
- - -- - - SC21 -7731 -5 - - - - -- --- ---- - - --- File No. S38-36 - - --- - • -

I BM System/38

IBM System/38
Control Language
Reference Manual

Program Number 5714-SS1

-- --------------------------·- Technical Newsletter This Newsletter No. SN21-8291
®

Date 10 September 1982

I BM System/38
Control Language
Reference Manual

©IBM Corp. 1979, 1980, 1981, 1982

Base Publication No. SC21-7731-5

File No. S38-36

Previous Newsletters None

This technical newsletter applies to release 4, modification 1 of the IBM System/38 Control
Program Facility (Program 5714-SS 1) and provides replacement pages for the subject publication.
These replacement pages remain in effect for subsequent releases unless specifically altered.
Pages to be inserted and/or removed are:

4-61 through 4-64
4-119, 4-120
4-305 through 4-308
4-423 through 4-428
4-431, 4-432
4-791, 4-792
4-792.1, 4-792.2 (added)
4-1211, 4-1212

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

• Support for IBM 5291 Display Station

• Support for IBM 5292 Color Display Station

Note: Please file this cover letter at the back of the manual to provide a record of changes.

BM Corporation, Publications, Department 245, Rochester, Minnesota 55901

£)IBM Corp. 1982 Printed in U.S.A.

== ==:.. ::. .:: - ---- SC21-7731-5 - --- ---- - - --- File No. 538-36 - ---- - " -

I BM System/38

I BM System/38
Control Language
Reference Manual

Program Number 5714-$$1

Sixth Edition (September 1982)

This is a major revision of, and obsoletes, SC21-7731-4 and Technical Newsletter
SN21-8235. This edition applies to release 4, modification 1 of the IBM
System/38 Control Program Facility (Program 5714-551), and to all subsequent
releases until otherwise indicated in technical newsletters or in new editions ..

Changes or additions to the text, syntax diagrams, and illustrations are indicated
by a vertical line to the left of the change or addition.

Changes are periodically made to the information herein; changes will be reported
in technical newslett.ers or in new editions of this publication.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
enterprise is entirely coincidental.

Use this publication only for the purpose stated in About This Manual.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1979, 1980, 1981, 1982

ABOUT THIS MANUAL . .
Purpose of This Manual
Organization of This Manual
What You Should Know ..
If You Need More Information

System/38 Overview Information
Control Language Commands
Data Description Specifications .
Messages .. .
Languages .. .
Communications
Utilities
System Operation
Installation and Device Configuration
Problem Determination
Content and Use of System/38 Publications

PART 1. CONTROL LANGUAGE FUNCTIONS
AND SYNTAX

CHAPTER 1. SUMMARY OF CPF FUNCTIONS AND
OBJECT TYPES

CPF Object Types
CPF-Provided Libraries

Commands Operating on CPF Objects
Commands Operating on Specific Object Types
Commands Operating on Multiple Object Types

Command Groups (By Function) .
Object and Library Commands
Data Base Commands
Device File Commands
Device Management Commands
Programming Commands . .
Program Debug Commands . .
Message Handling Commands .
Input/Output Spooling Commands
System and Job Control Commands
Subsystem Description, Job Description, and

Class Commands . . .
Configuration Commands
Utility Commands
Security Commands . . .
Save/Restore Commands
Command Definition Commands
Service Commands
Remote Job Entry Facility Commands

Master Command Matrix Chart

CHAPTER 2. CONTROL LANGUAGE SYNTAX
Parts of a Command .

Command Label
Command Name . . .
Command Parameters .

Command Syntax
Command Delimiters .
Command Continuation
Entering Comments . .

Control Language Character Set .

ix
ix
ix
xi
xi
xi
xi
xi
xi
xi
xii
xii
xii
xii
xii
xii

1-1
1-1
1-4
1-5
1-6
1-7
1-8
1-9

1-10
1-11
1-12
1-13
1-14
1-14
1-15
1-16

1-17
1-18
1-19
1-19
1-19
1-20
1-20
1-21
1-22

2-1
2-1
2-1
2-2
2-2
2..;5
2-5
2-7
2-7
2-8

Contents

Special Characters and Predefined Values
Summary of Special Character Usage
Predefined Values

Rules for Specifying Names
Identifying CPF Objects

Simple and Qualified Object Names .
Generic Object Names
CPF Object Naming Rules

Parameter Values .
Constant Values
Variables
Expressions . .
Lists of Values .

Syntax Coding Rules (Summary) .

PART 2. CONTROL LANGUAGE COMMAND
DESCRIPTIONS

CHAPTER 3. FORMAT OF COMMAND
DESCRIPTIONS

How Commands Are Described
Command Description .
Command Syntax
Parameter Descriptions . .
Command Coding Examples
Additional Command Considerations

How to Interpret Syntax Diagrams .
Sample Syntax Diagram
Syntax Diagram Rules

CHAPTER 4. COMMAND DESCRIPTIONS
ADDAJE (Add Autostart Job Entry) Command
ADDBKP (Add Breakpoint) Command . . .
ADDFCTE (Add Forms Control Table Entry)

Command
ADDJOBQE (Add Job Queue Entry) Command
ADDLFM (Add Logical File Member) Command
ADDMSGD (Add Message Description) Command
ADDPFM (Add Physical File Member) Command
ADDPGM (Add Program) Command
ADDRJECMNE (Add RJE Communications Entry)

Command
ADDRJERDRE (Add RJE Reader Entry)

Command
ADDRJEWTRE (Add RJE Writer Entry)

Command
ADDRTGE (Add Routing Entry) Command
ADDTRC (Add Trace) Command
ADDWSE (Add Work Station Entry) Command

ALCOBJ (Allocate Object) Command

ANSLIN (Answer Line) Command . .

APYJRNCHG (Apply Journaled Changes)
Command

APYPGMCHG (Apply Programming Change)
Command

2-9
2-9

2-11
2-12
2-13
2-13
2-13
2-14
2-16
2-17
2-20
2-21
2-22
2-23

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-5

4-1
4-1
4-3

4-9
4-17
4-20
4-25
4-39
4-41

4-43

4-45

4-47
4-52
4-56
4-62

4-66

4-70

4-71

4-77

Contents iii

CRTRPGPGM (Create RPG Program) Command
CRTRPTPGM (Create Auto Report Program)

Command
CRTSBSD (Create Subsystem Description)

Command
CRTSRCPF (Create Source Physical File)

Command
CRTSSND (Create Session Description)

Command
CRTTAPF (Create Tape File) Command
CRTTBL (Create Table) Command
CRTUSRPRF (Create User Profile) Command

CVTDAT (Convert Date) Command

DATA (Data) Command

DCL (Declare CL Variable) Command
DCLDTAARA (Declare Data Area) Command
DCLF (Declare File) Command

DLCOBJ (Deallocate Object) Command

DL TCLS (Delete Class) Command . . .
DLTCMD (Delete Command) Command
DL TCUD (Delete Control Unit Description)
Command

DLTDEVD (Delete Device Description) Command
DLTDFUAPP (Delete DFU Application) Command
DL TDKTLBL (Delete Diskette Label) Command
DLTDTAARA (Delete Data Area) Command
DL TEDTD (Delete Edit Description) Command
DL TF (Delete File) Command
DL TFCT (Delete Forms Control Table)

Command
DL T JOBD (Delete Job Description) Command
DL T JOBQ (Delete Job Queue) Command
DLTJRN (Delete Journal) Command ..
DLTJRNRCV (Delete Journal Receiver)
Command

DLTLIB (Delete Library) Command ..
DLTLIND (Delete Line Description) Command
DLTMSGF (Delete Message File) Command .
DL TMSGQ (Delete Message Queue) Command .
DL TOUTQ (Delete Output Queue) Command
DLTOVR (Delete Override) Command ...
DL TPGM (Delete Program) Command . . .
DLTPRTIMG (Delete Print Image) Command
DLTQRYAPP (Delete Query Application)

Command
DL TSBSD (Delete Subsystem Description)
Command

DLTSSND (Delete Session Description)
Command

DLTTBL (Delete Table) Command .. .
DLTUSRPRF (Delete User Profile) Command

DMPCLPGM (Dump CL Program) Command
DMPJOB (Dump Job) Command
DMPJOBINT (Dump Job Internal) Command
DMPOBJ (Dump Object) Command
DMPSYSOBJ· (Dump System Object) Command
DMPTAP (Dump Tape) Command

DO (Do) Command

4-561

4-568

4-576

4-579

4-589
4-593
4-608
4-610

4-615

4-618

4-620
4-623
4-624

4-627

4-629
4-630

4-631
4-632
4-633
4-634
4-637
4-638
4-639

4-640
4-641
4-642
4-643

4-644
4-645
4-646
4-647
4-648
4-649
4-650
4-653
4-654

4-655

4-656

4-657
4-658
4-659

4-660
4-661
4-663
4-664
4-665
4-671

4-677

DSNDFUAPP (Design DFU Application) Command 4-678
DSNFMT (Design Format) Command 4-680
DSNQRYAPP (Design Query Application) Command 4-682

DSPACT JOB (Display Active Jobs) Command 4-684
DSPAUTUSR (Display Authorized Users)
Command 4-692

DSPBKP (Display Breakpoints) Command 4-694
DSPCLS (Display Class) Command 4-698
DSPCMD (Display Command) Command 4-700
DSPCNPA (Display CSNAP Attributes) Command . 4-702
DSPCTLSTS (Display Control Unit Status)

Command 4-704
DSPCUD (Display Control Unit Description)
Command 4-709

DSPDBG (Display Debug) Command 4-712
DSPDBR (Display Data Base Relations)
Command 4-715

DSPDEVCFG (Display Device Configuration)
Command 4-723

DSPDEVD (Display Device Description)
Command 4-726

DSPDEVSTS (Display Device Status) Command 4-729
DSPDKT (Display Diskette) Command . 4-734
DSPDTA (Display Data) Command 4-746
DSPDTAARA (Display Data Area) Command . 4-747
DSPEDTD (Display Edit Description) Command 4-749
DSPFCT (Display Forms Control Table)
Command 4-751

DSPFD (Display File Description) Command 4-755
DSPFFD (Display File Field Description)
Command 4-775

DSPJOB (Display Job) Command . 4-782
DSPJOBD (Display Job Description) Command . 4-794
DSPJOBQ (Display Job Queue) Command 4-797
DSPJRN (Display Journal) Command 4-802
DSPJRNA (Display Journal Attributes)
Command 4-813

DSPJRNRCVA (Display Journal Receiver
Attributes) Command 4-817

DSPLIB (Display Library) Command . 4-820
DSPLIBL (Display Library List) Command 4-823
DSPLIND (Display Line Description) Command 4-825
DSPLINSTS (Display Line Status) Command 4-828
DSPLOG (Display Log) Command . 4-833
DSPMSG (Display Messages) Command 4-838
DSPMSGD (Display Message Description)
Command 4-843

DSPMSGF (Display Message File) Command . 4-849
DSPOBJAUT (Display Object Authority)
Command 4-853

DSPOBJD (Display Object Description)
Command 4-856

DSPOBJLCK (Display Object Lock) Command 4-864
DSPOUTQ (Display Output Queue) Command 4-870
DSPOVR (Display Override) Command 4-875
DSPPGMCHG (Display Programming Change)
Command 4-882

DSPPGMREF (Display Program References)
Command 4-888

DSPPGMVAR (Display Program Variable)
Command 4-894

DSPRDR (Display Reader) Command 4-904
DSPRJESSN (Display RJE Session) Command 4-908

Contents v

DSPSBMJOB (Display Submitted Jobs) LODPGMCHG (Load Programming Change)
Command 4-916 Command 4-1045

DSPSBS (Display Subsystem) Command 4-919
DSPSBSD (Display Subsystem Description) LOGDBF (Log Data Base File) Command 4-1048

Command 4-923
DSPSPLF (Display Spooled File) Command 4-929 LSTCMDUSG (List Command Usage) Command 4-1051
DSPSPLFA (Display Spooled File Attributes) LSTCNPDTA (List CSNAP Data) Command 4-1053

Command 4-934 LSTCNPHST (List CSNAP History) Command 4-1056
DSPSRVSTS (Display Service Status) Command 4-938 LSTERRLOG (List Error Log) Command 4-1059
DSPSSND (Display Session Description) LSTINTDTA (List Internal Data) Command 4-1062
Command 4-940

DSPSYS (Display System) Command 4-946 MONMSG (Monitor Message) Command 4-1064
DSPSYSSTS (Display System Status) Command 4-949
DSPSYSVAL (Display System Value) Command 4-953 MOVOBJ (Move Object) Command . 4-1068
DSPTAP .(Display Tape) Command 4-955
DSPTRC (Display Trace) Command 4-961 OVRBSCF (Override with BSC File) Command 4-1070
DSPTRCDTA (Display Trace Data) Command. 4-963 OVRCMNF (Override with Communications
DSPUSRPRF (Display User Profile) Command 4-965 File) Command 4-1078
DSPWTR (Display Writer) Command 4-969 OVRCRDF (Override with Card File) Command 4-1082

OVRDBF (Override with Data Base File)
DUPDKT (Ouplicate Diskette) Command 4-974 Command 4-1089
EDTSRC (Edit Source) Command 4-977 OVRDKTF (Override with Diskette File)

Command 4-1098
ELSE (Else) Command . 4-980 OVRDSPF (Override with Display File)

Command 4-1107
ENDCBLDBG (End COBOL Debug) Command 4-982 OVRMSGF (Override with Message File)
ENDDBG (End Debug) Command 4-983 Command 4-1111
ENDDO (End Do) Command 4-984 OVRPRTF (Override with Printer File) Command 4-1113
ENDINP (End Input) Command . 4-985 OVRTAPF (Override with Tape File) Command 4-1125
ENDJOB (End Job) Command 4-986
ENDJRNPF (End Journaling Physical File Changes) PCHPGM (Patch Program) Command 4-1139

Command 4-987
ENDLOG (End Logging) Command 4-989 PGM (Program) Command . 4-1143
ENDPGM (End Program) Command 4-990
ENDSRV (End Service) Command 4-991 PRPAPAR (Prepare APAR) Command 4-1145

ENTCBLDBG (Enter COBOL Debug) Command 4-992 PWRCTLU (Power Control Unit) Command 4-1149
ENTDBG (Enter Debug) Command 4-993 PWRDEV (Power Device) Command 4-1150

PWRDWNSYS (Power Down System) Command 4-1151
FMTDTA (Format Data) Command 4-996
FMTRJEDTA (Format RJE Data) Command 4-999 QRYDTA (Query Data) Command . 4-1153

GOTO (Go To) Command 4-1003 RCLRSC (Reclaim Resources) Command . 4-1155
RCLSTG (Reclaim Storage) Command . 4-1158

GRTOBJAUT (Grant Object Authority) Command 4-1004
GRTUSRAUT (Grant User Authority) Command . 4-1007 RCVDTAARA (Receive Data Area) Command . 4-1161

RCVF (Receive File) Command 4-1162
HLDJOB (Hold Job) Command . 4-1009 RCVMSG (Receive Message) Command 4-1165
HLDJOBQ (Hold Job Queue) Command . 4-1011
HLDOUTQ (Hold Output Queue) Command 4-1012 RETURN (Return) Command 4-1174
HLDRDR (Hold Reader) Command 4-1013
HLDSPLF (Hold Spooled File) Command . 4-1014 RGZPFM (Reorganize Physical File Member)
HLDWTR (Hold Writer) Command 4-1016 Command 4-1175

IF (If) Command 4-1017 RLSJOB (Release Job) Command . 4-1179
RLSJOBQ (Release Job Queue) Command . 4-1180

INZDKT (Initialize Diskette) Command . 4-1022 RLSOUTQ (Release Output Queue) Command 4-1181
INZPFM (Initialize Physical File Member) RLSRDR (Release Reader) Command 4-1182

Command 4-1029 RLSSPLF (Release Spooled File) Command 4-1183
INZTAP (Initialize Tape) Command 4-1031 RLSWTR (Release Writer) Command 4-1185

JOB (Job) Command 4-1035 RMVAJE (Remove Autostart Job Entry)
Command 4-1187

JRNPF (JOURNAL Physical File) Command 4-1043 RMVBKP (Remove Breakpoint) Command 4-1188

vi

RMVFCTE (Remove Forms Control Table Entry)
Command

RMVJOBQE (Remove Job Queue Entry)
Command

RMVJRNCHG (Remove Journaled Changes)
Command

RMVM (Remove Member) Command . . .
RMVMSG (Remove Message) Command
RMVMSGD (Remove Message Description)

Command
RMVPGM (Remove Program) Command . .
RMVPGMCHG (Remove Programming Change)

Command
RMVRJECMNE (Remove RJE Communications

Entry) Command
RMVRJERDRE (Remove RJE Reader Entry)
Command

RMVRJEWTRE (Remove RJE Writer Entry)
Command

RMVRTGE (Remove Routing Entry) Command
RMVTRC (Remove Trace) Command .
RMVWSE (Remove Work Station Entry)

Command

RNMDKT (Rename Diskette) Command
RNMOBJ (Rename Object) Command .

RPLLIBL (Replace Library List) Command

RRT JOB (Reroute Job) Command

RSMBKP (Resume Breakpoint) Command

RSTAUT (Restore Authority) Command
RSTLIB (Restore Library) Command . .
RSTOBJ (Restore Object) Command
RSTUSRPRF (Restore User Profiles) Command

RTVCLSRC (Retrieve CL Source) Command .
RTVDFUSRC (Retrieve DFU Source) Command .
RTVDTAARA (Retrieve Data Area) Command
RTVJOBA (Retrieve Job Attributes) Command
RTVMSG (Retrieve Message) Command
RTVQRYSRC (Retrieve Query Source)
Command

RTVSYSVAL (Retrieve System Value) Command

RVKOBJAUT (Revoke Object Authority)

4-1190

4-1192

4-1193
4-1198
4-1199

4-1201
4-1202

4-1203

4-1205

4-1206

4-1207
4-1208
4-1209

4-1211

4-1212
4-1215

4-1217

4-1218

4-1220

4-1221
4-1222
4-1229
4-1238

4-1242
4-1243
4-1245
4-1248
4-1251

4-1255
4-1257

Command 4-1258

SAVCHGOBJ (Save Changed Object)
Command

SAVLIB (Save Library) Command .
SAVOBJ (Save Object) Command
SAVSYS (Save System) Command

SBMCRDJOB (Submit Card Jobs) Command .
SBMDBJOB (Submit Data Base Jobs)

Command
SBMDKT JOB (Submit Diskette Jobs)

Command
SBMJOB (Submit Job) Command
SBMRJEJOB (Submit RJE Job) Command .

4-1261
4-1269
4-1275
4-1282

4-1286

4-1289

4-1292
4-1298
4-1305

SIGNOFF (Sign Off) Command

SNDBRKMSG (Send Break Message) Command
SNDDTAARA (Send Data Area) Command .
SNDF (Send File) Command
SNDJRNE (Send Journal Entry) Command .
SNDMSG (Send Message) Command ..
SNDPGMMSG (Send Program Message)

Command
SNDRCVF (Send/Receive File) Command
SNDRPY (Send Reply) Command .

SRVJOB (Service Job) Command .

STRCNFCHK (Start Confidence Check)
Command

STRCRDRDR (Start Card Reader) Command
STRCRDWTR (Start Card Writer) Command
STRDBRDR (Start Data Base Reader) Command
STRDKTRDR (Start Diskette Reader) Command
STRDKTWTR (Start Diskette Writer) Command
STRPDP (Start Problem Determination Procedure)

Command
STRPRTWTR (Start Printer Writer) Command
STRRJECSL (Start RJE Console) Command
STRRJERDR (Start RJE Reader) Command
STRRJESSN (Start RJE Session) Command
STRRJEWTR (Start RJE Writer) Command
STRSBS (Start Subsystem) Command .

TFRCTL (Transfer Control) Command
TFRJOB (Transfer Job) Command

TRCINT (Trace Internal) Command
TRCJOB (Trace Job) Command

TRMCPF (Terminate Control Program Facility)
Command

TRMRJESSN (Terminate RJE Session) Command.
TRMSBS (Terminate Subsystem) Command

VFYPRT (Verify Printer) Command . . .

VRYCTLU (Vary Control Unit) Command .
VRYDEV (Vary Device) Command .
VRYLIN (Vary Line) Command

WAIT (Wait) Command . . .

4-1309

4-1310
4-1312
4-1313
4-1315
4-1317

4-1319
4-1326
4-1329

4-1331

4-1332
4-1334
4-1337
4-1341
4-1344
4-1348

4-1353
4-1356
4-1360
4-1363
4-1365
4-1367
4-1373

4-1375
4-1377

4-1379
4-1383

4-1386
4-1388
4-1390

4-1393

4-1394
4-1396
4-1397

4-1398

Contents vii

CHAPTER 5. COMMAND DEFINITION
STATEMENTS . . •

Creating User-Defined Commands
Command Definition Statement Descriptions

CMD (Command) Statement .
PARM (Parameter) Statement
ELEM (Element) Statement
QUAL (Qualifier) Statement
DEP (Dependent) Statement

PART 3. APPENDIXES

APPENDIX A. EXPANDED PARAMETER
DESCRIPTIONS . . •

CLS Parameter
EXCHTYPE Parameter .
FILETYPE Parameter .
FRCRATIO Parameter .
Operations Using Generic Functions .
JOB Parameter . .
LABEL Parameter . .
LOC Parameter . . .
MAXACT Parameter
OBJ Parameter . . .
OBJTYPE Parameter
OUTPUT Parameter .
PUBAUT Parameter .
Scheduling Priority Parameters (JOBPTY,

OUTPTY, PTYLMT)
SEV Parameter . .
SPLNBR Parameter
TEXT Parameter .
VOL Parameter . .
WAITFILE Parameter

APPENDIX B. EXPRESSIONS .
Operators in Expressions
Priority of Operators When Evaluating

Expressions
Arithmetic Expressions
Character String Expressions .
Relational Expressions
Logical Expressions
%SUBSTRING Built-In Function
%SWITCH Built-In Function ..

APPENDIX C. USER PROFILE MATRIX CHART .

APPENDIX D. FILES USED BY CL COMMANDS

APPENDIX E. ERROR MESSAGES THAT CAN BE

5·1
5-1
5-2
5-2
5-3

5-19
5-32
5-41

A-1
A-2
A-4
A-5
A-7
A-8
A-9

A-11
A-14
A-19
A-20
A-21
A-23
A-24

A-26
A-28
A-30
A-31
A-32
A-36

B-1
B-2

B-4
B-4
B-5
B-7
B-8
B-9

B-10

C-1

D-1

MONITORED E·1

APPENDIX F. COMMAND AND KEYWORD
ABBREVIATIONS F-1

GLOSSARY OF TERMS AND ABBREVIATIONS G-1

INDEX . . . • X·1

viii

PURPOSE OF THIS MANUAL

This document is intended for use as a reference
manual to assist the System/38 programmer, data
processing manager, and system operator in using the
control language commands. The System/~8 user uses
the control language commands to request functions of
the system's Control Program Facility (CPF) and of the
various languages and utilities.

This manual does not describe all of the functions of
CPF or of the languages and utilities. That information
can be found in the manuals listed under the section If
You Need More Information.

ORGANIZATION OF THIS MANUAL

This publication is divided into three parts, consisting of
five chapters and six appendixes.

Part 1 contains the following:

• Chapter 1 identifies (in chart form) the functions
performed by the control language commands, and
introduces the types of CPF objects used by the
commands.

• Chapter 2 describes the control language syntax.

Part 2 contains the following:

• Chapter 3 explains the format used to describe
control language commands.

• Chapter 4 describes every control language
command, including commands for CPF and
commands for languages and utilities.

• Chapter 5 describes the statements used for defining
commands.

About This Manual

Part 3 contains the following:

• Appendix A describes in further detail a number of
control language parameters.

• Appendix B describes the expressions and built-in
functions used in control language programs.

• Appendix C identifies which IBM-supplied user
profiles are authorized to use each command.

• Appendix D provides a cross-reference between
commands and IBM-supplied data base and device
files used by those commands.

• Appendix E lists information about
command-generated error messages that can be
monitored.

• Appendix F lists abbreviations used in control
language command names and parameter keywords
and values.

The following changes have been made to this manual
for System/38 for release 4.1:

• The following are new commands supported on
System/38:

APYJRNCHG DSPJRN
CHGJRN DSPJRNRCVA
CHGLF DSPJRNA
CHGLFM DSPOBJLCK
CHG PF DSPPGMCHG
CHGPFM EN DJ RN PF
CHGSRCPF GRTUSRAUT
CRTJRN JRNPF
CRTJRNRCV LSTCNPDTA
DLTJRN LSTCNPHST
DLTJRNRCV RMVJRNCHG
DMPCLPGM RTVDTAARA
DMPTAP SAVCHGOBJ
DSPACTJOB SNDJRNE

About This Manual ix

The Journal facility provides improved function for
data base backup and recovery, as well as enabling
you to use an audit trail. The change file and change
file member commands allow you to change the
attributes specified when the file or member was
created. The Dump CL PrQgram (DMPCLPGM)
command can be used in a CL program to dump
program variables and messages, should an
unmonitored escape message occur. The Dump Tape
(DMPTAP) command allows you to display or list the
labels and/or data of a tape. The Display Active
Jobs (OS PACT JOB) command provides a summary
display of jobs active in the system. The Display
Object Locks (DSPOBJLCK) command displays all
locks and lock requests for a particular object. The
Display Programming Change (DSPPGMCHG)
command provides a display of the status of
programming changes. The Grant User Authority
(GRTUSRAUTI command allows a named user to be
given the same authority as another named user. The
List CSNAP History and List CSNAP Data
(LSTCNPHST and LSTCNPDTA) commands allow you
to display current and past communications line
statistics. The Retrieve Data Area (RlVDTAARA)
command is used in CL programs to retrieve the
contents of a data area and place it into a variable.
The Save Changed ·object (SAVCHGOBJ) command
saves only those objects that have been changed
since a specified date/time.

x

• Miscellaneous new command parameters and
technical changes support the following
enhancements:

Maximum objects allowed per save/restore have
been increased
Data saved by save I restore is now given an
expiration date
CLEAR option is now supported. for tape
Saved da.ta can now be displayed at the member

·level
DSPJOB menu now provides an option to show
job locks

- DSPSYSSTS now shows percentage of machine
addresses used
File displays now support scanning and windowing
Program size limitation has been increased from
8 K to 32 K bytes
New concatenation operators *BCAT and *TCAT
are supported
Ten line descriptions per communications line are
now supported
Generic names may be specified for CHGPRTF
operations
Spanned records, undefined format records, and
improved error recovery are now supported for
tape
Tape may now be used as PIO media and for
system backup
I-Format is now supported for diskette
interchang~

Long•running machine instructions can now be
canceled
Debug support has been enhanced
The power warning feature has been enhanced
Functional enhancements have been added to
simplify conversion from the System/34

Also, various examples have been updated and
irnproved.

Technical changes are noted with a vertical change bar
to the left of the changed material.

Note: This manual follows the convention that he
means he or she.

(

(

WHAT YOU SHOULD KNOW

To use this manual, you should understand the concepts
of the IBM System/38 Control Program Facility.
Information about those concepts can be found in the
IBM System/38 Control Program Facility Concepts
Manual, SC21-7729.

Also, you should know how to use the 5251 and 5252
Display Stations as System/38 work stations. That
information can be found in the IBM System/38
Programmer's/User's Work Station Guide, SC21-7744.

IF YOU NEED MORE INFORMATION

The following list describes other System/38
publications that explain in further detail topics related
to the information presented in this reference manual.

System/38 Overview Information

• IBM System/38 System Introduction, GC21-7728
Summarizes the System/38 design and highlights
its major functions
Describes System/38 licensed programs
Describes possible System/38 configurations
Describes hardware device characteristics

• IBM System/38 Application Example 1, SC21-7881
Uses a basic application to illustrate the use of
CPF, RPG Ill, and the Interactive Data Base
Utilities (IOU) on System/38

Control Language Commands

• IBM System/38 Programming Reference Summary,
SC21-7734
- Contains syntax diagrams for all CL commands

Describes object authority required for commands
and objects
Lists the names of IBM-supplied objects
Contains a brief description of system values

Data Description Specifications

• IBM System/38 Control Program Facility Reference
Manual-Data Description Specifications, SC21-7806

Describes in detail how to describe files using
DDS

- Provides a list of valid DDS keywords for each file
type

• IBM System/38 Screen Design Aid Reference Manual
and User's Guide, SC21-7755
- Describes how to design, create, and maintain

display record formats and menus using SDA

• IBM System/38 Programming Reference Summary,
SC21-7734
- Provides a list of valid DDS keywords for each file

type

Messages

• IBM System/38 Messages Guide: CPF, RPG Ill, and
/DU, SC21-7736
- Describes each message, including the first- and

second-level text, the substitution variables, the
severity, and the system action

• IBM System/38 Messages Guide: COBOL,
SC21-7823
- Describes each message, including the first- and

second-level text, the substitution variables. the
severity, and the system action

• IBM System/38 Programmer's/User's Work Station
Guide, SC21-7744

Describes how to send and receive messages at a
display station

Languages

• IBM System/38 RPG Ill Reference Manual and
Programmer's Guide, SC21-7725

Describes RPG Ill specifications
- Provides information on writing, testing, and

maintaining RPG Ill programs

• IBM System/38 COBOL Reference Manual and
Programmer's Guide, SC21 - 7718
- Describes the System/38 COBOL compiler and

language
Provides information on writing, testing, and
maintaining COBOL programs

About This Manual xi

Communications

• IBM System/38 Data Communications Programmer's
Guide, SC21-7825
- Describes the System/38 data communications

devices
- Describes how to use the communications

functions

• IBM System/38 Control Program Facility Reference
Manual- Data Description Specifications, SC21 - 7806
- Describes the DDS for a communications file and

a BSC file

Utilities

• IBM System/38 Source Entry Utility Reference Manual
and User's Guide, SC21-7722
- Describes how to use SEU to enter and maintain

control language statements, data description
specifications, and command definition statements

• IBM System/38 Data File Utility Reference Manual
and User's Guide, SC21-7714
- Describes how to use DFU to create and maintain

data files

• IBM System/38 Query Utility Reference Manual and
User's Guide, SC21-7724
- Describes how to use query to create reports from

information in data base files

• IBM System/38 Screen Design Aid Reference Manual
and User's Guide, SC21-7755
- Describes how to design, create, and maintain

display record formats and menus using SDA

• IBM System/38 Remote Job Entry Facility
Programmer's Gulde, .SC21-7914
- Describes how to use RJEF to install, start,

control, and terminate a remote job entry system

• IBM System/38 Remote Job Entry Facility Installation
Planning Guide, GC21-7924
- Describes RJEF functions
- Describes how to install and configure an RJEF

network

xii

System Operation

• IBM System/38 Operator's Gulde, SC21-7735 '-
- Describes system operator and system request

menus
- Describes job and system status displays
- Describes how to submit and control jobs through

· job and spooling commands
- Describes how to vary or poyver devices on and

off
- Describes how to save and restore objects,

libraries, and the system
- Describes diskette handling
- Describes message handling for the system

operator

. Installation and Device Configuration

• IBM System/38 Guide to Program Product Installation
and Device Configuration, GC21-7775
- Describes how to install and configure System/38

• IBM System/38 Remote Job Entry Facility Installation
Planning Guide, GC21-7924
- Describes how to install and configure a RJEF

network

Problem Determination

• IBM System/38 Problem Determination Gulde,
SC21-7876
- Describes the procedures for resolving system

problems that are indicated by error messages,
operator/service panel lights, interactive/batch
jobs or spooling functions that do not work as
expected, or devices that do not work as expected

Content and Use of System/38 Publications

• IBM System/38 Guide to Publications, GC21-7726
- Describes the contents of System /38 publications

• IBM System/38 Glossary and Master Index,
GC21-7727
- Defines terms used in System/38 publications
- Contains index entries from frequently used

System/38 publications

Part 1. Control Language Functions and Syntax

Part 1 provides an overview of the control language commands and describes
the syntax coding rules needed to code them. Over 250 commands are
provided in the control language, permitting the users of a System/38 to
request a broad range of functions from the system.

Control language (CL) commands can be entered into the system in several
forms, and they can be entered in the interactive and batch environments. The
commands can be coded in a fixed positional form that omits trailing optional
parameters, or in a free form that omits all unneeded parameters. The
commands can be entered interactively at a work station, submitted in batch
input streams, or compiled in CL programs. When entering a command
interactively, you can directly enter the complete command; or you can be
prompted by the system for each parameter value so you can change the
displayed default values and fill in the blanks. Some commands can be used
only in certain forms (such as interactively or in CL programs). These
restrictions are included in the description of the command.

Because CPF is object oriented, many of the commands are designed to create
or operate on these objects. Also, varying degrees of security can be applied
to the objects, to the commands, and to the system's users. If you have the
proper authority for a command to be entered and for the objects to be
operated on (in the manner specified by the command), you can request that
function of the system.

The charts in Chapter 1 introduce the CPF object types and the CL command
set. Chapter 2 describes the syntax coding rules that the user must follow to
properly enter the commands for execution. Refer to the CPF Programmer's
Guide for additional information.

Control Language Functions and Syntax

/

Chapter 1. Summary of CPF Functions and Object Types

The purpose of the charts in this chapter is to help you become familiar with
the functions of the CPF control language and the names of the commands.
These charts can also be used to quickly retrieve various kinds of
command-related information.

The first group of charts summarizes the CPF object types and shows the
commands that operate on the object types. The second group of charts
provides an overview of the broad range of functions that can be performed by
the control language. Finally, all of the commands are shown together in one
master matrix chart.

CPF OBJECT TYPES

CPF objects provide the means through which all of your data processing
information is stored and processed by the system. A CPF object is a named
unit that exists in (occupies space in) storage and upon which operations can
be performed by the CPF. Each object has a set of attributes that describe the
object; these attributes are defined when the object is created. For the object
to be used by the system to perform a specific function, the name of the
object must be specified in the CL command that performs that function.

Twenty-three types of CPF objects can be created and used in the control
language. They are identified in the following chart, which gives the object
type, the system-recognized identifier for the object type, and a brief
description of its purpose in CPF.

Type Identifier Description

File *FILE Contains. or provides access to, a
group of related data records in
the systern. Includes: data base,
card, diskette, tape, printer, and
display files.

Program *PGM Contains the executable code
needed to perform the user's task.
For example: CL and high-level
language programs.

Library *LIB Contains one or more objects of
the other object types. Serves as
a directory to find objects by name
when they are to be used.
Subtypes: production and test
libraries.

Summary of CPF Functions and Object Types 1-1

Type Identifier Description

Command *CMD Contains the description of a CL
command.

Data area *DTAARA Contains a data value that can be
used and changed by multiple
jobs.

User profile *USRPRF Identifies a user to the system and
specifies what system resources
and objects he can use.

Message file *MSGF Contains descriptions of
predefined messages.

Message queue *MSGQ Contains messages being sent and
received by the system and its
users.

Job queue *JOBQ Contains entries for jobs that are
to be executed by the system.

Output queue *OUTQ Contains entries for spooled
output files to be written to an
output. device.

Job description *JOBD Contains a set of attributes that
are used to control job execution.

Subsystem *SBSD Describes a subsystem and its
description operating environment in the

system.

Class *CLS Describes the processing
environment and attributes of
routing steps.

Table *TBL Contains a set of values used to
define a byte-by-byte translation
of data, or to define a collating
sequence.

Edit description *EDTD Describes an edit code mask used
for formatting output fields.

Print image *PRTIMG Contains an image of a printable
character set on a print belt.

Device description *DEVD Describes a device on the system,
and its features.

Control unit *CUD Describes a control unit on the
description system, and its features.

Line description *LIND Describes a communication line on
the system, and its features.

1-2

Type Identifier Description

Forms control table *FCT Describes, for the Remote Job
Entry Facility, special processing
requirements for data received
from the host system.

Session description *SSND Identifies, for the Remote Job
Entry Facility, all objects and
devices associated with an RJE
operating environment.

Journal *JRN Contains information about
journaled data base files and
journal receivers and provides
access to journal receivers.

Journal receiver *JRNRCV Contains journal entries that are
generated when changes are made
to data base files.

Summary of CPF Functions and Object Types 1-3

1-4

All CPF objects have the following characteristics in common: Each object has
a set of attributes that describe the object, and specific values assigned for
those attributes. Most of the objects are stored in libraries. Five types of CPF
objects (*LIB, *DEVD, *CUD, *LIND, and *USRPRF) are actually stored in the
machine context, which is part of the internal system. However, these types
appear as if they exist in the QSYS (system) library. They can be displayed if
QSYS is specified in the DSPLIB or DSPOBJD commands.

Generally, each object exists independently of all other objects. However,
some objects must be created before other objects can be created; for
example, a logical file cannot be created if its based-on physical file does not
exist. Each object must be created before other CPF operations can be
performed using the object.

For more information on each of the object types, refer to Part 2 for the
description of each create command that creates one of the object types.
Additional information can also be found in the appropriate sections of the CPF
Programmer's Guide.

CPF-Provided Libraries

Several libraries are defined in CPF when the system is shipped. The
IBM-supplied libraries are:

• QGPL (general purpose library): Contains user-created objects, such as
programs and files, and IBM-supplied versions of objects that a user might
create. When a user creates an object without specifying the name of the
library in which it is to be placed, the created object is placed in the QGPL
library by default.

• QSYS (system library): Contains IBM-supplied system support objects.

• QSPL (spooling library): Contains IBM-supplied objects used for spooling
data.

• QTEMP (temporary library): Automatically created for each job to contain
temporary objects that are created by that job. Each job has its own
temporary library; the library and its objects exist only as long as the job is
active in the system.

• QSRV (service library): Used for loading IBM-supplied programming
changes and assembling data for APAR submission.

• QRECOVERY (recovery library): Contains information that is used for
recovery after a system failure.

More information about the use of libraries can be found in the CPF Concepts
Manual and the CPF Programmer's Guide.

COMMANDS OPERATING ON CPF OBJECTS

Each of the CPF object types has a set of commands that operates on that
type. Most objects have commands that do the following:

• Create. Creates the object and specifies its attributes.

• Delete. Deletes the object from the system.

• Change. Changes the attributes and/or contents of the object.

• Display. Displays the contents of the object.

The following matrix chart {Commands Operating on Specific Object Types)
shows all of the CPF object types {in alphabetic order) and the actions that can
be performed upon them by CL commands. Both the descriptive name and the
command abbreviations for each object type are listed vertically on the left side
of the chart, and the verbs {actions) are listed across the top of the chart.
When an action can be performed on a particular object, the command
abbreviation for that verb is given on the same line as the object's name.

The functions that can be performed on CPF objects, then, are the combination
of the verbs and the objects upon which the action is to be performed: {CPF
function = verb + object acted upon). For example, you can create, delete, or
display a class; so the verb abbreviations CRT, DL T, and DSP are printed
opposite the abbreviation for class, CLS. The result is the three commands
that can operate on a class: CRTCLS, DL TCLS, and DSPCLS.

The IBM-supplied commands are all named in a consistent manner. Generally,
three letters from each word in the descriptive command name are used to
form the abbreviated command name that is recognized by the system. For
examples of how commands and other objects supplied by IBM are named,
see Control Language in the CPF Programmer's Guide.

Included in the chart are the subtypes that are identified by name in CL
commands. These subtypes are shown in logical sublevels under their primary
object types, file and program. The subtypes for files are logically grouped as
spooled files, data base files {physical and logical), and device files {card,
diskette, display, and print). The chart shows, for example, that you create a
file according to its subtype {CRTCRDF, for example) and you delete it by the
object type {DL TF).

The chart also identifies {under Other Associated Commands) other commands
that are indirectly related to an object type:

• Subsystem commands associated with the subsystem description

• File-related commands associated with various file subtypes

• Device and line-related commands associated with their descriptions

Summary of CPF Functions and Object Types 1-5

....
I m

/

Commands Operating on Specific Object Types

CPF Object Types

Create Delete Change

1. Clsss CLS CRT DLT

2. Command CMD CRT DLT CHG

3. Control unit description CUD CRT DLT CHG

4. Dsta area DTAARA CRT DLT CHG

5. Device description DEVD CRT DLT CHG

6. Edit description EDTD CRT DLT

7. File F DLT

BSC file BSCF CRT CHG

Spooled file SPLF

Data base file DBF

Logical file LF CRT CHG

Physical file PF CRT CHG}
Source physical file SRCPF CRT CHG

Cerd file CRDF CRT CHG

Communications file CMNF CRT CHG

Diskette file DKTF CRT CHG

Display file DSPF CRT CHG

Printer file PRTF CRT CHG

Tape fde TAPF CRT CHG

B. Forms control table FCT CRT DLT CHG

9. Job description JOBD CRT DLT CHG

10. Job queue JOBQ CRT DLT

11. Journal JRN CRT DLT CHG

12. Joumal receiver JRNRCV CRT DLT

13. library LIB CRT DLT

14; line description LIND CRT DLT CHG

15. M-s19file MSGF CRT DLT

16. Message queue MSGQ CRT DLT CHG

17. Output queue OUTQ CRT DLT CHG

18. Print image PRTIMG CRT DLT

19. Program PGM DLT

Cl program CLPGM CRT

20. Session description SSND CRT DLT CHG

21. Subsystem description SBSD CRT DLT CHG

22. Table TBL CRT DLT

23. User profile USRPRF CRT DLT CHG

f ~,

Actions Other Associated Commands

Override Display Other Verbs

DSP

DSP PVVRCTLU. VRYCTLU, DSPCTLSTS

DSP DCL RCV SND

DSP PVVRDEV. VRYDEV. DSPDEVSTS

DSP

CPY DCL SND CPYFI, DSPFD, DSPFFD

RCV SNDRCV

OVR

DSP CNL HLD RLS CHG!;iPLFA, DSPSPLFA

OVR LOG DSPDBR. RMVM. ENDLOG

ADDLFM, CHGLFM

JRN { ADDPFM, CHGPFM, CLRPFM,

INZPFM, RGZPFM

OVR

OVR

OVR

OVR

OVR

OVR

DSP

DSP

DSP CLR HLD RLS

DSP DSPJRNA

DSPJRNRCVA

DSP CLR SAV RST

DSP VRYLIN, DSPLINSTS

OVR DSP RTVMSG. ADDMSGD. CHGMSGD.

RMVMSGD, DSPMSGD

DSPMSG. RCVMSG. RMVMSG,

SNDMSG. SNDBRKMSG;

SNDPGMMSG. SNDRPY

DSP CLR HLD RLS

c

END CALL. TFRCTL

DMP

DSP

DSP DSPSBS.STRSBS.TRMSBS

DSP RST GRTUSRAUT

r"

In addition to the commands that operate on single object types, there are
commands that operate on multiple object types; for example:

• Display object description: Displays the common attributes of an object.

• Move object: Moves an object from one library to another.

• Rename object: Specifies the new name of an object.

• Save object: Saves an object and its contents on diskette or tape.

• Restore object: Restores a saved version of the object from diskette or
tape.

The following chart shows the commands, in matrix form, that can perform an
action on many of the object types. Some of the commands, such as the
MOVOBJ command, can operate on only one object at a time, but that object
can be any one of several CPF object types; for example, the MOVOBJ
command can move a file or a job description.

Other commands, such as the DSPOBJD command, can operate on several
objects of different types at the same time. By specifying multiple objects in a
single DSPOBJD command, you can display the object descriptions of a group
of objects.

Commands Operating on Multiple Object Types

Item Actions

Object OBJ ALC, DLC, SAV, RST, CHK, MOV,
RNM,DMP

Object Authority OBJAUT DSP, GRT, RVK

Object Description OBJD DSP

Object Lock OBJLCK DSP

Object Owner OBJ OWN CHG

For more information on these commands and the object types that each one
can operate on, see the command description of each command in Part 2.

Summary of CPF Functions and Object Types 1-7

1-8

COMMAND GROUPS (BY FUNCTION)

The following sets of commands contain all of the CL commands in functional
groups and subgroups. The commands are grouped by ·common functions in
various ways to help you identify which commands are associated with the
major functional areas in CPF.

These groups are organized in the same manner as the groups are displayed
when the command grouping menus are requested at a work station.

If you press the prompt (CF4) key without entering a command name, the
command grouping menu is presented. From the menu, you can specify an
option number to view any of the various groups of commands that are shown
on the following pages.

f
I

__

OBJECT AND LIBRARY COMMANDS

Object
ALCO BJ
CHKOBJ
DLCOBJ
DSPOBJD
DSPOBJLCK
MOVOBJ
RNMOBJ
RSTOBJ
SAVCHGOBJ
SAVO BJ

Library
CLRLIB
CRTLIB
DLTLIB
DSPLIB
RSTLIB
SAVLIB

(Allocate Object)
(Check Object)
(Deallocate Object)
(Display Object Description)
(Display Object Locks)
(Move Object)
(Rename Object)
(Restore Object)
(Save Changed Objects)
(Save Object)

(Clear Library)
(Create Library)
(Delete Library)
(Display Library)
(Restore Library)
(Save Library)

Common Functions for Library
ALCOBJ (Allocate Object)
CHKOBJ (Check Object).
DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
RNMOBJ (Rename Object)

Library List
DSPLIBL
RPLLIBL

(Display Library List)
(Replace Library List)

Summary of CPF Functions and Ot...

DATA BASE COMMANDS

Valid for Both Physical and Logical Files
CPYF (Copy File)
DLTF (Delete File)
DLTOVR (Delete Override)
DSPDBR (Display Data Base Relations)
DSPFD (Display File Description)
DSPFFD (Display File Field Description)
DSPPGMREF (Display Program Reference)
ENDLOG (End Logging)
LOGDBR (Log Data Base File)
OVRDBF (Override with Data Base File)
RMVM (Remove Member)

Common Functions for Files
ALCOBJ (Allocate Object)
CHKOBJ (Check Object)
DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

'-10

Physical File
ADDPFM
CHG PF
CHGPFM
CHGSRCPF
CLRPFM
CRTPF
CRTS RC PF
INZPFM
RGZPFM

Logical File
ADDLFM
CHGLF
CHGLFM
CRTLF

Journal
APYJRNCHG
CHGJRN
CRTJRN
CRTJRNRCV
DLTJRN
DLTJRNRCV
DSPJRN
DSPJRNA
DSPJRNRCVA
EN DJ RN PF
JRNPF
RMVJRNCHG
SNDJRNE

(Add Physical File Member)
(Change Physical File)
(Change Physical File Member)
(Change Source Physical File)
(Clear Physical File Member)
(Create Physical File)
(Create Source Physical File) ·
(Initialize Physical File Member)
(Reorganize Physical File Member)

(Add Logical File Member)
(Change Logical File)
(Change Logical File Member)
(Create Logical File)

(Apply Journaled Changes)
(Change Journal)
(Create Journal)
(Create Journal Receiver)
(Delete Journal)
(Delete Journal Receiver)
(Display Journal) (
(Display Journal Attributes)) \"-
(Display Journal Receiver Attributes
(End Journaling Physical File Changes)
(Journal Physical File)
(Remove Journaled Changes)
(Send Journal Entry)

DEVICE FILE COMMANDS

Valid for All Device Files
CPYF (Copy File)
DL TF (Delete File)
DLTOVR (Delete Override)
DSPFD (Display File Description)
DSPFFD (Display File Field Description)
DSPOVR (Display Override)
DSPPGMREF (Display Program References)

Common Functions for Device Files
ALCOBJ (Allocate Object)
CHKOBJ (Check Object)
DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

BSC File
CHGBSCF
CRTBSCF
OVRBSCF

Card File
CHGCRDF
CRTCRDF
OVRCRDF

(Change BSC File)
(Create BSC File)
(Override with BSC File)

(Change Card File)
(Create Card File)
(Override with Card File)

Communications File
CHGCMNF (Change Communications File)
CRTCMNF (Create Communications File)
OVRCMNF (Override with Communications File)

Diskette File
CHGDKTF
CRTDKTF
OVRDKTF

(Change Diskette File)
(Create Diskette File)
(Override with Diskette File)

Display File
CHGDSPF
CRTDSPF
OVRDSPF

(Change Display File)
(Create Display File)
(Override with Display File)

Display File (In CL Program)
CNLRCV (Cancel Receive)
DCLF (Declare file)
RCVF (Receive File)
SNDF (Send File)
SNDRCVF (Send/Receive File)
WAIT (Wait)

Printer File
CHGPRTF
CRTPRTF
OVRPRTF

Tape File
CHGTAPF
CRTTAPF
OVRTAPF

(Change Printer File)
(Create Printer File)
(Override with Printer File)

(Change Tape File)
(Create Tape File)
(Override with Tape File)

Summary of CPF Functions and Object Types 1-11

DEVICE MANAGEMENT COMMANDS

Device Diskette Volume ', DSPDEVSTS (Display Device Status) CLRDKT (Clear Diskette)
PWRDEV (Power Device) DLTDKTLBL (Delete Diskette Label)
VRYDEV (Vary Device) DSPDKT (Display Diskette)

DU PD KT (Duplicate Diskette)
Control Unit INZDKT (Initialize Di$kette)
DSPCTLSTS (Display Control Unit Status) RNMDKT (Rename Diskette)
PWRCTLU (Power Control Unit)
VRYCTLU (Vary. Control Unit) Ptinter

CLNPRT (Clean Printer)
Line VFYPRT (Verify Printer)
ANSLIN (Answer Line)
DSPLINSTS (Display Line Status) Tape Volume
VRYLIN (Vary. Line) DMPTAP (Dump Tape)

DSPTAP (Display Tape)
INZTAP (Initialize Tape)

1-12

PROGRAMMING COMMANDS

, _ - Valid for All Programs
DLTPGM (Delete Program)
RCLRSC (Reclaim Resources)

Common Functions for Programs
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

CL Program
CRTCLPGM
DMPCLPGM
RTVCLSRC

CL Program Limits

(Create Control Language Program)
(Dump CL Program)
(Retrieve CL Source)

ENDPGM (End Program)
PGM (Program)

CL Program Variable
CHGVAR (Change Variable)
CVTDAT (Convert Date)
DCL (Declare Control Language Variable)

CL Program Logic
DO (Do)
ELSE (Else)
ENDDO (End Do)
GOTO (Go To)
IF (If)

Changing Program Control
CALL (Call Program)
RETURN (Return)

Program Control (In CL Program)
TFRCTL (Transfer Control)

RPG Ill Program (If Installed)
CRTRPGPGM (Create RPG Program)
CRTRPTPGM (Create Report Program)

COBOL Program (If Installed)
CRTCBLPGM (Create COBOL Program)

Data Area
CHGDTAARA
CRTDTAARA
DLTDTAARA
DSPDTAARA

(Change Data Area)
(Create Data Area)
(Delete Data Area)
(Display Data Area)

Data Area (In CL Program)
DCLDTAARA (Declare Data Area)
RCVDTAARA (Receive Data Area)
RTVDTAARA (Retrieve Data Area)
SNDDTAARA (Send Data Area)

Common Functions for Data Area
ALCOBJ (Allocate Object)
CHKOBJ (Check Object)
DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Summary of CPF Functions and Object Types 1-13

PROGRAM DEBUG COMMANDS

Debug Mode
ADDPGM
CHGDBG
DSPDBG
EN DD BG
ENTDBG
RMVPGM

Program Variable
CHGPGMVAR
DSPPGMVAR

Program Pointer
CHGPTR

(Add Program)
(Change Debug)
(Display Debug)
(End Debug)
(Enter Debug)
(Remove Program)

(Change Program Variable)
(Display Program Variable)

(Change Pointer)

Breakpoint
ADDBKP
CNLRQS
DSPBKP
RMVBKP
RSMBKP

Trace
ADDTRC
CLRTRCDTA
DSPTRC
DSPTRCDTA
RMVTRC

(Add Breakpoint)
(Cancel Request)
(Display Breakpoints)
(Remove Breakpoint)
(Resume Breakpoint)

(Add Trace)
(Clear Trace Data)
(Display Trace)
(Display Trace Data)
(Remove Trace)

COBOL Debug Mode
ENDCBLDBG (End COBOL Debug)
ENTCBLDBG (Enter COBOL Debug)

MESSAGE HANDLING COMMANDS

Message
DSPMSG
SNDBRKMSG
SNDMSG

(Display Messages)
(Send Break Message)
(Send Message)

Message (In CL Program)
MONMSG (Monitor Message)
RCVMSG (Receive Message)
RMVMSG (Remove Message)
RTVMSG (Retrieve Message)
SNDPGMMSG (Send Program Message)
SNDRPY (Send Reply)

Message Queue
CHGMSGQ
CRTMSGQ
DLTMSGQ

(Change Message Queue)
(Create Message Queue)
(Delete Message Queue)

Common Functions for Message Queue
ALCOBJ (Allocate Object)
CHKOBJ (Check Object)
DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)

1-14

Message File
CRTMSGF
DLTMSGF
DSPMSGF
OVRMSGF

(Create Message File)
(Delete Message File)
(Display Message File)
(Override with Message File)

Common Functions for Message File
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Message Description
ADDMSGD (Add Message Description)
CHGMSGD (Change Message Description)
DSPMSGD (Display Message Description)
RMVMSGD (Remove Message Description)

i_

INPUT /OUTPUT SPOOLING COMMANDS

Job Queue
CLRJOBQ
CRTJOBQ
DLTJOBQ
DSPJOBQ
HLDJOBQ
RLSJOBQ

(Clear Job Queue)
(Create Job Queue)
(Delete Job Queue)
(Display Job Queue)
(Hold Job Queue)
(Release Job Queue)

Common Functions for Job Queue
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)

Output Queue
CHGOUTQ
CLROUTQ
CRTOUTQ
DLTOUTQ
DSPOUTQ
HLDOUTQ
RLSOUTQ

(Change Output Queue)
(Clear Output Queue)
(Create Output Queue)
(Delete Output Queue)
(Display Output Queue)
(Hold Output Queue)
(Release Output Queue)

Common Functions for Output Queue
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)

Spooled File
CHGSPLFA
CNLSPLF
CPYSPLF
DSPSPLF
DSPSPLFA
HLDSPLF
RLSSPLF

Job
DSPSBMJOB
SBMCRDJOB
SBMDBJOB
SBMDKTJOB

(Change Spooled File Attributes)
(Cancel Spooled File)
(Copy Spooled File)
(Display Spooled File)
(Display Spooled File Attributes)
(Hold Spooled File)
(Release Spooled File)

(Display Submitted Jobs)
(Submit Card Jobs)
(Submit Data Base Jobs)
(Submit Diskette Jobs)

Reader
CNLRDR
DSPRDR
HLDRDR
RLSRDR
STRCRDRDR
STRDBRDR
STRDKTRDR

Writer
CNLWTR
DSPWTR
HLDWTR
RLSWTR
STRCRDWTR
STRDKTWTR
STRPRTWTR

(Cancel Reader)
(Display Reader)
(Hold Reader)
(Release Reader)
(Start Card Reader)
(Start Data Base Reader)
(Start Diskette Reader)

(Cancel Writer)
(Display Writer)
(Hold Writer)
(Release Writer)
(Start Card Writer)
(Start Diskette Writer)
(Start Printer Writer)

Job Stream Statements
DATA (Data)
ENDINP (End Input)

Summary of CPF Functions and Object Types 1-15

SYSTEM AND JOB CONTROL COMMANDS

System
DSPSYS
DSPSYSSTS
PWRDWNSYS
TRMCPF

Subsystem
DSPSBS
STRSBS
TRMSBS

Job
CHGJOB
CNWOB
DSPACTJOB
DSPJOB
DSPSBMJOB
HLDJOB
RLSJOB
RRTJOB
SBMCRDJOB
SBMDBJOB
SBMDKTJOB
SBMJOB
SIGN OFF
TFRJOB

(Display System)
(Display System Status)
(Power Down System)
(Terminate Control Program Facility)

(Display Subsystem)
(Start Subsystem)
(Terminate Subsystem)

(Change Job)
(Cancel Job)
(Display Active Jobs)
(Display Job)
(Display Submitted Jobs)
(Hold Job)
(Release Job)
(Reroute Job)
(Submit Card Jobs)
(Submit Data Base Jobs)
(Submit Diskette Jobs)
(Submit Job)
(Sign Off)
(Transfer Job)

Job (In CL Program)
RTVJOBA (Retrieve Job Attributes)

Job Stream Statements
JOB (Job)
ENDJOB (End Job)

1-16

Log
DSPLOG

System Value
CHGSYSVAL
DSPSYSVAL

(Display Log)

(Change System Value)
(Display System Value)

System Value (In CL Program)
RTVSYSVAL (Retrieve System Value)

Storage
RCLSTG (Reclaim Storage)

SUBSYSTEM DESCRIPTION, JOB DESCRIPTION, AND CLASS COMMANDS

Subsystem Description
CHGSBSD (Change Subsystem Description)
CRTSBSD (Create Subsystem Description)
DL TSBSD (Delete Subsystem Description)
DSPSBSD (Display Subsystem Description)

Common Functions for Subsystem Description
ALCOBJ (Allocate Object)
CHKOBJ (Check Object)
DLCOBJ (Deallocate Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Subsystem Autostart Job Entry
ADDAJE (Add Autostart Job Entry)
CHGAJE (Change Autostart Job Entry)
RMVAJE (Remove Autostart Job Entry)

Subsystem Work Station Entry
ADDWSE (Add Work Station Entry)
CHGWSE (Change Work Station Entry)
RMVWSE (Remove Work Station Entry)

Subsystem Job Queue Entry
ADDJOBQE (Add Job Queue Entry)
CHGJOBQE (Change Job Queue Entry)
RMVJOBQE (Remove Job Queue Entry)

Subsystem Routing Entry
ADDRTGE (Add Routing Entry)
CHGRTGE (Change Routing Entry)
RMVRTGE (Remove Routing Entry)

Job Description
CHGJOBD
CRTJOBD
DLTJOBD
DSPJOBD

(Change Job Description)
(Create Job Description)
(Delete Job Description)
(Display Job Description)

Common Functions for Job Description
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Class
CRTCLS
DLTCLS
DSPCLS

(Create Class)
(Delete Class)
(Display Class)

Common Functions for Class
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Summary of CPF Functions and Object Types 1-17

CONFIGURATION COMMANDS

Device Configuration
DSPDEVCFG (Display Device Configuration)

Device Description
CHGDEVD (Change Device Description)
CRTDEVD (Create Device Description)
DLTDEVD (Delete Device Description)
DSPDEVD (Display Device Description)

Common Functions for Device Description
ALCOBJ (Allocate Object)
DLCOBJ (Deallocate ·Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)

Control Unit Description
CHGCUD (Change Control Unit Description)
CRTCUD (Create Control Unit Description)
DLTCUD (Delete Control Unit Description)
DSPCUD (Display Control Unit Description)

Common Functions for Control Unit Description
CHKOBJ (Check Object)
DSPOBJD {Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Line Description
CHG LIND
CRTLIND
DLTLIND
DSPLIND

(Change Line Description)
(Create Line Description)
(Delete Line Description)
(Di!iiplay Line Description)

Common Functions for Line Description
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)

1-18

Edit Code
CRTEDTD
DLTEDTD
DSPEDTD

(Create Edit Description)
(Delete Edit Description)
(Display Edit Description)

Common Functions for Edit Code
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Print Image
CRTPRTIMG
DLTPRTIMG

(Create Print Image)
(Delete Print Image)

Common Functions for Print Image
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Translate Table
CRTTBL
DLTTBL

(Create Table)
(Delete Table)

Common Functions for Translate Table
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

Data
CHGDTA
DSPDTA
FMTDTA
QRYDTA

Source
EDTSRC
RTVDFUSRC
RTVQRYSRC

DFU
CHGDFUDEF
CHGDTA
CRTDFUAPP
CRTDFUDEF
DLTDFUAPP
DSNDFUAPP
DSPDTA

(Change Data)
(Display Data)
(Format Data)
(Query Data)

(Edit Source)
(Retrieve DFU Source)
(Retrieve Query Source)

(Change DFU Definition)
(Change Data)
(Create DFU Application)
(Create DFU Definition)
(Delete DFU Application)
(Design DFU Application)
(Display Data)

UTILITY COMMANDS1

Query
CHGQRYDEF
CRTQRYAPP
CRTQRYDEF
DLTQRYAPP
DSNQRYAPP
QRYDTA

Display Formats
DSNFMT

(Change Query Definition)
(Create Query Application)
(Create Query Definition)
(Delete Query Application)
(Design Query Application)
(Query Data)

(Design Format)

Conversion Reformat Utility2

FMTDTA (Format Data)

SECURITY COMMANDS

General
CHGOBJOWN
DSPAUTUSR

User Profile
CHGUSRPRF
CRTUSRPRF
DLTUSRPRF
DSPUSRPRF

(Change Object Owner)
(Display Authorized Users)

(Change User Profile)
(Create User Profile)
(Delete User Profile)
(Display User Profile)

Common Functions for User Profile
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)

Object Authorization
DSPOBJAUT (Display Object Authority)
GRTOBJAUT (Grant Object Authority)
GRTUSRAUT (Grant User Authority)
RVKOBJAUT (Revoke Object Authority)

SAVE/RESTORE COMMANDS

Object
RSTOBJ
SAVCHGOBJ
SAVOBJ

Library
RSTLIB
SAVLIB

(Restore Object)
(Save Changed Objects)
(Save Object)

(Restore Library)
(Save Library)

System
RSTAUT
RSTUSRPRF
SAVSYS

(Restore Authority)
(Restore User Profiles)
(Save System)

,These commands are part of the IBM System/38 Interactive Data Base Utilities Program.
2This command is part of the IBM System/38 Conversion Reformat Utility Licensed Program.

Summary of CPF Functions and Object Types 1-19

Command
CHGCMD
CRTCMD
DLTCMD
DSPCMD
LSTCMDUSG

Job
DMPJOB

I ' DSPACT JOB
DSPSRVSTS
ENDS RV
SRVJOB
TRCJOB

Object
DMPOBJ
DMPSYSOBJ

Device
CHGCNPA
DSPCNPA
LSTCNPDTA
LSTCNPHST
LSTERRLOG
STRCNFCHK
STRPDP

Printer
CLNPRT
VFYPRT

1-20

COMMAND DEFINITION COMMANDS

(Change Command)
(Create Command)
(Delete Command)
(Display Command)
(List Command Usage)

Common Functions for Command
CHKOBJ (Check Object)
DSPOBJD (Display Object Description)
DSPOBJLCK (Display Object Locks)
MOVOBJ (Move Object)
RNMOBJ (Rename Object)
RSTOBJ (Restore Object)
SAVCHGOBJ (Save Changed Objects)
SAVOBJ (Save Object)

SERVICE COMMANDS

(Dump Job)
(Display Active Jobs)
(Display Service Status)
(End Service)
(Service Job)
(Trace Job)

(Dump Object)
(Dump System Object)

(Change CSNAP Attributes)
(Display CSNAP Attributes)
(List CSNAP Data)
(List CSNAP History)
(List Error Log)
(Start Confidence Check)
(Start Problem Determination Procedure)

(Clean Printer)
(Verify Printer)

Tape Volume
DMPTAP

Internal Machine
DMPJOBINT
LSTERRLOG
LSTINTDTA
TRCINT

Problem Reporting

(Dump Tape)

(Dump Job Internal)
(List Error Log)
(List Internal Data)
(Trace Internal)

PRPAPAR (Prepare APAR)

Programming Change
APYPGMCHG (Apply Programming Change)
DSPPGMCHG (Display Programming Change).
LODPGMCHG (Load Programming Change)
PCHPGM (Patch Program)
RMVPGMCHG (Remove Programming Change)

REMOTE JOB ENTRY FACILITY COMMANDS

Session Description
CHGSSND (Change Session Description)
CRTSSND (Create Session Description)
DLTSSND (Delete Session Description)
DSPSSND (Display Session Description)

Reader Entry
ADDRJERDRE
CHGRJERDRE
RMVRJERDRE

Writer Entry
ADDRJEWTRE
CHGRJEWTRE
RMVRJEWTRE

(Add RJ E Reader Entry)
(Change RJE Reader EntrY)
(Remove RJE Reader Entry)

(Add RJ E Writer Entry)
(Change RJE Writer Entry)
(Remove RJE Writer Entry)

Communications Entry
ADDRJECMNE (Add RJE Communications Entry)
CHGRJECMNE (Change RJE Communications Entry)
RMVRJECMNE (Remove RJE Communications Entry)

Forms Control Table
CHGFCT (Change Forms Control Table)
CRTFCT (Create Forms Control Table)
DL TFCT (Delete Forms Control Table)
DSPFCT (Display Forms Control Table)

Forms Control Table Entry
ADDFCTE (Add Forms Control Table Entry)
CHGFCTE (Change Forms Control Table Entry)
RMVFCTE (Remove Forms Control Table Entry)

Reader
CNLRJERDR
STRRJERDR

Writer
CNLRJEWTR
STRRJEWTR

Session Control
DSPRJESSN
STRRJESSN
TRMRJESSN

Console
STRRJECSL

Job
SBMRJEJOB

Data
FMTRJEDTA

(Cancel RJE Reader)
(Start RJE Reader)

(Cancel RJE Writer)
(Start RJE Writer)

(Display RJE Session)
(Start RJE Session)
(Terminate RJE Session)

(Start RJE Console)

(Submit RJE Job)

(Format RJE Data)

Summary of CPF Functions and Object Types 1-21

MASTER COMMAND MATRIX CHART

Items

Items Affected

Active jobs

APAR

Authority

Authorized users

Auto report program

Autostart job entry

Break message

Breakpoint(s)

BSC File

Card file

Card jobs

Card reader

Card writer

Changed object

Class

COBOL debug (mode)

COBOL program

Command

Command usage

Communications file

The following chart contains all of the CL commands that have more than one
word in their descriptive names. All of the items (CPF objects and other
entities) are listed vertically on the left side in alphabetic order (that is, each
entry contains the descriptive name of the command minus the verb that
precedes the item upon which it acts). The verbs that define the actions
performed on each item are listed across the top; the verbs used on many
items are listed in separate columns, and the verbs used on a few items are
grouped together in the rightmost column.

This chart enables you to find in one place all of the functions that CL can
perform, and gives the command names that are entered to perform the
desired functions. The chart, therefore, can be used as an index that enables
you to go directly to the command descriptions in Part 2, because they are
described in alphabetic order there.

Actions

Item Create/ Add/ Change/ Hold/
Abbrev. Delete Remove Override Display Release Other Actions

ACT JOB DSP

APAR PRP

AUT RST

AUTUSR DSP

RPTPGM CRT DLT (see DLTPGM)

AJE ADD RMV CHG

BRKMSG SND

BKP ADD RMV DSP RSM

BSCF CRT CHG OVR DL T (see DL TF)
DSP (see DSPFD)

CRDF CRT CHG OVR DL T (see DL TF)
DSP (see DSPFD)

CRDJOB SBM

CR DR DR STR (see also Reader)

CRDWTR STR (see also Writer)

CHGOBJ SAV

CLS CRT DLT DSP

CBLDBG END ENT

CBLPGM CRT DL T (see DL TPGM)

CMD CRT DLT CHG DSP

CMDUSG LST

CMNF CRT CHG OVR DLT (see DLTF)
DSP (see DSPFD)

Communications statistics CNPA CHG DSP LST (see LSTCNPDTA.
network analysis LSTCNPHST)
procedure attributes

Confidence check CNFCHK STR

Control CTL TFR
Control language program CLPGM CRT DLT (see DLTPGM, DMP)

1-22

Items Actions

Item Create/ Add/ Change/ Hold/
Items Affected Abbrev. Delete Remove Override Display Release Other Actions

Control language source CLSRC RTV

Control Program Facility CPF TRM

Control unit CTLU . PWR VRY

Control unit description CUD CRT DLT CHG DSP

Control unit status CTLSTS DSP

Data OTA CHG DSP FMT QRY

Data area DTAARA CRT DLT CHG DSP !i>CL SND RCV RTV
Data base file DBF OVR CRT (see CRTLF/CRTPF)

DL T (see DL TFI LOG

Data base jobs DBJOB SBM

Data base reader DBRDR STR
Data base relations DBR DSP
Data File Utility application DFUAPP CRT DLT DSN

Data File Utility definition DFUDEF CRT CHG

Data File Utility source DFUSRC RTV
·Date DAT CVT

Debug (model DBG CHG DSP ENT END

Device DEV PWR VRY
Device configuration DEVCFG DSP
Device description DEVD CRT DLT CHG DSP

Device status DEVSTS DSP

Diskette DKT DSP CLR DUP INZ RNM

Diskette file DKTF CRT CHG OVR DL T (see DL TF)
DSP (see DSPFD)

. Diskette jobs DKTJOB SBM
Diskette label DKTLBL DLT DSP (see DSPDKn

INZ (see INZDKTI

Diskette reader DKTRDR STR (see also Reader)

Diskette writer DKTWTR STR (see also Writer)

Display file DSPF CRT CHG OVR DL T (see DL TF)
DSP (see DSPFDI

Do DO END

Edit description EDTD CRT DLT DSP
Error log ERR LOG LST
File F DLT CPY DCL SND RCV

SNDRCV
File description FD DSP

File field description FFD DSP
File interactive Fl CPY

Format FMT DSN
Forms control table FCT CRT DLT CHG DSP

Forms control table entry FCTE ADD RMV CHG
Input INP END
Internal INT TRC
Internal data INTDTA LST

Summary of CPF Functions and Object Types 1-23

Items Actions

Item Create/ Add/ Change/ Hold/
Items Affected Abbrev. Delete Remove Override Display Release Other Actions

Job JOB CHG DSP HLD RLS CNL DMP END RRT
SBM SRV TFR TRC

Job attributes JOBA RTV

Job description JOBD CRT DLT CHG DSP

Job internal JOBI NT DMP

Job queue JOBQ CRT DLT DSP HLD RLS CLR

Job queue entry JOBQE ADD RMV CHG

Journal JRN CRT DLT CHG DSP

Journal attributes JRNA DSP

Journal entry JRNE SND

Journal receiver JRNRCV CRT DLT DSP (see DSPJRNRCVA)

Journal physical file JRNPF END (see ENDJRNPF)

Journaled changes JRNCHG RMV APY

Library LIB CRT DLT DSP CLR SAV RST

Library list UBL DSP RPL

Line LIN ANS VRY

Line description LIND CRT DLT CHG DSP

Line status LINSTS DSP

Log(ging) LOG DSP END

Logical file LF CRT1 CHG DL T (see DL TF)
DSP (see DSPFD)
OVR (see OVRDBF)

Logical file member LFM ADD CHG

Member M RMV

Message(s) MSG RMV DSP MON SND RCV RTV

Message description MSGD ADD RMV CHG DSP

Message file MSGF CRT DLT OVR DSP DL T (see DL TF)

Message queue MSGQ CRT DLT CHG

Object OBJ ALC CHK DLC DMP
MOV RNM SAV
SAVCHG RST

Object authority OBJAUT DSP GRT RVK

Object description OBJD DSP

Object lock OBJLCK DSP

Object owner OBJ OWN CHG

Output queue OUTQ CRT DLT CHG DSP HLD RLS CLR

Override OVR DLT DSP

Physical file PF CRT CHG DLT (see DLTF)
DSP (see DSPFD), JRN
OVR (see OVRDBF)

Physical file member PFM ADD CHG CLR INZ RGZ

Pointer PTR CHG

Print image PRTIMG CRT DLT

1 See also Data Base File.

Items Actions

Item Create/ Add/ Change/ THold/
Items Affected Abbrev. Delete Remove Override Display Release Other Actions

Printer PRT CLN VFY

Printer file PRTF CRT CHG OVR DL T (see DL TF)
DSP (see DSPFD)

Printer writer PRTWTR STR (see also Writer)

Problem determination PDP STR
procedure

Program PGM DLT ADD RMV END PCH

Program message PGMMSG SND

Program references PGMREF DSP

Program variable PGMVAR CHG DSP

Programming change PG MC HG RMV DSP APY LOO

Query application QRYAPP CRT DLT DSN

Query definition QRYDEF CRT CHG

Query source QRYSRC RTV

Reader RDR DSP HLD RLS CNL

Receive RCV CNL

Reply RPY SND

Request RQS CNL

Resources RSC RCL

RJE communications entry RJECMNE ADD RMV CHG

RJE console RJECSL STR

RJE data RJEDTA FMT

RJE job RJEJOB SBM

RJE reader RJERDR STR CNL

RJE reader entry RJERDRE ADD RMV CHG

RJE session RJESSN STR TRM

RJE writer RJEWTR STR CNL

RJ E writer entry RJEWTRE ADD RMV CHG

Routing entry RTGE ADD RMV CHG

RPG program RPGPGM CRT DLT (see DLTPGM)

RPT program RPTPGM CRT DL T (see DL TPGM)

Service SRV END

Service status SRVSTS DSP

Session description SSND CRT DLT CHG DSP

Source SRC EDT

Source physical file SRCPF CRT CHG DL T (see DL TF)
DSP (see DSPFD)

Spooled file SPLF DSP HLD RLS CNL CPY
DL T (see DL TF)

Spooled file attributes SPLFA CHG DSP

Storage STG RCL

Submitted jobs SBMJOB DSP

Subsystem SBS DSP STR TRM

Subsystem description SBSD CRT DLT CHG DSP

Summary of CPF Functions and Object Types 1-25

Items Actions

Item· Create/ Add/ Change/ Hold/
Items Affected Abbrev. Delete Remove Override· Display Release

System SYS DSP

System object SYSOBJ
System status SYSSTS DSP

System value SYSVAL CHG DSP

Table TBL CRT DLT

Tape TAP DSP

Tape file TAPF CRT CHG OVR

Trace TRC ADD RMV DSP

Trace data TRCDTA DSP

User authority US RA UT
User profile(s) USRPRF CRT DLT CHG DSP

Variable VAR CHG

Work station entry WSE ADD RMV CHG

Writer WTR DSP HLD RLS

Note: The following commands are all one-word commands that are also part of CL:

CALL
DATA
DCL
DO

1-26

ELSE ·
GOTO
IF
JOB

PGM
RETURN
SIGNOFF
WAIT

(
I
_

Other Actions

SAV PWRDWN

DMP

RTV

DMP INZ
DLT (see DLTF)
DSP (see DSPFD)

CLR

GRT

RST

CNL
·~

/

\

Chapter 2. Control Language Syntax

This chapter describes the control language syntax that you use to code and
enter control language commands. Each CL command is processed by the CPF
to perform the specified command function upon the CPF objects named in the
command.

PARTS OF A COMMAND

A CL command is made up of the following parts: command label (optional),
command name (mnemonic), and parameters.

LABEL1: CLRLIB

/ I
Command Command
Label Name

Command Label

Parameter
~

LIB(A)

\~
Keyword Value

Command labels identify particular commands in a CL program for branching
purposes. Labels can also be used to identify statements in CL programs that
are being debugged: they can identify statements used (a) as breakpoints, and
(b) as starting and ending statements for tracing purposes.

A command label is entered just before the command name of the command
that is to be branched to. The label can contain as many as 10 characters and
follows the standard rule for specifying names (see Rules for Specifying
Names). The label must be immediately followed by a colon, and blanks
(though not required) can occur between the colon and the command name.
(START: and TESTLOOP: are examples of command labels.)

All commands can have labels. If a label is placed on a nonexecutable
command (such as the DCL command) and that label is branched to, the next
executable command following the label is executed as a result of the branch.
Only one label can be specified on a line (or in a record); if no command is on
that line, the next command i.s executed.

To specify multiple labels, each additional label must be on a line preceding the
command as shown:

LABEL1:
LABEL2: CMDX

No continuation character (+ or -) is allowed on the preceding label lines.

Control Language Syntax 2-1

2-2

·Command Name

The command name identifies the function to be performed by the program
that is invoked when the command is executed. The command name
(mnemonic) is an abbreviation of the description of what the command does;
for example, the mnemonic MOVOBJ identifies the CL command (Move
Object) that moves an object from one library to another. (Like other CPF
objects, a command name can be optionally qualified by a library name. See
Simple and Qualified Object Names discussed later in this chapter.)

The IBM-supplied commands are all named in a consistent manner. Generally,
three letters. from each word in the descriptive command name are used to
form the abbreviated command name which is recognized by the system. For
examples of how commands and other objects supplied by IBM are named,
see Control Language in the CPF Programmer's Guide.

Command Parameters

Most CL commands have one or more parameters that specify the objects and
values to be used in the execution of the commands. The user who enters the
command supplies the object names and the values to be used by the
command. The number of parameters specified depends upon the command.
Some commands (like DO and ENDJOB) have no parameters, and others have
one or more.

A parameter identifies an individual value or group of values to be used by the
command. The specification of a group of values on one parameter is
described later under Lists of Values.

Most uses of the word parameter in this reference manual refer to the
combination of the parameter keyword and its value. For example, the
MOVOBJ command has a parameter called OBJ that requires an object name
to be specified. OBJ is the parameter keyword, and the name of the object is
the value to be entered for the OBJ parameter.

A command can have parameters that must be coded (required parameters)
and parameters that do not have to be coded (optional parameters). Optional
parameters usually have a default value assigned to them by the system if a
value is not specified for the parameter when the command is entered.

Parameters in CL can be specified in keyword or positional forms, or in a
combination of the two.

Parameters in Keyword Form

A parameter in keyword form consists of a keyword immediately followed by a
value (or a list of values separated by blanks) that is enclosed in parentheses.
No blanks can occur between the keyword and the left parenthesis preceding
the value. (Blanks can occur between the parentheses and the value.) For
example, LIB(MYLIB) is a keyword parameter specifying that MYLIB is the
name of the library that is to be used in some way, depending upon which
command this LIB parameter is used in.

When the parameters in a command are specified in keyword form only, they
can be specified in any order. For example, in the CRTLIB (Create Library)
command, three of its four parameters can be specified in a number of ways,
two of which are:

CRTLIB LIB(MYLIB) TYPE(*TEST) PUBAUT(*NONE)
CRTLIB TYPE(*TEST) LIB(MYLIB) PUBAUT(*NONE)

Parameters in Positional Form

A parameter in positional form does not have its keyword coded; it contains
only the value (or values, if it is a list) whose function when executed is
determined by its position in the parameter set for that command. The
parameter values are separated from each other and from the command name
by one or more blanks. Because there is only one sequence in which
parameters can be coded positionally, the positional form of the previous
CRTLIB example is:

CRTLIB MYLIB *TEST *NONE

Each command having more than one parameter has a specific positional order
for its parameters. The correct order is shown in the syntax diagram for each
command (in Part 2). However, in the few cases where dependent (or mutually
exclusive) parameters occur in the syntax diagram and the positional order is
not readily apparent, the correct order can be easily determined from the text,
because the parameters are always described in positional order. When
parameters are entered positionally, they must be entered in the specified order
(or positions), or the parameter values will be associated with the wrong
parameters.

If you do not want to enter a value for one of the parameters, the predefined
value *N can be entered in that parameter's position. The system recognizes
*N as an omitted parameter, and either assigns a default value or leaves it null.
In the previous CRTLIB command example, if you coded *N instead of *TEST
for the TYPE parameter, the default value *PROD is used when the command
is executed, and a production library named MYLIB is created with no public
authority. (Refer to the description of the CRTLIB command in Part 2 for the
explanation of each parameter.)

Control Language Syntax 2-3

2-4

Note: Parameters may not be coded positionally beyond the positional coding
limit, designated in the syntax diagrams with the symbol . If you do
attempt to code positionally beyond that point, the system will respond with. an
error message. When all parameters of a command can be coded positionally,
no positional limit symbol appears in the syntax diagram.

Entering Parameters in Both Forms

A command can also have its parameters coded in both forms. The following
examples show three ways to code the Declare CL Variable (DCL) command.

Keyword form:

DCL VAR(&QTY) TYPE(*DEC) LEN(5) VALUE(O)

Positional form:

DCL &QTY *DEC 5 0

Positional and keyword forms together:

DCL &QTY *DEC VALUE(O)

In the last example, because the optional LEN parameter was not coded, the
VALUE parameter must be coded in keyword form. There are certain
restrictions that apply when parameters are entered in both forms. Refer to the
CPF Programmer's Guide for details.

COMMAND SYNTAX

A command has the following general syntax. The brackets indicate that the
item within them is optional; however, the parameter set may or may not be
optional, depending upon the command.

[I I] [?] [label-name:] command-name [.library-name] [parameter-set)

The I I is valid only for a few batch job control commands, such as the DATA
command. The I I identifies these commands to the spooling reader that reads
the batch job input stream.

Command Delimiters

Delimiters are special characters that mark the beginning or end of a group of
characters. Delimiters are used to separate a character string into its individual
parts that together form a command: command label, command name,
parameter keywords, and parameter values (which can be constants, variable
names, lists, or expressions).

Delimiters Delimiters

~ ~MVA~(&COST)<.E({DEC\\ ~)
CommLd ~mman~ !alue \ . lalue I ~t of
Label Name y .\ Values

Keyword Keyword Keyword

Parameters

The following delimiters are used in the CPF control language.

• The colon (:)separates the command label from the command name. (For
example, LABEL 1 :DCL and LABEL2: DCL are both valid.)

• Blanks separate the command name from parameters and separate
parameters from each other. They also separate values in a list. Multiple
blanks are treated as a single blank except in a quoted string or comment.
A blank cannot separate a keyword and the left parenthesis for the value.

• Parentheses () separate parameter values from their keywords, group lists
of values, and group lists within lists.

• Periods connect the parts of a qualified name. For a qualified object name,
the two parts are the object name and the library qualifier (OBJA.LIBX).
Qualified object names are described in Identifying CPF Objects later in this
chapter.

• Either a period or a comma can be used as a decimal point in a decimal
value (3.14 or 3, 14); only one per decimal value is allowed.

Control Language Syntax 2-5

2-6

• Apostrophes specify the beginning and end of a quoted character string,
which is a combination of any of the 256 EBCDIC characters that are used
as a constant. For example, 'YOU CAN USE $99@123.45'()*></ and
lowercase letters' is a valid quoted string. An apostrophe used within a
quoted string must be specified as two apostrophes.

• One of four special 'Characters can be used as date separators to separate a
date into three parts: month, day, and year (two parts for Julian dates: year
and day). The four date separators are the slash.{/), hyphen (-). period {.),
and comma (,). The special character coded in a command must be the
same as the special character specified in the QDATSEP system value.

• The colon (:) is the only special character that can be used as a time
separator. It can be used to separate a time value into two or three parts
(hours, minutes, and seconds).

• The characters /* and * / indicate the beginning and end of a comment.

• A question mark (?) preceding the command name indicates that the
command is to be prompted. If the command is specified with a label, the
question mark can precede the label, or follow the label and precede the
command name.

Within a CL program, when a question mark precedes a command name, a
prompt display is presented to the user who called the program in which the
command is encountered. The user can enter values for parameters for
which values were not specified on the command in the program.

;"r
I
I

'""--

/

Command Continuation

Commands can be entered in free format. That is, a command does not have
to begin in a specific location on a coding sheet, on the display, or in cards. A
command can be contained entirely in one record, or it can be continued on
several lines or records. (Whether continued or not, the total command length
cannot exceed 3000 characters.) Either of two special characters is entered as
the last nonblank character on the line to indicate that a command is to be
continued: the plus sign (+) or the minus sign (-). Any blanks immediately
preceding a + or - sign are always included; any blanks immediately following
a + or - in the same record are ignored. Any blanks in the next record that
precede the first nonblank character in the record are ignored when + is
specified and included when - is specified.

The + is generally of use between parameters or values. (At least one blank
must precede the + sign when it is used between separate parameters or
values.) The difference between the plus and minus sign usage is particularly
important when continuation occurs within a quoted character string. The
following example shows the difference:

CRTLIB LIB(XYZ) TEXT('This is c;.n
fifif>INUED') or + {

The minus sign causes the
leading blanks on the next
line to be entered.

For-: CRTLIB LIB(XYZ) TEXT('This is CONTMfilNUED')

For+: CRTLIB LIB(XYZ) TEXT('This is CONTINUED')

Entering Comments

Comments can appear outside of a command, or within a command wherever
a blank is permitted; that is, both outside and inside the character string that
makes up a command. However, because a continuation character defines the
end of a line (or record), comments cannot follow a continuation character on
the same line.

For readability, it is recommended that each comment be specified on a
separate line preceding or following the command it describes, as shown here:

MOVOBJ OBJA TOLIB(LIBY)
/* Object OBJA is moved to library LIBY. *I

DLTLIB LIBX
/* Library LIBX is deleted. *I

Comments can include any of the 256 EBCDIC characters. However, the
character combination *I should not appear within a comment because these
characters terminate the comment.

Note: The characters /* in positions 1 and 2 of an input record from the
MFCU (multi-function card unit) is recognized as an end-of-file terminator.
The delimiter for comments should not begin in columns 1 and 2 in commands
entered via the MFCU.

Control Language Syntax 2- 7

2-8

CONTROL LANGUAGE CHARACTER SET

The CPF control language uses the extended binary coded decimal interchange
code (EBCDIC) character set. For convenience in describing the relationship
between characters used in the control language and the EBCDIC character
set, the following CPF. control language categories _contain. the EBCDIC
characters shown:

Category Characters Included

Alphabetic' 26 letters (A-Z), a-z, and$, #, and @

Numeric ·· 1 O digits (0-9)

Alphameric2 A-Z,_ a-z, 0-9, and $, #, @, and _

Special All other EBCDIC characters (for those having special uses
characters in CL, see Summary of Special Character Usage)

.
1 Lowercase letters (a-z) are accepted, but they are translated into the correspondin1;1
uppercase letters by the system, except when included within a quoted character
string or a comment. In the Katakana EBCDIC character set, the character positions
corresponding to a-z in the US character set contain Katakana characters that can
be used as data in quoted strings or comments; if those same character·s are used
outside quoted strings or comments, they are translated to A-Z.

2The underscore (_) is an alphameric connector that can be used to connect words
or alphameric characters to form a name (for example, PAYLIB_01). This use of the
underscore might not be valid in other high-level lariguages.

The first three categories contain the characters that are allowed .in quoted and
unquoted character strings, in comments, and in CL name.s; such as in names
of commands, labels, keywords, variables, and CPF objects: .. All the special
characters, in the last category, can only be used in quote.a.·character strings
and comments; they cannot be used in unquoted string!;l>.:However, some have
special syntactical uses when coded in the proper place:in·CL commands.
These uses are given in the chart under Summary of SpeciaLCharacter Usage.

SPECIAL CHARACTERS AND PREDEFINED VALUES

This section summarizes in chart form all of the special characters and their
uses in the CPF control language. A description of predefined values and how
they are used is also given.

Summary of Special Character Usage

The following special EBCDIC characters are used by the control language in
various ways. They are most frequently used as delimiters (which were
covered previously) and as symbolic operators in expressions (see Appendix B).
Special characters can only be used in these special ways or within quoted
character strings or comments. The special characters have the following
assigned meanings when coded in CPF control language commands:

Delimiters

Name Symbol Meanings

Blank :5, Basic delimiter for separating parts of a
command (label, command name, and
its parameters), and for separating
values within lists.

Left and right () Grouping delimiter for lists and keyword
parentheses values, and for evaluating the order of

expressions.

Colon : Ending delimiter for command labels.
Separates parts of time values.

Comma . In many countries, used as decimal
point in numeric values. Separates parts
of date values. 2

Period Decimal point; also connects parts of
qualified names. Separates parts of
date values. 2

Apostrophes .. Quoted character string (a constant)
delimiter; apostrophes must be paired.

Slashes II Identifying characters used in positions
1 and 2 of JOB, ENDJOB, and DATA
commands in job stream. Also, a
default delimiter on inline data files.

End of file I* Indicates the end of a file on MFCU,
when in card columns 1 and 2.

Begin and end I* *I Indicates the beginning and end of a
comment comment. The comment (/*) must not

begin in column 1 of cards because the
I* in columns 1 and 2 is recognized by
the MFCU as the end-of-file delimiter.

1 In this manual, ti is used when necessary to represent a blank space.
2Valid only when the QDATSEP system value specifies the same character.

Control Language Syntax 2-9

2-10

Symbolic Operators

Name Symbol Meanings

Plus + Addition operator, command

··;. continuation character, and positive
.·.:;r signed value indicator.

Minus (hyphen) - Subtraction operator, command
continuation character, and negative
signed value indicator. Separates parts
'of date values.3

Slash I Division operator. Separates parts of
date values. 3

Asterisk * Multiplication operator. Indicates a
generic name when it is the last
character in the name. Indicates CPF
reserved values (predefined parameter

,.. values and expression operators) when
it is the first character in a string.

Not ...,, Symbolic not relational operator.

Equal = Symbolic equal relational operator.

Less than < Symbolic less than relational operator.

Greater than > Symbolic greater than relational
operator .

And
.

& Symbolic logical operator for AND.

Or 12 Symbolic logical operator for OR.

Concatenation I> I< Character string operator (indicates both
values are to be joined). See Appendix
B for more information on the
differences in the concatenation
operators.

1 hi some character sets, including the multinational character set, the character A

replaces the ..., character. Either A or *NOT can be used as the logical NOT operator
in those character sets.

21n some character sets, including the multinational character set, the character I
replaces the I character. Either I or *OR can be used as the OR operator. and either
II or *CAT can be used as the concatenation operator in those character sets.

3Valld only when the QDATSEP system value specifies the same character.

Note: The symbolic operators can also be used in combinations as listed in
the chart under Operators in Expressions in Appendix B.

Other Uses

Name Symbol Meanings

Ampersand & Identifies a CL variable name when it is
the first character in the string.

Percent % Identifies a built-in function when it is
the first character in the string.

Question mark ? Specifies a prompt request when it
precedes a command name.

Predefined Values

Predefined values are IBM-defined fixed values that have predefined uses in
the control language and are considered to be reserved in CPF. Predefined
values have an asterisk (*) as the first character in the value followed by a
word or abbreviation, such as *ALL or *PGM. The purpose of the * in
predefined values is to prevent possible conflicts with user-specified values,
such as object names. Each predefined value has a specific use in one or more
command parameters; each is described in detail in Part 2, under the
commands in which it is allowed.

Some predefined values are used as operators in expressions, such as *EQ and
*AND. The predefined value *N is used to specify a null value and can be
used for any optional parameter. A null value (*N) indicates a parameter
position for which no value is being specified; it allows other parameters that
follow it to be entered in positional form. To specify the characters *N as a
character value (not as a null), the string must be enclosed in apostrophes
('*N') to be passed. Also, when the value *N appears in a CL program variable
at execution time, it is always treated as a null value.

Control Language Syntax 2-11

RULES FOR SPECIFYING NAMES

. The standard rule for specifying names used by the control language is:

Every name must begin with an alphabetic character (A-Z, $, #. or @) and
can be followed by no more than 9 alphameric c_haracters (A-Z, 0-9, $, #.
@, or _). No name can exceed 10 characters. Blanks are never allowed in
a name.

T.he standard rule applies to CPF object names, CL variable names, command
labels, system values, built-in functions, and job names .. It also applies to both
parts of a qualified object name, which is described in the following section.
When you create a new command using command definition (see Chapter 5),
the names of the command and its parameter keywords must follow the same
standard rule.

Additional rules involving special characters that apply to the following types of
names (as an extra character) are:

• A command label must be immediately followed by a colon(:). Blanks can
follow the colon, but .none can precede it.

• A CL variable name must be preceded by an ampersand (&)to indicate that
it is a CL variable used in a CL program.

• A built-in function name must be preceded by a percent sign (%)to indicate
that it is an IBM-supplied built-in function, which can be used in an
expression.

These special characters are not part of the name; each is an additional
character attached to a name (making a maximum of 11 characters) indicating
to the system what the name identifies.

The names of CPF objects, CL program variables, system values, and built-in
functions can ~e specified in the parameters of individual commands as
indicated in ~he syntax diagram for each command. (Instead of specifying a
constant value,. a CL variable name can be used on most parameters in CL
programs to specify a value that may change during program execution.) The
names, then, identify which objects and values are to be used when the
command is executed.

·""·

IDENTIFYING CPF OBJECTS

Each of the CPF objects used by the control language has a name. The object
name specified in a CL command identifies which object is to be used by the
CPF to perform the function of the command.

Simple and Qualified Object Names

The name of a specific object can be specified in two ways: as a simple name
or as a qualified name. A simple object name is the name of the object only. A
qualified object name is the name of the object followed by the name of the
library in which the object is stored in the system. In a qualified object name,
the object name is connected to the library name by a period.

Name Type

Simple object name
Qualified object name

Name Syntax Example

object-name OBJA
object-name.library-name OBJB.LIB1

Either the simple name or the qualified name of an object can be specified if
the object exists in one of the libraries named in the job's library list; the library
qualifier is optional in this case. A qualified name must be specified if the
named object is not in a library named in the library list.

Note: A job name also has a qualified form, but it is not a qualified object
name because a job is not a CPF object. A job name is qualified by a user
name and a job number, not by a library name. (Refer to the expanded
description of the JOB parameter in Appendix A for a complete description of
job names.)

Generic Object Names

Another type of object name is the generic object name. This type may refer to
more than one object. That is, a generic name contains one or more characters
that are the first group of characters in the names of several objects; the
system then searches for all the objects that have those characters at the
beginning of their names and that are in the libraries named in the library list.
A generic name is identified by an asterisk (*) as the last character in the
name.

A generic name can also be qualified by a library name. If the generic name is
qualified, the system searches only the specified library for objects whose
names begin with that generic name.

Name Type

Simple generic name
Qualified generic name

Name Syntax

generic-name*
generic-name*.library-name

Example

OBJ*
OBJ*.LIB1

Control Language Syntax 2-13

2-14

CPF Object Naming Rules

The following rules are used to name all CPF objects used in control language
commands. Use these rules, in addition to the standard rule given for all
names, to specify the object names indicated in the CL command descriptions
in Part 2. (The syntax diagram for each CL command shows whether a simple
object name, a qualified name, or a generic name can be specified.)

• Specifying a Single Object: In the name of a single object, each part (the
simple name and the library qualifier name) can have a maximum of 10
characters. The first character in each part must be alphabetic (A-Z, $, #, or
@), and the rest must be alphameric (alphabetic, 0-9, and _). When a
library qualifier is used, a period (.) connects the object name to the library
name.

• Naming User-Created Objects: To be able to distinguish user-created
objects from IBM-supplied objects, you should not name your objects with
names beginning with Q because the names of all IBM-supplied objects
(except commands) begin with 0. Although you can use as many as 10
characters in CL object names, you may need to use fewer to be consistent
with the naming rules of the HLL (high-level language) that you are also
using. Also, the HLL might not allow underscores in the naming rules. For
example, RPG limits file names to 8 characters and does not allow
underscores.

• Specifying a Generic Object Name: In a generic name, a maximum of 9
alphameric characters can be used, not including the asterisk (*) that must
immediately follow the last character. The first character must be
alphabetic. Generic names are not valid in some commands. In commands
where a generic name is accepted, a regular name is also accepted (that is,
without the *).

Name Type Name Syntax Examples

Object Name Library Name

Simple object name object- name INVENPGM1

Qualified object name object-name. library-name INVENPGM2.0GPL

\
10 characters Connector
maximum

Generic name generic-7 INV*

A'1e•;•k~ Connecto•

Qualified generic name
. J.

INV*.QGPL generic-name*. library-name
'-v-'

9 characters 10 characters
maximum maximum

Valid values where a generic name is accepted are INV and INV*. When the
name INV is specified, only the object INV is referenced. When the generic
name INV* is specified, objects that begin with INV are referenced, such as
INV, INVOICE, INVENTORY, and INVENPGM1.

• Object Library Qualifier Limitations: When the object being created is a
library, user profile, device description, control unit description, or line
description, no library qualifier can be specified with the name. A library
name can never be qualified because a library cannot be placed in a library.
The other object types (*USRPRF, *DEVD, *CUD, and *LIND) appear as if
they exist only in the QSYS library. When only the name of an object of
these four object types is accepted, a library qualifier cannot be specified
with the object name. On the DSPOBJD command, where any object name
is accepted, QSYS can be specified.

• Library List Qualifiers: The predefined value *UBL (and others, such as
*USRLIBL and *ALLUSR) can be used in place of a library name in most
commands. *UBL indicates that the libraries named in the job's library list
are to be used to find the object named in the first part of the qualified
name.

• Duplicate Object Names: Duplicate names of objects that are of the same
type and in the same library are not allowed.

Two objects having the same name cannot be stored in the same library unless
their object types are different. Two objects named OBJA can be stored in the
library LIBX only if, for example, one of the objects is a program and the other
is a file. The following combinations of names and object types could all exist
on the system at the same time.

OBJA.LIB1 OBJA.LIB1}
two files

OBJA.LIB2 OBJA. LI B2 three programs

OBJA.LIB3 OBJA. LIB 1 } one command

If more than one library contains an object by the same name (and both
libraries are in the same library list) and a library qualifier is not specified with
the object name, the first object found by that name is used. Therefore, when
you have multiple objects of the same name, you should specify the library
name with the object name or ensure that the appropriate library occurs first in
the library list. For example, if you are testing and debugging and choose not
to qualify the names, ensure that your test library precedes your production
library in the library list.

Default Libraries

In a qualified object name, the library name is always optional. If a library
name is not specified, the default given in the command's description is used
(usually either QGPL or *UBL). If the named object is being, created, QGPL is
the default; when the object is created, it is placed in the QGPL library (the
general purpose library). For objects that already exist, *UBL is the default for
most commands; the job's library list is used to find the named object. The
system will search all of the libraries currently in the library list until it finds the
object name specified. (Of course, the library in which the desired object is
contained must be a part of the job's library list.)

Control Language Syntax 2-15

2-16

PARAMETER VALUES

Parameter values are user-supplied information to be used during command
execution. An individual value can be specified in any one of these forms:

• Constant (its actual value): The types of constants are: character string
(includes names), decimal, and logical.

• CL variable name (the name of the variable containing the value): The types
of variables·are: character string (includes names), decimal, and logical. The
type of variable must match the type of value expected for the parameter,
except that any type of value can be specified by a character variable. For
example, if a decimal value is expected, it can be specified by a character
variable as well as by a decimal variable.

• Expression (the value used is the result of evaluating an expression): The
types of expressions are arithmetic, character string, relational. and logical.
Expressions can be used as a value for parameters in commands in CL
programs only.

A parameter can specify one or a group of such values, depending on the
parameter's definition in a command. If a group of values is allowed, the
parameter is called a list parameter because it can contain a list of values.

All values can be specified in the command parameters in keyword form,
positional form, or a combination of both forms. Parameter values must be
enclosed in parentheses if:

• A keyword precedes the value.

• The value is an expression.

• A list of values is specified. If only one value is specified for a list, no
parentheses are required.

A description of each type of parameter value is given in the following
paragraphs.

Constant Values

A constant is an actual numeric value or a specific character string whose value
does not change. Three types of constants can be used Ly the control
language: character (quoted and unquoted character strings), decimal, and
logical.

Character Strings

A character string is a string of any EBCDIC characters (alphameric and
special) that are used as a value. A character string can have two forms:
quoted string or unquoted string. Either form of character string can contain as
many as 2000 characters.

A quoted character string is a string of alphameric and special characters that
are enclosed in apostrophes. For example, 'Credit limit has been exceeded.' is
a quoted character string.

The quoted string is used for character data that is not valid in an unquoted
character string. For example, user-specified text can be entered in several
commands to describe the functions of the commands; the text must be
enclosed in apostrophes if more than one word is used in the description
because blanks are not allowed in an unquoted string.

An unquoted character string is a string consisting of only alphameric characters
and the special characters that are shown in the Unquoted String column of the
table on the following page. The special characters allow the following to be
unquoted character string values:

• Predefined values (* at the beginning)

• Qualified object names (.)

• Generic names (* on end)

• Decimal constants (+, -, ., and ,)

Any of these unquoted strings can be specified for parameters that are defined
to accept character strings. In addition, some parameters are defined to accept
only predefined values, names, or decimal values, or a combination of the
three.

Control language Syntax 2-17

2-18

The following table summarizes the characters valid in unquoted and quoted
character string values. An X in the column indicates the character on the left
is valid; a superscript number next to the X indicates the character is valid in
the way described in the corresponding note listed following the table:

Unquoted Quoted
Name of Character Character String String

Blank f) x
Comma . Note 1 x
Dollar sign $ x x
Number sign # x x
At sign @ x x
Letters (uppercase) A-Z x x
Letters (lowercase) a-z Note 2 x
Digits 0-9 Note 1 x
Period Notes 1 and 3 x
Left parenthesis (Note 4 x
Right parenthesis) Note 4 x
Ampersand & Note 5 x
Asterisk * Notes 5 and 6 x
Semicolon ; x
Minus - Notes 1 and 5 x
Slash I Note 5 x
Apostrophe Note 7

Equal = Notes 5 and 8 x
Less than < Notes 5 and 8 x
Greater than > Notes 5 and 8 x
Plus + Notes 1 and 5 x
Vertical bar I Notes 5 and 8 x
Not , Notes 5 and 8 x
Percent % x
Question mark ? x
Colon : x
Underscore Note 9 x -
Other EBCDIC characters x

Notes:
1. An unquoted string of all numeric characters, an optional single decimal point (. or ,),

and an optional leading sign (+ or -) is a valid unquoted string. Depending on the
parameter ·attributes in the command definition, this unquoted string is treated as a
numeric or character value. On the CALL command or in an expression, this
unquoted string is treated as a numeric value; a quoted string is required if the
character representation is desired. Numeric characters used in any combination with
alphameric characters is also valid in an unquoted string.

2. In an unquoted string, lowercase letters are translated into uppercase letters.
3; A period can be used as a connector in qualified names.
4. In an unquoted string, parentheses are valid when used to delimit keyword values and

lists or in expressions to indicate the order of evaluation.
5. In an unquoted string, the characters+, -, *, /, &, I, •, <, >, and= are valid by

themselves. If they are specified on a parameter that is defined in the command
definition with the EXPR(*NO) attribute, they are treated as character values. If they
are specified on a parameter that is defined in the command definition with the
EXPR(*YES) attribute, they are treated as expression operators.

6. In an unquoted string, the asterisk is valid when followed immediately by a name
(such as in a predefined value) and when preceded immediately by a name (such as
in a generic name).

/'
I

7. Because an apostrophe within a quoted string is paired with the opening apostrophe
(delimiter) and is interpreted as the terminating delimiter, an adjacent pair of
apostrophes must be used within a quoted string to represent an apostrophe that is
not a delimiter. When characters are counted in a quoted string, such a pair of
adjacent apostrophes is counted as a single character.

8. In an unquoted string, the characters <, >, =, •, and I are valid in some combinations
with another character in the same set. Valid combinations are: <=, >=, •=, •>, •<,
I I, I<, and I>. If the combination is specified on a parameter that is defined in the
command definition with the EXPR(*NO) attribute, then it is treated as a character
value. If it is specified on a parameter that is defined in the command definition with
the EXPR(*YES) attribute, then it is treated as an expression operator.

9. In an unquoted string, the underscore is not valid as the first character or when used
by itself.

The following are examples of quoted string constants:

Constant

'1,2,'
'DON'T
'241220'

Value

1,2,
DON'T
24 12 20

The following are examples of unquoted strings:

Constant

CHICAGO
FILE1

*UBL

Meaning

CHICAGO
FILE1

Library list

PG MA. LI BX

1.2
Program PGMA in library LIBX

1.2

Decimal Values

A decimal value is a numeric string of one or more digits, optionally preceded

by a plus (+) or minus (-) sign. A decimal value can contain a maximum of 15
digits, of which no more than nine can follow the decimal point (which can be

a comma or a period). Therefore, a decimal value can have no more than 17

character positions, including the sign and decimal point. The following are

examples of decimal values.

123.
1 • 2 3 } Equivalent
1, 23 Values

-1,23

+.017
6278,954374

-123456.987654321
87654321.123

Control Language Syntax 2-19

2-20

Logical Values

A logical value is a single character 1 or 0 enclosed in apostrophes. It is often
used as a switch to represent a condition such as on or off, yes or no, and
true or false. When used in expressions, it can be optionally preceded by
*NOT or ...,~ The following are examples of logical values:

Constant Value Meaning.

'O' 0 Off, no, or false

.,. On, yes, or true

Hexadecimal Values

A hexadecimal value is a constant that is made up of a combination of the
hexadecimal digits A through F and 0 through 9. All .character strings except
names, dates, and times can be specified in hexadecimal form. To specify a
hexadecimal value, the digits must be specified in multiples of two, be
enclosed within apostrophes, and be preceded by an X. Examples are: X'F6'
and x· A3FE'.

Note: Care should be used when hexadecimal values in the range of 00
through 3F, or the value FF, are entered. If data containing these characters is
displayed or printed, undesirable results on the device may occur, because they
may be treated as device control characters.

Variables

A variable contains a data value that can be changed during program execution.
The variable is used in a command to pass the value that it contains at the
time the command is executed. The change in value can be the result of:
receiving the value from a data area, a display device file field, or a message;
being passed as a parameter; executing a CHGVAR command within the
program; or calling another program that returns a value.

The variable name identifies a value to be used; the name points to where the
actual data value is. Because CL variables are valid only in CL programs, they
are often called CL program variables or, simply, CL variables. CL variable
names must begin with an &.

CL variables can be used to specify values for almost all parameters of CL
commands. When a CL variable is specified as a parameter value and the
command containing it is executed, the current value of the variable is used as
the parameter value. That is, the variable value is passed as if the user had
specified the value as a constant.

(
I_

Because it is generally true that CL variables can be used for most parameters
of commands in CL programs, the command descriptions in Part 2 of this
manual usually do not mention CL variables. For those parameters that are
restricted to constants only (such as in the DCL command}, to CL variables
only (such as all of the parameters of the RTVJOBA command), or to specific
types of variables (such as on the RTVJOBA or RTVMSG command), the
individual parameter descriptions specify those limitations. Otherwise, if the
command is allowed in a CL program, CL variables can be used in place of a
value, including parameters with only predefined values. For example, a SAVE
parameter having only predefined values of *YES and *NO can have a CL
variable specified instead; its value can then be *YES or *NO, depending on its
value at the time the command is executed.

A CL variable must contain only one value; it may not contain a list of values
separated by blanks.

The value of any CL program variable can be defined as one of the following
types:

• Character: A character string that can contain a maximum of 2000
characters. The character string can be coded in quoted or unquoted form,
but only the characters in the string itself are stored in the variable.

• Decimal: A packed decimal value that can contain a maximum of 15 digits,
of which no more than nine can be decimal positions.

• Logical: A logical value of '1' or 'O' that represents on/off, true/false, or
yes/no.

If value is: CL variable can be declared as:

Name Character

Date or time

Character string

Numeric Decimal or character

Logical Logical or character

Expressions

An expression is a group of constants or variables separated by operators that
results in a single value. The operators specify how the values are to be
combined to produce the single value or result. The operators can be
arithmetic, character string, relational, or logical. The constants or variables can
be character, decimal, or logical. For example, the expression (&A + 1)
specifies that the result of adding 1 to the value in the variable &A is to be
used in place of the expression.

Control Language Syntax 2-21

2-22

Character string expressions can be used in certain command parameters
defined with EXPR(*YES) within CL programs. An expression can contain the
built-in functions %SUBSTRING for %SST) and %SWITCH, which are
covered in detail in Appendix B. The types of expressions and examples of
each are described there.

lists of Values

A list of values is a series of one or more values that can be specified for a
parameter. Not all parameters can accept a list of values. A list parameter can
be defined to accept a specific set of multiple values that can be of one or
more types. Values in the list must be separated by one or more blanks. Each
list of values is enclosed by parentheses, indicating that the list is to be treated
as a single parameter. (Parentheses are used even when a parameter is
specified in positional form.) To determine whether a list can be specified for a
parameter, and what kind of list it can be, refer to the description of the
parameter under the appropriate command.

A list parameter can be defined to accept a list of multiple like values (a simple
list) or a list of multiple unlike values (a mixed list), Each value in either kind of
list is called a list element. List elements can be constants, variables, or other
lists; expressions are not allowed.

• A simple list parameter accepts one or more values of the type allowed by a
parameter. For example, (RSMITH BJONES TBROWN) is a simple list of
three user names.

• A mixed list parameter accepts a fixed set of separately defined values that
are in a specific order. Each value can be defined with specific
characteristics such as type and range. For example, LEN(5 2) is a mixed
list where the first element (5) gives the length of a field and the second
element gives the number of decimal positions in the same field.

LOC(*M1 4 6) is a mixed list of three elements: the first element is a
predefined character value (*M 1) that indicates a magazine location in the
diskette magazine drive; the second and third elements (4 and 6) are
numeric values that identify the starting and ending diskette positions within
the magazine identified by the first element. This example indicates that
diskettes 4, 5, and 6 in magazine 1 are to be used.

• For many parameters defined to accept lists, predefined single values can be
specified in place of a list of values. One of these single values can be the
default value, which can be specified or assumed if no list is specified for a
simple or mixed list. To determine what defaults are accepted for a given
list parameter, refer to the description of the parameter in the command
description for which the parameter is defined and used.

Note: *N cannot be specified in a simple list, but it can be specified in a
mixed list. Also, individual parameters passed on the CALL command
cannot be lists.

• The maximum level of nesting within lists is three levels, including the first
(three nested levels of parentheses).

The following are examples of lists:

~~D() } Null lists

(A)
(ABC)
KWD(A BC)
(1 B &C)
(A B *N C) -(assuming a list of unlike values)

((A B) (1 2)) } Nested lists
((A B)(1 2))

The last two examples contain two nested lists within a list: the first list has
values of A and B; the second has values of 1 and 2. The space between the
two nested lists is not required. Blanks are the i?eparators between the values
within each list, and the sets of parentheses group the values into lists.

SYNTAX CODING RULES (SUMMARY)

This section contains a summary of general information needed to properly
code control language commands.

Delimiters

• Blanks are the basic separators between the parts of a command:
Between command label and command name (not required, because the
colon (:) is the delimiter).
Between command name and first parameter, and between parameters.
Between values in a list of values (not required between ending and
beginning parentheses of lists within a list).
Between the slashes and the name or label of some job control
commands, like I I ENDJOB (not required).

• Blanks cannot separate a parameter's keyword from the left parenthesis
preceding its value(s). When a keyword is used, parentheses must be used
to enclose the values; blanks can occur between the parentheses and the
values. For example, KWD(A) is valid.

• Multiple blanks are treated as a single blank, unless they occur within a
quoted string or a comment.

• A colon must immediately follow a command label. Only one label can be
used on any command (LABEL 1 : DCLF).

• Apostrophes must be used to specify the beginning and end of a quoted
character string. (If a character string contains special characters, such as
blanks, apostrophes are required.) If an apostrophe must be used within the
quoted string, two apostrophes must be entered side by side to indicate that
it is an apostrophe and not the end of the quoted string.

Control Language Syntax 2-23

2-24

• Parentheses must be used:
On parameters that are specified (coded) in keyword form
To group multiple values in a single list, in a positional parameter, or
around expressions
To indicate a list (of none, one, or several elements) within another list

• Sets of parentheses within parentheses can be entered as long as they are
paired, up to the maximum of five nested levels in logical expressions or
three nested levels in lists of values.

• Comments can appear wherever blanks are permitted, except after a
continuation character on the same line or record.

• A plus or minus sign at the end of a line indicates that the command is
continued on a following line. Blanks following a + or - sign in the same
record are ignored; any blanks in the next record that precede the first
nonblank character in the record are ignored when + is specified and
included when - is specified. One blank must precede the + sign when it is
used between separate parameters or values.

Parameters

• All required parameters must be coded.

• If an optional parameter is not coded, the system uses its default value, if
the parameter has one. In the syntax diagram of each command, all default
values are indicated by the heavy branch lines that lead .to them. If no
default value is indicated, then the default varies (depending on other
parameter values) and is described in the text, or the action taken does not
require that parameter.

• Words or abbreviations specified in capital letters in the command and
parameter descriptions must be coded as shown. This is true of all
command names (mnemonics), keywords of parameters (if used), and many
parameter values. If lowercase letters are coded that are not in quoted
strings or comments, they are translated to uppercase.

• Parameters may not be coded positionally past the positional coding limit
symbol ® found in the syntax diagrams (if applicable). If no positional
coding limit symbol appears, all parameters in the command may be coded
positionally. The order of positional coding is the order in which the
parameters are presented in the syntax diagram.

Values

• The first character in all names must be an alphabetic character (A-Z, $, #.
@). Names must not exceed 10 characters. (CL variable names and built-in
function names can have 11 characters maximum, including the preceding &
or % characters.) In some commands, the names of objects can be
specified in qualified form (object-name.library-name).

• Predefined values that begin with an asterisk can be used only for the
purposes intended, unless included in comments or quoted strings. They
include predefined parameter values (*ALL, for example), symbolic operators
(*EQ, for example), and the null value (*N).

• Within a CL program, a variable can be specified for all parameters, except
where explicitly restricted. The contents of the variable are passed as if the
value were specified on the command.

• Within a CL program, a character string expression can be specified for any
parameter defined with EXPR(*YES). The resulting value of the expression is
passed as if the value were specified on the command.

• Null (omitted) values are specified with the characters *N, which mean that
no value was specified and the default value, if one exists, should be used.
*N is needed only when another value following the omitted value is being
specified as a positional parameter or an element in a list.

• Either a comma or a period can be used to indicate a decimal point in a
numeric value. The decimal point is the only special character allowed
between digits in the numeric string; there is no delimiter for indicating
thousands, for example.

• When repetition is indicated for a parameter:
A predefined value is not to be coded more than once in a series of
values.

- As many user-defined values (like names or numeric limits) can be
entered as there are different values or names, up to the maximum
number of repetitions allowed.

Note: When you are using parameters that have the same name in different
commands, the meaning of (and the values for) that parameter in each
command may be somewhat different. Refer to the correct command
description for the explanation of the parameter you are using. For some
parameters, you can also refer to the Common Parameter Descriptions in
Appendix A for both general information about a parameter and an
expanded description of its values coded in commands.

Control Language Syntax 2-25

2-26

Part 2. Control Language Command Descriptions

All of the System/38 control language commands are described in detail in

Part 2. Generally, each command is described independently of all the other
commands; they are not described in functional groupings. The commands are
in alphabetic order by their command names.

The command definition statements used for creating and changing commands
are grouped separately at the end of Part 2, in Chapter 5, Command Definition
Statements. These five statements perform a function completely independent
of the rest of the commands, namely, defining or changing the parameter

attributes of IBM-supplied or user-defined commands.

To aid you in quickly locating commands and their parameters, marginal

references (similar to that used in a dictionary) are used in the top outer corner

of each page in Part 2. Each marginal reference shows the command name

and parameter keyword of the first command and first new parameter

described on that page. More than one command can appear on one page, but
if the command from the previous page is continued, the continued command

is the one identified when a new parameter or a new section (such as

Examples) starts on the page.

Before the first command is described, an explanation of the format used to
describe each command is given. Following that, an explanation of how to

interpret the syntax diagrams is given; the diagrams graphically show the

syntax of each command.

Control Language Command Descriptions

Chapter 3. Format of Command Descriptions

HOW COMMANDS ARE DESCRIBED

Each command description follows the same format. First, the function of the
command and restrictions on its use are described. Next. a syntax diagram
presents all parameters and values that can be coded on the command. Next,
each parameter and its choice of values are described. Finally, coded examples
of the command are given. Some commands have additional information that
i11 supplied after the examples.

Command Description

The general description of the command briefly explains the function of the
command and any relationships that it has with a program or with other
commands. If there are restrictions on the use of the command, they are
described under Restrictions.

It should be noted that, because a command is a CPF object, each command
can be authorized for specific users or authorized for use by the public (all
users authorized in some way to use the system). Because this is true for
nearly every command, it is not stated in each command description. (Refer to
the user profile chart in Appendix C for the IBM-supplied user profiles and the
commands initially authorized for each one.)

Command Syntax

The command syntax is presented !n the syntax diagram for the command.
The syntax diagram shows all parameters and values that are valid for the
command. The parameters are divided into two groups: those that must be
coded (required), and those that need not be coded (optional). Heavy branch
lines are used to indicate default values, which are used by the system for
uncoded parameters.

A complete description of the syntax diagram is provided later in this chapter
under How to Interpret Syntax Diagrams.

Format of Command Descriptions 3-1

3-2

Parameter Descriptions

Each parameter is described in the text in the same order as shown in the
syntax diagram. The syntax diagram shows the order in which the parameters
must be specified if the values are specified positionally (that is, without
keywords). If a parameter has more than one value, the values are described in
the same order as shown. The default value, if there is one, is always first and
is shown as an underlined heading at the beginning of the text that describes
the value.

The description of each parameter contains what the parameter means, what it
specifies. and. the dependent relationships it has with other parameters in the
command. When the parameter has more than one value, the information that
applies to the parameter as a whole is covered first, then the specific
information for each of the values is described after the name of each value.

Command Coding Examples

Each command description shows at least one coded example if the command
has at least one parameter. Where necessary, several examples· are provided
for commands that have many parameters and several logical combinations.

For clarity, each example is coded in keyword form only. The same examples
could, of course. be coded in positional form or in. a combination of both
forms.

Additional Command Considerations

A section called Additional Considerations follows the coded examples of some
commands when there is additional useful information to be presented about
the command. For example, some of the display commands result in displays
of information that are in tabular form. This section is used to clarify the
meanings of. the information displayed.

The displays shown in this manual are only representative of the format of the
items that could be displayed for a given command. That is, the manual shows
and explains all of the fields that can appear on the displays, and explains the
sequence in which the various groups of fields are presented. Xs are shown in
the areas where variable information would actually appear, and the length of
each field is determined by the number of Xs shown for that field. An actual
display, in many cases. may contain only a few of the fields that could be
displayed, but only the applicable fields are displayed.

HOW TO INTERPRET SYNTAX DIAGRAMS

Syntax diagrams show all the parameters and values used by each CL
command. Each syntax diagram specifies, for one command, the parameters
that can be coded in the command and the choice of values for each
parameter.

All parameters are shown in each diagram in the order that the system requires
them to be when the parameters are coded in positional form.

All required parameters precede all optional parameters. The required
parameters (if any) are boxed with the command name at the beginning of the
diagram. All the other parameters are optional and do not have to be coded; a
default value (indicated by heavy branch lines) is assumed for each uncoded
parameter, for most commands.

For each parameter that can have a repetition of values, the maximum number
of repetitions that can be entered is shown in the diagram with the parameter's
values. The syntax diagrams also show (by flow lines and by notes) which
parameters are mutually dependent or mutually exclusive.

Entry codes are shown in the bottom right corner of the diagram; they tell you
where the command can be entered. Notes are also included that give
information that is needed to properly interpret the syntax.

Sample Syntax Diagram

Illustrated on the following page is a sample syntax diagram. It shows the
parameter syntax of a fictitious command named SMPSYNDGM (Sample
Syntax Diagram). This command shows a number of representative parameters
that are used in the set of rules that follow the sample syntax diagram. These
parameters are used to illustrate how each kind of parameter syntax that exists
in the CL commands is to be interpreted. Included with the rules are coded
examples of these parameters.

Format of Command Descriptions 3-3

Choice of
Values (6)

Command (2) and (3) Parameter Predefined User-Defined
Name (1) Not Show-n Keyword (4) Values (7) Value (5)

.-----1·----i -hL ~~ Quolmod

SMPSYNDGM---c-n~~ /•n1th---PARMB meesa1e9·-:t:d:e:n:t1~n~e:r==============~-r- Object
,...../ _ Name(8)

>- P.ARMC :=t" :DBC-3--+---P.ARMD pro1ram-name -(.t<LIBL) .. Required

•LGL .library-name Required and

Diagram 0 ttonal Optional

Note (10)PP.ARM~meeaa1e-tezt'--------P.ARMF-(oo~~ ~~~ameters
List of severity-code_;

User-Defined Default

Values(12) _L_*SAM~-~ ~Values
P.ARMB _~~:.; (11)

~-------------~-----~_.Quoted

Positional Values (14)

Coding -----P.ARMJ 'separator-character'"---------•
Limit (13)

Repetition
(15)

List of
•NONB Values (with
•vALuB1 ~---------r- Repetition)

>- PARMJC-rdeV1ce-name~-----P.ARML =~~~:: ___ .,..._,........~------• 1161

L 4 maximum •V.ALUE4
uBBr-value
3 maximum Dependent

Parameters
(18)

-(
•NOMAX

>-PARMM @'•-~
Optional len1th [decimal-positiona]:'l
Values in __ J-------.....;:::::::-:---
Lists (17)

Diagram
Notes (10)

3-4

>-P.ARMP job-name[.user-name[.job-number]]---------------------.

-(
•NONE

>- P.ARMQ -(•LIBL y,. ___ _
data-bue-file-name .

. library-name

© The text must be enclosed in apostrophes if special characters are uaed.
@ A. value tor deci1m.al-poa'ltiona 1a valid only if PA.RMC(•DBC) 1a specified.

Job:B,I P1m:B,I

Entry
Codes (19)

Syntax Diagram Rules

The syntax diagrams for the CL commands are interpreted according to the
following rules.

1. Command Name

The command name appears first in the diagram. In the sample syntax
diagram, the name of the fictitious command is SMPSYNDGM.

2. Command Labels

All coded commands can be preceded by labels; therefore, they are not shown
in the syntax diagrams. If used, a label must have a colon (:) immediately after
the last character in the label name.

3. Parameter Order

All parameters of the command are shown in the correct positional sequence.
The order goes left to right on each line and continues on the following line.
(To show the positional order of the parameters in the sample diagram, the
representative parameters have keyword names that are named in alphabetic
order, such as PARMA and PARMS; they are named in the same order as they
would have to be coded positionally if this command actually existed.)

Note: In the few cases where dependent parameter relationships are shown
(see rule 18). the positional order of those parameters may not be readily
apparent. The order may be specified in a note in the diagram, or the order
can be easily determined in the text, because all parameters in the command
are described in positional order in the text.

When coding parameters in the positional form, you must enter them in the
order shown in the diagram. If you choose not to code a parameter and
another positional parameter is to be coded after it, then you must enter *N to
represent the uncoded parameter in the positional sequence.

No parentheses are shown in the diagrams, but parentheses must be coded in
each parameter that either has the keyword coded with its value (see rule 4) or
has multiple values in one parameter (see rule 12).

Format of Command Descriptions 3-5

3-6

4. Parameter Keywords

For each parameter, the keyword is always shown first, followed by the
parameter values. Parameter keywords use uppercase letters; if you ccide them
in lowercase, they will be changed to uppercase.

>-PARMA lencth~ ~f----P.ARMB •BLANK-----------------+• -f_ •S.AM'.0
l \ I · \text'

Keyword Value Keyword Values

When a parameter is coded in keyword form, its associated values must be
enclosed in parentheses. Although parentheses are hot shown in the diagram,
they must be used when you are coding in keyword form. Examples of
PARMA and PARMH are:

PARMA(15) PARMH(*BLANK)

5. User-Defined Values

User-defined values are shown with lowercase characters that describe the
kind of value to be coded by the user. If more than one word is used to
describe a single value, the words are connected by hyphens:

>-P.ARMA len1th-------P.ARMB meaaaee-ldentlfier---+

6. Choice of Values

A parameter having a choice of values of which only one can be specified is
shown with the values on different branch lines that occur after the parameter
keyword (which is on the base line), as follows:

!ICHAR~ranch lines

>i; PARMC !!DEC (•

\ llLGL
base line base line

If the second value is to be coded, it can be coded as:

PARMC(*DEC)
(keyword form)

7. Predefined Values

or as *DEC
(positional form)

Predefined values are shown exactly as they must be coded. *CHAR and *DEC
are examples of predefined values.

8. Qualified Object Names

Qualified names of CPF objects are shown as:

-(
.«<LIBL

>-PARMD pro1ram-name) •
.library-name

Qualified object names have the object name followed by the optional library
qualifier. If the qualifier is not specified, the default shown by the heavy line is
used. Usually, *UBL is the default value for a qualified object name; it means
that the library list associated with the job is used to find the object. The
syntax for PARMD shows that a qualified program name can be specified.

PARMD(PGMX.LIBA) PARMD(PGMX)

The first example shows PGMX coded in its qualified form; the parameter
specifies that the program named PGMX in library LIBA is to be used. The
second example shows the program name only; the library list must be used to
find a program by the name of PGMX.

9. Required and Optional Parameters

All required parameters, if any, occur before the optional parameters. The
required parameters, with their keywords and values, are separated from the
optional parameters by a heavy dividing line. The required parameter area is
identified by Required above the dividing line. The optional parameter area is
identified by Optional below the dividing line.

· Requlred

Optlonal

If there are no required parameters, no dividing line is used. If there are
required parameters but no optional parameters, Required is entered at the top
of the diagram.

Required

Optional

Format of Command Descriptions 3.-7

3-8

10. Diagram Notes

Any necessary notes about a parameter or value in the diagram are identified
by a circled number and explained at the bottom of the diagram.

11. Default Values

If parameters have default values, those values always lie within a heavy
branch line, except when the values are shown as a list in a box. The default
is always the top value in the group shown. When the values are boxed (such
as in the LOC parameter of most diskette commands) for a parameter, its
default value is underlined and is the first value in the list. Also, the default
value is underlined in the text heading that describes the value. For an example
of a boxed default value, see the LOC parameter for the Change Diskette File
(CHGDKTF) command.

In PARMF, the default value is 00. In PARMH, it is *SAME. The default values
are assumed by the system if you do not enter other values for parameters
PARMF and PARMH.

Default values occur for most optional parameters, and for the library qualifier
portion of both required and optional parameters. The indicated default value is
assumed by the system if:

• A value is not specified for an optional parameter.

• A list element (value), in an optional parameter that allows a mixed list of
values, is not specified.

• A library name is not specified in the library portion of a qualified object
name.

12. List of User-Defined Values

If a list of user-defined values can be coded, spaces (blanks) are used to
separate the values in the list. A list of values is shown as:

>-P.ARMG operator value-----({---PA.RMI lower-value upper-value___.

Both PARMG and PARMI show a list of two values that must be coded if the
parameter is coded. Parentheses are required around the list if multiple values
are coded even if no keyword is used. PARMG and PARMI could be coded as:

PARMG(*EQ 16) PARMl(1 9999)

13. Positional Coding Limit

The point to which the command's parameters can be coded positionally is
indicated with this symbol. An attempt to code positionally beyond this point
will result in a syntax error. If this symbol does not appear in the syntax
diagram, all parameters of the command may be coded positionally.

14. Quoted Values

User-defined values that may require that the value be enclosed in
apostrophes are shown in the diagram with apostrophes. Apostrophes are
shown where special characters are normally expected.

>- P.ARMB 'meHase-tu:t•----'.(~,_---P.A.RMJ 'separator-character---

The value specified for PARME requires apostrophes if more than one word is
entered (blanks, such as between words, are not allowed in an unquoted
character string) or if special characters are used. PARMJ requires apostrophes
if a character other than an alphameric character is specified.

PARME('This is a quoted string')
PARME('10-24-78')
PARME(102478)

The first and second values require apostrophes because they have either
blanks (spaces) or special characters (-). The third value is a date with no
separator characters, and therefore does not require apostrophes.

Format of Command Descriptions 3-9

3-10

15. Repetition

An arrow going back to the left t_ (n maximum) _J is used to show how many
values (shown on several branch lines following the keyword) can be specified,
or how many repetitions of one value (shown on one line) can be specified.

If a value of one kind can be specified more than once, it is shown as:

..

As many as four device names can be specified for PARMK. The following
values could be coded:

PARMK(DSPSTN1 DSPSTN2)
PARMK(MFCU DKT1 PTR1 WSPTR1)

The first example specifies two device names, and the second example
specifies the maximum of four device names.

When repetition is indicated for a parameter:

• A predefined value should not be coded more than once in a series of
values.

• As many user-defined values (like names or numeric limits) can be entered
as there are different values or names, up to the maximum number of
repetitions allowed.

16. List of Values (with Repetition)

A parameter that can have several values specified (a list of like values) is
shown as:

>-PARML1~~E~--+\..,.~------•
•V.ALUM
uaer-value
3 mu:lmum

The parameter PARML can specify one, two, or three of the values shown.
Any combination of the four predefined values and user-defined values can be
specified. The user-defined value could be any value allowed for that
parameter. Any of the following could be coded:

PARML{*VALUE1 *VALUE3)
PARML{*VALUE3 16)
PARML(16 3 12)

If PARML is not specified, the single value *NONE is the default used by the
system. Note that if *NONE is specified, none of the other values can be
specified because the heavy branch line begins on the base line before the
return point of the repetition arrow, and it returns to the base line after the
starting point of the arrow. Also, because the arrow does return to the base
line after the heavy branch line begins, *NONE cannot be specified if any of
the values within the repetition loop are specified.

17. Optional Values in Lists

A list of values in which one or more of the elements are optional is shown
with brackets ([]). The value within the brackets cannot be coded unless the
value outside the brackets is also coded. The brackets themselves are never
coded.

-(
•NOMAX

>-PABMM . _)---~
len1th [decimal-poaitiona]

PARMM has one optional element in a list of two values and can be coded as:

PARMM(15 5) or PARMM(7)

The first example specifies a length of 15 digits of which 5 are decimal
positions. The second example specifies a length of 7 digits with no decimal
positions. If PARMM is not specified, the single value *NOMAX is used as the
default.

>-PA.RYP job-name[. user-nama[.Job-number]]---

PARMP requires a job name as its value; the name can be optionally qualified.
The job name can be specified with only the first part, the first two parts, or
with all three parts. A job named JOBX owned by the user RANDY having the
job number 210742 can be coded as:

PARMP(JOBX)
PARMP(JOBX.RANDY)
PARMP(JOBX.RANDY.210742)

Format of Command Descriptions 3-11

3-12

18. Dependent Parameter Relationships

Some parameters or values have dependent relationships with other
parameters or values. Some relationships are shown by the placement of
whole parameters on one or more branch lines; others are indicated by notes
that specify the relationships. Also, where the positional order of dependent
parameters may not be readily apparent in the diagram, a note is included that
specifies the correct positional order of those parameters. The dependent
relationships must be considered in the coding process.

PARMN and PARMO are dependent parameters; if a device name (PARMN) is
coded, the device type (PARMO) cannot be coded, and vice versa.

Dependencies exist between parameters when they follow one another on the
same branch line or when they are on different branch lines that have split
from the same base line. (Parameters on the same base line, which is usually
the case, do not indicate dependencies.)

An example of three parameters being dependent on one another is shown in
the syntax diagram for the Create Physical File (CRTPF) command. There, the
following relationships are shown between the SRCFILE, SRCMBR, and
RCDLEN parameters:

• If none of the three are coded, the default values on the top branch line are
assumed: SRCFILE(QDDSSRC.*LIBL) and SRCMBR(*FILE).

• If either SRCFILE or SRCMBR is specified (or both of them), RCDLEN
cannot be specified; if RCDLEN is specified, SRCFILE and SRCMBR cannot
be specified and their defaults do not apply. The two branch lines make
them mutually exclusive.

• If SRCFILE is specified, SRCMBR may or may not be specified, and vice
versa. (In some cases, where parameters are on the same branch line, if
one parameter is specified, the following parameter may also have to li>e
specified.)

If the CRTPF command is used to create, for example, a physical file named
FILEX that is to have records 120 positions long, and if the first few
parameters are coded positionally (refer to Note 1 at the bottom of the CRTPF
syntax diagram) the following would be coded:

CRTPF FILEX *N *N 120

19. Entry Codes (Batch and Interactive)

The box insert in the lower right corner of each syntax diagram contains the
entry codes that specify where the command can be entered. The codes
indicate whether the command can be:

• Used within a job (outside a compiled program; Job:B and/or I). When
used in this manner, the command is considered a separate entity within the
job, and is executed by itself as a separate function (in what is called
interpretive. mode). That is, commands within batch and I or interactive jobs
that are not in compiled programs are interpreted and executed one at a
time, one after the other. The function of one interpreted command in the
job is performed and completed before the next command is interpreted.

• Used within a compiled program (Pgm:B and/or I). In this case, the
command is part of the program: the command is in compiled form with
the rest of the program, and the command's execution is dependent on
when the program is called and on the program's logic preceding the
command. That is, a compiled command cannot be executed unless the
program is executed.

The explanations of the combinations of entry codes are shown in the
following chart:

Code Representing Meaning

Job:B Batch job Valid in batch input stream,
external to compiled CL
program

Job:I Interactive job Valid for interactive entry,
external to compiled CL
program

Job:B,I Batch and interactive jobs Valid for batch and
interactive entry, external to
compiled CL program

Pgm:B Program, batch Valid in compiled CL
program that is called from
batch entry

Pgm:I Program, interactive Valid in compiled CL
program that is called from
interactive entry

Pgm:B,I Program, batch and Valid in compiled CL
interactive program that is called from

batch or interactive entry

By looking at the entry codes at the bottom of each syntax diagram, you can
tell whether the command can be used: only within CL programs (Pgm:B,I),
only outside CL programs (Job:B,I), only within interactive jobs (Job:I), or
inside or outside a CL program within any batch or interactive job (Job:B,I
Pgm:B,I).

Format of Command Descriptions 3-13

3-14

ADDAJE

Chapter 4. Command Descriptions

ADDAJE (Add Autostart Job Entry) Command

The Add Autostart Job Entry (ADDAJE) command adds an autostart job
entry to the specified subsystem description; (the associated subsystem
must be inactive at the time). The job entry identifies the job and its
associated job description to the subsystem. Autostart jobs are jobs that are
automatically initiated when the subsystem is started.

Restriction: To use this command, you must have operational and object
management rights for the specified subsystem description.

-{_ .•LIBL
ADD.AJE -- SBSD subsystem-description-name)

. library-name
•

Required

Optional

-{_ •SBSD ~ >- JOB job-name - t-- JOBD •LIBL
job-description-name-{_. Y

.Ubrary,--name

j Job:B,I P&m:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
to which the autostart job entry is to be added. (If no library qualifier is
given, *UBL is used to find the subsystem description.)

JOB Parameter: Specifies the simple name of the job that is to be
automatically initiated when a subsystem is started using the subsystem
description specified in the SBSD parameter.

JOBD Parameter: Specifies the qualified name of the job description to be
used for the job that is initiated by this autostart job entry. If the job
description does not exist when the entry is added, a library qualifier must
be specified because the qualified job description name is retained in the
subsystem description.

*SBSD: The job description having the same qualified name as the
subsystem description, specified by the SBSD parameter, is to be used for
the initiated job.

qualified-job-description-name: Enter the qualified name of the job
description that is to be used for the job initiated by this autostart job entry.
If no library qualifier is specified, the library list (*UBL) of the job in which
this ADDAJE command is executed is used to find the job description.

Command Descriptions 4-1

ADDA.IE
(Example)

4-2

\"

Example

ADDAJE SBSD(ACCTINT.ACCTLIB) JOB(ACCTINIT) +
JOBD(INITSBS.ACCTLIB)

This command adds the job ACCTINIT as an autostart job entry to the
subsystem description ACCTINT in the library ACCTLIB. In this case, the
autostart job might be used to perform certain housekeeping functions
whenever the subsystem ACCTINT is started. When the subsystem is
started, the job description INITSBS in ACCTLIB is used to obtain the
attributes for this job and a job named ACCTINIT is automatically started in
the subsystem.

ADDBKP (Add Breakpoint) Command

The Add Breakpoint (ADDBKP) command sets one or more breakpoints in a
program. A breakpoint is a location in a program where execution of the
program stops and control is given to the user. The breakpoint is set when
a statement number or label of an HLL command or System/38 instruction
is specified. The program is stopped just before executing the statement (or
System/38 instruction) on which the breakpoint was set.

The ADDBKP command can also specify that the values of certain program
variables are to be displayed or printed when any breakpoint in the
command is reached. As many as 10 variables per breakpoint can be
specified, and as many as 10 breakpoints per command can be set.
However, the same program variables apply to every breakpoint specified in
the command. To specify different sets of variables for each breakpoint,
you must use different ADDBKP commands.

When a breakpoint is reached in the interactive debugging environment, a
display is shown to the user that identifies which breakpoint has been
reached and (optionally) the values of the specified program variables when
the program is halted. Also, information about the breakpoint only is written
to the job log. Control is given to the user so that he can enter another CL
command. The RSMBKP command or a command function key may then
be used to resume execution of the program.

When a breakpoint is reached in the batch debugging environment, the
breakpoint information is written to the job's output queue for printing and,
optionally, another program can be called to take action on the breakpoint
condition. The name of the called program is specified in the BKPPGM
parameter.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

ADDBKP

Command Descriptions 4-3

ADDBKP
(Diagram)

4-4

ADDBKP ---- STMT ~ atatement-identlfier I
(___ 10 maximum __J

Required

Optional
•NONB .. ~

•pro1ram-variable-name[(aubacript)]' · ['baain1-pointer-name[(aubacript)]']

'------------10maximum

>- STJJl.T_1'1 i)--------------------. ..
~ atartin1-character-poaitlon

-{ •DCL . _r•CRAR) ®
>-LEN J---OUTPMT _ '--. ______ __..,

diaplayed-character-lencth · •HBX

_ril<NONB. .

>-BKPPGM _ -{ .•LIBL . Y'--------__;_ ______ .,
pro1ram-name .

. library-name

-{
•DPTPGM=>-­

>- PGM
pro1ram-name

\
"-·

Job:B,I P1m:B,I /

STMT Parameter: Specifies the statement identifiers of one or more
statements or commands (or System/38 instructions) in the program at
which breakpoints are to be set. The list can contain a maximum of 10
identifiers (statement _numbers, program labels, or System/38 instruction
numbers) that are valid for the program specified by the PGM parameter. At
least one identifier is needed. If a System/38 instruction number is
specified, the number must be preceded by a slash and enclosed in
apostrophes: STMT(' /21') for example.

PGMVAR Parameter: Specifies the names of one or more program variables
(if any) to be displayed that are in an HLL or Ml program. The name and
the value of each program variable is displayed when any of the breakpoints
spec•fied in the STMT parameter are reached.

*NONE: No program variables are to be displayed for any of the
breakpoints specified.

'program-variable-name': Enter the names of one or more program variables
(no more than 10) to be displayed when a breakpoint is reached. If the
variable name contains special characters (such as the & in a CL variable
name or the hyphen (-) in a COBOL name), it must be enclosed in
apostrophes. An example is:

P~VAR(' &VAR2')

An RPG indicator or an Ml ODV number can be specified instead of a
program variable name. An example of an RPG indicator is:
PGMVAR('*IN22'). The ODV number must be preceded by a slash:
PGMVAR(' /264') for example.

COBOL qualified program variable names may be specified in this
parameter. These names have the following syntax:

var-name-1 OF/IN var-name-2 OF/IN varname-3 ... varname-N

where varname-N is the last possible variable name that will fit into the
input field of the PGMVAR parameter. The input field length for each
variable in the PGMVAR parameter is 98 characters. The subscript specified
for a qualified variable name may also be a qualified variable name. A
qualified variable name (or one with a subscript), including blanks and
parentheses, must be contained within the 98-character limit. The
98-character limit includes the necessary keywords (OF/IN) and blanks, but
does not include the enclosing apostrophes.

'program-variable-name(subscript)': For variables in an array, enter the
name of the variable and (optionally) the subscript representing the
positional element in the array that is to be displayed. If a subscript is not
specified, all elements in the array are displayed. The subscript, if specified,
must be enclosed in parentheses, and the variable name and subscript
number must be enclosed in apostrophes. No more than 10 sets can be
specified, and blanks must separate each set. An example is:

PGMVAR('A(5)' 'B(5)' 'C(5)')

Either an integer or another variable name can be specified for each
subscript.

For COBOL variable names, any combination of variable name length and
subscript length that will fit into the 98-character limit is valid. For example,
one qualified variable name 98 characters in length (including the keywords
OF or IN) can be used with no subscript, or a one-character variable name
may be used with a qualified variable name (used as a subscript that uses
the other 97 spaces, including parentheses).

For COBOL, the following apply:

• Variable names used in qualifying strings must be high-level language
variable names (qualification with ODVs is not allowed).

• Either keyword (OF or IN) is allowed.

• Each OF/IN keyword must be separated from adjacent variable names
by at least one blank.

• A qualified variable name can be used as a variable subscript.

• The order the variable names are specified must be from the lowest to
the highest levels in the structure.

AD DB KP
PGMVAR

Command Descriptions 4-5

ADDBKP
START

4-6

• Structure levels may be skipped; enough levels must be specified,
however, to uniquely identify the variable.

• Qualified variable names must be enclosed in apostrophes, since they
contain blank characters.

['basing-pointer-name[(subscript)]']: This set of values in the PGMVAR
parameter applies only to Ml or HLL programs that support based-on
variables. The values can optionally be used with either of the previous two
choices to also specify the value in an array that is based on a pointer. The
same description of the coding syntax applies here. An example is:

PGMVAR(('VAR1(5)' 'PTR1(9)') ('VAR2(8)' 'PTR2(11)'))

This example shows that one (different) element in each of two program
variables is to be displayed. The fifth element in the array named VAR1,
which is based on the ninth element in the pointer array named PTR1, and
the eighth element in the VAR2 array, based on the eleventh element in the
PTR2 pointer array, are to be displayed.

The field length for the basing pointer name is 24 characters.

START Parameter: Specifies, for character variables only, the beginning
position in the variable from which its value is to be displayed when the
breakpoint is reached. If more than one character variable is specified in the
PGMVAR parameter, the same starting position is used for each one.

1: The variable is to be displayed from the first position on through the
length specified in the LEN parameter.

starting-character-position: Enter the position number from which the
variable is to be displayed. The position number (as well as the combination
of ST ART and LEN) must be no greater than the length of the shortest
variable specified in the PGMVAR parameter.

LEN Parameter: Specifies the number of bytes to be displayed from the
character variable specified in the PGMVAR parameter, starting at the
position specified in the ST ART parameter. If more than one character
variable is specified in the PGMVAR parameter, the same length is used for
each one.

*DCL: The character variable is to be displayed to the end of the variable
or for 200 bytes, whichever is less.

displayed-character-length: Enter the number of characters that are to be
displayed. The length (as well as the combination of START and LEN) must
be no longer than the length of the shortest variable specified in the
PGMVAR parameter.

-...... OUTFMT Parameter: Specifies the format to be used for displaying the
variables.

*CHAR: Variables are to be displayed in character form.

*HEX: Variables are to be displayed in hexadecimal form.

BKPPGM Parameter: Specifies, for batch environment debugging only, the
name of the user-supplied program (if any) to be called when a breakpoint
is reached in this program. When the program is called, it is passed a
character string containing four parameters that identify the program,
invocation level, HLL statement identifier, and System/38 instruction number
at which the breakpoint occurred. The character string has the following
format:

1. Program name (10 bytes). The name of the program in which the
breakpoint was reached.

2. Invocation level (5 bytes). The invocation level number of the program
in which the breakpoint was reached.

3. Statement identifier (10 bytes). The high-level language program
statement identifier that was reached. This statement identifier is the
statement identifier specified in the Add Breakpoint (ADDBKP)
command that defined the breakpoint. If a System/38 instruction
number was used to specify the breakpoint, this parameter contains
the System/38 instruction number preceded by a slash (/).

4. Instruction number (5 bytes). The System/38 instruction number that
corresponds to the high-level language statement at which the
breakpoint was reached. (No slash precedes this System/38
instruction number.) If a System/38 instruction number is passed in
the third parameter, the numbers in the third and fourth parameters
are the same.

All the parameter values are left-adjusted and padded with blanks. When
the called program returns, the program being debugged resumes execution,
starting with the statement that has the breakpoint on it.

*NONE: No breakpoint-handling program is to be called when any
breakpoint specified in this ADDBKP command is reached in the batch
environment. Then the stopped program resumes execution.

qualified-program-name: Enter the qualified name of the user-supplied
program to be called when a breakpoint is reached during debug mode in a
batch environment. (If no library qualifier is given, *UBL is used to find the
program.) The program specified here should not be the same as the
program specified in the PGM parameter. If they are the same, the results
are unpredictable. After the called program executes, it returns control to
the stopped program, which resumes execution.

ADDBKP
OUTFMT

Command Descriptions. 4-7

ADDBKP
PGM

4-8

PGM Parameter: Specifies the name of the program in which the breakpoints
are to be added.

*DFTPGM: The breakpoints are to be added to the program currently
specified as the default program in the debugging mode.

program-name: Enter the name of the program to which the breakpoints are
to be added. The specified program must already be in debug mode.

Examples

ADDBKP STMT(150 RTN1 205) PGMVAR('&TEMP' '&INREC')

This command establishes breakpoints at CL statement numbers 150 and
205 and the label RTN1 in the default program in the debug mode. When
any of these breakpoints is reached, the CL variables &TEMP and &INREC
are automatically displayed.

ADDBKP STMT(100) PGMVAR('AMOUNT(200)') +
PGM(MYPROG)

Assume in this example that MYPROG is an HLL program being debugged
in an interactive environment and that the program variable AMOUNT is a
250-element array in MYPROG. This command adds a breakpoint to
statement 100 in MYPROG. When MYPROG is executed, the program halts
execution at statement 100 and the value of the 200th element of the
AMOUNT array is displayed. (If AMOUNT had been entered without a
subscript, the entire array would have been displayed.) The work station
user can then enter another command. For MYPROG to resume execution,
the RSMBKP can be entered.

ADDFCTE (Add Fonns Control Table Entry) Command

The Add Forms Control Table Entry (ADDFCTE) command adds a new
forms entry to an existing forms control table (FCT). The FCT can contain
up to 999 entries. Each FCT entry includes such forms-control attributes as:

• Host system form type

• Host system writer type

• Local form type

• Data base file member creation information

• First-character forms-control channel and line number associations

• Form size

• lines and characters per inch

• Print image

• Number of copies

• User program name

Restriction: To use this command, you must have operational rights for the
FCT and read rights for the library in which the FCT is stored.

The Add Forms Control Table Entry (ADDFCTE) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

ADDFCTE

Command Descriptions 4-9

ADDFCTE
(Diagram)

4-10

-(
.*LIBL

ADDFCTE-FCT--forms-control-table-name)----------------.,

.library-name

>-FORMTYPE-host-system-form-type ---------------------------•
Required

Optional

>- DEV'I'YPE -(
•PRT) ®

-(
•FORMTYPE =>

LCLFORM ~----------------......

>-FILE

•PUN local-form-type

•WTRE _.
•NONE-----------------'•

-(
.*LIBL

~--device-file-name

. library-name

-(
.•LIBL

data-base-file-name

.library-name

..

>-FSN '---oTAFMT •FCFC--...... ----------------......
•WTRE ~ •WTRE~

file-sequence-number_/ •DATA
•CMN

•FILE
>-CHLVAL

carriage-channel-identifier line-number

'--------12 maximum-------'

-(
*FILE

FORM SIZE

rorm-1en1th rorm-widthr

•F~LE -f_*FI3--E ~*FILE
>-LP! 4 . CPI 10 PRTIM -(.•LIBL y

6 15 print-ima1e-name

: · .library-name

..

-(*FILE~ ~•WTRE
>-COPIES •?-n'-~nnl••_,l PGM •NONE-----------y--..... ------··

number-of-copies . -(.•LIBL .
pro1ram-name

.library-name
+WTRE

>-MSGQ •NONE y
meaaa1e-queue-name-(.•LIBL 1

.library-name

FCT Parameter: Specifies the qualified name of the forms control table {FCT)
to which the entry is to i>e added. (If no library qualifier is given, *UBL is
used to find the FCT.)

FORMTYPE Parameter: Specifies the host system form type that is to be
associated with the FCT entry. This value {one through eight alphameric
characters in length) will be returned by the host system in a forms mount
message. A host system form type of blanks can be entered as
FORMTYPE(' '). The LCLFORM parameter can be used to change this
value to one more understandable to the System/38 user.

Job:B,I P1m:B,I

DEVTYPE Parameter: Specifies the device type with which the FCT entry is
to be associated.

*PRT: This FCT entry can be used only when processing printer output
streams.

*PUN: This FCT entry can be used only when processing punch output
streams.

LCLFORM Parameter: Specifies the local form type. This value is to be
substituted for the FORMTYPE value used by the host system, to make the
forms mount message more understandable to the System/38 user.

*FORMTYPE: No local form type is to be substituted for the host system
form type (therefore, the host system form type is to be used).

local-form-type: Enter the name of the local form type to be substituted for
the host system form type when the output from the job is actually
received. Valid values can be one through ten alphameric characters in
length.

FILE Parameter: Specifies the qualified name of the file that is to receive data
from the host system.

*WTRE: The file specified in the session description writer entry is to be
associated with the FCT entry.

*NONE: No file is to be associated with the FCT entry. The session
description writer entry must be used to determine where the data is to be
sent. None of the information in the FCT entry is to be used.

device-file-name: Enter the qualified name of th~ program-described printer
file that is to receive the data. (If no library qualifier is given, *UBL is used
to find the device file.)

data-base-file-name: Enter the qualified name of the System/38 physical
file to receive the data. (If no library qualifier is given, *UBL is used to find
the data base file.)

ADDFCTE
DEVTYPE

Command Descriptions 4-11

ADDFCTE
MBR

4-12

MBR Parameter: Specifies the data base file member to which the output is
to be directed (if a data base file was specified either in the FILE parameter
of this command or the associated .session description writer entry).

*W'.rRE: The data base file member is to be generated according to the
method specified in the associated session description writer entry.

*GEN: RJEF creates a member name as follows:

Affffffccc or Bffffffccc

Where:

A file member names beginning with the character A
contain print data.

B = file member names beginning with the character B
contain punch data.

ffffff = first six characters of the forms name specified in

CCC

the FCT or received from the host system.

Note: Only characters that are valid in a System/38
name are valid in the forms type used to generate
data base file member names.

three-digit sequence value controlled by the RJEF session
to maintain member uniqueness (refer also to the
FSN parameter description of this command).

If a member with this name already exists in the data base file, the
three-digit sequence value is incremented by one and another attempt is
made to create a member. Incrementing of the sequence value continues
until a unique name is generated and a member is created or until all
1000 possibilities have been exhausted without creating a member. If no
member is created, the RJEF operator receives a message indicating the
failure and a request to retry or cancel this file.

*FIRST: The output is to be directed to the first member of the data base
file (if a data base file is specified in the FILE parameter of this command or
in the associated session description writer entry).

member-name: Enter the name of the data base file member to which
output is to be directed (if a data base file is specified in the FILE parameter
of this command or the associated session description writer entry). If the
member does not exist when it is needed, an inquiry message is sent to the
RJEF message queue.

FSN Parameter: Specifies the initial three-digit file sequence number to be
used when creating data base file member names. This parameter is
ignored unless MBR(*GEN) is specified for this command or in the
associated session description writer entry.

*WTRE: The initial file sequence number to be used is the same as the
number specified in the session description writer entry.

file-sequence-number: Enter the initial three-digit file sequence number to
be used. Leading zeros are not required for sequence numbers less than
100.

DTAFMT Parameter: Specifies the format of the output data.

*WTRE: The output data is to be in the format specified in the session
description writer entry.

*FCFC: The output data is to be in the FCFC data format, with the first
character of every record being the ANSI forms control code. Specify
*FCFC if the data is to be printed. If DEVTYPE(*PUN) is specified, *FCFC is
not valid.

The data can be written to a data base file in the FCFC data format and
then printed later by issuing the Copy File (CPYF) command and specifying
an FCFC printer file on the TOFILE parameter.

*DATA: The output data is to be in the normal data format (that is, no
FCFC characters are embedded in the data). Specify *DATA if the data is to
go to a data base file and be processed by a program. If the data is
directed to a printer file, a single space ANSI control character is the first
character in each record.

*CMN: The output data is to be in the communications data format (that is,
still compressed or truncated). *CMN can be used to decrease
communications time. However, before the data can be used, the Format
RJE Data (FMTRJEDTA) command must be used to change the data to
*FCFC or *DATA. If *CMN is specified, the output file must be a data base
file with a length of 256.

ADDFCTE
FSN

Command Descriptions 4-13

ADDFCTE
CHLVAL

4-14

CHLVAL Parameter: Specifies the printer carriage channel information.

*FILE: The carriage information specified in the device file is to be used.

carriage-channel-identifier line-number: Enter the channel identifiers and line
numbers to be used.

Each identifier can be specified only once per command invocation. The
identifiers are 1 through 12, corresponding to printer channels 1 through 12.
Single spacing is used for ahy channel not associated with a line number.

The maximum valid line number is 255.

The CHLVAL parameter associates the channel identifier with a page line
number; for example, CHLVAL((1 5)(10 55)) means to associate channel 1
with line 5 and channel 10 with line 55.

FORMSIZE Parameter: Specifies the form size to be used on the System/38
printer.

*FILE: The form size specified in the device file is to be used.

form-length form-width: Enter the form length and width to be used for the
FCT entry. The maximum valid form length is 255 and the maximum valid
form width is 132.

LPI Parameter: Specifies the number of lines of print per inch to be used on
the System/38 printer.

*FILE: The number of lines of print per inch specified in the device file is
to be used.

4: The number of lines of print per inch is 4.

6: The number of lines of print per inch is 6.

8: The number of lines of print per inch is 8.

9: The number of lines of print per inch is 9.

CPI Parameter: Specifies the number of characters per inch to be used on
the System/38 printer.

*FILE: The number of characters per inch specified in the device file is to
be used.

10: The number of characters per inch is 10.

15: The number of characters per inch is 15.

PRTIMG Parameter: Specifies the qualified print image name to be used on
the System/38 printer.

*FILE: The print image specified in the device file is to be used.

print-image-name: Enter the qualified name of the print image to be used.
If no library qualifier is given, *UBL is used to find the print image.

COPIES Parameter: Specifies the number of copies to be printed. This
parameter applies only for spooled files.

*FILE: The number of copies specified in the device file is to be used.

number-of-copies: Enter the number of copies to be printed.

PGM Parameter: Specifies the qualified name of a user-supplied program to
be used for processing data received from the host system.

*WTRE: The associated session description writer entry is to be used.

*NONE: No user-supplied program is to be used.

program-name: Enter the qualified name of the user-supplied program to be
used. (If no library qualifier is given, *UBL is used to find the user-supplied
program.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF writer are to be recorded.

Note: Messages for RJEF writers are always recorded in the RJEF message
queue associated with the named RJEF session. The RJEF message queue
name depends upon the name specified in the MSGQ parameter in the
Create Session Description (CRTSSND) or Change Session Description
(CHGSSND) commands. If inquiry messages are issued by RJEF, they are
sent to the user message queue (if specified) where they must receive a
response.

*WTRE: The fl'.lessage queue specified in the session description writer
entry is to be used.

*NONE: No user message queue exists on which the messages for the FCT
entry are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which the messages for the RJEF writer job's messages are to be
recorded. (If no library qualifier is given, *UBL is used to find the message
queue.)

ADDFCTE
PRTIMG

Command Descriptions 4-15

ADDFCTE
(Examples)

4-16

Examples

ADDFCTE FCT(FORMCTRL.USERLIB) +
FORMTYPE(MEDICAL) +
DEVTYPE(*PRT) +
LCLFORM(BIOCHEM) +
FILE(MEDICAL44.MEDLIB) +
DTAFMT(*FCFC) +
MSGO(BROWN.MEDLIB)

This command adds a forms control entry named MEDICAL to an FCT
(forms control table) called FORMCTRL in library USERLIB. The forms
control table entry is to be used with print files from the host. The local
forms used when the data is printed are called BIOCHEM. The data from
the host is written to a printer device file MEDICAL44 in library MEDLIB.
The data format is first character forms control {*FCFC). Messages
produced by RJEF while referencing this forms control entry are written to
the user message queue named BROWN in library MEDLIB.

ADDFCTE FCT(FORMCTRL.USERLIB) +
FORMTYPE(MEDICAL) +
DEVTYPE(*PUN) +
FILE(MEDHISTORY.MEDLIB) +
MBR(*GEN) +
FSN(100) +
DTAFMT(*DATA) +
MSGO(BROWN.MEDLIB)

This command adds a forms control entry named MEDICAL to an FCT
(forms control table) called FORMCTRL in library USERLIB. The forms
control table entry is to be used with punch files from the host. The data is
written to a data base file named MEDHISTORY in library MEDLIB. RJEF
will generate a new member for each host file received referencing this
entry. The file sequence number of 100 will be used to generate the first
data base member name. The first member generated by RJEF is named
BMEDrCA100. Messages produced by RJEF while referencing this forms
control entry are written to the user message queue named BROWN in
library MEDLIB.

(~ ADDJOBQE (Add Job Queue Entry) Command

The Add Job Queue Entry (ADDJOBOE) command adds a job queue entry
to the specified subsystem description (the associated subsystem must be
inactive at the time). A job queue entry identifies the job queue from which
jobs are to be selected for execution within the subsystem. Jobs can be
placed on a job queue by spooling readers or by using the following
commands:

• Submit Job (SBMJOB)

• Submit Card Jobs (SBMCRDJOB)

• Submit Data Base Jobs (SBMDBJOB)

• Submit Diskette Jobs (SBMDKTJOB)

• Transfer Job (TFRJOB)

Within a subsystem, job queues with lower sequence numbers are
processed first. For more information, refer to the SEONBR parameter.

Restrictions: To use this command, you must have operational and object
management rights for the specified subsystem description. The specified
job queue must already exist in the system if the library qualifier is not
given. A job queue is created by the CRT JOBQ command.

ADDJOBQE

-(
.;;LIBL

ADDJOBQE---SBSD subsystem-description-name)--------11
.library-name

-(
.;;LJBL

>-JOBQ job-queue-name)-----------------+II
.library-name

Required

Optional

-f_ 1

>- MAXACT ;;NQMAX

maximum-active-jobs)
SEQNBR -(

10

sequence-number__)---

l Job:B,I Pam:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
to which the job queue entry is to be added. (If no library qualifier is given,
*UBL is used to find the subsystem description.)

JOBQ Parameter: Specifies the unique qualified name of the job queue that
is to be a source of batch jobs that are to be initiated by the subsystem. (If
no library qualifier is given, *UBL is used to find the job queue.) If the job
queue does not exist when the entry is added, a library qualifier must be
specified because the qualified job queue name is retained in the subsystem
description.

Command Descriptions 4-17

ADDJOBQE
MAXACT

4-18

MAXACT Parameter: Specifies the maximum number of jobs that can be
concurrently active from this job queue. (For an expanded description of the
MAXACT parameter, see Appendix A.)

.!.;_ Only one job from the job queue can be active at any time.

*NOMAX: There is no maximum for the number of jobs that can be
concurrently initiated through this job queue entry. However, the maximum
activity level of the routing entries might prevent routing steps from being
initiated. If *NOMAX is specified, all the jobs on the job queue will be
initiated (within the limit specified by the MAXJOBS parameter in the
subsystem description), even though the activity level of the storage pool
used might prohibit them from executing concurrently.

maximum-active-jobs: Enter a value that specifies the maximum number of
jobs that can be concurrently active from this job queue.

SEQNBR Parameter: Specifies a sequence number for this job queue, to be
used by the subsystem to determine the order in which the job queues are
to be processed.

10: A sequence number of 10 is to be assigned to this job queue.

sequence-number: Enter the sequence number to be assigned to this job
queue. The sequence number must be unique within the. subsystem
description. Valid values are 1 through 9999.

The subsystem first selects jobs from the job queue with the lowest
sequence number. Once all jobs on that queue have been processed or the
number of jobs specified on the MAXACT parameter has been reached, the
subsystem processes jobs on the queue with the next higher sequence
number. This sequence continues until all job queue entries have been
processed or until the subsystem has reached its limit for overall maximum
jobs (as specified by the MAXJOBS parameter in the subsystem
description). In some cases, this sequence is interrupted and the subsystem
processes a queue with a lower sequence number. This occurs for this
subsystem when:

• A held job or job queue is released

• A job is placed on or transferred to a queue

• A new queue is allocated

• A job terminates

Example

ADDJOBQE SBSD(NIGHTSBS.QGPL) JOBQ(NIGHT.OGPL) +
MAXACT(3)

This command adds a job queue entry for the NIGHT job queue (in the
QGPL library) into the NIGHTSBS subsystem description, contained in the
QGPL library. The entry specifies that a maximum of three batch jobs from
the NIGHT job queue can be concurrently active within the subsystem. The
default sequence number of 10 is assumed.

ADDJOBQE
(Example)

Command Descriptions 4-19

ADDLFM

4-20

ADDLFM (Add Logical File Member} Command

The Add logical File Member (ADDLFM) command adds a named member
to the specified logical file, which must have already been created. A
member must be added in the logical file before the file can have access to
data stored in any physical file member. (You can add the first member of a
file by entering an ADDLFM command or by specifying a member name .in
the MBR parameter of the CRTLF command. To add other members to the
file, use the ADDLFM command to specify each one.)

A logical file member can use the data from all, or a subset of, the physical
files included in the scope of the logical file. Each member has its own set
of data and can have its own access path (or share an access path) that
provides an organization to that data.

The number of members that can be added for the logical file is limited to
the maximum specified in the MAXMBRS parameter of the associated
CRTLF command. Each member added has the same attributes as those
defined in the logical file. However, each· member can have its own access
path or a shared access path, as specified in the DDS access path
specifications. The access path determines the order in which the records in
the based-on physical file(s) are processed.

Restrictions: To add a member to a logical file, you must have object
management rights and operational rights for each of the physical file
members (specified explicitly by the DTAMBRS parameter or implicitly by
the PFILE keyword specified in DDS) upon which the logical file member is
based. And, if the logical file member is to share the keyed sequence
access path of another file member (specified by the ACCPTHMBR
parameter), you must have operational rights for that member.

Note: Because this command adds a member to a file in a library, the
library must not be locked (*SHRNUP or *EXCLRD in the Allocate Object
command) for another job.

.ADDLFM--- -(
»llLIBL

FILE loeioal-file-name)------------___._.,

.library-name

Required

Optional

® -("NONE >- MBR logical-file-member-name---- ACCPTHMBR '\--
access-path-member-name _/

-(
·"CURRENT J ~"NONE~ '

T physical-file-name [©]
.library-name member-name

32 maximum

>- DTAMBRS

32 maximum -------------'

© The total of all member names specified for all specified physical files cannot exceed 32;
for the restrictions, see the DTAMBRS parameter description.

....,..

l Job:B,I Pem:B,I

FILE Parameter: Specifies the qualified name of the logical file in which this
added member is to be stored. (If no library qualifier is given, *UBL is used
to find the file.)

MBR Parameter: Specifies the name by which the logical file member being
added is to be known. The member name must be unique within the file to
which it is being added.

ACCPTHMBR Parameter: Specifies whether the added member is to share
an access path with another file member, and, if so, specifies the name of
that member. For information about access path sharing, refer to the
description of the ACCPTH keyword in the CPF Reference Manual-DDS.
The ACCPTH keyword can be specified in the logical file source description.

Note: If the logical file specified in FILE is sharing an access path, this
parameter must specify a member name (identifying the member whose
access path is to be shared with this added member). If the file is not
sharing an access path, this parameter cannot specify a member name.

*NONE: This member is not to share the access path of another file
member.

access-path-member-name: Enter the name of the member of the file that
contains the access path to be shared with this member. The name of the
file is specified in the logical file source description.

ADDLFM
(Diagram)

Command Descriptions 4-21

ADDLFM
DTAMBRS

4-22

DTAMBRS Parameter: Specifies the names of the physical files and
members that contain the data to be associated with the logical file member
being added by this command. The scope of the logical file member can
contain all of the physical files and members that the logical file itself
contains, specified by DTAMBRS(*ALL); or the member can contain a
subset of the total files and members, specified by
DTAMBRS(qualified-file-name(s) [member-name(s)]).

Note: For additional information about coding this parameter and displaying
access path information, refer to the Additional Considerations section at the
end of the CRTLF command description.

*ALL: If no access path is shared, the scope of the logical file member
being added is to be the same as that for the entire logical file. That is, the
data to be associated with the member is in all the physical files and
members (that exist at the time this ADDLFM command is entered) used by
the logical file. The physical file names are specified by the PFILE keyword
in the DDS source file named in the SRCFILE and SRCMBR parameters in
the CRTLF command.

If *ALL is specified (or is the default) and the logical file is to share an
access path with an existing physical or logical file, the data for the logical
file member is the same as the data associated with the member specified
by the ACCPTHMBR parameter; that is, the same based-on physical file(s)
and member(s) are used.

qualified-physical-file-name [member-name]: Enter the names of the
physical files and their members that contain the data to be accessed by the
logical file member being added. Each entry for a physical file in the PFILE
keyword in DDS should have a corresponding entry in the DTAMBRS
parameter. Also, each physical file specified in the DTAMBRS parameter
must correspond to one of the physical files specified by the PFILE
parameter when the logical file was created. If no member name is
specified for a physical file that is specified, *NONE is assumed and the
logical file scope list or the based-on member's scope list is bypassed.
(Refer to Additional Considerations in the CRTLF command for more details.)

A maximum of 32 qualified physical file names and physical file member
names can be specified. Also, the total of a/I member names cannot exceed
32; that is, all of the member names specified for all of the files specified
cannot be greater than 32. For example, one file can specify 32 members,
two files can each have 16 members, or 32 files can each have one member
specified.

When the file is created, the DDS PFILE keyword is used to specify physical
file names and, optionally, the library qualifiers of the physical files being
associated with the logical file. If a library qualifier is not specified, *UBL is
used to find the physical file when the logical file is created. (The physical
file and the library in which it is stored are saved in the description of the
logical file when the logical file is created.) When members are added to
the file, each physical file name specified in the DTAMBRS parameter can
be optionally qualified by the name of the library; however, the library name
must be specified only if the logical file is based on more than one physical
file of the same name, as defined in the PFILE keyword. If a library name is
not specified for a physical file, the current library name (*CURRENT) for the
specified file is determined from the qualified file name saved in the
description of the logical file (not the current *UBL library list).

The following examples show the syntax for specifying single and multiple
members for single and multiple physical files. In the examples, the
abbreviation PF represents a physical file name, LIB represents a library
qualifier, and M represents a member name. Physical file names need only
be qualified if the PFILE keyword in the DDS specifies multiple physical files
of the same name.

Single physical file and member:
DTAMBRS((PFA M1)) or DTAMBRS((PFA M1))

Single file with multiple members:
DTAMBRS(PFA (M1 M2 M3))

Multiple files with single members and no members:
DTAMBRS((PFA M1) (PFB M4) (PFE.NONE))

Multiple files with multiple members:
DTAMBRS((PFA (Ml M3 M4)) (PFB (M1 M2 M4)))

Multiple files with the same name in different libraries:
DTAMBRS((PFA.LIBX M1) (PFA.LIBY (M1 M2)))

Multiple files with the same name in the same library:
DTAMBRS((PFA.LIBX M1) (PFA.LIBX M1))

As shown in the preceding example, each physical file specified in the PFILE
keyword in the DDS should have a corresponding entry in the DTAMBRS
parameter, even though it may mean specifying the same qualified physical
file and member many times.

When more than one physical file member is specified for a physical file,
the member names are specified in the order in which records are retrieved
when duplicate composite key values occur across those members.

ADDLFM
DTAMBRS

Command Descriptions 4-23

ADDLFM
SHARE

4-24

SHARE Parameter: Specifies whether or not an ODP (open data path) to the
logical file member is to be shared with other programs in the same job.
When an ODP is shared, the programs accessing the file share such things
as the position being accessed in the file, the file status, and the buffer.
When SHARE{*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE(*YES) when it opens the file.

TEXT Parameter: lets the user enter text that briefly describes the logical file
member. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

ADDLFM FILE(STOCKTXS.INVENLIB) MBR(JANUARY) +
DTAMBRS((INVENTXS JANUARY)) TEXT(' JANUARY +
STOCK ACTIVITY BY LOCATION')

This command adds a member named JANUARY to the logical file named
STOCKTXS, which is stored in the INVENLIB library. The logical file has
access to the data stored in the JANUARY member of the INVENTXS
physical file.

11!1""'--~\

ADDMSGD (Add Message Description) Command

The Add Message Description (ADDMSGD) command describes a message
and stores it in a message file for later use. The message description
remains in the message file until the file is deleted or until the RMVMSGD
command is used to remove it from the file. To change any of the attributes
of the message description, such as its message text or severity code, you
must execute the Change Message Description (CHGMSGD) command.

Substitution variables can be embedded in both the first-level and
second-level text that can be replaced later by message data fields specified
in the RTVMSG and SNDPGMMSG commands.

Note: The type of message being defined is not specified in the
ADDMSGD command. The type is specified in the command that actually
sends the message, in either the SNDMSG or SNDPGMMSG command.

Restriction: To add a message description to a message file, you must
have operational rights for the message file and the library in which the file
is stored.

ADDMSGD

Command Descriptions 4-25

ADDMSGD
(Diagram)

4-26

ADDMSGD---MSGID meaaaae-ldentlfier-----------------------

>-MSGP meHa&e-file-name -(,#LlBL ~MSG 'meaeaae-text<fJ
1
--------•

.Ubrary-,name J .
Required

Optional

>ll<NONB -(00 ®
>-SBCLVL <!)'•---SBV)-----------..

'second-level-text'~ aeverity-code

>-PMT

>ll<DTS----------------~

#SYP----------------.'
•ITV---------------~

~-----------20 maximum-----------~

>- TYPB ®\=~~~LEN®{ ::::th [decimal-poaltlonsJ \
#ALPHA •NONE---------~/
•NAME
•NONE

~
#NONE

>-VALUBS '
value -=:J
20 maximum

-r"'NONE

SPCVAL ~-value [to-vd
20 maximum

•

@~*NONE @~#NONE
>-RANGE)----REL)------••

lower-value upper-value operator-value

-(
•NONB=>- -(*NONE

>-DPT DPTPGM -(#LlBL y
'default-reply' default-pro1ram-name .

. library-name #JOB _________ .._

""70BDMP--------_..
,.....,.... __ #JOBINT----------~,-..

messaae-data-field-n.wnbor
~-----22 maximum-----~

-(
•CURRENT 1 =:::J­

>-LVL
creation-date level-number

<D No more than 132 characters can be specified.
@ No more than 14315 characters can be specified.

LOG-(•NO)-------+•
•YES

@ If either TYPE or LEN is specltled ae •NONE, the other of the two parameters must also
be specified ae •NONE.

@VALUES, RANGE, and REL are mutually exclusive; only one of them can be specified.
@I~ any or the parameter values are epecU'ied for DMPLST, •JOB ie aeeumed to be part

of the value(a).

Job:B,T Pam:B,I

MSGID Parameter: Specifies the message identifier under which the message
is stored in the message file. Every message must have an identifier, and
every identifier in the message file must be unique.

The message identifier must be 7 characters long and in the following
format:

pppnnnn

The first 3 characters must be a code consisting of an alphabetic character
followed by two alphameric (alphabetic or decimal) characters, and the last
4 characters must be a decimal. The following codes are used to identify
the messages in the IBM-supplied message files:

CBE COBOL execution time
CBL COBOL compiler
CBX COBOL titles and texts
csc COBOL syntax checker
CPF Control Program Facility (CPF)
CPI CPF informational messages
CPX CPF titles and texts
EDT Edit source (SEU II)
EDX Edit source titles and texts
FMT Reformat Utility
FMX Reformat Utility titles and texts
IDU Interactive Data Base Utilities (IOU)
IDX IDU titles and text
KBD Keyboard
MCH System/38 machine instruction interface
QRG RPG language compiler
RPG RPG execution time
RPT RPG auto report
RSC RPG syntax checker
RTX RPG auto report titles and texts
RXT RPG relational diagnostic texts
SDA Screen Design Aid (SDA)
SDX Screen Design Aid titles and texts

The same format must be used for user-defined messages; the 3-character
code must begin with a U to distinguish user-defined messages from
IBM-supplied messages. For example, the message identifier of a message
in a payroll application message file could be UPY0027.

ADDMSGD
MSGID

Command Descriptions 4-27

ADDMSGD
MSGF

4-28

MSGF Parameter: Specifies the qualified name of the message file in which
the message is to be stored. (If no library qualifier is given, *UBL is used to
find the file.) The IBM-supplied message files (OCPFMSG and ORPGMSG,
for example) cannot be specified unless the user entering the command is
explicitly authorized to update those files. (When the system is installed,
only the system security officer has that authority.) Any message file
overrides in effect for the job are ignored by this command; the file
specified here is the one in which the message is stored.

· MSG Parameter: Specifies the first level of message text of the message
being defined. This text is the message that is initially displayed or printed,
or sent to a program or log. A maximum of 132 characters (enclosed in
apostrophes) can be specified, but the limitations of the display stations
(their screen size) should be considered. The entire message must be
enclosed in apostrophes if any blanks are to be included in the message. To
code an apostrophe for use in the message, enter a double apostrophe.

One or more substitution variables can be embedded in the message text
string to indicate positional replacement fields that allow variable data to be
substituted in the message by the program before the message is sent. The
variables must be specified in the form &n, where n is a one-digit number
identifying the data field to be substituted. Each variable can be immediately
followed by any nonnumeric character (such as &2M or &97), but not by
another digit (such as &99). (The variables in the text do not have to be in
ascending sequence by these numbers. Also, blanks do not have to precede
or follow each variable. The variables can be enclosed in apostrophes if only
the variables themselves make up the message. For example, to show a
two-part decimal value, the message '&1. &2' can be specified.) The data
fields are described positionally in the FMT parameter and are specified
positionally in the MSGDTA parameter of the SNDPGMMSG command.
Refer to the CPF Programmer's Guide for details on substituting data fields
in message text.

SECLVL Parameter: Specifies the second-level text, if any, that is to be
displayed to a work station user to further explain the message specified in
the MSG parameter. The user presses the Help key to request the
second-level text. Second-level text can also be written to the job log if
*SECLVL is specified on the LOG parameter of the job commands.

*NONE: There is to be no second-level text for this message description.

'second-level-text': Enter the text to be displayed as second-level text when
it is requested by the user. No more than 1435 characters (enclosed in
apostrophes) can be specified, but display (up to a maximum of nine)
limitations must be considered. One or more substitution variables can be
embedded in the second-level text, as described in the MSG parameter.

SEV Parameter: Specifies the severity code of the message being defined.
The severity code indicates the severity level of the condition that causes
the message to be sent.

00: The severity code assigned to this message is 00. The message is an
information only message.

severity-code: Enter a value, 00 through 99, that is to be the severity level
associated with this message. The assigned code for the message should
correspond in importance to the IBM-predefined severity codes. (These
codes and their meanings are given in the chart under the SEV parameter, in
Appendix A.) Any two-digit value can be entered, even if no severity code
has been defined for it (either predefined or user-defined).

FMT Parameter: Specifies the formats of from one to 20 message data
fields. Each field is described in this parameter by a list of attributes. The
first nine message data fields can be used as substitution values in the
first-level and second-level text messages defined in this message
description. All 20 of the fields can be specified in the DMPLST parameter
of this command. When specified in the MSGDTA parameter of the
SNDPGMMSG command, the data fields must be concatenated in one
character string and must match the format and sequence specified here.
The length of the entire character string of concatenated message data
fields cannot exceed 132 characters.

*NONE: No format is being described for message fields. If *NONE is
specified, or if this parameter is omitted, no references can be made to
message data fields in the MSG, SECLVL, or DMPLST parameters.

type [length [decimal-positions]]: The format of each message data field
(up to a maximum of 20 fields) to be substituted in the message in this
message description is defined by a list of attributes. These attributes
specify the type of data in the field, the total length of the field, and,
optionally, the number of decimal digits to the right of the decimal point.
Certain data types do not require a length field. Boundary alignment
requirements must be considered (for example, pointers are always aligned
on 16-byte boundaries). While 20 fields may be defined, & 1 through &9
can appear in the message text; the others can appear only in the dump list.

ADDMSGD
SEV

Command Descriptions 4-29

ADDMSGD
FMT

4-30

Type of Message Data: The first value, type, specifies the type of data the
substitution field contains and how the data is to be formatted when
substituted in the message text. The contents of the second and third
values vary depending on the type specified. One of the following types can
be specified for each field described by this parameter:

*QTDCHAR: A character string to be formatted (by CPF) with enclosing
apostrophes ('Monday, the 1st').

*CHAR: A character string to be formatted without enclosing apostrophes.
It is an alphameric string that can be. used, for example, to specify a name
(BOB). Trailing blanks are truncated.

*HEX: A string of bytes to be formatted as a hexadecimal value (X'COF4').

*DEC: A packed decimal number that is formatted in the message as a
signed decimal value with a decimal point. Values for length (required) and
decimal positions (optional) are specified for this type (*DEC) to indicate the
number of decimal digits and the number of digits to the right of the
decimal point. Zeros to the left of the first significant digit are suppressed,
and leading blanks are truncated (removed). If a decimal position other than
zero is specified, a decimal point is shown in the result even if the decimal
precision in the result is zeros; examples are 128.00 and 128.01 if
FMT(*DEC 5 2) is specified. If the number of decimal positions is not
specified, zero is assumed. The following gives two examples:

• If FMT(*DEC 2) is specified for a substitution field and the message data
is a packed decimal value of X'058C', the message text will contain a
positive value of 58 with no decimal point indicated.

• If FMT(*DEC 4 2) is specified and the packed value is specified as
X'05810C' (3 bytes long), then the text will contain the formatted decimal
value of 58.10.

*BIN: A binary value that is either 2 or 4 bytes long (B'OOOO 0000 0011
1010') and is formatted in the message as a signed decimal value (58).

The following formats are valid only in IBM-provided message descriptions
and should not be used for other messages.

*DTS: An 8-byte field that contains a system date time stamp. The date
time stamp contains the date followed by one blank separator and the time.
The date is formatted in the output message in the format specified by the
system values QDATFMT and QDATSEP. The time is formatted as
hh:mm:ss.

*SPP: A 16-byte space pointer to data in a space object. When referenced
in the DMPLST parameter, the data i.n the space object (from the offset
indicated by the pointer) for the length specified, is to be dumped. *SPP is
not valid as a replacement field in message text.

*SYP: A 16-byte system pointer to a system object. When referenced in
message text, the simple name of the system object is formatted as
described in the name type, *CHAR. When referenced by the DMPLST
parameter, the object itself is to be dumped.

*ITV: An 8-byte binary field that contains the time interval (in seconds) for
wait time-out conditions. The time interval is formatted in the message as a
zero-suppressed zoned decimal value (15 0) representing the number of
seconds to wait.

Length of Message Data: Following the type specification, a second value
(length) can be specified to indicate the number of characters or digits that
are passed in the message data. How the second value is used depends
upon the type specified in the first value.

1. If a length is not specified for *OTDCHAR. *CHAR, *HEX, or *SPP,
then *VARY is assumed for the length. If *VARY is specified or
assumed, the message data field passed by the SNDPGMMSG
command must be preceded by a 2-byte or 4-byte binary field that
indicates the actual number of bytes of data being passed. However,
when *SPP is specified, the length field is contained in the first bytes
pointed to by the space pointer. Therefore, the 2- or 4-byte field
must precede the data pointed to by the space pointer, and not
precede the space pointer that is passed as part of the message data.

2. If the type *DEC is specified, the total number of decimal digits
(including the fraction) must be specified as the second value; the
number of digits in the fraction can be specified (optional) as the third
value.

3. If the type *BIN is specified, the message data field can be only 2 or
4 bytes long; the default is ~ bytes.

Length Field Size/Decimal Positions: The third value is used in one of
two ways, depending upon the type specified in the first value. (1) If
*OTDCHAR, *CHAR, *HEX, or *SPP is specified, and if *VARY is specified
or assumed for the second value, the third value is used with *VARY to
indicate the size of the length field actually passed. The third value can be
either a ~ or a 4, which is the number of bytes to be used to specify the
length (in binary) of the passed value. (2) If *DEC is specified, the third
value indicates the number of decimal positions in the decimal value. If not
specified for a decimal substitution value, the default is Q decimal positions.

Note: If an object has been damaged or deleted, the substitution variable
will not be replaced by the object name when it is displayed; instead, the
variable will appear as &n, where n = number. Also, if the length of the
message data that is passed to the substitution variable is shorter than the
length specified for FMT, the substitution value becomes a null field.

ADDMSGD
FMT

Command Descriptions 4-31

ADDMSGD
TYPE

4-32

Reply Validity Specification Parameters

If the message is to be sent as an inquiry message (specified by *I NQ in
one of the send message commands) or as a notify message (specified by
*NOTIFY in the SNDPGMMSG command only) and a reply is expected,
seven parameters can be used to specify some requirements that relate to
the reply received. The seven validity checking parameters are: TYPE, LEN,
VALUES, SPCVAL, RANGE, REL, and OFT.

These parameters are not necessary for a message to allow a reply, but
they can be used to define valid replies that can be made to the message.
Also note that the VALUES, RANGE, and REL are mutually exclusive-only
one of them can be specified in this command.

TYPE Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the type of reply that is valid to respond to this message.

*CHAR: Any character string. If it is a quoted character string, the
apostrophes are passed as part of the character string.

*NONE: No reply type is specified. No reply validity checking is to be
performed if this message is sent as an inquiry or notify message.
LEN(*NONE) must also be specified.

*DEC: Only a decimal number is a valid reply.

*ALPHA: Only an alphabetic (A through Z, $, #. and @) character string is
valid. Blanks are not allowed.

*NAME: Only a simple name is a valid reply. The name does not have to be
a CPF object name, but it must begin with an alphabetic character; the rest
must be alphameric.

LEN Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the length that cannot be exceeded by a reply to this message.
The values specified under *TYPE apply only if one or more of the other
validity checking parameters are specified. If, however, none of the validity
checking parameters are specified, the reply (of type *CHAR) can contain as
many as 132 characters.

*TYPE: The maximum length is determined by the type of reply specified
in the TYPE parameter. The maximum length for each type of reply is:

• 132 characters for types *CHAR and *ALPHA. If any further validity
checking is to be perfomed (VALUES, RANGE, REL, SPCVAL, or OFT are
specified), the maximum length allowed for *CHAR and *ALPHA is 32
characters.

• 15 digits for *DEC, of which a maximum of 9 digits can be to the right of
the decimal point.

• 10 alphameric characters for *NAME.

*NONE: No reply type is specified. No reply validity checking is to be
performed if this message is sent as an inquiry or notify message.
TYPE(*NONE) must also be specified.

length [decimal-positions]: Enter the maximum length to be allowed for the
message reply. The length specified here cannot exceed the maximums
shown above. If the reply type is a decimal value, the number of decimal
positions can be optionally specified; if it is not specified, zero decimal
positions are assumed.

VALUES Parameter: Specifies, only if the message is sent as an inquiry or
notify message, a list of values of which one can be received as a valid
reply to the message. No more than 20 values can be specified in the list.
Each value in the list must meet the requirements specified for message
replies by the TYPE and LEN parameters.

If VALUES is specified, the RANGE and REL parameters cannot be
specified. A reply, to be valid, must match one of the values in this list.

For the reply value to match the compare value, both must be of the same
keyboard shift. For example, if your program requires a reply containing
uppercase characters, one of the following methods ensures a response in
uppercase characters:

• Requiring a response in uppercase characters.

• Entering the compare values for the VALUES parameter in lowercase, but
using the SPCVAL parameter to convert the characters to uppercase.

• Using the TYPE(*NAME) keyboard value to convert the characters to
uppercase. To use this method, all reply characters must be alphabetic
(A-Z).

*NONE: No list of reply values is specified. The reply can have any value
that is consistent with the other validity specification parameters.

value: Enter one or more values, up to a maximum of 20, that are to be
compared with a reply value that is sent in response to the message defined
in this message description; the reply value must match one of these values
to be a valid reply to this message. The maximum length of each value is
32 characters.

ADDMSGD
VALUES

Command Descriptions 4-33

ADDMSGD
SPCVAL

4-34

SPCVAL Parameter: Specifies, only if the message is sent as an inquiry or
notify message, a list of up to 20 sets of special values of which one set (if
the from-value is matched by the sent reply) is used as the reply. These
values are special in that they may not meet all the validity checking
specifications given in the other rep(¥-oriented parameters. The reply sent is
compared to the from-value in each set; if a match is found, and a to-value
was specified in that set, the to-value is sent as the reply. If no to-value
was specified, the from-value is sent as the reply. The to-value must meet
the requirements specified in the TYPE and LEN parameters. If the reply
sent does not match any from-value, then the reply is validity checked by
the specifications in the other reply-oriented parameters.

*NONE: No special values are specified for the replies to this message.

from-value [to-value]: Enter one or more sets of values, up to a maximum
of 20 sets, that are used to determine the reply sent to the sender of the
message. Each set must have a from-value, which the reply is compared
with, and an optional to-value to be sent as the reply if its from-value
matches the reply.

RANGE Parameter: Specifies, only if the message is sent as an inquiry or
notify message, the upper and lower value limits for valid replies to this
message. These values must meet the requirements specified for replies by
the TYPE and LEN parameters, and both values must be of the same type.
If both values are not of the same length, the shorter value is padded on
the right with blanks. For the types *CHAR and *ALPHA replies, the reply is
padded to the right with blanks, or truncated on the right, to the length of
the specified values, before the value range is validity checked. If RANGE is
specified, the VALUES and REL parameters cannot be specified.

*NONE: No range values are specified for the replies to this message.

REL Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the relation that must be met for a reply to be valid. The value
specified must meet the requirements specified for replies by the TYPE and
LEN parameters. For replies of the types *CHAR and *ALPHA, the reply is
padded to the right with blanks, or truncated on the right, to match the
length of the value specified, before the system performs the relational test
on the reply value sent.

*NONE: No range values are specified for the replies to this message.

operator-value: Enter one of the relational operators and the value against
which the message reply is to be validity checked. If the reply is valid in the
relational test, it is sent to the message sender. If REL is specified, the
VALUES and RANGE parameters cannot be specified. The relational
operators that can be entered are:

*LT Less than
*LE Less than or equal to
*GT Greater than
*GE Greater than or equal to
*EQ Equal to
*NL Not less than
*NG Not greater than
*NE Not equal to

OFT Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the default reply (enclosed in apostrophes, if it contains special
characters) that is to be used when the receiver of the message has
indicated that all messages to him are to use default replies, or when a
message is deleted from a message queue and no reply was specified. The
default reply can also be used to answer unmonitored notify messages. The
default reply must meet the requirements specified for replies by the validity
specification parameters, TYPE and LEN.

*NONE: No default reply is specified for the replies to this message.

DFTPGM Parameter: Specifies the name of the default program (if any) to be
called to take default action when this message is sent as an escape
message to a program that is not monitoring for it. This parameter is
ignored if the message is not sent as an escape message. If it is sent as an
escape message, the following parameters are passed to the program:

• Program message queue name (10 characters). l:he name of the program
message queue to which the message was sent. (This is the same name
as that of the program.)

• Message reference key (4 characters). The message reference key of the
escape message on the program message queue.

*NONE: No default program is specified for this message.

qualified-default-program-name: Enter the qualified name of the default
program to be called when an escape message is sent. (If no library
qualifier is given, *LIBL is used to find the default program.)

ADDMSGD
OFT

Command Descriptions 4-35

ADDMSGD
DMPLST

4-36

DMPLST Parameter: Specifies the data to be dumped when this message is
sent as an escape message to a program that is not monitoring for it. This
parameter can specify that data related to the job be dumped, that data
from message data fields be dumped, or that a combination of these be
dumped. When data from message data fields is to be dumped, this
parameter specifies one or more numbers that positionally identify the data
fields to be dumped.

The system objects indicated by system pointers are to be completely
dumped. The data in a space object, indicated by a space pointer, is to be
dumped starting from the offset indicated by the space pointer for the
length indicated in the field description. The standard job dump can also be
requested. Dumps are taken as part of system default actions when escape
messages are not monitored by the program to which they were sent.

JOB: This value is the equivalent of specifying DSPJOB JOB()
OUTPUT(*LIST); refer to DSPJOB (Display Job) Command for more
information.

* JOBDMP: The data areas of the job are to be dumped as specified by the
DMPJOB command. *JOB can be specified by itself, along with *JOBINT,
or along with a list of message data field numbers.

*JOB/NT: The internal machine data structures related to the machine
process in which the job is executing are to be dumped to the machine error
log as specified by the DMPJOBINT command. *JOBINT can be specified
by itself, along with *JOBDMP, *JOB, or along with a list of message data
field numbers.

message-data-field-number: Enter the numbers of the message data fields
that identify the data to be dumped when this escape message is sent but
not monitored. As many as 20 data field numbers can be specified in the
list; additionally, the list can contain the values *JOB and *JOBINT.

*NONE: There is no dump list for this message. No dump is to be taken.

Note: If any of these values are specified for DMPLST, *JOB is assumed to
be part of the values. For example, DMPLST(1 2 *JOBDMP} results in the
equivalent of DMPLST(*JOB 1 2 *JOBDMP).

LOG Parameter: Specifies, when it is sent as an escape message that is not
monitored, whether the message is to be logged in the system service log.

*NO: The unmonitored escape message is not to be logged in the system
service log when it is used.

*YfS: Every occurrence of the unmonitored escape message's use is to be
logged in the system service log.

LVL Parameter: Specifies the level identifier of the message description being
defined. The level identifier is made up of the date on which the message is
defined and a two-digit number that makes the identifier unique.

*CURRENT 1: The current date and a 1 are to be used as the first and
second parts of the message description level identifier.

creation-date level-number: Enter the date on which the message is being
defined, and enter a two-digit value (1 through 99) that makes the level
identifier of the message description unique. The date must be specified in
the format defined by the system values QDATFMT and, if separators are
used, QDATSEP.

Examples

ADDMSGD MSGID(UIN0115) MSGF(INV) +
MSG('Enter the name of your department') +
SECLVL('A department''s name is a +
3-character code such as X12') +
TYPE(*CHAR) LEN(3) DFT('ZZZ')

This command defines a message and stores it in a file named INV under
the identifier UIN0115. The message supplies second-level text, and the
reply requires validity checking so that a valid reply can only be a
3-character identifier. A default reply of ZZZ is also provided.

ADDMSGD MSGID(UPY0047) MSGF(TIMECARD.PAYLIB) +
MSG('For the week of &1, &2 time +
cards were processed. Do you have morei") +
FMT((*CHAR 8) (*CHAR 3)) +
TYPE(*ALPHA) LEN(1) VALUES(N Y) +
SPCVAL((YES Y)(NO N)) DFT(N)

This command defines a message description that is stored in the
TIMECARD message file in the PAYLIB library. The program that processes
the time cards can send a message (as an inquiry type message) telling how
many time cards (in &2) have been processed for the week (specified in
&1). To send this message to a user (via a message queue), the program
must use the SNDPGMMSG command; the command specifies (in this
example):

• The message identifier of this message (UPY0047).

• The file (TIMECARD) that contains this message.

• The time card date in 8 characters (such as 9/15/78). This must be the
first value in the MSGDTA parameter.

• The number of time cards in no more than three digits (such as 125).

ADDMSGD
LVL

Command Descriptions 4-37

ADDMSGD
(Examples)

4-38

If a reply of YES is sent, it is accepted as a Y (SPCVAL parameter). If NO
is sent, it is accepted as an N. If neither YES nor NO is sent. the reply is
validity checked according to the TYPE, LEN, and VALUES parameters. If
the user chooses, no reply can be sent and the default reply (N) is assumed.

ADDMSGD MSGID(UPY1234) MSGF(TIMECARD.PAYLIB) +
MSG('Tax for employee & 1 exceeds +
gross salary.') SEV(75) +
FMT({*CHAR 6){*DEC 9 2)(*CHAR 8)) +
DFTPGM(BADTAX.PAYLIB) +
DMPLST(1 2 3 *JOB)

This command defines a message to be sent as an escape message. The
sender of the message passes three data values, the first of which
(employee serial number) is used as replacement text in the message. If the
program to which this message is sent does not monitor for message
UPY1234, default system action is to be taken. This includes dumping the
three data values passed and the job structure. After the dump is taken,
program BADTAX is to be invoked.

ADDPFM (Add Physical File Member) Command

The Add Physical File Member (ADDPFM) command adds a named member
in the specified physical file, which must have already been created. A
member must be added in the physical file before the file can have data
stored in it. (You can add the first member of a file by entering an
ADDPFM command or by specifying a member name in the MBR parameter
of the CRTPF command. To add other members to the file, use the
ADDPFM command to specify each one). Each member has its own set of
data and its own access path that provides an organization for that data.

The number of members that can be added for the physical file is limited to
the maximum specified in the MAXMBRS parameter of the associated
CRTPF command. Each member added has the same attributes as those
defined in the physical file. However, each member has its own access path
as specified in the DDS access path specifications. The access path
determines the order in which the records within that member are
processed.

Note: Because this command adds a member to a file in a library, the
library must not be locked (*SHRNUP or *EXCLRD in the Allocate Object
command) for another job.

-{
.i<LIBL

ADDPFM --- FILE phyeica1-n1e-name .)-----------......

. library-name

Required

Optional

® -{*NONE
>- MBR phyelcal-file-member-name --1--- EXPDATE ·)------.•

expiration-date

l Job:B,I P1m:B,I

FILE Parameter: Specifies the qualified name of the physical file in which this
added member is to be stored. (If no library qualifier is given, *UBL is used
to find the file.)

MBR Parameter: Specifies the name by which the physical file member being
added is to be known. The member name must be unique within the file to
which it is being added.

ADDPFM

Command Descriptions 4-39

AD DP FM
EXPDATE

4-40

EXPDATE Parameter: Specifies the expiration date of the member. Any
attempt to open a file that uses a member that has expired causes an error
message to be sent to the user. (The RMVM command is used to remove
the member.)

*NONE: The member has no expiration date.

expiration-date: Enter the date after which the member should not be used.
The date must be specified in the format defined by the system values,
ODATFMT and ODATSEP. The date must be enclosed in apostrophes if
special characters are used in the format.

SHARE Parameter: Specifies whether or not an ODP (open data path) to the
physical file member is to be shared with other programs in the same job.
When an ODP is shared, the programs accessing the file share such things
as the position being accessed in the file, the file status, and the buffer.
When SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE(*YES) when it opens the file.

TEXT Parameter: Lets the user enter text that briefly describes the physical
file member. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

ADDPFM FILE(INVENTX) MBR(MONDAYTX) +
TEXT('Monday"s Inventory Transactions')

This command adds a member named MONDA YTX in the physical file
named INVENTX. The library list (*UBL) is used to find the file because the
FILE value was not qualified by a library name. The size of the member and
the storage allocation values assigned to this member were specified in the
CRTPF command that created the physical file in which MONDAYTX will be
stored. The text, Monday's Inventory Transactions, describes this member of
the INVENTX file.

', ADDPGM (Add Program) Command

The Add Program (ADDPGM) command adds one or more programs to the
group of programs currently being debugged. The specified programs can
have breakpoints and traces added to them for controlling and tracing their
execution. The values of the programs' variables can also be displayed and
changed.

Restrictions: No more than 10 programs can be in debug mode at the
same time. Two or more programs with the same simple name cannot be
debugged simultaneously. This command is valid only in debug mode. To
enter debug mode, refer to ENTDBG (Enter Debug) Command.

-{
.•LIBL

ADDPGM ---PGM T pro1ram-name)--....---------••
_ .library-name

10 maJCimum ------'
Required

Optional

-f_ •SAKB
>- DPTPGM •NONB)

pro1ram-name

l Job:B,1 Psm:B,1

PGM Parameter: Specifies the qualified names of one or more programs to
be debugged. (If no library qualifier is given for a program, *UBL is used to
find the program.) The number of programs specified here depends on how
many programs are already in debug mode; 10 is the maximum at any time.

DFTPGM Parameter: Specifies the name of the program that is to be the
default program during debug mode. The program specified here is used as
the default program for any of the other debug commands that specify
*DFTPGM on their PGM parameter. (That is, if a default program was
previously specified, this parameter can change it.)

*SAME: The same program, if any, currently specified as the default
program is to be used.

*NONE: No program is to be specified as the default program; if a program
was specified as a default program, it is no longer. Therefore, *DFTPGM
cannot be specified on the PGM parameter of any other debug commands.

program-name: Enter the simple name of the program that is to be the
default program during debug mode. The same name (in qualified form)
must also be specified in the PGM parameter of this command or have been
specified on the Enter Debug (ENTDBG) command or on a previous Add
Program (ADDPGM) command.

ADDPGM

Command Descriptions 4-41

ADDPGM
(Example)

4-42

Example

ADDPGM PGM(MYPROG.QGPL)

This command adds the program MYPROG, located in the QGPL library, to
the current debug mode. Breakpoints and traces can be put in MYPROG,
and its variables can be displayed and changed by other debug commands.
Because DFTPGM was not specified, the same default program is used.

ADDRJECMNE (Add RJE Communications Entry) Command

The Add RJE Communications Entry (ADDRJECMNE) command adds a new
communications device file entry to an existing RJEF session description.

Two communications entries are required to start an RJEF session:

• One entry for an RJEF console input job

• One entry for an RJEF console output job

Additionally, one communications entry is required for each active RJEF
reader or RJEF writer in the RJEF session.

Each communications entry must reference a unique BSC device file. All
BSC device files must reference devices attached to the same BSC control
unit.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Add RJE Communications Entry (ADDRJECMNE) command is part of
the IBM System/38 Remote Job Entry Facility Program Product, Program
5714- RC 1. For more information on the Remote Job Entry Facility, refer to
the /BM System/38 Remote Job Entry Facility Programmer's Guide,
SC21-7914.

-(
.+LIBL

ADDRJECMNE ----SSND sesslon-descrlption-no,me)------+.,
.library-name

-(
.+LIBL

>-FILE-BSC-file-no.me .)-----------------+ ..
. library-name

Required

Optional

-(+FILE~® -f_. +PI3
>- DEV DTACPR +YES------

BSC-device-no.me +NO

l Job:B,I Pam:B,I

SSND Parameter: Specifies the qualified name of the session description to
which the communications entry is to be added. (If no library qualifier is
given, *UBL is used to find the session description.)

FILE Parameter: Specifies the qualified name of the BSC device file to be
added to the session description. (If no library qualifier is given, *UBL is
used to find the communications device file.)

ADDRJECMNE

Command Descriptions 4-43

ADDRJECMNE
DEV

4-44

DEV Parameter: Specifies the communications device to be used with the
specified communications device file for sending and receiving data ..

*FILE: The device name specified in the communications device file is to
be used.

BSC-device-name: Enter the name of the BSC device to be used. This
device name overrides the device that was specified when the
communications device file was created.

DTACPR Parameter: Specifies whether data compression is to be performed
for the communications file entry.

*FILE: Data compression is to be performed, based on the specification in
the communications device file.

*YES: Data compression is to be performed for the communications file
entry.

*NO: Data compression is not to be performed for the communications file
entry.

Example

ADDRJECMNE SSND(RJE.USERLIB) +
FILE(DEVPRT1 .USERLIB) +
DTACPR(*YES)

This command adds a communication entry to the session description called
RJE in library USERLIB. The BSC device file associated with this
communication entry is named DEVPRT1 in library USERLIB. Data
compression is to be performed for this BSC file.

/

\ __

,_

ADDRJERDRE (Add RJE Reader Entry) Command

The Add RJE Reader Entry (ADDRJERDRE) command adds a new RJEF
reader entry to an existing RJ EF session description.

Each RJEF reader entry (except *AUTO) requires a corresponding
communications entry (refer to the Add RJE Communications Entry
(ADDRJECMNE) command). A maximum of four RJEF reader entries can be
added (including *AUTO).

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Add RJE Reader Entry (ADDRJERDRE) command is part of the /BM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the /BM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

-(
.•LIBL

ADDRJERDRE----SSND session-description-name .)------•

.library-name

>-RDR
Select one of the following: l
•AUTO RD1 RD2 RD3 Jt----------------~---

Required

Optional

-(
•NONE ®

>-JOBQ -c·•LIBL y·---------------·
job-queue-name

.library-name

-(
•NONE

>-MSGQ -(•LIBL y•---
mesaa1e-queue-name .

. library-name

1 Job:B,I Pem:B,I

SSND Parameter: Specifies the qualified name of the session description to
which the RJEF reader entry is to be added. (If no library qualifier is given,
*UBL is used to find the session description.)

RDR Parameter: Identifies the RJEF reader that is to be associated with this
reader entry.

C<ALJTO: Any RJEF reader input stream that is available at the time the
Submit RJE Job (SBMRJEJOB) command executes is to be used.

RDl: RJEF Reader 1 input stream is to be used.

RD2: RJEF Reader 2 input stream is to be used.

RD3: RJEF Reader 3 input stream is to be used.

ADDRJERDRE

Command Descriptions 4-45

ADDRJERDRE
JOBQ JOBQ Parameter: Specifies the job queue on which the reader jobs for this

reader are to -be placed.

*NONE: No reader job queue is to be associated with this reader. RJEF
reader input streams can be reserved for the interactive user issuing the
SBMRJEJOB command .and specifying OPTION(*IMMED). Therefore, the
interactive user does not have to compete with the batch RJEF reader jobs
that are started from the RJEF reader job queue.

job-queue-name:_ Enter the qualified name of the job queue on which reader
jobs for this reader are to be placed for transmission to the host system. (If
no library qualifier is given, *UBL is used to find the job queue.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF reader are to be recorded.

Note: Messages for RJEF readers are always recorded in the RJEF
message queue associated with the named RJEF session. The RJEF
message queue name depends upon the name specified in the MSGQ
parameter in the Create Session Description (CRTSSND) or Change Session
Description (CHGSSND) commands. If inquiry messages are issued by
RJEF, they are sent to the user message queue (if specified) where they
must receive a response.

*NONE: No user message queue exists on which the messages for these
RJEF reader jobs are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which this RJEF reader job's messages are to be recorded. (If no library
qualifier is given, *UBL is used to find the message queue.)

Example

ADDRJERDRE SSND(RJE.USERUB) +
RDR(RD1) +
JOBQ(READQ1 .USERUB) +
MSGQ(BAKER.USERLIB)

This command adds an RJEF reader entry to the session description named
RJE in library USERUB. The reader added is RD1 (reader 1). RJEF jobs
submitted to this reader will be submitted to RJEF reader job queue
READQ1 in library USERUB. Messages associated with jobs submitted to
RD1 are to be written to the user message queue named BAKER in library
USERUB.

ADDRJEWTRE (Add RJE Writer Entry) Command

The Add RJE Writer Entry (ADDRJEWTRE) command adds a new RJEF
writer entry to an existing RJEF session description.

Each RJEF writer entry requires a corresponding communications entry (refer
to the Add RJE Communications Entry (ADDRJECMNE) command). A
maximum of six RJ EF writer entries can be added (three printers and three
punches).

Except for the SSND parameter, all the parameters of this command are
used to direct the output data only if any of the following conditions are
true:

• There is no FCT associated with this session description.

• The forms mount message from the host system specifies a form type
that does not exist as an entry in the FCT.

• *NONE is specified on the FILE parameter in the Add Forms Control
Table Entry (ADDFCTE) command.

• A writer entry is used for each parameter in the FCT.

• A writer entry is used for each parameter on the Start RJE Writer
(STRRJEWTR) command.

The parameter values specified for this RJE writer entry can be overridden
by parameter values specified for the Start RJE Writer (STRRJEWTR)
command.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Add RJE Writer Entry (ADDRJEWTRE) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

ADDRJEWTRE

Command Descriptions 4-47

ADDRJEWTRE
(Diagram)

4-48

-{_
.+LIBL

ADDRJEWTRE----SSND session-description-name)-------• ..

. library-name

Select one of the followina:
>-WTR- PR1 PU1

PR2 PU2 '

PR3 PU3

J device-file-name ~ .•LIBL

>-FILE _data-base-file-name J _.library-name)·.--------------• ..

Required

Optional

-f_•GEN ® -(•STD~
>- MBR •FIRST ~ FORMTYPE . .---------------..

member-name_/ form-type

>-FSN -(:He-sequence-number)•----------------------_.,.,

-f_ o!i<FCFC} -(•NONE
>-DTAFMT •DATA_.,._ ___ PGM -{_ o11<IJBL y,. _____ .,

•CMN program-name . .

.library-name

-(
•NONE

>- MSGQ -{_ •LIBL y•---
menaee-queue-name . .

.library-name
l Job:B,I Pam:B,I

SSND Parameter: Specifies the qualified name of the session description to
which the RJEF writer entry is to be added. (If no library qualifier is given,
*UBL is used to find the session description.)

WTR Parameter: Identifies the RJEF writer that is to be associated with this
writer entry.

PR 1: RJ EF Printer 1 output stream is to be used.

PR2: RJEF Printer 2 output stream is to be used.

PR3: RJEF Printer 3 output stream is to be used.

PUl: RJEF Punch 1 output stream is to be used.

PU2: RJEF Punch 2 output stream is to be used.

PU3: RJEF Punch 3 output stream is to be used.

FILE Parameter: Specifies the qualified name of the file that is to receive data
from the host system.

device-file-name: Enter the qualified name of the program-described device
file to receive data. (If no library qualifier is given, *UBL is used to find the
device file.)

data-base-file-name: Enter the qualified name of the System/38 physical
data base file to be used. (If no library qualifier is given, *UBL is used to
find the data base file.)

MBR Parameter: Specifies the data base file member to which the output is
to be directed (if a data base file was specified in the FILE parameter of this
command). If a device file was specified in the FILE parameter of this
command, this parameter is ignored.

*GEN: RJEF creates a member name as follows:

Affffffccc or Bffffffccc

Where:

A file member names beginning with the character A
contain print data.

B file member names beginning with the character B
contain punch data.

ffffff first six characters of the forms name specified in
the FCT or received from the host system.

Note: Only characters that are valid in a System/38
name are valid in the forms type used to generate
data base file member names.

ccc three-digit sequence value controlled by the RJEF session
to maintain member uniqueness (refer also to the
FSN parameter description of this command).

If a member with this name already exists in the data base file, the
three-digit sequence value is incremented by one and another attempt is
made to create a member. Incrementing of the sequence value continues
until a unique name is generated and a member is created or until all
1000 possibilities have been exhausted without creating a member. If no
member is created, the RJEF operator receives a message indicating the
failure and a request to retry or cancel this file.

ADDRJEWTRE
FILE

Command Descriptions 4-49

ADDRJEWTRE
FORMTYPE

4-50

*FIRST: The output is to be directed to the first member of the data base
file (if a data base file is specified in the FILE parameter of this command).

member-name: Enter the name of the data base file member to which
output is to be directed (if a data base file is specified in the FILE parameter
of this command).

FORMTYPE Parameter: Specifies the initial form type to be used if no forms
mount message is received from the host system.

*STD: The initial form type to be used is *STD.

form-type: Enter the initial form type. Valid values can be one through
eight alphameric characters in length.

FSN Parameter: Specifies the initial three-digit file sequence number to be
used when creating data base file member names (when the MBR
parameter default of *GEN is taken).

1: The initial three-digit file sequence number to be used is 001.

file-sequence-number: Enter the initial three-digit file sequence number to
be used. Leading zeros are not required for sequence numbers less than
100.

DTAFMT Parameter: Specifies the format of the output data.

*FCFC: The output data is to be in the FCFC data format, with the first
character of every record being the ANSI forms control character. Parameter
value WTR(PUn) is invalid with parameter value DTAFMT(*FCFC). Specify
*FCFC if the data is to be printed.

The data can be written to a data base file in the FCFC data format and be
printed later by using the Copy File (CPYF} command and specifying an
FCFC printer file on the TOFILE parameter.

*DATA: The output data is to be in the normal data format (that is, no
FCFC characters are embedded in the data). Specify *DATA if the data is to
go to a data base file and be processed by a program. If the data is
directed to a printer file, a single space ANSI control character is the first
character in each record.

*CMN: The output data is to be in the communications data format (that is,
still compressed or truncated). *CMN can be used to decrease
communications time. However, before the data can be used, the Format
RJE Data (FMTRJEDTA) command must be used to change the data to
*FCFC or. *DATA. If *CMN is specified, the output file must be a data base
file with a length of 256.

PGM Parameter: Specifies the qualified name of a user-supplied program to
be used with this session description.

*NONE: No user-supplied program is to be used for the RJEF writer.

program-name: Enter the qualified name of the user-supplied program to be
used. (If no library qualifier is given, *UBL is used to find the user-supplied
program.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF writer are to be recorded.

Note: Messages for RJEF writers are always recorded in the RJEF message
queue associated with the named RJEF session. The RJEF message queue
name depends upon the name specified in the MSGQ parameter in the
Create Session Description (CRTSSND) or Change Session Description
(CHGSSND) commands. If inquiry messages are issued by RJEF, they are
sent to the user message queue (if specified) where they must receive a
response.

*NONE: No user message queue exists on which the messages for these
RJEF writer jobs are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which this RJEF writer job's messages are to be recorded. If no library
qualifier is given, *UBL is used to find the message queue.

Example

ADDRJEWTRE SSND(RJE.USERLIB) +
WTR(PR1) +
FILE(COMPILES.LISTINGS) +
MBR(*GEN) +
DTAFMT(*CMN) +
MSGQ(COM PL. USERLI B)

This command adds an RJEF writer entry to the session description named
RJE in library USERLIB. The writer added is PR1 (printer 1). The FILE
parameter specifies that host data written to this printer should go to a data
base file named COMPILES in library LISTINGS. For each file received from
the host, RJEF will generate a new data base member. The data is to be
written in the communication format (still compressed or truncated).

Messages associated with this writer will be written to the user message
queue named COMPL in library USERLIB.

ADDRJEWTRE
PGM

Command Descriptions 4-51

ADDRTGE

4-52

ADDRTGE (Add Routing Entry) Command

The Add Routing Entry (ADDRTGE) command adds a routing entry to the
specified subsystem description; the associated subsystem must be inactive
at the time. Each routing entry specifies the parameters used to initiate a
routing step; for example, the routing entry specifies the name of the
program to be executed when the routing data that matches the compare
value in this routing entry is received.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description.

-{_
.•LIBL

ADDRTGB -- BBBD aubayatem-deacrlption-name)--------••
. .library-name

>- BBQNBR sequence-number--------------------------

-{
•ANY. y

>- CMPVAL · -{_ 1 ------111
compare-value

etartina-poeition

..

-{_
.•LIBL ®

>-PGM proaram-nalne)--------------------•
.library-name

Required

Optional

-{_
•BBBD

>-CLB _ -{_.•LIBL y .. ------------------·
· clasa-name ·

.library-name

-{_ •NOMAX =:)-- -{_ 1 =:::)--
>- MAXACT POOLID

maximum-active-Jobs pool-identifier

1.Job:B,I Pam:B,I

....

SBSD Parameter: Specifies the qualified name of the subsystem description
to which the routing entry is to be added. (If no library qualifier is given,
*UBL is used to find the subsystem description.)

SEQNBR Parameter: Specifies the sequence number of the routing entry to
be added. Routing data is matched against the routing entry compare values
in ascending sequence number order. Searching ends when a match occurs
or the last routing entry is encountered. Therefore, if more than one match
possibility exists, only the first match is processed. Enter a unique sequence
number (1 through 9999) that identifies the routing entry.

CMPVAL Parameter: Specifies a value that is to be compared with the
routing data to determine whether this is the routing entry to be used for
initiating a routing step. If the routing data matches the routing entry
compare value, that routing entry is used. Optionally, a starting position
within the routing data character string can be specified for the comparison.

*ANY: Any routing data is considered to be a match. To specify *ANY, the
routing entry must have the highest SEONBR value of any routing entry in
the subsystem description.

compare-value: Enter a value (any character string not exceeding 80
characters) that is to be compared with routing data for a match. When a
match occurs, this routing entry is used to initiate a routing step. A starting
position within the routing data character string can be specified for the
comparison; if no position is specified, 1 is assumed.

1: The comparison between the compare value and the routing data begins
with the first position in the routing data character string.

starting-position: Enter a value, 1 through 80, that indicates which position
in the routing data character string is the starting position for the
comparison. The last character position compared must be less than or
equal to the length of the routing data used in the comparison.

PGM Parameter: Specifies the qualified name of the program to be invoked
as the (first) program to be executed in the routing step. (No parameters
can be passed to the specified program.) (If no library qualifier is given,
*UBL is used to find the program.) If the program does not exist when the
routing entry is added, a library qualifier must be specified because the
qualified program name is retained in the subsystem description. If
QCL.QSYS is specified, the IBM-supplied control language processor, QCL,
is invoked in the routing step.

ADDRTGE
SBSD

Command Descriptions 4-53

ADDRTGE
CLS

4-54

CLS. Parameter: Specifies the qualified name of the class to be used for the
routing steps initiated through this routing entry. The class defines the
attributes of the routing step's execution environment. (For an expanded
description of the CLS parameter, see Appendix A.) If the class does not
exist when the routing entry is added, a library qualifier must be specified
because the qualified class name is retained in the subsystem description.

*SBSD: The class having the same qualified name as the subsystem
description, specified by the SBSD parameter, is to be used for routing
steps initiated through this entry.

qualified-class-name: Enter the qualified name of the class that is to be
used for routing steps initiated through this routing entry. (If no library
qualifier is specified, the library list (*UBL) of the job in which this
ADDRTGE command is executed is used to find the class.)

MAXACT Parameter: Specifies the maximum number of routing steps (jobs)
that can be concurrently active through this routing entry. (Within a job,
only one routing step is active at a time.) When a subsystem is active and
the maximum number of routing steps is reached, any subsequent attempts
to initiate a routing step through this routing entry will fail. If the routing
data was entered interactively, an error message is sent to the user.
Otherwise, the job is terminated and a message is sent by the. subsystem to
the job's log. (For an expanded description of the MAXACT parameter, see
Appendix A.)

*NOMAX: There is no maximum number of routing steps that can be
concurrently active and processed through this routing entry. (This value is
normally used when there is no reason to control the number of routing
steps.)

maximum-active-jobs: Enter the maximum number of routing steps that can
be concurrently active through this routing entry. If a routing step would
exceed this number if it were started, the job is implicitly terminated.

POOLID Parameter: Specifies the pool identifier of the storage pool in which
the program is to run.

1: Storage pool 1 of this subsystem is the pool in which the program is to
run.

pool-identifier: Enter the identifier of the storage pool defined for this
subsystem in which the program is to run. Valid values are 1 through 10.

Examples

ADDRTGE SBSD(PERT.ORDUB) SEQNBR(46) +
CMPVAL(WRKSTN2) PGM(GRAPHIT.ORDLIB) +
CLS(AZERO.MYUB) +
MAXACT(*NOMAX) POOUD(2)

This command adds routing entry 46 to the routing portion of the
subsystem description PERT in the ORDUB library. To use routing entry 46,
the routing data must start with the character string 'WRKSTN2' beginning
in position 1. Any number of routing steps can be active through this entry
at any one time. The program GRAPHIT in the library ORDUB is to run in
storage pool 2 using class AZERO in library MYUB.

ADDRTGE SBSD(ABLE.QGPL) SEQNBR(5) +
CMPVAL(XYZ) PGM(REORD.QGPL) +
CLS(MYCLASS.UBX) MAXACT(*NOMAX)

This command adds routing entry 5 to the subsystem description ABLE in
the QGPL library. The program REORD in the general purpose library is
initiated and uses the class MYCLASS in UBX when a compare value of
XYZ (beginning in position 1) is matched in the routing data. The program
runs in storage pool 1, and there is no maximum on the number of active
routing steps allowed.

ADDRTGE
(Examples)

Command Descriptions 4-55

ADDTRC

4-56

ADDTRC (Add Trace) Command

The Add Trace (ADDTRC) command specifies which program statements in
a program are to be traced in debug mode. Up to five ranges of HLL
statements or System/38 instructions can be traced during the execution of
a program through one or more ADDTRC commands, and up to 10 program
variables can be monitored for change within each specified statement
range. A separate ADDTRC command is required for each unique variable
associated with a statement range. When the specified program being
traced is executed, the system records the sequence in which the traced
statements were executed and optionally records the value of the variables
associated with the trace each time a traced statement is. executed. After a
trace has been completed, you can display this information using the
DSPTRCDTA command.

All of the trace ranges specified in a program are simultaneously active. If
both an HLL statement identifier and a System/38 instruction number are
used to specify a given trace range, the trace range is treated as an HLL
trace range. That is, in addition to tracing the System/38 instruction
number specified, the system traces the HLL statement identifiers between
that System/38 instruction number and the specified HLL statement
identifier.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

•ALL ~
Optional

ADDTRC -- STMT dLLINST---------------------··­

start-statement-identifier [stop-statement-identifier]

~------- 5 maximum--------~

•NONE .. ~

>- PGMVAR
'pro&ram-variable-name[(subscript)]' ['baain&-pointer-name[(subscript)]']

~---------- 10 maximum--------------'

-(_
1

>-START
startin&-character-position

)------

-(_
•DCL -(_ •CHAR) ®

>-LEN _)-- OUTFMT -.---------.•

diaplayed-character-length •HEX

-(_
•CHG :J---- -(_ •DFTPGM :J--

>- OUTVAR PGM

•ALWAYS program-name

Job:B,I Pgm:B,I

ADDTRC
STMT STMT Parameter: Specifies which program statements (or System/38

instructions) are to be traced in one or more statement ranges in the
program where tracing is to occur.

*ALL: All statements in the specified HLL program are to be traced.

*ALLINST: All System/38 instructions in the specified program are to be
traced.

start-statement-identifier [stop-statement-identifier]: Enter the H LL
statement identifier (or System/38 instruction numbers) at which tracing is
to start and, optionally, the identifier at which tracing is to end. As many as
five trace ranges can be specified in the program for each use of this
command. Each trace range begins with the specified starting statement,
and all following statements are traced until the ending statement is
reached. If only a starting statement identifier is specified for a range, the
single statement specified is the only statement traced for that range. If
System/38 instruction numbers are specified, each number must be
preceded by a slash and enclosed in apostrophes: STMT((' /21' '/43')(' /62'
'/98')) for example.

PGMVAR Parameter: Specifies whether the values of one or more program
variables are to be recorded every time a traced statement in an HLL or Ml
program is executed, and if so, specifies the names of the variables whose
values are to be recorded. Depending upon the OUTV AR parameter, the
values can be recorded for every trace statement executed, or only when
any variable changes value. The program variables can be specified either
by their HLL names or by their Ml ODV numbers. No more than 10
program variables can be specified.

*NONE: No program variables are to have their values recorded while
tracing is being performed.

'program-variable-name': Enter the names of one or more program variables
(no more than 10) whose values are to be recorded while tracing is being
performed. If the variable name contains special characters (such as the &
in a CL variable name), it must be enclosed in apostrophes. An example is:
PGMVAR('&VAR2').

An RPG indicator or an Ml ODV number can be specified instead of a
program variable name. An example of an RPG indicator is
PGMVAR('*IN22'). The ODV number must be preceded by a slash:
PGMVAR(' /264') for example.

Command Descriptions 4-57

ADDTRC
PGMVAR

4-58

COBOL qualified prog,ram variable names may be specified in this
parameter. These names have the following syntax:

var-name-1 OF/IN var-name-2 OF/IN varname-3 ... varname-N

where varname- N is the last possible variable name that will fit into the
input field of the PGMVAR parameter. The input field length for each
variable in the PGMVAR parameter is 98 characters. The subscript specified
for a qualified variable name may also be a qualified variable name. A
qualified variable name (or one with a subscript), including blanks and
parentheses, must be contained within the 98-character limit. The
98-character limit includes the necessary keywords (OF/IN) and blanks, but
does not include the enclosing apostrophes.

'program-variable-name[(subscript)]': For variables in an array, enter the
name of the variable and (optionally) the subscript representing the
positional element in the array that is to be displayed. If a subscript is not
specified, all elements in the array are displayed. The subscript, if specified,
must be enclosed in parentheses, and the variable name and subscript
number must be enclosed in apostrophes. No more than 10 sets can be
specified, and blanks must separate each set. An example is:

PG MVAR(' A(5)' 'B(5)' 'C(5)')

Either an integer or another variable name can be specified for each
subscript.

For COBOL variable names, any combination of variable name length and
subscript length that will fit into the 98-character limit is valid. For example,
one qualified variable name 98 characters in length (including the keywords
OF or IN) can be used with no subscript, or a one-character variable name
may be used with a qualified variable name (used as a subscript that uses
the other 97 spaces, including parentheses).

For COBOL, the following apply:

• Variable names used in qualifying strings must be high-level language
variable names (qualification with ODVs is not allowed).

• Either keyword (OF or IN) is allowed.

• Each OF/IN keyword must be separated from adjacent variable names by
at least one blank.

• A qualified variable name can be used as a variable subscript.

• The order the variable names are specified must be from the lowest to
the highest levels in the structure.

• Structure levels may be skipped; enough levels must be specified,
however, to uniquely identify the variable.

• Qualified variable names must be enclosed in apostrophes, since they
contain blank characters.

['basing-pointer-name[(subscript)]']: This set of values in the PGMVAR
parameter applies only to Ml or HLL programs that support based-on
variables. The values can optionally be used with either of the previous two
choices to also specify the value in an array that is based on a pointer. The
same description of the coding syntax applies here. An example is:

PGMVAR(('VAR1(5)' 'PTR1(5)') ('VAR2(8)' 'PTR2(8)'))

This example shows that one (different) element in each of two program
variables is to be displayed. The fifth element in the array named VAR1,
based on the fifth element in the pointer array named PTR1, and the eighth
element in the VAR2 array, based on the eighth element in the PTR2 pointer
array, are to be displayed.

The field length for the basing pointer name is 24 characters.

START Parameter: Specifies, for character variables only, the beginning
position in the variable from which its value is to be recorded when the
trace is performed. If more than one character variable is specified in the
PGMVAR parameter, the same starting position is used for each one.

1: Recording of the variable is to start with the first position and continue
for the length specified in the LEN parameter.

starting-character-position: Enter the starting position number at which the
variable is to be recorded. The position number (as well as the combination
of START and LEN) must be no greater than the length of the shortest
variable specified in the PGMVAR parameter.

ADDTRC
START

Command Descriptions 4-59

ADDTRC
LEN

4-60

. LEN Parameter: Specifies the number of bytes to be recorded from the
character variable specified in the PGMVAR parameter, starting at the
position specified in the START parameter. If more thar. one character
variable is specified in the PGMVAR parameter, the same length is used for
each one.

*DCL: The character variable is to be recorded to the end of the variable
or for 200 bytes, whichever is less.

displayed-character-length: Enter the number of characters that are to be
recorded. The length (as well as the combination of START and LEN) must
be no longer than the length of the shortest variable specified in the
PGMVAR parameter.

OUTFMT Parameter: Specifies the format to be used for recording the
variables.

*CHAR: Variables are to be recorded in character form.

*HEX: Variables are to be recorded in hexadecimal form.

OUTV AR Parameter: Specifies whether the values of the program variables
are to be recorded only when their values change, or whether they are to be
recorded regardless of any of their values being changed. This parameter
does not apply if PGMVAR(*NONE) is specified or assumed.

Note: Within each range, the values of all the traced variables are always
recorded the first time a statement in the range is executed. For all other
statements in the range executed after the first one, the OUTVAR parameter
determines when the variables· are to be recorded.

*CHG: The system should record the values of all the program variables
when one or more of the values are changed by a traced statement being
executed.

*ALWAYS: The system should record the values of the specified variables
every time any of the specified trace statements are executed, whether or
not any variable had its value changed.

PGM Parameter: Specifies the name of the program that contains the
specified statement identifiers or the System/38 instruction numbers that
are to be traced. This program name must also be specified in the Enter
Debug (ENTDBG) command.

*DFTPGM: The program previously specified as the default program
contains the statements to be traced.

program-name: Enter the name of the program that contains the statements
to be traced. The specified program must already be in debug mode.

Example

ADDTRC STMT((100 120) (150 200)) +
PGMVAR('&CTR' '&BRCTR' '&SAM')

This command traces program statements in the default program between
the ranges of statements 100 through 120 and 150 through 200. Also,
whenever the values of any of the program variables &CTR, &BRCTR, and
&SAM are changed by one of the traced statements within those ranges,
the values of all three are recorded. When all of the traced statements have
been executed, or when a breakpoint is reached, the DSPTRCDTA
command can be used to display the trace data collected.

ADDTRC
(Example)

Command Descriptions 4-61

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

ADDWSE
ADDWSE (Add Work Station Entry) Command

4-62

The Add Work Station Entry (ADDWSE) command adds a work station job
entry to the specified subsystem description; the associated subsystem
must be inactive at the time. Each entry describes one or more work
stations that are to be controlled by the subsystem. The work stations
identified in the work station e'ntries are allowed to sign on on to or enter
the subsystem and execute jobs.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description.

-{
••LIBL

ADDWSB -- SBSD subsystem-description-name J----------.1>
.library-name

.__r WRKSTN work-station-name:)}--------------------•

~ WRKSTNTYPB work-etation-type Required

Optional

-{
•SBSD ®

>- JOBD -{ •LIBL y~------------_.,.I>
Job-description-name .

. library-name

-{
•NOMAX ~ -{ •SIGNON "_

>-MAXA.CT maximum-active-JobsJ AT •BNTBR_J~----------.•

-{
•SYSRTGFMT

>- DSPFMT -{ •LIBL:=)-)---
device-file-name · record-format-name

.library-name

l Job:B,I P1m:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
to which the work station job entry is to be added. (If no library qualifier is
given, *LIBL is used to find the subsystem description.)

WRKSTN Parameter: Specifies the name of the work station to be used by
the subsystem. The device description name that was specified in the
CRTDEVD command associated with the work station is the name to be
used.

A value must be specified for either the WRKSTN or the WRKSTNTYPE
parameter, but not both.

WRKSTNTYPE Parameter: Specifies the type of work station associated with
the entry being added. This entry applies to all work stations of this type
that do not have specific entries for an individual work station. The
following type codes are valid:

Type Code

5251
5252
5291
5292
*CONS

Device

5251 Oisplay Station
5252 Dual Display Station
5291 Display Station
5292 Color Display Station
System console display

A value must be specified for either the WRKSTN or the WRKSTNTYPE
parameter, but not both.

JOBD Parameter: Specifies the qualified name of the job description to be
used for jobs that are created and processed through this entry. If the job
description does not exist when the entry is added, a library qualifier must
be specified because the qualified job description name is retained in the
subsystem description.

*SBSD: The job description having the same qualified name as the
subsystem description, specified by the SBSD parameter, is to be used for
jobs created through this entry.

qualified-job-description-name: Enter the qualified name of the job
description that is to be used for jobs created through this entry. If no
library qualifier is specified, the library list (*UBL) of the job in which this
ADDWSE command is executed is used to find the job description.

MAXACT Parameter: Specifies, for work stations that use this work station
job entry, the maximum number of work station jobs that can be
concurrently active. (For an expanded description of the MAXACT
parameter, see Appendix A.)

*NOMAX: There is no maximum number of jobs (work stations) that can
be concurrently active through this work entry.

maximum-active-jobs: Enter the maximum number of jobs that can be
concurrently active through this work entry.

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

ADDWSE
WRKSTNTYPE

Command Descriptions 4-63

ADDWSE
AT

4-64

AT Parameter: Specifies when the work stations associated with this job
entry are to be allocated. For more information on how work stations are
allocated to subsystems, see Start Subsystem (STRSBS) Command.

Note: The following should be considered if two or more work station
entries specify AT{*SIGNON), they apply to the same work station, and they
are in more than one subsystem description: If the work station is varied on
while more than one of the subsystems are active, you cannot predict to
which subsystem the work station will be assigned.

*SIGNON: The work stations are to be allocated when the subsystem is
started if the work station is not already in use (signed on) in another
subsystem. A sign-on prompt is to be displayed at each work station
associated with this work entry. If a work station becomes allocated to a
different subsystem, interactive jobs associated with the work station are
allowed to enter this subsystem through the Transfer Job (TFRJOB)
command.

*ENTER: The work stations associated with this work entry are not to be
allocated when the subsystem is started. However, the interactive jobs
associated with the work stations are allowed to enter this subsystem
through the TFRJOB command.

DSPFMT Parameter: Specifies the name of the device file and the name of
the record format to be used when the subsystem obtains routing data from
the user (that is, when RTGDTA(*GET) is specified in the job description).

*SYSRTGFMT: If routing data is not defined in the referenced job
description, the subsystem obtains the routing data from the user using the
system-supplied routing data format. This format is described in the CPF
Programmer's Guide.

qualified-device-file-name record-format-name: Enter the qualified name of
the device file to be used by the subsystem to obtain the routing data. (If
no library qualifier is given, *UBL is used to find the device file description.)
If the device file does not exist when the work station entry is added, a
library qualifier must be specified because the qualified name of the device
file is retained in the subsystem description. Also, enter the name of the
record format that defines the format to be used when the subsystem
obtains the routing data from the user.

Examples

ADDWSE SBSD(ORDER.LIB7) WRKSTNTYPE(5251) +
JOBD(QCTL) AT(*SIGNON)

This command adds a work station job entry to a subsystem description
named ORDER in library LIB7. All 5251 work stations are allocated to this
subsystem when the subsystem is started (unless they are already active in
a previously started subsystem). The work stations are to be signed on at
demand. When sign-on is complete, the IBM-supplied job description
QCTL is used to initiate the routing step.

ADDWSE SBSD(ORDER.LIB7) WRKSTN(A12) +
JOBD(ORDENT.LIB7) AT(*SIGNON)

This command adds a work station job entry to a subsystem description
named ORDER in library LIB7. Work station A12 is to be signed on at
demand. When sign-on is complete, the system-supplied routing data
format is displayed at the work station if the job description ORDENT in
LIB7 specifies *GET as the routing data.

ADDWSE
(Examples)

Command Descriptions 4-65

ALCO BJ

4-66

ALCOBJ (Allocate. Object) Command

The Allocate Object (ALCOBJ) command is used in a routing step to reserve
an object or list of objects for use later in the routing step. If an object that
is needed in the routing step is not specified in an ALCOBJ command, an
allocation is made automatically when the object is used. The objects are
deallocated either automatically at the end of the routing step or when the
DLCOBJ ·command is used.

For this command to be executed successfully: (1) the object must exist on
the system, (2) the user issuing the command must have object existence,
object management, or operational rights for the object, and (3) the object
must not be allocated to another job in a lock state that inhibits or restricts
the requested lock state for the entire time specified in the WAIT parameter.
If the allocation cannot be completed, none of the locks are granted and a
message is sent to the job that issued the command. If the command is
issued from a program, the Monitor Message (MONMSG) command can be
used to determine that the allocation was not successful.

Note: If a file is being allocated that is affected by a file override, the
ALCOBJ command ignores the override and attempts to allocate the file
named in the OBJ parameter.

-(
.•LIBL :::>--- {!) ®®-(•FIRST

>-OBJTobject-name object-type lock-state . }!--+
.library-name member-name ...J I

---------------50 maximum-------------'

-(•CLS=:)-
>-WAIT

aeconda-to-wait

@ The values of only six object types are valid: •DEVD, •DTAARA, •FILE, •LIB, •MSGQ,
and •SBSD. Refer to the OBJ parameter description for the lock states that are valid
for each object type.

@ If valid for the specified object type, one of the followinc lock states can be specified:
•SHRRD, •SHRUPD, •SHRNUP, >llEXCLRD, or •EXCL.

Required

Optional

l Job:B,I Pcm:B,I

OBJ Parameter: Specifies the qualified names of one or more CPF objects
that are to be allocated to the job, the type of each object specified, the
lock state of each object, and if the object is a data base file, a member .
name can optionally be specified. (If no library qualifier is given for an
object, *UBL is used to find the object. Note that the LIB and DEVD object
types do not reside in user libraries and, therefore, cannot be qualified with
a library name.)

If the member name is not specified for a data base file, the member name
defaults to *FIRST and the first member of the file is allocated. (If the
specified file is a logical file, the physical file members associated with the
members of the logical file are also allocated to the job.)

For each object named, enter: the object name {optionally qualified)
followed by the object type, one lock state value, and (if applicable) the file
member name to be allocated.

The lock states that can be specified are:

Value Lock State Meaning

*SHARD Shared for read
*SH RU PD Shared for update
*SHRNUP Shared, no update
*EXCLRD Exclusive, allow read
*EXCL Exclusive, no read

For an explanation of each lock state, refer to the CPF Programmer's Guide.

Multiple locks can be specified for the same object within the same job with
duplicate or different lock states. Each lock is held separately. For example,
if an *EXCL lock is already held for an object and a second *EXCL lock
request occurs, the second lock is acquired. Both locks must be released in
the job (deallocated with the DLCOBJ command) before another job can
access the same object. If a user already has an object allocated with one
lock state and wants to use a different lock state, he should first use the
ALCOBJ command to request the new lock with the desired lock state and

. then use the DLCOBJ command to release the old lock (with the old lock
state).

To determine if a device description can be allocated, the DSPDEVSTS
(Display Device Status) command should be entered. You can determine if
the device description can be allocated by using information shown by the
DSPDEVSTS command and from the following table. If, for the appropriate
device type,

• No job name is associated with the device, or if the job name associated
with the device is of the same job that is to issue the ALCOBJ
command, and

• The status field of the display indicates the following value,

you can attempt to allocate the device description object.

ALCO BJ
OBJ

Command Descriptions 4-67

ALCO BJ
OBJ

4-68

· Device· Type Status

3203, 3262, 3410, 5211 i 5424, VARIED ON
72MD, *BSCT

CONSOLE VARIED ON or SIGNON DISPLAY

*BSC, *PLU1 VARY ON PENDING 1 or VARIED ON

5224, 5225, 5251, 5252, 5256, VARY ON PENDING\ VARIED ON2,

5291, 5292 or SIGNON DISPLAY

1 Switched device
2 Device is powered on

The device description will. not be allocated if one of the following
conditions exist:

• Another job is allocating the device description

• Another job or object is opening a file to the device

• Another job is varying the device off

If the device description object cannot be allocated, reissue the DSPDEVSTS
command to determine the status of the device.

Only six of the CPF object types can be specified on the ALCOBJ
command. Of these six, some cannot use all of the lock states. The
following table shows the CPF object types that can be specified and the
lock states allowed for each one (A = allowed).

Lock States

Object Type *SHRRD *SHRUPD *SHRNUP *EXCLRD *EXCL

*DEVD A

*DTAARA A A A A

*FILE A A A A

*LIB A A A A

*MSGQ A

*SBSD

When the user requests an exclusive lock on a logical file member, the lock
occurs on both the logical file member and the associated physical file
members. No other user can use the physical file members, even through
some other logical file member.

A

A

A

A

WAIT Parameter: Specifies the number of seconds that the program is to
wait for the object to be allocated. If the object cannot be allocated in the
specified wait time, a message, which can be detected by a MONMSG
command, is sent to the program.

*CLS: The default wait time specified in the class description used by the
routing step is to be used as the wait time for the object to be allocated.

seconds-to-wait_: Enter the number of seconds that the program is to wait
for (all of) the specified objects to be allocated. Valid values are 0 through
32767 (32 767 seconds). If 0 is specified, no wait time is allowed.

Example

ALCOBJ OBJ((FILEA.LIBB *FILE *EXCL MEMBERA))

This command exclusively allocates MEMBERA of FILEA in LIBB to the
routing step in which the allocate command is used. If MEMBERA is
unavailable, the number of seconds to wait for it to become available is the
default wait time defined for the class used by the routing step.

ALCO BJ
WAIT

Command Descriptions 4-69

ANSLIN

4-70

ANSLIN (Answer Line) Command

The Answer Line (ANSLIN) command identifies a communication line that
has been manually answered by the system operator. This command
indicates that the operator has manually answered an incoming call and
validated the requirements of the caller. When this command is entered,
CPF executes the manual answer sequence for the line and, when
completed, instructs the operator to select data mode on the modem.

.A.NSLIN -- LINE line-description-name ---

LINE Parameter: Enter the name of the communication line that is being
answered.

Example

ANSLIN LINE(LINE01)

This command answers an incoming call on a line named LINE01.

Required.

APYJRNCHG (Apply Journaled Changes) Command

The Apply Journaled Changes (APYJRNCHG) command applies the changes
that have been journaled (for a particular member of a data base file) to a
backup version of the file to recover the file after an operational error or
some form of damage. The journaled changes are applied from the
indicated starting point, either at the point at which a file was last saved or
at a particular entry on the journal, until the designated ending point has
been reached. The ending point can be the point at which the file has had
all changes applied, a designated entry has been reached, a designated time
has been reached, or the file was opened or closed by a job.

Note: The DSPJRN command can be used to help determine the desired
starting and/or ending points.

A list of physical files and members can be specified. The journaled
changes for physical file members are applied in the order that the journal
entries are encountered on the journal (the same order the changes were
made to the physical file members).

If an error is encountered at any point during the application of the journaled
entries, the command terminates and the file member(s) may be only
partially updated from the journal entries. (Termination errors include partial
damage to a receiver and any logical error in the file member, such as a
duplicate key.) The command also terminates when a journal entry is
encountered that indicates that:

• The member was reorganized

• The member was restored

• Journaling was stopped for the member

• The member was deleted or saved with storage freed

• Journal IPL synchronization failed, or

• The member had its changes applied or removed (through the
APYJRNCHG or RMVJRNCHG .command.

The user of the command may reissue the command, specifying a new
starting sequence number, if a restart is possible.

It is possible to apply changes even if the sequence numbers have been
reset. The system will handle this condition, send an informational message,
and continue to apply tha changes. If journal receivers are attached and
detached in pairs (dual receivers), the system will always attempt to use the
first of the two receivers (the first of the two shown in the DSPJRNA
receiver directory). When the first of the pair is not accessible (for example,
damaged or not found), the system will attempt to use the second receiver
of the pair. If neither receiver is accessible, the application of changes will
terminate.

APYJRNCHG

Command Descriptions 4-71

APYJRNCHG
(Diagram)

4-72

Restrictions: The files specified on this command must currently be having
their changes journaled and they must have been journaled to the specified
journal throughout the period indicated on the command. The files indicated
on the command are allocated exclusively while the changes are being
applied. If a file cannot be allocated, the command terminates and no
journaled changes are applied. If there is no journal entrv. that corresponds
to the 'FROM' or 'TO' option, the command is terminated and no journaled
changes are applied.

If the journal sequence numbers have been reset within the range of
receivers specified, the first occurrence of the FROMENT or TOENT
parameter will be used, if they are specified.

Note: If the application terminates for one of the members specified, it
terminates for all of the members specified .

• •LIBL
APYJRNCHG--JRN journal-name)--------------•

.ltbrary-n-

>-PILE •ALL---'-·-~_. __________ _.. rne-n~e . .•LIBL::::x•PIRST

•ALL © .library-name member-name_/

~----------150 maximum--------~

-(_

•LASTSAVE .

•CURRENT--------------------~

>- RCVRNG -(.•LIBL
atartin1-receiver-name J--------

.llbrary-n-

Required

Optional
(A.2)

(A.2)

(A.1)

-(
•CURRENT (!)

(A.1) -(.•LIBL y· ~--------------·
endln1-recelver-name

.library-name

(A.2)>-PROMENT •FIRST------·--~->-------------'-----.-. .. -f_ •LAsTSAVE

atartin1-aequence-number _/

-{
•LAST

TO ENT '

endin1-1equenoe-number .'\.
TOTIME - end-date-end-time

TOJOBO-job-name. uaer-name.job-numbe~
TOJOBC-job-name.u1er-name.job-numbe;-::J

© The format ia •ALL.library-name.
l Job:B,I Plftl!B,I

JRN Parameter: Specifies the qualified name of the journal associated with
the journal entries that are to be applied. (If no library qualifier is given,
*UBL is used to find the journal.)

FILE Parameter: Specifies the qualified name of the physical data base file to
which journal entries are to be applied.

file-name: Enter the name of the physical data base file that is to have its
journal entries applied. (If no library qualifier is given, *UBL is used to find
the file.)

*ALL: All physical files within the specified library whose changes are being
journaled to the specified journal will have their journal entries applied. The
library name must be specified. If *ALL is specified and you do not have the
required authority for all the files in the library, a message is sent and the
application terminates.

The FILE parameter also specifies the name of the member within the file
that is to have its journal entries applied.

*FIRST: The first member in the file is to have journal entries applied.

*ALL: All members in the file are to have their journal entries applied.

member-name: Enter the name of the member within the file that is to have
its journal entries applied.

If *ALL is specified for the first part of this parameter, the value specified
for the member name is used for all applicable files within the library. For
example, if *FIRST is specified, the first member of all applicable files in the
library will have the changes applied.

Note: A maximum of 256 members can have their changes applied with
one invocation of the command. If this maximum is exceeded, an exception
is signaled and no changes are applied. You must change the values
entered on the FILE parameter so that the limit is not exceeded.

APYJRNCHG
JRN

Command Descriptions 4-73

APYJRNCHG
RCVRNG

4-74

RCVRNG Parameter: Specifies the first and last journal receivers to .be used
in applying the journal entries. The system will begin the application with
the first journal receiver (specified by the first value) and will proceed
through the receivers until the last receiver (specified by the last value) is
processed. If dual receivers were used at any time, the first of the receivers
will always be used when chaining through the set of receivers. If any
problem is encountered in the receiver chain (such as a damaged receiver or
a receiver not online) before the journal entries are applied, the system will
attempt to use the second of the dual receivers. If the second of the
receivers is damaged or offline, or if the problem is encountered during the
application of journal entries, the operation will terminate.

*LASTSA VE: The range of journal receivers to be used will be determined by
the system, based on save information for the files that are to have their
journaled changes applied. This parameter value is only valid if
FROMENT(*LASTSAVE) is also specified.

*CURRENT: Only the currently attached receiver will be used in applying the
journal entries.

First Parameter Value

starting-receiver-name: Enter the name of the journal receiver to be used as
the first (oldest) receiver. (If no library qualifier is given, *LIBL is used to
find the receiver.)

Second Parameter Value

*CURRENT: Application of journal entries will continue for all journal
receivers in the chain, beginning with the receiver specified by the first
parameter value through the currently attached journal receiver.

ending-receiver-name: Enter the name of the journal receiver to be used as
the last (newest) receiver with journal entries to be applied. If the end of
the receiver chain is reached before encountering a receiver of this name,
the operation is not performed and an escape message is sent. (If no library
qualifier is given, *LIBL is used to find the receiver.)

Note: The maximum number of receivers that can be used in a range of
receivers is 256. If this maximum is exceeded, an exception will be signaled
and no changes will be applied.

.1
I
'<...,

';-,,

FROMENT Parameter: Specifies the entry to be used as the starting point for
applying changes that have been journaled.

*LASTSA VE: Specifies that the journal entries are to be applied beginning
with the first journal entry after the file member that was last saved. The
system will determine the actual starting position for each of the files
specified on the command. The parameter value implies that the file was
just restored onto the system.

Some validation is performed by the system for each member specified,
such as whether the date and time of the restore is after the date and time
of the last save. The system also verifies that the date and time of the
saved version of the file member that was restored onto the system match
the date and time that the file member was last saved, as indicated on the
journal.

If the dates and times do not match, the application of journaled changes is
not attempted and an inquiry message is sent to the system operator
requesting a cancel or ignore response. (If an ignore response is given to
the message, the operation is attempted. A cancel response causes the
operation to terminate.)

*FIRST: The journal entries are to be applied beginning with the first journal
entry in the first receiver supplied to this command.

starting-sequence-number: Specifies the sequence number of the first
journal entry that is to be applied from the journal entries supplied.

TOENT Parameter: Specifies the entry to be used as the ending point for
applying changes that have been journaled.

*LAST: Specifies that journal entries are to be applied through the last
entry.

ending-sequence-number: Specifies the sequence number of the last entry
that is to be applied to the file member.

TOTIME Parameter: Specifies the time and date of the last journal entry to
be applied to the file member. The first entry with that or the next earlier
time will be the ending point for the application of journal entries. The
format of the date must be defined by the system values QDATFMT and, if
separators are used, QDATSEP. The time can be entered as four or six
digits (hhmm or hhmmss) where hh = hours, mm = minutes and ss =
seconds. If colons are used to separate the time values, the string must be
enclosed in apostrophes ('hh:mm:ss').

APVJRNCHG
FROM ENT

Command Descriptions 4-75

APYJRNCHG
TOJO BO

4-76

TOJOBO Parameter: Specifies that the journal entries are to be applied only
until the indicated job (fully qualified job name) first opens any physical file
member (or logical member defined over the physical member) in the list of
members specified on the FILE parameter that are to have their journal
entries applied. {This will be the ending point for all members specified.)

TOJOBC Parameter: Specifies that the journal entries are only to be applied
until the indicated job {fully qualified job name) last closes any physical file
member {or logical member defined over the physical member) that is in the
list of members specified on the FILE parameter that are to have their
journal entries applied, or until the indicated job was terminated. (This will
be the ending point for all members specified.)

Examples

APYJRNCHG JRN{JRNACT.FIN) FILE{RCVABLE.FIN)

This command will cause the system to apply to the first member of file
RCVABLE in library FIN all changes that were recorded in journal JRNACT
in library FIN since the file was last saved. The receiver range will be
determined by the system. The changes will be applied (beginning with the
first recorded change on the receiver chain after the file was last saved) and
will continue through all applicable journal entries.

APYJRNCHG JRN{JRNA) FILE({PAYROLL.LIB2 JAN))
RCVRNG{RCV22 RCV25) FROMENT{*FIRST)

This command will cause the system to apply all changes recorded in
journal JRNA to member JAN of file PAYROLL in library LIB2. The journal
receivers containing the journaled changes are contained in the receiver
chain starting with receiver RCV22 and ending with receiver RCV25. The
application will begin with the first change recorded on this receiver chain.
The library search list {*UBL) is used to find the journal JRNA and the
journal receivers RCV22 and RCV25.

APYPGMCHG (Apply Programming Change) Command

The Apply Programming Change (APYPGMCHG) command applies
programming changes (PCs) or program patches to a program in the
specified library. If a PC is to be applied, it must have been loaded by the
LODPGMCHG command. If a program patch is to be applied, it must have
been created by the PCHPGM command.

When a PC is applied, it completely replaces the affected objects in the
licensed program. Either PCs or program patches can be applied temporarily
or permanently. If they are applied temporarily, the replaced object is saved
by the system and can later be restored to the program by the
RMVPGMCHG command. If PCs or program patches are applied
permanently, the replaced object is deleted from the system.

The APYPGMCHG command can be used to apply only immediate PCs, not
deferred PCs. Deferred PCs must be applied through the deferred
programming changes display. This display is explained in the System/38
Operator's Guide.

(!) ©
-(

PGMID pro1ram-ldentifier--IJB library-name ---.@
APYPGMCHG

®

®~•.ALL
{

SBLBCT
PC-number

@ !10 mlll'imum

® ®
OMIT 'f: PC-number

@ !10 maximum

@ >- PGM pro1ram-name.library-name

APY-(•TEMP)­

•PBRM

Optional

@ PGMlD and PGM are mutually exclusive. One or the other must be specified. To code
the followin& parametera poHt-£cm.GUy, you must code them in this order, uein& •N

© for thoee not bein1 epeclfied: PGMlD, LIB, SBLBCT, and OMIT.
If PGMlD ill epeclfied, IJB is required.

@ SBLBCT or OMIT la valid only if PGMID ia apecitled.

Job:B,l P1m:B,l

APVPGMCHG

Command Descriptfons 4-77

APYPGMCHG
PGMID

4-78

PGMID Parameter: Specifies the identifier of the program to which PCs are
to be applied. The PGM parameter cannot be specified if PGMID is
specified. If PGMID is not specified, PGM must be sper.ified.

LIB Parameter: Specifies the name of the library that contains the program
specified by the PGMID parameter. If PGMID is specified, LIB must be
specified.

SELECT Parameter: Specifies which of the previously loaded PCs are to be
applied to the specified program. The OMIT parameter cannot be specified
if SELECT is specified.

*ALL: All the PCs that were loaded are to be applied to the program. If all
PCs cannot be applied, messages are sent indicating the PCs that were not
applied and the reasons they were not applied (for example, prerequisite
PCs had not been applied).

PC-number: Enter the PC identification numbers of the individual
programming changes that are to be applied. A maximum of 50 PC
numbers can be specified.

OMIT Parameter: Specifies that all the loaded PCs are to be applied except
for those specified in this parameter. Enter the PC numbers of the
programming changes that are to be omitted (not applied) when all the rest
are applied. A maximum of 50 PC numbers can be specified. The OMIT
parameter cannot be specified if individual PC numbers are specified in the
SELECT parameter.

PGM Parameter: Specifies the qualified name of the program to which a
program patch is to be applied. This parameter is valid only for applying
program patches. It cannot be specified if PGMID is specified. If PGM is
not specified, PGMID must be specified.

APY Parameter: Specifies whether the PCs or program patches are to be
applied on a temporary basis or permanently applied. Permanently applied
changes cannot be removed; temporary changes can be removed by the
RMVPGMCHG command.

*TEMP: The changes are to be applied as temporary changes.

*PERM: The changes are to be applied permanently.

Examples

APYPGMCHG PGMID(5714SS1) LIB(QSYS)

This command applies all the programming changes currently in the library
QSYS that affect CPF (program number 5714SS1). The changes are
temporarily applied.

APYPGMCHG PGMID(5714SS1) LIB(QSYS) +
SELECT(00003 00008 00012) APY(*PERM)

This command permanently applies PCs 00003, 00008, and 00012 to the
CPF in library QSYS.

APYPGMCHG PGM(PAYPGM3.PAYLIB)

This command temporarily applies the program patch (that was created by
the PCHPGM command) to the program PAYPGM3 in library PAYLIB.

APYPGMCHG
(Examples)

Command Descriptions 4-79

CALL

4-80

CALL (Call Program) Command

The Call (CALL) command invokes an executable program named on the
command, and passes control to it. Optionally, the program or user issuing
the CALL command can pass parameters to the called program. The CALL
command can be used in batch jobs, in interactive jobs, and in both
compiled and interpreted CL. When the called program completes its
execution, it can return control to the calling program by issuing the
RETURN command.

When the CALL command is issued by a CL program, each parameter value
passed to the called program can be a character string constant, a numeric
constant, a logical constant, or a CL program variable. When parameters are
passed, the value of the constant or CL variable is available to the program
that is called. Parameters cannot be passed in· any of the following forms:
lists of values, qualified names, expressions, null parameters (that is, a
parameter whose value is null, specified by *N), or keyword parameters. A
maximum of 40 parameters can be passed to the called program.

When parameters are passed to a program using the CALL command, the
values of the parameters are passed in the order in which they appear on
the CALL command; this order must match the order in which they appear
in the parameter list in the calling program.

Parameters in a called program can be used in place of its variables.
However, no storage in the called program is associated with the variables it
receives. Instead, when a variable is passed, the storage for the variable is
in the program in which it was originally declared. When a constant is
passed, a copy of the constant is made in the calling program and that copy
is passed to the program called.

The result is that when a variable is passed, the called program can change
its value and the change is reflected in the calling program. When a
constant is passed, and its value is changed by the called program, the
changed value is not known to the calling program. So, if the calling
program calls the same program again, it reinitializes the values of
constants, but not variables.

Restriction: The user must have operational rights or one of the data rights
for the program being called.

-(
"11oLIBL

CALL-- PGM pro1ram-name ·)---------------•
.library-name

>- PARM--r parameter-value~
L_ 4-0 maximum __J

Required

Optional

l Job:B,I P1m:B,I

PGM Parameter: Specifies the qualified name of the program to be invoked
by the calling program. (If no library qualifier is given, *LIBL is used to find
the called program.)

PARM Parameter: Specifies one or more parameter values that are to be
passed to the called program. Each of the values can be specified only in
one of the following forms: a character string constant, a numeric constant,
a logical constant, or a program variable.

The type and length of each parameter must match in both the calling and
receiving programs. The number of parameters and the order in which they
are sent and received must also match. If the CALL command is entered
interactively or in noncompiled batch mode, you must ensure that, for each
parameter being passed on the command, its type and length matches that
expected by the called program.

Parameters can be passed and received as follows:

• Character string constants of 32 bytes or less are always passed with a
length of 32 bytes (padded on the right with blanks). If a character
constant is longer than 32 bytes, the entire length of the constant is
passed. If the parameter is defined to contain more than 32 bytes, the
calling program must pass a constant containing exactly that number of
bytes. Constants longer than 32 characters are not padded to the length
expected by the receiving program.

The receiving program can receive less than the number of bytes passed
(in this case, no message is sent). For example, if a program specifies
that 4 characters are to be received and ABCDEF is passed (padded with
blanks in 26 positions), only ABCD is accepted and used by the program.
Quoted character strings can also be passed.

• Decimal constants are passed in packed form and with a length of (15 5),
where the value is 15 digits long, of which 5 digits are decimal positions.
Thus if a parameter of 12345 is passed, the receiving program must
declare the decimal field as (15 5); the parameter is received as
1234500000 {which is 12 345.00000).

• Logical constants are passed as 1 byte with a logical value of '1' or 'O'.

• A program variable can be passed if the call is made from a CL program,
in which case the receiving program must declare the field to match the
variable defined in the calling CL program. For example, if a CL program
defines a decimal variable named &CHKNUM as (5 0), the receiving
program must declare the field as packed with 5 digits total, with no
decimal positions.

CALL
PGM

Command Descriptions 4-81

CALL
(Examples)

4-82

If either a decimal constant or a program variable can be passed to the
called program, the parameter should be defined as (15 5), and any calling
program must adhere to that definition. If the type, number, order, and
length of the parameters do not match between the calling and receiving
programs (other than the length exception noted previously for character
constants), unpredictable results will occur.

The value *N cannot be used to specify a null value because a null value
cannot be passed to another program.

Examples

CALL PGM(PAYROLL)

The program named PAYROLL is called with no parameters being passed to
it. The library list is used to locate the called program.

CALL PAYROLL '1'

The program named PAYROLL is called with a character constant passed as
a quoted string. The program must declare a field of from 1 to 32
characters to receive the constant. The library list is used to locate the
called program.

CALL PAYROLL.LIB1 (CHICAGO 1234 &VAR1)

The program named PAYROLL located in library LIB1 is invoked by the
calling program. The calling program is passing three parameters: a
character string (CHICAGO), a decimal value (1234.00000), and the contents
of the CL variable &VAR1. The attributes of the variable determine the
attributes of the third parameter.

CHGAJE (Change Autostart Job Entry) Command

The Change Autostart Job Entry (CHGAJE) command is used to specify a
different job description for a previously defined autostart job entry in the
specified subsystem description. The subsystem associated with the
subsystem description must be inactive when the change is made.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description.

-(.•LIBL CBGAJE--- SBSD eubeyetem-dHcrlptlon-name)

. library-name

f_•SAJdE ->-JOB Job-name--i f---JOBD •SBSD

Job-.. ooription-n--(.<UBL y
.library-name

..
Required

Optional

j Job:B,I Pcm:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
containing the autostart job entry to be changed. (If no library qualifier is
given, *UBL is used to find the subsystem description.)

JOB Parameter: Specifies the simple name that identifies the autostart job
entry in the subsystem description whose attributes are to be changed.

JOBD Parameter: Specifies the name of the job description to be used for
the job that is initiated by this autostart job entry.

*SAME: The job description specified in the existing autostart job entry is
to be used.

*SBSD: The job description having the same qualified name as the
subsystem description, specified by the SBSD parameter, is to be used for
the initiated job.

qualified-job-description-name: Enter the qualified name of the job
description to be used for the job initiated by this autostart job entry. (If no
library qualifier is given, the library list (*UBL) of the job in which this
CHGAJE command is executed is used to find the job description.) If the
job description does not exist when the entry is changed, a library qualifier
must be specified because the qualified job description name is retained in
the subsystem description.

CHGAJE

Command Descriptions 4-83

CHGAJE
(Example)

4-84

Example

CHGAJE SBSD(PAYROLL.QGPL) JOB(INIT) +
JOBD(MANAGER)

This command changes the JOBD parameter, for the autostart job entry
INIT, to MANAGER. The work entry is in the PAYROLL subsystem
description that is in the QGPL library. The library list is used to locate the
job description MANAGER. When the correct library is determined, the
qualified job description name is placed in the subsystem description for this
autostart job entry.

CHGBSCF (Change BSC File) Command

The Change BSC File (CHGBSCF) command can be used to change certain
attributes of a BSC device file. If nothing is specified, or if *SAME is
specified, that attribute of the file remains unchanged.

Required Optional

-{
.•LIBL

CHGBSCF---FILE BSC-device-file-name

.library-name

•NONE -------------~

•ITB ----------------""'

-f_
•SAME ©

DEV •NONE) "
device-name

>-BLOCK: ----- •NOSEP ---------------...... ----------.

\-----•USER---------------~

-{
•SAME

•SEP

record-separator-character

-f_ •SAME
>-BLKLEN •CALC

block-len1th)
-f_

*SAM3- -f_+SAM3 TRNSPY •NO DTACPR •NO --------• ..
•YES •TBS

-f_•SAM~ -f_*SAME-~
>-TRUNC •NO GRPSEP •NUL~-~----------------· +YES +ETX

-f_.SAM3 SHARE +No--..._----------+ .. +YES

•sAMT -f_•SAM• 3 >-LVLCHK •YBS TBXT 1<BLANJC
•NO 'clnorlptlon.'

Job:B,1 P1m:B,I

CHGBSCF

Command Descriptions 4-85

CHGBSCF
FILE

4-86

FILE Parameter: Specifies the qualified name of the BSC device file whose
description is being changed. (If no library qualifier is given, *LIBL is used
to find the file.)

DEV Parameter: Specifies the name of the System/38 BSC device that is to
be used with the BSC device file to send and receive data records.

*SAME: The device name, if any, specified in the device file description
remains the same.

*NONE: No device name is to be specified. Any device names to be
specified must be specified later in an OVRBSCF command, in another
CHGBSCF command, or in the HLL (high-level language) program that
opens the file.

·device-name: Enter the name of the BSC device that is to be used with this
BSC file. The device name must be known to the system via a device
description.

BLOCK Parameter: Specifies whether the system or the user will block and
deblock transmitted records. With this parameter, you may specify one of ·
the following conditions of record formatting:

no blocking/deblocking: The record format described in the DDS (data
description specifications) is the format for both the record and the block.

user blocking/deblocking: You must provide the BSC controls needed to
describe the record format to the system.

system blocking with record separator characters: You specify the record
separator character used by the system to determine record boundaries
within the block.

system blocking of fixed-length records: The system uses fixed-length
records, and blocks/deblocks records accordingly. The record separator
character is added when a record is transmitted, and removed before the
record is returned to your program.

If you specify a parameter value other than *NONE, or *USER, records will
be blocked as required by the system for output and deblocked on input.
Blocking may be done with or without record separator characters. If
TRNSPY{*YES) is specified, the records may be blocked without record
separator characters, by specifying BLOCK(*NOSEP), or the records may be
transmitted one record at a time by specifying BLOCK{*NONE). By
specifying BLOCK(*USER), you may block records to include the BSC
transparency controls. lfTRNSPY(*NO) is specified, all blocking options are
valid. The record length, when used, is obtained from the device file. A
maximum of 512 records will be blocked for transmitting. When the system
blocks and deblocks the records, record separator characters and control
characters will not be passed to your program as data. (

*SAME: Specifies that the BLOCK parameter value is to remain the same.

*NONE: Specifies that no blocking or deblocking will be done by the
system.

*ITB: Specifies that the records are to be blocked or deblocked, based on
the location of an ITB (intermediate text block) control character. For input
files, a record will be delimited by locating the next ITB character. An ETX
(end of text) or ETB (end-of-transmission block) character will be used as
an ITB character to delimit records. For output files, an ITB character will be
inserted after the record. If that is the last character of the block, the ITB
will be replaced by an ETX or an ETB character.

*IRS: Specifies that the records are to be blocked or deblocked, based on
the location of an IRS (interrecord separator) character. For input files, a
record will be delimited by locating the next IRS character. For output files,
an IRS character will be inserted after the record.

*NOSEP: Specifies that no record separator character is contained within
the transmission block sent to or received from the device. The system will
block and deblock the records according to a fixed record length, as
specified in the DDS (data description specifications) format specifications.

*USER: Specifies that your program is to provide all control characters,
including record separator characters, BSC framing characters, transparency
characters, and so forth, necessary to transmit records.

When transmitting records, BSC device support will scan the buffer for the
last nonblank byte to determine the length of the data to be transmitted.
For this reason, you must ensure that the unused portion of the buffer
contains blanks.

For receiving, you must specify with an ETX control character the end of the
received text. BSC device support will pad the remaining buffer space with
blanks.

This method of blocking allows you to transmit and receive variable-length
data blocks by using a single record format capable of accommodating the
maximum block length. Except for the padding and truncating with blanks,
BSC device support passes the data to and from the system when user
blocking is specified.

If you are using the Remote Job Entry Facility, BLOCK{*USER) must be
specified. For more information on RJEF, refer to the RJEF Programmer's
Guide.

Before selecting this option, you should have a good understanding of the
device and of the BSC support characteristics. For more information on
BSC support characteristics, refer to the IBM System/38 Data
Communications Programmer's Guide, SC21-7825.

CHGBSCF
BLOCK

Command Descriptions 4-87

CHGBSCF
BLKLEN

4-88

*SEP: Specifies that the records are to be blocked or deblocked, based on
the location of a user-specified record separator character. For input files, a
record will be delimited by locating the next record separator character. For
output files, a record separator character will be inserted after the record.

record'."separator-character: Specifies a unique one-byte record separator
character. The record separator character may be specified as two
hexadecimal characters, as in BLOCK(*SEP X'FD'), or as a single character,
as in BLOCK(*SEP @).

The following is a list of BSC control characters that must not be used as
record separators:

EBCDIC

X'01'
X'02'
X'03'
X'10'
X'1D'
X'1F
X'26'
X'2D'
X'32'
X'37'
X'3D'

BSC Control

SOH (Start of header)
STX (Start of text)
ETX (End of text)
OLE (Data link escape)
IGS (Interchange group separator)
ITB (Intermediate text block)
ETB (End-of-transmission block)
ENO (Enquiry)
SYN (Synchronization)
EOT (End of transmission)
NAK (Negative acknowledgment)

You must be certain that none of these control characters are specified in
your data as record separator characters.

BLKLEN Parameter: Specifies the maximum block length (in bytes) for data
to be transmitted. This parameter changes the block length specified in the
program or in the device file.

*SAME: The block length is not to be changed.

*CALC: The block length is to be determined by the system. The length will
be 512 bytes or the length of the largest record in the device file, whichever
is greater.

block-length: The maximum block length of records to be sent when using
this device file. The value must be at least the size of the largest record to
be sent. Valid values are 1 through 8192.

TRNSPY Parameter: Specifies whether the text transparency feature is to be
used when sending blocked records. The text transparency feature permits
the transmission of all 256 EBCDIC character codes; you should use this
feature when transmitting packed or binary data fields.

*SAME: The usage condition of the text transparency is not to be
changed.

"'NO: The text transparency feature is not to be used.

"'YES: The text transparency feature is to be used, which permits the use of
all 256 EBCDIC character codes. *YES is valid only when BLOCK(*NONE),
BLOCK(*NOSEP), or BLOCK(*USER) is specified.

Note: Transparency of received data is determined by the data stream;
therefore, this parameter is not relevant for received data. If TRNSPY(*YES)
is specified with BLOCK(*USER), BSC ignores the transparency indicator
during put operations. You must provide the proper controls with the data
in order to get transparent transmission of data. For example, you must
initially specify the OLE and STX control characters; System/38 provides
the remaining control characters for transparent transmission of data.

DTACPR Parameter: Specifies whether blanks in BSC data will be
compressed for output and decompressed for input. If TRNSPY(*YES) is
specified, or if the line description specifies CODE(*ASCll), DTACPR(*YES)
is ignored.

*SAME: The data compression is to remain as specified.

"'NO: No data compression or decompression is to occur.

"'YES: Data is to be compressed on output and decompressed on input.

TRUNC Parameter: Specifies whether trailing blanks are to be removed from
output records. TRUNC(*YES) cannot be specified if BLOCK(*NOSEP) or
TRNSPY(*YES) is specified.

*SAME: The TRUNC parameter is not to be changed.

*NO: Trailing blanks are not to be removed from output records.

"'YES: Trailing blanks are to be removed from output records.

CHGBSCF
TRNSPY

Command Descriptions 4-89

CHGBSCF
GRPSEP

4-90

GRPSEP Parameter: Specifies a separator for groups of data (data sets,
documents, and so forth).

*SAME: The value specified in the BSC file description is not to be
changed.

*NULLRCD: Specifies that a null record (STXETX) is to be used as a data
group separator.

*ETX: A transmission block ending with the BSC control character ETX is to
be used as a data group separator.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. This parameter changes the wait time
specified in the program or in the device file. (For an expanded description
of the WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description for the
needed objects is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is to be made.

*CLS: The default wait time specified in the class description is to be used
as the wait for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the BSC device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the BSC
device file can be shared with other programs in the same routing step. If
so, when the same file is opened more than once, the ODP can be shared
with other programs in the same routing step that also specify the share
attribute. When an ODP is shared, the programs accessing the file share
such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a write operation in that
program produces the next output record.

*SAME: The value specified in the BSC file description is not to be
changed.

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the
file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

!
\

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file.

This parameter changes the value specified in the program or in the device
file. Level checking cannot be done unless the program contains the record
format identifiers.

*SAME: The value specified in the BSC file description is not to be
changed.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an open exception
occurs and an error message is sent to the program requesting the open.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

TEXT Parameter: Specifies the user-defined text that describes the BSC
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGBSCF FILE(TRANSD1.COMM1) BLOCK(SEP X'EE') WAITFILE(10)

This command changes the record separator character the system uses for
record blocking to hex EE. This command also changes to 10 seconds the
period of time the program will wait for file resources to be allocated. All
other values specified for device file TRANSD1 in library COMM1 remain as
specified in the CRTBSCF command.

CHGBSCF
LVLCHK

Command Descriptions 4-91

CHGCMD

4-92

CHGCMD (Change Command) Command

The Change Command (CHGCMD) command changes some of the
attributes of a command definition .. It can specify a different command
processing program (CPP) to execute the command; it can also change the
mode or where it ean be executed, and the text description for the
command. CL programs that use the command being changed by the
CHGCMD command do not have to be re-created. The CHGCMD command
does not change the parameter descriptions or validity checking information
in the command definition object.

Restrictions: The user must be authorized to use the CHGCMD command
and have object management and operational rights for the command that is
being changed. The CHGCMD command can be used to change only the
attributes of a created CL command (that is, those attributes that were
specified on the CRTCMD command). The CHGCMD command cannot be
used to change attributes of statements, such as command definition
statements.

-(
.+LIBL

CBGCMD-- CMD command-name)~--------~-----·
.library-name

Required
Optional

-(
+SAMB - ®

>- PGM pro1ram-name-(.+LJBL ; }~--------------__.•
.librar,y-name Y

>- VLDCJCR ~==:=-------------..:1~-MODl!l~=§rl!I
_---·--(·•Wd. y = ..

. library-name - 3 mazimum

>-ALLOW

--- •SAMB ----. ._ __ •ALL------'!ll.

•BPGM ---+..-!
+IPGM

•BXBC
15 mllzl.mum

Job:B,I P1m:B,I

CMD Parameter: Specifies the name of the command to be changed. The
command can be a user-defined or IBM-supplied command. (If no library
qualifier is given, *UBL is used to find the command.)

PGM Parameter: Specifies the name of the command processing program
(CPP) that is to execute the command.

*SAME: The current CPP is not to be changed.

qualified-program-name: Enter the name of the CPP that is to process the
command specified in CMD. (If no library qualifier is given, *UBL is used to
find the CPP at command execution time.)

VLDCKR Parameter: Specifies the name of a program that, at compile time,
performs additional validity checking on the parameters in the command to
be executed. The validity checker is invoked to perform additional
user-defined validity checking beyond that specified by the command
definition statements in the source file, and beyond the syntax checking
done on the command when it is compiled.

*SAME: The current validity checking program is to be used for this
command.

*NONE: There is no separate validity checking program for this command.
All validity checking is done by the command analyzer and the command
processing program.

qualified-program-name: Enter the qualified name of the validity checker
that is to check the validity of the command whenever the command is
executed or validity checked (provided variables and expressions are not
used). (If no library qualifier is given, *UBL is used to find the program at
command execution time.)

MODE Parameter: Specifies the modes of operation that the command can
be used in. One or more of the modes can be specified.

*SAME: The modes of operation in which the command can be used
remain the same.

*ALL: The command is to be valid in all the modes of operation:
production, debug, and service.

*PROD: The command is to be valid in the production mode.

*DEBUG: The command is to be valid in the debugging mode.

*SERVICE: The command is to be valid in the service mode.

CHGCMD
CMD

Command Descriptions 4-93

CHGCMD
ALLOW

4-94.

ALLOW Parameter: Specifies where the command can be executed. One or
more of the following options can. be specified.

*SAME: Where the command can be executed is not to be changed.

*ALL: The command is valid in a batch input stream, in a CL program, or
when executed interactively. It can also be passed to the system program
QCAEXEC to be executed.

*BATCH: The command is valid in a batch input stream, external to a
compiled CL program.

*INTERACT: The command is valid when executed interactively, external to
a compiled CL program.

*BPGM: The command can be included in a compiled CL program that
executes in the batch input stream.

*IPGM: The command can be included in a compiled CL program that
executes interactively.

*EXEC: The command can be used as a parameter on the CALL command
and be passed as a character string to· the system program QCAEXEC to be
executed. If *EXEC is specified, either *BATCH or *INTERACT must also be
specified.

TEXT Parameter: Specifies the user-defined text that briefly describes this
command and its function. The text specified here replaces any previous
text. (For an expanded description of the TEXT parameter, see Appendix A.I

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CHGCMD CMD(PAYROLL) VLDCKR(PAYVLDPGM.LIB01)

The validity checking program for the PAYROLL command is the program
named PAYVLDPGM located in library LIB01. All other attributes of the
PAYROLL command remain the same.

(
\""-

/

CHGCMNF (Change Communications File) Command

The Change Communications File (CHGCMNF) command changes attributes
in the file description of a communications device file.

-(
.•IJBL

CBGCMNP-- PILI cammunicaUone-.d.evice-file-name)-------•
.Ubraey-name

Required

Optional

-f_ •BAMB ®
>- DBV •NONI)

LOGON •NONI----~___. ________ __.,..,. -f_ +ILUIB .
101on-character• _/ devioe-nmne

-f_ 11<8.Ull -f_•SAMB -f_ •SAM3 >- LOGOPP •NONB ----J--BLKLBN +CALC) SPAN •TBS --r---
lo1otf-charactera block-len1th •NO

-f_ •SAM3 -f_ •llAMJI 3 >- LVLCH.B: •TBS -->------- TUT •BLAJl'E ---~-
•NO 'dncrlptlon'

1.rob:B,J Psm:B,J

FILE Parameter: Specifies the qualified name of the communications device
file whose description is being changed. (If no library qualifier is given,
*LIBL is used to find the file.)

DEV Parameter: Specifies the name of the System/38 communications
device that is to be used with this device file to send and receive data
records from another system.

*SAME: The device name, if any, specified in the device file description,
remains the same.

*NONE: No device is to be specified. It must be specified later in an
OVRCMNF command, in another CHGCMNF command, or in the HLL
program that opens the file.

device-name: Enter the name of the communications device that is to be
used with this communications file. The device name must already be
known on the system via a device description.

CHGCMNF

Command Descriptions 4-95

CHGCMNF
LOGON

4-96

LOGON Parameter: Specifies the text that is to be transmitted to the primary
logical unit host when the file is opened. The text is limited to 80
characters, and its format is host-dependent.

*SAME: The logon text specified in the communications file description is
not to be changed.

*NONE: No logon text is to be specified.

logon-characters: Enter the text that is to be transmitted to the primary
logical unit host when this file is opened.

LOGOFF Parameter: Specifies the logoff text that is to be transmitted to the
primary logical unit host when the file is closed. The text is limited to 80
characters, and its format is host-dependent.

*SAME: The logoff text specified in the communications file description is
not to be changed.

*NONE: No logoff text is to be specified.

logoff-characters: Enter the text that is to be transmitted to the primary
logical unit host when this file is closed.

BLKLEN Parameter: Specifies, in bytes, the maximum block length for data
that is to be transmitted or received by the communications file.

*SAME: The block length specified in the device file description stays the
same.

*CALC: The device support chooses an optimum value based on the record
sizes in the device file. Device support calculates the smallest multiple of
1792 that is greater than or equal to the largest record in the device file.
The calculated value includes the new line (NL) or form feed (FF) characters
that follow each record when RCDSEP(*YES) is specified.

block-length: Enter a value (256 through 32767) that specifies the maximum
block length of records to be processed by this communications device file.
This value must be at least the size of the largest message expected to be
transmitted or received. Also, it must include the new line (NL) or form feed
(FF) characters that follow each record when RCDSEP(*YES) is specified.

SPAN Parameter: Specifies whether logical records are to be allowed to span
request unit boundaries during output operations.

*SAME: The boundary characteristics of request units are not to be
changed.

*YES: The system places as much data as possible into a request unit.
When this parameter value is specified, a request unit may contain any of
the following:

• One or more complete records

• One or more complete records plus a partial record

• A partial record

*NO: The system places as many complete records as possible into a
request unit, but will never allow a request unit to contain a partial record.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time~ an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description for the
needed objects is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the communications device file.
Valid values are 1 through 32767 (32 767 seconds).

CHGCMNF
SPAN

Command Descriptions 4-97

CHGCMNF
SHARE

4-98

SHARE Parameter: Specifies whether the ODP (open data path) for the
communications device file can be shared with other programs in the same
routing step. If so, when the same file is opened by other programs that
also specify SHARE(*YES), they use the same ODP to the file. If a program
that specifies SHARE(*NO) opens the file, a new ODP is used.

*SAME: The value specified in the communications file description is not
to be changed.

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the ·
file, a new ODP to the file is created and activated.

*YES: An ODP is to be shared with each program in the routing step that
also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*SAME: The value specified in the communications file description stays
the same.

*YES: The level identifiers of the record formats are to be checked when
. the file is opened. If the level identifiers do not all match or they have not

been specified in the program, an open error message is sent to the
program requesting the open.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

(
\

(

\.

TEXT Parameter: Specifies the user-defined text that describes the
communications device file. (For an expanded description of the TEXT
parameter, see Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGCMNF FILE(FILEB) WAITFILE(*IMMED)

This command changes the number of seconds that the program waits for
FILEB resources to be allocated such that the program does not wait; when
FILEB is opened, its file resources must be allocated immediately or an error
occurs.

CHGCMNF
TEXT

Command Descriptions 4-99

CHGCNPA

4-100

CHGCNPA (Change CSNAP Attributes) Command

The Change CSNAP Attributes (CHGCNPA) command changes the CSNAP
(communications statistics network analysis procedure) current short-term
statistics sampling parameters.

CHGCNPA--- lJNB

>-PER1on-{ •SAME -{•CURRENT)-- -{oeuRRDT Y. .
atart-tlme end-time

. atart-date end-date

-{•SAME~ >-INTERVAL . .
·interval

0.1 throu1h U.O

Optional

Job:B,I P1m:B,I

LINE Parameter: Specifies the name(s) of the line(s) CSNAP is to monitor for
short-term statistics. Up to 8 line names may be used, or if *ALL is
specified, all communications lines that are described to the system will
have this set of changed CSNAP parameters applied.

*SAME: CSNAP is to monitor for short-term statistics for the same line(s)
that are currently set in the system. If no lines are being sampled and
*NONE is specified, an error message will be sent.

*NONE: No lines are to be sampled.

*ALL: All communications lines currently described to the system will be
sampled for statistics.

line-description-name: Enter up to 8 line description names to be sampled
byCSNAP.

PERIOD Parameter: Specifies the period of time for which CSNAP start-time
statistics are to be sampled and recorded.

This parameter contains two lists of two values each. Refer to the syntax
diagram for the order in which the values are specified. If this parameter is
not specified, the default of *SAME is used and the period that is set in the
system is used. The period of sampling is defined by using the start-time
and start-date, followed with the end-time and end-date. Under any of the
following conditions, an error message will result:

• If the end-time, end-date is earlier than the start-time, start-date.

• If the end-time, end-date is more than 120 hours later than the
start-time, start-date.

• If the end-time, end-date is more than 3 hours later than the start-time,
start-date and the INTERVAL parameter specifies a sampling interval of
less than one hour.

• If the period and interval values have been reset to zero and new values
have not been entered.

*SAME: The CSNAP short-term statistics values that are currently set in
the system will continue to be used.

"'current: The samplings that are to be taken for the CSNAP short-term
statistics are for the current date, between the specified starting and ending
times.

start-time: Enter the time at which CSNAP short-term statistics are to
begin.

start-date: Enter the date on which the first CSNAP statistic samplings are
to be taken. The starting date specified is not to exceed 5 days (120 hours)
from the present system date.

end-time: Enter the time at which CSNAP statistics are to be ended.

end-date: Enter the date on which CSNAP statistic samplings are to end.
The ending date specified is not to exceed 5 days (120 hours) from the
present system date.

INTERVAL Parameter: Specifies the interval spacing for which CSNAP
recording is to be done. This sampling interval can range from 0.1 hours up
to 24 hours in 0.1 increments. The value should be entered in the form
HH.H {hours and one-ter.th hours).

*SAME: The recording interval of CSNAP statistics is to remain the same
as that currently set in the system.

CHGCNPA
PERIOD

Command Descriptions 4-101

CHGCNPA
(Example)

4-102

Example

CHGCNPA LINE(LN1) PERIOD((133000 *CURRENT) (153000 *CURRENT))+
I NTERVAL(.3)

This corrimanq sets the CSNAP short-term attributes to start recording at
13:30 on today's date, and to end sampling at 15:30 on today's date,
sampling at intervals of 0.3 hour.

f
I

_

CHGCRDF (Change Card File) Command

The Change Card File (CHGCRDF) command changes, in the file description,
one or more of the attributes of the specified card device file.

-(
.*LIBL

CHGCRDP --- PILE card-device-flle-name J------------1>
.library-name

Required

Optional

-f_ *SAME ®
>-DEV •NONE

device-name)

-(
*SAME

HOPPER)----------
hopper-number

-f_ .. a.AMT -(.. s.AME
>- SPOOL •YES OUTQ -(*LIBL y•---•I>

*NO output-queue-name .

. library-name

-f_ *S.AME~
>- PORMTYPE *STD .. ~a J

form-type

-(
*SAME

COPIES)--------•I>
number-of-copies

-f_ *SAME
>- MAXRCDS *NOMAX-----J......,-----------------------1>

maximum-recoI'ds

-(
*SAME ~*SAME f.? >- PILESEP '--- SCHEDULE •JOBEND

number-of-flle-aeparators _/ •PILEEND
"'1MMED

..

-f_*SAM~ SAVE *NO---+---------------

*YES

-f_"'S.AM~ SHARE *NO------------

*YES

-f_ l<SAMB 3
>-TEXT 1<BLANIC ------

'deacription'
JJob:B,I P1m:B,I

FILE Parameter: Specifies the qualified name of the card device file whose
description is being changed. (If no library qualifier is given, *UBL is used
to find the file.)

CHGCRDF

Command Descriptions 4-103

CHGCRDF
DEV

4-104

DEV Parameter: Specifies the name of the card device that is to be used with
this device file to perform input/ output data operations. The device name of
the IBM-supplied card device description is QCARD96.

*SAME: The device name, if any, specified in the device file description
remains the same.

*NONE: No device name is to be specified. It can be specified later on an .
OVRCRDF command or when the card device file is opened.

device-name: Enter the name of the device that is to be used with this card
device file. The device name must already be known on the system via a
device description.

HOPPER Parameter: Specifies from which hopper of the MFCU the cards are
to be fed when this card device file is used. Valid entries are 1 (for the
primary hopper) and 2 (for the secondary hopper).

*SAME: The hopper number specified in the device file description is not
to be changed.

hopper-number: Enter either a 1 or a 2 to indicate which hopper of the
MFCU is to be used.

SPOOL Parameter: Specifies whether the input or output data for the card
device file is to be spooled. If SPOOL(*NO) is specified, the following
parameters in this command are ignored: OUTQ, FORMTYPE, COPIES,
MAXRCDS, FILESEP, SCHEDULE, HOLD, and SAVE.

*SAME: The value specified in the device file description is not to be
changed.

*YES: The data is to be spooled. If this file is opened for input, an inline
data file having the specified name is processed; otherwise, the next
unnamed inline spooled file is processed. (For a discussion of named and
unnamed inline files, see the CPF Programmer's Guide.) If this file is opened
for output, the data is spooled for processing by a card, diskette, or print
writer.

*NO: The data is not to be spooled. If this file is opened for input, the data
is read directly from the card device. If this is an output file, the data is
sent directly to the device to be punched or printed as the output becomes
available.

OUTQ Parameter: Specifies, for spooled output only, the name of the output
queue for the spooled output file.

*SAME: The same output queue specified in the device file description is
to be used.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. (If no library qualifier is given,
*UBL is used to find the queue.) The IBM-supplied output queue that can
be used by the card file is the OPUNCH output queue, stored in the OGPL
library.

FORMTYPE Parameter: Specifies, for spooled output only, the type of form
(cards) on which the card device is to produce the output. The identifiers
used to indicate the type of cards are user-defined and must not be longer
than 10 characters.

*SAME: The type of cards specified in the device file description remains
the same.

*STD: The standard card type used in your installation is to be used for
output from jobs using this card device file .

. form-type: Enter the identifier of the card type to be used for output from
jobs using this card device file. A maximum of 10 alphameric characters can
be specified.

COPIES Parameter: Specifies, for spooled output files only, the number of
copies (card decks) of the output to be produced by the card device.

*SAME: The number of copies specified in the device file description is not
to be changed.

number-of-copies: Enter a value, 1 through 99, that indicates the number of
identical card decks to be produced when this device file is used.

MAXRCDS Parameter: Specifies the maximum number of records that can
be in the spooled output file for this card device file.

*SAME: The maximum number of records specified in the device file
description remains the same.

*NOMAX: No maximum is specified for the number of records that can be
in the spooled file.

maximum-records: Enter a value, 1 through 500000 (500 000), that specifies
the maximum number of records that can be in the spooled output file.

CHGCRDF
OUTQ

Command Descriptions 4-105 .

CHGCRDF
FILESEP

4-106

FILESEP Parameter: Specifies, for spooled output files only, the number of
separator cards to be placed at the beginning of each output card deck,
including between multiple copies of the same output. Each separator card
will contain the file name, file number, job name, the user name, job
number, and the date and time when the job was executed.

*SAME: The number of separator cards specified in the device file
description is not to be changed.

number-of-file-separators: Enter the number of separator cards to be placed
at the beginning of each card deck produced by spooled jobs that use this
card device file. Valid values are 0 through 9. If 0 is specified, at the end of
each output file a message is sent to the message queue specified on the
STRCRDWTR command that started the writer; the message indicates that
the output just produced is to be removed .from the device.

SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a spooling writer.

*SAME: The time specified in the device file description when spooled
output can begin remains the same.

* JOBEND: The spooled output file is to be made available to the spooling
writer only after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the spooling
writer as soon as the file is closed in the program.

*IMMED: The spooled output file is to be made available to the spooling
writer as soon as the file is opened in the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a spooling
writer when it is released by the RLSSPLF (Release Spooled File) command.

*SAME: The value specified in the device file description is not to be
changed.

*NO: The spooled output file is not to be held on the output queue. The
spooled output is made available to a spooling writer based on the
SCHEDULE parameter.

*YES: The spooled output file is to be held until it is released by the
RLSSPLF command.

/

;<
I

\

SAVE Parameter: Specifies, for spooled output files only, whether the
spooled file is to be saved (left on the output queue) after the output has
been produced.

*SAME: The value specified in the device file description is not to be
changed.

*NO: The spooled file data is not to be retained on the output queue after it
has been produced.

*YES: The spooled file data is to be retained on the output queue until the
file is deleted.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description is not to be
changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the card device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the card
device file can be shared with other programs in the same routing step. If
so, when the same file is opened more than once, the ODP can be shared
with other programs in the same routing step that also specify the share
attribute. When an ODP is shared, the programs accessing the file share
such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a read operation in that
program retrieves the next input record. A write operation produces the next
output record.

*SAME: The value specified in the device file description is not to be
changed.

*NO: An. ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the
file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

CHGCRDF
SAVE

Command Descriptions 4-107

CHGCRDF
TEXT

4-108

TEXT Parameter: Specifies the user-defined text that describes the card
device file. (For an expanded description of the TEXT parametar, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CHGCRDF FILE(PCHRPT.ACCREC) COPIES(3)

This command changes the description of the card device file named
PCHRPT stored in the ACCREC library. The number of copies (card decks)
to be punched is changed to three. No other values in the file description
are changed.

CHGCUD (Change Control Unit Description) Command

The Change Control Unit Description (CHGCUD) command changes some of
the attributes in the description of the specified control unit. The control
unit must be varied offline before the attributes can· be changed, except for
the ONLINE and TEXT attributes. The changes become effective when the
control unit is varied online.

®
CHGCUD--- CUD control-unit-description-name------------------+

Required

Optional

__L .SAM3 -f_ "SAME
>-ACTSWNBKU _"No--..._---TELNBR "NONE-----~------------••

"YES telephone-number_/

>-I~LCNN *ANS--"o-----LCLID "NONE----~_,,,__ ______________ • . -f_ *SAME=> -f_ *SAME

"CALL local-identifier_/

>-RMTID
•SAME ~

*NONE -{ ident~·fier
remote-identifier-list "NOID

"ANY
~----32 maximum--------'

-f_ •SAM3 ONLINE •YBS --..------·
"NO

>- LINLST DLYFEAT +NO DEVDLY "SAME;>- -f_*SAMT -(+SAME

llne-~ame +YES number-ot-1econds)-+
8 maximum

-f_ +SAMB 3
TllX'I' 1<BLANB: ------

'de1crlptlon'

l Job:B,I Pam:B,I

CHGCUD

Command Descriptions 4-109

CHGCUD
CUD

4-110

CUD Parameter: Specifies the name of the control unit description that is to
have one or more of its attributes changed.

ACTSWNBKU Parameter: Specifies, for BSC, PU2, or 5251 control units
attached to nonswitched lines only, whether the switched network backup
feature (if the feature is installed) is to be activated or de-activated. This
feature lets you bypass a broken nonswitched connection (leased line) by
converting the line to a switched line operation. (This parameter applies only
if SWITCHED(*NO) and SWNBKU(*YES) are specified in the control unit
description; *SAME must be specified for TYPE(*BSCT).)

*SAME: The value specified in the control unit description is not to be
'changed.

*NO: The backup feature is to be de-activated if it was active.

*YES: The backup feature is to be activated if it is not active.

TELNBR Parameter: Specifies, for remote control units only, the telephone
number of this control unit if it is associated with a switched line, or if it is
associated with a nonswitched line and has the switched network backup
feature. The telephone number (1 to 16 digits long) is dialed at the
System/38 site to establish a connection to this control unit. (This
parameter applies only to switched lines and to nonswitched lines with
SWNBKU(*YES) specified in the control unit description.) The telephone
number is:

• Sent to the autocall unit, if automatic calling is used to establish a
connection to this control unit

• Displayed to the system operator, if manual calling is used to call this
control unit

*SAME: The value specified in the control unit description is not to be
changed.

*NONE: The line is nonswitched, so no telephone number is specified.

telephone-number: Enter the telephone number that is to be used to call this
control unit.

INLCNN Parameter: Specifies, for remote control units only, the method to
be used to make the initial connection over a switched line between
System/38 and the control unit. (This parameter applies to switched lines
and to control units that have the switched networl< backup feature
activated because ACTSWNBKU(*YES) was specified.)

*SAME: The method of initial connection remains the same.

*ANS: The initial connection is made by System/38 when it answers an
incoming call from this control unit.

*CALL: The initial connection is made by a call initiated from System/38.

LCLID Parameter: Specifies the local identifier for identifying System/38 to
the remote BSC control unit.

*SAME: The local identifier is not to be changed.

*NONE: No local identifier is to be specified.

local-identifier: A string of from 2 to 15 characters for identifying
System/38 to a remote BSC control unit. If a 2-character identifier is
specified, both characters must be the same. The identifier cannot contain
BSC control characters.

RMTID Parameter: Specifies a list of identifiers for remote BSC control units.

*SAME: The list of identifiers is not to be changed.

*NONE: Specifies that there are to be no remote identifiers. *NONE is valid
only for BSC control units with SWITCHED(*NO) and SWNBKU(*NO)
specified. This parameter value should not be confused with *NOID, which
is a valid remote identifier.

remote-identifier-list: Enter the identifier or a list of identifiers (32
maximum) used by remote BSC control units. If a 2-character identifier is
specified, both characters must be the same. The identifier cannot contain
BSC control characters. *NOID specifies a null identifier; a null identifier can
be specified by itself or within a list of identifiers. •ANY instructs
System/38 to accept any identifier sent by a remote BSC control unit. If
*ANY is specified, it must be the last or only identifier in the list.

CHGCUD
INLCNN

Command Descriptions 4-111

CHGCUD
ONLINE

4-112

ONLINE Parameter: Specifies whether the control unit is to be varied online
automatically when the Control· Program Facility (CPF) is started. After CPF
is started, the VRYCTLU (Vary Control Unit) command can be used to
modify the status of the control unit.

*SAME: The value specified in the control unit description is not to be
changed.

*YES: The control unit is to be online when CPF is started.

*NO: The control unit is to be offline when CPF is started. The VRYCTLU
command must be used to put the control unit online, making it operational.

LINLST Parameter: Specifies, for switched connections only, a list of line
names that identify the lines that can be connected to this control unit.
(This parameter is valid only if SWITCHED{*YES) or SWNBKU(*YES) is
specified in the associated CRTCUD command. The parameter does not
apply to the 3411 tape control unit or to the work station controller.)

*SAME: The list of line names is not to be changed.

line-name: Enter the names of up to eight lines that can be connected to
this control unit. The same line name can be used more than once. For
each line name specified, a line description by that name must already exist.
The number of line names specified here cannot exceed the number of line
names currently in the line list of this control unit description.

By specifying one or more entries here, the entire existing list is replaced;
that is, if two line names are specified here to change an existing list of four
names, the first two names in the existing list are changed to the specified
names, and the last two are replaced with null lines.

DLYFEAT Parameter: Specifies, for nonswitched lines only, whether periodic
attempts should be made to contact this control unit (to establish a delayed
connection) if the initial attempt to establish a connection is not successful.
(This parameter is valid only for 5251 work station control units.)

*SAME: The value specified in the control unit description is not to be
changed.

*NO: Only one attempt is to be made to establish a connection between the
line and the control unit.

*YES: Periodic attempts are to be made to establish a delayed connection
between the line and the control unit.

r
i
\-:....

DEVOL Y Parameter: Specifies, for BSC and BSCT only, the number of
seconds the control unit will wait while receiving WACK (wait before
transmit positive acknowledgment) or TTD (temporary text delay) sequences
from the remote device before time-out occurs.

*SAME: The time interval the control unit will wait is not to be changed.

number-of-seconds: The number of seconds the control unit will wait before
time-out occurs.

PGMDLY Parameter: Specifies, for BSC and BSCT only, the number of
seconds the control unit will continue sending delay signals to the remote
device because of delays in issuing READ or WRITE requests.

*SAME: The time interval for sending delay signals is not to be changed.

number-of-seconds: The number of seconds the control unit will continue to
send delay signals before time-out occurs.

RJE Parameter: Specifies, for BSC only, whether this control unit description
is to be used by the Remote Job Entry Facility (RJEF).

*SAME: The value specified in the control unit description is not to be
changed.

*NO: This control unit description is not to be used by RJEF.

*YES: This control unit description is to be used by RJEF.

RJEHOST Parameter: Specifies, for BSC only, the subsystem type of the
host to which RJEF is connected.

*SAME: The value specified in the control unit description is not to be
changed.

*NONE: No RJEF host subsystem type is to be specified.

*RES: RJEF is connected to a VS1 /RES subsystem.

*JES2: RJEF is connected to a VS2/JES2 subsystem.

*JES3: RJEF is connected to a VS2/JES3 subsystem.

*RSCS: RJEF is connected to a VM/370 RSCS subsystem.

CHGCUD
DEVDLY

Command Descriptions 4-113

CHGCUD
RJELOGON

4-114

RJELOGON Parameter: Specifies, for BSC only, logon information for the · ···
RJEF host system.

*SAME: The logon information specified in the control unit description is
not to be changed.

*NONE: No logo.n information is to be specified; the control unit is not to
be used for RJ~F;

'RJE-host-signon/logon': Enter up to 80 characters of text enclosed in
apostrophes to be used as signon/logon information for the RJEF host
system.

TEXT Parameter: Specifies the user-defined text that describes the control
unit description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGCUD CUD(CONTROL01) TELNBR(nnnnnnnnnn) +
LINLST(LINE01)

This command changes the control unit description of the control unit
named CONTRL01. The line list now contains the line name LINE01, and
the telephone number is changed to the number represented here by the
letter n (nnn-nnn-nnnn). Because the line list is always changed from the
beginning of the list, LINE01 replaced whatever line name was the first
name in the list.

CHGDBG (Change Debug Mode) Command

The Change Debug (CHGDBG) command changes the attributes of the
debugging environment currently in effect for a job. All of the attributes can
be changed, except which programs are to be debugged. Use the ADDPGM
or RMVPGM commands to add or remove a program from debug mode.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

Optional

___L_•SAME
CBGDBG ---- DFTPGM \....: •NONE---)-----------------+!>

pro1ram-name

-(
!!<SAME -f_ •SAMB3

>- MAXTRC)---- TRCFULL :=..:~:TRC""lt------.
malCimum-trace-statemenh ."..,....

-f_~SAM~ >- UPDPROD •NO-----

•TBS

l Job:B,I P&m:B,I

DFTPGM Parameter: Specifies the name of the program that is to be the
default program in the job's debugging environment. The program specified
here can be used as the default program for any of the other debug
commands that specify *DFTPGM on their PGM parameter.

*SAME: The same program, if any, currently specified as the default
program is to be used.

*NONE: No program is to be specified as the default program. Either the
default program must be named later in the ADDPGM command or another
CHGDBG command, or *DFTPGM cannot be the specified value (or taken as
the default) on any of the other debug commands.

program-name: Enter the simple name of the program that is to be the
default program for the job's debugging environment. The same name (in
qualified form) must already have been specified in the PGM parameter of
the ENTDBG or ADDPGM command.

CHGDBG

Command Descriptions 4-115

CHGDBG
MAXTRC

4-116

MAXTRC Parameter: Specifies the maximum number of trace statements
that the system is to put into the job's trace file before either terminating
tracing or wrapping around (overlaying) on the trace file. When the trace file
contains the maximum specified, the system performs the actions specified
in the TRCFULL parameter.

*SAME: The maximum for the number of trace statements in the file is not
to be changed.

maximum-trace-statements: Enter the maximum number of trace statements
that can be in the trace file.

TRCFULL Parameter: Specifies what is to happen when the job's trace file is
full (that is. it contains the maximum number of trace statements specified
by the MAXTRC parameter).

*SAME: The action to be taken when the trace file is full is not to be
changed.

*STOPTRC: In batch mode. tracing stops but the program continues to
execute. In interactive mode. a breakpoint occurs on the next trace
statement encountered, and control is given to the user.

*WRAP: The trace file is overlaid with new trace statements as they occur.
wrapping from the beginning of the file. The program continues to execute
until finished with no message to indicate that wrapping has occurred. The
trace file will never have more than the maximum specified statements, and
they will be the more recently recorded statements.

UPDPROD Parameter: Specifies whether or not data base files in a
production library can be opened for changes (that is, for adding. deleting,
or updating records in the file) while the job is in debug mode. If not. the
files must be copied into a test library before an attempt is made to execute
a program that uses the files.

*SAME: The previously specified value for this parameter is not to be
changed.

*NO: Data base files in production libraries cannot be changed in debug
mode. However, a data base file can be opened for reading only.

*YES: Data base files in production libraries can be changed while the job is
in debug mode.

Example

CHGDBG MAXTRC(400) TRCFULL(*STOPTRC)

This command changes the maximum number of trace statements that can be
put in the trace file to 400. The tracing is to be terminated when the file is full.

CHGDEVD (Change Device Description) Command

The Change Device Description (CHGDEVD) command changes some of the
attributes in the device description of the specified device. The device
attributes can be changed at any time, regardless of whether the device is
online or offline. With the exception of parameter PRTIMG, the device
attributes become effective immediately. The attribute specified for PRTIMG
becomes effective when the system printer is next used.

Required Optional

®
CHGDBVD -- DBVD devtce-deeoriptlon-name --+-- -f_ •S.AM3 ONLINE ,..YBS ---------....

•NO

0-(•SAME•

>-....., ~ ·~,__.,_._.,,..?
2 maximum

..

0~9.AME >- THRESHOLD '
error-type error-threahold T

2 maximum --~-

•

>- DROP •YES------ PRINTER •NONE ---~--'II~------------+• •S.AM3 -f_ •SAME

•NO device-name _/

-{
•SAME

>- MSGQ -{ •LlBL y'9--------------·
meeaaae-queue-name . ·

.library-name

-{
•SAME

>- PRTIMG -{ •LlBL y'9--------------·
print-lmaae-name .

. llbrary-name

-{ •SAME -f_ •S.AM3 >- PRTFILB -{ .•LIBL y JJ.WBLN oi;YES ---'------+•
print-file-name •NO

.llbrary-name

-f_ •SAME7 -f_ 1<SAME 3 >- CONTN •SEC TBXT 1<BLANJC ___ .,_ __

. •PRIM 'dHcription'

0 .A.ppliee to dlakette and tape devicea only.
l Job:B,I Pem:B,J

CHGDEVD

Command Descriptions 4-117

CHGDEVD
OEVD

4-118

DEVD Parameter:· Specifies the name of the device description that is to have
one or more of its attributes changed. The system console name,
QCONSOLE, cannot be specified in this parameter, because its description
cannot be changed.

ONLINE Parameter: Specifies whether this device is to be varied online
automatically when the Control Program Facility (CPF) is started. After CPF
is started, the VRYDEV (Vary Device) command can be used to modify the
status of the device.

*SAME: The value specified in the device description is not to be changed.

*YES: The device is to be online when CPF is started.

*NO: The device is to be offline when CPF is started. The VRYDEV
command must be used to put the device online, making it operational.

RETRY Parameter: Specifies, for diskette and tape data errors only, the
number of times the system should attempt to recover from a data error
when data is read or written. The system operator is notified if the device
cannot recover from the data error in the specified number of retries.

If a retry value is to be specified, both the error type and retry values .must
be specified. The range of valid values is shown in the following chart:

Applicable Number of Error
Error Type Device Retries Threshold

{D- 40-80 1-100
1 - Read error

Tape 10-20 1-10

2 - Write error Tape 15-30 1-64

*SAME: The number of retries is not to be changed.

error-type number-of-retries: Enter the type code followed by the
maximum number of retries that the system can have to recover from the
specified device data error.

/

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

THRESHOLD Parameter: Specifies, for diskette and tape data errors only, the
error threshold values that are used to determine when an entry for an error
type is to be entered in the error log. The first occurrence of the error type
is always logged automatically. This parameter is used to specify the
number of errors that can occur before an error is logged again.

*SAME: The values specified in the device description are not changed.

error-type error-threshold: Enter the error type code followed by a valid
error threshold value, after which the same error message is to be repeated
in the system error log. The values that are valid for each error type are
shown in the RETRY parameter chart. Both values must be entered for
each type of data error being specified.

DROP Parameter: Specifies, for 5251, 5252, 5291, and 5292 display stations
attached to a control unit that is on a switched line, whether the line is to
be disconnected by the system when all work stations on the line are no
longer being used. When multiple work stations are attached to the same
control unit. the line is disconnected only if: (1) the device description for
this device specifies DROP(*YES) or DROP(*YES) is specified on the
SIGNOFF command when the user signs off at the device; (2) all of the
other display stations connected to the control unit have signed off and are
not in use; and (3) all 5224/5225/5256 Printers attached to the control unit
are not in use.

The value specified in the device description can be overridden by a user
signing off at the device if he specifies the DROP parameter on the
SIGNOFF command.

*SAME: The value specified in the device description is not to be changed.

*YES: The switched line to the control unit to which this device is attached
is to be disconnected when this device and all the other attached devices
are no longer in use.

*NO: The switched line is not to be disconnected from the control unit
when all of its attached devices are no longer in use.

PRINTER Parameter: This parameter is valid only to change the device
description of a 5251, 5252, 5291, or 5292 display station. It specifies the
device name of the 5224/5225/5256 Printer to be associated with the
display station. (The printer and the display station must be attached to the
same control unit.) The device description of the printer named in this
parameter must have already been created in a CRTDEVD command and
must currently exist on the system.

Note: A printer attached to a remote work station must have the Expanded
Function feature to support this parameter.

*SAME: The same 5224/5225/5256 Printer, if any, is to be associated
with this display station.

CHGDEVD
THRESHOLD

Command Descriptions 4-119

Page of 8~21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

CHGDEVD
MSGQ

4-120

*NONE: No 5224/5225/5256 Printer is to be associated with this display
station.

device-name: Enter the name of the 5224/5225/5256 Printer (that is, the
same name as specified in the device description created for this printer) to
be associated with this display station. Both the printer and the display
must be attached to the same control unit.

MSGQ Parameter: Specifies, for 5224/5225/5256 Printers only, the message
queue to which operational messages for this device are to be sent.

*SAME: The message queue specified in the device description is not to
be changed.

qualified-message-queue-name: Enter the qualified name of the message
queue to which operational messages are to be sent. (If no library qualifier
is given, *UBL is used to find the queue.)

PRTIMG Parameter: Specifies, for a system printer device description only,
the name of the print image that is to be the standard print image for the
3203, 3262, or 5211 Printer.

*SAME: The print image specified in the device description is not to be
changed.

qualified-print-image-name: Enter the qualified name of the print image for
the printer. (If a library qualifier is not given, *UBL is used to find the print
image.)

PRTFILE Parameter: Specifies an alternate printer to use when no associated
work station printer exists, or when an error occurs during an attempt to use
the work station printer.

*SAME: The printer device file specified in the device description is not to
be changed.

qualified-print-file-name: Enter the name of the printer device file that is to
perform default system printing. (If no library qualifier is given, *UBL is
used to find the device file.)

ALWBLN Parameter: Allows users to suppress the (software-controlled)
blinking cursor.

*SAME: The value in the ALWBLN parameter is not to be changed.

*YES: Allows the cursor to blink for 5251, 5252, 5291, or 5292 display
devices.

*NO: The blinking cursor is to be suppressed.

CONTN Parameter: Specifies which BSC station is primary and which is
secondary, in order to resolve contention for BSC point-to-point and
multipoint lines.

*SAME: The assignment of rank to the BSC stations is not to be changed.

*SEC: Specifies that the local System/38 is the secondary station and will
yield to the other station when line contention occurs.

*PRIM: Specifies that the local System/38 is the primary station.

TEXT Parameter: Specifies the user-defined text that describes the device
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGDEVD DEVD(DISP01) PRINTER(PRINTMASK1)

This command changes the device description of the display station named
DISP01 to include a printer named PRINTMASK1.

CHGDEVD
CON TN

Command Descriptions 4-121

CHGDFUDEF

4-122

CHGDFUDEF (Change DFU Definition) Command

The Change DFU Definition (CHGDFUDEF) command begins a prompting
sequence for interactive modification of a DFU application. Your responses
to the prompts are used to create a new application or to replace the
original application.

The Data File Utility is part of the IBM System/38 Interactive Data Base
Utilities Program Licensed Program Product, Program 5714-UT1. For more
information on the Data File Utility, refer to the IBM System/38 DFU Utility
Reference Manual and User's Guide, SC21-7714.

-(
.•LIBL

CHGDFUDEF-· --APP application-name)-------...,.-----·
.library-name

Required

Optional

~•APP
>-TOAP -(. QGPL Y'" ______________ .,

application-name ..

. library-name

-(
•SAME

>-FILE . . -(•LIBL Y'" ______________ .,
data-bue-tiie-name '

>-OPTION

•NOSRC

•NOSOURC.B

•SRC

•SOURCB

.library-name

-(
•NOLIS:x •NODUM~ ®

GEN OPT '------••
•LIST •DUMP

>- USRPRF PUBAUT •ALL TEXT •BLANE: ----".._--(
•USBR)-- -f_ •NORMAL=>- -f_ •SAMB 3
•OWNER •NONE 'deecription'

Job:! P1m:I

APP Parameter: Specifies the qualified name of the application being
changed. (If no library name is given, *UBL is used to find the application.)

TOAPP Parameter: Specifies the qualified name of the application in which
the changed application is to be stored.

*APP: Specifies that the original application is to be replaced by the
changed application.

application-name: Enter the name of the application in which the changed
application is to be stored. The application definition specified in the APP
parameter will remain as originally defined, and can be executed as originally
defined. (If no library name is given, the new application is stored in the
general-purpose library, QGPL.)

FILE Parameter: Specifies the name of an existing data base file with record
formats that will be referred to by the application you are changing. The file
is defined by DDS (see the CPF Reference Manual-DDS). The file contains
record formats that will be referred to by the application you are changing.

*SAME: The data base file specified in the original application definition is
to be used.

data-base-file-name: Specify the name of an existing data base file to be
referred to during execution of the application. (If no library qualifier is
specified, *UBL is used to find the file.)

OPTION Parameter: Specifies whether a listing of the UDS (utility definition
source) statements is to be printed, which may be helpful if problems occur.

*NOSRC or *NOSOURCE: Specifies that DFU is not to print a listing of
the UDS. The *NOSRC and *NOSOURCE values are equivalent.

*SRC or *SOURCE: Specifies that DFU is to print a listing of the UDS. The
*SAC and *SOURCE values are equivalent.

GENOPT Parameter: Specifies whether the IDU program listings for your
application are to be produced. These listings may be helpful if a problem
occurs.

*NOLIST: Specifies that an internal representation of the application
program is not to be printed.

*LIST: Specifies that an internal representation of the application program is
to be printed.

*NODUMP: Specifies that the application program template is not to be
printed.

*DUMP: Specifies that the application program template is to be printed.
*DUMP will provide the template only if *LIST has been specified.

CHGDFUDEF
TOAPP

Command Descriptions 4-123

CHGDFUDEF
USRPRF

4-124

USRPRF Parameter: Specifies a user profile under which the application is to
be executed. This parameter allows a programmer to define a OFU
application for someone who does not have full authority over the data base
file that the application reads.

*USER: The user profile of the application user is in effect when the
application is executed.

OWNER: The user profiles of both the application owner and the application
user are in effect when the application is executed.

When you create or change an application that is to be used by someone
else, you must authorize the user for the use of the application and any
objects associated with the application. You can grant each user specific
rights to such objects, or by specifying USRPRF(*OWNER) when an
application is created or changed, you can permit a user to temporarily
assume your authority to use objects associated with the application.

PUBAUT Parameter: Specifies what authority over the application is extended
to all system users. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: All system users can execute or read the application, but not
all users can delete the application.

*ALL: All system users have complete authority over the application.

*NONE: All users but the owner are restricted from using the application.
Of course, the owner can grant rights to other users.

TEXT Parameter: Specifies a brief description of the changed application.

*SAME: The description of the application is to remain as originally
defined.

*BLANK: There is to be no description of this. application.

'description': Enter no more than 50 characters, enclosed in apostrophes, to
describe the changed application.

I
'

Example

CHGDFUDEF APP(TEST1) TOAPP(TEST2) +
TEXT(' Create application for TEST2, based on TEST1 ')

This command begins a prompting sequence which allows you to create an
application named TEST2 in library OGPL based on application TEST1 in
your library list. Your responses to the prompts can result in changes to the
TEST2 application attributes (which differ from. the based-on application
TEST1). Application TEST1 is not changed in any way. Application TEST2
uses data from the data base file specified for application TEST1. No UDS
or internal representations of application TEST2 will be printed. Any system
users can execute or read TEST2, but only the owner of the application can
delete it.

CHGDFUDEF
(Example)

Command Descriptions 4-125

CHGDKTF

4.-126

CHGDKTF (Change Diskette Fite) Command

The Change Diskette File (CHGDKTF) command changes. in the file
description, one or more of the attributes of the specified diskette device
file.

.•LIBL
CBGDUP1'----PILB dtekette-dev:loe-ftle-num)-----------·

.library-name
Required

Optional

>-DBV1:::: . ~®.VOL~•=-----:;;--'-------------•"
_ dntoe-name J wlwne-identift:

· DO mllldmum

>-LAB +NONB----~--1,.._-------------------------, n-f_+SAMB

data-file-label_/

•SAMB •81 +812 •PIRST •LAST
Select one of the follcnrinc: ~•SAMB ~ •SAMB@-

>-LOC- +H12 •82 +823 +WRAP
+H1 •83 •8123 +CUUBll'T .ONLY
•H2 etartinc-diekette endtna-dtekette

-poeition -poeition

>-BXCHTYPB~:::: 1 OOD•_r:::::L-CRTDm--'"=---,111.
~"8 ~•ASCII:~ ~creation-date_/
•I

..

-{
+SAMB -f_+SAMB

>-OUTQ •LIBL llilBCDS •NOHAX ..
.output-queue-name-{· Y . mu:lmum-reoorde)

• Hbra17-name

+SAHB ~ -f_•SAM:3 -f_+8All3 >- SCBBDULB 9JOBBND BOLD +NO -----SA.VB +NO ---------·
+PILBBND +YBS +TIIS
+IHHBD

+SAKB
>-WAITPILB •IHIOID'

=ber-of-eeconde _/

-f_+SAMB~ -f_+SAlO 3 SHAU +NO BXT •BLAKI ------
+YBB 'dnoription'

l Job:B,I Pcm:B,I

FILE Parameter: Specifies the qualified name of the diskette device file
whose description is being changed. (If no library qualifier is given, *UBL is
used to find the file.)

DEV Parameter: Specifies the name of the diskette device that is to be used
with this device file to perform I I 0 data operations. The device name of the
IBM-supplied diskette device description is QDKT.

*SAME: The device name, if any, specified in the device file description
remains the same.

*NONE: No device name is to be specified. It can be specified later on an
OVRDKTF command or when the diskette device file is opened.

device-name: Enter the name of the device that is to be used with this
diskette device file. The device must already be known on the system via a
device description.

VOL Parameter: Specifies one or more volume identifiers of diskettes (either
in magazines or slots) to be used by the diskette device file. The diskettes
(volumes) must be mounted on the device in the same order as the
identifiers are specified here. The identifiers are matched, one by one, with
the diskette locations specified in the LOC parameter. (For an expanded
description of the VOL parameter, see Appendix A.)

*SAME: The volume identifiers specified in the device file description
remain the same.

*NONE: No diskette volume identifiers are specified. They can be supplied
before the device file is opened, either in the OVRDKTF (or another
CHGDKTF) command or in the HLL program. If not specified, no volume
identifier checking is performed.

volume-identifier: Enter the identifiers of one or more volumes in the order
in which they are to be mounted and used by this device file. Each identifier
can have 6 alphameric characters or fewer.

CHODKTF
FILE

Command Descriptions 4-127

CHGDKTF
LABEL

4-128

LABEL Parameter: Specifies the data file label of the data file on diskette that
is to be used with this diskette device file. For input files (diskette input to
system), this label specifies the identifier of the file that exists on the
diskette. For output files (system output to diskette), it specifies the
identifier of the file that is to be created on the diskette. (For an expanded
description of the LABEL parameter, see Appendix A.)

*SAME: The data file label specified in the device file description is not to
be changed.

*NONE: No data file label is to be specified. It must be supplied .before the
device file is opened, either in the OVRDKTF (or another CHGDKTF)
command or in the HLL program.

data-file-label: Enter the identifier (8 characters maximum) of the data file to
be used with this diskette device file. (See Appendix A for details.)

LOC Parameter: Specifies which diskette location(s) in the magazines or slots
are to be used by this diskette device file. Three values are needed: (1) the
unit type and location, (2) the starting diskette position, and (3) the ending
diskette position in the unit. (For an expanded description of the LOC
parameter, see. Appendix A.)

Unit Type and Location: The first of the three values in the LOC parameter
specifies which unit and location on the diskette magazine drive are to be
used by the device file for diskette input/ output. Enter one of the following
values for the unit type and location (the valid starting and ending positions
for each unit type are also listed):

Unit Type/location

*M12
*M1
*M2
*51
•s2
*S3
•s12
*S23
*S123

Diskette Starting and
Ending Position

1 through 10
1 through 10
1 through 10
1
2
3
1 through 2
2 through 3
1 through 3

*SAME: The unit location specified in the device file description that is to
be used with this device file remains the same.

location: Enter one of the following values to specify the unit type and
location on the diskette magazine drive to be used with this device file:
*M12, *M1, *M2, •s1, •s2, *S3, •s12, *S23, or *S123. (See Appendix A
for their meanings.)

\

Starting Diskette Position: The second of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette used first by the device file. Enter one of
the following values to specify the starting diskette positions:

*SAME: The same starting diskette position specified in the device file
description is to be used.

*FIRST: The first diskette position in the location contains the diskette to be
used first in the read or write operation. It is the leftmost diskette in the
magazine(s) or slots specified. (See Appendix A for details.)

*CURRENT: The diskette in the location at which the diskette magazine
drive is currently positioned is to be used.

starting-diskette-position: Enter the number of the diskette position (1
through 10) in the magazine or manual slot that contains the first diskette to
be used.

Ending Diskette Position: The third of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette used last by the device file. Enter one of
the following values to specify the ending diskette position:

*SAME: The same ending diskette position specified in the device file
description is to be used.

*LAST: The last diskette position in the location contains the diskette to be
used last in the read or write operation. It is the rightmost diskette in the
magazine(s) or slots specified. (See Appendix A for details.)

*WRAP: If the end of the last diskette in the location is reached before the
end of the data file is reached, a message is sent to the system operator to
mount another magazine or diskette to continue. (See Appendix A for
details and restrictions on using *WRAP.)

*ONLY: Only the diskette position specified by the second value is to be
used, and used only once.

ending-diskette-position: Enter the number of the diskette position (1
through 10) in the magazine or manual slot that contains the last diskette to
be used.

CHGDKTF
LOC

Command Descriptions 4-129

CHGDKTF
EXCHTYPE

4-130

EXCHTYPE Parameter: Specifies, for diskette output files only, the exchange
type to be used by the device file when the system is writing diskette data.
(For an expanded description of the EXCHTYPE parameter, refer to
Appendix A.)

*SAME: The exchange type specified in the device file description is not to
be changed.

*STD: The basic exchange format will be used for a type 1 or a type 2
diskette. The H exchange type will be used for a type 20 diskette.

*BASIC: The basic exchange type will be used.

*H: The H exchange type will be used.

*/: The I exchange type will be used.

CODE Parameter: Specifies the type of character code to be used when
diskette data is read or written by a job that uses this device file.

*SAME: The type of character code specified in the device file description
is not to be changed.

*EBCDIC: The EBCDIC character code is to be used with this device file.

*ASCII: The ASCII character code is to be used with this device file.

CRTDATE Parameter: Specifies when the diskette data file was created on
diskette. The creation date parameter is valid for input data files only. If the
creation date written on the diskette does not match the date specified for
the device file when it is opened, an error message is sent to the user
program.

*SAME: The creation date of the diskette data file specified in the device
file description remains the same.

*NONE: The creation date of the diskette data file is not to be checked.

creation-date: Enter the creation date of the diskette data file to be used by
this device file. The date must be specified in the format defined by the
system values ODATFMT and ODATSEP. However, the specified date is
put in the diskette label as yymmdd.

EXPDATE Parameter: Specifies the expiration date of the diskette data file
used by this device file. The data file is protected and cannot be written
over until the day after the specified expiration date.

*SAME: The expiration date of the data file specified in the device file
description remains the same.

*NONE: The data file is protected for only one day, the day it is created on
the diskette. ·

*PERM: The data file is to be protected permanently. The date written on
the diskette is 999999.

expiration-date: Enter the date after which the data file expires. The date
must be specified in the format defined by the system values ODATFMT
and ODATSEP. However, the specified date is put in the diskette label as
yymmdd.

SPOOL Parameter: Specifies whether the input or output data for the diskette
device file is to be spooled. If SPOOL(*NO) is specified, the following
parameters in this command are ignored: OUTO, MAXRCDS, SCHEDULE,
HOLD, and SAVE.

*SAME: The value specified in the device file description is not to be
changed.

*YES: The data is to be spooled. If this file is opened for input, an inline
data file having the specified name is processed; otherwise, the next
unnamed inline spooled file is processed. (For a discussion of named and
unnamed inline files, see the CPF Programmer's Guide.) If this is an output
file, the data is spooled for processing by a card, diskette, or print writer.

*NO: The data is not to be spooled. If this file is opened for input, the data
is read directly from the diskette. If this is an output file, the data is written
directly to the diskette as it is processed by the program.

OUTQ Parameter: Specifies, for spooled output only, the name of the output
queue for the spooled output file.

*SAME: The same output queue specified in the device file description is
to be used.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. (If no library qualifier is given,
*LIBL is used to find the queue.) The IBM-supplied output queue that can
be used by the diskette file is the ODKT output queue, stored in the OGPL
library.

CHGDKTF
EXPDATE

Command Descriptions 4-131

CHGDKTF
MAXRCDS

4-132

MAXRCDS Parameter: Specifies the maximum number of records that can
be in the spooled output file for this diskette device file.

*SAME: The maximum number of records specified in the device file
description remains the same.

*NOMAX: No maximum is specified for the number of records that can be
in the spooled output file.

maximum-records: Enter a value, 1 through 500000 (500 000), that specifies
the maximum number of diskette records that can be in the spooled output
file.

SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a writer.

*SAME: The time specified in the device file description when spooled
output can begin remains the same.

* JOBEND: The spooled output file is to be made available to the writer only
after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the writer as
soon as the file is closed in the program.

*IMMED: The spooled output file is to be made available to the writer as
soon as the file is opened in the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a writer
when it is released by the Release Spooled File (RLSSPLF) command.

*SAME: The value specified in the device file description is not to be
changed.

*NO: The spooled output file is not to be held by the output queue. The
spooled output is made available to a writer based on the SCHEDULE
parameter value.

*YES: The spooled output file is to be held until it is released by the
RLSSPLF command.

\

SAVE Parameter: Specifies, for spooled output files only, whether the
spooled file is to be saved (left on the output queue) after the output has
been produced.

*SAME: The value specified in the device file description is not to be
changed.

"'NO: The spooled file data is not to be retained on the output queue after it
has been produced.

"'YES: The spooled file data is to be retained on the output queue until the
file is deleted.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description is not to be
changed.

"'IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

"'CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated. Valid values are 1 through 32767
(32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
diskette device file can be shared with other programs in the same routing
step. If so, when the same file is opened more than once, the ODP can be
shared with other programs in the same routing step that also specify the
share attribute. When an ODP is shared, the programs accessing the file
share such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a read operation in that
program retrieves the next input record. A write operation produces the next
output record.

*SAME: The value specified in the device file description is not to be
changed.

"'NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the
file with this attribute, a new ODP to the file is created and activated.

"'YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

CHGDKTF
SAVE

Command Descriptions 4-133

CHGDKTF
TEXT

4-134

TEXT Parameter: Specifies the user-defined text that describes the diskette
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGDKTF FILE(PRNTRPT.ACCREC) SPOOL(*NO)

This command changes the description of the diskette device file named
PRNTRPT stored in the ACCREC library. The device file now causes all 1/0
operations between the program and the diskette to be direct (without
spooling). All the other values in the file description are not changed.

CHGDSPF (Change Display File) Command

The Change Display File (CHGDSPF) command changes, in the file
description, one or more of the attributes of the specified display device file.

-{
.•LIBL

CHGDSPF---FILE dlaplay-device-flle-name)-----------•
.llbrary-name

s::----~-, ® -{•SAME
>-DEV •REQUESTER MAXDEV)

number-of-devices

device-name
50 maximum

Required

Optional

..

>-RSTDSP >ttNO DFRWRT >ttNO WAITFILE >ttIMMED} I> -f_
•SAM=>- -f_•S.AM3- ~>ttS.AME
>ttYES >ttYES •CLS

number-of-seconds_/

-f_
>ttS.AM~ -f_ >ttS.AM3 >-SHA.RE >ttNo--...._---LVLCHK >ttYES--'l._-------------~I>

•YES •NO

-f_
l<SAMB 3 >- TBXT 1<BLAlllt __ ___,,____

'dHoription'

l Job:B,I Pam:B,I

FILE Parameter: Specifies the qualified name of the display device file whose
description is being changed. (If no library qualifier is given, *UBL is used
to find the file.)

DEV Parameter: Specifies the names of one or more display devices that are
to be used with this display device file to pass data records between the
users of the display devices and their jobs.

*SAME: The device names specified in the device file description are not
changed.

*NONE: No device name is to be specified. It can be specified later on an
OVRDSPF command, another CHGDSPF command, or in the HLL program
that opens the file.

*REQUESTER: The device that requests the program that uses this device
file is the device that is assigned to the file.

CHGDSPF

Command Descriptions 4-135

CHGDSPF
MAXDEV

4-136

device-name: Enter the names of one .or more display devices that are to be
used with this device file to pass data records between the users of the
devices and the system. Each device name must already be known on the
system via a device description. *REQUESTER can be specified as one of
the names.

The list of names specified here replaces the previous list, if any, contained
in the file description. A maximum of 50 device names (including
*REQUESTER, if it is specified) can be specified, but the total number
cannot exceed the number specified in the MAXDEV parameter when the
file is opened.

MAXDEV Parameter: Specifies the maximum number of display devices that
can be connected to the display device file at the same time, while the file
is open. The names of the devices can be specified in the DEV parameter
of this command, in an OVRDSPF command, or in the HLL program that
opens the file.

*SAME: The maximum number of display devices specified in the device
file description remains the same.

number-of-devices: Enter a value, 1 through 255, that specifies the
maximum number of devices that can be connected to this display file at the
same time.

RSTDSP Parameter: Specifies whether data being displayed at a display
device by this display file is to be saved at the time the file is suspended
(temporarily inactive) so that a different display file can be used to display
different data on the same device. If the data for this file is saved, it is
restored to the screen of the device when the file is used again.

This parameter must be considered if, within the same routing step, any
program can be called that uses a different display file for the same device.
If all programs that use this file always display new data when control is
returned to them, the display data for this file need not be saved for any of
them; RSTDSP{*NO) can be specified or assumed. If any program using
this file requires that the contents of the screen be exactly the same as it
was before it called another program, RSTDSP{*YES) must be specified. If
certain display fields are to remain unchanged while others are erased or
rewritten, or if the program containing the file can be interrupted (for
messages to be displayed, for example), you should specify RSTDSP{*YES).
(For additional information about suspended display files, see the CPF
Programmer's Guide.)

*SAME: The value specified in the device file description is not to be
changed.

*NO: The data being displayed by this file is not to be saved when the file
is suspended. None of the programs using this file need the data restored
when control is returned to them.

*YES: The data being displayed when the file is suspended is to be saved
so it can be restored to the screen of the device when the file is used again.

DFRWRT Parameter: Specifies that the writing of data is to be deferred until
it can be written out with other data when a read request is made. Control
is returned to the program immediately after the data is received. This may
result in improved performance.

*SAME: The value specified in the device file description is not to be
changed.

*NO: After a write operation, the user program does not regain control until
the I I 0 is completed (with the data displayed and the I I 0 feedback
information available).

*YES: When the program issues a write request, control is returned after
the buffer is processed. The data might not be displayed immediately; the
actual display of the data might take place later when a read or combined
read/write operation is performed. The buffer is then available to be
prepared for the next read or combined read/write operation.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources (including at least one of the display devices) cannot be
allocated in the specified wait time, an error message is sent to the
program. (For an expanded description of the WAITFILE parameter, see
Appendix A.)

*SAME: The wait time specified in the device file description is not to be
changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the device file. Valid values are
1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
display device file can be shared with other programs in the same routing
step. If so, when the same file is opened more than once, the ODP can be
shared with other programs in the same routing step that also specify the
share attribute. When an ODP is shared, the programs accessing the file
share such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a read. operation in that
program retrieves the next record. A write operation produces the next
output record.

*SAME: The value specified in the device file description is not to be
changed.

CHGDSPF
DFRWRT

Command Descriptions 4-137

CHGDSPF
LVLCHK

4-138

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a progran. opens the
file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check, (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*SAME: The value specified in the device file description is not to be
changed.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not all match, an error message
is sent to the program requesting the open.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

TEXT Parameter: Specifies the user-defined text that describes the display
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGDSPF FILE(ORDENT) DEV(WS1 WS2 WS3) MAXDEV(3)

This command changes the description of the display device file named
ORDENT. The file is located through the library list. The devices to be used
with this file are the work stations WS1, WS2, and WS3. All three of the
devices can be used concurrently with this display file.

CHGDTA (Change Data) Command

The Change Data (CHGDTA) command allows you to add, change, delete,
or display records in an existing data base file.

The Data File Utility is part of the IBM System/38 Interactive Data Base
Utilities Licensed Program, Program 5714-UT1. For more information on the
Data File Utility, refer to the IBM System/38 DFU Reference Manual and
User's Guide, SC21-7714.

Note: The first member of the file named when you defined the application
is processed unless you specify a different member.

-(
.•LIBL ®

CHGDT.A:-APP application-name)--------------•
.library-name

Required
Optional

-(
•SAMB -(•PIRST

>-PILE -(. •LIBL y--MBR .)-----• ..
rue-name • . member-name

.library-name

>-VERIFY_r•HO)-RUNID_r•BLANK J---
+YBS --''run-identifier'

1Job:I P1m:I

APP Parameter: Specifies the qualified name of the DFU application
controlling the interactive update of data. (If no library qualifier is specified,
*LIBL is used to find the application.)

FILE Parameter: Specifies the name of the data base file you want to
process.

*SAME: DFU will use the same file used to define the application.

file-name: Enter the qualified name of the data file you want DFU to
process. The file should have at least one record format name in common
with the file used to define the application. (If no library name is specified,
*LIBL is used to find the file.)

MBR Parameter: Specifies which member in the file you want to process.

*FIRST: DFU will process the first member of the file.

member-name: Enter the name of the member you want DFU to process.

CHGDTA

Command Descriptions 4-139

CHGDTA
VERIFY

4-140

VERIFY Parameter: Indicates whether the updates are intended to verify the
contents of existing data records.

*NO: Adds, changes, or deletes are not to be compared to existing data.

*YES: Data being reentered is to be compared with previously entered data.
Discrepancies are highlighted with reverse image characters on the display
screen.

RUNID Parameter: Specifies a character string of eight characters or less that
can be used to set an initial value in each data base record added during a
given processing session. Either an alphameric field must be defined in the
DFU application with an initial value, or *RUNID must be specified.

*BLANK: No run identifier is to be specified.

'run-identifier': Enter a character string to identify the records added during
this session.

Example

CHGDTA APP(DATA.LIB1) FILE(FILEA) RUNID('NEWSALES')

This command uses the application named DATA in library LIB1 to process
the file named FILEA. Every record added will be identified by the
characters NEWSALES.

CHG OT AARA (Change Data Area) Command

The Change Data Area (CHGDTAARA) command changes the value of the
specified data area that is stored in a library. This command does not
change the data attributes nor any of the object attributes of the data area.
The new value must have the same type and a length less than or equal to
the data area length or the specified substring length.

For character data areas, a substring of the data area may be changed
without affecting the rest of the data area. This substring is defined by
specifying the starting position and the length of the substring. In this case,
the new value must have a length less than or equal to the substring length.

When the CHGDTAARA command is executed, the data area is locked to
the program during the change operation so that commands in other jobs
cannot change or destroy it until the operation is completed. If the data
area is shared with other jobs and it is updated in steps involving more than
one command in a job, the data area should be explicitly allocated to that
job until all the steps have been performed. The data area can be explicitly
allocated with the ALCOBJ command.

Restriction: To use this command, you must have operational and update
rights for the data area being changed and read rights for the library in
which it is stored.

Required

/ -(.•LIBL
CHGDTAARA-DTAARA data-area-name)----------.... .,

.library-name

-(
ULL

>-- [CD] - VALUE new-value --
(starting-position length)~

CD Starting-position and length values are valid only for character data areas.

CHGDTAARA

.-------1 Job:B,I P1m:B,I

Command Descriptions 4-141

CHGDTAARA
DTAARA

4-142

DTAARA Parameter: Specifies the qualified name of the data area whose
value is to be changed. (If no library qualifier is given, *UBL is used to find
the data area.) Optionally specifies, for character data areas only, the
starting position and length of the character string that is to be changed in
the data area.

*ALL: The entire data area is to be changed. The length, if specified, must
not be less than the length of the VALUE specified.

starting-position length: Enter the starting position and the length of the
character string that is to be changed in the data area. Starting position and
length must be specified together if used; neither may be specified alone.
The beginning and end of this string must be within the data area. If the
length is greater than the length specified on the VALUE parameter, padding
on the right with blanks will occur.

VALUE Parameter: Specifies the new value to be stored in the data area.
Enter a value that is valid for the data attributes specified in the data area's
description. If TYPE(*CHAR) or TYPE(*LGL) was specified when the data
area was created and the value specified here is numeric, the value must be
enclosed in apostrophes. If TYPE(*DEC) was specified, the value must not
be enclosed in apostrophes.

Examples

CHGDTAARA DTAARA(MYDATA.MYLIB) VALUE(GOODNIGHT)

This command changes the value of the data area named MYDATA in
library MYLIB to GOODNIGHT. The data area must be for character data
and must be 9 or more characters long.

CHGDTAARA PAYROLLSW 'O'

This command changes the logical value of the data area named
PAYROLLSW to zero. The library search list is used to locate the data area.

CHGDTAARA DTAARA(MYDATA.MYLIB (5 4)) VALUE('TWO')

This command changes characters 5 through 8 of the data area MYDATA.
Because the new value is shorter than the substring, it will be padded with
a blank. If MYDATA is a character data area that previously contained 'ONE
TOOOTHREE', MYDATA will now contain 'ONE TWO THREE'.

CHGFCT (Change Forms Control Table) Command

The Change Forms Control Table (CHGFCT) command changes attributes in
an existing forms control table (FCT).

Restriction: To use this command, you must have operational rights for the
FCT and read rights for the library in .which the FCT is stored.

The Change Forms Control Table (CHGFCT) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

-(
.l<LIBL ®

CHGFCT--PCT- forms-control-table-name)---------+.,
.library-name

Bequl.recl

Optional

-f_ •SAMB
>- TEXT •BLANJC

'dHcripUon')

l Job:B,I Pam:B,I

FCT Parameter: Specifies the qualified name of the FCT that is to be
changed. (If no library qualifier is given, *UBL is used to find the FCT.)

TEXT Parameter: Lets the user enter text that briefly describes the FCT. (For
an expanded description of the TEXT parameter, see Appendix A.)

*SAME: The text, if any, is not changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGFCT FCT(FORMCTRL.USERLIB) +
TEXT('Forms control table number two')

This command changes the description of forms control table named
FORMCTRL in library USERLIB.

CHGFCT

Command Descriptions 4-143

CHGFCTE

4-144

CHGFCTE (Change Fonns Control Table Entry) Command

The Change Forms Control Table Entry (CHGFCTE) command changes the
attributes in an existing forms control table (FCT) entry.

FCT entries are read by an active RJEF session when an RJEF writer is
started and when a forms mount message is received from the host system.
If an FCT entry is changed and not ready by the active RJEF session, the
change does not affect the processing of host system data. For example, if
you were receiving data for forms type xxxx and issued a CHGFCTE
command for this forms type, the change would not take effect until the
RJEF writer is canceled and restarted or another forms mount message is
received from the host system.

Restriction: To use this command, you must have operational rights to the
FCT and read rights to the library in which the FCT is stored.

The Change Forms Control Table Entry (CHGFCTE) command is part of the
IBM System/38 Remote Job Entry Facility Program Product, Program
5714-RC1. For more information on the Remote Job Entry Facility, refer to
the IBM System/38 Remote Job Entry Facility Programmer's Guide,
SC21-7914.

-{
.•LIBL

CHGFCTE--- FCT-- forms-control-table-name)>-------------•"
.library-name

>-- FORMTYPE ---host-system-form-type--------------------------

Required

Optional

-{
•PRT) ® -f_ •SAME

>-DEV'l'YPE LCLFORM o11<FORMTYPE---~-'I~----------------. ..

*PUN local-form-type

>-FILE

*SAME ~

•WTRE----------------''I.

•NONE----------------_,..

-{
.•LIBL

device-file-name

.library-name

-{
.•LIBL

data-base-file-name

.library-name

:!:~~- _L+SAME•

>-MBR =~::s~ FSN -~ ~7:~:quenoe-number)
member-name

•SAME~ •WTRE

>-DTAFMT +FCFC CHG VAL
+DATA

+CMN

•SAME ~

*FILE
carriage-channel-identifier line-number

'------12 maximum---------'

..

>-- FORMSIZE-f_;:~~-1-e_n_g_t_h_f_o_r_m ___ w_i_d-th-)-"l~-,_,-E- ~==) °'' -{ ::~
~8 10

9

•SAME -f_ •SAME
>-PRT!MG *FILE---------------y----'l~COPIES •FILE ~ ..

-{
•LIBL number-of-copies_/

print-image-name •

• library-name

>-PGM1:::;-------------~--......

~ program-name -{ ••LIBL

.library-name

+SAME
*WTRE ,

>-- MSGQ *NONE

message-queue-name-{ .•~L p
.library-name

Job:B,I Pam:B,I

CHGFCTE
(Diagram)

Command Descriptions 4-145

CHGFCTE
FCT

4-146

FCT Parameter: Specifies the qualified name of the forms control table (FCTI
in which the entry is to be changed. (If no library qualifier is given, *UBL is
used to find the FCT.)

FORMTYPE Parameter: Specifies the host system form type that is to be
associated with the FCT entry. This value (one through eight alphameric
characters in length) will be returned by the host system in a forms mount
message. A host system form type of blanks can be entered as
FORMTYPE(' '). The LCLFORM parameter can be used to change this
value to one more understandable to the System/38 user.

DEVTYPE Parameter: Specifies the device type with which the FCT entry is
to be associated.

*PRT: This FCT entry can be used only when processing printer output
streams.

*PUN: This FCT entry can be used only when processing punch output
streams.

LCLFORM Parameter: Specifies the local form type. This value is to be
substituted for the FORMTYPE value used by the host system, to make the
forms mount message more understandable to the System/38 user.

*SAME: The local form type to be substituted for the host system form
type specified in the FCT entry remains the same.

*FORMTYPE: No local form type is to be substituted for the host system
form type (therefore, the host system form type is to be used).

local-form-type: Enter the name of the local form type to be substituted for
the host system form type when the output from the job is actually
received. Valid values can be one through ten alphameric characters in
length.

FILE Parameter: Specifies the qualified name of the file that is to receive data
from the host system.

*SAME: The file name specified in the FCT entry remains the same.

*WTRE: The file specified in the session description writer entry is to be
associated with the FCT entry. (However, if the FILE parameter of the Start
RJE Writer (STRRJEWTR) command defaults to the value specified in the
RJEF writer entry, that value is used.)

*NONE: No file is to be associated with the FCT entry. The session
description writer entry must be used to determine where the data is to be
sent. None of the information in the FCT entry is to be used.

device-file-name: Enter the qualified name of the program-described printer
file that is to receive the data. (If no library qualifier is given, *UBL is used
to find the printer file.)

data-base-file-name: Enter the qualified name of the System/38 physical
file to receive the data. (If no library qualifier is given. *UBL is used to find
the data base file.)

MBR Parameter: Specifies the data base file member to which the output is
to be directed (if a data base file was specified either in the FILE parameter
of this command or in the associated session description writer entry).

*SAME: The data base file member name in the session description FCT
entry remains the same.

*WTRE: The data base file member is to be generated according to the
method specified in the associated session description writer entry.

*GEN: RJEF creates a member name as follows:

Affffffccc or Bffffffccc

Where:

A = file member names beginning with the character A
contain print data.

B • file member names beginning with the character B
contain punch data.

ffffff • first six characters of the forms name specified in
the FCT or received from the host system.

Note: Only characters that are valid in a System/38
name are valid in the forms type used to generate
data base file member names.

ccc three-digit sequence value controlled by the RJEF session
to maintain member uniqueness (refer also to the
FSN parameter description of this command).

If a member with this name already exists in the data base file, the
three-digit sequence value is incremented by one and another attempt is
made to create a member. Incrementing of the sequence value continues
until a unique name is generated and a member is created or until all
1000 possibilities have been exhausted without creating a member. If no
member is created, the RJEF operator receives a message indicating the
failure and a request to retry or cancel this file.

*FIRST: The output is to be directed to the first member of the data base
file (if a data base file is specified in the FILE parameter of this command or
the associated session description writer entry).

CHGFCTE
MBR

Command Descriptions 4-147

CHGFCTE
FSN

4-148

member-name: Enter the name of the data base file member to which
output is to be directed (if a data base file is specified in the FILE parameter
of this command or the associated session description writer entry). If the
member does not exist when it is needed, an inquiry message is sent to the
RJEF message queue.

FSN Parameter: Specifies the initial three-digit file sequence number to be
used when creating data base file member names. This parameter. is
ignored unless MBR(*GEN) is specified for this command or in the
associated session description writer entry.

*SAME: The.file sequence number specified in the FCT entry remains the
same.

*WTRE: The initial file sequence number to be used is the same as the
number specified in the session description writer entry.

file-sequence-number: Enter the initial three-digit file sequence number to
be used. Leading zeros are not required for sequence numbers less
than 100.

DTAFMT Parameter: Specifies the format of the output data.

*SAME: The data format designation specified in the FCT entry remains
the same.

*WTRE: The output data is to be in the format specified in the session
description writer entry.

*FCFC: The output data is to be in the FCFC data format, with the first
character of every record being the ANSI forms control character. Specify
*FCFC if the data is to be printed. If DEVTYPE(*PUN) is specified, *FCFC is
not valid.

The data can be written to a data base file in the FCFC data format and
then printed later by issuing the Copy File (CPYF) command and specifying
an FCFC printer file on the TOFILE parameter.

*DATA: The output data is to be in the normal data format (that is, no
FCFC characters are embedded in the data). Specify *DATA if the data is to
go to a data base file and be processed by a program. If the data is
directed to a printer file, a single space ANSI control character is the first
character in each record.

*CMN: The output data is to be in the communications data format (that is,
still compressed or truncated). *CMN should be used to decrease
communications time. However, before the data can be used, the Format
RJE Data (FMTRJEDTA) command must be used to change the data to
*FCFC or *DATA. If *CMN is specified, the output file must be a data base
file with a length of 256.

CHLVAL Parameter: Specifies the printer carriage channel information.

*SAME: The carriage information specified in the FCT entry remains the
same.

*FILE: The carriage information specified in the device file is to be used.

carriage-channel-identifier line-number: Enter the channel identifiers and line
numbers to be used.

Each identifier can be specified only once per command invocation. The
identifiers are 1 through 12, corresponding to printer channels 1 through 12.
Single spacing is used for any channel not associated with a line number.

The maximum valid line number is 255.

The CHLVAL parameter associates the channel identifier with a page line
number; for example, CHLVAL((1 5)(10 55)) means to associate channel 1
with line 5 and channel 10 with line 55.

FORMSIZE Parameter: Specifies the form size to be used on the System/38
printer.

*SAME: The form size specified in the FCT entry remains the same.

*FILE: The form size specified in the device file is to be used.

form-length form-width: Enter the form length and width to be used. The
maximum valid form length is 255 and the maximum valid form width
is 198.

LPI Parameter: Specifies the number of lines of print per inch to be used on
the System/38 printer.

*SAME: The number of lines of print per inch specified in the FCT entry
remains the same.

*FILE: The number of lines of print per inch specified in the device file is to
be used.

4: The number of lines of print per inch is 4.

6: The number of lines of print per inch is 6.

8: The number of lines of print per inch is 8.

9: The number of lines of print per inch is 9.

CHGFCTE
CHLVAL

Command Descriptions 4-149

CHGFCTE
CPI

4-150

CPI Parameter: Specifies the number of characters per inch to be used on
the System/38 printer.

*SAME: The number of characters per inch specified in the FCT entry
remains the same.

*FILE: The number of characters per inch specified in the device file is to
be used.

10: The number of characters perinch is 10.

15: The number of characters per inch is 15.

PRTIMG Parameter: Specifies the qualified print image name to be used on
the System/38 printer.

*SAME: The print image specified in the FCT entry remains the same.

*FILE: The print image specified in the device file is to be used.

print-image-name: Enter the qualified name of the print image to be used.
(If no library qualifier is given, *UBL is used to find the print image.)

COPIES Parameter: Specifies the number of copies to be printed. This
parameter applies only for spooled files.

*SAME: The number of copies of print or punch output specified in the
FCT entry remains the same.

*FILE: The number of copies specified in the device file is to be used.

number-of-copies: Enter the number of copies to be printed.

PGM Parameter: Specifies the qualified name of a user-supplied program to
be used for processing data received from the host system.

*SAME: The user-supplied program name specified in the FCT entry
remains the same.

*WTRE: The associated session description writer entry is to be used.

*NONE: No user-supplied program is to be used.

program-name: Enter the qualified name of the user-supplied program to be
used. (If no library qualifier is given, *UBL is used to find the user-supplied
program.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF writer are to be recorded.

Note: Messages for RJEF writers are always recorded in the RJEF message
queue associated with the named RJEF session. The RJEF message queue
name depends upon the name specified in the MSGQ parameter in the
Create Session Description (CRTSSND) or Change Session Description
(CHGSSND) commands. If inquiry messages are issued by RJEF, they are
sent to the user message queue (if specified) where they must receive a
response.

*SAME: The message queue specified in the FCT entry remains the same.

*WTRE: The message queue specified in the session description writer entry
is to be used.

*NONE: No user message queue exists on which the messages for the FCT
entry are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which the messages for the RJEF writer job's messages are to be
recorded. (If no library qualifier is given, *UBL is used to find the message
queue.)

Example

CHGFCTE FCT(FORMCTRL.USERLIB) +
FORMTYPE(MEDICAL) +
DEVfYPE(*PUN) +
FSN(200)

This command changes the forms control entry named MEDICAL associated
with punch devices. The file sequence number is changed to 200.

CHGFCTE
MSGQ

Command Descriptions 4-151

CHGJOB

4-152

CHGJOB (Change Job) Command

The Change Job (CHGJOB) command changes some of the attributes of a
job, including priorities, message logging controls, and job switch settings.
The job can be on a job or output queue, or it can be active within a
subsystem. The new attributes remain in effect for the duration of the job
unless changed by another CHGJOB command. If an attribute that no
1onger affects the job is changed, a message is sent to the user of the
command. For example, if the job has already completed execution, it is too
late to change the OUTQ and JOBPTY parameters; but if any output files
are still on the output queue, a change to the OUTPTY parameter would
change their output priority.

Restriction: To use this command, you must be changing your own job or
you must have the special job control authority.

Optional

CBGJOB---JOB__, *)-.~ -®-p---------1>
~ job-name[.user-name[.Job-number]]

-(•SAME -(•SAME
>-JOBPTY)•----OUTPTY)-----+II<

achedulin1-priority output-priority

-(•SAME -f_*Sill~ >- LOG •MSG LOGCLPGM •YES
meua1e-level mena1e-aeverity-{

1 ~ }-i •NO

•SECLVLJ

-(*BAME
>-OUTQ -(•LIBL Y'-------------'--1>

output-queue-name . . ·

.library-name

-(•B.A.MEj-- -(*SillE=:r->-DATE BWS
Job-date awitch-aettin1a

j Job:B,I P1m:B,I

JOB Parameter: Specifies the name of the job whose attributes are to be
changed.

*: The job whose attributes are to be changed is the job in which this
CHGJOB command is issued.

qualified-job-name: Enter the qualified name of the job whose attributes are
to be changed. If no job qualifier is given, all of the jobs currently in the
system are searched for the simple job name. If duplicates of the specified
name are found, a qualified job name must be specified. (For an expanded
description of the JOB parameter and duplicate job names, see
Appendix A)

JOBPTY Parameter: Specifies the scheduling priority to be used for the job
being changed. Valid values are 1 through 9, where 1 is the highest priority
and 9 is the lowest. (For an expanded description of the JOBPTY
parameter, see Scheduling Priority Parameters in Appendix A.}

*SAME: The scheduling priority is not to be changed.

scheduling-priority: Enter a value, 1 through 9, for the scheduling priority
that the job is to have. If the job is currently on the job queue, its position
on the queue in relation to other jobs may be changed. The scheduling
priority specified here cannot be higher than the priority specified in the user
profile under which the job (in which this command is entered} is executing.

OUTPTY Parameter: Specifies the priority that the job's spooled output files
are to have for producing output. The highest priority is 1 and the lowest is
9. (For an expanded description of the OUTPTY parameter, see Scheduling
Priority Parameters in Appendix A.}

*SAME: The job's priority for spooled output is not to be changed.

output-prii;>rity: Enter a value, 1 through 9, for the priority that the job's
output files are to have. The output priority specified here cannot be higher
than the priority specified in the user profile under which the job entering
the command is executing.

LOG Parameter: Specifies the message logging values to be used by the job.
They determine the amount and type of information to be logged in the job
log. There are three message logging values; if one value is to be changed,
all three must be specified.

*SAME: None of the message logging values are to be changed.

message-level: Enter a value, 0 through 4, that specifies the message
logging level to be used for the job's messages. (For additional information
on the message levels, refer to Message Level under the CRTJOBD
command's LOG parameter.)

message-severity: Enter a value, 00 through 99, that specifies the lowest
severity level that causes an error message to be logged in the job's log.
Only messages that have a severity greater than or equal to this value are
logged in the job's log. (For an expanded description of severity codes, see
the SEV parameter in Appendix A.}

*MSG: Only first-level message text is to be written to the job's log.

*SECLVL: Both the first-level and second-level text of the error message is
to be written to the job's log.

CHGJOB
JOBPTY

Command Descriptions 4-153

CHGJOB
LOGCLPGM

4-154

LOGCLPGM Parameter: Specifies whether the executed commands in a
control language program are to be logged to the job log by way of the CL
program's message queue. This parameter sets the status of the job's
logging flag; if *YES is specified and the LOG{*JOB) value has been.
specified in the Create CL Program (CRTCLPGM) command, all commands
in the CL program that can be logged will be logged to the job log. The
commands will be logged in the same manner as requests are logged.
Otherwise, the logging flag status is off and CL Col!lmands will not be
logged.

For more information on request logging, refer to the LOG parameter in the
CRT JOBD command description. ·

*SAME: The current state of the job's logging flag is not to be changed.

*YES: Specifies that commands in a CL program are to be logged to the job
log.

*NO: Specifies that commands in a CL program are not to be logged to the
job log.

OUTQ Parameter: Specifies the name of the output queue that is to be used
for spooled output produced when OUTQ{*JOB) is specified. This change
does not affect files already created in active jobs or files in completed jobs
where the files were spooled.

*SAME: The same default output queue is to be used for the job.

qualified-output-queue-name: Enter the qualified name of the default output
queue that is to be used by the job. (If no library qualifier is given, *LIBL is
used to find the queue.)

DATE Parameter: Specifies the date that is to be assigned to the job.

*SAME: The job date is not to be changed.

job-date: Enter the value that is to be used as the job date for the job; the
date must be in the format specified by the system value QDATFMT. (See.
the CPF Programmer's Guide for the description of the possible date
formats.) If no job date is specified for a job, the system date is used as
the default for any function requiring a job date. The date specified in this
parameter overrides the system date for this execution of the job only.

/

SWS Parameter: Specifies the switch settings for a group of eight job
switches to be used with the job. These switches can be set or tested in a
CL program and used to control the flow of the program. For example, if a
certain switch is on, another program could be called. The job switches may
also be valid in other HLL programs. The only values that are valid for each
one-digit switch are 0 (off), 1 (on), or X. The X indicates that a switch value
is not to be changed.

*SAME: None of the values in the eight job switches are to be changed.

switch-settings: Enter any combination (either in quoted or unquoted form)
of eight zeros, ones, or Xs to change the job switch settings. If a switch
value is not to be changed, enter an X in the position representing that
switch.

Examples

CHGJOB JOB(WS1 .DEPT2.123581) LOG(2 40 *SECLVL)

This command changes the job WS 1, which is associated with the user
profile DEPT2, and has the job number 123581, so that it will receive only
commands and associated diagnostic messages (level 2) if the messages
have a severity greater than or equal to 40. Second-level text, in addition to
first-level message text, is to be logged in the job log.

CHGJOB JOB(PAYROLL) JOBPTY(4) +
OUTPTY(3) SWS(10XXXXOO)

This command changes the scheduling priority of the job PAYROLL to 4 and
the priority of the job's spooled output to 3. Also, four of the eight job
switches are changed: switches 1 and 2 are set to 1 and 0, switches 3
through 6 remain the same, and switches 7 and 8 are both set to 0.
Because only the simple name of the job is specified, there can be only one
job named PAYROLL in the system.

CHGJOB
sws

Command Descriptions 4-155

CHGJOBD

4-156

CHGJOBD (Change. Job Description) Command

The Change Job Description (CHGJOBD) command changes the job-related
attributes specified for a job description object through the Create Job
Description (CRT JOBD) command. The changes become effective upon .
command execution.

Any attribute may be changed, except for the public authority attribute.
Refer to the RVKOBJAUT (Revoke Object Authority) Command and
GRTOBJAUT (Grant Object Authority) Command for more information on
changing object authorizations.

Restrictic;>ns: To use this command, you must have operational rights for
the user profile named in the USER parameter (if any); that is, you must
have that user's authority to initiate a job. You must also have object
management and operational authority for the job description, and read
authority for the library the job description resides in.

(
\,

(

'

-(
.+LIBL

CHGJ'OBD----- JOBD job-description-name J-------------1>
.library-name

Requirod

Optional

>-USER •RQD ------~-'II.._------------------------+• -f_ •SAME

user-profile-name _/

-(
•SAME ®

>- JOBQ -(•LIBL y•----------------+•
Job-queue-name •

. library-name

-(
•SAME -(+SAME

>- JOBPTY)----OUTPTY)•-------1>
achedulin1-priority output-priority

RQSDTA\:=~ ~
+RTGDTA-----f
'requeal-data' __/

>- SYNTAX >11<NOCHX ----~----- INLLIBL SYSVAL ~
meBBa&e-eoverity_/ NONE ------7

-f_ •SAME ~SAME

ibrary-namei

211 maximum

-{
•SAME

>- CNLSBV)------------------------+
menace-severity

-(
>ll'SAME

>- LOG +MGS y---------------+•
meeea1e-level meaaage-eeverity-(

•SECLVL

>- -(
•SAME

OUTQ -(+LIBL y· •---------------+•
output-queue-name .

• library-name

•SAME3
DATE •SYSVAL-~J--------------------+•

Job-date

-(
•SAME -f_ t<SillE 3 >- SWS .)---- TBXT t<BLANX -------
awitch-settin&s 'dncrlptlon'

l Job:B,I P1m:B,I

CHGJOBD
(Diagram)

Command Descriptions 4-157

CHGJOBD
JOBD

4-158

JOBD Parameter: Specifies the qualified name of the job description being
changed. (If no library qualifier is given, *UBL is used to find the job
description.)

USER Parameter: Specifies the name of the user profile to be associated with
this job description. The names QSECOFR, QSPL. and QSYS are not valid
entries for this parameter.

*SAME: The name of the user profile is not to be changed.

*RQD: A user name is required in order to use the job description. For
work station entries, the user must enter a password when signing on at the
work station; the associated user name becomes the name used for the job.
*RQD is not valid for job descriptions specified for autostart job entries, or
for those used by the JOB command .. (It is valid on the SBMJOB command
only if USER(*CURRENT) is specified.)

user-profile-name: Enter the user name that identifies the user profile that is
to be associated with batch jobs using this job description. For interactive
jobs, this is the default user name used when.a user signs on without
entering a password.

JOBQ Parameter: Specifies the name of the job queue into which jobs using
this job description are to be placed.

*SAME: The name of the job queue is not to be changed.

qualiflecl-/ob-queue-name: Enter the qualified name of the job queue that is
to be associated with this job description. (If no library qualifier is given,
*LIBL is used to find the job queue.) If the job queue does not exist when
the job description is changed, a library qualifier must be specified because
the qualified job queue name is retained. in.the.job description.

JOBPTY Parameter: Specifies the scheduling priority to be used for jobs that
use this job description. Valid values are 1 through 9, where 1 is the highest
priority and 9 is the lowest. (For an expanded description of the JOBPTY
parameter, see Scheduling Priority Parameters in Appendix A.)

*SAME: The scheduling priority is not to be changed.

scheduling-priority: Enter a value, 1 through 9, for the scheduling priority for
jobs that use this job description.

\

OUTPTY Parameter: Specifies the output priority of spooled output files that
are produced by jobs that use this job description. The highest priority is 1
and the lowest is 9. (For an expanded description of the OUTPTY
parameter, see Scheduling Priority Parameters in Appendix A.)

*SAME: The output priority for spooled output is not to be changed.

output-priority: Enter a value, 1 through 9, for the output priority of the
spooled output files that are produced by jobs that use this job description.

RTGDTA Parameter: Specifies the routing data to be used with this job
description to initiate jobs.

*SAME: The routing data is not to be changed.

*GET: The routing data is obtained from the work station user, by using the
display format specified in the work station entry that references this job
description.

*RQSDTA: Up to the first 80 characters of the request data specified in the
RQSDTA parameter are to be used as the routing data for the job.

'routing-data': Enter the character string that is to be used as the routing
data for jobs that use this job description. For example, the value QCMDI is
the routing data used by the IBM-supplied interactive subsystem (QINTER)
to route interactive jobs to the IBM-supplied control language processor,
QCL. A maximum of 80 characters can be entered (enclosed in apostrophes
if necessary).

RQSDTA Parameter: Specifies the request data that is to be placed as the
last entry in the job's message queue for jobs using this job description. For
example, when a CL command is supplied as request data, it becomes a
message that can be read by the control language processor, QCL (if the job
is routed to QCL).

*SAME: The request data is not to be changed.

*NONE: No request data is to be placed in the job's message queue.

*RTGDTA: The routing data specified in the RTGDTA parameter is to be
placed as the last entry in the job's message queue.

'request-data': Enter the character string that is to be placed as the last
entry in the job's message queue as a single request. A maximum of 256
characters can be entered (enclosed in apostrophes if necessary). When a
CL command is entered, it must be enclosed in single apostrophes, and
where apostrophes would normally be used within the command, double·
apostrophes must be used instead.

CHGJOBD
OUTPTY

Command Descriptions 4-159

CHGJOBD
SYNTAX

4-160

SVNT AX Parameter: Specifies whether requests placed on the job message
queue (for jobs using this job description) are to be syntax-checked as CL
commands. ·When syntax checking is specified, the commands are
syntax-checked as they are submitted rather than when the job is executed,
thus providing an earlier diagnosis of syntax errors. If checking is specified,
the message severity that causes a syntax error to terminate processing of a
job -is also specified.

*SAME: The SYNTAX parameter value is not to be changed.

*NOCHK: The request data is not to be syntax-checked as CL commands.

message-severity: The request data is to be syntax-checked as CL
commands; if a syntax error occurs that is equal to or greater than the error
message severity specified here, the execution of the job containing the
erroneous command is suppressed. Enter a value, 00 through 99, that
specifies the lowest message severity that can cause job execution to end.
(For an expanded description of severity codes, see the SEV parameter in
Appendix A.)

If the message severity is specified, it is used only when the job description
is used by a job command that also has RQSDTA(*) specified and the
requests are CL commands.

INLLIBL Parameter: Specifies the initial user part of the library list that is to
be used for jobs using this job description. For more information on the use
of library lists, see the CPF Programmer's Guide.

*SAME: The initial user part of the library list is not to be changed.

*SYSVAL: The system default library list is to be used for jobs that use this
job description. The default library list contains the library names that were
specified in the system values QSYSLIBL and QUSRLIBL at the time that a
job using this job description is initiated.

*NONE: The user part of the initial library list is to be empty; only the
system portion is to be used.

library-name: Enter the names of one or more libraries that are to be in the
user part of the library list for jobs that use this job description. No more
than 25 names can be specified; the libraries are searched in the same order
as they are listed here.

CNLSEV Parameter: Specifies the message severity level of escape messages
that can cause a batch job to be canceled. The batch job is canceled when
a request in the batch input stream sends to the request processing
program an escape message whose severity code is equal to or greater than
that specified here. This parameter value· is compared with the severity of
any unmonitored escape message that occurs as a result of executing a
noncompiled CL command in a batch job.

For a description of each IBM-defined severity code level, refer to the
expanded description of the SEV parameter in Appendix A.

*SAME: The message severity level for canceling batch jobs is not to be
changed.

message-severity: Enter a value, 00 through 50, that specifies the message
severity of an escape message that results from a request in the batch input
stream and that causes the jobs that use this job description to be canceled.
Because escape messages typically have a maximum severity level of 50, a
value of 50 or lower must be specified in order for a job to be canceled as a
result of an escape message. An unhandled escape message whose severity
is equal to or greater than the value specified causes the jobs to be
canceled. (For an expanded description of severity codes, see the SEV
parameter in Appendix A.)

LOG Parameter: Specifies the message logging values to be used by jobs
that use this job description. They determine the amount and type of
information to be logged in the job log. There are three message logging
values; if one value is to be changed, all three must be specified.

*SAME: None of the message logging values are to be changed.

message-level: Enter a value, 0 through 4, that specifies the message
logging level to be used for the job's messages. (For additional information
on the message levels, refer to Message Level under the CRT JOBD
command's LOG parameter.)

message-severity: Enter a value, 00 through 99, that specifies the lowest
severity level that causes an error message to be logged in the job's log.
Only messages that have a severity greater than or equal to this value are
logged in the job's log. (For an expanded description of severity codes, see
the SEV parameter in Appendix A.)

*MSG: Only first-level message text is to be logged in the job's log.

*SECLVL: Both the first-level and second-level text of the error message is
to be logged in the job's log.

OUTQ Parameter: Specifies the name of the output queue to be used as the
default output queue for jobs that use this job description.

*SAME: The default output queue is not to be changed.

qualified-output-queue-name: Enter the qualified name of the default output
queue that is to be used by jobs that use this job description. (If no library
qualifier is given, *UBL is used to find the queue.) If the output queue does
not exist when the job description is changed, a library qualifier must be
specified, because the qualified output queue name will be retained in the
job description.

CHGJOBD
LOG

Command Descriptions 4-161

CHGJOBD
HOLD

4-162

HOLD Parameter: Specifies whether jobs using this job description are to be
put on the job queue in the hold state. A job placed on the job queue in the
hold state is held until it is released by the Release Job (RLSJOB) command
or canceled, either by the Cancel Job (CNLJOB) command or by the Clear
Job Queue (CLRJOBQ) command. If the job is not executed before CPF is
terminated, the job queue can be cleared (and the job canceled) when CPF
is started again.

*SAME: The value of the HOLD parameter is not to be changed.

*NO: Jobs using this job description are not to be held when they are put
on the job queue.

*YES: Jobs using this job description are to be held when they are put on
the job queue.

DATE Parameter: Specifies the date that is to be assigned for jobs that use
this job description.

*SAME: The job date is not to be changed.

*SYSVAL: The value in the QDATE system value at the time that the job is
initiated is to be used as the job date.

job-date: Enter the value that is to be used as the job date for the job being
initiated; the format that is currently specified for the system value
QDATFMT must be used. (See the CPF Programmer's Guide for the
ODATFMT system value.)

SWS Parameter: Specifies the initial switch settings for a group of eight job
switches for jobs that use this job description. These switches can be set or
tested in a CL program and used to control the flow of the program. For
example, if a certain switch is on, another program could be called. The job
switches may also be valid in other HLL programs. The only values that are
valid for each one-digit switch are 0 (off) or 1 (on).

*SAME: None of the values in the eight job switches are to be changed.

switch-settings: Enter any combination (either in quoted or unquoted form)
of eight zeros or ones to change the job switch settings.

TEXT Parameter: Lets the user enter text that briefly describes the job
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CHGJOBD JOBD(OPGMR.OGPL) JOBPTY(2) OUTPTY(2)

This command allows jobs using the IBM-supplied job description OPGMR
in library OGPL to process with a higher job and output priority than
originally specified for OPGMR. OPGMR originally has priorities of 5 set for
job execution and output; refer to the CPF Programmer's Guide for
IBM-supplied job description parameter values.

Assume that your user profile was created as follows:

CRTUSRPRF USRPRF(JLRAY) PASSWORD(GAMMA) SPCAUT(*JOBCTL) +
PTYLMT(4) PUBAUT(*NONE)

-,

Then you attempt to modify the priority limits of the job description
BATCH5 with the following command:

CHGJOBD JOBD(BATCH5) USER(JLRAY) JOBPTY(1) OUTPTY(1)

Because the priority limit specified in the user profile takes precedence over
any limit specified in a job description, an error message is sent and a
priority of 4 is assumed for both job and output priority levels.

CHGJOBD
(Examples)

Command Descriptions 4-163

CHGJOBQE

4-164

CHGJOBQE (Change Job Queue Entry) Command

The Change Job Queue Entry (CHGJOBQE) command changes an existing
job queue entry within the specified subsystem description; the associated
subsystem must be inactive when the change is made. A job queue entry
identifies the job queue from which jobs are to be selected for execution
within the subsystem. Jobs can be placed on a job queue by spooling
readers or by using the following commands:

• Submit Job (SBMJOB)

• Submit Card Jobs (SBMCRDJOB)

• Submit Data Base Jobs (SBMDBJOB)

• Submit Diskette Jobs (SBMDKT JOB)

• Transfer Job (TFRJOB)

Within a subsystem, job queues with lower sequence numbers are
processed first. For more information, refer to the SEQNBR parameter.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description being changed.

-{
.+LIBL

CHGJOBQE---SBSD subsystem-description-name J-------IO
.library-name

-{
.+LIBL

>-JOBQ job-queue-name)----------------.... .,
. .library-name

Required

Optional

-f_ +SAME
>-MAXACT •NOMAX

maximum-active-jobs)

-{•SAME~
SEQNBR na-~nml-o.a~~

sequence-number

lJob:B,I P1m:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
that contains the job queue entry being changed. (If no library qualifier is
given, *UBL is used to find the subsystem description.)

JOBQ Parameter: Specifies the unique qualified name of the job queue that
is to be a source of batch jobs that are to be initiated by the subsystem. (If
no library qualifier is given, *UBL is used to find the job queue.) If the job
queue does not exist when the entry is changed, a library qualifier must be
specified because the qualified job queue name is retained in the subsystem
description.

MAXACT Parameter: Specifies the maximum number of jobs that can be
concurrently initiated from this job queue. (For an expanded description of
the MAXACT parameter, see Appendix A.)

*SAME: The maximum number of jobs that can be concurrently active is
not to be changed.

*NOMAX: There is to be no maximum on the number of jobs that can be
concurrently initiated. However, the maximum activity level of the routing
entries might prevent routing steps from being initiated. If *NOMAX is
specified, all the jobs on the job queue will be initiated (within the limit
specified by the MAXJOBS parameter in the subsystem description), even
though the activity level of the storage pool might prohibit them from
executing concurrently.

maximum-active-jobs: Enter a value that specifies the new maximum for the
number of jobs that can be concurrently active.

SEQNBR Parameter: Specifies a sequence number for this job queue, to be
used by the subsystem to determine the order in which the job queues are
to be processed.

SAME: The sequence number assigned to this job queue is not to be
changed.

sequence-number: Enter the sequence number to be assigned to this job
queue. The sequence number must be unique within the subsystem
description. Valid values are 1 through 9999.

The subsystem first selects jobs from the job queue with the lowest
sequence number. Once all jobs on that queue have been processed or the
number of jobs specified on the MAXACT parameter has been reached, the
subsystem processes jobs on the queue with the next higher sequence
number. This sequence continues until all job queue entries have been
processed or until the subsystem has reached its limit for overall maximum
jobs (as specified by the MAXJOBS parameter in the subsystem
description). In some cases, this sequence is interrupted and the subsystem
processes a queue with a lower sequence number. This occurs for this
subsystem when:

• A held job or job queue is released

• A job is placed on or transferred to a queue

• A new queue is allocated

• A job terminates

CHGJOBQE
MAXACT

Command Descriptions 4-165

CHGJOBQE
(Example)

4-166

Example

CHGJOBQE SBSD(QBATCH.QGPL) JOBQ(QBATCH.QGPL) +
MAXACT(4)

This command changes the maximum number of jobs submitted from the
job queue QBATCH via the job queue entry to the QBATCH subsystem for
concurrent processing. A maximum of four jobs from the QBATCH job
queue can be concurrently active. The sequence number of the job queue
entry is not changed.

This page is intentionally left blank.

Command Descriptions 4-167

CHGJRN

4-168

CHGJRN (Change Journal) Command

The Change Journal (CHGJRN) command changes the journal receivers, the
message queue, or the descriptive text associated with the indicated journal.
The command allows up to two journal receivers to be attached to the
specified journal. These replace all previously attached journal receivers.
The designated journal receivers will begin receiving journal entries for the
journal immediately. The sequence numbering of journal entries can be reset
when the receivers are changed. If the sequencing is not reset, an
informational message is sent indicating the first sequence number in the
newly attached receivers. If the first sequence number is greater than 2000
000 000, an informational message is sent to the system operator.

If JRNRCV is *SAME, the currently attached journal receivers will remain
attached.

Restrictions: Receivers that already contain journal entries cannot be
reattached to a journal. There can be no more than two journal receivers
attached to the journal at any specific time.

If journaled changes are being applied or removed while this command is
being executed, you cannot switch journal receivers (JRNRCV(*SAME) must
be specified).

Resetting of sequence numbers is not valid if JRNRCV is *SAME, or if any
files being journaled are open and contain changes that have not yet been
forced to auxiliary storage. When the maximum sequence number is
reached, an exception will be signaled (entry not journaled) and all
subsequent activity requiring journaling will terminate.

-(
.•LIBL

CHGJRN--JRN journal-name)""--------------•"
.Ubraey-name Requlracl

Optional

® -(•CONT)-+ SEQOPT •RBSBT >-JRNRCV
•GEN---------------

receiver-name -(
.t<LIBL

.libraey-name
~----2 maximum----~

•SAMB 1 •SAMB ~
>-MSGQ YTEXT"-= •BLAll'K .• ::=7----'I..._-

-(
.•LIBL 'deacriptlon'

mena1e-queue-name

.library-name .-------1
Job:B,I P1m:B,I

JRN Parameter: Specifies the qualified name of the journal to have its journal
receivers or operational attributes changed. (If no library qualifier is given,
*UBL is used to find the journal.)

JRNRCV Parameter: Specifies which journal receivers are to be attached to
the designated journal.

*SAME: Specifies that the journal receivers currently attached to the
journal are to remain attached.

*GEN: Specifies that the journal receiver(s) are to be created by the system
and then attached to the designated journal. The journal receiver(s) will be
created with the same attributes and in the same library as the currently
attached journal receiver(s) and will be owned by the same owner. The
name of the new journal receiver will be derived by appending a four-digit
number to a portion of the name of the current receiver, or by incrementing
the number in the current journal receiver. The name of the journal receiver
created and attached will be returned in an informational message. For
more information on generation of journal receiver names, refer to CPF
Programmer's Guide.

receiver-name: Enter the qualified names of the journal receivers that are to
be attached to the designated journal. (If no library qualifier is given, *UBL
is used to find the journal receiver.) The journal receivers must have been
previously created in the specified library, and must not have been
previously attached to any journal.

A maximum of two journal receivers may be attached at one time. Any
combination of *GEN and receiver name is valid.

SEQOPT Parameter: Specifies whether the journal sequence numbers are to
continue being incremented or whether the journal sequence number is to
be reset to one in the newly attached journal receivers.

*CONT: Specifies that the journal sequence number of the next journal
entry generated is to be one greater than the sequence number of the last
journal entry in the currently attached journal receiver(s).

*RESET: Specifies that the journal sequence numbers in the newly attached
journal receivers are to be reset to one. *RESET is not valid if
JRNRCV(*SAME) is specified or if any file being journaled is open and
contains changes that have not yet been forced to auxiliary storage.

CHGJRN
JRN

Command Descriptions 4-169

CHGJRN
MSGQ

4-170

MSGQ Parameter: Specifies whether the message queue associated with the
journal is to be changed. The message issued when a journal receiver's
storage limit (threshold) is exceeded is sent to this message queue. To set
the threshold value, refer to the CRTJRNRCV command.

*SAME: Specifies that the message queue is not to change.

message-queue-name: Enter the qualified name of the message queue to
which the message will be sent, which will replace the message queue
previously specified.

TEXT Parameter: Specifies whether the descriptive text associated with the
journal is to be changed.

*SAME: Specifies that the text is not to be changed.

*BLANK: The text is to be replaced by blanks.

'description': Enter no more than 50 characters, enclosed in apostrophes.
The value entered becomes the new text associated with this journal.

Examples

CHGJRN JRN(JRNLA) JRNRCV(RCV10) SEQOPT(*RESETI

This command causes all journal receivers currently attached to journal
JRNLA to be detached (JRNLA is found using the library search list *LIBL).
Journal receiver RCV10 (found using the library search list *LIBL) is attached
to journal JRNLA. The first journal entry in journal receiver RCV10 will have
a sequence number of one.

CHGJRN JRN(JRNLA) JRNRCV(*GEN *GEN)

This command causes all journal receivers currently attached to journal
JRNLA to be detached. Two new journal receivers will be created and
attached to journal JRNLA. The libraries and owners of the new journal
receivers will be the same as the libraries and owners of the detached
receivers. The names of the new receivers depend on the names of the
detached receivers. (For example, if one receiver was named RCVJRNA, the
new receiver will be named RCVJRN0001. If the receiver was named
RCVJRN0001, the new receiver will be named RCVJRN0002.) The first
journal entry in the new journal receivers will have a sequence number of
one greater than the last sequence number in the detached receivers.

CHGLF {Change Logical File) Command

The Change Logical File (CHGLF) command changes the attributes of a
logical file and its members. The changed attributes will be used for all
members subsequently added to the file. To change the attributes of a
specific member, execute the CHGLFM (Change Logical File Member)
command.

Restrictions: To change a logical file, you must have object management
and operational rights for the file and read rights to the library. In order to
change the file, an exclusive no read lock is necessary; no one may be using
the file for any purpose.

-{
.l<LIBL ©

CHGLF-FILE Io1ical-file-name)...._----------------·
.library-name

Required

Optional

-f_+SAMB
>- MAXMBRS +NOMAX

maximum-members)

+SAM~ MAJNT +IMMED--..l.._ ________ _..,

+REBLD
+DLY

+SAME ,.,,.... y .
-{

.+LIBL
pro1ram-name

.library-name

-f_+SAYB ~+SAME
>-FRCRATIO +NONE WAlTPILB +IMMED) ..

number-of-records-before-force) •CLS _J
number-of-seconds

-f_•SAM~ SHARE •NO--~----------• ..

+lBS

-f_ 1<8AM3 -f_ +SAME 3 >-LVLCH.IC 1<YES --ll~-- TEXT 1<BLANX

•NO 'd.eecrlptlon'

j Job:B,I P1m:B,I

CHGLF

Command Descriptions 4-171

CHGLF
FILE

4-172

FILE Parameter: Specifies the qualified name of thl'I logical file to be changed.
(If no library qualifier is given, *UBL is used to find the file.)

MAXMBRS Parameter: Specifies the maximum number of members that the
logical file can have at any time. Th~ maximum number of members
specified must be greater than or equal to the current number of members
in the file.

*SAME: The maximum number of members should not be changed.

*NOMAX: No maximum is specified for the number of members; the system
maximum of 32 767 members per file is used.

maximum-members: Enter the value for the maximum number of members
that the logical file can have. A value of 1 through 32767 is valid.

MAINT Parameter: Specifies the type of access path maintenance to be used
for all members of the logical file. This parameter is valid only if a keyed
access path is used.

Only the following changes to a file's access path maintenance are allowed:
*REBLD to *IMMED (if the file was originally created as *IMMED or
*REBLD), *IMMED to *REBLD, *DLY to *REBLD, and *REBLD to *DLY (if
the file was originally created as *DL Y).

Existing MAINT
CHGLF MAINT Parameter Value

Value *REBLD *DLV IMMED

*REBLD N/A Note 1 Note 2

*DLY YES N/A NO

*IMMED YES NO N/A

Notes:
1. Allowed only if file was originally created with MAINT(*DLY).
2. Allowed only if file was originally created with MAINT(*IMMED) or

MAINT(*REBLD).

./

!

""

*SAME: The files access path maintenance is not to be changed.

*IMMED: The access path is to be continuously (immediately) maintained
for each logical file member. The access path is updated each time a
record is changed, added to, or deleted from the member. The records can
be changed through a logical file that uses the logical file member
regardless of whether the logical file is opened or closed. *IMMED must be
specified for all files requiring unique keys to ensure uniqueness in all inserts
and updates.

*REBLD: The access path is to be rebuilt when a file member is opened
during program execution. The access path is continuously maintained until
the member is closed; access path maintenance is then terminated. *REBLD
is not valid for access paths that are to contain unique key values.

*DLY: The maintenance of the access path is to be delayed until the
member is opened for use. The access path is then updated only for
records that have been added, deleted, or updated since the file was last
closed. (While the file is open, all changes made to based-on members are
immediately reflected in the access paths of the opened files members, no
matter what is specified for MAINT.) To prevent a lengthy rebuild time
when the file is opened, *DL Y should be specified only when the number of
changes to the access path between a close and the next open are small
(when key fields in records for this access path change infrequently). *DL Y
is not valid for access paths that require unique key values.

If the number of changes saved reaches approximately 10 per cent of the
access path size, the system will stop saving changes and the access path
will be completely rebuilt the next time the file is opened.

RECOVER Parameter: Specifies, for files having immediate or delayed
maintenance on their access paths, when recovery processing of the file is
to be performed if a system failure occurred while the access path was
being changed.

An access path having immediate or delayed maintenance can be rebuilt
during start CPF (before any user can execute a job), or after start CPF has
finished (during concurrent job execution), or when the file is next opened.
While the access path is being rebuilt, the file cannot be used by any job.

An access path having rebuild maintenance will be rebuilt the next time its
file is opened, the time that it normally is rebuilt. This parameter is valid
only if a keyed access path is used. For more information on recovery
processing, refer to the CPF Programmer's Guide.

*SAME: The files recovery attribute should not be changed.

*NO: The access path of the file is not to be rebuilt. The file's access path
is rebuilt the next time the file is opened.

CHGLF
RECOVER

Command Descriptions 4-173

CHGLF
FMTSLR

4-174

*AFTSTRCPF: The file is to have its access path rebuilt after the start CPF
operation has been completed. This option allows other jobs not using this
file to begin processing immediately after the CPF has been started. If a job
tries to allocate the file while its access path is being rebuilt, a file open
exception occurs if the specified wait time for the file is exceeded.

*STRCPF: The file is to have its access path rebuilt during the start CPF
operation. This ensures that the file's access path will be rebuilt before the
first user program tries to use it; however, no jobs can begin execution until
after all files that specify RECOVER(*STRCPF) have their access paths
rebuilt.

FMTSLR Parameter: Specifies the name of a record format selector program
that is to be called when the logical file member contains more than one
logical record format. The user-written selector program is called when a
record is to be inserted into the data base file and a· record format name is
not included in the HLL program. The selector program receives the record
as input, determines the record format to be used, and returns it to the data
base. This program must perform this function for every member in the
logical file that has more than one record format, unless the HLL program
itself specifies the record format name. (More information about the use of
format selector programs is contained in the CPF Programmer's Guide.)

This parameter is not valid if the logical file has only one record format.

*SAME: The files format selector program should not be changed.

*NONE: There is no selector program for this logical file. The file cannot
have more than one logical record format, or the HLL program itself must
specify the record format name.

program-name: Enter the qualified name of the format selector program to
be called when a record is to be inserted into a member having more than
one format. The selector program name can be optionally qualified by the
name of the library in which the program is stored. (If no library qualifier is
given, *UBL is used to find the program.)

A program specified as the format selector program cannot be created with
USRPRF{*OWNER) specified in its create program command.

FRCRATIO Parameter: The force write ratio parameter specifies the number
of inserted, updated, or deleted records that are processed before they are
forced to auxiliary (permanent) storage. (For an expanded description of the
FRCRATIO parameter, see Appendix A.)

The force write ratio specified for a logical file must be less than or equal to
the smallest force write ratio of its based-on files. If a larger force write
ratio is specified it is ignored and a message is sent informing you of the
action.

If a physical file associated with this logical file is being journaled, a larger
force write ratio or *NONE may be specified. Refer to the CPF
Programmer's Guide for more information on the Journal Management
Facility.

*SAME: The files force write ratio is not to be changed.

*NONE: There is no force write ratio; the system determines when the
records are written in auxiliary storage.

number-of-records-before-force: Enter the number of new or changed
records that are processed before they are explicitly forced into auxiliary
storage.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait attribute of the file is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

CHGLF
FRCRATIO

Command Descriptions 4-175

CHGLF
WAITRCD

4-176

WAITRCD Parameter: Specifies the number of seconds that the program is
to wait for a record that is to be updated or deleted. If the record cannot
be allocated in the specified wait time, an error message is sent to the
program.

*SAME: The record wait attribute of the file is not to be changed.

*IMMED: The program is not to wait; when a record is locked, an
immedi~te allocation of the record is required.

*NOMAX: The wait time will be the maximum allowed by the system
(32 767 seconds).

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether an ODP (open data path) to the logical
file member is to be shared with other programs in the same job. When an
ODP is shared, the programs accessing the file share such things as the
position being accessed in the file, the file status, and the buffer. When
SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record.

If SHARE is specified, all members in the file will be changed.

*SAME: The ODP sharing value of the member is not to be changed.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the record format identifiers are to be
level checked to verify that the current record format identifier is the same
as that specified in the program that opens the logical file. This value can
be overridden on the OVRDBF command at execution time.

*SAME: The level check value of the member is not to be changed.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an error message is
sent to the program requesting the open, and the file is not opened.

*NO: The level identifiers are not to be checked when the file is opened.

TEXT Parameter: Enter text that briefly describes the logical file member.
(For an expanded description of the TEXT parameter, see Appendix A.I

*SAME: The text that describes the member is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGLF FILE(INV.OGPLI MBR(FEB) FMTSLR(INVFMTSI

The member named FEB in the logical file INV that is stored in the QGPL
library is to be changed so that the new format selector program to be used
with the logical file will be INVFMTS. *UBL will be used to find the format
selector program.

CHGLF
LVLCHK

Command Descriptions 4-177

CHGLFM

4-178

CHGLFM (Change Logical File Member) Command

The Change Logical File Member (CHGLFM) command changes the
attributes of a logical file member.

Restrictions: To change a logical member, you must have object
management and operational rights for the logical file that contains the
member. You must also have read rights for the file library. In order to
change the member, no other user may be holding the file for exclusive use.
Concurrent users may have the member open, but changes made to the
member will not be reflected in any open members. In order to effect the
changes in any open members, you must first close the member (this must
be a full close if the member is open SHARE(*YES)) and then open it again.

-{
.•LIBL

CHGLFM-FILB 101ical-file-name)~-----·--------+--..
.libra17-aame

Required
Optional

-{
•FIRST ® -f_•SAM3

>-MBR .)~---SHARE •NO--.... --------+•
101ical-file-member-name •YB8

j Job:B,I P1m:B,I

FILE Parameter: Specifies the qualified name of the logical file that contains
the member to be changed. (If no library qualifier is given, *UBL is used to
find the file.)

MBR Parameter: Specifies the name of the member, or the first member
(*FIRST), to be changed.

*FIRST: The first member of the specified logical file is to be changed.

logical-file-member-name: Enter the name of the logical file member to be
changed.

SHARE Parameter: Specifies whetrer an ODP (open data path) to the logical
file member is to be shared with other programs in the same job. When an
ODP is shared, the programs accessing the file share such things as the
position being accessed in the file, the file status, and the buffer. When
SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the. next output record.

*SAME: The member's ODP sharing value should not be changed.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that also
specifies SHARE(*YES) when it opens the file.

TEXT Parameter: Enter text that briefly describes the logical file member.
(For an expanded description of the TEXT parameter, see Appendix A.)

*SAME: The text that describes the member is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGLFM FILE(INV.QGPL) MBR(FEB) +
TEXT('Logical file member for FEB')

The member named FEB in the logical file INV that is stored in the QGPL
library is to be changed so that the member will have new text.

CHGLFM
MBR

Command Descriptions 4-179

CHGLIND

4-180

CHGLIND (Change Line Description) Command

The Change Line Description (CHGLIND) command changes some of the
parameter values in the named line description. The RETRY, ONLINE, and
TEXT parameters can be changed while the line itself is still online (the
changed values become effective immediately). All other changes must be
made with the line varied offline.

Required Optional

® -f_*S.All3 CBGLIND ---- LIND line-description-name --t- ACTSWNBICU •NO --+--------+•
,.YBS

{ :::H?- -f_ •SAME=> >-SWTCNN RA.TBTYPE ll<PULL--"l~-------------lt

•ANS •KALP

•CALL

•SAM:E~ -f_ +S.AllB ~ >-DIALllODE •MANU~L~I----- ANSMODE +MANUAL~ -------------lt

+AUTO +AUTO

-(•S.AllB
>-DRTDLY

delay-time-unite

-(•S.AllB
) --- IDLETIME)----••

idle-detection-time-un1t1

>-RCVTMR NONPRDRCV -(
•BAKB -(•BAME

wait-tor-date-time-unite J nonproductive-receive-time-uniter

-(•S.AllB ::}-- -f_*S.All3 >-RETRY ONLINE •YBS--.l.._---------------+lt

retry-limit •NO

SAM:B ~ -f_ •S.AllE r -f_•SAM:3 >- SWTCTLU CODI •EBCDIC B +NO __ .._ ____ .,

ntrol-unlt-name *ASCII •YBS

a mlldmum

-f_•SAM3 -f_ •SAMB 3 >-BSCSWTDSC •YBS -------TEXT •BLANK

•NO 'dHcrlption' l Job:B,I Pam:B,I

LIND Parameter: Specifies the name of the line description that is to have
one or more of its attributes changed.

ACTSWNBKU Parameter: Specifies whether the switched network backup
feature is to be activated (if the feature is installed) or de-activated. This
feature lets you bypass a broken, nonswitched (leased line) connection by
converting the line to a switched line operation as specified by the
SWTCNN, DIALMODE, and ANSMODE parameters. This parameter must
be *SAME for TYPE(*BSCT).

*SAME: The value specified in the line description is not to be changed.

*NO: The backup feature is to be de-activated if it was active. (The line is
back in normal operation.)

*YES: The backup feature is to be activated if it is not active.

SWTCNN Parameter: Specifies whether the line is to be used for incoming
calls, outgoing calls, or both. This parameter must be *SAME unless
CNN(*SWT) and SWNBKU(*YES) were specified when this line description
was created.

*SAME: The use of the line remains the same.

*BOTH: The line can be used for both incoming and outgoing calls.

*ANS: The line can be used for incoming calls only.

*CALL: The line can be used for outgoing calls only.

RATETYPE Parameter: Specifies the speed at which the line operates if the
line has the data rate select function. RATETYPE(*HALF) is valid only if
SELECT(*YES) was specified on the CRTLIND command that created this
line description.

*SAME: The line speed remains the same.

*FULL: The line is operated at full speed.

*HALF: The line is operated at half speed.

CHG LIND
LIND

Command Descriptions 4-181

CHG LIND
DIALMODE

4-182

DIALMODE Parameter: Specifies whether the line connection is to be made
manually or automatically. DIALMODE{*AUTO) is valid only if
AUTOCALL{*YES) is specified.

*SAME: The value specified in the line description is not to be changed.

*MANUAL: The line connection is made by the user manually dialing the
connection (that is, the called station). If AUTOCALL{*NO) is specified,
*MANUAL is the default.

*AUTO: The line connection is made by the system automatically dialing the
called station. If AUTOCALL{*YES) is specified, *AUTO is the default.

ANSMODE Parameter: Specifies how incoming calls to System/38 can be
answered (that is, how the switched line connection is to be made through
the autoanswer facilities for calls coming from a remote control unit or work
station). ANSMODE{*AUTO) is valid only if AUTOANS(*YES) was specified
in the associated CRTLIND command that created this line description.

*SAME: The method of answering incoming calls remains the same.

*MANUAL: The incoming call must be manually answered.

*AUTO: The incoming call is automatically answered by the autoanswer
modem feature.

DTRDLY Parameter: The data terminal ready (DTR) delay parameter specifies
the maximum length of time that the system is to pause before ending a
command that resets the DTR condition. The delay time cannot exceed 3
seconds.

*SAME: The maximum delay time specified in the line description is not to
be changed.

delay-time-units: Enter a value, 0 through 15, that is multiplied by the base
time unit of 200 milliseconds to determine the maximum delay time before
the system resets the DTR condition. For most networks, 200 milliseconds
(specified here by a 1) is appropriate. If 0 is specified or assumed, a default
time of 100 milliseconds is used.

IDLETIME Parameter: Specifies, for any transmission sent by the primary
station that requires a response, the maximum time within which the
beginning of the secondary station's response must be detected (received).
This time should be greater than the sum of the:

• Transmission time to the secondary station

• Processing time of the control unit's response at the secondary station
(not including customer program processing time or operator response
time)

• Clear-to-send time at the secondary station modem

• Transmission time from the secondary station

This parameter is not valid for secondary SDLC lines or BSC lines.

*SAME: The maximum time during which the secondary station's response
can be detected remains the same.

idle-detection-time-units: Enter a value, 0 through 255, that is multiplied by
the base time unit of 53.3 milliseconds to determine the maximum detection
time for the secondary station's response (53.3 milliseconds through 13.6
seconds). If 0 is specified or assumed, a default time of 500 milliseconds is
used.

RCVTMR Parameter: The receive timer parameter, valid for BSC lines only,
specifies the time the system will wait for data before a time-out occurs.
The time is measured !n 200-millisecond intervals; a period of 3 seconds (a
RCVTM R value of 15) is appropriate for most systems.

*SAME: The time interval is not to be changed.

wait-for-data-time-units: The time period the system will wait for data. The
maximum time-out period allowed is 25.4 seconds (a RCVTMR value of
127).

NONPRDRCV Parameter: The nonproductive receive parameter specifies the
maximum length of time in which to receive an intelligible transmission. The
time is specified by a value that is multiplied by the base time unit of 500
milliseconds. Because the nonproductive receive time depends upon the line
speed, refer to the table given in the NONPRDRCV parameter description of
the CRTLIND command.

*SAME: The maximum delay time to wait for intelligible data remains the
same.

nonproductive-receive-time-units: Enter a value, 0 through 255, that is
multiplied by the base time unit of 500 milliseconds to determine the
maximum time to wait for intelligible data. If 0 is specified or 1ssumed, a
default time of 128 seconds is used.

CHGLIND
IDLETIME

Command Descriptions 4-183

CHGLIND
RETRY

4-184

RETRY Parameter: Specifies the maximum number of retries that can be
made to correct an error that occurs.

*SAME: The retry limit remains the same.

retry-limit: Enter a value, 0 through 21, that is to be multiplied by a base
number of 1 or 7 to determine the maximum number of retries that can be
attempted if necessary. All errors associated with making a switched
connection to the line use the base multiplier 1 ; all other line errors use the
base multiplier 7. If 0 is specified, no retries occur,

In no case does the system attempt more than 21 retries. Therefore, a
value of 0 through 21 is valid for retrying errors that use the multiplier 1. A
value of 0 through 3 is valid for those using the multiplier 7; in this case,
any value specified that is greater than 3 is assumed to be 3, and a
maximum of 21 retries (3 times 7) can be attempted if necessary.

ONLINE Parameter: Specifies whether the line is to be varied online
automatically when the Control Program Facility (CPF) is started. After CPF
is started, the Vary Line (VRYLIN) command can be used to modify the
status of the line. ONLINE(*YES) should be specified for only one line
description per line number; if it is specified for more than one, the system
chooses the first line description based on alphabetic order.

*SAME: The value specified in the line description is not to be changed.

*YES: The line is to be online when CPF is started.

*NO: The line is to be offline when CPF is started. The VRYLIN command
must be used to put the line online, making it operational.

SWTCTLU Parameter: Specifies up to 8 control unit names that can establish
a connection with this switched BSC line.

*SAME: The control unit names are not to be changed.

control-unit-name: Specifies the previously created control unit name (up
to 8).

CODE Parameter: Specifies the SSC line code to be used for
communications. This parameter is valid for SSC lines only.

*SAME: The line code is not to be changed.

*EBCDIC: The EBCDIC character set code is to be used.

*ASCII: The ASCII character set code is to be used. ASCII is not valid if
RJ E(*YES) is specified.

RJE Parameter: Specifies, for BSC only, whether this line description is to be
used by the Remote Job Entry Facility (RJEF).

*SAME: The value specified in the line description is not to be changed.

*NO: This line description is not to be used by RJEF.

*YES: This line description is to be used by RJEF.

BSCSWTDSC Parameter: Specifies whether inactivity on this BSC switched
line (while in contention mode) should cause a line disconnect due to a
30-second timeout. Some CL commands may cause a timeout disconnect
in a debugging or problem determination situation; in that case, you could
use this parameter to disable the automatic timeout and continue. This
parameter is valid only if TYPE(*BSC) and CNN(*SWT) are specified, or if
TYPE(*BSC) and CNN(*PP) and SWNBKU(*YES) are specified.

*SAME: The value specified in the line description is not to be changed.

*YES: The switched BSC line will be automatically disconnected after a
30-second period of inactivity (while in contention mode).

*NO: The switched SSC line will not be automatically disconnected after a
30-second period of inactivity. ,

Note: When the last file is closed, the normal BSC switched line disconnect
is not affected by this parameter.

TEXT Parameter: Specifies the user-defined text that describes the line
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

CHG LIND
CODE

Command Descriptions 4-185

CHGLIND
(Example)

4-186

Example

CHGLIND LIND(LINE01) RETRY{15) ONLINE{*NO)

This command changes the line description of the line named LINE01. The
RETRY parameter is changed to a maximum of 15 retries for errors
occurring while a switched connection is being attempted and a maximum
of 21 retries for all other errors associated with the line. The ONLINE
parameter is changed to *NO, specifying that the line will not be operational
when CPF is started.

CHGMSGD (Change Message Description) Command

The Change Message Description (CHGMSGD) command describes changes
to an existing message description stored in a message file, and stores
those changes in that message file for later use. The message description
remains in the message file until the file is deleted, until the Remove
Message Description (RMVMSGD) command is used to remove the
message from the file, or until another change to the message is made with
CHGMSGD.

Restriction: To change a message description in a message file, you must
have operational rights for the message file and for the library in which the
file is to be stored.

)

CHGMSGD

Command Descriptions 4-187

CHGMSGD
(Diagram)

4-188

CHGMSGD---MSGID messaee-ldent!f!er--------------------------0.

-(
.*LIBL

>- MSGP meeaaee-file-name)'t----------------------.
.library-name

Required

Optional

-(
*SAME

>-MSG CD)-------------------------·
/ 'measage-text'

-f_ •SAME
>- Sl!:CLVL *NONE --- @-~___,,_ __ _

•second - level -text'_/

-(*SAME~ 0
SEV sev-erity-code J-.------------+

>-FMT

*SAME

*NONE-------------------~~

:~=~•VARY-{_ 2
*HEX 4
*BPP leneth

\----•DEC decimal-digits -(O '-

decirnal-poaitions _/ I

•BIN-(:) .. ----------------1

•DTS-------------------;
*SYP-----------------~

•ITV----------------~

20 maximum

positions])

>-VALUES©\:~::~ SPCVAL -f ::::------=)--.... ---------~
value r=-value [to-va~

20 maximum 20 maximum

~ *SAME @4!f_ *SAME
>- RANGE •NONE ---------~_,.___ REL •NONE----~-----------•

lower-value upper-value _/ operator-value_/

-f_ *SAME
>- DFT *NONE

'default-reply')
-C::~: -----------------......

DFTPGM -(.*LIEL
default-program-name

.library-name

•JOB-----------_,,.
•JOBDMP----------.,..
•JOBINT-----------...-...._

message-data-field-number
\L-----22 maximum-----~

@No more than 132 characters can be specified.
@No more than 143~ characters can be specified.
@Ir either TYPE or LEN 1a specified as •NONE, the other of the two parameters must

alao be specified as •NONE.
©VALUES, RANGE, and REL are mutually exclusivej only one of them can be specified.
@It any of the parameter values are specified for DMPLST, *JOB ts assumed to be part

of the value(s).

Job:B,I P1m:B,I

MSGID Parameter: Specifies the message identifier of the message to be
changed. The message identifier must be 7 characters long and in the
following format:

pppnnnn

The first character must be an alphabetic character, followed by two
alphanumeric characters, and the last 4 characters must be a decimal
number (0001 through 9999).

MSGF Parameter: Specifies the qualified name of the message file in which
the message to be changed is stored. (If no library qualifier is specified,
*UBL is used to find the file.) This command ignores any message file
overrides in effect for the job.

MSG Parameter: Specifies the first-level message text of the message being
changed.

*SAME: The first-level text is to remain as originally defined.

'message-text': This text is the message that is initially displayed, printed,
or sent to a program or log. A maximum of 132 characters (enclosed in
apostrophes) can be specified, but the display station screen size may cause
additional limitations.

Note: If the message text is changing, the entire original message text is
replaced with the specified change.

One or more substitution variables can be embedded in the message text
string to indicate positional replacement fields that allow the program to
substitute variable data in the message before the message is sent. The
variables must be specified in the form &n, where n is a one-digit number
identifying the data field to be substituted. Each variable can be immediately
followed by any non-numeric character (such as &2M or &9?), but not by
another digit (such as &99). (The variables in the text do not have to be in
ascending sequence by these data field identifiers. Also, blanks do not have
to precede or follow each variable. The variables can be enclosed in
apostrophes if only the variables themselves make up the message. For
example, to show a two-part decimal value, the message '&1.&2' can be
specified.) The data fields are described positionally in the FMT parameter
and are specified positionally in the MSGDTA parameter of the
SNDPGMMSG command. Refer to the CPF Programmer's Guide for details
on substituting data fields in message text.

CHGMSGD
MSGID

Command Descriptions 4-189

CHGMSGD
SECLVL

4-190

SECLVL Parameter: Specifies any second-level text to be changed.
Second-level text can also be written to the job log, if *SECLVL is specified
on the LOG parameter of the job commands.

*SAME: The second-level text is not to be changed.

*NONE: There is to be no second-level text for this message description.
Any second-level text in the original message description will be removed.

'second-level-text': Enter the text to be displayed as second-level text. No
more than 1435 characters (enclosed in apostrophes) can be specified, but
display limitations must be considered. One or more substitution variables
can be embedded in the second-level text, as described in the MSG
parameter. If second-level text is changing, the entire original second-level
text will be replaced with the specified change~

SEV Parameter: Specifies the severity code of the message being changed.
The severity code indicates the severity level of the condition that causes
the message to be sent. ·

*SAME: The severity code of this message is not to be changed.

severity-code: Enter a value, 00 through 99, to represent the severity level
of this message. The assigned code for the message should correspond to
the IBM predefined severity codes. (These codes and their meanings are
given in the chart under the SEV parameter, in Appendix A.) Any two-digit
value can be entered, even if no severity code has been defined for it (either
predefined or user-defined).

FMT Parameter: Specifies the formats of from one to 20 message data fields
to be changed. Each field is described in this parameter by a list of
attributes. The first nine message data fields can be used as substitution
values in the first-level and second-level text messages defined in this
message description. All 20 of the fields can be specified in the DMPLST
parameter of this command. When specified in the MSGDTA parameter of
the SNDPGMMSG command, the data fields must be concatenated to form
one character string of no more than 132 characters and must match the
format and sequence specified here.

Note: If any of the previously defined formats are to be changed, all
existing formats must be included in the FMT parameter. For example, if
seven formats had been previously defined and now the third of the seven
formats is to be changed from *CHAR 24 to *HEX 8, all seven of the
formats (including their types and lengths) must be included in the FMT
parameter.

*SAME: The formats of the message are not to be changed.

(

\

(

'\.

0 NONE: No format is being described for message fields, or the original
formats are to be removed. If *NONE is specified, no references can be
made to message data fields in the MSG, SECLVL, or DMPLST parameters.

Note: If FMT had been originally specified, but now FMT(*NONE) is
specified, all references to those formats must be removed from the first­
and second-level message texts and from the dump list.

type (length[decimal-positions]): A list of attributes defines each message
data field (up to a maximum of 20 field's) in this message description. These
attributes specify the type of data in the field, the total length of the field,
and, optionally, the number of decimal digits to the right of the decimal
point. Certain data types do not require a length field. Boundary alignment
requirements must be considered (for example, pointers are always aligned
on 16-byte boundaries). While 20 fields may be defined, &1 through &9
can appear in the message text; the others can appear only in the dump list.

Type of Message Data: The first value specifies the type of data the
substitution field contains and how the data is to be formatted in the
message text. The contents of the second and third values vary depending
on the type specified. One of the following types can be specified for each
field described by this parameter:

0 QTDCHAR: A character string to be formatted (by CPF) with enclosing
apostrophes ('Monday, the 1st').

°CHAR: A character string to be formatted without enclosing apostrophes.
It is an alphameric string that can be used to specify a name, for example,
BOB. Trailing blanks are truncated.

0 HEX: A string of bytes to be formatted as a hexadecimal value (X'COF4').

0 SPP: A 16-byte space pointer to data in a space object. When referenced
in the DMPLST parameter, the data in the space object (from the offset
indicated by the pointer) for the length specified is to be dumped. *SPP is
not valid as a replacement field in message text.

0 DEC: A packed decimal number (X'058C') that is formatted in the message
as a signed decimal value with a decimal point (58.). Values for length
(required) and decimal positions (optional) specified *DEC indicate the
number of decimal digits and the number of digits to the right of the
decimal point. If the number of decimal positions is not specified, zero is
assumed.

0 8/N: A binary value that is either 2 or 4 bytes long (B'OOOO 0000 0011
1010'), formatted in the message as a signed decimal value (58).

CHGMSGD
FMT

Command Descriptions 4-191

CHGMSGD
FMT

4-192

The following formats are valid only in IBM ... provided message descriptions
and should not be used for other messages.

*DTS: An 8-byte field that contains a system-date time-stamp. The date in
the output message is in the format specified by the system values
QDATFMT and QOATSEP. The time is formatted as hh:mm:ss.

*SYP: A 16-byte system pointer to a system object. When referenced in
message text, the simple name of the system object is formatted as
described in the name type, *CHAR. When referenced by the DMPLST
parameter, the object itself is to. be dumped.

*ITV: An 8-byte field that contains a time interval. The time is formatted in
the output message in the form of seconds.

Length of Message Data: After the type specification, a second value
(length) can be specified to indicate the number of characters or digits that
are passed in the message data. How the second value is used depends
upon the type specified in the first value.

• If a length is not specified for *QTDCHAR, *CHAR, *HEX, or *SPP, then
*VARY is assumed for the length. If *VARY is assumed, the message
data field passed by the SNDPGMMSG command must be preceded by a
2-byte or 4-byte binary field that indicates the actual number of bytes of
data being passed. However, when *SPP is specified, the first bytes
pointed to by the space pointer contain the field length. Therefore, the
2- or 4-byte field must precede the data pointed to by the space pointer,
and not precede the space pointer that is passed as part of the message
data.

• If the type *DEC is specified, the total number of decimal digits (including
the fraction) must be specified as the second value; the number of digits
in the fraction can be specified optionally as the third value.

• If the type *BIN is specified, the message data field can be only 2 or 4
bytes long; the default is 2 bytes.

Length Field Size/Decimal Positions: The third value is used in one of
two ways, depending upon the type specified in the first value: (1) if
*OTDCHAR, *CHAR, *HEX, or *SPP is specified, and if *VARY is specified
or assumed for the second value, the third value is used with *VARY to
indicate the size of the length field actually passed. The third value can be
either a 2 or a 4, which is the number of bytes specifying the length (in
binary) of the passed value; (2) if *DEC is specified, the third value indicates
the number of decimal positions· in the decimal value. If not specified for a
decimal substitution value, the default is 0 decimal positions.

Note: If an object has been damaged or deleted, the substitution variable,
when displayed, will not be replaced by the name of the object. Instead, the
object will appear as &n (where n = number).

/

\,__

Reply Validity Specification Parameters

If the message is to be sent as an inquiry message or as a notify message
(specified by MSGTYPE{*INQ) or MSGTYPE(NOTIFY) on the SNDPGMMSG
command) and a reply is expected, seven parameters can be used to specify
some requirements that validate the reply received. The seven
validity-checking parameters are: TYPE, LEN, VALUES, SPCVAL, RANGE,
REL, and DFT.

These parameters are not necessary for a message to allow a reply, but
they can be used to define valid replies made to the message. The VALUES,
RANGE, and REL are mutually exclusive-only one of them can be specified
in this command.

Note: If the reply type or length is changed, and if VALUES, RANGE, or
REL had been previously specified, the existing VALUES, RANGE, REL,
SPCVAL and DFT must also be changed to be compatible with the new
reply type and/or length. If the reply type is changed, LEN must be
changed also. If the reply type is changed to *NONE, then LEN and (if they
had been coded previously) VALUES, SPCVAL, RANGE, REL, and DFT must
be coded as *NONE.

TYPE Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the type of valid reply to this message.

*SAME: The reply TYPE is not to be changed.

*NONE: There is to be no reply validity checking. Any existing reply type
will be removed. LEN{*NONE) must also be specified.

*CHAR: Any character string is valid. If it is a quoted character string, the
apostrophes are passed as part of the character string.

*DEC: Only a decimal number is a valid reply.

*ALPHA: Only an alphabetic (A through Z, $, #. and @) character string is
valid. Blanks are not allowed.

*NAME: Only a simple name is a valid reply. The name does not have to be
a CPF object name, but must begin with an alphabetic character; the rest
must be alphameric.

CHGMSGD
TYPE

Command Descriptions 4-193

CHGMSGD
LEN

4-194

LEN Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the maximum reply length.

*SAME: The reply length is not to be changed.

*NONE: There is to be no reply validity checking. The existing LEN
specification, if any, will be removed. TYPE(*NONE) must also be specified.

*TYPE: The maximum length is determined by the type of reply specified in
the TYPE parameter. The maximum length for each type of reply is:

• 132 characters for types *CHAR and *ALPHA. If any further validity
checking is to be performed (VALUES, RANGE, REL, SPCVAL, or OFT
are specified), the maximum length allowed for *CHAR and *ALPHA is 32
characters.

• 15 digits for *DEC, of which a maximum of 9 digits can be to the right of
the decimal point.

• 10 alphameric characters for *NAME.

length (decimal-positions): Enter the maximum reply length. The length
specified here cannot exceed the maximums shown above. If the reply type
is a decimal value, the number of decimal positions can be optionally
specified; if a decimal is not specified, zero decimal positions are assumed.

VALUES Parameter: Specifies, only if the message is sent as an inquiry or
notify message, a list of values of which one can be received as a valid
reply. No more than 20 values can be specified in the list. Each value in the
list must meet the requirements specified for message replies by the TYPE
and LEN parameters. If VALUES is specified, the RANGE and REL
parameters cannot be specified.

*SAME: The existing values list is not to be changed.

*NONE: No list of reply values is specified. The reply can have any value
that is consistent with the other validity-checking parameters. Any existing
VALUES will be removed.

value: Enter one or more values, up to a maximum of 20, that, to be valid,
must match a reply value sent in response to the message defined in this
message description. The maximum length of each value is 32 characters.

SPCVAL Parameter: Specifies, only if the message is sent as an inquiry or
notify message, a list of up to 20 sets of special values of which one set (if
the from-value is matched by the sent reply) is used as the reply. These
values are special in that they may not meet all the validity checking
specifications given in the other reply-oriented parameters. The reply sent is
compared to the from-value in each set; if a match is found, and a to-value
was specified in that set the to-value is sent as the reply. If no to-value
was specified, the from-value is sent as the reply. If the reply sent does.
not match any from-value, then the reply is validity-checked by the
specifications in the other reply-oriented parameters.

*SAME: The special values list is not to be changed.

*NONE: No special values are specified for the replies to this message. Any
existing special values will be removed from the message description.

from-value (to-value): Enter one or more sets of values, up to a maximum
of 20 sets, that are used to determine the reply sent to the sender of the
message. Each set must have a from-value that the reply is to be compared
with, and an optional to-value to be sent as the reply (if its from-value
matches the reply).

RANGE Parameter: Specifies, only if the message is sent as an inquiry or
notify message, the upper and lower value limits for valid replies to this
message. These values must meet the requirements specified for replies by
the TYPE and LEN parameters, and both values must be of the same type.
If both values are not of the same length, the shorter value is padded on
the right with blanks. For type *CHAR and *ALPHA replies, the reply is
padded on the right with blanks or truncated on the right (to the length of
the specified values) before the value range is validity-checked. If RANGE is
specified, the VALUES and REL parameters cannot be specified.

*SAME: The upper and lower range limits are not to be changed.

*NONE: No range values are specified for the replies to this message; Any
existing range values will be removed from the message description.

lower-value upper-value: Enter the lower and upper limit values for valid
replies to this message.

REL Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the relationship that must exist for a reply to be valid. The value
specified must meet the requirements specified for replies by the TYPE and
LEN parameters. For replies of the types *CHAR and *ALPHA, the reply is
padded on the right with blanks or truncated on the right to match the
length of the value specified, before the system performs the test on the
reply value sent.

*SAME: The relationship is not to be changed.

CHGMSGD
SPCVAL

Command Descriptions 4-195

CHGMSGD
OFT

4-196

*NONE: No relationship is to be specified for replies to this message. Any
existing relationship specifications will be removed from the message
description.

operator-value: Enter one of the relational operators and the value against
which the message reply is to be checked. If the reply is valid in the
relational test, it is sent to the originator of the message. The relational
operators that can be entered are:

*LT Less than
*LE Less than or equal to
*GT Greater than
*GE Greater than or equal to
*EO Equal to
*NL Not less than
*NG Not greater than
*NE Not equal to

Note: If VALUES, RANGE, or REL had been specified on the existing
message, and they are to be changed to another type of reply
validity-checking, then the existing check must be removed by specifying
*NONE. For example, if VALUES had been specified originally, but now you
want to specify a RANGE, you must specify VALUES(*NONE) and
RANGE(x y) in the CHGMSGD command.

OFT Parameter: Specifies, only if the message is sent as an inquiry or notify
message, the default reply (enclosed in apostrophes, if it contains special
characters) to be used when the receiver of the message has indicated that
all messages to him are to use default replies, or when a message is
deleted from a message queue and no reply was specified. The default
reply can also be used to answer unmonitored notify messages. The default
reply must meet the requirements specified for replies by the
validity-checking parameters.

*SAME: The default reply is not to be changed.

*NONE: No default reply is to be specified. Any existing default reply will
be removed.

'default-reply': Enter the reply (enclosed in apostrophes) to be used as the
default reply.

DFTPGM Parameter: Specifies the name of the default program {if any) to
take default action when this message is sent as an escape message to a
program that is not monitoring for it. This parameter is ignored if the
message is not sent as an escape message. If it is sent as an escape
message, the following parameters are passed to the program:

• Program message queue name (10 characters). The name of the program
message queue to which the m~ssage was sent. (This is the same name
as that of the program.)

• Message reference key (4 characters). The message reference key of the
escape message on the program message queue.

*SAME: The default program is not to be changed.

*NONE: No default program is specified for this message. Any existing
default program will be removed from the message description.

qualified-default-program-name: Enter the qualified name of the default
program to be called when an escape message is sent. (If no library
qualifier is given, *UBL is used to find the default program.)

DMPLST Parameter: Specifies the data to be dumped when this message is
sent as an escape message to a program that is not monitoring for it. This
parameter can specify that data related to the job be dumped, that data
from message data fields be dumped, or that a combination of these be
dumped. When data from message data fields is to be dumped, this
parameter specifies one or more numbers that positionally identify the data
fields to be dumped.

The system objects indicated by system pointers are to be dumped. The
data in a space object, indicated by a space pointer, is to be dumped
starting from the offset indicated by the space pointer for the length
indicated in the field description. The standard 'job dump can also be
requested.

Note: If any of these values are specified for DMPLST, *JOB is assumed to
be part of the values. For example, DMPLST(1 2 *JOBDMP) results in the
equivalent of DMPLST(*JOB 1 2 *JOBDMP).

*SAME: The dump list is not to be changed.

JOB: This value is the equivalent of specifying DSPJOB JOB()
OUTPUT(*LIST); refer to DSPJOB (Display Job) Command for more
information.

* JOBDMP: The data areas of the job are to be dumped as specified by the
DMPJOB command. *JOBDMP can be specified by itself, with *JOB, with
*JOBINT, or with a list of message data field numbers.

*JOB/NT: The internal machine data structures related to the job execution
are to be dumped to the machine error log as specified by the DMPJOBINT
command. *JOBINT can be specified by itself, with *JOBDMP, *JOB, or
with a list of message data field numbers.

CHGMSGD
DFTPGM

Command Descriptions 4-197

CHGMSGD
LOG

4-198

message-data-field-number: Enter the numbers of the message data fields
that identify the data to be dumped when this escape message is sent but
not monitored. As many as 20 data field numbers can be specified in the
list; additionally, the list can contain the values *JOB and *JOBINT.

*NONE: There is no dump list for this message. Any existing dump list will
be removed from the message description.

LOG Parameter: Specifies whether or not the message is to be logged in the
system service log, when it is sent as an escape message that is not
monitored.

*SAME: The logging specification is not to be changed.

*NO: The unmonitored escape message is not to be logged in the system
service log.

*YES: Every unmonitored escape message is to be logged in the system
service log.

Examples

CHGMSGD MSGID(UIN0115) MSGF(INV) +
MSG('Enter your name')
SEV(55)

This command changes the first-level text and the severity of message
UIN0115 stored in the message file INV. The rest of the message
description will remain as originally specified in the ADDMSGD command.

As another example, assume you created message Ul;'Y0047 as follows:

ADDMSGD MSGID(UPY0047) MSGF(TIMECARD.PAYLIB) +
MSG('Enter department number:') +
TYPE(*DEC) LEN(4) +
VALUES(0816 0727 0319 8774)

Now, if you would like to change to a range of valid replies (RANGE
parameter). rather than specific reply values (as specified with the VALUE
parameter):

CHGMSGD MSGID(UPY0047) MSGF(TIMECARD.PAYLIB) +
VALUES(*NONE) +
RANGE(0300 8900)

The VALUES as originally defined are removed and the RANGE parameters
are added to the message description. The type and length of the reply
values remain the same.

Note: All changes made to an existing message description must be
compatible with the existing message description. For example, the
following change would be diagnosed as invalid because the RANGE values
are not compatible with the reply length as defined on the original
ADDMSGD command.

ADDMSGD MSGID(XYZ0202) MSGF(XYZMSGF) +
MSG('Enter routing code:')+
TYPE(*CHAR) LEN(2) +
VALUES(AA BB CC DD EE)

CHGMSGD MSGID(XYZ0202) MSGF(XYZMSGF) +
VALUES(*NONE) RANGE(AAA ZZZ)

To make the change to the range of reply values valid, you must also
change the length (LEN parameter). The correct command coding would be
as follows:

CHGMSGD MSGID(XYZ0202) MSGF(XYZMSGF) +
LEN(3) +
VALUES(*NONE) RANGE(AAA ZZZ)

CHGMSGD
(Examples)

Command Descriptions 4-199

CHGMSGQ

4-200

CHGMSGQ (Change Message Queue) Command

The Change Message Queue (CHGMSGQ) command changes the attributes
of the specified message queue. If the delivery mode is being changed to
*BREAK or *NOTIFY and if the message queue is not allocated to the job in
which this command is entered, it is implicitly allocated by this command.

· , (The DLVRY, PGM, and SEV parameters are not contained in the
CRTMSGQ command, but default values are assigned to them by the
system when the message queue is created.) This command can also be
used to reset the status of old messages to. new messages so they can be
received again without the use of message reference keys.

Restriction: To change the message queue, you must have operational and
read rights for the queue.

-{
,t<IJBL

CBGlolSGQ---lolSGQ meHqe-queue-name)----------+~
.library-name

Roqu1.red

Optional

•BOLD . ~·s.uo~ >-DLVRY •BRBAX~__..._ _____________________ ____.~

•NOTIPY
•DPT

•SAMB
>-NM _ _. y

-{
.•LIBL

pro1ram-name
.library-name

<•ILUIB . ® -{*NO)
>-BBV')----RBSBT 9--------------+~

eeverlty-code •YBS

-f_•SAM:=r-- -f_ •llAHll ->- PORCB •NO TBXT •BLAJl'IC
•YBS 'deeoription'J

l Job1B,J PllftlB,J

MSGQ Parameter: Specifies the qualified name of the message queue whose
attributes are to be changed. (If no library qualifier is given, *UBL is used to
find the message queue;)

(

\

(

DLVRY Parameter: Specifies how the messages that are sent to this message
queue are to be delivered. The method of delivery is in effect only as long
as the message queue is allocated to the job. When the queue is
deallocated, the delivery mode is changed to *HOLD for work station,
system operator, and user message queues. However, if *DFT is specified
for a system operator or user message queue, the delivery mode remains
*DFT.

Note: Changing the delivery mode to *BREAK or *NOTIFY initiates an
attempt to allocate the message queue in the *EXCL (exclusive, no read)
lock state. If another job already has the message queue allocated in the
*EXCL lock state, the message queue is not allocated to this job and the
CHGMSGQ command is not executed.

*SAME: The method of message delivery is not to be changed. (If this
parameter has not been changed previously in another CHGMSGQ
command, *SAME means that *HOLD is the method of delivery, because
there is no DLVRY parameter on the CRTMSGQ command.) However, if the
specified message queue is a work station message queue, it is
automatically changed to *NOTIFY by the system at sign-on. If any
messages that meet the notify conditions for the message queue were put
on the queue before sign-on, the user is notified immediately.

*HOLD: The messages are held in the message queue until they are
requested by the user or program. The work station user uses the DSPMSG
(Display Messages) command to display the messages; a program must
issue a RCVMSG (Receive Message) command to receive a message and
handle it.

*BREAK: The job to which the message queue is allocated is interrupted
when a message arrives at the message queue, and the program specified
in the PGM parameter is invoked; also, if the job is an interactive job, the
audible alarm is sounded (if the feature is installed). The delivery mode
cannot be changed to *BREAK if the message queue is also being used by
another job.

*NOTIFY: The job to which the message queue is allocated is notified when
a message arrives at the message queue. For interactive jobs at a work
station, the audible alarm is sounded and the Message Waiting indicator is
turned on; at the console, the Attention indicator on the display is turned on
and the Attention light is turned on (if the feature is installed on the
console). Note that the audible alarm does not sound at the console for a
notify message. For batch jobs, no notification occurs; the message is
simply held in the queue (the same as for *HOLD). The delivery mode
cannot be changed to *NOTIFY if the message queue is also being used by
another job.

*DFT: Messages requiring replies are answered with their default reply, and
information only messages are ignored.

CHGMSGQ
DLVRY

Command Descriptions 4-201

CHGMSGQ
PGM

4-202

PGM Parameter: Specifies the name of the program to be called when a
message arrives at the message queue and break delivery has been
specified. (Because the QSYSOPR message queue receives messages that
require manual operator action, only *DSPMSG should be specified or
assumed if the message queue being changed is OSYSOPR.) The following
parameters are passed to the program:

• Message queue name (10 characters). The name of the message queue
to which the message was sent.

• Library name (10 characters). The name of the library containing the
message queue.

• Message reference key (4 characters). The reference key of the message
sent to the message queue.

*SAME: The same program, if any, is to be called. (If this parameter has
not been changed previously in another CHGMSGQ command, *SAME
means that *DSPMSG is assumed.)

*DSPMSG: The Display Message (DSPMSG) command is executed when a
message arrives for break delivery. For interactive jobs, the messages are
displayed. Also, at the work station, the audible alarm is sounded and the
Message Waiting indicator is turned on. At the console, the Attention
indicator is turned on and the audible alarm is sounded if the feature is
installed on the console. For batch jobs, the message is sent to a spooled
printer file.

qualified-program-name: Enter the quali~ied name of the program that is to
be called when a message arrives for break delivery. (If no library qualifier is
given, *LIBL is used to find the program.)

SEV Parameter: Specifies the lowest severity code that a message can have
and still be delivered to a user in break or notify mode. Messages arriving
at the message queue whose severities are lower than that specified here
do not interrupt the job or turn on the Attention indicator; they are held in
the queue until they are displayed by the DSPMSG command. If *BREAK or
*NOTIFY is specified on the DLVRY parameter, and is in effect when a
message arrives at the queue, the message is delivered if the severity code
associated with ths message is equal to or greater than the value specified
here. Otherwise, the message is held in the queue until it is requested.

*SAME: The severity code is not to be changed. (If this parameter has not .
been changed previously in· another CHGMSGQ command, *SAME means
that the severity code is 00, which is the system default.)

severity-code: Enter a value, 00 through 99, that specifies the lowest
severity code that a message can have and still be delivered if the message
queue is in break or notify delivery mode. (System messages are shipped
with a set of predefined severity codes. These codes and their meanings
are given in the chart under the SEV parameter, in Appendix A.) Any
two-digit value can be entered, even· if no severity code has been defined
for it (either predefined or user-defined).

!
\

(

RESET Parameter: Specifies whether old messages (messages that have
been received once and were not removed from the message queue) held in
the message queue are to be reset to the new message status. The
messages can then be received in first-in, first-out (FIFO) order as they
were originally. This parameter applies only to receiving messages by a
program; it does not affect message displays. If all messages are to be
cleared, refer to RMVMSG (Remove Message) Command.

*NO: Old messages in the message queue are not to be reset to new
message status. To receive an old meS'Sage, reply to it, or remove it, you
must enter the message reference key.

*YES: All messages in the message queue are to be reset to the new
message status. These messages can then be received as new messages in
the same order that they were sent to the message queue.

FORCE Parameter: Specifies whether changes made to the message queue
description or messages added to or removed from the queue are to be
immediately forced into auxiliary storage; this ensures that changes to the
queue, or messages sent or received, are not lost if a system failure occurs.

*SAME: The value specified in the referenced message queue is not to be
changed.

*NO: Changes made to the message queue, including its messages, do not
have to be immediately forced to auxiliary storage.

*YES: All changes to the message queue description and to the messages
in the queue are to be immediately forced to auxiliary storage.

TEXT Parameter: Specifies the user-defined text that describes the message
queue. The text specified here replaces any previous text. (For an expanded
description of the TEXT parameter, see Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

CHGMSGQ
RESET

Command Descriptions 4-203

CHGMSGQ
(Examples)

4-204

Examples

CHGMSGQ MSGQ(JONES) OLVRY(*NOTIFY)

This command changes the method of delivery of the message queue
named JONES to notify mode. The user will be immediately notified by the
attention light and audible alarm (if installed) when a message has been sent
to his queue.

CHGMSGQ MSGQ(INV) OLVRY(*BREAK) PGM(INVUPOTI

This command changes the delivery mode of the message queue named
INV to *BREAK and ci;ills a program named INVUPOT when a message
arrives at INV.

\

CHGOBJOWN (Change Object Owner) Command

The Change Object Owner (CHGOBJOWN) command transfers object
ownership from one user to another. The rights that other users have to the
object are not changed. Also, the user profile that no longer owns the
object still retains the explicit object authority for the object that it had
before the transfer.

The owner of an object always has all the rights applicable to the object
unless they are explicitly revoked. As the owner, he has the authority to
grant any rights to any user for his objects. He can also grant to himself
any rights that were explicitly revoked previously. The owner may, for
example, revoke some of his specific rights as a precautionary measure, and
then, when the need arises, he can again grant those same rights to
himself.

To transfer ownership, any user (including the object's present owner) must
have:

• Object existence rights for the object

• Add rights for the new owner's user profile

• Delete rights for the present owner's user profile

The security officer has complete authority for all objects; therefore, he can
transfer the ownership of any object. All users have add and delete rights
for their own user profiles; that is; a user can add objects to or delete
objects (that he created) from his own user profile by transferring the
ownership of the object.

Restrictions: (1) For any program that is created with USRPRF(*OWNER)
specified on the command that creates it, only the security officer or a
program that executes under the security officer's user profile can transfer
the program's ownership. (2) Before this command can be used to change
the owner of a device, control unit or line description, its associated device,
control unit, or line must be varied on. (3) For display work stations, if this
command is not entered at the device whose ownership is being changed,
this command should be preceded by the ALCOBJ command and followed
by the DLCOBJ command.

Required

-(
.•IJBL

CHGOBJOWN---OBJ object-name .)------------..
• llbra17-name

©
>-OBJTYPE object-type ---NEWOWN uaer-profile-name--

© Any one or the CPl" object types listed in the OBJTYPB parameter chart• in Appendix A
can be specified.

l .Jab:B,I Psm:B,1

CHGOBJOWN

Command Descriptions 4-205

CHGOBJOWN
OBJ

4-206

OBJ Parameter: Specifies the qualified name of the object that is being
assigned to the new owner. (If no library qualifier is given, *UBL is used to
find the specified object.) The library name can be entered to ensure that
the correct object changes ownership.

OBJTYPE Parameter: Specifies the object type of the object whose
ownership is being transferred. Enter the predefined value that specifies the
object type. (For an expanded description of the OBJTYPE parameter and a
list of the valid values for the CPF object types, see Appendix A.)

NEWOWN Parameter: Specifies the name of the user to whom the object is
being assigned. Enter the user profile name under which the new owner is
enrolled on the system.

Example

CHGOBJOWN OBJ(PROGRAM1.USERLIB) OBJTYPE(*PGM) +
NEWOWN(ANN)

This command assigns ownership of the program named PROGRAM1,
located in the user library named USERLIB, to the user named ANN.

/

\

CHGOUTQ (Change Output Queue) Command

The Change Output Queue (CHGOUTO) command changes the attributes of
the specified output queue. The attributes of the output queue, except the
number of job separators, can be changed while a writer is producing
spooled files from the output queue.

Restriction: To change an output queue's attributes, you must either be the
queue's owner or you must have object management, read, add, and delete
rights for the queue.

-(
.•IJBL

CBGOUTQ--- OUTQ output-queue-name)----------...... -.•
.library-name

Required
Optional

>-DSPDTA •11'0 -------JOBSBP •MSG ~ -f_ •SAM'.3 -f_ •SAMB

•YBS number-of-Job-eeparaton _/

-f_ •SAM'.3 ® -f_ NWOI 3 >-OPRCTL •YBS ----- TBXT l<BLA.NIC
•11'0 'd.Hcrlptlon'

l Job:B,I Pam:B,I

OUTQ Parameter: Specifies the qualified name of the output queue that is to
have its attributes changed. (If no library qualifier is given, *UBL is used to
find the output queue.)

DSPDTA Parameter: Specifies whether users that have authority to read the
output queue can display the data from any output file on the queue or only
data from their own files.

*SAME: The current value of the display data attribute that is specified for
the output queue is not to be changed.

*NO: Users authorized to use the queue can display the output data of their
own files only; they cannot display the .output data of another user's file on
the queue.

*YES: Any user with read rights for the output queue can display the output
of any file on the queue.

CHGOUTQ

Command Descriptions 4-207

CHGOUTQ
JOBSEP

4-208

JOBSEP Parameter: Specifies, for each job having spooled file entries on this
output queue, the number of separators to be placed at the beginning of the
output for each job. Each separator (card or printer page) contains
information that identifies the job such as its name, the job user's name, the
job number, and the time and date when the job was executed. The number
of separators can be from zero through nine. This parameter can only be
changed when the output queue is not being processed by a writer.

*SAME: The number of job separators is not to be changed.

*MSG: No job separators are to be placed before each job's output. A
message is sent to a message queue notifying the operator of the end of
each job. The message queue receiving the message is identified by the
MSGQ parameter of the Start Writer command.

number-of-job-separators: Enter the new number (0 through 9) of
separators to be placed before the output of each job.

OPRCTL Parameter: Specifies whether a user with job control rights is
allowed to control and make changes to spooled output files with entries on
this output queue. A user has job control authority if SPCAUT(*JOBCTL) is
specified in his user profile.

*SAME: The current value specified for the operator control attribute of the
output queue is not to be changed.

*YES: A user with job control rights can control the queue and make
changes to the entries on the queue.

*NO: This queue and its entries cannot be manipulated or changed by a
user with job control rights unless he also has object management rights,
and read, add, and delete rights for the queue.

TEXT Parameter: Specifies the user-defined text that describes the output
queue. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGOUTQ OUTQ(QPUNCH) JOBSEP(4) TEXT('Default queue +
for all 96-col cards')

This command changes the number of job separators and the text that
describes the output queue named QPUNCH. Four job separator cards are
to precede all of the spooled output for each job produced from the
QPUNCH output queue.

CHGPF (Change Physical File) Command

The Change Physical File (CHGPF) command changes the attributes of a
physical file and all its members. The changed attributes will be used for all
members subsequently added to the file. To change the attributes of a
specific member, execute the CHGPFM (Change Physical File Member)
command.

Restrictions: To change a physical file, you must have object management
and operational rights for the file and read rights to the library. In order for
you to change the file, an exclusive-no-read lock is necessary, which means
no one may be using the file for any purpose.

-(
.•LIBL ®

CHGPF-FILE phyeical-flle-name)----------~----..
• library-name

Required

Optional

>-BXPDATB •NONE~---~~---MAXMBRS •NOMAX~----~ ------· -f_•SAME -f_•SAMB
expiration-date_/ maximum-members_/

•SAM~ ~•SA.MB >- MA.INT •IMMBD'---'-------- RECOVER •NO ;±}
•RBBLD •AFTSTRCPF
•DLY •STRCPF

•

-f_•SAWB ~•SA.MB
>-FRCRATIO •NONE WAITPILB •IMMBD} ..

number-of-records-before-force) •CLS _/
number-of-aeconda

-f_•SAW3 SHARE -~o--~----------+ ..
•TBS

-f_ •SAW3 -f_•SAMJ! 3 >-LVLCHIC •YBS --'II~-- TEXT •BLANI: ------

•NO 'deacription'

l Job:B,I Pam:B,I

CHG PF

Command Descriptions 4-209

CHG PF
FILE FILE Parameter: Specifies the qualified name of the physical file to be

changed. (If no library qualifier is given, *UBL is used to find the file.)

.EXPDATE Parameter: Specifies the expiration date of all the file's members.
Any attempt to open a file member that has expired causes an error
message to be sent to the user. (The RMVM command is used to remove
the member.) If EXPDATE is specified, all members in the file will be
changed. The expiration date must be later than or equal to the current
day's date. An expired mernber may be changed to non-expired by
changing the EXPDATE parameter.

*SAME: The expiration date of the file is not to be changed.

*NONE: The member has no expiration date.

expiration-date: Enter the date after which the member should not be used.
The date must be specified in the format defined by the system values,
QDATFMT and QDATSEP. The date must be enclosed in apostrophes if
special characters are used in the format.

MAXMBRS Parameter: Specifies the maximum number of members that the
physical file can have at any time. The maximum number of members
specified must be greater than or equal to the current number of members
in the file.

*SAME: The maximum number of members in the file is not to be
changed.

*NOMAX: No maximum is specified for the number of members; the system
maximum of 32 767 members per file is used.

maximum-members: Enter the value for the maximum number of members
that the physical file can have. A value of 1 through 32767 is valid.

MAINT Parameter: Specifies the type of access path maintenance to be used
for all members of the physical file. This parameter is valid only if a keyed
access path is used.

(
\

"'

Only the following changes to a file's access path maintenance are allowed:
*REBLD to *IMMED (if the file was originally created as *IMMED or
*REBLD), *IMMED to *REBLD, *DLY to *REBLD, and *REBLD to *DLY (if
the file was originally created as *DLY).

Existing MAINT CHGPF MAINT Parameter Value

Value *REBLD *DLV IMMED

*REBLD N/A Note 1 Note 2

*DLY YES N/A NO

*IMMED YES NO N/A

Notes:
1. Allowed only if file was originally created with MAINT(*DLY).
2. Allowed only if file was originally created with MAINT(*IMMED) or

MAINT(*REBLD).

*SAME: The access path maintenance of the file is not to be changed.

*IMMED: The access path is to be continuously (immediately) maintained
for each physical file member. The path is updated each time a record is
changed, added to, or deleted from the member. The records can be
changed through a logical file that uses the physical file member regardless
of whether the physical file is opened or closed. *IMMED must be specified
for all files requiring unique keys to ensure uniqueness in all inserts and
updates.

*REBLD: The access path is to be rebuilt when a file member is opened
during program execution. The access path is continuously maintained until
the member is closed; the access path maintenance is then terminated.
*REBLD is not valid for access paths that are to contain unique key values.

*DLY: The maintenance of the access path is to be delayed until the
member is opened for use. The access path is then updated only for
records that have been added, deleted, or updated since the file was last
closed. (While the file is open, all changes made to based-on members are
immediately reflected in the access paths of the opened files members, no
matter what is specified for MAINT.) To prevent a lengthy rebuild time
when the file is opened, *DL Y should be specified only when the number of
changes to the access path between a close and the next open are small
(when key fields in records for this access path change infrequently). *DL Y
is not valid for access paths that require unique key values.

If the number of changes saved reaches approximately 10 per cent of the
access path size, the system will stop saving changes and the access path
will be completely rebuilt the next time the file is opened.

CHG PF
MAINT

Command Descriptions 4-211

CHG PF
RECOVER

4-212

RECOVER Parameter: Specifies, for files having immediate or delayed
maintenance on their access paths, when recovery processing of the file is
to be performed if a system failure occurred while the access path was
being changed.

An access path having immediate or delayed maintenance can be rebuilt
during start CPF (before any user can execute a job), or after start CPF has

/

finished (during concurrent job execution), or when the file is next opened.
While the access path is being rebuilt, the file cannot be used by any job.
For more information on recovery processing, refer to the CPF
Programmer's Guide.

An access path having rebuild maintenance will be rebuilt the next time its
file is opened, the time that it normally is rebuilt.

This parameter is valid only if a keyed access path is used.

*SAME: The recovery attribute of the file is not to be changed.

*NO: The access path of the file is not to be rebuilt. The file's access path
is rebuilt when the file is next opened.

*AFTSTRCPF: The file is to have its access path rebuilt after the start CPF
operation has been completed. This option allows other jobs not using this
file to begin processing immediately after the CPF has been started. If a job
tries to allocate the file while its access path is being rebuilt, a file open
exception occurs if the specified wait time for the file is exceeded.

*STRCPF: The file is to have its access path rebuilt during the start CPF
operation. This ensures that the file's access path will be rebuilt before the
first user program tries to use it; however, no jobs can begin execution until
after all files that specify RECOVER(*STRCPF) have their access paths
rebuilt.

FRCRATIO Parameter: The force write ratio parameter specifies the number
of inserted, updated, or deleted records that are processed before they are
forced to auxiliary (permanent) storage. (For an expanded description of the
FRCRATIO parameter, see Appendix A.)

If the physical file is being journaled, a larger force write ratio or *NONE
may be specified. Refer to the CPF Programmer's Guide for more
information on the Journal Management Facility.

*SAME: The force write ratio of the file is not to be changed.

*NONE: There is no force write ratio; the system determines when the
records are written in auxiliary storage.

number-of-records-before-force: Enter the number of new or changed
records that are processed before they are explicitly forced into auxiliary
storage.

' '·

\ ..

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait attribute of the file is not to be changed.

*IMM£D: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

WAITRCD Parameter: Specifies the number of seconds that the program is
to wait for a record that is to be updated or deleted. If the record cannot
be allocated in the specified wait time, an error message is sent to the
program.

*SAME: The record wait attribute of the file is not to be changed.

*IMM£D: The program is not to wait; when a record is locked, an
immediate allocation of the record is required.

*NOMAX: The wait time will be the maximum allowed by the system
(32 767 seconds).

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether an ODP (open data path) to the
physical file member is to be shared with other programs in the same job.
When an ODP is shared, the programs accessing the file share such things
as the position being accessed in the file, the file status, and the buffer.
When SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record. If SHARE is specified, all members in the
file will be changed.

*SAME: The ODP sharing value of the member is not to be changed.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE(*YES) when it opens the file.

CHG PF
WAITFILE

Command Descriptions 4-213

CHG PF
LVLCHK

4-214

LVLCHK Parameter: Specifies whether the record format identifiers are to be
level checked to verify. that the current record format identifier is the same
as that specified in the program that opens the physical file. This value can
be overridden on the OVRDBF command at execution time.

*SAME: The level check value of the member is not to be changed.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an error message is
sent to the program requesting the open, and the file is not opened.

*NO: The level identifiers are not to be checked when the file is opened.

TEXT Parameter: Enter text that briefly describes the physical file member.
(For an expanded description of the TEXT parameter, see Appendix A.)

*SAME: The text that describes the member is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHG PF FILE(INV.OGPL) EXPDATE('10/31 /87')

This command changes the expiration date for all members in physical file
INV to October 31, 1987. '

CHGPFM (Change Physical File Member) Command

The Change Physical File Member (CHGPFM) command changes the
attributes of a physical file member.

Restrictions: To change a physical member, you must have object
management and operational rights for the physical file that contains the
member, and read rights to the file library. In order for you to change the
member, no other user may be clearing or initializing the member, nor may
any user be holding the file for exclusive use. Concurrent users may have
the member open, but the changes made to the member will not be
reflected in any open members. In order for the changes in open members
to be effective, you must first close the member (this must be a full close if
the member is open SHARE(*YES)) and open it again.

-(
.•LIBL

CHGPPM-PILE physical-file-name J------------+I>
.Ubrary-n-

-(
•FIRST ®

>-MBR physica1-rne-member-name)>-------------------+1>
Required
Optional

-f_•SAKB
>-EXPDATE •NONE

expiration-date)
-f_•SAM~ SHARE •NO--..... ----------+I>

•YBS

j Job:B,I P1m:B,I

FILE Parameter: Specifies the qualified name of the physical file that contains
the member to be changed. (If no library qualifier is given, *UBL is used to
find the file.)

CHGPFM

Command Descriptions 4-215

CHGPFM
MBR

4-216

MBR Parameter: Specifies the name of the member, or the first member
(*Fl RST) to be changed.

*FIRST: The first member of the specified physical file is to be changed.

physical-file-member-name: Enter the name of the physical file member to
be changed.

EXPDATE Parameter: Specifies the expiration date of the member. Any
attempt to open a file member that has expired causes an error message to
be sent. (The RMVM command is used to remove the member.) An expired
member may be changed to non-expired by changing the EXPDATE
parameter. The expiration date must be later than or equal to the current
day's date.

*SAME: The expiration date of the member is not to be changed.

*NONE: The member has no expiration date.

expiration-date: Enter the date after which the member should not be used.
The date must be specified in the format defined by the system values,
QDATFMT and QDATSEP. The date must be enclosed in apostrophes if
special characters are used in the format.

SHARE Parameter: Specifies whether an ODP {open data path) to the
physical file member is to be shared with other programs in the same job.
When an ODP is shared, the programs accessing the file share such things
as the position being accessed in the file, the file status, and the buffer.
When SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record.

*SAME: The ODP sharing value of the member is not to be changed.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE{*YES) when it opens the file.

TEXT Parameter: Enter text that briefly describes the physical file member.
(For an expanded description of the TEXT parameter, see Appendix A.)

*SAME: The members text should not be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGPFM FILE(INV.OGPL) MBR(FEB) EXPDATE('10/31 /87')

The member named FEB in the physical file INV that is stored in the OGPL
library is to be changed so that the expiration date of the member will now
be October 31, 1987.

CHGPFM
TEXT

Command Descriptions 4-217

CHGPGMVAR

4-218

CHGPGMVAR (Change Program Variable) Command

The Change Program Variable (CHGPGMVAR) command, used only in debug
mode, changes the value of a variable in a program being debugged. Only
character and numeric variables can be changed. Depending upon whether
the variable to be changed is in static or automatic storage, the duration of
the change varies. For a static variable, the change lasts for the duration of
the ,program's activation. For an automatic variable, the change lasts until
the invocation of the program is terminated.

A portion of a character string can be changed; the length of the data being
changed is the length of data specified in the VALUE parameter.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

CllGPGMVAR

>- PGMVAR 'pro1ram-varlable-name[(aubaorlpt)]' ['baain1-polnter-name[(sub1orlpt)]']

......

...
Required

Optional

I--START >- VALUB new-value - -(1®
startiil.1-oharacter-position)

•

-(«<DPTPGM :J-- -(«<LAST >- PGM INVLVL
pro1ram-name invocation-level-number_)--

j .Job:B,I P1m:B,I

PGMVAR Parameter: Specifies the name of the program variable to be
changed in an HLL (high-level language) or Ml (machine interface) program.

'program-variable-name': Enter the name of the program variable to be
changed. If the variable name contains special characters (such as the & in
a CL variable name), it must be enclosed in apostrophes. An example is:
PGMVAR('&VAR2')

An RPG indicator or an Ml ODV (object definition table directory vector)
number can be specified instead of a program variable name. An example
of an RPG indicator is: PGMVAR('*IN22'). The ODV number must be
preceded by a slash: PGMVAR(' /264') for example.

COBOL-qualified program variable names may be specified in this
parameter. These names have the following syntax:

var-name-1 OF/IN var-name-2 OF/IN varname-3 ... varname-N

where varname-N is the last possible variable name that will fit into the
input field of the PGMVAR parameter. The input field length for each
variable in the PGMVAR parameter is 98 characters. The subscript specified
for a qualified variable name may also be a qualified variable name. A
qualified variable name (or one with a subscript), including blanks and
parentheses, must be contained within the 98-character limit. The
98-character limit includes the necessary keywords (OF /IN) and blanks, but
does not include the enclosing apostrophes.

'program-variable-name(subscript)'; For variables in an array, enter the
name of the variable and the subscript representing the positional element in
the array that is to be changed. The subscript must be enclosed in
parentheses, and the variable name and subscript number must be enclosed
in apostrophes. An example is: PGMVAR('A(5)')

Either an integer or another variable name can be specified for each
subscript.

For COBOL-qualified program variable names, any combination of variable
name length and subscript length that will fit into the 98-character limit is
used. For example, one qualified variable name 98 characters in length
(including the keywords OF or IN) can be used with no subscript. or a
one-character variable name may be used with a qualified variable name
(used as a subscript that uses the other 97 spaces, including parentheses).

For COBOL, the following apply:

• Variable names used in qualifying strings must be high-level language
variable names (qualification with ODVs is not allowed).

• Either keyword (OF or IN) is allowed.

• Each OF/IN keyword must be separated from adjacent variable names by
at least one blank.

• A qualified variable name can be used as a variable subscript.

• The order the variable names are specified must be from the lowest to
the highest levels in the structure.

• Structure levels may be skipped; enough levels must be specified,
however, to uniquely identify the variable.

• Qualified variable names must be enclosed in apostrophes, since they
contain blank characters.

CHGPGMVAR
PGMVAR

Command Descriptions 4-219

CHGPGMVAR
VALUE

4-220

['basing-pointer-name[(subscript)]']: This set of values in the PGMVAR
parameter applies only to Ml or HLL programs that support based-on
variables. The values can optionally be used with either of the previous two
choices to also specify the value in an array that is based on a pointer. The
same description of the coding syntax applies here. An example is:

PGMVAR('VAR1(5)' 'PTR1(5)')

The field length for the basing pointer name is 24 characters.

VALUE Parameter: Specifies the new value of the program variable.
Depending on the type specified for the variable in a DCL command, its
value must be specified according to the following rules:

• The value for a character variable must be enclosed in apostrophes if it
contains special characters or numeric characters (for example, 'ABC 67',
which contains a blank and numeric characters, or '37.92', which contains
a decimal point and numeric characters).

• The value for a decimal variable can be coded with or without a decimal
point (. or ,), and with or without a plus or minus sign. If a negative
value is to be specified, it must be preceded by a minus (-) sign. If a
decimal point is not entered in the coded value, it is assumed to be on
the right of the last digit entered; that is, the coded value is assumed to
be an integer (whole number) only. If the number of either integer or
fractional digits entered exceeds the defined number of integer or
fractional digits, an error occurs.

If, for example, a decimal variable is defined as a five-position decimal
value of which two positions are the fraction portion, the following values
can be coded:

Coded Value Assumed Value

2.7 or 2,7 2.70

27 or 27.00 27.00

-27 -27.00

• Values for all variable types can be entered in hexadecimal form (X'058C'
for packed decimal 58). However, if decimal values are entered in
hexadecimal form, care should be used because no validity checking is
performed on the hexadecimal string.

START Parameter: Specifies the starting position of the value in the program
variable that is changed. This parameter is valid only if the program variable
is a character string.

1: The first position of the program variable is the starting position in the
string to be changed.

starting-character-position: Enter the position number within the program
variable that specifies the first character to be changed in the string.

PGM Parameter: Specifies the name of the program that contains the
program variable whose value is to be changed.

*DFTPGM: The program previously specified as the default program
contains the variable to be changed.

program-name: Enter the. name of the program that contains the variable to
be changed. The same name (in qualified form) must already have been
specified in the ENTDBG or ADDPGM command.

INVLVL Parameter: Specifies which invocation level of the program contains
the variable whose value is to be changed. Changes made to static variables
automatically affect all invocations. Invocation level 1 is the first (or earliest)
invocation of the program, invocation level 2 is the second invocation, and
so on down to the last (most recent) invocation level in the stack. For
example, if program A calls program B, then program B calls program A, a
new invocation of program A is formed. If the first invocation of program A
contains the variable to be changed, INVLVL(1) must be specified.

*LAST: The last (most recent) invocation of the specified program has the
variable to be changed.

invocation-level-number: Enter the number of the.invocation level of the
program that has the variable whose value is to be changed.

CHGPGMVAR
START

Command Descriptions 4-221

CHGPGMVAR
(Examples)

4•222

Examples

DCL VAR(&AMT) TYPE{*DEC) LEN(5 2)

CHGPGMVAR PGMVAR('&AMT) VALUE(16.2)

The first command, which is used in a CL program, declares the CL variable
&AMT as a five-position decimal value having a three-digit integer and a
two-digit fraction. The CHGPGMVAR command (entered in debug mode) is
used to change the value of &AMT to 16.20. If VALUE is coded as 16 or
16.00, the value accepted is 16.00; if -16 is coded, the value accepted is
-16.00. However, if 1600 is coded, an error occurs because the system
assumes that, if no decimal point is coded, it is always on the right of the
last digit coded.

CHGPGMVAR PGMVAR(PARTNO) VALUE('56') START(4)

This command changes, starting in position 4, the program variable
PARTNO to 56. Because the START parameter is specified, PARTNO must
be a character variable. Because PARTNO is a character variable, the
numeric value must be enclosed in apostrophes.

CHGPRTF (Change Printer File) Command

The Change Printer File (CHGPRTF) command changes, in the file
description, one or more of the attributes of the specified printer device file.

CHGPRTF

Command Descriptions 4-223

CHGPRTF
(Diagram)

4-224

>-FORMSIZE []-LP! 6---------.. -(•SAllE:J- -{•SAMEJ- ~:S@E
form-len&th form-width :

<•SAME -f_ •SAM3
OVRFLW)- FOLD •YES------"

overflow-line-number •NO ·

>-RPLUNPRT ~ :::J-[-{ ~r::aEcement-character')-])>-------------. ..
~ . .:;;0------------------------

-C=~~---p >-PRTIMG -{ ."'11BL 'ti----------------• ..
print-imace-name

.libraey-name

==~I~G---------------- -f_•SAll~
>-TRNTBL •NONB--------------------AIJGN •NO--...... ...---~ ..

-{
.•LIBL •YES

translate-table-name

.library-name

>-CTLCHAR •NONE CHLVAL -f_ *SAllET- :::!.u.----------SPOOL1::.1:~
channel-value line-number _ •NO'_J­
~---12 maximum----

•FCFC

>-COPIES MAXRCDS •NOMAX----~----------.. -{ •SAJ.IE=:J- -f_ •SAME

number-ot-coplea maximum-records_/

~•SAME ~•SAMEfoY >- FILESE)---SCHEDULE ~OBBND --.-------..,
number-of-flle-aeparatora •PILBBND

•UUlBD

>-HOLD1:::-~-..... ---SAVE1:::~WAITPILB~ ::D =}
_•YES__/ _•TBS__/ ~ •CLS _/

number-ot-aecond1

..

-f_·SAllr -f_•SAllT -f_ UAllB 3 >-SHARE •NO LVLCHK •YBS TEXT •BLANB:

•TBS •NO 'deacrlptlon'

Job:B,I P1m:B,I

FILE Parameter: Specifies the qualified name of the printer device file whose
description is being changed. A generic printer device file name may be
specified. For more information on changes made to files with generic
filenames, refer to Appendix A.

DEV Parameter: Specifies, for nonspoo/ed output only, the name of the printer
that is to be used with this printer file to produce printed output. The device
name of the IBM-supplied printer device description is OSYSPRT. If
System/38 has two system printers attached, another printer device
description named OSYSPRT2 is also provided. If SPOOL(*YES) is
specified, this parameter is ignored.

*SAME: The device name, if any, specified in the device file description is
not to be changed.

*NONE: No device name is to be specified. It can be specified later on an
OVRPRTF command, another CHGPRTF command, or in the HLL (high-level
language) program that opens the file.

device-name: Enter the name of the device that is to be used with this
printer file. The device name must already be known on the system via a
device description.

FORMSIZE Parameter: Specifies the length and width of the printer forms to
be used by this device file. The length is in lines per page, and the width is
in print positions (characters) per line.

*SAME: The length specified in the printer file description is not to be
changed.

form-length: Enter the form length (in print lines per page) that is to be
used by this device file. Although a value of 1 through 255 can be specified
as the form length, the value specified should not exceed the actual length
of the forms used. The following chart shows the number of lines per page
that are valid for each printer type, depending on whether 6 or 8 lines per
inch is specified in the LPI parameter for the 3203, 3262, and 5211 Printers,
or is manually set on the 5256 Printer. For 5224 and 5225 Printers, 4, 6, 8,
or 9 lines per inch can be specified.

Lines per Page

Printer 4 lines/inch 6 lines/inch 8 lines/inch 9 lines/inch

3203 - 2-144 2-192 -
3262

2-84 2-112 - -
5211

5224
1-255 1-255 1-255 1-255

5225

5256 - 1-255 1..,255 -

CHGPRTF
FILE

Command Descriptions 4-225

CHGPRTF
LPI

4-226

*SAME: The width specified in the printer file description is not to be
changed.

form-width: Enter the form width (in characters per printed line) that is to
be used by this device file. Valid values for the 3203, 3262, 5211, and 5256
Printers are 1 through 132. Valid values for the 5224 and 5225 Printers are
1 through 198. The value specified should not exceed the actual width of
the forms used.

LPI Parameter: Specifies the line spacing setting on the printer, in lines per
inch, to be used by this device file. The line spacing on the 5256 Work
Station Printer must be set manually.

*SAME: The printer line spacing specified in the device file description is
not to be changed.

4: The line spacing on the printer is to be 4 lines per inch. This spacing is
valid for only the 5224/5225 Work Station Printers.

6: The line spacing on the printer is to be 6 lines per inch.

8: The line spacing on the printer is to be 8 lines per inch.

9: The line spacing on the printer is to be 9 lines per inch. This spacing is
valid for only the 5224/5225 Work Station Printers.

CPI Parameter: Specifies the printer character density, in characters per inch,
to be used by this device file.

*SAME: The character density specified in the printer device file
description is to be used.

10: Character density is to be 10 characters per inch.

15: Character density is to be 15 characters per inch. This density is valid
only for 5224/5225 Printers.

OVRFLW Parameter: Specifies the line number on the page when overflow
to a new page is to occur. Generally, after the specified line is printed, the
printer overflows to the next page before printing continues. Refer to the
CPF Programmer's Guide for details about controlling page overflow.

*SAME: The line number (after which the printer overflows to a new page)
that is specified in the printer file description remains the same.

overflow-line-number: Enter the line number of the line that causes page
overflow after the line is printed. The value specified must not exceed the
form length specified for the file (FORMSIZE parameter).

FOLD Parameter: Specifies whether all positions in a record are to be printed
when the record length exceeds the form width (specified by the FORMSIZE
parameter). When folding is specified and a record exceeds the form width,
any portion of the record that cannot be printed on the first line will be
continued (folded) on the next line or lines until the entire record has been
printed.

*SAME: The same value specified in the printer file description is to be
used.

*YES: Records whose length exceeds the form width are to be folded on
the following line(s).

*NO: Records are not to be folded; if a record is longer than the form
width, only the first part of the record that fits on one line will be printed.

RPLUNPRT Parameter: The replace unprintable character parameter specifies
(1) whether unprintable characters are to be replaced and (2) which
substitution character (if any) is to be used. An unprintable character is a
character that is not on the print belt or train, or in the print image used by
the printer.

For 5224, 5225, and 5256 Printers, one of the following occurs when an
unprintable character is encountered:

• If you specify RPLUNPRT(*YES), the specified substitution character is
printed in place of each unprintable character.

• If you specify RPLUNPRT(*NO) and the value of the unprintable character
is hex 00 through hex 3F, or is hex FF, undesirable results may occur.
Most characters in this range cause an unrecoverable error to be signaled
by the printer, and either the file is held for spooling or it is not
processed. Some characters in this range, however, control forms
movement and character representation on the printer. If the unprintable
character is one of these control characters, additional spacing or
skipping may occur. If control characters are specifically placed in the
data, other system functions (such as the displaying or copying of a
spooled file, or restarting or backing up of a print writer) may cause
unpredictable results.

• If you specify RPLUNPRT(*NO) and the value of the unprintable character
is in the range of hex 40 through hex FE, a recoverable error is signaled
by the device and an inquiry message is sent to the operator, informing
him of the error and giving him the chance to cancel the file or to
continue processing. If the continue option is selected, subsequent
unprintable characters will appear as blanks in the output, and no further
inquiry messages will be sent to the operator.

CHGPRTF
FOLD

Command Descriptions 4-227

CHGPRTF
RPLUNPRT

4-228

For 3203, 3262, and 5211 Printers, the following occurs when an
unprintable character is encountered:

• If you specify RPLUNPRT(*YES) and the value of the unprintable
character is in the range of hex 00 through hex 3F, or is hex FF, the
specified substitution character is printed instead. If no substitution
character was specified, the blank is used. If no characters in this range
are expected to be in the data to be printed, *NO can be specified for
this parameter to gain some performance improvement. However, if *NO
is specified and an unprintable character in this range does occur, the
only recovery is to rerun the job.

• If you specify RPLUNPRT(*YES) and the value of the unprintable
character is in the range of hex 40 through hex FE, a translate table
should be used to translate unprintable characters to different printable
characters; each unprintable hex value can be translated to its own
printable character. The translate table, which is specified by the
TRNTBL parameter, should also match the print image used by the
printer.

• If you specify RPLUNPRT(*NO) and the value of the unprintable character
is hex 00 through hex 3F, undesirable results may occur. Most characters
in this range cause an unrecoverable error to be signaled by the printer,
and either the file is held for spooling or it is not processed. Some
characters in this range, however, control forms movement and character
representation on the printer. If the unprintable character is one of these
control characters, additional spacing or skipping may occur. If control
characters are specifically placed in the data, other system functions
(such as the displaying or copying of a spooled file, or restarting or
backing up of a print writer) may cause unpredictable results.

• If you specify RPLUNPRT(*NO) and the value of the unprintable character
is in the range of hex 40 through hex FE, a recoverable error is signaled
by the device and a notify message is sent to the program. If you choose
to continue processing or if the message is unmonitored, the error will be
ignored and processing will continue. Subsequent unprintable characters
will appear as blanks in the output, and no further inquiry messages will
be sent to the program.

*SAME: The value specified in the printer file description remains the same
concerning whether a message is sent when an unprintable character is
detected.

*YES: Unprintable characters are to be replaced. The program is not
notified when unprintable characters are detected.

*NO: Unprintable characters are not to be replaced. When an unprintable
character is detected, a message is sent to the program.

*SAME: The same substitution character specified in the printer file
description is to be used when an unprintable character is detected and
*YES is specified.

'replacement-character': If *YES is also specified in this parameter, enter the
substitution character that is to be used each time an unprintable character
is detected. Any printable EBCDIC character can be specified.

PRTIMG Parameter: Specifies, for 3203, 3262, and 5211 Printers only, the
name of the print image to be used by this printer device file.

*SAME: The same print image specified in the device file description is to
be used.

*DEVD: The standard print image for the printer (specified in the device
description) is to be used.

qualified-print-image-name: Enter the qualified name of the print image to
be used by this device file. (If no library qualifier is given, *LIBL is used to
find the print image.)

TRNTBL Parameter: Specifies, for 3203, 3262, and 5211 Printers only, the
name of the translate table (if any) to be used by this device file when the
output data is to be translated before it is printed. The translate table is
used to convert each unprintable character having a hexadecimal code of 40
through FE to the printable character specified in the table that is also on
the print belt or train. Each hexadecimal code can specify a different
printable character.

For each IBM-supplied print image shipped with the system, a matching
translate table is also supplied; the name of the table is the same as the
name of the image.

*SAME: The translate table name, if any, specified in the printer file
description is not to be changed.

*PRTIMG: The translate table with the same qualified name as the print
image is to be used.

*NONE: No translation is needed when this device file is used.

qualified-translate-table-name: Enter the qualified name of the translate
table to be used by this device file and the 3203, 3262, or 5211 Printer. (If
no library qualifier is given, *LIBL is used to find the translate table.)

CHGPRTF
PRTIMG

Command Descriptions 4-229

CHGPRTF
ALIGN

4-230

ALIGN Parameter: Specifies, for nonspooled output only, whether the forms
must be aligned in the printer before printing is started. If ALIGN(*YES) and
SPOOL(*NO) are specified, and forms alignment is required, the system
sends a message to the QSYSOPR message queue (or any message queue
specified for 5224, 5225, and 5256 Printers), and waits for a reply to the
message. This parameter is ignored if SPOOl,.(*YES) is specified. (For
spooled output, the message is sent to the message queue specified on the
STRPRTWTR command whenever the spooling writer is started and
whenever the forms are to be changed.)

*SAME: The same value specified in the printer file description is to be
used.

*NO: No forms alignment is required.

*YES: The forms are to be aligned before the output is printed.

CTLCHAR Parameter: Specifies whether the printer device file will support
input with print control characters. Any invalid control characters that are
encountered will be ignored, and single spacing is assumed.

*SAME: The specification for the control characters is to remain as
originally defined.

*NONE: No print control characters will be passed in the data to be printed.

*FCFC: Specifies that the first character of every record will contain an
ANSI forms control character. If *FCFC is specified, the record length must
include one position for the first-character forms-control code. This value is
not valid for externally described printer files; that is, SRCFILE(*NONE) was
specified on the Create Printer File (CRTPRTF) command.

\

CHLVAL Parameter: Specifies a list of channel numbers with their assigned
line numbers. Use this parameter only if CTLCHAR(*FCFC) has been
specified.

Note: If one or more channel-number/line-number combinations are
changed, all other combinations must be re-entered.

*SAME: The specification for the channel and line values is to remain as
originally defined.

"NORMAL: The default values for skipping to channel identifiers will be
used. The following are the default values:

ANSI First-Character Forms-Control Codes

Code Action Before Printing a Line

.. Space one line (blank code)

0 Space two lines

- Space three lines

+ Suppress space

1 Skip to line 1

2-11 Space one line

12 Skip to overflow line (OVRFLW
parameter)

channel-number: Specifies a channel number to be associated with "
corresponding 'skip to' line number. The only valid values for this parameter
are 1 through 12, corresponding to channels 1 through 12. The CHLVAL
parameter associates the channel number with a page line number.

If no line number is specified for a channel identifier, and that channel
identifier is encountered in the data, a default of 'space one line' before
printing is taken. Each channel number may be specified only once per
CHGPRTF command invocation.

line-number: The line number assigned for the channel number in the same
list. The range of valid line numbers is 1 through 255. If no line number is
assigned to a channel number and that channel number is encountered in
the data, a default of 'space one line' before printing is taken. Each line
number may be specified only once per CHGPRTF command invocation.

CHGPRTF
CHLVAL

Command Descriptions 4-231

CHGPRTF
SPOOL

4-232

SPOOL Parameter: Specifies whether the output data for the printer device
file is to be spooled. If SPOOL(*NO) is specified, the following parameters
in this command are ignored: OUTQ, FORMTYPE, COPIES, MAXRCDS,
FILESEP, SCHEDULE, HOLD, and SAVE.

*SAME: The value specified in the printer file description is not to be
changed.

*YES: The data is to be spooled for processing by a card, diskette, or print
writer.

*NO: The data is not to be spooled; it is sent directly to the device to be
printed as the output becomes available.

OUTQ Parameter: Specifies, for spooled output only, the name of the output
queue for the spooled output file.

*SAME: The same output queue specified in the device file description is
to be used.

"'JOB: The output queue specified in the job description associated with the
job is to be used.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. (If no library qualifier is given,
*UBL is used to find the queue.) The IBM-supplied output queues that can
be used by the printer file are the OPRINT, OPRINT2, and OPRINTS output
queues, stored in the OGPL library.

/

\

FORMTYPE Parameter: Specifies, for spooled output only, the type of forms
to be used in the printer when it uses this device file to produce printed
output. The identifiers used to indicate the type of forms are user-defined
and must not be longer than 10 characters.

*SAME: The type of printer forms specified in the printer file description
remains the same.

*STD: The standard form used in your installation is to be used with this
device file for printed output. The system assumes (for *STD only) that the
standard forms are already in the printer; no message is sent when this
device file is opened.

form-type: Enter the identifier of the form type to be used with this device
file for printed output from jobs. A maximum of 10 alphameric characters
can be specified. When the device file is opened, the system sends a
message identifying the form type to the system operator, and requests that
the identified forms be mounted in the printer.

COPIES Parameter: Specifies, for spooled output only, the number of copies
(regardless of whether it is one-part or multipart paper) of the output to be
printed when this printer device file is used.

*SAME: The number of copies specified in the printer file description is
not to be changed.

number-of-copies: Enter a value, 1 through 99, that indicates the number of
copies to be produced when this device file is used.

MAXRCDS Parameter: Specifies the maximum number of records that can
be in the spooled output file for spooled jobs using this printer device file.
If this maximum is exceeded, an error message is sent to the program
message queue and the program is terminated.

*SAME: The maximum number of records specified in the printer file
description remains the same.

*NOMAX: No maximum is specified for the number of records that can be
in the spooled output file.

maximum-records: Enter a value, 1 through 500000 (500 000), that specifies
the maximum number of records that can be in the spooled output file.

•

CHGPRTF
FORMlYPE

Command Descriptions 4-233

CHGPRTF
FILESEP

4-234

FILESEP Parameter: Specifies, for spooled output files only, the number of
separator pages to be placed at the beginning of each printed file, including
those between multiple copies of the same output. Each separator page has
the following items printed on it: file name, file number, job name, user
name, and job number.

*SAME: The number of separator pages specified in the printer file
description is not to be changed.

number-of-file-separators: Enter the number of separator pages to be used
at the beginning of each printed output file produced by this device file.
Valid values are 0 through 9.

SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a writer.

*SAME: The time specified in the printer file description when spooled
output can begin remains the same.

* JOBEND: The spooled output file is to be made available to the writer only
after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the writer as
soon as the file is closed in the program.

*IMMED: The spooled output file is to be made available to the writer as
soon as the file is opened in the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a writer
when it is released by the Release Spooled File (RLSSPLF) command.

*SAME: The same value specified in the printer file description is to be
used.

*NO: The spooled printer file is not to be held by the output queue. The
spooled output is made available to a writer based on the SCHEDULE
parameter value.

*YES: The spooled printer file is to be held until it is released by the
RLSSPLF command.

SAVE Parameter: Specifies, for spooled output files only, whether the
spooled file is to be saved (left on the output queue) after the output has
been produced.

*SAME: The value specified in the printer file description is not to be
changed.

*NO: The spooled file data is not to be retained on the output queue after it
has been produced.

*YES: The spooled file data is to be retained on the output queue until the
file is deleted.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description for the
needed objects is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the printer device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
printer device file can be shared with other programs in the same routing
step. If so, when the same file is opened more than once, the ODP can be
shared with other programs in the same routing step that also specify the
share attribute. When an ODP is shared, the programs accessing the file
share such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a write operation in that
program produces the next output record.

*SAME: The value specified in the printer file description is not to be
changed.

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the
file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

CHGPRTF
SAVE

Command Descriptions 4-235

CHGPRTF
LVLCHK

4-236

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*SAME: The value specified in the printer file description is not to be
changed.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not all match, an open
exception occurs and an error message is sent to the program requesting
the open.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

TEXT Parameter: Specifies the user-defined text that describes the printer
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CHGPRTF FILE(PRTRPT.ACCREC) LPl(6) ALIGN(*YES)

This command changes two parameters in the description of the device file
named PRTRPT that is stored in the ACCREC library. The system operator
must align the forms in the printer before the system begins printing that
file. The file is to be printed in 6 lines per inch on the forms.

CHGPRTF FILE(O*.QSYS) FORMSIZE(88132) LPl(8) OVERFLOW(80)

This command changes all IBM-supplied print files in library QSYS to use
88 lines of 132 characters (8 lines per inch), but to skip to the next page
after 80 lines.

CHGPTR (Change Pointer) Command

The Change Pointer (CHGPTR) command changes the value of a pointer
variable in a program. The value of the program pointer specified can be
changed to point to a new system object (SYSOBJ), to. a new space pointer
address (ADR) or to a new offset within a space object (OFFSET). This ·
command is not normally used in high-level language programs.

Restrictions: This command is valid only for changing program variables
that are used as pointers; also, the command is valid only in debug mode.
To enter debug mode, refer to ENTDBG (Enter Debug) Command.

CHGPTR-- PTR 1pro1riun-pointer-name[(•ubacr1pt)]1 ['bHin&-polnter-n-[(•ub•crlpt)]'] ---~

·-(•RUIL y-SYSOBJ -{ .+LIBL. OBJTYPB •1Jllbollc
object-name · -obJeot-type

.library-name

-(
+NULL

>-+---ADR ·
@ 'pro1r1UD-varlable-nama[(•ubecrlpt)]' ['bHln1-polnter-name[(aubacrlpt)]']

OPPSBT apace-pointer-ott1et ----------------------'

Required

Optional

-f_ +SAMB~ >- PTRTYPB •SYP _ ____:.,__ __

•SPP

-{
DPTPGM

PGM pro1run-nlllll9)'--------------+•

>- INVLVL -{
•LAST ·

invocatlon-level-nwnber J
@The ADR and OPPSBT par-ters cannot be coded positionally.

Job:B,I P1m:B,I

CHGPTR

Command Descriptions 4-237

CHGPTR
PTR

4-238

PTR Parameter: Specifies tile name of the pointer (program variable) whose
value is to be changed, allowing the pointer to point to a different system
object or space pointer· address.

'program-pointer-name': Enter the name of the pointer whose value is to be
changed. The name must be enclosed in apostrophes if it contains special
characters. An example of a CL variable used as a pointer is:
PTR('&PTRVAR') .

An Ml ODV number can be specified instead of a pointer name. The ODV
number must be preceded by a slash: PTR(' /264') for example.

'program-painter-name(subscript)': If the pointer is in an array, enter the
name of the pointer and the subscript representing the positional element in
the array whose value is to be changed. The subscript must be enclosed in
parentheses, and the pointer name and subscript number must be enclosed
in apostrophes. An example is: PTR('A(5)')

Either an integer or another variable name can be specified for the subscript.

['basing-pointer-name[(subscript)]']: This additional set of values in the
PTR parameter applies only to Ml or HLL programs that support based-on
variables. The values can optionally be used with either of the previous two
choices to also specify the value in an array that is based on a pointer or is
an array of pointers. The same description of the coding syntax applies
here. An example is:

PTR('VAR1(5)' 'PTR1(5)')

Coding Relationships: The next four parameters have a mutually exclusive
relationship; only one of the following three combinations must be coded:

• SYSOBJ and OBJTYPE

• ADR

• OFFSET

SYSOBJ Parameter: Specifies that the pointer is a system pointer, or it is to
be changed to a system pointer, whose value is to be changed. The pointer
can be set to address Ml system objects or to CPF objects. If a CPF object
is specified that is stored in a library, the object name can be optionally
qualified.

*NULL: The system pointer is to be set to a null; that is, it no longer points
to any system object nor does it have a pointer type. The OBJTYPE
parameter cannot be specified if *NULL is specified here.

qualified-object-name: Enter the qualified name of the CPF or system object
to which the system pointer is to be set. (If no library qualifier is given,
*UBL is used to find the object.) The user who codes this value must have
at least read authority for the specified object. If a CPF object name is
specified, the OBJTYPE parameter must also be specified.

OBJTYPE Parameter: Specifies the object type of the CPF or system object
specified in the SYSOBJ parameter to which the pointer named in the PTR
parameter is to be set. The CPF object type specified can be any one of
those listed in the OBJTYPE parameter charts in Appendix A. For a chart of
the system object types used by CPF that can be specified, refer to the IBM
System/38 Diagnostic Aids Manual, SY21-0584.

ADR Parameter: Specifies the name of the program variable (if any) to which
the specified space pointer is to point (that is, the program variable's
address).

*NULL: The space pointer is to be set to a null; it no longer points to the
address of any space object nor does it have a pointer type.

'program-variable-name': Enter the name of the program variable to which
the space pointer is to be set to point. If the variable name contains special
characters (such as the & in a CL variable name), it must be enclosed in
apostrophes. An example is:

ADR('&PTRADR')

An Ml ODV number can be specified instead of a program variable name.
The ODV number must be preceded by a slash. An example is:

ADR(' /264')

'program-variable-name[(subscript)]': If the variable is in an array, enter the
name of the variable and (optionally) the subscript representing the
positional element in the array to which the pointer is to be set. If a
subscript is not specified, it is set to point to the beginning of the array.
The subscript. if specified, must be enclosed in parentheses, and the
variable name and subscript number must be enclosed in apostrophes. An
example is:

ADR('A(5)')

Either an integer or another variable name can be specified for the subscript.

['basing-pointer-name[(subscript)]']: This additional set of values in the
ADR parameter applies only to Ml or HLL programs that support based-on
variables. The values can optionally be used with either of the previous two
choices to also specify the value in an array that is based on a pointer. The
same description of the coding syntax applies here. An example is:

ADR('VAR1(5)' 'PTR1(5)')

OFFSET Parameter: Specifies the value to which the offset portion of the
specified space pointer is to be set. Enter the offset value that indicates the
number of bytes from the start of the space object that the space pointer is
to be set.

CHGPTR
OBJTYPE

Command Descriptions 4-239

CHGPTR
PTRTYPE

4-240

PTRTYPE Parameter: Specifies the type of pointer to which the pointer
named in the PTR parameter is to be set.

*SAME: The type of pointer remains the same.

*SYP: The pointer type is to be a system pointer.

*SPP: The pointer type is to be a space pointer.

PGM Parameter: Specifies the name of the program that contains the pointer
whose value is to be changed.

*DFTPGM: The program previously specified as the default program
contains the pointer whose value is to be changed.

program-name: Enter the name of the program that contains the pointer
whose value is to be changed. The same name (in ·qualified form) must
already have been specified in the ENTDBG or ADDPGM command.

INVLVL Parameter: Specifies the invocation level of the program in which the
pointer is to be changed. Invocation level 1 is the first (or earliest)
invocation of the program, invocation level 2 is the second invocation, and
so on down to the last (most recent) invocation level in the stack. If the
pointer to be changed is a static pointer, INVLVL is ignored.

*LAST: The value of the specified pointer is to be changed in the last
(most recent) invocation of the specified program.

invocation-level-number: Enter the number of the invocation level of the
program that has the pointer whose value is to be changed.

Example

CHGPTR PTR(DATAFILPTR) SYSOBJ(MYFILE.QGPL) +
OBJTYPE(*FILE)

This command changes the value of the pointer DATAFILPTR that is used in
the default program in the debugging session. The pointer value is changed
so that it now points to the file called MYFILE, which is stored in the QGPL
library.

CHGQRVDEF (Change Query Definition) Command

The Change Query Definition (CHGQRYDEF) command begins a prompting
sequence for interactive modification of a Query application. Your response
to the prompts are used to create a new application or to replace the
original application.

The Query Utility is part of the IBM System/38 Interactive Data Base
Utilities Program Licensed Program Product, Program 5714-UT1. For more
information on the Query Utility, refer to the /BM System/38 Query Utility
Reference Manual and User's Guide, SC21-7724.

-{
.•LIBL

CHGQRYDEF--APP application-name)------------•
.libra1"7-name

Required

Optional

-{
+APP

>-TOAPP -{ QGPL . y·--------------+•
application-name •

.llbra1"7-name

-{
+SAME

>-FILE -{ •LIBL y·-------------·
data-bas.e-file-name •

.libra1"7-name

•NOSRC

•NOSOURCB
>-OPTION -{

•NOLIS:x •NODU¥:> ©
GBNOPT •-----'-••

•SRC •LIST •DUMP

•SOURCB

-{
•USBR ~ -f_ •NO=r--- -f_ •8A¥B

>- USRPRF PUBAUT •ALL TEXT •BLAJl'B:)

•OWNBR •NONB 'deecription'

APP Parameter: Specifies the qualified name of the application definition
being changed. If no library name is given, the application is stored in the
general-purpose library (QGPL).

.Job:J P1m:I

CHGORYDEF

Command Descriptions 4-241

CHGQAVDEF
TOAPP

4-242

TOAPP Parameter: Specifies the qualified name of the· application in which
the changed application is to be stored.

•APP: Specifies that the original application is to be replaced by the
changed application.

application-name: Enter the name of the application in which the changed
application is to be stored. The application definition specified in the APP
parameter will remain as originally defined, and can be executed as originally
defined. If no library name is given, the new application is stored in the
general-purpose library (QGPL).

FILE Parameter: Specifies the name of an existing data base file with record
formats that will be referred to by the application you are changing. The file
is defined by DDS (see the CPF Reference Manual-DDS).

Note: Query has access to only the records included in the access path for
the file; the access path is defined in DDS for the file. To determine
whether DDS for a file contains select/ omit logic that restricts the records
available to Query, use the Display File Description (DSPFD) command.

*SAME: The data base file specified in the original. application definition is
to be used.

data-base-file-name: Specify the name of an existing data base file to be
referred to during execution of the application. (If no library qualifier is
specified, the library list (*UBL) is used to find the file.)

OPTION Parameter: Specifies whether a listing of UDS (utility definition
source) statements is to be printed, which may be helpful if problems occur.

*NOSRC or *NOSOURCE: Specifies that Query is not to print a listing of
the UDS. The *NOSRC and *NOSOURCE values are equivalent.

*SRC or *SOURCE: Specifies that Query is to print a listing of the UDS.
The *SRC and *SOURCE values are equivalent.

GENOPT Parameter: Specifies whether the IOU program listings created for
your application program are to be produced. These listings may be helpful
if a problem occurs.

*NOLIST: Specifies that an internal representation of the application
program is not to be printed.

*LIST: Specifies that an internal representation of the application program is
to be printed.

*NODUMP: Specifies that the application program template is not to be
printed.

*DUMP: Specifies that the application program template is to be printed.
· *DUMP will provide the template only if *LIST has been specified.

USRPRF Parameter: Specifies a user profile under which the application is to
be executed. This parameter allows a programmer to define a Query
application for someone who does not have full authority over the data base
file that the application reads.

*USER: The user profile of the application user is in effect when the
application is executed.

*OWNER: The user profiles of both the application owner and the
application user are in effect when the application is executed.

When you create or change an application that is to be used by someone
else, you must authorize the user for the use of the application and any
objects associated with the application. You can grant each user specific
rights to such objects. By specifying USRPRF(*OWNER) when an
application is created or changed, you can permit a user to temporarily
assume your authority to use objects associated with the application.

PUBAUT Parameter: Specifies what authority over the application is extended
to all system users. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: All system users can execute or read the application, but not
all users can delete the application.

*ALL: All system users have complete authority over the application.

*NONE: All users but the owner are restricted from using the application.
Of course, the owner can grant rights to other users.

TEXT Parameter: Specifies a brief description of the changed application.

*SAME: The description of the application is to remain as originally
defined.

*BLANK: There is to be no description of this application.

'description': Enter no more than 50 characters, enclosed in apostrophes, to
describe the changed application.

CHGQRVDEF
USRPRF

Command Descriptions 4-243

CHGQRVDEF
(Example)

4-244

Example

CHGQRYDEF APP(TEST1). TOAP(TEST2) +
TEXT('Create application TEST2; based on TEST1')

This command begins a prompting sequence that allows you to create an
application named TEST2 in library QGPL based on application TEST1 in
your library list. Your responses to the prompts can result in changes to the
TEST2 application attributes (which differ from the based-on application
TEST1). Application TEST1 is not changed in any way. Application TEST2
uses data from the data base file specified for application TEST1. No UDS
or internal representations. of application TEST2 will be printed. Any system
users can execute or read TEST2, but only the owner of the application can
delete it.

CHGRJECMNE (Change RJE Communications Entry) Command

The Change RJE Communications Entry (CHGRJECMNE) command changes
attributes in an existing session description communications device file
entry. This command can be issued while the RJEF session is active;
however, the change does not take effect until the next Start RJE Session
(STRRJESSN) command is issued.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Change RJE Communications Entry (CHGRJECMNE) command is part
of the IBM System/38 Remote Job Entry Facility Program Product, Program
5714-RC1. For more information on the Remote Job Entry Facility, refer to
the IBM System/38 Remote Job Entry Facility Programmer's Guide,
SC21-7914.

-{
.•IJBL

CHGRJECMNE----SSND aenlon-deacrlption-name)-------.,

.library-name

-{
.•LIBL

>-PILE--BSC-file-name .)----------------..
• library-name

Required

Optional

-f_•SAME ®
>-DEV •FILE .

DSC-device-name)
-E•SAM3 •PILE

DTACPR •YES--------

•NO

CHGRJECMNE

l Job:B,I P1m:B,I

SSND Parameter: Specifies the qualified name of the session description in
which the communications entry is to be changed. (If no library qualifier is
given, *UBL is used to find the session description.)

FILE Parameter: Specifies the qualified name of the BSC device file entry to
be changed in the session description. (If no library qualifier is given, *UBL
is used to find the file.)

Command Descriptions 4-245

CHGRJECMNE
DEV

4-246

DEV Parameter: Specifies the BSC device to be used with the specified
communications device file for sending and receiving data.

*SAME: The BSC device named in the session description communications
entry remains the same.

*FILE: The device name specified in the BSC device file is to be used.

BSC-device-name: Enter the name of the BSC device to be used. This
device name specified overrides the device that was specified when the
BSC device file was created.

DTACPR Parameter: Specifies whether data compression is to be performed
for the communications entry.

*SAME: The value specified in the session description communications
entry remains the same.

*FILE: Data compression is to be performed, based on the specification in
the BSC device file.

*YES: Data compression is to be performed for the communications entry.

*NO: Data compression is not to be performed for the communications
entry.

Example

CHGRJECMNE SSND(RJE.USERLIB) +
FILE(DEVPRT1 .USERLIB) +
DTACPR(*NO)

This command changes the communication entry named DEVPRT1 .USERLIB
in session description named RJE in library USERLIB. The entry is changed
to prevent data compression.

CHGRJERDRE (Change RJE Reader Entry) Command

The Change RJE Reader Entry (CHGRJERDRE) command changes the
attributes in an existing session description RJEF reader entry. The change
takes effect immediately for readers identified in a Submit RJE Job
(SBMRJEJOB) command with OPTION(*IMMED) specified. The change can
also take effect when the next Start RJE Reader (STRRJERDR) command is
issued for a reader identified in a SBMRJEJOB command with
OPTION(*QUEUE) specified.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Change RJE Reader Entry (CHGRJERDRE) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

-(
.+LIBL

CHGRJERDRE----SSND session-description-name)------..

• library-name

>-RDR Select one of the followin1: 11--------------------
+AUTO RD1 RD2 RD3 j

Required

Optional

,~I +SAME ©
>-JOBQ +NONE-----------~---'!.._------------• ..

Job-queue-n--(.+LIBLI y
.library-name

+SAME
>-MSGQ +NONB------------y--,._ __

meeea1e-queue-neme_r .+LIBL

_ .library-n-

l Job:B,I P1m:B,I

SSND Parameter: Specifies the qualified name of the session description in
which the RJEF reader entry is to be changed. (If no library qualifier is
given, *UBL is used to find the session description.)

CHGRJERDRE

Command Descriptions 4-247

CHGRJERDRE
RDA

4-248

RDR Parameter: Identifies the RJEF reader that is to be associated with this
reader entry.

*AUTO: Any RJEF reader input stream that is available at the time the
Submit RJE Job (SBMRJEJOB) command executes is to be used.

RDl: RJEF Reader 1 input stream is to be used.

RD2: RJEF Reader 2 input stream is to be used.

RD3: RJEF Reader 3 input stream is to be used.

JOBQ Parameter: Specifies the job queue on which the reader jobs for this
session are to be placed for transmission to the host system.

*SAME: The RJEF job queue named in the session description RJEF
reader entry remains the same.

*NONE: No reader job queue is to be associated. with this session
description reader entry. RJEF reader data streams can be reserved for the
interactive user issuing the SBMRJEJOB command and specifying
OPTION{*IMMED). Therefore. the interactive user does not have to compete
with the batch RJEF reader jobs that are started from the RJEF reader job
queue.

job-queue-name: Enter the qualified name of the job queue on which reader
jobs for this session description are to be placed, or are already placed, for
transmission to the host system. (If no library qualifier is given. *LIBL is
used to find the job queue.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF reader are to be recorded.

Note: Messages for RJEF readers are always recorded in the RJEF
message queue associated with the named RJEF session. The RJEF
message queue name depends upon the name specified in the MSGO
parameter in the Create Session Description (CRTSSND) or Change Session
Description (CHGSSND) commands.

*SAME: The user message queue name, specified in the session
description reader entry, remains the same.

*NONE: No user message queue exists on which the messages for these
RJEF reader jobs are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which this RJEF reader job's messages are to be recorded. (If no library
qualifier is given, *UBL is used to find the message queue.)

Example

CHGRJERDRE SSND(RJE.USERLIB) +
RDR(RD1) +
MSGQ(BROWN.DEPT52)

This command changes RD1 reader entry in session description named RJE
in library USERLIB. The user message queue is changed to BROWN in
library DEPT52. Messages associated with jobs submitted to RD1 will be
written to message queue named BROWN in library DEPT52.

CHGRJERDRE
(Example)

Command Descriptions 4-249

CHGRJEWTRE
CHGRJEWTRE (Change RJE Writer Entry) Command

The Change RJE Writer Entry (CHGRJEWTRE) command changes the
attributes in an existing session description RJEF writer entry. The change
takes effect when the next Start RJE Writer (STRRJEWTR) command is
issued for the writer specified in this command.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Change RJE Writer Entry (CHGRJEWTRE) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

-(
.•LIBL

CHGRJEWTRE---- SSND aenion-description-nime)------•"'
.library-name

Select one of the followin&:
>-WTR- PR1 PU1

PR2 PU2
PR3 PU3

Required
Optional

-C+SAME -(.•LIBL

device-file-name

.library-name
>-FILB

-(
.•LIBL---a.·

data-bue-file-name
. .library-name

-E:::E . ~® -f_+SAME~
>-MBR +FIRST . FORMTYPE +STD-=.y----'ll~----------.. 11

member-name form-type

-E+SAMB3

>-FSN . DTAFMT •DATA---',._--~------•11 -(
•SAME=::J-- +FCFC

file-sequence-number •CMN

•SAM:B
>-PGM •NONB .

proaram..:.name-(.•rn Y
.library-name

+SAME
>-MSGQ •NONB .

meeea1e-queue-n.ame-(.•UBL Y
· .library-name

..

Job:B,I Pp:B,I

SSND Parameter: Specifies the qualified name of the session description in
which the RJEF writer entry is to be changed. (If no library qualifier is
given, *UBL is used to find the session description.)

WTR Parameter: Identifies the RJEF writer that is to be associated with this
writer entry.

PRl: RJEF Printer 1 output stream is to be used.

PR2: RJEF Printer 2 output stream is to be used.

PR3: RJEF Printer 3 output stream is to be used.

PUl: RJEF Punch 1 output stream is to be used.

PU2: RJEF Punch 2 output stream is to be used.

PU3: RJEF Punch 3 output stream is to be used.

FILE Parameter: Specifies the qualified name of the RJEF writer file (printer
only) or the System/38 data base file to be changed within the session
description to receive output data from the host system.

*SAME: The RJEF writer device file name in the session description writer
entry remains the same.

device-file-name: Enter the qualified name of the program-described device
file to receive data. (If no library qualifier is given, *UBL is used to find the
device file.)

data-base-file name: Enter the qualified name of the System/38 physical
data base file to receive the data. (If no library qualifier is given, *UBL is
used to find the data base file.)

CHGRJEWTRE
SSND

Command Descriptions 4-251

CHGRJEWTRE
MBR

4-252

MBR Parameter: Specifies the data base file member to which the output is
to be directed (if a data base file was specified in the FILE parameter of this
command).

*SAME: The data base file member name in the session description writer
entry remains the same.

*GEN: RJEF creates a member name as follows:

Affffffccc or Bffffffccc

Where:

A = file member names beginning with the character A
contain print data.

B = file member names beginning with the character B
contain punch data.

ffffff = first six characters of the forms name specified in
the FCT or received from the host system.

Note: Only characters that are valid in a System/38
name are valid in the forms type used to generate
data base file member names.

ccc three-digit sequence value controlled by the RJEF session
to maintain member uniqueness (refer also to the
FSN parameter description of this command).

If a member with this name already exists in the data base file, the
three-digit sequence value is incremented by one and another attempt is
made to create a member. Incrementing of the sequence value continues
until a unique name is generated and a member is created or until all
1000 possibilities have been exhausted without creating a member .. If no
member is created; the RJEF operator receives a message indicating the
failure and a request to retry or cancel this file.

*FIRST: The output is to be directed to the first member of the data base
file (if a data base file is specified in the FILE parameter of this command).

member-name: Enter the name of the data base file member to which
output is to be directed (if a data base file is specified in the FILE parameter
of this command). If the member does not exist when it is needed, an
inquiry message is sent to the RJEF message queue.

(

\

FORMTYPE Parameter: Specifies the initial form type to be used.

*SAME: The initial form type specified in the session description writer
entry remains the same.

*STD: The initial form type to be used is *STD.

form-type: Enter the initial form type. Valid values can be one through
eight alphameric characters in length.

FSN Parameter: Specifies the initial three-digit file sequence number to be
used when creating data base file member names. This parameter is
ignored unless MBR(*GEN) is specified for this command or in the
associated session description writer entry.

*SAME: The file sequence number specified in the session description
writer entry remains the same.

file-sequence-number: Enter the initial three-digit file sequence number to
be used. Leading zeros are not required for sequence numbers less
than 100.

DTAFMT Parameter: Specifies the format of the output data.

*SAME: The data format designation specified in the session description
writer entry remains the same.

*FCFC: The output data is to be in the FCFC data format, with the first
character of every record being the ANSI forms control character. Parameter
value WTR(PUn) is invalid with parameter value DTAFMT(*FCFC). Specify
*FCFC if the data is to be printed.

The data can be written to a data base file in the FCFC data format and be
printed later by using the Copy File (CPYF) command and specifying an
FCFC printer file on the TOFILE parameter.

*DATA: The output data is to be in the normal data format (that is, no
FCFC characters are embedded in the data). Specify *DATA if the data is to
go to a data base file and be processed by a program. If the data is
directed to a printer device file, a single space ANSI control character is the
last character in each record.

*CMN: The output data is to be in the communications data format (that is,
still compressed or truncated). *CMN should be used to decrease
communications time. However, before the data can be used, the Format
RJE Data (FMTRJEDTA) command must be used to change the data to
*FCFC or *DATA. If *CMN is specified, the output file must be a data base
file with a length of 256.

CHGRJEWTRE
FORMTYPE

Command Descriptions 4-253

CHGRJEWTRE
PGM

4-254

PGM Parameter: Specifies the qualified name of a user-supplied program to
be used.

*SAME: The value of the program entry in the session description writer
entry remains the same.

*NONE: A null value is used for the program value for the writer entry.

program-name: Enter the qualified name of the user-supplied program to be
used. (If no library qualifier is given, *LIBL is used to find the user-supplied
program.)

MSGQ Parameter: Specifies the qualified name for the user message queue
on which messages for this RJEF writer are to be recorded.

Note: Messages for RJEF writers are always recorded in the RJEF message
queue associated with the named RJEF session. The RJEF message queue
name depends upon the name specified in the MSGQ parameter in the
Create Session Description (CRTSSND) or Change Session Description
(CHGSSND) commands. If inquiry messages are issued by RJEF, they are
sent to the user message queue (if specified) where they must receive a
response.

*SAME: The user message queue name remains the same.

*NONE: No user message queue exists on which the messages for these
RJEF writer jobs are to be recorded.

message-queue-name: Enter the qualified name of the user message queue
on which this RJEF writer job's messages are to be recorded. If no library
qualifier is given, *UBL is used to find the message queue.

Example

CHGRJEWTRE SSND(RJE.USERLIB) +
WTR(PR1) +
FILE(NIGHTPRT.USERLIB) +
DTAFMT(*FCFC) +
MSGO(*NONE)

This command changes an RJEF writer entry called PR1 in session
description named RJE in library USERLIB. The file is changed to a printer
device file called NIGHTPRT in library USERLIB. Output data will be written
in the normal *FCFC format. Messages associated with printer 1 are not to
be written to a user message queue. They will be written only to the RJE
message queue specified on the CRTSSND command.

CHGRTGE (Change Routing Entry) Command

The Change Routing Entry (CHGRTGE) command changes a routing entry in
the specified subsystem description; the associated subsystem must be
inactive when the changes are made. The routing entry specifies the
parameters used to initiate a routing step.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description being changed.

-(
.ll<LIBL

CHGRTGI --- SBSD eubeyatem-deecriptlon-name)--------+•
.library-name

>- SIQNBR eequence-number ------------------------,...,.

Required

Optional

>- CMPVJJ.~:':.t::B------------y-....... ------------.•

_compare-value -(
1

etartln1-poaitlon

-(
•SAME ©

>- PGM -(11<LIBL 4o. }•---------------
pro1ram-name ' J

, .library-name

f_ «<SAMB

>-CLS •SBID y
-(

.•LIBL
class-name

.Ubrar,y-name

-f_ •SAMB
>- MAXA.CT 11<NOMAX

maz:imum-actlve-Jobe)

-(
11<8.AKI

POOLID)--'--
pool-ldentitier

l Job:B,I P1m:B,I

CHGRTGE

Command Descriptions 4-255

CHGRTGE
SBSD

4-256

SBSD Parameter: Specifies the qualified name of the subsystem description
containing the routing entry to be changed. (If no library qualifier is given,
*UBL is used to find the subsystem description.)

SEQNBR Parameter: Specifies the sequence number of the routing entry that
is to be changed. Enter the sequence number, 1 through 9999, of the
routing entry.

CMPVAL Parameter: Specifies a value that is to be compared with the
routing data to determine whether this is the routing entry to be used for
initiating a routing step. Optionally, a new starting position within the
routing data character string can be specified for the comparison. If
CMPVAL is not specified, *SAME is assumed; if a starting position value is
not specified, 1 is assumed.

*SAME: The compare value and starting position are not to be changed.

*ANY: Any routing data is considered to be a match. To specify *ANY, this
routing entry must also have the highest SEQNBR value of any routing entry
in the subsystem description.

compare-value: Enter a new value (a character string not exceeding 80
characters) that is to be compared with routing data for a match. When a
match occurs, this routing entry is used to initiate a routing step. A starting
position within the routing data character string can be specified for the
comparison; if no position is specified, 1 is assumed.

1: The comparison between the compare value and the routing data begins
with the first position in the routing data character string.

starting-position: Enter a value indicating which position in the routing data
character string is the starting position for the comparison. The last
character position compared must be less than or equal to the length of the
routing data used in the comparison.

PGM Parameter: Specifies the name of the program to be invoked as the
(first) program to be executed in the routing step. (No parameters can be
passed to the specified program.)

*SAME: The program to be called is not to be changed.

qualified-program-name: Enter the qualified name of the program to be
invoked and executed in the routing step. (If no library qualifier is given,
*UBL is used to find the program.) If the program does not exist when this
routing entry is changed, a library qualifier must be specified because the
qualified program name is retained in the subsystem description.

CLS Parameter: Specifies the qualified name of the class to be used for the
routing steps initiated through this routing entry. The class defines the
attributes of the execution environment for processing the routing step
associated with this routing entry. (For an expanded description of the CLS
parameter, see Appendix A.) If the class does not exist when this routing
entry is changed, a library qualifier must be specified because the qualified
class name is retained in the subsystem description.

*SAME: The same class for this entry is to be used.

*SBSD: The class having the same qualified name as the subsystem
description, specified by the SBSD parameter, is to be used for routing
steps initiated through this entry.

qualified-class-narrie: Enter the qualified name of the class that is to be
used for routing steps initiated through this routing entry. If no library
qualifier is specified, the library list (*UBL) of the job in which this
CHGRTGE command is executed is used to find the class.

MAXACT Parameter: Specifies the maximum number of routing steps ijobs)
that can be concurrently active through this routing entry. (Within a job,
only one routing step is active at a time.) When a subsystem is active and
the maximum number of routing steps is reached, any subsequent attempts
to initiate a routing step through this routing entry will fail. If the routing
data was entered interactively, an error message is sent to the user.
Otherwise, the job is terminated and a message is sent by the subsystem to
the job's log. (For an expanded description of the MAXACT parameter, see
Appendix A.)

*SAME: The maximum number of routing steps that can be concurrently
active is not to be changed.

*NOMAX: There is no limit to the number of routing steps that can be
concurrently active through this routing entry. (This value is normally used
when there is no reason to control the number of routing steps.)

maximum-active-jobs: Enter a value that specifies the new maximum
number of routing steps that can be concurrently active through this routing
entry. If a routing step would exceed this number if it were started, the job
is implicitly terminated.

POOLID Parameter: Specifies the pool identifier of the storage pool in which
the program is to run. The pool identifier specified here relates to the
storage pools in the subsystem description.

*SAME: The pool identifier is not to be changed.

pool-identifier: Enter the identifier of another existing storage pool in which
the routing step is to run. Valid values are 1 through 10.

CHGRTGE
CLS

Command Descriptions 4-257

CHGRTGE
(Examples)

4-258

Examples

CHGRTGE SBSD(ORDER.LIB5) SEONBR(1478) +
CLS(SOFAST.LIB6) POOLID(3)

This command changes routing entry 1478 in the subsystem description
ORDER found in library LIB5. The same program is used, but now it will run
in storage pool 3 using class SOFAST in library LIB6. ·

CHGRTGE SBSD(PGMR.T7) SEONBR(157) +
PGM(INTDEV.T7)

This command changes routing entry 157 in the subsystem description
PGMR found in library T7. The program INTDEV in library T7 will now be
invoked whenever this routing entry is selected. The other routing entry
parameters remain unchanged.

(

\

(

CHGSBSD (Change Subsystem Description) Command

The Change Subsystem Description (CHGSBSD) command changes the
operational attributes of the specified subsystem description. Note that this
is the only command affecting the subsystem description that can be issued
while the subsystem is active.

Restriction: You must have operational and object management rights for
the subsystem description before you can change it. You must also have
operational rights for the library containing the subsystem description.

-(.•IJBL
CHGSBSD--- SBSD sube;:ratem-deecrlption-name)

. library-name

•SAME

~.....) >-POOLS
pool-ldentltler •NOSTG 1

•RMV J
etoraae-alze actlvlt;:r-level

10 maximum

-f_ •SAME . ®
>- MAX.JOBS •NOMAX

mazlmum-eubs;:retem-Joba)

-f_•IWIB
TllX'l' •BLAltB:

'dHorlption ,:J

..
Required

Optional

-p

[Job:B,I Pam:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
to which changes are to be made. (If no library qualifier is given, *UBL is
used to find the subsystem description.) The name of the IBM-supplied
controlling subsystem, QCTL should not be specified. The CRTSBSD
command, however, can be used to create a similar subsystem description,
and you can make it the controlling subsystem by specifying its name in the
QCTLSBSD system value instead of QCTL.

POOLS Parameter: Specifies the identifiers of one or more storage pool
definitions and the changes that are to be made to them. If a new storage
pool definition is to be added or an existing pool definition is to be
removed, the subsystem must be inactive. For each existing pool definition
that is not specified, its size and activity level are not changed.

*SAME: No changes are to be made to the storage pool definitions in the
subsystem description.

CHGSBSD

Command Descriptions 4-259

CHGSBSD
MAXJOBS

4-260

pool-identifier: Enter the pool identifier, 1 through 10, of the storage pool
definition to be added or deleted, or whose attributes are to be changed. If
more than one pool definition is specified, the attributes of each one must
follow its identifier.

*BASE: The specified pool definition is to be the system pool, which can be
shared with other subsystems. The size and activity level of the shared
system pool are specified in the system values QBASPOOL and
QBASACTLVL (see the CPF Programmer's Guide.)

*NOSTG: No storage and no activity level are to be assigned to the pool at
the present time.

*RMV: The specified pool definition is to be removed from the subsystem
description. If the specified pool definition is used for any routing entries in
the subsystem description, an error message is sent to the user and the
pool definition is not removed. *RMV cannot be specified if the subsystem
is active.

storage-size activity-level: Enter the storage size in K-bytes that the
specified storage pool is to have, and enter the maximum number of jobs
that can execute concurrently in the pool. Both values must be specified. A
value of at least 16 (meaning 16 K-bytes) must be specified for the storage
size.

MAXJOBS Parameter: Specifies the maximum number of jobs that can be
concurrently active within the subsystem controlled by this subsystem
description. The maximum applies to all initiated jobs that are waiting or
executing, except for jobs on the job queue or jobs that have finished
executing.

*SAME: The maximum number of concurrent jobs allowed within the
subsystem is not to be changed.

*NOMAX: There is no maximum number of concurrent jobs allowed within
this subsystem.

maximum-subsystem-jobs: Enter the maximum number of jobs to be
allowed in this subsystem.

TEXT Parameter: Specifies the user-defined text that describes the
subsystem description. The text specified here replaces any previous text.
(For an expanded description of the TEXT parameter, see Appendix A.)

Note: The text can be changed only when the subsystem description is not
active.

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CHGSBSD SBSD(PAYCTL.OGPL) POOLS((2 150 3))

This command changes the definition of storage pool 2, which is used by
the PA YCTL subsystem, to a storage size of 150 K and an activity level
of 3.

CHGSBSD SBSD(ORDER.LIB6) +
POOLS((1 *BASE)(2 75 4)(3 *RMV)(4 *NOSTG)) +
MAXJOBS(5)

This command changes the maximum number of jobs that the subsystem
ORDER can support to five. (The description of the subsystem is stored in
library LIBS.) The definition of storage pool 1 is changed to be the shared
system pool; the definition of pool 2 is changed to have a storage size of 75
K and an activity level of 4; the definition of pool 3 is removed from the
subsystem; and the definition of pool 4 is changed to have no storage and
no activity level.

CHGSBSD
(Examples)

Command Descriptions 4-261

CHGSPLFA

4-262

CHGSPLFA (Change Spooled File Attributes) Command

The Change Spooled File Attributes (CHGSPLFA) command changes the
attributes of a spooled output file while it is on an output queue. The
changes affect only the current processing of the file. The next time the job
runs and the file is produced, the file attributes are derived from the device
file description, from the program, and from any override commands.

If the file is currently being produced on an output device, the only
parameters that can be changed are COPIES and SAVE. An attempt to
change any other parameter results in an error, and no file attributes are
changed. However, if the file is being held on an output queue because of
spooling attribute errors, this command can be used to change the
attributes, and a. spooling writer can then be started to produce the file.

Restrictions: To change the attributes of a spooled file, you must: (1) be
the owner of the spooled file; or (2) have read, add, and delete rights for
the output queue; or (3) have the job control rights (*JOBCTL) and the
output queue must have OPRCTL(*YES) specified. In addition, if the OUTQ
parameter is to be changed, you must have add rights for the new output
queue.

CHGSPLFA --- FILB spooled-file-name -----------------------
Required

Optional

-{. >-JOB
job-nune[.u11er-name[.Job-number]]

~w------------------··

-f_ .ONLY 0
>- SPLNBR •LA.ST

•pooled-ti.le-number)

-{
•SA.MB

>- OUTQ -{ •LIBL y•-------------ll
output-queue-name •

.Ubra1"7-name

-f_ 11<8.AMB 3 -{•SA.MB
>- FOIU4TYPB •STD--------- COPIBS J--------11

form-type number-ot-ooptea

{•SAME~ •SA.MB
>- FILESEP SCHEDULE 11<JOBBND

. +FILEBND -{ number-of-file-separators'.}---
•IMMED

1 •SAM~ ~ +SA.MB
>- SAVB '-=. 11<NO -:J------PRTIMG _ •DBVD y II

•TBS prtnt-tma1e-nune _r .•LIBL

_ .Ubra17-name

>- TRNTBL\::::i.G ~
NONI -------------------1·

tranalate-table-name _r .•LIBL ' /

_ .Ubra17-name r
..

+SAME -{ ll<SAMB
>- VOL •NONI ----:;-_. ___ LABBL

Lvolume-tdenttfier data-file-identifier

~ maJCtmum

~9--------·

lJob:B,I Ppn:B,I

>- EXCHTYPE~:E::) ron•-1"=.~-...----
•H \:::+ASCII ':J
+I

CHGSPLFA
(Diagram)

Command Descriptions 4-263

CHGSPLFA
FILE

4-264

FILE Parameter: Specifies the name of the spooled file in a job that is to
have its attributes changed. Enter the name of the spooled device file.

JOB Parameter: Specifies the name of the job that created the spooled file.

•: The job that issued this CHGSPLFA command is the job that created the
spooled file.

qualified-job-name: Enter the qualified name of the job that contains the
spooled file. If no job qualifier is given, all of the jobs currently in the
system are searched for the simple job name. (For an expanded description
of the JOB parameter and duplicate job names, see Appendix A.)

SPLNBR Parameter: Specifies the unique number of the spooled output file
· in the job whose attributes are to be changed. (For an expanded description

of the SPLNBR parameter, see Appendix A.)

*ONLY: Only one spooled output file from the job has the specified file
name; therefore, the number of the spooled file is not necessary. If *ONLY
is specified and more than one spooled output file has the specified file
name, an error message is displayed.

*LAST: The highest numbered spooled output file with the specified file
name is the file whose attributes are to be changed.

spooled-file-number: Enter the number of the spooled output file having the
specified file name whose attributes are to be changed.

OUTQ Parameter: Specifies the name of the output queue to which the
spooled file is to be moved. This parameter is used only when the specified
file is to be moved from one output queue to another.

*SAME: The file remains on the same output queue.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the file is to be moved. (If no library qualifier is given, *UBL is
used to find the queue.) You must have add authority for the queue
specified in this parameter.

FORMTYPE Parameter: Specifies, for printer or card output, the forms
identifier that identifies the type of forms on which this output file is to be
produced. The forms identifiers are user-defined and must not be longer
than 10 characters. *SAME must be specified if the output file is a diskette
file.

*SAME: The type of forms is not to be changed.

(

*STD: The standard form used in your installation is to be used to produce
this spooled file. The system assumes (for *STD) that the standard forms
are already in the print or card device; no message is sent when this
spooled file is opened.

form-type: Enter the forms identifier that specifies on which forms the
output of this spooled file is to be produced. A maximum of 10 alphameric
characters can be specified. Strings with embedded blanks must be
enclosed in quotes.

COPIES Parameter: Specifies the number of copies of the output file to be
produced.

*SAME: The number of copies remains unchanged.

number-of-copies: Enter the new number of identical copies that are to be
produced. Valid values are 1 through 99.

FILESEP Parameter: Specifies the number of separator pages or cards to be
produced at the beginning of each output file to separate the file from the
other files being spooled to an output device. The identifying information
included on each file separator is the file name, file number, the job name
and number, and the user's name. *SAME must be specified if the output
file is a diskette file.

*SAME: The number of separator pages or cards is not to be changed.

number-of-file-separators: Enter the new number (0 through 9) of pages or
cards that are to be used as file separators. If 0 is specified for card output,
at the end of each output file a message is sent to the message queue
(usually QSYSOPR) specified on the STRCRDWTR command that started
the writer; the message indicates that the output just produced is to be
removed from the device.

SCHEDULE Parameter: Specifies when the output file is made available to
the writer.

*SAME: The schedule attribute of the spooled file is not to be changed.

*JOBEND: The spooled output file is to be made available to the writer only
after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the writer, as
soon as the file has been closed in the program.

*IMMED: The spooled output file (already open) is to be made available to
the writer when the file is opened.

CHGSPLFA
COPIES

Command Descriptions 4-265

CHGSPLFA
SAVE

4-266

SAVE Parameter: Specifies whether the spooled output file is to be saved
after it has been written to an output device. After the file has been written,
the number of copies (COPIES parameter) is set to 1, and the status of the
file is changed to held. The file can be retained on the output queue (saved)
so that it can be used to produce other copies of the output.

" *SAME: The save attribute of the spooled output file is not to be changed.

*Nd: The file is not saved.

*YES: The file is saved.

PRTIMG Parameter: Specifies, for printer output files only, the name of the
print image that is to be used to produce the spooled file on a printer. This
parameter is ignored for work station printers.

*SAME: The print image associated with the spooled output file remains
the same.

*DEVD: The standard print image, specified in the printer device description,
is to be used.

qualified-print-image-name: Enter the qualified name of the print image that
is to be used to print this output file. (If no library qualifier is given, *LIBL is
used to find the print image.)

TRNTBL Parameter: Specifies, for printer output files only, the name of the
translate table (if any) to be used with this spooled file when the output
data is to be translated before it is printed. The translate table is used to
convert each unprintable character having a hexadecimal code of 40 through
FE to the printable character specified in the table that is also on the print
belt. Each hexadecimal code can specify a different character.

For each IBM-supplied print image shipped with the system, a matching
translate table is also supplied; the name of the table is the same as the
name of the image.

*SAME: The translate table associated with the spooled output file remains
the same.

*PRTIMG: The translate table with the same qualified name as the print
image is to be used.

*NONE: No translation is to be done when this spooled output file is
produced.

qualified-translate-table-name: Enter the qualified name of the translate
table that is to be used to convert unprintable characters before this spooled
output file is printed. (If no library qualifier is given, *LIBL is used to find
the translate table.)

(

\.

(

VOL Parameter: Specifies, for diskette output files only, one or more volume
identifiers of the diskettes (either in magazines or in slots) on which this
spooled file is to be written. The diskettes (volumes) must be mounted on
the device in the same order as the identifiers are specified here; a message
is sent to the system operator if the order is different. The identifiers are
matched, one by one, with the diskette locations specified in the LOG
parameter. (For an expanded description of the VOL parameter, see
Appendix A.)

*SAME: The volume identifiers associated with the spooled output file are
not changed.

0 NONE: No diskette volume identifiers are to be specified. This output file
is to be written on the first available diskette, based on the diskette writer's
current position. No volume identifier checking is performed.

volume-identifier: Enter the identifiers of one or more volumes in the order
in which they are to be mounted and used for this output file. No more
identifiers can be specified here than were initially specified for the diskette
device file.

Each volume identifier contains a maximum of six characters. A blank is
used as the separator character when listing multiple identifiers. The
number of volumes possible in the list is 50, but if more than 10 volume
names were specified when the file was first opened, then only that number
of files may be entered on the change command. Up to 10 volumes may
always be specified.

LABEL Parameter: Specifies, for diskette output files only, the data file
identifier of the data file to be written on diskette from this spooled output
file. The data file identifier is stored in a label in the volume label area of
the diskette. (For an expanded description of the LABEL parameter, see
Appendix A.)

*SAME: The data file identifier associated with the spooled output file
remains the same.

data-file-identifier: Enter the identifier (8 characters maximum) to be
assigned to the data file being written on diskette from this spooled output
file.

CHGSPLFA
VOL

Command Descriptions 4-267

CHGSPLFA
EXCHTYPE

4-268

EXCHTYPE Parameter: Specifies the exchange type to be used to write the
spooled file. This parameter must be coded EXCHTYPE(*SAME) if the
spooled file is not a diskette file. (For an expanded description of the
EXCHTYPE parameter, refer to Appendix A).

*SAME: The current value is not changed.

*STD: The basic exchange format will be used for a type 1 or a type 2
diskette. The H exchange type will be used for a type 20 diskette.

*BASIC: The basic exchange type will be used.

*H: The H exchange type will be used.

*I: The I exchange type will be used.

CODE Parameter: Specifies, for diskette output files only, the type of
character code to be used when this spooled output file is written to
diskette.

*SAME: The type of character code associated with the spooled output file
remains the same.

*EBCDIC: The EBCDIC character code is to be used with this output file.

*ASCII: The ASCII character code is to be used with this output file.

Examples

CHGSPLFA FILE(SALES) JOB(BILLING.JONES.000147) +
OUTQ(QPRINT2) FORMTYPE('1140-6')

This command moves the file named SALES (of the BILLING job numbered
000147) from the present queue to the QPRINT2 queue. It also changes the
forms identifier to 1140-6, which means that that form type is to be used in
the printer.

CHGSPLFA FILE(DEPT511) COPIES(2) FILESEP(5)

This command changes the attributes of the output file DEPT511 that is
produced by the submitter's job. It changes the number of output copies to
two and specifies that five separator pages (or cards) are to precede each
copy.

(
\~

I

;CHGSRCPF (Change Source Physical File) Command

The Change Source Physical File (CHGSRCPF) command changes the
attributes of a source physical file and all its members. The changed
attributes will be used for all members subsequently added to the file.

Restrictions: To change a source physical file, you must have object
management and operational rights for the file and read rights to the library.
In order for you to change the file, !'In exclusive no read lock is necessary;
no one may be using the file for any purpose.

-(
.•LIBL ®

CHGSRCPP-PILB 1ource-phy1ical-file-name .)----------•II<
.library-name

Bequired

Optional

>-BXPDATB •NONE -f_•SAMB

expiration-date)
MAXMBRS •NOMAX ---"-· -3~'-------.. -f_•SAMB

maximum-member•_/

>-PRCRATIO •NONE WAITPILB •IMMBD ' II<
•BAKB ~•SA.MB

number-or-recorda-before-rorce) •CLS _/
number-or-1econd1

-f_•SA.M~ SHARE •N0--~.~---------•11<

•TBS

j Job:B,I P1m:B,I

CHGSRCPF

Command Descriptions 4-269

CHGSRCPF
FILE

4-270

FILE Parameter: Specifies the qualified name of the physical file to be
changed. (If no library qualifier is given, *LIBl is used to find the file.)

EXPDATE Parameter: Specifies the expiration date of all the file's members.
Any attempt to open a file member that has expired causes an error
message to be sent. (The RMVM command is used to remove the member.)
If EXPDATE is specified, all members in the file will be changed. An expired
member may be changed to non-expired by changing the EXPDATE
parameter. The expiration date must be later than or equal to the current
day's date.

*SAME: The expiration date of the file is not to be changed.

*NONE: The member has no expiration date.

expiration-date: Enter the date after which the member should not be used.
The date must be specified in the format defined by the system values,
ODATFMT and ODATSEP. The date must be enclosed in apostrophes if
special characters are used in the format.

MAXMBRS Parameter: Specifies the maximum number of members that the
physical file can have at any time. The maximum number of members
specified must be greater than or equal to the current number of members
in the file.

*SAME: The maximum number of members in the file is not to be
changed.

*NOMAX: No maximum is specified for the number of members; the system
maximum of 32 767 members per file is used.

maximum-members: Enter the value for the maximum number of members
that the physical file can have. A value of 1 through 32767 is valid.

MAINT Parameter: Specifies the type of access path maintenance to be used
for all members of the physical file. This parameter is valid only if a keyed
access path is used.

Only the following changes to a file's access path maintenance are allowed:
*REBLD to *IMMED (if the file was originally created as *IMMED or
*REBLD), *IMMED to *REBLD, *DLY to *REBLD, and *REBLD to *DLY (if
the file was originally created as *DL Y).

Existing MAINT
CHGSRCPF MAINT Parameter Value

Value *REBLD *DLV IMMED

*REBLD N/A Note 1 Note 2

*DLY YES N/A NO

*IMMED YES NO N/A

Notes:
1. Allowed only if file was originally created with MAINT(*DLY).
2. Allowed only if file was originally created with MAINT(*IMMED) or

MAI NT{*REBLD).

*SAME: The access path maintenance of the file is not to be changed.

*IMMED: The access path is to be continuously (immediately) maintained
for each physical file member. The path is updated each time a record is
changed, added to, or deleted from the member. The records can be
changed through a logical file that uses the physical file member, regardless
of whether the physical file is opened or closed. *IMMED must be specified
for all files requiring unique keys to ensure uniqueness in all inserts and
updates.

*REBLD: The access path is to be rebuilt when a file member is opened
during program execution. The access path is continuously maintained until
the member is closed; the access path maintenance is then terminated.
*REBLD is not valid for access paths that are to contain unique key values.

CHOSRCPF
MAINT

Command Descriptions 4-271

CHGSRCPF
RECOVER

4-272

*DLY: The maintenance of the access path is to be delayed until the
member is opened for use. The access path is then updated only for
records that have been added, deleted, or updated since the file was last
closed. (While the file is open, all changes made to based-on members are
immediately reflected in the access paths of the opened files' members, no
matter what is specified for MAINT.) To prevent a lengthy rebuild time
/when the file is opened, *DL Y should be specified only when the number of
changes to the access path between a close and the next open are small
(when key fields in records for this access path change infrequently). *DL Y
is not valid for access paths that require unique key values.

If the number of changes saved reaches approximately 10 per cent of the
access path size, the system will stop saving changes and the access path
will be completely rebuilt the next time the file is opened.

RECOVER Parameter: Specifies, for files having immediate or delayed
maintenance on their access paths, when recovery processing of the file is
to be performed if a system failure occurred while the access path was
being changed.

The access path having immediate or delayed maintenance can be rebuilt
during start CPF (before any user can execute a job), or after start CPF has
finished (during concurrent job execution), or when the file is next opened.
While the access path is being rebuilt, the file cannot be used by any job.

The access path having rebuild maintenance will be rebuilt the next time its
file is opened, the time that it normally is rebuilt. This parameter is valid
only if a keyed access path is used.

*SAME: The recovery attribute of the file is not to be changed.

*NO: The access path of the file is not to be rebuilt. The file's access path
is rebuilt the next time the file is next opened.

*AFTSTRCPF: The file is to have its access path rebuilt after the start CPF
operation has been completed. This option allows other jobs not using this
file to begin processing immediately after the CPF has been started. If a job
tries to allocate the file while its access path is being rebuilt, a file open
exception occurs if the specified wait time for the file is exceeded.

*STRCPF: The file is to have its access path rebuilt during the start CPF
operation. This ensures that the file's access path will be rebuilt before the
first user program tries to use it; however, no jobs can begin execution until
after all files that specify RECOVER(*STRCPF) have their access paths
rebuilt.

FRCRATIO Parameter: The force write ratio parameter specifies the number
of inserted, updated, or deleted records that are processed before they are
forced to auxiliary (permanent) storage. (For an expanded description of the
FRCRATIO parameter, see Appendix A.)

*SAME: The force write ratio of the file is not to be changed.

*NONE: There is no force write ratio; the system determines when the
records are written in auxiliary storage.

number-of-records-before-force: Enter the number of new or changed
records that are processed before they are explicitly forced into auxiliary
storage.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait attribute of the file is not to be changed.

*IMMED: The program is not to wait; when the file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

WAITRCD Parameter: Specifies the number of seconds that the program is
to wait for a record that is to be updated or deleted. If the record cannot
be allocated in the specified wait time, an error message is sent to the
program.

*SAME: The record wait attribute of the file is not to be changed.

*IMMED: The program is not to wait; when a record is locked, an
immediate allocation of the record is required.

*NOMAX: The wait time will be the maximum allowed by the S'fStem (32
767 seconds).

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

CHGSRCPF
FRCRATIO

Command Descriptions 4-273

CHGSRCPF
SHARE

4-274

SHARE Parameter: Specifies whether an ODP (open data path) to the
physical file member is to be shared with other programs in the same job.
When an ODP is shared, the programs accessing the file share such things
as the position being accessed in the file, the file status, and the buffer.
When SHARE(*YES) is specified and control is passed to a program, a read
operation in that program retrieves the next record. A write operation
produces the next output record. If SHARE is specified, all members in the
file will be changed.

*SAME: The ODP sharing value of the member is not to be changed.

*NO: An ODP created by the program when the file member is opened is
not to be shared with other programs in the job. Every time a program
opens the file with this attribute, a new ODP to the file is created and
activated.

*YES: The same ODP is to be shared with each program in the job that
also specifies SHARE(*YES) when it opens the file.

TEXT Parameter: Enter text that briefly describes the physical file member.
(For an expanded description of the TEXT parameter, see Appendix A.)

*SAME: The text that describes the member is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGSRCPF FILE(INV.QGPL) EXPDATE('10/31 /87')

This command changes the expiration date of all members in file INV to
October 31, 1987.

CHGSSND (Change Session Description) Command

The Change Session Description (CHGSSND) command changes attributes
in an existing RJEF session description.

Restriction: To use this command, you must have operational rights for the
session description and read rights for the library in which the session
description is stored.

The Change Session Description (CHGSSND) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

-(
.>111JBL

CHGSSND----SSND aession-deecrlption-name)--------.,
.11 braey-name

Required

•SAM~® -(•SAME

Optional

>-TYPE •RES JOBQ -(.•IJBL y
+JBS2 Job-queue-name

+JBS3 .Ubrar,y-name

..

•RSCS

-(
•SAME

>-u:soq -(.•LIBL ::>-'., _____________ .,
me11a1e-queue-name

.library-name

•SAME
>-PC •NONE~--------------y--,._----------..

forms-control-table-name-(.•IJBL

.llbrar,y-name

-f_ •SAME
>- IDLETIMB •NOLIMIT _,
· number-of-minutes

-f_ •11.illB 3 TEXT •BLANK ----'I.__ __
'dHoriptlon'

l Job:B,I Psm:B,I

SSND Parameter: Specifies the qualified name of the session description that
is to be changed. (If no library qualifier is given, *UBL is used to find the
session description.)

CHGSSND

Command Descriptions 4-275

CHGSSND
TYPE

4-276

TYPE Parameter: Specifies the type of remote job entry host subsystem with
which this RJEF session is to communicate. Enter the value that applies to
this session description.

*SAME: The host subsystem type for this session description remains the
same.

*RES: VS1 /RES.

*JES2: VS2/JES2.

*JES3: VS2/JES3.

*RSCS: VM/370 RSCS.

JOBQ Parameter: Specifies the name of the default RJEF job queue on which
all the RJEF session jobs are to be placed. The session jobs are all those
jobs associated with RJEF, except the RJEF reader jobs. RJEF reader jobs
are placed on the job queues defined in the session description reader
entries.

*SAME: The job queue named in the session description remains the
same.

job-queue-name: Enter the qualified name of the job queue on which all the
RJEF session jobs are to be started. (If no library qualifier is given, *LIBL is
used to find the job queue.)

MSGQ Parameter: Specifies the qualified name for the RJEF message queue
in which all the RJEF messages are to be recorded.

*SAME: The message queue named in the session description remains the
same.

message-queue-name: Enter the qualified name of the message queue that
is to contain a record of all the RJEF messages for this session description.
(If no library qualifier is given, *LIBL is used to find the message queue.)

FCT Parameter: Specifies a forms control table (FCT) to be used with this
session description.

*SAME: The FCT named in the session description remains the same.

*NONE: No FCT is to be used with this session description.

forms-control-table-name: Enter the qualified name of the FCT that is to be
used with this session description. (If no library qualifier is given, *LIBL is
used to find the FCT.)

IDLETIME Parameter: Specifies the minimum number of minutes that the
RJEF session should remain idle after the line connection has been
established before transmitting the LOGOFF or SIGNOFF command to the
host system. During this time no files are transmitted or received.

When the number of minutes is set equal to zero, and if the line connection
has been established, the LOGOFF or SIGNOFF command is transmitted
immediately. Also, RJEF holds all RJEF reader job queues defined for this
RJEF session.

The idle time countdown begins following the end-of-file of the last input
stream sent or output stream received.

The idle time countdown is reset each time data becomes available for
transmitting or receiving.

If there are any input streams that have started but have not ended (that is,
received end-of-file) except for the console input streams, the idle time
countdown will not begin.

If a Terminate RJE Session (TRMRJESSN) command specifies a controlled
cancel, the IDLETIME parameter value of the TRMRJESSN command
overrides the CRTSSND command IDLETIME parameter value. This
parameter is ignored if OPTION(*IMMED) is specified on the TRMRJESSN
command.

*SAME: The idle time value, if any, specified in the session description
remains the same.

*NOL/MIT: A LOGOFF or SIGNOFF command is not to be transmitted
unless a TRMRJESSN command is issued specifying OPTION(*CNTRLD).

number-of-minutes: Enter the number of minutes that the RJEF session
should remain idle before transmitting the LOGOFF or SIGNOFF command
to the host system. Valid values are 0 through 99.

CHGSSND
IDLETIME

Command Descriptions 4-277

CHGSSND
TEXT

4-278

TEXT Parameter: Specifies a brief description of the session description. (For
an expanded description of the TEXT parameter, see Appendix A.)

*SAME: The text is to remain as specified when the session description
was created.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGSSND SSND(RJE.USERLIB) +
FCT(FCT1.USERLIB) +
IDLETIME(30)

This command changes the session description named RJE in library
USERLIB. The forms control table name is changed to FCT1 in library
USERLIB. Also, the idletime is changed to 30 minutes.

CHGSYSVAL (Change System Value) Command

The Change System Value (CHGSYSVAL) command changes the current
value of the specified system value. System values are provided as part of
the system. They are used by the system to control certain operations in
CPF and to communicate the status of certain conditions to the user.
Changes to some system values take effect immediately, some do not take
effect until new jobs are started, and others do not take effect until CPF is
started again. For more information about system values, see the CPF
Programmer's Guide.

©
Required

CHGSYSVAL -- SYSVAL aystem-value-name -- VALUE new-value---------

© Some system values can contain a list of valuea. They must be encloaed in apostrophe•.

j Job:B,I Pr;m:B,I

SYSVAL Parameter: Specifies the name of the system value that is to have
its value changed. Most of the system values can be specified; however,
some cannot have their values changed by this command. (For more
information on which values can be specified, see the CPF Programmer's
Guide.)

VALUE Parameter: Specifies the new value that the system value is to have.
Some system values, such as QUSRLIBL and QCTLSBSD, may be made up
of multiple character strings. These strings must be separated by blanks;
apostrophes must surround the entire contents of the VALUE parameter.
For those system values that accept alphabetic characters, any letters that
are entered in lowercase (a-z) are translated into uppercase (A-Z) even if
they are enclosed in apostrophes. Some system values, such as QOATE and
QDBRCVYWT, are zoned-decimal values (character in nature) and must also
be enclosed in apostrophes when specified in this parameter. For numeric
system values, apostrophes cannot be used. (See the CPF Programmer's
Guide for the descriptions of all system values.) Enter the new value(s) that
meet the type, length, and range requirements for that system value.

CHGSYSVAL

Command Descriptions 4-279

CHGSYSVAL
(Examples)

4-280

Examples

CHGSYSVAL SYSVAL(QHOUR) VALUE('12')

This command changes the value of the system value QHOUR (which is a
subvalue of the QTIME system value) to 12. Because QHOUR is a character
variable, 2 characters long, the system value is set to the character
representation of 12, which is hex F1 F2 and, therefore, must be enclosed in
apostrophes. Also, the QTIME system value is updated with this value
because QHOUR is a subvalue of QTIME.

CHGSYSVAL SYSVAL(QUSRLIBL) VALUE('INVLIB STOCKLIB +
MYLIB')

This command changes the vab..1e of the system value~QUSRLIBL, which
specifies the default list of libraries in the user portion of the library list to

. . . ~ - .

be used for a job at the time the job is started. The user portion of the
library list is to contain the libraries INVLIB, STOCKLIB, and MYLIB.

(

CHGTAPF (Change Tape File) Command

The Change Tape File (CHGTAPF) command changes, in the file description,
one or more of the attributes of the specified tape device file.

Required Optional

-(
.•LIBL tSAME~p CBGTAPP-PILH tape-device -rue-name \--+--DEV +NONE
.l1bra1"7-name J I device-name

<i maximum

{::~~•SAME--
REELS +NL)

•NS number-of-reela
+BLP
•LTM

-f_
•SAKll

>-VOL •NONE ~
volume identifier

!!O maximum

..

-(
+SAMB -f_•SAMB

>-SEQNBR)---LABEL +NONE------~-~-----+ ..
ttle-aequence-number data-tile-identltler_/

-f_
•BAMB -(+SAME

>-RCDLBN +c.u.c----~-t--BLICLEN +CALC ~
record-len1th_/ block-len1th_/

(D(+SAMB
BUPOPSET +BLKDSC) ..

butfer-otfse

@ Select one of the followin1: -f_•SAM~
>-RCDBLICPMT- •SAKI •V +D •VS 1----'BXTBND •NO __ _., _________ .,

ip- •VB •DB •VBB +YBS
•PB •U

..

ENDOPT •REWIND ~-----------• .. {•SAME~
+UNLOAD
•LBAVB

>-1f.AITPILl~:=D------}--sRABB1_:::~TBXT1._:=IC~
•CL8 · _/ ~•YBB J- -"-= 'dnorlp~
number-ot-aeoonda

© The value +BLKDSC i• valld only it the rne ii record block format •D or •DB.
@ The valuee +P, +PB, +VS, +VBS and •U are valld for both EBCDIC and ASCII codee;

•V and •VB are valid only tor BBCDIC; and •D and •DB are valid only ror ASCII.

l Job:B,I Ppn:B,I

CHGTAPF

Command Descriptions 4-281

CHGTAPF
FILE

4-282

FILE Parameter: Specifies the qualified name of the tape device file whose
description is being changed. (If no library qualifier is given, *UBL is used
to find the file.)

DEV Parameter: Specifies the names of one or more tape devices that are to
be used with this device file to perform 1/0 data operations.

*SAME: The device name, if any, specified in the device file description
remains the same.

"NONE: No device names are to be specified. They must be supplied later
on an OVRTAPF command or when the tape device file is opened.

device-name: Enter the names of one or more devices {no more than four)
that are to be used with this tape device file. The order in which the device
names are specified here is the order in which tapes mounted on the
devices are processed. Each device must already be known on the system
via a device description. When more volumes are to be processed than the
number of devices in the DEV list, the devices are used in the same order
as specified, wrapping around to the first device as needed.

VOL Parameter: Specifies one or more volume identifiers of tapes to be used
by the tape device file. The tapes {volumes) must be mounted on the
devices in the same order as the identifiers are specified here {and as they
are specified in the DEV parameter). If the tape file is opened for read
backward, then the volume identifiers in the list are processed from last to
first {while the devices in the device list are used in first to last order). An
inquiry message is sent to the system operator for either *SL or *BLP
processing if an incorrect volume is mounted, or if no volume is mounted
{for any type of label processing). When a list of volume identifiers is
provided for the file, operator mount messages indicate the name of the
volume which is required. {For an expanded description of the VOL
parameter, see Appendix A.)

*SAME: The volume identifiers specified in the device file description
remain the same.

"NONE: No tape volume identifiers are specified for this file. They can be
supplied before the device file is opened, either in the CHGTAPF or
OVRTAPF command or in the HLL program. If no volume identifiers are
specified before the device file is opened, no volume checking is performed
beyond verifying that the correct label type volume is mounted, and no
volume names are provided in operator mount messages. The maximum
number of reels processed for a *NL, *L TM, *NS, or *BLP input file when
VOL{*NONE) is specified is determined by the REELS{number-of-reels)
parameter value.

volume-identifier: Enter the identifiers of one or more volumes in the order
in which they are to be mounted and used by this device file. Each identifier
can have six alphameric characters or less. The maximum number of reels
processed for a *NL, *L TM, *NS, or *BLP input file is determined by the
number of volume identifiers in the list.

REELS Parameter: Specifies the type of labeling used on the tape reels and
the maximum number of reels to be processed, if there is no list of volume
identifiers specified (VOL parameter) and this device file is used with either
*NL, *LTM, *NS, or *BLP input files. When the number of reels are
specified, the volume identifiers on the mounted volumes are ignored if
labeled tapes are being processed; the order in which the reels are mounted
must be checked by the operator.

The number of reels value (the second part of the REELS parameter) is not
a limiting value for standard-label or output files. For a standard-label input
file, the data file labels limit the number of volumes processed by indicating
end-of-file. For an output file, the maximum number of reels value is
ignored; the system requests that additional volumes be mounted until the
file is closed.

The system checks the block at the beginning of the tape to see (1) if it has
exactly 80 bytes for EBCDIC or at least 80 bytes for ASCII and (2) if the
first 4 bytes contain the values VOL and 1. If so, the reel contains a
standard labeled tape. *SL and *BLP tape files require standard-label tape
volumes. *NL, *LTM, and *NS tape files cannot process standard-label
volumes.

Note: The values *SL, *NL, and *L TM can be specified if the device file is
to be used for either reading or writing on tapes. The values *NS and *BLP
are valid only if the device file is used to read tapes.

*SAME: The type of labeling specified in the device file description is not
to be changed.

*SL: The volumes have standard labels. The volume identifiers are to be
ignored; instead, the number-of-reels value is to be checked.

*NL: The volumes have no labels. On a nonlabeied volume, tape marks are
used to indicate the beginning and end of the volume and each data file on
it.

*NS: The volumes have nonstandard labels. The load point on the tape may
be immediately followed by an optional tape mark and some kind of volume
and/or file information, but they are to be ignored. All file label information,
if any, contained on the tape is also ignored; instead, the tape marks are to
be used to determine the beginning and end of the data file and to
determine whether the file is continued on another tape. Only a single data
file can exist on a nonstandard tape.

*BLP: Standard label processing is to be bypassed. Each reel must have
standard labels. Although each reel is checked for a standard volume label
and each file must have at least one standard header label (HDR1) and one
standard trailer label (EOV1 or EOF1), most other label information (such as
the data file record length or block length) is ignored. The sequence number
of each file on the volume is determined only by the number of tape marks
between it and the beginning of tape (in contrast to *SL processing where
the file sequence number stored in the header and trailer labels of each file
are used to locate a data file). Bypass label processing can be used when
some file label information is incorrect.

CHGTAPF
REELS

Command Descriptions 4-283

CHGTAPF
SEQNBR

4-284

*LTM: The volumes have no labels, but have a single leading tape mark
before the first data file. REELS(*L TM) is processed the same way as
REELS(*NL) except that when SEONBR(1) is specified for an output file to
create the first data file on the tape, a leading tape mark is written at the
beginning of the tape before the first data block.

*SAME: The number of reels specified in the device file description is not
to be c,hanged.

number-of-reels: Enter the maximum number of reels that are to be
processed for a *NL, *LTM, *NS, or *BLP input tape operation when there
is no list of volume identifiers specified (VOL parameter). If the next reel is
not mounted when the end of the currently-processing tape is reached, a
message is sent to the operator requesting that the next tape be mounted
on the next tape device. The number-of-reels value is ignored for a
standard label (*SL) file or for any output file.

SEQNBR Parameter: Specifies the sequence number of the data file on the
tape that is to be processed. When standard labeled tapes are used, the
four-position file sequence number is read from the first header label of the
data file. When bypass label processing is used or when standard-labeled
tapes are not used, the system uses the tape marks and the value specified
(or assumed) here to locate the correct data file to be processed. (When
multifile, multivolume tapes are processed using REELS(*SL), the file
sequence numbers continue consecutively through all of the volumes; that
is, each new data file has a sequence number that is one greater than the
previous file, regardless of which volume it is on.)

*SAME: The file sequence number specified in the device file description is
not to be changed.

file-sequence-number: Enter the sequence number of the file to be
processed on this tape.

LABEL Parameter: Specifies the data file identifier of the data file that is to
be processed by this tape device file. The data file identifier is defined only
for standard-label tapes and is stored in the header label immediately
preceding the data file that the header describes. If a data file identifier is
specified for any type of label processing other than *SL, it is ignored. A
label identifier is required for a standard label output file, but is optional for
an input file (since the sequence number uniquely identifies which data file
to process).

For an input file or output file with EXTEND(*YES) specified, this parameter
specifies the data file identifier of the file that exists on the tape. The
specified identifier must be the same as the one in the labels of the data file
that the SEQNBR parameter specifies; othe..Wise, an error message is sent
to the program using this device file. For output files with EXTEND(*NO)
specified, the LABEL parameter specifies the identifier of the file that is to
be created on the tape. (For an expanded description of the LABEL
parameter, see Appendix A.)

*SAME: The data file identifier specified in the device file description is not
to be changed.

*NONE: The data file identifier is not specified.

data-file-identifier: Enter the identifier (17 alphameric characters maximum)
of the data file to be used with this tape device file. If this identifier is for a
tape that is written in the basic exchange format and it is to be used on a
system other than System/38, a maximum of 8 characters should be used
or a qualified identifier having no more than 8 characters per qualifier should
be used. (See Appendix A for details.)

CHGTAPF
LABEL

Command Descriptions 4-285

CHGTAPF
RC OLEN

4-286

RCDLEN Parameter: Specifies, in bytes, the length of the records cci~tained
in the data file that is to be processed with this device file. The system will
always use the record length and block length specified in the data file
labels for any standard label .input file or output file with EXTENO(*YES)
specified (if a second header label (HDR2) is found on the tape and *BLP
label processing has not been specified).

*SAME: The record length specified in the device file description is not to
be changed.

*CALC: No record length is specified for the data file to be processed. If
*CALC is specified the system will attempt to calculate an appropriate
record length when the file is opened. RCDLEN(*CALC) can be used for
nonlabeled tapes or when there is no HDR2 label if a BLKLEN value other
than *CALC is specified for the file and the RCDBLKFMT does not specify
spanned or blocked records. In this case, the system calculates an
appropriate record length from the block length, record block format, and
buffer offset (for an ASCII file) specified for the file. In any other case, the
actual record length must be specified by a CHGTAPF or OVRTAPF
command, or in the HLL program that opens the device file.

record-length: Enter a value (1 through 32767) that specifies the length of
each record in the data file. The minimum and maximum record length that
will be allowed for a file is dependent on the record block format, block
length, buffer offset (for an ASCII file), and recording code. The following
table shows the minimum and maximum record length values allowed for
each record block format, assuming the block length value is large enough
to support the maximum record length:

Absolute RCDLEN Ranges

FILETYPE(*DATA) FILETYPE(*SRC)

Minimum Maximum Minimum Maximum
CODE RCDFBLKFMT RCDLEN RCDLEN RCDLEN RCDLEN

*EBCDIC *F *FB *U 18 32767 30 32767

*ASCII *F *FB *U 18 32767 30 32767

*EBCDIC *V *VB 1 32759 13 32767

*ASCII *D *DB 1 9995 13 10007

*EBCDIC •vs *VBS 1 32759 13 32767

*ASCII •vs *VBS 1 32759 13 32767

BLKLEN Parameter: Specifies, in bytes, the maximum length of the data
blocks that will be transferred to or from the tape for output or input
operations. The system will always use the block length and record length
specified in the data file labels for any standard label input file or output file
with EXTEND(*YES) specified (if a second header label (HDR2) is found on
the tape and *BLP label processing has not been specified).

*SAME: The block length specified in the device file description is not to
be changed.

*CALC: No block length is specified for the data file to be processed. If
*CALC is specified, the system will attempt to calculate an appropriate block
length when the file is opened. BLKLEN(*CALC) can be used for nonlabeled
tapes or when there is no HDR2 label if a RCDLEN value other than *CALC
is specified for the file and the RCDBLKFMT does not specify spanned or
blocked records. In this case, the system calculates an appropriate block
length from the record length, record block format, and buffer offset (for an
ASCII file) specified for the file. In any other case, the actual block length
must be specified by a CHGTAPF or OVRTAPF command, or in the HLL
program that opens the device file.

block-length: Enter a value, not exceeding 32767 bytes, that specifies the
maximum length of each block in the data file to be processed. The
minimum block length that can be successfully processed is determined by
the tape device hardware and System/38 machine support functions. The
minimum value for the 3410/3411 tape drive is 18 bytes. The maximum
block length is always 32 767 for an input file. but is limited to 9999 if
block descriptors must be created for an ASCII output file. The following
table shows the minimum and maximum block length values allowed for an
output file:

Absolute BLKLEN Ranges

Minimum Maximum
CPDE BUFOFSET BLKLEN BLKLEN

*EBCDIC ignored 18 32767

*ASCII 0 18 32767

*ASCII *BLKDSC 18 9999

CHGTAPF
BLKLEN

Command Descriptions 4-287

CHGTAPF
BUFOFSET

4-288

BUFOFSET Parameter: Specifies the buffer offset value for the start of the
first record in each block in the tape data file. A buffer offset value can be
used for any record block format ASCII file, and is ignored for an EBCDIC
tape file. The system will always use the buffer offset specified in the data
file labels for any standard label input file or output file with EXTEND(*YES}
specified, if a value is contained in the second header label (HDR2) on the
tape and *BLP label processing has not been specified.

The buffer offset parameter specifies. the length of any information that
precedes the first record in the block. For record block formats *D, *DB,
*VS, and *VBS each record or record segment is preceded by a descriptor
that contains the length of the record or segment. A buffer offset value is
used to indicate that there is information ahead of the descriptor word for
the first record in each block, or ahead of the data of the first fixed-length
or undefined format record in each block.

This parameter is not needed for a standard label file processed for input if
the tape includes a second file header label (HDR2) that contains the buffer
offset value. A buffer offset must be provided by the CRTTAPF, CHGTAPF,
or OVRT APF command, or by the file labels for an input file that contains
any information (such as a block descriptor). ahead of the first record in each
block. If you do not specify a buffer offset when a tape file is created, it is
not necessary to specify an offset value when the file is read.

The only buffer offset values allowed for an output file are zero and
*BLKDSC. An existing standard label data file with a buffer offset value in
the HDR2 label can be extended only if the offset value is either zero or
four. An offset of zero in the HDR2 label adds data blocks with no buffer
offset. BUFOFSET(*BLKDSC} must be specified to extend an existing tape
data file that contains an offset value of four in the HDR2 label.

*SAME: The buffer offset value specified in the device file description is
not to be changed.

*BLKDSC: Specifies that 4-byte block descriptors are to be created in any
tape file created using this device file, and that any input file read using this
device file should assume 4-bytes of buffer offset information preceding the
first record in each data block. This value is only valid for a record block
format *D or *DB file. When BUFOFSET(*BLKDSC) is specified, the
contents of the buffer offset part of each output data block is the actual
length of the data block, in zoned decimal format.

buffer-offset: Enter a value (zero through 99) that specifies the length of
the buffer offset information which preceeds the first record in each data
block.

RCDBLKFMT Parameter: Specifies the type and blocking attribute of records
in the tape data file to be processed.

Record block format *V and *VB records can only be processed for an
EBCDIC file; *D and *DB records can only be processed for an ASCII file. If
a standard label tape (label type *SL or *BLP) is being processed and an
inconsistent record block format is specified for the volume code, the
correct record type is assumed (V or D) for the volume code and a warning
message is sent to the progam that opens the file. If the record type and
code are inconsistent for a nonlabeled volume (label type *NL, *LTM, or
*NS), an error message is sent and the file is not opened, because there are
no labels to verify the correct volume code.

If a valid record length, block length, and buffer offset (for an ASCII file) are
specified for fixed length records, but the block attribute is incorrect, the
correct block attribute will be assumed (changing record block format *F to
*FB or record block format *FB to *F), and a warning message will be sent
to the program that opens the file.

If a block length is specified that is longer than required to process a
maximum length record, then record block format *V, *D, or *VS will be
changed to *VB, *DB, or *VBS, and a warning message will be sent to the
program that opens the file.

CHGTAPF
RCDBLKFMT

Command Descriptions 4-289

CHGTAPF
RCDBLKFMT

4-290

The following chart shows the required relationship between the record
. length, block length, and buffer offset (for ASCII) file parameters for an
output file or an input file where the file parameters are not determined
from a second file header label (HDR2):

Required RCDLEN/BLKLEN/BUFOFSET Relation1

CODE RCDBLKFMT BLKLEN = fcn(RCDLEN,BUFOFSET)

*EBCDIC *F *U BLKLEN = RCDLEN

*ASCII *F *U BLKLEN = RCDLEN + BUFOFSET

*EBCDIC *FB BLKLEN = RCDLEN * n

*ASCII *FB BLKLEN = (RCDLEN * n) + BUFOFSET

n is the number of records in a
maximum-le'!S_th block

*EBCDIC *V BLKLEN = RCDLEN + 8

*ASCII *D BLKLEN = RCDLEN + 4 + BUFOFSET

*EBCDIC *VB BLKLEN >= RCDLEN + 8

*ASCII *DB BLKLEN >= RCDLEN + 4 + BUFOFSET

*EBCDIC *VS *VBS BLKLEN >= 18

*ASCII *VS *VBS BLKLEN >= 6 + BUFOFSET (18 minimum)

1When BUFOFSET(*BLKDSC) is specified for the file, a value of 4 should be used
for the BUFOFSET part of any BLKLEN calculations, unless existing file labels on
the tape specify a different value.

*F: Fixed length, unblocked, unspanned records in either EBCDIC or ASCII
code are to be processed. The system may change this record block format
to *FB, based on other file parameters. See the explanation preceding the
chart for more information.

*FB: Fixed length, blocked, unspanned records in either EBCDIC or ASCII
code are to be processed. The system may change this record block format
to *F, based on other file parameters. See the explanation preceding the
chart for more information.

*V: Variable length, unblocked, unspanned records in EBCDIC type V format
are to be processed. The system may change this record block format to
*VB, *D, or *DB, based on other file parameters. See the explanation
preceding the chart for more information.

*VB: Variable length, blocked, unspanned records in EBCDIC type V format
are to be processed. The system may change this record block format to
*DB, based on the volume code. See the explanation preceding the chart
for more information.

*D: Variable length, unblocked, unspanned records in ASCII type D format·
are to be processed. The system may change this record block format to
*DB, *V, or *VB, based on other file parameters. See the explanation

· preceding the chart for more information.

(
' \

!'
'\.

*DB: Variable length, blocked, unspanned records in EBCDIC type D format
are to be processed. The system may change this record block format to
*VB, based on the volume code. See the explanation preceding the chart
for more information.

*VS: Variable length, unblocked, spanned records in either EBCDIC or ASCII
code are to be processed. The system may change this record block format
to *VBS, based on other file parameters. See the explanation preceding the
chart for more information. Note that the representation of spanned records
on the tape is different for EBCDIC and ASCII files, but the system selects
the correct format based on the file code.

*VBS: Variable length, blocked, spanned records in either EBCDIC or ASCII
code are to be processed. Note that the representation of spanned records
on the tape is different for EBCDIC and ASCII files, but the system selects
the correct format based on the file code.

*U: Undefined format records in either EBCDIC or ASCII code are to be
processed. RCDBLKFMT(*U) records are processed as variable length
records, where each record written or read is in a separate tape block. This
format can be useful for processing tape files that do not meet the
formating requirements of any other record block format.

EXTEND Parameter: Specifies, for output operations to tape, whether new
records are to be added to the end of a data file that is currently on the
tape. (The specific data file is identified by the SEONBR parameter and, for
a standard-label file, the LABEL parameter.) If the data file is to be
extended, it becomes the last file on the tape volume; any data files that
follow it are overwritten as the specified file is extended.

*SAME: The value specified in the device file description is not to be
changed.

*NO: Records are not to be added to the end of the specified data file.
Regardless of whether there is already a data file with the specified
SEONBR on the tape, a new data file is created (overwriting an existing data
file and any files that follow it).

*YES: New records are to be added to the end of the specified data file on
tape when this device file is used.

CHGTAPF
EXTEND

Command Descriptions 4-291

CHGTAPF
DENSITY

4-292 I

DENSITY Parameter: Specifies, in bits per inch, the density of the data that
is to be written on the tape volume when this device file is used. This
parameter is used only for tapes written as nonlabeled volumes (*NL); it is
not valid unless the first data file is being written on the nonlabeled volume.
The density of a standard-label volume is specified on the INZTAP
command, which initializes tapes as standard-label volumes by writing
volume labels on them. If a labeled or nonlabeled output file is written with
a different density than specified here, a warning message is issued.

*SAME: The data density specified in the device file description is not to
be changed.

1600: The data density on this tape volume is to be 1600 bits per inch.

800: The data density on this tape volume is to be 800 bits per inch.

CODE Parameter: Specifies the type of character code to be used when tape
data is read or written by a job that uses this tape device file. If a labeled
volume is recorded in a different code than the value specified for the file, a
warning message is sent to the program that opened the file and the
volume code is assumed for the file.

*SAME: The type of character code specified in the tape file description is
not to be changed.

*EBCDIC: The EBCDIC character code is to be used with this tape device
file.

*ASCII: The ASCII character code is to be used with this tape device file.

CRTDATE Parameter: Specifies, for tape input data files and for tape output
for which EXTEND(*YES) is specified, the date when the data file was
created (written on tape). The data file creation date is stored in file labels
on the tape. If a creation date is specified for any type of label processing
other than *SL, it is ignored. If the creation date written on the tape
containing the data file does not match the date specified in this device file
description, an inquiry message is sent to the operator.

*SAME: The creation date of the tape data file specified in the device file
description remains the same.

*NONE: The creation date is not specified. It will not be checked unless it is
supplied in the OVRTAPF command or in the HLL program.

creation-date: Enter the creation date of the data file to be used by this
device file. The date must be specified in the format defined by the system
values ODATFMT and, if separators are used, ODATSEP.

EXPDATE Parameter: Specifies, for tape output data files only, the expiration
date of the data file used by this device file. The data file expiration date is
stored in file labels on the tape. If an expiration date is specified for any
type of label processing other than *SL, it is ignored. If a date is specified,
the data file is protected and cannot be written over until the specified
expiration date.

*SAME: The expiration date of the data file specified in the device file
description remains the same.

*NONE: No expiration date for the data file is to be specified; the file is not
to be protected. An expired date is written in the data file labels so the file
can be used as a scratch data file.

*PERM: The data file is to be protected permanently. The date written in
the tape data file labels consists of all nines.

expiration-date: Enter the date on which the data file expires. The date
must be specified in the format defined by the system values QDATFMT
and, if separators are used, QDATSEP.

ENDOPT Parameter: Specifies the positioning operation to be performed
automatically on the tape volume when the device file is closed. In the case
of a multiple-volume data file, this parameter applies to the last reel only; all
the other reels are rewound and unloaded when the end of the tape is
reached.

*SAME: The value specified in the device file description is not to be
changed.

*REWIND: The tape is to be rewound, but not unloaded, after the file is
closed.

*UNLOAD: The tape is to be rewound and unloaded after the file is closed.

*LEAVE: The tape should be left in its current position when the file is
closed; it is not to be rewound or unloaded. This option can be used to
reduce the time required to position the tape if the next tape file to open to
this device uses a data file that is on the same volume.

CHGTAPF
EXPDATE

Command Descriptions 4-293

CHGTAPF
WAITFILE

4-294

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*SAME: The wait time specified in the device file description is not to be
changed.

*IMMED: The program is not to wait; when the.file is opened, an immediate
allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated. Valid values are 1 through 32767
(32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the tape
device file can be shared with other programs in the same routing step. If
so, when the same file is opened more than once, the ODP can be shared
with other programs in the same routing step that also specify the share
attribute. When an ODP is shared, the programs· accessing the file share
such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a read operation in that
program retrieves the next input record. A write operation produces the next
output record.

*SAME: The value specified in the device file description is not to be
changed.

*NO: An ODP created by the program with this attribute is not to be shared
with other programs in the routing step. Every time a program opens the
file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

TEXT Parameter: Specifies the user-defined text that describes the tape
device file. (For an expanded description of the TEXT parameter, see
Appendix A).

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGTAPF FILE(TAPE01) LABEL(TUESDAY)

This command changes the description of the tape device file named
TAPE01. The LABEL parameter now contains the data file identifier
TUESDAY.

CHGTAPF
(Example)

Command Descriptions 4-295

CHGUSRPRF

4-296

CHGUSRPRF (Change User Profile) Command

The Change User Profile (CHGUSRPRF) command changes the attributes
that were specified for a user in his user profile. The command may be
used by the security officer to change the password of each user every
month, for example.

Restriction: Only the system security officer can use this command. For
the QSECOFR (security officer) user profile, only the PASSWORD, INLPGM,
and TEXT attributes can be changed. None of the attributes of the QSYS,
QDBSHR, or QSPL user profiles can be changed.

Required Optional

-(
•SJ.MB

CBGUSRPRP------USRPRP uaer-name PASSWORD _)--• ..
uaer-paeeword .

>-SPCA.UT
® -f_•SAMB

>---- M.AXSTG •HOMil ~
mu:imum-JC-bytee _/

..

>- PTYLUT-(:=ty-llmit)'----------------------. ..

•SAMB
>-.OOPOM •NONB . y

-(
.+LIBL

pro1ram-name
.library-name

-f_
+SA:MB 3

>-TUT +BLANK -----
'deacrlptlon'

..

.Job:B,I P1m:B,I

USRPRF Parameter: Specifies the name of the user profile being changed.
Enter the name of the user profile that is to have its attributes changed.

PASSWORD Parameter: Specifies the password that lets the user sign on to
the system. The password is associated with a unique user profile used by
the system to represent the user within the system and to contain his object
rights and special rights. The password should be known only to the user(s)
himself and to the security officer.

*SAME: The password is not to be changed.

user-password: Enter the alphameric character string (10 characters or less)
that identifies the user with his own user profile. The standard rule for
specifying names also applies to passwords. The first character must be
alphabetic and the other characters must be alphameric.

SPCAUT Parameter: Specifies the special rights that a user is authorized to
use. Special rights are required to perform certain functions on the system.
The special rights are grouped into save system rights (*SAVSYS) and job
control rights (*JOBCTL). The security officer can authorize these rights for
any user profile; however, *SAVSYS and *JOBCTL are normally given only
to the user who operates the system.

*SAME: The special rights, if any, assigned to the user profile are not to
be changed.

*NONE: Any previously granted special rights are to be revoked.

*SAVSYS: The save system rights are to be granted to the user named in
the USRPRF parameter. The named user is given the authority to save,
restore, and free storage for all objects on the system, regardless of
whether he has object existence rights for the objects.

* JOBCTL: The job control rights are to be granted to the user named in the
USRPRF parameter. The named user is given the authority to change,
display, hold, release. and cancel all jobs that are executing on the system
or that are on a job queue or output queue that has OPRCTL(*YES)
specified.

MAXSTG Parameter: Specifies the maximum amount of auxiliary storage that
can be allocated to store permanent objects that are owned by this user
profile. If the maximum is exceeded when an interactive user tries to create
an object, an error message is displayed and the object is not created. If
the maximum is exceeded when an object is created in a batch job, an error
message is sent to the job log (depending on the logging level of the job)
and the object is not created.

*SAME: The maximum amount of storage that can be allocated to the user
remains the same.

*NOMAX: As much storage as required can be allocated to this profile.

maximum-K-bytes: Enter the maximum amount of storage in K-bytes that
can be allocated to this user profile. (1 K equals 1024 bytes.)

CHGUSRPRF
PASSWORD

Command Descriptions 4-297

CHGUSRPRF
PTYLMT

4-298

PTYLMT Parameter: Specifies the highest scheduling priority that the user is
allowed to have for each job that he submits to the system. This value
controls the job processing priority and output priority that any job running
under this user profile can have; that is, values specified in the JOBPTY and
OUTPTY parameters of any job command cannot exceed the PTYLMT value
of the user profile under which the job is to be run. The scheduling priority
can have a value of 1 through 9, where 1 is the highest priority and 9 is the
lowest. (For an expanded description of the PTYLMT parameter, see the
Scheduling Priority Parameters in Appendix A.)

*SAME: The·highest scheduling priority that the user can assign to a job
remains the same.

priority-limit: Enter a value, 1 through 9, for the highest scheduling priority
that the user is allowed.

INLPGM Parameter: Specifies, for an interactive job, the name of the
program that is to be invoked whenever a new routing step that has QCL as
the request processing program is initiated. (No parameters can be passed
to the initial program.) The named program can cause a menu to be
displayed or perform some other function. If the initial program fails to
function properly, the user may not be able to use the system. However,
the security officer can use the CHGUSRPRF command to resolve the
problem.

*SAME: The program that is to be invoked after this user signs on remains
the same.

0 NONE: No initial program is to be invoked when the user signs on. The
command entry display is shown instead.

qualified-program-name: Enter the qualified name of the program that is to
be invoked after the user signs on. (If no library qualifier is given, *UBL is
used to find the program.) One of the IBM-supplied programs that can be
invoked, if installed, is the QCALLMENU program. This program causes the
program call menu to be displayed. This menu is described in the
Programmer's/User's Work Station Guide.

\"

TEXT Parameter: Specifies the user-defined text that describes the user
profile named in the USRPRF parameter. The text specified here replaces
any previous text. (For an expanded description of the TEXT parameter, see
Appendix A.)

*SAME: The text, if any, is not to be changed.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CHGUSRPRF USRPRF(JJADAMS) PASSWORD(SECRET) +
SPCAUT(*JOBCTL) INLPGM(DSPMENU.ARLIB)

This command makes the following changes to the user profile named
JJADAMS:

• Changes the password to SECRET.

• Authorizes JJADAMS to use the special job control rights.

• Changes the initial program to be invoked following a successful sign-on
to a program named DSPMENU, which is located in a library named
ARLIB.

All the other command parameters default to *SAME and are not to be
changed.

CHGUSRPRF
TEXT

Command Descriptions 4-299

CHGVAR

4-300

CHGVAR (Change Variable) Command

The Change Variable (CHGVAR) command is used in CL programs to
change the value of a CL variable or part of a character variable (using the
substring built~in function). The value can be changed to the value of a
constant, to the value of another variable, or to the value obtained from the
evaluation of an expression or a built~in function. (Expressions and built-in
functions are described in Appendix· B.) Also, implicit conversion between
decimal and character values is performed according to the rules given in
the VALUE parameter description.

The substring built-in function (%SUBSTRING or %SST) can be used in
either the VAR or the VALUE parameter of this command. When
%SUBSTRING or %SST is specified for VAR, the part of the value of the
CL character variable that %SUBSTRING designates is changed to the value
of the expression given in the VALUE parameter. When %SUBSTRING or
%SST is used for VALUE, the character string specified in VAR is set equal
to the part of the character string specified by the substring function
designated for VALUE.

The %SWITCH built-in function can be used in the VALUE parameter as a.
substitute for a logical variable declared in the program. % SWITCH
contains an 8-character mask that indicates which of the eight job switches
in a job are to be tested for 1s and Os. When %SWITCH is specified for
VALUE, the logical variable specified by VAR is set to a T if the logical
results of the built-in function are all true. If any of the job switches tested
yields a false condition, the variable is set to a 'O'.

Restriction: The CHGVAR command is valid only in CL programs.

CBGV.AR --- V.AR CL-variable-name --- VALUB expreHion ---

VAR Parameter: Specifies the name of the CL variable that is to be changed
in value. The type of variable does not have to be the same as the type of
the constant or variable specified in the VALUE parameter, unless an
expression is being evaluated or VAR specifies a logical variable.

If the substring built-in function is to be used to change a portion of a
character variable (that is, a substring of the character string in the variable)
specified in VAR to a value specified in VALUE, enter the name of the
character variable, followed by the starting position and the number of
characters to be changed within the character string specified by the
variable name.

Required

f Pem:B,I

;f
I
I

\.

CHGVAR
VALUE VALUE Parameter: Specifies the expression that is to be used to change the

value of the variable. (Note that variables, constants, or a built-in function
can be used within the expression.) For a description of expressions, see
Appendix B.

If a constant is to be used as a simple expression, its value must be
specified according to the following rules, depending on the type of
constant being specified and whether the variable was declared as a
decimal, character, or logical variable.

Coding Decimal Values for Decimal Variables. When a numeric value is
specified for a decimal variable:

• It can be coded with or without a decimal point (. or ,), and with or
without a plus or minus sign.

• If a negative value is to be specified, it must be preceded by a minus (-)
sign.

• If a decimal point is not entered in the coded value, it is assumed to be
on the right of the last digit entered; that is, the coded value is assumed
to be an integer (whole number) only.

• If the number of either integer or fractional digits entered exceeds the
defined number of integer or fractional digits, an error occurs.

If, for example, a decimal variable is defined as a five-position decimal
value of which two positions are the fraction portion, the following values
can be coded:

Coded Value Assumed Value

2.7 or 2,7 2.70

27 or 27.00 27.00

-27 -27.00

Coding Character Values for Decimal Variables. When a character value
is specified for a decimal variable:

• Only the digits 0 through 9, a decimal point (. or ,), and a + or - sign can
be used.

• If a + or - sign is specified, it must immediately precede (no blanks
between) the first digit in the character value. If no sign character is
specified, the value is converted as a positive value.

Command Descriptions 4-301

CHGVAR
VALUE

•

4-302

• The number of decimal positions in the converted result is determined by
the decimal point specified in the character value. If no decimal point is
specified, it is assumed to be to the right of the last digit in the
converted value.·

• Decimal alignment occurs in the converted result. (The number of
decimal positions in the converted result is determined by the .number
declared for the variable.) If the specified character value has more
decimal positions than the declared variable, the extra positions on the
right are truncated. If the integer portion of the character value has more
digits than that declared for the variable, an error message is sent to the
user.

The following examples show the results of converting the indicated
character values for character variable &A to decimal values for decimal
variable &B.

CHGVAR VAR(&B) VALUE(&A)

Character Variable & A Decimal Variable & B

Length Specified Value Length Converted Result

10 'f)f>+123.1 f>f>' 5,2 123.10

10 'f>f>f>f>123.00' 5;0 123

10 • -123f>f>f>f>f>f>' 5,2 -123.00

Coding Character Values for Character Variables. When a character
string is specified for a character variable, it must be enclosed in
apostrophes if it contains special characters or consists entirely of numeric
characters. (For example, 'ABC 67', which contains a blank, or '37.92',
which contains a decimal point and consists entirely of numeric characters.
If 37 .92 is not enclosed in apostrophes, it is treated as a decimal value
instead of a character value.)

Character variables are padded with blanks (or are truncated) on the right if
the character string for the VALUE parameter is shorter (or longer) than the
variable specified by the VAR parameter.

If a character variable is to be set equal to a portion of another character
variable, enter, as parameters on the substring built-in function, the name of
the variable containing the substring, the starting character position, and the
number of characters to be replaced. The starting position and the number
of c'1aracters can be specified in CL variables.

Coding Decimal Values for Character Variables. When a decimal value is
specified for a character variable:

• The same digits, decimal point, and sign character (if the value is
negative) are used in the converted result. The value is right-justified in
the character variable and padded on the left with zeros, if needed. (This
is unique to converted CL decimal values.)

• The converted result has as many decimal positions as were specified in
the decimal value or as defined for the decimal variable being used. If no
decimal positions are specified in the decimal value or defined for the
decimal variable, no decimal point is placed in the result.

• A minus sign is placed in the leftmost position of the character variable if
the specified decimal value is negative. No plus sign is placed hi the
character variable for positive values.

The following examples show the results of converting the indicated decimal
values for decimal variable &B to character values for character variable &A.

CHGVAR VAR(&A) VALUE(&B)

Decimal Variable &. B Character Variable &. A

Length Specified Value Length Converted Result

5, 2 23.00 or +23 7 0023.00

5, 2 -3.9 7 -003.90

5, 2 -123.67 7 -123.67

Note: The character variable must be long enough to accommodate the
decimal point and sign character if the value can have a decimal point and a
negative value in it. In the last example, although the decimal value is
defined as (5, 2), the character variable must be at least 7 characters long
for the value shown. In the next-to-last example, the character variable
could be only 5 characters long and the converted result -3.90 would be
valid.

The substring built-in function can be used to change a substring of a
character variable specified in the VAR parameter to a decimal value in the
VALUE parameter.

CHGVAR
VALUE

Command Descriptions 4-303

CHGVAR
(Examples)

4-304

Coding Logical or Character Values for Logical Variables. The value for
a logical variable must be a logical value of either T or ·o·. It must be
enclosed in apostrophes. Note, however, that the %SWITCH built-in
function can be used in place of a logical variable in the VALUE parameter.
Refer to Appendix B for a description of the %SWITCH built-in function.

Note: Values for decimal and character variable types can be entered in
hexadecimal form (X'580F' for decimal 58.0). However, if character values
are entered in hexadecimal form, care should be used because no validity
checking is performed on the hexadecimal string.

Examples

The following examples of the CHGVAR command show how the values of
·decimal, logical, and character variables can be changed.

Changing Decimal Variables

CHGVAR &A &B

The value of variable &A is set to the value of the variable &B. If &B has a
value of 37.2, then &A becomes 37.2 also.

CHGVAR &Y (&Y + 1)

The value of variable &Y is increased by 1. If &Y has a value of 216, its
value is changed to 217.

Changing Logical Variables

CHGVAR &X (&Y *OR &Z)

The value of the logical variable &X is set to the value of the result of
ORing the logical variable &Y with the logical variable &Z. (Both variables
must be logical variables when *OR is used.) If &Y equals ·o· and &Z equals
'1', then &X is set to T.

CHGVAR &A %SWITCH(10XXXX10)

The value of the logical variable &A is determined by the logical results of
the built-in function %SWITCH. Positions 1, 2, 7, and 8 of the 8-character
mask indicate that the corresponding job switches for the job are to be
tested for the values indicated in the mask. Job switches 1 and 7 are to be
tested for 1 s, and switches 2 and 8 are to be tested for Os. (Switches 3
through 6 are not to be tested.) If all four switches contain the values
specified in the %SWITCH mask, the logical result of the built-in function
is true, and the variable &A is set to a '1 '. If any of the four switches
contain a value not indicated in the mask, the result is false and &A is set
to ·o·.

Changing Character Variables

CHGVAR VAR(&A) VALUE(AB *CAT CD)
CHGVAR &A ('AB' *CAT 'CD')

These two commands set the value of the variable &A equal to the
character string ABCD, which is the result of the concatenation performed
on the two character strings AB and CD. The first command is coded in
keyword form with unquoted strings; the second is coded in positional form
with the VALUE parameter specifying two quoted character strings.

CHGVAR &VAR1 &VAR2

This example shows a 6-character variable whose value is changed by a
shorter character string. If &VAR1 = ABCDEF and &VAR2 = XYZ before the
command is executed, the result in &VAR1 is padded on the right with
blanks: xvzririri.

CHGVAR &VAR1 '12'

Assuming &VAR1 is a character variable that is 6 characters long, the result
is again padded on the right with blanks: 12flf>flfl. The apostrophe,s are
required in this example.

CHGVAR VAR(%SUBSTRING(&A 4 3)) VALUE(REP)
or

CHGVAR VAR(%SST(&A 4 3)) VALUE(REP)

The substring built-in function is used to change 3 characters of the
character constant in the variable named &A. If &A has a value of
ABCDEFGH, the fourth, fifth, and sixth characters in &A are set to REP, and
the result is ABCREPGH.

CHGVAR
(Examples)

Command Descriptions 4-305

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

CHGWSE
CHGWSE (Change Work Station Entry) Command

4-306

The Change Work Station Entry (CHGWSE) command changes one or more
attributes of a work station entry in the specified subsystem description; the
associated subsystem must be inactive when the changes are made.

Restriction: To use this command, you must have operational and object
management rights for the subsystem description.

-{
.•LIBL

CHGWSE -- SBSD subsystem-description-name)--------•

.library-name

..._r WRKSTN work-station-name~>--------------------+•

~ WRKSTNTYPE work-station-type _J
Required

Optional

f_ •SAME ®
>-JOBD •SBSD-------------y--------------·

job-deacription-name -{ .•LIBL

.library-name

>- MAXACT •NOMAX ------~->---- .AT •SIGNON-_....--------· -f_ •SAME -f_ •SAME ~

maximum-active-Jobs _/ •ENTER

f_ •SAME ~
>- DSPFMT •SYSRTGFMT -· ------------------7---

device-file-name -{ .•LIBL~ record-format-name

.library-name J
J Job:B,I Pcm:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
that contains the work station entry that is to be changed. (If no library
qualifier is given, *UBL is used to find the subsystem description.)

WRKSTN Parameter: Specifies the device description name of the work
station whose work station entry is to be changed.

A value must be specified for either the WRKSTN or the WRKSTNTYPE
parameter, but not both.

WRKSTNTYPE Parameter: Specifies the type of work station whose work
station entry is to be changed. This work entry applies to all work stations
of this type that do not have specific work entries for an individual work
station. The following type codes are valid:

Type Code

5251
5252
5291
5292
*CONS

Device

5251 Display Station
5252 Dual Display Station
5291 Display Station
5292 Color Display Station
System console display

A value must be specified for either the WRKSTN or the WRKSTNTYPE
parameter, but not both.

JOBD Parameter: Specifies the qualified name of the job description to be
used for jobs that are created and processed through this work station
entry. If the job description does not exist when this work station entry is
being changed, a library qualifier must be specified because the qualified job
description name is retained in the subsystem description.

*SAME: The same job description is to be used.

*SBSD: The job description having the same qualified name as the
subsystem description, specified by the SBSD parameter, is to be used for
jobs created through this entry.

qualified-job-description-name: Enter the qualified name of the job
description that is to be used for jobs created through this entry. If no
library qualifier is specified, the library list (*UBL) of the job in which this
CHGWSE command is executed is used to find the job description.

MAXACT Parameter: Specifies, for work stations that use this work station
entry, the maximum number of work station jobs that can be concurrently
active (or signed on). (For an expanded description of the MAXACT
parameter, see Appendix A.)

*SAME: The maximum number of jobs that can be concurrently active is
not to be changed.

*NOMAX: There is no maximum on the number of jobs that can be
concurrently active through this entry.

maximum-active-jobs: Enter the new maximum number of jobs that can be
concurrently active through this entry.

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

CHGWSE
WRKSTNTYPE

Command Descriptions 4-307

CHGWSE
AT

4-308

AT Parameter: Specifies when the work stations associated with this work
entry are to be allocated. For more information on how work stations are
allocated to subsystems, see the Start Subsystem (STRSBS) command.

Note: The following should be considered if two or more work station
entries specify AT(*SIGNON), they apply to the same work station, and they
are in more than one subsystem description: If the work station is varied on
while more than one of the subsystems are active, you cannot predict to
which subsystem the work station will be assigned.

*SAME: The job entry specification is not to be changed.

*SIGNON: The work stations are to be allocated when the subsystem is
started. A sign-on prompt is to be displayed at each work station
associated with this work entry. If a work station becomes allocated to a
different subsystem, interactive jobs associated with the work station are
allowed to enter this subsystem through the Transfer Job (TFRJOB)
command.

*ENTER: The work stations associated with this work entry are not to be
allocated when the subsystem is started. However, the interactive jobs
associated with the work stations are allowed to enter this subsystem
through the TFRJOB command.

DSPFMT Parameter: Specifies the name of the device file and the name of
the record format to be used when the subsystem obtains routing data from
the user.

*SAME: The value specified in the work station entry is not to be changed.

*SYSRTGFMT: If routing data is not defined in the referenced job
description, the subsystem obtains the initial routing data from the user
using the system-supplied routing data format.

qualified-device-file-name record-format-name: Enter the qualified name of
the new device file to be used by the subsystem to obtain the routing data.
(If no library qualifier is given, *UBL is used to find the device file
description.) If the device file does not exist when the work station entry is
changed, a library qualifier must be specified because the qualified name of
the device file is retained in the subsystem description. Also, enter the
name of the record format to be used when the subsystem obtains the
routing data from the user.

Examples

CHGWSE SBSD(BAKER.QGPL) WRKSTN(A 12) +
AT(*SIGNON)

,.
This command changes the work station entry for work station A 12 in
subsystem BAKER found in the general purpose library. A job will be
created for work station A 12 when a user enters his password on the
sign-on prompt and presses the Enter key.

CHGWSE SBSD(BAKER.QGPL) WRKSTN(B28) +
DSPFMT(*SYSRTGFMT)

This command changes the job entry for work station B28 in subsystem
BAKER found in the general purpose library. If the routing data format is
not defined in the specified job description, the subsystem obtains user data
through the system-supplied routing data format.

CHGWSE
(Examples)

Command Descriptions 4-309

CHKOBJ

4-310

CHKOBJ (Check Object) Command

The Check Object (CHKOBJ) command checks object existence and,
optionally, object authorization so that a user can verify that an object exists
and verify his rights to the object before trying to access it. For verification,
as many as seven specific rights of use can be specified in the command.

These checks can be particularly useful before the user tries to access
multiple objects at the same time. The CHKOBJ command is also used to
check the validity of object names contained in CL variables and to verify
object authorizations under program control.

When the command executes, the system searches for the specified object.
If the object is found, the system verifies that the user is authorized for that
object in the manner he specified on the CHKOBJ command. If the object
is not found or the user does not have the rights specified on the CHKOBJ
command, an escape message is sent to the user.

When the CHKOBJ command is used in a CL program, at least one
MONMSG command should follow the CHKOBJ command to monitor for
any messages that result from the execution of the command. (Refer to
Appendix E, Error Messages That Can Be Monitored, for the list of error
messages that can be monitored for each command.)

AUT

•KORB
•KORKAL~----------'•

uu.---------------..
Seleot. one or more ot tbe
1'ollowiDc (7 muilmam):

Rlquired

Optional

© J.DT one ot the CPP object type• Uated In the OB.JTYPB para.meter chart• In Appendix A
can be •pecltled.

.Job:B,l Ppul,l

(
\

A
(
\,

OBJ Parameter: Specifies the qualified name of the object being checked. (If
no library qualifier is given, *UBL is used to find the object.)

OBJTVPE Parameter: Specifies the object type of the CPF object that is
being checked. Enter the predefined value that specifies the object type.
(For an expanded description of the OBJTYPE parameter and a list of the
valid values for the CPF object types, see Appendix A.)

MBR Parameter: Specifies, if a member of a data base file is being checked,
the name of the file member.

Note: For the specified logical file member, the data rights specified by
AUT are checked for each of the physical file members on which the logical
file member is based.

*NONE: For data base files, *NONE means that no member is to be
checked, but the existence and (optionally) the authority of the file itself are
to be checked. For all other object types (including device files), *NONE is
the only valid value for the MBA parameter.

*FIRST: The first member in the data base file is to be checked.

data-base-file-member-name: Enter the name of a physical or logical file
member that is to be checked by the CHKOBJ command. The values
specified for the OBJ and OBJTYPE parameters must be valid for a data
base file and the member specified must be a member of the data base file
specified in the OBJ parameter.

AUT Parameter: Specifies the rights of use that are to be checked for the
specified object.

Note: Refer to the chart in the CPF Programmer's Guide that shows the
applicable rights of use for each object type.

*NONE: Authority is not to be checked.

*NORMAL: Normal rights of use are to be checked.

*ALL: All rights of use applicable to the specified object are to be checked.

*OPER: Operational rights, which provide the authority to use an object and
to look at its description, are to be checked.

*OBJMGT: Object management rights, which provide the authority to
manage the access and availability of an object, are to be checked. A user
with object management rights can grant (and revoke) the rights he has to
an object, as well as move and rename objects and add members to data
base files.

CHKOBJ
OBJ

Command Descriptions 4-311

CHKOBJ
(Examples)

4-312

*OBJEXIST: Object existence rights, which provide the authority to control
object ownership and existence, are to be checked. This right of use allows
the user to delete, save, restore, transfer ownership of, and free the storage
of an object.

*READ: Read rights, which provide the authority to retrieve the contents of
an object entry, are to be checked. (See note on MBR parameter.)

*ADD: Add rights, which provide the authority to add entries to an object
are to be checked. (See note on MBR parameter for checking logical file
members.)

*UPD: Update rights, which provide the authority to change the entries in
an object, are to be checked. (See note on MBR parameter.)

*DLT: Delete rights, which provide the authority to delete entries in an
object, are to be checked. (See note on MBR parameter.)

Examples

CHKOBJ OBJ(PROG1.LIB1) OBJTYPE(*PGM)

This command checks for the existence of a program named PROG1 in
library LIB1. The user's rights of use for PROG1 are not to be checked.

CHKOBJ OBJ(SOURCE1) OBJTYPE(*FILE) +
MBR(MBR3) AUT(*NORMAL)

This command checks the user's authority for normal rights of use to
member MBR3 in the file SOURCE1.

CHKOBJ OBJ(PROG1.LIB1) OBJTYPE{*PGM) AUT(*NORMAL)

This command checks the existence of and the user's rights of use for
PROG1 in LIB1.

The following list identifies messages that can be monitored by the Monitor
Message (MONMSG) command if sent by the CHKOBJ command:

CPF9801

CPF9802

CPF9810

CFP9820

CPF9830

OBJECT NOT FOUND - PROG1 does not exist.

OBJECT NOT AUTHORIZED - The user that issued this
command does not have *NORMAL authority to PROG1.

/

LIBRARY NOT FOUND - LIB1 cannot be located.

NOT AUTHORIZED TO LIBRARY - The user that issued this
command is not authorized to the library named LIB1, or is
not authorized to a library in the library search list named
LIB1.

UNABLE TO ALLOCATE LIBRARY -The library named LIB1
or a library in the library search list named LIB1 is locked and
cannot be accessed.

CHKOBJ OBJ(FILEA) OBJTYPE(*FILE) MBR(MBR1) AUT(*NORMAL)

This command checks the user's authority for normal rights of use to logical
file member MBR1, and each physical file member on which MBR1 is
based.

The following are messages that can be monitored by the MONMSG
command, in addition to the messages shown in the previous example:

CPF9815

CPF9899

MEMBER IN FILE NOT FOUND - MBR1 cannot be found in
FILEA. If FILEA does not contain members. a CPF001 (invalid
parameter) is sent. If FILEA is a device file, a CPF9899
message is sent.

FUNCTION NOT PERFORMED - This message is a summary
escape message that is always preceded by a diagnostic
message. If FILEA is a device file, message CPF2168
precedes message CPF9899. If FILEA is locked, message
CPF3202 precedes this message. If MBR1 is a logical data
base file member and *ALL, *READ, *UPD, or *DLT is
specified, message CPF9899 is preceded by diagnostic
message CPF3274.

CHKOBJ OBJ(FILEA) OBJTYPE(*FILE) MBR(MBR1) +
AUT(*ADD *DLT)

MONMSG MSGID(CPFXXXX) EXEC(GOTO ERROR1)

These two commands are used to verify that the user has both add and
delete rights for each of the physical file members on which the logical file
member MBR1 in the logical file FILEA is based. If he does not have both
of the data rights for all of the based-on physical file members, the escape
message CPF9802 is sent to the program, and control is passed in the
program to the command that has the label ERROR1.

CHKOBJ
(Examples)

Command Descriptions 4-313

CLNPRT

4-314

CLNPRT (Clean Printer) Command

The Clean Printer (CLNPRT) command is used to clean the type faces of the
print train character slugs on the 3203 Printer. For instructions on preparing
the 3203 to clean the print train, refer to the IBM 3203 Printer Model 5
Component Description and Operator's Gulde, GA33-1529.

CLNPRT --, DBV 3203-device-name --

Required

j.Job:B,I P1m:B,I

DEV Parameter: Specifies the device name assigned to the 3203 Printer on
which the print train is to be cleaned.

Example

CLNPRT DEV(PRINTER1)

This command cleans the print train mounted on the 3203 Printer named
PRINTER1.

CLRDKT (Clear Diskette) Command

The Clear Diskette (CLRDKT) command deletes all files, active and inactive,
from one or more diskettes by deleting the data file identifiers from the
diskette label area on each diskette. A single (expired) file is defined,
covering the entire diskette, and is identified as DATA. The data contained
in the files is not erased. Refer to DLTDKTLBL (Delete Diskette Label)
Command and the INZDKT (Initialize Diskette) Command to erase the data in
the files.

The CLRDKT command does not test the diskette for defects nor does it
change the volume identifier and owner identifier fields. The error map also
is not altered.

A maximum of two magazines or three diskettes in manual slots can be
mounted and cleared by one CLRDKT command. If no volume identifier is
specified, the command can clear more than one volume at a time, either in
the basic exchange format or in the save/restore format. If an identifier is
specified that is the same on multiple diskettes currently mounted in
magazines or slots, all diskettes with an identical volume identifier are
cleared. (The volume identifier of a save/restore magazine cannot be
specified because the last character (diskette position number) in the
identifier changes for each diskette in that magazine.)

Note: When processing diskettes with non-IBM standard labels, you may
get unpredictable results. To initialize the diskette, execute the Initialize
Diskette (INZDKT) command, with CHECK(*NO) specified.

Restriction: A diskette that has an extended label area cannot be cleared;
it must be initialized by the INZDKT command.

CLRDJCT -.

Select one or the tollowin1: K PIRST •• '"T
••112 •S1 •812 • ~

>-LOC- iii! •S2 •S23 •ONLY) •
•M2 •SS •S123 1tartin1-di1kette endin1-di1kette

-po1ition -po1ition
Required

Optional

l Job:B,J P1m:B,I

CLRDKT

Command Descriptions 4-315

CLRDKT
LOC

4-316

LOC Parameter: Specifies vvhich diskette location(s) in the magazines or slots
are to have their diskettes cleared. Three values are needed: (1) the unit
type and location (that is, the magazines or slots used), (2) the starting
diskette position, and (3) the ending diskette position in the unit. (For an
expanded description of the LOC parameter, see Appendix A.) A value must
be specified for the first of the three values; if no values are specified for
the other two, *FIRST and *LAST are assumed by the system.

Unit Type and Location: The first of the three values in the LOC parameter
specifies which ·unit (magazine or slot) and diskette location are to be
cleared. Enter one of the following values to specify the unit type and
location: *M12, *M1, *M2, *S1, *S2, *S3, *S12, *S23, or *S123.

Starting Diskette Position: The second of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette that is to be cleared first. Enter one of
the following values to specify the starting diskette position:

*FIRST: The first diskette position in the location contains the diskette to
be cleared first. It is the leftmost diskette in the magazine(s) or slots
specified. (See Appendix A for details.)

starting-diskette-position: Enter the number of the diskette position (1
through 10) in the magazine that contains the first diskette to be cleared. (A
value is not valid for manual slots.)

Ending Diskette Position: The third of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette that is to be cleared last. Enter one of
the following values to specify the ending .diskette position:

*LAST: The last diskette position in the location contains the diskette to be
cleared last. It is the rightmost diskette in the magazine(s) or slots specified.
(See Appendix A for details.)

*ONLY: Only the diskette position specified by the second value is to be
cleared.

ending-diskette-position: Enter the number of the diskette position (1
through 10) in the magazine that contains the last diskette to be cleared. (A
value is not valid for manual slots.)

VOL Parameter: Specifies whether a check of the volume identifier field on
the diskette should be made before the specified diskettes are cleared. If
so, the volume identifier of the volume to be checked must be specified.

*LOC: No volume identifier check is to be made; the diskettes currently
mounted in the location specified by the LOC parameter are to be cleared
without checking. If multiple diskettes in the save/restore format are to be
cleared, *LOC is the only valid value for VOL.

volume-identifier: Enter a volume identifier that is to be compared with the
diskette label volume identifier field on the diskette being cleared. The
identifier can have no more than 6 characters; any combination of letters
and digits can be used. For magazines in the save/restore format, if only a
single diskette is to be cleared, both the magazine identifier (5 characters
maximum) and the diskette's position in the magazine must be specified.
(For example, the volume identifier SVLIB4 indicates diskette 4 in the
magazine volume SVLIB is to be cleared. Note that, for LOC, *M1 or *M2
followed by 4 and *ONLY must also be specified.)

If the volume identifiers do not match, a message is issued to the system
operator. The operator can then either insert the correct diskette and try
again or continue with the next diskette as specified by the LOC parameter.

Note: If multiple diskettes having identical volume identifiers are mounted
in the location specified by LOC, all the diskettes that are identically named
are cleared.

CHECK Parameter: Specifies whether a check for active files is to be
performed on each diskette in the specified location before it is to be
cleared. Active files are files having an expiration date greater than the
system date.

*YES: A check is to be performed on files whose labels are in cylinder 0
only. File labels in an extended file label area (not supported by System/38)
are not checked. If any active files are found on a diskette, a message is
sent to the system operator. The operator can continue the clear function,
destroying any active files, or he can terminate the operation. If more than
one diskette is being cleared, the process continues on the next diskette in
the sequence.

*NO: The diskettes are to be cleared without being checked for active files.

Examples

CLRDKT LOC(*M1 5 *ONLY) VOL(MASTER)

This command clears only the fifth diskette in maga'!ine 1 if its volume
identifier is MASTER.

CLRDKT LOC(*M12)

This command clears all diskettes in magazines 1 and 2. Because
VOL(*LOC) is assumed, the diskettes could be in either the basic exchange
or save/restore formats, and a volume identification check is not made.
However, because CHECK(*YES) is also assumed, each diskette (in both
magazines) is checked for active files before it is cleared.

CLRDKT
CHECK

Command Descriptions 4-317

CLRJOBQ

4-318

CLRJOBQ (Clear Job Queue) Command

The Clear Job Queue (CLRJOBO) command removes, from the specified job
queue, all the job entries for batch jobs (including jobs that are in the hold
state). Any jobs that are currently being read in and any interactive jobs that
have been rerouted to the job queue remain on the queue. The execution of
jobs that were started from the job queue is not affected.

Restriction: You must have read, add, and delete rights for the job queue;
or you must have job control rights and the job queue must have
OPRCTL(*YES) specified, which allows you to clear the queue.

-(_
.*lJBL

CLRJOBQ --- JOBQ job-queue-name)--

.library-name

Required

l Job:B,I Pcm:B,I

JOBQ Parameter: Specifies the qualified name of the job queue that is to be
cleared of all waiting or held jobs. (If no library qualifier is given, *UBL is
used to find the queue.)

Example

CLRJOBQ JOBO(OBATCH)

This command removes all jobs currently in the IBM-supplied job queue,
OBATCH. Any job currently being read in is not affected.

CLRLIB (Clear Library) Command

The Clear Library (CLRLIB) command deletes all of the objects from the
specified library that a user has the authority to delete. The CLRLIB
command does not delete the specified library, only the objects for which
the user has object existence authority; the other objects remain in the
library. If any objec~ are being used by any other job when this command
is entered, those objects are not deleted.

Restrictions: (1) The user must have operational rights for the library being
cleared as well as object existence rights for the objects to be deleted. (2)
This command cannot be used to clear the QSYS library.

CLRLIB -- LIB library-name --

Required

l Job:B,I Pam:B,I

LIB Parameter: Specifies the name of the library that is to be cleared of all
objects that the user has object existence authority for. If the user does not
have object existence rights for an object. that object remains in the library.

Example

CLRLIB LIB(A)

This command deletes all of the objects in library A for which the user has
object existence authority.

CLRLIB

Command Descriptions 4-319

CLROUTQ

4-320

CLROUTQ (Clear Output Queue) Command

The Clear Output Queue (CLROUTQ) command removes from the specified
queue the entries for all spooled files that are waiting to be written on an
output device, including files that are in the hold state. Spooled output files
that are currently being produced by programs or that are being written. to
an output device are not removed from the queue.

Restriction: You must have read, add, and delete rights for the output
queue; or you must have job control rights and the output queue must have
OPRCTL(*YES) specified.

-(
.•LIBL

CLROUTQ --OUTQ output-queue-name)--

Required

.library-name
j Job:B,I P1m:B,I

OUTQ Parameter: Specifies the qualified name of the output queue that is to
be cleared. (If no library qualifier is given, *UBL is used to find the queue.)

Example

CLROUTQ OUTQ(QPUNCH)

This command removes from the output queue, QPUNCH, the entries for all
spooled files that are waiting to be punched or are being held. The entries
for the file currently being punched and those files still receiving records
from executing programs are not affected.

CLRPFM (Clear Physical File Member) Command

The Clear Physical File Member (CLRPFM) command removes all the data
(including deleted records) from the specified member of a physical file. The
record count for the member is set to zero, and the member size is set to
the optimum size (as determined by the system), depending upon the
manner in which the file was created. For more information, refer to the
ALLOCATE parameter for the CRTPF (Create Physical File) Command. Any
attempt to retrieve a record from the cleared member results in an error
message being sent to the user or program that attempted the retrieve.

Note: The CLRPFM command ignores all file overrides that are currently in
effect for the job.

Restrictions: To clear a member, the user must have object management
and delete rights for the physical file that contains the member. If any of
the access paths to the member are in use when this command is entered,
the command is not executed. Also, if MAINT(*IMMED) is specified for any
access path associated with this physical file member and that access path
or any other physical file member associated with that access path is
currently open for update (this may be through another logical file), the clear
operation does not occur.

-(
,,.LIBL

CLRPFM -- FILE physical-file-name)------------•
.library-name

Required

Optional

-(
*FIRST

>- MBR physical-file-member-name),. __ _

j Job:B,I P1m:B,I

FILE Parameter: Specifies the qualified name of the physical file that contains
the member to be cleared. (If no library qualifier is given, *UBL is used to
find the file.)

MBR Parameter: Specifies the name of the member, or the first member, to
be cleared.

*FIRST: The first member of the specified physical file is to be cleared.

physical-file-member-name: Enter the name of the physical file member to
be cleared.

CLRPFM

Command Descriptions 4-321

CLRPFM
(Example)

4-322

Example

CLRPFM FILE(INV.QGPL) MBR(FEB)

The member named FEB in the physical file INV that is stored in the QGPL
library is to be cleared. It cannot be cleared until all jobs currently using the
member and all jobs using the access paths over the member are finished
with it.

\,

CLRTRCDTA (Clear Trace Data) Command

The Clear Trace Data (CLRTRCDTA) command is used to clear (destroy) all
of the data from any previous trace operations in this debugging session.
Once cleared, the data can no longer be displayed.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

CLRTRCDT.A---
·~~~I

I '""'"·'

Example

CLRTRCDTA

This command clears all of the data recorded from any and all previous
tracing operations in all of the programs currently being debugged.

CLRTRCDTA

Command Descriptions 4-323

CNWOB

4-324

CNWOB (Cancel Job) Command

The Cancel Job (CNWOB) command cancels the specified job and its
associated inline data files, if any. The job may be on a job queue, it may
be active within a subsystem, or it may have already completed execution.
All spooled output files associated with the job being canceled can also be
canceled or allowed to remain on the output queue.

Restriction: To use this command, you must be canceling your own job or
you must have the special job control rights.

CNLJOB -- JOB Job-name[.uaer-name[.Job-number]]--------------+

Required

Optional

-(
+CNTRLDj- -(30

>-OPTION DBLA.Y)------------+~
+IMMBD dela;v-tlme

>-SPLFILB-(+NO~ LOGLMT1_ :::~-------'....---
+YESJ - -- '\::::: mu:lmum-lo11ed-entrles _/

j Job:B,I P1m:B,I

JOB Parameter: Specifies the qualified name of the job to be canceled. If no
job qualifier is given, all of the jobs currently in the system are searched for
the simple job name. If duplicates of the specified name are found, a
qualified job name must be specified. (For an expanded description of the
JOB parameter and duplicate job names, see Appendix A.)

OPTION Parameter: Specifies whether the job is to be canceled in a
controlled manner (which lets the application program perform termination
processing) or immediately. In either case, the system does perform certain
job cleanup functions.

*CNTRLD: The job is to be terminated in a controlled manner. This allows
the executing program to perform cleanup (termination processing).

*IMMED: The job is to be terminated immediately, meaning the executing
program is not allowed to perform any cleanup. (This option might cause
undesirable results if data has been partially updated and, therefore, should
be used only after a controlled cancel has been attempted unsuccessfully.)

I
\

DELAY Parameter: Specifies the amount of time (in seconds) allowed, for the
routing step to complete its cleanup processing during a controlled cancel.
This parameter is not used if OPTION(*IMMED) is specified. If the cleanup
is not completed before the end of the delay time, the job is immediately
canceled. (Only system cleanup is performed.)

30: A maximum delay time of 30 seconds is allowed for cleanup before the
job is canceled.

/

delay-time: Enter the maximum amount of delay time in seconds before the
job is canceled. Valid values are 1 through 999999 seconds.

SPLFILE Parameter: Specifies whether spooled output files created by this
job are to be retained for normal processing a writer or whether they are to
be deleted.

*NO: The spooled output files created by the job being canceled are to be
retained for normal processing by a writer.

*YES: The spooled output files created by the job being canceled are to be
deleted. The job log is not deleted.

LOGLMT Parameter: Specifies the maximum number of entries, in the
message queue of the job being canceled, that are to be written to the job
log. This parameter can be used to limit the number of messages written to
the job log printer file (QPJOBLOG) for a job that is being canceled. This
option is particularly useful when a job is canceled and its message queue
contains an excessive number of entries.

If the CNWOB command is used to change the message logging limit while
the messages for the canceled job are being written to the spooled file, and
the new limit is greater than the number written at the time the command is
entered, messages continue to be written until the new limit is reached. If
the new limit is less than the number of messages already written to the
spooled file, a message indicating that the limit has been reached is
immediately put in the spooled file as the last entry, and the rest of the
messages on the queue are ignored. If the limit is set to zero before any
messages are written to the spooled file, no job log is produced for the
canceled job.

*SAME: The message logging limit is not to be changed. (If the logging
limit was not changed for this job on a previous command, *NOMAX is the
value used by the system.)

*NOMAX: There is no limit on the number of messages to be logged; a//
messages on the job message queue are to be written to the job log.

CNWOB
DELAY

Command Descriptions 4-325

CNWOB
(Examples)

4-326

maximum-logged-entries: EntElr a value that specifies the maximum number
of messages to be written to the job log. This value is the maximum only if
it is entered before the job log contains that many messages; otherwise, the
limit just stops the process of writing any more messages to the job log. If
0 is specified before any messages are written to the log, no job log is
produced.

Examples

CNWOB JOB(PAYROLL) OPTION(*IMMED) SPLFILE(*YES)

This command cancels a job called PAYROLL immediately. Any spooled
output produced by the job is deleted; the job log is saved.

CNWOB JOB(WSTATION2) OPTION(*CNTRLD) +
DELAY(50) SPLFILE(*NO)

This command cancels a job called WSTATION2. Any spooled output is
saved for normal processing by the spooling writer. The job has 50 seconds
to perform any cleanup routines, after which it is canceled immediately.

(
\

(

CNLRCV (Cancel Receive) Command

The Cancel Receive (CNLRCV) command is used to cancel a request for
input made by a previously issued RCVF or SNDRCVF command that had
WAIT(*NO) specified. The CNLRCV command will cancel an input request
even if the user enters the requested data at the work station at the same
time that the command is executed. If the requested data is entered and is
enroute to the program when the cancel receive operation is performed, the
entered data is lost. If there is no outstanding input request, the command
is ignored.

Restriction: This command is valid only within CL programs ..

CNLRCV -- DBV)--

Optional

-(
•PILB

device-name
jP1m:B,I

DEV Parameter: Specifies the name of the display device for which the
request for input is to be canceled.

*FILE: The name of the device having the response from it canceled is
contained in the device file that was declared in the FILE parameter of the
DCLF command. If the device file has more than one device name specified
in it, *FILE cannot be specified.

device-name: Enter the name of the display device from which a response is
being canceled.

Example

CNLRCV DEV{MYDISPLAY)

In this example, assume that a RCVF command with WAIT(*NO) was issued
earlier in the CL program to request input from the device file declared
earlier in the DCLF command and from the display device MYDISPLAY.
When this CNLRCV command is executed, that request for input from
MYDISPLAY is canceled.

•

CNLRCV

Command Descriptions 4-327

CNLROR

4;..32s

CNLRDR (Cancel Reader) Command

The Cancel Reader (CNLRDR) command terminat~ the specified card,
diskette, or data base reader and makes its associated input device available
to the system. The reader can be terminated either immediately, without
completing the current job being read, or at the end of the current job. If
the reader is in a hold state when this command is issued, the reader is
terminated. immediately.

Restriction: To cancel a reader, you must have started the reader or you
must have the special job control rights in your user profile.

Required Optional

-(
+CNTRLDJ-­

CNLRDR --RDR reader-name -I-- OPTION
+IMMBD

j Job:B,I P1m:B,I

RDR Parameter: Specifies the name of the card, diskette, or data base reader
to be canceled. The reader's associated input device is made available to
the system.

OPTION Parameter: Specifies when the canceled reader should terminate
processing.

*CNTRLD: The reader is to terminate processing after the current job is
read and an entry for the job is placed on the job queue.

*IMMED: The reader is to terminate processing immediately. The job being
read in is not placed on the job queue.

Example

CNLRDR RDR(CARD)

This command stops the reader CARD as soon as the current job is
completely read in and releases 'that device to the. system. To process any
jobs that remain in the input stream, another reader can be started, but the
system operator may have to put the job card and other cards needed for
the next job back in the hopper with the rest of the input stream.

\

CNLRJERDR (Cancel RJE Reader) Command

The Cancel RJE Reader (CNLRJERDR) command cancels the specified RJEF
reader job and holds the associated RJEF reader job queue. Other RJEF
reader job queues are not affected.

Restriction: To use this command, you must have operational rights to the
session description.

The Cancel RJE Reader (CNLRJERDR) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the /BM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

CNLRJERDR-RDR I Select one or the. rouowtna: I ., I •ALL RD1 RD2 RD3 .~-------------

>-SSN-remote-job-entry-sesslon-name-----------------•

Required

Optional

-(+CNTBLDJ--
>-OPTION

+lMMBD
l Job:B,I P1m:B,I

RDR Parameter: Identifies the RJEF reader that is to be canceled.

*ALL: All RJEF readers associated with the specified RJEF session are to
be canceled.

RDl: RJEF Reader 1 is to be canceled.

RD2: RJEF Reader 2 is to be canceled.

RD3: RJEF Reader 3 is to be canceled.

SSN Parameter: Specifies the name of the RJEF session in which the RJEF
reader is to be canceled.

CNLRJERDR

Command Descriptions 4-329

CNLRJERDR
OPTION

4-330

OPTION Parameter: Specifies when the canceled RJEF reader should
terminate processing. For both parameter values, issuing a Start RJ E Reader
(STRRJERDR) command is required to resume RJEF reader operations.

*CNTRLD: The specified RJEF readers are to terminate processing in a
controlled manner by holding the RJEF job queue associated with the
specified RJEF reader(s). Controlled termination prevents any new RJEF
reader jobs from executing and allows the job currently executing to
complete normally.

0 tMMED: The specified RJEF readers are to terminate processing
immediately. No more data records are sent to the host system and no new
RJEF reader jobs are allowed to start. A normal end-of-file sequence is
sent to the host system.

Example

CNLRJERDR RDR(RD1) +
SSN(RJE) +
OPTION(*IMMED)

This command cancels reader 1 in the active RJEF session named RJE. The
reader is canceled immediately. The file currently being sent to the host by
RD1 is not allowed to complete. If RD1 was started from an RJEF reader
job queue, the job queue is held. No new files will be sent to the host by
RD1 until it is restarted by the Start RJE Reader (STRRJERDR) command.

CNLRJEWTR (Cancel RJE Writer) Command

The Cancel RJE Writer (CNLRJEWTR) command cancels the specified RJEF
writer.

Restriction: To use this command, you must have operational rights to the
session description arid read rights to the library in which the session
description is stored.

The Cancel RJE Writer (CNLRJEWTR) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the /BM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

Select one of the followinc:
>II.ALL PU1

CNLRJBWTR -WTR--- PR! PU2
PR2 PU3
PR3

>-SSN-remote-job-entry-aeaaion-name--------------------?•

Required

Optional

-{_
+CNTRLD)

>-OPTION •---
+IMMBO

f Job:B,I Pam:B,I

WTR Parameter: Identifies the RJEF writer that is to be canceled.

*ALL: All RJEF writers associated with the specified RJEF session are to be
canceled.

PRl: RJEF Printer 1 output stream is to be canceled.

PR2: RJEF Printer 2 output stream is to be canceled.

PR3: RJEF Printer 3 output stream is to be canceled.

PUl: RJEF Punch 1 output stream is to be canceled.

PU2: RJEF Punch 2 output stream is to be canceled.

· PU3: RJEF Punch 3 output stream is to be canceled.

SSN Parameter: Specifies the name of the RJEF session in which the RJEF
writer is to be canceled.

CNLRJEWTR

Command Descriptions 4-331

CNLRJEWTR
OPTION

4-332

OPTION Parameter: Specifies when the canceled RJEF writer should
terminate processing. For both parameter values, issuing a Start RJE Writer
(STRRJEWTR) command is required to resume RJEF writer operations.

*CNTRLD: The specified RJEF writers are to terminate processing in a
controlled manner. Controlled termination prevents any new writer jobs from
being accepted from the host system for the specified RJEF writer. RJEF
writer jobs currently executing are allowed to complete normally.

*IMMED: The specified RJEF writers are to terminate processing
immediately. No new RJEF writer jobs are allowed to start, which causes
the data set at the host system to be placed again on the output queue.

Note: For an RES host system, the data set is placed again on the output
queue and held. In order to release the data set, enter the following
command from the RJE console:

Example

RELEASE jobname, OUT=x

where x is the output class. (The host system 'D N' command can be
used to show the names of any jobs held and their output class.)

CNLRJEWTR WTR(PR1) +
SSN(RJE) +
OPTION(*IMMED)

This command cancels printer 1 (PR1) in the active RJEF session named
RJE. The printer is canceled immediately. The file currently being received
from the host system by printer 1 is not allowed to complete, but is placed
again on the output queue. No new files will be accepted from the host
system by printer 1 until it is restarted by the Start RJE Writer
(STRRJEWTR) command.

/

CNLRQS (Cancel Request) Command

The Cancel Request (CNLRQS) command cancels a previously requested
operation (command). This command can be entered during a breakpoint
that occurs in a program being tested or it can be entered in response to a
message that was not monitored by the executing program. If this
command is entered in response to an unmonitored message, it cancels the
request that caused the message.

When a request is canceled, an escape message (see Appendix E) is sent to
the request processing program that is currently invoked at the request level
being canceled. Request processing programs can monitor for the escape
message so that cleanup processing can be performed when the request is
canceled. Otherwise, the executing program is not allowed to perform any
termination processing, but the static storage and the files associated with
the request are reclaimed.

Note: External objects that are locked by the Allocate Object (ALCOBJ)
command are not unlocked (deallocated) by the cancel request.

The CNLRQS command can only be used interactively with nested
commands. For more information on nested commands, see the
Programmer's/User's Work Station Guide.

CNLRQS ---RQSLVL-(•PRV ~
requeat-level J --

RQSLVL Parameter: Specifies the command (request) nesting level at which
the command to be canceled was entered.

*PRY: The command entered at the immediately previous level is to be
canceled.

request-level: Enter the number of the command nesting level at which the
command to be canceled was entered. All nesting levels from the level
specified to the current level are canceled.

CNLRQS

Optional

Command Descriptions 4-333

CNLRQS
(Examples)

4-334

Examples

CALL PROGA (This is level 1)

•
•
Breakpoint occurs

CALL PROGB (This is level 2)
•
•
•
Breakpoint occurs

CNLRQS (This is level 3)

In this example, because RQSLVL(*PRV) is the default, the request made at
level 2 is canceled. The user can then enter another command at level 2 or
press the CF1 key to redisplay the PROGA breakpoint display.

CALL PROGA (This is level 1)

•
•
•
Breakpoint occurs

CALL PROGB (This is level 2)

•
•
•
Breakpoint occurs

CNLRQS RQSLVL(1) (This is level 3)

In this example, the reque$t made at the highest level (CALL PROGA) is
canceled. Consequently, any requests made between level 1 and level 3 are
also canceled.

rl
l

\~

CNLSPLF (Cancel Spooled File) Command

The Cancel Spooled File (CNLSPLF) command is used to remove the
specified spooled output file from the output queue. If the spooled file is
currently being produced on a device, it is immediately stopped and
removed. Any output that has not been produced is lost. Only one file can
be canceled with a CNLSPLF command.

For information on canceling multiple spooled files of a job, refer to the
Additional Considerations section of the Display Job (DSPJOB) command.
For information on canceling all spooled files of a job, refer to the Cancel
Job (CNLJOB) command.

Restrictions: You must be the owner of the job that created the file being
canceled; or have read, add, and delete rights for the output queue
containing the file; or have job control rights, and the output queue must
have OPRCTL(*YES) specified.

CNLSPLP --- FILE apooled-tile-name -------------------_..

Required

Optional

>-JOB -{ ;ob-name[.uaer-name[.job-number]])'---------------•

-f_ •ONLY
>- SPLNBR •LAST

apooled-!lle-number)

j Job:B,I P&m:B,I

FILE Parameter: Specifies the name of the spooled file that is to be removed
from the output queue. The file name is the name of the device file that
was used by the program to produce the spooled output file.

JOB Parameter: Specifies the name of the job that produced (or is producing)
the spooled file that is to be removed from the output queue.

*: The job that issued this CNLSPLF command is the job that produced the
file to be canceled.

qualified-job-name: Enter the qualified name of the job that produced the
file to be canceled. If no job qualifier is given, all of the jobs currently in the
system are searched for the simple_iob name. (For an expanded description
of the JOB parameter and duplicate job names, see Appendix A.)

CNLSPLF

Command Descriptions 4-335

CNLSPLF
SPLNBR

4-336

SPLNBR Parameter: Specifies the number of the job's spooled output file
that is to be removed from the output queue. (For an expanded description
of the SPLNBR parameter, see Appendix A.)

*ONLY: Only one spooled output file in the job has the specified file
name; ther-Etfore, the number of the spooled file is not necessary. If *ONLY
is specified and mol"Et than one file on the output queue has the specified

· name, an error message is displayed to the user who issued this command.

*LAST: The highest numbered spooled file created for the job that has the
specified file name is the file that is being canceled.

spooled-file-number: Enter the number of the spooled file with the specified
file name that is being canceled.

Example

CNLSPLF FILE(WEEKLY) JOB(PAYROLL5.SMITH.000146)

This command removes from the output queue the file named WEEKLY
whose job number is 000146. Any output files with different names
produced by the job PAYROLLS are not affected by this command. If the
job produced more than one file named WEEKLY, no file is canceled
because SPLNBR(*ONLY) is assumed.

(

CNLWTR (Cancel Writer) Command

The Cancel Writer (CNLWTR) command terminates the specified spooling
writer and makes its associated output device available to the system. The
writer can be canceled immediately or in a controlled manner. If canceled
immediately, the writer stops writing the file, and the file is made available
again on the output queue. If canceled in a controlled manner, the writer
finishes writing the current file (or a copy of a file), or it finishes printing a
page of the file, before it is canceled.

Restrictions: The user must have read, add, and delete rights for the
output queue associated with the writer; or he must have job control rights
(*JOBCTL) in his user profile and the output queue must have
OPRCTL(*YES) specified.

Required Optional . -f_ •CNTRLD~
CNLWTR---WTR wrlter-name-t--OPTION •IMMBD--...---

•PA.GBBND j Job:B,1 P&m:B,1

WTR Parameter: Specifies the name of the spooling writer to be canceled.
The writer's output device is available to the system.

OPTION Parameter: Specifies when the canceled writer should terminate
processing.

*CNTRLD: The spooling writer is to terminate processing in a controlled
manner. Output stops at the end of the output file (or copy of a file)
currently being written to an output device.

"IMMED: The writer is to terminate processing immediately. (The file being
output remains on the output queue.)

"PAGEEND: The writer is canceled at the end of a page. This value is valid
only if the spooling writer is a printer writer.

Example

CNLWTR WTR(PRINTER)

This command stops the writer, PRINTER. at the end of the spooled file
whose output is being printed and releases the device to the system.

CNLWTR

Command Descriptions 4-337

CPYF

4-338

CPYF (Copy File) Command

From File

Physical

Logical

Diskette

Card

Tape

lnline Data2

The Copy File (CPYF) command has many uses. It can:

• Copy data and source between data base files. Records can be copied
from physical or logical files; records can be copied to physical files, but
not to logical files.

• Copy data and source files from external devices, such as the MFCU or
diskettes, to the data base.

• Copy data and source files from the data base to external devices.

• Copy data and source files from external devices to other external
devices.

• Copy data and source from inline data files to the data base or to
external devices.

The combinations of device and/or data base files for which copy
operations can be performed are shown in the following chart. An X
indicates that the corresponding file types are a valid combination for
copying a file.

To File

Physical Undefined1 Printer Diskette Card

x x x x x
x x x x x
x x x
x x x x
x x x x
x x x x

Tape

x
x
x
x
x
x

1 An undefined file is one that does not exist. It is created if CRTFILE(*YES) is specified on the CPYF
command. A physical file is always created, even if the from-file is a logical file.

2An inline data file is a data file that is included as part of a batch job when the job is read by a reader
program.

Besides copying the records, the CPYF command can also perform the
following functions:

• Copying from and to the first data base file member, a particular file
member or all file members (FROMMBR and TOMBR parameters).

• Adding records to an existing file member or replacing the contents of
the file member (see MBROPT parameter description).

• Selecting certain records for copying by one of the following methods:
- Basing the selection on the contents of a character position in the

record or in a field in the record (INCCHAR parameter).
- Basing the selection on the values of one or more fields in the record

(INCREL parameter).
- Specifying the number of records to be copied (NBRRCDS parameter).
- Specifying records beginning at a relative record number and/or

ending at a relative record number (FROMRCD and TORCD
parameters).

- Specifying records beginning with a specific record key value and/or
ending with another specific record key value (FROMKEY and TOKEY
parameters).

- Specifying a record format to use when copying a multiformat logical
file (RCDFMT parameter).

• Copying records whose from-file and to-file record formats are different
(FMTOPT parameter). When formats are different, CPYF can:
- Map fields whose names are the same in the from-file and to-file

record formats (FMTOPT(*MAP)).
- Drop fields from the from-file record format that do not exist in the

to-file record format (FMTOPT(*DROP)).
- Copy data directly (left to right), disregarding the differences

(FMTOPT(*NOCHK)).

• Inserting a sequence number and/or a zero date in the source fields
when copying source files (SRCOPT parameter). When renumbering is to
be done, the starting sequence number and the increment value can be
specified (SRCSEQ parameter).

• Create the to-file as part of the copy operation (CRTFILE(*YES)).

• Terminate the copy after a specified number of recoverable data base
errors are encountered (ERRLVL(number-of-errors)).

Note: When a physical file is being copied, the relative record numbers
of the to-file may not correspond to the from-file if records are being
added to the to-file (MBROPT(*ADD) parameter), or if compression is
used to prevent deleted records from being copied (COMPRESS(*YES)
parameter).

CPYF

Command Descriptions 4-339

CPVF

4-340

• When the CPYF command is used to copy a file to a printer using the
TOFILE(*LIST) or PRINT parameters, two formats can be specified to
print the records: character format, or both character and hexadecimal
format (PRTFMT parameter).

If a program-described printer file is specified for the to-file (rather than the
TOFILE(*LJSl) value), a listing of records will be produced that does not
have headers or record sequence numbers (unlike the TOFILE(*LIST) value,
which does have headers and record sequence numbers). If a
program-described printer file is specified for the to-file, then a straight
listing of the records will be produced. If the program-described printer file
specified has the CTLCHAR(*FCFC) attribute, the first character in each
record will control the spacing and skipping of the. records printed.

Note: Source files can be copied only to source files, and nonsource files
can be copied only to nonsource files. Records in a data base file on a
device can be processed as source or nonsource, depending on the device
file used.

CPYF--PROMPILB -(
.•LIBL -{ •LIST

tile-name _)-TOPILB ©~ .•LIBL y>-------1>
.library-name file-name

.library-name
Required

Optional

-f_
•PIRST

>- PROMMBR •ALL
member-name)

-f_
•FIRST

TOMBR •PROMMBR)
®c•NONB3 MBROPT II.ADD ---'11~--------1>

member-name 11RBPLACB

-(•NO~ ~NONB~ -f_*ONLY >- CRTPILB IF PRINT •BXCLD RCDPMT •ALL)
•YBS record-format-name

llCOPIBD
2 mutmum

-(_
llSTAR:J -(_ 11BND)

{

PROMRCD TORCD ,

-(
:~::: . value -(*NONB)-

PROMKEY _)-TODY
number-of-key-field• key-value number-ot-key-flelde key-value

NONE~ ·~SAMB
>- PHTOPT •= OBCOPT :~:;j

•DROP . 2 mllDmum
2 mutmum

..

-(
1.00 :::x 1.00

>- SRCSBQ .)--· --- -(
llCllAR~ PRTFMT ~>----------__.lo

etarttn1-value Increment-value •HEX

>- BRRLVL -(O)"'---- COMPRESS -(*YBS)-
number-ot-errore •NO

©A library qualifier mu.t be specified tr CRTPILB(•YBS) ts 1pecified and the file doea not eld.st.
@•NONB is the default tor coplea to device tllea only. •ADD te the default tor copies to a new physical file,

created when CRTPILB(•YBS) is epecittecl. When copyin1 to an eaneting phyelcal tile, MBROPT muet epectty
•ADD or •RBPLACB.

@ It TORCD or TOKBY le specified, NBRRCDS cannot be epeclfied. It NBRRCDS le specified, neither TORCD
nor TODY can be specified.

f Job:B,I P1m:B,J

CPVF
(Diagram)

Command Descriptions 4-341

CPYF
(Chart) The following chart shows all of the CPYF parameters and indicates for

which file types each parameter is valid. (The parameters that can be used

with all the data base and device files are: PRINT, NBRRCDS, and

INCCHAR.) The parameters are listed down the left side, and the file types
(and whether each can be a from-file and/or a to-file) are shown across

the top. An X indicates that the associated parameter is valid for the type

and use of file under which it occurs. No X is shown when the parameter is

either invalid or ignored (does not apply).

Data Base Files Device Files

Physical Logical Diskette Tape Card Printer lnline Data

Parameter From To From To From To From To From To From To From To

FROM FILE x x x1 x x x
TO FILE x x1 x x x2
FROMMBR x x X3 X3

TOM BR x X3 X3

MBROPT x
CRTFILE x x
PRINT x x x x x x x x x x x
RCDFMT x

Q) Q) Q)

FROMRCD X4 xs 15 x x x 15 x 15
co co co

.!:< .!:< .!:<
TORCD X4 xs 0. x x x 0. x 0.

c. c. c.
co co co

FROM KEY xs xs
~ ~ ~
> > >

TO KEY xs xs Q) Q) Q)

z z z
NBRRCDS x x x x x x
INCCHAR x x x x x x
IN,CREL x x
FMTOPT x1 x x1
SRCOPT x1 x x1
SRCSEQ x1 x x1
PRTFMT8 x
ERRLVL x x x
COMPRESS x x
1Valid only if the other file (being copied to, or from) is not another diskette file.
2Valid only if *LIST or a program-described printer file is specified. An externally described printer file cannot be specified.
3Valid only if a data file identifier is not previously provided on a file override.
4Valid only if FROMKEY and TOKEY are not specified.
5Valid only if the logical file has an arrival sequence access path.
6Valid only if FROMRCD and TORCD are not specified.
7Valid only if copy is to a physical file.
8Valid for TOFILE(*LIST) or all files if PRINT(*EXCLD), PRINT(*COPIED), or PRINT(*EXCLD *COPIED) is specified.

4-342

FROMFILE Parameter: Specifies the qualified name of the data base file or
device file that contains the data to be copied. (If no library qualifier is
given. *UBL is used to find the file.) The data base file can be a physical or
logical file. The device file can be a card. diskette, tape, or inline data file.

TOFILE Parameter: Specifies the physical file or device file into which the
data is to be copied. The device file can be a card, diskette, tape, or printer
file. However: (1) Diskette files cannot be specified for both the FROMFILE
and TOFILE parameters. (2) An externally described printer file cannot be
specified.

*LIST: The data is to be copied to the IBM-supplied printer device file
QSYSPRT and the listing formatted according to the PRTFMT parameter
attributes. If a formatted listing is not wanted or if CTLCHAR(*FCFC) is
specified, then a program-described printer device file name (can be
user-defined or QSYSPRT) must be specified instead of *LIST.

Note: If *LIST is specified, an OVRPRTF command can be used to override
any of the attributes of the QSYSPRT printer file, except for the file name
(TOFILE parameter of the OVRPRTF command), the replace unprintable
character attribute (RPLUNPRT parameter), and the control character
attribute (CTLCHAR parameter).

qualified-file-name: Enter the qualified name of the physical file or device
file that is to receive the copied data. (If no library qualifier is given, *UBL
is used to find the file. However, if CRTFILE(*YES) is specified and the
specified physical file cannot be found, the file name must be qualified with
a library name; then when the file is created, it is stored in the library
specified.)

FROMMBR Parameter: Specifies. for data base files only, the name of the
member within the file specified by the FROMFILE parameter that is to be
copied. It can also be used to specify the data file identifier when data is
being copied from diskette or tape and a data file identifier is not provided
on an override command. This parameter is not valid for any other device
files.

*FIRST: The first member in the data base file specified by the FROMFILE
parameter is the member to be copied.

*ALL: All members of the data base file specified by the FROMFILE
parameter are copied to corresponding members of the data base or
diskette file specified by the TOFILE parameter. (In this case,
TOMBR(*FROMMBR) must also be specified.) If a diskette device file is to
be copied to a data base file. *ALL means that all diskette data files in the
device file are to be copied to a single data base member. (In this case.
TOMBR must specify *FIRST or a member name.) If you are copying from
the data base to a diskette specifying FROMMBR(*ALL). the data base
member names are used for the data set identifiers. Member names are
truncated on the left if they are longer than 8 characters. If this truncation
results in duplicate names. the copy operation terminates with a diskette
error.

CPYF
FROM FILE

Command Descriptions 4-343

CPYF
TOM BR

4-344

member-name: Enter the name of the member within the file specified by
the FROMFILE parameter that is to be copied. (A data file identifier can be
specified here if the copy is from a diskette or tape and the identifier is not
provided on an override command.) If the tape data file identifier is longer
than 10 characters or contains special characters, it must be specified on
the CRTTAPF, CHGTAPF, or OVRTAPF command before CPYF is executed.

· TOMBR Parameter: Specifies the name of the member within the physical
file, specified by the TOFILE parameter, that is to receive the copied data. If
TOFILE is specified as a diskette or tape device file, TOMBR specifies the
data file identifier of the diskette or tape to which the data is to be copied.
This parameter is valid only for physical files and diskette or tape device
files.

*FIRST: The first member in the physical file specified by the TOFILE
parameter is to receive the copied data.

*FROMMBR: Corresponding from- and to-member names are to be used.
Corresponding member names means that each from-member name is used
as a to-member name when all members are copied. If a corresponding
to-member name already exists, the MBROPT parameter is used to
determine whether records are added or replaced in the member. If
TOMBR(*FROMMBR) is specified and the to-member does not exist, it is
added to the file.

If TOMBR(*FROMMBR) is specified when a data base file is to be copied,
FROMMBR(*ALL) must also be specified. However, TOMBR(*FROMMBR)
cannot be specified if a single member is to be copied to a physical file and
either the name of the from-member or *FIRST is specified.

member-name: Enter the name of the physical file member or the data file
identifier of the diskette or tape data file that is to receive. the copied data.
If the receiving data base file is being created by this command
(CRTFILE(*YES) is specified), the name specified here is the name of the
member added to the created file. If the tape data file identifier is longer
than 10 characters or contains special characters, you must specify it on the
CRTTAPF, CHGTAPF, or OVRTAPF command before executing the CPYF
command. If you are copying from the data base to a diskette specifying
FROMMBR(*ALL), the data base member names are used for the data set
identifiers. Member names are truncated on the left if they are longer than
8 characters. If this truncation results in duplicate names, the. copy
operation terminates with a diskette error.

;;
r

'~

MBROPT Parameter: Specifies, for copies to physical files only, that copied
data either is to be added or is to replace the existing data in a physical file
member. If the copy is to a physical file, this parameter must specify either
*ADD or *REPLACE.

*NONE: No data records are to be added or replaced in a member. This
value is valid only for copies to device files, not to physical files.

*ADD: Data records are to be added to existing records in a member. The
new records are physically added to the end of the member. If the file
being copied to is a keyed file, the added records will be in the correct
keyed sequence when the file is processed with its keyed sequence access
path. New records are automatically added to the new file if CRTFILE(*YES)
is specified (the MBROPT parameter is ignored) and a new file is created.

*REPLACE: Data records are to replace existing records in a member.
Existing records are cleared from the member before the new data records
are copied into the member.

CRTFILE Parameter: Specifies, when the CPYF command is used to copy
from a physical file or logical file, whether a physical file that is to receive
the data is to be created if the to-file does not exist. If the to-file does not
exist, CRTFILE(*YES) is required and the name of the file to be created
must be qualified with the name of an existing library for which the user has
the necessary authority.

A member is also added to the created file. Its name is that specified in the
TOMBR parameter of the CPYF command or in the MBR parameter of the
OVRDBF command; otherwise, its name (by default) is the same as that of
the from-file specified in the FROMFILE parameter of the CPYF command.

*NO: A to-file is not to be created.

*YES: If the to-file does not exist, it must be created. If the file is created,
the MBROPT parameter is ignored and records are automatically added to
the new file. Note that you must have operational rights for the CRTPF
command (which is implicitly invoked to create the file), and you must have
operational and add rights for the library that is to contain the created file.

If the CPYF command creates a new physical file when the from-file is a
physical file, the new file is given the same attributes as the from-file. If,
however, the from-file is a logical file that has multiple record formats, the
RCDFMT parameter must specify a record format name. Then, when the
physical file is created, it has the attributes of the logical file and the
specified record format; in addition, the following physical file attributes are
assigned by the system: SIZE{*NOMAX), ALLOCATE(*NO), and
CONTIG(*NO).

CPYF
MBROPT

Command Descriptions 4-345

CPYF
PRINT

4.-346

PRINT Parameter: Specifi~s whether copied records and/or excluded records
are to be printed. The values *EXCLD and *COPIED can both be specified
for PRINT. If they are, all of the excluded records are in one listing and all
of the copied records are in another listing.

If multiple members are being copied, there will be separate listings for each
member of the excluded records and of the copied records. The records will
be printed using the IBM-supplied printer device file QSYSPRT and the
listing formatted according to the PRTFMT parameter attributes.

*NONE: No records are to be printed.

*EXCLD: Only the records excluded from the copy operation by the
INCCHAR and INCREL parameters are to be printed.

*COPIED: Only the copied records are to be printed.

Note: If you specify PRINT(*EXCLD), PRINT(*COPIED), or PRINT(*EXCLD
*COPIED), an OVRPRTF command can be used to override any of the
attributes of the QSYSPRT printer device file, except for tha file name
(TOFILE parameter), the replace unprintable character attribute (RPLUNPRT
parameter), and the control character attribute (CTLCHAR parameter).

RCDFMT Parameter: Specifies, for logical file copies only, the name of the
record format that is copied when the from-file is a logical file with multiple
formats.

*ONLY: Only one record format exists in the logical file being copied. That
is the format in which the data is to be copied. If the file contains multiple
members and they all use the same format, all the members are copied.

*ALL: All the record formats in the logical file specified by the FROMFILE
parameter are to be used when the data in the file is copied to a device file.
RCDFMT(*ALL) is valid only if a logical file is copied to a device file. In this
case, when the record formats have different lengths, the shorter length
records are padded with blanks when they are copied.

record-format-name: Enter the name of the record format to be copied
when the from logical file has more than one format. If the file has multiple
members, all members that use the specified format are copied.

/

FROMRCD Parameter: Specifies the relative record number of the first record
to be copied from the specified file. The value (n) specified indicates that
the nth record from the beginning of the file is the first record to be copied.
This parameter is not valid if a value other than *NONE is specified on the
FROMKEY or TOKEY parameter.

*START: The copy is to begin with the first record in the file, as
determined by the access path, which (for *START only) can be either in
keyed sequence or in arrival sequence.

value: Enter a relative record number, no more than nine digits in length,
that identifies the first record to be copied from the file.

TORCD Parameter: Specifies the relative record number of the last record to
be copied from the specified file. This parameter is not valid if the values
for the TOKEY, the FROMKEY, or the NBRRCDS parameter are anything
other than *NONE, and *END, respectively.

*END: Records are to be copied until the end-of-file condition is indicated
from the file.

value: Enter a relative record number, no more than nine digits in length,
that identifies the last record to be copied from the file. The value must be
equal to or greater than the FROMRCD value.

Note: Keyed files are copied, by default, in the order of their. keyed
sequence access path. However, if either FROMRCD or TORCD is specified,
the file will be copied in the order of its arrival sequence access path.

CPYF
FROMRCD

Command Descriptions 4-347

CPYF
FROM KEY

4-348

FROMKEV Parameter: Specifies, when files are copied by key values, the key
field value of the first record to be copied. This parameter is valid only for
keyed data base files if FROMRCD and TORCD are not specified. For
example, FROMKEY(1 JONES) requests CPYF to copy starting with the
record whose first key field has ·a value of JONES, while
FROMKEY(2 JONES7) requests CPYF to copy starting with the record
whose first key field has a value of JONES and whose second key field has
a value of character 7.

*NONE: The first record to be copied is not selected by key.

number-of-key-fields key-value: Enter the two values that identify the first
keyed record to be included in the copied file. The first value specifies the
number of key fields to be used in searching the record keys (beginning
with the first key field), and the second value specifies the actual key value
of the first record to be copied.

All positions in the key value should be specified, or a generic search
producing undesired results may occur. If a key value is specified whose
length is shorter than the defined key field length, the.value is padded on
the right with zeros. For example, if a key field is defined as a five-position
decimal field with no decimal positions and the key value is to be 8,
FROMKEY(1 00008) should be specified; not FROMKEY(1 8), which causes
a search for a key equal to 80 000.

If the key value is a character string that has blanks or special characters, it
must be enclosed in apostrophes. If the key value contains one or more key
fields whose data types were defined in DDS as either packed decimal or
binary, the key must be coded as a hexadecimal value. For example, if two
key fields were defined as a character field of three positions and a binary
field of two positions, and if the first key field contains ABC and the second
contains 15, the from-key value must be coded as FROMKEY(2 X'C1C2C3000F').

TOKEV Parameter: Specifies, when files are copied by key values, the key
value of the last record .to be included in the copied file. This parameter is
valid only for keyed data base files and if no values are specified for the
TORCD, FROMRCD, or NBRRCDS parameters.

*NONE: The last record to be c"opied is not selected by key.

number-:of-key-fields key-value: Enter the two values that identify the last
keyed record to be included in the copied file. The first value specifies ~he
number of key fields to be used in searching the record keys (beginning
with the first key field), and the second value specifies the actual key value
of the last record to be copied. If the key value is a character string that
has blanks or special characters, it must be enclosed in apostrophes.

I

\

--·-·~------~ ---

Note: If the key value specified in the TOKEY parameter is less than the
value specified in the FROMKEY parameter, a descending keyed sequence is
assumed.

Unpredictable results may occur if a starting position is specified for the
POSITION parameter in the Override with Data Base File (OVRDBF)
command, or if the from-file is opened with SHARE(*YES) specified, or if
the SEQONL Y parameter is specified on an override.

NBRRCDS Parameter: Specifies the number of records to copy beginning
with the record specified by the FROMRCD or the FROMKEY parameter.
The TORCD and TOKEY parameters cannot be used if a numeric value is
specified for NBRRCDS.

*END: Records are to be copied until the end-of-file condition is indicated
for the file, unless either the TOKEY or the TORCD parameter has been
specified.

number-of-records: Enter a value, no more than nine digits in length, that
specifies the number of records to be copied from the file.

INCCHAR Parameter: Specifies that records are to be included in the copy
based on the result of a comparison with a user-supplied character value.
The specified character can be compared with the character in a specified
character position of each record, or with the character in the specified
position in a field of each record. If INCCHAR is specified with
RCDFMT(*ALL), the include character is used for selecting records from all
the formats.

Note that the INCCHAR and INCREL parameters are mutually exclusive; if
INCCHAR is specified, INCREL cannot be specified.

*NONE: No comparison with a specific character is to be used to
determine which records are to be included in the copied file.

Comparison Values: To specify the comparison that is used to determine
which records are to be copied, four values must be entered. Either *RCD
or the name of a field must be entered, followed by the three comparison
values: character position, operator, and the actual character. All records
that meet the relationship specified by the four values are copied into the
file specified by TOFILE.

NONE

>- INCCHAR •RCD ~character-position operator character)
field-name_/

*RCD: The character that is in the specified position of each record is to be
compared with the specified character (the fourth value).

field-name: Enter the name of the field in the record format that is to have
one position in the field compared with the specified character.

character-position: Enter the position within the field or record that is to be
used in the comparison.

..

CPYF
NBRRCDS

Command Descriptions 4-349

CPYF
INCREL

4-350

operator: Enter the relationship of the character position to the specified
character. Relational operators that can be used are:

*EQ Equal
*GT Greater than
*LT Less than
*NE Not equal
*GE Greater than or equal to
*NL Not less than
*LE Less than or equal to
*NG Not greater than

character: Enter the character to be used for the comparison with the
specified field or record position. If the character is a special .character, it
must be enclosed in apostrophes. A hexadecimal value can be used to
specify the character, if necessary; it must be specified as X'nn' where nn is
the two-digit hex value that represents the character. (For example, X'5A'
represents the exclamation point, !.)

INCREL Parameter: Specifies that records are to be included in the copy
based on the specified contents of the records meeting the specified value
relationships. As many as 50 value relationships can be specified to
determine whether each record is to be copied. INCREL is not valid if a
device file is specified in the FROMFILE parameter.

Note that the INCREL and INCCHAR parameters are mutually exclusive; if
INCREL is specified, INCCHAR cannot be specified.

*NONE: No relational comparison between any record or field values and a
specified relationship is to be made to determine which records are to be
copied.

Relationship Values: To specify the conditions under which records are to
be copied, a set of values is specified for each condition. Each set must
contain exactly four values:

1. One of the logical operators *IF, *AND, or *OR

2. The name of the field to be compared

3. One of the relational operators (from the list that follows)

4. The comparison value

Values 2 and 4 are compared to see if they have the relationship specified
by value 3.

The value *IF must be specified as the first value in the first set of
comparison values, whether there is only one set or several sets. If more
than one set of comparison values are specified, either *AND or *OR must
be specified as the first value in each set after the first one.

\

In the following discussion, an IF group refers to an IF set optionally
followed by one or more AND sets. An OR group refers to an OR set
optionally followed by one or more AND sets. The objective is to perform
all the comparisons specified in each group until a complete group (which
can be a single IF set or OR set having no AND sets following it) yields all
true results. If one group has true results, the tested record is included in
the copied file.

The first set of comparison values (*IF field-name operator value) and any
AND sets logically connected with the IF set are evaluated first. If the
results in all of the sets in the IF group are all true, the testing ends and the
record is copied. If any of the results in the IF group are false and an OR
group follows, another comparison begins. The OR set and any AND sets
that follow it are evaluated (up to the next OR set). If the results in the OR
group are all true, the record is included. If any result is false and another
OR group follows, the process continues until either an OR group is all true
or until there are no more OR groups. If the results are not all true for any
IF or OR group, the record is not included in the copied file.

*IF: Identifies the initial relationship which must be satisfied by the record
before that record can be copied.

*AND: The relational groups on both sides of the *AND value must all be
satisfied by the record before that record can be copied.

*OR: If either relational group on either side of the value *OR is satisfied,
the record is copied.

field-name: Enter the name of the field to be compared.

relational-operator: Enter the relationship of the specified field contents and
the specified values. Operators that can be used are:

*EQ Equal
*GT Greater than
*LT Less than
*NE Not equal
*GE Greater than or equal to
*NL Not less than
*LE Less than or equal to
*NG Not greater than

CPYF
INC REL

Command Descriptions 4-351

CPYF
FMTOPT

4-352

value: Enter the value to be compared with the contents of the specified
field. The value cannot be another field name. (If the value is a character
string containing blanks or special characters, it may need to be enclosed in
apostrophes; refer to Chapter 2 for more information.) If a CL variable is
specified for the value, it must be a character variable. A coded example of
the INCREL parameter is:

((*IF FIELD1 *GT 100) (*AND FIELD2 *EQ DAILY) (*OR FIELD5 *GE &FLD5TEST))

Each record whose fields meet one of .the following conditions would be
included in the copied file:

• Field 1 is greater than 100, and field 2 contains DAILY.

• Field 5 has a value that is greater than or equal to the value contained in
the CL character variable &FLD5TEST.

FMTOPT Parameter: Specifies, when a data base file is being copied to
another data base (that is, physic131) file, what actions are to be taken as a
result of the record format checking done by the system. A value other than
*NONE must be specified for FMTOPT if the record formats of the from and
to data base files are different. (For any other type of copy, such as data
base to device file copy, records are to be copied without any checking. In
these cases, if the record lengths of the from- and to-files are different,
they are truncated or padded with blanks or zeros, depending upon the
characteristics of the to-file.)

Note: See the topic on different data base record formats in the CPF
Programmer's Guide for additional information.

*NONE: No field format checking is to be done during this copy operation.
This value is valid only if this is not a data-base-file to data-base-file copy
or if both data base files have identical record formats.

*NOCHK: If the record formats of the data base files are different, the copy
operation is to continue, despite the differences. Data is copied directly (left
to right) from one file to the other. If the data is copied into a file that has
a longer record format, the copied record is padded with zeros or blanks. If
the to-file has a shorter record format, the copied records are truncated on
the right. Messages will be sent indicating the differences in the record
formats.

*MAP: Individual fields with the same names in both formats are copied
even if their field attributes are different, except in some cases. If they are
different, the data is converted into the format of the file into which it is
copied. Fields in the to-file record format that are not in the from-file
record format are padded with blanks or set to zero. *MAP must be

· --.specified if both formats have identical field names but different field
attributes. If *MAP is specified, *DROP can also be specified.

/

Mapping is not allowed in the following situations:

• From a character field to any type of numeric field, and vice versa

• From a binary field to a binary field that has a different number of
decimal positions

• From a zoned or packed numeric field to a binary numeric field, and vice
versa, if the binary field has a number of decimal positions greater than
zero

*DROP: Any fields that are in the from-file record format are to be dropped
if the same fields are not in the to-file record format. All other fields in
both record formats must have the same names, attributes, and relative
order within the record; otherwise, *MAP must also be specified. *DROP
must be specified if all of the fields in the from-file are not in the to-file. If
*DROP is specified, *MAP can also be specified.

SRCOPT Parameter: Specifies, for copying between data base source files
only, whether to insert new sequence numbers in the sequence number
field, whether to place zeros in the date field, or whether to update both the
sequence number and the date fields.

When copying from a device source file to a data base source file, the
system automatically adds sequence number and date fields to the
beginning of the records, so the SRCOPT parameter does not apply. Also,
when copying from a data base source file to a device source file, the
system removes the sequence number and date fields.

*SAME: When copying a data base source file to another data base source
file, the sequence number and date fields are not to be changed.

*SEQNBR: The copied data base source file records are to have new
sequence numbers inserted. If *SEQNBR is specified, *DATE can also be
specified. The SRCSEQ parameter is used to specify the start and
increment values.

*DATE: The copied data base source file records are to have a null (all
zeros) date inserted. If *DATE is specified, *SEQNBR can also be specified.

CPYF
SRCOPT

Command Descriptions 4-353

CPYF
SRCSEQ

A-354

SRCSEQ Parameter: Specifies, only when SRCOPT(*SEONBR) is also
specified, what sequence number is to be given to the first record copied to
the to-file and what increment value is to be used to renumber all other
records copied. This parameter allows the copied file to have as many as
999 999 .records with unique sequence numbers. If a copied source file is to
be renumbered but SRCSEO is not specified, SRCSE0(1.00 1.00) is
assumed; the copied records are renumbered sequentially beginning with
1.00, and the whole number increment of 1 is used.

1.00: The first source record copied to the to-file is to have a sequence
number of 0001.00.

starting-value: Enter a value in the range of 0000.01 through 9999.99 that
is to be the sequence number of the first source record copied to the
to-file. A whole number of no more than four digits and/or a fraction of no
more than two digits can be specified. If the starting value contains a
fraction, a decimal point must be used. Examples are .01 and 3250.4. (If a
value has a fraction of .00, such as 5000.00, it can be coded without the
fraction; either 5000 or 5000.00 is valid.)

1.00: The copied source records are to be renumbered in the to-file with
whole. number increments of 1. (1.00, 2.00, 3.00 ...).

incremene-va/ue: Enter a value in the range of 0000.01 through 9999.99 that
is to be used as the increment value for renumbering all source records
copied after the first orie. A whole number of no more than four digits
and/or a fraction of no more than two digits can be specified. If the
increment value contains a fraction, a decimal point must be used. For
example, if SRCSE0(5000 10) is specified, the first record copied to the file
.is numbered 5000.00, the second is 5010.00, the third is 5020.00, and so
on. If SRCSEO(*N .25) is specified, the copied records are numbered 1.00,
1.25, 1.50, 1. 75, 2.00, and so on.

If the maximum sequence number of 9999.99 is reached when you are
copying between data base source files, the remaining records copied will
be assigned the sequence number 9999.99 also. If, when you are copying
from a device source file to a data base source file, the maximum sequence
number is reached, the sequencing will wrap back to 1 and increment from
there for the remaining records. · The Reorganize Physical File Member
(RGZPFM) command can be used to reassign unique sequence numbers to
the records.

PRTFMT Parameter: Specifies whether records are to be printed in character
format, or in both character and hexadecimal format. PRTFMT is valid only
when the to-file is specified as *LIST, or when the PRINT parameter
specifies either *EXCLD or *COPIED (or both of them).

*CHAR: Records are to be printed in character format.

*HEX: Records are to be printed in character and hexadecimal format.

ERRLVL Parameter: Specifies, only for recoverable errors detected during
copies to or from data base files, the maximum number of recoverable
errors to be allowed per file member if mapping errors or duplicate keys are
encountered during the copy operation, or if the from-file contains damage.
If the maximum is exceeded, the copy operation is terminated and a
message is sent to the user. When multiple file members are being copied
(either to or from) in the same operation, the error count restarts at zero at
the beginning of each one. But if the count exceeds the error level for a file
member, the copy operation terminates and any remaining members are not
copied.

For read operations, the recoverable errors are those that occur when data
is converted (mapped) and those caused by a damaged area on the disk (in
auxiliary storage). For write operations, the recoverable errors are those that
occur when data is converted and those that occur when duplicate keys are
encountered. Any record that causes an error is not copied and is not
printed (regardless of the values specified for the PRINT parameter). A
diagnostic message that identifies the record causing the error is sent to the
user who issued the command.

0: If any recoverable error occurs, the copy operation is terminated with the
file member in which the error occurs.

number-of-errors: Enter a value that specifies the maximum number of
recoverable errors that can occur within each file member being copied,
after which another error causes the copy operation to be terminated.

COMPRESS Parameter: Specifies, only when a physical file that is accessed
in arrival sequence is being copied to another physical file, whether the
to-file is to be compressed. Compression occurs when deleted records in
the from-file are not copied to the to-file.

If a keyed file is copied, the keyed sequence access path does not contain
deleted records. Therefore, the COMPRESS parameter does not apply.
However, if the FROMRCD or TORCD parameter specifies a numeric value,
the keyed physical file (or based-on physical file) is copied in arrival
sequence, and the COMPRESS parameter determines whether deleted
records are to be copied.

*YES: The to-file is to be compressed; deleted records that may exist in
the from-file are not to be copied to the to-file. Only undeleted records are
to be copied, and are to be renumbered consecutively in the to-file. That is,
the relative record numbers of all undeleted records that occur after the first
deleted record in the from-file will be different in the to-file. (No physical
record data, such as source sequence numbers, are changed by the copy
operation as a result of specifying COMPRESS(*YES).)

*NO: Both the deleted and undeleted records are to be copied to the
to-file, and the relative record numbers are not changed. If *NO is
specified, the following parameters cannot be specified: PRINT, INCCHAR,
INCREL, SRCOPT, ERRLVL, FMTOPT(*MAP) if mapping is required, and
FMTOPT(*DROP) if dropping is required.

CPVF
ERRLVL

Command Descriptions 4-355

CPYF
(Examples)

4...,355

Examples

The following examples of the CPYF command show the type(s) of files that
can be copied and the function provided by various parameters.

Example 1 : Physical Data Base File to Physical Data. Base File

CPYF FROMFILE(PAYROLL.PERSONNEL) +
TOFILE(PAYROLL.TESTPAY) MBROPT(*ADD) +
CRTFILE(*YES) ERRLVL(2)

This command copies all of the records in the physical file named PAYROLL
in the PERSONNEL library to the file PAYROLL in the TESTPAY library. If
the from-file contains more than one member, only the first member is
copied. If PAYROLL.TESTPAY does not exist, it is created before the data
records are copied. A member with the same name as the from-file is
created in PAYROLL.TESTPAY to correspond with the member being copied
from PAYROLL.PERSONNEL.

New records are automatically added to the end of the file, because
MBROPT(*ADD) is specified. The to-file PAYROLL.TESTPAY will have the
same record format and access path as the file PAYROLL.PERSONNEL. If
the to-file existed before the copy and contained records, it now contains
more records than the from-file does. If more than two recoverable errors
occur during the copy, the operation is terminated.

If FROMMBR(*ALL) and TOMBR(*FROMMBR) had also been specified, all
of the members in the from-file would be copied to corresponding members
(having the same names) in the to-file. For each from-member that has no
corresponding to-member, a to-member is created and all the records in
the from-member are copied to it. For each to-member that already exists,
only new records are added to the member (no updates are made to
existing records on any copy operation). If the to-file contained members
for which there were no corresponding members in the from-file, the to-file
contains more members than the from-file after the copy operation .. If more
than two recoverable errors occur within any member being copied, the
copy operation terminates at that point, and any remaining members are not
copied.

/

\

Example 2: Physical File to Physical File

CPYF FROMFILE(EMP1.PERSONNEL) TOFILE(VACLEFT.PERSONNEL) +
FROMMBR(VAC) MBROPT(*REPLACE) +
FROMKEY(1 438872) TOKEY(1 810199) +
INCREL((*IF VAC *GT 005.0)) FMTOPT(*MAP *DROP)

In this example, the to physical file, VACLEFT, is defined, but its format is
different from the physical file named EMP1, which is to be copied. Both
files are in the PERSONNEL library. The from-file EMP1, which contains
employee records, is keyed on employee number, and records are to be
selected by key from employee numbers 438872 through 810199. Only
records with more than five days of vacation (VAC) are to be mapped to the
to-file. Records are to be selected from member VAC and are to replace
the first member of file VACLEFT.

Example 3: Physical Source File to Physical Source File

CPYF FROMFILE(SYSSRC80.RPGLIB) TOFILE(TESTRPG.RPGLIB) +
FROMMBR(A1) TOMBR(A1) +
MBROPT(*REPLACE) SRCOPT(*SEQNBR *DATE)

This command updates the sequence number field, and inserts zeros in the
date field in all the records copied to member A 1 of the source file
TESTRPG in the RPGLIB library. These records are read from member A1 in
the SYSSRC80 file and replace all records in member A 1 of the file
TESTRPG in the library RPGLIB.

The sequence number starts at 0001.00, is incremented by 1.00, and is
placed in the 6-byte sequence field of each record in member A 1 of the
TESTRPG file. The null date (000000) is placed in the date field of each
record copied.

Example 4: Logical File to Physical File

CPYF FROMFILE(SALES.DEPTSI TOFILE(YTDSALES.DEPTSI +
FROMMBR(TOTSALES) RCDFMT(AA) +
NBRRCDS(5) MBROPT(*REPLACE)

This command copies five records from member TOTSALES of logical file
SALES in library DEPTS to the first member in the physical file YTDSALES
in library DEPTS. Only records from the logical file SALES in library DEPTS
that use the record format AA are copied, and they are copied to
YTDSALES in the same format. After the copy, the first member in
YTDSALES contains only five nondeleted records because all the records in
that member are first deleted and only the data in the first five records (in
keyed sequence) in the TOTSALES member are copied to it.

CPYF
(Examples)

Command Descriptions 4-357

CPYF
(Examples)

4-358

Example 5: Device File to Physical File

CPYF FROMFILE(MFCU1) TOFILE(PAYROLL.FINANCE) +
TOMBR(MBR1) MBROPT(*ADD)

This command copies the records for new employees from the card reader
to the PAYROLL file in the FINANCE library. The records are to be added to
member MBR1. The device file name for the card reader is MFCU1.

Input from MFCU1 Existing PAYROLL.FINANCE File, MBR1

Name Emp# Position Name Emp# Position

Jane P 15678 Clerk Mary P 13467 Sec

TomJ 23451 Clerk Tommy J 21457 Sr Clerk

Bob H 85712 Sec Jake T 22444 Jr Clerk

Joe P 71567 Cashier Richard S 26517 Clerk

Bob K 38751 Sp Clerk

Jeannie H 38753 Clerk

Kathy H 71051 Clerk

Susan H 72342 Sr Sec

Upon completion of the processing for the preceding command, the
PAYROLL.FINANCE file, which is keyed on EMP#. contains:

Name Emp# Position

Mary P 13467 Sec

Tommy J 21457 Sr Clerk

Jake T 22444 Jr Clerk

Richard S 26517 Clerk

Bob K 38751 Sp Clerk

Jeannie H 38753 Clerk

Kathy H 71051 Clerk

Susan H 72342 Sr Sec

Jane P 15678 Clerk

} TomJ 23451 Clerk Records added

Bob H 85712 Sec

Joe P 71567 Cashier

Example 6: Physical File to System Printer

CPYF FROMFILE(TEMPFILE) TOFILE(*LISTI FROMMBR(EMP1) +
FROMKEY(1 448762) NBRRCDS(2) PRTFMT(*HEX)

This command copies two records from member EMP1 of the file named
TEMPFILE. The records are employee records; one key field, the employee
number, is used to select the records. The first employee number is
448762. The records are to be copied to the system-supplied printer device
file in both character and hexadecimal format. The system-supplied printer
device file is indicated by coding TOFILE(*LIST).

Example 7: Physical File to Device File

CPYF FROMFILE(PAYROLL.PERSONNEL) +
TOFILE(DISK1) FROMMBR(VAC1) +
INCREL((*IF VAC *GT 005.0) (*AND HOL *EQ 0))

This command copies all employee records containing more than five days'
vacation (none of those five being holidays) from the PAYROLL file in the
PERSONNEL library to a diskette. The member to be copied is VAC1. The
vacation and holiday fields (VAC and HOL) each contain a packed decimal
number whose attributes are DEC(4 1). and whose format is ddd.d, where
d =days. The diskette device file name is DISK1, and the diskette label to
which the records are copied has been specified by an Override with
Diskette File (OVRDKTF) command.

Example 8: Physical File to Device File

CPYF FROMFILE(PAYROLL.PERSONNEL) TOFILE(DISK1) +
FROMMBR(*ALL) TOMBR(*FROMMBR)

This command copies all members of file PAYROLL in the PERSONNEL
library to a diskette (device file DISK1).

The physical file member names are used for the label names on the
diskette. If the member name is longer than 8 characters. it is truncated on
the left.

Assume the from-member names are varying in length. An example of
from-member names and corresponding diskette data set names might be:

From-Member
(10 bytes)

PYROLLREC1
PYROLLREC2
PAYROLL1
PAY1

Diskette Data Set
Name (8 bytes)

ROLLREC1
ROLLREC2
PAYROLL1
PAY1

Example 9: Device File to Device File

CPYF FROMFILE(CARDIN) TOFILE(TAPEOUT) TOMBR(TAPLABEL) +
INCCHAR(*RCD 80 *EQ X) PRINT(*EXCLD)

This command copies all card records with an X in column 80 to the tape
device. The device file name for the card reader is CARDIN. The device file
name for the tape device is TAPEOUT. All cards that are not copied are to
be printed. The TOMBR parameter has specified the tape label to which the
records will be copied.

CPYF
(Examples)

Command Descriptions 4-359

CPYSPLF

4-360

CPVSPLF (Copy Spooled File) Command

The Copy Spooled File (CPYSPLF) command copies the data records in the
specified spooled output file to a user-defined physical data base file. This
conversion allows the use of spooled files in applications using microfiche,
data communications, or data processing.

Restrictions: Before you execute this command, one of the following must
be true:

• You created the spooled file.

• You have read rights for the output queue containing the spooled file.

• The output queue has DSPDT A{*YES) specified as its display data
attribute.

-(
.•JJBL ®

CP!llPLP-FILB-epooled-nle-neme-TOFILB-data-baee-nle-name) •

.library-name
· Required

Optional

-(• -f_ •ONLY
>-JOB SPLHBR •LAST

Job-name[. UHr-name[.Job-number)])- epooled-tile-number)
•

-(
•PIRST ::)---- -(•RBPLA.CB:_)

>-TOMBR MBROPT --~~~~~~~~~..--.•

member-name •ADD

-f_ •NONB :3 . -<;;;NORMAL
>-CTLCBAR •PCPC --.....--- CBLVAL f

•PRTCTL channel-number line-number

12 mu:imwn -

l Job:B,I Ppn:B,I

FILE Parameter: Specifies the name of the spooled output file which is to be
copied to a data base file. The file name is the name of the device file that
was used by the program to produce the spooled output file. ·

TOFILE Parameter: Specifies a user-defined physical data base file to which
the spooled records are to be copied. If this file does not exist at the time
of the copy, the copy will fail.

data-base-file-name: Specifies the qualified file name of the physical file. (If
no library qualifier is given, *UBL is used to find the file.)

(
I

\.

JOB Parameter: Specifies the name of the job that created the spooled
output file whose data records are to be copied.

*: The job that issued this CPYSPLF command is the job that created the
spooled file.

qualified-job-name: The qualified name of the job that created the spooled
file. If no job qualifier is given, all of the jobs currently in the system are
searched for the simple job name. (For an expanded description of the JOB
parameter and duplicate job names, see Appendix A.)

SPLNBR Parameter: Specifies the number of the spooled output file, from
the job whose data records are to be copied. (For an expanded description
of the SPLNBR parameter, see Appendix A.)

*ONLY: Only one spooled output file from the job has the specified file
name; therefore, the number of the spooled file is not necessary. If *ONLY
is specified and more than one spooled output file has the specified name,
an error message will be issued.

*LAST: The highest-numbered spooled output file with the specified file
name will be copied.

spooled-file-number: The number of the spooled file having the specified file
name whose data records are to be copied.

TOMBR Parameter: Specifies the member in the physical file (specified by
the TOFILE parameter) to which the spooled records are to be copied.

*FIRST: The first member of the physical file (specified by the TOFILE
parameter) will be used.

member-name; Enter the member name of the physical file. If this member
does not exist, a member will be created and the copy will continue.

MBROPT Parameter: Specifies whether copied data be added to or replace
data that already exists in the receiving data base file member.

*REPLACE: The member is to be cleared before copied records are
added.

*ADD: The newly copied records are to be added to the existing records in
the member.

CPYSPLF
JOB

Command Descriptions 4-361

CPYSPLF
CTLCHAR

4-362

CTLCHAR Parameter: Specifies print control characters (if any) to replace the
spooled file's internal print control characters. Any invalid internal print
control characters that are encountered will be ignored and resultant
formatting may be unpredictable.

*NONE: No print control characters will be generated. (This option is
required for diskette and spooled card files.)

*FCFC: Specifies that the first char:acter of every record will contain one of
the ANSI forms control codes listed below. This option may be useful for
microfiche production.

ANSI First Character Forms Control Codes

Code Action Before Printing a Line

.. Space one line (blank code)

0 Space two lines

- Space three lines

+ Suppress space

1 Skip to next channel 1

2 Skip to next channel 2

3 Skip to next channel 3

4 Skip to next channel 4

5 Skip to next channel 5

6 Skip to next channel 6

7 Skip to next channel 7

8 Skip to next channel 8

9 Skip to next channel 9

A Skip to next channel 10

B Skip to next channel 11

c Skip to next channel 12

*PRTCTL: Specifies that the first four characters of every record will contain
skip- and space-before values useful in HLL (high-level language)
programs. This code can_ be viewed as 'SSSL', where 'SSS' is the
skip-before line value and 'L' is the space-before value. 'SSS' can be from
001 to 255 to cause a skip to the specified line (1 to 255); once there, 'L'
can be used to specify a spacing of from 0, 1, 2, or 3 lines before printing
the record. When one part of the code is used (SSS or L), the other part
will be blank. Sample control codes and their meanings are as follows:

Code Action Before Printing a Line

'001 . Skip to line 1

'010 . Skip to line 10

'099 . Skip to line 99 . 1' Space one line . o· Do not space (or skip)

' ' \

.4
I,

\4

CHLVAL Parameter: Specifies a list of channel numbers with their assigned
line numbers. Specify this parameter only if CTLCHAR(*FCFC) has been
specified. If the spooled file to be printed has data on a line that precedes a
line number assigned to a channel, the copy will terminate.

*NORMAL: Indicates channel 1 is the only assigned channel number. The
assigned line number for channel 1 will be line 1.

channel-number: Specifies which ANSI FCFC channels are to be used to
generate first-character forms control codes. The only valid values for this
parameter are 1 through 12. Each channel number may be specified only
once per CPYSPLF command.

line-number: The line number assigned for the channel number in the same
list. The range of valid line numbers is 1 through 255. Each line number
may be specified only once per CPYSPLF command.

Notes:
1. The order in which the channels are specified on the command is not

important. For example, the following would be identical:

CHLVAL((2 1)(6 15)(8 40))
CHLVAL((6 15)(2 1)(8 40))

2. Channel numbers and line numbers do not have to be specified in
ascending order.

Examples

CPYSPLF FILE(QPRINT) JOB(PAYROLL01) SPLNBR(4) TOFILE(MYFILE) +
TOMBR(MYMBR) CTLCHAR(*PRTCTL)

In this example, the file QPRINT (which is the fourth file produced by the
job PAYROLL01) will be copied to the member MYMBR of the physical file
MYFILE (which resides in a library found by searching the library list). The
newly copied data will replace all old data in the member, because any old
records will have been cleared. The 4-byte print control code will be
generated.

CPYSPLF FILE(QPRINn TOFILE(MYFILE.MYLIB) JOB(PAYROLL02) +
MBROPT(*ADD) CTLCHAR(*FCFC) CHLVAL((1 3) (4 15))

In this example, the file QPRINT (the only file of that name left in the job
PAYROLL02) will be copied to the first member of the physical file found in
library MYLIB. The newly copied data is added to data existing in the
member. The FCFC 1-byte print control characters will be used and will
take advantage of the assigned channel values in formatting the output. The
assigned channel values as specified on the command are as follows:

Line 3 assigned to channel 1
Line 15 assigned to channel 4

CPYSPLF
CHLVAL

Command Descriptions 4-363

CRTBSCF

4-364

CRTBSCF (Create BSC File) Command

The Create BSC File (CRTBSCF) command creates a device file for use with
BSC devices. You select the appropriate BSC file parameters on the basis
of the type of BSC device with which your system is to communicate.

-(
.QGPL

CRTBSCF ---FiLE SSC-device-file-name J--------------11
.library-name

Required

Optional

-(
QDDSSRC.oll<LIBL -(+FILE

>-SRCFILE -(.•LIBL y-SRCMBR _)---II
source-file-name source-file

.librar,y-name -member-name

::::R9B •LIST ® •NONB-....
>-OPTION- [] [-(~]-DEV-()9--•IO

•NOSRC •NOLIST J device-name

•NOSOURCB

•NONB ~

•ITB ~

•IRS "' -(*'CALC ::r
>-BLOCX •NOSBP --} BLKLEN

•USBR y block-len,th

-(
X'iB' ---------~

•SBP
record-•eparator-oharaoter

-(•NO)- -(*'NO)- -('*NO)- -(+NULL::>---.CD >-TRNSPY DTACPR TRUNC GRPSEP
>llYBS •YBS •YES •ETX

-(•NO)- -(•TIIS) SHARE LVLCHK ~------11

!IYBS •NO

-f_ •IMMED
>-WAITPILE •CLS ,

number-or-eecond•)

>- PUBAUT1 :.:.RMJ-~-1.1.-.,._ __ TEXT -('*BLANX ~
~ >llNONB _J 'deecription' ~

l Job:B,I P8m:B,I

FILE Parameter: Specifies the qualified name of the BSC device file being
created. If no library qualifier is given, the file is stored in QGPL. (If the file
is to be used by an HLL (high-level language) program, the file name should
be consistent with the naming rules of that language and should be unique
within the library; otherwise, the file must be renamed in the program itself.)

SRCFILE Parameter: Specifies the name of the source file that contains the
DDS (data description specifications) used to create the record formats for
the device file. (For the specifications that can be made in DDS, refer to the
CPF Reference Manual-DDS.)

QDDSSRC: The IBM-supplied DDS source file in QGPL containing the
source descriptions used to create the BSC file. Each member of QDDSSRC
contains the source description of one physical, logical, or device file.
Initially, QDDSSRC contains no source descriptions.

qualified-source-file-name: Enter the qualified name of the source file that
contains the DDS to be used to create the BSC device file. (If no library
qualifier is given, *UBL is used to find the source file.)

SRCMBR Parameter: Specifies the name of the member in the data base
source file that contains the DDS for this BSC device file.

*FILE: The source file name is the same as the device file name specified
in the FILE parameter.

source-file-member-name: Enter the name of the member in the source file
(specified by SRCFILE) that is to be used to create the BSC device file.

OPTION Parameter: Specifies the type of output listing to be produced when
the file is created.

*SRC or SOURCE: A listing of source statements used to create the file,
and of any errors that occur.

*NOSRC or *NOSOURCE: No listing of the source statements is to be
generated unless errors are detected. If errors are detected, they are listed,
along with the keyword or record format that caused the error.

*LIST: An expanded source listing is to be generated, showing a detailed
list of the file specifications that result from the source statements and
references to other file descriptions. This listing shows the file and field
keywords and attributes.

*NOL/ST: No expanded source listing is to be generated.

CRTBSCF
FILE

Command Descriptions 4-365

CRTBSCF
DEV

4-366

DEV Parameter: Specifies the name of the System/38 BSC device that is. to
be used with the BSC device file to send and receive data records.

*NONE: No device name is to be specified. Any device names to be
specified must be specified later in the CHGBSCF command or the
OVRBSCF command, or in the HLL (high-level language) program that
opens the file.

device-name: Enter the name of the BSC device that is to be used with this
BSC file. The device name must be known to the system via a device
description.

BLOCK Parameter: Specifies whether the system or user will block and
deblock transmitted records. With this parameter, you· may specify one of
the following conditions of record formatting:

No blocking/deblocking: The record format described in the DDS is the
format for both the record and the block.

User blocking/deblocking: You must provide the BSC controls needed to
describe the record format to the system.

System blocking with record separator characters: You specify the record
separator character used by the system to determine record boundaries
within the block.

System blocking of fixed-length records: The system uses fixed-length
records, and blocks/deblocks records accordingly. The record separator
character is added when a record is transmitted, and removed before the
record is returned to your program. This occurs for every case but user
blocking /deblocking.

If you specify a parameter value other than *NONE or *USER, records will
be blocked as required by the system for output and deblocked on input.
Blocking may be done with or without record separator characters. If
TRNSPY(*YES) is specified, the records may be blocked without record
separator characters by specifying BLOCK(*NOSEP), or the records may be
transmitted one record at a time by specifying BLOCK(*NONE). By
specifying BLOCK(*USER), you may block records to include the BSC
transparency controls. If TRNSPY(*NO) is specified, all blocking options are
valid. The record length, when used, is obtained from the device file. A
maximum of 512 records will be blocked for transmitting. When the system
blocks and deblocks the records, record separator characters and control
characters will not be passed to your program as data.

*NONE: Specifies that no blocking or deblocking will be done by the
system.

\

\

*ITS: Specifies that the records are to be blocked or deblocked, based on
the location of an ITB (intermediate text block) control character. For input
files, a record will be delimited by locating the next ITB character. An ETX
(end of text) or ETB (end-of-transmission block) character will be used as
an ITB character to delimit records. For output files, an ITB character will be
inserted after the record. If that is the last character of the block, the ITB
will be replaced by an ETX or an ETB character.

*IRS: Specifies that the records are to be blocked or deblocked based on
the location of an IRS (interrecord separator) character. For input files, a
record will be delimited by locating the next IRS character. For output files,
an IRS character will be inserted after the record.

*NOSEP: Specifies that no record separator character is contained within
the transmission block sent to or received from the device. The system will
block and deblock the records according to a fixed record length, as
specified in the DDS format specifications.

*USER: Specifies that your program is to provide all control characters,
including record separator characters, BSC framing characters, transparency
characters, and so forth, necessary to transmit records.

When transmitting records, BSC device support will scan the buffer for the
last non-blank byte to determine the length of the data to be transmitted.
For this reason, you must ensure that the unused portion of the buffer
contains blanks.

For receiving, you must specify with an ETX control character the end of the
received text. BSC device support will pad the remaining buffer space with
blanks.

This method of blocking allows you to transmit and receive variable-length
data blocks by using a single record format capable of accommodating the
maximum block length. Except for the padding and truncating with blanks,
BSC device support simply passes the data to and from the system when
user blocking is specified.

If you are using the Remote Job Entry Facility, BLOCK(*USER) must be
specified. For more information on RJEF, refer to the RJEF Programmer's
Guide.

Before selecting this option, you should have a good understanding of the
device and of the BSC support characteristics. For more information on
BSC support characteristics, refer to the IBM System/38 Data
Communications Programmer's Guide, SC21-7825.

*SEP: Specifies that the records are to be blocked or deblocked based on
the location of a user-specified record separator character. For input files, a
record will be delimited by locating the next' record separator character. For
output files, a record separator character will be inserted after the record.

CRTBSCF
BLOCK

Command Descriptions 4-367

CRTBSCF
BLKLEN

4-368

record-separator-character: Specifies a unique one-byte record separator
character. The record separator character may be specified as two
hexadecimal characters, as in BLOCK(*SEP X'FD'), or the character may be
specified as a single character, as in BLOCK(*SEP @). If a record separator
character is not specified, the record separator character of X'1 E' is used.

The following is a list of BSC control characters that must not be used as
record separator characters:

EBCDIC

X'01'
X'02'
X'03'
X'10'
X'1D'
X'1F
X'26'
X'2D'
X'32'
X'37'
X'3D'

BSC Control

SOH (Start of header)
STX (Start of text)
ETX (End of text)
DLE (Data link escape)
IGS (Interchange group separator)
ITB (Intermediate text block)
ETB (End-of-transmission block)
ENO (Enquiry)
SYN (Synchronization)
EOT (End of transmission)
NAK (Negative acknowledgment)

You must be certain that none of these control characters are specified in
your data as record separator characters.

BLKLEN Parameter: Specifies the maximum block length (in bytes) for data
to be transmitted.

*CALC: The block length is to be determined by the system. The length
will be the greater of 512 bytes or the length of the largest record in the
device file.

block-length: The maximum block length of records to be sent when using
this device file. The value must be at least the size of the largest record to
be sent. Valid values are 1 through 8192.

TRNSPY Parameter: Specifies whether the text transparency feature is to be
used when sending blocked records. The text transparency feature permits
the transmission of all 256 EBCDIC character codes; you should use this
feature when transmitting packed or binary data fields.

*NO: The text transparency feature is not to be used.

*YES: The text transparency feature is to be used, which permits the
transmission of all 256 EBCDIC character codes. *YES is valid only when
BLOCK(*NONE), BLOCK(*NOSEP), or BLOCK(*USER) is specified.

Note: Transparency of received data is determined by the data stream;
therefore, this parameter is not relevant for received data. If TRNSPY(*YES)
is specified with BLOCK(*USER), BSC ignores the transparency indicator
during put operations. You must provide the proper controls with the data
in order to get transparent transmission of data. For example, you must
initially specify the DLE and STX control characters; System/38 provides
the remaining control characters for transparent transmission of data.

DTACPR Parameter: Specifies whether blanks in BSC data will be
compressed for output and decompressed for input. DTACPR(*YES) cannot
be specified if TRNSPY(*YES) is specified, or if the line description specifies
CODE(*ASCll).

*NO: No data compression or decompression is to occur.

*YES: Data is to be compressed for output and decompressed for input.

TRUNC Parameter: Specifies whether trailing blanks are to be removed from
output records. TRUNC(*YES) cannot be specified if BLOCK(*NOSEP) or
TRNSPY(*YES) is specified.

*NO: Trailing blanks are not to be removed from output records.

*YES: Trailing blanks are to be removed from output records.

GRPSEP Parameter: Specifies a separator for groups of data (data sets,
documents, and so forth).

*NULLRCD: Specifies that a null record (STXETX) is to be used as a data
group separator.

*ETX: A transmission block ending with the BSC control character ETX is to
be used as a data group separator.

CRTBSCF
TRNSPY

Command Descriptions 4-369

CRTBSCF
WAITFILE

4-370

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is to be made.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the BSC device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the BSC
device file can be shared with other programs in the same routing step. If
so, when the same file is opened more than once, the ODP can be shared
with other programs in the same routing step that also specify the share
attribute. When an ODP is shared, the programs accessing the file share
such things as the file status and the buffer. When SHARE(*YES) is
specified and control is passed to a program, a write operation in that
program produces the next output record.

*NO: An ODP created by the program with this attribute is not to be
shared with other programs in the routing step. Every time a program opens
the file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Level
checking cannot be done unless the program contains the record format
identifiers.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an open exception
occurs and an error message is sent to the program requesting the open.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

I
\

PUBAUT Parameter: Specifies what authority for the BSC device file and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the GRTOBJAUT command. (For
an expanded description of the PUBAUT parameter, see Appendix A.)

•NORMAL: The public has only operational rights for the device file.

*ALL: The public has complete authority for the device file.

*NONE: The public cannot use the device file.

TEXT Parameter: Specifies the user-defined text that describes the BSC
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

•BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTBSCF FILE(TRANSD1 .COMM1) DEV(DEVS34) BLOCK(*IRS) +
WAITFILE(30) TEXT('S38 to S34 data transfer')

This command creates a BSC device file named TRANSD1 in library
COMM1. The record formats for this device file will be taken from a source
member (also named TRANSD1) in source file QDDSSRC. The device
description to be used with this device is named DEVS34. Record blocking
will be performed by the system, using I RS as the record separator
character. The length of the transmission block will be calculated by the
system, based on the record format length. The program in which this
command occurs will wait up to 30 seconds for the file resources to be
allocated.

CRTBSCF
PU BA UT

Command Descriptions 4-371

CRTCBLPGM

4-372

CRTCBLPGM (Create COBOL Program) Command

The Create COBOL Program (CRTCBLPGM) command invokes the COBOL
compiler, to compile a COBOL source member into an executable program.
The command is valid in batch and interactive jobs and from other
programs.

The COBOL high-level language is part of the IBM System/38 COBOL
Program Product, Program 5714-CB1. For more information, refer to the
IBM System/38 COBOL Reference Manual and Programmer's Guide,
SC21-7718.

Restriction: All object names specified on the CRTCBLPGM command
must be composed of no more than 10 alphameric characters, the first of
which must be alphabetic.

· -(•PGlllD ::x·QGPL
CRTCBLPGll --- PGll J--------------11'

pro1ram-nmne .llbrary-nmne Required

Optional

-(
QCBLSRC.•LIBL -(•PGll

>- SBCPILB -(•LIBL y- SCIUOIB J-----·
eouroe-rue-n- • eouroe-file

.llbra17-name --ber-n-

-(
eSBQtJBNCB J- -(•NOVBSU:J- -f_ •NONUllBB3-

- [] [] [•NUllBBR] ----+
•lfOSBQUBNCB eVBSUll •LINBNUllBBR

-(
•NOMAPJ- -(•lfOOPTIONJ- -(eQUOTB)-- (] [][]-----......
•MAP •OPTIONS •A.POST

-(
•NOLISJ- -(•JJOXRBP:_)- -(•NOPATCJ->- GBNOPT-(] [] []
•LIST •JC:RBP ePATCB

......

-(
eNODUll:>- -(•NOAT:_r -(•RAll'GB :J-- [](][]~~~--

•DUMP •A.TR •NORAll'GB

® -(•UJm:BPj--(]
•NOUllBBP

-(
29 -(QSTSPRT.•LIBL

>- GBNLVL J---- PRTPILB -(.•LIBL ~·
enerll.y-level ftle-nmne

.llbra17-name

00

eeverlty-lnel)

>- DUMP .tartlq-etmt encUns-•tmt -- ITDUllP dump-option ---

...

f Job:B,I P1m:B,I

CRTCBLPGM
(Diagram)

Command Descriptions 4-373

CRTCBLPGM
PGM

4-374

Note: The number of entries in the Object Definition Table (ODT) and the
amount of storage required by a COBOL program varies with the number
and kinds of COBOL statements used in the program. A combination of
these factors can cause System/38 internal size limits for the program to be
exceeded. If this occurs, GENOPT(*NOUNREF) can be specified. If the
problem still exists, the program must be rewritten as multiple programs
rather than as one program.

PGM Parameter: Specifies the qualified name by which the compiled COBOL
program is to be known and the library in which the compiled program is to
be located. (If no library qualifier is specified, QGPL is used to find the
program.)

*PGMID: The name specified as the PROGRAM-ID is used.

program-name: Specifies the name by which the compiled COBOL program
is known. The first program in the batch job uses this name, while all other
programs use the name specified in the PROGRAM-ID paragraph in the
source program.

SRCFILE Parameter: Specifies the name of the source file that contains the
COBOL source program to be compiled.

QCBLSRC.*LIBL: Specifies that the IBM-supplied source file, QCBLSRC,
contains the COBOL source to be compiled.

qualified-source-file-name: Enter the qualified name of the source file that
contains the COBOL source program to be compiled. (If no library qualifier
is given, *UBL is used to find the file.) This source file should have a record
length of 92. The source file can be a data base file, a device file, or an
inline data file.

SRCMBR Parameter: Specifies the name of the member of the source file
that contains the COBOL source program to be compiled. This parameter
can be specified only if the source-file name in the SRCFILE parameter is a
data base file.

*PGM: The COBOL source program to be compiled is in the member of
the source file that has the same name as that specified for the compiled
program in the PGM parameter. If *PGMID is specified for the PGM
parameter, the SRCMBR parameter is not used. For a data base source file,
the first member is used.

source-file-member-name: Enter the name of the member that contains the
COBOL source.

(
\

OPTION Parameter: Specifies the options to use when the COBOL source is
compiled.

*SOURCE or *SRC: The compiler produces a source listing, consisting of
the COBOL source input and all compile-time error messages.

*NOSOURCE or *NOSRC: The compiler does not produce a source listing.

*NOXREF: The compiler does not produce a cross-reference listing for
the source program.

*XREF: The compiler produces a cross-reference listing for the source
program.

*GEN: The compiler generates an executable program after the program is
compiled.

*NOGEN: The compiler does not generate an executable program after the
program is compiled.

*SEQUENCE: The reference numbers are checked for sequence errors.
Sequence errors do not occur if the *LINENUMBER option is specified.

*NOSEQUENCE: The reference numbers are not checked for sequence
errors. Because SEQUENCE is the default option, sequence errors are
flagged until the NOSEQUENCE option is recognized. When NOSEOUENCE
is the last item specified on a record, sequence checking is in effect
between that record and the next record.

*NOVBSUM: Verb usage counts are not printed.

*VBSUM: Verb usage counts are printed.

*NONUMBER: The source file sequence numbers are used for reference
numbers.

*NUMBER: The user-supplied sequence numbers (columns 1 through 6) are
used for reference numbers.

*LINENUMBER: The compiler-generated sequence numbers are used for
reference numbers. This option combines program source code and source
code introduced by COPY statements into one consecutively numbered
sequence. Use this option when you specify FIPS flagging.

*NOMAP: The compiler does not list the Data Division map.

*MAP: The compiler lists the Data Division map.

CRTCBLPGM
OPTION

Command Descriptions 4-375

CRTCBLPGM
GENO PT

4-376

*NOOPTIONS: Options in effect are not listed for this compilation.

*OPTIONS: Options in effect are listed for this compilation.

*QUOTE: Specifies the delimiter" used for nonnumeric literals and
Boolean literals.

*APOST: Specifies the delimiter' used for nonnumeric literals and Boolean
literals.

GENOPT Parameter: Specifies the options to use when the executable
program is created. The listings could be required if a problem occurs in
COBOL.

*NOLIST: No IRP (intermediate representation of a program), associated
hexadecimal code, or error messages are listed.

*LIST: The IRP, its associated hexadecimal code, and any error messages
are listed.

*NOXREF: A cross-reference listing of all objects defined in the IRP is
not produced.

*XREF: A cross-reference listing of all objects defined in the IRP is
produced.

*NOPATCH: Space is not reserved in the compiled program for a program
patch area.

*PATCH: Space is reserved in the compiled program for a program patch
area. The program patch area can be used for debugging purposes.

*NODUMP: The program template is not listed.

*DUMP: The program template is listed.

*NOATR: The attributes for the IRP source are not listed.

*ATR: The attributes for the IRP source are listed.

*RANGE: Execution-time checks are performed for substring and
subscript ranges.

*NORANGE: Execution-time checks are not performed.

*UNREF: Unreferenced data items are included in the compiled program.

*NOUNREF: Unreferenced data items are not included in the compiled
program. This option reduces the number of ODT entries used, allowing a
larger program to be compiled.

r
\

---------·-------- ~-----

GENLVL Parameter: Specifies when a program is generated. A severity-level
value, corresponding to the severity level of the messages produced during
compilation, can be specified in this parameter. If errors occur in a program
with a severity level greater than the value specified in this parameter, an
executable program is not generated. For example, if 't ou do not want a
program generated if you have messages with a severity level of 20 or
greater, specify 19 in this parameter.

29: If a severity-level value is not specified, the default severity-level is 29.

severity-level: A two-digit number, 00 through 29, can be specified.

PRTFILE Parameter: Specifies the qualified name of the file to which the
compiler listing is directed and the library in which the file is located. The
file should have a minimum record length of 132. If a file with a record
length less than 132 is specified, information is lost.

QSYSPRT.*LIBL: If a file-name is not specified, the compiler listing is
directed to the IBM-supplied file, QSYSPRT.

file-name: Enter the name of the file to which the compiler listing is
directed.

FIPS Parameter: The source program is FIPS-flagged (Federal Information
Processing Standard) for the following specified level (and higher). Use the
*LINENUMBER option to ensure unique reference numbers in FIPS flagging
messages.

*NO: The source program is not FIPS-flagged.

*L: FIPS flag for low level and higher.

*LI: FIPS flag for low-intermediate level and higher.

*HI: FIPS flag for high-intermediate level and higher.

*H: FIPS flag for high level.

FLAG Parameter: Specifies the minimum severity level of messages to be
listed.

00: All messages are to be listed.

severity-level: Enter a two-digit number that specifies the minimum severity
level of messages that are to be listed. Messages that have severity levels
of the specified value or higher are listed.

CRTCBLPGM
GENLVL

Command Descriptions 4-377

CRTCBLPGM
USRPRF

4-378

USRPRF Parameter: Specifies under which user profile the compiled COBOL
program is to be executed. The profile of either the program owner or the
program user is used to execute the program and control which objects can
be used by the program (including what authority the program has for each
object). '

*USER: The program user's user profile is to be used when the program is
executed.

*OWNER: The user profiles of both the program's owner and user are to be
used when the program is executed. The collective sets of object authority
in both user profiles are to be used to find and access objects during the
program's execution. Any objects that are created during the program are
owned by the program's user.

PUBAUT Parameter: Specifies what authority for the program and its
description is being granted to the public. (For an expanded description of
the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the compiled
program. Any user can execute the program, but cannot change it or debug
it.

*ALL: The public has complete authority for the program.

*NONE: The public cannot use the program.

TEXT Parameter: Lets the user enter text that briefly describes the program
and its function.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

DUMP Parameter: An IBM COBOL debugging aid. For IBM service
personnel.

ITDUMP (n) Parameter: An IBM debugging aid. Causes the compiler to
dump the internal text at various times during the compilation. For IBM
service personnel.

Example
CRTCBLPGM
(Example)

CRTCBLPGM PGM(STATS.ACCTS) SRCFILE(ACTIVE.ACCTS) GENOPT(*PATCH) +
GENLVL(19) FLAG(19) TEXT('Statistical analysis program for active +
accounts')

This command creates a COBOL program named STATS in library ACCTS.
The source program ACTIVE also resides in. library ACCTS. The compiler
will reserve space in the compiled program for program patches. If
messages with a severity level of 20 or higher are generated during
compilation, they will be listed and an executable program will not be
generated.

Command Descriptions 4-379

CRTCLPGM

4-380

CRTCLPGM (Create Control Language Program) Command

The Create CL Program (CRTCLPGM) command creates an executable CL
program from the specified CL source program .. The command is valid in
batch and interactive jobs, and in both compiled and interpreted CL.

Restriction: The amount of auxiliary storage occupied by a compiled
program varies by the number of commands in the program, the kinds of
functions performed by the commands (for example: display, create, add,
call), and the kinds of parameter values specified (variables versus
constants). Some combinations of these factors can cause System/38
internal size limits for the program to be exceeded (an unlikely occurrence).
When the limits are exceeded, the program must be rewritten, usually as
multiple programs rather than one program.

-(
.QGPL .

CRTCLPGM --- PGM proaram-name ·)------------••
.library-name

Required.

Optional

-(
QCLSRC.•LIBL -(•PGM ::J--+

>-SRCPILB -(•LIBL y-- SRCMBR
•ource-tile-name • •ource-tile .

>- OPTION - [.

•SRC

•SOURCB

•NOSRC

•NOSOURCB

• Ubraey-name -member-Damm

][-(•XRBP ~] ------+
•:iroXRBrJ

>- [-(•GBN 111111__] --------------------­
•NOGBN F

-(
•NOLIS:y-· -(•NOXRBJ--

>- GBNOPT-[][] -------------+
•LIST •XRBP .

-(
•NOPATJ- ®

>- [.] -------------------'---+
•PATCH

-(•USBR) ~#JOBT-- -f_ •NOBllAL3 >-USRPRP '------LO •YBS PUBAUT •ALL ----1..._ ___ .,
•OWNBR •NO •NONB

(

>-TBXT-(•BLAXX ~
'deacrtpt.10111~ (

Job:B,I P1m:B,I \

PGM Parameter: Specifies the qualified name by which the compiled CL
program is to be known. (If no library qualifier is given, the created program
is stored in the general purpose library, OGPL).

SRCFILE Parameter: Specifies the name of the source file that contains the
CL source program to be compiled. The program, created in executable
form, is known by the name given in the PGM parameter.

QCLSRC: The IBM-supplied source file, QCLSRC, contains the CL source
program to be compiled. (If no library qualifier is given, *UBL is used to
find the file.)

qualified-source-file-name: Enter the qualified name of the source file that
contains the CL source program to be compiled. (If no library qualifier is
given, *UBL is used to find the file.) The source file can be a data base file,
a device file, or an inline data file.

SRCMBR Parameter: Specifies the name of the member of the source file
that contains the CL source program to be compiled.

*PGM: The CL source program to be compiled is in the member of the
source file that has the same name as that specified in the PGM parameter
for the compiled program.

source-file-member-name: If the member name is not the same as the
name of the program being created, enter the name of the member that
contains the CL source program.

OPTION Parameter: Specifies the types of output listings to be produced
when this command is executed, and whether an executable program is to
be generated.

*SRC or *SOURCE: The compiler is to generate a listing of the source input
used to compile the program. If neither *SOURCE nor *NOSOURCE is
specified, *SOURCE is assumed.

*NOSRC or *NOSOURCE: A complete compiler source listing is not to be
generated; only compiler errors are to be listed.

*XREF: The compiler is to generate a cross-reference listing of references
to variables and/or labels in the source. If *NOSOURCE is specified,
*NOXREF is always assumed. Otherwise, if neither *XREF nor *NOXREF is
specified or if they are both specified, *XREF is assumed.

*NOXREF: No cross-reference listing of references to variables and data
items in the source is to be generated.

CRTCLPGM
PGM

Command Descriptions 4-381

CRTCLPGM
GENOPT

4.,.3s2

*GEN: The compiler is to generate an executable program and place it in
the appropriate library. If neither *GEN nor *NOGEN is specified or if they
are both specified, *GEN is assumed.

*NOGEN: An executable program is not to be generated. The compiler is to
syntax check the source and (if *SOURCE is specified) produce a source
listing.

GENOPT Parameter: Specifies the options to be used when the CL program
is compiled. This parameter specifies whether a listing of the IRP and the
machine instructions generated by the program resolution monitor is to be
produced, whether a cross-reference listing is to be produced, and whether
a program patch area is to be included in the compiled program. (The IRP is
an intermediate representation of the program being compiled.)

*NOLIST: No listing is to be produced of the IRP and the generated
machine instructions. If neither *LIST nor *NOLIST is specified or if they
are both specified, *NOLIST is assumed.

*LIST: A listing is to be produced of the IRP and the generated machine
instructions.

*NOXREF: No cross-reference listing is to be generated of variable and
data item references in the IRP. If *NOLIST is specified, *NOXREF is
always assumed. Otherwise, if neither *XREF nor *NOXREF is specified or
if they are both specified, *NOXREF is assumed.

*XREF: A cross-reference listing of variable and data item references in the
IRP is to be produced.

*NOPATCH: No space is to be reserved in the compiled program for a
program patch area. If neither *PATCH nor *NOPATCH is specified or if
they are both specified, *NOPATCH is assumed.

*PATCH: Space is to be reserved in the compiled CL program for a
program patch area.

USRPRF Parameter: Specifies under which user profile the compiled CL
program is to be executed. The profile of either the program owner or the
program user is used to execute the program and control which objects can
be used by the program (including what authority the program has for each
object).

*USER: The program user's user profile is to be used when the program is
executed.

*OWNER: The user profiles of both the program's owner and user are to be
used when the program is executed. The collective sets of object authority
in both user profiles are to be 1,1sed to find and access objects during the
program's execution. Any objects that are created during the program are
owned by the program's user.

LOG Parameter: Specifies the logging options for a CL program that is to be
created.

*JOB: Specifies that logging of commands in an executing CL program
depends upon the status of the job's logging flag (see the LOGCLPGM
parameter of the CHGJOB (Change Job) Command). For the logged
commands to be listed, the logging level of the jobs must be 3 or 4.

o;oYES: Specifies that logging of commands is to be performed in all cases.

*NO: Specifies that logging of commands is not to be performed.

PUBAUT Parameter: Specifies what authority for the class and its description
is being granted to the public (all users). Additional authority can be
explicitly granted to specific users by the GRTOBJAUT command. (For an
expanded description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the compiled CL
program. Any user can execute the program, but cannot change it or debug
it.

*ALL: The public has complete authority for the program.

*NONE: The public cannot use the program.

TEXT Parameter: Lets the user enter text that briefly describes the compiled
CL program. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

CRTCLPGM
LOG

Command Descriptions 4-383

CRTCLPGM
(Examples)

4-384

Examples

CRTCLPGM PAYROLL TEXT{'Payroll Program')

This command invokes the CL compiler to compile a program named
PAYROLL. The source program is in the default source file QCLSRC, in a
member named PAYROLL. A compiler listing will be generated. The
program will be executed under the program user's user profile and can be
executed by any system user.

CRTCLPGM PGM(PARTS) SRCFILE(PARTDATA.MYLIB) PUBAUT(*NONE) +
TEXT(This program displays all parts data')

This command creates a CL program named PARTS and stores it in the
library QGPL. The source for the program is in the PARTS member of the
source file PARTDATA in the library MYLIB. A listing will be generated.
This program, which has no public use, can be executed under the profile of
the user that is running the program, who could be the owner or another
user that the owner has explicitly authorized by name in the GRTOBJAUT
command.

··---~···---·---

CRTCLS (Create Class) Command

The Create Class (CRTCLS) command creates a class object and specifies
the attributes to be contained in the class. The class defines the processing
parameters for routing steps that are to use the class; the class to be used
by a routing step is specified in the subsystem description routing entry that
is used to initiate the routing step.

-{
.QGPL ®

CBTCLS-- CL8 claH-n-)---------------··
.library-name

Optional

-{
110 -{ 10000 ::)-------+

>- UCPTY TIU:ISLJCB
machine-aiecut1on-prior1'7 _)-- ttme-1Hce .

>-PURGB · ,.. ___ DPTWAIT •HOM:AX ---~------------· -{•TBS) -f_ 120
•HO ._111-to-wait _/

-{
•HOM:AX

>-CPUTIKI)---------------------.•
muimum-CPU-ttme

-{
•HOM:AX

>-YAXTMPSTG)-----------------+•
mazlmum-temporary-etora1e

>-PUliUT 1._ ::,IUIJ_"_~ ____ TBXT-{•BLARIC ~

~ •HOHi _J 'dHaription'~
l Job:B,I Ppn:B,J

CLS Parameter: Specifies the qualified name by which the class of attributes
will be known. (If no library qualifier is given, the class is stored in the
general purpose library, QGPL.) (For an expanded description of the CLS
parameter, see Appendix A.)

EXCPTY Parameter: Specifies the execution priority for routing steps that will
use the class being created. Machine execution priority is a value, 1 (highest
priority) through 99 (lowest), that represents the importance of the routing
step when it competes with other routing steps in the class for the machine
resources. This value represents the relative, not absolute, importance of
the routing step. For example, a routing step with an execution priority of
25 is not twice as important as one with an execution priority of 50.

50: Routing steps that use this class are to have an execution priority of 50.

machine-execution-priority: Enter the execution priority that routing steps
using this class are to have.

CRTCLS

Command Descriptions 4-385

CRTCLS
TIMESLICE

4-386

TIMESLICE Parameter: Specifies the maximum .amount of processor time, in
milliseconds, given to a routing step using this class before other routing
steps, waiting to use the same storage pool, are given the opportunity to
execute. The time slice establishes the amount of time needed by the
routing step to accomplish a meaningful amount of processing. At the end
of the time slice, the routing step might be put in an inactive state so that
other routing steps can become active in the storage pool.

10000: A maximum execution time of 10 000 milliseconds is allocated to
each routing step each time it is allowed to process.

time-slice: Enter the maximum amount of time, in milliseconds, that each
routing step in this class can have to execute when it is given processing
time. Valid entries are 1 through 9999999 (that is, 9 999 999 milliseconds
or 9999.999 seconds).

PURGE Parameter: Specifies whether or not the job is to be marked eligible
to be moved out of main storage and put into auxiliary storage at the end of
a time slice or upon entering a long wait (such as waiting for a work station
user's response).

*YES: The job is eligible to be moved out of main storage and put into
auxiliary storage.

*NO: The job is not to be moved out of main storage. However, when
some of main storage is needed to execute the routing steps of other jobs
running in the same storage pool, pages belonging to this job are moved
(one at a time) to auxiliary storage to accommodate pages needed for other
jobs. Then, when this job executes again, its pages are returned to main
storage as they are needed.

DFTWAIT Parameter: Specifies the default maximum wait time (in seconds)
that processing of a routing step is to be held up until a System/38
instruction that performs a wait completes its execution. This default wait
time is used when a wait time is not otherwise specified for a given
situation. Normally, this would be the amount of time the system user
would be willing to wait for the system before the request is canceled.

If the wait time for any one instruction is exceeded, an error message can
be displayed or it can be automatically handled by a MONMSG command.

120: An instruction has a maximum of 120 seconds in which to complete
execution.

*NOMAX: There is no time limit on how long the system is to wait for the
execution of an instruction to be completed.

seconds-to-wait: Enter a value, 1 through 9999999 (9 999 999 seconds),
that specifies the maximum time that the system is to wait for the
System/38 instruction to be completely executed.

I

\

CPUTIME Parameter: Specifies the maximum CPU time (in milliseconds) that
a routing step using this class can have to completely execute the entire
routing step. If not finished before the maximum time is used up, execution
of the routing step is terminated.

*NOMAX: There is no time limit on how long the routing step may take.

maximum-CPU-time: Enter the maximum amount of CPU time, in
milliseconds, that the routing step has in which to complete execution. Valid
entries are 1 through 9999999 (that is, 9 999 999 milliseconds or 9999.999
seconds).

MAXTMPSTG Parameter: Specifies the maximum amount of temporary
(auxiliary) storage (in K-bytes) that a routing step in this class can use for
processing. This temporary storage is used for storage required by the
program itself and by implicitly created internal system objects used to
support the routing step. (It is not storage in the QTEMP library.) If the
maximum temporary storage is exceeded by a routing step, the routing step
is terminated. This parameter does not apply to the use of permanent
storage, which is controlled through the user profile.

*NOMAX: There is no maximum amount of temporary storage for the
routing step that uses this class.

maximum-temporary-storage: Enter a value in K-bytes (1 through 9999999)
that specifies the maximum amount of temporary storage that a routing step
in this class can have.

PUBAUT Parameter: Specifies what authority for the class and its description
is being granted to the public (all users). Additional authority can be
explicitly granted to specific users by the GRTOBJAUT command. (For an
expanded description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the class.

*ALL: The public has complete authority for the class.

*NONE: The public cannot use the class.

TEXT Parameter: Lets the user enter text that briefly describes the class
being created. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

CRTCLS
CPUTIME

Command Descriptions 4-387

CRTCLS
(Example)

4-388

Example

CRTCLS CLS(CLASS1) EXCPTY(60) TIMESLICE(900) +
TEXT('This class for all batch jobs +
from Dept 4836')

This command creates a class called CLASS1 that has public operational
rights; the class is stored in the QGPL library. The user text 'This class for
all batch jobs from Dept 4836' describes the class. The attributes of this
class provide a machine execution priority of 60 and a time slice of 900
millis~conds. If the routing step has not finished execution at the end of a
time slice, it is eligible to be moved out of main storage until it is allocated
another time slice. The defaults for the other parameters are assumed.

CRTCMD (Create Command) Command

The Create Command (CRTCMD) command creates a user-dttfined
command (that is, a command definition) that can use the same command
processing support that is used by IBM-supplied commands. The command
definition is an object that can be stored in the general purpose library
(QGPL) or in a user library. To update an existing command (for example,
change the name of one of its parameter keywords), the command must
first be deleted by the DLTCMD command and then created again by the
CRTCMD command. However, some of the values can be changed by the
CHGCMD command.

To create a command, a set of command definition statements are entered
into a source file. The CRTCMD command is used to process the source file
and create a command definition object. The following command definition
statements are used as needed:

• Command statement (CMD): One CMD statement is needed for each
command being defined.

• Parameter statement (PARM): One PARM statement is required for each
command parameter in the command being defined. It defines the
parameter to be passed to the CPP.

• Element statement (ELEM): An ELEM statement further defines a
parameter that is to be a list of values. One statement is required for
each possible element of the list.

• Qualifier statement (QUAL): A QUAL statement is required to describe
each part of a qualified name that can be accepted for a parameter
(defined in a PARM statement) or for an element in a list of values
(defined in an ELEM statement).

• Dependent statement (DEP): The DEP statement indicates which
parameters are dependent upon each other.

Refer to Chapter 5 for the descriptions of the five command definition
statements and to the CPF Programmer's Guide for information about
command definition.

Restriction: The CRTCMD command can be used only to create the
command definition of an actual CL command. That is, it cannot be used to
create definitions of statements, such as the command definition statements
themselves.

CRTCMD

Command Descriptions 4-389

CRTCMD
(Diagram)

4-390

Optional

-(
QCMDSRC.•LIBL -(•CUD ~P

>-SRCPILB .•LIBL . SRCUBR
1ource-file-name.-(· · ~ 1ource-file

-member-name
.libraey-name

pro1r1111-name . . • . •DBBUG
>- VLDCICR -(•IJ'BL y- MODI •PROD -(•NONB ~ALL

.libraey-nune •SlllVICI
3 nwdmum

•UllTBRA.CT
>-ALLOW" ~ALL •BATCH

-(
•NOUil

UAXPOB po1tttoned-ltmit)~-------II•
•BPGU-· ---+r-'

•IPGU
•BlllC

II maximum

-(
•NONB

>- PUTFILB meHqe-file-name -(.•LIBL y,.,_ _____________ -+111

.libraey-nune

-(
QCPPUSG.•LIBL

>-USGP. . -(•IJBL y'll>----------------111
meHa1e-file-n11111 •

.Ubra17-n11111

>- PUBAUT 1 ::.RW-~-----TUT-(•BLilJC ~
_ •NONB _J 1de1cr1ptton1~

.Job:B,I Pam;B,I

CMD Parameter: Specifies the qualified name of the command to be created.
(If the library qualifier is not specified, the command definition object is
placed in the general purpose library, QGPL.)

PGM Parameter: Specifies the qualified name of the command processing
program (CPP), that is to execute the command. (If no library qualifier is
given, *UBL is used to find the command's CPP at execution time.) The
CPP does not have to exist until command execution time.

The parameters passed to the CPP are the ones defined by the command
definition statements in the source file specified by the SRCFILE parameter.

SRCFILE Parameter: Specifies the name of the source file that is to contain
the command definition statements.

QCMDSRC: The IBM-supplied source file, QCMDSRC, is to contain the
command definition source. (If no library qualifier is given, *UBL is used to
find the file.)

qualified-source-file-name: Enter the qualified name of the source file that is
to contain the source for the command being created. (If no library qualifier
is given, *UBL is used to find the file.)

SRCMBR Parameter: Specifies the name of the source file member
containing the command definition statements.

*CMD: If this option is specified and the file specified in the SRCFILE
parameter is a data base file, the name of the source file member is the
name specified in the CMD parameter of this command.

source-file-member-name: Enter the name of the member in the source file
specified by the SRCFILE parameter that contains the command definition
statements that are to be used to create the command.

CRTCMD
CMD

Command Descriptions 4-391

CRTCMD
VLDCKR

4-392

VLDCKR Parameter: Specifies the name of a program that, when the
command is used, performs additional validity checking on the parameters in
the command being created. The same parameters passed to the CPP
(identified in the PGM parameter) are also passed to the validity checking
program. The validity checker is invoked to perform additional user-defined
validity checking beyond that specified by the command definition
statements in the source file, and beyond normal control language syntax
checking.

*NONE: There is no separate validity checking program for this command.
All validity checking is done by the command analyzer and the command
processing program.

qualified-program-name: Enter the qualified name of the validity checker
that is to check the validity of the command being created. (If no library
qualifier is given, *UBL will be used to find the validity checker at execution
time.) The validity checker does not have to exist until command execution
time.

MODE Parameter: Specifies the modes of operation to which the newly
defined command applies. One or more of the modes can be specified.

*ALL: The command is valid in all the modes of operation: production,
debug, and service.

*PROD: The command is valid in the production mode.

*DEBUG: The command is valid in the debugging mode.

*SERVICE: The command is valid in the service mode.

ALLOW Parameter: Specifies where the command can be executed. One or
more of the following options can be specified.

*ALL: The command is valid in a batch input stream, in a CL program, or
when executed interactively. It can also be passed to the system program
QCAEXEC to be executed.

*BATCH: The command is valid in a batch input stream, external to a
compiled CL program.

*INTERACT: The command is valid when executed interactively, external to
a compiled CL program .

*BPGM: The command can be included in a compiled CL program that
executes in the batch input stream.

*IPGM: The command can be included in a compiled CL program that
executes interactively.

*EXEC: The command can be used as a parameter on the CALL command
and be passed as a character string to the system program QCAEXEC to be
executed. If *EXEC is specified, either *BATCH or *INTERACT must also be
specified.

MAXPOS Parameter: Specifies the maximum number of parameters that can
be entered positionally for this command. This parameter value must be
greater than the number of nonconstant required parameters and less than
the total number of nonconstant parameters. Not included in the number
specified for this parameter are those parameters of TYPE(*ZEROELEM),
parameters with the CONST ANT attribute, and lists and qualified names
whose ELEMs and QUALs have the CONSTANT attribute or are of
TYPE(*ZEROELEM).

*NOMAX: No maximum positional coding limit is to be specified for this
command.

positional limit: Specifies the maximum number of parameters that can be
coded positionally for this command. Valid values are 0 through 75.

PMTFILE Parameter: Specifies the name of the message file from which the
prompt text for the command is to be retrieved.

*NONE: No message file is needed for the prompt text. The text, if any, is
supplied in the definition statements that define the command.

qualified-message-file-name: Enter the qualified name of the message file
that is to contain the prompt text for the command. (If no library qualifier is
given, *UBL is used to find the file.)

MSGF Parameter: Specifies the name of the message file from which
messages identified on the DEP statements used to define the command are
to be retrieved. (The messages are those that can be sent if the command,
while executing, encounters a parameter dependency error.) The messages
referred to by this MSGF parameter are those whose message identifiers
are specified in the MSGID parameter of one or more DEP definition
statements, but whose identifiers do not have the 3-character prefix of CPF.
(QCPFMSG is always used for messages that do have the CPF prefix.)

QCPFMSG: The IBM-supplied CPF message file, QCPFMSG, is the file
from which CPF and non-CPF dependency error messages are to be
retrieved.

qualified-message-file-name: Enter the qualified name of the message file
from which the non-CPF prefixed error messages are to be retrieved. (If no
library qualifier is given, the file is found by the library list that is in effect
for the job in which the created command is being executed when a
dependency error is detected.)

CRTCMD
MAXPOS

Command Descriptions 4-393

CRTCMD
PUBAUT

4-394

PUBAUT Parameter: Specifies what authority for the command and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the GRTOBJAUT command. The
name of the CPP that executes the command must be qualified so that the
use of the command can be limited. (For an expanded description of the
PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the command.

*ALL: The public has complete authority for the command.

*NONE: The public cannot use the command.

TEXT Parameter: Lets the user enter text that briefly describes this command
and its function. The text in the command description can be displayed by
the DSPOBJD command.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTCMD CMD(PAYROLL) PGM(PAY076) +
SRCFILE(PAYSOURCE) PUBAUT(*NONE)

The command named PAYROLL is created from the source file
PAYSOURCE. The command is private and calls the CPP named PAY076.
It is a valid command when entered in a batch input stream, when compiled
in a control language program, when entered interactively, or when passed
to the QCAEXEC program.

CRTCMNF (Create Communications File) Command

The Create Communications File (CRTCMNF) command creates a
communications device file. This file is used to send records to and receive
records from a host system, such as an IBM System/370. The host system
can be using IMS/VS (Information Management System/Virtual Storage) or
CICS (Customer Information Control System) with the OS/VS1 or OS/VS2
operating system. Communications occur in an SNA (systems network
architecture) environment using the SDLC (synchronous data link control)
protocol. Refer to the System/38 Data Communications Programmer's Guide
for additional information on using communications device files.

The device file contains the file description, which identifies the
communications device to be used, and the record formats used by the
application programs; the file does not contain data. The same device file
can be used for both input and output operations. The file description is
made up of information that is specified in two places: (1) in the source file
that contains the data description specifications (if used); and (2) in the
CRTCMNF command itself. The DDS contains the specifications for each
record format in the device file and for each of the fields within each record
format.

The CHGCMNF or OVRCMNF command can be used in a program to
change or override the parameter values specified in the communications file
description. Each changed value in the device file remains changed after the
program ends. Each overridden value remains altered only for the execution
of the program; once the program ends, the original parameter values
specified for the communications file are used. Override commands must be
executed before the communications file to be affected is opened for use by
the program.

CRTCMNF

Command Descriptions 4-395

CRTCMNF
(Diagram)

4-396

·-{,QGPL
CBTCIDlP -- PILB oommunlcatlona-devtoe-ftla-name)•------+•

.ll'brary-n- Required

Optional

-{
QDDBSRC.•LIBL

>-BRCPILB -{.•LIBL y•-------------••
1ourca-ttla-nuna

.Hbrary-nuna

-{
•"LB

>-SRCMBR)--------------------..
1ouroe-nla-member-name

>- OPTION-[

•SRC

l<SOURCJ!l

•NOSllC

•NOSOURCJ!l

®

-{
•NONB -{ •NONI

>-DIV dmce-name)•--- LOGON 101on-cbaractera)•----------+•

>-LOGOPP-{•NONB ~BLELBN-{•CAW)·--------••
lo1ott-obaraotera J--- block-len&tb

>- RCDSBP SP.AR · WAITPILB •CLS -{•YBS)---- -{•YBS}- -f_ •IMMBD
•NO •NO number-ot-aecond1)

>-BBARB -{•NO)---- LVLCBlr:-{•YBS)---------------·
•YBS •NO

>- PUliUT _L :.:,RIL4_"-~----TUT-{•BLANJC ~
~•NOH~ . 'deacrlption'~

Job:B,J PIJDIB,I

FILE Parameter: Specifies the qualified name by which the communications
device file will be known. If no library qualifier is given, the file is stored in
QGPL. (If the file is to be used by an HLL program, the file name should be
consistent with the naming rules of that language; otherwise, the file must
be renamed in the program itself.)

SRCFILE Parameter: Specifies the name of the source file (if any) that
contains the data description specifications to be used to create the
communications device file. (The specifications that can be made in DDS
are described in the CPF Reference Manual-DDS.)

QDDSSRC: The IBM-supplied DDS source file named ODDSSRC in the
QGPL library contains the source descriptions to be used to create the
communications file. Each member of QDDSSRC contains the source
description of one file. (When shipped, QDDSSRC contains no
descriptions.) (If no library qualifier is specified, *UBL is used to find the
source file.)

qualified-source-file-name: Enter the qualified name of the source file that
contains the DDS to be used to create the communications device file. (If
no library qualifier is given, *UBL is used to find the source file.)

SRCMBR Parameter: Specifies the name of the member in the data base
source file that contains the DDS for this communications device file.

*FILE: The source file member name is the same as the communications
file name specified in the FILE parameter.

source-file-member-name: Enter the name of the member in the source file
that contains the DDS to be used to create the device file.

OPTION Parameter: Specifies the type of output listing to be produced when .
the file is created.

*SRC or *SOURCE: A listing of the source statements used to create the
file, and of any errors that occur, is to be generated.

*NOSRC or *NOSOURCE: No listing of the source statements is to be
generated unless errors are detected. If errors are detected, they are listed
along with the keyword or record format that caused the error.

*LIST: An expanded source listing is to be generated, showing a detailed
list of the file specifications that result from the source statements and
references to other file descriptions. This listing shows file and field
keywords and attributes.

*NOL/ST: No expanded source listing is to be generated.

CRTCMNF
SRCFILE

Command Descriptions 4-397

CRTCMNF
DEV

4-398

DEV Parameter: Specifies the name of the System/38 device to be used with
the communications device file to communicate with another system.

*NONE: No device name is to be specified. The name of the
communications device must be specified later in the CHGCMNF or
OVRCMNF command, or in the HLL program that opens the file.

devfce-name: Enter the name of the communications device that is to be
used with this communications device file. The device name· must already
be known on the system (via a device description) before this device file is
created.

LOGON Parameter: Specifies the text that is to be transmitted to the primary
logical unit host when the file is opened. The text is limited to 80
characters, and its format is host-dependent.

*NONE: No logon text is to be specified.

logon-characters: Enter the text that is to be transmitted to the primary
logical unit host when this file is opened.

LOGOFF Parameter: Specifies the text that is to be transmitted to the
primary logical unit host when the file is closed. The text is limited to 80
characters, and its format is host-dependent.

*NONE: No logon text is to be specified.

logoff-characters: Enter the text that is to be transmitted to the primary
logical unit host when this file is closed.

BLKLEN Parameter: Specifies, in bytes, the maximum block length for data
that is to be transmitted or received by the device file.

*CALC: · The device support chooses an optimum value based on the
record sizes in the device file. Device support calculates the smallest
multiple of 1792 that is greater than or equal to the largest record in the
device file. The calculated value includes the new line (NL) or form feed (FF)
characters that follow each record when RCDSEP(*YES) is specified.

block-length: Enter a value, 256 through 32767, that specifies the maximum
block length of records to be processed by this communications device file.
This value must be at least the size of the largest message expected to be
transmitted or received. Also, it must include the new line (NL) or form feed
(FF) characters that follow each record when RCDSEP(*YES) is specified.

RCDSEP Parameter: Specifies whether SNA character stream support is to
be used to delimit records.

*YES: The system delimits the data records by inserting new line (NL) or
form feed (FF) characters between records. The system scans for and
removes NL and FF characters during input operations.

*NO: The system does not insert, scan for, or remove the NL and FF
characters in the data records. NL and FF characters, if present, are treated
as data characters.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If they
cannot be allocated in the specified wait time, an error message is sent to
the program. (For an expanded description of the WAITFILE parameter, see
Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the communications device file.
Valid values are 1 through 32767 (32 767 seconds).

SPAN Parameter: Specifies whether logical records are to be allowed to span
request unit boundaries during output operations.

*YES: The system places as much data as possible into a request unit.
When this parameter value is specified, a request unit may contain any of
the following:

• One or more complete records

• One or more complete records plus a partial record

• A partial record

*NO: The system places as many complete records as possible into a
request unit but will never allow a request unit to contain a partial record.

CRTCMNF
RCDSEP

Command Descriptions 4-399

CRTCMNF
SHARE

4-400

SHARE Parameter: Specifies whether the ODP (open data path) for the
communications device file can be shared with other programs in the same
routing step. If so, when the same file is opened by other programs that
also specify SHARE(*YES), they use the same ODP to the file. If a program
that specifies SHARE(*NO) opens the file, a new ODP is used.

*NO: An ODP created by the program is not to be shared with other
programs in the routing step. Every time a program opens the file, a new
ODP to the file is created and activated.

*YES: An ODP is to be shared with each program in the routing step that
also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record
I

formats in this device file are to be checked when the file is opened by a
program. For this check (done while the fjle is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not all match or they have not
been specified in the program, an open error message is sent to the
program that attempted to open the file.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

PUBAUT Parameter: Specifies the authority that is being granted to the
public (all users) for the communications device file and its description.
Additional authority can be explicitly granted to specific users by the
GRTOBJAUT command. (For an expanded description of the PUBAUT
parameter, see Appendix.A.)

*NORMAL: The public has only operational rights for the device file.

*ALL: The public has complete authority for the device file.

*NONE: The public cannot use the device file.

TEXT Parameter: Lets the user enter text that briefly describes the
communications device file. (For an expanded description of the TEXT
parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

!
I
\

Example

CRTCMNF FILE(FILEB.LIBA) SRCFILE(ODDSSRC)

This command creates a description of the communications device file
named FILEB in library LIBA using the device source file named QDDSSRC.
The defaults for all the other parameters are assumed. The device name
must be specified in another CL command or in each program that uses the
device file.

No logon or logoff text is transmitted when data is being sent or received.
The block length is to be calculated by device support, and record delimiters
are to be inserted. The level identifiers of the record formats used by the
communications file are to be checked when the file is opened. The public
has only operational rights for the device file.

CRTCMNF
(Example)

Command Descriptions 4-401

CRTCRDF

4-402

CRTCRDF (Create Card File) Command

The Create Card File (CRTCRDF) command creates a card device file. The
device file contains the file description, which identifies the device to be
used and specifies the spooling requirements; the file does not contain data.
The card device file is used to get data from a card device (one record per
card) and to send data to the card device. The same device file can be used
for both input and output operations.

All the information in the card file description is contained in the command
that creates it; there is no DDS (data description specifications) for card
device files. The card file has only one record format for input/ output
operations. The record format consists of one character field that contains
the input data retrieved from the device or the output data to be written to
the device. The program using the device file must describe the fields in the
record format so that the program can arrange the data received from or
sent to the card device in the manner specified by the card file description.

The CHGCRDF or OVRCRDF command can be used in a program to change
or override the parameter values specified in the card file description. Each
changed value in the device file remains changed after the program ends.
Each overridden value remains altered only for the execution of the program
(unless the override is deleted by a DLTOVR command); once the program
ends, the original parameter values specified for the card file are used.
Override commands must be executed before the card file to be affected is
opened for use by the program.

-{_
.QOPL ®

CllTCBDP -- PILI oard-devioe-rue-11-)-----------.. •
.llbral'T-DUDe Required

Optional

_r••o:n _r 1)
>- DBV ~ devioe-name J•--- HOPPIR~ a •---------------·

>- PILIT!PI _r •DA.TA)----SPQOL_r•ns "·--------------·
~•SBC '_•1'0~

-{_
QPU1'CH.•IJBL

>- OUTQ -{_ •JJBL y•--------------• output-queue-n- •

.llbral'T-D-

>- POJUITTPl_r•&TD ~ COPllS _r l)--------·

~tonn-t,ne ~ ~ number-ot-ooptH

>- MADCDS 1_ =Mil----',..----------------------•
'\::: mu:lmum-reoorde _/

-{_ I -f_ ..i'OBl1'D~ >- PILISIP _)- SCHBDULI •PILll1'D'--------·
number-ot-ftle-1eparator1 •IYKID

>-HOLD -{_::
8
)w---- BAVB -{_::)•r------------------·

>- W'AITPILB .cLS -f_ •DIMID

number-ot-Hoond1)

SBARB _r•KOml\,..,__ ___________ •
'_•TBSJ

l Job1B,I Ppul,1

FILE Parameter: Specifies the qualified name by which the card device file
being created will be known. If no library qualifier is given, the file is stored
in QGPL. (If the file is to be used by an HLL program, the file name should
be consistent with the naming rules of that language; otherwise, the file
must be renamed in the program itself.)

CRTCRDF
(Diagram)

Command Descriptions 4-403

CRTCRDF
DEV

4-404

DEV Parameter: Specifies the name of the card device that is to be used with
this card device file to perform input/ output data operations. The device
name of the IBM-supplied card device description is QCARD96.

*NONE: No device name is to be specified. The name of the card device
must be specified later in the CHGCRDF or OVRCRDF command, or in the
HLL program that opens the file.

device-name: Enter the name of the device that is to be used with this card
device file. The device name must already be known on the system (via a
device description) before this device file is created.

HOPPER Parameter: Specifies from which hopper of the MFCU the cards are
to be fed when this device file is used. Valid entries are 1 (for the primary
hopper) and 2 (for the secondary hopper).

1: The primary hopper is to be used with this card device file.

hopper-number: Enter either a 1 or a 2 to indicate which hopper of the
MFCU is to be used.

FILETYPE Parameter: Specifies whether the card device file being created
describes data records or describes source records (statements) for a
program or another file. (For an expanded description of the FILETYPE
parameter, see Appendix A.)

*DATA: The card file describes data records.

*SRC: The card file describes source records.

SPOOL Parameter: Specifies whether the input or output data for the card
device file is to be spooled. If SPOOL(*NO) is specified, the following
parameters in this command are ignored: OUTQ, FORMTYPE, COPIES,
MAXRCDS, FILESEP, SCHEDULE, HOLD, and SAVE.

*YES: The data is to be spooled. If this file is opened for input, an inline
data file having the specified name is processed; otherwise, the next
unnamed inline spooled file is processed. (For a discussion of named and
unnamed inline files, see the CPF Programmer's Guide.) If this file is opened
for output, the data is spooled for processing by a spooling writer.

*NO: The data is not to be spooled. If this file is opened for card input, the
data is read directly from the card device. If this is an output file, the data
is sent directly to the device to be punched or printed as the output
becomes available.

OUTQ Parameter: Specifies, for spooled output only, the qualified name of
the output queue for the spooled output file. (If no library qualifier is given,
the queue is found by the library list (*UBL) that is in effect for the job that
uses the card file.)

QPUNCH: The spooled output data is sent to the IBM-supplied output
queue, QPUNCH, which is in the QGPL library.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. The IBM-supplied output queue
that can be used by the card file is the OPUNCH output queue, stored in
the QGPL library.

FORMTVPE Parameter: Specifies, for spooled output only, the type of form
(cards) on which the card device is to produce the output. The identifiers
used to indicate the type of cards are user-defined and must not be longer
than 10 characters.

*STD: The standard card type used in your installation is to be used for
output from jobs using this card device file.

form-type; Enter the identifier of the card type to be used for output from
jobs using this card device file. A maximum of 10 alphameric characters can
be specified.

COPIES Parameter: Specifies, for spooled output files only, the number of
copies (card decks) of the output to be produced by the card device.

1: Only one copy (card deck) of the output is to be produced.

number-of-copies: Enter a value, 1 through 99, that indicates the number of
identical card decks to be produced when this device file is used.

MAXRCDS Parameter: Specifies, for spooled output only, the maximum
number of records that can be in the spooled output file for spooled jobs
using this card device file.

5000: A maximum of 5000 records can be in the spooled output file for
this card device file if the job is to be spooled.

*NOMAX: No maximum is specified for the number of records that can be
in the spooled output file.

maximum-records: Enter a value, 1 through 500000 (500 000), that specifies
the maximum number of records that can be in the spooled output file.

CRTCRDF
OUTQ

Command Descriptions 4-405

CRTCRDF
FILESEP

4-406

FILESEP Parameter: Specifies, for spooled output files only, the number of
separator cards to be placed at the beginning of each output card deck,
including between multiple copies of the same output. Each separator card
contains the file name, file number, job name, user name, job number, and
the time and date when the job was executed.

3: Three separator cards are placed at the beginning of each card deck
produced by spooled jobs that use this device file.

number-of-file-separators: Enter the number of separator cards to be placed
at the beginning of each card deck produced by spooled jobs that use this
device file. Valid values are 0 through 9. If 0 is specified, at the end of
each output file a message is sent to the message queue (usually
QSYSOPR) specified on the STRCRDWTR command that started the writer;
the message indicates that the output just produced is to be removed from
the device.

SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a writer.

*JOBEND: The spooled output file is to be made available to the writer
only after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the writer as
soon as the file is closed in the program.

*IMMED: The spooled output file is to be made available to the writer as
soon as the file is opened in the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a writer
when it is released by the Release Spooled File (RLSSPLF) command.

*NO: The spooled output file is not to be held by the output queue. The
spooled output is made available to a writer based on the SCHEDULE
parameter value.

*YES: The spooled output file is to be held until it is released by the
RLSSPLF command.

(

\

SAVE Parameter: Specifies, for spooled output files only, whether the
spooled file is to be saved (left on the output queue) after the output has
be~n produced.

*NO: The spooled file data is not to be retained on the output queue after
it has been produced.

*YES: The spooled file data is to be retained on the output queue until the
file is deleted.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated. Valid values are 1 through 32767
(32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
device file can be shared with other programs in the same routing step. If
so, when the same file is opened by other programs that also specify
SHARE(*YES), they use the same ODP to the file. If a program that
specifies SHARE(*NO) opens the file, a new ODP is used.

When an ODP is shared, the programs accessing the file share such things
as the file status and the buffer. When SHARE(*YES) is specified and
control is passed to a program, a read operation in that program retrieves
the next input record. A write operation produces the next output record.

*NO: An ODP created by the program in which this command is used is
not to be shared with other programs in the routing step. Every time a
program opens the file with this attribute, a new ODP to the file is created
and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

CRTCRDF
SAVE

Command Descriptions 4-407

CRTCRDF
PUBAUT

4-408

PUBAUT Parameter: Specifies what authority for the card device file and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the GRTOBJAUT command. (For
an expanded description of the f'.'UBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the device file.

*ALL: The public has complete authority for the device file.

*NONE: The public cannot use the device file.

TEXT Parameter: Lets the user enter text that briefly describes the card
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTCRDF FILE(DSPHSTI

This command creates a description of the card device file named DSPHST.
The defaults for all the other parameters are assumed. The device name
must be specified in another CL command or in each program that uses the
device file. The device file describes card data files that will be spooled for
both input and output. Output goes to the QPRINT output queue, and
cannot go to the card device until the job is completed on the system. Data
cards of the installation's standard type are to be fed from hopper 1 if the
device is the MFCU. When output is produced from the output queue, only
one copy is produced, and it is preceded by one separator card that gives
the file name, job name, and job number.

(

\.

CRTCUD (Create Control Unit Description) Command

The Create Control Unit Description (CRTCUD) command identifies a control
unit and describes its features to the system. The control unit can be a
3411 tape control unit, a 5251 work station control unit attached to a
communications line, a work station controller, a BSC control unit, a physical
unit (type 2) control unit, or the System/38 itself operating as a multipoint
tributary station to an IBM Series 1. System/3, or System/370. When the
control unit description is created, it is stored as part of the internal system,
and it appears as though it exists in the QSYS (system) library.

This command should be used to create the control unit description after
the associated line description has been created for the line attached to the
control unit; it should also be used before the associated device descriptions
are created for the devices attached to the line. However, this sequence for
creating descriptions is not a required sequence.

Restriction: If the control unit is to be attached to a nonswitched line, that
line (identified in the LINE parameter of this command) must first be varied
offline.

CRTCUD

Command Descriptions 4-409

CRTCUD
(Diagram)

4-410

CRTCUD--- CUD control-unit-description-name- TYPE- control-unit-type -------•

©
>-MODEL model-number--- CTLADR control-unit-addren ----------------•

Required

Optional

-{•NO)- -{•NONE~ -{"NO) >-SWITCHED LINE ·-· J SELECT ________ _,.,.

•DB Une-n!lme •'!JIB

>- TBLNBR INLCNN BXCHID -{
•NONI -{+ANS)-- -{ +NONI

telephone-numbej +CALL ezchance-iden.titler r
-{

+NONl==>-
>-LCLID RMTID

looal-ldentltler --E identlfler
remote-identifier-list +NOID---,1

+ANY

>-SSCPID SSCP-identifler--- ONLINl-{+YBB ~LINLST~ line-name -_j-r-------..
+NO J .. 8 maximum

-{+NO)- -{+NO) >- SWNBICU DLYPBAT •----DBV--z--devlce-name
+DB . +YB8 L-- 50 maximum

>-DBVDLY . PGMDLY RJE -{
120 -{ 120 -{+NO)-+

number-of-Hoonde)-- number-of-eecond•)-- +DB

:::;~ -{+NONE
>-RJEHOST +JB82 RJELOGON \-----------• ..

+JIB3 RJE-host-si1non/loeoir-l
+RSCS

-f_ +NORKAL3 -f_ +SI.MB 3 >-PUBAUT +ALL --4------"TIXT +BLANIC
•NONI 'deecrlptlon'

Job:B,I Pllll:B,I

CUD Parameter: Specifies the name of the control unit description that is
being created.

TYPE Parameter: Specifies the type of control unit being described. Enter the
value shown under Type in the table that applies to this control unit.

Type of Control Unit Type Model

Tape control unit 3411 1 (for Model 1 3410 tape units)
2 (for Model 2 3410 tape units)
3 (for Model 3 3410 tape units)

Work station control unit 5251 2 (960 characters)
12 (1920 characters)

Work station controller •wsc *NONE

Physical unit (type 2) *PU2 0

BSC device (also for *BSC 0
RJEF)

BSC multipoint tributary *BSCT 0

MODEL Parameter: Specifies the model number of the control unit. This
number indicates to the system the features that the control unit has. (Refer
to the table in the description of the MODEL parameter of CRTDEVD
(Create Device Description) command for the differences in 5251 and 3411
device models.)

For 5251 or 3411 control units, or for physical units (type 2) for SNA, enter
one of the values shown under Model in the TYPE parameter description.
(The model number of the 3411 must be the same as the model number of
all the 3410 tape units associated with the control unit.) For the work
station controller, enter *NONE. For TYPE(*BSC), (*BSCT), or (*PU2), enter
MODEL(O).

CTLADR Parameter: Specifies the address of the 5251 or 3411 control unit,
of the System/38 work station controller (WSC), of the type-2 physical
unit, of the BSC device, or of this System/38 as a multipoint tributary
station. (Additional information about the control unit address can be
obtained from the Guide to Program Product Installation and Device
Configuration and the IBM 5250 Information Display System Planning and
Site Preparation Guide, GA21-9337 .)

CRTCUD
CUD

Command Descriptions 4-411

CRTCUD
SWITCHED

4-412

Enter a four-digit hexadecimal number, consisting of the controller station
address (digits 1 and 2) and the operational unit (OU) number of the line or
control unit (digits 3 and 4). The following table shows the valid two-digit
values used to form the complete address.

Controller Station OU Number
Type Address (Digits 1 & 2) (Digits 3 & 4)

Control unit:

3411 00 15

5251 01-FE 001, 20-23, or 60-63

PU2 00 001, 20-23, or 60-63

BSC 00 001. 20-23, or 60-63

BSCT 01-FE 20-23 or 60-63

Controller:

wsc 1 00 30

WSC2 00 70

WSC3 00 BO

WSC4 00 FO

100 is used if the control unit is attached to a switched line.
2For BSCT, must be the same as the STNADR on the line.

SWITCHED Parameter: Specifies, for 5251, PU2, and BSC control units,
whether the remote control unit has a switched line connection. (This
parameter does not apply to the 3411 tape control unit, to BSCT, or to the
work station controller.)

*NO: The control unit is not attached to a switched line.

*YES: The control unit is attached to a switched line.

The following chart shows only those parameters in this command that are
dependent on the value s'pecified in the SWITCHED parameter. The
parameters in the left column can be specified only if SWITCH ED{*NO) is
also specified; those in the right column are valid only if SWITCHED{*YES)
is specified.

SWITCHED(*NO) SWITCHED(*YES)

LINE

TELNBR1 TELNBR

INLCNN 1 INLCNN

LINLST1 LINLST

SWNBKU LCLID2

DLYFEAT RMTID2

RMTID1

LCLID1

1Valid only if SWNBKU(*YES) is also specified.
2Valid for BSC only.

I

I
\

LINE Parameter: Specifies, for 5251, PU2, BSC, and BSCT control units, the
line name of a nonswitched line (if any) that is connected to this remote
control unit. (This parameter does not apply to the 3411 tape control unit or
to the work station controller.)

*NONE: No nonswitched line is to be attached to the control unit.

line-name: Enter the name of the nonswitched line that is attached to the
control unit; the line description must have been created and the associated
line must have been varied offline before this command is entered. (The line
name must be the same as the name specified in the line description that
describes this line.)

SELECT Parameter: Specifies, for 5251, PU2, and BSC control units, whether
the modem attached to the remote control unit has the data rate select
function or whether it can operate at full speed only. (This parameter does
not apply to the 3411 tape control unit, or to the work station controller.)

*NO: The remote modem cannot operate at half speed; it can operate at
full speed only.

0 YES: The remote modem has the data rate select function and can operate
at either full or half speed.

TELNBR Parameter: Specifies the telephone number of this remote control
unit if it is associated with a switched line, or of a nonswitched line if the
switched network backup feature is used. The telephone number (1 to 16
digits long) is dialed at the System/38 site to establish a connection with
this control unit. (This parameter is required for and valid only for switched
lines and for nonswitched lines with SWNBKU(*YES) specified.) The
telephone number is:

• Sent to the autocall unit, if automatic calling is used to establish a
connection to this control unit

• Displayed to the system operator, if manual calling is used to call this
control unit

*NONE: No telephone number is specified for the control unit.

telephone-number: Enter the telephone number that is to be used to call this
control unit, using only the digits 0 through 9 and two other special
characters: the separator character and the end-of-number character. The
separator character is designated by the keyboard's apostrophe symbol, and
the end-of-number by the asterisk symbol. Refer to the /BM System/38
Guide to Program Product Installation and Device Configuration, GC21-7775
for more information regarding the use of these characters with ACE
(autocall equipment).

CRTCUD
LINE

Command Descriptions 4-413

CRTCUD
INLCNN

4-414

INLCNN Parameter: Specifies, for remote control units only, the method to
be used to make the initial connection over a switched line between
System/38 and the control unit. (This parameter applies to switched lines
and to control units that have the switched network backup feature
activated because ACTSWNBKU(*YES) is specified later on a CHGCUD
command.)

*ANS: The initial connection is made by System/38 when it answers an
incoming call from this control unit.

*CALL: The initial connection is made by a call initiated from System/38.

EXCHID Parameter: Specifies, for 5251 remote control units only, the
exchange identifier of the control unit. The control unit sends (exchanges)
its identifier to another location when a connection is established. Identifiers
must be specified for all 5251 control units attached to SDLC lines. The
eight-digit hexadecimal identifier contains three digits for the block number
and five digits for the identifier of the specific control unit.

*NONE: The control unit has no exchange identifier; it is not a 5251
control unit.

exchange-identifier: Enter the hexadecimal value, eight digits long (using the
hexadecimal digits 0 through 9 and A through F) that will identify this
control unit to System/38. For the 5251 Model 2 or 12, the value is
020000xx, where 020 is the block number and OOOxx is the control unit
identifier. The first three digits of the control unit identifier are always zeros
and xx equals the setting of the Controller Station Address switches on the
5251.

LCLID Parameter: Specifies the local identifier for identifying System/38 to
the remote BSC control unit.

*NONE: No local identifier is to be specified.

local-identifier: A string of from 2 to 15 characters for identifying
System/38 to a remote BSC control unit. If a two-character identifier is
specified, both characters must be the same. The identifier cannot contain
BSC control characters.

RMTID Parameter: Specifies a list of identifiers for remote BSC control units.
This parameter is valid for switched lines only, and is required if
SWITCHED(*YES) or if SWNBKU(*YES) is specified.

*NONE: Specifies that there are to be no remote identifiers. *NONE is
valid only for BSC control units with SWITCHED(*NO) and SWNBKU(*NO)
specified. This parameter value should not be confused with *NOID, which
is a valid remote identifier.

remote-identifier-list: Enter the identifier or a list of identifiers (32
maximum) used by remote BSC control units. If a two-character identifier is
specified, both characters must be the same. The identifier cannot contain
BSC control characters. *NOID specifies a null identifier; a null identifier can
be specified by itself or within a list of identifiers. *ANY instructs
System/38 to accept any identifier sent by a remote BSC control unit. If
*ANY is specified, it must be the last or only identifier in the list.

SSCPID Parameter: Specifies, if this control unit is to communicate using
SNA with a host system, the SSCP (system service control point) identifier
of the host system. The SSCP identifier is a 12-digit hexadecimal value,
with the first two digits being hexadecimal 05. This parameter is required
for and valid for PU2 controllers only.

ONLINE Parameter: Specifies whether the control unit is to be varied online
automatically when the Control Program Facility (CPF) is started. After CPF
is started, the Vary Control Unit (VRYCTLU) command can be used to
modify the status of the control unit.

*YES: The control unit is to be online when CPF is started.

*NO: The control unit is to be offline when CPF is started. The VRYCTLU
command must be used to put the control unit online, making it operational.

CRTCUD
RMTID

Command Descriptions 4-415

CRTCUD
LINLST

4-416

LINLST Parameter: Specifies, for switched connections only, a list of line
names that identify the lines that can be connected to this control unit. The
same line name can be used more than once. This allows the user to add
lines later by using the CHGCUD command to replace one or more of the
duplicate line names with new line names. If no names are specified, an
entry of eight null lines is the default. This parameter is valid only if
SWITCHED{*YES) or SWNBKU(*YES) is specified. Also, for each line name
specified, a line description by that name must already exist. (This
parameter does not apply to the 3411 tape control unit, to the work station
controller, or to a BSCT control unit.)

SWNBKU Parameter: Specifies whether a nonswitched modem attached to a
remote control unit has the switched network backup feature. The backup
feature is used to allow the user to bypass a brokeh nonswitched
connection by manually dialing a telephone number to establish a switched
connection. The CHGCUD command must be used to actually activate the
feature. (This parameter does not apply to the 3411 tape control unit, to the
BSCT control unit, or to the work station controller.) SWNBKU(*YES) is
valid only if SWITCHED(*NO) is specified.

*NO: The nonswitched line modern does not have the switched backup
feature.

*YES: The nonswitched modem does have the switched backup feature. To
activate the feature when the nonswitched connection is broken, specify
ACTSWNBKU{*YES) on the CHGCUD command.

Dl YFEAT Parameter: Specifies, for nonswitched lines only, whether periodic
attempts should be made to contact this control unit {to establish a delayed
connection) if the initial attempt to establish a connection is not successful.
(This parameter is valid only for 5251 work station control units.)

*NO: Only one attempt is to be made to establish a connection between
the line and the control unit.

*YES: Periodic attempts are to be made to establish a delayed connection
between the line and the control unit.

DEV Parameter: Specifies the names of one or more devices to be attached
to this control unit. Each device name must be the same as that specified
when the associated device description was created.

The following table describes the maximum number of devices that can be
attached to the various types of control units:

Maximum Number
Control Unit Type of Devices

*WSC 20

*PU2 50
5251 9

3411 4

*BSC 241

*BSCT 32

1 Maximum of one Model 0 BSC device and 23
Model 1 BSC devices.

Enter the name of each device to be attached to the control unit.

Do not use this parameter when following the normal procedure of creating
the descriptions for lines first, control units second, and devices last (using
the CRTLIND, CRTCUD, and CRTDEVD commands). Use this parameter
only when the associated device descriptions have already been created
before this control unit description.

DEVOL Y Parameter: Specifies, for BSC and BSCT only, the number of
seconds System/38 will wait while receiving WACK (wait before transmit
positive acknowledgment) or TTD (temporary text delay) sequences from the
remote device before time-out occurs.

*120: The system will wait for a delay of 120 seconds before time-out
occurs.

number-of-seconds: The number of seconds the control unit will wait before
time-out occurs.

PG MDLV Parameter: Specifies, for BSC and BSCT only, the number of
seconds System/38 will send WACK or TTD sequences to the remote
device because of delays by the System/38 application in issuing READ or
WRITE requests.

*120: The system will send delay signals for 120 seconds before time-out
occurs.

number-of-seconds: The number of seconds the control unit will continue to
send delay signals before time-out occurs.

CRTCUD
DEV

Command Descriptions 4-417

CRTCUD
RJE

4-418

RJE Parameter: Specifies, for BSC only, whether this control unit description
is to be used by the Remote Job Entry Facility (RJEF).

*NO: This control unit description is not to be used by RJEF.

*YES: This control unit description is to be used by RJEF. If RJE{*YES) is
specified with SWITCHED{*YES), at least one remote identifier must be
specified with the RMTID parameter.

RJEHOST Parameter: Specifies, for BSC only, the subsystem type of the
host to which which RJEF is connected.

*NONE: No RJEF host subsystem type is to be specified.

*RES: RJEF is connected to a VS1 /RES subsystem.

*JES2: RJEF is connected to a VS2/JES2 subsystem.

*JES3: RJEF is connected to a VS2/JES3 subsystem.

*RSCS: RJEF is connected to a VM/370 RSCS subsystem.

RJELOGON Parameter: Specifies, for BSC only, logon information for the
RJ EF host system.

*NONE: No logon information is to be specified; the control unit is not to
be used for RJEF.

'RJE-host-signon//ogon': Enter up to 80 characters of text enclosed in
apostrophes to be used as signon/logon information for the RJEF host
system.

PUBAUT Parameter: Specifies what authority for the control unit and its
description is being granted to the public. Additional authority can be
explicitly granted to specific users by the GRTOBJAUT command. (For an
expanded description of the PUBAUT parameter, see Appendix A.)

Note: *NORMAL should be specified so that users who are authorized to
use work stations attached to this control unit are not hindered from doing
so because they might not also have been given explicit authority for the
control unit.

*NORMAL: The public has only operational rights for the control unit.

*ALL: The public has complete authority for the control unit.

*NONE: The public cannot use the control unit.

TEXT Parameter: Lets the user enter text that briefly describes the control
unit and its location. (For an expanded description of the TEXT parameter,
see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

Control unit description work sheets are provided at the back of the Guide to
Program Product Installation and Device Configuration that you can use to
collect the information needed before creating the control unit descriptions.
Refer to that publication for information about device configuration, system
installation procedures, and how to use the work sheets.

CRTCUD CUD(WSC1) TYPE(*WSC) MODEL(*NONE) +
CTLADR(0030) PUBAUT(*NORMAL) +
TEXT('Work station controller 1 ')

This command creates a description for a work station controller (*WSC).
Because it is the basic work station controller, the address is 0030. Normal
public authority is granted for the control unit description.

CRTCUD CUD(NYC1) TYPE(5251) MODEL(12) +
CTLADR(0100) SWITCHED(*YES) +
SELECT(*YES) TELNBR(2866894) +
INLCNN(*ANS) EXCHID(02000001) LINLST(NYC) +
TEXT('NYC sales branch 1, Room 308')

This command creates a description for a control unit named NYC 1. The
control unit is a 5251 Model 12 and is at address 0100. The control unit is
on a switched line at telephone number 286-6894. Connection to the
control unit is initiated by an incoming call to System/38.

CRTCUD CUD(S370CU) TYPE(*PU2) MODEL(O) +
CTLADR(0020) SSCPID(050000000080) LINE(SECLINE)

This command creates a description for a control unit named S370CU that
enables System/38 to function as a secondary communications station. The
control unit is a physical unit (type 2)-which is a host system. The SSCP
identifier of the host system is 050000000080. The address of the control
unit is 0020, where 00 is the controller station address and 20 is the OU
number of the line description SECLINE.

CRTCUD
TEXT

Command Descriptions 4-419

CRTDEVD

4-420

CRTDEVD (Create Device Description) Command

The Create Device Description (CRTDEVD) command creates a device
description for the specified device and describes all of the features of the
device to the system. The device description is stored as part of the internal
system and appears as though it exists in the QSYS (system) library.

Each device attached to the system must have a device description before
the system can use the device. Some device descriptions, such as QDKT
and QCONSOLE, are predefined by IBM and are shipped with the system.

For devices that require a line description and/or control unit description,
this command should be used to create each device description after the
associated line description and control unit description are created for the
line and control unit associated with the device. Also, the device description
for each remote printer should be created before it can be referenced by the
device description for its associated display station. If the descriptions are
created out of sequence, the system rejects any commands referring to
names of descriptions not yet created.

Restrictions: (1) If the device is to be attached to a control unit, the control
unit must first be varied offline. (2) If the CRTDEVD command is used to
change the name and/or address of a work station printer, the CHGDEVD
command must be used to incorporate the new attribute(s) in the device
description of each display station associated with the printer. (If the
address of the printer is changed, the CHGDEVD command makes the new
address association when the new (or unchanged) printer name is specified
in the PRINTER parameter.) (3) Only one device description may be created
per BSC line or controller. (4) No more than 50 devices can be assigned per
control unit.

The following table shows the maximum number of devices that can be
attached to a single control unit of a specified type:

Maximum Number
Control Unit Type of Devices

*BSC 1

3411 4

5251 9

*WSC 20

*PU2 50

CBTDBVD--- DBVD derioe-deeoriptlon-n----DBVADB derioe-addreH--------........

>-DBVTYPB-derioe-t;ype--- llODBL madel-number------------------·

Optional

-{
•Jl'ORB -{•YBS'\

>- CTLU 0011trol-unlt-n._)-----OBL1RB •Jl'O Jw-------------11'

© I 40 (dlebtte read)}
1 - 15 (tape write) ~

>-BBTJD' 10 (tape read) •-------------------+lo
error-t;n>e number-ot-retrtea

'-----2 mu:lmwn-------'

I 50 (dtelmtte read) }

>-TBBBSBOLD 5 (tape read) DBOP .. ~1- 32 (tape write~ -{•TIIB)
error-t7pe error-threehold •Jl'O

2 maximum

-{
•Jl'ORB:J- -{ QnBOPIULIBL

>-PIUBTBR llSGQ -{ •LIBL y·---..
derioe-name -H ... e-queue-n- •

• Ubrary-n-

-{
.•LJBL

>-PBTillG prlnt-:tmqe-n-) II'

.llbrary-n-

-{
QBTSPBT.•LIBL -{•Jl'ORB

>-PBTPILB •LIBL WSCADB
pr1nt-nie-name-{ • Y- 11'8C-derioe-addro .. Y

.llbra1'7-D.-

-{•Jl'ORB ----ALWBLJf-{•YBB'\•------•lo
>-YSCIBD W'SC-dleplq-bTboard-identlfter) •NO J

-€SBCJ- -f_ •Jl'03- -{•BLAJl'IC=>->- CORTJI' PUBAUT ...U. TUT
PBill •Jl'OJl'B 'dHorlption'

@ Applle• to dlelmtte and tape device• cmJ7. The default Talun tor BBTlD' are 1 and 40 tor
dtelmtte, and 1 and 20 tor tape.

@•SBC is the default for DBVTYPB(•BSC). •PRiii is the default for DBVTYPB(•BSCT).

l Job:B,I PIJDIB,I

CRTDEVD
(Diagram)

Command Descriptions 4-421

CRTDEVD
DEVD

4-422

DEVD Parameter: Specifies the name of the device description that is being
created. The name of an existing device description cannot be specified.
For example, QCONSOLE cannot be used, because it is already used as the
name of the system console.

DEVADR Parameter: Specifies a six-digit hexadecimal number that identifies
the physical address of the device. Additional information about this
address can be obtained from the Guide to Program Product Installation and
Device Configuration and the IBM 5250 Information Display System Planning
and Site Preparation Guide, GA21-9337.

For work stations attached to the work station controller (locally attached)
and for switched BSC devices, this address must be 000000. Note that the
actual work station device address is specified in the WSCADR parameter,
and it is the value displayed by the DSPDEVD command as the device
address.

The physical address of the device contains a combination of three values:

• Unit (device) address. Digits 1 and 2 must specify:
- 00, if the device is directly attached.
- The unit address, if the device is attached to a control unit, a

communication line, or both.
- The logical unit address used by the host system (contained in the

SNA destination address field), to address System/38, if the device
and SNA are used by System/38 to communicate with a host system.

• Controller station address. Digits 3 and 4 must specify:
- 00, if the device is not attached to both a control unit and a

communications line.
- The controller station address, if the device is attached to both a

control unit and a communications line. (For example, a 5251 Model
11 attached to a 5251 Model 12 control unit.)

• OU number (for non-work-station devices). Digits 5 and 6 must specify:
- 00, if the device is attached to a line and a control unit, when a

switched line connection is used.
- The line OU (operational unit) number, if the device is attached to a

nonswitched line and a control unit.
- The device OU number, if the device is directly attached.
- The control unit OU number, if the device is attached to a control unit

only.

Device

Enter the appropriate values that specify the correct configuration and
addresses. The following chart shows the possible values for this
parameter:

Controller Station
Unit Address Address OU Number
(Digits 1 & 2) (Digits 3 & 4) (Digits 5 & 6)

CRTDEVD
DEVD

BSC For BSC devices 00 00 00, or 20-23, 60-63

For RJE devices: 00 00, or 20-23, 60-63

Console input 01
Console output 02
Reader 1 11
Reader 2 12
Reader 3 13
Printer 1 21
Printer 2 22
Printer 3 23
Punch 1 31
Punch 2 32
Punch 3 33

BSCT 001 01-FE 20-23 or 60-63

PLU1 00-FF 00 00, or 20-23, 60-63

Console 00 00 02

Diskette magazine drive 00 00 12

MFCU 00 00 19

First system printer

3262 or 5211 00 00 18

3203 00 00 40

Second system printer

3262 or 5211 00 00 58

3203 00 00 40 or 412

Tape unit 00-03 00 15

Remote work station 00, or 02-093 01-FE 00, or 20-23, 60-63

WSC work station (see 004 004 004

WSCADR parameter)

1Any hexadecimal digits can be specified for the BSCT unit address, except for hex FE, 7F, or BSC control
characters (control character hex 20 may be specified).

21f only one 3203 is installed on the system, its OU number is always 40, regardless of whether it is
installed as the first or second system printer. If two 3203s are on the system, the OU number of the
second 3203 is 41.

3Any 5251 Model 2 or 12 control unit has a unit address of 00. Any cluster-attached work station has a
unit address of 02-05 (if part of the first cluster) or 06-09 (if part of the second cluster).

4For work stations attached to a work station controller, the DEVADR parameter must have all zeros; the
actual address of the connected device is specified in the WSCADR parameter.

Command Descriptions 4-423

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

CRTDEVD
DEvrYPE

4-424

DEVTYPE Parameter: Specifies the type code for this device. Enter one of
the following four-character type codes that describes this type of device:

Type Type
Code Device Name Code Device Name

3203 Printer (system) 5291 Display Station

3262 Printer (system) 5292 Color Display Station

3410 Magnetic Tape Unit 5424 Multi-Function Card Unit

5211 Printer (system) 72MD Diskette magazine drive

5224 Printer (work station) PLU1 Primary logical unit,

5225 Printer (work station) type 1 (for SNA)

5251 Display Station *BSC All SSC-supported IBM

5252 Display Station equipment including RJEF

5256 Printer (work station) *BSCT This System/38 as a BSC

multipoint tributary station

Page of SC2t-7731-5
Issued 10 September 1982
By TNL: SN21-8291

MODEL Parameter: Specifies the model number of the device. This number
indicates to the system the operational capabilities of the device. Enter one
of the following model numbers (containing 1 to 4 characters) thet matches
the device.

Device
Type Description Model Number

3203 Printer (system) 5 (1200 lines per minute)

3262 Printer (system) A1,81 (650 lines per minute)
(see Note 1)

3410 Tape unit 1, 2, or 3
(see Notes 2 and 3)

5211 Printer (system) 2 (300 lines per minute)

5224 Printer (work station) 1 (137 lines per minute)
2 (240 lines per minute)

5225 Printer (work station) 1 (280 lines per minute)
2 (400 lines per minute)
3 (490 lines per minute)
4 (560 lines per minute)

5251 Display Station 1 (960 characters)
11 (1920 characters)

5252 Dual Display Station 1 (960 characters each)

5256 Printer (work station) 1 (40 characters per second)
2 (80 characters per second)
3 (120 characters per second)

5291 Display Station 1 (1920 characters)

5292 Color Display Station 1 (1920 characters)

5424 Multi-Function Card Unit A1, A2, K1, K2, or K3
(see Note 4)

72MD Diskette magazine drive 1001

PLU1 Primary logical unit, type 1 0
(for SNA)

BSC All devices 0

BSC/RJE All devices 1

BSCT All devices 0

Notes:
1. Two 3262 Model A1 Printers cannot be attached to System/38. Also if a

3262 Model 81, a 5211, or a 3203 is already attached and a 3262 Model
A 1 is to be added, it must be installed as the first printer and the device
address of the original printer must be changed to that of a second
printer.

2. All 3410 tape· units associated with a 3411 tape control unit must have
the same model number as that of the control unit.

CRTDEVD
MODEL

Command Descriptions 4-425

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

CRTDEVD
CTLU

4-426

3. The following are the characteristics of the 3410 models:

3410 Characteristics Model 1 Model 2 Model 3

Tape speed (in inches and 12.5 in 25 in 50 in
millimeters per second) 317.5 mm 635 mm 1270 mm

Data rate:

1600 bits/inch } (standard 20 kb/sec 40 kb/sec 80 kb/sec
(63 bytes/mm) rate)

800 bits/inch 10 kb/sec 20 kb/sec 40 kb/sec
(37.5 bytes/mm)

Read access time (in 15 ms 12 ms 6 ms
milliseconds)

4. The following are the characteristics of the 5424 MFCU:

5424 Characteristics

Speed (in cards per Models A1, K1,
minute) for: and K2 Models A2 and K3

Read 250 500

Punch (print or punch/print 3 60 120
lines)

Print (4 lines) 48 96

CTLU Parameter: Specifies the name of the control unit to which the device
is attached. The control unit name must be the same as the name specified
in the control unit description. This parameter is valid only if this is the
device description of a 5251, 5252, 5291, or 5292 display station, a
5224/5225/5256 Printer, a 3410 tape unit, secondary logical unit, or a BSC
or BSCT device.

*NONE: The device is not attached to a control unit.

control-unit-name: Enter the name of the control unit (which must be varied
offline before this command is executed) to which this display, printer, tape,
PLU1 or BSC device is attached.

ONLINE Parameter: Specifies whether the device is to be varied online
automatically when the Control Program Facility (CPF) is started. After CPF
is started, the Vary Device (VRYDEV) command can be used to modify the
status of the device.

*YES: The device is to be online when CPF is started.

*NO: The device is to be offline when CPF is started. The VRYDEV
command must be used to put the device online, making it operational.

RETRY Parameter: Specifies, for diskette and tape data errors only, the
number of times the system should attempt to recover from a data error
when data is read or written. The system operator is notified if the device
cannot recover from the data error in the specified number of retries.

If this parameter is specified, the error type and retry values must both be
specified. If this parameter is not specified, the default error type is .! (for
diskette or tape read errors) and the default value for the number of retries
is one of those shown in the following chart:

Applicable
Number of Retries Error Threshold

J
Error Type Device Range Default Range Default

1 (read error) { Diskette 40-80 40 1-100 50

Tape 10-20 10 1-10 5

2 (write error) Tape 15-30 15 1-64 32

error-type number-of-retries: Enter the type code followed by the
maximum number of retries that the system can have to recover from the
specified device data error.

THRESHOLD Parameter: Specifies, for diskette and tape data errors only, the
error threshold value that is to be used to determine when an entry should
be written to the error log to indicate data errors. The first occurrence of
the error is always logged. This parameter is used to specify the number of
times the error can occur before the error is logged again. For example, if
the threshold for tape read errors was set to five, and 10 errors have
occurred, the error would have been logged three times (on the first, fifth,
and tenth errors).

error-type error-threshold: Enter the error type code followed by a valid
error threshold value, after which the same error message is repeated in the
error log. The values that are valid for each error type (and the default
values) are shown in the RETRY parameter chart. Both values must be
entered for each type of data error being specified.

CRTDEVD
ONLINE

Command Descriptions 4-427

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

CRTDEVD
DROP

4-428

DROP Parameter: Specifies, for 5251, 5252, 5291, and 5292 display stations
attached to a control unit that is on a switched line, whether the line is to
be disconnected by the system when all work stations on the line are no
longer being used. When multiple work stations are attached to the same
control unit, the line is disconnected only if: (1) the device description for
this device specifies DROP(*YES) or DROP(*YES) is specified on the
SIGNOFF command when the user signs off at the device; (2) all of the
other display stations connected to the control unit have signed off and are
not in use; and (3) all 5224/5225/5256 Printers attached to the control unit
are not in use.

The value specified in the device description can be overridden by a user
signing off at the device if he specifies the DROP parameter on the
SIGNOFF command.

*YES: The switched line to the control unit to which this device is attached
is to be disconnected when this device and all the other attached devices
are no longer in use.

*NO: The switched line is not to be disconnected from the control unit
when all of its attached devices are no longer in use.

PRINTER Parameter: This parameter is valid only when this CRTDEVD
command is used to describe a 5251, 5252, 5291, or 5292 display station.
It specifies the device name of the 5224/5225/5256 Printer to be
associated with the display device. The device description of the work
station printer named in this parameter must have already been created in
another CRTDEVD command and must currently exist on the system. Both
the printer and display must be attached to the same control unit. The
relationship created by this parameter is used when a related printer (PRINT
keyword in DDS) is referred to in a device file used to access this work
station.

Note: A printer attached to a remote work station must have the Expanded
Function feature to support this parameter's function.

*NONE: No printer is to be associated with this display.

device-name: Enter the name of the printer to be associated with this
display.

MSGQ Parameter: Specifies, for 5224/5225/5256 Printers only, the message
queue to which operational messages for this device are to be sent.

QSYSOPR: Messages are to be sent to the QSYSOPR message queue.

qualified-message-queue-name: Enter the qualified name of the message
queue to which operational messages are to be sent. (If no library qualifier
is given, *UBL is used to find the queue.)

PRTIMG Parameter: Specifies, for system printer device descriptions only,
the qualified name of the print image that is to be the standard print image
for the 3203, 3262, or 5211 Printer. (If no library qualifier is given, *UBL is
used to find the print image.)

PRTFILE Parameter: Specifies an alternate print file to be used when no
associated work station printer exists or when an error occurs during an
attempt to use the work station printer.

QSYSPRT: The print processing will be performed by the system printer
device file.

qualified-print-file-name: Enter the name of the printer device file that is to
perform default system printing. (If no library qualifier is specified, *UBL is
used to locate the device file.)

WSCADR Parameter: Specifies the address of a device that is attached to a
work station controller (WSC). This address must be specified only when
the device being described is attached to a WSC. For remote work stations,
this address must be 00 00 00. Additional information about the first two
parts of this address can be obtained from the Guide to Program Product
Installation and Device Configuration.

The address specified in this parameter is made up of six digits (xxyyzz), as
follows:

• xx (00-19): Specifies the unit address assigned to the device by the
customer. The unit address of each device attached to a WSC must be
unique. The devices attached to a WSC should be numbered
consecutively in ascending sequence.

• yy (00-63): Specifies the number of the WSC connector (identified on
the WSC connector panel at the rear of the System/38 system unit) to
which this device is connected. The valid values are 00-15 for WSC1,
16-31 for WSC2, 32-47 for WSC3, and 48-63 for WSC4.

• zz (00-06): Specifies the work station address established by the switch
settings of the address switches on the device. Each work station
address must be unique among the devices attached to the WSC via a
particular WSC port. The 5252 Dual Display Station is recognized as two
work stations; therefore, the primary work station address will be an even
number (such as 00 or 02), and the secondary address will default to the
next consecutive odd number (such as 01 or 03). For more information
about the work station address, refer to the description of the address
switches in the IBM 5250 Information Display System Planning and Site
Preparation Guide, GA21-9337.

*NONE: The device is not attached to a work station controller.

work-station-controller-device-address: Enter the six-digit device address in
the format xxyyzz.

CRTDEVD
PRTIMG

Command ·Descriptions 4-429

CRTDEVD
WSCKBD

4-430

WSCKBD Parameter: Specifies, for display work stations, the type of
keyboard on the device. This parameter is used only for display devices that
are attached to the work station controller (WSC). The identifier specified
consists of 4 characters (yzzz), as follows:

• y (T, D, or P): Specifies a typewriter keyboard (T), a data entry keyboard
without a Proof Feature (D), or a data entry keyboard with the Proof
Feature (P).

• zzz: Specifies a character combination (from the table of keyboard
identifiers shown later) to identify the keyboard. The last character
indicates whether the character set is the basic set (B) or multinational
set (I, for international).

For example, WSCKBD(TUSB) indicates a typewriter keyboard using the
basic United States character set.

The maximum number of devices that can be supported on one WSC is
dependent on the number of different keyboard types used with the display
devices attached to that WSC. The following chart shows the maximum
number of devices (which includes both work station displays and printers)
that can be supported on one WSC for a given number of keyboard types
used by those devices.

Number of Maximum Number of Maximum
Keyboard Number of Keyboard Number of
Types Devices Allowed Types Devices Allowed

1-2 20 11-12 15

3-4 19 13-14 14

5-6 18 15-16 13

7-8 17 17-18 12

9-10 16 19-20 11

Data entry keyboards with and without the proof feature (P and D) that are
in the same language group are considered to be the same keyboard type.
(For example, PUSB and DUSB are considered one type.)

If the device maximum is exceeded, then when the VRYCTLU command is
used to vary on the control unit, an error message is sent to the system
operator.

*NONE: The device being described in this command is not a display work
station or is a display work station without a keyboard attached.

CRTDEVD
WSC-disp/ay-keyboard-identifier: Enter the four-character identifier that WSCKBD
specifies the type of keyboard and the language group to be used with the
work station display.

Keyboard Identifiers

Basic Multinational
Country (96-Character Set) (188-Character Set)

Austria I Germany AGB AGI

Belgium BLB BU

Brazil BAB BAI

Canada (French) CAB CAI

Denmark DMB DMI

Finland FNB FNI

France (Azerty) FAB FAI

France (Qwerty) FOB FOi

International INB INI

Italy ITB ITI

Japan (English) JEB JEI

Japan (Katakana) KAB

Norway NWB NWI

Portugal PAB PAI

Spain SPB SPI

Spanish Speaking SSB SSI

Sweden SWB1 SWl1

United Kingdom UKB UKI

United States USB USI

United States ASCII UAB2 UAl2

1Typewriter and data entry with proof feature keyboards only.
2Typewriter keyboard only.

Command Descriptions 4-431

Page of SC21-7731-5
Issued 10 September 1982
By TNL: SN21-8291

CRTDEVD
ALWBLN

4-432

ALWBLN Parameter: Allows users to suppress the (software-controlled)
blinking cursor. (For 5291 and 5292 display devices, allowing the cursor to
blink may distract the operator.)

*YES: Allows the cursor to blink for the 5251, 5252, 5291, and 5292
display devices.

*NO: The blinking cursor is to be suppressed.

CONTN Parameter: Specifies which BSC station is primary and which is
secondary, in order to resolve contention for BSC point-to-point and
multipoint lines.

*SEC: Specifies the local System/38 as the secondary station, which will
yield to the other station when line contention occurs. *SEC is the default
for DEVTYPE(*BSC).

*PRIM: Specifies the local Sysfem/38 as the primary station. *PRIM is the
default for DEVTYPE(*Bscn.

PUBAUT Parameter: Specifies what authority for the device and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the GRTOBJAUT command. (For
an expanded description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the device.

*ALL: The public has complete authority for the device.

*NONE: The public cannot use the device.

TEXT Parameter: Lets the user enter text that briefly describes the device and
its location. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

Various device description work sheets are provided at the back of the
Guide to Program Product Installation and Device Configuration that you can
use to collect the information needed before creating the device
descriptions. Refer to that publication for information about device
configuration, system installation procedures, and how to use the work
sheets.

CRTDEVD DEVD(DP1) DEVADR(OOOOOO) DEVTYPE(5251) +
MODEL(11) CTLU(WSC1) PRINTER(DP2) +
WSCADR(000001) WSCKBD(PUSB) +
PUBAUT(*NONE) TEXT('Programmer"s +
display work station - Dept 522')

This command creates a description for a 5251 Display Station named DP1,
which is attached to the work station controller. The work station has the
US Basic (96-character set) keyboard with the proof feature included with
the data entry keyboard. A work station printer (named DP2) is associated
with this display work station. No public authority is granted to this device
description and device.

CRTDEVD DEVD(NYC2) DEVADR(000120) DEVTYPE(5251) +
MODEL(11) CTLU(NYC1) PRINTER(NYC3) +
TEXT('NYC sales Br 1 display work station')

This command creates a description for a 5251 Display Station named
NYC2, which is attached to the remote control unit NYC1. A work station
printer (named NYC3) is associated with this display work station.

CRTDEVD DEVD(PRTR1) DEVADR(000040) DEVTYPE(3203) +
MODEL(5) PRTIMG(HN)

This command creates a description for a 3203 Model 5 Printer. The device
description is named PRTR1, and it has a device address of 000040,
indicating that it is the first 3203 Printer attached to the system. The
standard print image for PRTR1 is to be HN.

CRTDEVD
(Examples)

Command Descriptions 4-433

CRTDFUAPP

4-434

CRTDFUAPP (Create DFU Application} Command

The Create DFU Application (CRTDFUAPP) command creates an executable
DFU application from utility definition source statements or from an existing
definition.

The Data File Utility is part of the IBM System/38 Interactive Data Base
Utilities Licensed Program, Program 5714- UT1 . For more information on the
Data File Utility, refer to the IBM System/38 DFU Utility Reference Manual
and User's Guide, SC21-7714.

-(
.QGPL

CRTDFUAPP -- APP application-name)-----------• ..
. library-name

Required

Optional

QUDSSRC.+LIBL
>- SRCFILE +SAVDFN----------y---------------..

source-file-name-(.+LIBL ·

.libracy-name

-(
+APP

>-SRCMBR)------------------. ..
source-rue-member-name

>-OPTION

•NOSRC

•NOSOURCB +GEN ~· +FRCSAV mlll\, ________ .,~
+NOGEN_,,-\._ +NOFRCSAV~ •SRC

•SOURCB

-(
+NOLIS:x +NODUM:r® -(•USBR) >- GENOPT .· USRPRF •---------..

•IJST +DUMP +OWNBR

>- PUBAUT •ALL.------ TEXT +BLANK --~------f_ 11<NORMAL3 -f_ •SAME

•NONE 'description' _/

Job:B,I P1m:B,I

APP Parameter: Specifies the name of the application you are creating and
specifies the library in which it is to be stored. (If no library name is given,
the application is stored in the general-purpose library QGPL) The
application name must be unique in the library where it is stored. No
program or file in the library can have the same name.

SRCFILE Parameter: Specifies the application or the name of the source file
that contains the definition of the application. (If no library qualifier is
specified, the library list *UBL is used to find the file.)

QUDSSRC: When IDU is distributed by IBM the QUDSSRC source file is
provided in the library QIDU.

"'SAVDFN: The definition of the application is saved in the application
specified in the APP parameter, rather than in a source file. If *SAVDFN is
specified, the Retrieve DFU Application (RTVDFUAPP) command is not
used.

source-file-name: An existing source file other than the provided QUDSSRC.

Note: The CRTDFUAPP command ignores overrides to source files that
contain UDS statements.

SRCMBR Parameter: Specifies the name of the source member that contains
the definition of the application.

*APP: The definition of the application is in a source member that has the
same name as the name specified in the APP parameter.

source-file-member-name: The definition of the application is in a source
member that has a name that is different from the name in the APP
parameter.

OPTION Parameter: Specifies whether a listing of the source UDS is printed;
specifies whether an executable application is actually created, or whether
the source UDS is only checked for errors; specifies whether service
information is to be printed. Select one value from each of the following
groups: *SOURCE and *NOSOURCE; *GEN and *NOGEN; *NODUMP,
*DUMP, and *EXCDUMP; *NOTRACE and *TRACE.

*NOSOURCE or *NOSRC: The *NOSOURCE and *NOSRC values are
equivalent. When you specify *NOSOURCE or *NOSRC, DFU does not print
a listing of the source UDS; however, DFU does print a listing of errors
found in source UDS.

*SOURCE or *SRC: The *SOURCE and *SAC values are equivalent. When
you specify *SOURCE or *SAC, DFU prints a listing of the source UDS.

*GEN: Create an executable application.

*NOGEN: Do not create an executable application; only perform error
checking.

CRTDFUAPP
SRCFILE

Command Descriptions 4-435

CRTDFUAPP
GENOPT

4-436

*FRCSAV: Specifies that the UDS (possibly in a nonexecutable
application) is to be saved, regardless of whether the application was
created successfully. If *FRCSAV is not specified, the UDS is not saved if
the application fails to create.

*NOFRCSAV: Specifies that the UDS will not be saved if the application
fails to be created.

GENOPT Parameter: Specifies the printing of IDU program listings created
for your application. The listings may be required if a problem occurs in
IDU.

USRPRF Parameter: Specifies under which user profile the application is to
be executed.

*USER: The user profile for the application user is in effect when the
application is executed.

*OWNER: The user profiles of both the application owner and the
application user are in effect when the application is executed.

To execute a DFU application, the user must be authorized to the CHGDTA
and DSPDTA commands, the generated application (file and program
objects), the installed DFU device files (QDTALOG, QDTAPRT, and
QDFUSVCF), the data base file associated with the application, and any
libraries that contain these objects. Authority to most of these objects is
granted to all users unless restricted by your installation. Normally, you will
only need to consider the user's authority to the application and associated
data base file.

PUBAUT Parameter: Specifies what authority over the application is extended
to all system users. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: All system users can execute the application, but all users
cannot change the application.

*ALL: All system users have complete authority over the application.

*NONE: All users but the owner are restricted from the application. The
owner can subsequently grant some or all rights to some or all other users.
Because a DFU application consists of two objects (FILE and PGM), each
having the same name assigned to the application, you must issue two
commands to grant authority to the application.

TEXT Parameter: Lets you specify a description of the application.

*SAME: Copy the description from the original definition.

*BLANK: There is no description of this application.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTDFUAPP APP(TEST1} SRCFILE(FILE1) SRCMBR(TEST2) +
TEXT('Test application for TEST1')

This command creates an application named TEST1 using source member
TEST2, which resides in source file FILE1.

CRTDFUAPP
TEXT

Command Descriptions 4-437

CRTDFUDEF

4-438

CRTDFUDEF (Create DFU Definition) Command

The Create DFU Definition (CRTDFUDEF) command begins the prompting
sequence for interactive definition of a DFU application. Your responses to
the prompts are used to create a DFU application.

The Data File Utility is part of the IBM System/38 Interactive Data Base
Utilities Program Licensed Program Product, Program 5714-UT1. For more
information on the Data File Utility, refer to the IBM System/38 DFU Utility
Reference Manual and User's Guide, SC21-7714.

-(
.QGPL

CRTDFUDEF---APP application-name)-----------..
• library-name

-(
.•UBL

>-FILE data-base-file-name ·)----..!.'------------_..,
.library-name

•NOSRC

•NOSOURCB

Required

Optional

>-OPTION -(
•NOUS:x •NODUM:) ®

GENO PT ~-----+ ..
ll<SRC +LIST •DUMP

•SOURCB

-(
•UBER)- -f_•NOR3- -(*BLANIC:J->-USRPRF PUBAUT •ALL TEXT

•OWNBR •NONB 'description'

.Job:I P1m:I

APP Parameter: Specifies the qualified name of the application being defined
and the library in which it is to be stored. (If no library name is given, the
application is stored in the general-purpose library QGPL.)

FILE Parameter: Specifies the name of an existing data base file with record
formats that will be referred to by the application you are defining. The file ·
is defined by DDS (see the CPF Reference Manual-DDS). (If no library
qualifier is specified, *UBL is used to find the file.)

OPTION Parameter: Specifies whether a listing of the UDS (utility definition
source) statements is to be printed, which may be helpful if problems occur.

*NOSRC or *NOSOURCE: Specifies that DFU is not to print a listing of
the UDS. The *NOSRC and *NOSOURCE values are equivalent.

*SRC or *SOURCE: Specifies that DFU is to print a listing of the UDS. The
*SRC and *SOURCE values are equivalent.

GENOPT Parameter: Specifies whether the IOU program listings for your
application are to be produced. These listings may be helpful if a problem
occurs.

*NOLIST: Specifies that an internal representation of the application
program is not to be printed.

*LIST: Specifies that an,,internal representation of the application program is
to be printed.

*NODUMP: Specifies that the application program template is not to be
printed.

*DUMP: Specifies that the application program template is to be printed.
*DUMP should be specified only if *LIST has been specified.

USRPRF Parameter: Specifies a user profile under which the application is to
be executed. This parameter allows a programmer to define a DFU
application for someone who does not have full authority over the data base
file that the application reads.

*USER: The user profile of the application user is in effect when the
application is executed.

*OWNER: The user profiles of both the application owner and the
application user are in effect when the application is executed.

When you create an application that is to be used by someone else, you
must authorize the user for the use of the application and any objects
associated with the application. You can grant each user specific rights to
such objects. By specifying USRPRF(*OWNER) when an application is
created, you can permit a user to temporarily assume your authority to use
objects associated with the application.

PUBAUT Parameter: Specifies what authority over the application is extended
to all system users. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: All system users can execute or read the application, but not
all users can delete the application.

*ALL: All system users have complete authority over the application.

*NONE: All users but the owner are restricted from using the application.
Of course, the owner can grant rights to other users.

CRTDFUDEF
GENOPT

Command Descriptions 4-439

CRTDFUDEF
TEXT

4-440

TEXT Parameter: Enter a brief description of the application.

*BLANK: There is to be no description of the application.

'description': Enter no more than 50 characters, enclosed in apostrophes, to
describe the application.

Example

CRTDFUDEF APP(TEST1) FILE(FILE1) +
TEXT('Create application for TEST1')

This command begins a prompting sequence which allows you to create an
application named TEST1 in library QGPL. Your responses to the prompts
define TEST1. Application TEST1 uses data from the data base file FILE1.
No UDS or internal representations of TEST1 will be printed. Any system
users can execute or read TEST2, but only the owner of the application can
delete it.

CRTDKTF (Create Diskette File) Command

The Create Diskette File (CRTDKTF) command creates a diskette device file.
The device file contains the file description, which identifies the device to be
used and specifies the spooling requirements; the device file does not
contain data. The diskette device file is used to read and write records on
diskettes that are in the diskette device and that have been initialized in the
basic, H or I exchange format. The same device file can be used for both
input and output operations.

Note: This command is not to be used to create device files for use in
save/restore operations. User-created device files are not needed for
save I restore operations.

All the information in the diskette file description is contained in the
command that creates it; there is no DDS (data description specifications)
for diskette device files. The diskette file has only one record format for
input/ output operations. The record format consists of one character field
containing the input data retrieved from the device or the output data to be
written to the device. The program using the device file must describe the
fields in the record format so that the program can arrange the data
received from or sent to the device in the manner specified by the diskette
file description.

The CHGDKTF or OVRDKTF command can be used in a program to change
or override the parameter values specified in the diskette file description.
Each changed value in the device file remains changed after the program
ends. Each overridden value remains altered only for the execution of the
program (unless the override is deleted by a DLTOVR command); once the
program ends, the original parameter values specified for the diskette file
are used. Override commands must be executed before the diskette file to
be affected is opened for use by the program.

CRTDKTF

Command Descriptions 4-441

CRTDKTF
(Diagram)

4-442

-(
.QGPL ®

CBTDDP ----PILI di81attte-dev:loe-fl.le-name)----------•
.libraey-namo

Required

Optional

-(
•NO:NB ~ -<;;NONB

>- DBV device-name J--- VOL vol'Um/8-identitl..J

150 maximum

..

-(
+NONE

>- LABBL data-rue-label)•--------------------------••

Select one of lbe follawtns: ~•PIRST ~ •LAST
>- LOC _..., •K12 •81 •812 .CURRBNT ----~ -<r--- •UAP }

•M1 •82 •823 etartiq-dl81attte _/ •ONLY
•M2 ,,.S3 •8123 -poaition endiq-diBlattte _/

-poaition

..

>- PJLBT!PB . BXCHTYPB +BASIC CODB -----+!lo -(•DATA)- ~•ST~ -(+BBCDJ:)

•SRC • H •.ASCII
•I

>-CRTDA.TB BXPDATB •PBRK ----~----------· -(
+NONB =>----- -f_ +NONB

creation-date expiration-date_/

-(
•TBS)- -(QDD.•IJBL

>-SPOOL OUTQ -(•LIBL---y•----•llo
•NO output-queue-name •

.Iibrar;y-name

-f_ ..rOBBND~
SCBBDULB •PILBBND ---'----------·

•IMMBD

>-BOLD -(•NO 1111\,, ___ S.AVB -(•NO 1111\,, __________________ ..

•TBSJ •TBSJ

>-WAITPJLB #CLS · -f_ •IJIKBD

number-of-•-nd•)

SBABB -(•NO 1111\---------1'
•TBSJ

-f_ •N083-- -(•BJ.All')[::>-->- PUBAUT •ALL TBXT
•NONB 'deecriptlon•

J .rob:B,I Pcm:B,J

FILE Parameter: Specifies the qualified name by which the diskette device file
being created is to be known. If no library qualifier is given, the file is
stored in OGPL. (If the file is to be used by an HLL program, the file name
should be consistent with the naming rules of that language; otherwise, the
file must be renamed in the program itself.)

DEV Parameter: Specifies the name of the diskette device that is to be used
with this diskette device file to perform input/ output data operations. The
device name of the IBM-supplied diskette device description is ODKT.

*NONE: No device name is to be specified. The name of the diskette
device must be specified later in the CHGDKTF or OVRDKTF command, or
in the HLL program that opens the file.

device-name: Enter the name of the device that is to be used with this
diskette device file. The device name must already be known on the system
via a device description before this device file is created.

VOL Parameter: Specifies one or more volume identifiers of the diskettes
(either in magazines or in slots) to be used by this device file. The diskettes
(volumes) must be mounted on the device in the same order as the
identifiers are specified here; a message is sent to the system operator if
they are not. The identifiers are matched, one by one, with the diskette
locations specified in the LOC parameter. (For an expanded description of
the VOL parameter, see Appendix A.)

*NONE: The diskette volume identifiers are not specified for this file. They
can be supplied before the device file is opened, either in the OVRDKTF (or
CHGDKTF) command or in the HLL program. Otherwise, no volume
identifier checking is performed.

volume-identifier: Enter the identifiers of one or more volumes in the order
in which they are to be mounted and used by this device file. Each identifier
can have 6 alphameric characters or fewer.

LABEL Parameter: Specifies the data file label of the data file on diskette that
is to be used with this diskette device file. This data file is stored in a label
in the volume label area of the diskette. For input files (diskette input to
system), it specifies the identifier of the file that exists on the diskette. For
output files (system output to diskette), the label specifies the identifier of
the file that is to be created on the diskette. (For an expanded description
of the LABEL parameter, see Appendix A.)

*NONE: The data file label is not specified. It must be supplied before the
device file is opened, either in the CHGDKTF (or OVRDKTF) command or in
the HLL program.

data-file-label: Enter the identifier (8 characters maximum) of the data file to
be used with this diskette device file. (See Appendix A for details.)

CRTDKTF
FILE

Command Descriptions 4-443

CRTDKTF
LOC

4-444

LOC Parameter: Specifies which diskette location(s) in the magazines or slots
is to be used by this diskette device file. Three values are needed: (1) the
unit type and location (that is, the magazines or slots used), (2) the starting
diskette position, and (3) the ending diskette position in the unit. (For an
expanded description of the LOC parameter, see Appendix Al If LOC is not
specified, *M12, *FIRST, and *LAST are assumed by the system.

Unit Type and location: The first of the three values in the LOC parameter
specifies which unit and location on the diskette magazine drive are to be
used by the device file for diskette input/ output. Enter one of the following
values for the unit type and location (the valid starting and ending positions
for each unit type are also listed):

Unit Type/location

*M12
*M1
*M2
*S1
*S2
*S3
*S12
*S23
*S123

Diskette Starting and
Ending Position

1 through 10
1 through 10
1 through 10
1
2
3
1 through 2
2 through 3
1 through 3

Starting Diskette Position: The second of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette used first by the device file. Enter one of
the following values to specify the starting diskette position:

*FIRST: The first diskette position in the location contains the diskette to
be used first in the read or write operation. It is the leftmost diskette in the
magazine(s) or slots specified. (See Appendix A for details.)

*CURRENT: The diskette in the location at which the diskette magazine
drive is currently positioned is to be used.

starting-diskette-position: Enter the number of the diskette position
(1 through 1 OJ in the magazine or the manual slot that contains the first
diskette to be used.

Ending Diskette Position: The third of the three values in the LOC
parameter specifies which diskette position, in a location having more than
one diskette, contains the diskette used last by the device file. Enter one of
the following values to specify the ending diskette position:

*LAST: The last diskette position in the location contains the diskette to be
used last in the read or write operation. It is the rightmost diskette in the
magazine(s) or slots specified. (See Appendix A for details.)

*WRAP: If the end of the last diskette in the location is reached before the
end of the data file is reached, a message is sent to the system operator to
mount another magazine or diskette to continue. (See Appendix A for
details and restrictions on using *WRAP.)

·I

*ONLY: Only the diskette position specified by the second value is to be
used, and used only once.

ending-diskette-position: Enter the number of the diskette position
(1 through 10) in the magazine or the manual slot that contains the last
diskette to be used.

FILETYPE Parameter: Specifies whether the diskette device file being created
describes data records or describes source records (statements) for a
program or another file. (For an expanded description of the FILETYPE
parameter, see Appendix A.)

*DAT A: The diskette file describes data records.

*SRC: The diskette file describes source records.

EXCHTVPE Parameter: Specifies, for diskette output files only, the exchange
type to be used by the device file when the system is writing diskette data.
(For an expanded description of the EXCHTYPE parameter, refer to
Appendix A.)

*STD: The basic exchange format will be used for a type 1 or a type 2
diskette. The H exchange type will be used for a type 20 diskette.

*BASIC: The basic exchange type will be used.

*H: The H exchange type will be used.

*/: The I exchange type will be used.

CODE Parameter: Specifies the type of character code to be used when
diskette data is read or written by a job that uses this device file.

*EBCDIC: The EBCDIC character code is to be used with this device file.

*ASCII: The ASCII character code is to be used with this device file.

CRTDATE Parameter: Specifies when the diskette data file was created on
diskette. The creation date parameter is valid for diskette input data files
only. If the creation date written on the diskette containing the data file
does not match the date specified for the device file when it is opened, an
error message is sent to the user program.

*NONE: The creation date is not specified. It is not checked unless it is
supplied before the device file is opened, either in the OVRDKTF (or
CHGDKTF) command or in the HLL program.

creation-date: Enter the creation date of the data file to be used by this
device file. The date must be specified in the format defined by the system
values QDATFMT and, if separators are used, QDATSEP. However, the
specified date is put in the diskette label as yymmdd.

CRTDKTF
FILETYPE

Command Descriptions 4-445

CRTDKTF
EXPDATE

4-446

EXPDATE Parameter: Specifies, for diskette output data files only, the
expiration date of the data file used by this device file. If a date is specified,
the data file is protected and cannot be written over until the day after the
specified expiration date.

*NONE: No expiration date for the data file is to be specified; the file is to
be protected one day. Its protection expires the day after it is created.

"PERM: The data file is to be protected permanently. The date written on
the diskette is 999999.

expiration-date: Enter the expiration date after which the data file expires.
The date must be specified in the format defined by the system values
QDATFMT and, if separators are used, QDATSEP. However, the specified
date is put in the diskette label as yymmdd.

SPOOL Parameter: Specifies whether the input or output data for the diskette
device file is to be spooled. If SPOOL{*NO) is specified, the following
parameters in this command are ignored: OUTQ, MAXRCDS, SCHEDULE,
HOLD, and SAVE.

*YES: The data is to be spooled. If this file is opened for input, an inline
data file having the specified name is processed; otherwise, the next
unnamed inline spooled file is processed. (For a discussion of named and
unnamed inline files, see the CPF Programmer's Guide.) If this is an output
file, the data is spooled for processing by a card, diskette, or printer writer.

0 NO: The. data is not to be spooled. If this file is opened for input, the data
is read directly from the diskette. If this is an output file, the data is written
directly to the diskette as it is processed by the program.

OUTQ Parameter: Specifies, for spooled output only, the name of the output
queue for the spooled output file.

QDKT: The spooled output data is sent to the IBM-supplied QDKT output
queue. (If no library qualifier is specified, *UBL is used to find the output
queue.)

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. (If no library qualifier is given,
*UBL is used to find the queue.)

MAXRCDS Parameter: Specifies, for spooled output only, the maximum
number of records that can be in the spooled output file for spooled jobs
using this diskette device file.

20000: A maximum of 20 000 records can be in the spooled output file for
the diskette data file that is produced by this device file.

"'NOMAX: No maximum is specified for the number of records that can be
in the spooled output file.

maximum-records: Enter a value, 1 through 500000 (500 000), that specifies
the maximum number of diskette records that can be in the spooled output
file.

SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a writer.

*JOBEND: The spooled output file is to be made available to the writer
only after the entire job is completed.

"'FILEEND: The spooled output file is to be made available to the writer as
soon as the file is closed in the program.

"'IMMED: The spooled output file is to be made available to the writer as
soon as the file is opened in the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a writer
when it is released by the Release Spooled File (RLSSPLF) command.

*NO: The spooled output file is not to be held by the output queue. The
spooled output is made available to a writer based on the SCHEDULE
parameter value.

"'YES: The spooled output file is to be held until it is released by the
RLSSPLF command.

SAVE Parameter: Specifies, for spooled output files only, whether the
spooled file is to be saved (left on the output queue) after the output has
been produced.

*NO: The spooled file data is not to be retained on the output queue after
it has been produced.

"'YES: The spooled file data is to be retained on the output queue until the
file is deleted.

CRTDKTF
MAXRCDS

Command Descriptions 4-447

CRTDKTF
WAITFILE

4-448

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the diskette device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
device file can be shared with other programs in the same routing step. If
so, when the same file is opened by other programs that also specify
SHARE(*YES), they use the same ODP to the file. If a program that
specifies SHARE(*NO) opens the file, a new ODP is used.

When an ODP is shared, the programs accessing the file share such things
as the file status and the buffer. When SHARE(*YES) is specified and
control is passed to a program, a read operation in that program retrieves
the next input record. A write operation produces the next output record,

*NO: An ODP created by the program with this attribute is not to be
shared with other programs in the routing step. Every time a program opens
the file with this attribute, a new ODP to the file is create~ and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

PUBAUT Parameter: Specifies what authority for the diskette device file and
its description is being granted to the public (all users). Additional authority
can be explicitly granted to specific users by the GRTOBJAUT command.
(For an expanded description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the device file.

*ALL: The public has complete authority for the device file~

*NONE: The public cannot use the device file.

TEXT Parameter: Lets the user enter text that briefly describes the diskette
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTDKTF FILE(DSPHST)

This command creates a description of the diskette device file named
DSPHST. The defaults for all the other parameters are assumed. The
device name, diskette volume, file label, and the creation date of the data
file on diskette must be specified in an~er CL command or in each
program that uses the device file. The device file describes diskette data
files that are in EBCDIC code and that are to be spooled for both input and
output. Output goes to the QDKT output queue, and cannot go on diskette
until the job is completed on the system. When output is produced from
the output queue, only one copy is produced.

CRTDKTF
TEXT

Command Descriptions 4-449

CRTDSPF

4-450

CRTDSPF (Create Display File) Command

The Create Display File (CRTDSPF) command creates a display device file.
The device file contains the file description, which identifies the device to be
used and, optionally, the record formats used by the device (if specified in
DDS); the device file does not contain data. The display device file is used
to send records to one or more display devices associated with the device
file, and to receive records from the display devices.

The display file description is made up of information that is specified in
two places: (1) in the source file that contains the data description
specifications (if used); and (2) in the CRTDSPF command itself. The DDS
contains the specifications for each record format in the device file and for
the fields within each record format.

The CHGDSPF or OVRDSPF command can be used in a program to change
or override the parameter values specified in the display file description; the
override command must be executed before the display file is opened for
use by the program. Overridden values are altered only for the execution of
the program; once the program ends, the original parameter values specified
for the display file are used.

-(
.QGPL

CRTDIPP---PILB d1•pl97-devlce-tile-name)-----------+•
.library-name .

Required
Optional

-(
•NOllrB

>-BRCPILI -(eLIBL y-.--------------..... -.•
•ouroe-tile-n- •

.library-name

-(
ePILB

>-BRCMBR)-------------------...
•ouroe-tile-member-numi

®
>-OPTION-[) [J--::~9 -(•LIIT:J--

•NOIRC •NOIJIT

eNOIOURCB

>-DBV ~;;; ?r; VilDBV-(:_-•be•r•-•o•t•-devl--ce•••)',.....--------....... •

•NONB

>- RITDSP DPRWRT WAITPILB •CLS -(
•NO)- -(•NOY- -f_ eIMMBD

•YJI •YBI number-ot-Hoond•)

>-SHARI LVLCBK---------------------.• -(•NOY- -(•YIS)

eYJS eNO

>-PU1WJT1:=M-~-·-,__ ___ .TBXT-(•BLANIC~
_ •NON'B _J 'deecr1pt1an'~

l Jab:B,I P1m:B,l

FILE Parameter: Specifies the qualified name by which the display device file
being created is to be known. If no library qualifier is given, the file is
stored in OGPL. (If the file is to be used by an HLL program, the file name
should be consistent with the naming rules of that language; otherwise, the
file must be renamed in the program itself.)

. '

CRTDSPF
(Diagram)

Command Descriptions 4-451

CRTDSPF
SRCFILE

4-452

SRCFILE Parameter: Specifies the name of the source file (if there is one)
that contains the data description specifications for the records in the
display device file. (The specifications that can be made in DDS are
described in the CPF Reference Manual-DDS.)

*NONE: There is no DDS source file for this display device file; the device
file has only one record format with no fields, or else the program that uses
the file must describe the record formats and their fields.

qualified-source-file-name: Enter the qualified name of the source file that
contains the DDS for this display device file. (If no library qualifier is given,
*UBL is used to find the source file.)

SRCMBR Parameter: Specifies the name of the member in the source file
that contains the DDS for this display device file.

*FILE: The source file member name is the same as the device file name
specified in the Fl LE parameter.

source-file-member-name: Enter the name of the member in the source file
specified by SRCFILE that is to be used to create the display device file.

OPTION Parameter: Specifies the type of output listing to be produced when
the file is created.

*SRC or *SOURCE: A listing of the source statements used to create the
file, and of any errors that occur, is to be generated.

*NOSRC or *NOSOURCE: No listing of the source statements is to be
generated unless errors are detected. If errors are detected, they are listed
along with the record format containing the error.

*LIST: An expanded source listing is to be generated showing a detailed
list of the file specifications that result from the source statements and
references to other file descriptions. This listing shows file and field
keywords and attributes and, for data base files, key and select/ omit
keywords.

*NOL/ST: No expanded source listing is to be generated.

DEV Parameter: Specifies the names of one or more display devices that are
to be used with this display device file to pass data records between the
users of the display devices and their jobs.

*REQUESTER: The device from which the program was invoked is the
device that is assigned to the file when the file is opened.

*NONE: No device name is to be specified. The name of the display device
must be specified later in the CHGDSPF or OVRDSPF command, or in the
HLL program that opens the file.

device-name: Enter the names of one or more display devices that are to be
used with this device file to pass data records between the users of the
devices and the system. Each device name must already be known on the
system (via a device description) before this device file is created.
*REQUESTER can be specified as one of the names.

A maximum of 50 device names (including *REQUESTER, if it is specified)
can be specified in this command, but the total number cannot exceed the
number specified in the MAXDEV parameter when the file is opened.

MAX.DEV Parameter: Specifies the maximum number of display devices that
can be connected to the display device file at the same time, while the file
is open. A value of 1 is normally specified because each work station user
has his own copy of the program that uses the file. However, if a CL
program is written to access more than one work station through the same
file (through a single execution of the program), this parameter must specify
a value greater than 1.

The names of the devices can be specified in the DEV parameter of this
command, an OVRDSPF command, or in the HLL program that opens the
file .

.!.;. Only one device name or *REQUESTER can be specified for this display
device file.

number-of-devices: Enter a value, 1 through 255, that specifies the
maximum number of devices that can be connected to this display file at the
same time.

CRTDSPF
DEV

Command Descriptions 4-453

CRTDSPF
RSTDSP

4-454

RSTDSP Parameter: Specifies whether data being displayed at a display
device by this display file is to be saved at the time the file is suspended

"'- (temporarily inactive) so that a different display file can be used to display
different data on the same device. If the data for this file is saved, it is
restored to the screen of the device when the file is used again.

This parameter must be considered if, within the same routing step, any
program can be called that uses a different display file for the same device.
If al/ programs that use this file always display new data when control is
returned to them, the display data for this file need not be saved for any of
them; RSTDSP(*NO) can be specified or assumed. If any program using
this file requires that the contents of the screen be exactly the same as it
was before it called another program, RSTDSP(*YES) must be specified. If
certain display fields are to remain unchanged while others are erased or
rewritten, or if the program containing the file can be interrupted (for
messages to be displayed, for example), you should specify RSTDSP(*YES).
(For additional information about suspended display files, see the CPF
Programmer's Guide.)

*NO: The data being displayed by this file is not to be saved when the file
is suspended. None of the programs using this file need the data restored
when control is returned to them.

*YES: The data being displayed when the file is suspended is to be saved
so it can be restored to the screen of the device when the file is used again.

DFRWRT Parameter: Specifies that the writing of data is to be deferred until
it can be written out with other data when a read request is made. Control
is returned to the program immediately after the data is received. This may
result in improved performance.

*NO: After a write operation, the user program does not regain control until
the I I 0 is completed (with the data displayed and the I I 0 feedback
information available).

*YES: When the program issues a write request, control is returned after
the buffer is processed. The data might not be displayed immediately; the
actual display of the data might take place later when a read or combined
read/write operation is performed. The buffer is then available to be
prepared for the next read or combined read/write operation.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the display device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
device file can be shared with other programs in the same routing step. If
so, when the same file is opened by other programs that also specify
SHARE(*YES), they use the same ODP to the file. If a program that
specifies SHARE(*NO) opens the file, a new ODP is used.

When an ODP is shared, the programs accessing the file share such things
as the file status and the buffer. When SHARE(*YES) is specified and
control is passed to a program, a read operation in that program retrieves
the next record. A write operation produces the next output record.

*NO: An ODP created by the program with this attribute is not to be
shared with other programs in the routing step. Every time a program opens
the file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not all match, an open error
message is sent to the program that attempted to open the file.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

CRTDSPF
WAITFILE

Command Descriptions 4-455

CRTDSPF
PUBAUT

4-456

PUBAUT Parameter: Specifies what authority for the display device file and
its description is being granted to the public (all users). Additional authority
can be explicitly granted to specific users by the GRTOBJAUT command.
(For an expanded description of the PUBAUT parameter, see Appendix A)

*NORMAL: The public has only operational rights for the device file.

*ALL: The public has complete authority for the device file.

*NONE: The public cannot use the device file.

TEXT Parameter: Lets the user enter text that briefly describes the display
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTDSPF FILE(DSPHIST) SRCFILE(JOBHIST.PRSNNL)

This command creates a description of the display device file named
DSPHIST using the device source file description named JOBHIST that is
stored in the PRSNNL library. The defaults for all the other parameters are
assumed. Only the device requesting the program that uses this device file
(that is, *REQUESTER) is assigned to the device file. The level identifiers of
the record formats are to be checked when the file is opened. The public
has only operational rights for the device file.

/i

\

CRTDTAARA (Create Data Area) Command

The Create Data Area (CRTDTAARA) command creates a data area and
stores it in a specified library. It also specifies the attributes of the data.
The data area can optionally be initialized to a specific value.

Data areas (which are a type of CPF object) are used to communicate and
store data used by several programs in a job or between jobs. A program
can use the value of a data area by declaring the data area in the program,
using the DCLDTAARA command.

If a data area is not to be used by more than one job at a time, it can be
explicitly allocated to the appropriate job. If a data area is used by two or
more jobs concurrently, it is protected from simultaneous changes occurring
from different jobs. A data area is changed by using the Change Data Area
(CHGDTAARA) command. The system does not allow two CHGDTAARA
commands to change the same data area at the same time.

A data area is updated in auxiliary storage any time the data area is
changed. This ensures that the changes are not lost in the event of a
program or system failure.

Restrictions: To use this command, you must have operational and add
rights for the library in which the data area is to be placed.

-{
.QGPL

CRTDTAABA---DTAAIU. data-area-name)~----------+•
.library-name

Required
Optional

--E •DBC-,. ®
>-TYPB •CRAR-J---LBN len1th [declmal-poeltione]---VALUB tnttlal-value----+

eLGL _J

>-PUBA.UT_L_ ::,JWJ_ .. _~------TBXT-{•BLANK ~
\.._ •NONB _J 'de1crtptton'~

l Job:B,I P1m1B,I

DTAARA Parameter: Specifies the qualified name of the data area being
created. (If no library qualifier is given, the data area is stored in the general
purpose library, OGPL.)

CRTDTAARA

Command Descriptions 4-457

CRTDTAARA
TYPE

4-458

TYPE Parameter: Specifies the type of value to be contained in the data area
being created. The data area can contain a character value, a decimal va.lue,
or a logical one or zero. Enter one of the following types.

*DEC: This data area contains a decimal value.

*CHAR: This data area contains a character string value.

*LGL: This data area contains a logical value of either one ('1') or zero ('O')
that can be used to represent two opposing conditions such as on/off,
true/false, or yes/no.

LEN Parameter: Specifies the length of the data area being created. If it is a
decimal data area, the number of decimal digits to the right of the decimal
point can be optionally specified. The type of data area. (specified by the
TYPE parameter) determines the maxjmum length that its value can have
and the default length that is assumed if LEN is not specified. The
maximum lengths and the defaults for each of the three types are:

Type Maximum Length Default Length

Decimal 15 digits, 9 decimal 15 digits, 5 decimal
positions positions

Character 2000 characters 32 characters

Logical 1 character 1 character

Note: For character types, the default length is the same as the length of
the initial value, if one is specified in the VALUE parameter.

length: Enter the length that the value in this data area can have; the length
cannot exceed the maximum for this type of variable.

length [decimal-positions]: This option is valid only for decimal data areas.
The length of the value in the data area includes the number of decimal
positions in the value. The maximum length of the decimal value is 15
digits, of which no more than nine can be to the right of the decimal point.
(If nine decimal positions are specified, the value to the left of the decimal
point could never be greater than 999 999; only six of the 15 digits are left
for the integer value.) If TYPE(*DEC) is specified and the number of decimal
positions is not specified, a value of 0 is assumed; 15 digits to the left of
the decimal point are then allowed.

\
\·~

VALUE Parameter: Specifies the initial value that is assigned to the data area
when it is created. The initial value must be of the type specified by the
TYPE parameter. If no initial value is specified, a character data area is
initialized to blanks, a decimal data area is initialized to a value of 0, and a
logical data area is initialized to ·o·.

PUBAUT Parameter: Specifies what authority for the data area is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the GRTOBJAUT command. (For an expanded
description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the data area.

0 ALL: The public has complete authority for the data area.

0 NON£: The public cannot use the data area.

TEXT Parameter: Lets the user enter text that briefly describes the data area.
(For an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTDTAARA DTAARA(TOTSALES) +
TYPE(*DEC) LEN(15 2) VALUE(O) +
TEXT('Total sales accumulator')

This command creates a data area named TOTSALES and stores it in the
QGPL library. TOTSALES has the following data attributes: it is a
15-position numeric data area with two decimal positions and with an initial
value of 0.

CRTDTAARA DTAARA(CUSTOMER) TYPE(*CHAR) LEN(148) +
TEXT('Customer name area')

This command creates the data area named CUSTOMER. It can contain as
many as 148 characters in the character string. Because no initial value is
specified, the data area is initialized to blanks.

CRTDTAARA
VALUE

Command Descriptions 4-459

CRTEDTD

4:-460

CRTEDTD (Create Edit Description) Command

The Create Edit Description (CRTEDTD) command defines an edit mask for
the specified edit description and stores it in the OSYS library. As many as
five edit descriptions can be defined by the user. They must be identified as
edit descriptions 5, 6, 7, 8, and 9. The actual object names for the edit
descriptions are QED/Tn, where n is the single digit identifying code. CPF
provides a version of each of these edit descriptions in OSYS. (For a
description of the IBM-supplied versions, see the CPF Programmer's Guide.)
To create a new version, the IBM-supplied version must first be deleted by
the DL TEDTD command.

Edit descriptions can be used in data description specifications and
high-level language programs to edit numeric fields.

-(
•NONB

INTMJ.SX)-------·
'int11111r-ma11k'

-f_ '·' -(•NONB
>-DBCPT •NONB------~ -~PRACMJ.SX)-----•II

'•eparator-character' _/ 'fraoticn-ma•k'

-(
•BI.ARB: -(•NONB

>-PILLCllAll 'fill-character')'--,-CU'RS'YM •noattn1-currenc;r-•:ymbol')'---••

-(•YBS)- -(•NONB
>-ZBROBAL NBGSTS)------.11

•NO 'ne1ative-11tatu•-character-11trtn1'

-(
•NONB

>-POSSTS)---------------+II
'po11itive-11tatu•-charaoter-11trin1'

· -(eNONB -(•NONB
>-LPTCNS J---RGTCNS)-------+II

'lett-con.tant' 'ri1ht-con11tant'

>-PUBAUT1 ==w_.i._~----TBXT-(•BLARK ~
~ •NONB _J 'de11criptlon'__;--

J Job:B,I P1m:B,I

EDTD Parameter: Specifies a single digit code (5, 6, 7, 8, or 9) that identifies
the user-defined edit description being created. This digit is used in DDS to
refer to the edit mask that is created by this CRTEDTD command. The
actual name of the created object (which is stored in the QSYS library) is
QED/Tn, where n is the single digit edit code entered here.

INTMASK Parameter: Specifies a character string (mask) that describes the
editing of the integer portion of a decimal field. Characters other than a
space (blank), a zero, or an ampersand (&) are treated as constants in the
editing process. Space, zero, and ampersand have the following meanings:

• Space (blank): Each blank is replaced with a fill character or with a digit
from the number being edited once zero suppression has been terminated
(by a significant digit or by the leftmost zero in the mask).

• Zero (0): The leftmost zero is a digit replacement character and also
terminates zero suppression. All other zeros in the integer mask are
treated as constants.

• Ampersand (&): Blank substitution.

*NONE: No editing mask is to be used on the integer portion of decimal
fields.

'integer-mask': Enter the character string that is to be used as the editing
mask for the integer portion of a decimal field. A maximum of 31
characters, enclosed in apostrophes, can be used in the integer mask.

DECPNT Parameter: Specifies, for decimal fields, a single character to be
used as a decimal point to separate the integer (INTMASK) and fraction
(FRACMASK) portions of the edited result. If the field has no decimal
places, this character is not used and need not be considered in the width
of the edited results.

Note: If the separator character specified for DECPNT is also used in the
INTMASK parameter, it has no special meaning in the integer mask; it is
treated only as a constant or as a digit replacement character in the integer
mask.

'.': The period (or decimal point) is the separator character. If specified, it
must be enclosed in apostrophes.

*NONE: No separator character is specified; a decimal point is not needed
in the edited result.

'separator-character': Enter the separator character, such as the comma(.),
that is to be used as a decimal point. Any alphameric or special character
can be used, but a special character must be enclosed in apostrophes.

CRTEDTD
EDTD

Command Descriptions 4-461

CRTEDTD
FRACMASK

4-462

FRACMASK Parameter: Specifies a character string (mask) that describes the
editing of the fraction portion of a decimal field (to the right of the decimal
point). The characters have the same meaning as described for the
INTMASK parameter except that all zeros are treated as constants and
blanks are not replaced with a fill character.

*NONE: No editing mask is to be used on the fraction portion of decimal
fields.

'fraction-mask': Enter the character string that is to be used as the editing
mask for the fraction portion of a decimal field. A maximum of 31
characters, enclosed in apostrophes, can be used in the fraction mask.

FILLCHAR Parameter: Specifies the character that is used in each position of
a result that is zero suppressed. The specified character replaces all leading
zeros that are to the left of the first significant digit in the integer mask (or a
forced zero).

*BLANK: The fill character is a blank (a space).

'fill-character': Enter the character that is to be used as the fill character.
Any alphameric or special character can be used, but a special character
must be enclosed in apostrophes.

CURSYM Parameter: Specifies the character string that is to be used as the
floating currency symbol. If CURSYM is specified, the character string
appears immediately to the left of the first significant digit (or constant). If
the first significant digit is a zero, occurring in the position that terminated
zero suppression, the CURSYM character string ends in the position
occupied by that zero.

*NONE: No floating currency symbol is specified; none is needed in the
edited result.

'floating-currency-symbol': Enter the character string that is to be used as
the floating currency symbol for monetary amount fields. A maximum of 15
alphameric and special characters, enclosed in apostrophes, can be entered.

ZEROBAL Parameter: Specifies the editing action for zero values.

*YES: The normal editing rules are followed. (Refer to Editing Rules,
following the description of the CRTEDTD command parameters.)

*NO: The entire field (integer, decimal point, or fraction) is replaced by the
fill character, including constants within the edit mask, if the field being
edited has a value of zero.

\

NEGSTS Parameter: Specifies the character string that immediately follows
the body of the edited result if the field is negative. If the field is positive,
blanks are substituted for the length of the string, unless POSSTS is also
specified.

*NONE: No character string is specified; blanks will be used to the right of
the field in the edited result.

'negative-status-character-string': Enter the character string that is to
immediately follow the edited field when the field is negative in value. A
maximum of 31 characters, enclosed in apostrophes, can be entered as the
negative status character string.

POSSTS Parameter: Specifies the character string that immediately follows
the body of the edited result if the field is positive or zero. If the field is
negative, blanks are substituted for the length of the string, unless NEGSTS
is also specified.

*NONE: No character string is specified; blanks will be used to the right of
the field in the edited result.

'positive-status-character-string': Enter the character string that is to
immediately follow the edited field when the field is positive in value. A
maximum of 31 characters, enclosed in apostrophes, can be entered as the
positive status character string.

LFTCNS Parameter: Specifies the character string constant that always
appears as the leftmost portion of the edited result.

*NONE: No constant is to appear on the left side of edited fields.

'left-constant': Enter the character string that is to always appear on the left
side of an edited field. A maximum of 31 characters, enclosed in
apostrophes, can be entered.

RGTCNS Parameter: Specifies the character string constant that always
appears as the rightmost portion of the edited result.

*NONE: No constant is to appear on the right side of edited fields.

'right-constant': Enter the character string that is to always appear on the
right side of an edited field. A maximum of 31 characters, enclosed in
apostrophes, can be entered.

CRTEDTD
NEGSTS

Command Descriptions 4-463

CRTEDTD
PUBAUT

4-464

PUBAUT Parameter: Specifies what authority for the edit description is. being
granted to the public: (all users); Additional authority can be granted to
specific users by the GRTOBJAUT command. (For an expanded description
of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the edit description.

*ALL: The public has complete authority for the edit description.

*NONE: The public cannot use the edit description.

TEXT Parameter: Lets the user enter text that briefly describes the edit
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Editing Rules

• The field to be edited is aligned with respect to the two portions of the
edit mask (integer and fraction).

• The integer mask INTMASK is truncated on the left side immediately
preceding the leftmost digit replace character that could be used, based
on the number of integer digits in the field to be edited. If a leading zero
occurs in the truncated portion of the integer mask, this is remembered
by the system and no zero suppression occurs.

• The separator character used as the decimal point (DECPNT) immediately
follows the integer mask.

• The fraction mask FRACMASK immediately follows the separator
character (or the integer mask if DECPNT{*NONE) is specified). The
fraction mask is truncated on the right side immediately following the
rightmost digit replace character that could be used, based on the
number of decimal positions in the field to be edited.

• The width of the edited result can be calculated as follows:

(length of LFTCNS) + (length of CURSYM) +
(length of truncated INTMASK) +
(1 (or 0 if DECPNT equals *NONE)) +
(length of truncated FRACMASK) +
(length of NEGSTS or POSSTS) +
(length of RGTCNS) = width of edited result

• If either the integer mask or the fraction mask does not contain sufficient
digit replace characters to contain the digits that can be contained in the
respective portions of the field, editing of the field is diagnosed and
ignored, and an error message is sent to the user (or program).

• Changing the edit description has no effect on previously created file
formats. These file formats must be recreated if the new (changed) edit
mask is desired.

Examples

The examples assume the following:

FIELDA Six digits (four integer and two decimal positions) with a value
of 001234

. FIELDB Same as FIELDA but with a negative value (-001234)

FIELDC Same as FIELDA but with a zero value (000000)

DATE - Six digits (0 decimal positions) with a value of 091878

The character f> is used to represent blank spaces.

Example 1

CRTEDTD EDTD(5) INTMASK('f>f>f>,f>f>f>,f>f>O') +
FRACMASK('f>f>f>f>') +
NEGSTS('DBf>f>f>f>') POSSTS('CREDIT) +
LFTCNS('$') RGTCNS('f>**')

FIELDA - Logical mask is '$1'.>,f>f>O.f>f> DBf>f>f>f> f>**' for a negative value

FIELDB

FIE LDC

or '$f>,f>f>O.f>f> CREDIT f>**' for a positive value

- Edited result is $f>f>l'.>12.34CREDITf>**

- Same logical mask

- Edited result is $f>f>f>12.34DBf>f>f>f>f>**

Same logical mask

Edited result is $1'.>f>f>f>f>.OOCREDITf>** or, if ZEROBAL(*NO)
had been specified, $1'.>f>f>f>f>f>f>f>CREDITf>**

CRTEDTD
(Examples)

Command Descriptions 4-465

CRTEDTD
(Examples)

4-466

Example 2

CRTEDTD EDTD(6) INTMASK('f>f>f>.OOf>') DECPNT(',') +
FRACMASK('f>f>f>') CURSYM('DM') NEGSTS('-f>**')

FIELDA - Logical mask is 'f>f>f>.OOf>,f>f>-f>**' with floating OM

- Edited result is f>f>f>DM12;34f>f>f>f>

FIELOB - Same logical mask

- Edited result is f>f>f>DM 12,34-f>**

FIELDC - Same logical mask

Example 3

- Edited result is f>f>f>f>DMO,OOf>f>f>f> or, if ZEROBAL(*NO) had
been specified, f>f>f>f>f>f>f>f>f>f>f>f>f>f>

CRTEDTD EDTD(7) INTMASK('Of>MONTHf>f>DAY&f>f>YEAR') +
LFTCNS(' DATEf>ISf>')

DATE - Logical mask is equal to the INTMASK parameter value

- Edited result is DATEf>ISf>f>9MONTH18DAYf>78YEAR'

Example 4

CRTEDTD EDTD(9) INTMASK('f>f>,f>f>O') DECPNT('.') +
FRACMASK('f>f>') FILLCHAR('*') NEGSTS('f>ERRORf>**')

FIELDA - Logical mask is 'f>,f>f>O.f>f>f>f>f>f>tSf>f>f>f>' or
'f>,f>OO.f>f>f>ERRORf>**' (Both use the * as the fill character)

- Edited result is ***12.34f>f>f>f>f>f>f>f>f>

FIELDB - Same logical mask

- Edited result is ***12.34f>ERR0Rf>**

FIELDC - Same logical mask

- Edited result is *****.OOf>f>f>f>f>f>f>f>f> or, if ZEROBAL(*NO) had
been specified, ********f>f>f>f>f>f>f>f>f>

CRTFCT (Create Fonns Control Table) Command

The Create Forms Control Table (CRTFCT) command creates a forms control
table (FCT) with no entries.

After it is created, the FCT can contain up to 999 entries. Refer to the
CRTSSND command for making the FCT entries available to the RJEF
session. Refer to the ADDFCTE command for adding entries to the FCT.

Restriction: To use this command, you must have add rights to the library
in which the FCT is to be stored.

The Create Forms Table (CRTFCT) command is part of the IBM System/38
Remote Job Entry Facility Program Product, Program 5714-RC1. For more
information on the Remote Job Entry Facility, refer to the IBM System/38
Remote Job Entry Facility Programmer's Guide, SC21-7914.

-(
.QGPL ©

CRTPCT----PCT forma-control-table-name)--------. ..
,lll>rary-1Hme

Required

Optional

-f_ •lfOJOW. ~ >- PUBAUT •ALL

•lfOMB

l Job:B,I Ppn:B,I

FCT Parameter: Specifies the qualified name of the FCT that is to be created.
(f no library qualifier is given, the FCT is stored in QGPL.)

PUBAUT Parameter: Specifies the authority that is being granted to the
public (all users) for the FCT. Additional authority can be explicitly granted
to specific users by the Grant Object Authority (GRTOBJAUT) command.

*NORMAL: The public has only operational rights for the FCT.

*ALL: The public has complete authority for the FCT.

*NONE: The public cannot use the FCT.

CRTFCT

Command Descriptions 4-467

CRTFCT
TEXT

4-468

TEXT Parameter: Lets the user enter text that briefly describes the FCT. (For
an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTFCT FCT(FORMCTRL.USERLIB) +
TEXT('Forms control table')

This command creates a forms control table called FORMCTRL in library
USERLIB.

CRT JOBD (Create Job Description) Command

The Create Job Description (CRT JOBD) command creates a job description
object that contains a specific set of job-related attributes that can be used
by one or more jobs. The attributes determine how each job is to be
executed on the system. The same job description can be used by multiple
jobs. The values in the job description are usually used as the default values
of the corresponding parameters in the JOB and SBMJOB commands when
their parameters are not specified.

The values in the job description can be overridden by the values specified
in the JOB and SBMJOB commands.

Restrictions: To use this command, you must have operational rights for
the user profile named in the USER parameter (if any); that is, you must
have the authority to initiate a job on behalf of that user. You must also
have operational and add rights for the library into which the job description
is to be placed.

CRTJOBD

Command Descriptions 4-469

CRTJOBD
(Diagram)

4-470

-{
.QGPL

CRT.JOB»--- .JOBD Job-dHortptlon-name .)------------··
.Ubrar;r-name

Required
Optional

-{ •RQD:J
>-USBR •--------------------------...... 1>

u•er-name

-{
QliTCB.•LIBL 0

>-.JOBQ -{ •LIBL y•---'--------------1>1>
Job-queue-name ..

• Ubrar;r-name

>- .JOBPTr-{ :chedullnc-prtortt;y)~----OUTPTY-{ :utput-priortt;y)'9------+IO

RQSDTA •RTGDTA.---~~--------1>1> -f_ •NONB

'requeet-data' _/

-{ •NOCBJC ~•SlSVAL ~
>-SYNTAX J---INLLIBL •NONB -----'lt---------1>1>

mena1e-eeverlt7 Ubrar;r-name
2'5 mu:lmum

>- CNLSJfV-{ :•n1e-eeverlt7)•----------------'-----------+•

,._f1~10 x•M:SG~~----IO
>-LO- _ moHa1s-1eve1J~m .. u1e-eeverlt;y •SBCLVL J

-{
QPMNT.•LIBL

>- OUTQ -{ •LIBL y·-------------_.I>
output-queue-name •

.llbrar;r-name

>- BOLD-{•NO "___DATB -{ •SYSVAL }-sws-{ 00000000)-----··

•YBS ~ job-date ewitoh-eetttn1•

l .Job:B,I P1m:B,I

JOBD Parameter: Specifies the qualified name of the job description being
created. (If no library qualifier is given, the job description is stored in the
general purpose library, QGPL.)

USER Parameter: Specifies the name of the user profile to be associated with
this job description. The names QSECOFR, QSPL, and QSYS are not valid
entries for this parameter.

*RQD: A user name is required in order to use the job description. For
work station entries, the user must enter his password when he signs on at
the work station; the associated user name becomes the name used for the
job. *ROD is not valid for job descriptions specified for autostart job entries,
or for those used by the JOB command. (It is valid on the SBMJOB
command only if USER(*CURRENT) is specified.)

user-profile-name: Enter the user name that identifies the user profile that is
to be associated with batch jobs using this job description. For interactive
jobs, this is the default user name used when a user signs on without
entering a password.

JOBQ Parameter: Specifies the name of the job queue into which jobs using
this job description are to be placed.

QBATCH: The QBATCH job queue is the queue into which the jobs are to
be placed. (If no library qualifier is specified, *UBL is used to find the job
queue.)

qualified-job-queue-name: Enter the qualified name of the job queue that is
to be associated with this job description. (If no library qualifier is given,
*LIBL is used to find the job queue.) If the job queue does not exist when
the job description is created, a library qualifier must be specified because
the qualified job queue name is retained in the job description.

JOBPTY Parameter: Specifies the scheduling priority for each job that uses
this job description. The highest priority is 1 and the lowest is 9. (For an
expanded description of the JOBPTY parameter, see Appendix A.)

5: The scheduling priority that any job using this job description is to have
is 5.

scheduling-priority: Enter a value, 1 through 9, for the scheduling priority
that any job using this job description is to have.

CRTJOBD
JOBD

Command Descriptions 4-471

CRTJOBD
OUTPTY

4-472

OUTPTY Parameter: Specifies the output priority for spooled output files that
are produced by jobs using this job description. The highest priority is 1 and
the lowest is 9. (For an expanded description of the OUTPTY parameter,
see Appendix A.)

5: The output priority for spooled files produced using this job description
is 5.

output-priority: Enter a value, 1 through 9, for the priority that spooled files
produced using this job description are to have.

RTGDTA Parameter: Specifies the routing data that is to be used with this
job description to initiate jobs.

QCMDB: The default routing data QCMDB is to be used by the
IBM-supplied batch subsystem (QBATCH) to route the job to the
IBM-supplied control language processor QCL, in the OSYS library.

*GET: The routing data to be used is obtained from the work station that
uses the display format defined in the work station entry that references this
job description.

*RQSDTA: Up to the first 80 characters of the request data specified in the
RQSDTA parameter are to be used as the routing data for the job.

'routing-data': Enter the character string that is to be used as the routing
data for jobs that use this job description. For example, the value QCMDI is
the routing data used by the IBM-supplied interactive subsystem (QINTER)
to route interactive jobs to the IBM-supplied control language processor,
QCL. A maximum of 80 characters can be entered (enclosed in apostrophes
if necessary).

RQSDTA Parameter: Specifies the request data that is to be placed as the
last entry in the job's message queue for jobs using this job description. For
example, when a CL command is supplied as request data on a SBMJOB
(Submit Job) command, it becomes a message that can be read by the
control language processor, QCL (if the submitted job is routed to QCL).

*NONE: No request data is to be placed in the job's message queue.

*RTGDTA: The routing data specified in the RTGDTA parameter is to be
placed as the last entry in the job's message queue.

'request-data': Enter the character string that is to be placed as the last
entry in the job's message queue as a single request. A maximum of 256
characters can be entered (enclosed in apostrophes if necessary). When a
CL command is entered, it must be enclosed in single apostrophes, and
where apostrophes would normally be used within the command, double
apostrophes must be used instead.

SYNTAX Parameter: Specifies whether requests placed on the job's message
queue are to be syntax checked as CL commands. When syntax checking is
specified, the commands are syntax checked as they are submitted rather
than when the job is executed, thus providing an earlier diagnosis of syntax
errors. If checking is specified, the message severity that causes a syntax
error to terminate processing of a job is also specified.

*NOCHK: The request data is not to be syntax checked as CL commands.

message-severity: The request data is to be syntax checked as CL
commands, and, if a syntax error occurs that is equal to or greater than the
error message severity specified here, the execution of the job containing
the erroneous command is suppressed. Enter a value, 00 through 99, that
specifies the lo11vest message severity that can cause job execution to be
terminated. (For an expanded description of severity codes, see the SEV
parameter in Appendix A.)

If the message severity is specified, it is used only when the job description
is used by a job command that also has RQSDTA(*) specified and the
requests are CL commands.

INLLIBL Parameter: Specifies the initial user portion of the library list that is
to be used for jobs using this job description.· For more information on the
use of library lists, see the CPF Programmer's Guide.

*SYSV AL: The system default library list is to be used for jobs that use
this job description. The default library list contains the library names that
were specified in the system values QSYSLIBL and QUSRLIBL at the time
that a job using this job description is initiated.

"'NONE: The user portion of the initial library list is to be empty; only the
system portion is to be used.

library-name: Enter the names of one or more libraries that are to be in the
user portion of the library list for jobs that use this job description. No more
than 25 names can be specified; the libraries are searched in the same order
as they are listed here.

CNLSEV Parameter: Specifies the message severity level of escape messages
that can cause a batch job to be canceled. The batch job is canceled when
a request in the batch input stream sends to the request processing
program an escape message whose severity code is equal to or greater than
that specified here. This parameter value is compared with the severity of
any unmonitored escape message that occurs as a result of executing a
noncompiled CL command in a batch job.

CRTJOBD
SYNTAX

Command Descriptions 4-473

CATJOBD
LOG

4-474

For a description of each IBM-defined severity code level, refer to the
expanded description of the SEV parameter in Appendix A.

30: An escape message resulting from a request in the batch input stream
whose severity is equal to or greater than 30 causes the job to be canceled.

message-severity: Enter a value, 00 through 50, that specifies the message
severity of an escape message that results from a request in the batch input
stream and that causes the job using this job description to be canceled.
Because escape messages typically have a maximum severity level of 50, a
value of 50 or lower must be specified in order for a job to be canceled as a ·
result of an escape message. An unhandled escape message whose severity
is equal to or greater than the value specified causes the job to be canceled.
(Refer to the expanded description of the SEV parameter in Appendix A for
a list of the IBM-defined severity codes.)

LOG Parameter: Specifies the message logging values to be used for the jobs
that use this job description. They determine the amount and type of
information to be logged in the job log. The· LOG parameter is made up of a
list of three values: the message (or logging) level, the message severity,
and the level of message text. If no values are specified for the LOG
parameter, the values 1, 10, and *MSG are assumed by the system.

Message Level: The first of the three values in the LOG parameter
specifies one of five logging levels, which are described as follows:

0 No data is to be logged.

The only information to be logged is all messages sent to the job's
external message queue with a severity greater than or equal to the
message severity specified (this includes the indications of job start,
job end, and job completion status).

2 The following information is to be logged:
Logging level 1 information
Any requests or commands being logged from a CL program for
which messages are issued with a severity code greater than or
equal to the severity specified
All messages associated with a request or commands being
logged from a CL program that results in a high-level message
with a severity greater than or equal to the severity specified.

3 The following information is to be logged:

4

Logging level 1 information
All requests or commands being logged from a CL program
All messages associated with a request or commands being
logged from a CL program that results in a high-level message
with a severity greater than or equal to the severity specified.

The following information is to be logged: all reC1uests or
commands being log.ged from a CL program and all messages,
including trace messages.

\

Note: A high-level message is one that is sent to the program message
queue of the program that received the request or commands being
logged from a Cl program .

.!.!_ A message logging level of 1 is to be used for job messages
generated when this job description is used.

message-level: Enter a value, 0 through 4, that specifies the message
logging level to be used for job messages produced when this job
description is used.

Message Severity: The second of the three values in the LOG parameter
specifies the minimum severity level that causes error messages to be
logged in the job logs of jobs that use this job description. (For a
description of the severity codes, see the SEV parameter in Appendix A.)

10: The message severity level is set at 10. Any errors that have a
severity code of 10 or greater causes an error message to be logged in
the job log of the job that caused the error.

message-severity: Enter a value, 00 through 99, that specifies the lowest
severity level that causes an error message to be logged in the job's log.

Message Text Level: The third of the three values in the LOG parameter
specifies the level of message text that is written in the job log or
displayed to the user when an error message is generated according to
the first two values.

*MSG: Only first-level message text is to be written to the job log.

0 SECLVL: Both the first-level and second-level text of the error message
is to be written to the job log.

OUTQ Parameter: Specifies the name of the output queue that is to be used
as the default output queue for jobs that use this job description.

QPRINT: The QPRINT output queue is the default output queue to be
used with this job description. (If no library qualifier is specified, *UBL is
used to find the queue.)

qualified-output-queue-name: Enter the qualified name of the default output
queue that is to be used with this job description. (If no library qualifier is
given, *UBL is used to find the queue.) If the output queue does not exist
when the job description is created, a library qualifier must be specified
because the qualified output queue name is retained in the job description.

CRTJOBD
OUTQ

Command Descriptions 4-475

CRTJOBD
HOLD

4-476

HOLD Parameter: Specifies whether jobs using this job description are to be
put on the job queue in the hold state. A job placed on the job queue in the
hold state is held until it is released by the RLSJOB (Release Job) command
or canceled, either by the CNLJOB (Cancel Job) command or by the
CLRJOBQ (Clear Job Queue) command. If the job is not executed before
CPF is terminated, the job queue can be cleared (and the job canceled)
when CPF is started again.

*NO: Jobs using this job description are not to be held when they are put
on the job queue.

*YES: Jobs using this job description are to be held when they are put on
the job queue.

DATE Parameter: Specifies the date that is to be assigned to the job that
uses this job description when the job is initiated.

*SYSV AL: The value in the ODA TE system value at the time that the job
is initiated is to be used as the job date.

job-date: Enter the value that is to be used as the job date for the job being
initiated; the format that is currently specified for the system value
ODATFMT must be used. (See the CPF Programmer's Guide for the
ODATFMT system value.)

SWS Parameter: Specifies the initial settings for a group of eight job
switches used by jobs that use this job description. Only zeros (off) and
ones (on) can be used. These switches can be set or tested in a CL
program and used to control the flow of the program. For example, if a
certain switch is on, another program could be called. The job switches may
also be valid in other HLL programs.

00000000: The initial setting for the job switches is to be all zeros for jobs
that use this job description.

switch-settings: Enter any combination of eight zeros and ones that is to be
used as the initial switch setting for jobs using this job description.

PUBAUT Parameter: Specifies what authority for the job description is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the GRTOBJAUT command. (For an expanded
description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the job description.

*ALL: The public has complete authority for the job description.

*NONE: The public cannot use the job description.

TEXT Parameter: Lets the user enter text that briefly describes the job
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTJOBD JOBD(INT4) USER(*ROD) RTGDTA(QCMDI) +
TEXT('lnteractive #4 job description +
for Department 127')

This command creates a job description named INT4 in the general purpose
library (OGPL). According to the text description, this job description is for
interactive jobs and is to be used by Department 127. When the user signs
on, he must enter his password. The characters OCMDI are used as routing
data to be compared with the routing table of the subsystem under which
the job is to be run.

CRTJOBD JOBD(BATCH3) USER(*ROD) +
JOBO(NIGHTQ) JOBPTY(4) OUTPTY(4) +
RTGDTA(QCMDB) TEXT('Batch #3 job +
description for high priority night work')

This command creates a job description named BATCH3 in the general
purpose library (OGPL). The jobs using this description are placed on the
job queue NIGHTQ. The priority for jobs using this description and their
spooled output is 4. QCMDB is the routing data that is to be compared
with entries in the routing table of the subsystem in which the job is to be
executed.

CRTJOBD JOBD(PAYWK) USER(OPGMR) RTGDTA(QCMDB) +
RQSDTA('CALL PAY025 PARM(WEEKLY UNION)')

This command creates a job description named PA YWK in the general
purpose library (QGPL). Jobs using this job description execute under the
IBM-supplied user profile for the programmer, OPGMR. The routing data
OCMDB is to be compared with entries in the routing table of the
subsystem in which the job is to be run. The request data passed to the
command processing program is a CALL command that names the
application program to be executed and passes a parameter to it.

CRTJOBD
TEXT

Command Descriptions 4-477

CRTJOBQ

4-478

CRT JOBQ (Create Job Queue) Command

The Create Job Queue (CRTJOBQ) command creates a new job queue. A
job queue contains entries for jobs that are to be processed by the system.
To add this job queue to the subsystem, use the Add Job Queue Entry
(ADDJOBQE) command.

• Submit Job (SBMJOB)

• Submit Card Jobs (SBMCRDJOB)

• Submit Data Base Jobs (SBMDBJOB)

• Submit Diskette Jobs (SBMDKTJOB)

• Transfer Job (TFRJOB)

To add an entry for this job queue to a subsystem description, use the Add
Job Queue Entry (ADDJOBQE) command.

-(
.QGPL

CRTJOBQ---JOBQ Job-queue-n-)------------+•
.library-name

Required

Optional

-(•YBS) ® -f_ •NORMAI.3
>-OPRCTL '----PUBAUT •ALL --...... '------------•I>

•NO •NONI

-(
•BLANIC ::)-

>-TUT

'dHcrlption'

JOBQ Parameter: Specifies the qualified name of the job queue being
created. (If no library qualifier is given, the queue is placed in QGPL.)

l Job:B,I P1m:B,I

OPRCTL Parameter: Specifies whether a user who has job control authority is
allowed to control this job queue and manipulate the job entries on the
queue. A user has job control authority if SPCAUT(*JOBCTL) is specified in
his user profile.

*YES: A user with job control authority can control the queue and
manipulate the entries on the queue.

"NO: This queue and its entries cannot be controlled by anyone except the
queue's owner.

PUBAUT Parameter: Specifies what authority for the job queue is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the GRTOBJAUT command. (For an expanded
description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only read and add rights for the queue. Any
user can put job entries on the job queue and display all entries on the
queue.

*ALL: The public has complete authority for the queue.

*NONE: The public has no authority for the queue.

TEXT Parameter: Lets the user enter text that briefly describes the job queue.
(For an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTJOBQ JOBQ(DEPTA) PUBAUT(*NONE) +
TEXT('Special queue for Dept A jobs')

This command creates a job queue named DEPTA and puts it in the QGPL
library. Because PUBAUT(*NONE) is specified and OPRCTL(*YES) is
assumed, the job queue can be used and controlled only by the user who
created the queue and by users with job control rights (*JOBCTL).

CRTJOBQ
PUBAUT

Command Descriptions 4•479

CRTJRN

4-480

CRT JRN (Create Journal) Command ·

The Create Journal (CRTJRN) command creates a journal with the specified
attributes, and attaches the specified receivers to the journal. Once a journal
has been created, file changes may be journaled to it.

Restriction: The receivers specified must have been created before the
execution of this command and they must· be empty (that is, the receivers
niust not have been previously attached to any journal).

A journal cannot be created in library QTEMP.

-{
.QGPL

CRTJRN--JRN Journal-name . J.---------------11
.llllra17-n-

-{
.•IJBJ. ·®

:).-JRNRCV-i:-recelver-name .)-... ,-------------11 I .Ubr&Q'-n- .

------.a maximum . Required

Optional

..

-f_ •NO~-{•BLAJOC::r->- PUBAUT •NONB . .

•ALL 'demortptlon•

l Job:B,J PIJlllB,J

JRN. Parameter: Specifies the qualified name of the journal that is being
created. (If a library name is not specified, the journal is placed in library
QGPL).

JRNRCV Parameter: Specifies the qualified names of the journal receivers to
be attached to the specified journal. (If no library qualifier is given, *UBL is
used to find the journal receiver.) The journal receivers must not have been
previously attached to any journal. A maximum of 2 journal receivers may
be specified.

MSGQ Parameter: Specifies the message queue to be associated with this
journal. The message issued when a journal receiver's storage limit
(threshold) is exceeded is sent to this message queue.

QSYSOPR.*LIBL: The message will be sent to the QSYSOPR message
queue.

message-queue-name: Enter the qualified name of the message queue to
which the message will be sent. If this message queue is not available
when the journal receiver threshold is exceeded for a journal receiver, the
message will be sent to the QSYSOPR message queue. To set the
threshold value, refer to the CRTJRNRCV command.

PUBAUT Parameter: Specifies what authority for the journal is being granted
to the public (all users). Additional authority can be explicitly granted to
specific users by the GRTOBJAUT command. (For an expanded description
of the PUBAUT parameter, see Appendix A.)

Note: No specific authority is required to journal physical file member
changes once journaling has been started for that file.

*NORMAL: The public has operational, read, add, and update authority for
the journal.

*NONE: The public has no specific authority for the journal.

*ALL: The public has complete authority for the journal.

TEXT Parameter: Specifies the user-defined text that briefly describes the
journal. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTJRN JRN(JRNLA.MYLIB) JRNRCV(RCV01.MYLIB RCV01A.MYLIB)

This command causes a journal named JRNLA to be created in library
MYLIB. The public will have normal authority for the journal. Two journal
receivers (named RCV01 and RCV01A in library MYLIB) are attached to
journal JRNLA.

CRTJRN
MSGQ

Command Descriptions 4-481

CRTJRNRCV

4-482

CRTJRNRCV (Create Journal Receiver) Command

The Create Journal Receiver (CRTJRNRCV) command creates a journal
receiver. Once a journal receiver has been attached to a journal (With the
CRTJRN or CHGJRN command), journal entries may be placed on it. A
preferred storage unit and a storage space threshold value can be specified
for the journal receiver. When the size of the journal receiver exceeds the
size specified, a_ message -is sent to the message queue associated with the
journal (the operation will not terminate).

Restriction: A journal receiver cannot be created in library OTEMP.

- - -(.QGPL ®
CRTJRNRCV--JRNRCV receiver-name)., _______ __; ___ _..,

.1lbra17-name - Required

OpUo11.al

-(
•ANY -(•NONB

>-UNIT unit-identifier J~---TBRBBBOLD thre1hold~value)., __ __; ____ _..,

1··°3 >-PUBAUT \=:_ :::B
-(•BLAH~

TUT 1 dncrlpti011.1~
j .Job:B,I P1m1B,I

JRNRCV Parameter: Specifies the qualified name of the journal receiver that
is being created. (If a library name is not specified, the journal receiver is
placed in library QGPL).

UNIT Parameter: Specifies the unit identifier of the auxiliary storage unit on
which the system will attempt to allocate the storage space for the journal
receiver. This includes the initial allocation for the receiver and any later
extensions. If the system cannot allocate the storage space on the specified
unit, it allocates the space on any available unit. The journal receiver is
entirely usable in all cases.

*ANY: The storage space for the journal receiver can be allocated on any
available auxiliary storage unit.

· unit-identifier: Enter a value of 1 through 14 to specify the identifier of the
auxiliary storage unit on which you prefer to have the storage space of the
receiver allocated. Valid values depend on how many storage units are on
the system, and on their types (62PC disk and 3370 disk).

The following chart shows the valid unit identifiers for each device type and
unit:

Device Unit
Type Unit Identifier

62PC 1-6 1-6

3370 Module 1, actuator 1 7

Module 1, actuator 2 8

Module 2, actuator 1 9

Module 2, actuator 2 10

Module 3, actuator 1 11

Module 3, actuator 2 12

Module 4, actuator 1 13

Module 4, actuator 2 14

Note: These identifiers remain the same for systems that have 3370
devices and fewer than six 62PC devices.

The system attempts to make all space allocations on the unit specified. If
it cannot, either because that unit is full or because an invalid identifier was
specified, it allocates the remainder of the space on any available unit.

THRESHOLD Parameter: Specifies a storage space threshold value (in
K-bytes) for the journal receiver. If the threshold value is exceeded during
journaling, a message (CPF7099) is sent to the message queue designated
on the CRTJRN or CHGJRN command. No action is taken by the system
other than sending the message; you may want to take some action,
however, such as issuing a CHGJRN command or saving the receivers.

*NONE: No threshold value is specified (no message will be sent).

threshold-value: Enter a value between 1 and 1,920,000, which is to indicate
K-bytes of storage; for example, an entry of 1000 specifies 1024000 bytes.
When the size of the space for the journal receiver exceeds the size
specified by this value, a message will be sent to the designated message
queue and journaling will continue.

Note: If the specified threshold value is less than 9, the message will be
sent when the journal receiver is attached to a journal (with the CRT JRN or
CHGJRN command).

CRTJRNRCV
THRESHOLD

Command Descriptions 4-483

CRTJRNRCV
PUBAUT

4-484

PUBAUT Parameter: Specifies what authority for the journal receiver is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the GRTOBJAUT command. (For an expanded
description of the PUBAUT parameter, see Appendix A.)

Note: No specific authority is required to journal physical file member
changes once journaling has been started for that file.

*NORMAL: The public has operational and read authority for the journal
receiver.

*NONE: The public has no specific authority for the journal receiver.

*ALL: The public has complete authority for the journal receiver.

TEXT Parameter: Specifies the user-defined text that briefly describes the
journal receiver. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTJRNRCV JRNRCV(JRNRCLA.MYLIB) THRESHOLD(1000) PUBAUT(*ALL)
TEXT('RECEIVER FOR WEEK 37')

This command causes a journal receiver named JRNRCLA to be created in
library MYLIB. When the size of JRNRCLA exceeds 1000K (1,024,000)
bytes, a message will be sent to the message queue associated with the
journal. The public has complete authority for the journal receiver.

CRTLF (Create Logical File) Command

The Create Logical File (CRTLF) command creates a logical file in the
System/38 data base. The logical file is created from the file description
parameters in this CRTLF command and from the previously entered data
description specifications (DDS) that contain the source description of the
logical file. (To override the attributes of the logical file after it has been
created, use the Override Data Base File (OVRDBF) command before the file
is opened.)

A logical file is a data base file through which data from one or more
physical files can be accessed in a format and organization that is different
from the physical representation of the data. Logical files do not actually
contain data. A logical file is structured over one or more physical files,
which are referred to as based-on physical files. The logical file cannot be
created unless all the physical file(s) specified in the logical file description
already exist; however, the physical files do not have to contain data. The
following attributes are contained in the logical file description:

• The record format. specifications used by the file. A logical file can have
more than one record format. The record formats can describe records
having different attributes. Each logical file record format can describe
records from one or more based-on physical files. There will usually be
one logical file record format specified for each physical file record
format that is accessed. Fields from more than one physical file cannot
be combined in one logical file record format.

• The access path specifications used to process data from the file. A
logical file can be in arrival sequence or in keyed sequence and can have
many optional access path specifications.

• The data association specifications for the file. These specifications
identify the physical files that contain data used by the logical file.

Each logical file can have one or more members; each member, except
(optionally) the first member, is added separately, but has many of the same
attributes of the entire file. Each member in the logical file can have
different based-on physical file members for data; it has a separate
organization of data. Each member within the file has its own access path,
but the type of access path (keyed or arrival sequence) and maintenance
rule is the same for every member.

CRTLF

Command Descriptions 4-485

CRTLF

4-486

Each member within the logical file can access records that have one or
more record formats. The logical file member is really an index to the
records located in ·the physical files specified in the DDS source input to the
CRTLF command. The member can access records from all based-on
physical files specified by PFILE keywords in the file's DDS, or a subset of
them. The record format combinations can be different for each logical file
member. But each logical record format can be based only on existing
record format(s) in the based-on physical file. The format can be the same
as, or a subset of, the based-on physical file format.

A logical file without any members can exist, but data operations cannot be
performed through the logical file until a member is added. To add a
member, either specify one in the MBR parameter of this command or use
the Add Logical File Member (ADDLFM) command. (The default is to create
one member with the same name as the file.)

Restrictions: To create a logical file over one or more physical files, you
must have object management rights and operational rights for each of the
based-on files (specified by PFILE keywords in DDS). And, if the logical file
is to share the keyed sequence access path of another logical or physical file
(specified by ACCPTH iri DDS), you must have operational rights for that
file. Similar restrictions also apply to based-on physical file members when
a member is to be added to the logical file (by the ADDLFM command)
after it has been created.

-(
.QGPL

CRTLP---PILB lo1loal-file-name J---------------
.llbraey-nune

Required

Optional

-(
QDDSSRC.•IJBL

>-SRCPILll -(111JBL-y .. ----------------
eource-ftle-name •

.llbraey-name

-(
•PILI!

>-SRCMBR)--------------------.•
1ouroe-rue-member-name

:::~9 -(•UST~ ®
>-OPTION-[•llOBRC) [•llOIJSTJ]-----

•NOBOURCll

>-PILllTYPB MBR •NOllB --------~-'II----------. -(•DATY- ~•PILI!
•SRC . lo1loal-flle--ber-name _/

-(
•llONB

>-ACCPTBMBR)------------------.•
aooeH-path-member-name

•ALL
>-DTAMBRS

-(.eCURRBllT :J- ~•NOllB ~ ptiyelcal-·file-name [©]
.llbraey-name member-nune

32 maximum

~------------- 32 maximum---------~

>-MAXMBRS___1"!110M.AX .)
~mmmum-member1

~e1MMB3
MAlllT •RBBLD-... ------------+

•DLY

>-RBCOVBR~::TSTRC3-----UlllT-(UllY)9---------
•STRCPP unit-Identifier

-(
•110111

>-PMTSLR -(.•IJBL y .. ----------------.
pro1ram-name .

• llbra.17-name

-(
•NONE ~•HMMED

>-PRCRATIO WAlTPILE •CLS
number-ot-recorda-betore-rorcJ number-ot-aecondJ

-E:~MMBD-----~""'°'
>-WAITRCD •NOMAX

number-of-1econda

-(•YBSF-- ~•1103- -(eBLAlllt=>->- LVLCBlt PUBAUT •ALL TUT
•110 •110111 'deeorlptlon'

© The eum of a.U member namea specified for a.U specified filee cannot exceed 32.
@ Refer to the parameter cleocrlptlon tor the default action taken for thl• paruneter.

lJob:B,I P1m:B,I

Command Descriptions

CRTLF
(Diagram)

4-487

CRTLF
FILE

4-488

FILE Parameter: Specifies the qualified name by which the logical file being
created will be known. If no library qualifier is given, the logical file is
stored in QGPL. (If the file is to be used in an HLL program, the file name
should be consistent with the naming rules of that language; otherwise, the
file must be renamed in the program itself.)

SRCFILE Parameter: Specifies the name of the source file containing the
DDS to be used to create the logical file. The source file contains the
specifications that describe the record format(s) and their fields, and the
access paths for the file and its members. (For the specifications that can
be made in DDS, refer to the CPF Reference Manua/.;...DDS.)

QDDSSRC: The IBM-supplied DDS source file named QDDSSRC in the
QGPL library contains the source descriptions to be used to create the
logical file. QDDSSRC can contain source descriptions for many files; each
member of QDDSSRC contains the source description of one physical,
logical, or device file. (When shipped, QDDSSRC contains no descriptions.)
(If no library qualifier is specified, *UBL is used to find the source file.)

qualified-source-file-name: Enter the qualified name of the source file that
contains the DDS to be used to create the logical file. (If no library qualifier
is given, *UBL is used to find the source file.)

SRCMBR Parameter: Specifies the name of the source file member that
contains the DDS for the logical file being created; the member is in the
source file specified in the SRCFILE parameter (or its default. QDDSSRC).
The SRCMBR parameter is valid only if SRCFILE specifies the name of a
data base file. If not specified, the member name is the same as the name
of the logical file being created; the default value *FILE implies that the
name of the logical file being created is to be used. A member name must
be specified when the source file member to be processed does not have
the same name as the logical file being created.

*FILE: The source file member name is the same as the name of the
logical file being created.

source-file-member-name: Enter the name of the member in the source file
specified by SRCFILE to be used to create the logical file.

OPTION Parameter: Specifies the type of output listing to be produced when
the file is created.

*SRC or *SOURCE: A listing of the source statements used to create the
file, and of any errors that occur, is to be generated.

*NOSRC or *NOSOURCE: No listing of the source statements is to be
generated unless errors are detected. If errors are detected, they are listed
along with the record format containing the error.

*LIST: An expanded source listing is to be generated, showing a detailed
list of the file specifications that result from the source statements and
references to other file descriptions. This listing shows file, field, key, and
select/omit keywords and attributes.

*NOL/ST: No expanded source listing is to be generated.

FILETYPE Parameter: Specifies whether each member of the logical file
being created is to. contain data records, or is to contain source records
(statements) for a program or another file. The file could contain, for
example, RPG source statements for an RPG program or DDS source
statements for another physical, logical, or device file. (For an expanded
description of the FILETYPE parameter, see Appendix A.)

*DATA: The logical file is to contain data records.

*SRC: The logical file is to contain source records. (Each source record
must have at least three fields defined by DDS.)

MBR Parameter: Specifies the name of the logical file member (if a member
is to exist immediately) to be added when the logical file is created.

*FILE: The member being added is to have the same name as that of the
logical file that contains the member (specified in the FILE parameter).

*NONE: No member is to be added when the file is created.

logical-file-member-name: Enter the riame of the member that is to be
added when the logical file is created.

CRTLF
OPTION

Command Descriptions 4-489

CRTlf
ACCPTHMBR

4-490

ACCPTHMBR Parameter: Specifies, for the logical file member being added,
the name of the member of the existing file that describes the access path
to be shared with the logical file member. This parameter is required and
can be used only when a logical file member is to be added at the time the
file is created and it is to share an access path. The parameter is not valid if
MBR(*NONE) is specified.

For information on access path sharing, refer to the description of the
ACCPTH keyword in the CPF Reference Manual-DDS. The ACCPTH
keyword can be specified in the logical file source description.

*NONE: The logical file member being added (if there is one) is not to
share the access path of another file member.

access-path-member-name: Enter the name of the member of the file that
describes the access path to be shared with the member being added to the
logical file. The name of the file is specified in the logical file data
description specifications, on the ACCPTH keyword.

DTAMBRS Parameter: Specifies the names of the physical files and
members that contain the data to be associated with the logical file member
being added when this logical file is created. The scope of the logical file
member can contain all of the physical files and members that the logical
file itself contains, specified by DTAMBRS(*ALL); or the member can
contain a subset of the total files and members, specified by
DTAMBRS(qualified-file-name(s) [member-name(s)]). DTAMBRS cannot
be specified if MBR(*NONE) is specified.

In addition, the total of all member names cannot exceed 32; that is, a// of
the member names specified for all of the files specified cannot be greater
than 32. For example, one file can specify 32 members, two files can each
have 16 members, or 32 files can each have one member specified.

*ALL: If no access path is shared, the scope of the logical file member
being added is to be the same as that for the entire logical file. That is, the
data to be associated with the member is in all the physical files and
members (that exist when this command is entered) used by the logical file.
The files are specified by the PFILE keyword in the DDS source file named
in the SRCFILE and SRCMBR parameters in this command.

If *ALL is specified (or is the default) and the logical file is to share an
access path (not data) with an existing physical or logical file, the data for
the logical file member is the same as the data associated with the member
specified by the ACCPTHMBR parameter; that is, the same based-on
physical file(s) and member(s) are used.

qualified-physical-file-name [member-name]: Enter the names of one or
more physical files and their members that contain the data to be accessed
by the logical file member being added. Each entry for a physical file in the
PFILE keyword in DDS should have a corresponding entry in the DTAMBRS
parameter. Also, each physical file specified in the DTAMBRS parameter
must correspond to one of the physical files specified by the PFILE
parameter when the logical file was created. If no member name is
specified for a physical file that is specified, *NONE is assumed and the
logical file scope list or the based-on member's scope list is bypassed. (For
more details, refer to Additional Considerations at the end of this command
description.)

A maximum of 32 qualified physical file names and physical file member
names can be specified. Also, the total of all members cannot exceed 32;
that is, all of the member names specified for all of the files specified
cannot be greater than 32. For example, one file can specify 32 members,
two files can each have 16 members, or 32 files can each have one member
specified.

When the file is created, the DDS PFILE keyword is used to specify physical
file names, and, optionally, the library qualifiers of the physical files being
associated with the logical file. If a library qualifier is not specified, *LIBL is
used to find the physical file when the logical file is created. (The physical
file and the library in which it is stored are saved in the description of the
logical file when the logical file is entered.) When members are added to
the file, each physical file name specified in the DTAMBRS parameter can
be optionally qualified by the name of the library; however, the library name
must be specified only if the logical file is based on more than one physical
file of the same name, as defined in the PFILE keyword. If a library name is
not specified for a physical file, the current library name (*CURRENT) for the
specified file is determined from the qualified file name saved in the
description of the logical file (not the current *LIBL library list).

CRTLF
DTAMBRS

Command Descriptions 4-491

CRTLF
MAXMBRS

4-492.

The following examples show the syntax for specifying single and multiple
members for single and multiple physical files. In the examples, the
abbreviation PF represents a physical file name, LIB represents a library
qualifier, and M represents a member name. Physical file names need only
be qualified if the PFILE Keyword in the DDS specifies multiple physical files
of the same name.

Single physical file and member:
DTAMBRS((PFA M1))

Single file with multiple members:
DTAMBRS((PFA (M1 M2 M3)))

Multiple files with single members and no members:
DTAMBRS((PFA M1) (PFB M4) (PFE.NONE))

Multiple files with multiple members:
DTAMBRS((PFA (M1 M3 M4)) (PFB (M1 M2 M4)))

Multiple files with the same name in different libraries:
DTAMBRS(PFA.LIBX M1) (PFA.LIBY (M1 M2)))

Multiple files with the same name in the same library:
DTAMBRS((PFA.LIBX M1) (PFA.LIBX M1))

As shown in the preceding example, each physical file specified in the PFILE
keyword in the DDS should have a corresponding entry in the DTAMBRS
parameter, even though it may mean specifying the same qualified. physical
file and member many times.

When more than one physical file member is· specified for a physical file,
specify the member names in the order in which records are retrieved when
duplicate key values occur across those members.

MAXMBRS Parameter: Specifies the maximum number of members that the
logical file being created can have at any time. (This value cannot be
changed after the file is created.)

1: Only one member can be contained in the file.

*NOMAX: No maximum is specified for the number of members; the system
maximum of 32 767 members per file is used.

maximum-members: Enter the value for the maximum number of members
that the logical file can have. A value of 1 through 32767 is valid.

MAINT Parameter: Specifies, for files with keyed sequence access paths
only, the type of access path maintenance to be used for every member of
the logical file. This parameter is not valid for files that have arrival
sequence access paths.

*IMMED: The access path is to be continuously (immediately) maintained
for each logical file member. The path is updated each time a record is
changed, added, or deleted in a physical file member contained in the scope
of that logical file member regardless of whether the logical member is open
or closed. This means that, for every file that is continuously maintained,
the access path of each one is immediately updated-whether it is open or
closed. *IMMED must be specified for all files requiring unique keys to
ensure uniqueness in all inserts and updates.

*DLY: The maintenance of the access path is to be delayed until the logical
file member is opened for use. Then the access path is updated only for
records that have been added, deleted, or updated since the file was last
opened. (While the file is open, all changes made to based-on file members
are immediately reflected in the access paths of the opened file's own
members, no matter what is specified for MAINT.) To prevent a lengthy
rebuild time when the file is opened, *DL Y should be specified only when
the number of changes to the access path between successive opens are
small; that is, when the file is opened frequently or when the key fields in
records for this access path change infrequently. *DL Y is not valid for
access paths that require unique key values.

If the number of changes saved reaches approximately 10 percent of the
access path size, the system will stop saving changes and the access path
will be completely rebuilt the next time the file is opened.

*REBLD: The access path is to be completely rebuilt when a logical file
member is opened during program execution. The access path is
continuously maintained within that member until the member is closed; the
access path is then destroyed. *REBLD is not valid for access paths that
require unique key values.

CRTLF
MAINT

Command Descriptions 4-493

CRTLF
RECOVER

4-494

RECOVER Parameter: Specifies, for files having imrnediate maintenance on
their access paths, when recovery processing of the file is to be performed
after a system failure has occurred while the access path was being
changed. This parameter is valid only if a keyed access path is used.

The access path having immediate maintenance can be rebuilt during start
CPF (before any user can execute a job), after start CPF has finished (during
concurrent job execution). or when the file is next opened. While the access
path _is being rebuilt, the file cannot be· used by any job.

The access path having rem.iild maintenance will be rebuilt the next time its
file is opened, the time that it normally is rebuilt.

*NO: The access path of the file is not to be rebuilt. The file's access path
is rebuilt when the file is next opened if it has rebuild maintenance. *NO is
the default for all files that do not require unique keys.

*AFTSTRCPF: The file is to have its access path rebuilt after the start CPF
operation has been completed. This option allows other jobs not using this
file to begin processing immediately after the CPF has been started~ If a job
tries to allocate the file while its access path is being rebuilt, a file open
. exception occurs if the specified wait time for the file is exceeded.
* AFTSTRCPF is the. default for files that require unique keys.

*STRCPF: The file is to have. its access path rebuilt during the start CPF
operation. This ensures that the file's access path. will be rebuilt before the
first user program tries to use it; however, no jobs can begin execution until
after all files that specify RECOVER(*STRCPF) have their access paths
rebuilt.

UNIT Parameter: Specifies, if the user prefers that a file be stored on a ·
specific unit, the unit identifier of the auxiliary storage unit on which the
system will attempt to allocate the storage space for the file and for all its
members and their keyed sequence access paths. This includes the initial
allocation for each member and any additional extensions needed later. If
the system cannot allocate the storage space on the specified unit, it
allocates the space on any available unit and sends a message to the job
log. In any case, the file is entirely usable.

*ANY: The storage space for each member can be allocated on any
available auxiliary storage unit.

unit-identifier: Enter a valid value of 1 through 14 to specify the identifier of
the auxiliary storage unit on which you prefer to have the storage space of
all members allocated. The values that are valid depend on how many
storage units are on the system, and on their types (62PC disk and 3370
disk). Refer to the chart in the CRTPF command description, UNIT
parameter, for the type and unit that correspond to the unit identifiers.

The system attempts to make all space allocations on the unit specified. If
it cannot,. either because that unit is full or because an invalid identifier was
specified, it allocates the remainder of the space on any available unit and
sends a message to the job log.

\

FMTSLR Parameter: Specifies the name of a record format selector program
that is to be called when the logical file member contains more than one
logical record format. The user-written selector program is called when a
record is to be inserted into the data base file and a record format name is
not included in the HLL program. The selector program receives the record
as input, determines the record format to be used, and returns it to the data
base. This program must perform this function for every member in the
logical file that has more than one record format. unless the HLL program
itself specifies the record format name. (More information about the use of
format selector programs is contained in the CPF Programmer's Guide.)

This parameter is not valid if the logical file has only one record format.

*NONE: There is no selector program for this logical file. The file cannot
have more than one logical record format. or the HLL program itself must
specify the record format name.

qualified-program-name: Enter the qualified name of the format selector
program to be called when a record is to be inserted into a member having
more than one format. The selector program name can be optionally
qualified by the name of the library in which the program is stored. (If no
library qualifier is given, *UBL is used to find the program.)

A program specified as the format selector program cannot be created with
USRPRF(*OWNER) specified in its create program command.

FRCRATIO Parameter: The force write ratio parameter specifies the number
of inserted or updated records that are processed before they are forced
into auxiliary (permanent) storage. (For an expanded description of the
FRCRATIO parameter see Appendix A.)

For example, if the force ratios of three physical files are 2, 6, and 8, the
logical file force ratio that is based upon these three physical files must be
as restrictive as the least of them; that is 2 in this case. Two would be
used even if FRCRATIO is not specified. Thus. each time a program
updates two records in the logical file (regardless of which based-on
physical files are used), those changes are forced into permanent storage.

If a physical file associated with this logical file is being journaled, a large
force write ratio or *NONE may be specified. Refer to the CPF
Programmer's Guide for more information on the Journal Management
Facility.

*NONE: There is no specified force ratio; the system determines when the
records are written in auxiliary storage.

number-of-records-before-force: Enter the number of new or changed
records that are processed before they are explicitly forced into auxiliary
storage.

CRTLF
FMTSLR

Command Descriptions 4-495

CRTLF
WAITFILE

4-496

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS; The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

WAITRCD Parameter: Specifies the number of seconds that the program is
to wait for a record that is to be updated or deleted. If the record cannot
be allocated in the specified wait time, an error message is sent to the
program.

60: The program is to wait for 60 seconds.

*IMMED: The program is not to wait; when a record is locked, an
immediate allocation of the record is required.

*NOMAX: The wait time will be the maximum allowed by the system
(32 767 seconds).

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data. path) for the
logical file member can be shared with other programs in the same routing
step. If so, when the same file is opened by other programs that also
specify SHARE(*YES), they use the same ODP to the file. If a program that
specifies SHARE(*NO) opens the file, a new ODP is used. This parameter is
not valid if a member is not being added when the logical file is created.

When an ODP is shared, the programs accessing the file share such things
as the file status and the buffer. When SHARE(*YES) is specified and
control is passed to a program, a read operation in that program retrieves
the next record. A write operation produces the next output record.

*NO: An ODP created by the program with this attribute is not to be
shared with other programs in the routing step. Every time a program opens
the file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the record format identifiers are to be
level checked to verify that the current record format identifier is the same
as that specified in the program that opens the logical file. This value can
be overridden on the OVRDBF command at execution time.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an error message is
sent to the program requesting the open, and the file is not opened.

*NO: The level identifiers are not to be checked when the file is opened.

PUBAUT Parameter: Specifies what authority for the logical file and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the GRTOBJAUT command. To
use the logical file, the user profile must have the appropriate rights to use
the based-on physical files. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

Note: Because data rights do not apply to a logical file, they are not
included with the rights given by *NORMAL and *ALL.

*NORMAL: The public has only operational rights for the logical file.

*ALL: The public has complete authority for the logical file.

*NONE: The public cannot use the logical file.

TEXT Parameter: Lets the user enter text that briefly describes the logical file.
(For an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTLF FILE(STOCKCTL.INVEN) SRCFILE(STKLFSRC.SRCLIB) +
MBR(*NONE)

This command creates a logical file named STOCKCTL, which is to be
stored in the INVEN library. The source descriptions in the source file
STKLFSRC in the SRCLIB library are used to create the logical file. The file
is created without any members (*NONE was specified), and only one
member can be added later (because one member is the default). Also, by
default. the logical file will access the data contained in the physical files
specified in the DDS source file used to create this logical file. (For the
CRTLF command to complete successfully, the user must have object
management authority for all specified based-on physical files.)

CRTLF
LVLCHK

Command Descriptions 4-497

CRTLF
(Considerations)

4-498

CRTLF FILE(PAYCODESEO.PAYLIB) SRCFILE(PAYTXSRC.PAYLIB) +
DTAMBRS(PAYTRANS FIRSTOTR) UNIT(02) PUBAUT(*NONE) +
TEXT('Pay taxes in code sequence')

This command creates a logical file and logical file member, both named
PAYCODESEO, to be stored in the PAYLIB library. The file and its member
are created from the PA YTXSRC source file that is in the same library. The
user prefers that the logical file be stored on auxiliary storage unit 02. The
logical file member will access the data contained in the FIRSTOTR member
of the physical file PA YTRANS. The logical file is to be secured for the
private use of the owner. The owner must have object management
authority for the PAYTRANS file to create the member.

Additional Considerations

This section supplies additional information for coding the DTAMBRS
parameter when physical file names and member names are to be specified.

Non-Shared Access Paths

The following considerations apply when an access path is not to be shared:

• If the name of the library in which the physical file is stored is not specified,
the name of the library is determined from the logical file description (the
library name may have been specified in DDS. The library name should be
specified if the logical file is based on more than one physical file of the
same name (for exampld, PF1 in LIB1 and PF1 in LIB2).

• When more than one physical file member is specified for a physical file,
the member names are specified in the order in which records are to be
presented when a duplicate key value occurs across those members. If
multiple members from one physical file are specified, add operations are
not possible for that record format from high-level language programs.

• The logical file description contains a scope list of the based-on physical
files associated with the logical file. The scope list contains the content and
order of the based-on physical files. This list can be displayed by the
DSPFD (Display File Description) command if TYPE(*ACCPTH) is specified.
If a based-on physical file is used with more than one record format, the
DTAMBRS file parameters are order dependent.

The file parameters, for the based-on files used with more than one
record format, must be specified in the same order as they appear in the
logical file scope list.
If the user does not want to use a file in the logical file's scope list, that
file name must be specified without member names for the
corresponding entry in the logical file scope list.

For example, assume that two record formats (FMT1 and FMT2) in this
logical file are based on one physical file (PFA) and FMT1 is specified
before FMT2 in the DDS. If the logical file member being added will use
only FMT2 from member 2 (M2) of the physical file, the following
DTAMBRS parameter would be specified: DTAMBRS((PFA)(PFA M2))

Shared Access Paths

The following considerations apply when an access path is to be shared:

• The based-on file member must be specified in the ACCPTHMBR
parameter. (The based-on member is the member of the file specified by
the ACCPTH keyword in DDS whose access path is to be shared.)

• The file(s) and member(s) specified in the DTAMBRS parameter must also
exist in the list of data members on which the existing ACCPTHMBR
member is based. This list is called the member scope list.

• If the name of the library in which the physical file is stored is not specified,
the unqualified file name and the specified member name are used to search
for a matching entry in the based-on member's scope list. The library name
must be specified if more than one physical file with the same file name and
the same member name are included in the based-on member's scope list.
The member scope list contains the content and order of the based-on
physical files and members. This list can be displayed by the Display File
Description (DSPFD) command if TYPE(*ACCPTH) is specified.

• If a based-on physical file and member appear more than once in the
member scope list, the DTAMBRS file parameters are order dependent.
- The file parameters, for the file member appearing more than once in the

based-on member, must be specified in the same order as they appear in
the member scope list.
If the user does not want data to be associated with a particular entry in
the member scope list, that file name must be specified without a
member name for the corresponding entry in the member scope list.

CRTLF
(Considerations)

Command Descriptions 4-499

CRTLIB

4-500

CRTLIB (Create Library) Command

The Create Library (CRTLIB) command adds a new library to the system.
Before any object can be placed into a library, the library must have been
created. When the library is created, it is actually stored as part of the
internal system. However, although it is itself a library, it appears as though
it exists in the QSYS (system) library.

Required Optional

-(•PROD)©
CRTLIB---LIB llbr1l17-name-+--TYPB •------------·

•TBST

-(
.S:LtJCB: ~

TUT 'deecriptlan'~
l Job:B,J Psm:B,J

LIB Parameter: Specifies the name of the library to be created.

TYPE Parameter: Specifies the type of library being created.

*PROD: This is to be a production library. Data base files in production
libraries cannot be opened for updating if a user is in debug mode and he
requested that production libraries be protected. A user can protect all data
base files in production libraries by specifying UPDPROD(*NO) on the
ENTDBG command to begin testing. However, this protection does not
prevent the program from deleting data base files or from changing other
objects (such as data areas) in the library.

*TEST: This is to be a test library. All objects in a test library can be
updated during testing, even if special protection is requested for production
libraries.

PUBAUT Parameter: Specifies what authority for the library is being granted
to the public (all users). Additional authority can be explicitly granted to
specific users by the GRTOBJAUT command. (For an expanded description
of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational, read, add, update, and delete
rights for the library.

*ALL: The public has complete authority for the library.

*NONE: The public cannot use the library.

TEXT Parameter: Lets the user enter text that briefly describes the library.
(For an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTLIB LIB(MYLIB) TEXT('My Production Library')

The library MYLIB is added to the system. The library is a production
library; only the owner has object existence and object management rights
for it. But all users have operational, read, add, update, and delete rights for
the library because *NORMAL was assumed for PUBAUT. The text 'My
Production Library' is displayed whenever the library description for MYLIB
is displayed.

CRTLIB LIB(Z) TYPE(*TEST) PUBAUT(*NONE) +
TEXT('This is a test library')

Test library Z is added to the system. Only the owner of Z can use it
because no other users have been granted any authority. The specified text
('This is a test library') is displayed whenever the library description for Z is
displayed.

CRTLIB
TEXT

Command Descriptions 4-501

CRTLIND

4-502

CRTLIND (Create Line Description) Command

The Create Line Description (CRTLIND) command creates a line description
for the specified communications line and describes its features to the
system; this includes the description of the modem (and its features)
connected to the line. When the line description is created, it is stored as
part of the internal system, and it appears as though it exists in the QSYS
(system) library.

One CRTLIND command must be entered for each communications line on
the system. Up to 10 line descriptions can be created for each line number.
Only one line description and its associated network can be varied on at one
time. This enables you to change the line description or communications
protocol of a particular line number by simply varying the network off, then
varying on the preferred network description. Devices directly attached to
System/38, such as the MFCU and work stations attached to the work
station controller, do not require a corresponding CRTLIND command.

This command should be used to create a line description before the
associated control unit descriptions and device descriptions are created for
the control units and devices attached to the line. This sequence for
creating descriptions is not a required sequence. However, if the
descriptions are created out of sequence, any commands referring to names
of descriptions not yet created are rejected by the system.

Note: Before using this command, you should refer to the Guide to Program
Product Installation and Device Configuration for considerations relating to the
communications line interfaces, and to the modem characteristics, types,
and features. (Appendix C contains many details on the modem types.) This
information will help you to properly specify the parameters on the
CRTLIND command.

Restrictions: If the CRTLIND command is used to change the name and/or
line number of a switched line, the CHGCUD command must be used to
incorporate,the new attribute(s) in the control unit description of each
contrdl unit that is associated with that line and that specifies either
SWITCHED(*YES) or SWNBKU(*YES) in its control unit description. (If the
address of the line is changed, the CHGCUD command makes the new
address association when the new (or unchanged) line name is specified in
the LINLST parameter.) The LINLST parameter must specify all the
unchanged line names as well as the new name; however, their order can
be changed.

CRTlJND-- lJND llne-de1criptlon-name-- IJNNBR Una-OU-number-----------

>-TYPB+::~~=~ CNNL:;:~ RATB data-rate-®-·---------~•
'\=.asc:::f ~•MP~

•BSCT Required

OpUonal

-{•NO)-- ~•RO J- ~•RO J- -{•RO r >-BWNBICU SBLBCT NONRTNZ CLOCK
•1'1!18 •1'1!18 •1'1!18 •'1118

-{•lfO)- -{•lfO)- -{•Jl'O) >-AUTOCALL AUTOANS ANSTONB •--------..
•1'1!18 •'1118 •1'1!18

-{2)- -{2)- ~ul -{•ll'O) >- W1RB ~ [~]-DCBGRP~:~J OBMMDM •1'1!18 , ______ __,.,.

~•MANU:>-->-ANSMODB DTRDLY delay-time-unite--------------•

•AUTO

~UI
>- IDLBTIMB ldle-detection-time-unlte---RCVTMR)----• ..

walt-tor-data-tlme-unlt1

>-NONPRDRCV nonproductlve-receive-tlme-unita---RBTRY-{
1 J•-------1"•
retry-limit

-{
•'!BB)- © @

>-ONIJNB CTLUTcontrol-unit-name-rBWTCTLUT1wltched-control-unit-name,..
•Jl'O L-9 maximum__J ~-----8 mulmum ----'

(!) @~•Jl'OJl'B
>- STNADR Syatem/38-atation-addreH ---BXCHID)--------..

llltllhance-ldentt.ner

@ •BBCDJ- -{•Jl'O)- -{•'!BS) >-con RJB BSCSWTDSC ------------..
U.SCII •DB •1110

>-PUBAUT1 ::.JUW.-~-...... ---TBXT-{•BLAJl'IC ~
\...: •ROHB ~ 'deacrtptlon.'__r--

©It TYPB(•SDLCS) or TYPB(•BSCT) ia 1pecitied, an addreH must be apecitled in the STlllADR
parameter. I Refer to the parameter deacrlption tor the default action taken ror thla parameter.
Valid for T!PB(•B8C) or T!PB(4188CT) on1T.
Uulttple oontrol uD.tt n.-• oan be apeotrted olllT tr T!PB(•SDLCP) and CJIN(•UP) are
aleo epeol.t1ed. On1T one name le valid tr T!PB(•8DLCS), T!Pl(41BBC) or TIPB(•B8CT)
11 1peolfted. .

@Valid only tr T!PB(41BBC) and ClllJl'(•BWT) are 1peolfted, or tr BWJl'BICU(•DB) le 1peoifted.
@Valid for T!PB(•8DLCS) on1T.

l Job:B,J PpuB,J

CRTLIND
(Diagram)

Command Descriptions 4-503

CRT LIND
Table of Valid Parameters by Line Types (Chart)

Parameter SDLCP SDLCS BSC BSCT

LIND R R R R

LINNBR R R R R

TYPE R R R R

CNN R R R R

RATE R R R R

SWNBKU 0 0 0 I

SELECT1 0 0 0 0

NONRTNZ2 0 0 I I

CLOCK 0 0 0 0

AUTOCALL3•5 0 0 0 0

AUTOANS3•5 0 0 0 0

ANSTONE4 0 0 0 0

WIRE5 0 0 0 0

DCEGRP 0 0 0 0

OEMMDM 0 0 0 0

SWTCNN 0 0 0 I

RATETYPE6 0 0 0 0

DIALMODE7 0 0 0 0

ANSMODE4 0 0 0 0

DTRDLY 0 0 0 0

IDLETIME 0 0 I I

RCVTMR I I 0 0

NONPRDRCV 0 0 I I

RETRY 0 0 0 0

ONLINE 0 0 0 0

CTLU 0 0 0 0

SWTCTLU10 I I 0 I

STNADR I R I R

EXCHID8 I 0 I I

CODE9 I I 0 0

RJE9 I I 0 I

BSCSWTDSC I I 0 I

PUBAUT 0 0 0 0

TEXT 0 0 0 0

R =Required 0 =Optional I= Invalid

1Dependent on OEMMDM parameter.
21f TYPE(*SDLCP) or TYPE(*SDLCS) is specified, NONRTNZ(*YES) must be specified
(default).

3Dependent on CNN(*SWT) parameter.
4Dependent on AUTOANS(*YES) parameter.
5Dependent on SWNBKU(*YESI parameter.
6SELECT(*YES) must be specified for RATETYPE(*HALF) selection.
7Dependent on AUTOCALL(*YES) parameter.
8Must be a valid EBCDIC value or a translatable ASCII value.
9CODE(*ASCll) and RJE(*YES) are mutually exclusive.
10At least one entry required for switched point to point.

4-504

LIND Parameter: Specifies the name of the communication line description
that is being created.

LINNBR Parameter: Specifies a value that is to identify to the system the line
being described. The value specified is to be the operational unit (OU)
number of the line description, and it must correspond to the 1/0 controller
(IOC) being used and to the number of the line connector to which the line
is attached. The line connectors for controller 1 are on the back of the 5381
System Unit, and those for controller 2 are on the back of the expansion
unit; both sets of connectors are numbered 00 through 03.

Communication 1/0 Controller 1 Communication 1/0 Controller 21

Line Number Line Number
(OU Number) Line Position (OU Number) Line Position

20 First (00) 60 Fifth (00)

21 Second (01) 61 Sixth (01)

22 Third (02) 62 Seventh (02)

23 Fourth (03) 63 Eighth (03)

1 If installed.

If the line is moved to another line connector, the line description must be
recreated with the new OU number. If AUTOCALL(*YES) is specified, line
23 or line 63 cannot be specified (refer to the AUTOCALL parameter
description). Up to 10 line descriptions can be created for each line number,
but only one described line can be varied on at one time.

Note: When more than one line description exists for a line number, only
one should specify ONLINE(*YES); if multiple line descriptions specify
ONLINE{*YES), the system chooses, in alphabetic order, the first line
description and varies it on during CPF start up.

TYPE Parameter: Specifies the type of communication line used.

*SDLCP: The line is a primary synchronous data link control (SDLC) line.

*SDLCS: The line is a secondary SDLC line that is to be used by a host
system to communicate with this System/38. The SDLC link (station)
address of System/38 must be specified in the STNADR parameter.

*BSC: The line is used for point-to-point BSC or RJEF.

*BSCT: The line is a BSC multipoint tributary line.

CRTLIND
LIND

Command Descriptions 4-505

CRTLIND
CNN

4-506

CNN Parameter: Specifies the type of line connection used for the line.

*SWT: This is a switched connection, accomplished by telephone dial-up.
*SWT is not valid for TYPE(*BSCT).

*PP: This is a point-to-point nonswitched connection.

*MP: This is a multipoint nonswitched connection. This value is not valid
for TYPE(*BSC) (and, therefore, RJEF).

The following chart shows which parameters are valid for each of the types
of connection. Only those parameters that are dependent on the value
specified in the CNN parameter are shown in the chart.

CNN(*SWT) CNN(*PP) CNN(*MP)

SWNBKU SWNBKU

AUTOCALL

AUTOANS AUTOANS1 AUTOANS1

AN STONE ANSTONE1 ANSTONE1

DCEGRP DCEGRP2 DCEGRP2

DIALMODE

ANSMODE ANSMODE1 ANSMODE1

SWTCTLU SWTCTLU1

CTLU enu
1Valid only if SWNBKU(*YESI is specified.
21f SWNBKU(*YES) is specified, *A, •e, or •c (depending on
the country and the modem type) can be specified for
DCEGRP; otherwise, only *A is valid.

RATE Parameter: Specifies the data rate (speed) for the line. Enter one of
the following line speeds: 1200, 2000, 2400, 4800, 7200, 9600, or 56 000
bits per second.

SWNBKU Parameter: Specifies, for nonswitched line modems only, whether
the modem has the switched network backup feature. SWNBKU(*YES) is
not valid if CNN(*SWT) or TYPE(*BSCT) is specified. The backup feature is
used to ailow the user to bypass a broken nonswitched (leased line)
connection by dialing a telephone number to establish a switched
connection. The CHGLIND command must be used to actually activate the
switched backup feature.

*NO: The nonswitched line modem does not have the switched backup
feature.

*YES: The nonswitched line modem does have the switched backup
feature. To activate the feature when the nonswitched connection is. broken,
specify ACTSWNBKU(*YES) on both the CHGLIND and CHGCUD
commands.

SELECT Parameter: Specifies whether the line has the data rate select
function or whether it can operate at full speed only.

*NO: The line cannot operate at half speed; it can operate at full speed
only. If OEMMDM(*YES) is specified, *NO is the default.

*YES: The line has the data rate select function and can operate at either
full or half speed. If OEMMDM(*NO) is specified, *YES is the default.

NONRTNZ Parameter: Specifies, for SDLC lines, whether the data
communications equipment on the line requires the NAZI
(nonreturn-to-zero-inverted) transmission method. All data communication
equipment on the line must use the same transmission method.

*NO: NAZI is not required for data transmission.

*YES: NAZI is required for data transmission. If TYPE(*SDLCP) or
TYPE(*SDLCS) is specified, *YES is the default for this parameter.

CLOCK Parameter: Specifies whether the clocking function for this line is
provided by System/38 or by the data communications equipment (DCE).

*NO: The clocking function for the line is provided by the DCE.

*YES: The clocking func":!on for the line is provided by System/38. For
SDLC, if CLOCK(*YES) is specified, NONATNZ(*YES) must also be
specified. CLOCK(*YES) is not valid for TYPE(*BSCT).

AUTOCALL Parameter: Specifies whether the automatic calling feature is
installed. This feature automatically dials the telephone number of the
modem of another station to connect System/38 to that station.
AUTOCALL(*YES) is valid only if CNN(*SWT) or SWNBKU(*YES) is
specified. Each line that has the automatic calling feature uses two line
positions (the one specified on the LINNBA parameter, and the next higher
number), which reduces the number of communication lines that can be
supported.

Note: If you specify AUTOCALL(*YES), you cannot use the next sequential
line number or line number 23 or 63.

*NO: The autocall feature is not installed.

· *YES: The autocall feature is installed.

CRTLIND
SELECT

Command Descriptions 4-507

CRTLIND
AUTOANS

4-508

AUTOANS Parameter: Specifies whether the automatic answer modem
feature is installed. The autoanswer feature allows incoming calls on the line
to be automatically connected to the communication equipment.
AUTOANS(*YES) is valid only if CNN(*SWT) or SWNBKU(*YES) is
specified.

*NO: The autoanswer feature is not installed.

*YES: The autoanswer feature is installed. The following parameters in this
command, which are associated with the autoanswer feature, can be.
specified only if AUTOANS(*YES) is specified: ANSMODE, and ANSTONE.

ANSTONE Parameter: Specifies whether System/38 provides the
answer-tone signal needed by some autoanswer feature modems.
ANSTONE(*YES) is valid only if AUTOANS(*YES) is specified.

*NO: The system does not provide the answer-tone signal.

*YES: The system provides the answer-tone signal.

WIRE Parameter: Specifies the type of physical connection used for the line.
If the switched network backup feature is installed and SWNBKU(*YES) is
specified, the type of connection for the backup line can also be specified
as the second value. If SWNBKU(*YES) is specified, the defaults are 2-wire
for both lines; if SWNBKU(*NO) is specified or assumed, the second default
is ignored. If both the normal and the backup lines are to use 4-wire
connections, for example, WIRE(4 4) is specified.

2: The physical connection is by a 2-wire link.

4: The physical connection is by a 4-wire link.

DCEGRP Parameter: Specifies the types of modems that can be used on this
line. This parameter indicates the modem type (an IBM integrated modem
or another supported modem) used on a switched line either for the US and
Canada or for all other countries. If DCEGRP is not specified, the default is
*C for switched lines and *A for nonswitched lines.

Note: If this is a nonswitched line with the switched network backup
feature, then specify the appropriate value for operating the line in switched
backup mode.

*A: If this is a switched line in countries other than the US and Canada, an
IBM integrated modem is to be used on the line. If this is a nonswitched
line, *A should be specified or assumed for all countries.

*B: For switched lines in countries other than the US and Canada, any
supported modem other than the IBM integrated modem is to be used on
the line.

*C: For switched lines in the US and Canada, any supported modem,
including the IBM integrated modem, is to be used on the line.

OEMMDM Parameter: Specifies whether a non-IBM modem is used.

*NO: An IBM modem is used.

*YES: A non-IBM modem is used.

SWTCNN Parameter: Specifies whether the line is to be used for incoming
calls, outgoing calls, or both. This parameter is valid only if CNN(*SWT) or
SWNBKU(*YES) is specified.

*BOTH: The line can be used for both incoming and outgoing calls.

*ANS: The line can be used for incoming calls only.

*CALL: The line can be used for outgoing calls only.

RATETYPE Parameter: Specifies the speed at which the line operates if the
line has the data rate select function. RATETYPE(*HALF) is valid only if
SELECT(*YES) is specified.

*FULL: The line is operated at full speed.

*HALF: The line is operated at half speed.

CRTLIND
DCEGRP

Command Descriptions 4-509

CRTLIND
DIALMODE

4-510

DIALMODE Parameter: Specifies whether the line connection is to be made
manually or automatically. DIALMODE(*AUTO) is valid only if
AUTOCALL(*YES) is specified.

"MANUAL: The line connection is made by the user manually dialing the
connection (that is, the called station). If AUTOCALL(*NO) is specified,
*MANUAL is the default.

"AUTO: The line connection is made by the system automatically dialing the
called station. If AUTOCALL(*YES) is specified, *AUTO is the default.

ANSMODE Parameter: Specifies how incoming calls to System/38 can be
answered (that is, how the switched line connection is to be made through
the autoanswer facilities for calls coming from a remote control unit or work
station). ANSMODE(*AUTO) is valid only if AUTOANS(*YES) is also
specified.

"MANUAL: The incoming call must be manually answered. If
AUTOANS(*NO) is specified, *MANUAL is the default.

"AUTO: The incoming call is automatically answered by the autoanswer
modem feature. If AUTOANS(*YES) is specified, *AUTO is the default.

DTRDLV Parameter: The data terminal ready (DTR) delay parameter specifies
the maximum length of time that the system is to pause before ending a
command that resets the DTR condition. (The delay time cannot exceed 3
seconds.) Enter a value (0 through 15) that is multiplied by the base unit of
200 milliseconds to determine the maximum delay time before resetting the
DTR condition. For most networks, 200 milliseconds (specified here by a 1)
is appropriate. If 0 is specified or assumed, a default time of 100
milliseconds is used.

IDLETIME Parameter: Specifies, for any transmission sent by the primary
station that requires a response, the maximum time within which the
beginning of the secondary station's response must be detected (received).
This time should be greater than the sum of the:

• Transmission time to the secondary station

• Processing time of the control unit's response at the secondary station
(not including customer program processing time or operator response
time)

• Clear-to-send time at the secondary station modem

• Transmission time from the secondary station

Enter a value, 0 through 255, that is multiplied by the base time unit of 53.3
milliseconds to determine the maximum detection time for the secondary
station's response (53.3 milliseconds through 13.6 seconds). A
recommended minimum time is 2 seconds (specified here by a value of 38).
If 0 is specified or assumed, a default time of 500 milliseconds is used.
IDLETIME is not valid if TYPE(*SDLCS), TYPE(*BSC), or TYPE(*BSCT) is
specified.

For more information on the idle state time and nonproduction receive time
considerations, refer to IBM Synchronous Data Link Control-General
Information, GA27-3093.

RCVTMR Parameter: The receive timer parameter, valid for BSC or BSCT
lines only, specifies the amount of time the system will wait for data before
a time-out occurs. Measured in 200-millisecond intervals, the timer allows
a maximum time-out period of 25.4 seconds (value of 127). For most
systems, the default value of 15 (3 seconds) is appropriate.

NONPRDRCV Parameter: The nonproductive receive parameter specifies, for
TYPE(*SDLCP) only, the maximum length of time in which to receive an
intelligible transmission. The time is specified by a value that is multiplied
by the base time unit of 500 milliseconds. The nonproductive receive time is
dependent upon the data rate (line speed) specified by the RATE parameter.
Use the following table to determine, for a given line speed, the
recommended value that should be specified for the NONPRDRCV
parameter. (The times given in the last column are the resulting maximum
times in which to receive intelligible data. They provide enough time for
5250 devices, which can have a maximum number of 266 bytes transmitted
per frame.) This parameter is not valid for TYPE(*BSC).

Primary Line Recommended Nonproductive Receive Timer
Speed Parameter Value 1 Setting (266 bytes per frame)

600 11 5.5 seconds

1200 6 3.0 seconds

2400 4 2.0 seconds

4800 2 1.0 second

9600 2 1.0 second

56 000 2 1.0 second

1 If SELECT(*YES) is specified, enter the value for the lowest speed (half speed).

Enter a value, 0 through 255, that is multiplied by the base time unit of 500
milliseconds to determine the maximum time. If 0 is specified or assumed,
a default time of 128 seconds is used.

Note: This parameter is ignored for nonswitched secondary lines. For
switched secondary or switched network backup secondary lines, specify a
parameter value of 60 to 255. A value of 60 will allow a 30-second period
of no transmission from the host system to elapse before the switched line
is disconnected.

CRTLIND
RCVTMR

Command Descriptions 4-511

CRTLIND
RETRY

4-512

RETRY Parameter: Specifies the maximum number of retries that can be
performed when an error occurs before the line (or a station on the line) is
considered inoperative. If the retry limit is reached without a successful
completion, an error message is sent to the system operator.

Enter a value, 0 through 21, that is to be multiplied by a base number of 1
or 7 to determine the maximum number of retries that can be attempted if
necessary. All errors associated with making a switched connection to the
line use the base multiplier 1; all other line errors use the base multiplier 7.
If 0 is specified, no retries occur.

In no case does the system attempt more than 21 retries. Therefore, a
value of 0 through 21 is valid for retrying errors that use the multiplier 1. A
value of 0 through 3 is valid for those using the multiplier 7; in this case,
any value specified that is greater than 3 is assumed to be 3, and a
maximum of 21 retries (3 times 7) can be attempted.

Table of Retry Multipliers

Error

Switched connect retry (BSC)

Data line occupied

PRESENT NEXT DIGIT inactive after CALL REQUEST set
(AUTODIAL)

PRESENT NEXT DIGIT active after DIGIT PRESENT reset
(AUTODIAL)

DISTANT STATION CONNECTED inactive

DISTANT STATION CONNECTED inactive and ACR (Abandon
Call and Retry)

PRESENT NEXT DIGIT inactive after CALL REQUEST set -
ACR (Abandon Call and Retry) (AUTODIAL)

PRESENT NEXT DIGIT active after DIGIT PRESENT set -
ACR (Abandon Call and Retry) (AUTODIAL)

PRESENT NEXT DIGIT inactive after DIGIT PRESENT set -
ACR (Abandon Call and Retry) (AUTODIAL)

REQUEST TO SEND (RTS) inactive

General autodial error

CLEAR TO SEND (CTS) inactive

CLEAR TO SEND (CTS) active before REQUEST TO SEND
(RTS)

Error during contention (BSC)

Error during data transfer (BSC)

Adapter overrun/underrun

Unrecognizable SDLC control field

SDLC sequence number error, transmit error

SDLC sequence number error, receive error

CRC error

Frame abort detected (pattern '0111111 'B)

CPU buffer overflow (on input)

Idle state detected

Nonproductive receive timeout

Data overrun (receive)

Data underrun (transmit)

Value

1

1

1

1

1

1

1

1

1

1

1

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

CRTLIND
RETRY

Command Descriptions 4-513

CRTLIND
ONLINE

4-514

ONLINE Parameter: Specifie~ whether the line is to be varied online
automatically when the Control Program Facility (CPF) is started. After CPF
is started, the Vary Line (VRYLIN) command can be used to modify the
status of the line. ONLINE(*YES) should be specified for only one line
description per line number; if is is specified for more than one, the system
chooses the first line description based on alphabetic order.

*YES: The line is to be online when CPF is started.

*NO: The line is to be offline when CPF is started. The VRYLIN command
must be used to put the line online, making it operational.

CTLU Parameter: Specifies, for nonswitched lines only, the names of one or
more control units to which this line is physically attached. Do not use this
parameter when following the normal procedure of creating the descriptions
for lines first, control units (CRTCUD) second, and devices (CRTDEVD) last.
Use this parameter only when the associated control unit descriptions have
already been created before this line description is created. This parameter
is valid only if CNN(*PP) or CNN(*MP) is specified; it is not valid for
switched lines.

SWTCTLU Paramettlr: Specifies the names of up to 8 control units that can
establish a connection with this switched BSC line. The .control unit names
should be created before using them in this parameter. This parameter is
valid only if TYPE is *BSC, and CNN(*SWT) or SWNBKU(*YES) is specified.
If CNN(*SWT) is specified, the control unit names will default to 8 null
entries, to be used for answering only.

Note: To use this parameter, you should first create the line, ignoring the
SWTCTLU parameter. Next, the controllers that can establish connections
with this BSC switched line should be created, using the Create Control Unit
Description (CRTCUD) command. Then, using the Change Line Description
(CHGLIND) command, enter the names in the SWTCTLU parameter of the
controller(s) that can establish connections with this BSC switched line.

STNADR Parameter: Specifies, only if TYPE(*SDLCS) or TYPE(*BSCT) is
specified, the station address used by a host system to communicate with
this System/38. If TYPE(*SDLCS) or TYPE(*BSCT) is specified, this
parameter is required. The station address is the SDLC link address or
BSCT polling address that has been assigned to this System/38. It is a
two-digit hexadecimal value in the range 01 through FE.

EXCHID Parameter: Specifies, only if TYPE(*SDLCS) is specified, a
user-defined exchange identifier for use with SNA communications
networks.

*NONE: No exchange identifier is to be specified. If an exchange identifier
is needed, System/38 will generate one internally.

exchange-identifier: Specifies the identifier, with a format of 022xxxxx:
xxxxx can be any combination of characters 0 through 9 and A through F.

CODE Parameter: Specifies the BSC line code to be used for
communications.

*EBCDIC: The EBCDIC character set code is to be used.

*ASCII: The ASCII character set code is to be used. ASCII is not valid if
RJE(*YES) is specified.

RJE Parameter: Specifies, for BSC only, whether this line description is to be
used by the Remote Job Entry Facility (RJEF). RJE(*YES) is not valid for
TYPE(*BSCT).

*NO: This line description is not to be used by RJEF.

*YES: This line description is to be used by RJEF.

BSCSWTDSC Parameter: Specifies whether inactivity on this BSC switched
line (while in contention mode) should cause a line disconnect due to a
30-second timeout. Some CL commands may cause a timeout disconnect
in a debugging or problem determination situation; in that case, you could
use this parameter to disable the automatic timeout and continue. This
parameter is valid only if TYPE(*BSC) and CNN(*SWT) are specified, or if
TYPE(*BSC) and CNN(*PP) and SWNBKU(*YES) are specified.

*YES: The switched BSC line will be automatically disconnected after a
30-second period of inactivity (while in contention mode).

*NO: The switched BSC line will not be automatically disconnected after a
30-second period of inactivity.

Note: When the last file is closed, the normal BSC switched line disconnect
is not affected by this parameter.

PUBAUT Parameter: Specifies what authority for the line and its description
is being granted to the public (all users). Additional authority can be
explicitly granted to specific users by the GRTOBJAUT command. (For an
expanded description of the PUBAUT parameter, see Appendix A.)

Note: *NORMAL should be specified so that users who are authorized to
use work stations attached to this line are not hindered from doing so
because they might not also have been given explicit authority for the line.

*NORMAL: The public has only operational rights for the line.

*ALL: The public has complete authority for the line.

*NONE: The public cannot use the line.

CRTLIND
CODE

Command Descriptions 4-515

CRTLIND
TEXT

4-516

TEXT Parameter: Lets the user enter text that briefly describes the line and
its location. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

Line description work sheets are provided at the back of the Guide to
Program Product Installation and Device Configuration that you can use to
collect the information needed before creating the line descriptions. Refer to
that publication for information about device configuration, system
installation procedures, and how to use the work sheets.

CRTLIND LIND(NYC) LINNBR(20) TYPE(*SDLCP) +
CNN(*SWT) RATE(1200) SELECT(*NO) +
NONRTNZ(*YES) AUTOANS(*YES) +
WIRE(2) DCEGRP(*C) SWTCNN(*ANS) +
DTRDLY(1) IDLETIME(38) +
NONPRDRCV(6) RETRY(1) +
TEXT('Switched line between Chicago +
and New York City')

This command describes a line named NYC that is attached to the first line
position (OU 20). This is a remote SDLCP line using a switched connection.
The data rate is 1200 bits per second, and the line does not have the data
rate select function. The line uses the NRZI data transmission method and
has the automatic answering feature.

CRTLIND LIND(MIL_MAD) LINNBR(21) TYPE(*SDLCP) +
CNN(*MP) RATE(4800) WIRE(4) +
DTRDLY(1) IDLETIME(15) +
NONPRDRCV(2) TEXT('MP line between +
Chicago, Milwaukee, & Madison')

This command describes a line named MIL_MAD that is attached to the
second line position (OU 21). This is a remote SDLCP line using a
nonswitched, multipoint connection. Because the line is a nonswitched line
without the switched network backup feature, the DCEGRP parameter
defaults to *A. The data rate is 4800 bits per second. A 4-wire physical
connection is used.

CRTMSGF (Create Message File) Command

The Create Message File (CRTMSGF) command creates a user-defined
message file for storing message descriptions. The message file should be
stored in a library for which all users who are to use the predefined
messages have operational rights. The system is shipped with the following
IBM-supplied message files, which are all stored in the system library,
QSYS: the CPF message file, QCPFMSG (for CPF and machine interface
messages); and the licensed program message files, such as QRPGMSG (for
RPG messages).

-(
.QGPL

CRTMSOP---MSOP meHa&e-flle-n._ J-----------111
. .llbr&l'1'-ll-

llequlrecl

-f_ •llfO~-(•BLAllfl: ::J->- PUBAUT eALL

•NOll'B 'deecrtptlon•

©The meHa1e ftle else muet be 1reater than HrO,

1.Job1B,I Pam:B,I

MSGF Parameter: Specifies the qualified name of the message file being
created. (If no library qualifier is given, the file is stored in QGPL.)

SIZE Parameter: Specifies the initial storage size of the message file, the size
of each increment added to its storage, and the number of times the size
can be incremented. The storage size is expressed in K-bytes. The
message file size is increased when a message description is added to the
message file and there is no room for it in the file. The minimum size
allowed is 1 K, the maximum allowed is 16 000 K. If SIZE is not specified,
SIZE(10 2 *NOMAX) is assumed.

Initial Size: One of the following is used to specify the initial storage size of
the message file.

10: Initially, the message file has 10 K of storage assigned to it. (1 K
equals 1024 bytes of storage.)

initia/-K-bytes: Enter the value that specifies the initial size of the file
(cannot equal 0).

CRTMSGF

Command Descriptions 4-517

CRTMSGF
PUBAUT

4-518

Increment Amount: One of the following is used to specify the amount of
storage in K-bytes to be added to the message file's size.

2: The message file size is to be increased by 2 K of storage for each
increment added.

increment-value: Enter the value that specifies the number of K-bytes to
be added for each increment.

Number of Increments: One of the following is used to specify the
maximum number of increments that can be added to the message file's
size.

*NOMAX: The number of increments that can be added to the
message file is not limited by the user. The maximum size is determined
by the system.

number-of-increments: Enter the maximum number of increments that
can be added to the file size. Enter a 0 to prevent any additions to the
initial size of the file.

PUBAUT Parameter: Specifies what authority for the message file is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the GRTOBJAUT command. (For an expanded
description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational and read rights for the
message file.

*ALL: The public has complete authority for the message file.

*NONE: The public cannot use the message file.

TEXT Parameter: Lets the user enter text that briefly describes the message
file and its description. (For an expanded description of the TEXT
parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTMSGF MSGF(INVMSGS.INVLIB) +
TEXT('lnventory Application Messages')

This command creates a message file named INVMSGS in which predefined .
inventory application messages are to be stored. The file is stored in the
library INVLIB, for which all users of the file must have operational authority.
Because PUBAUT was not specified, all users have operational authority for
the file, meaning they can retrieve messages from the file.

CRTMSGQ (Create Message Queue) Command

The Create Message Queue (CRTMSGQ) command creates a user-defined
message queue and stores it in a library. The message queue should be put
in a library for which all users who are to send messages to and receive
messages from the queue have operational authority. The messages sent
can be predefined or impromptu messages. The message queue has the
following attributes initialized when it is created: the DLVRY parameter is
set to *HOLD, PGM is *DSPMSG, SEV is 00, and RESET is *NO. These
initialized attributes cannot be specified on the CRTMSGQ command; if
these values are not desired as defaults, the CHGMSGQ command must be
used to change these values after the queue is created.

. -{.QGPL ®
CBTMBGQ---KBGQ meHa1e-queue-name)----------•

.llbr&17-name

Optional

>- BIZB-{
3 ©'-' 1 '-1,_ !umber-of-lncrement. ' •
lnltlal-lt-b7te• 'ij _ lnorement-value ~ •Ji'.OMAX

>- PUBA.UT 1 ::,mu_~----TBXT-(•BLAJl'lt--\.._
--'-= •XOJl'B _J 'deHription•_,------

©Tb• meHaae queue •IH muet be 1reater tban uro.

l Job1B,I Psm:B,I

MSGQ Parameter: Specifies the qualified name of the message queue being
created. (If no library qualifier is given, the queue is stored in QGPL.)

FORCE Parameter: Specifies whether cha'nges made to the message queue
description or messages added to or removed from the queue are to be
immediately forced into auxiliary storage; this ensures that changes to the
queue, or messages sent or received, are not lost if a system failure occurs.

*NO: Changes made to the message queue, including its messages, do not
have to be immediately forced to auxiliary storage.

*YES: All changes to the message queue deseription and to the messages
in the queue are to be immediately forced to auxiliary storage.

CRTMSGQ

Command Descriptions 4-519

CRTMSGQ
SENDER

4-520

SENDER Parameter: Specifies one or more types of sender identifiers that
are to be sent with each message sent to this user-defined message queue.
These identifiers are supplied by the system when the message is sent; they
are not specified by the sender. When the second-level text for a message
is displayed by the Help key, the sender identifiers for that message are also
displayed. If SENDER is not specified, no identifiers are sent with the
message.

*NONE: No sender identifier is sent with the message.

0 JOB: The qualified name of the job is sent with the message. (The
qualified job name includes the user name.) For interactive jobs, the job
name is always the same as the work station name.

*PGM: The name of the program (and the statement number within the
program) sending the message is sent with the message.

*DTS: The system date/time stamp is sent with the message to identify
when the message was sent.

SIZE Parameter: Specifies the initial storage size of the message queue, the
size of each increment added to its storage, and the number of times the
size can be incremented. The storage size is expressed in K-bytes. The
message queue size is increased when a message is sent to the message
queue and there is no room for it in the queue. If SIZE is not specified,
SIZE(3 1 3) is assumed.

Initial Size: One of the following is used to specify the initial storage size of
the message queue.

3: Initially, the message queue has 3 K of storage assigned to it. (1 K
equals 1024 bytes of storage.)

initial-K-bytes: Enter the value that specifies the initial size of the queue
(cannot equal O).

Increment Amount: One of the following is used to specify the amount of
storage in K-bytes to be added to the message queue's size.

1: The message queue size is to be increased by 1 K of storage for each
increment added.

increment-value: Enter the value that specifies the number of K-bytes to
be added for each increment.

Number of Increments: One of the following is used to specify the
maximum number of increments that can be added to the message
queue's size.

3: A maximum of three increments can be added to the queue's size.

number-of-increments: Enter the maximum number of increments that
can be added to the queue size. Enter a 0 to prevent any additions to the
initial size of the queue.

*NOMAX: The number of increments that can be added to the message
queue is not limited by the user. The maximum size is determined by the
system.

PUBAUT Parameter: Specifies what authority for the message queue is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the GRTOBJAUT command. (For an expanded
description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational, read, add, and delete rights
for the message queue.

*ALL: The public has complete authority for the message queue.

*NONE: The public cannot use the message queue.

TEXT Parameter: Lets the user enter text that briefly describes the message
queue and its description. (For an expanded description of the TEXT
parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTMSGQ MSGQ(MYQ) SENDER(*JOB)

This command creates a message queue named MYQ and stores it in the
general purpose library, QGPL, by default. All users are authorized to send
messages to the queue and to read its description. Each message sent will
be identified by the name of the job sending the message.

CRTMSGQ MSGQ(INV.SPECIAL) +
TEXT('This message queue is for inventory transactions')

This command creates a message queue named INV and stores it in a
library named SPECIAL. The sender of the message is not identified.

CRTMSGQ
PUBAUT

Command Descriptions 4-521

CRTOUTQ

4-522

CRTOUTQ (Create Output Queue) Command

The Create Output Queue (CRTOUTQ) command creates a new output
queue for spooled output files. An entry is placed on the output queue for
each spooled output file. The order in which the files are written to the
output device is determined by the output priority of the job that produced
each file and when the entry is made available to the writer.

-{
.QGPL

CRTOUTQ---OUTQ output-queue-name)----------•
.llbrary-name

Required

Optional

>- DSPDTA ·-{•NO)----JOBSBP_L ~umber-ot-Job-1eparatore->-----_. ..

•TBS '\...: •MSOI-'-' --------J.

PUBAUT •ALL--~------------+• -f_ •NORMAI.3

•NONB

-{•BLAXJC~
>-TBXT 'de1cription'_r-

j .Job18,I Ppn1B,I

OUTQ Parameter: Specifies the qualified name of the output queue being
created. (If no library qualifier is given, the queue is stored in QGPL.)

DSPDTA Parameter: Specifies whether users who have authority to read the
output queue can display the output data of any output file on the queue or
only the data in their own files.

*NO: Users authorized to use the queue can display the output data of
their own files only; they cannot display the output data of any file on the
queue that they do not own.

*YES: Any user having authority to read the queue can display the data of
any file on the queue.

JOBSEP Parameter: Specifies, for each job with entries on the output queue,
the number of separators to be placed at the beginning of the output for the
job. Each separator (card or printer page) contains information that identifies
the job, such as the job name, the job user's name, the job number, and the
time and date of job execution.

1: One job separator is to be placed before each job's output.

number-of-job-separators: Enter a value, 0 through 9, that specifies the
number of separators that are to be placed before the output of each job.

*MSG: No job separators are to be placed before each job's output. A
message is sent to a message queue notifying the operator of the end of
each job. This message queue is identified by the MSGQ parameter of the
Start Writer command.

Ot:>RCTL Parameter: Specifies whether a user who has job control rights is
allowed to manipulate or control the entries on this output queue. A user
has job control rights if SPCAUT(*JOBCTL) is specified in his user profile.

*YES: A user with job control rights can control the queue and make
changes to the entries on the queue.

*NO: This queue and its entries cannot be controlled or changed by a user
with job control rights unless he also has object management rights, and
read, add, and delete rights for the queue.

PUBAUT Parameter: Specifies what authority for the output queue is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the GRTOBJAUT command. (For an expanded
description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational, read, and add rights for the
queue. Any user can put output file entries on the output queue and can
display all entries on the queue. If DSPDT A(*YES) is specified, he can also
display the data in any output file.

*ALL: The public has complete authority for the queue.

*NONE: The public has no authority for the queue.

CRTOUTQ
JOBSEP

Command Descriptions 4-523

CRTOUTQ
TEXT

4-524

TEXT Parameter: Lets the user enter text that briefly describes the output
queue. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTOUTQ OUTQ(DEPTAPRT) PUBAUT(*NONE) +
TEXT('SPECIAL PRINT FILES FOR +
DEPT A')

This command creates an output queue named DEPTAPRT and puts it in
the QGPL library. Because PUBAUT(*NONE) is specified and OPRCTL(*YES)
is assumed, the output queue can be used and controlled only by the user
who created the queue and users who have job control authority. If users in
Department A are to be authorized to use this output queue, the Grant
Object Authority (GRTOBJAUT) command must be used to grant them the
necessary authority. Data contained in files on this queue can be displayed
only by those users who own the files. By default, one job separator will be
printed at the beginning of the output for each job.

CRTPF (Create Physical File) Command

The Create Physical File (CRTPF) command creates a named physical file in
the data base. A physical file is created from the file description parameters
in the CRTPF command and (optionally) from a previously entered DDS
source file that contains the source description of the file. If the ~x_~i~~~!!I~.
is to have a record format with only one character field and be in arrival
sequence or if the file is to be. a sourcefffe·. a .. DDS source file is -~ot
neeaea:-Tfo change.att~ibute~ of the file afte~-it-has--been-·created, use the

"6ver~ici"e Data Base File ~-Y~i,:?-~_F) command before the file is opened.)

A physical file is the data base structure in which data is actually .stored as
records. The organization of the data is described in the record format,
which is named and described in the data description specifications (DDS),
using the data description specifications form or SEU (the Source Entry
Utility).

A physical file has only one record format, and the entire file contains
records having only that format. This means that, from the system's
viewpoint, all records are of the same length (fixed-length) and have the
same fields. Programs may describe fields within fields as done in
traditional systems.

Data is stored and referenced as fields within records, and the records are
physically stored in the order in which they are written to the file (arrival
sequence). However, the records can be logically processed in any order
(arrival sequence or keyed sequence); the processing order is established by
the access path specifications given for the file in DDS. If a file is defined
as having a keyed sequence access path and there is only one member, it
can still be processed in arrival sequence or by relative record number.

Each physical file can have one or more members; each physical file
member is a separate collection of records, whose record format is the
same as all other members of the file. Each member within the file has its
own access path, of the same type as the file itself.

No records can be stored in the file being created until at least one member
has also been added to the file. Either the MBR parameter of this command
or the Add Physical File Member (ADDPFM) command can be used to add a
member. However, the descriptive portion of the named file does exist
within the data base even if there are no members.

Restriction: If a physical file is to be saved, it cannot contain more than
1999 members if it is a keyed file, or 3999 members if it is a nonkeyed file.

CRTPF

Command Descriptions 4-525

CRTPF
(Diagram)

4-526

-{
.QOPL

CRTPJ'---J'ILB phy91oal-file-n- J----------------.. 11
.Ubrar,r-name .

Required
Optional

~ QDDSSRC.+LIBL -(_+PILB

{

SRCPILB -{. eLIBL · y- SRCMBR
·. eouroe-file-name • ~=~.!:
· .librar,r-name

RCDLBN reoord-lentth---------------------------'

::~URC~. -{eLIST:J- ® >-OPTION-[] [.]----------+
+NOSRC eNOLIST

+NOSOURCB

-{
+DATA)--- -f_ •PILB

>- PILBTYPI KBR +NONI
+sac phy9ioal-rue-member-name)

>-KIPDATB-{+NONl~l4AXMBRS1~NOMAJ:--·---J--'lr----------Pll
expiration-date~· ~maximum-member•

>- MAINT1:::~------RBCOVBR ®c:.:.rSTaCPP~-.---------------Pll
-'C::+DLY::..:::::7' +STRCPP::.=.=......;

10000){ 1000~ 3

number-ot-reoord.e increment TalueJ~ number-or-tnorement•
>-SIZB

•NOMAJ:•-----------~-------------------'

>-ALLOCATl-{+NO "_____CONTIG-{+NO ~UNIT-{ +ANY)-------It
•YBS ~ •TBS~ unit-identifier

-{
•NONB -f_ +IMMBD

>- PRCRATIO _)-wAITPILB eCLS)
number-or-reoord•-betore-roroe number-or-seconds

..

' -E:MMBD-----~-
>-WAITRCD eNOMAX

number-or-eeoonde
SHARE-{eNO)-----------It

•TBS

·~+NONE -{+YBS)
>-DLTPC)-LVLCH~ •-------It•

deleted-recorde-threshold -percenta1e •NO

>-PUBAUT_L :.:.RMAL-~-...... ---TBXT-{•BLANK ~
\.::. •NONE _J 'deecription'_;--

@To code the followtn1 parameters pos-£to£onciU11, you must code them in this order, usin1
•N tor thoH not bein1 specified: SRCPILB, SRCMBR, and RCDLBN.

@Rater to the parameter deeoription ror the default action taken tor thl• parameter.

Job:B,I P1m:B,I

FILE Parameter: Specifies the qualified name by which the physical file being
created will be known. If no library qualifier is given, the physical file is
stored in OGPL. (If the file is to be used in an HLL program, the file name
should be consistent with the naming rules of that language; otherwise, the
file must be renamed in the program itself.)

SRCFILE Parameter: Specifies the name of the source file to be used when
the physical file is created. Unless the RCDLEN parameter is specified
instead, a source file name must be specified or ODDSSRC must contain
the data description specifications describing the physical file. The sou~ce
file contains the specifications that describe the record format and its fields,
the access path, and the storage requirements for the file and its members.
{For the specifications that can be made in DDS, refer to the CPF Reference
Manual-DDS.)

If SRCFILE is specified, the RCDLEN parameter cannot be specified.

QDDSSRC: The system DDS source file named ODDSSRC in the OGPL
library contains the source descriptions to be used to create the physical
file. ODDSSRC can contain source descriptions for many files; each
member of ODDSSRC contains the source description of one physical,
logical, or device file. (When shipped, ODDSSRC contains no descriptions.)
(If no library qualifier is specified, *UBL is used to find the file.)

qualified-source-file-name: Enter the qualified name of the source file that
contains the DDS to be used to create the physical file. (If no library
qualifier is given, *UBL is used to find the file.)

SRCMBR Parameter: Specifies the name of the source file member that
contains the DDS for the physical file being created; the member is in the
source file specified in the SRCFILE parameter (or its default, ODDSSRC). If
SRCMBR is not specified, the member name is the same as the name of
the physical file being created; the default value *FILE implies that the name
of the physical file being created is to be used. A member name must be
specified when the source file member to be processed does not have the
same name as the physical file being created. If RCDLEN is specified,
SRCMBR cannot be specified.

*FILE: The source file member name is the same as the name of the
physical file being created.

source-file-member-name: Enter the name of the member in the source file
specified by SRCFILE to be used to create the physical file.

CRT PF
FILE

Command Descriptions 4-527

CRT PF
RC OLEN

4-528

RCDlEN Parameter: Specifies the record length, in bytes, of the records to
be stored in the physical file. If RCDLEN and FllETYPE(*DATA) are
specified, the physical file is created with a record format that has only one
field. The file is then restricted to an arrival sequence access path. The
record format and the field are both assigned the same name as that of the
file itself, specified in the FILE parameter. The field is also assigned the
data type of character whose length is the same as the record length
specified here. A value of 1 through 32766 (32 766 bytes) can be specified
for the record length.

If RCDLEN and FllETYPE(*SRC) are specified, the record format has three
fields: source sequence number, date, and source statement. Also, the
RCDlEN parameter must provide 12 positions for the source sequence
number and date fields required in each record. If records are copied into
the file by the CPYF command and the records are longer than the length
specified here, the records are truncated on the right. These fields are
defined with fixed attributes and names, and have a keyed access path over
the sequence number. (See the CPF Programmer's Guide for details.)

If RCDLEN is specified, SRCFILE and SRCMBR cannot be specified;
RCDLEN is used to specify a fixed record length for the record format when
a source file is not needed (when only one field exists in each record or
when the file being created is a source file). The Hll program that
processes the file must describe the fields in the record within the program
itself.

OPTION Parameter: Specifies the type of output listing to be produced when
the file is created.

*SRC or *SOURCE: A listing of the source statements used to create the
file, and of any errors that occur, is to be generated.

*NOSRC or *NOSOURCE: No listing of the source statements is to be
generated unless errors are detected. If errors are detected, they are listed
along with the keyword or record format that caused the error.

*LIST: An expanded source listing is to be generated, showing a detailed
list of the file specifications that result from the source statements and
references to other file descriptions. This listing shows file, field, and key
attributes.

*NOL/ST: No expanded source listing is to be generated.

FILETYPE Parameter: Specifies whether each member of the physical file
being created is to contain data records or is to contain source records
(statements) for a program or another file. The file could contain, for
example, RPG source statements for an RPG program or DDS source
statements for another physical, logical, or device file. (For an expanded
description of the FILETYPE parameter, see Appendix A.)

Note: FILETYPE(*SRC) should be specified only when you are including
DDS field definitions in the source file. Otherwise, you should use the
CRTSRCPF (Create Source Physical File) to create a source file.

*DATA: The physical file is to contain data records.

0 SRC: The physical file is to contain source records. (Each source record
must have at least three fields; see Appendix A.)

MBR Parameter: Specifies the name of the physical file member (if a member
is to exist immediately) to be added when the physical file is created. (You
can add other members to the file after it is created by using the ADDPFM
command.)

*FILE: The member being added is to have the same name as that of the
physical file that contains the member (specified in the FILE parameter).

0 NONE: No member is to be added when the file is created.

physical-file-member-name: Enter the name of the member that is to be
added when the physical file is created.

EXPDATE Parameter: Specifies, if a physical file member is to be added
when the file is created, the expiration date of the member. Any attempt to
open a file that uses a member that has expired causes an error message to
be sent to the user. (The expiration date of each member added later to the
file must be specified in the ADDPFM command that adds it.)

*NONE: The member has no expiration date.

expiration-date: Enter the date after which the physical file member should
not be used. The date must be in the format specified by the QDATFMT
and QDATSEP system values.

MAXMBRS Parameter: Specifies the maximum number of members that the
physical file being created can have at any time.

1: Only one member can be contained in the file.

0 NOMAX: No maximum is specified for the number of members; the system
maximum of 32 767 members per file is used.

maximum-members: Enter the value for the maximum number of members
that the physical file can have. A value of 1 through 32767 is valid.

CRTPF
FILETYPE

Command Descriptions 4-529

CRTPF
MAINT

4-530

MAINT Parameter: Specifies, for files with keyed sequence access paths
only, the type of access path maintenance to be used for all members of the
physical file. This parameter is not valid for files that have arrival sequence
access paths.

*IMMED: The access path is to be continuously (immediately) maintained
for each physical file member. The path is updated each time a record is
changed, added to, or deleted from the member. The records can be
changed through a logical file that uses the physical file member regardless
of whether the physical file is opened or closed. *IMMED must be specified
for all files requiring unique keys to ensure uniqueness in all inserts and
updates.

*REBLD: The access path is to be completely rebuilt when a file member is
opened during program execution. The access path is continuously
maintained until the member is closed; the access path maintenance is then
terminated. *REBLD is not valid for access paths that are to contain unique
key values.

*DLY: The maintenance of the access path is to be delayed until the
physical file member is opened for use. Then, the access path is updated
only for records that have been added, deleted, or updated since the file
was last opened. (While the file is open, all changes made to its members
are immediately reflected in the access paths of those members, no matter
what is specified for MAINT.) To prevent a lengthy rebuild time when the
file is opened, *DL Y should be specified only when the number of changes
to the access path between successive opens are small; that is, when the
file is opened frequently or when the key fields in records for this access
path change infrequently. *DLY is not valid for access paths that require
unique key values.

If the number of changes saved reaches approximately 10 percent of the
access path size, the system will stop saving changes and the access path
will be completely rebuilt the next time the file is opened.

RECOVER Parameter: Specifies, for files having immediate maintenance on
their access paths, when recovery processing of the file is to be performed
after a system failure has occurred while the access path was being
changed. This parameter is valid only if a keyed access path is used.

The access path having immediate maintenance can be rebuilt during start
CPF (before any user can execute a job), or after start CPF has finished
(during concurrent job execution), or when the file is next opened. While the
access path is being rebuilt, the file cannot be used by any job.

The access path having rebuild maintenance will be rebuilt the next time its
file is opened, the time that it normally is rebuilt.

*NO: The access path of the file is not to be rebuilt. The file's access path
is rebuilt when the file is next opened if it has rebuild maintenance. *NO is
the default for all files that do not require unique keys.

*AFTSTRCPF: The file is to have its access path rebuilt after the start CPF
operation has been completed. This option allows other jobs not using this
file to begin processing immediately after the CPF has been started. If a job
tries to allocate the file while its access path is being rebuilt, a file open .
exception occurs if the specified wait time for the file is exceeded.
* AFTSTRCPF is the default for all files that require unique keys.

*STRCPF: The file is to have its access path rebuilt during the start CPF
operation. This ensures that the file's access path will be rebuilt before the
first user program tries. to use it; however, no jobs can begin execution until
after all files that specify RECOVER(*STRCPF) have their access paths
rebuilt.

SIZE Parameter: Specifies the initial number of records in each member of
the file, the number of records in each increment that can be automatically
added to the member size, and the number of times the increment can be
automatically applied. The number of records for each file member is
expressed as the number of undeleted records that can be placed in it.

When the maximum number of records has been reached, a message
(stating that the member is full) is sent to the system operator, giving him
the choice of terminating the job or extending the member size himself. The
operator can extend the. member by the amount specified as the increment
value (in the second· value) one time for each time he receives the message.

A list of three values can be specified to indicate the initial size of each
member and the automatic extensions that can be added when needed. Or
*NOMAX can be specified instead. If SIZE is not specified, SIZE(10000
1000. 3) is assumed by the system.

Records: One of the following is used to specify the initial number of
records in the member before any automatic extension of the member
occurs. The ALLO~ATE parameter determines when the required space
for the initial allocation occurs: If *YES is specified, the space is
allocated when the file is created, or when a new member is added. If
*NO is specified, the initial space is allocated as determined internally by
the system.

10000: Initially, up to 10 000 records can be inserted into each member
of the file before any extension occurs.

number-of-records: Enter the number of records that are inserted before
an automatic extension occurs. A value of 0 cannot be used; the
maximum value cannot exceed 16 777 215 records, or, if
ALLOCATE(*YES) is specified, the amount of total system storage
remaining for all permanent objects, whichever is less. If you do not
want any automatic extensions, enter a 0 for the second and third values
in the list.

CRTPF
SIZE

Command Descriptions 4-53.1

CRTPF
ALLOCATE

4-532

Increment Amount: One of the following is used to specify the maximum
number of records that can be additionally inserted in the member when
the initial member size is exceeded and an automatic extension is made.

1000: A maximum of 1000 additional records can be inserted into the
member after an automatic extension occurs.

increment-value: Enter the value (0 through 32767) that specifies the
maximum number of additional records that can be inserted into the
member after an automatic extension occurs. Enter a 0 to prevent
automatic extensions.

Number of Increments: One of the following is used to specify the.
maximum number of increments that can be automatically added to the
member. If 0 is specified for the increment amount, the number of
increments need not be specified; 0 will be the default value instead of 3
(and a message is sent to the user issuing the command).

3: A maximum of three increments can be automatically added to the
member size.

number-of-increments: Enter the maximum number of increments (0
through 32767) that can be automatically added to the member. Enter a
0 to prevent automatic extensions.

Unlimited Size: The following value can be specified .to allow an unlimited
number of records in each member.

*NOMAX: The number of records that can be inserted into each member
of the file is not limited by the user. The maximum size of each member
is determined by the system.

ALLOCATE Parameter: Specifies whether initial storage space is to be
allocated for each physical file member when it is added. The allocation
provides enough space to hold the number of records specified by the SIZE
parameter. Allocations which occur when a record cannot be added to a
member without exceeding its capacity are determined by the system and
by the SIZE parameter values.

*NO: When a new member is to be added, the system determines if
additional space is needed, and allocates that amount.

*YES: The amount of storage space specified in the first value of the SIZE
parameter is allocated each time a new member is added. If that amount of
storage space is not available, the member is not added, and a message is
sent to the user. If this parameter value is used, SIZE{*NOMAX) cannot be
specified.

CONTIG Parameter: The contiguous parameter specifies whether the user
prefers that all records in the initial allocation in each physical file member
are stored together without separations. If so, and the necessary contiguous
space is not available, the system sends a message to the job log and
allocates the storage space noncontiguously. The file is still entirely usable.
This parameter does not indicate anything about the additional allocations
that might be needed later, which most likely would be noncontiguous.

*NO: The storage space for each member does not have to be contiguous.

*YES: The user wants the system to allocate contiguous space for each
member of the physical file being added, and to notify the user and put a
message in the job log if it cannot. The affected member is still added,
even if the storage space has to be allocated noncontiguously. The member
is just as usable in noncontiguous form. If *YES is specified for CONTIG,
then ALLOCATE(*YES) must also be specified.

UNIT Parameter: Specifies, if the user prefers that a file be stored on a
specific unit, the unit identifier of the auxiliary storage unit on which the
system will attempt to allocate the storage space for the file and for all its
members and their associated access paths. This includes the initial
allocation when each member is added and any extensions that occur later
for each member in the file. If the system cannot allocate the storage space
for each member on the specified unit, it allocates the space on any
available unit and sends a message to the job log. The file is entirely usable
in all cases.

CRTPF
CONTIG

Command Descriptions 4-533

CRTPF
FRCRATIO

4-534

*ANY: The storage space for the file and its members can be allocated on
any available auxiliary storage unit.

unit-identifier: Enter a valid value of 1 through 14 to specify the identifier of
the auxiliary storage unit on which you prefer to have the storage space of
all members allocated. The values that are valid depend on how many
storage units are on the system, and on their types (62PC disk and 3370
disk).

Device Unit
Type Unit Identifier

62PC 1-6 1-6

3370 Module 1, actuator 1 7

Module 1, actuator 2 8
Module 2, actuator 1 9

Module 2, actuator 2 10

Module 3, actuator 1 11

Module 3, actuator 2 12

Module 4, actuator 1 13

Module 4, actuator 2 14

Note: These identifiers remain the same for systems that have 3370
devices and fewer than six 62PC devices.

The system attempts to make all space allocations on the unit specified. If
it cannot, either because that unit is full or an invalid identifier was
specified, it allocates the remainder of the space on any available unit and
sends a message to the job log.

FRCRATIO Parameter: The force write ratio parameter specifies the number
of inserted or updated records that are processed before they are forced
into auxiliary (permanent) storage. (For an expanded description of the
FRCRATIO parameter, see Appendix A.)

If this physical file is being journaled, a larger force write ratio or *NONE
may be specified. Refer to the CPF Programmer's Guide for more
information on the Journal Management Facility.

*NONE: There is no force write ratio; the system determines when the
records are written in auxiliary storage.

number-of-records-before-force: Enter the number of new or changed
records that are processed before they are explicitly forced into auxiliary
storage.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

WAITRCD Parameter: Specifies the number of seconds that the program is
to wait for a record that is to be updated or deleted. If the record cannot
be allocated in the specified wait time, an error message is sent to the
program.

60: The program is to wait for 60 seconds.

*IMMED: The program is not to wait; when a record is locked, an
immediate allocation of the record is required.

*NOMAX: The wait time will be the maximum allowed by the system
(32 767 seconds).

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
physical file member can be shared with other programs in the same routing
step. If so, when the same file is opened by other programs that also
specify SHARE(*YES), they use the same ODP to the file. If a program that
specifies SHARE(*NO) opens the file, a new ODP is used. This parameter is
not valid if a member. is not being added when the physical file is created.

When an ODP is shared, the programs accessing the file share such things
as the file status and the buffer. When SHARE(*YES) is specified and
control is passed to a program, a read operation in that program retrieves
the next input record. A write operation produces the next output record.

*NO: An ODP created by the program in which this command is used is
not to be shared with other programs in the routing step. Every time a
program opens the file with this attribute, a new ODP to the file is created
and activated.

*YES: An ODP created with this at!ribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

CRTPF
WAITFILE

Command Descriptions 4-535

CRTPF
DLTPCT

4-536

DL TPCT Parameter: Specifies the maximum percentage of deleted records
that any member in the physical file should have. The percentage is based
on the number of deleted records compared with the total record count in a
member. The percentage check is made when any member of the file is
closed, and if the number of deleted records exceeds the percentage, a
message is sent to the system history log to inform the user.

*NONE: No percentage is to be specified; the number of deleted records
in the file members is not to be checked when a member is closed.

deleted-records-threshold-percentage: Enter a value, 1 through 100, that
specifies the largest percentage of deleted records in any member in the file
can have. If this percentage is exceeded, a message is sent to the system
history log whenever the file is closed. This check will be made for logical
file processing also.

LVLCHK Parameter: Specifies whether the record format identifiers are to be
level checked to verify that the current record format identifier is the same
as that specified in the program that opens the physical file. This value can
be overridden on the OVRDBF command at execution time.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not match, an error message is
sent to the program requesting the open, and the file is not opened.

*NO: The level identifiers are not to be checked when the file is opened.

PUBAUT Parameter: Specifies what authority for the physical file and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the GRTOBJAUT command. (For
an expanded description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has operational, read, add, delete, and update
rights for the physical file.

*ALL: The public has complete authority for the file.

*NONE: The public cannot use the file.

TEXT Parameter: Lets the user enter text that briefly describes the physical
file. (For an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTPF FILE(PAYTXS.PAYLIB) SRCFILE(PAYTXS.SRCLIB) +
MBR(*NONE) MAXMBRS(5)

This command creates a physical file named PAYTXS that is to be stored in
the PAYLIB library. The source descriptions in the member PAYTXS source
file also called PAYTXS in the SRCLIB library are used to create the physical
file. The file is created without any members (*NONE was specified);
therefore, no data can be put into the file until a member is added later. As
many as five members can be contained in the file.

By default, each file member added later will contain data records. The
access path of each member will be continuously maintained. Each member
can have up to 10 000 records before automatic extensions (three
increments maximum) occur that add 1000 records to the capacity of the
member. The storage space for each member will be allocated only as
needed, with no restrictions on which unit is used or whether the space is
contiguous; there is no initial storage allocation. The public has operational,
read, add, delete, and update authority for the file, but no object rights.

CRTPF FILE(ORDERS.ORDERCTL) SRCFILE(ORDERSRC.ORDERCTL) +
SRCMBR(MFGORD) MAXMBRS(50) SIZE(1000 100 5) ALLOCATE(*YES) +
UNIT(01)

This command creates a physical file and physical file member, both named
ORDERS, to be stored in the ORDERCTL library. The file and its member
are created from the MFGORD source member of the ORDERSRC source
file that is stored in the same library. The user prefers that all records
placed in the file are to be stored on auxiliary storage unit 01, but the space
does not have to be contiguous. A maximum of 50 members can be
contained in the file. The initial allocation of storage provides for a
maximum of 1000 records, and up to five increments of additional space for
100 records each can be added automatically. These allocation values also
apply to each member of this physical file that is added later.

CRTPF
(Examples)

Command Descriptions 4-537

CRTPRTF

4-538

CRTPRTF (Create Printer File) Command

The Create Printer File (CRTPRTF) command creates a printer device file.
The device file contains the file description, which identifies the device to be
used and specifies the spooling requirements; the device file does not
contain data. The printer device file is used to send records to the printer.

The printer file description is made up of information that is specified in two
places: (1) in the source file that contains the data description specifications
(if used); and (2) in the CRTPRTF command itself. The DDS contains the
specifications for each record format in the device file and for the fields
within each record format. A printer device file can have several record
formats; the record format names must be unique within the file and the
field names within each record format must be unique (however, the same
field name can appear in more than one of the record formats).

The CHGPRTF or OVRPRTF command can be used in a program to change
or override the parameter values specified in the printer file description.
Each changed value in the device file remains changed aftE1r the program
ends. Each overridden value remains altered only for the execution of the
program (unless the override is deleted by a DL TOVR command); once the
program ends, the original parameter values specified for the printer file are
used. Override commands must be executed before the printer file to be
affected is opened for use by the program.

-{
.QGPL

CRTPRTP--- PILll prin.ter-devtoe-ftle-name)----------------•
.library-name

Required

Optional

-{
•KOKB -{•PII.B ===>-

>-IRCPILI •!JBL BRCMBR
eouroe-ttle-name-{. Y •ou...,.-nlo-member-nune

.llbra1"7-name

•BOURCB •!JBT ® •KOKB
>-OPTION-[] []-DIV

"8BC9
•NOBRC . -{•NO!JBJ- -{ dev:loo-~
•NOBOUBCB

>- POllMBIZI [] - LP! ~ CPI -{ !IS -{1aa ~e~· -{10)
form-len1th .)- form-width_)- : ID

>-OVRPLW ~POLD 9------------------+ -{
SO -{•NO)

avernow-line-number _/ •TBS

-{
#TBS_(_,. 'J'' '-l'\,_

>- RPLUNPRT \...._ 'replaoemt'nt-characte:r 1 _/ 7•------------------+
•NO-----------------~

-{
•DBVD

>-PRTIMO -{ •!JBL y•--------------------••
prlnt-lmaae-name .

. library-name

-{•NONE)- ~NORMAL
>-CTI.CHAR CHGV:

•PCFC channel-value line-number

12 maximum---~

.{_•YBB)
SPOOL 9-----+

•KO

-{ WOB -{.STD=>--
>- Oll'nl . •!JBL PORMT!PB

output-queue-name-{. r rorm-tn•
.ltbr•rJ'-D.UDe

-{_
1 -f_ 20000

>- COPllB MilllCDB •KOMil
number-or-ooplH _)- nwdmum-reoord•)

PILIBllP -{
o

nwnber-ot-mer
-aeparator•

-f_WOBIND~ -{•NO)- . -{_•KO) >- BCBIDUl.B oPIIJllDID BOLD Ill.VI , ____________

o!MMID •YBB •YBB

BIWlll -{•KO'""\.._ LV'.LCBJ:-{ •YBB "'\, ______

oYBBJ •KO_/

-f_ •KOIUUL ~
>- PUIU.UT tiLL

•llOKI

-{•BLAJllC~
TUT 1deacriptlon'~

Job:B,I PanuB,J

Command Descriptions

CRTPRTF
(Diagram)

4-539

CRTPRTF
FILE

4-540

FILE Parameter: Specifies the. qualified name by which the printer device file
being created will be known. If no library qualifier is given, the file is stored
in QGPL. (If the file is to be used by an HLL program, the file name should
be consistent with the naming rules of that language; otherwise, the file
must be renamed in the program itself.)

SRCFILE Parameter: Specifies the name of the source file (if there is one)
that contains the data description specifications for the records in the printer
device file. (For the specifications that can be made in DDS, refer to the
CPF Reference Manual-DDS.)

*NONE: There is no DDS source file for this printer device file; the device
file has only one record format with no fields, and the program that uses
the file must describe the record formats and their fields.

qualified-source-file-name: Enter the qualified name of the source file that
contains the DDS for this printer device file. (If no library qualifier is given,
*UBL is used to find the file.)

SRCMBR Parameter: Specifies the name of the member in the data base
source file that contains the DDS for this printer device file.

*FILE: The source file member name is the same as the device file name
specified in the FILE parameter.

source-file-member-name: Enter the name of the member in the source file
specified by SRCFILE that is to be used to create the printer device file.

OPTION Parameter: Specifies the type of output listing to be produced when
the file is created.

*SRC or *SOURCE: A listing of the source statements used to create the
file, and of any errors that occur, is to be generated.

*NOSRC or *NOSOURCE: No listing of the source statements is to be
generated unless errors are detected. If errors are detected, they are listed
along with the keyword or record format that caused the error.

*LIST: An expanded source listing is to be generated, showing a detailed
list of the file specifications that result from the source statements and
references to other file descriptions. This listing shows file and field
keywords and attributes.

*NOL/ST: No expanded source listing is to be generated.

DEV Parameter: Specifies, for nonspooled output only, the name of the printer
that is to be used with this printer device file to produce printed output. The
device name of the IBM-supplied printer device description is OSYSPRT. If
System/38 has two system printers attached, another printer device
description named OSYSPRT2 is also provided. If SPOOL(*YES) is
specified, this parameter is ignored.

*NONE: No device name is to be specified. The name of the printer
device must be specified later in the CHGPRTF or OVRPRTF command, or
in the HLL (high-level language) program that opens the file.

device-name: Enter the name of the device that is to be used with this
printer device file. The device name must already be known on the system
(via a device description) before this device file is created.

FORMSIZE Parameter: Specifies the length and width of the printer forms to
be used by this device file. The length is in lines per page, and the width is
in print positions (characters) per line. The defaults for FORMSIZE are 66
lines per page and 132 characters per line.

66: The form length is 66 print lines per page.

form-length: Enter the form length (in print lines per page) that is to be
used by this device file. Although a value of 1 through 255 can be specified
as the form length, the value specified should not exceed the actual length
of the forms used. The following chart shows the number of lines per page
that are valid for each printer type, depending on whether 6 or 8 lines per
inch is specified in the LPI parameter for the 3203, 3262, and 5211 Printers,
or is manually set on the 5256 Printer. For 5224 and 5225 Printers, 4, 6, 8,
or 9 lines per inch can be specified.

Lines per Page

Printer 4 lines/inch 6 lines/inch 8 lines/inch 9 lines/inch

3203 - 2-144 2-192 -
3262

2-84 2-112 - -
5211

5224
1-255 1-255 1-255 1-255

5225

5256 - 1-255 1-255 -

132: The form width is 132 printed characters per line.

form-width: Enter the form width (in characters per printed line) that is to
be used by this device file. The value specified should not exceed the actual
width of the forms used. Valid values for the 3203, 3262, 5211, and 5256
Printers are 1 through 132. Valid values for the 5224 and 5225 Printers are
1 through 198. The value specified should not exceed the actual width of
the forms used.

CRTPRTF
DEV

Command Descriptions 4-541

CRTPRTF
LPI

4-542

LPI Parameter: Specifies the line spacing setting on the printer, in lines per
inch, to be used by this device file. The line spacing on the 5256 Printer
must be set manually.

6: The line spacing on the printer is to be 6 lines per inch.

4: The line spacing on the printer is to be 4 lines per inch.

8: The line spacing on the printer is to be 8 lines per inch.

9: The line spacing on the printer is to be 9 lines per inch.

Line spacings of 4 and 9 lines per inch are valid for only 5224 and 5225
Printers.

CPI Parameter: Specifies the printer character density, in characters per inch,
to be used by this device file. 15 characters per inch is valid only for the
5224 and 5225 Printers.

10: Character density is to be 10 characters per inch.

15: Character density is to be 15 characters per inch.

OVRFLW Parameter: Specifies the line number on the page when overflow
to a new page is to occur. Generally, after the specified line is printed, the
printer overflows to the next page before printing continues. Refer to the
CPF Programmer's Guide for details about controlling page overflow.

60: After line 60 has been printed, the printer overflows to a new page.

overflow-line-number: Enter the line number of the line that causes page
overflow after the line is printed. The value specified must not exceed the
length specified in the FORMSIZE parameter.

FOLD Parameter: Specifies whether all positions in a record are to be printed
when the record length exceeds the form width (specified by the FORMSIZE
parameter). When folding is specified and a record exceeds the form width,
any portion of the record that cannot be printed on the first line will be
continued (folded) on the next line or lines until the entire record has been
printed.

*NO: Records are not to be folded; if a record is longer than the form
width, only the first part of the record that fits on one line will be printed.

*YES: Records whose length exceeds the form width are to be folded on
the following line(s).

RPLUNPRT Parameter: The replace unprintable character parameter specifies
(1) whether unprintable characters are to be replaced and (2) which
substitution character (if any) is to be used. An unprintable character is a
character that is not on the print belt or train, or in the print image used by
the printer. The default values for RPLUNPRT are *YES and the blank
(shown here as f>).

For 5224, 5225, and 5256 Printers, one of the following occurs when an
unprintable character is encountered:

• If you specify RPLUNPRT(*YES), the specified substitution character is
printed in place of each unprintable character.

• If you specify RPLUNPRT(*NO) and the value of the unprintable character
is hex 00 through hex 3F, or is hex FF, undesirable results may occur.
Most characters in this range cause an unrecoverable error to be signaled
by the printer, and either the file is held for spooling or it is not
processed. Some characters in this range, however, control forms
movement and character representation on the printer. If the unprintable
character is one of these control characters, additional spacing or
skipping may occur. If control characters are specifically placed in the
data, other system functions (such as the displaying or copying of a
spooled file, or restarting or backing up of a print writer) may cause
unpredictable results.

• If you specify RPLUNPRT(*NO) and the value of the unprintable character
is in the range of hex 40 through hex FE, a recoverable error is signaled
by the device and an inquiry message is sent to the operator, informing
him of the error and giving him the chance to cancel the file or to
continue processing. If the continue option is selected, subsequent
unprintable characters will appear as blanks in the output, and no further
inquiry messages will be sent to the operator.

For 3203, 3262, and 5211 Printers, one of the following occurs when an
unprintable character is encountered:

• If you specify RPLUNPRT(*YES) and the value of the unprintable
character is in the range of hex 00 through hex 3F, or is hex FF, the
specified substitution character is printed instead. If no substitution
character was specified, the blank is used. If no characters in this range
are expected to be in the data to be printed, *NO can be specified for
this parameter to gain some performance improvement. However, if *NO
is specified and an unprintable character in this range does occur, the
only recovery is to rerun the job.

• If you specify RPLUNPRT(*YES) and the value of the unprintable
character is in the range of hex 40 through hex FE, a translate table
should be used to translate unprintable characters to different printable
characters; each unprintable hex value can be translated to its own
printable character. The translate table, which. is specified by the
TRNTBL parameter, should also match the print image used by the
printer.

CRTPRTF
RPLUNPRT

Command Descriptions 4-543

CRTPRTF
PRTIMG

4-544

• If you specify RPLUNPRT{*NO) and the value of the unprintable character
is hex 00 through hex 3F, or is hex FF, undesirable results may occur.
Most characters in this range cause an unrecoverable error to be signaled
by the printer, and either the file is held for spooling or it is not
processed. Some characters in this range, however, control forms
movement and character representation on the printer. If the unprintable
character is one of these control characters, additional spacing or
skipping may occur. If control characters are specifically placed in the
data, other system functions (such as the displaying or copying of a
spooled file, or restarting or backing up of a print writer) may cause
unpredictable results.

• If you specify RPLUNPRT{*NO) and the value of the unprintable character
is in the range of hex 40 through hex FE, a recoverable error is signaled
by the device and a notify message is sent to the program. If you choose
to continue processing or if the message is unmonitored, the error will be
ignored and processing will continue. Subsequent unprintable characters
will appear as blanks in the output, and no further inquiry messages will
be sent to the program.

*YES: Unprintable characters are to be replaced. The program is not
notified when unprintable characters are detected.

*NO: Unprintable characters are not to be replaced. When an unprintable
character is detected, a message is sent to the program.

'b': A blank is to be used as the substitution character when an unprintable
character is detected and *YES is specified.

'replacement-character': If *YES is also specified in this parameter, enter the
substitution character that is to be used each time an unprintable character
is detected. Any printable EBCDIC character can be specified.

PRTIMG Parameter: Specifies, for 3203, 3262, and 5211 Printers only, the
name of the print image to be used by this printer device file. (This
parameter does not apply to the 5224, 5225, or 5256 Printers.)

*DEVD: The standard print image for the printer (specified in the device
description) is to be used.

qualified-print-image-name: Enter the qualified name of the print image to
be used by this device file. (If no library qualifier is given, *UBL is used to
find the print image.)

TRNTBL Parameter: Specifies, for 3203, 3262, and 5211 Printers only, the
name of the translate table (if any) to be used by this device file when the
output data is to be translated before it is printed. The translate table is
used to convert each unprintable character having a hexadecimal code of 40
through FE to the printable character specified in the table that is also on
the print belt or train. Each hexadecimal code can specify a different
character.

For each IBM-supplied print image shipped with the system, a matching
translate table is also supplied; the name of the table is the same as the
name of the image.

*PRTIMG: The translate table with the same qualified name as the print
image is to be used.

*NONE: No translation is needed when this device file is used.

qualified-translate-table-name: Enter the qualified name of the translate
table to be used by this device file and the 3203, 3262, or 5211 Printer. (If
no library qualifier is given, *LIBL is used to find the translate table.)

ALIGN Parameter: Specifies, for nonspooled output only, whether the forms
must be aligned in the printer before printing is started. If ALIGN(*YES) and
SPOOL(*NO) are specified, and forms alignment is required, the system
sends a message to the OSYSOPR message queue (or any message queue
specified for 5224, 5225, or 5256 Printers), and waits for a reply to the
message. This parameter is ignored if SPOOL(*YES) is specified. (If the file
is spooled, the message is sent to the message queue specified on the
STRPRTWTR command whenever the printer writer is started and whenever
the forms are to be changed.)

*NO: No forms alignment is required.

*YES: The forms are to be aligned before the output is printed.

CTLCHAR Parameter: Specifies whether the printer device file will support
input with print control characters. Any invalid control characters that are
encountered will be ignored, and single spacing is assumed.

*NONE: No print control characters will be passed in the data to be
printed.

*FCFC: Specifies that the first character of every record will contain an
ANSI forms control character. If *FCFC is specified, the record length must
include one position for the first-character forms-control code. This value is
not valid for externally described printer files (SRCFILE(*NONE) was
specified).

CRTPRTF
TRNTBL

Command Descriptions 4-545

CRTPRTF
CHLVAL ..

4-546

CHLVAL Parameter: Specifies a list of channel numbers with their assigned
line numbers. Use this parameter only if CTLCHAR{*FCFC) has been
specified.

*NORMAL: The default values for skipping to channel identifiers wm be
used. The following are the default values:

ANSI First-Character Forms-Control Codes

Code Action Before Printing a Line

.. Space one line {blank code)

0 Space two lines

- Space three lines

+ Suppress space

1 Skip to line 1
2-11 Space one line

12 Skip to overflow line {OVRFLW
parameter)

channel-number: Specifies a channel number to be associated with
corresponding 'skip to' line number. The only valid values for this parameter
are 1 through 12, corresponding to channels 1 through 12. The CHLVAL
parameter associates the channel number with a page line number.

If no line number is specified for a channel identifier, and that channel
identifier is encountered in the data, a default of 'space one line' before
printing is taken.· Each channel number may be specified only once per
CHGPRTF command invocation.

line-number: The line number assigned for the channel number in the same
list. The range of valid line numbers is 1 through 255. If no line number is
assigned to a channel number, and that channel number is encountered in
the data, a default of 'space one line' before printing is taken. Each line
number may be specified only once per CHGPRTF command invocation.

SPOOL Parameter: Specifies whether the output data for the printer device
file is to be spooled. If SPOOL{*NO) is specified, the following parameters
in this command are ignored: OUTQ, FORMTYPE, COPIES. MAXRCDS,
FILESEP, SCHEDULE, HOLD, and SAVE.

*YES: The data is to be spooled for processing by a card, diskette, or print
writer.

*NO: The data is not to be spooled; it is sent directly to the device to be
printed as the output becomes available.

OUTQ Parameter: Specifies, for spooled output only, the name of the output
queue for the spooled output file.

*JOB: The output queue specified in the job description associated with
this job is to be used for the spooled output data.

qualified-output-queue-name: Enter the qualified name of the output queue
to which the output data is to be spooled. (If no library qualifier is given,
*UBL is used to find the queue.) The IBM-supplied output queues that can
be used by the printer file are QPRINT, QPRINT2, and QPRINTS output
queues, stored in the QGPL library.

FORMTYPE Parameter: Specifies, for spooled output only, the type of forms
to be used in the printer when it uses this device file to produce printed
output. The identifiers used to indicate the type of forms are user-defined
and must not be longer than 10 characters.

*STD: The standard form used in your installation is to be used with this
device file for printed output. The system assumes, (for *STD) that the
standard forms are already in the printer; no message is sent when this
device file is opened.

form-type: Enter the identifier of the form type to be used with this device
file for printed output from jobs. A maximum of 10 alphameric characters
can be specified. When the device file is opened, the system sends a
message identifying the form type to the system operator, and requests that
the identified forms be mounted in the printer.

COPIES Parameter: Specifies, for spooled output only, the number of copies
(regardless_ of whether it is one-part or multipart paper) of the output to be
printed when this printer device file is used.

1: Only one copy of the output is to be printed.

number-of-copies: Enter a value, 1 through 99, that indicates the number of
identical print runs to be produced when this device file is used.

MAXRCDS Parameter: Specifies, for spooled output only, the maximum
number of records that can be in the spooled output file for spooled jobs
using this printer device file. If this maximum is exceeded, an error message
is sent to the program message queue and the program is terminated.

20000: A maximum of 20 000 records can be in the spooled output file for
each job that uses this printer device file.

*NOMAX: No maximum is specified for the number of records that can be
in the spooled output file.

maximum-records: Enter a value, 1 through 500000 (500 000), that specifies
the maximum number of records that can be in the spooled output file.

CRTPRTF
OUTQ

Command Descriptions 4-547

CRTPRTF
FILESEP

4-548

FILESEP Parameter: Specifies, for spooled output files only, the number of
separator pages to be placed at the beginning of each printed file, including
those between multiple copies of the same output. Each separator page has
the following items printed on it: file name, file number, job name, user
name, and the job number.

0: No separator pages are to be used at the beginning of each spooled file
produced by this device file.

number-of-file-separators: Enter the number of separator pages to be used
at the beginning of each printed output file produced by this device file.
Valid values are 0 through 9. If 0 is specified, no separator pages are
printed for the file. In this case, the printed output for each file (or copy of
a file) starts at .the top of a new page.

SCHEDULE Parameter: Specifies, for spooled output files only, when the
spooled output file is to be made available to a writer.

*JOBEND: The spooled output file is to be made available to the writer
only after the entire job is completed.

*FILEEND: The spooled output file is to be made available to the writer as
soon as the file is closed in the program.

*IMMED: The spooled output file is to be made available to the writer as
soon as the file is opened by the program.

HOLD Parameter: Specifies, for spooled output files only, whether the
spooled file is to be held. The spooled file is made available to a writer
when it is released by the Release Spooled File (RLSSPLF) command.

*NO: The spooled printer file is not to be held by the output queue. The
spooled output is made available to a writer based on the SCHEDULE
parameter value.

*YES: The spooled printer file is to be held until it is released by the
RLSSPLF command.

SAVE Parameter: Specifies, for spooled output files only, whether the
spooled file is to be saved (left on the output queue) after the output has
been produced.

*NO: The spooled file data is not to be retained on the output queue after
it has been produced.

*YES: The spooled file data is to be retained on the output queue until the
file is deleted.

/

' '

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the printer device file. Valid
values are 1 through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
device file can be shared with other programs in the same routing step. If
so, when the same file is opened by other programs that also specify
SHARE(*YES), they use the same ODP to the file. If a program that
specifies SHARE(*NO) opens the file, a new ODP is used.

When an ODP is shared, the programs accessing the file share such things
as the file status and the buffer. When SHARE(*YES) is specified and
control is passed to a program, a write operation in that program produces
the next output record.

*NO: An ODP created by the program in which this command is used is
not to be shared with other programs in the routing step. Every time a
program opens the file with this attribute, a new ODP to the file is created
and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

LVLCHK Parameter: Specifies whether the level identifiers of the record
formats in this device file are to be checked when the file is opened by a
program. For this check (done while the file is being opened), the system
compares the record format identifiers of each record format to be used by
the program with the corresponding identifiers in the device file. Because
the same record format name can exist in more than one file, each record
format is given an internal system identifier when the format is created.

*YES: The level identifiers of the record formats are to be checked when
the file is opened. If the level identifiers do not all match, an error message
is sent to the program requesting the open, and the file is not opened.

*NO: The level identifiers of the record formats are not to be checked when
the file is opened.

CRTPRTF
WAITFILE

Command Descriptions 4-549

CRTPRTF
PUBAUT

4-550

PUBAUT Parameter: Specifies what authority-for the printer device file arid
its description is being granted to the public (all users). Additional authority
can be explicitly granted to specific users by the Grant Object Authority
(GRTOBJAUT) command. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the device file.

*ALL: The public has complete authority for the device file.

*NONE: The public cannot use the device file.

TEXT Parameter: Lets the user enter text that briefly describes the printer
device file. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTPRTF FILE(DSPHIST) SRCFILE(JOBHIST.PRSNNL) FILESEP(3)

This command creates a description of the printer device file named
DSPHIST using the device source file description named JOBHIST that is
stored in the PRSNNL library. The defaults for all the other parameters are
assumed, except for FILESEP. The device name must be specified in
another CL command or in each program that uses the device file.

The printer uses standard forms for that installation that are 66 lines long
and 132 print positions wide. It prints 6 lines per inch and overflows to a
new page after line 60 is printed. The print image specified in the device
description is used. Output. is spooled to the output queue specified for the
job and cannot be printed until the job ends. The spooled file is not to be
held or saved after printing. One copy of the output will be printed,
preceded by three separator pages, each containing the file name, the
spooled number, and the job name and number.

\

CRTPRTIMG (Create Print Image) Command

The Create Print Image (CRTPRTIMG) command creates a print image that
describes to the system a specific print belt (or print train, on the 3203
Printer) that is to be used on a system printer. A print image can be created
from a source file that describes the print image or from IBM-supplied
source information that is provided for each IBM print belt. The
IBM-supplied source is used when the print belt number specified in this
command has a standard IBM part number. When the part number is
specified, a translate table that corresponds to the print image is also
created. The translate table is given the same name as the print image. The
print image is specified in a printer device file. When the printer file is
opened, the print image is loaded into the 3203, 3262, or 5211 Printer, and
the corresponding print train or belt is mounted to produce the output file.

Restrictions: (1) Before this command is executed, the diskette volume
labeled IBM Service Library, Volume 1 must be mounted on magazine 1 of
the diskette magazine drive. (2) When the system printer is to use a new
print image and table, and their names are the same as the old print image
and table, the printer must be varied offline and back online. First, however,
the old print image and table must be deleted, then the new ones must be
created. If the names are different, the new print image and table can be
used by a printer device file that specifies the new names in the PRTIMG
and TRNTBL parameters of its file description, or those same parameters
default to the names specified in the device description that has been
changed by the Change Device Description (CHGDEVD) command. The new
names are used the next time the printer device file is opened.

-{_
.QGPL

CJlTPJlTIMG---PJlTIMG print-tma1e-name)-----------......
• library-name

Required

Optional

~ QIMGSRC.•LIBL -(_ •PRTIMG

eource-file-name • eource-ttle
{

SRCPILB -{_ •LIBL YSRCMBR

.library-name -member-name

-{_
•HOHB _______ ..,_

BBLTHBR "°""---------------~
print-belt-part-number

-f_ 3282 ~ ® -f_ •HORKAI.3 >-DBVTYPB 15211-------PUBAUT •ALL--..----------------.1>

3203 •NOHB

_r•BLAKX~

>-TUT _,deecription'~

©To code the tollowtnc parameter• poftUonal&I/, you muet code them in thi• order, u1in1
•H tor thoee not bein1 epecified: SRCPILB, SRCMBR, and BBLTHBR.

Job:B,I Psm:B,I

CRTPRTIMG

Command Descriptions 4-551

CRTPRTIMG
PRTIMG

4-552

PRTIMG Parameter: Specifies the qualified name of the print image whose
description is being created. (If no library qualifier is given, the print image
is stored in the general purpose library, QGPL.)

SRCFILE Parameter: Specifies the name of the source file containing the
description of the print image being created. If SRCFILE or SRCMBR is
specified, BEL TNBR cannot be specified.

Note: Information about the format of records in the print image source file
is contained in the CPF Programmer's Guide.

QIMGSRC: The source file named QIMGSRC in the QGPL library contains
the source records to be used with this command to create the print image.
(If no library qualifier is specified, *UBL is used to find the file.)

qualified-source-file-name: Enter the qualified name of the source file that
contains the source records to be used with this command to create the
print image. (If no library qualifier is given, *UBL is used to find the file.)

SRCMBR Parameter: Specifies the name of the source file member
containing the description of the print image being created.

*PRTIMG: The source file member name is the same as the name of the
print image.

source-file-member-name: Enter the name of the member in the source file
specified by SRCFILE to be used to create the print image.

BEL TNBR Parameter: Specifies (for 3262 and 5211 Printers) the I BM part
number of the print belt or (for 3203 Printers) the train arrangement
identification of the print train for which the print image and translate table
are being created. Refer to the Guide to Program Product Installation and
Device Configuration for the list of standard IBM print belts and print trains
and their part numbers or identifiers. If BEL TNBR is specified, SRCFILE and
SRCMBR cannot be specified.

*NONE: No print belt number is to be specified. A nonstandard print belt
is being used.

print-belt-part-number: For a 3262 or 5211 Printer, enter the part number
of the IBM print belt for which the print image and associated translate
table are being created. For a 3203 Printer, enter the train arrangement
identification of the print train. Only digits are allowed for a print belt
number, and only letters are allowed for a print train identifier.

DEVTVPE Parameter: Specifies the device type of the system printer for
which the print image is to be used.

3262: The print image is for a 3262 Printer.

5211: The print image is for a 5211 Printer.

3203: The print image is for a 3203 Printer.

PUBAUT Parameter: Specifies what authority for the print image and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the GRTOBJAUT command. (For
an expanded description of the PUBAUT parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the print image.

0 ALL: The public has complete authority for the print image.

*NONE: The public cannot use the print image.

TEXT Parameter: Lets the user enter text that briefly describes the print
image description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTPRTIMG PRTIMG(CHAR48PI) SRCFILE(PRINTSRC) +
SRCMBR(CHAR48SC) +
TEXT(' Print image for 48 character print belt')

This command creates a print image description for the print image named
CHAR48PI; the print image is created from the source records contained in
the PRINTSRC source file's CHAR48SC source member. The print image is
(by default) to be used for a 3262 Printer.

CRTPRTIMG
DEVTYPE

Command Descriptions 4-553

CRTPRTIMG
(Considerations)

4-554

Additional Considerations

The following example shows how a set of source records is coded for a print
image in both formats for a 48-character print image.

IMAGE CHAR.048
1234567890#@/STUVWXYZ&,%JKLMNOPQR-$*ABCDEFGHI+. I

IMAGE HEX,048
FlF2F3F4F5F6F7F8F9F07B7C6lE2E3E4E5E6E7E8E9506B6C
DlD2D3D4D5D6D7D8D9605B5CClC2C3C4C5C6C7C8C94E4B7D

Note that, in the hex format, the total number of characters entered in the
source input records is always double that of the character count (identical to
that specified in Size of Character Set) for the character format. It takes two
source records in the HEX format for each source record in the CHAR format.
More information about print image source records is contained in the CPF
Programmer's Guide.

CRTQRYAPP (Create Query Application) Command

The Create Query Application (CRTQRYAPP) command creates an
executable query application from an existing definition.

The Query Utility is part of the IBM System/38 Interactive Data Base
Utilities Licensed Program, Program 5714-UT1. For more information on the
Query Utility, refer to the /BM System/38 Query Utility Reference Manual
and User's Guide, SC21-7755.

-{
.QGPL

CRTQRYAPP -- APP application-name)-----------•.,
.llbrary-name

Required

Optional

QUDSSRC.•LIBL
>- SRCPILB •SAVDPN----------y----------------..

source-file-name-{ .•LIBL

.llbrary-name

-{
•APP

>-SRCMBR)------------------..
source-file-member-name

_,-•NOSRC

'~•NOSOURCB
>-OPTION

•SRC

•SOURCB

•GEN~ •PRCSAV ~-~-----• ..
•NOGEN~ ~ •NOPRCSAV~

-{
•NOLIS::x •NODUM:r-® -{ •USBR)

>- GBNOPT USRPRP •---------..

•LIST •DUMP •OWNBR

>- PUBAUT MLL ------ TEXT •BLANK --~.,._ ___ _ -f_ •NORMAI.3 -f_ •SAMB

l<NONB 'description' _/

Job:B,I P1m:B,I

CRTQRVAPP

Command Descriptions 4-555

\

CRTQRYAPP
APP

4-556

APP Parameter: Specifies the name of the application you are creating and
specifies the library in which it is to be stored. (If no library name is given,
the application is stored in the general-purpose library (QGPL.) The
application name must be unique in the library where it is stored.

SRCFILE Parameter: Specifies the application or the name of the source file
that contains the definition of the application. (If no library qualifier is
specified, *UBL is used to find the file.)

QUDSSRC: The QUDSSRC source file is provided in the library QIDU.

*SAVDFN: The definition of the application is saved in the application
specified in the APP parameter, rather than in a source file.

source-file-name: An existing source file other than the provided QUDSSRC.

Note: The CRTQRYAPP command ignores overrides to source files that
contain UDS statements.

SRCMBR Parameter: Specifies the name of the source member that contains
the source of the application.

*APP: The source of the application is in a source member that has the
same name as the name specified in the APP parameter, which is described
in the preceding paragraph.

source-file-member-name: The definition of the application is in a source
member that has a name that is different from the name in the APP
parameter. APP is described in the preceding paragraph.

OPTION Parameter: Specifies whether or not a listing of the source UDS is
printed; specifies whether an executable application is actually created, or
whether the source UDS is only checked for errors; specifies whether or not
service information is to be printed. Select one value from each of the
following groups: *NOSOURCE or *NOSRC and *SOURCE or *SRC; *GEN
and *NOGEN; *NODUMP, *DUMP, and *EXCDUMP; *NOTRACE and
*TRACE.

*NOSOURCE or *NOSRC: The *NOSOURCE and *NOSRC values are
equivalent. When you specify *NOSOURCE or *NOSRC query does not
print a listing of the source UDS. However, query does print a listing of
errors found in source UDS.

*SOURCE or *SRC: The *SOURCE and *SRC values are equivalent. When
you specify *SOURCE or *SRC query prints a listing of the source UDS.

*FRCSAV: Specifies that the definition of an application is saved
regardless of whether the application will be executable. If *FRCSAV is not
specified, the UDS is not saved if the application fails to create.

*NOFRCSAV: Specifies that the definition will not be saved if the application
fails to be created.

*GEN: Create an executable application.

*NOGEN: Do not create an executable application: perform error checking
only.

GENOPT Parameter: Specifies the printing of IDU program listings created
for your application. The listings may be required if a problem occurs in
IOU.

USRPRF Parameter: Specifies under which user profile the application is to
be executed.

*USER: The user profile for the application user is in effect when the
application is executed.

*OWNER: The user profiles of both the application owner and the
application user are in effect when the application is executed.

PUBAUT Parameter: Specifies what authority over the application is extended
to all system users. (For an expanded description of the PUBAUT
parameters, refer to Appendix A.)

*NORMAL: All system users can execute the application, but all users
cannot change the application.

*ALL: All system users have complete authority over the application.

*NONE: All users but the owner are restricted from the application. The
owner can subsequently grant some or all rights to some or all other users.

TEXT Parameter: Lets you specify a description of the application.

*SAME: Copy the description from the original definition.

*BLANK: There is no description of this application.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTQRYAPP APP(TEST1) SRCFILE(FILE1) SRCMBR(TEST2) +
TEXT('Test application for TEST1')

This command creates an application named TEST1 using source member
TEST2, which resides in source file FILE1.

CRTQRYAPP
GENOPT

Command Descriptions 4-557

CRTQRYDEF

4-558

CRTQRYDEF (Create Query Definition) Command

The Create Query Definition (CRTQRYDEF) command begins the prompting
sequence for interactive definition of a Query application. Your responses to
the prompts are used to create a Query application.

The Query Utility is part of the IBM System/38 Interactive Data Base
Utilities Program Licensed Program Product, Program 5714-UT1. For more
information on the Query Utility, refer to the IBM System/38 Query Utility
Reference Manual and User's Guide, SC21-7724.

-{
.QGPL

CRTQRYDEF ---APP application-name)------------..
. library-name

-{
.•LIBL

>-FILE data-base-file-name)----------------..
. library-name

Required

Optional

>-OPTION

•NOSRC

•NOSO.URCE

•BRC

-{
•NOLIB:x •NODUMP "\ 0 GENO PT ,._ ______ .,

•LIST •DUMP __,

•SOURCE

-{
•UBER.)-- -f_ •NOR3- -{"'BLANK::)---

>-USRPRF PUBAUT •ALL TEXT

•OWNER •NONE 'description'

Job:I Pcm:I

APP Parameter: Specifies the qualified name of the application being defined
and the library in which it is to be stored. (If no library name is given, the
application is stored in the general-purpose library, QGPL.)

FILE Parameter: Specifies the name of an existing data base file with record
formats that will be referred to by the application you are defining. The file
is defined by DDS (see the CPF Reference Manual-DDS). (If no library
qualifier is specified, *UBL is used to find the file.)

Note: Query has access to only the records included in the access path for
the file; the access path is defined in DDS for the file. To determine
whether DDS for a file contains select/ omit logic that restricts the records
available to Query, you can use the Display File Description (DSPFD)
command.

OPTION Parameter: Specifies whether a listing of UDS (utility definition
source) statements is to be printed, which may be helpful if problems occur.

*NOSRC or *NOSOURCE: Specifies that Query is not to print a listing of
the UDS. The *NOSRC and *NOSOURCE values are equivalent.

0 SRC or 0 SOURCE: Specifies that Query is to print a listing of the UDS.
The *SRC and *SOURCE values are equivalent.

GENOPT Parameter: Specifies whether the IOU program listings for your
application are to be produced. These listings may be helpful if a problem
occurs.

*NOLIST: Specifies that an internal representation of the application
program is not to be printed.

0 LIST: Specifies that an internal representation of the application program is
to be printed.

*NODUMP: Specifies that the application program template is not to be
printed.

0 DUMP: Specifies that the application program template is to be printed.
*DUMP should be specified only if *LIST has been specified.

USRPRF Parameter: Specifies a user profile under which the application is to
be executed. This parameter allows a programmer to define a Query
application for someone who does not have full authority over the data base
file that the application reads.

*USER: The user profile of the application user is in effect when the
application is executed.

0 0WNER: The user profiles of both the application owner and the
application user are in effect when the application is executed.

When you create an application that is to be used by someone else, you
must authorize the user for the use of the application and any objects
associated with the application. You can grant each user specific rights to
such objects. By specifying USRPRF(*OWNER) when an application is
created, you can permit a user to temporarily assume your authority to use
objects associated with the application.

CRTQRYDEF
OPTION

Command Descriptions 4-559

CRTQRYDEF
PU BA UT

4-560

PUBAUT Parameter: Specifies what authority over the application is extended
to all system users. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: All system users can execute or read the application, but not
all users can delete the application.

*ALL: All system users have complete authority over the application.

*NONE: All users but the owner are restricted from using the application.
Of course, the owner can grant rights to other users.

TEXT Parameter: Enter a brief description of the application.

*BLANK: There is to be no description of the application.

'description': Enter no more than 50 characters, enclosed in apostrophes, to
describe the application.

Example

CRTORYDEF APP(TEST1) FILE(FILE1) +
TEXT('Create application for TEST1')

This command begins a prompting sequence which allows you to create an
application named TEST1 in library OGPL Your responses to the prompts
define TEST1. Application TEST1 uses data from the data base file FILE1.
No UDS or internal representation of the TEST1 will be printed. Any system
users can execute or read TEST2, but only the owner of the application can
delete it.

CRTRPGPGM (Create RPG Program) Command

The Create RPG Program (CRTRPGPGM) command invokes the RPG
compiler, to compile RPG source statements into a program.

The RPG high-level language is part of the IBM System/38 RPG Ill
Program Product, Program 5714-RG1. For more information, refer to the
IBM System/38 RPG Ill Reference Manual and Programmer's Guide,
SC21-7775.

Restriction: All object names specified on the CRTRPGPGM command
must be composed of alphameric characters, the first of which must be
alphabetic. The length of the names cannot exceed 10 characters.

CRTRPGPGM

Command Descriptions 4-561

CRTRPGPGM
(Diagram)

4-562

OpUonal

-{
QBPGSRC

>-S:RCPILB eouroe-tue-name-{ .•LIBL . 4t. }•---------------•

.UbrU"T-nameY

'P(•PGK

>-SRCKBR)-------------------+•
eouroe-rue-member-name

>-OPTION-[

•SOURCB

•SBC

•11'0SOURCB

•11'0SRC

>- GDOPT-[-{ •11'0LIST '-1 c-{•11'0DBP '---1 c-{ •1l'OATR '___]------·

•LIST~ •DBP ~- 6.ATR__;-

-{ •KODUj- -{ •1l'OPA:y ®
>- [] []-------~--..

•DUMP •PATCH

-{
0 -{QSYBPRT.•LIBL

>- GDLVL _)-PRTPILB -{ •LIBL---~
nverity-level-value n1e-name •

• llbrU"T-llame

-{ •USBRj-- -f_•11'03-- -{•BLA.11'1:~ >-USRPRP PUBAUT •ALL TBXT
llOW11'BR •11'011'B 'deeariptlon' ·

-{•KOY- ~•N011'BJ ~•N011'B2r >-PBSTRC ITDUMP 811'PDUKP
•?BS phaee-name phaee-name

25 nwdmum 20 nwdmum

E•11'0N3 -{•NO)->- CODILIST •ALL IG11'DBCBRR
phaee-name etBS
25mu:lmum

© Por the default action takeD tor thle parameter, - the parameter de.oriptlon.

PGM Parameter: Specifies the qualified name by which a compiled RPG
program is to be known. (If no library qualifier is specified, the created
program is stored in the general purpose library, QGPL.) The program must
not already exist in OGPL.

*CTLSPEC: The system uses the program name specified in positions 75
through 80 of the control specification. If the program name is not specified
on the control specification, the program assumes the name specified on the
SRCMBR parameter. If a program name is not specified on the control
specification, and if a member name is not specified by using the SRCMBR
parameter, the default program name is RPGOBJ.

program-name: Enter the name by which the program will be known.

QGPL: If a library name is not specified, the program is stored in QGPL.

.library-name: Enter the name of the library in which the compiled program
is to be stored.

SRCFILE Parameter: Specifies the name of the source file that contains the
RPG source to be compiled and the library in which the source file is
located.

QRPGSRC.*LIBL: If a source file name is not specified, the IBM-supplied
source file QRPGSRC contains the RPG source to be compiled.

source-file-name: Enter the name of the source file that contains the RPG
source program to be compiled. (If no library qualifier is specified, *UBL is
used to find the program.)

SRCMBR Parameter: Specifies the name of the member of the source file
that contains the RPG source program to be compiled. This parameter can
be specified only if the source file name in the SRCFILE parameter is a data
base file.

*PGM: The system uses the name specified on the PGM parameter as the
source file member name. If no program name is specified by using the
PGM parameter, the system uses the first member created in or added to
the source file as the source member name.

source-file-member-name: Enter the name of the member that contains the
RPG source program.

CRTRPGPGM
PGM

Command Descriptions 4-563

CRTRPGPGM
OPTION

4-564

OPTION Parameter: Specifies whether the following options are to be used
when the RPG source is compiled.

*SOURCE or *SRC: The compiler produces a source listing, consisting of
RPG source input and all compile-time errors.

*NOSOURCE or *NOSRC: The compiler does not produce a source listing. If
either *NOSOURCE or *NOSRC is specified, the system defaults to
*NOXREF.

*XREF: The compiler produces a cross-reference listing and key field
information table (when appropriate) for the source program.

*NOXREF: The compiler does not produce a cross-reference listing for the
source program. This is the default when either *NOSOURCE or *NOSRC is
specified.

*GEN: The compiler creates an executable program after the program is
compiled.

*NOGEN: The compiler does not create an executable program after the
program is compiled.

*NODUMP: When an error occurs during compilation, the compiler does
not dump major data areas.

*DUMP: The compiler dumps major data areas when an error occurs during
compilation.

GENOPT Parameter: Specifies the printing of the IRP (intermediate
representation of a program), a cross-reference listing of objects defined in
the IRP, an attribute listing from the IRP, and the program template; and
specifies the reservation of a program patch area. These listings may be
required if a problem occurs in RPG. For a description of the GENOPT
parameter and the information it provides, see Appendix E in the IBM
System/38 RPG Ill Reference Manual and Programmer's Guide, SC21-7725.

GENLVL Parameter: Specifies whether a program is to be generated,
depending on the severity of messages generated as a result. of
compile-time errors. If errors occur in a program with a severity level equal
to or greater than the value specified in this parameter, the compile will
terminate. The severity level value of RPG messages does not exceed 50.

9: If a severity level value is not specified, the default severity level is 9. If
a severity level greater than 9 is specified, the program may contain errors
that will cause unpredictable results when the program is executed.

severity-level-value: A two-digit number, 01 through 50, can be specified.

PRTFILE Parameter: Specifies the name of the file in which the compiler
listing is to be placed and the library in which the file is located.

QSYSPRT. *LIBL: If a file name is not specified, the compiler listing is
placed in the IBM-supplied file, OSYSPRT. If the file is spooled, the file
goes to the OPRINT queue. The file QSYSPRT has a record length of 132.
If you specify a file whose record length is less than 132, information will
be lost.

file-name: Enter the qualified name of the file in which the compiler listing
is to be placed. {If no library qualifier is given, *UBL is used to find the file.)

USRPRF Parameter: Specifies under which user profile the compiled RPG
program is to be executed. The profile of either the program owner or the
program user is used to execute the program and control which objects can
be used by the program {including what authority the program has for each
object).

*USER: The program user's user profile is to be used when the program is
executed.

*OWNER: The user profiles of both the program's owner and user are to be
used when the program is executed. The collective sets of object authority
in both user profiles are to be used to find and access objects during the
program's execution. Any objects that are created during the program are
owned by the program's user.

PUBAUT Parameter: Specifies what authority for the program and its
description is being granted to the public. {For an expanded description of
the PUBAUT parameter, refer to Appendix A.)

*NORMAL: The public has only operational rights for the compiled
program. Any user can execute the program, but cannot change it or debug
it.

*ALL: The public has complete authority for the program.

*NONE: The public cannot use the program.

TEXT Parameter: Lets the user enter text that briefly describes the program
and its function. The text appears whenever the program appears.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

CRTRPGPGM
PRTFILE

Command Descriptions 4-565

CRTRPGPGM
PHSTRC

4-566

PHSTRC Parameter: Specifies whether information about compiler phases is
provided on the listing.

*NO: Information about compiler phases is not provided.

*YES: Information about compiler phases is provided.

ITDUMP Parameter: This parameter specifies whether a dynamic listing of
intermediate text for one or more specified phases is to be printed at
compile time as each IT record is being built. This parameter also specifies
whether a flow of the major routines executed in one or more specified
phases is to be printed.

*NONE: No intermediate dump is produced.

phase-name: Last two characters of phase name.

SNPDUMP Parameter: Specifies whether the major data areas are to be
printed after the execution of one or more specified phases.

*NONE: No snap dump is produced.

phase-name: Last two characters of phase name.

CODELIST Parameter: Specifies whether a dynamic listing of the IRP is to be
printed during execution of one or more specified phases.

*NONE: No code listing is produced.

*ALL: A code listing is produced for each phase executed.

phase-name: Last two characters of phase name.

IGNDECERR Parameter: Specifies whether decimal data errors detected by
the system are ignored by the program.

*NO: Decimal data errors are not ignored.

*YES: Decimal data errors are ignored by the program. The result of the
operation being performed when the error occurs is unknown. The compiler
generates an error message on the compiler listing to notify the user that
this option was specified. Incorrect results that occur during the execution
of a program when this option is specified are the user's responsibility.

Example

CRTRPGPGM PGM(ARBR5.JONES) GENLVL(30) TEXT('Accounts Receivable +
Branch 5')

This command invokes the RPG compiler to produce an executable RPG
program called ARBR5 in library JONES. The source program that is
compiled resides in a member also named ARBR5, in source file ORPGSRC.
Any errors occurring during the compile will appear on a source listing of
the RPG source input, printed on the system printer. If an error occurs with
a severity level of 30 or higher, the compile will terminate.

CRTRPGPGM
(Example)

Command Descriptions 4-567

CRTRPTPGM

4-568

CRTRPTPGM (Create Auto Report Program) Command

The Create Auto Report Program (CRTRPTPGM) command generates the
compilation of an RPG program that contains auto report specifications.

The RPG high-level language is part of the IBM System/38 RPG Ill Program
Product, Program 5714-RG1. For more information, refer to the IBM
System/38 RPG Ill Reference Manual and User's Guide, SC21-7775.

Restriction: All object names specified on the CRTRPTPGM command
must be composed of alphameric characters, the first of which must be
alphabetic. The length of the names cannot exceed 10 characters.

CRTRPTPGM
Optional (Diagram)

-(
.cTL8PBC ::x·QOPI.

CllTBPTPGM-PGlll)---------------+•
pro1run-n- .l1br&1"7"-n-

-(
QBPGBBC

>-BRCPILB eource-rue-name-(.•LIBL ;. }•....------------------.-

.l1br&1"7"-name J
@~l ·•PGlll

>-BBCMBR)-----------------------__.·
eouroe-m.--ber-name

>-OPTION-[

•BOU:acB

•BBC

•:NOSOURCB

•:NOSRC

-(•DD' :J- -{.au J-l [] []---+
•RO:IJUIP •:NOGlllf

>- []--------------------~ -(
•RODUM:>--

•DUMP

>- GB:NOPT-[-(•ROUST"\..__] c-(•RODllP '-1 c-(•ROATJl II\._]--------+
•LIBT__/- •DBP ~ •.A.TB__/-

®
-(

•RODU~ -(•:NOPA:y >- [](]------------.
•DUMP •PATCH

-(
9 nu-(QS111PBT.•LIBL

>- GB:NLVL ~PBT -(•LIBL y~---~
ernr1t7-le'nl-value _/ ftle-nune •

• Ubr11.17-nune

>-BPTOPT~::::~:BCB •ROPLOW'-' •lfCWIT '-'•DA.TB~
•BOUJICB •PLOW~-..ST~•RODATBJ- --- ~

•BBC

~.COMPILllmllll\.~---------------------------•• ~•1'0COMPILll J

© Por th• dtd:ault aotioD ta- ror thl• par-i.r, •• th• par_w.,. ueortpUon. lob:B,I PIJlllB,I

Command Descriptions 4-569

CRTRPTPGM
PGM

4-570

PGM Parameter: Specifies the qualified name by which a compiled RPG
program is to be known. (If no library qualifier is specified, the created
program is stored in the general purpose library, QGPL) The program must
not already exist in QGPL.

*CTLSPEC: The system uses the program name specified in positions 75
through 80 of the control specification. If the program name is not specified
on the control specification, the program assumes the name specified on the
SRCMBR parameter. If a program name is not specified on the control
specification, and if a member name is not specified by using the SRCMBR
parameter, the default program name is RPGOBJ.

program-name: Enter the name by which the program will be known.

QGPL: If a library name is not specified, the program is stored in QGPL.

.library-name: Enter the name of the library in which the compiled program
is to be stored.

SRCFILE Parameter: Specifies the name of the source file that contains the
RPG source to be compiled and the library in which the source file is
located.

QRPGSRC.*LIBL: If a source file name is not specified, the IBM-supplied
source file ORPGSRC contains the RPG source to be compiled.

source-file-name: Enter the name of the source file that contains the RPG
source program to be compiled. (If no library qualifier is specified, *UBL is
used to find the source file.)

SRCMBR Parameter: Specifies the name of the member of the source file
that contains the RPG source program to be compiled. This parameter can
be specified only if the source file name in the SRCFILE parameter is a data
base file.

*PGM: The system uses the name specified on the PGM parameter as the
source file member name. If no program name is specified by using the
PGM parameter, the system uses the first member created in or added to
the source file as the source member name.

source-file-member-name: Enter the name of the member that contains the
RPG source program.

OPTION Parameter: Specifies whether the following options are to be used
when the RPG source is compiled.

*SOURCE or *SRC: The compiler produces a source listing, consisting of
RPG source input and all compile-time errors.

*NOSOURCE or *NOSRC: The compiler does not produce a source listing. If
either *NOSOURCE or *NOSRC is specified, the system defaults to
*NOXREF.

*XREF: The compiler produces a cross-reference listing and key field
information table {when appropriate) for the source program.

*NOXREF: The compiler does not produce a cross-reference listing for the
source program. This is the default when either *NOSOURCE or *NOSRC is
specified.

*GEN: The compiler creates an executable program after the program is
compiled.

*NOGEN: The compiler does not create an executable program after the
program is compiled.

*NODUMP: When an error occurs during compilation, the compiler does
not dump major data areas.

*DUMP: The compiler dumps major data areas when an error occurs during
compilation.

GENOPT Parameter: Specifies the printing of the IRP {intermediate
representation of a program), a cross-reference listing of objects defined in
the IRP, an attribute listing from the IRP, and the program template; and
specifies the reservation of a program patch area. These listings may be
required if a problem occurs in RPG. For a description of the GENOPT
parameter and the information it provides, see Appendix E in the /BM
System/38 RPG Ill Reference Manual and Programmer's Guide, SC21-7725.

GENLVL Parameter: Specifies whether a program is to be generated,
depending on the severity of messages generated as a result of
compile-time errors. If errors occur in a program with a severity level equal
to or greater than the value specified in this parameter, the compile will
terminate. The severity level value of RPG messages does not exceed 50.

9: If a severity level value is not specified, the default severity level is 9. If
a severity level greater than 9 is specified, the program may contain errors
that will cause unpredictable results when the program is executed.

severity-level-value: A two-digit number, 01 through 50, can be specified.

CRTRPTPGM
OPTION

Command Descriptions 4-571

CRTRPTPGM
PRTFILE

4-572

PRTFILE Parameter: Specifies the name of the file in which the compiler
listing is to be placed and the library in which the file is located.

QSYSPRT. *LIBL: If a file name is not specified, the compiler listing is
placed in the IBM-supplied file, QSYSPRT. If the file is spooled, the file
goes to the QPRINT queue. The file QSYSPRT has a record length of 132.
If you specify a file whose record length is less than 132, information will
be lost.

file-name: Enter the qualified name of the file in which the compiler listing
is to be placed. (If no library qualifier is given, *UBL is used to find the file.)

RPTOPT Parameter: Specifies whether the following options are to be used
when the auto report source program is compiled.

*NOSOURCE or *NOSRC: A source listing is not written.

*SOURCE or *SRC: A source listing, consisting of auto report source input
and all compile-time errors, is written.

*NOFLOW: A flow of the major routines executed is not written.

*FLOW: A flow of the major routines executed while the auto report source
program is compiled is written.

*NOAST: Asterisk indication is suppressed from generated total output
lines.

*AST: Asterisks are generated for total output lines.

*DATE: The page number and date are included on the first *AUTO page
heading line.

*NODATE: The page number and date are suppress~d on the first *AUTO
page heading line.

*COMPILE: The RPG compiler is called after the auto report source
program is compiled.

*NOCOMPILE: The RPG compiler is not called.

OUTFILE Parameter: Specifies the qualified name of the file where the output
from the auto report compiled program is to be placed and the library in
which the file is located. The file specified on the OUTFILE parameter is
also used as the source input file to the RPG compiler unless
RPTOPT(*NOCOMPILE) is specified. If the OUTFILE parameter is not
specified, auto report creates a file in library QTEMP to pass the generated
RPG source to the RPG compiler.

OUTMBR Parameter: Specifies the name of the member of the file that will
contain the output from auto report.

*NONE: Uses the first member created in or added to the file as the
member name.

source-file-member-name: Enter the name of the member that is to contain
the output of auto report.

USRPRF Parameter: Specifies under which user profile the compiled RPG
program is to be executed. The profile of either the program owner or the
program user is used to execute the program and control which objects can
be used by the program (including what authority the program has for each
object).

*USER: The program user's user profile is to be used when the program is
executed.

*OWNER: The user profiles of both the program's owner and user are to be
used when the program is executed. The collective sets of object authority
in both user profiles are to be used to find and access objects during the
program's execution. Any objects that are created during the program are
owned by the program's user.

PUBAUT Parameter: Specifies what authority for the program and its
description is being granted to the public. (For an expanded description of
the PUBAUT parameter, refer to Appendix A.)

*NORMAL: The public has only operational rights for the compiled
program. Any user can execute the program, but cannot change it or debug
it.

*ALL: The public has complete authority for the program.

*NONE: The public cannot use the program.

TEXT Parameter: Lets the user enter text that briefly describes the program
and its function. The text appears whenever the program appears.

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

CRTRPTPGM
OUTMBR

Command Descriptions 4-573

CRTRPTPGM
PHSTRC

4-574

PHSTRC Parameter: Specifies whether information about compiler phases is
provided on the listing.

*NO: Information about compiler phases is not provided.

*YES: Information about compiler phases is provided.

ITDUMP Parameter: This parameter specifies whether a dynamic listing of
intermediate text for one or more specified phases is to be printed at
compile time as each IT record is being built. This parameter also specifies
whether a flow of the major routines executed in one or more specified
phases is to be printed.

*NONE: No intermediate dump is produced.

phase-name: Last two characters of phase name.

SNPDUMP Parameter: Specifies whether the major data areas are to be
printed after the execution of one or more specified phases.

*NONE: No snap dump is produced.

phase-name: Last two characters of phase name.

CODELIST Parameter: Specifies whether a dynamic listing of the IRP is to be
printed during execution of one or more specified phases.

*NONE: No code listing is produced.

*ALL: A code listing is produced for each phase executed.

phase-name: Last two characters of phase name.

IGNDECERR Parameter: Specifies whether decimal data errors detected by
the system are ignored by the program.

*NO: Decimal data errors are not ignored.

*YES: Decimal data errors are ignored by the program. The result of the
operation being performed when the error occurs is unknown. The compiler
generates an error message on the compiler listing to notify the user that
this option was specified. Incorrect results that occur during the execution
of a program when this option is specified are the user's responsibility.

Example

CRTRPTPGM PGM(ARINQ5.JONES) GENLVL(29) TEXT('Accounts Receivable +
Inquiry, Branch 5')

This command invokes the auto report function to generate and compile the
RPG program called ARINQ5 in library JONES. The source program that is
compiled resides in a member also named ARINQ5, in source file
QRPGSRC. Any RPG source specifications from a different source file
member can be copied into the source file member ARINQ5 by using the
/COPY statement on the input specifications to name the existing source
file member. The auto report program is generated first; if a program
cannot be successfully generated because of errors in the auto report
specifications, the auto report function terminates and escape message
RPT 9001 is issued (the MONMSG command can be used to monitor for
this message). Once an auto report program has been successfully
generated, the program passes control to the RPG compiler. Any errors
occurring during the compile of the RPG program will appear on a source
listing of the RPG source input, printed on the system printer. If an error
occurs with a severity level of 30 or higher, the compile will terminate.

CRTRPTPGM
(Example)

Command Descriptions 4-575

CRTS BSD

4-576

CRTSBSD (Create Subsystem Description) Command

The Create Subsystem Description (CRTSBSD) command creates a
subsystem description, which defines the operational attributes of a
subsystem. After the subsystem description is created, it can be specialized
by commands that add, change, and remove work entries and routing
entries in the subsystem description.

Restriction: To use this command, you must have operational and add
rights for the library into which the subsystem description is to be placed.

-{_
.QOPL

Cll'l'8BSD---8BSD •Ub11711tem-d .. cripUon-name)------....
• llbra1"7-name

>-POOLS pool-ldenUtter___L:=TO·---· ----~---4...----.--------+ll T · ~•tlll"ace-•111• aotivlt,y-lenl_/
~---------1Dmutmum

_r•BLAJfJC ~

>-TUT~'deMrlptton'__r--

Required

j .rob:B,I PllftlB,J

SBSD Parameter: Specifies the qualified name of the subsystem description
being created. The subsystem description is stored in the specified library.
(If no library qualifier is given, the subsystem description is stored in the
general purpose library, QGPL.) Five IBM-supplied subsystem descriptions
are shipped with the system; they are QCTL (in the QSYS library), QINTER,
QBATCH, QSPL, and QPGMR (all in the QGPL library).

POOLS Parameter: Specifies one or more storage pool definitions that are to
exist in this subsystem description. Each definition specifies for one storage
pool:

• Pool definition identifier: The identifier, within the subsystem description,
of the storage pool definition. The same identifiers (1 through 10 are
valid) can be used for pool definitions in different subsystem descriptions.

• Size: The size of the storage pool, expressed in K-byte (1024 bytes)
multiples. This is the amount of main storage that can be used by the
pool.

• Activity level: The maximum number of jobs that can execute
concurrently in the pool.

A maximum of 10 storage pool definitions can be specified for the
subsystem description being created. Although each subsystem description
can have as many as 10, there is an operational limitation on how many
active storage pools there can be in the system. Within the system, no
more than 16 storage pools can be active at any time, including the base
storage pool and a machine storage pool. (A storage pool for which
*NOSTG has been specified is not considered to be active, and it is not
allocated to any subsystem.)

The base storage pool is the only pool that can be shared among
subsystems. If a subsystem is started for which all of its storage pools
cannot be allocated without exceeding the 16-pool system maximum, the
pools that can be allocated (up to the limit) are allocated and the remainder
are not. Then, for each routing step initiated by that subsystem that
normally is routed into one of the pools that was not allocated, the base
pool is used instead. For additional information about storage pools, see the
CPF Concepts and the CPF Programmer's Guide.

pool-identifier: Enter the pool identifier (1 through 10) of the storage pool
definition to be in this subsystem. The attributes of the pool also must be
specified by one of the following values. As many as 10 sets of values can
be specified in the POOLS parameter to define as many as 10 storage pools
in the subsystem.

*BASE: The specified pool definition is defined to be the base system pool,
which can be shared with other subsystems. The size and activity level of
the shared system pool are specified in the system values QBASPOOL and
QBASACTLVL (see the CPF Programmer's Guide.)

*NOSTG: No storage and no activity level are to be assigned to the pool
initially. (It is to be inactive.)

storage-size activity-level: Enter the storage size in K-bytes that the
specified storage pool is to have, and enter the maximum number of jobs
that can execute concurrently in the pool. Both values must be specified. A
value of at least 16 (meaning 16 K-bytes) must be specified for the storage
size.

MAXJOBS Parameter: Specifies the maximum number of jobs allowed within
the subsystem. The maximum applies to all initiated jobs that are waiting or
executing, except for jobs on the job queue or jobs that have finished
executing.

*NOMAX: There is no maximum number of jobs within this subsystem.

maximum-subsystem-jobs: Enter the maximum number of jobs to be
·allowed in this subsystem.

CRTSBSD
MAXJOBS

Command Descriptions 4-577

CRTS BSD
PUBAUT

4~578

PUBAUT Parameter: Specifies what authority for the subsystem and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the Grant Object Authority
(GRTOBJAUT) command. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the subsystem
description.

*ALL: The public has complete authority for the subsystem description.

*NONE: The public cannot use the subsystem description.

TEXT Parameter: Lets the user enter text that briefly describes the subsystem
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTSBSD SBSD(BAKER) POOLS((1 *BASE)(2 200 4)) +
TEXT ('Subsystem for running Baker +
Department jobs')

This command creates a subsystem description named BAKER and stores it
in the general purpose library (QGPL). Storage pool definition 1 specifies
that pool 1 is to share the base system pool; the definition of storage pool
2 is to have 200 K of storage and an activity level of 4. There is no limit in
this subsystem description on the number of jobs that can be active
concurrently. The activity levels within the subsystem may, however, be
controlled by MAXACT parameters specified in work station entries, job
queue entries, and routing entries that are in the subsystem.

CRTSBSD SBSD(MEDICAL.MEDLIB) +
POOLS((1 150 2)(2 *BASE) (3 *NOSTG) +
MAXJOBS(5) TEXT('Medical files +
Inquiry and update')

This command creates a subsystem description named MEDICAL and stores
it in the MEDLIB library. The subsystem description contains three storage
pool definitions: storage pool 1 is defined to have 150 K of storage and an
activity level of 2; pool 2 is to share the base system pool; and pool 3 is
defined initially to be inactive when the other pools are activtr-it is to have
no storage and no activity level. A maximum of five jobs can be active
concurrently in this subsystem. A text string briefly describes the
subsystem.

/

CRTSRCPF (Create Source Physical File) Command

The Create Source Physical File (CRTSRCPF) command creates a named
source physical file in the data base. A source file is created from the file
description parameters in the CRTSRCPF command; it is used to store
source records to be used as input to IBM-supplied source processors, such
as the data description specifications (DDS) processor, CL compiler, or RPG
Ill compiler. (To override attributes of the file after it has been created, use
the Override Data Base File (OVRDBF) command before the file is opened.)

A source file has only one record format, and the entire file contains records
having only that format. All records in the file have the same length and
have the same fields. (No level checking is performed for source files
created by the CRTSRCPF command.)

Each source file can have one or more members; each source file member is
a separate collection of records, whose record format is the same as all
other members of the file. Each member within the file has its own access
path, of the same type as the file itself.

No source records can be stored in the file being created until at least one
member has also been added to the file. Either the MBR parameter of this
command or the Add Physical File Member (ADDPFM) command can be
used to add a member. However, the descriptive portion of the named file
does exist within the data base even if there are no members.

CRTSRCPF

Command Descriptions 4-579

CRTSRCPF
(Diagram)

4-580

-{_
.QGPL

CRTSRCPF--- FILB source-phyelca1-n1e-name .)------------------•.,. '··
.l1br.a1'7-nam&

Required

Optional

>-RCDLBN-{_ :o:=r-MBR~ :~;:-_-n-1-.-_-mem--be-r ___ n __ --J-'110--®-P ___________ _..,

>-BXPDATB MAXMBRS ACCPTH -{_
•NONB -{_ •NOMil -{_ •ARRIV:J---.
8JCPlratlon-date)- maxlmum-member• _)--- •KBYBD

>-MAINT •RBBLD--'111---- RBCOVBR •AFTSTRCPF _\--'It--------------------+• ~ •IMM:B3 ~ •N'O

•DLY •STRCPP...:...:...__;

10 000)(1000 ~ 499

number-or-record• increment-value J _ number-or-tnorementa
>-SIZB

•NOMll·-------------------------------~

•NO) -{_•NO) >-ALLOCAT •----CONTIG •----------------------••

•YBS •YBS

>-UNIT_r•ANY ~PRCRATIO _r •NONB) .. ---------·

_ unit-identlner J . _ number-ot-reoords-before-force

~MMBD------~--'•
WAITRCD •NOMil . .

number-or-eeoonds
~

•IMMBD

>- WAITFILB +CLS
number-or-seconds)

-{_
+NONB

>-DLTPCT)---------------------+
deleted-reoords-tbreshold-peroentqe

>- PUBAUT1_ :.:.RMAL-~-..... ----TBXT_r•BLANK ~
~ •NONB _J -_'description'~

j Job:B,I Ppi:B,I

FILE Parameter: Specifies the qualified name by which the source physical
file being created will be known. If no library qualifier is given, the physical
file is stored in QGPL. (If the file is to be used in an HLL program, the file
name should be consistent with the naming rules of that language;
otherwise, the file must be renamed in the program itself.)

RCDLEN Parameter: Specifies the record length, in bytes, of the records to
be stored in the source file. The format of each record contains three fields:
the sequence number of the record, a date field, and the source statement.
The record format name is the same as that of the file itself, specified in the
FILE parameter. For information about the fields in a source record, refer to
the expanded parameter description of the FILETYPE parameter in Appendix
A, and to the CPF Programmer's Guide.

The RCDLEN parameter must provide 12 positions for the source sequence
number and date fields required in each record. If the Copy File (CPYF)
command is used to copy records into the file, and the records are longer
than the length specified here, the records are truncated on the right. These
fields are defined with fixed attributes and names, and have a keyed access
path over the sequence number. (See the CPF Programmer's Guide for
details.)

92: The default record length is to be 92 characters. Six characters are for
the record sequence number, six are for the record date, and the remaining
80 characters are for the source statement itself.

record-length: Enter a value, 13 through 32766, that indicates the record
length of each source record in the file; the value must include 12 positions
for the sequence number and date fields.

MBA Parameter: Specifies the name of the source file member (if a member
is to exist immediately) to be added when the source file is created. (You
can add other members to the file after it is created by using the ADDPFM
command.)

*NONE: No member is to be added when the file is created.

*FILE: The member being added is to have the same name as that of the
source file that contains the member (specified in the FILE parameter).

source-file-member-name: Enter the name of the member that is to be
added when the source file is created.

CRTSRCPF
FILE

Command Descriptions 4-581

CRT.SRCPF
EXPDATE

4-582

EXPDATE Parameter: Specifies, if a source file member is to be added when
the file is created, the expiration date of the member. Any attempt to open
a file that uses a. member that has expired cat1ses an error message to be
sent to the user. (The expiration date of each member added later to the
file must be specified in the Add Physical File Member (ADDPFM) command
that adds it.)

*NONE: The member has no expiration date.

expiration-date: Enter the date after which the source file member should
not be used. The date must be in the format specified by the QDATFMT
and QDATSEP system values.

MAXMBRS Parameter: Specifies the maximum number of members that the
source file being created can have at any time.

*NOMAX: No maximum is specified for the number of members; the
system maximum of 32 767 members per file is used.

maximum-members: Enter the value for the maximum number of members
that the source file can have. A value of 1 through 32767 is valid.

ACCPTH Parameter: Specifies the type of access path to be used by all
members of the file.

*ARRIVAL: The access path is to be of arrival sequence order. Using this
parameter value will reduce the size of the file and eliminate maintenance of
the keyed access path.

*KEYED: The access path is to be of keyed sequence order.

For more information on keyed and arrival sequence orders of source file
access paths, refer to the IBM System/38 CPF Programmer's Guide,
SC21-7730.

MAINT Parameter: Specifies the type of access path maintenance to be used
for all members of the source file (which always have keyed access paths).

*IMMED: The access path is to be continuously (immediately) maintained
for each source file member. The path is updated each time a record is
changed, added to, or deleted from the member. The records can be
changed through a logical file that uses the physical file member regardless
of whether the source file is opened or closed.

*REBLD: The access path is to be completely rebuilt when a file member is
opened during program execution. The access path is continuously
maintained until the member is closed; the access path maintenance is then
terminated.

*DLY: The maintenance of the access path is to be delayed until the
physical file member is opened for use. Then, the access path is updated
only for records that have been added, deleted, or updated since the file
was last opened. (Records that change while the file is open have their
access paths immediately rebuilt.) To prevent a \engthy rebuild time when
the file is opened, *DL Y should be specified only when the number of
changes to the access path is small.

RECOVER Parameter: Specifies, for files having immediate maintenance on
their access paths, when recovery processing of the file is to be performed
after a system failure has occurred while the access path was being
changed. This parameter is valid only if a keyed access path is used.

The access path having immediate maintenance can be rebuilt during start
CPF (before any user can execute a job), or after start CPF has finished
(during concurrent job execution), or when the file is next opened. While the
access path is being rebuilt, the file cannot be used by any job.

The access path having rebuild maintenance will be rebuilt the next time its
file is opened, the time that it normally is rebuilt.

*NO: The access path of the file is not to be rebuilt. The file's access path
is rebuilt when the file is next opened if it has rebuild maintenance.

*AFTSTRCPF: The file is to have its access path rebuilt after the start CPF
operation has been completed. This option allows other jobs not using this
file to begin processing immediately after the CPF has been started. If a job
tries to allocate the file while its access path is being rebuilt, a file open
exception occurs if the specified wait time for the file is exceeded.

*STRCPF: The file is to have its access path rebuilt during the start CPF
operation. This ensures that the file's access path will be rebuilt before the
first user program tries to use it; however, no jobs can begin execution until
after all files that specify RECOVER(*STRCPF) have their access paths
rebuilt.

SIZE Parameter: Specifies the initial number of records in each member of
the file, the number of records in each increment that can be automatically
added to the member size; and the number of times the increment can be
automatically applied. The number of records for each file member is
expressed as the number of undeleted records that can be placed in it.

When the maximum number of records has been reached, a message
(stating that the member is full) is sent to the system operator, giving him
the choice of terminating the job or extending the member size himself. The
operator can extend the member by the amount specified as the increment
value (in the second value) one time for each time he receives the message.

A list of three values can be specified to indicate the initial size of each
member and the automatic extensions that can be added when needed. Or
*NOMAX can be specified instead. If SIZE is not specified, SIZE(10 000,
1000, 3) is assumed by the system.

CRTSRCPF
RECOVER

Command Descriptions 4-583

CRTSRCPF
SIZE

4-584

Records: One of the following is used to specify the initial number of
records in the member before any automatic extension of the member
occurs. The ALLOCATE parameter determines when the required space
for the initial allocation occurs: If *YES is specified, the space is
allocated when the file is created, or when a new member is added. If
*NO is specified, the initial space is allocated as determined internally by
the system.

10 000: Initially, up to 10 000 records can be inserted into each member
of the file before any extension occurs.

number-of-records: Enter the number of records that are inserted before
an automatic extension occurs. A value of 0 cannot be used; the
maximum value cannot exceed 16 777 215 records, or, if
ALLOCATE(*YES) is specified, the amount of total system storage
remaining for all permanent objects, whichever is less. If you do not
want any automatic extensions, enter a 0 for the second and third values
in the list.

Increment Amount: One of the following is used to specify the maximum
number of records that can be additionally inserted in the member when
the initial member size is exceeded and an automatic extension is made.

1000: A maximum of 1000 additional records can be inserted into the
member after an automatic extension occurs.

increment-value: Enter the value, 0 through 32767, that specifies the
maximum number of additional records that can be inserted into the
member after an automatic extension occurs. Enter a 0 to prevent
automatic extensions.

Number of Increments: One of the following is used to specify the
maximum number of increments that can be automatically added to the
member. If 0 is specified for the increment amount, the number of
increments need not be specified; 0 will be the default value instead of
499 (and a message is sent to the user issuing the command).

499: A maximum of 499 increments can be automatically added to the
member size.

number-of-increments: Enter the maximum number of increments, 0
through 32767, that can be automatically added to the member. Enter a
0 to prevent automatic extensions.

Unlimited Size: The following value can be specified to allow an unlimited
number of records in each member.

*NOMAX: The number of records that can be inserted into each member
of the file is not limited by the user. The maximum size of each member
is determined by the system. If *NOMAX is specified, ALLOCATE(*NO)
must also be specified.

ALLOCATE Parameter: Specifies whether an initial allocation of storage
space is to be performed for each source file member as it is added. The
allocation provides enough space to hold the initial number of records
specified by the SIZE parameter. (Later allocations, which occur when a
record cannot be added to a member without exceeding its capacity, are
determined by the system and by the SIZE parameter values.)

*NO: Minimum storage space is initially allocated when the member is
added. The system determines when space allocations are necessary and
the size of each allocation.

*YES: Storage space is to be initially allocated as each member is added.
The amount specified in the first value of the SIZE parameter (the number
of records) is allocated. If the space cannot be allocated, a message is sent
to the user and the affected member is not added. If *YES is specifi~d.
SIZE(*NOMAX) cannot be specified.

CONTIG Parameter: The contiguous parameter specifies whether the user
prefers that all records in the initial allocation in each source file member are
stored together without separations. If so, and the necessary contiguous
space is not available, the system sends a message to the job log and
allocates the storage space noncontiguously. The file is still entirely usable.
This parameter does not indicate anything about the additional allocations
that might be needed later, which most likely would be noncontiguous.

*NO: The storage space for each member does not have to be contiguous.

*YES: The user wants the system to allocate contiguous space for each
member of the source file being added, and to notify the user and put a
message in the job log if it cannot. The affected member is still added,
even if the storage space has to be allocated noncontiguously. The member
is just as usable in noncontiguous form. If *YES is specified for CONTIG,
then ALLOCATE(*YES) must also be specified.

UNIT Parameter: Specifies, if the user prefers that a file be stored on a
specific unit, the unit identifier of the auxiliary storage unit on which the
system will attempt to allocate the storage space for the file and for all its
members and their associated access paths. This includes the initial
allocation when each member is added and any extensions that occur later
for each member in the file. If the system cannot allocate the storage space
for each member on the specified unit, it allocates the space on any
available unit and sends a message to the job log. The file is entirely usable
in all cases.

*ANY: The storage space for the file and its members can be allocated on
any available auxiliary storage unit.

CRTSRCPF
ALLOCATE

Command Descriptions 4-585

CRTSRCPF
FRCRATIO

4-586

unit-identifier: Enter a valid value of 1 through 14 to specify the identifier of
the auxiliary storage unit on which you prefer to have the storage space of
all members allocated. The values that are valid depend on how many
storage units are on the system, and on their types (62PC disk and 3370
disk). Refer to the chart in the CRTPF command, UNIT parameter, for the
type and unit that correspond to the unit identifiers.

The system attempts to make all space allocations on the unit specified. If
it cannot, either because that unit is full or because an invalid identifier was
specified, it allocates the remainder of the space on any available unit and
sends a message to the job log.

FRCRATIO Parameter: The force write ratio parameter specifies the number
of inserted or updated records that are processed before they are forced
into auxiliary (permanent) storage. (For an expanded description of the
FRCRATIO parameter, see Appendix A)

*NONE: There is no force write ratio; the system determines when the
records are written in auxiliary storage.

number-of-records-before-force: Enter the number of new or changed
records that are processed before they are explicitly forced into auxiliary
storage.

WAITFILE Parameter: Specifies the number of seconds that the program is
to wait for the file resources to be allocated when the file is opened. If the
file resources cannot be allocated in the specified wait time, an error
message is sent to the program. (For an expanded description of the
WAITFILE parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

/

WAITRCD Parameter: Specifies the number of seconds that the program is
to wait for a record that is to be updated or deleted. If the record cannot
be allocated in the specified wait time, an error message is sent to the
program.

60: The program is to wait for 60 seconds.

*IMMED: The program is not to wait; when a record is locked, an
immediate allocation of the record is required.

*NOMAX: The wait time will be the maximum allowed by the system
(32 767 seconds).

number-of-seconds: Enter the number of seconds that the program is to
wait for the file resources to be allocated to the job. Valid values are 1
through 32767 (32 767 seconds).

SHARE Parameter: Specifies whether the ODP (open data path) for the
source file member can be shared with other programs in the same routing
step. If so, when the same file is opened by other programs that also
specify SHARE(*YES), they use the same ODP to the file. If a program that
specifies SHARE(*NO) opens the file, a new ODP is used. This parameter is
not valid if a member is not being added when the source file is created.

When an ODP is shared, the programs accessing the file share such things
as the file status and the buffer. When SHARE(*YES) is specified and
control is passed to a program, a read operation in that program retrieves
the next input record. A write operation produces the next output record.

*NO: An ODP created by the program in which this command is used is
not to be shared with other programs in the routing step. Every time a
program opens the file with this attribute, a new ODP to the file is created
and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES) when it opens the file.

DL TPCT Parameter: Specifies the maximum percentage of deleted records
that any member in the source file should have. The percentage is based on
the number of deleted records compared with the total record count in a
member. The percentage check is made when any member of the file is
closed, and if the number of deleted records exceeds the percentage, a
message is sent to the system history log to inform the user.

*NONE: No percentage is to be specified; the number of deleted records
in the file members is not to be checked when a member is closed.

deleted-records-threshold-percentage: Enter a value, 1 through 100, that
specifies the largest percentage of deleted records in any member in the file
can have. If this percentage is exceeded, a message is sent to the system
history log whenever the file is closed. This check will be made for logical
file processing also; if more than one based-on physical file has its
percentage exceeded, a message is logged for each one that was exceeded.

CRTSRCPF
WAITRCD

Command Descriptions 4-587

CRTSRCPF
PUBAUT

4-588

PUBAUT Parameter: Sp.ecifies what authority for the source file and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the Grant Object Authority
(GRTOBJAUTI command. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: The public has operational, read, add, delete, and update
rights for the source file.

*ALL: The public .has complete authority for the file.

*NONE: The public cannot use the file.

TEXT Parameter: Lets the user enter text that briefly describes the source
file. (For an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Examples

CRTSRCPF FILE(PA YTXS.SRCLIB)

This command creates a source file named PAYTXS that is to be stored in
the SRCLIB library. The file is created without any members; therefore, no
data can be put into the file until a member is added later. As many as 32
767 members (*NOMAX) can be added to the file.

The access path of each member is continuously maintained. Each member
can have up to 20 records before automatic extensions (499 increments
maximum) occur that add 20 records to the capacity of the member. The
initial storage allocated for each member will hold 20 records, with no
restrictions on which unit is used or whether the space is contiguous; there
is no initial storage allocation. The public has operational, read, add, delete,
and update authority for the file, but no object rights.

CRTSRCPF FILE(ORDERS.ORDERCTL) +
SIZE(100 50 5) UNIT(01)

This command creates a source file and source file member, both named
ORDERS, to be stored in the ORDERCTL library. The user prefers that all
records placed in the file are to be stored on auxiliary storage unit 01, but
the space does not have to be contiguous. The initial allocation of storage
provides for a maximum of 100 records, and up to five increments of
additional space for 50 records each can be added automatically. These
allocation values also apply to each member of this source file that is added
later.

/

CRTSSND (Create Session Description) Command

The Create Session Description (CRTSSND) command creates a session
description that defines the attributes of an RJEF session. A session
description is necessary for each RJEF session.

After the session description is created, it can be specialized through
commands that add RJEF reader entries, RJEF writer entries, and
communications entries. Refer to the Add RJE Reader Entry
(ADDRJERDRE), Add RJE Writer Entr((ADDRJEWTRE), and Add RJE
Communications Entry (ADDRJECMNE) commands respectively.

Restriction: To use this command, you must have add rights to the library
in which the session description is to be stored.

The Create Session Description (CRTSSND) command is part of the /BM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

-{
.QGPL

CRTSSND---- SSND session-description-name)--------•

.library-name

•RES?® >-TYPE •JES2 ---'I>---------------------------·
•JES3
•RSCS

Required

Optional

-{
QRJESSN.•LIBL

>-JOBQ -{. .•LIBL Y'---------------·
Job-queue-name

.library-name

-{
QRJE.nIBL

>-MSGQ -{.•LIBL y·-------------·
meHaae-queue-name

.library-name

-{
•NONE

>-FCT -{ •LIBL y•------------·
forms-control-table-name •

• library-name

-{
•NOLIMIT -f_ •NOR3 -{•BLANK :J-

>-IDLETIME _)-PUBAUT •ALL TEXT
number-of-minutes •NOHE 'deacription'

-----~ l Job:B,I P1m:B,I

CRTSSND

Command Descriptions 4-589

CRTSSND
SSND

4-590

SSND Parameter: Specifies the qualified name of the session description that
is to be created. (If no library qualifier is given; the session description is
stored in QGPL.)

TYPE Parameter: Specifies the type of remote job entry host subsystem with
which RJEF session is to communicate. Enter the value that applies to this
session description.

*RE.5: VS1 /RES.

*JE.52: VS2/JES2.

*JE.53: VS2/JES3.

*R5C5: VM/370 RSCS.

JOBQ Parameter: Specifies the name of the default RJEF job queue on which
all the RJEF session jobs are to be started.

QRJESSN.*LIBL: The RJEF job queue named QRJESSN in the QRJE
library is to be used for this session description. (If no library qualifier is
specified, *UBL is used to find the job queue.)

job-queue-name: Enter the qualified name of the job queue on which all the
RJEF session jobs are to be started. (If no library qualifier is given, *UBL is
used to find the job queue.)

MSGQ Parameter: Specifies the qualified name for the RJEF message queue
in which all the RJEF messages are to be recorded.

This message queue will contain all the messages received from the host
system, all commands sent to the host system, and all the messages issued
by RJEF jobs. In addition, this message queue serves as a job log for all
RJEF jobs in the active RJEF session. The message queue can be displayed
by issuing the STRRJECSL command.

QRJE.*LIBL: The RJEF message queue named QRJE in the QRJE library
is to be used for this session description. If no library qualifier is specified,
*UBL is used to find the message queue.

message-queue-name: Enter the qualified name of the message queue that
is to contain a record of all the RJEF messages for this session description.
(If no library qualifier is given, *UBL is used to find the message queue.)

FCT Parameter: Specifies a forms control table (FCT) to be used with this
session description.

*NONE: No FCT is to be specified.

forms-control-table-name: Enter the qualified name of the FCT that is to be
used. (If no library qualifier is given, *UBL is used to find the FCT.)

IDLETIME Parameter: Specifies the minimum number of minutes that the
RJEF session should remain idle after the line connection has been
established before transmitting the LOGOFF or SIGNOFF command to the
host system. During this time no files are transmitted or received.

When the number of minutes is set equal to zero, and if the line connection
has been established, the LOGOFF or SIGNOFF command is transmitted
immediately. Also, RJEF holds all RJEF reader job queues defined for this
RJEF session.

The idle time countdown begins following the end-of-file of the last input
stream sent or output stream received.

The idle time countdown is reset each time data becomes available for
transmitting or receiving.

If there are any input streams that have started but have not ended (that is,
received end of file) except for the console input streams, the idle time
countdown will not begin.

If a Terminate RJE Session (TRMRJESSN) command is issued, it overrides
the session idle time processing. If the TRMRJESSN command specifies a
controlled cancel, the IDLETIME parameter value of the TRMRJESSN
command overrides the CRTSSND command IDLETIME parameter value.
This parameter is ignored if OPTION(*IMMED) is specified in the
TRMRJESSN command.

*NOLIMIT: A LOGOFF or SIGNOFF command is not to be transmitted
unless a TRMRJESSN command is issued specifying OPTION(*CNTRLD).

number-of-minutes: Enter the number of minutes that the RJEF session
should remain idle before transmitting the LOGOFF or SIGNOFF command
to the host system. Valid values are 0 through 99.

CRTSSND
FCT

Command Descriptions 4-591

CRTSSND
PUBAUT

4-592

PUBAUT Parameter: Specifies the authority that .is being granted to the
public (all users) for the session description. Additional authority can be
explicitly granted to users by the Grant Object Authority (GRTOBJAUT)
command.

*NORMAL:' The public has· only operational rights for the. session
description.

*ALL: The public has complete authority for the session description.

*NONE: The public cannot use the session description.

TEXT Parameter: Lets the user enter text that briefly describes the session
description. (For an expanded description of the TEXT parameter, see
Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTSSND SSND(RJE.USERLIB) +
TYPE(J ES2) +
JOBQ(RJEF.USERLIB) +
MSGQ(RJEF.USERLIB) +
FCT(FCT.USERLIB) +
TEXT('Session description for JES2 host')

This command creates a session description named RJE in library USERLIB.
The host type is JES2. The RJE job queue, named RJEF, is in library
USERLIB. The RJEF message queue is named RJEF.USERLIB. This session
will use forms control entries from a forms control table named FCT in
library USERLIB. A text string briefly describes the session description.

CRTTAPF (Create Tape File) Command

The Create Tape File (CRTIAPF) command creates a tape device file. The
device file contains the file description, which identifies the device to be
used; the device file does not contain data. The tape device file is used to
read and write records on tape. The same device file can be used for both
input and output operations.

Note: This command is not to be used to create device files for use in
save/ restore operations. User-created device files are not needed for
save I restore operations.

All the information in the tape file description comes from the command
that creates it; there is no DDS (data description specifications) for tape
device files. The tape file has only one record format for input/ output
operations. The record format consists of one character field containing the
input data retrieved from the device or the output data to be written to the
device. The program using the device file must describe the fields in the
record format so that the program can arrange the data received from or
sent to the device in the manner specified by the tape file description.

The CHGTAPF or OVRTAPF command can be used in a program to change
or override the parameter values specified in the tape file description. Each
changed value in the device file remains changed after the program ends.
Each overridden value remains altered only for the execution of the program
(unless the override is deleted by a Delete Override (DLTOVR) command);
once the program ends, the original parameter values specified for the tape
file are used. Override commands must be executed before the tape file to
be affected is opened for use by the program.

CRTTAPF

Command Descriptions 4-593

CRTTAPF
(Di~gram)

4-59'1-

Required Optional

-(
.QGPL ®

CllTTJJ'P--PILI \ape-dmoe-nle-name '

.llbr&1"7-name

NOD ~•SL~i >-VOL DILS . •NL -<;;l~-ldentl~er r-I ::~ . nuniber-:ot-reel•)
llO maxtmU:~ +LTM

•

-(
1 -(•NONI

>-SBQNBR)----LA.BBL)----••
file-•equence-number data-fil•-ldentlfi•r

-(+DATJ-- -(•CALC ::::)-- -(•CALC ::r >-PILIT1PI RCDLIN BLICLIN
•SRC reoord-len1th . blook-len1\h

~ 0 @ Select one of the •NO ""--.,.

>-BUPOPS».-~+BLJCDSC) RCDBLKPUT- ~~l~I: •D •VS 1--'BX.TBND-(1~
butfer-oftaet •PB +VB •DB •VBS •YBS

eU

-(UIOOJ-- -(•BBCDIJ- -(•NONI
>- DINSITY CODI CRTDATB)---___...

800 e.\SCII · cre•tlon-date

-f_ •RBWIND9 INDOPT eUNLOAD----',.,__ _________ _..

•LIA.VB

-f_ eDOlBD'
>- WAITPILI +CLS

· numbor-ot-•econd•)
-(•NO)- -f_•N03-+ SllABB PUBAUT •ALL

eYBS •NONI

-(•BJ.AMI:~
>-TBXT 'deaortpUon'~
©The value •BLXDSC i• valid only ror a file with record block format •D or •DB.
@The value• er, •PB, •VS, •VBS, and •U are valid tor bo\b IBCDIC and ASCII codH,

•V and •VB are valid on!T tor IBCDJC, and •D and •DB are valid on!T tor ASCII.

l Job:B,J PpmB,J

FILE Parameter: Specifies the qualified name by which the tape device file
being created is to be known. If, no library qualifier is given, the file is
stored in QGPL. (If the file is to be used by an HLL (high-level language)
program, the file name should be consistent with the naming rules of that
language; otherwise, the file must be renamed in the program itself.)

DEV Parameter: Specifies the names of one or more tape devices to be used
with this tape device file to perform input/ output data operations.

*NONE: No device names are to be specified. They must be specified
later in the CHGTAPF or OVRTAPF command, or in the HLL program that
opens the file.

device-name: Enter the names of one or more devices (no more than four)
that are to be used with this tape device file. The order in which the device
names are specified here is the order in which tapes mounted on the
devices are processed. When more volumes are to be processed than the
number of devices in the DEV list, the devices are used in the same order
as specified, wrapping around to the first device as needed. Each device
name must already be known on the system via a device description before
this device file is created.

VOL Parameter: Specifies volume identifiers for the tapes to be used by this
device file. The tapes (volumes) must be mounted on the devices in the
same order as the identifiers are specified here and as the device names are
specified in the DEV parameter. If the tape file is opened for read
backward, the volume identifiers in the list are processed from last to first
(while the devices in the device list are used in first to last order). An
inquiry message is sent to the system operator if either *SL or *BLP
processing is specified or if an incorrect volume is mounted, or if no volume
is mounted (for any type of label processing). When a list of volume
identifiers is provided for the file, operator mount messages indicate the
name of the volume which is required. (For an expanded description of the
VOL parameter, see Appendix A.)

*NONE: No tape volume identifiers are specified for this file. They can be
supplied before the device file is opened, either in the CHGTAPF or
OVRTAPF command or in the HLL program. If no volume identifiers are
specified before the device file is opened, no volume checking is performed
beyond verifying that the correct label type volume is mounted, and no
volume names are provided in operator mount messages. The maximum
number of reels processed for a *NL, *NS, *BLP, or *L TM input file when
VOL(*NONE) is specified is determined by the REELS(number-of-reels)
parameter value.

volume-identifier: Enter the identifiers of one or more volumes in the order
in which they are to be mounted and used by this device file. Each identifier
can have 6 alphameric characters or less. These identifiers are used in any
mount messages that are sent to the operator during processing. The
maximum number of reels processed for a *NL, *NS, *BLP, or *LTM input
file is determined by the number of volume identifiers in the list.

CRTTAPF
DEV

Command Descriptions 4-595

CR1TAPF
REELS

4-696

REELS Parameter: Specifies the type of labeling used on the tape reels and
the maximum number of reels to be processed, if there is no list of volume
identifiers specified (VOL parameter) and this device file is used with either
*NL, *LTM, *NS, or *BLP input files. When the number of reels are
specified, the volume identifiers on the mounted volumes are ignored if
labeled tapes are being processed; instead, the order in which the reels are
mounted must be checked by the operator.

The number of reels value (the second part of the REELS parameter) is not
a limiting value for standard-label or output files. For a standard-label input
file, the data file labels limit the number of volumes processed by indic~ting
end-of-file. For an output file, the maximum number of reels value is
ignored; the system requests that additional volumes be mounted until the
file is closed.

The system checks the first record following the load point on the tape to
see (1) if it has exactly 80 bytes for EBCDIC or at least 80 bytes for ASCII
and (2) if the first 4 bytes contain the values VOL and 1. If so, the reel
contains a standard-label tape. *SL and *BLP files require standard-label
tape volumes. *NL, *LTM, and *NS tape files cannot process standard-label
volumes.

Note: The values *SL, *NL, and *L TM can be specified if the device file is
to be used for either reading or writing on tapes. The values *NS and *BLP
are valid only if the device file is used to read tapes.

*SL: The volumes have standard labels. If a list of volume identifiers is
specified (with the VOL parameter), the system checks that the correct tape
volumes are mounted in the specified sequence. If no volume identifier list
is given and the file is opened for output, any standard-label volumes may
be mounted. If no volume identifier list is given and the file is opened for
input, the first volume may have any volume identifier, but. if the file is
continued, the system requires the correct continuation volumes to be
processed (verified by checking the data file labels). For an input file, the
end:-of-file message will be sent to the using program when the labels on
the last volume processed indicate that it is the last volume for the data file.

*NL: The volumes have no labels. On a nonlabeled volume, tape marks are
used to indicate the end of each data file and the end of the volume. For an
input file, the end-of-file message will be sent to the using program when
the number of volumes specified in the volume list have been processed, or
(if no list of volume identifiers is provided) when the number of reels
specified in the REELS parameter have been processed.

/

*NS: The volumes have nonstandard labels. Each volume must begin with
some kind of label information, optionally preceded by a tape mark (and
always followed by a tape mark). This nonstandard-label information is
ignored, and the system spaces forward to a point beyond the tape mark
that follows the nonstandard labels to position the tape at the file's data.
Each reel must have a tape mark at the end of the file's data. Any
information beyond this ending tape mark is ignored. Only a single data file
can exist on a nonstandard tape. Standard-label volumes cannot be
processed using *NS label processing. For an input file, the end-of-file
message will be sent to the using program when the number of volumes
specified in the volume list have been processed, or, if no list of volume
identifiers is provided, when the number of reels specified in the REELS
parameter have been processed.

*BLP: Standard-label processing is to be bypassed. Each reel must have
standard labels. Although each reel is checked for a standard volume label
and each file must have at least one standard header label (HDR1) and one
standard trailer label (EOV1 or EOF1), most other label information (such as
the data file record length or block length) is ignored. The sequence number
of each file on the volume is determined only by the number of tape marks
between it and the beginning of tape (in contrast to *SL processing where
the file sequence number stored in the header and trailer labels of each file
are used to locate a data file).

Most of the information in the data file trailer label is ignored, but if an
end-of-file (EOF) trailer label is found, the end-of-file message is signaled
to the program using the tape file. If no end-of-file trailer label is
encountered by the time the specified number of volumes or reels have
been processed (volume identifier list and REELS parameter), the end-of-file
message is immediately sent to the program using the tape file. Bypass
label processing can be used when you do not know the name of the file to
be used or (for example) when some file label information is incorrect.

*LTM: The volumes have no labels but have a single leading tape mark
before the first data file. REELS(*L TM) is processed the same way as
REELS(*NL) except that when SEQNBR(1) is specified for an output file to
create the first data file on the tape, a leading tape mark is written at the
beginning of the tape before the first data block.

1: A maximum of one tape reel can be processed for the *NL, *LTM, *NS,
or *BLP tape file input operation if there is no list of volume identifiers
provided (VOL parameter).

number-of-reels: Enter the maximum number of reels that are to be
processed for a *NL, *LTM, *NS, or *BLP input tape operation when there
is no list of volume identifiers specified (VOL parameter). If the next reel is
not mounted when the end of the currently-processing tape is reached, a
message is sent to the operator requesting that the next tape be mounted
on the next tape device. The number-of-reels value is ignored for a
standard label (*SL) file or for any output file.

CRTTAPF
REELS

Command Descriptions 4-597

CRTTAPF
SEQNBR

4-598

SEQNBR Parameter: Specifies the sequence number ofthe data file on the
tape that is to be processed. When standard-label tapes are used, the
four-position file sequence number is read from the first header label of the
data file. When bypass label processing is used or when standard-label
tapes are not used, the system counts the tape marks from the beginning of
the tape to locate the correct sequence number data file to be processed.
(When multifile, niultivolume tapes are processed using REELS(*SL), the file
sequence numbers continue consecutively through all of the volumes; that
is, each new data file has a sequence number that is one greater than the
previous file, regardless of which volume it is on.)

1: For standard-label tapes (not using bypass label processing), the data
file having the sequence number 1 is the file to be processed. For
nonlabeled tapes and for bypass label processing of standard-label tapes,
the first data file on the tape is to be processed.

file-sequence-number: Enter the sequence number of the file to be
processed on this tape.

LABEL Parameter: Specifies the data file identifier of the data file that is to
be processed by this tape device file. The data file identifier is defined for
only standard-label tapes and is stored in the header label immediately
preceding the data file the label describes. If a data file identifier is
specified for any type of label processing other than *SL, it is ignored. A
label identifier is required for a standard label output file, but is optional for
an input file (since the sequence number uniquely identifies which data file
to process).

For an input file or output file with EXTEND(*YES) specified, this parameter
specifies the data file identifier of the file that exists on the tape. The
specified identifier must be the same as the one in the labels of the data file
that the SEQNBR parameter specifies; otherwise, an error message is sent
to the program using this device file. For output files with EXTEND(*NO)
specified, the LABEL parameter specifies the identifier of the file that is to
be created on the tape. (For an expanded description of the LABEL
parameter, see Appendix A.)

*NONE: The data file identifier is not specified.

data-file-identifier: Enter the identifier (17 alphameric characters maximum)
of the data file to be used with this tape device file. If this identifier is for a
tape that is written in the basic exchange format, and it is to be used on a
system other than System/38, a maximum of 8 characters should be used
or a qualified identifier having no more than 8 characters per qualifier should
be used. (See Appendix A for details.)

/

FILETYPE Parameter: Specifies whether the tape device file being created
describes data records or describes source records (statements) for a
program or another file. (For an expanded description of the FILETYPE
parameter, see Appendix A.)

*DATA: The tape file describes data records.

*SRC: The tape file describes source records.

Note: If *SRC is specified, the system will add 12 bytes to the beginning of
every record (to replace the sequence number and date fields).

RCDLEN Parameter: Specifies, in bytes, the length of the records contained
in the data file that is to be processed with this device file. The system will
always use the record length and block length specified in the data file
labels for any standard label input file or output file with EXTEND(*YES)
specified (if a second header label (HDR2) is found on the tape and *BLP
label processing has not been specified).

*CALC: No record length is specified for the data file to be processed. If
*CALC is specified the system will attempt to calculate an appropriate
record length when the file is opened. RCDLEN(*CALC) can be used for
nonlabeled tapes or when there is no HDR2 label if a BLKLEN value other
than *CALC is specified for the file and the RCDBLKFMT does not specify
spanned or blocked records. In this case, the system calculates an
appropriate record length from the block length, record block format, and
buffer offset (for an ASCII file) specified for the file. In any other case, the
actual record length must be specified by a CHGTAPF or OVRTAPF
command, or in the HLL program that opens the device file.

record-length: Enter a value (1 through 32767) that specifies the length of
each record in the data file. The minimum and maximum record length that
will be allowed for a file is dependent on the record block format, block
length, buffer offset (for an ASCII file), and recording code. The following
table shows the minimum and maximum record length values allowed for
each record block format, assuming the block length value is large enough
to support the maximum record length:

Absolute RCDLEN Ranges

FILETYPE(*DATA) FILETYPE(*SRC)

Minimum Maximum Minimum Maximum
CODE RCDFBLKFMT RCDLEN RCDLEN RCDLEN RCDLEN

*EBCDIC *F *FB *U 18 32767 30 32767

*ASCII *F *FB *U 18 32767 30 32767

*EBCDIC *V *VB 1 32759 13 32767

*ASCII *D *DB 1 9995 13 10007

*EBCDIC *VS *VBS 1 32759 13 32767

*ASCII *VS *VBS 1 32759 13 32767

CRTTAPF
FILETYPE

Command Descriptions 4-599

CRTTAPF
BLKLEN

4-600

BLKLEN Parameter: Specifies, in bytes, the maximum length of the data
blocks that will be transferred to or from the tape for output or input
operations. The system will always use the block length and record length
specified in the data file labels for any standard label input file or output file
with EXTEND(*YES) specified (if a second header label (HDR2) is found on
the tape and *BLP label processing has not been specified).

*CALC: No block length is specified for the data file to be processed. If
*CALC is specified the system will attempt to calculate an appropriate block
length when the file is opened. BLKLEN(*CALC) can be used for nonlabeled
tapes or when there is no HDR2 label if a RCDLEN value other than *CALC
is specified for the file and the RCDBLKFMT does not specify spanned or
blocked records. In this case, the system calculates an appropriate block
length from the record length, record block format, and buffer offset (for an
ASCII file) specified for the file. In any other case, the actual block length
must be specified by a CHGTAPF or OVRTAPF command, or in the HLL
program that opens the device file.

block-length: Enter a value, not exceeding 32767 bytes, that specifies the
maximum length of each block in the data file to be processed. The
minimum block length which can be successfully processed is determined
by the tape device hardware and System/38 machine support functions.
The minimum value for the 3410/3411 tape drive is 18 bytes. The
maximum block length is always 32767 for an input file, but is limited to
9999 if block descriptors must be created for an ASCII output file. The
following table shows the minimum and maximum block length values
allowed for an output file:

Absolute BLKLEN Ranges

Minimum Maximum
CPDE BUFOFSET BLKLEN BLKLEN

*EBCDIC ignored 18 32767

*ASCII 0 18 32767

*ASCII *BLKDSC 18 9999

BUFOFSET Parameter: Specifies the buffer offset value for the start of the
first record in each block in the tape data file. A buffer offset value can be
used for any record block format ASCII file, and is ignored for an EBCDIC
tape file. The system will always use the buffer offset specified in the data
file labels for any standard label input file or output file with EXTEND(*YES)
specified if a value is contained in the second header label (HDR2) on the
tape, and *BLP label processing has not been specified.

The buffer offset parameter specifies the length of any information that
precedes the first record in the block. For record block formats *D, *DB,
*VS, and *VBS each record or record segment is preceded by a descriptor
that contains the length of the record or segment. A buffer offset value is
used to indicate that there is information ahead of the descriptor word for
the first record in each block, or ahead of the data of the first fixed-length
or undefined format record in each block.

This parameter is not needed for a standard label file processed for input if
the tape includes a second file header label (HDR2) that contains the buffer
offset value. A buffer offset must be provided by the CRTIAPF, CHGTAPF, .
or OVRTAPF command, or by the file labels for an input file that contains
any information (such as a block descriptor) ahead of the first record in each
block. If you do not specify a buffer offset when a tape file is created, it is
not necessary to specify an offset value when the file is read.

The only buffer offset values allowed for an output file are zero and
*BLKDSC. An existing standard label data file with a buffer offset value in
the HDR2 label can be extended only if the offset value is either zero or
four. An offset of zero in the HDR2 label adds data blocks with no buffer
offset. BUFOFSET(*BLKDSC) must be specified to extend an existing tape
data file that contains an offset value of four in the HDR2 label.

0: Specifies that no buffer offset information will precede the first record in
each data block.

*BLKDSC: Specifies that 4-byte block descriptors are to be created in any
tape file created using this device file, and that any input file read using this
device file should assume 4-bytes of buffer offset information preceding the
first record in each data block. This value is only valid for a record block
format *D or *DB file. The contents of the buffer offset part of each output
data block when BUFOFSET(*BLKDSC) is specified is the actual length of
the data block, in zoned decimal format.

buffer-offset: Enter a value (zero through 99) that specifies the length of
the buffer offset information that precedes the first record in each data
block.

CRTTAPF
BUFOFSET

Command Descriptions 4-601

CRTTAPF
RCD.BLKFMT

4-602

RCDBLKFMT Parameter: Specifies the type and blocking attribute of records
in the tape data file to be processed.

Record block format *V and *VB records can only be processed for an
EBCDIC file; *D and *DB records can only be processed for an ASCII file. If
a standard label tape (label type *SL or *BLP) is being processed and an
inconsistent record block format is specified for the volume code, the
correct record type is assumed (V or D) for the volume code and a warning
message is sent to the progam that opens the file. If the record type and
code are inconsistent for a nonlabeled volume (label type *NL, *LTM, or
*NS), an error message is sent and the file is not opened, because there are
no labels to verify the correct volume code.

If a valid record length, block length, and buffer offset (for an ASCII file) are
specified for fixed length records but the block attribute is incorrect, the
correct block attribute will be assumed (changing record block format *F to
*FB or record block format *FB to *F), and a warning message sent to the
program that opens the file.

If a block length is specified that is longer than required to process a
maximum length record, then record block format *V, *D, or *VS will be
changed to *VB, *DB, or *VBS and a warning message sent to the program
that opens the file.

The following chart shows the required relationship between the record
length, block length, and buffer offset (for ASCII) file parameters for an
output file or an input file where the file parameters are not determined
from a second file header label (HDR2):

Required RCDLEN/BLKLEN/BUFOFSET Relation1

CODE RCDBLKFMT BLKLEN = fcn(RCDLEN,BUFOFSET)

*EBCDIC *F *U BLKLEN = RCDLEN

*ASCII *F *U BLKLEN = RCDLEN + BUFOFSET

*EBCDIC *FB BLKLEN = RCDLEN • n

*ASCII *FB BLKLEN = (RCDLEN * n) + BUFOFSET

n is the number of records in a
maximum-length block

*EBCDIC •v BLKLEN = RCDLEN + 8

*ASCII *D BLKLEN = RCDLEN + 4 + BUFOFSET

*EBCDIC *VB BLKLEN >= RCDLEN + 8

*ASCII *DB BLKLEN >= RCDLEN + 4 + BUFOFSET

*EBCDIC •vs •ves BLKLEN >= 18

*ASCII *VS *VBS BLKLEN >= 6 + BUFOFSET (18 minimum)

1When BUFOFSET(*BLKDSC) is specified for the file, a value of 4 should be used
for the BUFOFSET part of any BLKLEN calculations, unless existing file labels on
the tape specify a different value ..

/
(

*F: Fixed length, unblocked, unspanned records in either EBCDIC or ASCII
code are to be processed. The system may change this record block format
to *FB, based on other file parameters. See the previous explanation for
more information.

· *FB: Fixed length, blocked, unspanned records in either EBCDIC or ASCII
code are to be processed. The system may change this record block format
to *F, based on other file parameters. See the previous explanation for
more information.

*V: Variable length, unblocked, unspanned records in EBCDIC type V format
are to be processed. The system may change this record block format to
*VB, *D, or *DB, based on other file parameters. See the previous
explanation for more information.

*VB: Variable length, blocked, unspanned records in EBCDIC type V format
are to be processed. The system may change this record block format to
*DB, based on the volume code. See the previous explanation for more
information.

*D: Variable length, unblocked, unspanned records in ASCII type D format
are to be processed. The system may change this record block format to
*DB, *V, or *VB, based on other file parameters. See the previous
explanation for more information.

*DB: Variable length, blocked, unspanned records in EBCDIC type D format
are to be processed. The system may change this record block format to
*VB, based on the volume code. See the previous explanation for more
information.

*VS: Variable length, unblocked, spanned records in either EBCDIC or ASCII
code are to be processed. The system may change this record block format
to *VBS, based on other file parameters. See the previous explanation for
more information. Note that the representation of spanned records on the
tape is different for EBCDIC and ASCII files, but the system selects the
correct format based on the file code.

*VBS: Variable length, blocked, spanned records in either EBCDIC or ASCII
code are to be processed. Note that the representation of spanned records
on the tape is different for EBCDIC and ASCII files, but the system selects
the correct format based on the file code.

*U: Undefined format records in either EBCDIC or ASCII code are to be
processed. RCDBLKFMT(*U) records are processed as variable length
records, where each record written or read is in a separate tape block. This
format can be useful for processing tape files that do not meet the
formatting requirements of any other record block format.

CRTIAPF
RCDBLKFMT

Command Descriptions 4-603

CRTTAPF
EXTEND

4-604

EXTEND Parameter: Specifies, for output operations to tape, whether new
records are to be added to the end of a data file that is currently on the
tape. (The specific data file is identified by the SEQNBR parameter and, for
a standard-label file, the LABEL parameter.) If the data file is extended, it
becomes the last file on the tape volume; any data files that follow it are
overwritten as the specified file is extended.

*NO: Records are not to be added to the end of the specified data file.
Regardless of whether there is already a data file with the specified
SEQNBR on the tape, a new data file is created (overwriting an existing data
file and any files that follow it).

*YES: New records are to be added to the end of the specified data file on
tape when this device file is used.

DENSITY Parameter: Specifies, in bits per inch, the density of the data that
is to be written on the tape volume when this device file is used. This
parameter is used only for tapes written as nonlabeled volumes (*NL); it is
ignored unless the first data file is being written on the nonlabeled volume.
The density of a standard-label volume is specified on the INZTAP
command, which initializes .tapes as standard-label volumes by writing
volume labels on them. If a labeled or nonlabeled output file is written with
a different density than specified here, a warning message is issued.

1600: The data density on this tape volume is to be 1600 bits per inch.

800: The data density on this tape volume is to be 800 bits per inch.

CODE Parameter: Specifies the type of character code to be used when tape
data is read or written by a job that uses this tape device file. If a labeled
volume is recorded in a different code than the value specified for the file, a
warning message is sent to the program that opened the file and the
volume code is assumed for the file. This parameter is used only for tapes
written as nonlabeled volumes (*NL or *NS). The code for a standard-label
volume is specified on the INZTAP command, which initializes tapes as
standard-label volumes by writing volume labels on them.

*EBCDIC: The EBCDIC character code is to be used with this tape device
file.

*ASCII: The ASCII character code is to be used with this tape device file.

.~·

CRTDATE Parameter: Specifies, for tape input data files and for tape output
for which EXTEN D(*YES) is specified, the date when the data file was
created (written on tape). The data file creation date is stored in file labels
on the tape. If a creation date is specified for any type of label processing
other than *SL, it is ignored. If the creation date written on the tape
containing the data file does not match the date specified in this device file
description, an inquiry message is sent to the operator.

*NONE: The creation date is not specified. It will not be checked unless it
is supplied before the device file is opened, either in the OVRT APF (or
CHGTAPF) command or in the HLL program.

creation-date: Enter the creation date of the data file to be used by this
device file. The date must be specified in the format defined by the system
values QDATFMT and, if separators are used, QDATSEP.

EXPDATE Parameter: Specifies, for tape output data files only, the expiration
date of the data file used by this device file. The data file expiration date is
stored in file labels on the tape. If an expiration date is specified for any
type of label processing other than *SL, it is ignored. If a date is specified,
the data file is protected and cannot be overwritten until the specified
expiration date.

*NONE: No expiration date for the data file is specified; the file is not to
be protected. An expired date is written in the data file labels so the file
can be used as a scratch data file.

*PERM: The data file is to be protected permanently. The date written in
the tape data file labels consists of all nines.

expiration-date: Enter the expiration date on which the data file expires. The
date must be specified in the format defined by the system values
QDATFMT and, if separators are used, QDATSEP.

ENDOPT Parameter: Specifies the positioning operation to be performed
automatically on the tape volume when the device file is closed. In the case
of a multiple-volume data file, this parameter applies to the last reel only; all
other reels are rewound and unloaded when the end of the tape is reached.

*REWIND: The tape is to be rewound, but not unloaded, when the file is
closed.

*UNLOAD: The tape is to be rewound and unloaded when the file is closed.

CRTTAPF
CRTDATE

Command Descriptions 4-605

CRTTAPF
WAITFILE

4-606

*LEAVE: The tape should be left in its current position when the file is
closed; it is not to be rewound or unloaded. This option can be used to
reduce the time required to position the tape if.the next tape file to open to
this device uses a data file is on this volume.

Note: Even if ENDOPT(*LEAVE} is specified, the next tape file opened to
this reel will be positioned at the beginning of some data file on the volume
(or end of a data file, for either read backward or for output that extends an
existing data file on the volumP.). A tape file is always positioned at the start
or end of a data file when it is opened.

WAITFILE Parameter: Specifies the number of seconds the program is to
wait for the file resources to be allocated when the file is opened. If the file
resources cannot be allocated in the specified wait time, an error message is
sent to the program. (For an expanded description of the WAITFILE
parameter, see Appendix A.)

*IMMED: The program is not to wait; when the file is opened, an
immediate allocation of the file resources is required.

*CLS: The default wait time specified in the class description is to be used
as the wait time for the file resources to be allocated.

number-of-seconds: Enter the number of seconds the program is to wait for
the file resources to be allocated to the tape device file. Valid values are 1
through 32767 (32 767 seconds}.

SHARE Parameter: Specifies whether the ODP (open data path} for the
device file can be shared with other programs in the same routing step. If
so, when the same file is opened more than once, the ODP can be shared
with other programs in the same routing step that also specify the share
attribute. When an ODP is shared, the programs accessing the file share
such things as the file status and the buffer. When SHARE(*YES} is
specified and control is passed to a program, a read operation in that
program retrieves the next input record. A write operation produces the next
output record.

*NO: An ODP created by the program with this attribute is not to be
shared with other programs in the routing step. Every time a program opens
the file with this attribute, a new ODP to the file is created and activated.

*YES: An ODP created with this attribute is to be shared with each program
in the routing step that also specifies SHARE(*YES} when it opens the file.

PUBAUT Parameter: Specifies what authority for the tape device file and its
description is being granted to the public (all users). Additional authority can
be explicitly granted to specific users by the Grant Object Authority
(GRTOBJAUT) command. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the device file.

*ALL: The public has complete authority for the device file.

*NONE: The public cannot use the device file.

TEXT Parameter: Specifies the user-defined text that briefly describes the
tape device file. (For an expanded description of the TEXT parameter, see
Appendix A).

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTTAPF FILE(BACKHST) DEV(QTAPE1 QTAPE2 QTAPE3) REELS(*BLP 10) +
RCDLEN(256) BLKLEN(1024) RCDBLKFMT(*FB) EXTEND(*YES) +
ENDOPT(*UNLOAD) WAITFILE(60)

This command creates a description of the tape device file named
BACKHST in library QGPL, to be used with the tape devices QTAPE1,
QT APE2, and QT APE3. All volumes processed on these devices with this
device file must have standard labels. Each block of data (EBCDIC character
·code) on the tape volumes contains four records of 256 bytes each. When
records are written to the tape, they are added to the end of the data file.
No creation or expiration date is specified for this tape, and both unloading
and rewinding operations will occur when the device file is closed at the last
tape volume processed. The program using this tape device file will wait 60
seconds for file resources to be allocated when this file is opened, and this
device file is dedicated to the current program invocation.

CRTTAPF
PUBAUT

Command Descriptions 4-607

CRTTBL

4-608

CRTTBL (Create Table) Command

The Create Table (CRTTBL) command creates a named table. The table can
be used for the translation of data that is transferred between the system
and a device (a printer, for example). The table can also be used to specify
an alternate collating sequence or for field translation functions.

The table is stored internally as a 256-byte character string. The input must
consist of 512 hexadecimal characters because 2 hexadecimal characters of
input equal 1 internal byte. Each record of input must contain 64 characters,
and eight records (512 characters) must be entered. Record sizes greater
than 64 characters are valid, but only the first 64 characters are used. For
more information about creating tables, see the CPF Programmer's Guide.

Restriction: If a table is to be used by a system printer, the name of the
table must be specified in either the TRNTBL or PRTIMG parameter of the
printer device file that is opened by the printer. However, if a specified table
is deleted and recreated during the time that it is being used by the system
printer, the printer must be varied offline, then online, before the new table
can be used.

-(
.QCPL

CRTTBL--TBL table-name)--------------••
.Ubraey-name

Required

Optional

-(
QTBLSRC.•LIBL

>-SRCPILB -(>11'1.IBL y•------------·
•ource-tile-name .

• llbraey-name

-(
•TBL ® -f_ •NORllAI.3

>- SRCMBR .)---PUBAUT MLL ----------·
•ource-tile-member-name •NONB

-(•BLANK=>->-TUT

'dHcr1pt1on'

l Job:B,I Psm:B,I

TBL Parameter: Specifies the qualified name of the table being created. (If
no library qualifier is given, the table is stored in the general purpose library,
QGPL.)

SRCFILE Parameter: Specifies the name of the source file containing the
description of the table being created. Information about the format of
records in the source file is contained in the CPF Programmer's Guide.

QTBLSRC: The system source file named QTBLSRC contains the source
records to be used with this command to create the table. (If no library
qualifier is specified, *UBL is used to find the file.)

qualified-source-file-name: Enter the qualified name of the source file that
contains the source records to be used with this command to create the
table. (If no library qualifier is given, *UBL is used to find the file.)

SRCMBR Parameter: Specifies the name of the source file member
containing the description of the table being created.

*TBL: The source file member name is the same as the name of the table.

source-file-member-name: Enter the name of the member in the source file
specified by SRCFILE to be used to create the table.

PUBAUT Parameter: Specifies what authority for the table and its description
is being granted to the public (all users). Additional authority can be
explicitly granted to specific users by the Grant Object Authority
(GRTOBJAUT) command. (For an expanded description of the PUBAUT
parameter, see Appendix A.)

*NORMAL: The public has only operational rights for the table.

*ALL: The public has complete authority for the table.

*NONE: The public cannot use the table.

TEXT Parameter: Lets the user enter text that briefly describes the table. (For
an expanded description of the TEXT parameter, see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

Example

CRTTBL TBL(SCRAMTBL) SRCFILE(USERTABLES) +
SRCMBR(SCRAMBLE) TEXT('Translate table for +
scrambling text characters')

This command creates a table named SCRAMTBL and stores it in the QGPL
library (default). The source file named USERTABLES contains the source
records used when the table is created; the name of the source file member
is SCRAMBLE. The TEXT parameter describes this table as being used as a
translate table for scrambling text characters. Information about the format
of source file records is contained in the CPF Programmer's Guide.

CRTTBL
SRCFILE

Command Descriptions 4-609

CRTUSRPRF

4-610

CRTUSRPRF (Create User Profile) Command

The Create User Profile (CRTUSRPRF) command identifies a user to the
system and creates a user profile containing only the attributes assigned to
that user. These attributes are used by the system to control any jobs
submitted by the user or any jobs that are executed under the constraints of
this user profile but are submitted by other system users. When the user
profile is created, it is stored as part of the internal system, and it appears
as though it exists in the QSYS (system) library.

When the user identified by this user profile uses the system, the user
profile is checked by the system to determine what objects the user is
authorized to use. When the user profile is created, the user is granted
read, add, delete, and object management rights for the profile itself, and
the user can use only those objects, commands and devices that have public
authority. Subsequently, the security officer and other object owners can
explicitly grant rights of use for other objects to the user through the use of
the Grant Object Authority (GRTOBJAUT) command. The profile identifies:

• Objects owned by the user.

• Commands and system devices that are authorized for use by the user.

• Objects (including commands and devices) that have been explicitly
authorized for use by the user. The names of the objects and the rights
granted are stored in the profile.

• The number of objects owned by the user and/or authorized for his use.

• Special rights granted to the user.

• The maximum amount of storage allowed, and the amount currently in
use, for the storage of owned objects.

• The maximum scheduling priority for jobs and spooled output, the initial
program that is invoked after sign-on, and the text that describes the
profile.

Restriction: Only the system security officer can use this command.

Required Optional

-(
•USRPRP

CltTUSBPRP------USRPRF user-name -t--PASSWOltD)---+II<
ueer-paeeworcl

NONB~p -(•NOMAX
>-SPCA.UT •BAVSYS MAXSTG)

mu:lmum-K-byte1
&JOBCTL

2 mu:lmum

>-PTYUl.T-(:rioriQ"-Ilmlt)•-----------------------•

QCALLMBNU.•UBL

>- y
-(

.•UBL
pro1ram-name

.llbrary-name

>-PUBAUT1::~=~~~ ---TBXT-(•BLANK: ~
~•ALL~ 'deecript.lon'_;--

..

j Job:B,I Ppi:B,I

USRPRF Parameter: Specifies the name of the user profile by which the user
is to be known in the system. A maximum of 10 alphameric characters can
be used; the first character must be alphabetic.

PASSWORD Parameter: Specifies the unique password that indicates the
user profile used by the system to control the user's jobs. The password is
the security key that allows the user to sign on to the system. The user
signs on the system by entering the password exactly as it is specified here.
The password is to be used only by the user(s) it identifies-it should be
known only to the user himself and to the system security officer, who
assigns it.

*USRPRF: If a password is not entered, it is to be the same as the user
profile name specified in the USRPRF parameter.

user-password: Enter the alphameric character string (10 characters or less)
that identifies the user with his own user profile. The standard rule for
specifying names also applies to passwords. The first character must be
alphabetic and the other characters must be alphameric.

CRTUSRPRF
(Diagram)

Command Descriptions 4-611

CRTUSRPRF
SPCA UT

4-612

SPCAUT Parameter: Specifies the special rights that are to be granted to a
user. Special rights are required to perform certain functions on the system.
The special rights are save system rigtits (*SAVSYS) and job control rights
(*JOBCTL). The special rights *SAVSYS and *JOBCTL are normally given to
the user who operates the system. The security officer can, however, grant
any of these rights to any user profile.

*NONE: No special rights are to be granted to this user profile.

*SAVSYS: The save system rights are to be granted to this user profile.
This user is given the authority to save, restore, and free storage for all
objects on the system, regardless of whether he has· object existence rights
for the objects.

* JOBCTL: The job control rights are to be granted to this user profile. This
user is given the authority to change, display, hold, release, and cancel all
jobs that are executing on the system or that are on a job queue or output
queue that has OPRCTL(*YES) specified.

MAXSTG Parameter: Specifies the maximum amount of auxiliary storage that
can be allocated to store permanent objects that are owned by this user
profile including objects placed in QTEMP during a job. If the maximum is
exceeded when the user creates an object, an error message is displayed
and the object is not created.

*NOMAX: As much storage as required can be allocated to this profile.

maximum-K-bytes: Enter the maximum amount of storage in K-bytes that
can be allocated to this profile. (1 K equals 1024 bytes of storage.)

PTYLMT Parameter: Specifies the highest scheduling priority that the user is
allowed to have for each job that he submits to the system. This value
controls the job processing priority and output priority that any job running
under this user profile can have; that is, values specified in the JOBPTY and
OUTPTY parameters of any job command cannot exceed the PTYLMT value
of the user profile under which the job is to be run. The scheduling priority ·
can have a value of 1 through 9, where 1 is the highest priority .and 9 is the
lowest. (For an expanded description of the PTYLMT parameter, see
Scheduling Priority Parameters in Appendix A.)

5: The user named in this profile can have a priority value no higher than 5
for scheduling any of his jobs on the system. All jobs having this priority
value will be executed before all jobs having values of 6 through 9, and after
all jobs having values of 1 through 4.

priority-limit: Enter a value, 1 through 9, for the highest scheduling priority
that the user is allowed.

;4''.

INLPGM Parameter: Specifies, for an interactive job, the name of the
program that is to be invoked whenever a new routing step that has QCL as
the request processing program is initiated. (No parameters can be passed
to the initial program.) The named program can cause a menu to be
displayed or perform some other function. If this program ends or returns
(via the RETURN command), the command entry display is presented at the
work station. If the program sends the escape message CPF2320, the
command entry display is not shown and QCL ends normally. If this
program terminates abnormally, QCL terminates and an abnormal
termination message is sent to the work station.

QCALLMENU: The program named QCALLMENU is invoked
automatically when the user signs on. This program causes the program call
menu to be displayed. (If no library qualifier is specified, *UBL is used to
find the program.) This menu is described in the System/38
Programmer's/User's Work Station Guide.

*NONE: No initial program is to be invoked when the user signs on. The
command entry display is shown instead.

qualified-program-name: Enter the qualified name of the program that is to
be invoked after the user signs on. (If no library qualifier is given. *UBL is
used to find the program.) The following IBM-supplied programs can be
invoked, if installed: QCALLMENU (program call menu), QOPRMENU
(system operator menu). and QPGMMENU (programmer menu).

PUBAUT Parameter: Specifies what authority for the user profile is being
granted to the public (all users). Additional authority can be explicitly
granted to specific users by the Grant Object Authority (GRTOBJAUT)
command. (For an expanded description of the PUBAUT parameter. see
Appendix A.)

*NONE: The public cannot use the user profile.

*NORMAL: The public has normal authority for the user profile, which is the
same as operational authority.

*ALL: The public has complete authority for the user profile.

TEXT Parameter: Lets the user enter text that briefly describes the user
profile being created. (For an expanded description of the TEXT parameter,
see Appendix A.)

*BLANK: No text is to be specified.

'description': Enter no more than 50 characters, enclosed in apostrophes.

CRTUSRPRF
INLPGM

Command Descriptions 4-613

CRTUSRPRF
(Examples)

4-614

Examples

CRTUSRPRF USRPRF(JJADAMS) PASSWORD(SECRET) +
SPCAUT(*SAVSYS) INLPGM(DSPMENU.ARLIB)

This command creates a user profile with the user name of JJADAMS and
a password of SECRET. After sign-on, a program called DSPMENU in the
ARLIB library is invoked. The user is granted the special save system rights.
Because the other parameters were not coded: (1) the profile has no limit
on the amount of storage allocated to it for owned permanent objects; (2) a
scheduling priority of 5 is the highest priority that any of the user's jobs can
have; and (3) the user-defined description text is blank. No public authority
is granted.

CRTUSRPRF USRPRF(TMSMITH) MAXSTG(10) +
INLPGM(CALC.PROGMR) +
TEXT('Ted M. Smith, Dept 41, +
Application Programs')

This command creates a user profile with the user name of TMSMITH; the
password is also TMSMITH because the password was not specified. The
maximum amount of permanent storage that the user can use for all his
objects is 10 K-bytes (or 10 240 bytes). The initial program to be invoked
following sign-on is CALC, which is located in the library named PROGMR.
The text parameter provides the user's name and department. The other
parameters have their default values assigned.

CVTDAT (Convert Date) Command

The Convert Date (CVTDAT) command converts the format of a date value
from one format to another, without changing its value. The command
ignores any date separators used in the old format, but if separators are to
be included in the converted result, a separator character can be specified
on the command.

Restriction: This command is valid only within a CL program.

CVTDAT---DATE date-to-be-converted-- TOVAR CL-variable-name-------

Required

Optional

;;MDY ;;MDY *SYSV.~ -I#_ *SYSV:@
>-FROMFMT ;;DMY TOFMT *DMY------------1>

;;YMD ;;YMD

;;JUL ;;JUL.

-f_ ;;SYSVAL
>-TOSEP ;;NONE

separator-character)

DATE Parameter: Specifies the constant or CL variable containing the date
that is to be converted. When a constant is specified that contains
separator characters, it must be enclosed in apostrophes (the separator
characters are ignored in the conversion). If separators are used in a
constant, leading zeros in each part of the date can be omitted (3/3/80 or
03/03/80 are both valid). If a variable is specified, it must be long enough
to contain the date type and its date separators, if used. The valid date
separators are the slash (/), hyphen (-), period (.), and comma (,).

TOVAR Parameter: Specifies the name of the CL variable that is to contain
the converted date value. The variable must be declared with a minimum
length of 8 characters if the converted date is to contain date separators (6
are required for the Julian format); the length must be at least 6 characters
(5 for Julian) if the converted date will not contain date separators.

For every format except Julian, the month, day, and year subfields in the
converted result are each 2 bytes in length, are right-justified, and (if
necessary) a leading zero is used as a padding character to fill each 2-byte
field. For the Julian format, the day field is 3 bytes long and padded with
leading zeros (if necessary), and the year field is 2 bytes long.

jP&m:B,I

CVTDAT

Command Desc/i ptions 4-615

CVTDAT
FROMFMT

4-616

FROMFMT Parameter: Specifies the current format of the date being
converted.

*SYSV AL: The date has the format specified by the system value
QDATFMT.

""MDY: The date has the month, day, year format.

""DMY: The date has the day, month, year format.

""YMD: The date has the year, month, day format.

""JUL: The date has the Julian format.

TOFMT Parameter: Specifies the format to which the date is being
converted.

*SYSV AL: The date format is converted to the format specified by the
system value QDATFMT.

""MDY: The date format is converted to month, day, year.

""DMY: The date format is converted to day, month, year.

""YMD: The date format is converted to year, month, day.

""JUL: The date format is converted to Julian.

TOSEP Parameter: Specifies the type of date separators, if any, to be used in
the converted date.

*SYSV AL: The converted date is to have the separators specified by the
system value QDATSEP.

""NONE: No separator characters are to be contained in the converted date.

separator-character: Enter the character that is to be used as the date
separator in the converted date. The valid separator characters are the slash
(/), hyphen (-), period (.), and comma (,).

Examples

DCL VAR(&DATE) TYPE(*CHAR) LEN(B)

CVTDAT DATE('12-24-80') TOVAR(&DATE) TOFMT(*DMY)

This command converts the date 12-24-80, which is in the MOY format;
because the FROMFMT parameter was not specified, its default *SYSVAL
indicates that the system value QDATFMT contains MOY. The date is
converted to the DMY format, and the separator character specified in the
system value QDATSEP is inserted. If QDATSEP contains a slash, the
converted result is 24/12/80.

DCL &PAYDAY *CHAR 6
DCL &NEWPDAY *CHAR 6

•

CVTDAT DATE(&PAYDAY) TOVAR(&NEWPDAY) +
FROMFMT(*YMD) TOSEP(*NONE)

This command converts the format of the date stored in &PAYDAY from
year, month, day to the format specified by the system value QDATFMT. If,
for example, QOATFMT contains MOY, the format of the converted date is
month, day, and year. The converted date is stored in the variable
&NEWPDAY. Because &NEWPDAY was declared as a 6-character variable,
TOSEP(*NONE) is required; the converted result cannot include separator
characters.

CVTDAT
(Examples)

Command Descriptions 4-617

DATA.

4-618

DATA (Data) Command

The Data (//DATA) command must be used to indicate the beginning of an
inline data file in an input stream that is to be read by a spooling reader. It
also specifies what delimiter must be used to indicate the end of the data
file. lnline data files exist only for the duration of the job; after the job is
finished, they are destroyed. Unnamed inline files can be used only once in
the job.

Restrictions: The DAT A command cannot be executed from a work
station. The DATA command must be preceded by two slashes(//) in
positions 1 and 2 in the data record. Blanks can separate the slashes from
the command name(// DATA).

Optional

//DATA-- PILE PILETYPE •-------· -{_
QINLINE :::r- -{_ •DATAJ

inline-tlle-name •SRC

-{_ '//' >-BNDCHAR)---
'end-character-etrin&'

FILE Parameter: Specifies the name of the inline data file. This name is also
specified in the program that is to process the file.

QINLINE: The name of the inline data file is to be QINLINE. The file is
processed as an unnamed inline file. An unnamed file can be processed if
the program specifies QINLINE as the file name, or if the device file that
specifies SPOOL{*YES) is opened for input. Unnamed inline files can be
used only once by the job.

inline-fi/e-name: Enter the name of the inline data file to be used by one or
more programs in the job. The file is connected to the program when the
program opens the file by specifying its file name. Named inline data files
can be accessed more than once by the job.

FILETYPE Parameter: Specifies whether the inline data following this
command is to be put in the standard format for source files or in the data
file format. The standard source file format is a sequence number (a
6-character source number) followed by the 6-character system date that
precedes the data. (For an expanded description of the FILETYPE
parameter, see Appendix A.)

*DAT A: The in line data is not in the standard format for source files. The
data file is passed to the program using it in the same form as it was read
in.

*SRC: The inline data is to be sequence numbered; it is to be a source file
that can be used to create another file or a program.

/

. "'-·

ENDCHAR Parameter: Specifies a string of characters used to indicate the
end of an inline data file. To be recognized, the character string must begin
in position 1 of the record. If you specify a character string other than I I -
(the default value) as the delimiter, all records up to the end-of-file record
(the record containing the specified character string starting in column 1) are
treated as data. This allows you to imbed reader commands (/I JOB, ~
I /DATA, or I /ENDJOB) in the data stream. It also allows the characters
/* to be included as data without causing the job input to be terminated on
the MFCU. The end-of-file record for non-default ENDCHAR values is not
put to the data file, nor is it checked to see if it is a valid reader command.
It is used only to determine the end of the data stream and then it is
discarded.

'I/': The default value is two slashes. The command will work the same
way whether two slashes are coded into the parameter or the parameter
itself is defaulted.

Using the default, the slashes in positions 1 and 2 of a record (in either a
data file or a source file) identify the first record beyond the file. Thus, the
commands I /JOB, I /DATA, and I /ENDJOB also indicate the end of the
inline file. The end of the inline file can also be caused by the • /*' card on
the MFCU. The characters • /*' are recognized by the MFCU and cause a
hardware EOF (end-of-file) condition. The hardware EOF will be recognized
as the end of the spooled job.

'end-character-string': A character string (up to 25 characters long and
enclosed in apostrophes) can be entered to identify the last record in the
file. The character string may contain both alphameric and special
characters. If a character combination other than 'I/' is specified on the
ENDCHAR parm, reader commands and'/*' records may be safely
imbedded in the data. The reader ignores all other data while searching for
the specified string, including reader commands. Should the '/*' record be
read by the MFCU, the reader does not recognize it as the hardware EOF,
since the '/*' is part of the imbedded data stream.

Examples

//DATA FILE(FILE1)

This command assigns the name FILE1 to the data that follows it, until an
end of inline data condition is found (two slashes in positions 1 and 2).

/ / DATA FILE(FILE2) ENDCHAR('STOPIT)

This command assigns the name FILE2 to the data following it; the file
continues until a record is found that contains the characters STOPIT in
positions 1 through 6. This delimiter allows the I /JOB, I /ENDJOB, and
I /DATA commands and records with /*in positions 1 and 2 to be
embedded in an inline file.

DATA
EN DC HAR

Command Descriptions 4-619

DCL

4-620

DCL (Declare CL Variable) Command

The Declare CL Variable (DCL) command defines CL program variables used
in CL programs. CL variables are used to store and update data, and to
receive parameters from another program on a call. CL variables are known
by name only within the program that declares them; they cannot be used
outside a CL program, except when they are referenced by some commands
(such as the Display Program Variable (DSPPGMVAR) command) used for
debugging programs. (If a variable is declared but not referenced by another
command in a CL program, the variable is not included in the program when
it is compiled.) However, the value in the variable can be passed to another
program as a parameter. Each DCL command defines the attributes of one
CL variable and declares its name in the program in which it is to be used.

Each CL variable in a program must be identified by one of the three declare
commands. The DCLF and DCLDTAARA commands declare CL variables for
display device files and data areas. The DCL command declares all other CL
variables.

Restriction: The DCL command is valid only within a CL program. All
declares (DCL, DCLF, and DCLDTAARA) must follow the PGM (Program)
command and precede all other commands in the program. The three types
of declares can be intermixed in any order.

@~•DEC3 DCL-- VAR CL-variable-name -- TYPE . •CHAR-+------------~

•LGL

<D ® <D
>- LEN leneth [decimal-positions] --- VALUE initial-value --

@A CL variable cannot be coded on thia parameter.

@The number or declmal positions can be specified only If TYPE(•DEC) is specified.

VAR Parameter: Specifies the name of the CL variable being declared within
the CL program. The variable exists only within the program in which it is
defined. I~ can be passed as a parameter on a call to another program, in
which case it can be processed by the called program. Enter the name of
the variable here; it must begin with an ampersand (&).

Required

Optional

lPam:B,I

TYPE Parameter: Specifies the type of value to be contained in the CL
variable being declared. The value of the variable can be a character
constant, a decimal constant, or a logical one or zero. (The value for this
TYPE parameter cannot be specified via a CL variable.) Enter one of the
following types:

*DEC: This is a decimal variable that contains a packed decimal value.

*CHAR: This is a character variable that contains a character string value.

*LGL: This is a logical variable that contains a logical value of either '1'
or 'O'.

LEN Parameter: Specifies the length of the CL variable being declared. If the
variable is a decimal value, the number of decimal digits to the right of the
decimal point can be optionally specified. The type of CL variable (specified
by the TYPE parameter) determines the maximum length that the variable
can have and the default length assumed if LEN is not specified. (The value
for this LEN parameter cannot be specified via a CL variable.) The maximum
lengths and the defaults for each of the three types are:

Type Maximum Length Default Length1

Decimal 15 digits, 9 decimal positions 15 digits, 5 decimal positions

Character 2000 characters 32 characters

Logical 1 character 1 character

1 For decimal and character types, the default length is the same as the length of
the initial value, if one is specified in the VALUE parameter.

length: Enter the length that the value in this CL variable can have; the
length cannot exceed the maximum for this type of variable.

length [decimal-positions]: This option is valid only for decimal variables.
The length of the value in. the variable includes the number of decimal
positions in the value. The maximum length of the decimal value is 15
digits, including the digits to the right of the decimal point. A maximum of
nine decimal positions can be specified. (If nine decimal positions are
specified, the value to the left of the decimal point can never be greater
than 999 999 because only six of the 15 digits are left for the integer value.)

If a length is specified for a decimal variable and the number of decimal
positions is not, 0 decimal positions is assumed.

DCL
TYPE

Command Descriptions 4-621

DCL
VALUE

4-622

VALUE Parameter: Specifies the initial value that is assigned to the CL
variable when it is declared in the program. The initial value must be of the
type specified by the TYPE parameter. If no initial value is specified, a
character variable is initialized to blanks, a decimal variable is initialized to a
value of zero, and a logical variable is initialized to 'O'. (The value for the
VALUE parameter can not be specified via a CL variable.)

If the name of the declared variable is specified on the PARM parameter of
the PGM command in the same program in which the variable is declared,
an initial value cannot be specified for the variable. That is, the variable is to
receive its value from the calling program instead.

Examples

DCL &ABLE *DEC LEN(5 2)

This command declares a CL variable named &ABLE that contains a decimal
value. The value can never exceed 999.99 because LEN specifies a
maximum of five digits, of which two are to the right of the decimal point.
Because VALUE was not specified and it is a numeric value, &ABLE is
initialized to a value of zero (000.00).

DCL &SWITCH *LGL

This command declares a CL variable named &SWITCH to contain a logical
value. Because the type parameter specifies logical, the variable is one
character and is initialized to ·o·.

DCL &FILNAM *CHAR VALUE(FILEA)

This command declares a CL variable. named &FILNAM whose initial value is
FILEA. Because the initial value contains 5 characters and the LEN
parameter was not specified, the length of the variable is also 5 characters.

DCLDTAARA (Declare Data Area) Command

The Declare Data Area (DC LDT AARA) command declares the name of a
previously created data area that is to be used wh:hin a CL program. Each
data area referenced on the Send Data Area (SNDDTAARA) and the Receive
Data Area (RCVDTAARA) commands in a CL program must be declared in
the program by a DCLDTAARA command. (The data area was created by
the CRTDTAARA command.)

When the CL program that has a DCLDTAARA command in it is compiled, a
CL variable is automatically declared in the program with the same name
and data attributes that the referenced data area has. Then, when the
program is executed, program data can be passed between the data area
and the corresponding CL variable by the SNDDTAARA and RCVDTAARA
commands. (However, if a data area is declared but the associated CL
variable is not referenced by another command in the program, no variable
is included in the program for that data area when the program is compiled.)

Restrictions: This command is valid only within a CL program. All declares
(DCL, DCLF, and.DCLDTAARA) must follow the PGM (Program) command
and precede any other commands. The three types of declares can be
intermixed in any order.

Required

© -(.+LIBL::J-
DCLDTAARA-- DTAARA data-area-name

.library-name

©A CL variable cannot be coded on thte parameter.

DT AARA Parameter: Specifies the qualified name of the data anta that is to
be made known to the CL program. (If no library qualifier is given, *UBL is
used to find the data area.) Two data areas with the same name cannot be
declared in the same program even if they are located in different libraries.
A CL variable cannot be used to identify the data area.

Exam pl~

DCLDTAARA DTAARA(CHECKNUM.MYLIB)

This command indicates that a data area named CHECKNUM that is stored
in MYLIB is to be used in the program containing this command. When the
program is compiled, a CL variable named &CHECKNUM is automatically
declared in the program with the same data attributes as the data area.
Program data can later be passed between the variable and the data area by
the SNDDTAARA and RCVDTAARA commands.

DCLDTAARA

Command Descriptions 4-623

DCLF

4-624

DCLF (Declare File) Command

The Declare File (DCLF) command declares one display device file (by name)
to a CL program. Only one DCLF command is allowed in a CL program; the
command specifies the name of the device file and the record formats to be
used in the program. The program can then contain the data manipulation
commands (SNDF, RCVF, SNDRCVF, CNLRCV, and WAIT) that reference
the file, enabling the program to interact with its user by sending data to
and receiving data from a work station.

When the CL program is compiled, a CL variable is automatically declared
for each field in each record format that is used in the program. The field
name will become the variable name with an ampersand (&) added at the
beginning of the name. (The attributes of each declared field are the same
as the attributes of the fields in the device file. Fields defined in the record
format as numeric are defined as decimal variables.) Also, indicators used in
the referenced device file are declared as logical variables in the form
&INnn, where nn is the indicator number.

The variables that are automatically declared by the DCLF command can be
used in the program in the same manner as the variables declared by a DCL
command. For example, indicators can be used in expressions and IF
statements because they are declared as logical variables.

(The contents of the variables, not the variable names, are seen by the user;
the display shows one, some, or all of the fields in the record format that
the user can fill in. DDS determines the display format.)

The DCLF command also allows certain routing information to be returned
to the variable named in the RTGDTA parameter with the user's data. The
routing data to be returned is defined in the device file.

Restrictions: This command is valid only within CL programs. All declares.
(DCL, DCLF, and DCLDTAARA) must follow the PGM (Program) command
and precede any other command. The three types of declares can be
intermixed in any order. The device file must be a display device file, and it
must exist before the program is created.

Because CL variables are automatically declared for each field in a
referenced file's record formats, the following restrictions apply:

• If the display file is changed (and the file description specifies that level
checking is to be performed), the CL program must be recompiled to
match the new file description. More information on level checking is
contained in the CPF Programmer's Guide.

• If any field name is defined in more than one record format of the display
file, then the attributes in each record format for the commonly named
field must match.

• Any CL variable declared in the program by a DCL command and having
the same name as an automatically declared CL variable (for a referenced
field) must also have the same attributes specified in DDS for the
referenced field.

• The variables used in the file must have data types supported for CL
variables. (However, fields defined as numeric are declared as decimal
variables.)

(!) -(.>11<LIBL
DCLF -- PILB dieplay-devtce-tlle-name)------------~

.library-name
Required

Optional

© CL variable• cannot be coded on this parameter.
1Pam:B,I

FILE Parameter: Specifies the qualified name of the display device file to be
used by the CL program. (If no library qualifier is given, *UBL is used to
find the file.) A CL variable name cannot be used to specify the file name.

RCDFMT Parameter: Specifies the names of one or more record formats
contained in the display device file that are to be used by the SNDF, RCVF,
and SNDRCVF commands in the CL program. CL variable names cannot be
specified in RCDFMT; only names of record formats can be used. For every
field and indicator in each record format specified in RCDFMT, one CL
variable is automatically declared in the program.

DCLF
(Diagram)

Command Descriptions 4-625

·ocLF
RTGDTA

. 4-626

•ALL: Every record format in the device file; up to a maximum of 99, is, to
have its fields declared in the CL program as variables. If there are more
than 99 record formats in the file, only the first 99 are used.

record-format-name: Enter one or more record format names whose fields
are to be declared as variables in the CL program. No more than 50 record
format names can be specified; CL variables cannot be used to specify the
names.

RTGDTA Parameter: Specifies whether the data that is defined as routing
data in the device file (by one or more of the DDS routing keywords) is to
be passed to the program along with the user's data. (For example, the
device name. can be defined as routing data and passed to the program to
identify which work station is sending the other data.) If the routing data is
to be passed, the parameter also specifies the name of the CL variable into
which the data is to be placed. The specified variable must be a character
variable that is at least 80 characters long. (For more information on routing
data in the device file, see the CPF Reference Manual-DDS.I

*NONE: No routing data is to be returned to the CL program when send
or receive file commands are executed.

CL-variable-name: Enter the name of the CL character variable into which
the routing data defined for the device file is to be placed when RCVF or
SNDRCVF commands are executed. The named variable must be declared
in the CL program as a character variable and must be at least 80 characters
long.

Examples

DCLF FILE(ABLE)

This command specifies that the display device file named ABLE is to be
used by the CL program to pass data between the user and the program.
RCDFMT was not specified; therefore, all the fields and indicators in all the
record formats are automatically declared as variables, and data· from any
field in any record format (up through the first 99) in the device file can be
passed between the program and the user. No device file routing data is to
be received by the program.

DCLF FILE(BAKER) RCDFMT(REC2 REC6) RTGDTA(&FB)

The display device file BAKER is to be used by the CL program to pass data
between the user and the program. Both the REC2 and REC6 record
formats are to be used. Device file routing data is to be returned to the
program and stored in the CL variable &FB for each RCVF and SNDRCVF
command .

DLCOBJ (Deallocate Object) Command

The Deallocate Object (DLCOBJ) command releases the allocations of the
specified objects for the specified lock states. The objects, allocated earlier
in the same routing step by one or more Allocate Object (ALCOBJ)
commands, are freed for use by other jobs. If the DLCOBJ command is not
used, the objects are automatically deallocated at the end of the routing
step.

A single DLCOBJ command can, for each allocated object, release only one
lock state. That is, if one object has multiple lock states applied, a separate
DLCOBJ command must be used to release each one.

Required

-(.11UBL:::J-. {!) ®®-(•FIRST
>-OBJTobject-name object-type lock-state . ~

.library-name member-name

· 50 maximum-------------'

(!) The values of only six object types are valid: •DEVD, llDTAARA, •FILE, •LIB, •MSGQ,
and •SBSD. Refer to the OBJ parameter description tor the lock etatee that are valid
tor each object type.

@ It valid ror the epecitied object type, one or the followina lock etatee can be epeoitied:
•SBRRD, •SHRUPD, •SBRNUP, •BXCLRD, or •EXCL.

l Job:B,I P1m:B,I

OBJ Parameter: Specifies the qualified names of one or more CPF objects
that are to be deallocated from the job, the type of each object deallocated,
the lock state of each object, and if the object is a data base file, a member
name can optionally be specified. (If no library qualifier is given for an
object, *LIBL is used to find the object. Note that the LIB and DEVD object
types do not reside in user libraries and, therefore, cannot be qualified with
a library name.) If the member name is not specified for a data base file,
the member name defaults to *FIRST and the first member of the file is
deallocated.

For each object named, enter the object name (optionally qualified) followed
by the object type, one lock state value, and (if applicable) the file member
name to be deallocated. The possible lock states are:

Value Lock State Meaning

*SHARD Shared for read
*SH RU PD Shared for update
*SH RN UP Shared, no update
*EXCLRD Exclusive, allow read
*EXCL Exclusive, no read

For an explanation of each lock state, refer to the CPF Programmer's Guide.

DLCOBJ

Command Descriptions 4-627

DLCOBJ
(Example)

4""628

Only six of the CPF object types can be specified on the DLCOBJ
command. Of these six, some cannot use all of the lock states. Refer to the
lock state table under the OBJ parameter of the ALCOBJ Command.

Example

DLCOBJ OBJ((FILEA.UBB *FILE *SHRRD))

This command releases the shared-for-read allocation of the first member
of FILEA in the library LIBB.

DL TCLS (Delete Class) Command

The Delete Class (DL TCLS) command deletes a class object from the
system. Any executing routing steps using the class are· not affected by its
deletion. However, additional routing steps that use the class cannot be
initiated. If the deleted class is referred to in any existing routing entry,
either the routing entry should be changed (to refer to a different class) or
another class should be created with the same name. If the subsystem is
active when the class is deleted, errors might occur in the subsystem.

Restriction: You must have object existence rights for the class being
deleted.

DLTCLS -- CLS class-name

Required

-(.•LIBL=:)-
.library-name r Job:B,I P1m:B,I

CLS Parameter: Specifies the qualified name of the class description to be
deleted. (If no library qualifier is given, *UBL is used to find the class
description. If a library qualifier is specified, no completion message will be
sent.)

Example

DLTCLS CLS(CLASS1)

This command deletes the class named CLASS1 from the system.

DLTCLS

Command Descriptions 4-629

DLTCMD

4-630

Dl TCMD (Delete Command) Command

The Delete Command (DL TCMD) command removes a user-specified
command from the library in which it is located. Only the command
definition object is removed; the command definition source, the command
processing program, and the validity checker are not affected.

Restriction: To use this command, you must have object existence rights
for the command to be deleted.

DLTCMD -- CMD command-name -(,,,.LIBL::J-- Required

.library-name
lJob:B,I Pem:B,I

CMD Parameter: Specifies the qualified name of the command to be deleted.
(If no library qualifier is given, *UBL is used to find the command.) The
specified command whose command definition object is to be deleted can
be a user-defined or IBM-supplied command. The usage rights for the
command are deleted from the user profiles of all users authorized to use
the command.

Example

DLTCMD CMD(PAYROLL.LIB01)

The command named PAYROLL is to be deleted from library LIB01. Any
rights of use for the command are removed from the profiles of all
authorized users.

DL TCUD (Delete Control Unit Description) Command

The Delete Control Unit Description (DLTCUD) command deletes the
specified control unit description.

If any devices are attached to the control unit, they are detached when the
command is executed; each device cannot be used until it is associated with
another control unit. If a new control unit description is created, the devices
can be specified in the DEV parameter of the Create Control Unit
Description (CRTCUD) command. Or, the devices can be attached to other
control units that already have control unit descriptions. In this case, the
device descriptions can be deleted and recreated, giving the new control
unit names in the CTLU parameter of each Create Device Description
(CRTDEVD) command.

Restriction: The control unit identified in the control unit description, and
any devices or lines attached to the control unit, must be varied offline
before this command is entered.

DLTCUD -- CUD control-unit-deacription-name --

Required

l Job:B,I P1m:B,I

CUD Parameter: Specifies the name of the control unit description to be
deleted.

Example

DLTCUD CUD(CONTROL01)

This command deletes the control unit description named CONTROL01 from
the system. If the control \mit description to be deleted has any device
descriptions associated with it, they are detached and a message containing
their names is sent to the system operator.

DLTCUD

Command Descriptions 4-631

DLTDEVD
DL TDEVD (Delete Device Description) Command

The Delete Device Description (DL TDEVD) command deletes the specified
device description.

Restrictions: The device identified in the device description must be varied
offline before this command is issued; if the device is attached to a control
unit, it too must be varied offline.

DLTDBVD --DBVD device-description-name -

Required

f Job:B,J Pam:B,I

DEVD Parameter: Specifies the name of the device description to be deleted.
The device description for the system console (named QCONSOLE) cannot
be deleted.

Example

DL TDEVD DEVD(ARCTIC01)

This command deletes the device description of the device named
ARCTIC01 from the system.

DL TOFU APP (Delete DFU Application) Command

The Delete DFU Application (DL TDFUAPP) command deletes an existing
DFU application and the utility definition statements from a library. The
Data File Utility is part of the IBM System/38 Interactive Data Base Utilities
Licensed Program, Program 5714-UT1. For more information on the Data
File Utility, refer to the IBM System/38 DFU Reference Manual and User's
Guide, SC21 - 7714.

DLTDFUAPP--APP pro1ram-name -{_
.•LIBL:::J-

Required

.Ii brary-name l Job:B,I P1m:B,I

APP Parameter: Specifies the name of the DFU application you are deleting.
(If no library qualifier is specified, *UBL is used to find the application.)

Example

DLTDFUAPP APP(DATA.LIB1)

This command deletes the application DATA from the library named LIB1.

DLTDFUAPP

Command Descriptions 4-633

DLTDKTLBL

4-634

DL TDKTLBL (Delete Diskette Label) Command

The Delete Diskette label (Dl TDKTLBL) command deletes the label (that is,
the data file identifier) of a named data file from a diskette; the data file
must be in the basic exchange format. The data in the file can optionally be
overwritten with binary zeros. If the file is active (the file expiration date is
greater than the system date), a message is issued to the system operator.
The operator can then either continue to delete the file or terminate the
command.

Note: When processing diskettes with non-IBM standard labels, you may
have unpredictable results. To initialize the diskette, execute the Initialize
Diskette (INZDKT) .command with CHECK(*NO) specified.

Restrictions: Diskettes that have an extended label area (not supported by
System/38) do not have the extended label area accessed in the search for
the label of the file to be deleted.

DLTDKTLBL --- LABEL data-file-identifier---,-. ----------------p

I Select one of the followine: K *FIRST
>-LOC ---1 *M12 *Sl *S12 ·).--------c;,_..

•Ml •S2 <1S23 startin&-diskette-position
<tM2 <tS3 *S123

Required

Optional

-(_
<tLOC ® -(_..YES)-- -(_•NONE~

>-VOL '---=-CHECK CRTDATE n_,. ••• J ·
volume-identifier_/ · •NO creation-date

-f_ *SCRATC3
>-OPTION .<tRMV -------

•ERASE

l Job:B,I Pcm:B,I

LABEL Parameter: Specifies the data file identifier of the file to be deleted.

LOC Parameter: Specifies the location in the magazine or slot that contains
the diskette having the file that is to be deleted. For magazines, two values
must be specified: one for the magazine and one for the first diskette used
in the magazine. No ending diskette position need be specified because the
operation stops when an end-of-file indication is given. (Either *FIRST or a
diskette position can be specified for the second value.) Only one value is
needed to identify the manual slot used.

Enter one of the following values to specify which magazine or slot is to be
used: *M12, *M1, *M2, *S1, *S2, *S3, *S12, *S23, or *S123.

*FIRST: The first diskette in the location specified by the first value in the
LOC parameter is the diskette at which to start. If *FIRST is used and the
first value is:

*M12 Start at diskette 1 of magazine 1.
*M1 Start at diskette 1 of magazine 1.
*M2 Start at diskette 1 of magazine 2.
*S12 Start at slot 1.
*S23 Start at slot 2.
*S123 Start at slot 1.

starting-diskette-position: Enter the number of the diskette position (1
through 10) in the magazine that contains the first diskette from which the
file is to be deleted. (A value is not valid for manual slots.)

VOL Parameter: Specifies whether a check of the volume identifier field on
the diskette should be made before the specified file is deleted. If so, the
volume identifier of the volume to be checked must be specified.

*LOC: No volume identifier check is made; if the named file is on the
diskette specified by the LOC parameter, it is deleted without being
checked. If the CRTDATE parameter is specified, its check must be met.

volume-identifier: Enter a volume identifier that is to be compared with the
diskette label volume identifier field on the diskette that contains the file to
be deleted. The identifier can have no more than 6 characters; any
combination of letters and digits can be used. If the volume identifiers do
not match, a message is issued to the system operator. The operator can
then either insert the correct diskette and try again or terminate the
command.

DLTDKTLBL
LABEL

Command Descriptions 4-635

DLTDKTLBL
CHECK

4-636

CHECK Parameter: Specifies whether a check for active files (those with an
expiration date greater than the system date) is to be performed.

*YES: If the file is active, an operator message is issued. The operator can
continue or terminate the deletion of the file.

*NO: The file is to be deleted without the active file check being performed.

CRTDATE Parameter: Specifies the creation date of the file to be deleted. If
CRTDATE is specified and the date on the file to be deleted does not
match, the file is not deleted and a message is issued to the system
operator. The operator can then either retry the operation or terminate the
command.

*NONE: No creation date test is made.

creation-date: Enter the date that must match the creation date of the file to
be deleted before that file can be deleted. The date must be entered in the
format specified by the system values QDATFMT and QDATSEP.

OPTION Parameter: Specifies how the file is to be deleted from the diskette.

*SCRATCH: The expiration date of the file is to be changed to the current
system date. The file can still be referenced for input data. However, when
a new file is written by the system on the diskette, all expired files are
deleted to free space for the new file.

*RMV: The data file identifier is to be removed from cylinder 0; therefore,
the file cannot be referenced for input.

*ERASE: The data file identifier is to be deleted from cylinder 0, and data in
the file is to be overwritten with binary zeros.

Examples

DLTDKTLBL LABEL(FILEA) LOC(*S1)

This command scratches (assumed by the system) FILE A on the diskette in
slot 1.

DLTDKTLBL LABEL(MONDAY) LOC{*M1 2) OPTION(*ERASE)

This command deletes the file label MONDAY from the second diskette in . .

magazine 1 and overwrites the data with binary zeros.

r

DLTDTAARA (Delete Data Area) Command

The Delete Data Area (DLTDTAARA) command deletes the specified data
area from a library.

Restriction: To use this command, you must have object existence rights
for the data area, and read rights for the library.

© -("*LIBL=>--DLTDTAARA -- DTAARA data-area-name

.library-name

© A variable cannot be coded on this parameter.

Required

l Job:B,I P1m:B,I

OT AARA Parameter: Specifies the qualified name of the data area to be
deleted from a library. (If no library qualifier is given, *UBL is used to find
the data area.)

Example

DLTDTAARA DTAARA(MYDATA.MYLIB)

This command deletes the data area named MYDATA from the library
MYLIB if the user has the proper authority for the data area and the library
to do so.

DLTDTAARA

Command Descriptions 4-637

DLTEDTD

4-638

DL TEDTD (Delete Edit Description) Command

The Delete Edit Description (DL TEDTD) command deletes a specified,
user-defined edit description.

Note: Any DDS (data description specifications) or high-level language
programs that have already been created are not affected.

Required

j Job:B,I Pam:B,I

EDTD Parameter: Specifies a digit code (5, 6, 7, 8, or 9) that identifies the
user-defined edit description being deleted.

Example

DL TEDTD EDTD(5)

This command deletes the user-defined edit description 5 from the system.

DL TF (Delete File) Command

The Delete File (DL TF) command deletes the specified data base file or
device file from the system. Deleting the file also frees the storage space
allocated to the file. If a data base file (physical or logical) is deleted, all
members contained in the file are also deleted. If the file is in use by a
program (opened), the file is not deleted.

Deleting a damaged physical or logical file can produce unpredictable side
effects, depending on the type and the extent of damage to the file. For
example, any logical files based on a damaged physical file may reflect the
same damage. Because it is possible that pieces of a damaged file can be
left in the system after the DL TF command has been executed, the
damaged file should first be copied to another file to recover as much of the
file as possible. (The ERRLVL parameter in the CPYF command, by counting
the number of errors in the file, determines whether the file is copied;
therefore, the error level must be set high enough to permit the copy to take
place.) After the damaged file has been copied, the file should be deleted
and recreated.

Restrictions: (1) To delete a file, you must have object existence rights for
the file and operational authority for the library containing the file. (2) If a
physical file is being deleted and a logical file is sharing the access path of,
or using the data in, the physical file, the logical file must be deleted first.
(3) If a logical file is being deleted and another logical file is sharing its
access path, the dependent logical file must be deleted first. (4) If the DL TF
command is entered in debug mode and UPDPROD(*NO) was specified on
the ENTDBG or CHGDBG command, the name of a physical file that
contains data and is in a production library cannot be specified.

Required

DLTF -- FILE tile-name -(·*LIBL=:J--
.library-name l Job:B,I Pam:B,I

FILE Parameter: Specifies the qualified name of the file to be deleted. (If no
library qualifier is given, *UBL is used to find the file.)

Example

DLTF FILE(ORDERS.BILLING)

This command deletes the file named ORDERS, stored in the BILLING
library. Only the BILLING library is searched for the file.

DLTF

Command Descriptions 4-639

DLTFCT

4-640

DL TFCT (Delete Fonns Control Table) Command

The Delete Forms Control Table (DLTFCT) command deletes an inactive
forms control table (FCT). If any session is active that references the FCT to
be deleted, that FCT cannot be deleted.

Restriction: To use this command, you must have object existence rights
for the FCT and read rights for the library in which the FCT is stored.

The Delete Forms Control Table (DLTFCT) command is part of the IBM
System/38 Remote Job Entry Facility Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

-(
.•LIBL

DLTPCT-PCT-forme-control-table-name)---

. .library-name l Job:B,I Pam:B,I

FCT Parameter: Specifies the qualified name of the FCT that is to be deleted.
(If no library qualifier is given, *UBL is used to find the FCT.)

Example

DLTFCT FCT(FORMCTRL.USERLIB)

This command deletes the forms control table named FORMCTRL in library
USERLIB.

r

DL T JOBD (Delete Job Description) Command

The Delete Job Description (DLT JOBD) command deletes the specified job
description object from the system. Any executing jobs using the job
description are not affected by its deletion.

Restriction: You must have object existence rights for the job description
being deleted, and operational and delete rights for the library containing the
job description.

DLTJOBD-- JOBD job-dHcriptlon-name

Required

-{
.+LIBL:J-

.library-name f Job:B,I P11m:B,I

JOBD Parameter: Specifies the qualified name of the job description to be
deleted. (If no library qualifier is given, *UBL is used to find the job
description.)

Example

DLT JOBD JOBD(MY JOBD.MYLIB)

This command deletes the job description named MY JOBD from the library
MYLIB.

DLTJOBD

Command Descriptions 4-641

DLTJOBQ

4-642

Dl T JOBQ (Delete Job Queue) Command

The Delete Job Queue (DL T JOBQ) command removes the specified job
queue from the system.

Restrictions: To delete a queue, you must have object existence rights and
read, add, and delete rights for the specified queue. The queue cannot
contain any job entries nor can it be in use by an active subsystem.

DLTJOBQ -- JOBQ job-queue-name -(_
.4LIBL:::J--

Required

.library-name l Job:B,I Pam:B,I

JOBQ Parameter: Specifies the qualified name of the job queue to be
deleted. (If no library qualifier is given, *UBL is used to find the queue.)

Example

DLTJOBQ JOBQ(SPECIAWQ)

This command deletes the job queue named SPECIAWQ from the system.

DL T JRN (Delete Journal) Command

The Delete Journal (DLTJRN) command deletes the specified journal from
the system.

Restriction: The journal must not have any objects journaling changes
through it when the command is issued. To determine whether the journal
is being used, issue the DSPJRNA (Display Journal Attributes) command. If
any objects are being journaled, issue the ENDJRNPF (End Journaling
Physical File Changes) command to terminate the journaling.

-(
.•LIBL

DLTJRN--JRN journal-name J---
Required

.Ubraey-name l JoblB,I PpuB,I

JRN Parameter: Specifies the qualified name of the journal that is to be
deleted. (If no library qualifier is specified, *LIBL is used to find the journal.)

Example

DLT JRN JRN(JRNLA.MYLIB)

The above command causes the journal named JRNLA in library MYLIB to
be deleted from the system.

DLTJRN

Command Descriptions 4-643

DLTJRNRCV

4-644

DL T JRNRCV (Delete Journal Receiver) Command

The Delete Journal Receiver (DLTJRNRCV) command deletes the specified
journal receiver from the system, which frees the storage space allocated to
the receiver.

Restrictions: The journal receiver must not be attached to a journal at the
time the command is issued.

The journal receiver must not be in the middle of a chain of online receivers
unless it is damaged. (The receivers must be deleted in the same order in
which they were detached, to prevent gaps from occuring within the range
of receivers. This restriction does not apply if the journal receiver is
damaged or if the other of the dual receiver pair is usable).

You can use this command to delete multiple receivers by selecting the
appropriate option on the Journal Receiver Directory of the Journal
Attributes Display. For more information, refer to the Additional
Considerations section of the DSPJRNA command~

-(.•LIBL::J-
DLTJRNRCV:--JRNRCV receiver-name

.Ubrar,r-n- l Jo'bl8,I PpuB,I

JRNRCV Parameter: 5!')dcifies the qualified name of the journal receiver that
is to be deleted. (If no library qualifier is specified, *UBL is used to find the
journal receiver.)

Example

DLT JRNRCV JRNRCV(JRNRCLA.MYLIB)

The above command causes the journal receiver named JRNRCLA in library
MYLIB to be deleted from the system.

DL TUB (Delete Library) Command

The Delete Library (DLTLIB) command deletes a specified library from the
system after all objects in the library have been deleted. If a library that is
to be deleted contains objects, this command first deletes all of the objects
and then deletes the library. If the user submitting this command does not
have the authority to delete every object in the library, only those for which
he does have the authority are deleted. In this case, the library and all the
other objects in the library remain unchanged. If any object in the library is
in use (locked to a program) when this command is entered, that object is
not deleted.

If a library has been damaged, the user should not delete it without first
trying to resolve the damage. In most cases, he can resolve the damage by
initiating the IMPL sequence to rebuild a user library (including QGPL), or by
reinstalling CPF to rebuild the OSYS library. (Refer to the System Operator's
Guide for the procedures.) Then, if the library is still damaged, it should be
deleted. Either a saved version of the library can be restored in its place or
the library can be recreated.

Restrictions: (1) To delete a library, the user must have object existence
and operational rights for the specified library and object existence rights for
every object in it. If he does not have object existence rights for the library,
nothing is deleted. If he does not have object existence rights for one or
more objects in the library, those objects and the library are not deleted.
(2) A library cannot be deleted if it is in the library list of the job in which
this command is entered. (3) This command cannot be used to delete the
OSYS and OTEMP libraries.

DLTLIB -- LIB library-name --

Required

l Job:B,I P1m:B,I

LIB Parameter: Specifies the name of the library to be deleted.

Example

DLTLIB LIB(W)

This command deletes library W after all its objects have been deleted. If
library W contains objects and the user has the authority to delete all of the
objects, library W and all of the objects are deleted. If the user does not
have authority to delete all of the objects, only those for which he has
object existence rights are deleted and the library is not deleted.

DLTLIB

Command Descriptions 4-645

DLTLIND

4-646

DL TLIND (Delete Line Description) Command

The Delete Line Description (DLTLIND) command deletes the specified line
description. The line identified in the line description must be varied offline
before this command is issued.

If any control units are attached to the line, they must also be varied offline
(as well as their associated devices) before the DLTUND command is
issued. The control units are detached when the command is executed; a
control unit cannot be used until it is associated with another line. If a new
line description is created, the control units can be specified in the.CUD
parameter of the CRTLIND command. Or the control units can be attached
to other lines that already have line descriptions. In this case, the control
unit descriptions can be deleted and recreated, with the new line names
given in the LINE (if just one) or UNLST (if several, for switched network)
parameter of each CRTCUD command.

If a switched line or a nonswitched line with the switched network backup
feature is deleted, the name of the deleted line description must be removed
from every control unit description that contains that name in its UNLST
parameter. For each control unit description, the CHGCUD command must
be used to respecify the UNLST parameter without the name of the deleted
line.

Required

DLTUND-- LINE line-description-name -

l Job:B,I Pam:B,I

LIND Parameter: Specifies the name of the line description to be deleted.

Example

DLTUND UND(UNE01)

This command deletes the line description of the line named UNE01 from
the system.

If the line description to be deleted has any control unit descriptions
associated with it, they are detached and a message containing those
control unit names is sent to the system operator. The detached control unit
descriptions can be associated with a new line description if their names are
supplied in the optional CTLU parameter of the CRTUND command that
creates the line description.

.,,(',

DL TMSGF (Delete Message File) Command

The Delete Message File (DLTMSGF) command deletes the specified
message file from the system, including all the message descriptions stored
in the file. If any messages that use this file exist on queues, the file is
deleted and no message text will be available for those messages.

Restrictions: To delete the specified message file, you must have object
existence rights for the file and operational rights for the library in which the
file is stored. The IBM-supplied message files, QCPFMSG (for CPF and
mdchine interface messages) and the licensed program message files (such
as ORPGMSG), cannot be deleted (unless authorized by the security officer).

Required

DLTMSGF--- MSGF messa1e-file-name -(.•LIBL:::r
.library-name l Job:B,I P1m:B,I

MSGF Parameter: Specifies the qualified name of the message file to be
deleted. (If no library qualifier is given, *UBL is used to find the file.)

Example

DLTMSGF MSGF(INV)

This command deletes the message file named INV. All message
descriptions stored in INV are also removed.

DLTMSGF

Command Descriptions 4-647

DLTMSGQ

4-648

DL TMSGQ (Delete Message Queue) Command

The Delete Message Queue (DL TMSGQ) command deletes the specified
message queue as well as any messages in it. Any message in the queue
that requires a reply is answered with the default reply supplied by that
message. If the message queue is being used by another job, the message
queue cannot be deleted.

Restrictions: To delete the specified message queue, you must have object
existence, operational, read, and delete rights for the queue, and object
management rights for the library in which it is stored. The system operator
message queue QSYSOPR cannot be deleted. The message queue of each
work station (and the system console) cannot be deleted at all.

Required

DLTMSGQ---MGSQ meHa,e-queue-name -(.>ll<LIBL::J--
.library-name l Job:B,I P1m:B,I

MSGQ Parameter: Specifies the qualified name of the message queue to be
deleted. (If no library qualifier is given, *UBL is used to find the queue.)

Example

DLTMSGQ MSGQ(JONES)

This command deletes the message queue named JONES. All messages
stored in JONES are also removed. The library list is used to find the
message queue.

r
l

DL TOUTQ (Delete Output Queue) Command

The Delete Output Queue (DL TOUTO) command deletes the specified output
queue from the system.

Restrictions: The queue to be deleted must not contain any entries and
cannot be in use by a spooling writer. The output for each file must have
already been produced or canceled. To delete the queue, you must have
object existence rights and read, add, and delete rights for the queue.

DLTOUTQ--- OUTQ output-queue-name -(.•LIBL=>- Required

.library-name
jJob:B,I Pam:B,I

OUTQ Parameter: Specifies the qualified name of the output queue to be
deleted. (If no library qualifier is given, *LIBL is used to find the queue.)

Example

DL TOUTO OUTQ(PUNCH2)

This command deletes the output queue named PUNCH2 from the system.

DLTOUTQ

Command Descriptions 4-649

DLTOVR

4-650

DL TOVR (Delete Override) Command

The Delete Override (DL TOVA) command deletes one or more file overrides
(including message file overrides) that were previously specified in an
invocation. That is, for each overridden file named in the DL TOVA
command, the override specified in the same invocation as the DL TOVA
command is deleted. When the command is entered interactively or outside
a program in a batch job, the file overrides for the invocation are deleted;
when the command is used in a CL program, the file overrides for that
program invocation are deleted. A file override is the result of an override
file command.

The DL TOVA command can delete all the file overrides for all the files in the
same invocation, or it can delete the file override(s) for a specific file(s) in
the same invocation. Only the invocation in which the command is entered
has its file overrides deleted. For example, if an override command is
entered in one program in a routing step, and then another program is
called that also contains override commands, a DL TOVA command entered
in the second program can delete only overrides that occurred in that
program. The DL TOVA command has no effect on the override command
that was entered before the program was called. The deleted file overrides
have no effect on subsequent uses of the file.

*-ALL~ DLTOVR --FILE
rrldden-tile-name
~O maximum

Required

l Job:B,I P1m:B,I

FILE Parameter: Specifies the names of the overridden files in the invocation
that are to have the file overrides that affect them deleted. One or more
overridden files can be specified by name, or all files can be specified.

*ALL: All the file overrides that still exist in the invocation in which this
command is entered are to be deleted.

overridden-file-name: Enter the names of one or more overridden files for
which the overrides in the invocation are to be deleted.

Examples

Example 1 : Deleting Overrides in a Single Invocation

1. OVRDBF FILE(A) TOFILE(B)
2. OVRPRTF FILE(C) TOFILE(D)
3. OVRCRDF FILE(E) TOFILE(F)

4. DLTOVR FILE(A C)
5. DLTOVR FILE(*ALL)

If the first three override commands had been specified earlier in the
invocation, the files B, D, and F would be overriding files A, C, and E. The
fourth command deletes only the file overrides that affect files A and C.
The last command deletes all the file overrides that exist in the invocation,
which in this case is the command overriding file E, the third command.

Example 2: Deleting Overrides in Multiple Invocations

This example assumes that commands 1, 2, and 11 are entered in the same
invocation, invocation number 1. The rest of the commands are in
invocation 2.

1. OVRDBF FILE(A) TOFILE(B)

~ lovocofoo 1

Pcog'~~ ~Go~~PRTF-FILEIB~ TO:LEIC) ----------1--
4. TFRCTL PGMB) Invocation 2

~
Program PGMB

5. OVRCRDF FILE(E) TOFILE(F)
6. CALL QCAEXEC ('OVRMSGF FILE(G) TOFILE(H)' 25)
7. DLTOVR FILE(A B)
8. MONMSG MSGID(CPF9841)
9. CALL QCAEXEC ('DLTOVR FILE(*ALL)' 17)

~------------------
11. DLTOVR FILE(*ALL) Invocation 1

~---,
DLTOVR
(Examples)

Command Descriptions 4-651

DLTOVR
(Examples)

4-652

Command 1 causes an override in invocation 1 from file A to file B. Command
2 calls PGMA and generates another invocation, invocation 2.

In program PGMA, command 3 causes an override in invocation 2 from file B
to file C. Command 4 transfers control from PGMA to PGMB in the same
invocation, invocation 2. Unlike the CALL command, the TFRCTL command
does not generate a new invocation.

In program PGMB, command 5 causes an override in invocation 2 from file E
to file F. Command 6 calls QCAEXEC and causes an override from file G to
file H. When it is called, QCAEXEC executes as though it is just another
command in PGMB, rather than executing as a called program. That is,
QCAEXEC executes in the same invocation (invocation 2); it does not generate
another invocation (invocation 3).

Command 7 deletes any overrides affecting files A and B in invocation 2. In
this case, the override specified by command 3 is deleted, but the override
specified by command 1 is not. Because an override for file A is not found in
invocation 2, the escape message CPF9841 (override not found) is sent to
PGMB. To prevent a function check, a MONMSG command is needed after
the DLTOVR command. In this example, command 8 monitors for CPF9841,
but specifies no action to be taken if the message is sent. Therefore, when
CPF9841 is received, it is monitored and ignored by command 8, and control is
passed to the next command in the program.

Command 9 deletes all remaining overrides in invocation 2. The overrides
specified by commands 5 and 6 are deleted, but the override specified by
command 1 is not.

Command 10 causes a return to invocation 1, and invocation 2 is terminated.
If any overrides had been specified in invocation 2 that were not deleted by
DL TOVR commands, they are deleted when invocation 2 terminates. Command
11 causes all remaining overrides in invocation 1 to be deleted; the override
specified by command 1 is deleted.

DL TPGM (Delete Program) Command

The Delete Program (DL TPGM) command deletes an executable program
from a library. If the program is currently being executed, the program
execution is abnormally terminated when this command is issued. Any HLL
or CL program can be deleted.

Restrictions: (1) To use this command, you must have object existence
rights for the program, and update and delete rights for the library in which
it is stored. (2) If you delete a program that is currently in debug mode, a
function check occurs if an implicit reference is made to the deleted
program (for example, a CHGVAR command specifies PGM(*DFTPGM)). To
prevent function checks, you can use the RMVPGM command to remove
the program from debug mode before you delete it. If the program is to be
recompiled while you are in debug mode, you should: remove the program
from debug mode (RMVPGM), delete it from the system (DLTPGM), change
and recompile the program, and add the new version of the program to
debug mode (ADDPGM).

Required -(.•LIBL=r-DLTPGM -- PGM proaram-name

.library-name l Job:B,l Pam:B,l

PGM Parameter: Specifies the qualified name of the program to be deleted.
· (If no library qualifier is given, *LIBL is used to find the library.)

Example

DLTPGM PGM(PROG1.LIB1)

This command deletes the program PROG1 from the library LIB1 if the user
has the proper authority for the program and library to do so.

DLTPGM

Command Descriptions · 4-653

DLTPRTIMG

4-654

Dl TPRTIMG (Delete Print Image) Command

The Delete Print Image (DL TPRTIMG) command deletes the specified print
image.

DLTPRTIMG-- PRTIMG print-ima1e-name -(.+LIBL~
Required

.library-name l Job:B,I P1m:B,I

PRTIMG Parameter: Specifies the qualified name of the print image to be
deleted. (If no library qualifier is given, *LIBL is used to find the print
image.)

Example

DLTPRTIMG PRTIMG(CHAR48PI)

This command deletes the print image named CHAR48PI from the system.

DL TQRYAPP (Delete Query Application) Command

The Delete Query Application (DL TQRYAPP) command deletes an existing
query application. The Query Utility is part of the IBM System/38 Interactive
Data Base Utilities Licensed Program, Program 5714-UT1. For more
information on the Query Utility, refer to the IBM System/38 Query Utility
Reference Manual and User's Guide, SC21-7724.

Required -{.•LIBL=>--DLTQRYAPP--APP application-name

.llbrary-name l Job:B,I P1m:B,I

APP Parameter: Specifies the qualified name of the query application you are
deleting. (If no library qualifier is specified, *UBL is used to find the
application.)

Example

DLTQRYAPP APP(QDATA.LIB1)

This command deletes the query application QDATA from the library named
LIB1.

DLTQRYAPP

Command Descriptions 4-655

DLTSBSD

4-656

DL TSBSD (Delete Subsystem Description) Command

The Delete Subsystem Description (DL TSBSD) command deletes the
specified subsystem description (including any work entries or routing
entries that were added to it) from the system. The associated subsystem
must be inactive before it can be deleted.

Restrictions: This command cannot be executed if an active subsystem is
associated with this subsystem description. You must have object existence
rights for the subsystem description being deleted, and operational and
delete rights for the library.

DLTSBSD-- SBSD •ubsystem-description-n•me

Required

-{
.t<LIBL::J--

.library-name r .Job:B,I P1m:B,I

SBSD Parameter: Specifies the qualified name of the subsystem description
that is to be deleted. (If no library qualifier is given, *UBL is used to find
the subsystem description.)

Example

DLTSBSD SBSD(BAKER.LIB1)

This command deletes the inactive subsystem description called BAKER
from library LIB1.

\"'-.__

DLTSSND (Delete Session Description) Command

The Delete Session Description (DLTSSND) command deletes an inactive
RJEF session description.

Restriction: To use this command, you must have object existence rights
for the session description and read rights for the library in which the
session description is stored.

The Delete Session Description (DL TSSND) command is part of the IBM
System/38 Remote Job Entry Facifity Program Product, Program 5714-RC1.
For more information on the Remote Job Entry Facility, refer to the IBM
System/38 Remote Job Entry Facility Programmer's Guide, SC21-7914.

Required

DLTSSND -SSND- session-description-name -{.•LIBL=:)-
.library-name l Job:B,J Pam:B,J

SSND Parameter: Specifies the qualified name of the session description that
is to be deleted. (If no library qualifier is given, *UBL is used to find the
session description.)

Example

DLTSSND SSND(RJE.USERLIB)

This command deletes the inactive session description called RJE from
library USERLIB.

DLTSSND

Command Descriptions 4-657

DLTTBL

4-658

DL TTBL (Delete Table) Command

The Delete Table (DL TTBL) command deletes the specified table.

Required

DLTTBL-- TBL table-name -(
.•LIBL=>-

.library-name f Job:B,I Pgm:B,I

TBL Parameter: Specifies the qualified name of the table to be deleted. (If no
library qualifier is given. *LIBL is used to find the table.)

Example

DL TTBL TBL(SCRAMTBL)

This command deletes the table named SCRAMTBL from the system.

DL TUSRPRF (Delete User Profile) Command

The Delete User Profile (DL TUSRPRF) command deletes a user profile from
the system. The user who enters this command must have object existence
authority for the user profile being deleted.

If a user profile has been damaged by some program logic error or system
failure, it should be deleted by the DL TUSRPRF command and recreated by
the CRTUSRPRF command. Before the profile is deleted, the objects that it
owns should be transferred to a new or different profile by the
CHGOBJOWN command. After a user profile has been recreated, the
owned objects can be transferred back to it. Also, any authority that was
granted to the damaged profile has to be regranted to the new profile by
the GRTOBJAUT command.

If multiple profiles have been damaged, a saved version of the user profiles
should be restored to the system via the RSTUSRPRF and RSTAUT
commands.

Restrictions: (1) The user profile cannot be deleted if a user is currently
executing under the profile, or if it owns any objects. All objects in the user
profile must first be transferred to new owners (by the CHGOBJOWN
command) or be deleted from the system. Authority granted to the user
does not have to be explicitly revoked (by the RVKOBJAUT command); it is
automatically revoked when the user profile is deleted. (2) To delete any
object, including a user profile, you must have object existence rights for the
object. User profiles QSECOFR, QPSR, QSYS, QCE, QDBSHR, QSPL, and
QRJE cannot be deleted.

DLTUSRPRP-- USRPRF user-name--

Required

l Job:B,I P1m:B,I

USRPRF Parameter: Specifies the name of the user profile to be deleted
from the system.

Example

DL TUSRPRF USRPRF(JJADAMS)

This command causes the user profile named JJADAMS to be deleted from
the system (if no objects are owned by the user profile and no user is
currently executing under it).

DLTUSRPRF

Command Descriptions 4-659

DMPCLPGM

4-660

DMPCLPGM (Dump CL Program) Command

The Dump CL Program {DMPCLPGM) command dumps all variables
(declared in the CL program in which the command executes) and all
messages on the program's message queue to a spooled printer file
(QPPGMDMP). This command is valid only in a CL program; after the
program is dumped. it continues to execute. To use this command. you
must have authority to read the program.

DMPCLPGM-

There are no parameters for this command.

Example

PGM
DCL .. .
DLC .. .
MONMSG MSGID(CPF9999) EXEC(GOTO DUMP)

•

RETURN
DUMP: DMPCLPGM
ENDPGM

~w-1
l P1m:B,I

This CL program monitors for the function check message CPF9999. If a
function check occurs in the program, control is passed to the command at
label DUMP. This causes a dump of the program's message queue and
causes the program's variables to be printed. This dump can be used as an
aid in determining the cause of the function check.

[

DMPJOB (Dump Job) Command

The Dump Job (DMPJOB) command dumps the basic data structures, or
specific invocations of the current job or of the job being serviced as a
result of the Service Job (SRVJOB) command. The information is dumped
to a spooled printer file (OPSRVDMP) to be printed. If the output is not to
be spooled and the printer is not available, the printer file is overridden. The
dump includes formatted information about the specified programs, and
dumps of individual CPF objects and system objects associated with the job.

Optional

+ALL .. ,
>-PG +NONE-------------------------'lt----.

-{
.+ALL @~+LAST

pro1ram-name) +FIRST
.library-name +ALL _____ _,

invocation-level

'-----------10 maximum---------~

-{+ALLJ-- -{+YBS) >-JOBARA ADROBJ , __ _

+NONE +NO

© Both the library qualifier of +ALL and an invocation level cannot be
epeclfled. Job:B,I P&m:B,I

PGM Parameter: Specifies a program to be dumped. PGM can be either a
single value or a list of values (10 maximum).

*ALL: All programs on the invocation stack are to be dumped.

*NONE: No programs are to be dumped. Only the invocation and activation
lists are dumped.

qualified-program-name: Enter the qualified name of the invoked program to
be dumped. A maximum of 10 characters for the program name can be
specified. If no library qualifier is specified, *ALL is used to determine which
program invocation to dump. Only the program name is to be used in the
selection of invocations to be dumped. If *ALL is specified, an
invocation-level cannot be specified.

*LAST: The last invocation with the name specified is to be dumped.

*FIRST: The first invocation with the name specified is to be dumped.

*ALL: All invocations with the name specified are to be dumped.

invocation-level: Enter the level of invocation for a program with multiple
invocations in the stack. If *ALL is specified for the library name, the
invocation level cannot be specified.

DMPJOB

Command Descriptions 4-661

DMPJOB
JO BARA

4-662

JOBARA Parameter: Specifies whether the job structure areas of the process
will be dumped. Job structure areas consist of the following:

• Work Control Block

• Library Search List

• Job Temporary Library

• Job Message Queue

• Spool Control Block

• Data Management Communications Queue

• Service Communication Object

• Process Definition Template

• Process Lock List

• MI Response Queue

*ALL: The job structure areas are to be dumped.

*NONE: The job structure areas are not to be dumped.

ADROBJ Parameter: Specifies whether objects addressed from the program
storage of a program being dumped will also be dumped. If *NONE is
specified for the PGM parameter, no addressed objects will be dumped.

*YES: The addressed objects are to be dumped.

*NO: The addressed objects are not to be dumped.

Example

DMPJOB PGM((UPDATE.QGPL *FIRST) (MASTER.PAYROLL *ALL)) +
JOBARA(*ALL) ADROBJ(*NO)

This command dumps the first occurrence of UPDATE.QGPL in the
invocation stack and all occurrences of MASTER.PAYROLL. Also dumped
will be the job structure areas.

DMPJOB

This command dumps the entire job structure.

DMPJOB PGM(*NONE) JOBARA(*NONE)

This command dumps the invocation and activation lists.

DMPJOBINT (Dump Job Internal) Command

The Dump Job Internal (DMPJOBINT) command dumps the machine
internal data that is related to the machine process in which the current job
or the job being serviced as a result of the Service Job (SRVJOB) command
is executing. This data is for use by IBM service representatives. When the
internal data is dumped, a dump identifier is sent in a message to the
requester of the job issuing the command. The List Internal Data
(LSTINTDTA) command can be used to print the dump.

Restriction: Only the programmer, system operator, IBM service
representative, or security officer can use this command.

DMPJOBINT--

There are no parameters for this command.

Example

DMPJOBINT

I'-""' ... , •.• I

This command dumps, for the job in which the command is entered, the
machine internal data associated with the job. A message that includes the
dump identifier is sent to the user entering the command.

DMPJOBINT

Command Descriptions 4-663

DMPOBJ

4-664

DMPOBJ (Dump Object) Command

The Dump Object (DMPOBJ) command dumps the contents and/or
attributes of the specified CPF object to a spooled printer file named
QPSRVDMP. (Whether the contents and/or attributes can be dumped
depends upon the object type.) If the printed output is not to be spooled,
and the printer is not available, the printer file (QPSRVDMP) is overridden.
Any library or CPF object that is stored in a library can be dumped, but only
one object can be specified at a time on this command.

-{.•LIBL=>-. © Required

DMPOBJ--- OBJ object-name OBJTYPB CPF-objeot-type --

.11brary-name

©.Any one or the CPF object types listed In the OBJTYPE parameter charts In
Appendix .A. can be epeoitied.

I
OBJ Parameter: Specifies the qualified name of the CPF object to be

r Job:B,I P1m:B,I

dumped. (If no library qualifier is given, *UBL is used to find the specified
object.) Only the CPF objects that are stored in libraries can be dumped.
Refer to the OBJTYPE parameter for the valid types of objects.

OBJTVPE Parameter: Specifies the object type of the CPF object to be
dumped. Any one of the CPF object types can be specified; refer to the
charts in the expanded description of the OBJTYPE parameter in Appendix
A. To dump a program, for example, enter the value *PGM.

Examples

DMPOBJ OBJ(ORDERIN.ORDENT) OBJTYPE(*FILE)

This command dumps the contents of the file named ORDERIN that is
stored in the ORDENT library.

DMPOBJ OBJ(MYPROG) OBJTYPE(*PGM)

This command dumps the first occurrence of the program MYPROG that is
found by the library list. The dump is spooled to the printer output file
QPSRVDMP.

DMPSYSOBJ (Dump System Object) Command

The Dump System Object (DMPSYSOBJ) command is used primarily for
problem determination. It dumps the contents and/or attributes of Ml
system objects to a spooled printer file named OPSRVDMP. If the printed
output is not to be spooled, and the printer is not available, the printer file
(OPSRVDMP) is overridden. Any Ml object that is stored in any context or
that is addressable through an object stored in a context can be dumped. A
specific object, a generic group, or all of the Ml objects in a context can be
specified. The dump can also be limited to objects of a specified type and,
optionally, of a specified subtype.

Optional

DUPSYSOBJ:---OBJ: •UCBCTJ: · ,,. ___________ __,..,. -{
•PCS

::!!rio-Q"•tem-obJeot-name "::J

>-COXTBXT •UCBCTJ:~-~~---------------------___.11" -f_•NONB

context-name _/

~to.ALL {•.ALL
UI-Q'9tem-object-tne-in-hez ~ UI-•:r•tem-objeot

-•ub\1pe-in-hn: {

T!PB @'-- SUBT!PB

-{
•ALL ®

OBJ:TYPB @)..----------------J
CPP-objeot-t;ype ·

•KONB ;;)- -(•
>-OPPSBT SP.ACB •

ottHt-value ottmet-value -(Y- ·
llO maximum len1th

©To oocle the tollcnrin1 parameter• ~, you mu•t oode t~ in thi• order, u•inl •X
tor thOH not beilll •peolfied: T!PB, SUBT!PB, and OBJ:T!PB.

@ To •peoif'7 an MI m;ymtem object t;ype, refer to the T!PB parameter dHoription tor a li•t
or the valid UI t;ype DDdn.

@ To epeoit,y one of the CPP object typee, refer to the chart. In the ~ deecrlptlon
ot the OBJ:T!PB parameter in Appendbc A.

Job:B,I P1111:B,I

OBJ Parameter: Specifies which of the Ml system objects are to be dumped.
The name of a ·specific object, the generic name of a group of objects, the
process control space of the job, the machine context, or all of the Ml
objects in a context can be specified. If a library name is specified. the
library is dumped, but not the objects in it.

If OBJ(OTEMP) is specified along with either OBJTYPE(*LIB) or TYPE(04)
SUBTYPE(01), then the temporary job context associated with the job in
which this command is entered, or the job being serviced as a result of the
SRVJOB command, is dumped. In either case, thf:I CONTEXT parameter is
ignored.

DMPSYSOBJ

Command Descriptions 4-665

DMPSYSOBJ
CONTEXT

4-666

*PCS: The process control space to be dumped is that of the current job or
that of the job being serviced as a result of the SRVJOB command.
OBJ(*PCS) can be used with the OFFSET and SPACE parameters to dump
objects in the job structure. If OBJ(*PCS) is specified, the CONTEXT, TYPE,
SUBTYPE, and OBJTYPE parameters are ignored.

*MCHCTX: The machine context (which contains a list of the objects in the
context) is to be dumped. If OBJ(*MCHCTX) is specified, all the other
parameters in this command are ignored.

*ALL: All the Ml system objects in the specified context are to be dumped
if they match the requirements specified in TYPE and SUBTYPE (for Ml
objects), or OBJTYPE (for CPF objects).

generic-system-object-name: Enter the CPF or Ml generic object name that
identifies the group of Ml system objects to be dumped. An Ml object
name can have as many as 30 characters in it.

system-object-name: Enter the name of the CPF or Ml object that is to be
dumped. A maximum of 30 characters can be entered. If more than one
object has the same name, all objects having that name and matching the
attributes specified by the CONTEXT parameter and either the TYPE and
SUBTYPE parameters or the OBJTYPE parameter are dumped. If a specific
object is to be dumped, the CONTEXT, TYPE, and SUBTYPE parameters or
the CONTEXT and OBJTYPE parameters should be specified.

CONTEXT Parameter: Specifies in which context or library the objects to be
dumped are to be found.

*NONE: The object specified by the OBJ parameter is not in any context.
*NONE is valid only if *PCS or *MCHCTX is specified or assumed for the
OBJ parameter, or if OBJ(OTEMP) is specified along with either
OBJTYPE(*LIB) or TYPE(04) SUBTYPE(01).

*MCHCTX: The objects to be dumped are in the machine context. The
following CPF object types, whose Ml system object names are given in
parentheses, can reside only in the machine context: library (context), user
profile, device (logical unit) description, line (network) description, and
control unit (controller) description. (These types are included in the table
given in the TYPE parameter description.) *MCHCTX is valid only if one of
these five object types is to be dumped.

context-name: Enter the name of the context containing the objects to be
dumped. The name of a library, such as OGPL or OTEMP, can be specified.
If OTEMP is specified, the objects to be dumped are in the temporary job
context associated with the job in which this command is entered or the job
being serviced as a result of the SRVJOB command.

l

TYPE Parameter: Specifies the type of Ml objects to be dumped.

*ALL: All Ml object types in the specified context that have the specified
name (if used) are to be dumped.

Ml-system-object-type-in-hex: Enter the hexadecimal value that specifies
the type of Ml system objects to be dumped. The following table shows the
Ml system objects and their hexadecimal type codes. The value must be
specified with both characters, but it does not have to be enclosed in
apostrophes.

Ml Type
Ml System Object Code

Access group 01

Program 02

Context (library)1 04

User profile1 08

Queue OA

Data space OB

Data space index oc
Cursor OD

Index OE

Logical unit (device) description 1 10

Network (line) description1 11

Controller (control unit) description1 12

Space 19

Process control space 1A

1 If this object is specified for TYPE, then
CONTEXT(*MCHCTX) must also be specified.

SUBTYPE Parameter: Specifies the subtype of the specified Ml objects to be
dumped, or specifies that all subtypes are to be dumped.

*ALL: All the subtypes of the specified Ml objects are to be dumped.

Ml-system-object-subtype-in-hex: Enter the specific subtype of the Ml
system objects to be dumped. The subtypes are in the range of 00 through
FF. However, the subtype specified must be for an Ml object actually in the
specified context. If TYPE(*ALL) is specified, a specific subtype cannot be
specified.

DMPSYSOBJ
TYPE

Command Descriptions 4-667

DMPSYSOB.J
OBJTYPE

4-668

OBJTYPE Parameter: Specifies the object type of CPF objects that are to
have their associated Ml system objects dumped. If OBJTYPE is specified,
neither TYPE nor SUBTYPE can be specified.

*ALL: The specified Ml objects of all CPF object types are to be dumped.

CPF-object-type: Enter the specific CPF object type that is to have its
associated Ml system objects dumped. (For a list of the valid object types
that can be specified, see the chart in the expanded description of the
OBJTYPE parameter in Appendix A.)

OFFSET Parameter: Specifies a list of values to be used as offsets to
indirectly address a single object that is to be dumped. The values must be
positive hexadecimal values or zeros that, when added to a pointer, result in
valid addresses. If an offset of zero is added to a system pointer, the result
is a space pointer to the start of the space associated with the object that is
addressed by the system pointer. (In this discussion, the associated space
of a space object is the space itself.)

Note: The OFFSET and SPACE parameters cannot be specified if *ALL or a
generic object name is specified for the OBJ, TYPE, SUBTYPE, or OBJTYPE
parameters.

*NONE: No offset is being specified. The object located through the
context is dumped.

offset-value: Enter the list of offsets to pointers that are used to address
the object or space to be dumped. The values specified in this parameter
are used as follows:

1. The first offset is added to a space pointer that points to the
associated space of the object located through the context. The result
is a space pointer that points to a location further into the space.
a. If only one offset value is specified in this parameter, step 2 is not

performed and the dump, as indicated by the rest of the parameters
in the command, is taken.

b. If more than one offset is specified in this parameter, step 2 is
repeated for each additional offset given·.

2. Regarding the location pointed to by the space pointer produced in the
previous step:
a. If the location does not contain another pointer, the command is

terminated, an error message is sent to the user, and no dump is
taken.

b. If the location contains a space pointer, the (next) offset is added to
it. The result is another space pointer that points to either the same
or a different space or associated space.

c. If the location contains a system pointer, the associated space
pointer is set from the system pointer, and the (next) offset is
added to the space pointer. The result is· a space pointer that
points to a location in the associated space of the object addressed
by the system pointer.

The result of step 2b or 2c is a space pointer that is used to perform step 2
again if there is another offset. If the last offset has been used, the final
result is a location contained in a space pointer that is used as follows:

• If the resulting location contains a system pointer and the SPACE
parameter is not specified, the system object pointed to by the system
pointer is dumped. If the SPACE parameter is specified, the SPACE
specification determines the portion of the system object that is to be
dumped.

• If the resulting location contains a space pointer and the SPACE
parameter is not specified, the portion of the space that starts at the
location pointed to by the space pointer is dumped. If the SPACE
parameter is specified, the SPACE specification determines the portion of
the space to be dumped.

The following chart shows the offsets into the process control space (PCS)
at which there are pointers to the (other) components of a job structure. If
one of these offsets is specified, OBJ(*PCS) must be specified or assumed.

Object (Descriptive Name and
Abbreviation) Object Name Offset

Data management communications queue QDMDMCQ 20
(DMCQ)

Job message queue (JMQ) QJOBMSGQ FO

Job temporary context (QTEMP) QTEMP 40

Ml response queue (MIRO) (none) 80

Process definition template (PDT) PDT 60

Process automatic storage area (PASA) PASA 60 EO

Process static storage area (PSSA) PSSA 60 FO

Process access group (PAG) PAG 60 100

Spooling control block (SCB) QSPSCB 100

Work control block table (WCBT) QWCBT 10

DMPSYSOBJ
OFFSET

Command Descriptions 4-669

DMPSYSOB.J
SPACE

4-670

SPACE Parameter: Specifies the area of a space or associated space to be
dumped. The space is pointed to by the final pointer determined by the
OFFSET parameter. If the OFFSET parameter is not specified, the final
pointer is a system pointer to the specified object in the context. (See Note
in the OFFSET parameter des'cription.)

*: If the final pointer is a system pointer, the object pointed to by that
pointer is dumped. If the final pointer is a space pointer, the portion of the
space that starts at the location pointed to by that pointer is dumped.

offset-value: Enter the value to be added to the final pointer to point to the
beginning of the area to be dumped. The value specified must be a positive
hexadecimal value or zero and, when added to the final pointer, must result
in a valid address.

*: The rest of the space pointed to as a result of the offset value is to be
dumped.

length: Enter a positive hexadecimal value that specifies the length of the
area to be dumped. If the length specified is greater than the actual length
of the space, only the actual space available is dumped.

Examples

DMPSYSOBJ CONTEXT(QTEMP) TYPE(OE)

This command dumps the contents and attributes of all the indexes in the
temporary job context to a spooled output file for printing. Ml indexes are
identified by the type code OE.

DMPSYSOBJ OBJ(WS1) CONTEXT(*MCHCTX) OBJTYPE(*DEVD)

This command dumps the device description for work station WS1, which is
stored in the machine context.

DMPSYSOBJ OBJ(*PCS) SPACE(O 2AO)

This command dumps the work control block from the space associated
with the process control space for the job.

DMPSYSOBJ OBJ(*PCS) OFFSET(60 EO 10 10) SPACE(O 20)

This command dumps the second invocation entry of the process automatic
storage area (offset 60 EO) for a length of 32 bytes (SPACE(O 20)). If the
third invocation level were to be dumped, OFFSET(60 EO 10 10 10) would
be specified.

•..

DMPTAP (Dump Tape) Command

The DMPTAP (Dump Tape) command dumps label information or data
blocks or both from standard labeled or nonlabeled magnetic tape to a
spooled printer file named QPTAPDMP. This command allows you to dump
one or more data files from the tape volume, writing the information to a
print file.

The tape volume to be dumped must be mounted on the specified device.
After the DMPTAP command is entered, as much of the tape as necessary
is read before the requested information is printed.

Data files on secured tapes can be dumped by the security officer only; any
user can dump label information on secured tapes.

The defaults are such that execution of the DMPTAP command with
defaults results in the printing of the tape label areas and a minimal amount
of data from the first file. This command can help determine the record
format of a nonlabeled tape data file, or to determine the exact contents of
all label information for a labeled data file.

DMPTAP-DEV device-name--------------------------

-(
•MOUNTED

>-VOL

volume-identifier

•LAST'----------'911.
•FIRST ~+ONLY

(D start-file-sequence-number end-file-sequence-number
>-SEQNBR

•ALL,------------------------~
+SEARCH----------------------~

TYPE~::~-~---.....

+HDRLBL

+DTABLK
+TLRLBL

3 maximum

•FIRST~=~~'-----.-.

Required

Optional

>-DTABLK
start-data-blockJ ~end-data-block
+ALL------------------/

+LAST--------------~

®-(•YBS)-+
VOLLBL

•NO

-(
•BBCDIJ-- -f_>lllU!WIND ~

>-CODE ENDOPT >11LBAVB--.---

>11.ASCII •UNLOAD

© SEQNBR(+SEARCH) and LABEL(•NONE) are mutually exclusive.
@TYPB(•NONB) and VOLLBL(•NO) are mutually 8%Cluaive.

Jab:B,I Pcm:B,I

DMPTAP

Command Descriptions 4-671

DMPTAP
DEV

4-672

DEV Parameter: Specifies the name of the tape device where the labeled or
nonlabeled volume to be dumped is mounted.

VOL Parameter: Specifies the volume identifier of the labeled tape to be
dumped, or indicates that any mounted tape reel is to be dumped.

*MOUNTED: Specifies that any labeled or nonlabeled volume mounted on
the specified device is to be dumped. Note that VOL(*MOUNTED) and
LABEL(*NONE) must be specified to dump a nonlabeled volume.

volume-identifier: Enter the identifier of the labeled volume to be dumped.
This value can be specified only for dumping a labeled volume. If the
mounted tape has a different volume identifier than specified or is a
nonlabeled volume, an error message is sent to the user of the DMPTAP
command and the tape is not dumped.

SEQNBR Parameter: Specifies the range of sequence numbers for the data
files that should be dumped. If SEQNBR(*ALL) is specified, then all data
files on the tape are dumped. If a range of sequence numbers is specified,
then only data files in that range of data file sequence numbers are dumped.
Note that the data files dumped may be further restricted using the LABEL
parameter.

The sequence number for a labeled tape data file is stored on labels that
precede and follow the data in the file. For a nonlabeled volume the data
file sequence number is determined by the number of tape marks from
beginning of tape.

*FIRST: The range of data files to be dumped should begin with the first
file on the tape volume (regardless of its sequence number).

start-file-seqnbr: The range of data files to be dumped should begin with
the data file with the specified sequence number. Enter a number that is
less than or equal to the end-file-seqnbr value.

[

*ONLY: Only a single data file (specified by the start-file-seqnbr) will be
dumped.

*LAST: The range of data files to be dumped should proceed from the
start-file-seqnbr data file to last data file on the end of the reel.

end-file-seqnbr: The range of data files to be dumped should end with the
specified sequence number data file. Enter a number that is greater than or
equal to the start-file-seqnbr.

*ALL: All data files on the mounted volume should be dumped.

*SEARCH: The mounted volume is searched for a data file with an identifier
that matches the LABEL parameter value; when a match is found, the data
file is dumped. If VOLLBL(*NO) is specified and the last operation on the
device specified ENDOPT(*LEAVE) (the tape is positioned at the location at
which the last operation terminated), the file search begins with the first
data file beyond the current tape position. If VOLLBL(*YES) is specified or
ENDOPT(*LEAVE) was not used for the last operation (or if the tape was
manually rewound since an ENDOPT(*LEAVE) operation), the search begins
with the first data file on the volume. SEONBR(*SEARCH) is not valid when
LABEL(*NONE) is specified, and cannot be used to dump a nonlabeled tape
volume.

LABEL Parameter: Specifies the identifier of the specific data files that should
be dumped. The file identifier for a tape data file is stored on labels that
precede and follow the data in the file.

*NONE: All data files on the mounted volume in the specified SEONBR
range will be dumped. Note that VOL(*MOUNTED) and LABEL(*NONE)
must be used to dump a nonlabeled tape volume.

file-identifier: Enter the data file identifier (17 alphameric characters
maximum) of the data files to be dumped. The system will compare the
LABEL identifier with the data file identifier on the labels of each file in the
range specified by the SEQNBR parameter. All data files with an identifier
that matches the LABEL identifier are dumped; any data file with an
identifier that does not match the LABEL identifier is not dumped.

generic*-/abel-file-identifier: Specifies a character string for a generic label
identifier (17 alphameric characters maximum), which contains at least one
character followed by an asterisk ('*'). Any tape file that has a file identifier
with the same prefix as the generic data-file-identifier will be dumped.

DMPTAP
LABEL

Command Descriptions 4-673

DMPTAP
TYPE

4-674

TYPE Parameter: Specifies the type of information that is to be dumped. The
dump may consist of the data file header labels or trailer labels (for a
labeled tape volume only), data blocks from the data portion of the file, or
all three types of information. If a nonlabeled tape volume is mounted, only
*BASIC, *ALL, or *DTABLK can be specified or an error message is sent to
the user of the DM PT AP command and the volume is not dumped.

*BASIC: For a standard-labeled volu~e. the dump includes header labels
and the data blocks specified by the DTABLK parameter value. For a
nonlabeled volume, only the data blocks (DTABLK parameter) are dumped.

*ALL: For a standard-labeled volume, the dump includes header labels,
trailer labels, and data blocks. For a nonlabeled volume, TYPE(*ALL) dumps
only data blocks (since there are no labels).

*NONE: No data file is to be dumped. If TYPE(*NONE) is specified, the
tape volume to be dumped must be labeled, and VOLLBL(*NO) cannot be
specified, or an error message is sent to the user of the DMPTAP
command.

*HDRLBL: The data file header labels should be dumped. Header labels
immediately precede the data in the file to which they apply. All header
labels for the specified data files will be dumped, including user-specified
header labels (if any exist). TYPE(*HDRLBL) is not valid for nonlabeled
volumes.

*DTABLK: One or more data blocks from the file data should be dumped.
The blocks within the data file that should be dumped are specified by the
DTABLK parameter value.

*TLRLBL: All data file trailer labels should be dumped. Trailer labels
immediately follow the data in the file to which they apply. All the trailer
labels for the specified data files will be dumped, including user-specified
trailer labels (if any exist). TYPE(*TLRLBL) is not valid for nonlabeled
volumes.

""-. ..

r,
l /

DTABLK Parameter: Specifies which data blocks should be dumped. This
parameter is used to limit the amount of tape file data dumped to the
printer. If neither TYPE(*BASIC) nor TYPE(*ALL) is specified and the TYPE
parameter value does not include *DTABLK, this parameter is ignored.

*FIRST: The data blocks to be dumped should begin with the first block in
the data file.

start-data-block: Enter the number of the first data block within each file to
be dumped. If this number is greater than the number specified for the
end-data-block portion of the DTABLK parameter, an error message is sent
to the user who requested the dump, and the tape is not dumped. If the
start-data-block value is larger than the actual number of data blocks in the
data file, then the last data block in the file is dumped (with no error
messages).

*ONLY: Only the data block specified by the first part of the DTABLK
parameter is to be dumped.

*LAST: The range of data blocks to be dumped should proceed from the
data block specified by the start-data-block value to the last block in the
file.

end-data-block: Enter the number of the last data block within each file to
be dumped. If this number is less than the number specified for the
start-data-block part of the DTABLK parameter, an error message is sent to
the user who requested the dump, and the tape is not dumped. If the
end-data-block value is larger than the actual number of data blocks in the
data file, then all blocks from the start-block number to the end of the file
are dumped (with no error messages).

*ALL: All data blocks in the specified data file(s) on this volume should be
dumped. If a data file is continued from another volume or continues onto
another volume, only the part of the data file that is stored on this volume
will be dumped.

*LAST: Only the last data block in the data file is to be dumped.

DMPTAP
DTABLK

Command Descriptions 4-675

DMPTAP
VOLLBL

4-676

VOLLBL Parameter: Specifies whether volume labels are to be dumped. This
parameter is ignored for nonlabeled volumes.

*YES: All volume labels (including user-specified labels) are to be dumped.

*NO: No volume labels are to be dump.ed; the volume listing does,
however, include the volume identifier of a labeled volume and other basic
information for any dumped tape.

CODE Parameter: Specifies the type of character code used for the data
recorded on the tape. For a labeled volume, the CODE parameter is ignored
because the tape labels determine whether the data is recorded in EBCDIC
or ASCII character code.

*EBCDIC: The tape contains data in the EBCDIC character code. The
dump output will contain the hexadecimal value and the EBCDIC character
equivalent of each data byte.

*ASCII: The tape contains data in the ASCII character code. The dump
output will contain the hexadecimal value and the ASCII character equivalent
of each data byte.

ENDOPT Parameter: Specifies whether the tape should be rewound, left
positioned where the dump ends, or rewound and unloaded after it has
been dumped.

*REWIND: The tape is to be rewound after it has been dumped.

*LEAVE: The tape is to be left wherever it is positioned when the dump is
completed. If an error is encountered during the dump, *LEAVE is ignored
and the tape is rewound when the dump is completed or before the next
tape operation starts.

*UNLOAD: The tape is to be rewound and unloaded after it has been
dumped.

Example

DMPTAP DEV(QTAPE2) SEQNBR(5) TYPE(*DTABLK) DTABLK(3 7)

This command will dump information from the tape volume mounted on
device QTAPE2. Data blocks 3 through 7 within the data file specified by
sequence number 5 will be dumped to a print file.

[

DO (Do) Command

The Do (DO) command provides for grouping commands within a CL
program; it is used with the ENDDO command to identify a group of
commands that are to be executed together as a group. Typically, the DO
command specifies the beginning of a group of commands that are to be
executed as a r~sult of a decision made by the execution of an IF command.
(However, the DO command does not have to be associated with an IF
command.) When used with an IF command, the DO command can be
either the true part of the decision (that is, the value of the THEN parameter
of the IF command), or the false part of a decision (on the ELSE command).
Every do group must be terminated by the ENDDO command. Do groups
can be nested within other do groups, but each group must have an ENDDO
command to terminate its level of nesting.

Restrictions: This command is valid only within a CL program. A maximum
of 10 levels of do groups can be nested within each other.

DO--

There are no parameters for this command.

Examples

DO

• (group of control language commands)

ENDDO

The commands between the DO and ENDDO commands are executed once,
as a group of commands.

If &SWITCH DO

• (group of CL commands)

ENDDO

The commands between the DO and ENDDO commands are executed if the
value in the logical variable &SWITCH is '1'. If &SWITCH is not '1', then
control passes immediately to the next command following the ENDDO
command.

DO

Command Descriptions 4-677

DSNDFUAPP

4-678

DSNDFUAPP (Design DFU Application) Command

The Design DFU Application (DSN DFUAPP) command begins the DFU
prompting sequence for interactive definition and management of a DFU
application. The Data File Utility is part of the IBM System/38 Interactive
Data Base Utilities Licensed Program, Program 5714-UT1. For more
information on the Data File Utility, refer to the IBM System/38 DFU
Reference Manual and User's Guide, SC21-7714.

Optional

-(
•PRV

DSNDPUA.PP-A.PP -(•LIBL y•----------. ...
application-name •

.library-name

-(
•SBLBCT

>-OPTION J----
flrat-menu-option[second-menu-option]

APP Parameter: Specifies the qualified name of the DFU application.

*PRV: The qualified name of the application used during your last DFU
session is to be used.

jJob:I Pam:I

application-name: Specify the name of the DFU application to be designed.

OPTION Parameter: Specifies the options you intend to use from the first
two DFU displays (the second display to be presented is dependent upon
your option selection from the first display). If you preselect the options on
this· parameter, DFU will skip the displays and will present the next logical
display.

*SELECT: The first two DFU displays will appear in sequence with the
options you use to define or manage a DFU application.

first-menu-option: Enter one of the three options from the DFU menu
display. Possible options are:

1 - Create or change an application

2 - Execute an application

3 - Manage existing applications

"~ ___ /

[i

[second-menu-option]: Enter one of the options from the selected second
menu. Possible second menus and their options are as follows:

DFU Create/Change Menu (option 1)

1 - Display information about an application

2 - Create a new application

3 - Change an existing application

4 - Delete an existing application

DFU Execution Menu (option 2)

1 - Display information about an application

2 - Change data (add, delete, change, or verify records)

3 - Display data (display data base records)

DFU Management Menu (option 3)

1 - Display information about an application

2 - Rename or move an application

3 - Add or remove application users

4 - Change application owner

Example

DSNDFUAPP APP(DATA.LIB1)

This command calls the displays associated with the application named
DATA in library LIB1.

DSNDFUAPP
(Example)

Command Descriptions 4-679

DSNFMT

4-680

DSNFMT (Design Format) Command

The Design Format {DSNFMT) command requests the SDA (Screen Design
Aid) and displays the initial SDA display {SDA option menu).

The Screen Design Aid is part of the IBM System/38 Interactive Data Base
Utilities Licensed Program, Program 5714-UTl. For more information on the
Screen Design Aid, refer to the IBM System/38 SDA Reference Manual and
User's Guide, SC21 - 7755.

Optional

-{_
QDDSSRC.•LIBL

DSNFMT --- SRCFILE _ •LIBL)------------

source-file--name--{ };

··.library-nameJ

>- SRCMBR---(•SELECT '------------------------------------•

___source-file-member-name __ /

>- OBJLIB --{_ QGPL ~---.
object-Ii brary-name

{
~QBATCH.•LIBL

>-JOBD- .•LIBL }----------

job-description-name--()--./

,___ .Iibrary-···name -'

r Job: I Pgm:J

Note: All parameter values can be changed later during SDA execution.

SRCFILE Parameter: Specifies the qualified name of an existing source file
that contains source file members to be updated or to which new source file
members will be added.

QDDSSRC: The DDS source file QDDSSRC is assumed if the SRCFILE
parameter is not specified. {If no library qualifier is specified, *UBL is used
to find the file.)

qualified-'source-fi/e-name: Enter the qualified name of an existing source
file to be used by SDA. {If no library qualifier is specified, *UBL is used to
find the file.)

\-,""'-

[

SRCMBR Parameter: Specifies the name of a new or existing source file
member that contains or will contain DDS for the display formats or the
control language for a menu to be updated or created by SDA.

*SELECT: If the SRCMBR parameter is not specified, a source file
member name is not displayed on the design record format menu. The
member list display is displayed next. The SRCMBR value can be entered
on the member list display or when the design record format menu is
redisplayed.

source-file-member-name: Enter the name of the source file member to be
created or updated.

OBJLIB Parameter: Specifies the name of the library into which programs
and display device files that are created by SDA will be stored.

QGPL: If the OBJUB parameter is not specified, objects created by SDA
will be stored in library QGPL.

object-library-name: Enter the name of the library into which objects
created by SDA are to be stored.

JOBD Parameter: Specifies the qualified name of the job description to be
used with jobs being submitted to SDA.

QBATCH.*LIBL: If the JOBD parameter is not specified, the job
description QBATCH is to be used with submitted jobs. (If no library
qualifier is specified, *UBL is used to find the job description.)

job-description-name: Enter the qualified name of the job description to be
used with submitted jobs. (If no library qualifier is specified, *UBL is used
to find the job description.)

Example

DSNFMT

This command requests the initial SDA option menu. From this menu, you
can select SDA functions to design display record formats, to design a
menu, or to test a record format. With this command execution, all
parameter defaults are taken. Once the source statements for a menu or a
record format have been generated, you may wish to change one of the
default parameter values. To change values, use the SAVE DDS/CREATE
DISPLAY DEVICE FILE display. For more information, refer to the Screen
Design Aid Reference Manual and User's Guide.

DSNFMT
SRCMBR

Command Descriptions 4-681

DSNQRYAPP

4-682

DSNQRYAPP (Design Query Application) Command

The Design Query Application (DSNQRYAPP) command begins the query
prompting sequence for interactive definition and management of a query
application. The Query Utility is part of the IBM System/38 Interactive Data
Base Utilities Licensed Program, Program 5714-UT1. For.more information
on the Query Utility, refer to the IBM System/38 Query Utility Reference
Manual and User's Guide, SC21-7724.

. Optional

-(
•PRV

DSllQRf.APP-APP -(.•LIBL y~-------------+•
application-name

. . .Ubrar,v_;name

-(
•SILBCT .

>-OPTION . J'W----
tir•t-menu-optlon[Hcond-menu-optlon]

j.Job:I Pam:I

APP Parameter: Specifies the qualified name of the query application.

*PRY: The qualified name of the application used during your last query
session is to be used.

application-name: .Specify the name of the query application to be designed.

OPTION Parameter: Specifies the options you intend to use from the first
two query displays. If you preselect the options on this parameter, Query
will skip the displays and will present the next logical display.

*SELECT: The first two query displays will appear with the options you
use to manage or define a query application.

first-menu-option: Enter one· of the three options from the query menu. The
resulting menu will be displayed next. Possible options are:

1 - Create or change a query

2 - Execute queries and display output

3 - Manage existing queries

[second-menu-option]: Enter one of the four options from the selected
second menu. Possible second menus and their options are as follows:

Query Create/Change Menu (option 1)

1 - Display information about a query

2 - Create a new query

3 - Change an existing query

4 - Delete an existing query

Query Execution and Report Menu (option 2)

1 - Display information about a query

2 - Submit a query for execution

3 - Display status of queries submitted for execution

4 - Display output at work station from last execution

Query Management Menu (option 3)

1 - Display information about a query

2 - Rename or move a query

3 - Add or remove query users

4 - Change query owner

Example

DSNQRYAPP APP(QDATA.LIB1)

This command calls the displays associated with the query named QDATA
in library LIB 1.

DSNQRYAPP
(Example)

Command Descriptions 4-683

DSPACTJOB

4-684

DSPACT JOB (Display Active Jobs) Command

The Display Active Jobs (DSPACTJOB) command displays performance and
status information for the active jobs in the system.

DSPACTJOB----OUTPUT -(• ~RBSBT-(•NO "--

Optional

•LIST J •TBBJ
j Job1B,I PpuB,I

OUTPUT Parameter: Specifies whether the output from the command is to
be displayed at the requesting work station or listed with the job's spooled
output on a printer. (Refer to Appendix A for an expanded description of
the OUTPUT parameter, and to Appendix D for the name of the file(s) used
by this command.)

*: The output is to be displayed (if requested by an interactive job) or listed
with the job's spooled output (if requested by a batch job).

*LIST: The output is to be listed with the job's spooled output on a printer.

RESET Parameter: Specifies whether the active job statistics are to be reset.

*NO: The active job statistics are not to be reset. The measurement time
inter'Val is extended (similar to pressing CF5) if a previous display active jobs
command has executed in the current job. All active jobs are displayed.

*YES: The active job statistics are to be reset. A measurement time interval
of zero is used (similar to pressing CF7). All active jobs are displayed.

Example

DSPACT JOB OUTPUT(* LIST)

This command directs the active job information to the job's spooled output
on a printer. If OUTPUT(*) is specified instead and the command was
entered from a work station. the information about the active jobs is
displayed at the work station.

"-

r

Additional Considerations

The display produced by the DSPACT JOB command has the following format
when initially presented on the work station:

XX/XX/XX XX:XX:XX
El~psed: XX:XX:XX

ACTIVE JOBS DISPLAY

SBS/JOB TYP PL PTY CPU
xxxxxxxxxx xxx xx xx xxxxx.x

xxxxxxxxxx xxx xx xx xxxxx.x

-------ELAPSED------­
INT RSP AUXIO CPU
XXX XXX.X XXXXX XX.XI.
XXX XXX.X XXXXX XX.XI.

CPU: XX.XI.
Active jobs:

FUtlCTIOll
x-xxxxxxxxx
x-xxxxxxxxx

xx xx
STS
xxxxx
xxxxx

1-DSPJOB 2-Spl files 3-HLDJOB 5-Inv stack 6-RLSJOB 7-Locks
8-Exclude 9-CNLJOB CFS-Redisplay Cf6-Restart CF7-Reset CF8-DSPSYSSTS

The first line of the active jobs display gives the current system date and time
and the CPU utilization during the elapsed time.

The current system date and time is the time either when the display is first
presented (after the DSPACT JOB command is entered) or when it is
redisplayed with updated statistics (after CF5, CF6, or CF7 key is pressed).

The percent of CPU time used by the system during the elapsed time (CPU)
compares the total amount of CPU time used during the elapsed time to the
elapsed time. This field is normally higher than the sum of the CPU
percentages used by the active jobs displayed because it includes CPU used by
system overhead, excluded jobs, and jobs that have ended during the
measurement time interval. This field is zero when the elapsed time is zero.

The second line gives the elapsed time and the number of active jobs.

The elapsed time (Elapsed) is the amount of time that has elapsed between the
measurement start time and the current system time. This field is presented in
hours, minutes, and seconds. This field is zero when the display is initially
requested or when the display is reset (CF7 is pressed). A reset is forced if the
elapsed time is negative (the system date/time has been set back) or is greater
than approximately 100 hours.

The number of active jobs (Active jobs) is the current number of jobs active in
the system, including both user and system jobs, to be printed or displayed (if
no jobs have been excluded from the display).

DSPACTJOB
(Considerations)

Command Descriptions 4-685

DSPACTJOB
(Considerations)

4-686

The remainder of the display gives a list of all jobs that are currently active in
the system. All information is gathered on a job basis (as opposed to routing
step). The jobs are ordered on the basis of the subsystem they are executing
in. Jobs that execute in a subsystem (autostart jobs, interactive jobs, batch
jobs, readers, and writers) are alphabetized by job name and indented under
the subsystem monitor job field they are associated with. Subsystem monitors
(with the jobs in the subsystem grouped under each monitor job) are
alphabetized and presented before system (SYS) jobs. The system jobs (start

. CPF, system arbiter) are alphabetized by job name and presented after the
subsystem monitors and jobs within the subsystems. For each active job in the
system the following information is displayed:

• Simple job name (SBS/JOB): The simple job name of the active job. Jobs
that execute in a subsystem (autostart jobs, interactive jobs, batch jobs,
readers, and writers) are indented two positions under the subsystem
monitor job field .they are associated with. The indentation shows the jobs
that are 'contained' in a subsystem. Subsystem monitors and system jobs
are not indented.

• Job type (TYP): The type of the active job. The identifiers for job types are
as follows:

ASJ (autostart)
BCH (batch)
INT (interactive)

- RDR (reader)
SBS (subsystem monitor)
SYS (system)
WTR (writer)

• System pool identifier (PL): The system-related pool identifier that the job's
main storage is allocated from. These identifiers are not the same as those
specified in the subsystem description, but are the same as the system pool
identifiers shown on the system status display.

• Execution priority (PTY): The execution priority of the job. System jobs
(subsystem monitors, system· arbiter, start CPF) with an execution priority
higher than priorities allowed for user jobs will display a priority of 0 (a
lower number indicates a higher priority).

• Total CPU time used (CPU): The total CPU time used by the job expressed
in seconds.

['

• Elapsed number of interactions (INT): The number of operator interactions
(enter or CF key pressed) during the measurement time interval. This field
will be blank for jobs that have no interactions (job types other than
interactive) and the console job.

• Average response time (RSP): The average system response time over the
measurement time interval, expressed in seconds. The transmission line
time is not included. This field will be blank for jobs that have no
interactions (job types other than interactive) and the console job.

• Elapsed number of auxiliary storage 1/0 operations (AUXIO): The number of
auxiliary storage read and write operations the job has made during the
measurement time interval. This includes both data base and non-data base
paging.

• Percent CPU used (CPU): The percent of CPU time attributed to this job
over the elapsed time compared to the measurement time interval.

• Function (FUNCTION): The high level function being performed by the job.
This field will be blank when a logged function has not been performed.
The first character of this field indicates what the characters that follow the
hyphen represent:

C - command. The command name will be a command executed
interactively, in a batch job stream, or requested from a system menu
(QCALLMENU will not log the functions it performs). Commands in CL
programs will not be logged.

P - program. The program name will be the high level program called
interactively, a program called in a batch job stream, the initial program
specified in the user profile, or the name of a system request processor
(QMNSYSRQ, QOPRMENU, QPGMMENU, or QCALLMENU). If the high
level program does a transfer control, it will remain in the function field
even though it is no longer in the program stack.

L - message queue. The message queue being produced or copied to a
data base file. The previously logged value is replaced when the logging
is finished.

QHST - QHST is being logged to a DB file.

QSRV - QSRV is being logged to a DB file.

QCHG - QCHG is being logged to a DB file.

DSPACTJOB
(Considerations)

Command Descriptions 4-687

DSPACTJOB
(Considerations)

4-688

* - special value (previous log value replaced on completion).

JOBLOG - joblog is being produced.

DUMP - a dump is in progress.

ADLACT JOB - auxiliary storage is being allocated for the number of
active jobs specified in the QADLACTJ system value. This may
indicate that the system value for the initial number of active jobs was
set too low. (See Chapter 19 of the Programmer's Guide.)

ADLTOT JOB - auxiliary storage is being allocated for the number of
jobs specified in the QADLTOTJ system value. (See Chapter 19 of the
Programmer's Guide.)

CMDENT - the command entry display is being used.

• Status (STS): The status of the job. Only one status is displayed per job. A
blank status represents a job that is in transition. If the hold job, release
job, or cancel job functions are executed against a job through the active
jobs display, the job is identified with *HLD, *RLS, or *CNL in this field.
Possible status values listed in order of precedence are:

CNL. The job has been canceled with the *IMMED option or delay time
has expired with the *CNTRLD option.
HLD. The job is held.

- SRQ. The job is the inactive half of a system request job pair.
- LCKW. The job is waiting for a lock.
- EVTW. The job is waiting on an event.
- DEQW. The job is waiting on a dequeue operation.
- DEQA. The job is waiting on a dequeue operation in the pool activity

level.
EXC. The job is currently executing in the pool activity level.
INEL. The job is ineligible and not currently in the pool activity level.

You can update the statistics on the Active Jobs Display by pressing the CF5
key. This causes the previous start time to continue to be used as the start
time for the new measurement interval. Jobs that have been excluded will
remain excluded. (This is similar to the command being entered again with
RESET(*NO) specified.)

You can restart the display by pressing the CF6 key. This causes the start time
for the new measurement interval to be set to the previous display time
(shown on line 1 of display). The measurement time interval is the amount of
time that has elapsed between the time the previous display was presented
and the time CF6 was pressed. Jobs that have been excluded will remain
excluded.

You can reset the display by pressing the CF7 key. This causes the start time
to be set to the current time. The measurement time interval will be zero and
elapsed fields will contain zero, and excluded jobs will be added. The
beginning of the list of jobs will be displayed (this has the same effect as
reentering the command with RESET(*YES) specified.)

If more active jobs exist than will fit on one display, a single plus sign (+)

appears to the right of the last job displayed. The roll keys can be used to
view the additional jobs. When CF5 or CF6 is pressed an attempt is made to
show the same set of jobs that had previously been displayed. The job that
was previously at the top of the display will be in the new set of jobs
displayed (if it is still active). If the job that was at the top of the display has
finished, the job that would appear after it in the presentation order will be in
the new set of jobs displayed. The beginning of the list of active jobs is
displayed if the job that was at the top of the display has finished and no job
would have appeared after it in the presentation order.

An input field (to the left of each job name) can be used to enter any one of
the numbers shown at the bottom of the display. When the enter key is
pressed, the function associated with the entered number is performed for that
job. If numbers are placed in the input fields preceding several jobs before the
enter key is pressed, the specified functions are performed (one at a time) on
the jobs in the order in which the jobs are shown on the display. The system
executes each command using the default values of all of its parameters. The
following functions can be specified:

1-DSPJOB: The display job menu is presented from which several
displays can be selected to show the job's definition and
execution attributes, the job's status, and the job's spooled
output files. When this option is selected for a spooling
reader or spooling writer job, the DSPRDR or DSPWTR
display is presented. This option is not valid for system or
subsystem monitor jobs. Job control special authority is
required to display a job with a user name different than the
job requesting the display.

2-Spl files: The job's spooled output files are displayed. This option is
valid for all jobs. Job control special authority is required to
display spooled files of a job with a user name different than
the job requesting the display.

DSPACTJOB
(Considerations)

Command Descriptions 4-689

DSPACTJOB
(Considerations)

4-690

4-HLDJOB: The job is held, but its spooled files are not held. The
HLDRDR or HLDWTR (with OPTION(*IMMED)) command is
executed if this option is selected for a spooling reader or
spooling writer job. This option is not valid for system or
subsystem monitor jobs. Job control special authority is
required to to hold a job with a user name different than the
job requesting the display. *HLD replaces the status field if
the command was successfully executed.

5-lnv stack: The job's program invocation stack is displayed. This option
is valid for all jobs. Job control special authority is required to
display the program invocation stack of a job with a user
name different than the job requesting the display.

6-RLSJOB: The job, which must be in the held state, is released. The
RLSRDR or RLSWTR command (with OPTION(*CURRENT)) is
executed if this option is selected for a spooling reader or
spooling writer job. This option is not valid for system or
subsystem monitor jobs. Job control special authority is
required to release a job with a user name different than the
job requesting the display. *RLS replaces the status field if
the command was successfully executed.

7-Locks: The job's locks are displayed. (Data base record locks and
some types of internal lock functions are not displayed.) This
option is valid for all jobs. Job control special authority is
required to display the locks for a job with a user name
different than the job requesting the display.

8-Exclude: The job is excluded from the display. This option has no
effect on the job, only the display. Pressing CF7 will reset the
display and all active jobs will be displayed.

9-CNWOB: The job is canceled, but the spooled files produced by the job
are not canceled. A controlled cancel is performed as if the
CNWOB command were entered with all the default
parameter values assumed. The CNLRDR or CNLWTR
command (with OPTION(*CNTRLD)) is executed if this option
is selected for a spooling reader or spooling writer job. This
option is not valid for system or subsystem monitor jobs. Job
control special authority is required to cancel a job with a user
name different from that of the job requesting the display.
*CNL replaces the status field if the command was
successfully executed.

...... .

When all of the commands have been executed, the active jobs display is
reshown with no updated information. The same set of jobs will be shown
unless an error occurred during command processing; in that case, the first job
with an error is shown. Any error or completion messages are shown at the
bottom of the display. An indication of succesr.ful non-display commands will
be placed in the status field of the job the command was entered against
(*HLD, *RLS, *CNL).

If there are more jobs than can be shown on a single display, the roll keys can
be used and options can be placed in the input fields on multiple displays
before the enter key is pressed.

The CF1 key can be used to exit from the display shown above, or to exit from
a display presented as a result of executing the commands entered on the
display. The CF1 key prevents options requested for jobs (following the job
currently being displayed) from being executed .

DSPACTJOB
(Considerations)

Command Descriptions 4-691

DSPAUTUSR

4-692

DSPAUTUSR (Display Authorized Users) Command

The Display Authorized Users (DSPAUTUSR) command displays or prints
the names of the authorized system users and their passwords in alphabetic
sequence.

Restriction: Only the security officer can use this command.

DSPAUTUSR-- SEQ OUTPUT -{_
•USRPRF :J-- -{_ * ::>- Optional

•PASSWORD •LIST
j Job:B,I P11m:B,I

SEQ Parameter: Specifies that the list of system users is to be in alphabetic
sequence either by user name or by user password.

*USRPRF: The list is to be in alphabetic sequence by user profile name.

*PASSWORD: The list is to be in alphabetic sequence by password.

OUTPUT Parameter: Specifies whether the output from the command is to
be displayed at the requesting work station or listed with the job's spooled
output on a printer. (Refer to Appendix A for an expanded description of
the OUTPUT parameter, and to Appendix D for the name of the printer file
used by this command.)

*: The output is to be displayed (if requested by an interactive job) or
printed with the job's spooled output (if requested by a batch job).

*LIST: The output is to be listed with the job's spooled output on a printer.

Examples

DSPAUTUSR

This command causes the list of authorized users and their passwords to be
displayed or printed. The list will be in alphabetic sequence by user profile
name because SEQ{*USRPRF) is assumed. Because OUTPUT{*) is also
assumed, the list will be displayed or printed depending on whether the
command was submitted at a work station or as part of the batch input
stream.

DSPAUTUSR SEQ{*PASSWORD) OUTPUT(*LIST)

This command causes the user profile names and the associated passwords
of the authorized users of the system to be printed. The listing is to be
printed in alphabetic sequence by the password.

Additional Considerations

The display produced by the DSPAUTUSR command has the following format:

XX/XX/XX
USER NAME
xxxxxxxxxx
xxxxxxxxxx

AUTHORIZED USERS DISPLAY
PASSWORD USER NAME
xxxxxxxxxx xxxxxxxxxx
xxxxxxxxxx xxxxxxxxxx

PASSWORD
xxxxxxxxxx
xxxxxxxxxx

Regardless of whether the display shows the information in alphabetic order by
user profile name or by password, the format of the display does not change.
That is, the password always appears to the right of the user profile name.

DSPAUTUSR
(Considerations)

Command Descriptions 4-693

DSPBKP

4-694

DSPBKP (Display Breakpoints) Command

The Display Breakpoints (DSPBKP) command displays the locations of all
the breakpoints currently set in the specified programs that are in debug
mode. The breakpoints and the names of the· program variables associated
with each breakpoint are displayed.

Restriction: This command is valid only in debug mode. To enter debug
mode, refer to ENTDBG (Enter Debug) Command.

DSPBKP-- OUTPUT PGM •ALL -

"LIST program-name

Optional
. -(_ • ~p ~•DFTPGM~

10 maximum l Job:B,I Pem:B,I

OUTPUT Parameter: Specifies whether the output from the command is to
be displayed at the requesting work station or listed with the job's spooled
output on a printer. (Refer to Appendix A for an expanded description of
the OUTPUT parameter, and to Appendix D for the name of the printer file
used by this command.)

*: The output is to be displayed (if requested by an interactive job) or
printed with the job's spooled output (if requested by a batch job).

"LIST: The output is to be listed with the job's spooled output on a printer.

PGM Parameter: Specifies which programs in the debugging environment are
to have their breakpoint locations and associated program variables
displayed.

*DFTPGM: Only the default program is to have its breakpoint locations
displayed.

"ALL: All the programs currently in debug mode are to have their breakpoint
locations displayed.

program-name: Enter the simple names of one or more programs that are to
have their breakpoint locations displayed. The programs specified must
already be in debug mode.

Example

DSPBKP

Assuming that MYPROG is the default program in an interactive debugging
environment, this command causes the work station to display all of the
breakpoint locations that are currently set in MYPROG. The names of all the
program variables associated with each breakpoint are also listed.

Additional Considerations

r

The DSPBKP command produces the following display, which shows the
description of all the breakpoints set in the program(s) specified on the PGM
parameter.

O XX/XX/XX XX:XX:XX BREAKPOINT DESCRIPTION
Program: XXXXXXXXXX

C) Statement: XXXXXXXXXX
Breakpoint program: XXXXXXXXXX

Library name: XXXXXXXXXX
Breakpoint at invocation level: XXXXX XXXXX
Output start pos: XXXXX Length: XXXXX Format: XXXXX

G Vari able: XX
xx
xxxxxxxxxxxxxxx

Base: XXXXXXXXXXXXXXXXXXXXXXXX

The information displayed identifies all the statements on which breakpoints
are currently set in the programs and, for each breakpoint, the names of all the
variables whose values are to be displayed when the breakpoint is reached.
(Each statement in each program can have different groups of variables
displayed.)

If more than one program is specified on the DSPBKP command, the
descriptions of all the statements defined as breakpoints in the first program
are displayed before those set in the next program are displayed. That is, for
the program named at O. all of its breakpoints identified at 0 and all of its
variables named at G are shown before another program name is shown.

Beginning at C, as many as 10 repetitions of the lines identifying program
variables can be displayed for each statement identified at B. Beginning at B,
for each statement on which a breakpoint is set in the program identified at A,
a set of lines describing the breakpoint is displayed. And as many as 10
programs can have their breakpoint information displayed successively after
one DSPBKP command is entered.

For each program, the following information can be displayed:

• The name of the program (at Ol whose breakpoints are displayed on the
following lines.

• The label name, the System/38 instruction number, or the statement
number of the statement (at Ql at which a breakpoint is set.

• If the program named at A is executed in a batch job and has a breakpoint
program specified, the breakpoint program field gives the name of the
program to which control is transferred when the breakpoint is reached. The
name of the library containing the breakpoint program is given on the next
line. (If the program shown at A has no breakpoint program specified, these
two lines are not shown.)

DSPBKP
(Considerations)

Command Descriptions 4-695

DSPBKP
(Considerations)

4-696

• If the DSPBKP command is entered interactively after the job has stopped
execution, the breakpoint at invocation level field shows the invocation
level(s) of the program (identified at A) in which job execution has stopped.

• The start, display length, and output format fields contain the common
information about the variable(s) identified on the following lines (beginning
at 8l that are to be displayed when program execution stops at this
statement (identified at B). The values displayed in these three fields are
those that were specified in the START, LEN, and OUTFMT parameters of
the ADDBKP command.

The following display is not produced by the DSPBKP command; it occurs
when a breakpoint is reached in a program being executed and debugging is
being done interactively.

XX/XX/XX XX:XX:XX BREAKPO!tff DISPLAY
Stmt/Inst: XXXXXXXXXX XXXXX
Program: XXXXXX>:XXX Inv lvl: XXXXX

Output start pos: XXXXX Length: XXXXX Format: XXXXX
Variable: XX

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx:<xxxxxxxxxxx
xxxxxxxxxxx

ease: xxxxxxxxxxxxxxxxxxxxxxxx
T~'pe: XXXXXXXXX Length: XXXXX
Dimension: XXXXX
•xxxxxxxxxxxxxxxxxxxxxxx ... '

CFl-C~ncel request CF3-Comm~nd Entry ENTER-Resume execution

line 2 identifies the breakpoint at which program execution has stopped, giving
the statement label or statement number and the machine instruction number
of the breakpoint statement. line 3 gives the name and invocation level
number of the program containing the breakpoint statement. The other lines
on the display identify all the program variables and gives their current values
(that were requested on the associated ADDBKP command) when the
breakpoint was reached. For a complete description of the displayed variable
information, refer to Additional Considerations in the DSPPGMVAR command
description.

When a breakpoint is reached, the Enter key can be used to resume program
execution, or the CF3 key can be used to display the command entry display.
Any Cl command can then be entered at that breakpoint.

r

r

If an unmonitored escape message occurs during program execution in
interactive debug mode, program execution stops and the following display of
the escape message is presented. The display gives the user a chance to take
action on the unmonitored error condition instead of letting the programs
associated with the requested function terminate in a function check because
of the error.

XX/XX/XX XX:XX:XX U~lHONITORED MESSAGE BREAKPOINT DISPLAY
Stmt/Inst: XXXXXXXXXX XXXXX
Program: XXXXXXXXXX Inv lvl: XXXXX

xxx

CFl-Cancel request CF3-Command Entry ENTER-Cont function chk

Again, line 2 identifies the statement/machine instruction number causing the
error, and line 3 indicates the program and invocation level of the program in
which the error occurred. The error message itself (first-level text only) is
shown on the following lines. The second-level text can be displayed if you
move the cursor to the message line and press the Help key.

• The Enter key can be used to allow program execution to continue, which
will result in a function check. Also, if the displayed message indicates that
data can be dumped for the displayed error, a system dump of the job
and/or message data fields is taken. (For details, see the DMPLST
parameter in the ADDMSGD command description.)

• The CF3 key can be used to get the command entry display, and then enter
any CL command (except ENDDBG or RSMBKP) to gather more information
about the error condition. For example, you can enter DSPDBG,
DSPPGMVAR, or DSPTRCDTA to view current debug status, or you can
enter DMPJOB to get a dump of the job. (To allow the function check to
continue after the command entry display has been shown, you must press
the CF1 key and then the Enter key.)

• The CF1 key can be used to cancel the last request you entered (that
caused the unmonitored escape message) .. This is equivalent to entering
CNLRQS RQSLVL(*PRV) on the command entry display.

DSPBKP
(Considerations)

Command Descriptions 4-697

DSPCLS

4-698

DSPCLS (Display Class) Command

The Display Class (DSPCLS) command displays the attributes of a class.

Restriction: You must have operational rights for the class before you can
display its attributes.

-{
,•LIBL

DSPCLS-· -CLS olu•-name .)~-------------·
· .llbra1"7-name

Raq,ulred
Optional

>-OUTPUT-{ • ~
•LIST~

'lJob:B,J P1m:B,J

CLS Parameter: Specifies the qualified name of the class that is to have its
attributes displayed. If no library qualifier is given, *LIBL is used to find the
class description. (For an expanded description of the CLS parameter, see
Appendix A.)

OUTPUT Parameter: Specifies whether the output from the command is to
be displayed at the requesting work station or listed with the job's spooled
output on a p;inte;. (Refe; to Appendix A for an expanded description of
the OUTPUT parameter, and to Appendix D for the name of the printer file
used by this command.)

*: The output is to be displayed (if requested by an interactive job) or
printed with the job's spooled output (if requested by a batch job).

*LIST: The output is to be listed with the job's spooled output on a printer.

Example

DSPCLS CLS(CLASS1) OUTPUT(*LIST)

This command directs the attributes of class CLASS1 to the job's output
spooling queue to be printed.

Additional Considerations

The display produced by the DSPCLS command has the following format:

XX/XX/XX XX:XX:XX CLASS DISPLAY

Class name: XXXXXXXXXX
Library name: XXXXXXXXXX

Execution priority: XX
Time slice in millisec: XXXXXXX
Eligible for purge: XXXX
Default wait time in sec: XXXXXXX
Max CPU time in millisec: XXXXXXX
Max temp storage in K-bytes: XXXXXXX
Text: XX

Line 1 of the class display shows the current date and time for the job. Lines 3
and 4 identify the class being displayed and the remaining lines show the
attributes of the class.

For an explanation of each class attribute shown, refer to the associated
parameter description given in the CRTCLS command description; for example,
the execution priority attribute is explained in the EXCPTY parameter.

To exit from this display and return to the working display, such as the
command entry display, programmer menu, operator menu, and so forth, press
the CF1 key. Press the CF2 key to return to the calling display.

DSPCLS
(Considerations)

Command Descriptions 4-699

DSPCMD

4-700

DSPCMD (Display Command) Command

The Display Command (DSPCMD) command displays a subset of the values
that were specified for parameters in the Create Command (CRTCMD)
command.

Required Optional

DSPCMD- CMD command-namo·{ .•LIBL ~~-- - OUTPUT --(• ~-·
.library-name_/ \~ •LIST·-'------1 l Job:B,l Pgm:B,l

CMD Parameter: Specifies the qualified name of the user-defined or
IBM-supplied command. (If no library qualifier is specified, *UBL is used to
find the command.)

OUTPUT Parameter: Specifies whether the output is to be directed to the
work station screen or to a printer.

*: The command attributes are to be displayed at the work station. If the
command is executing in batch mode, the attributes are to be printed on a
printer.

*LiSi: The command attributes are to be printed on a printer.

Example

DSPCMD CMD(PAYROLL)

This command displays at the work station all current user-assigned
parameter values for the user-defined command PAYROLL.

Additional Considerations

The display produced by the DSPCMD command has the following format:

XX/XX/XX XX:XX:XX COMMAND DISPLAY
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx

Command name: XXXXXXXXXX Library:
Program to execute command: PGM

Library nnme:
Source file name:

Library name:
Source member name:
Validity checking program:

Library name:
Mode i~ which valid:

Where allowed to execute:

Max positional parameters:
Message file for prompt text:

Library name:
Message file name:

Library name:
Text description:
xxxxxxxxxxxxxxxx

SRCFILE

SRCMBR
VLOCKR

MOOE

ALLOW

MAXPOS
PMTFILE

MSGF

TEXT

xxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

All attributes but the PUBAUT parameter are displayed, in the same order as
the parameters appear in the CRTCMD command. For an explanation of the
parameters and values, refer to the CRTCMD command description.

DSPCMD
(Considerations)

Command Descriptions 4-701

DSPCNPA

4-702

DSPCNPA (Display CSNAP Attributes) Command

The Display CSNAP Attributes (DSPCNAP) command is used to display the
CSNAP (communications statistical network analysis procedure) short-term
statistics attributes that are currently set in the system.

Optional

DSPCNPA--- OUTPUT _j " ~
_ •LISTJ l Job:B,I Pgm:B,I

OUTPUT Parameter: Specifies whether the attributes are to be displayed at
the work station or listed on the printer.

*: The CSNAP short-term statistics attributes are to be displayed at the
work station. When a batch job uses the * default, the attributes are listed
on the printer.

*LIST: The CSNAP short-term statistics attributes are to be listed on the
printer.

Examples

DSPCNPA OUTPUT(*)

This command displays the CSNAP short-term statistic attributes on the
device at which the command was entered.

DSPCNPA OUTPUT(*LIST)

This command lists the CSNAP short-term statistics attributes on the
printer.

['

Additional Considerations

The DSPCNPA command produces the following display:

XX/XX/XX XX:XX:XX CSNAP
Line names:

xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx

Period for recording:
Start time/date:
End time/date:

Sampling interval in hours:

ICNPJ ATTRIBUTES
LIME XXXXXXXXXX

xxxxxxxxxx xxxxxxxxxx
xxxxxxxxxx xxxxxxxxxx

PERIOD
XX:XX:XX XX/XX/XX
XX:XX:XX XX/XX/XX

INTERVAL XX.XX

The display shows the current CSNAP attributes, as they were originally set in
the system or the values they were changed to with the Change
Communication Network Program Attributes (CHGCNPA) command.

DSPCNPA
(Considerations)

Command Descriptions 4-703

DSPCTLSTS

4-704

DSPCTLSTS (Display Control Unit Status) Command

The Display Control Unit Status (DSPCTLSTS) command displays the
configuration of specified control units on a system, with their attached
devices. If a single control unit is named on a DSPCTLSTS command, the
line to which it is attached (if applicable) is also displayed. The status of
each specified control unit is also displayed, with the job names of all
interactive, batch, autostart, reader, or writer jobs that are holding a lock on
a device.

Optional

DSPCTLSTS-CTLU1._ ::::ric-control-unit-name+OUTPUT -(* ~
~control-unit-name - •LIST J 1_ ------f

Job:B,I Pam:B,J

CTLU Parameter: Specifies whether the status of all control units and
attached devices on the system is to be displayed, or only the status
information for a specific control unit and its attached devices.

*ALL: The status information for all control units and attached devices on
the system is to be displayed. No line name information for these control
units will be directly displayed.

generic*-control-unit-name: The status information for this control unit and
any attached devices is to be displayed, or the status information for all
control units with the same generic name is to be displayed. To specify a
generic name, add an asterisk after the last character in the generic name
(ABC*, for example). If an asterisk is not included with the name, the
system assumes that the name is a complete control unit name.

control-unit-name: The status information for this control unit and attached
devices is to be displayed. Line name information will also be displayed, if
applicable.

OUTPUT Parameter: Specifies whether the output from the command is to
be displayed at the requesting work station or listed with the job's spooled
printer output. (Refer to Appendix A for an expanded description of the
OUTPUT parameter, and to Appendix D for the name of the file(s) used by
this command.)

*: The output is to be displayed (if requested by an interactive job) or listed
with the job's system output (if requested by a batch job).

*LIST: The output is to be listed with the job's spooled printer output.

[

Example

DSPCTLSTS CTLU{NDA01)

This command displays the name and status of control unit NDA01 and the
name and status of any attached devices. If device NDA01 is attached to a
line, the name and status of the line are displayed. In addition, the names
of jobs using that device will be displayed. The information is displayed on
the work station from which the command was submitted or it is spooled to
a printer output queue to be printed on the system printer, if the command
was part of the batch input stream.

Additional Considerations

The displays produced by the DSPCTLSTS command will show various
amounts of control unit configuration information, depending on what you
specify for the CTLU parameter. As an example, if you specify DSPCTLSTS
CTLU control-unit-name {where the control unit is attached to a line), the
following display is shown:

XX/XX/XX XX:XX:XX CONTROL UNIT STATUS DISPLAY - XXXXXXXXXX
LINE/CTLU/DEV STATUS JOB NAME USER NBR

._xxxxxxxxxx xxxxxxxxxxxxxxx
xxxxxxxxxx xxxxxxxxxxxxxxx

XXXXXX>:xxx xxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxx
xxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxx

xxxxxxxxxx xxxxxxxxxxxxxxx
xxxxxxxxxx xxxxxxxxxxxxxxx

l-OSPJOB 2-DSP desc 3-CHG desc 4-Vary on 5-Vary off 9-CMLJOB CFS-Redisplay

Header Information

The first line of the display shows the current job date and time fields followed
by the value specified for the CTLU parameter {either '*ALL', a generic control
unit name, or a specific control unit name).

DSPCTLSTS
(Example)

Command Descriptions 4-705

DSPCTLSTS
(Considerations)

4-706

First-column Input Field

The leftmost column of the display consists of a single-digit input field in
which a number can be entered. You can enter the number (any one of those
shown at the bottom of the display) in the input field to cause the function (a
command) associated with that number to be performed for that
line/control-unit/device when the you press the Enter key. If you enter
numbers in the input fields of several items before pressing the Enter key, the
specified functions are performed on the items in the order in which the items
are displayed. The following functions can be specified:

1-DSPJOB: Executes the DSPRDR command for a reader job,
executes the DSPWTR command for•a writer job,
executes the DSPJOB command for all other jobs,
or returns 'Job .. not found' if no job
is associated with the input record.

2-DSP desc: Executes the DSPLIND command for a line,
executes the DSPCUD command for a control unit, or
executes the DSPDEVD command for a device.

3-CHG desc: Prompts for the CHGLIND command for a line,
prompts for the CHGCUD command for a control unit, or
prompts for the CHGDEVD command for a device.

4-Vary on: For a line, 1) the line is varied on,
2) all attached control units are varied on, or
3) all attached devices are var!ed en.

For a control unit 1) the control unit is varied on, or
2) all attached devices are varied on.

For a device, the device is varied on.

5-Vary off: For a line, 1) all attached devices are varied off, if possible,
2) all attached control units are varied off, if possible, or
3) the line is varied off, if possible.

For a control unit, 1) all attached devices are varied off,
if possible,

2) the control unit is varied off,
if possible.

For a device, the device is varied off.

Note: As is the case when the VRYxxx commands are
entered individually, there is a noticeable delay when varying
off a line/control-unit/device that has already been varied
off.

9-CNWOB: Executes the CNLRDR command (with OPTION(*CNTRLD))
for a reader job,
executes the CNLWTR command (with OPTION(*CNTRLD))
for a writer job,
executes the CNWOB command (with OPTION(*CNTRLD))
for all other types of jobs, and
returns 'Job .. not found' if no job is associated with
the input record.

[

When all of the commands have been executed, the display is shown again
with the status fields of the objects updated and with any error messages that
occurred when the commands were executed. The display can be shown at
any time before all the commands have been executed by pressing the CF5
key.

If the configuration has more elements than can be shown on a single display,
the Roll Up key can be used to display them all. You can enter numbers in the
input fields on multiple displays before pressing the Enter key.

After the commands have been executed, if there are more error messages
than can fit on that display, a ·+· is shown at the end of the last message. You
must position the cursor at the first message and use the Roll Up key to view
all of the error messages.

Line/Ctlu/Dev

The second vertical column displays the name of the item whose information is
being displayed on that line. Control unit (CTLU) names are indented two
spaces and device (DEV) names are indented four spaces. The heading of this
column varies with the value specified for the CTLU parameter. If you specify
*ALL, or a generic control unit name, or the name of a control unit that is not
attached to a line, the CTLU/DEV field values will be shown. The
LINE/CTLU/DEV field values will be shown if you specify the name of a
control unit that is attached to a line.

Status

The third column lists the status of the line/control-unit/device. One of the
following values is used to indicate status:

• ACTIVE. The line, control unit, or device is currently in use. For a display
device, the device is signed on or has been allocated by a batch, auto-start,
or interactive job.

• ACTIVE/RDA. A spool reader is using this device.

• ACTIVE/WTR. A spool writer is using this device.

• CONNECT PENDING. A VRYLIN command has been issued for this line,
and the system is waiting for an action to be completed, such as a switched
connection to be made.

• DIAGNOSTIC MODE. The line, control unit, or device is being serviced or
has otherwise been set to diagnostic mode.

• FAILED. The line, control unit, or device is in an unusable state; it can
possibly be made usable again by varying it off, then on. A failed device
may still be allocated to a job.

• FAILED/RDA. This device, which is in an unusable state, is still allocated to
a spool reader job.

DSPCTLSTS
(Considerations)

Command Descriptions 4-707

DSPCTLSTS
(Considerations)

4-708

• FAILED/WTR. This device, which is in an unusable state, is still allocated to
a spool writer job.

• POWERED OFF. The control unit or device is in a varied-off and
powered-off state.

• SIGNON DISPLAY. This display device currently has the 'Enter password to
signon' screen displayed.

• SYSREO. This display device has been requested by the system, and the
job associated with this status does not have a lock on the device. SYSREQ
status coexists only with an ACTIVE or SIGNON DISPLAY status for this
device.

• VARIED OFF. For a control unit or device that can be powered on or off by
the PWRCTLU or PWRDEV command, the status is indicated after the
control unit or device is powered on. For a line, this status indicates that
the line is varied off.

• VARIED ON. The line, control unit, or device is varied online, although it
may not be physically powered on.

• VARY ON PENDING. A VRYCTLU or VRYDEV command has been issued
for this control unit or device, respectively, and the system is waiting for an
action to be completed, such as a switched connection to be made.

• *DAMAGED. The line, control unit, or device has incurred hard or partial
damage; it is not possible to obtain any further status information.

• *LOCKED. The line, control unit, or device is allocated to another job with
an *EXCL lock, and its attributes can not be determined at this time.

• *UNKNOWN. All of the status bits for the line, control unit, or device have
been checked, and none are set. This is an exceptional condition.

Job Name

User

Nbr

The fourth column shows the names of the jobs that are currently using any of
the named devices.

The fifth column shows the name of the user profile under which the job that
holds the lock on the device is running.

The rightmost column shows the six-digit number assigned by the system to
identify the job.

