the lowest
sequence number. Once all jobs on that queue have been processed or the
number of jobs specified on the MAXACT parameter has been reached, the
subsystem processes jobs on the queue with the next higher sequence
number. This sequence continues until all job queue entries have been
processed or until the subsystem has reached its limit for overall maximum
jobs (as specified by the MAXJOBS parameter in the subsystem
description). In some cases, this sequence is interrupted and the subsystem
processes a queue with a lower sequence number. This occurs for this
subsystem when:

« A held job or job queue is released

A job is placed on or transferred to a queue
« A new queue is allocated

« A job terminates

J

4 ADDJOBQE
‘ Example (Example)

ADDJOBQE SBSD(NIGHTSBS.QGPL) JOBQ(NIGHT.QGPL) +
MAXACT(3)

This command adds a job queue entry for the NIGHT job queue (in the
QGPL library) into the NIGHTSBS subsystem description, contained in the
QGPL library. The entry specifies that a maximum of three batch jobs from
the NIGHT job queue can be concurrently active within the subsystem. The
default sequence number of 10 is assumed.

Command Descriptions 4-19

ADDLFM

4-20

ADDLFM (Add Logical File Member) Command

The Add Logical File Member (ADDLFM) command adds a named member
to the specified logical file, which must have already been created. A
member must be added in the logical file before the file can have access to
data stored in any physical file member. (You can add the first member of a
file by entering an ADDLFM command or by specifying a member name in
the MBR parameter of the CRTLF command. To add other members to the
file, use the ADDLFM command to specify each one.)

A logical file member can use the data from all, or a subset of, the physical
files included in the scope of the logical file. Each member has its own set
of data and can have its own access path (or share an access path) that
provides an organization to that data.

The number of members that can be added for the logical file is limited to
the maximum specified in the MAXMBRS parameter of the associated
CRTLF command. Each member added has the same attributes as those
defined in the logical file. However, each member can have its own access
path or a shared access path, as specified in the DDS access path
specifications. The access path determines the order in which the records in
the based-on physical file(s) are processed.

Restrictions: To add a member to a logical file, you must have object
management rights and operational rights for each of the physical file
members (specified explicitly by the DTAMBRS parameter or implicitly by
the PFILE keyword specified in DDS) upon which the logical file member is
based. And, if the logical file member is to share the keyed sequence
access path of another file member (specified by the ACCPTHMBR
parameter), you must have operational rights for that member.

Note: Because this command adds a member to a file in a library, the
library must not be locked (*SHRNUP or *EXCLRD in the Allocate Object
command) for another job.

*LIBL ﬁ
ADDLFM ——— PILE loglcnl—ﬁle—nnme{ >
.library—name —/
Required
Optional

@ *NONE
>— MBR logical—file—-member—name —— ACCPTHMBR

access—path—member—name

*ALL

>— DTAMBRS #CURRENT *NONE
physical—file—name ’— [@]
Jlibrary—name member—name

32 maximum

32 maximum

*NO *BLANK
>— SHARE { }—— Tm—{
*YES 'description’

@Tho total of all member names specified for all specified physical files cannot exceed 32;
for the restrictions, see the DTAMBRS parameter description.

Job:B,I Pgm:B,I

FILE Parameter: Specifies the qualified name of the logical file in which this
added member is to be stored. (If no library qualifier is given, *LIBL is used
to find the file.)

MBR Parameter: Specifies the name by which the logical file member being
added is to be known. The member name must be unique within the file to
which it is being added.

ACCPTHMBR Parameter: Specifies whether the added member is to share
an access path with another file member, and, if so, specifies the name of
that member. For information about access path sharing, refer to the
description of the ACCPTH keyword in the CPF Reference Manual—DDS.
The ACCPTH keyword can be specified in the logical file source description.

Note: If the logical file specified in FILE is sharing an access path, this
parameter must specify a member name (identifying the member whose
access path is to be shared with this added member). If the file is not
sharing an access path, this parameter cannot specify a member name.

*NONE: This member is not to share the access path of another file
member.

access-path-member-name: Enter the name of the member of the file that
contains the access path to be shared with this member. The name of the
file is specified in the logical file source description.

ADDLFM
(Diagram)

Command Descriptions 4-21

ADDLFM
DTAMBRS

4-22

DTAMBRS Parameter: Specifies the names of the physical files and

members that contain the data to be associated with the logical file member
being added by this command. The scope of the logical file member can
contain all of the physical files and members that the logical file itself
contains, specified by DTAMBRS(*ALL); or the member can contain a
subset of the total files and members, specified by
DTAMBRS(qualified-file-name(s) [member-name(s)]).

Note: For additional information about coding this parameter and displaying
access path information, refer to the Additional Considerations section at the
end of the CRTLF command description.

*ALL: If no access path is shared, the scope of the logical file member
being added is to be the same as that for the entire logical file. That is, the
data to be associated with the member is in all the physical files and
members (that exist at the time this ADDLFM command is entered) used by
the logical file. The physical file names are specified by the PFILE keyword
in the DDS source file named in the SRCFILE and SRCMBR parameters in
the CRTLF command.

If *ALL is specified (or is the default) and the logical file is to share an
access path with an existing physical or logical file, the data for the logical
file member is the same as the data associated with the member specified
by the ACCPTHMBR parameter; that is, the same based-on physical file(s)
and member(s) are used.

qualified-physical-file-name [member-name]: Enter the names of the
physical files and their members that contain the data to be accessed by the
logical file member being added. Each entry for a physical file in the PFILE
keyword in DDS should have a corresponding entry in the DTAMBRS
parameter. Also, each physical file specified in the DTAMBRS parameter
must correspond to one of the physical files specified by the PFILE
parameter when the logical file was created. If no member name is
specified for a physical file that is specified, *NONE is assumed and the
logical file scope list or the based-on member’s scope list is bypassed.
(Refer to Additional Considerations in the CRTLF command for more details.)

A maximum of 32 qualified physical file names and physical file member
names can be specified. Also, the total of all member names cannot exceed
32; that is, all of the member names specified for all of the files specified
cannot be greater than 32. For example, one file can specify 32 members,
two files can each have 16 members, or 32 files can each have one member
specified.

J

When the file is created, the DDS PFILE keyword is used to specify physical
file names and, optionally, the library qualifiers of the physical files being
associated with the logical file. If a library qualifier is not specified, *LIBL is
used to find the physical file when the logical file is created. (The physical
file and the library in which it is stored are saved in the description of the
logical file when the logical file is created.) When members are added to
the file, each physical file name specified in the DTAMBRS parameter can
be optionally qualified by the name of the library; however, the library name
must be specified only if the logical file is based on more than one physical
file of the same name, as defined in the PFILE keyword. If a library name is
not specified for a physical file, the current library name (*CURRENT) for the
specified file is determined from the qualified file name saved in the
description of the logical file (not the current *LIBL library list).

The following examples show the syntax for specifying single and multiple
members for single and multiple physical files. In the examples, the
abbreviation PF represents a physical file name, LIB represents a library
qualifier, and M represents a member name. Physical file names need only
be qualified if the PFILE keyword in the DDS specifies multiple physical files
of the same name.

Single physical file and member:
DTAMBRS((PFA M1)) or DTAMBRS((PFA M1))
Single file with multiple members:
DTAMBRS(PFA (M1 M2 M3))
Multiple files with single members and no members:
DTAMBRS((PFA M1) (PFB M4) (PFE.NONE))
Multiple files with multiple members:
DTAMBRS((PFA (M1 M3 M4)) (PFB (M1 M2 M4)))
Multiple files with the same name in different libraries:
DTAMBRS{(PFA.LIBX M1) (PFA.LIBY (M1 M2)))
Multiple files with the same name in the same library:
DTAMBRS((PFA.LIBX M1) (PFA.LIBX M1))

As shown in the preceding example, each physical file specified in the PFILE
keyword in the DDS should have a corresponding entry in the DTAMBRS
parameter, even though it may mean specifying the same qualified physical
file and member many times.

When more than one physical file member is specified for a physical file,
the member names are specified in the order in which records are retrieved
when duplicate composite key values occur across those members.

Command Descriptions

ADDLFM
DTAMBRS

4-23

ADDLFM e
SHARE SHARE Parameter: Specifies whether or not an ODP (open data path) to the

logical file member is to be shared with other programs in the same job.
When an ODP is shared, the programs accessing the file share such things
as the position being accessed in the file, the file status, and the buffer.
When SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job thét
also specifies SHARE(*YES) when it opens the file.

TEXT Parameter: Lets the user enter text that briefly describes the logical file
member. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example

ADDLFM FILE(STOCKTXS.INVENLIB) MBR(JANUARY) +
DTAMBRS({INVENTXS JANUARY)) TEXT(JANUARY +
STOCK ACTIVITY BY LOCATION’)

This command adds a member named JANUARY to the logical file named
STOCKTXS, which is stored in the INVENLIB library. The logical file has
access to the data stored in the JANUARY member of the INVENTXS
physical file.

4-24

C

ADDMSGD (Add Message Description) Command

ADDMSGD

The Add Message Description (ADDMSGD) command describes a message
and stores it in a message file for later use. The message description
remains in the message file until the file is deleted or until the RMVMSGD
command is used to remove it from the file. To change any of the attributes
of the message description, such as its message text or severity code, you
must execute the Change Message Description (CHGMSGD) command.

Substitution variables can be embedded in both the first-level and
second-level text that can be replaced later by message data fields specified
in the RTVMSG and SNDPGMMSG commands.

Note: The type of message being defined is not specified in the
ADDMSGD command. The type is specified in the command that actually
sends the message, in either the SNDMSG or SNDPGMMSG command.

Restriction: To add a message description to a message file, you must
have operational rights for the message file and the library in which the file
is stored.

Command Descriptions 4-25

ADDMSGD
(Diagram)

4-26

ADDMSGD—— MSGID message—ldentifier —>
#LIBL ®
>— MSGF message—file—name ——MSG 'message—text’ >
Jibrary—name
id Required
Optional
*NONE 00 — @
>— SECLVL —{ @ sw—c —>
'second —level —text’ severity—code —/
*NONB
*QTDCHAR 2
*CHAR *VARY
*HEX 4
> PMT *SPP length
0
*DEC decimal—-digits —(
2 \ decimal—positions
*BIN { _/
. /
~ #DT8
/
*SYP 7
*ITV:
20 maximum
® *CHAR *TYPE
>— TYPE *DEC LEN —€ *length [decimal-positions] 7 —>
#*ALPHA. *NONE
*NAME
#*NONE
(© gm *NONE *NONE
>— VALUES SPCVAL
value from—value [to—value]
20 maximum 20 maximum

® *NONE ® *NONB
> RANGE -{ ﬁ—— REL _{ ﬁ—o
lower—value upper—value operator—value
*NONE *NONE
>DPT —c __>— D!‘TPGM—C
'default—reply’ doflult—pro;nm-nnmo{

*JOB —
#JOBDMP

@ #*JOBINT *NO
>— DMPLST message—data—field—numbor _/ LOG —c }——O
—22 maximum —— *YES

#NONB

#*CURRENT 1
Hn{ ___>_
creation—date level—-number

(@ No more than 132 characters can be specified.

@No more than 1435 characters can be specified.

@If either TYPE or LEN is specified as *NONE, the other of the two parameters must also
be specified as *NONE.

@VALU!B. RANGE, and REL are mutually exclusive; only one of them can be specified.

@n any of the parameter values are specified for DMPLST, #JOB is assumed to be part
of the value(s).

.#LIBL

.library—name

I Job:B,T Pgm:B,I

_ S _ ADDMSGD
MSGID Parameter: Specifies the message identifier under which the message MSGID

is stored in the message file. Every message must have an identifier, and
every identifier in the message file must be unique.

The message identifier must be 7 characters long and in the following
format:

pppnnnn

The first 3 characters must be a code consisting of an alphabetic character
followed by two alphameric (alphabetic or decimal) characters, and the last
4 characters must be a decimal. The following codes are used to identify
the messages in the IBM-supplied message files:

CBE COBOL execution time

CBL COBOL compiler

CBX COBOL titles and texts

CSC COBOL syntax checker

CPF Control Program Facility (CPF)
CPI CPF informational messages

CPX CPF titles and texts

EDT Edit source (SEU I1)

EDX Edit source titles and texts

FMT Reformat Utility

FMX Reformat Utility titles and texts
IDU Interactive Data Base Utilities (IDU)
IDX IDU titles and text

KBD Keyboard

MCH System/38 machine instruction interface
QRG RPG language compiler

RPG RPG execution time

RPT RPG auto report

RSC RPG syntax checker

RTX RPG auto report titles and texts
RXT RPG relational diagnostic texts
SDA Screen Design Aid (SDA)

SDX Screen Design Aid titles and texts

The same format must be used for user-defined messages; the 3-character
code must begin with a U to distinguish user-defined messages from
IBM-supplied messages. For example, the message identifier of a message
in a payroll application message file could be UPY0027.

Command Descriptions 4-27

ADDMSGD
MSGF

4-28

MSGF Parameter: Specifies the qualified name of the message file in which

the message is to be stored. (If no library qualifier is given, *LIBL is used to
find the file.) The IBM-supplied message files (QCPFMSG and QRPGMSG,

for example) cannot be specified unless the user entering the command is
explicitly authorized to update those files. (When the system is installed,
only the system security officer has that authority.) Any message file
overrides in effect for the job are ignored by this command; the file
specified here is the one in which the message is stored.

MSG Parameter: Specifies the first level of message text of the message
being defined. This text is the message that is initially displayed or printed,
or sent to a program or log. A maximum of 132 characters (enclosed in
apostrophes) can be specified, but the limitations of the display stations
(their screen size) should be considered. The entire message must be

enclosed in apostrophes if any blanks are to be included in the message. To

code an apostrophe for use in the message, enter a double apostrophe.

One or more substitution variables can be embedded in the message text

string to indicate positional replacement fields that allow variable data to be
substituted in the message by the program before the message is sent. The

variables must be specified in the form &n, where n is a one-digit number

identifying the data field to be substituted. Each variable can be immediately

followed by any nonnumeric character (such as &2M or &9?), but not by
another digit (such as &99). (The variables in the text do not have to be in

ascending sequence by these numbers. Also, blanks do not have to precede
or follow each variable. The variables can be enclosed in apostrophes if only

the variables themselves make up the message. For example, to show a
two-part decimal value, the message ‘&1. &2’ can be specified.) The data
fields are described positionally in the FMT parameter and are specified
positionally in the MSGDTA parameter of the SNDPGMMSG command.
Refer to the CPF Programmer’s Guide for details on substituting data fields
in message text.

SECLVL Parameter: Specifies the second-level text, if any, that is to be

displayed to a work station user to further explain the message specified in
the MSG parameter. The user presses the Help key to request the
second-level text. Second-level text can also be written to the job log if
*SECLVL is specified on the LOG parameter of the job commands.

*NONE: There is to be no second-level text for this message description.

'second-level-text': Enter the text to be displayed as second-level text when

it is requested by the user. No more than 1435 characters (enclosed in
apostrophes) can be specified, but display (up to a maximum of nine)
limitations must be considered. One or more substitution variables can be
embedded in the second-level text, as described in the MSG parameter.

J

-~) ADDMSGD
SEV Parameter: Specifies the severity code of the message being defined. SEV

The severity code indicates the severity level of the condition that causes
the message to be sent.

00: The severity code assigned to this message is 00. The message is an
information only message.

severity-code: Enter a value, 00 through 99, that is to be the severity level
associated with this message. The assigned code for the message should
correspond in importance to the IBM-predefined severity codes. (These
codes and their meanings are given in the chart under the SEV parameter, in
Appendix A.) Any two-digit value can be entered, even if no severity code
has been defined for it (either predefined or user-defined).

FMT Parameter: Specifies the formats of from one to 20 message data
fields. Each field is described in this parameter by a list of attributes. The
first nine message data fields can be used as substitution values in the
first-level and second-level text messages defined in this message
description. All 20 of the fields can be specified in the DMPLST parameter
of this command. When specified in the MSGDTA parameter of the
SNDPGMMSG command, the data fields must be concatenated in one
character string and must match the format and sequence specified here.
The length of the entire character string of concatenated message data
fields cannot exceed 132 characters.

*NONE: No format is being described for message fields. If *NONE is
specified, or if this parameter is omitted, no references can be made to
message data fields in the MSG, SECLVL, or DMPLST parameters.

type [length [decimal-positions]]: The format of each message data field
(up to a maximum of 20 fields) to be substituted in the message in this
message description is defined by a list of attributes. These attributes
specify the type of data in the field, the total length of the field, and,
optionally, the number of decimal digits to the right of the decimal point.
Certain data types do not require a length field. Boundary alignment
requirements must be considered (for example, pointers are always aligned
on 16-byte boundaries). While 20 fields may be defined, &1 through &9
can appear in the message text; the others can appear only in the dump list.

Command Descriptions 4-29

ADDMSGD
FMT

4-30

Type of Message Data: The first value, type, specifies the type of data the
substitution field contains and how the data is to be formatted when
substituted in the message text. The contents of the second and third
values vary depending on the type specified. One of the following types can
be specified for each field described by this parameter:

*QTDCHAR: A character string to be formatted (by CPF) with enclosing
apostrophes ('Monday, the 1st’).

*CHAR: A character string to be formatted without enclosing apostrophes.
It is an alphameric string that can be used, for example, to specify a name
(BOB). Trailing blanks are truncated.

*HEX: A string of bytes to be formatted as a hexadecimal value (X'COF4’).

*DEC: A packed decimal number that is formatted in the message as a
signed decimal value with a decimal point. Values for length (required) and
decimal positions (optional) are specified for this type (*DEC) to indicate the
number of decimal digits and the number of digits to the right of the
decimal point. Zeros to the left of the first significant digit are suppressed,
and leading blanks are truncated (removed). If a decimal position other than
zero is specified, a decimal point is shown in the result even if the decimal
precision in the result is zeros; examples are 128.00 and 128.01 if
FMT(*DEC 5 2) is specified. If the number of decimal positions is not
specified, zero is assumed. The following gives two examples:

« If FMT(*DEC 2) is specified for a substitution field and the message data
is a packed decimal value of X'058C’, the message text will contain a
positive value of 58 with no decimal point indicated.

« If FMT(*DEC 4 2) is specified and the packed value is specified as
X'05810C" (3 bytes long), then the text will contain the formatted decimal
value of 58.10.

*BIN: A binary value that is either 2 or 4 bytes long (B'0000 0000 0011
1010’) and is formatted in the message as a signed decimal value (58).

The following formats are valid only in IBM-provided message descriptions
and should not be used for other messages.

*DTS: An 8-byte field that contains a system date time stamp. The date
time stamp contains the date followed by one blank separator and the time.
The date is formatted in the output message in the format specified by the
system values QDATFMT and QDATSEP. The time is formatted as
hh:mm:ss.

*SPP: A 16-byte space pointer to data in a space object. When referenced
in the DMPLST parameter, the data in the space object (from the offset
indicated by the pointer) for the length specified, is to be dumped. *SPP is
not valid as a replacement field in message text.

J

) . . ADDMSGD
*SYP: A 16-byte system pointer to a system object. When referenced in FMT

message text, the simple name of the system object is formatted as
described in the name type, *CHAR. When referenced by the DMPLST
parameter, the object itself is to be dumped.

*ITV: An 8-byte binary field that contains the time interval (in seconds) for
wait time-out conditions. The time interval is formatted in the message as a
zero-suppressed zoned decimal value (15 O) representing the number of
seconds to wait.

Length of Message Data: Following the type specification, a second value
(length) can be specified to indicate the number of characters or digits that
are passed in the message data. How the second value is used depends
upon the type specified in the first value.

1. If a length is not specified for *\QTDCHAR, *CHAR, *HEX, or *SPP,
then *VARY is assumed for the length. If *VARY is specified or
assumed, the message data field passed by the SNDPGMMSG
command must be preceded by a 2-byte or 4-byte binary field that
indicates the actual number of bytes of data being passed. However,
when *SPP is specified, the length field is contained in the first bytes
pointed to by the space pointer. Therefore, the 2- or 4-byte field
must precede the data pointed to by the space pointer, and not
precede the space pointer that is passed as part of the message data.

2. If the type *DEC is specified, the total number of decimal digits
(including the fraction) must be specified as the second value; the
number of digits in the fraction can be specified (optional) as the third
value.

3. If the type *BIN is specified, the message data field can be only 2 or
4 bytes long; the default is 2 bytes.

Length Field Size/Decimal Positions: The third value is used in one of
two ways, depending upon the type specified in the first value. (1) If
*QTDCHAR, *CHAR, *HEX, or *SPP is specified, and if *VARY is specified
or assumed for the second value, the third value is used with *VARY to
indicate the size of the length field actually passed. The third value can be
either a 2 or a 4, which is the number of bytes to be used to specify the
length (in binary) of the passed value. (2) If *DEC is specified, the third
value indicates the number of decimal positions in the decimal value. If not
specified for a decimal substitution value, the default is 0 decimal positions.

Note: If an object has been damaged or deleted, the substitution variable
will not be replaced by the object name when it is displayed; instead, the
variable will appear as &n, where n = number. Also, if the length of the
message data that is passed to the substitution variable is shorter than the
length specified for FMT, the substitution value becomes a null field.

Command Descriptions 4-31

ADDMSGD
TYPE

4-32

Reply Validity Specification Parameters

If the message is to be sent as an inquiry message (specified by *INQ in
one of the send message commands) or as a notify message (specified by
*NOTIFY in the SNDPGMMSG command only) and a reply is expected,
seven parameters can be used to specify some requirements that relate to
the reply received. The seven validity checking parameters are: TYPE, LEN,
VALUES, SPCVAL, RANGE, REL, and DFT.

These parameters are not necessary for a message to allow a reply, but
they can be used to define valid replies that can be made to the message.
Also note that the VALUES, RANGE, and REL are mutually exclusive—only
one of them can be specified in this command.

TYPE Parameter: Specifies, only if the message is sent as an inquiry or notify

message, the type of reply that is valid to respond to this message.

*CHAR: Any character string. If it is a quoted character string, the
apostrophes are passed as part of the character string.

*NONE: No reply type is specified. No reply validity checking is to be
performed if this message is sent as an inquiry or notify message.
LEN(*NONE) must also be specified.

*DEC: Only a decimal number is a valid reply.

*ALPHA: Only an alphabetic (A through Z, $, #, and @) character string is
valid. Blanks are not allowed.

*NAME: Only a simple name is a valid reply. The name does not have to be
a CPF object name, but it must begin with an alphabetic character; the rest
must be alphameric.

LEN Parameter: Specifies, only if the message is sent as an inquiry or notify

message, the length that cannot be exceeded by a reply to this message.
The values specified under *TYPE apply only if one or more of the other
validity checking parameters are specified. |If, however, none of the validity
checking parameters are specified, the reply (of type *CHAR) can contain as
many as 132 characters.

*TYPE: The maximum length is determined by the type of reply specified
in the TYPE parameter. The maximum length for each type of reply is:

« 132 characters for types *CHAR and *ALPHA. If any further validity
checking is to be perfomed (VALUES, RANGE, REL, SPCVAL, or DFT are
specified), the maximum length allowed for *CHAR and *ALPHA is 32
characters.

« 15 digits for *DEC, of which a maximum of 9 digits can be to the right of
the decimal point.

+ 10 alphameric characters for *NAME.

. e . L ADDMSGD
*NONE: No reply type is specified. No reply validity checking is to be VALUES

performed if this message is sent as an inquiry or notify message.
TYPE(*NONE) must also be specified.

length [decimal-positions]: Enter the maximum length to be allowed for the
message reply. The length specified here cannot exceed the maximums
shown above. If the reply type is a decimal value, the number of decimal
positions can be optionally specified; if it is not specified, zero decimal
positions are assumed.

VALUES Parameter: Specifies, only if the message is sent as an inquiry or
notify message, a list of values of which one can be received as a valid
reply to the message. No more than 20 values can be specified in the list.
Each value in the list must meet the requirements specified for message
replies by the TYPE and LEN parameters.

If VALUES is specified, the RANGE and REL parameters cannot be
specified. A reply, to be valid, must match one of the values in this list.

For the reply value to match the compare value, both must be of the same
keyboard shift. For example, if your program requires a reply containing
uppercase characters, one of the following methods ensures a response in
uppercase characters:

« Requiring a response in uppercase characters.

« Entering the compare values for the VALUES parameter in lowercase, but
using the SPCVAL parameter to convert the characters to uppercase.

« Using the TYPE(*NAME) keyboard value to convert the characters to
uppercase. To use this method, all reply characters must be alphabetic
(A-2).

*NONE: No list of reply values is specified. The reply can have any value
that is consistent with the other validity specification parameters.

value: Enter one or more values, up to a maximum of 20, that are to be
compared with a reply value that is sent in response to the message defined
in this message description; the reply value must match one of these values
to be a valid reply to this message. The maximum length of each value is
32 characters.

Command Descriptions 4-33

ADDMSGD
SPCVAL

SPCVAL Parameter: Specifies, only if the message is sent as an inquiry or

notify message, a list of up to 20 sets of special values of which one set (if
the from-value is matched by the sent reply) is used as the reply. These
values are special in that they may not meet all the validity checking
specifications given in the other reply-oriented parameters. The reply sent is
compared to the from-value in each set; if a match is found, and a to-value
was specified in that set, the to-value is sent as the reply. If no to-value
was specified, the from-value is sent as the reply. The to-value must meet
the requirements specified in the TYPE and LEN parameters. If the reply
sent does not match any from-value, then the reply is validity checked by
the specifications in the other reply-oriented parameters.

*NONE: No special values are specified for the replies to this message.

from-value [to-value]: Enter one or more sets of values, up to a maximum
of 20 sets, that are used to determine the reply sent to the sender of the
message. Each set must have a from-value, which the reply is compared
with, and an optional to-value to be sent as the reply if its from-value
matches the reply.

RANGE Parameter: Specifies, only if the message is sent as an inquiry or

notify message, the upper and lower value limits for valid replies to this
message. These values must meet the requirements specified for replies by
the TYPE and LEN parameters, and both values must be of the same type.
If both values are not of the same length, the shorter value is padded on
the right with blanks. For the types *CHAR and *ALPHA replies, the reply is
padded to the right with blanks, or truncated on the right, to the length of
the specified values, before the value range is validity checked. If RANGE is
specified, the VALUES and REL parameters cannot be specified.

*NONE.: No range values are specified for the replies to this message.

REL Parameter: Specifies, only if the message is sent as an inquiry or notify

message, the relation that must be met for a reply to be valid. The value
specified must meet the requirements specified for replies by the TYPE and
LEN parameters. For replies of the types *CHAR and *ALPHA, the reply is
padded to the right with blanks, or truncated on the right, to match the
length of the value specified, before the system performs the relational test
on the reply value sent.

*NONE: No range values are specified for the replies to this message.

J

ADDMSGD

operator-value: Enter one of the relational operators and the value against DFT

which the message reply is to be validity checked. If the reply is valid in the
relational test, it is sent to the message sender. If REL is specified, the
VALUES and RANGE parameters cannot be specified. The relational
operators that can be entered are:

LT Less than

*LE Less than or equal to
*GT Greater than

*GE Greater than or equal to
*EQ Equal to

*NL Not less than

*NG Not greater than

*NE Not equal to

DFT Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the default reply (enclosed in apostrophes, if it contains special
characters) that is to be used when the receiver of the message has
indicated that all messages to him are to use default replies, or when a
message is deleted from a message queue and no reply was specified. The
default reply can also be used to answer unmonitored notify messages. The
default reply must meet the requirements specified for replies by the validity
specification parameters, TYPE and LEN.

*NONE: No default reply is specified for the replies to this message.

DFTPGM Parameter: Specifies the name of the default program (if any) to be
called to take default action when this message is sent as an escape
message to a program that is not monitoring for it. This parameter is
ignored if the message is not sent as an escape message. If it is sent as an
escape message, the following parameters are passed to the program:

« Program message queue name (10 characters). The name of the program
message queue to which the message was sent. (This is the same name

as that of the program.)

« Message reference key (4 characters). The message reference key of the
escape message on the program message queue.

*NONE: No default program is specified for this message.
qualified-default-program-name: Enter the qualified name of the default

program to be called when an escape message is sent. (If no library
qualifier is given, *LIBL is used to find the default program.)

Command Descriptions 4-35

ADDMSGD
DMPLST DMPLST Parameter: Specifies the data to be dumped when this message is

sent as an escape message to a program that is not monitoring for it. This
parameter can specify that data related to the job be dumped, that data
from message data fields be dumped, or that a combination of these be
dumped. When data from message data fields is to be dumped, this
parameter specifies one or more numbers that positionally identify the data
fields to be dumped.

The system objects indicated by system pointers are to be completely
dumped. The data in a space object, indicated by a space pointer, is to be
dumped starting from the offset indicated by the space pointer for the
length indicated in the field description. The standard job dump can also be
requested. Dumps are taken as part of system default actions when escape
messages are not monitored by the program to which they were sent.

JOB: This value is the equivalent of specifying DSPJOB JOB()
OUTPUT(*LIST); refer to DSPJOB (Display Job) Command for more
information.

*JOBDMP: The data areas of the job are to be dumped as specified by the
DMPJOB command. *JOB can be specified by itself, along with *JOBINT,
or along with a list of message data field numbers.

*JOBINT: The internal machine data structures related to the machine
process in which the job is executing are to be dumped to the machine error
log as specified by the DMPJOBINT command. *JOBINT can be specified
by itself, along with *JOBDMP, *JOB, or along with a list of message data
field numbers.

message-data-field-number: Enter the numbers of the message data fields
that identify the data to be dumped when this escape message is sent but
not monitored. As many as 20 data field numbers can be specified in the
list; additionally, the list can contain the values *JOB and *JOBINT.

*NONE: There is no dump list for this message. No dump is to be taken.
Note: If any of these values are specified for DMPLST, *JOB is assumed to

be part of the values. For example, DMPLST(1 2 *JOBDMP) results in the
equivalent of DMPLST(*JOB 1 2 *JOBDMP).

LOG Parameter: Specifies, when it is sent as an escape message that is not
monitored, whether the message is to be logged in the system service log.

*NO: The unmonitored escape message is not to be logged in the system
service log when it is used.

*YES: Every occurrence of the unmonitored escape message’s use is to be
logged in the system service log.

4-36

- S - . ADDMSGD
LVL Parameter: Specifies the level identifier of the message description being LVL

defined. The level identifier is made up of the date on which the message is
defined and a two-digit number that makes the identifier unique.

*CURRENT 1: The current date and a 1 are to be used as the first and
second parts of the message description level identifier.

creation-date level-number: Enter the date on which the message is being
defined, and enter a two-digit value (1 through 99) that makes the level
identifier of the message description unique. The date must be specified in
the format defined by the system values QDATFMT and, if separators are
used, QDATSEP.

Examples

ADDMSGD MSGID(UINO115) MSGF(INV) +
MSG(Enter the name of your department’) +
SECLVL('A department’’s name is a +
3-character code such as X12') +
TYPE(*CHAR) LEN(3) DFT('22Z')

This command defines a message and stores it in a file named INV under
the identifier UINO115. The message supplies second-level text, and the
reply requires validity checking so that a valid reply can only be a
3-character identifier. A default reply of ZZZ is also provided.

ADDMSGD MSGID(UPY0047) MSGF(TIMECARD.PAYLIB) +
MSG(For the week of &1, &2 time +
cards were processed. Do you have more?’) +
FMT((*CHAR 8) (*CHAR 3)) +
TYPE(*ALPHA) LEN(1) VALUESI(N Y) +
SPCVAL((YES Y)(NO N)) DFTI(N)

This command defines a message description that is stored in the
TIMECARD message file in the PAYLIB library. The program that processes
the time cards can send a message (as an inquiry type message) telling how
many time cards (in &2) have been processed for the week (specified in
&1). To send this message to a user (via a message queue), the program
must use the SNDPGMMSG command; the command specifies (in this
example):

« The message identifier of this message (UPY0047).
« The file (TIMECARD) that contains this message.

« The time card date in 8 characters (such as 9/15/78). This must be the
first value in the MSGDTA parameter.

« The number of time cards in no more than three digits (such as 125).

Command Descriptions 4-37

ADDMSGD
(Examples)

4-38

If a reply of YES is sent, it is accepted as a Y (SPCVAL parameter). If NO
is sent, it is accepted as an N. If neither YES nor NO is sent, the reply is
validity checked according to the TYPE, LEN, and VALUES parameters. If

the user chooses, no reply can be sent and the default reply (N) is assumed.

ADDMSGD MSGID(UPY1234) MSGF(TIMECARD.PAYLIB) +
MSG('Tax for employee &1 exceeds +
gross salary.’) SEV(75) +
FMT((*CHAR 6)(*"DEC 9 2)(*CHAR 8)) +
DFTPGM(BADTAX.PAYLIB) +
DMPLST(1 2 3 *JOB)

This command defines a message to be sent as an escape message. The
sender of the message passes three data values, the first of which
(employee serial number) is used as replacement text in the message. If the
program to which this message is sent does not monitor for message

UPY 1234, default system action is to be taken. This includes dumping the
three data values passed and the job structure. After the dump is taken,
program BADTAX is to be invoked.

J

C

ADDPFM (Add Physical File Member) Command

The Add Physical File Member (ADDPFM) command adds a named member
in the specified physical file, which must have already been created. A
member must be added in the physical file before the file can have data
stored in it. (You can add the first member of a file by entering an
ADDPFM command or by specifying a member name in the MBR parameter
of the CRTPF command. To add other members to the file, use the
ADDPFM command to specify each one). Each member has its own set of
data and its own access path that provides an organization for that data.

The number of members that can be added for the physical file is limited to
the maximum specified in the MAXMBRS parameter of the associated
CRTPF command. Each member added has the same attributes as those
defined in the physical file. However, each member has its own access path
as specified in the DDS access path specifications. The access path
determines the order in which the records within that member are
processed.

Note: Because this command adds a member to a file in a library, the
library must not be locked (*SHRNUP or *EXCLRD in the Allocate Object
command) for another job.

ADDPFM

>— MBR

.iHBLﬂ
FILE physical—file—name

.library—name —/

Required

>
>

Optional

@ *NONE
physical—file—member—name ——— EXPDATE { ﬁ——b
expiration—date

*NO #*BLANK
>— SHARE —C }——7 'l‘l!'!-{ 1———
*YES 'description’

Job:B,I Pgm:B,I

FILE Parameter: Specifies the qualified name of the physical file in which this

added member is to be stored. (If no library qualifier is given, *LIBL is used
to find the file.)

MBR Parameter: Specifies the name by which the physical file member being

added is 10 be known. The member name must be unique within the file to
which it is being added.

ADDPFM

Command Descriptions 4-39

ADDPFM
EXPDATE

EXPDATE Parameter: Specifies the expiration date of the member. Any

attempt to open a file that uses a member that has expired causes an error
message to be sent to the user. (The RMVM command is used to remove
the member.)

*NONE: The member has no expiration date.

expiration-date: Enter the date after which the member should not be used.
The date must be specified in the format defined by the system values,
QDATFMT and QDATSEP. The date must be enclosed in apostrophes if
special characters are used in the format.

SHARE Parameter: Specifies whether or not an ODP (open data path) to the

physical file member is to be shared with other programs in the same job.
When an ODP is shared, the programs accessing the file share such things
as the position being accessed in the file, the file status, and the buffer.
When SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE(*YES) when it opens the file.

TEXT Parameter: Lets the user enter text that briefly describes the physical

file member. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

"description’: Enter no more than 50 characters, enclosed in apostrophes.

Examples

ADDPFM FILE(INVENTX) MBR(MONDAYTX) +
TEXT('Monday”’s Inventory Transactions’)

This command adds a member named MONDAYTX in the physical file
named INVENTX. The library list (*LIBL) is used to find the file because the
FILE value was not qualified by a library name. The size of the member and
the storage allocation values assigned to this member were specified in the
CRTPF command that created the physical file in which MONDAYTX will be
stored. The text, Monday's Inventory Transactions, describes this member of
the INVENTX file.

L ADDPGM (Add Program) Command ADDPGM

The Add Program (ADDPGM) command adds one or more programs to the
group of programs currently being debugged. The specified programs can
have breakpoints and traces added to them for controlling and tracing their
execution. The values of the programs’ variables can also be displayed and
changed.

Restrictions: No more than 10 programs can be in debug mode at the
same time. Two or more programs with the same simple name cannot be
debugged simultaneously. This command is valid only in debug mode. To
enter debug mode, refer to ENTDBG (Enter Debug) Command.

ﬂ.IBL ﬂ
ADDPGM —————— progrnm—nnme j —>
.library—name
10 maximum
Required
Optional

#SAME
>— DFTPGM —€ #NONE ;———
program—name

I Job:B,I Pgm:B,I

PGM Parameter: Specifies the qualified names of one or more programs to
be debugged. (If no library qualifier is given for a program, *LIBL is used to
find the program.) The number of programs specified here depends on how
many programs are already in debug mode; 10 is the maximum at any time.

DFTPGM Parameter: Specifies the name of the program that is to be the
default program during debug mode. The program specified here is used as
the default program for any of the other debug commands that specify
*DFTPGM on their PGM parameter. (That is, if a default program was
previously specified, this parameter can change it.)

*SAME.: The same program, if any, currently specified as the default
program is to be used.

*NONE: No program is to be specified as the default program; if a program
was specified as a default program, it is no longer. Therefore, *DFTPGM
cannot be specified on the PGM parameter of any other debug commands.

program-name: Enter the simple name of the program that is to be the
default program during debug mode. The same name (in qualified form)
must also be specified in the PGM parameter of this command or have been
specified on the Enter Debug (ENTDBG) command or on a previous Add
Program (ADDPGM) command.

Command Descriptions 4-41

ADDPGM

(Example) Example

ADDPGM PGM(MYPROG.QGPL)
This command adds the program MYPROG, located in the QGPL library, to
the current debug mode. Breakpoints and traces can be put in MYPROG,

and its variables can be displayed and changed by other debug commands.
Because DFTPGM was not specified, the same default program is used.

4-42

C

ADDRJECMNE (Add RJE Communications Entry) Command

ADDRJECMNE

The Add RJE Communications Entry (ADDRJECMNE) command adds a new
communications device file entry to an existing RJEF session description.

Two communications entries are required to start an RJEF session:
« One entry for an RJEF console input job
« One entry for an RJEF console output job

Additionally, one communications entry is required for each active RJEF
reader or RJEF writer in the RJEF session.

Each communications entry must reference a unique BSC device file. All
BSC device files must reference devices attached to the same BSC control
unit.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Add RJE Communications Entry (ADDRJECMNE) command is part of
the IBM System/38 Remote Job Entry Facility Program Product, Program
5714-RC1. For more information on the Remote Job Entry Facility, refer to
the IBM System/38 Remote Job Entry Facility Programmer’s Guide,

*FILE @ *PFILE
>— DEV-{ ,——-DTACPR—{:Y‘BB
BSC—device—-name #*NO

SC21-7914.
.*LIBL ﬂ
ADDRJECMNE ——— SSND session—description—name { >
library—name —-/
.#LIBLﬁ
> FILE—BSC—rlle—name{ >
library—name f
Required
Optional

I Job:B,I Pgm:B,1

SSND Parameter: Specifies the qualified name of the session description to

which the communications entry is to be added. (If no library qualifier is
given, *LIBL is used to find the session description.)

FILE Parameter: Specifies the qualified name of the BSC device file to be

added to the session description. (If no library qualifier is given, *LIBL is
used to find the communications device file.)

Command Descriptions 4-43

ADDRJECMNE
DEV

4-44

DEV Parameter: Specifies the communications device to be used with the

specified communications device file for sending and receiving data.

*FILE: The device name specified in the communications device file is to
be used.

BSC-device-name: Enter the name of the BSC device to be used. This
device name overrides the device that was specified when the
communications device file was created.

DTACPR Parameter: Specifies whether data compression is to be performed

for the communications file entry.

*FILE: Data compression is to be performed, based on the specification in
the communications device file.

*YES: Data compression is to be performed for the communications file
entry.

*NO: Data compression is not to be performed for the communications file
entry.

Example

ADDRJECMNE SSND(RJE.USERLIB) +
FILE(DEVPRT1.USERLIB) +
DTACPR(*YES)

This command adds a communication entry to the session description called
RJE in library USERLIB. The BSC device file associated with this
communication entry is named DEVPRT1 in library USERLIB. Data
compression is to be performed for this BSC file.

J

ADDRJERDRE (Add RJE Reader Entry) Command

The Add RJE Reader Entry (ADDRJERDRE) command adds a new RJEF
reader entry to an existing RJEF session description.

Each RJEF reader entry (except *AUTO) requires a corresponding
communications entry (refer to the Add RJE Communications Entry
(ADDRJECMNE) command). A maximum of four RJEF reader entries can be
added (including *AUTO).

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Add RJE Reader Entry (ADDRJERDRE) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the /BM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

.tuBLﬂ
ADDRJERDRE ———— SSND session—description—nnme‘{ _/ >
.library—name
> RDR Select one of the following:) _
*AUTO RD1 RD2 RD3 v
Required
Optional
*NONE— @
>‘J°BQ‘< #LIBL >
job—queue—name

.library—name

*NONE
> HSGQ{ .*LIBL
message—queue—name ~<
Jibrary—name

I Job:B,I Pgm:B,I

SSND Parameter: Specifies the qualified name of the session description to
which the RJEF reader entry is to be added. (If no library qualifier is given,
*LIBL is used to find the session description.)

RDR Parameter: ldentifies the RJEF reader that is to be associated with this
reader entry.

*AUTO: Any RJEF reader input stream that is available at the time the
Submit RJE Job (SBMRJEJOB) command executes is to be used.

RD1: RJEF Reader 1 input stream is to be used.
RD2: RJEF Reader 2 input stream is to be used.

RD3: RJEF Reader 3 input stream is to be used.

ADDRJERDRE

Command Descriptions 4-45

ADDRJERDRE
JoBaQ

JOBQ Parameter: Specifies the job queue on which the reader jobs for this
reader are to be placed.

*NONE: No reader job queue is to be associated with this reader. RJEF
reader input streams can be reserved for the interactive user issuing the
SBMRJEJOB command and specifying OPTION(*IMMED). Therefore, the

interactive user does not have to compete with the batch RJEF reader jobs

that are started from the RJEF reader job queue.

job-queue-name: Enter the qualified name of the job queue on which reader
jobs for this reader are to be placed for transmission to the host system. (If

no library qualifier is given, *LIBL is used to find the job queue.)

MSGQ Parameter: Specifies the qualified name for the user message queue

on which messages for this RJEF reader are to be recorded.

Note: Messages for RJEF readers are always recorded in the RJEF
message queue associated with the named RJEF session. The RJEF
message queue name depends upon the name specified in the MSGQ

parameter in the Create Session Description (CRTSSND) or Change Session

Description (CHGSSND) commands. |f inquiry messages are issued by
RJEF, they are sent to the user message queue (if specified) where they
must receive a response.

*NONE: No user message queue exists on which the messages for these

RJEF reader jobs are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which this RJEF reader job’s messages are to be recorded. (If no library

qualifier is given, *LIBL is used to find the message queus.)

Example

ADDRJERDRE SSND(RJE.USERLIB) +
RDR(RD1) +
JOBQ(READQ1.USERLIB) +
MSGQ(BAKER.USERLIB)

This command adds an RJEF reader entry to the session description named

RJE in library USERLIB. The reader added is RD1 (reader 1). RJEF jobs
submitted to this reader will be submitted to RJEF reader job queue
READQ1 in library USERLIB. Messages associated with jobs submitted to

RD1 are to be written to the user message queue named BAKER in library

USERLIB.

<9

C

ADDRJEWTRE (Add RJE Writer Entry) Command

ADDRJEWTRE

The Add RJE Writer Entry (ADDRJEWTRE) command adds a new RJEF
writer entry to an existing RJEF session description.

Each RJEF writer entry requires a corresponding communications entry (refer
to the Add RJE Communications Entry (ADDRJECMNE) command). A
maximum of six RJEF writer entries can be added (three printers and three
punches).

Except for the SSND parameter, all the parameters of this command are
used to direct the output data only if any of the following conditions are
true:

e There is no FCT associated with this session description.

« The forms mount message from the host system specifies a form type
that does not exist as an entry in the FCT.

« *NONE is specified on the FILE parameter in the Add Forms Control
Table Entry (ADDFCTE) command.

« A writer entry is used for each parameter in the FCT.

« A writer entry is used for each parameter on the Start RJE Writer
(STRRJEWTR) command.

The parameter values specified for this RJE writer entry can be overridden
by parameter values specified for the Start RJE Writer (STRRJEWTR)
command.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Add RJE Writer Entry (ADDRJEWTRE) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the /BM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

Command Descriptions 4-47

ADDRJEWTRE
(Diagram)

4-48

#LIBL
ADDRJEWTRE —— SSND session—description—name{ ﬁ————'
library—name

Select one of the following:

PR1 PU1L

>— WTR— >
PR2 PU2
PR3 PU3

device—file—name *LIBL ﬂ
>—FILE—< >

data—-base—file—name Jdibrary—name —/
Required
Optional
*GEN @ *STD H
> MBR{&FIRST%— FORMTYPE —< f >
member—name form—type
1 —
>—FSN —>

flle—aequence—numberf

*FCFC #*NONE
>— DTAFMT ~€ *DATA PGM
*CMN program—name {

*LIBL

.library—name

#LIBL

*NONE
> MSGQ‘{
meunge—queue—nlme{

Jibrary—name

l Job:B,I Pgm:B,I

SSND Parameter: Specifies the qualified name of the session description to
which the RJEF writer entry is to be added. (If no library qualifier is given,
*LIBL is used to find the session description.)

WTR Parameter: |dentifies the RJEF writer that is to be associated with this
writer entry.
PR1: RJEF Printer 1 output stream is to be used.
PR2: RJEF Printer 2 output stream is to be used.
PR3: RJEF Printer 3 output stream is to be used.
PU1: RJEF Punch 1 output stream is to be used.
PU2: RJEF Punch 2 output stream is to be used.

PU3: RJEF Punch 3 output stream is to be used.

N N ADDRJEWTRE
FILE Parameter: Specifies the qualified name of the file that is to receive data FILE

from the host system.

device-file-name: Enter the qualified name of the program-described device
file to receive data. (If no library qualifier is given, *LIBL is used to find the
device file.)

data-base-file-name: Enter the qualified name of the System/38 physical
data base file to be used. (If no library qualifier is given, *LIBL is used to
find the data base file.)

MBR Parameter: Specifies the data base file member to which the output is
to be directed (if a data base file was specified in the FILE parameter of this
command). If a device file was specified in the FILE parameter of this
command, this parameter is ignored.

*GEN: RJEF creates a member name as follows:

Affffffccc or Bffffffccc

Where:

A = file member names beginning with the character A
contain print data.

B = file member names beginning with the character B
contain punch data.

fiFfff = first six characters of the forms name specified in
the FCT or received from the host system.
Note: Only characters that are valid in a System/38
name are valid in the forms type used to generate
data base file member names.

cce = three-digit sequence value controlled by the RJEF session

to maintain member uniqueness (refer also to the
FSN parameter description of this command).

If a member with this name already exists in the data base file, the
three-digit sequence value is incremented by one and another attempt is
made to create a member. Incrementing of the sequence value continues
until a unique name is generated and a member is created or until all
1000 possibilities have been exhausted without creating a member. If no
member is created, the RJEF operator receives a message indicating the
failure and a request to retry or cancel this file.

Command Descriptions 4-49

ADDRJEWTRE
FORMTYPE

*FIRST: The output is to be directed to the first member of the data base
file (if a data base file is specified in the FILE parameter of this command).

member-name: Enter the name of the data base file member to which
output is to be directed (if a data base file is specified in the FILE parameter
of this command).

FORMTYPE Parameter: Specifies the initial form type to be used if no forms

mount message is received from the host system.
*STD: The initial form type to be used is *STD.

form-type: Enter the initial form type. Valid values can be one through
eight alphameric characters in length.

FSN Parameter: Specifies the initial three-digit file sequence number to be

used when creating data base file member names (when the MBR
parameter default of *GEN is taken).

1: The initial three-digit file sequence number to be used is 001.
file-sequence-number: Enter the initial three-digit file sequence number to

be used. Leading zeros are not required for sequence numbers less than
100.

DTAFMT Parameter: Specifies the format of the output data.

*FCFC: The output data is to be in the FCFC data format, with the first
character of every record being the ANSI forms control character. Parameter
value WTR(PUn) is invalid with parameter value DTAFMT(*FCFC). Specify
*FCFC if the data is to be printed.

The data can be written to a data base file in the FCFC data format and be
printed later by using the Copy File (CPYF) command and specifying an
FCFC printer file on the TOFILE parameter.

#*DATA: The output data is to be in the normal data format (that is, no
FCFC characters are embedded in the data). Specify *DATA if the data is to
go to a data base file and be processed by a program. If the data is
directed to a printer file, a single space ANSI control character is the first
character in each record.

*CMN: The output data is to be in the communications data format (that is,
still compressed or truncated). *CMN can be used to decrease
communications time. However, before the data can be used, the Format
RJE Data (FMTRJEDTA) command must be used to change the data to
*FCFC or *DATA. If *CMN is specified, the output file must be a data base
file with a length of 256.

J

PGM Parameter: Specifies the qualified name of a user-supplied program to
be used with this session description.

*NONE: No user-supplied program is to be used for the RJEF writer.

program-name: Enter the qualified name of the user-supplied program to be
used. (If no library qualifier is given, *LIBL is used to find the user-supplied
program.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF writer are to be recorded.

Note: Messages for RJEF writers are always recorded in the RJEF message
queue associated with the named RJEF session. The RJEF message queue
name depends upon the name specified in the MSGQ parameter in the
Create Session Description (CRTSSND) or Change Session Description
(CHGSSND) commands. If inquiry messages are issued by RJEF, they are
sent to the user message queue (if specified) where they must receive a
response.

*NONE: No user message queue exists on which the messages for these
RJEF writer jobs are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which this RJEF writer job’s messages are to be recorded. If no library
qualifier is given, *LIBL is used to find the message queue.

Example

ADDRJEWTRE SSND(RJE.USERLIB) +
WTR(PR1) +
FILE(COMPILES.LISTINGS) +
MBR(*GEN) +
DTAFMT(*CMN) +
MSGQ(COMPL.USERLIB)

This command adds an RJEF writer entry to the session description named
RJE in library USERLIB. The writer added is PR1 (printer 1). The FILE
parameter specifies that host data written to this printer should go to a data
base file named COMPILES in library LISTINGS. For each file received from
the host, RJEF will generate a new data base member. The data is to be
written in the communication format (still compressed or truncated).

Messages associated with this writer will be written to the user message
queue named COMPL in library USERLIB.

Command Descriptions

ADDRJEWTRE

PGM

4-51

ADDRTGE

4-52

ADDRTGE (Add Routing Entry) Command

The Add Routing Entry (ADDRTGE) command adds a routing entry to the
specified subsystem description; the associated subsystem must be inactive
at the time. Each routing entry specifies the parameters used to initiate a
routing step; for example, the routing entry specifies the name of the
program to be executed when the routing data that matches the compare
value in this routing entry is received.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description.

ADDRTGE

v

#LIBL ﬂ
SBSD subsystem—description—name {

library—name —/

>— SEQNBR sequence—number

v

*ANY
>— CMPVAL —<: 1 —_/ \F
compare—value ‘{
starting—position

*LIBL —
>— PGM program—name ‘(®

.library—name —/

>
>

Required

Optional
*SB SD
> CLS—< *LIBL >
class—name { ’—/
.library—name

*NOMAX 1
>— MAXACT ‘C >— POOLID ~< >_
maximum-—active—jobs pool—identifier
|Job:B,I Pgm:B,I

n . o ADDRTGE
SBSD Parameter: Specifies the qualified name of the subsystem description SBSD

to which the routing entry is to be added. (If no library qualifier is given,
*LIBL is used to find the subsystem description.)

SEQNBR Parameter: Specifies the sequence number of the routing entry to
be added. Routing data is matched against the routing entry compare values
in ascending sequence number order. Searching ends when a match occurs
or the last routing entry is encountered. Therefore, if more than one match
possibility exists, only the first match is processed. Enter a unique sequence
number (1 through 9999) that identifies the routing entry.

CMPVAL Parameter: Specifies a value that is to be compared with the
routing data to determine whether this is the routing entry to be used for
initiating a routing step. If the routing data matches the routing entry
compare value, that routing entry is used. Optionally, a starting position
within the routing data character string can be specified for the comparison.

*ANY: Any routing data is considered to be a match. To specify *ANY, the
routing entry must have the highest SEQNBR value of any routing entry in
the subsystem description.

compare-value: Enter a value (any character string not exceeding 80
characters) that is to be compared with routing data for a match. When a
match occurs, this routing entry is used to initiate a routing step. A starting
position within the routing data character string can be specified for the
comparison; if no position is specified, 1 is assumed.

1: The comparison between the compare value and the routing data begins
with the first position in the routing data character string.

starting-position: Enter a value, 1 through 80, that indicates which position
in the routing data character string is the starting position for the
comparison. The last character position compared must be less than or
equal to the length of the routing data used in the comparison.

PGM Parameter: Specifies the qualified name of the program to be invoked
as the (first) program to be executed in the routing step. (No parameters
can be passed to the specified program.) (If no library qualifier is given,
*LIBL is used to find the program.) If the program does not exist when the
routing entry is added, a library qualifier must be specified because the
qualified program name is retained in the subsystem description. If
QCL.QSYS is specified, the IBM-supplied control language processor, QCL,
is invoked in the routing step.

Command Descriptions 4-53

ADDRTGE
CLs

. 4-54

CLS Parameter: Specifies the qualified name of the class to be used for the

routing steps initiated through this routing entry. The class defines the
attributes of the routing step’s execution environment. (For an expanded
description of the CLS parameter, see Appendix A.) If the class does not
exist when the routing entry is added, a library qualifier must be specified
because the qualified class name is retained in the subsystem description.

*SBSD: The class having the same qualified name as the subsystem
description, specified by the SBSD parameter, is to be used for routing
steps initiated through this entry.

qualified-class-name: Enter the qualified name of the class that is to be
used for routing steps initiated through this routing entry. (If no library
qualifier is specified, the library list (*LIBL) of the job in which this
ADDRTGE command is executed is used to find the class.)

MAXACT Parameter: Specifies the maximum number of routing steps (jobs)

that can be concurrently active through this routing entry. (Within a job,
only one routing step is active at a time.) When a subsystem is active and
the maximum number of routing steps is reached, any subsequent attempts
to initiate a routing step through this routing entry will fail. If the routing
data was entered interactively, an error message is sent to the user.
Otherwise, the job is terminated and a message is sent by the subsystem to
the job’s log. (For an expanded description of the MAXACT parameter, see
Appendix A.)

*NOMAX: There is no maximum number of routing steps that can be
concurrently active and processed through this routing entry. (This value is
normally used when there is no reason to control the number of routing
steps.)

maximum-active-jobs: Enter the maximum number of routing steps that can
be concurrently active through this routing entry. If a routing step would
exceed this number if it were started, the job is implicitly terminated.

POOLID Parameter: Specifies the pool identifier of the storage pool in which

the program is to run.

1: Storage pool 1 of this subsystem is the pool in which the program is to
run.

pool-identifier: Enter the identifier of the storage pool defined for this
subsystem in which the program is to run. Valid values are 1 through 10.

9

‘ ADDRTGE
‘ Examples (Examples)
ADDRTGE SBSD(PERT.ORDLIB) SEQNBR(46) +
CMPVAL(WRKSTN2) PGM(GRAPHIT.ORDLIB) +

CLS(AZERO.MYLIB) +
MAXACT(*NOMAX) POOLID(2)

This command adds routing entry 46 to the routing portion of the
subsystem description PERT in the ORDLIB library. To use routing entry 46,
the routing data must start with the character string "'WRKSTN2' beginning
in position 1. Any number of routing steps can be active through this entry
at any one time. The program GRAPHIT in the library ORDLIB is to run in
storage pool 2 using class AZERO in library MYLIB.

ADDRTGE SBSD(ABLE.QGPL) SEQNBR(5) +
CMPVAL(XYZ) PGM(REORD.QGPL) +
CLS(MYCLASS.LIBX) MAXACT(*NOMAX)

This command adds routing entry 5 to the subsystem description ABLE in
the QGPL library. The program REORD in the general purpose library is
initiated and uses the class MYCLASS in LIBX when a compare value of
XYZ (beginning in position 1) is matched in the routing data. The program
runs in storage pool 1, and there is no maximum on the number of active
routing steps allowed.

Command Descriptions 4-55

ADDTRC

4-56

ADDTRC (Add Trace) Command

The Add Trace {ADDTRC) command specifies which program statements in
a program are to be traced in debug mode. Up to five ranges of HLL
statements or System/38 instructions can be traced during the execution of
a program through one or more ADDTRC commands, and up to 10 program
variables can be monitored for change within each specified statement
range. A separate ADDTRC command is required for each unique variable
associated with a statement range. When the specified program being
traced is executed, the system records the sequence in which the traced
statements were executed and optionally records the value of the variables
associated with the trace each time a traced statement is executed. After a
trace has been completed, you can display this information using the
DSPTRCDTA command.

All of the trace ranges specified in a program are simultaneously active. If
both an HLL statement identifier and a System/38 instruction number are
used to specify a given trace range, the trace range is treated as an HLL
trace range. That is, in addition to tracing the System/38 instruction
number specified, the system traces the HLL statement identifiers between
that System/38 instruction number and the specified HLL statement
identifier.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

Optional
*ALL

ADDTRC —— STMT #ALLINST
start—statement—identifier [stop—statement—identifier] T/

5 maximum

*NONE
>— PGMVAR
'program—variable—name[(subscript)]' ['basing—pointer—name[(subscript)]']
10 maximum
1 —
> START—C »
starting—character—position —/

=DCL *CHAR \ @
> LEN { >— OUTFMT {) —
displayed—character—length *HEX
*CHG *DFTPGM
> OUTVAR —{ -‘>— PGM{ _?—
*ALWAYS program—name

[Job:B,1 Pgm:B,1|

ADDTRC

" STMT

STMT Parameter: Specifies which program statements (or System/38

instructions) are to be traced in one or more statement ranges in the
program where tracing is to occur.

*ALL: All statements in the specified HLL program are to be traced.

*ALLINST: All System/38 instructions in the specified program are to be
traced.

start-statement-identifier [stop-statement-identifier]: Enter the HLL
statement identifier (or System/38 instruction numbers) at which tracing is
to start and, optionally, the identifier at which tracing is to end. As many as
five trace ranges can be specified in the program for each use of this
command. Each trace range begins with the specified starting statement,
and all following statements are traced until the ending statement is
reached. If only a starting statement identifier is specified for a range, the
single statement specified is the only statement traced for that range. If
System/38 instruction numbers are specified, each number must be
preceded by a slash and enclosed in apostrophes: STMTI(('/21" ' /43')(' /62’
' /98’)) for example.

PGMVAR Parameter: Specifies whether the values of one or more program

variables are to be recorded every time a traced statement in an HLL or Ml
program is executed, and if so, specifies the names of the variables whose
values are to be recorded. Depending upon the OUTVAR parameter, the
values can be recorded for every trace statement executed, or only when
any variable changes value. The program variables can be specified either
by their HLL names or by their Ml ODV numbers. No more than 10
program variables can be specified.

*NONE: No program variables are to have their values recorded while
tracing is being performed.

'program-variable-name’: Enter the names of one or more program variables
(no more than 10) whose values are to be recorded while tracing is being
performed. If the variable name contains special characters (such as the &
in a CL variable name), it must be enclosed in apostrophes. An example is:
PGMVAR(' &VAR2').

An RPG indicator or an Ml ODV number can be specified instead of a
program variable name. An example of an RPG indicator is
PGMVAR('*IN22’). The ODV number must be preceded by a slash:
PGMVAR(' /264’) for example.

Command Descriptions

4-57

ADDTRC
PGMVAR

4-58

COBOL qualified program variable names may be specified in this
parameter. These names have the following syntax:

var-name-1 OF/IN var-name-2 OF/IN varname-3...varname-N

where varname-N is the last possible variable name that will fit into the
input field of the PGMVAR parameter. The input field length for each
variable in the PGMVAR parameter is 98 characters. The subscript specified
for a qualified variable name may also be a qualified variable name. A
qualified variable name (or one with a subscript), including blanks and
parentheses, must be contained within the 98-character limit. The
98-character limit includes the necessary keywords (OF/IN) and blanks, but
does not include the enclosing apostrophes.

'program-variable-name[(subscript)]’: For variables in an array, enter the
name of the variable and (optionally) the subscript representing the
positional element in the array that is to be displayed. If a subscript is not
specified, all elements in the array are displayed. The subscript, if specified,
must be enclosed in parentheses, and the variable name and subscript
number must be enclosed in apostrophes. No more than 10 sets can be
specified, and blanks must separate each set. An example is:

PGMVAR('A(5)" 'B(5)" "C(5)')

Either an integer or another variable name can be specified for each
subscript.

For COBOL variable names, any combination of variable name length and
subscript length that will fit into the 98-character limit is valid. For example,
one qualified variable name 98 characters in length (including the keywords
OF or IN) can be used with no subscript, or a one-character variable name
may be used with a qualified variable name (used as a subscript that uses
the other 97 spaces, including parentheses).

For COBOL, the following apply:

« Variable names used in qualifying strings must be high-level language
variable names (qualification with ODVs is not allowed).

« Either keyword (OF or IN) is allowed.

« Each OF/IN keyword must be separated from adjacent variable names by
at least one blank.

J

. ADDTRC
« A qualified variable name can be used as a variable subscript. START

« The order the variable names are specified must be from the lowest to
the highest levels in the structure.

« Structure levels may be skipped; enough levels must be specified,
however, to uniquely identify the variable.

« Qualified variable names must be enclosed in apostrophes, since they
contain blank characters.

['basing-pointer-name[(subscript)]’]: This set of values in the PGMVAR
parameter applies only to Ml or HLL programs that support based-on
variables. The values can optionally be used with either of the previous two
choices to also specify the value in an array that is based on a pointer. The
same description of the coding syntax applies here. An example is:

PGMVARI('VAR1(5)" ‘PTR1(5)’) (VAR2(8)' 'PTR2(8)'))

This example shows that one (different) element in each of two program
variables is to be displayed. The fifth element in the array named VAR1,
based on the fifth element in the pointer array named PTR1, and the eighth
element in the VAR2 array, based on the eighth element in the PTR2 pointer
array, are to be displayed.

The field length for the basing pointer name is 24 characters.

START Parameter: Specifies, for character variables only, the beginning
position in the variable from which its value is to be recorded when the
trace is performed. If more than one character variable is specified in the
PGMVAR parameter, the same starting position is used for each one.

1: Recording of the variable is to start with the first position and continue
for the length specified in the LEN parameter.

starting-character-position: Enter the starting position number at which the
variable is to be recorded. The position number (as well as the combination
of START and LEN) must be no greater than the length of the shortest
variable specified in the PGMVAR parameter.

Command Descriptions 4-59

ADDTRC
LEN

LEN Parameter: Specifies the number of bytes to be recorded from the

character variable specified in the PGMVAR parameter, starting at the
position specified in the START parameter. If more thar. one character
variable is specified in the PGMVAR parameter, the same length is used for
each one.

*DCL: The character variable is to be recorded to the end of the variable
or for 200 bytes, whichever is less.

displayed-character-length: Enter the number of characters that are to be
recorded. The length (as well as the combination of START and LEN) must
be no longer than the length of the shortest variable specified in the
PGMVAR parameter.

OUTFMT Parameter: Specifies the format to be used for recording the

variables.
*CHAR: Variables are to be recorded in character form.

*HEX: Variables are to be recorded in hexadecimal form.

OUTVAR Parameter: Specifies whether the values of the program variables

are to be recorded only when their values change, or whether they are to be
recorded regardless of any of their values being changed. This parameter
does not apply if PGMVAR(*NONE) is specified or assumed.

Note: Within each range, the values of all the traced variables are always
recorded the first time a statement in the range is executed. For all other
statements in the range executed after the first one, the OUTVAR parameter
determines when the variables are to be recorded.

*CHG: The system should record the values of all the program variables
when one or more of the values are changed by a traced statement being
executed.

*ALWAYS: The system should record the values of the specified variables
every time any of the specified trace statements are executed, whether or
not any variable had its value changed.

o . ADDTRC
PGM Parameter: Specifies the name of the program that contains the (Example)

specified statement identifiers or the System/38 instruction numbers that
are to be traced. This program name must also be specified in the Enter
Debug (ENTDBG) command.

*DFTPGM: The program previously specified as the default program
contains the statements to be traced.

program-name: Enter the name of the program that contains the statements
to be traced. The specified program must already be in debug mode.

Example

ADDTRC STMT({100 120) (150 200)) +
PGMVAR('&CTR’ ‘&BRCTR’ ‘&SAM’)

This command traces program statements in the default program between
the ranges of statements 100 through 120 and 150 through 200. Also,
whenever the values of any of the program variables &CTR, &BRCTR, and
&SAM are changed by one of the traced statements within those ranges,
the values of all three are recorded. When all of the traced statements have
been executed, or when a breakpoint is reached, the DSPTRCDTA
command can be used to display the trace data collected.

Command Descriptions 4-61

ADDWSE

4-62

ADDWSE (Add Work Station Entry) Command

The Add Work Station Entry (ADDWSE) command adds a work station job
entry to the specified subsystem description; the associated subsystem
must be inactive at the time. Each entry describes one or more work
stations that are to be controlied by the subsystem. The work stations
identified in the work station entries are allowed to sign on to or enter the
subsystem and execute jobs.

Restriction: To use this cormmand, you must have operational and object
management rights for the subsystem description.

.#LIBL ﬂ
ADDWSE SBSD subsystem—description—name

Jibrary—name —/

>

>—_<: WRKSTN work-station—neme ——\

WRKSTNTYPE work—station—type J

»

Required

Optional

*8BSD — @
> JOBD { .#LIBL

Job—description—name —(
library—name

»
»

*NOMAX *SIGNON \
>—MAXACT -{ ,— AT —<
maximum—active—jobs *ENTER —/

library—name

*SYSRTGFMT
> DSPPMT{ #LIBL ,—
device—file—name { >_rscord—formnt—namo

Job:B,I Pgm:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
to which the work station job entry is to

be added. (If no library qualifier is given, *LIBL is used to find the
subsystem description.)

WRKSTN Parameter: Specifies the name of the work station to be used by
the subsystem. The name that was specified in the CRTDEVD command
associated with the work station is the name to be used. The work station
must have a type code of *CONS, 5251, or 5252 specified in its device
description (by the DEVTYPE parameter of the CRTDEVD command).

A value must be specified for either the WRKSTN or the WRKSTNTYPE
parameter, but not both.

9

C

WRKSTNTYPE Parameter: Specifies the type of work station associated with

the entry being added. This entry applies to all work stations of this type
that do not have specific entries for an individual work station. The
following type codes are valid:

Type Code Device

CONS System console display
5251 5251 Display Station
5252 5252 Dual Display Station

A value must be specified for either the WRKSTN or the WRKSTNTYPE
parameter, but not both.

JOBD Parameter: Spécifies the qualified name of the job description to be

used for jobs that are created and processed through this entry. If the job
description does not exist when the entry is added, a library qualifier must
be specified because the qualified job description name is retained in the
subsystem description.

*SBSD: The job description having the same qualified name as the
subsystem description, specified by the SBSD parameter, is to be used for
jobs created through this entry.

qualified-job-description-name: Enter the qualified name of the job
description that is to be used for jobs created through this entry. If no
library qualifier is specified, the library list (*LIBL) of the job in which this
ADDWSE command is executed is used to find the job description.

MAXACT Parameter: Specifies, for work stations that use this work station

job entry, the maximum number of work station jobs that can be
concurrently active. (For an expanded description of the MAXACT
parameter, see Appendix A.)

*NOMAX: There is no maximum number of jobs (work stations) that can
be concurrently active through this work entry.

maximum-active-jobs: Enter the maximum number of jobs that can be
concurrently active through this work entry.

ADDWSE
WRKSTNTYPE

Command Descriptions 4-63

ADDWSE
AT

4-64

AT Parameter: Specifies when the work stations associated with this job

entry are to be allocated. For more information on how work stations are
allocated to subsystems, see Start Subsystem (STRSBS) Command.

Note: The following should be considered if two or more work station
entries specify AT(*SIGNON), they apply to the same work station, and they
are in more than one subsystem description: If the work station is varied on
while more than one of the subsystems are active, you cannot predict to
which subsystem the work station will be assigned.

*SIGNON: The work stations are to be allocated when the subsystem is
started if the work station is not already in use (signed on) in another
subsystem. A sign-on prompt is to be displayed at each work station
associated with this work entry. If a work station becomes allocated to a
different subsystem, interactive jobs associated with the work station are
allowed to enter this subsystem through the Transfer Job (TFRJOB)
command.

*ENTER: The work stations associated with this work entry are not to be
allocated when the subsystem is started. However, the interactive jobs
associated with the work stations are allowed to enter this subsystem
through the TFRJOB command.

DSPFMT Parameter: Specifies the name of the device file and the name of

the record format to be used when the subsystem obtains routing data from
the user (that is, when RTGDTA(*GET) is specified in the job description).

*SYSRTGFMT: If routing data is not defined in the referenced job
description, the subsystem obtains the routing data from the user using the
system-supplied routing data format. This format is described in the CPF
Programmer's Guide.

qualified-device-file-name record-format-name: Enter the qualified name of
the device file to be used by the subsystem to obtain the routing data. (If
no library qualifier is given, *LIBL is used to find the device file description.)
If the device file does not exist when the work station entry is added, a
library qualifier must be specified because the qualified name of the device
file is retained in the subsystem description. Also, enter the name of the
record format that defines the format to be used when the subsystem
obtains the routing data from the user.

J

C

Examples

ADDWSE SBSD(ORDER.LIB7) WRKSTNTYPE(5251) +
JOBD(QCTL) AT(*SIGNON)

This command adds a work station job entry to a subsystem description
named ORDER in library LIB7. All 5251 work stations are allocated to this
subsystem when the subsystem is started (unless they are already active in
a previously started subsystem). The work stations are to be signed on at
demand. When sign-on is complete, the IBM-supplied job description
QCTL is used to initiate the routing step.

ADDWSE SBSD(ORDER.LIB7) WRKSTN(A12) +
JOBD(ORDENT.LIB7) AT(*SIGNON)

This command adds a work station job entry to a subsystem description
named ORDER in library LIB7. Work station A12 is to be signed on at
demand. When sign-on is complete, the system-supplied routing data
format is displayed at the work station if the job description ORDENT in
LIB7 specifies *GET as the routing data.

ADDWSE
(Examples)

Command Descriptions 4-65

ALCOBJ
ALCOBJ (Allocate Object) Command

The Allocate Object (ALCOBJ) command is used in a routing step to reserve
an object or list of objects for use later in the routing step. If an object that
is needed in the routing step is not specified in an ALCOBJ command, an
allocation is made automatically when the object is used. The objects are
deallocated either automatically at the end of the routing step or when the
DLCOBJ command is used.

For this command to be executed successfully: (1) the object must exist on
the system, (2) the user issuing the command must have object existence,
object management, or operational rights for the object, and (3) the object
must not be allocated to another job in a lock state that inhibits or restricts
the requested lock state for the entire time specified in the WAIT parameter.
If the allocation cannot be completed, none of the locks are granted and a
message is sent to the job that issued the command. If the command is
issued from a program, the Monitor Message (MONMSG) command can be
used to determine that the allocation was not successful.

Note: If a file is being allocated that is affected by a file override, the
ALCOBJ command ignores the override and attempts to allocate the file
named in the OBJ parameter.

ALCOBJ

#LIBL 0 (@) gm +FIRST T
>-0BJ object—name object—type lockﬂatate{ —»
.library—name member—name
50 maximum
*CLS
S wALT { ﬁ—
seconds—to—wait

@ The values of only six object types are valid: *DEVD, *DTAARA, *FILE, *LIB, *MSGQ,
and *SBSD. Refer to the OBJ parameter description for the lock states that are valid
for each object type.

If valid for the specified object type, one of the following lock states can be specified:

*SHRRD, *SHRUPD, *SHRNUP, *EXCLRD, or #*EXCL.
IJob:B,l Pgm:B,I

v

Required
Optionsal

OBJ Parameter: Specifies the qualified names of one or more CPF objects
that are to be allocated to the job, the type of each object specified, the
lock state of each object, and if the object is a data base file, a member
name can optionally be specified. (If no library qualifier is given for an
object, *LIBL is used to find the object. Note that the LIB and DEVD object
types do not reside in user libraries and, therefore, cannot be qualified with
a library name.)

4-66

. ALCOBJ
If the member name is not specified for a data base file, the member name 0BJ

defaults to *FIRST and the first member of the file is allocated. (If the
specified file is a logical file, the physical file members associated with the
members of the logical file are also allocated to the job.)

For each object named, enter: the object name (optionally qualified)
followed by the object type, one lock state value, and (if applicable) the file

member name to be allocated.

The lock states that can be specified are:

Value Lock State Meaning
*SHRRD Shared for read
*SHRUPD Shared for update
*SHRNUP Shared, no update
*EXCLRD Exclusive, allow read
*EXCL Exclusive, no read

For an explanation of each lock state, refer to the CPF Programmer’s Guide.

Multiple locks can be specified for the same object within the same job with
duplicate or different lock states. Each lock is held separately. For example,
if an *EXCL lock is already held for an object and a second *EXCL lock
request occurs, the second lock is acquired. Both locks must be released in
the job (deallocated with the DLCOBJ command) before another job can
access the same object. If a user already has an object allocated with one
lock state and wants to use a different lock state, he should first use the
ALCOBJ command to request the new lock with the desired lock state and
then use the DLCOBJ command to release the old lock (with the old lock
state).

To determine if a device description can be allocated, the DSPDEVSTS
(Display Device Status) command should be entered. You can determine if
the device description can be allocated by using information shown by the
DSPDEVSTS command and from the following table. If, for the appropriate
device type,

« No job name is associated with the device, or if the job name associated
with the device is of the same job that is to issue the ALCOBJ
command, and

« The status field of the display indicates the following value,

you can attempt to allocate the device description object.

Command Descriptions 4-67

ALCOBJ

0o8J Device Type Status D
3203, 3262, 3410, 5211, 5424, VARIED ON
72MD, *BSCT
CONSOLE VARIED ON or SIGNON DISPLAY
*BSC, *PLU1 VARY ON PENDING' or VARIED ON
5224, 5225, 5251, 5252, 5256, VARY ON PENDING?', VARIED ONz?,
5291, 5292 or SIGNON DISPLAY
'Switched device
2Device is powered on

The device description will not be allocated if one of the following
conditions exist:

« Another job is allocating the device description
« Another job or object is opening a file to the device
« Another job is varying the device off

If the device description object cannot be allocated, reissue the DSPDEVSTS
command to determine the status of the device.

Only six of the CPF object types can be specified on the ALCOBJ J
command. Of these six, some cannot use all of the lock states. The

following table shows the CPF object types that can be specified and the

lock states allowed for each one (A = allowed).

Lock States
Object Type *SHRRD *SHRUPD *SHRNUP *EXCLRD *EXCL
*DEVD A
*DTAARA A A A
*FILE A A
*LIB A A A
*MSGQ A
*SBSD

When the user requests an exclusive lock on a logical file member, the lock
occurs on both the logical file member and the associated physical file
members. No other user can use the physical file members, even through
some other logical file member.

C

ALCOBJ

WAIT Parameter: Specifies the number of seconds that the program is to WAIT

wait for the object to be allocated. If the object cannot be allocated in the
specified wait time, a message, which can be detected by a MONMSG
command, is sent to the program.

*CLS: The default wait time specified in the class description used by the
routing step is to be used as the wait time for the object to be allocated.

seconds-to-wait: Enter the number of seconds that the program is to wait
for (all of) the specified objects to be allocated. Valid values are O through
32767 (32 767 seconds). If O is specified, no wait time is allowed.

Example

ALCOBJ OBJ((FILEA.LIBB *FILE *EXCL MEMBERA))

This command exclusively allocates MEMBERA of FILEA in LIBB to the
routing step in which the allocate command is used. If MEMBERA is
unavailable, the number of seconds to wait for it to become available is the
default wait time defined for the class used by the routing step.

Command Descriptions 4-69

ANSLIN
ANSLIN (Answer Line) Command

The Answer Line (ANSLIN) command identifies a communication line that
has been manually answered by the system operator. This command
indicates that the operator has manually answered an incoming call and
validated the requirements of the caller. When this command is entered,
CPF executes the manual answer sequence for the line and, when
completed, instructs the operator to select data mode on the modem.

Required

ANSLIN

LINE line—description—-name —

| Job:l

LINE Parameter: Enter the name of the communication line that is being
answered.

Example
ANSLIN LINE(LINEO1)

This command answers an incoming call on a line named LINEO1.

4-70

C

APYJRNCHG (Apply Journaled Changes) Command

APYJRNCHG

The Apply Journaled Changes (APYJRNCHG) command applies the changes
that have been journaled (for a particular member of a data base file) to a
backup version of the file to recover the file after an operational error or
some form of damage. The journaled changes are applied from the
indicated starting point, either at the point at which a file was last saved or
at a particular entry on the journal, until the designated ending point has
been reached. The ending point can be the point at which the file has had
all changes applied, a designated entry has been reached, a designated time
has been reached, or the file was opened or closed by a job.

Note: The DSPJRN command can be used to help determine the desired
starting and/or ending points.

A list of physical files and members can be specified. The journaled
changes for physical file members are applied in the order that the journal
entries are encountered on the journal (the same order the changes were
made to the physical file members).

If an error is encountered at any point during the application of the journaled
entries, the command terminates and the file member(s) may be only
partially updated from the journal entries. (Termination errors include partial
damage to a receiver and any logical error in the file member, such as a
duplicate key.) The command also terminates when a journal entry is
encountered that indicates that:

+ The member was reorganized

« The member was restored

« Journaling was stopped for the member

« The member was deleted or saved with storage freed
« Journal IPL synchronization failed, or

« The member had its changes applied or removed (through the
APYJRNCHG or RMVJRNCHG command.

The user of the command may reissue the command, specifying a new
starting sequence number, if a restart is possible.

It is possible to apply changes even if the sequence numbers have been
reset. The system will handle this condition, send an informational message,
and continue to apply the changes. If journal receivers are attached and
detached in pairs (dual receivers), the system will always attempt to use the
first of the two receivers (the first of the two shown in the DSPJRNA
receiver directory). When the first of the pair is not accessible (for example,
damaged or not found), the system will attempt to use the second receiver
of the pair. If neither receiver is accessible, the application of changes will
terminate.

Command Descriptions 4-71

APYJRNCHG
{Diagram)

4-72

Restrictions: The files specified on this command must currently be having
their changes journaled and they must have been journaled to the specified
journal throughout the period indicated on the command. The files indicated
on the command are allocated exclusively while the changes are being
applied. If a file cannot be allocated, the command terminates and no
journaled changes are applied. If there is no journal entry that corresponds
to the ‘FROM’ or ‘'TO’ option, the command is terminated and no journaled

changes are applied.

If the journal sequence numbers have been reset within the range of
receivers specified, the first occurrence of the FROMENT or TOENT

parameter will be used, if they are specified.

Note: If the application terminates for one of the members specified, it

terminates for all of the members specified.

~LIBL ﬂ
JRN journal—-name

APYJRNCHG

Jdibrary—name J

v

file—name LIBL #FIRST ﬂ
>—FILE >—< >—€ #ALL
TCiALL @ Jibrary—name member—name —/
50 maximum Required
Optional
#*LASTSAVE (A.2)
{ #CURRENT (A.2)
>— RCVRNG _#LIBL —
starting—receiver—name (A.1)
Jibrary—name —/
#CURRENT —
(A..l)—(ALIBL >
ending—receiver—name {
Jibrary—name
*LASTSAVE —
(A.2) >~ FROMENT #FIRST —
starting—sequence—number —/
#LAST
'rozn'r{
ending—-sequence—number
TOTIME —end-date——end—time
TOJOBO — job—name.user—name.job—number
TOJOBC — job—name.user—name.job—number
@ The format is #%ALL.library—name.

J

-~ . APYJRNCHG
JRN Parameter: Specifies the qualified name of the journal associated with JRN

the journal entries that are to be applied. (If no library qualifier is given,
*LIBL is used to find the journal.)

FILE Parameter: Specifies the qualified name of the physical data base file to
which journal entries are to be applied.

file-name: Enter the name of the physical data base file that is to have its
journal entries applied. (If no library qualifier is given, *LIBL is used to find
the file.)

*ALL: All physical files within the specified library whose changes are being
journaled to the specified journal will have their journal entries applied. The
library name must be specified. If *ALL is specified and you do not have the
required authority for all the files in the library, a message is sent and the
application terminates.

The FILE parameter also specifies the name of the member within the file
that is to have its journal entries applied.

*FIRST: The first member in the file is to have journal entries applied.
*ALL: All members in the file are to have their journal entries applied.

member-name: Enter the name of the member within the file that is to have
its journal entries applied.

If *ALL is specified for the first part of this parameter, the value specified
for the member name is used for all applicable files within the library. For
example, if *FIRST is specified, the first member of all applicable files in the
library will have the changes applied.

Note: A maximum of 2566 members can have their changes applied with
one invocation of the command. |f this maximum is exceeded, an exception
is signaled and no changes are applied. You must change the values
entered on the FILE parameter so that the limit is not exceeded.

Command Descriptions 4-73

APYJRNCHG
RCVRNG

4-74

RCVRNG Parameter: Specifies the first and last journal receivers to be used
in applying the journal entries. The system will begin the application with
the first journal receiver (specified by the first value) and will proceed
through the receivers until the last receiver (specified by the last value) is

processed. If dual receivers were used at any time, the first of the receivers

will always be used when chaining through the set of receivers. If any

problem is encountered in the receiver chain (such as a damaged receiver or

a receiver not online) before the journal entries are applied, the system will
attempt to use the second of the dual receivers. If the second of the
receivers is damaged or offline, or if the problem is encountered during the
application of journal entries, the operation will terminate.

*LASTSAVE: The range of journal receivers to be used will be determined by

the system, based on save information for the files that are to have their
journaled changes applied. This parameter value is only valid if
FROMENT(*LASTSAVE) is also specified.

*CURRENT: Only the currently attached receiver will be used in applying the

journal entries.

First Parameter Value

starting-receiver-name: Enter the name of the journal receiver to be used as

the first (oldest) receiver. (If no library qualifier is given, *LIBL is used to
find the receiver.)

Second Parameter Value

*CURRENT: Application of journal entries will continue for all journal
receivers in the chain, beginning with the receiver specified by the first
parameter value through the currently attached journal receiver.

ending-receiver-name: Enter the name of the journal receiver to be used as
the last (newest) receiver with journal entries to be applied. If the end of
the receiver chain is reached before encountering a receiver of this name,

the operation is not performed and an escape message is sent. (If no library

qualifier is given, *LIBL is used to find the receiver.)

Note: The maximum number of receivers that can be used in a range of

receivers is 256. If this maximum is exceeded, an exception will be signaled

and no changes will be applied.

J

. . . APYJRNCHG
FROMENT Parameter: Specifies the entry to be used as the starting point for FROMENT

applying changes that have been journaled.

*LASTSAVE.: Specifies that the journal entries are to be applied beginning
with the first journal entry after the file member that was last saved. The
system will determine the actual starting position for each of the files
specified on the command. The parameter value implies that the file was
just restored onto the system.

Some validation is performed by the system for each member specified,
such as whether the date and time of the restore is after the date and time
of the last save. The system also verifies that the date and time of the
saved version of the file member that was restored onto the system match
the date and time that the file member was last saved, as indicated on the
journal.

If the dates and times do not match, the application of journaled changes is
not attempted and an inquiry message is sent to the system operator
requesting a cancel or ignore response. (If an ignore response is given to
the message, the operation is attempted. A cancel response causes the
operation to terminate.)

*FIRST: The journal entries are to be applied beginning with the first journal
entry in the first receiver supplied to this command.

starting-sequence-number: Specifies the sequence number of the first
journal entry that is to be applied from the journal entries supplied.

TOENT Parameter: Specifies the entry to be used as the ending point for
applying changes that have been journaled.

*LAST: Specifies that journal entries are to be applied through the last
entry.

ending-sequence-number: Specifies the sequence number of the last entry
that is to be applied to the file member.

TOTIME Parameter: Specifies the time and date of the last journal entry to
be applied to the file member. The first entry with that or the next earlier
time will be the ending point for the application of journal entries. The
format of the date must be defined by the system values QDATFMT and, if
separators are used, QDATSEP. The time can be entered as four or six
digits (hhmm or hhmmss) where hh = hours, mm = minutes and ss =
seconds. If colons are used to separate the time values, the string must be
enclosed in apostrophes (‘"hh:mm:ss’).

Command Descriptions 4-75

APYJRNCHG
TOJOBO

4-76

TOJOBO Parameter: Specifies that the journal entries are to be applied only
until the indicated job (fully qualified job name) first opens any physical file
member (or logical member defined over the physical member) in the list of
members specified on the FILE parameter that are to have their journal
entries applied. (This will be the ending point for all members specified.)

TOJOBC Parameter: Specifies that the journal entries are only to be applied
until the indicated job (fully qualified job name) last closes any physical file
member (or logical member defined over the physical member) that is in the
list of members specified on the FILE parameter that are to have their
journal entries applied, or until the indicated job was terminated. (This will
be the ending point for all members specified.)

Examples
APYJRNCHG JRN(JRNACT.FIN) FILE(RCVABLE.FIN)

This command will cause the system to apply to the first member of file
RCVABLE in library FIN all changes that were recorded in journal JRNACT
in library FIN since the file was last saved. The receiver range will be
determined by the system. The changes will be applied (beginning with the
first recorded change on the receiver chain after the file was last saved) and
will continue through all applicable journal entries.

APYJRNCHG JRN(JRNA) FILE((PAYROLL.LIB2 JAN))
RCVRNG(RCV22 RCV25) FROMENT(*FIRST)

This command will cause the system to apply all changes recorded in
journal JRNA to member JAN of file PAYROLL in library LIB2. The journal
receivers containing the journaled changes are contained in the receiver
chain starting with receiver RCV22 and ending with receiver RCV25. The
application will begin with the first change recorded on this receiver chain.
The library search list (*LIBL) is used to find the journal JRNA and the
journal receivers RCV22 and RCV25.

9

C

APYPGMCHG (Apply Programming Change) Command

The Apply Programming Change (APYPGMCHG) command applies
programming changes (PCs) or program patches to a program in the
specified library. If a PC is to be applied, it must have been loaded by the
LODPGMCHG command. If a program patch is to be applied, it must have
been created by the PCHPGM command.

When a PC is applied, it completely replaces the affected objects in the
licensed program. Either PCs or program patches can be applied temporarily
or permanently. If they are applied temporarily, the replaced object is saved
by the system and can later be restored to the program by the
RMVPGMCHG command. If PCs or program patches are applied
permanently, the replaced object is deleted from the system.

The APYPGMCHG command can be used to apply only immediate PCs, not
deferred PCs. Deferred PCs must be applied through the deferred
programming changes display. This display is explained in the System/38
Operator's Guide.

Optional

®

PGMID program-—ldentifier
APYPGMCHG {

@ #*ALL
SELECT i_w
PC—number
@ maximum

®) *TEMP
o Y

>— PGM program—name.library—name

LIB library—name —b@

@ PGMID and PGM are mutually exclusive. One or the other must be specified. To code
the following parameters positionally, you must code them in this order, using *N
for those not being specified: PGMID, LIB, SELECT, and OMIT.

If PGMID i{s specified, LIB is required.
SELECT or OMIT is valid only if PGMID is specified.

[Gov:B,1 Pgm:B,1]

APYPGMCHG

Command Descriptions 4-77

APYPGMCHG
PGMID

4-78

PGMID Parameter: Specifies the identifier of the program to which PCs are

to be applied. The PGM parameter cannot be specified if PGMID is
specified. If PGMID is not specified, PGM must be specified.

LIB Parameter: Specifies the name of the library that contains the program

specified by the PGMID parameter. If PGMID is specified, LIB must be
specified.

SELECT Parameter: Specifies which of the previously loaded PCs are to be

applied to the specified program. The OMIT parameter cannot be specified
if SELECT is specified.

*ALL: All the PCs that were loaded are to be applied to the program. If all
PCs cannot be applied, messages are sent indicating the PCs that were not
applied and the reasons they were not applied (for example, prerequisite
PCs had not been applied).

PC-number: Enter the PC identification numbers of the individual
programming changes that are to be applied. A maximum of 50 PC
numbers can be specified.

OMIT Parameter: Specifies that all the loaded PCs are to be applied except

for those specified in this parameter. Enter the PC numbers of the
programming changes that are to be omitted (not applied) when all the rest
are applied. A maximum of 50 PC numbers can be specified. The OMIT
parameter cannot be specified if individual PC numbers are specified in the
SELECT parameter.

PGM Parameter: Specifies the qualified name of the program to which a

program patch is to be applied. This parameter is valid only for applying
program patches. It cannot be specified if PGMID is specified. If PGM is
not specified, PGMID must be specified.

APY Parameter: Specifies whether the PCs or program patches are to be

applied on a temporary basis or permanently applied. Permanently applied
changes cannot be removed; temporary changes can be removed by the
RMVPGMCHG command.

*TEMP: The changes are to be applied as temporary changes.

*PERM: The changes are to be applied permanently.

APYPGMCHG

. Examples (Examples)

APYPGMCHG PGMID{5714SS1) LIB(QSYS)
This command applies all the programming changes currently in the library

QSYS that affect CPF {program number 5714SS1). The changes are
temporarily applied.

APYPGMCHG PGMID(5714SS1) LIB(QSYS) +
SELECT(00003 00008 00012) APY(*PERM)
This command permanently applies PCs 00003, 00008, and 00012 to the
CPF in library QSYS.

APYPGMCHG PGM(PAYPGM3.PAYLIB)

This command temporarily applies the program patch (that was created by
the PCHPGM command) to the program PAYPGMS3 in library PAYLIB.

Command Descriptions 4-79

CALL

4-80

CALL

(Call Program) Command

The Call (CALL) command invokes an executable program named on the
command, and passes control to it. Optionally, the program or user issuing
the CALL command can pass parameters to the called program. The CALL
command can be used in batch jobs, in interactive jobs, and in both
compiled and interpreted CL. When the called program completes its
execution, it can return control to the calling program by issuing the
RETURN command.

When the CALL command is issued by a CL program, each parameter value
passed to the called program can be a character string constant, a numeric
constant, a logical constant, or a CL program variable. When parameters are
passed, the value of the constant or CL variable is available to the program
that is called. Parameters cannot be passed in any of the following forms:
lists of values, qualified names, expressions, null parameters (that is, a
parameter whose value is null, specified by *N), or keyword parameters. A
maximum of 40 parameters can be passed to the called program.

When parameters are passed to a program using the CALL command, the
values of the parameters are passed in the order in which they appear on
the CALL command; this order must match the order in which they appear
in the parameter list in the calling program.

Parameters in a called program can be used in place of its variables.
However, no storage in the called program is associated with the variables it
receives. Instead, when a variable is passed, the storage for the variable is
in the program in which it was originally declared. When a constant is
passed, a copy of the constant is made in the calling program and that copy
is passed to the program called.

The result is that when a variable is passed, the called program can change
its value and the change is reflected in the calling program. When a
constant is passed, and its value is changed by the called program, the
changed value is not known to the calling program. So, if the calling
program calls the same program again, it reinitializes the values of
constants, but not variables.

Restriction: The user must have operational rights or one of the data rights
for the program being called.

CALL

.tLlBLﬂ
PGM program—name -<

dibrary—name —/

Ld

Required

>— PARM parameter—value]—
_L 40 maximum
I Job:B,I Pgm:B,I

Optional

C

PGM Parameter: Specifies the qualified name of the program to be invoked

by the calling program. (If no library qualifier is given, *LIBL is used to find

the called program.)

PARM Parameter: Specifies one or more parameter values that are to be

passed to the called program. Each of the values can be specified only in

one of the following forms: a character string constant, a numeric constant,

a logical constant, or a program variable.

The type and length of each parameter must match in both the calling and
receiving programs. The number of parameters and the order in which they

are sent and received must also match. If the CALL command is entered
interactively or in noncompiled batch mode, you must ensure that, for each
parameter being passed on the command, its type and length matches that
expected by the called program.

Parameters can be passed and received as follows:

« Character string constants of 32 bytes or less are always passed with a
length of 32 bytes (padded on the right with blanks). If a character
constant is longer than 32 bytes, the entire length of the constant is
passed. If the parameter is defined to contain more than 32 bytes, the
calling program must pass a constant containing exactly that number of
bytes. Constants longer than 32 characters are not padded to the length
expected by the receiving program.

The receiving program can receive less than the number of bytes passed
(in this case, no message is sent). For example, if a program specifies
that 4 characters are to be received and ABCDEF is passed {padded with
blanks in 26 positions), only ABCD is accepted and used by the program.
Quoted character strings can also be passed.

Decimal constants are passed in packed form and with a length of (15 5),
where the value is 15 digits long, of which 5 digits are decimal positions.
Thus if a parameter of 12345 is passed, the receiving program must
declare the decimal field as {15 5); the parameter is received as
1234500000 (which is 12 345.00000).

Logical constants are passed as 1 byte with a logical value of ‘1" or ‘0’.

A program variable can be passed if the call is made from a CL program,
in which case the receiving program must declare the field to match the
variable defined in the calling CL program. For example, if a CL program
defines a decimal variable named &CHKNUM as (5 0), the receiving
program must declare the field as packed with 5 digits total, with no
decimal positions.

Command Descriptions

CALL
PGM

4-81

CALL
(Examples)

4-82

If either a decimal constant or a program variable can be passed to the
called program, the parameter should be defined as (15 5), and any calling
program must adhere to that definition. If the type, number, order, and
length of the parameters do not match between the calling and receiving
programs (other than the length exception noted previously for character
constants), unpredictable results will occur.

The value *N cannot be used to specify a null value because a null value
cannot be passed to another program.

Examples

CALL PGM(PAYROLL)

The program named PAYROLL is called with no parameters being passed to
it. The library list is used to locate the called program.

CALL PAYROLL ‘1’

The program named PAYROLL is called with a character constant passed as
a quoted string. The program must declare a field of from 1 to 32
characters to receive the constant. The library list is used to locate the
called program.

CALL PAYROLL.LIB1 (CHICAGO 1234 &VAR1)

The program named PAYROLL located in library LIB1 is invoked by the
calling program. The calling program is passing three parameters: a
character string (CHICAGO), a decimal value (1234.00000), and the contents
of the CL variable &VAR1. The attributes of the variable determine the
attributes of the third parameter.

<9

L CHGAJE (Change Autostart Job Entry) Command CHGAJE

The Change Autostart Job Entry {(CHGAJE) command is used to specify a
different job description for a previously defined autostart job entry in the
specified subsystem description. The subsystem associated with the
subsystem description must be inactive when the change is made.

Restriction: To use this comniand, you must have operational and object
management rights for the subsystem description.

.#LIBL ﬂ
CHGAJE BSD subsystem—description—name { >
.library—-name —/ .
Required
Optional

*SAME
>—JOB job—name——1——JOBD *SBSD
#LIBL
job—description—name
.library —name

I Job:B,I Pgm:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
‘ containing the autostart job entry to be changed. (If no library qualifier is
given, *LIBL is used to find the subsystem description.)

JOB Parameter: Specifies the simple name that identifies the autostart job
entry in the subsystem description whose attributes are to be changed.

JOBD Parameter: Specifies the name of the job description to be used for
the job that is initiated by this autostart job entry.

*SAME: The job description specified in the existing autostart job entry is
to be used.

*SBSD: The job description having the same qualified name as the
subsystem description, specified by the SBSD parameter, is to be used for
the initiated job.

qualified-job-description-name: Enter the qualified name of the job
description to be used for the job initiated by this autostart job entry. (If no
library qualifier is given, the library list (*LIBL) of the job in which this
CHGAJE command is executed is used to find the job description.) If the
job description does not exist when the entry is changed, a library qualifier
must be specified because the qualified job description name is retained in
the subsystem description.

Command Descriptions 4-83

CHGAJE
(Example) Ex.mp'.

CHGAJE SBSD(PAYROLL.QGPL) JOB(INIT) +
JOBD(MANAGER)

This command changes the JOBD parameter, for the autostart job entry
INIT, to MANAGER. The work entry is in the PAYROLL subsystem
description that is in the QGPL library. The library list is used to locate the
job description MANAGER. When the correct library is determined, the
qualified job description name is placed in the subsystem description for this
autostart job entry.

4-84

‘L CHGBSCF (Change BSC File) Command CHGBSCF

The Change BSC File (CHGBSCF) command can be used to change certain
attributes of a BSC device file. If nothing is specified, or if *SAME is
specified, that attribute of the file remains unchanged.

Required | Optional

.*LIBL *SAME @
FILE BSC—device—file—name—{ >——DEV~€ *NONE
Jdibrary—name device—name

*SAME *
#*NONE }
*ITB

CHGBSCF

*IRS

>-BLOCK *NOSEP \f
*USER
\ *SAME
*SEP —<:
record—separator—character

*SAME *SAME *SAMEB \
> BLKLEN—€ *CALC%—TRNSPY{ *NO ‘5——DTACPR ‘€ *NO —p
‘ block—length *YES *YES

#SAME *SAME H
>—TRUNC~€ *NO GRPSEP {tNULLRCD a
*YES *ETX

*SAME ﬁ *SAME \
>—WAITFILE ~€ *IMMED SHARE ‘€ *NO

*CLS ﬁf #*YES
number—of—seconds
*HAME *SAME
>—LVLCHK~€ *YES 37 Tm—€ #BLANK
*NO ‘deacription’

v

v

v

I Job:B,I Pgm:B,l1 ‘

Command Descriptions 4-85

CHGBSCF
FILE

4-86

FILE Parameter: Specifies the qualified name of the BSC device file whose

description is being changed. (If no library qualifier is given, *LIBL is used
to find the file.)

DEV Parameter: Specifies the name of the System/38 BSC device that is to

be used with the BSC device file to send and receive data records.

*SAME: The device name, if any, specified in the device file description
remains the same.

*NONE: No device name is to be specified. Any device names to be
specified must be specified later in an OVRBSCF command, in another
CHGBSCF command, or in the HLL (high-level language) program that
opens the file.

device-name: Enter the name of the BSC device that is to be used with this
BSC file. The device name must be known to the system via a device
description.

BLOCK Parameter: Specifies whether the system or the user will block and

deblock transmitted records. With this parameter, you may specify one of
the following conditions of record formatting:

no blocking /deblocking: The record format described in the DDS (data
description specifications) is the format for both the record and the block.

user blocking /deblocking: You must provide the BSC controls needed to
describe the record format to the system.

system blocking with record separator characters: You specify the record
separator character used by the system to determine record boundaries
within the block.

system blocking of fixed-length records: The system uses fixed-length
records, and blocks/deblocks records accordingly. The record separator
character is added when a record is transmitted, and removed before the
record is returned to your program.

If you specify a parameter value other than *NONE, or *USER, records will
be blocked as required by the system for output and deblocked on input.
Blocking may be done with or without record separator characters. If
TRNSPY(*YES) is specified, the records may be blocked without record
separator characters, by specifying BLOCK(*NOSEP), or the records may be
transmitted one record at a time by specifying BLOCK(*NONE). By
specifying BLOCK(*USER), you may block records to include the BSC
transparency controls. If TRNSPY(*NO) is specified, all blocking options are
valid. The record length, when used, is obtained from the device file. A
maximum of 512 records will be blocked for transmitting. When the system
blocks and deblocks the records, record separator characters and control
characters will not be passed to your program as data.

9

. CHGBSCF
*SAME: Specifies that the BLOCK parameter value is to remain the same. BLOCK

*NONE: Specifies that no blocking or deblocking will be done by the
system.

*|TB: Specifies that the records are to be blocked or deblocked, based on
the location of an ITB (intermediate text block) control character. For input
files, a record will be delimited by locating the next ITB character. An ETX
(end of text) or ETB (end-of-transmission block) character will be used as
an ITB character to delimit records. For output files, an ITB character will be
inserted after the record. If that is the last character of the block, the ITB
will be replaced by an ETX or an ETB character.

*IRS: Specifies that the records are to be blocked or deblocked, based on
the location of an IRS (interrecord separator) character. For input files, a
record will be delimited by locating the next IRS character. For output files,
an IRS character will be inserted after the record.

*NOSEP: Specifies that no record separator character is contained within
the transmission block sent to or received from the device. The system wiill
block and deblock the records according to a fixed record length, as
specified in the DDS (data description specifications) format specifications.

*USER: Specifies that your program is to provide all control characters,
including record separator characters, BSC framing characters, transparency
characters, and so forth, necessary to transmit records.

When transmitting records, BSC device support will scan the buffer for the
last nonblank byte to determine the length of the data to be transmitted.
For this reason, you must ensure that the unused portion of the buffer
contains blanks.

For receiving, you must specify with an ETX control character the end of the
received text. BSC device support will pad the remaining buffer space with
blanks.

This method of blocking allows you to transmit and receive variable-length
data blocks by using a single record format capable of accommodating the
maximum block length. Except for the padding and truncating with blanks,
BSC device support passes the data to and from the system when user
blocking is specified.

If you are using the Remote Job Entry Facility, BLOCK(*USER) must be
specified. For more information on RJEF, refer to the RJEF Programmer's
Guide.

Before selecting this option, you should have a good understanding of the
device and of the BSC support characteristics. For more information on
BSC support characteristics, refer to the IBM System/38 Data
Communications Programmer’s Guide, SC21-7825.

Command Descriptions

4-87

CHGBSCF
BLKLEN

4-88

*SEP: Specifies that the records are to be blocked or deblocked, based on

the location of a user-specified record separator character. For input files, a
record will be delimited by locating the next record separator character. For
output files, a record separator character will be inserted after the record.

record-separator-character: Specifies a unique one-byte record separator
character. The record separator character may be specified as two
hexadecimal characters, as in BLOCK(*SEP X'FD’), or as a single character,
as in BLOCK(*SEP @).

The following is a list of BSC control characters that must not be used as
record separators:

EBCDIC BSC Control

X'01 SOH (Start of header)

X'02 STX (Start of text)

X03 ETX (End of text)

X110 DLE (Data link escape)

X1D’ IGS (Interchange group separator)
X 1F ITB (Intermediate text block)
X'26' ETB (End-of-transmission block)
X'2D’ ENQ (Enquiry)

X'32 SYN (Synchronization)

X'37 EOT (End of transmission)

X'3D’ NAK (Negative acknowledgment)

You must be certain that none of these control characters are specified in
your data as record separator characters.

BLKLEN Parameter: Specifies the maximum block length (in bytes) for data

to be transmitted. This parameter changes the block length specified in the
program or in the device file.

*SAME: The block length is not to be changed.

*CALC: The block length is to be determined by the system. The length will
be 512 bytes or the length of the largest record in the device file, whichever
is greater.

block-length: The maximum block length of records to be sent when using
this device file. The value must be at least the size of the largest record to
be sent. Valid values are 1 through 8192.

CHGBSCF
TRNSPY Parameter: Specifies whether the text transparency feature is to be TRNSPY

used when sending blocked records. The text transparency feature permits
the transmission of all 266 EBCDIC character codes; you should use this
feature when transmitting packed or binary data fields.

*SAME.: The usage condition of the text transparency is not to be
changed.

*NO: The text transparency feature is not to be used.

*YES: The text transparency feature is to be used, which permits the use of
all 256 EBCDIC character codes. *YES is valid only when BLOCK(*NONE),
BLOCK(*NOSEP), or BLOCK(*USER) is specified.

Note: Transparency of received data is determined by the data stream;
therefore, this parameter is not relevant for received data. If TRNSPY(*YES)
is specified with BLOCK(*USER), BSC ignores the transparency indicator
during put operations. You must provide the proper controls with the data
in order to get transparent transmission of data. For example, you must
initially specify the DLE and STX control characters; System/38 provides
the remaining control characters for transparent transmission of data.

DTACPR Parameter: Specifies whether blanks in BSC data will be
compressed for output and decompressed for input. If TRNSPY(*YES) is
specified, or if the line description specifies CODE(*ASCII), DTACPR(*YES)
is ignored.

*SAME: The data compression is to remain as specified.
*NO: No data compression or decompression is to occur.

*YES: Data is to be compressed on output and decompressed on input.
TRUNC Parameter: Specifies whether trailing blanks are to be removed from
output records. TRUNC(*YES) cannot be specified if BLOCK(*NOSEP) or

TRNSPY(*YES) is specified.
*SAME: The TRUNC parameter is not to be changed.

*NO: Trailing blanks are not to be removed from output records.

®YES: Trailing blanks are to be removed from output records.

Command Descriptions 4-89

CHGBSCF .
GRPSEP GRPSEP Parameter: Specifies a separator for groups of data (data sets,

documents, and so forth).

*SAME: The value specified in the BSC file description is not to be
changed.

*NULLRCD: Specifies that a null record (STXETX) is to be used as a data
group separator.

*ETX: A transmission block ending with the BSC control character ETX is to
be used as a data group separator.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. This parameter changes the wait time
specified in the program or in the device file. (For an expanded description
of the WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description for the
needed objects is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is to be made.

*CLS: The default wait time specified in the class description is to be used
as the wait for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the BSC device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the BSC
device file can be shared with other programs in the same routing step. If
so, when the same file is opened more than once, the ODP can be shared
with other programs in the same routing step that also specify the share
attribute. When an ODP is shared, the programs accessing the file share
such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a write operation in that
program produces the next output record.

*SAME: The value specified in the BSC file description is not to be
changed.

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the

file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

4-90

CHGBSCF
LVLCHK Parameter: Specifies whether the level identifiers of the record LVLCHK

formats in this device file are to be checked when the file is opened by a
program. For this check (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file.

This parameter changes the value specified in the program or in the device
file. Level checking cannot be done unless the program contains the record
format identifiers.

*SAME: The value specified in the BSC file description is not to be
changed.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an open exception
occurs and an error message is sent to the program requesting the open.
*NO: The level identifiers of the record formats are not to be checked when

the file is opened.

TEXT Parameter: Specifies the user-defined text that describes the BSC
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example
CHGBSCF FILE(TRANSD1.COMM1) BLOCK(SEP X'EE’) WAITFILE(10)

This command changes the record separator character the system uses for
record blocking to hex EE. This command also changes to 10 seconds the
period of time the program will wait for file resources to be allocated. All
other values specified for device file TRANSD1 in library COMM1 remain as
specified in the CRTBSCF command.

Command Descriptions 4-91

cHaCMD CHGCMD (Change Command) Command

The Change Command (CHGCMD) command changes some of the
attributes of a command definition. It can specify a different command
processing program (CPP) to execute the command; it can also change the
mode or where it can be executed, and the text description for the
command. CL programs that use the command being changed by the
CHGCMD command do not have to be re-created. The CHGCMD command
does not change the parameter descriptions or validity checking information
in the command definition object.

Restrictions: The user must be authorized to use the CHGCMD command
and have object management and operational rights for the command that is
being changed. The CHGCMD command can be used to change only the
attributes of a created CL command (that is, those attributes that were
specified on the CRTCMD command). The CHGCMD command cannot be
used to change attributes of statements, such as command definition

statements.
.#UBL—
CHGCMD —— CMD command-—name -
.library—name —/
Required
Optional
*SAME
>— PGM —< nuBL >
program—name { >_/
Jlibrary—name
*SAME
*SAME *ALL
>— VLDCKR #NONB MODER *PROD
#LIBL *DEBUG
program—name *SERVICE
.1
ibrary-name 3 maximum
*SAME
*ALL
>— ALLOW *BATCH Tm{ -nmx?—
*INTERACT 'description'
*BPGM
*IPGM
*EXEC
5 maximum
IJob:B,I Pgm:B,I

4-92

. CHGCMD
CMD Parameter: Specifies the name of the command to be changed. The CMD

command can be a user-defined or IBM-supplied command. (If no library
qualifier is given, *LIBL is used to find the command.)

PGM Parameter: Specifies the name of the command processing program
(CPP) that is to execute the command.

*SAME: The current CPP is not to be changed.

qualified-program-name: Enter the name of the CPP that is to process the
command specified in CMD. (If no library qualifier is given, *LIBL is used to
find the CPP at command execution time.)

VLDCKR Parameter: Specifies the name of a program that, at compile time,
performs additional validity checking on the parameters in the command to
be executed. The validity checker is invoked to perform additional
user-defined validity checking beyond that specified by the command
definition statements in the source file, and beyond the syntax checking
done on the command when it is compiled.

*SAME: The current validity checking program is to be used for this
command.

*NONE: There is no separate validity checking program for this command.
All validity checking is done by the command analyzer and the command
processing program.

qualified-program-name: Enter the qualified name of the validity checker
that is to check the validity of the command whenever the command is
executed or validity checked (provided variables and expressions are not

used). (If no library qualifier is given, *LIBL is used to find the program at
command execution time.)

MODE Parameter: Specifies the modes of operation that the command can
be used in. One or more of the modes can be specified.

*SAME: The modes of operation in which the command can be used
remain the same.

*ALL: The command is to be valid in all the modes of operation:
production, debug, and service.

*PROD: The command is to be valid in the production mode.
*DEBUG: The command is to be valid in the debugging mode.

*SERVICE: The command is to be valid in the service mode.

Command Descriptions 4-93

CHGCMD
ALLOW

4-94

ALLOW Parameter: Specifies where the command can be executed. One or
more of the following options can be specified.

*SAME: Where the command can be executed is not to be changed.
*ALL: The command is valid in a batch input stream, in a CL program, or
when executed interactively. It can also be passed to the system program

QCAEXEC to be executed.

*BATCH: The command is valid in a batch input stream, external to a
compiled CL program.

*INTERACT: The command is valid when executed interactively, external to

a compiled CL program.

*BPGM: The command can be included in a compiled CL program that
executes in the batch input stream.

*|PGM: The command can be included in a compiled CL program that
executes interactively.

*EXEC: The command can be used as a parameter on the CALL command
and be passed as a character string to the system program QCAEXEC to be
executed. If *EXEC is specified, either *BATCH or *INTERACT must also be

specified.

TEXT Parameter: Specifies the user-defined text that briefly describes this
command and its function. The text specified here replaces any previous

text. (For an expanded description of the TEXT parameter, see Appendix A.)

*SAME: The text, if any, is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Examples

CHGCMD CMD(PAYROLL) VLDCKR(PAYVLDPGM.LIBO1)

The validity checking program for the PAYROLL command is the program
named PAYVLDPGM located in library LIBO1. All other attributes of the
PAYROLL command remain the same.

9

L CHGCMNF (Change Communications File) Command CHGCMNF

The Change Communications File (CHGCMNF) command changes attributes
in the file description of a communications device file.

#*LIBL ﬂ
CHGCMNF —— PILE communications—device—file—name _/ >
library—name Required
Optional

*SAME ;s.un:
> DW—€ #NONE %—— LOGON —€ #NONE >
evice—name logon—-characters —/
#SAME *SAME *SAME
> LOGOFF —€ #NONE ;—m‘mn{ spm{ #YES 3—*
logoff—characters block—-length #*NO

#SAME — *SAME \

>— WAITFILE { *IMMED) SHARE { *NO >
*CLS —/ *YES
number—of—seconds

#*8AME
>— LVICHK —€ #YBS ﬁ——- Tm—€ -BLANK
*NO 'description’

FILE Parameter: Specifies the qualified name of the communications device
file whose description is being changed. (If no library qualifier is given,
*LIBL is used to find the file.)

DEV Parameter: Specifies the name of the System/38 communications
device that is to be used with this device file to send and receive data
records from another system.

*SAME: The device name, if any, specified in the device file description,
remains the same.

*NONE: No device is to be specified. It must be specified later in an
OVRCMNF command, in another CHGCMNF command, or in the HLL
program that opens the file.

device-name: Enter the name of the communications device that is to be

used with this communications file. The device name must already be
known on the system via a device description.

Command Descriptions 4-985

CHGCMNF .
LOGON LOGON Parameter: Specifies the text that is to be transmitted to the primary

logical unit host when the file is opened. The text is limited to 80
characters, and its format is host-dependent.

*SAME: The logon text specified in the communications file description is
not to be changed.

*NONE: No logon text is to be specified.

logon-characters: Enter the text that is to be transmitted to the primary
logical unit host when this file is opened.

LOGOFF Parameter: Specifies the logoff text that is to be transmitted to the
primary logical unit host when the file is closed. The text is limited to 80
characters, and its format is host-dependent.

*SAME.: The logoff text specified in the communications file description is
not to be changed.

*NONE: No logoff text is to be specified.

logoff-characters: Enter the text that is to be transmitted to the primary
logical unit host when this file is closed.

BLKLEN Parameter: Specifies, in bytes, the maximum block length for data
that is to be transmitted or received by the communications file.

*SAME: The block length specified in the device file description stays the
same.

*CALC: The device support chooses an optimum value based on the record
sizes in the device file. Device support calculates the smallest multiple of
1792 that is greater than or equal to the largest record in the device file.
The calculated value includes the new line (NL) or form feed (FF) characters
that follow each record when RCDSEP(*YES) is specified.

block-length: Enter a value {256 through 32767) that specifies the maximum
block length of records to be processed by this communications device file.
This value must be at least the size of the largest message expected to be
transmitted or received. Also, it must include the new line {(NL) or form feed
(FF) characters that follow each record when RCDSEP(*YES) is specified.

. CHGCMNF
SPAN Parameter: Specifies whether logical records are to be allowed to span SPAN

request unit boundaries during output operations.

*SAME: The boundary characteristics of request units are not to be
changed.

*YES: The system places as much data as possible into a request unit.
When this parameter value is specified, a request unit may contain any of
the following:

« One or more complete records

« One or more complete records plus a partial record

« A partial record

*NO: The system places as many complete records as possible into a

request unit, but will never allow a request unit to contain a partial record.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description for the
needed objects is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used.
number-of-seconds: Enter the number of seconds that the program is to

wait for the file resources to be allocated to the communications device file.
Valid values are 1 through 32767 (32 767 seconds).

Command Descriptions 4-97

CHGCMNF n
SHARE SHARE Parameter: Specifies whether the ODP (open data path) for the)

communications device file can be shared with other programs in the same
routing step. If so, when the same file is opened by other programs that
also specify SHARE(*YES), they use the same ODP to the file. If a program
that specifies SHARE(*NO) opens the file, a new ODP is used.

*SAME: The value specified in the communications file description is not
to be changed.

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the
file, a new ODP to the file is created and activated.

*YES: An ODP is to be shared with each program in the routing step that
also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check {done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*SAME: The value specified in the communications file description stays

B/
the same. ’

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not all match or they have not
been specified in the program, an open error message is sent to the
program requesting the open.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

4-98

CHGCMNF

TEXT Parameter: Specifies the user-defined text that describes the TEXT

communications device file. (For an expanded description of the TEXT
parameter, see Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example
CHGCMNF FILE(FILEB) WAITFILE(*IMMED)
This command changes the number of seconds that the program waits for

FILEB resources to be allocated such that the program does not wait; when

FILEB is opened, its file resources must be allocated immediately or an error
occurs.

Command Descriptions 4-99

CHGCNPA

CHGCNPA (Change CSNAP Attributes) Command

The Change CSNAP Attributes (CHGCNPA) command changes the CSNAP
(communications statistics network analysis procedure) current short-term
statistics sampling parameters.

Optional

*SAME ﬁ
*NONE

\

*ALL
line—description—name :|—/
8 maximum

CHGCNPA

LINE

v

*SAME
>—PERIOD ‘{ #CURRENT *CURRENT
start—-time —C }—end—tima {
start—date end—date
*SAME
>—INTERVAL —(->——
interval

0.1 through 24.0

I Job:B,I Pgm:B,I

LINE Parameter: Specifies the name(s) of the line(s) CSNAP is to monitor for
short-term statistics. Up to 8 line names may be used, or if *ALL is
specified, all communications lines that are described to the system will
have this set of changed CSNAP parameters applied.

*SAME: CSNAP is to monitor for short-term statistics for the same line(s)
that are currently set in the system. If no lines are being sampled and
*NONE is specified, an error message will be sent.

*NONE: No lines are to be sampled.

*ALL: All communications lines currently described to the system will be
sampled for statistics.

line-description-name: Enter up to 8 line description names to be sampled
by CSNAP.

J

CHGCNPA
PERIOD Parameter: Specifies the period of time for which CSNAP start-time 'PERIOD

statistics are to be sampled and recorded.

This parameter contains two lists of two values each. Refer to the syntax
diagram for the order in which the values are specified. If this parameter is
not specified, the default of *SAME is used and the period that is set in the
system is used. The period of sampling is defined by using the start-time
and start-date, followed with the end-time and end-date. Under any of the
following conditions, an error message will result:

- If the end-time, end-date is earlier than the start-time, start-date.

« If the end-time, end-date is more than 120 hours later than the
start-time, start-date.

« |f the end-time, end-date is more than 3 hours later than the start-time,
start-date and the INTERVAL parameter specifies a sampling interval of
less than one hour.

« If the period and interval values have been reset to zero and new values
have not been entered.

*SAME: The CSNAP short-term statistics values that are currently set in
the system will continue to be used.

*current: The samplings that are to be taken for the CSNAP short-term
statistics are for the current date, between the specified starting and ending
times.

start-time: Enter the time at which CSNAP short-term statistics are to
begin.

start-date: Enter the date on which the first CSNAP statistic samplings are
to be taken. The starting date specified is not to exceed 5 days (120 hours)
from the present system date. .

end-time: Enter the time at which CSNAP statistics are to be ended.

end-date: Enter the date on which CSNAP statistic samplings are to end.
The ending date specified is not to exceed 5 days (120 hours) from the
present system date.

INTERVAL Parameter: Specifies the interval spacing for which CSNAP
recording is to be done. This sampling interval can range from 0.1 hours up
to 24 hours in 0.1 increments. The value should be entered in the form
HH.H (hours and one-terth hours).

*SAME: The recording interval of CSNAP statistics is to remain the same
as that currently set in the system.

Command Descriptions 4-101

CHGCNPA

(Example) Example . ’

CHGCNPA LINE(LN1) PERIOD((133000 *CURRENT) (153000 *CURRENT)) +
INTERVAL(.3)

This command sets the CSNAP short-term attributes to start recording at

13:30 on today’s date, and to end sampling at 15:30 on today’s date,
sampling at intervals of 0.3 hour.

4-102

C

CHGCRDF (Change Card File) Command

The Change Card File {CHGCRDF) command changes, in the file description,

one or more of the attributes of the specified card device file.

-
>

CHGCRDF

.*unL——-\
FILE card—device—file—name —<

library—name -/

Required

Optional

—

#SAME *SAM!:
> DEV ‘€ #NONE HOPPER 4{
device—name hopper—number —/
*SAME *SAME
> SPOOL ‘€ *YES 3— ouTQ {
*NO output—queue—name -(

.*LIBL

library—name

—»

v

*SAME ﬁ
> FORMTYPE ~€ *STD %—— COPIES { >
form—type number—of—copies

*SAME —
>— MAXRCDS

v

*NOMAX
maximum-records -—]

v

*SAME *SAME ﬂ
> FILEBBP{ ,—— SCHEDULE #JOBEND
number—of—-file—separators lFILBEND

v

*IMMED
*SAME *SAME
>— HOLD -€*No ‘3—— SAVE —€#N0
*YES *YES

#*«SAME * *SAME \
>— WAITFILE *IMMED SHARE —{

*NO
*CLS *YES
number—of—seconds —/

*SAME
>— TEXT —€ mmx?—
'description’

v

I Job:B,I Pgm:B,I

|

FILE Parameter: Specifies the qualified name of the card device file whose
description is being changed. (If no library qualifier is given, *LIBL is used
to find the file.}

Command Descriptions

CHGCRDF

4-103

CHGCRDF
DEV

4-104

DEV Parameter: Specifies the name of the card device that is to be used with

this device file to perform input/output data operations. The device name of
the IBM-supplied card device description is QCARD96.

*SAME: The device name, if any, specified in the device file description
remains the same.

*NONE: No device name is to be specified. It can be specified later on an
OVRCRDF command or when the card device file is opened.

device-name: Enter the name of the device that is to be used with this card
device file. The device name must already be known on the system via a
device description.

HOPPER Parameter: Specifies from which hopper of the MFCU the cards are

to be fed when this card device file is used. Valid entries are 1 {for the
primary hopper) and 2 (for the secondary hopper).

*SAME: The hopper number specified in the device file description is not
to be changed.

hopper-number: Enter either a 1 or a 2 to indicate which hopper of the
MFCU is to be used.

SPOOL Parameter: Specifies whether the input or output data for the card

device file is to be spooled. If SPOOL(*NO) is specified, the following
parameters in this command are ignored: OUTQ, FORMTYPE, COPIES,
MAXRCDS, FILESEP, SCHEDULE, HOLD, and SAVE.

*SAME: The value specified in the device file description is not to be
changed.

®YES: The data is to be spooled. If this file is opened for input, an inline
data file having the specified name is processed; otherwise, the next
unnamed inline spooled file is processed. (For a discussion of nhamed and
unnamed inline files, see the CPF Programmer's Guide.) If this file is opened
for output, the data is spooled for processing by a card, diskette, or print
writer.

*NO: The data is not to be spooled. If this file is opened for input, the data
is read directly from the card device. If this is an output file, the data is
sent directly to the device to be punched or printed as the output becomes
available.

9

CHGCRDF
OUTQ Parameter: Specifies, for spooled output only, the name of the output ouTa

queue for the spooled output file.

*SAME: The same output queue specified in the device file description is
to be used.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. (If no library qualifier is given,
*1 IBL is used to find the queue.) The IBM-supplied output queue that can
be used by the card file is the QPUNCH output queue, stored in the QGPL
library.

FORMTYPE Parameter: Specifies, for spooled output only, the type of form
(cards) on which the card device is to produce the output. The identifiers
used to indicate the type of cards are user-defined and must not be longer
than 10 characters.

*SAME: The type of cards specified in the device file description remains
the same.

*STD: The standard card type used in your installation is to be used for
output from jobs using this card device file.

form-type: Enter the identifier of the card type to be used for output from

jobs using this card device file. A maximum of 10 alphameric characters can
be specified.

COPIES Parameter: Specifies, for spooled output files only, the number of
copies (card decks) of the output to be produced by the card device.

*SAME: The number of copies specified in the device file description is not
to be changed.

number-of-copies: Enter a value, 1 through 99, that indicates the number of
identical card decks to be produced when this device file is used.
MAXRCDS Parameter: Specifies the maximum number of records that can

be in the spooled output file for this card device file.

*SAME: The maximum number of records specified in the device file
description remains the same.

*NOMAX: No maximum is specified for the number of records that can be
in the spooled file.

maximum-records: Enter a value, 1 through 500000 (500 00Q), that specifies
the maximum number of records that can be in the spooled output file.

Command Descriptions 4-105

CHGCRDF
FILESEP FILESEP Parameter: Specifies, for spooled output files only, the number of)

separator cards to be placed at the beginning of each output card deck,
including between multiple copies of the same output. Each separator card
will contain the file name, file number, job name, the user name, job
number, and the date and time when the job was executed.

*SAME: The number of separator cards specified in the device file
description is not to be changed.

number-of - file-separators: Enter the number of separator cards to be placed
at the beginning of each card deck produced by spooled jobs that use this
card device file. Valid values are O through 9. If O is specified, at the end of
each output file a message is sent to the message queue specified on the
STRCRDWTR command that started the writer; the message indicates that
the output just produced is to be removed from the device.

SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a spooling writer.

*SAME: The time specified in the device file description when spooled
output can begin remains the same.

*JOBEND: The spooled output file is to be made available to the spooling
writer only after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the spooling ,
writer as soon as the file is closed in the program.

*|MMED: The spooled output file is to be made available to the spooling
writer as soon as the file is opened in the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a spooling
writer when it is released by the RLSSPLF (Release Spooled File) command.

*SAME: The value specified in the device file description is not to be
changed.

*NO: The spooled output file is not to be held on the output queue. The
spooled output is made available to a spooling writer based on the
SCHEDULE parameter.

*YES: The spooled output file is to be held until it is released by the
RLSSPLF command.

4-106

*HGCRDF
SAVE Parameter: Specifies, for spooled output files only, whether the AVE

spooled file is to be saved (left on the output queue) after the output has
been produced. |

*SAME: The value specified in the device file description is not to be
changed.

*NO: The spooled file data is not to be retained on the output queue after it
has been produced.

*YES: The spooled file data is to be retained on the output queue until the
file is deleted.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error |
message is sent to the program. (For an expanded description of the \
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description is not to be
changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to |
wait for the file resources to be allocated to the card device file. Valid ‘
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the card
device file can be shared with other programs in the same routing step. |f
so, when the same file is opened more than once, the ODP can be shared
with other programs in the same routing step that also specify the share
attribute. When an ODP is shared, the programs accessing the file share
such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a read operation in that
program retrieves the next input record. A write operation produces the next
output record. ;

*SAME: The value specified in the device file description is not to be |
changed. i

*NO: An ODP created by the program with this attribute is not to be shared 1
with other programs in the routing step. Every time a program opens the

file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

Command Descriptions 4-107

CHGCRDF - :
TEXT TEXT Parameter: Specifies the user-defined text that describes the card

device file. (For an expanded description of the TEXT parametar, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Examples
CHGCRDF FILE{PCHRPT.ACCREC) COPIES(3)
This command changes the description of the card device file named
PCHRPT stored in the ACCREC library. The number of copies (card decks)

to be punched is changed to three. No other values in the file description
are changed.

4-108

C

CHGCUD (Change Control Unit Description) Command

The Change Control Unit Description (CHGCUD) command changes some of
the attributes in the description of the specified control unit. The control
unit must be varied offline before the attributes can be changed, except for
the ONLINE and TEXT attributes. The changes become effective when the
control unit is varied online.

®

»
»

Required

CUD control—unit—description—name

CHGCUD

Optional

#SAME *SAME *

>—ACTSWNBKU —€ *NO 5—TELNBR ~€ *NONE »
*YES tolephone—number—/

. *SAME *SAMEﬂ
>—INLCNN—€ *ANS LCLID~€ *NONE) —
*CALL local—identifier
*SAME — E *SAME
*NONE identifier ONLINE #*YES 5—-—>
*NO

remote—identifier—list{ #*NOID
*ANY

>—RMTID

32 maximum

*SAME *BAME *SAME —J
>—LINLST DLYFEAT ‘€ *NO 5* DEVDLY{
ame *YES number—of—seconds

line—-n
8 maximum

*EAME
*NONE
*SAME *SAME *RES
> PGMDLY -C ’*RJE { *NO 5—!«.1131{051‘ *JES2
number—of—seconds *YES *JBS3
*RSCS

>—RJELOGON

*SAME — *SAME
*NONE 7 'rm—€ #BLANK
RJE-host—signon/logon 'description’

[3ob:B,1 Pgm:B.1

Command Descriptions

4-109

GHGCUD .
tub CUD Parameter: Specifies the name of the control unit description that is to)

have one or more of its attributes changed.

ACTSWNBKU Parameter: Specifies, for BSC, PU2, or 56251 control units
attached to nonswitched lines only, whether the switched network backup
feature (if the feature is installed) is to be activated or de-activated. This
feature lets you bypass a broken nonswitched connection (leased line) by
converting the line to a switched line operation. (This parameter applies only
if SWITCHED(*NO) and SWNBKU(*YES) are specified in the control unit
description; *SAME must be specified for TYPE(*BSCT).)

*SAME: The value specified in the control unit description is not to be
changed.

*NO: The backup feature is to be de-activated if it was active.

*YES: The backup feature is to be activated if it is not active.

TELNBR Parameter: Specifies, for remote control units only, the telephone
number of this control unit if it is associated with a switched line, or if it is
associated with a nonswitched line and has the switched network backup
feature. The telephone number (1 to 16 digits long) is dialed at the
System /38 site to establish a connection to this control unit. (This
parameter applies only to switched lines and to nonswitched lines with
SWNBKU(*YES) specified in the control unit description.} The telephone J
number is:

« Sent to the autocall unit, if automatic calling is used to establish a
connection to this control unit

« Displayed to the system operator, if manual calling is used to call this
control unit

*SAME: The value specified in the control unit description is not to be
changed.

*NONE: The line is nonswitched, so no telephone number is specified.

telephone-number: Enter the telephone number that is to be used to call this
control unit.

4-110

INLCNN Parameter: Specifies, for remote control units only, the method to ﬁhgﬁ:o
be used to make the initial connection over a switched line between !
System/38 and the control unit. (This parameter applies to switched lines |
and to control units that have the switched network backup feature
activated because ACTSWNBKU(*YES) was specified.)

*SAME: The method of initial connection remains the same.

“ANS: The initial connection is made by System/38 when it answers an
incoming call from this control unit.

*CALL: The initial connection is made by a call initiated from System/38.

LCLID Parameter: Specifies the local identifier for identifying System/38 to
the remote BSC control unit. ‘

*SAME: The local identifier is not to be changed.
*NONE: No local identifier is to be specified. i

local-identifier: A string of from 2 to 15 characters for identifying |
System/38 to a remote BSC control unit. If a 2-character identifier is
specified, both characters must be the same. The identifier cannot contain
BSC control characters.

RMTID Parameter: Specifies a list of identifiers for remote BSC control units.
*SAME: The list of identifiers is not to be changed. |

*NONE: Specifies that there are to be no remote identifiers. *NONE is valid ;
only for BSC control units with SWITCHED(*NO) and SWNBKU(*NO) ‘
specified. This parameter value should not be confused with *NOID, which |
is a valid remote identifier. ‘

remote-identifier-list: Enter the identifier or a list of identifiers (32 |
maximum) used by remote BSC control units. |f a 2-character identifier is
specified, both characters must be the same. The identifier cannot contain |
BSC control characters. *NOID specifies a null identifier; a null identifier can
be specified by itself or within a list of identifiers. *ANY instructs

System/38 to accept any identifier sent by a remote BSC control unit. If ‘
*ANY is specified, it must be the last or only identifier in the list.

Command Descriptions 4-111

CHGCUD
ONLINE

4-112

ONLINE Parameter: Specifies whether the control unit is to be varied online

automatically when the Control Program Facility {CPF) is started. After CPF

is started, the VRYCTLU (Vary Control Unit) command can be used to
modify the status of the control unit.

*SAME: The value specified in the control unit description is not to be
changed.

*YES: The control unit is to be online when CPF is started.

*NO: The control unit is to be offline when CPF is started. The VRYCTLU

command must be used to put the control unit online, making it operational.

LINLST Parameter: Specifies, for switched connections only, a list of line
names that identify the lines that can be connected to this control unit.
(This parameter is valid only if SWITCHED{(*YES) or SWNBKU(*YES) is
specified in the associated CRTCUD command. The parameter does not
apply to the 3411 tape control unit or to the work station controller.)

*SAME: The list of line names is not to be changed.

line-name: Enter the names of up to eight lines that can be connected to
this control unit. The same line name can be used more than once. For

each line name specified, a line description by that name must already exist.

The number of line names specified here cannot exceed the number of line
names currently in the line list of this control unit description.

By specifying one or more entries here, the entire existing list is replaced;

that is, if two line names are specified here to change an existing list of four

names, the first two names in the existing list are changed to the specified
names, and the last two are replaced with null lines.

DLYFEAT Parameter: Specifies, for nonswitched lines only, whether periodic
attempts should be made to contact this control unit (to establish a delayed

connection) if the initial attempt to establish a connection is not successful.
(This parameter is valid only for 5251 work station control units.)

*SAME.: The value specified in the control unit description is not to be
changed.

*NO: Only one attempt is to be made to establish a connection between the

line and the control unit.

*YES: Periodic attempts are to be made to establish a delayed connection
between the line and the control unit.

9

CHGCUD
DEVDLY Parameter: Specifies, for BSC and BSCT only, the number of DEVDLY

seconds the control unit will wait while receiving WACK (wait before
transmit positive acknowledgment) or TTD (temporary text delay) sequences ‘
from the remote device before time-out occurs.

*SAME: The time interval the control unit will wait is not to be changed.
number-of-seconds: The number of seconds the control unit will wait before

time-out occurs. |

PGMDLY Parameter: Specifies, for BSC and BSCT only, the number of
seconds the control unit will continue sending delay signals to the remote
device because of delays in issuing READ or WRITE requests. \
*SAME: The time interval for sending delay signals is not to be changed.
number-of-seconds: The number of seconds the control unit will continue to
send delay signals before time-out occurs.

RJE Parameter: Specifies, for BSC only, whether this control unit description |

is to be used by the Remote Job Entry Facility (RJEF). *

*SAME: The value specified in the control unit description is not to be
changed.

*NO: This control unit description is not to be used by RJEF.

*YES: This control unit description is to be used by RJEF. ‘
RJEHOST Parameter: Specifies, for BSC only, the subsystem type of the ;

host to which RJEF is connected. ‘

*SAME: The value specified in the control unit description is not to be i
changed.

*NONE: No RJEF host subsystem type is to be specified.
*RES: RJEF is connected to a VS1/RES subsystem.
*JES2: RJEF is connected to a VS2/JES2 subsystem.
*JES3: RJEF is connected to a VS2/JES3 subsystem.

*RSCS: RJEF is connected to a VM /370 RSCS subsystem.

Command Descriptions 4-113

CHGCUD
RJELOGON

4-114

RJELOGON Parameter: Specifies, for BSC only, logon information for the

RJEF host system.

*SAME: The logon information specified in the control unit description is
not to be changed.

*NONE: No logon information is to be specified; the control unit is not to
be used for RJEF.

'RJE-host-signon/logon’: Enter up to 80 characters of text enclosed in
apostrophes to be used as signon/logon information for the RJEF host
system.

TEXT Parameter: Specifies the user-defined text that describes the control

unit description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGCUD CUD(CONTROLO1) TELNBR(nnnnnnnnnn) +
LINLST(LINEO1)

This command changes the control unit description of the control unit
named CONTRLO1. The line list now contains the line name LINEO1, and
the telephone number is changed to the number represented here by the
letter n (nnn-nnn-nnnn). Because the line list is always changed from the
beginning of the list, LINEO1 replaced whatever line name was the first
name in the list.

J

C

CHGDBG (Change Debug Mode) Command

The Change Debug (CHGDBG) command changes the attributes of the
debugging environment currently in effect for a job. All of the attributes can
be changed, except which programs are to be debugged. Use the ADDPGM
or RMVPGM commands to add or remove a program from debug mode.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

Optional
*SAMEB ﬂ
CHGDBG ———— DFTPGM ~€ *NONE —>
program-—name —7

#*SAME
>— MAXTRC TRCFULL tsTOP'@——O
maximum-—trace—statements
>— UPDPROD —€ *NO ﬁ—
*YRS

I Job:B,I Pgm:B,I

DFTPGM Parameter: Specifies the name of the program that is to be the
default program in the job’s debugging environment. The program specified
here can be used as the default program for any of the other debug
commands that specify *DFTPGM on their PGM parameter.

*SAME: The same program, if any, currently specified as the default
program is to be used.

*NONE: No program is to be specified as the default program. Either the
default program must be named later in the ADDPGM command or another
CHGDBG command, or *DFTPGM cannot be the specified value (or taken as
the default) on any of the other debug commands.

program-name: Enter the simple name of the program that is to be the
default program for the job’s debugging environment. The same name (in
qualified form) must already have been specified in the PGM parameter of
the ENTDBG or ADDPGM command.

CI-‘GDBG

Command Descriptions 4-115

CHGDBG
MAXTRC

4-116

MAXTRC Parameter: Specifies the maximum number of trace statements

that the system is to put into the job’s trace file before either terminating
tracing or wrapping around (overlaying) on the trace file. When the trace file
contains the maximum specified, the system performs the actions specified
in the TRCFULL parameter.

*SAME: The maximum for the number of trace statements in the file is not
to be changed.

maximum-trace-statements: Enter the maximum number of trace statements
that can be in the trace file.

TRCFULL Parameter: Specifies what is to happen when the job’s trace file is

full (that is, it contains the maximum number of trace statements specified
by the MAXTRC parameter).

*SAME: The action to be taken when the trace file is full is not to be
changed.

*STOPTRC: In batch mode, tracing stops but the program continues to
execute. In interactive mode, a breakpoint occurs on the next trace
statement encountered, and control is given to the user.

*WRAP: The trace file is overlaid with new trace statements as they occur,
wrapping from the beginning of the file. The program continues to execute
until finished with no message to indicate that wrapping has occurred. The
trace file will never have more than the maximum specified statements, and
they will be the more recently recorded statements.

UPDPROD Parameter: Specifies whether or not data base files in a

production library can be opened for changes (that is, for adding, deleting,
or updating records in the file) while the job is in debug mode. If not, the
files must be copied into a test library before an attempt is made to execute
a program that uses the files.

*SAME: The previously specified value for this parameter is not to be
changed.

*NO: Data base files in production libraries cannot be changed in debug
mode. However, a data base file can be opened for reading only.

*YES: Data base files in production libraries can be changed while the job is
in debug mode.

Example

CHGDBG MAXTRC(400) TRCFULL(*STOPTRC)

This command changes the maximum number of trace statements that can be
put in the trace file to 400. The tracing is to be terminated when the file is full.

9

C

CHGDEVD (Change Device Description) Command

CHGDEVD

The Change Device Description (CHGDEVD) command changes some of the
attributes in the device description of the specified device. The device
attributes can be changed at any time, regardiess of whether the device is
online or offline. With the exception of parameter PRTIMG, the device
attributes become effective immediately. The attribute specified for PRTIMG
becomes effective when the system printer is next used.

CHGDEVD

@ *SAME —

Required | Optional

DEVD device—description—name ——1—— ONLINE ‘€

*SAME \

*YES
*NO

v

>— RETRY
error—type number—of—retries :I—/
2 maximum

v

> THR!SHOLD
error—type error—threlhold]-/
2 maximum

@Appues to diskette and tape devices only.

v

*SAME *SAME
>— DROP *YES 5——- PRINTER{ anom;
#*NO device— nnme

v

*SAME mnam——"
>— MSGQ ‘< .*LIBL—J y
message—queue—name —(
.library—name

v

*SAME —
>— PRTIMG { #LIBL
print—image—name {
1ibrary—name

*SAME iSAM!A
>— PRTFILE .*LIBL ALWBLN ‘€ *YES
print—file—name { *NO
.library—name

#JAME
>— CONTN -€ *8EC 9— 'rn'r—€ q-BLANK
*PRIM 'deacription’

v

[Job:B,1 Pgm:B,1]

Command Descriptions

4-117

CHGDEVD
DEVD

4-118

DEVD Parameter: Specifies the name of the device description that is to have

one or more of its attributes changed. The system console name,
QCONSOLE, cannot be specified in this parameter, because its description
cannot be changed.

ONLINE Parameter: Specifies whether this device is to be varied online

automatically when the Control Program Facility (CPF) is started. After CPF
is started, the VRYDEV (Vary Device) command can be used to modify the
status of the device.

*SAME.: The value specified in the device description is not to be changed.

®YES: The device is to be online when CPF is started.

*NO: The device is to be offline when CPF is started. The VRYDEV
command must be used to put the device online, making it operational.

RETRY Parameter: Specifies, for diskette and tape data errors only, the

number of times the system should attempt to recover from a data error
when data is read or written. The system operator is notified if the device
cannot recover from the data error in the specified number of retries.

If a retry value is to be specified, both the error type and retry values must
be specified. The range of valid values is shown in the following chart:

Applicable |Number of Error
Error Type Device Retries Threshold

Diskette 40-80 1-100
Tape 10-20 1-10
2 — Write error Tape 15-30 1-64

1 — Read error {

*SAME: The number of retries is not to be changed.

error-type number-of-retries: Enter the type code followed by the
maximum number of retries that the system can have to recover from the
specified device data error.

J

C

THRESHOLD Parameter: Specifies, for diskette and tape data errors only, the

error threshold values that are used to determine when an entry for an error
type is to be entered in the error log. The first occurrence of the error type
is always logged automatically. This parameter is used to specify the
number of errors that can occur before an error is logged again.

*SAME.: The values specified in the device description are not changed.

error-type error-threshold: Enter the error type code followed by a valid
error threshold value, after which the same error message is to be repeated
in the system error log. The values that are valid for each error type are
shown in the RETRY parameter chart. Both values must be entered for
each type of data error being specified.

DROP Parameter: Specifies, only for 5251 and 5252 devices attached to a

control unit that is on a switched line, whether the line is to be disconnected
by the system when all work stations on the line are no longer being used.
When multiple work stations are attached to the same control unit, the line
is disconnected only if: (1) the device description for this device specifies
DROP(*YES) or DROP(*YES) is specified on the SIGNOFF command when
the user signs off at the device; (2) all of the other display stations
connected to the control unit have signed off and are not in use; and (3) all
5224 /5225 /5256 Printers attached to the control unit are not in use.

The value specified in the device description can be overridden by a user
signing off at the device if he specifies the DROP parameter on the
SIGNOFF command.

*SAME: The value specified in the device description is not to be changed.

*YES: The switched line to the control unit to which this device is attached
is to be disconnected when this device and all the other attached devices
are no longer in use.

*NO: The switched line is not to be disconnected from the control unit
when all of its attached devices are no longer in use.

PRINTER Parameter: This parameter is valid only to change the device
description of a 5251 or 5252 Display Station. It specifies the device name
of the 5224 /5225/5256 Printer to be associated with the display station.
(The printer and the display station must be attached to the same control
unit.) The device description of the printer named in this parameter must
have already been created in a CRTDEVD command and must currently exist
on the system.

Note: A printer attached to a remote work station must have the Expanded
Function feature to support this parameter.

*SAME: The same 5224/5225/5256 Printer, if any, is to be associated
with this display station.

CHGJEVD
THRETHOLD

Command Descriptions 4-119

CHGDEVD
MSGQ *NONE: No 5224/5225/5256 Printer is to be associated with this display

station. ;’

device-name: Enter the name of the 5224/5225/5256 Printer (that is, the
same name as specified in the device description created for this printer) to
be associated with this display station. Both the printer and the display
must be attached to the same control unit.

MSGQ Parameter: Specifies, for 5224 /5225/5256 Printers only, the message
queue to which operational messages for this device are to be sent.

*SAME: The message queue specified in the device description is not to
be changed.

qualified-message-queue-name: Enter the qualified name of the message
queue to which operational messages are to be sent. (If no library qualifier
is given, *LIBL is used to find the queue.)

PRTIMG Parameter: Specifies, for a system printer device description only,
the name of the print image that is to be the standard print image for the
3203, 3262, or 5211 Printer.

*SAME: The print image specified in the device description is not to be
changed.

qualified-print-image-name: Enter the qualified name of the print image for J

the printer. (If a library qualifier is not given, *LIBL is used to find the print
image.)

PRTFILE Parameter: Specifies an alternate printer to use when no associated
work station printer exists, or when an error occurs during an attempt to use
the work station printer.

*SAME: The printer device file specified in the device description is not to
be changed.

qualified-print-file-name: Enter the name of the printer device file that is to

perform default system printing. (If no library qualifier is given, *LIBL is
used to find the device file.)

ALWBLN Parameter: Allows users to suppress the (software-controlled)
blinking cursor.
*SAME: The value in the ALWBLN parameter is not to be changed.
*YES: Allows the cursor to blink for 5250 display devices.

*NO: The blinking cursor is to be suppressed.

4-120

CHGDEVD

CONTN Parameter: Specifies which BSC station is primary and which is CONTN

secondary, in order to resolve contention for BSC point-to-point and
multipoint lines.

*SAME: The assignment of rank to the BSC stations is not to be changed.

*SEC: Specifies that the local System/38 is the secondary station and will
yield to the other station when line contention occurs.

*PRIM: Specifies that the local System/38 is the primary station.

TEXT Parameter: Specifies the user-defined text that describes the device

description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGDEVD DEVD(DISPO1) PRINTER(PRINTMASK1)

This command changes the device description of the display station named
DISPO1 to include a printer named PRINTMASK1.

Command Descriptions 4-121

CHGDFUDEF 3
CHGDFUDEF (Change DFU Definition) Command J

The Change DFU Definition (CHGDFUDEF) command begins a prompting
sequence for interactive modification of a DFU application. Your responses
to the prompts are used to create a new application or to replace the
original application.

The Data File Utility is part of the IBM System/38 Interactive Data Base
Utilities Program Licensed Program Product, Program 5714-UT1. For more
information on the Data File Utility, refer to the IBM System/38 DFU Ultility
Reference Manual and User's Guide, SC21-7714.

.iLIBLﬁ
-APP application—-name

Jdibrary—name —/

CHGDFUDEF

»
>

Required
Optional

*APP —
>—TOAPP—<

.QGPL _\J 4 d
application—name
library—name
*SAME —
>-F"»E—< #LIBL >
dntl-—bnae—f!le—nnmc-{ >—J
Jdibrary—name

*NOSRC

#NOSOURCE *NOLIST *NODUMP @
>—OPTION GENOPT{){

*8RC #LIST *DUMP

*SOURCE

#USER #*NORMAL #»SAMB
> usnrnr{ }—pumu’r WALL 5; TEXT —€ unmx?—
#OWNER *NONB 'description'

~ [Job:1 Pgm:l

APP Parameter: Specifies the qualified name of the application being
changed. (If no library name is given, *LIBL is used to find the application.)

4-122

TOAPP Parameter: Specifies the qualified name of the application in which
the changed application is to be stored.

*APP: Specifies that the original application is to be replaced by the
changed application.

application-name: Enter the name of the application in which the changed
application is to be stored. The application definition specified in the APP

parameter will remain as originally defined, and can be executed as originally

defined. (If no library name is given, the new application is stored in the
general-purpose library, QGPL.)

FILE Parameter: Specifies the name of an existing data base file with record

formats that will be referred to by the application you are changing. The file

is defined by DDS (see the CPF Reference Manual—DDS). The file contains
record formats that will be referred to by the application you are changing.

*SAME.: The data base file specified in the original application definition is
to be used.

data-base-file-name: Specify the name of an existing data base file to be

referred to during execution of the application. (If no library qualifier is
specified, *LIBL is used to find the file.)

OPTION Parameter: Specifies whether a listing of the UDS {utility definition

source) statements is to be printed, which may be helpful if problems occur.

*NOSRC or *NOSOURCE: Specifies that DFU is not to print a listing of
the UDS. The *NOSRC and *NOSOURCE values are equivalent.

*SRC or *SOURCE: Specifies that DFU is to print a listing of the UDS. The
*SRC and *SOURCE values are equivalent.

GENOPT Parameter: Specifies whether the IDU program listings for your
application are to be produced. These listings may be helpful if a problem
occurs.

*NOLIST: Specifies that an internal representation of the application
program is not to be printed.

*LIST: Specifies that an internal representation of the application program is

to be printed.

*NODUMP: Specifies that the application program template is not to be
printed.

*DUMP: Specifies that the application program template is to be printed.
*DUMP will provide the template only if *LIST has been specified.

CHGDFUDEF

TOAPP

Command Descriptions

4-123

CHGDFUDEF
USRPRF

4-124

USRPRF Parameter: Specifies a user profile under which the application is to

be executed. This parameter allows a programmer to define a DFU
application for someone who does not have full authority over the data base
file that the application reads.

*USER: The user profile of the application user is in effect when the
application is executed.

OWNER: The user profiles of both the application owner and the application
user are in effect when the application is executed.

When you create or change an application that is to be used by someone
else, you must authorize the user for the use of the application and any
objects associated with the application. You can grant each user specific
rights to such objects, or by specifying USRPRF(*OWNER) when an
application is created or changed, you can permit a user to temporarily
assume your authority to use objects associated with the application.

PUBAUT Parameter: Specifies what authority over the application is extended

to all system users. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL.: All system users can execute or read the application, but not
all users can delete the application.

*ALL: All system users have complete authority over the application.

*NONE: All users but the owner are restricted from using the application.
Of course, the owner can grant rights to other users.

TEXT Parameter: Specifies a brief description of the changed application.

*SAME: The description of the application is to remain as originally
defined.

*BLANK: There is to be no description of this application.

'description’: Enter no more than 50 characters, enclosed in apostrophes, to
describe the changed application.

J

E CHGDFUDEF
xample (Example)

CHGDFUDEF APP(TEST1) TOAPP(TEST2) +
TEXT('Create application for TEST2, based on TEST1')

This command begins a prompting sequence which allows you to create an
application named TEST2 in library QGPL based on application TEST1 in
your library list. Your responses to the prompts can result in changes to the
TEST2 application attributes (which differ from the based-on application
TEST1). Application TEST1 is not changed in any way. Application TEST2
uses data from the data base file specified for application TEST1. No UDS
or internal representations of application TEST2 will be printed. Any system
users can execute or read TEST2, but only the owner of the application can
delete it.

Command Descriptions 4-125

CHGDKTF

4-126

CHGDKTF (Change Diskette File) Command

The Change Diskette File (CHGDKTF) command changes, in the file
description, one or more of the attributes of the specified diskette device

file.
#LIBL ﬂ
CHGDKTF FILE dlnhtu—doﬂu—ﬁlo—nm—(>
1library—name j
Required
Optional
#SAMEB
> DEV ~€ #NONE %i -Noul >
device—name volume—identifier
50 maximum
#SAME ﬁ
> LABEL—€1NONB »>
data—file—label
#SAME
Select one of the following: 'an SLAST
> LoC—| *BAME 81 #5812 SWRAP
*M12 82 *823
M1 #83 *8123 *ONLY
M2 -tlrtln(—dlnlmtto ending—diskette
—position —position
#*#SAME
*3TD *SAME
> EXCHTYPE #BASIC CODE —€mncp 3—— cn’rnus—{moug > >
*H *ASCII creation—date
*]
#*SAMB
#NONE #SAME \
>— EXPDATE spoo1.—€ #YES >
*PERM *NO
expiration—date
*SAME #*SAME
> ouTq —C nncns{.nom
output—queue— maximum-—records

.«LIBL
name _(
.1ibrary—name
#SAME #SAME \
>— SCHEDULE #*JOBEND HOLD —€ #NO 5— SAVE —€ *NO
#FILEEND #*YRS #YES

>— WAITFILE € ::(A::n— SHARE —€ 5—4‘!!’!'{ wnmx?—
‘desoription’

number—of—aecondl
| Job:B,I Pgm:B,I

v

CHGDKTF

FILE Parameter: Specifies the qualified name of the diskette device file FILE

whose description is being changed. (If no library qualifier is given, *LIBL is
used to find the file.)

DEV Parameter: Specifies the name of the diskette device that is to be used
with this device file to perform 1/0 data operations. The device name of the
IBM-supplied diskette device description is QDKT.

*SAME: The device name, if any, specified in the device file description
remains the same.

*NONE: No device name is to be specified. It can be specified later on an
OVRDKTF command or when the diskette device file is opened.

device-name: Enter the name of the device that is to be used with this
diskette device file. The device must already be known on the system via a
device description.

VOL Parameter: Specifies one or more volume identifiers of diskettes (either
in magazines or slots) to be used by the diskette device file. The diskettes
(volumes) must be mounted on the device in the same order as the
identifiers are specified here. The identifiers are matched, one by one, with
the diskette locations specified in the LOC parameter. (For an expanded
description of the VOL parameter, see Appendix A.)

*SAME: The volume identifiers specified in the device file description
remain the same.

*NONE: No diskette volume identifiers are specified. They can be supplied
before the device file is opened, either in the OVRDKTF (or another
CHGDKTF) command or in the HLL program. If not specified, no volume
identifier checking is performed.

volume-identifier: Enter the identifiers of one or more volumes in the order

in which they are to be mounted and used by this device file. Each identifier
can have 6 alphameric characters or fewer.

Command Descriptions

4-127

CHGDKTF
LABEL

4-128

LABEL Parameter: Specifies the data file label of the data file on diskette that

is to be used with this diskette device file. For input files (diskette input to
system), this label specifies the identifier of the file that exists on the
diskette. For output files (system output to diskette), it specifies the
identifier of the file that is to be created on the diskette. (For an expanded
description of the LABEL parameter, see Appendix A.)

*SAME: The data file label specified in the device file description is not to
be changed.

*NONE: No data file label is to be specified. It must be supplied before the
device file is opened, either in the OVRDKTF {or another CHGDKTF)
command or in the HLL program.

data-file-label: Enter the identifier (8 characters maximum) of the data file to
be used with this diskette device file. (See Appendix A for details.)

LOC Parameter: Specifies which diskette location(s) in the magazines or slots

are to be used by this diskette device file. Three values are needed: (1) the
unit type and location, (2) the starting diskette position, and (3) the ending
diskette position in the unit. (For an expanded description of the LOC
parameter, see Appendix A.}

Unit Type and Location: The first of the three values in the LOC parameter
specifies which unit and location on the diskette magazine drive are to be
used by the device file for diskette input/output. Enter one of the following
values for the unit type and location (the valid starting and ending positions
for each unit type are also listed):

Diskette Starting and
Unit Type/Location Ending Position

*M12 1 through 10
*M1 1 through 10
*M2 1 through 10
*S1 1

*S2 2

*S3 3

*S12 1 through 2
*S523 2 through 3
*S123 1 through 3

*SAME: The unit location specified in the device file description that is to
be used with this device file remains the same.

location: Enter one of the following values to specify the unit type and
location on the diskette magazine drive to be used with this device file:
*M12, *M1, *M2, *S1, *S2, *S3, *S12, *S23, or *S123. (See Appendix A
for their meanings.)

9

Starting Diskette Position: The second of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette used first by the device file. Enter one of
the following values to specify the starting diskette positions:

*SAME: The same starting diskette position specified in the device file
description is to be used.

*FIRST: The first diskette position in the location contains the diskette to be
used first in the read or write operation. It is the leftmost diskette in the
magazine(s) or slots specified. (See Appendix A for details.)

*CURRENT: The diskette in the location at which the diskette magazine
drive is currently positioned is to be used.

starting-diskette-position: Entér the number of the diskette position (1
through 10) in the magazine or manual slot that contains the first diskette to
be used.

Ending Diskette Position: The third of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette used last by the device file. Enter one of
the following values to specify the ending diskette position:

*SAME: The same ending diskette position specified in the device file
description is to be used.

*LAST: The last diskette position in the location contains the diskette to be
used last in the read or write operation. It is the rightmost diskette in the
magazine(s) or slots specified. (See Appendix A for details.)

*WRAP: If the end of the last diskette in the location is reached before the
end of the data file is reached, a message is sent to the system operator to
mount another magazine or diskette to continue. (See Appendix A for
details and restrictions on using *WRAP.)

*ONLY: Only the diskette position specified by the second value is to be
used, and used only once.

ending-diskette-position: Enter the number of the diskette position (1
through 10) in the magazine or manual siot that contains the last diskette to
be used.

CHGDKTF

Lac

Command Descriptions

4-129

CHGDKTF
EXCHTYPE

4-130

EXCHTYPE Parameter: Specifies, for diskette output files only, -the exchange
type to be used by the device file when the system is writing diskette data.
(For an expanded description of the EXCHTYPE parameter, refer to
Appendix A.)

*SAME: The exchange type specified in the device file description is not to
be changed.

*STD: The basic exchange format will be used for a type 1 or a type 2
diskette. The H exchange type will be used for a type 2D diskette.

*BASIC: The basic exchange type will be used.
*H: The H exchange type will be used.

*I: The | exchange type will be used.

CODE Parameter: Specifies the type of character code to be used when
diskette data is read or written by a job that uses this device file.

*SAME: The type of character code specified in the device file description
is not to be changed.

SEBCDIC: The EBCDIC character code is to be used with this device file.

®ASCIl: The ASCIl character code is to be used with this device file.

CRTDATE Parameter: Specifies when the diskette data file was created on
diskette. The creation date parameter is valid for input data files only. If the
creation date written on the diskette does not match the date specified for
the device file when it is opened, an error message is sent to the user
program.

*SAME: The creation date of the diskette data file specified in the device
file description remains the same.

*NONE: The creation date of the diskette data file is not to be checked.

creation-date: Enter the creation date of the diskette data file to be used by
this device file. The date must be specified in the format defined by the
system values QDATFMT and QDATSEP. However, the specified date is
put in the diskette label as yymmdd.

EXPDATE Parameter: Specifies the expiration date of the diskette data file
used by this device file. The data file is protected and cannot be written
over until the day after the specified expiration date.

*SAME: The expiration date of the data file specified in the device file
description remains the same.

*NONE: The data file is protected for only one day, the day it is created on
the diskette.

*PERM: The data file is to be protected permanently. The date written on
the diskette is 999999.

expiration-date: Enter the date after which the data file expires. The date
must be specified in the format defined by the system values QDATFMT

and QDATSEP. However, the specified date is put in the diskette label as
yymmdd.

SPOOL Parameter: Specifies whether the input or output data for the diskette

device file is to be spooled. If SPOOL(*NO) is specified, the following
parameters in this command are ignored: OUTQ, MAXRCDS, SCHEDULE,
HOLD, and SAVE.

*SAME: The value specified in the device file description is not to be
changed.

*YES: The data is to be spooled. If this file is opened for input, an inline
data file having the specified name is processed; otherwise, the next
unnamed inline spooled file is processed. (For a discussion of named and
unnamed inline files, see the CPF Programmer's Guide.) If this is an output
file, the data is spooled for processing by a card, diskette, or print writer.

*NO: The data is not to be spooled. If this file is opened for input, the data
is read directly from the diskette. If this is an output file, the data is written

directly to the diskette as it is processed by the program.

OUTQ Parameter: Specifies, for spooled output only, the name of the output
queue for the spooled output file.

*SAME: The same output queue specified in the device file description is
to be used.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. (If no library qualifier is given,
*LIBL is used to find the queue.) The IBM-supplied output queue that can
be used by the diskette file is the QDKT output queue, stored in the QGPL
library.

CHGDKTF
EXPDATE

Command Descriptions 4-131

CHGDKTF
MAXRCDS

4-132

MAXRCDS Parameter: Specifies the maximum number of records that can
be in the spooled output file for this diskette device file.

*SAME: The maximum number of records specified in the device file
description remains the same.

*NOMAX: No maximum is specified for the number of records that can be
in the spooled output file.

maximum-records: Enter a value, 1 through 500000 (500 000), that specifies
the maximum number of diskette records that can be in the spooled output

file.
SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a writer.

*SAME: The time specified in the device file description when spooled
output can begin remains the same.

*JOBEND: The spooled output file is to be made available to the writer only

after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the writer as
soon as the file is closed in the program.

*IMMED: The spooled output file is to be made available to the writer as
soon as the file is opened in the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a writer
when it is released by the Release Spooled File (RLSSPLF) command.

*SAME: The value specified in the device file description is not to be
changed.

*NO: The spooled output file is not to be held by the output queue. The
spooled output is made available to a writer based on the SCHEDULE
parameter value.

*YES: The spooled output file is to be held until it is released by the
RLSSPLF command.

J

CHGDKTF
SAVE Parameter: Specifies, for spooled output files only, whether the SAVE

spooled file is to be saved (left on the output queus) after the output has
been produced.

*SAME: The value specified in the device file description is not to be
changed.

*NO: The spooled file data is not to be retained on the output queue after it
has been produced.

*YES: The spooled file data is to be retained on the output queue until the
file is deleted.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description is not to be
changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated. Valid values are 1 through 32767
(32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
diskette device file can be shared with other programs in the same routing
step. If so, when the same file is opened more than once, the ODP can be
shared with other programs in the same routing step that also specify the
share attribute. When an ODP is shared, the programs accessing the file
share such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a read operation in that
program retrieves the next input record. A write operation produces the next
output record.

*SAME: The value specified in the device file description is not to be
changed.

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the
file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

Command Descriptions 4-133

CHGDKTF
TEXT TEXT Parameter: Specifies the user-defined text that describes the diskette

device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example
CHGDKTF FILE(PRNTRPT.ACCREC) SPOOL(*NO)
This command changes the description of the diskette device file named
PRNTRPT stored in the ACCREC library. The device file now causes all 1/0

operations between the program and the diskette to be direct (without
spooling). All the other values in the file description are not changed.

4-134

C

CHGDSPF (Change Display File) Command

The Change Display File (CHGDSPF) command changes, in the file
description, one or more of the attributes of the specified display device file.

device—name
50 maximum

*SAME *SAME *SAME ﬁ
>—RSTDSP ‘€ *NO 5— DFRWRT —€ *NO ﬁ—nrmu: € *IMMED »
*YES *YES *CLS ﬁ/
number—of—-seconds

*SAME #SAME my
> SHARE ~€ *NO 5————vanx ~€ *TES >
#TES *NO
*SAME
> 'rm-€ -smx?——
'desoription’

#LIBL ﬂ
CHGDSPF FILE dhplay—device—ﬂle—nlme{ >
.library—name —/
Required
Optional
*SAME
*NONE *SAME
>-DEV #REQUESTER mxozv{ _j————-o
number—of—devices

| Job:B,I Pgm:B,I

FILE Parameter: Specifies the qualified name of the display device file whose
description is being changed. (If no library qualifier is given, *LIBL is used
to find the file.)

DEV Parameter: Specifies the names of one or more display devices that are
to be used with this display device file to pass data records between the
users of the display devices and their jobs.

*SAME: The device names specified in the device file description are not
changed.

*NONE: No device name is to be specified. It can be specified later on an
OVRDSPF command, another CHGDSPF command, or in the HLL program
that opens the file.

*REQUESTER: The device that requests the program that uses this device
file is the device that is assigned to the file.

CHGDSPF

Command Descriptions 4-135

CHGDSPF
MAXDEV

4-136

device-name: Enter the names of one or more display devices that are to be
used with this device file to pass data records between the users of the
devices and the system. Each device name must already be known on the
system via a device description. *REQUESTER can be specified as one of
the names.

The list of names specified here replaces the previous list, if any, contained
in the file description. A maximum of 50 device names (including
*REQUESTER, if it is specified) can be specified, but the total number
cannot exceed the number specified in the MAXDEV parameter when the
file is opened.

MAXDEV Parameter: Specifies the maximum number of display devices that

can be connected to the display device file at the same time, while the file
is open. The names of the devices can be specified in the DEV parameter
of this command, in an OVRDSPF command, or in the HLL program that
opens the file.

*SAME: The maximum number of display devices specified in the device
file description remains the same.

number-of-devices: Enter a value, 1 through 255, that specifies the
maximum number of devices that can be connected to this display file at the
same time.

RSTDSP Parameter: Specifies whether data being displayed at a display

device by this display file is to be saved at the time the file is suspended
{temporarily inactive) so that a different display file can be used to display
different data on the same device. If the data for this file is saved, it is
restored to the screen of the device when the file is used again.

This parameter must be considered if, within the same routing step, any
program can be called that uses a different display file for the same device.
If all programs that use this file always display new data when control is
returned to them, the display data for this file need not be saved for any of
them; RSTDSP(*NO) can be specified or assumed. If any program using
this file requires that the contents of the screen be exactly the same as it
was before it called another program, RSTDSP(*YES) must be specified. If
certain display fields are to remain unchanged while others are erased or
rewritten, or if the program containing the file can be interrupted (for
messages to be displayed, for example), you should specify RSTDSP(*YES).
{For additional information about suspended display files, see the CPF
Programmer’s Guide.)

*SAME: The value specified in the device file description is not to be
changed.

*NO: The data being displayed by this file is not to be saved when the file
is suspended. None of the programs using this file need the data restored
when control is returned to them.

*YES: The data being displayed when the file is suspended is to be saved
so it can be restored to the screen of the device when the file is used again.

CHGDSPF
DFRWRT Parameter: Specifies that the writing of data is to be deferred until DFRWRT

it can be written out with other data when a read request is made. Control
is returned to the program immediately after the data is received. This may
result in improved performance.

*SAME: The value specified in the device file description is not to be
changed.

*NO: After a write operation, the user program does not regain control until
the 1/0 is completed (with the data displayed and the |1/0 feedback
information available).

*YES: When the program issues a write request, control is returned after
the buffer is processed. The data might not be displayed immediately; the
actual display of the data might take place later when a read or combined
read /write operation is performed. The buffer is then available to be
prepared for the next read or combined read/write operation.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources (including at least one of the display devices) cannot be
allocated in the specified wait time, an error message is sent to the
program. (For an expanded description of the WAITFILE parameter, see
Appendix A.)

*SAME: The wait time specified in the device file description is not to be
changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the device file. Valid values are
1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
display device file can be shared with other programs in the same routing
step. If so, when the same file is opened more than once, the ODP can be
shared with other programs in the same routing step that also specify the
share attribute. When an ODP is shared, the programs accessing the file
share such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a read operation in that
program retrieves the next record. A write operation produces the next
output record.

*SAME: The value specified in the device file description is not to be
changed.

Command Descriptions 4-137

CHGDSPF
LVLCHK

4-138

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a progran. opens the
file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record

formats in this device file are to be checked when the file is opened by a
program. For this check, (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*SAME: The value specified in the device file description is not to be
changed.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not all match, an error message
is sent to the program requesting the open.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

TEXT Parameter: Specifies the user-defined text that describes the display

device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGDSPF FILE(ORDENT) DEV(WS1 WS2 WS3) MAXDEV(3)

This command changes the description of the display device file named
ORDENT. The file is located through the library list. The devices to be used
with this file are the work stations WS1, WS2, and WS3. All three of the
devices can be used concurrently with this display file.

J

CHGDTA (Change Data) Command

The Change Data (CHGDTA) command allows you to add, change, delete,
or display records in an existing data base file.

The Data File Utility is part of the IBM System/38 Interactive Data Base
Utilities Licensed Program, Program 5714-UT1. For more information on the
Data File Utility, refer to the IBM System/38 DFU Reference Manual and
User's Guide, SC21-7714.

Note: The first member of the file named when you defined the application
is processed unless you specify a different member.

»

#LIBL ﬁ@
CHGDTA——APP lppllcttlon—nlme{

Jibrary—name —/

—

Required

*NO #BLANK
>—VERIPY—< }—RUNID —{ ﬂ—-
*YEB ‘run—identifier'

Optional

»BAME #FIRST
>—PILE -{ MLIBL MBR { ﬂ—o
rila—name—{ member—name
Jibrary—name

IJob:I Pgm:I ‘

APP Parameter: Specifies the qualified name of the DFU application
controlling the interactive update of data. (If no library qualifier is specified,
*LIBL is used to find the application.)

FILE Parameter: Specifies the name of the data base file you want to
process.
*SAME: DFU will use the same file used to define the application.
file-name: Enter the qualified name of the data file you want DFU to
process. The file should have at least one record format name in common
with the file used to define the application. (If no library name is specified,
*LIBL is used to find the file.)

MBR Parameter: Specifies which member in the file you want to process.

*FIRST: DFU will process the first member of the file.

member-name: Enter the name of the member you want DFU to process.

Command Descriptions

CHGDTA

4-139

CHGDTA
VERIFY VERIFY Parameter: Indicates whether the updates are intended to verify the)

contents of existing data records.
*NO: Adds, changes, or deletes are not to be compared to existing data.
*YES: Data being reentered is to be compared with previously entered data.

Discrepancies are highlighted with reverse image characters on the display
screen.

RUNID Parameter: Specifies a character string of eight characters or less that
can be used to set an initial value in each data base record added during a
given processing session. Either an alphameric field must be defined in the
DFU application with an initial value, or *RUNID must be specified.
*BLANK: No run identifier is to be specified.
‘run-identifier’: Enter a character string to identify the records added during
this session.

Example
CHGDTA APP(DATA.LIB1) FILE(FILEA) RUNID('NEWSALES’)

This command uses the application named DATA in library LIB1 to process ,

the file named FILEA. Every record added will be identified by the
characters NEWSALES.

4-140

: A
L CHGDTAARA (Change Data Area) Command CHGDTAAR

The Change Data Area (CHGDTAARA) command changes the value of the
specified data area that is stored in a library. This command does not
change the data attributes nor any of the object attributes of the data area.
The new value must have the same type and a length less than or equal to
the data area length or the specified substring length.

For character data areas, a substring of the data area may be changed
without affecting the rest of the data area. This substring is defined by
specifying the starting position and the length of the substring. In this case,
the new value must have a length less than or equal to the substring length.

When the CHGDTAARA command is executed, the data area is locked to
the program during the change operation so that commands in other jobs
cannot change or destroy it until the operation is completed. If the data
area is shared with other jobs and it is updated in steps involving more than
one command in a job, the data area should be explicitly allocated to that
job until all the steps have been performed. The data area can be explicitly
allocated with the ALCOBJ command.

Restriction: To use this command, you must have operational and update
rights for the data area being changed and read rights for the library in
which it is stored.

Required

*LIBL ﬁ
CHGDTAARA——DTAARA data—area—name -

.library—name —/

*ALL
> [—{ @ >—] —— VALUE new-value
(starting—position length)

@ Starting—position and length values are valid only for character data areas.

I Job:B,I Pgm:B,I

Command Descriptions 4-141

CHGDTAARA
DTAARA

4-142

DTAARA Parameter: Specifies the qualified name of the data area whose

value is to be changed. (If no library qualifier is given, *LIBL is used to find
the data area.) Optionally specifies, for character data areas only, the
starting position and length of the character string that is to be changed in
the data area.

*ALL: The entire data area is to be changed. The length, if specified, must
not be less than the length of the VALUE specified.

starting-position length: Enter the starting position and the length of the
character string that is to be changed in the data area. Starting position and
length must be specified together if used; neither may be specified alone.
The beginning and end of this string must be within the data area. If the
length is greater than the length specified on the VALUE parameter, padding
on the right with blanks will occur.

VALUE Parameter: Specifies the new value to be stored in the data area.

Enter a value that is valid for the data attributes specified in the data area’s
description. If TYPE(*CHAR) or TYPE(*LGL) was specified when the data
area was created and the value specified here is numeric, the value must be
enclosed in apostrophes. If TYPE(*DEC) was specified, the value must not
be enclosed in apostrophes.

Examples

CHGDTAARA DTAARA(MYDATA.MYLIB) VALUE(GOODNIGHT)

This command changes the value of the data area named MYDATA in
library MYLIB to GOODNIGHT. The data area must be for character data
and must be 9 or more characters long.

CHGDTAARA PAYROLLSW O’
This command changes the logical value of the data area named
PAYROLLSW to zero. The library search list is used to locate the data area.
CHGDTAARA DTAARA(MYDATA.MYLIB (5 4)) VALUE(TWO’)
This command changes characters 5 through 8 of the data area MYDATA.
Because the new value is shorter than the substring, it will be padded with

a blank. If MYDATA is a character data area that previously contained ‘ONE
TOOOTHREE’, MYDATA will now contain ‘ONE TWO THREE'.

J

C

CHGFCT (Change Forms Control Table) Command - CHaFeT

The Change Forms Control Table (CHGFCT) command changes attributes in
an existing forms control table (FCT).

Restriction: To use this command, you must have operational rights for the
FCT and read rights for the library in which the FCT is stored.

The Change Forms Control Table (CHGFCT) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
Systern/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

tmnhﬁ @
CHGFCT PCT — forme—control— tlble—namo{ —>
ubnry—nm
Required
Optional
#»SAMEB
> rExT _€ .m.?___
'description’'
| Job:B,] Pgm:B,I

FCT Parameter: Specifies the qualified name of the FCT that is to be
changed. (If no library qualifier is given, *LIBL is used to find the FCT.)

TEXT Parameter: Lets the user enter text that briefly describes the FCT. (For
an expanded description of the TEXT parameter, see Appendix A.)
*SAME: The text, if any, is not changed.

*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGFCT FCT(FORMCTRL.USERLIB) +
TEXT('Forms control table number two’)

This command changes the description of forms control table named
FORMCTRL in library USERLIB.

Command Descriptions 4-143

CHGFCTE

4-144

CHGFCTE (Change Forms Control Table Entry) Command

The Change Forms Control Table Entry (CHGFCTE) command changes the
attributes in an existing forms control table (FCT) entry.

FCT entries are read by an active RJEF session when an RJEF writer is
started and when a forms mount message is received from the host system.
If an FCT entry is changed and not ready by the active RJEF session, the
change does not affect the processing of host system data. For example, if
you were receiving data for forms type xxxx and issued a CHGFCTE
command for this forms type, the change would not take effect until the
RJEF writer is canceled and restarted or another forms mount message is
received from the host system.

Restriction: To use this command, you must have operational rights to the
FCT and read rights to the library in which the FCT is stored.

The Change Forms Control Table Entry (CHGFCTE) command is part of the
IBM System/38 Remote Job Entry Facility Program Product, Program
5714-RC1. For more information on the Remote Job Entry Facility, refer to
the IBM System/38 Remote Job Entry Facility Programmer's Guide,
SC21-7914.

CHGFCTE

(Diagram)

*LIBL ﬂ

CHGFCTE FCT— forml—control—table—name—(J —>
.library—name
>— FORMTYPE host—system—form-type >
Required
Optional
*PRT @ *SAME ﬁ
}—LCLFORM ~€ *FORMTYPE >

>—DEVTYPE {

*PUN local

/

—form—type

*SAME —
*WTRE
*NONE \
#LIBL
device—file—name {
library—name
>—FILE >
.*LIBL
datn—base—flle—name{
library—name
*SAME
*WTRE *SAME —
>—MBR *GEN FSN -€ *WTRE _7 >
*FIRST file—sequence—number
member —name
*SAME
*WTRE *SAME
>—DTAFMT *FCFC CHGVAL *FILE L d
*DATA carriage—channel—identifier line—number:l-/
*CMN 12 maximum

*SAME

—

*FILE
form—length form—width

Z

—

*SAME *SAME
*FILE

LPI 4 CPI é *FILE
6 10
8 15
9

#LIBL

Jdibrary—name

—

*SAME
COPIES{ *FILE
number—of—copies

v

#LIBL

>—PRTIMG 46
print—image—name {
*NONE
*WTRE

library—name

—

N\

> rom{stzn{
*SAME
#FILE
*SAME
#WTRE
> PGM
program—name —c
*SAME
>—MSGQ *NONE

message—queue—name

Jdibrary—name

*LIBL

I Job:B,I Pgm:B,I

Command Descriptions 4-145

CHGFCTE . .
FCT FCT Parameter: Specifies the qualified name of the forms control table (FCT)

in which the entry is to be changed. (If no library qualifier is given, *LIBL is
used to find the FCT.)

FORMTYPE Parameter: Specifies the host system form type that is to be
associated with the FCT entry. This value (one through eight alphameric
characters in length) will be returned by the host system in a forms mount
message. A host system form type of blanks can be entered as
FORMTYPE(‘). The LCLFORM parameter can be used to change this
value to one more understandable to the System/38 user.

DEVTYPE Parameter: Specifies the device type with which the FCT entry is
to be associated.

*PRT: This FCT entry can be used only when processing printer output
streams,

*PUN: This FCT entry can be used only when processing punch output
streams.

LCLFORM Parameter: Specifies the local form type. This value is to be
substituted for the FORMTYPE value used by the host system, to make the
forms mount message more understandable to the System/38 user.

*SAME: The local form type to be substituted for the host system form
type specified in the FCT entry remains the same.

*FORMTYPE: No local form type is to be substituted for the host system
form type (therefore, the host system form type is to be used).

local-form-type: Enter the name of the local form type to be substituted for
the host system form type when the output from the job is actually
received. Valid values can be one through ten alphameric characters in
length.

FILE Parameter: Specifies the qualified name of the file that is to receive data
from the host system.

*SAME: The file name specified in the FCT entry remains the same.

*WTRE: The file specified in the session description writer entry is to be
associated with the FCT entry. (However, if the FILE parameter of the Start
RJE Writer (STRRJEWTR) command defaults to the value specified in the
RJEF writer entry, that value is used.)

*NONE: No file is to be associated with the FCT entry. The session
description writer entry must be used to determine where the data is to be
sent. None of the information in the FCT entry is to be used.

device-file-name: Enter the qualified name of the program-described printer
file that is to receive the data. (If no library qualifier is given, *LIBL is used
to find the printer file.)

data-base-file-name: Enter the qualified name of the System/38 physical
file to receive the data. (If no library qualifier is given, *LIBL is used to find
the data base file.)

MBR Parameter: Specifies the data base file member to which the output is

to be directed (if a data base file was specified either in the FILE parameter
of this command or in the associated session description writer entry).

*SAME.: The data base file member name in the session description FCT
entry remains the same.

*WTRE: The data base file member is to be generated according to the
method specified in the associated session description writer entry.

*GEN: RJEF creates a member name as follows:

Affffffccc or Bffffffcce

Where:

A = file member names beginning with the character A
contain print data.

B = file member names beginning with the character B
contain punch data.

FFFff = first six characters of the forms name specified in
the FCT or received from the host system.
Note: Only characters that are valid in a System/38
name are valid in the forms type used to generate
data base file member names.

cce = three-digit sequence value controlled by the RJEF session

to maintain member uniqueness (refer also to the
FSN parameter description of this command).

If a member with this name already exists in the data base file, the
three-digit sequence value is incremented by one and another attempt is
made to create a member. Incrementing of the sequence value continues
until a unique name is generated and a member is created or until all
1000 possibilities have been exhausted without creating a member. If no
member is created, the RJEF operator receives a message indicating the
failure and a request to retry or cancel this file.

*FIRST: The output is to be directed to the first member of the data base
file (if a data base file is specified in the FILE parameter of this command or
the associated session description writer entry).

(CHGFCTE
'MBR

Command Descriptions 4-147

CHGFCTE
FSN

4-148

member-name: Enter the name of the data base file member to which
output is to be directed (if a data base file is specified in the FILE parameter
of this command or the associated session description writer entry). If the
member does not exist when it is needed, an inquiry message is sent to the
RJEF message queue.

FSN Parameter: Specifies the initial three-digit file sequence number to be

used when creating data base file member names. This parameter is
ignored unless MBR(*GEN) is specified for this command or in the
associated session description writer entry.

*SAME: The file sequence number specified in the FCT entry remains the
same.

*WTRE: The initial file sequence number to be used is the same as the
number specified in the session description writer entry.

file-sequence-number: Enter the initial three-digit file sequence number to
be used. Leading zeros are not required for sequence numbers less
than 100.

DTAFMT Parameter: Specifies the format of the output data.

*SAME.: The data format designation specified in the FCT entry remains
the same.

*WTRE: The output data is to be in the format specified in the session
description writer entry.

*FCFC: The output data is to be in the FCFC data format, with the first
character of every record being the ANSI forms control character. Specify
*FCFC if the data is to be printed. If DEVTYPE(*PUN) is specified, *FCFC is
not valid.

The data can be written to a data base file in the FCFC data format and
then printed later by issuing the Copy File (CPYF) command and specifying
an FCFC printer file on the TOFILE parameter.

*DATA: The output data is to be in the normal data format (that is, no
FCFC characters are embedded in the data). Specify *DATA if the data is to
go to a data base file and be processed by a program. If the data is
directed to a printer file, a single space ANSI control character is the first
character in each record.

*CMN: The output data is to be in the communications data format (that is,
still compressed or truncated). *CMN should be used to decrease
communications time. However, before the data can be used, the Format
RJE Data (FMTRJEDTA) command must be used to change the data to
*FCFC or *DATA. If *CMN is specified, the output file must be a data base
file with a length of 256.

9

B _ _ , _ ' CHGFCTE
CHLVAL Parameter: Specifies the printer carriage channel information. | CHLVAL

*SAME: The carriage information specified in the FCT entry remains the
same.

*FILE: The carriage information specified in the device file is to be used.

carriage-channel-identifier line-number: Enter the channel identifiers and line
numbers to be used.

Each identifier can be specified only once per command invocation. The
identifiers are 1 through 12, corresponding to printer channels 1 through 12.
Single spacing is used for any channel not associated with a line number.
The maximum valid line number is 255.

The CHLVAL parameter associates the channel identifier with a page line

number; for example, CHLVAL((1 5)(10 55)) means to associate channel 1
with line 5 and channel 10 with line 55.

FORMSIZE Parameter: Specifies the form size to be used on the System/38
printer.
*SAME: The form size specified in the FCT entry remains the same.
*FILE: The form size specified in the device file is to be used.
form-length form-width: Enter the form length and width to be used. The

maximum valid form length is 255 and the maximum valid form width
is 198.

LPI Parameter: Specifies the number of lines of print per inch to be used on
the System/38 printer.

*SAME: The number of lines of print per inch specified in the FCT entry
remains the same.

*FILE: The number of lines of print per inch specified in the device file is to
be used.

4: The number of lines of print per inch is 4.
6: The number of lines of print per inch is 6.
8: The number of lines of print per inch is 8.

9: The number of lines of print per inch is 9.

Command Descriptions 4-149

CHGFCTE
CPI

4-150

CPI Parameter: Specifies the number of characters per inch to be used on

the System /38 printer.

*SAME: The number of characters per inch specified in the FCT entry
remains the same.

*FILE: The number of characters per inch specified in the device file is to
be used.

10: The number of characters per inch is 10.

15: The number of characters per inch is 15.

PRTIMG Parameter: Specifies the qualified print image name to be used on

the System/38 printer.
*SAME: The print image specified in the FCT entry remains the same.
*FILE: The print image specified in the device file is to be used.

print-image-name: Enter the qualified name of the print image to be used.
(If no library qualifier is given, *LIBL is used to find the print image.)

COPIES Parameter: Specifies the number of copies to be printed. This

parameter applies only for spooled files.

*SAME: The number of copies of print or punch output specified in the
FCT entry remains the same.

*FILE: The number of copies specified in the device file is to be used.

number-of-copies: Enter the number of copies to be printed.

PGM Parameter: Specifies the qualified name of a user-supplied program to

be used for processing data received from the host system.

*SAME: The user-supplied program name specified in the FCT entry
remains the same.

*WTRE: The associated session description writer entry is to be used.
*NONE: No user-supplied program is to be used.
program-name: Enter the qualified name of the user-supplied program to be

used. (If no library qualifier is given, *LIBL is used to find the user-supplied
program.)

9

g - CHGFCTE
‘ MSGQ Parameter: Specifies the qualified name for the user message queue MSGQ

on which messages for this RJEF writer are to be recorded.

Note: Messages for RJEF writers are always recorded in the RJEF message
queue associated with the named RJEF session. The RJEF message queue
name depends upon the name specified in the MSGQ parameter in the
Create Session Description (CRTSSND) or Change Session Description
(CHGSSND) commands. If inquiry messages are issued by RJEF, they are
sent to the user message queue (if specified) where they must receive a
response.

*SAME: The message queue specified in the FCT entry remains the same.

*WTRE: The message queue specified in the session description writer entry
is to be used.

*NONE: No user message queue exists on which the messages for the FCT
entry are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which the messages for the RJEF writer job’s messages are to be
recorded. (If no library qualifier is given, *LIBL is used to find the message
queue.)

Q Example

CHGFCTE FCT(FORMCTRL.USERLIB) +
FORMTYPE(MEDICAL) +
DEVTYPE(*PUN) +
FSN(200)

This command changes the forms control entry named MEDICAL associated
with punch devices. The file sequence number is changed to 200.

Command Descriptions 4-151

CHGJOB

4-152

CHGJOB (Change Job) Command

The Change Job (CHGJOB) command changes some of the attributes of a
job, including priorities, message logging controls, and job switch settings.
The job can be on a job or output queue, or it can be active within a
subsystem. The new attributes remain in effect for the duration of the job
unless changed by another CHGJOB command. If an attribute that no
longer affects the job is changed, a message is sent to the user of the
command. For example, if the job has already completed execution, it is too
late to change the OUTQ and JOBPTY parameters; but if any output files
are still on the output queue, a change to the OUTPTY parameter would
change their output priority.

Restriction: To use this command, you must be changing your own job or
you must have the special job control authority.

Optional

*
CHGJOB—JOB { —>
job—name[.user—name[.job—number]] —/

*SAME *SAME
R ‘(ﬁi P { ﬁ——o
scheduling—priority output-priority
*SAME *SAME
> wg{ *MSG Loucu’an{ *YES 3——'
message—level mun(e—uverlty{ *NO
*SECLVL

*SAME —
>—0UTQ —(#LIBL q_/ 4
output—queue—name —<
library—name
*SAME
>—DATE sws {
job—date switch—settings

v

I Job:B,I Pgm:B,I

JOB Parameter: Specifies the name of the job whose attributes are to be
changed.

*. The job whose attributes are to be changed is the job in which this
CHGJOB command is issued.

qualified-job-name: Enter the qualified name of the job whose attributes are
to be changed. If no job qualifier is given, all of the jobs currently in the
system are searched for the simple job name. If duplicates of the specified
name are found, a qualified job name must be specified. (For an expanded
description of the JOB parameter and duplicate job names, see

Appendix A.)

CHGJOB
JOBPTY Parameter: Specifies the scheduling priority to be used for the job | JOBPTY

being changed. Valid values are 1 through 9, where 1 is the highest priority
and 9 is the lowest. (For an expanded description of the JOBPTY
parameter, see Scheduling Priority Parameters in Appendix A.)

*SAME: The scheduling priority is not to be changed.

scheduling-priority: Enter a value, 1 through 9, for the scheduling priority
that the job is to have. If the job is currently on the job queue, its position
on the queue in relation to other jobs may be changed. The scheduling
priority specified here cannot be higher than the priority specified in the user
profile under which the job (in which this command is entered) is executing.

OUTPTY Parameter: Specifies the priority that the job’s spooled output files
are to have for producing output. The highest priority is 1 and the lowest is
9. (For an expanded description of the OUTPTY parameter, see Scheduling
Priority Parameters in Appendix A.)

*SAME: The job’s priority for spooled output is not to be changed.

output-priority: Enter a value, 1 through 9, for the priority that the job’s
output files are to have. The output priority specified here cannot be higher
than the priority specified in the user profile under which the job entering
the command is executing.

LOG Parameter: Specifies the message logging values to be used by the job.
They determine the amount and type of information to be logged in the job
log. There are three message logging values; if one value is to be changed,
all three must be specified.

*SAME: None of the message logging values are to be changed.

message-level: Enter a value, O through 4, that specifies the message
logging level to be used for the job’s messages. (For additional information
on the message levels, refer to Message Level under the CRTJOBD
command’s LOG parameter.)

message-severity: Enter a value, 00 through 99, that specifies the lowest
severity level that causes an error message to be logged in the job’s log.
Only messages that have a severity greater than or equal to this value are
logged in the job’s log. (For an expanded description of severity codes, see
the SEV parameter in Appendix A.)

*MSG: Only first-level message text is to be written to the job’s log.

*SECLVL: Both the first-level and second-level text of the error message is
to be written to the job’s log.

Command Descriptions 4-153

CHGJOB
LOGCLPGM LOGCLPGM Parameter: Specifies whether the executed commands in a

control language program are to be logged to the job log by way of the CL
program’s message queue. This parameter sets the status of the job’s
logging flag; if *YES is specified and the LOG(*JOB) value has been
specified in the Create CL Program (CRTCLPGM) command, all commands
in the CL program that can be logged will be logged to the job log. The
commands will be logged in the same manner as requests are logged.
Otherwise, the logging flag status is off and CL commands will not be
logged.

For more information on request logging, refer to the LOG parameter in the
CRTJOBD command description.

*SAME: The current state of the job’s logging flag is not to be changed.

*YES: Specifies that commands in a CL program are to be logged to the job
log.

*NO: Specifies that commands in a CL program are not to be logged to the
job log.

OUTQ Parameter: Specifies the name of the output queue that is to be used
for spooled output produced when OUTQ(*JOB) is specified. This change
does not affect files already created in active jobs or files in completed jobs
where the files were spooled.

*SAME: The same default output queue is to be used for the job.

qualified-output-queue-name: Enter the qualified name of the default output
queue that is to be used by the job. (If no library qualifier is given, *LIBL is
used to find the queue.)

DATE Parameter: Specifies the date that is to be assigned to the job.
*SAME: The job date is not to be changed.

job-date: Enter the value that is to be used as the job date for the job; the
date must be in the format specified by the system value QDATFMT. (See
the CPF Programmeor's Guide for the description of the possible date
formats.) If no job date is specified for a job, the system date is used as
the default for any function requiring a job date. The date specified in this
parameter overrides the system date for this execution of the job only.

4-154

CHGJOB
SWS Parameter: Specifies the switch settings for a group of eight job SWS

switches to be used with the job. These switches can be set or tested in a
CL program and used to control the flow of the program. For example, if a
certain switch is on, another program could be called. The job switches may
also be valid in other HLL programs. The only values that are valid for each
one-digit switch are 0 (off), 1 (on), or X. The X indicates that a switch value
is not to be changed.

*SAME: None of the values in the eight job switches are to be changed.

switch-settings: Enter any combination (either in quoted or unquoted form)
of eight zeros, ones, or Xs to change the job switch settings. If a switch
value is not to be changed, enter an X in the position representing that
switch.

Examples
CHGJOB JOB(WS1.DEPT2.123581) LOG(2 40 *SECLVL)

This command changes the job WS1, which is associated with the user
profile DEPT2, and has the job number 123581, so that it will receive only
commands and associated diagnostic messages (level 2) if the messages
have a severity greater than or equal to 40. Second-level text, in addition to
first-level message text, is to be logged in the job log.

CHGJOB JOB(PAYROLL) JOBPTY(4) +
OUTPTY(3) SWS(10XXXX00)

This command changes the scheduling priority of the job PAYROLL to 4 and
the priority of the job’s spooled output to 3. Also, four of the eight job
switches are changed: switches 1 and 2 are set to 1 and 0, switches 3
through 6 remain the same, and switches 7 and 8 are both set to O.
Because only the simple name of the job is specified, there can be only one
job named PAYROLL in the system.

Command Descriptions 4-155

CHGJOBD

4-156

CHGJOBD (Change Job Description) Command

The Change Job Description (CHGJOBD) command changes the job-related
attributes specified for a job description object through the Create Job
Description (CRTJOBD) command. The changes become effective upon
command execution.

Any attribute may be changed, except for the public authority attribute.
Refer to the RVKOBJAUT (Revoke Object Authority) Command and
GRTOBJAUT (Grant Object Authority) Command for more information on
changing object authorizations.

Restrictions: To use this command, you must have operational rights for
the user profile named in the USER parameter (if any); that is, you must
have that user’'s authority to initiate a job. You must also have object
management and operational authority for the job description, and read
authority for the library the job description resides in.

HGJOBD

CHGJOBD

#LIBL ﬁ
JOBD job—description—name —<

Diagram)

Jibrary—name —/

*SAME —
>— USER ‘€ *mp 7
user—profile—-name

. *SAME —
>- JOBQ _4 ALIBL
]ob—queue—ntme{ >—l

ry—name

*SAME *SAME
> JOBPTY { _j—— OUTPTY { ﬁ———»
scheduling—priority output—priority

1ibra.

*SAME —
>— RTGDTA RQSDTA *NONE
:RQSDTA ﬁ/ *RTGDTA -ﬂ
'routing—data’ 'requesl—data’
#SAME — *SAME ﬁ
>— SYNTAX #*NOCHK INLLIBL #JYSVAL
measage—saoverity *NONE
1ibrary—name
25 maximum

mlﬁ

*
message—severity

*SAME —
> LoG (*MGS —_' /
message—level meunge—amrlw{

*SECLVL

*SAME —
> o —)
output—queue—name {
Jibrary—name

*SAME “
>— HOLD —€ ﬁ— DATE ‘€ %SYSVAL
]o'b—dlu

> S'S—< >— TIXT—G #BLANK %
switch—settings 'description’

I Job:B,I Pgm:B,l

Command Descriptions 4-157

CHGJOBD
JOBD

4-158

JOBD Parameter: Specifies the qualified name of the job description being

changed. (If no library qualifier is given, *LIBL is used to find the job
description.)

USER Parameter: Specifies the name of the user profile to be associated with

this job description. The names QSECOFR, QSPL, and QSYS are not valid
entries for this parameter.

*SAME: The name of the user profile is not to be changed.

*RQD: A user name is required in order to use the job description. For
work station entries, the user must enter a password when signing on at the
work station; the associated user name becomes the name used for the job.
*RAD is not valid for job descriptions specified for autostart job entries, or
for those used by the JOB command. (It is valid on the SBMJOB command
only if USER(*CURRENT) is specified.)

user-profile-name: Enter the user name that identifies the user profile that is
to be associated with batch jobs using this job description. For interactive
jobs, this is the default user name used when a user signs on without
entering a password.

JOBQ Parameter: Specifies the name of the job queue into which jobs using

this job description are to be placed.
*SAME: The name of the job queue is not to be changed.

qualified-job-queue-name: Enter the qualified name of the job queue that is
to be associated with this job description. (If no library qualifier is given,
*LIBL is used to find the job queue.) If the job queue does not exist when
the job description is changed, a library qualifier must be specified because
the qualified job queue name is retained in the job description.

JOBPTY Parameter: Specifies the scheduling priority to be used for jobs that

use this job description. Valid values are 1 through 9, where 1 is the highest
priority and 9 is the lowest. (For an expanded description of the JOBPTY
parameter, see Scheduling Priority Parameters in Appendix A.)

*SAME: The scheduling priority is not to be changed.

scheduling-priority: Enter a value, 1 through 9, for the scheduling priority for
jobs that use this job description.

9

. . i CHGJOBD
OUTPTY Parameter: Specifies the output priority of spooled output files that OUTPTY

are produced by jobs that use this job description. The highest priority is 1
and the lowest is 9. (For an expanded description of the OUTPTY
parameter, see Scheduling Priority Parameters in Appendix A.)

*SAME: The output priority for spooled output is not to be changed.

output-priority: Enter a value, 1 through 9, for the output priority of the
spooled output files that are produced by jobs that use this job description.

RTGDTA Parameter: Specifies the routing data to be used with this job
description to initiate jobs.

*SAME: The routing data is not to be changed.

*GET: The routing data is obtained from the work station user, by using the
display format specified in the work station entry that references this job
description.

*RQSDTA: Up to the first 80 characters of the request data specified in the
RQSDTA parameter are to be used as the routing data for the job.

'routing-data’: Enter the character string that is to be used as the routing
data for jobs that use this job description. For example, the value QCMDI is
the routing data used by the IBM-supplied interactive subsystem (QINTER)
to route interactive jobs to the IBM-supplied control language processor,
QCL. A maximum of 80 characters can be entered (enclosed in apostrophes
if necessary).

RQSDTA Parameter: Specifies the request data that is to be placed as the
last entry in the job’s message queue for jobs using this job description. For
example, when a CL command is supplied as request data, it becomes a
message that can be read by the control language processor, QCL (if the job
is routed to QCL).

*SAME: The request data is not to be changed.
*NONE: No request data is to be placed in the job’'s message queue.

*RTGDTA: The routing data specified in the RTGDTA parameter is to be
placed as the last entry in the job’s message queue.

'request-data’: Enter the character string that is to be placed as the last
entry in the job’s message queue as a single request. A maximum of 256
characters can be entered (enclosed in apostrophes if necessary). When a
CL command is entered, it must be enclosed in single apostrophes, and
where apostrophes would normally be used within the command, double
apostrophes must be used instead.

Command Descriptions

CHGJOBD
SYNTAX

4-160

SYNTAX Parameter: Specifies whether requests placed on the job message
queue (for jobs using this job description) are to be syntax-checked as CL
commands. When syntax checking is specified, the commands are

syntax-checked as they are submitted rather than when the job is executed,
thus providing an earlier diagnosis of syntax errors. If checking is specified,
the message severity that causes a syntax error to terminate processing of a

job is also specified.
*SAME: The SYNTAX parameter value is not to be changed.
*NOCHK: The request data is not to be syntax-checked as CL commands.

message-severity: The request data is to be syntax-checked as CL

commands; if a syntax error occurs that is equal to or greater than the error

message severity specified here, the execution of the job containing the
erroneous command is suppressed. Enter a value, 00 through 99, that
specifies the lowest message severity that can cause job execution to end.
(For an expanded description of severity codes, see the SEV parameter in
Appendix A.)

If the message severity is specified, it is used only when the job description

is used by a job command that also has RQSDTA(*) specified and the
requests are CL commands.

INLLIBL Parameter: Specifies the initial user part of the library list that is to

be used for jobs using this job description. For more information on the use

of library lists, see the CPF Programmer's Guide.

*SAME: The initial user part of the library list is not to be changed.

*SYSVAL: The system default library list is to be used for jobs that use this

job description. The default library list contains the library names that were
specified in the system values QSYSLIBL and QUSRLIBL at the time that a
job using this job description is initiated.

*NONE: The user part of the initial library list is to be empty; only the
system portion is to be used.

library-name: Enter the names of one or more libraries that are to be in the

user part of the library list for jobs that use this job description. No more

than 25 names can be specified; the libraries are searched in the same order

as they are listed here.

CNLSEV Parameter: Specifies the message severity level of escape messages

that can cause a batch job to be canceled. The batch job is canceled when
a request in the batch input stream sends to the request processing

program an escape message whose severity code is equal to or greater than

that specified here. This parameter value is compared with the severity of
any unmonitored escape message that occurs as a result of executing a
noncompiled CL command in a batch job.

9

HGJOBD
0G

-0

For a description of each IBM-defined severity code level, refer to the
expanded description of the SEV parameter in Appendix A.

*SAME: The message severity level for canceling batch jobs is not to be
changed.

message-severity: Enter a value, 00 through 50, that specifies the message
severity of an escape message that results from a request in the batch input
stream and that causes the jobs that use this job description to be canceled.
Because escape messages typically have a maximum severity level of 50, a
value of 50 or lower must be specified in order for a job to be canceled as a
result of an escape message. An unhandled escape message whose severity
is equal to or greater than the value specified causes the jobs to be
canceled. (For an expanded description of severity codes, see the SEV
parameter in Appendix A.)

LOG Parameter: Specifies the message logging values to be used by jobs
that use this job description. They determine the amount and type of i
information to be logged in the job log. There are three message logging ‘
values; if one value is to be changed, all three must be specified.

*SAME: None of the message logging values are to be changed. ‘

message-level: Enter a value, O through 4, that specifies the message ‘
logging level to be used for the job’s messages. (For additional information

on the message levels, refer to Message Level under the CRTJOBD

command’'s LOG parameter.)

message-severity: Enter a value, 00 through 99, that specifies the lowest
severity level that causes an error message to be logged in the job’s log.
Only messages that have a severity greater than or equal to this value are
logged in the job’s log. (For an expanded description of severity codes, see
the SEV parameter in Appendix A.)

*MSG: Only first-level message text is to be logged in the job’s log. ‘

*SECLVL: Both the first-level and second-level text of the error message is |
to be logged in the job’s log. ‘

OUTQ Parameter: Specifies the name of the output queue to be used as the ‘
default output queue for jobs that use this job description. ‘

*SAME: The default output queue is not to be changed. ‘

qualified-output-queue-name: Enter the qualified name of the default output |
queue that is to be used by jobs that use this job description. (If no library ‘
qualifier is given, *LIBL is used to find the queue.) If the output queue does
not exist when the job description is changed, a library qualifier must be

specified, because the qualified output queue name will be retained in the ‘
job description.

Command Descriptions 4-161

CHGJOBD
HOLD

4-162

HOLD Parameter: Specifies whether jobs using this job description are to be

put on the job queue in the hold state. A job placed on the job queue in the
hold state is held until it is released by the Release Job (RLSJOB) command

or canceled, either by the Cancel Job (CNLJOB) command or by the Clear
Job Queue (CLRJOBQ) command. If the job is not executed before CPF is
terminated, the job queue can be cleared (and the job canceled) when CPF
is started again.

*SAME: The value of the HOLD parameter is not to be changed.

*NO: Jobs using this job description are not to be held when they are put
on the job queue.

*YES: Jobs using this job description are to be held when they are put on
the job queue.

DATE Parameter: Specifies the date that is to be assigned for jobs that use
this job description.

*SAME: The job date is not to be changed.

*SYSVAL: The value in the QDATE system value at the time that the job is
initiated is to be used as the job date.

job-date: Enter the value that is to be used as the job date for the job being

initiated; the format that is currently specified for the system value
QDATFMT must be used. (See the CPF Programmer’'s Guide for the
QDATFMT system value.)

SWS Parameter: Specifies the initial switch settings for a group of eight job

switches for jobs that use this job description. These switches can be set or

tested in a CL program and used to control the flow of the program. For
example, if a certain switch is on, another program could be called. The job
switches may also be valid in other HLL programs. The only values that are
valid for each one-digit switch are O (off) or 1 (on).

*SAME: None of the values in the eight job switches are to be changed.
switch-settings: Enter any combination (either in quoted or unquoted form)

of eight zeros or ones to change the job switch settings.

TEXT Parameter: Lets the user enter text that briefly describes the job
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME.: The text, if any, is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

9

C

Examples

CHGJOBD JOBD(QPGMR.QGPL) JOBPTY(2) OUTPTY(2)

This command allows jobs using the IBM-supplied job description QPGMR
in library QGPL to process with a higher job and output priority than
originally specified for QPGMR. QPGMR originally has priorities of 5 set for
job execution and output; refer to the CPF Programmer’s Guide for
IBM-supplied job description parameter values.

Assume that your user profile was created as follows:

CRTUSRPRF USRPRF(JLRAY) PASSWORD(GAMMA) SPCAUT(*JOBCTL) +
PTYLMT(4) PUBAUT(*NONE)

Then you attempt to modify the priority limits of the job description
BATCH5 with the following command:

CHGJOBD JOBD(BATCH5) USER(JLRAY) JOBPTY(1) OUTPTY(1)
Because the priority limit specified in the user profile takes precedence over

any limit specified in a job description, an error message is sent and a
priority of 4 is assumed for both job and output priority levels.

Command Descriptions

pHGJoan
‘(Examples)

4-163

CHGJOBQE
CHGJOBQE (Change Job Queue Entry) Command

The Change Job Queue Entry (CHGJOBQE) command changes an existing
job queue entry within the specified subsystem description; the associated
subsystem must be inactive when the change is made. A job queue entry
identifies the job queue from which jobs are to be selected for execution
within the subsystem. Jobs can be placed on a job queue by spooling
readers or by using the following commands:

¢ Submit Job (SBMJOB)

« Submit Card Jobs (SBMCRDJOB)

« Submit Data Base Jobs (SBMDBJOB)

+ Submit Diskette Jobs (SBMDKTJOB)

« Transfer Job (TFRJOB)

Within a subsystem, job queues with lower sequence numbers are
processed first. For more information, refer to the SEQNBR parameter.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description being changed.

#LIBL —
CHGJOBQE SBSD subsystem—description—name y— >
.library—name
.tuBLﬂ
>—JOBQ job—queue—name —>
library—name —/
Required
Optional
*SAME — *SAME
>—MAYACT *NOMAX 4 SEQNBR -{ -ﬁ—
maximum-—active—jobs sequence—number
IJob:B,I Pgm:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
that contains the job queue entry being changed. (If no library qualifier is
given, *LIBL is used to find the subsystem description.)

JOBQ Parameter: Specifies the unique qualified name of the job queue that
is to be a source of batch jobs that are to be initiated by the subsystem. (If
no library qualifier is given, *LIBL is used to find the job queue.) If the job
queue does not exist when the entry is changed, a library qualifier must be
specified because the qualified job queue name is retained in the subsystem
description.

. . CHGJOBQE
MAXACT Parameter: Specifies the maximum number of jobs that can be MAXACT

concurrently initiated from this job queue. (For an expanded description of
the MAXACT parameter, see Appendix A.)

*SAME: The maximum number of jobs that can be concurrently active is
not to be changed.

*NOMAX: There is to be no maximum on the number of jobs that can be
concurrently initiated. However, the maximum activity level of the routing ‘
entries might prevent routing steps from being initiated. If *NOMAX is
specified, all the jobs on the job queue will be initiated (within the limit
specified by the MAXJOBS parameter in the subsystem description), even
though the activity level of the storage pool might prohibit them from
executing concurrently.

maximum-active-jobs: Enter a value that specifies the new maximum for the
number of jobs that can be concurrently active.

SEQNBR Parameter: Specifies a sequence number for this job queue, to be
used by the subsystem to determine the order in which the job queues are
to be processed. |

SAME.: The sequence number assigned to this job queue is not to be
changed.

sequence-number: Enter the sequence number to be assigned to this job \
queue. The sequence number must be unique within the subsystem
description. Valid values are 1 through 9999.

The subsystem first selects jobs from the job queue with the lowest
sequence number. Once all jobs on that queue have been processed or the
number of jobs specified on the MAXACT parameter has been reached, the
subsystem processes jobs on the queue with the next higher sequence
number. This sequence continues until all job queue entries have been
processed or until the subsystem has reached its limit for overall maximum
jobs (as specified by the MAXJOBS parameter in the subsystem
description). In some cases, this sequence is interrupted and the subsystem
processes a queue with a lower sequence number. This occurs for this
subsystem when:

A held job or job queue is released
« A job is placed on or transferred to a queue
« A new queue is allocated

« A job terminates

Command Descriptions 4-165

CHGJOBQE
(Example)

4-166

Example

CHGJOBQE SBSD(QBATCH.QGPL) JOBQ(QBATCH.QGPL) +
MAXACT(4)

This command changes the maximum number of jobs submitted from the
job queue QBATCH via the job queue entry to the QBATCH subsystem for
concurrent processing. A maximum of four jobs from the QBATCH job
queue can be concurrently active. The sequence number of the job queue
entry is not changed.

This page is intentionally left blank.,

Command Descriptions 4-167

CHGJRN

4-168

CHGJRN (Change Journal) Command

The Change Journal (CHGJRN) command changes the journal receivers, the
message queue, or the descriptive text associated with the indicated journal.
The command allows up to two journal receivers to be attached to the
specified journal. These replace all previously attached journal receivers.
The designated journal receivers will begin receiving journal entries for the
journal immediately. The sequence numbering of journal entries can be reset
when the receivers are changed. If the sequencing is not reset, an
informational message is sent indicating the first sequence number in the
newly attached receivers. If the first sequence number is greater than 2000
000 000, an informational message is sent to the system operator.

If JRNRCV is *SAME, the currently attached journal receivers will remain
attached.

Restrictions: Receivers that already contain journal entries cannot be
reattached to a journal. There can be no more than two journal receivers
attached to the journal at any specific time.

If journaled changes are being applied or removed while this command is
being executed, you cannot switch journal receivers (JRNRCV(*SAME) must
be specified).

Resetting of sequence numbers is not valid if JRNRCV is *SAME, or if any
files being journaled are open and contain changes that have not yet been
forced to auxiliary storage. When the maximum sequence number is
reached, an exception will be signaled (entry not journaled) and all
subsequent activity requiring journaling will terminate.

#LIBL ﬁ
CHGJRN JRN journal—name _/ —>
library—name Required
Optional
@ #CONT
>—JRNRCV SBQOPT—{ }—’
*GEN: #RESET

receiver—nam

Jdibrary—name
2 maximum

2*SAME *SAME
>-uscq{ m-r—€ *BLANK
#LIBL 'description’
muue—quaua—nm-{

Jdibrary—name
| Job:B,I Pgm:B,I

JRN Parameter: Specifies the qualified name of the journal to have its journal
receivers or operational attributes changed. (If no library qualifier is given,
*LIBL is used to find the journal.)

JRNRCV Parameter: Specifies which journal receivers are to be attached to
the designated journal.

*SAME.: Specifies that the journal receivers currently attached to the
journal are to remain attached.

*GEN: Specifies that the journal receiver(s) are to be created by the system
and then attached to the designated journal. The journal receiver(s) will be
created with the same attributes and in the same library as the currently
attached journal receiver(s) and will be owned by the same owner. The
name of the new journal receiver will be derived by appending a four-digit
number to a portion of the name of the current receiver, or by incrementing
the number in the current journal receiver. The name of the journal receiver
created and attached will be returned in an informational message. For
more information on generation of journal receiver names, refer to CPF
Programmer’s Guide.

receiver-name: Enter the qualified names of the journal receivers that are to
be attached to the designated journal. (If no library qualifier is given, *LIBL
is used to find the journal receiver.) The journal receivers must have been
previously created in the specified library, and must not have been
previously attached to any journal.

A maximum of two journal receivers may be attached at one time. Any
combination of *GEN and receiver name is valid.

SEQOPT Parameter: Specifies whether the journal sequence numbers are to
continue being incremented or whether the journal sequence number is to
be reset to one in the newly attached journal receivers.

*CONT: Specifies that the journal sequence number of the next journal
entry generated is to be one greater than the sequence number of the last
journal entry in the currently attached journal receiver(s).

*RESET: Specifies that the journal sequence numbers in the newly attached
journal receivers are to be reset to one. *RESET is not valid if
JRNRCV(*SAME) is specified or if any file being journaled is open and
contains changes that have not yet been forced to auxiliary storage.

Command Descriptions

CHGJRN
JRN

4-169

CHGJRN
MSGQ

4-170

MSGQ Parameter: Specifies whether the message queue associated with the
journal is to be changed. The message issued when a journal receiver's
storage limit (threshold) is exceeded is sent to this message queue. To set
the threshold value, refer to the CRTJRNRCV command.

*SAME: Specifies that the message queue is not to change.

message-queue-name: Enter the qualified name of the message queue to
which the message will be sent, which will replace the message queue
previously specified.

TEXT Parameter: Specifies whether the descriptive text associated with the
journal is to be changed.

*SAME: Specifies that the text is not to be changed.
*BLANK: The text is to be replaced by blanks.

'description’: Enter no more than 50 characters, enclosed in apostrophes.
The value entered becomes the new text associated with this journal.

Examples
CHGJRN JRN(JRNLA) JRNRCV(RCV10) SEQOPT(*RESET)

This command causes all journal receivers currently attached to journal
JRNLA to be detached (JRNLA is found using the library search list *LIBL).
Journal receiver RCV10 (found using the library search list *LIBL) is attached
to journal JRNLA. The first journal entry in journal receiver RCV10 will have
a sequence number of one.

CHGJRN JRN(JRNLA) JRNRCV(*GEN *GEN)

This command causes all journal receivers currently attached to journal
JRNLA to be detached. Two new journal receivers will be created and
attached to journal JRNLA. The libraries and owners of the new journal
receivers will be the same as the libraries and owners of the detached
receivers. The names of the new receivers depend on the names of the
detached receivers. (For example, if one receiver was named RCVJRNA, the
new receiver will be named RCVJRNOOO1. If the receiver was named
RCVJRNOOO1, the new receiver will be named RCVJRN0002.) The first
journal entry in the new journal receivers will have a sequence number of
one greater than the last sequence number in the detached receivers.

CHGLF (Change Logical File) Command

The Change Logical File (CHGLF) command changes the attributes of a
logical file and its members. The changed attributes will be used for all
members subsequently added to the file. To change the attributes of a
specific member, execute the CHGLFM (Change Logical File Member)
command.

Restrictions: To change a logical file, you must have object management
and operational rights for the file and read rights to the library. In order to
change the file, an exclusive no read lock is necessary; no one may be using
the file for any purpose.

.*LIBL ﬁ @
CHGLF —— FILE logical—file—name >

Jlibrary—name j

Required
Optional
*SAMB *SAME
> WBRS{nNom MAINT *IMMED >
maximum—members *REB LDJ7
*DLY

*SAME *SAME
>— RECOVER *NO FMTSLR #NONE >

*APTSTRCPF LIBL

#STRCPF program—name —{

Jibrary—name

#SAME — *SAME —
>—FRCRATIO *€ *NONE WAITPILE € *IMMED >

*CL8 ———ﬁ/
number—of—seconds

nu.mber—of—recordl—betore—torce—/

#SAME *SAME \

>—WAITRCD ~€ *IMMED } SH.ARB{ #*NO
*NOMAX #YES
number—of—seconds

*BAME *SAME
> LVLCHK—€ «YES TEXT ‘€ #BLANK
*«NO 'description’

v

I Job:B,I Pgm:B,I

Command Descriptions

CHGLF

4-171

CHGLF
FILE

4-172

FILE Parameter: Specifies the qualified name of the logical file to be changed.
(If no library qualifier is given, *LIBL is used to find the file.)

MAXMBRS Parameter: Specifies the maximum number of members that the
logical file can have at any time. The maximum number of members
specified must be greater than or equal to the current number of members
in the file.

*SAME: The maximum number of members should not be changed.

*NOMAX: No maximum is specified for the number of members; the system
maximum of 32 767 members per file is used.

maximum-members: Enter the value for the maximum number of members
that the logical file can have. A value of 1 through 32767 is valid.

MAINT Parameter: Specifies the type of access path maintenance to be used
for all members of the logical file. This parameter is valid only if a keyed
access path is used.

Only the following changes to a file’s access path maintenance are allowed:
*REBLD to *IMMED (if the file was originally created as *IMMED or
*REBLD), *IMMED to *REBLD, *DLY to *REBLD, and *REBLD to *DLY (if
the file was originally created as *DLY).

Existing MAINT CHGLF MAINT Parameter Value

Value *REBLD *DLY IMMED
*REBLD N/A Note 1 Note 2
*DLY YES N/A NO
*MMED YES NO N/A
Notes:

1. Allowed only if file was originally created with MAINT(*DLY).
2. Allowed only if file was originally created with MAINT(*IMMED) or
MAINT(*REBLD).

9

*SAME: The files access path maintenance is not to be changed.

*IMMED: The access path is to be continuously (immediately) maintained
for each logical file member. The access path is updated each time a
record is changed, added to, or deleted from the member. The records can
be changed through a logical file that uses the logical file member
regardless of whether the logical file is opened or closed. *IMMED must be
specified for all files requiring unique keys to ensure uniqueness in all inserts
and updates.

*REBLD: The access path is to be rebuilt when a file member is opened
during program execution. The access path is continuously maintained until
the member is closed; access path maintenance is then terminated. *REBLD
is not valid for access paths that are to contain unique key values.

*DLY: The maintenance of the access path is to be delayed until the
member is opened for use. The access path is then updated only for
records that have been added, deleted, or updated since the file was last
closed. (While the file is open, all changes made to based-on members are
immediately reflected in the access paths of the opened files members, no
matter what is specified for MAINT.) To prevent a lengthy rebuild time
when the file is opened, *DLY should be specified only when the number of
changes to the access path between a close and the next open are small
{when key fields in records for this access path change infrequently). *DLY
is not valid for access paths that require unique key values.

If the number of changes saved reaches approximately 10 per cent of the
access path size, the system will stop saving changes and the access path
will be completely rebuilt the next time the file is opened.

RECOVER Parameter: Specifies, for files having immediate or delayed
maintenance on their access paths, when recovery processing of the file is
to be performed if a system failure occurred while the access path was
being changed.

An access path having immediate or delayed maintenance can be rebuilt
during start CPF (before any user can execute a job), or after start CPF has
finished (during concurrent job execution), or when the file is next opened.
While the access path is being rebuilt, the file cannot be used by any job.

An access path having rebuild maintenance will be rebuilt the next time its
file is opened, the time that it normally is rebuilt. This parameter is valid
only if a keyed access path is used. For more information on recovery
processing, refer to the CPF Programmer’'s Guide.

*SAME: The files recovery attribute should not be changed.

*NO: The access path of the file is not to be rebuilt. The. file's access path
is rebuilt the next time the file is opened.

CHGLF
RECOVER

Command Descriptions 4-173

CHGLF
FMTSLR

4-174

*AFTSTRCPF: The file is to have its access path rebuilt after the start CPF
operation has been completed. This option allows other jobs not using this
file to begin processing immediately after the CPF has been started. If a job
tries to allocate the file while its access path is being rebuilt, a file open
exception occurs if the specified wait time for the file is exceeded.

*STRCPF: The file is to have its access path rebuilt during the start CPF
operation. This ensures that the file’s access path will be rebuilt before the
first user program tries to use it; however, no jobs can begin execution until
after all files that specify RECOVER(*STRCPF) have their access paths
rebuilt.

FMTSLR Parameter: Specifies the name of a record format selector program
that is to be called when the logical file member contains more than one
logical record format. The user-written selector program is called when a
record is to be inserted into the data base file and a record format name is
not included in the HLL program. The selector program receives the record
as input, determines the record format to be used, and returns it to the data
base. This program must perform this function for every member in the
logical file that has more than one record format, unless the HLL program
itself specifies the record format name. (More information about the use of
format selector programs is contained in the CPF Programmer’s Guide.)

This parameter is not valid if the logical file has only one record format.
*SAME: The files format selector program should not be changed.

*NONE: There is no selector program for this logical file. The file cannot
have more than one logical record format, or the HLL program itself must
specify the record format name.

program-name: Enter the qualified name of the format selector program to -
be called when a record is to be inserted into a member having more than
one format. The selector program name can be optionally qualified by the
name of the library in which the program is stored. (If no library qualifier is
given, *LIBL is used to find the program.)

A program specified as the format selector program cannot be created with
USRPRF{(*OWNER) specified in its create program command.

)

FRCRATIO Parameter: The force write ratio parameter specifies the number
of inserted, updated, or deleted records that are processed before they are
forced to auxiliary (permanent) storage. (For an expanded description of the
FRCRATIO parameter, see Appendix A.)

The force write ratio specified for a logical file must be less than or equal to
the smallest force write ratio of its based-on files. If a larger force write
ratio is specified it is ignored and a message is sent informing you of the

action.

If a physical file associated with this logical file is being journaled, a larger
force write ratio or *NONE may be specified. Refer to the CPF
Programmer’s Guide for more information on the Journal Management

Facility.
*SAME: The files force write ratio is not to be changed.

*NONE: There is no force write ratio; the system determines when the
records are written in auxiliary storage.

number-of-records-before-force: Enter the number of new or changed
records that are processed before they are explicitly forced into auxiliary

storage.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait attribute of the file is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

CHGLF
FRCRATIO

Command Descriptions 4-175

CHGLF
WAITRCD

4-176

WAITRCD Parameter: Specifies the number of seconds that the program is
to wait for a record that is to be updated or deleted. If the record cannot
be allocated in the specified wait time, an error message is sent to the
program.

*SAME: The record wait attribute of the file is not to be changed.

*IMMED: The program is not to wait; when a record is locked, an
immediz;te allocation of the record is required.

*NOMAX: The wait time will be the maximum allowed by the system
(32 767 seconds).

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether an ODP (open data path) to the logical
file member is to be shared with other programs in the same job. When an
ODP is shared, the programs accessing the file share such things as the
position being accessed in the file, the file status, and the buffer. When
SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record.

If SHARE is specified, all members in the file will be changed.

*SAME: The ODP sharing value of the member is not to be changed.
*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and

activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the record format identifiers are to be
level checked to verify that the current record format identifier is the same
as that specified in the program that opens the logical file. This value can
be overridden on the OVRDBF command at execution time.

*SAME: The level check value of the member is not to be changed.
*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an error message is
sent to the program requesting the open, and the file is not opened.

*NO: The level identifiers are not to be checked when the file is opened.

TEXT Parameter: Enter text that briefly describes the logical file member.
(For an expanded description of the TEXT parameter, see Appendix A.)
*SAME: The text that describes the member is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example
CHGLF FILE(INV.QGPL) MBR(FEB) FMTSLR(INVFMTS)

The member named FEB in the logical file INV that is stored in the QGPL
library is to be changed so that the new format selector program to be used
with the logical file will be INVFMTS. *LIBL will be used to find the format
selector program.

|

CHGLF
LVLCHK

Command Descriptiaons 4-177

CHGLFM
CHGLFM (Change Logical File Member) Command

The Change Logical File Member (CHGLFM) command changes the
attributes of a logical file member.

Restrictions: To change a logical member, you must have object
management and operational rights for the logical file that contains the
member. You must also have read rights for the file library. In order to
change the member, no other user may be holding the file for exclusive use.
Concurrent users may have the member open, but changes made to the
member will not be reflected in any open members. In order to effect the
changes in any open members, you must first close the member (this must
be a full close if the member is open SHARE(*YES)) and then open it again.

.tmLﬂ
CHGLFM—VFILE loucll—ﬂle—nlme{ _/ >
Jibrary—name
ATy Required
Optional

#FIRST @ #SAMB -
>—MBR—< >—smn—€*no >
logical—file—member—name #YES
»SAME
>—Tm—€ #BLANK ?—
'description'

Job:B,]I Pgm:B,I

FILE Parameter: Specifies the qualified name of the logical file that contains
the member to be changed. (If no library qualifier is given, *LIBL is used to
find the file.)

4-178

MBR Parameter: Specifies the name of the member, or the first member
(*FIRST), to be changed.

*FIRST: The first member of the specified logical file is to be changed.

logical-file-member-name: Enter the name of the logical file member to be
changed.

SHARE Parameter: Specifies whether an ODP (open data path) to the logical
file member is to be shared with other programs in the same job. When an

ODP is shared, the programs accessing the file share such things as the
position being accessed in the file, the file status, and the buffer. When
SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the.next output record.

*SAME: The member’'s ODP sharing value should not be changed.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that also

specifies SHARE(*YES) when it opens the file.

TEXT Parameter: Enter text that briefly describes the logical file member.
(For an expanded description of the TEXT parameter, see Appendix A.)
*SAME: The text that describes the member is not to be changed.
*BLANK: No text is to be specified.

'description’: Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGLFM FILE(INV.QGPL) MBR(FEB) +
TEXT(Logical file member for FEB’)

The member named FEB in the logical file INV that is stored in the QGPL
library is to be changed so that the member will have new text.

CHGLFM
MBR

Command Descriptions 4-179

CHGLIND CHGLIND (Change Line Description) Command

The Change Line Description (CHGLIND) command changes some of the
parameter values in the named line description. The RETRY, ONLINE, and
TEXT parameters can be changed while the line itself is still online (the
changed values become effective immediately). All other changes must be
made with the line varied offline.

Required | Optional

®

*SAME \
CHGLIND ———— LIND line—desoription—name ACTSWNBKU ~€.no >
*YES
*SAME
#BOTH #SAME
> SWTCNN RATETYPE nrtn.l. —
#ANS
#CALL

v

#»SAME #*SAME
>—DIALMODE { .mu@——— ANSMODE -€ .muu_,
#AUTO .AUTO
#*SAME #SAME
>—DRTDLY —< >— lDLBTﬂll—(>— >
delay—time—units idle—detection—time—units
#*BAME #SAME
> RW‘I‘MR—{ >—NONPRDRCV—<
wait—for—date—time—units nonproductive—receive—time—units
oSMl!
> RRTR!—{ j——— ONLINE ‘€ #YRS
relry-limit *NO
*SAME
>— SWTCTLU CODE —€ .ncma—l'-' .uo
control-unit—name #ASCII *YES

8 maximum

*SAME #SAME
>—BSCSWTDSC—€ »YES TEXT —€ onmx?——-
#*NO 'description’

v

[ob:B,1 PgmiB,1

CHGLIND
LIND Parameter: Specifies the name of the line description that is to have LIND

one or more of its attributes changed.

ACTSWNBKU Parameter: Specifies whether the switched network backup
feature is to be activated (if the feature is installed) or de-activated. This
feature lets you bypass a broken, nonswitched (leased line) connection by
converting the line to a switched line operation as specified by the
SWTCNN, DIALMODE, and ANSMODE parameters. This parameter must
be *SAME for TYPE(*BSCT).

*SAME: The value specified in the line description is not to be changed.

*NO: The backup feature is to be de-activated if it was active. (The line is
back in normal operation.)

*YES: The backup feature is to be activated if it is not active.

SWTCNN Parameter: Specifies whether the line is to be used for incoming
calls, outgoing calls, or both. This parameter must be *SAME unless
CNN(*SWT) and SWNBKU(*YES) were specified when this line description
was created.

*SAME: The use of the line remains the same.

*BOTH: The line can be used for both incoming and outgoing calls.
*ANS: The line can be used for incoming calls only.

*CALL: The line can be used for outgoing calls only.

RATETYPE Parameter: Specifies the speed at which the line operates if the
line has the data rate select function. RATETYPE(*HALF) is valid only if
SELECT(*YES) was specified on the CRTLIND command that created this
line description.

*SAME: The line speed remains the same.

*FULL: The line is operated at full speed.

*HALF: The line is operated at half speed.

Command Descriptions 4-181

CHGLIND
DIALMODE DIALMODE Parameter: Specifies whether the line connection is to be made

manually or automatically. DIALMODE(*AUTO) is valid only if
AUTOCALL(*YES) is specified.

*SAME: The value specified in the line description is not to be changed.

*MANUAL: The line connection is made by the user manually dialing the
connection (that is, the called station). If AUTOCALL(*NO) is specified,
*MANUAL is the defauit.

*AUTO: The line connection is made by the system automatically dialing the
called station. If AUTOCALL(*YES) is specified, *AUTO is the defauit.

ANSMODE Parameter: Specifies how incoming calls to System/38 can be
answered (that is, how the switched line connection is to be made through
the autoanswer facilities for calls coming from a remote control unit or work
station). ANSMODE(*AUTO) is valid only if AUTOANS(*YES) was specified
in the associated CRTLIND command that created this line description.

*SAME: The method of answering incoming calls remains the same.
*MANUAL: The incoming call must be manually answered.

*AUTO: The incoming call is automatically answered by the autoanswer
modem feature.

DTRDLY Parameter: The data terminal ready (DTR) delay parameter specifies
the maximum length of time that the system is to pause before ending a
command that resets the DTR condition. The delay time cannot exceed 3
seconds.

*SAME: The maximum delay time specified in the line description is not to
be changed.

delay-time-units: Enter a value, O through 15, that is multiplied by the base
time unit of 200 milliseconds to determine the maximum delay time before
the system resets the DTR condition. For most networks, 200 milliseconds
(specified here by a 1) is appropriate. If O is specified or assumed, a default
time of 100 milliseconds is used.

4-182

CHGLIND
IDLETIME Parameter: Specifies, for any transmission sent by the primary IDLETIME

station that requires a response, the maximum time within which the
beginning of the secondary station’s response must be detected (received).
This time should be greater than the sum of the:

+ Transmission time to the secondary station

+ Processing time of the control unit’'s response at the secondary station
(not including customer program processing time or operator response
time)

« Clear-to-send time at the secondary station modem
« Transmission time from the secondary station
This parameter is not valid for secondary SDLC lines or BSC lines.

*SAME: The maximum time during which the secondary station’s response
can be detected remains the same.

idle-detection-time-units: Enter a value, O through 255, that is multiplied by
the base time unit of 53.3 milliseconds to determine the maximum detection
time for the secondary station’s response (53.3 milliseconds through 13.6
seconds). If O is specified or assumed, a default time of 500 milliseconds is
used.

RCVTMR Parameter: The receive timer parameter, valid for BSC lines only,
specifies the time the system will wait for data before a time-out occurs.
The time is measured in 200-millisecond intervals; a period of 3 seconds (a
RCVTMR value of 15) is appropriate for most systems.

*SAME: The time interval is not to be changed.

wait-for-data-time-units: The time period the system will wait for data. The
maximum time-out period allowed is 25.4 seconds (a RCVTMR value of
127).

NONPRDRCYV Parameter: The nonproductive receive parameter specifies the
maximum length of time in which to receive an intelligible transmission. The
time is specified by a value that is multiplied by the base time unit of 500
milliseconds. Because the nonproductive receive time depends upon the line
speed, refer to the table given in the NONPRDRCV parameter description of
the CRTLIND command.

*SAME: The maximum delay time to wait for intelligible data remains the
same.

nonproductive-receive-time-units: Enter a value, O through 255, that is
multiplied by the base time unit of 500 milliseconds to determine the
maximum time to wait for intelligible data. If O is specified or assumed, a
default time of 128 seconds is used.

Command Descriptions 4-183

CHGLIND
RETRY

4-184

RETRY Parameter: Specifies the maximum number of retries that can be

made to correct an error that occurs.
*SAME: The retry limit remains the same.

retry-limit: Enter a value, O through 21, that is to be multiplied by a base
number of 1 or 7 to determine the maximum number of retries that can be
attempted if necessary. All errors associated with making a switched
connection to the line use the base multiplier 1; all other line errors use the
base multiplier 7. If O is specified, no retries occur.

In no case does the system attempt more than 21 retries. Therefore, a
value of O through 21 is valid for retrying errors that use the multiplier 1. A
value of O through 3 is valid for those using the multiplier 7; in this case,
any value specified that is greater than 3 is assumed to be 3, and a
maximum of 21 retries (3 times 7) can be attempted if necessary.

ONLINE Parameter: Specifies whether the line is to be varied online

automatically when the Control Program Facility (CPF) is started. After CPF
is started, the Vary Line (VRYLIN) com<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>