File No. S38-36

) |
(o]
o
o0
~
1
—
N
(&)
7))

SC21-7806-4

L) L
L) A .
- e m— File No. S38-36

IBM System/38

IBM System/38
Control Program Facility
Reference Manual-
Data Description Specifications
Program Number 5714-SS1

Fifth Edition (December 1981)

This is a major revision of, and makes obsolete, SC21-7806-3. See About This
Manual for a summary of major changes to the previous edition. Changes or
additions to the text and illustrations are indicated by a vertical line to the left of
the change or addition.

This edition applies to release 3, modification O of the IBM System/38 Control
Program Facility (Program 5714-SS1) and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are
periodically made to the information herein; these changes will be reported in
technical newsletters or in new editions of this publication.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental. It is possible that this material may
contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your country.

Use this publication only for the purposes stated in About This Manual.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your |IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979, 1980, 1981

ABOUTTHISMANUAL L.V
Purpose of this Manual v
Organization of this Manual v
Summary of Changes vi
What You Should Know vi
If You Need More Information vii
Languages o viii
Utilitieso viii
Messages viii
Coding and Debugging Material ix
Communications ix
Device Operation ix
Content and Use of System/38
Publications00 L. ix
CHAPTER 1. INTRODUCTION 11
The Function of Data Description
Specifications 1-1
CPF Support for Data Description
Specifications L. 1-2
Typesof Files. 1-3
Data Base Files 1-3
Device Files 1-7
Three Steps to Creating an Externally
Described File 1-9
Filling in the Data Description
Specifications Form 1-10
Entering Data Description Specifications
Source Statements 1-12
Creating Files 1-15
How to Describe Files 1-16
Describing Files Level by Level 1-16
Syntax Coding Examples 1-17
Data Description Specifications Syntax Rules 1-22
CHAPTER 2. PHYSICALFILES 21
Defining a Physical File 2-1
POSITIONAL ENTRIES (POSITIONS 1-44) 2-3
KEYWORD ENTRIES (POSITIONS 45-80) 2-12
CHAPTER 3. LOGICALFILES 31
Defining a Logical File 3-2
Specifying More than One Record Format
inalogical File 3-3
POSITIONAL ENTRIES (POSITIONS 1-44) 3-5
KEYWORD ENTRIES (POSITIONS 45-80) 3-27
CHAPTER 4. DISPLAYFILES 41
POSITIONAL ENTRIES (POSITIONS 1-44) 4-3
KEYWORD ENTRIES (POSITIONS 45-80) 4-31
Use of Routing Keywords 4-108
CHAPTER 5. PRINTERFILES 5-1
POSITIONAL ENTRIES (POSITIONS 1-44) 5-3
KEYWORD ENTRIES (POSITIONS 45-80) 5-13

Contents

CHAPTER 6. COMMUNICATIONS FILES AND

BSCFILES 6-1
POSITIONAL ENTRIES (POSITIONS 1-44) 6-3
KEYWORD ENTRIES (POSITIONS 45-80) 6-12

Use of Routing Keywords 6-22
APPENDIX A. HOW TO SPECIFY REF AND

REFFLD oo v A1
APPENDIX B. PHYSICAL AND LOGICAL FILE

KEYWORD SUMMARY B-1
Physical and Logical File Keywords—

Group Listing oo B-5
Physical and Logical File Keywords—

Listed by Level B-6
APPENDIX C. DISPLAY FILE KEYWORD SUMMARY . C-1
Display File Keywords—Group Listing C-12
Display File Keywords—Listed by Level C-15
Display File Keywords—Combined Chart C-17
APPENDIX D. PRINTER FILE KEYWORD SUMMARY D-1
Printer File Keywords—Group Listing D-3
Printer File Keywords—Listed by Level D-4
APPENDIX E. COMMUNICATIONS FILE AND BSC

FILE KEYWORD SUMMARY E-1
Communications File and BSC File Keywords—

Group Listing E-3
Communications File and BSC File Keywords—

Listedbylevel, E-4
Communications File and BSC File

Keywords—-Combined Chart E-5
APPENDIXF. EXAMPLES F-1
Data Base Files F-6
Device Files F-12
Externally Described Data in RPG and

COBOL o o o o v i vt e v F-61

File SpecificationsinRPG F-61
Data DivisioninCOBOL F-63
Sample Compiler Listing F-64
Debugging Template F-68
Using SEU to Browse a Compiler Listing and
Update Source Statements F-69

APPENDIX G. DATA DESCRIPTION SPECIFICATIONS
KEYWORDS AND VALUE ABBREVIATIONS G-

APPENDIX H. GLOSSARY H-1

Contents iii

PURPOSE OF THIS MANUAL

This manual is written for programmers who use I1BM
System/38.

This manual contains detailed instructions for coding the
data description specifications (or DDS) for files that can
be described externally. These files are the physical,
logical, display, printer, communications files, and BSC
files. Although Chapter 1 does review the process of
creating such files, and Appendix F does provide
examples of each type of file discussed in this manual,
you should not read or attempt to use this manual
without knowing how you intend to use externally
described files in your application.

For an understanding of the context in which DDS is
used, see the CPF Concepts Manual and the CPF
Programmer’s Guide. (The full titles and order numbers
of these manuals appear at the end of this section.)

For detailed descriptions of the specific commands used
to create and delete files or to change and override their
attributes, seethe CPF Reference Manual—CL.

If your application involves data communications with
another system, see the Data Communications
Programmer’s Guide before using Chapter 6,
Communications Files.

If you are using program-described files, see the CPF
Programmer’s Guide and the appropriate high-level
language manual.

About This Manual

ORGANIZATION OF THIS MANUAL

See the Summary of Changes later in this section for the
most recent changes to this manual.

Chapter 1 contains an overview of DDS, describing:
« The function of DDS

e How you use DDS

« Types of files (that is, data base and device files)

« Three steps to creating an externally described file
— Filling in the Data Description Specifications form
— Entering DDS source statements
— Creating files

« Describing files level by level
« Syntax coding examples
« DDS syntax rules

Chapters 2 through 6 discuss both positional entries and
keyword entries for each type of file:

- Data base files
— Physical files (Chapter 2)
— Logical files (Chapter 3)

« Device files
— Display files (Chapter 4)
— Printer files (Chapter 5)
— Communications files and BSC files (Chapter 6)

In the Keyword Entries sections of Chapter 4, Display
Files and Chapter 6, Communications Files, sections
called Use of Routing Keywords precede the first routing
keyword (RTGAID). These sections explain some of the
interrelationships among routing keywords.

The appendixes in this manual contain information on
how to specify the REF and REFFLD keywords, keyword
summaries for the various types of files, sample files,
and a list of abbreviations used in DDS.

The Glossary follows the appendixes.

About This Manual v

This manual uses the following conventions:
« He means he or she.

« In the keyword descriptions, this field or this record
format means the field you are now defining or the
record format you are now defining.

« The expression use this file or record level keyword
means the keyword is valid only at the file or record
level.

« To specify a keyword means to code the keyword in
the DDS for a file. This contrasts with to select a
keyword or when a keyword is in effect, which both
mean that any conditioning (such as one or more
option indicators) is satisfied when an application
program issues an output or input operation (write or
read operations).

« The mention of one option indicator in the keyword
descriptions indicates that any valid number or
combination of indicators can be specified.

+ Current source or source you are defining means the
DDS that together make up the description of one
file.

« In sample displays, character fields are shown as all
Xs and numeric fields are shown as all Ns.

SUMMARY OF CHANGES
The major changes to this publication include:

« New display file keywords as follows:
— CLRL (clear line)
— CSRLOC (cursor location)
— OVRATR (override attribute)
— OVRDTA (override data)
— PUTOVR (put override)
— RTNDTA (return data)
— SLNO (starting line number)

« New optional parameter values for the following
keywords:
— ERASEINP
- MDTOFF
— UNLOCK

Vi

« New keywords and new keyword spellings for
compatibility with other systems as follows:

New CHECK codes providing the same function as
AUTO and LOWER

CMP also spelled as COMP

SETOF also spelled as SETOFF

Alternative parameter values can now be specified -
for DSPSIZ

» Extensive rewriting of the manual, with many new
explanations and examples, including the following:

Complete rewriting of the field reference function
Complete rewriting of FORMAT and UNIQUE in
data base files

Complete rewriting of Key Field Names in Chapter
3

Thorough revision of Data Type/Keyboard Shift in
Chapter 4

Elimination of Use of Subfile Keywords; information
now in the CPF Programmer’s Guide and in the
SFL and SFLCTL keyword descriptions

Complete rewriting of many keywords in

Chapter 4, including all the subfile keywords
Thorough revision of communications file
keywords and addition of BSC information

New Combined Chart for handy reference to
display file keywords in Appendix C

New subfile examples in Appendix F

« Miscellaneous technical changes indicated by a
vertical line to the left of the change or addition

WHAT YOU SHOULD KNOW

To use this manual effectively, you should know how to:

« Use SEU or data-entry system to enter DDS source

« Enter the create file commands on System/38 (such
as Create Physical File [CRTPF] or Create Display
File [CRTDSPF])

« Use a high-level language (RPG lIl, COBOL, or CL) to
develop an application program

IF YOU NEED MORE INFORMATION

To correct a problem, you may need to refer to another
IBM publication for a specific type of information:

CPF (Control Program Facility) Commands and
Functions

- IBM System/38 Control Program Facility Concepts
Manual, GC21-7729
— Describes the concepts involved in data base
design and application development

« IBM System/38 Control Program Facility

Programmer’s Guide, SC21-7730

— Describes, and contains examples of, using DDS
to describe data base and device files

— Describes the processing of data base files

— Describes physical and logical file members

— Describes using display files in a program

— Describes the 1/0 requests that can be made to a
display file

— Describes the device-dependent attributes of card,
diskette, tape, and printer files, and describes how
to use the files

— Contains a description of the data management
feedback area

— Describes creating and changing source files

— Describes copying to and from source files

— Describes using an inline data file

— Describes processing considerations for inline data
files and spooled output files

— Describes how to create a message file and
user-defined messages

IBM System/38 Control Language Reference Manual,

SC21-7731

— Describes control language syntax

— Describes control language commands and
parameters

— Lists command authorizations by user profile

IBM System/38 Programmer’s/User's Work Station

Guide, SC21-7744

— Describes how to enter commands, using the
command entry display and the prompting facilities
provided by CPF

— Describes how to communicate with System/38
through an interactive work station, especially
when using the functions available through the
Control Program Facility (CPF)

IBM System/38 Application Example |, SC21-7881

— Describes how to use spooling for input of source
statements

— Describes how to create programs from diskette
input (the same process is used to create files
from diskette input)

— Describes how to use the source entry utility (SEU)
to enter source for files and programs

— Describes how to use the programmer menu to
create files and programs

— Describes how to create and execute a data file
utility (DFU) application

— Describes how to create a menu from a separate
display file and control language program

— Describes how to create a menu using the screen
design aid (SDA)

— Describes how to use a logical file to create a
different access path

About This Manual vii

Languages

This list includes the publications referred to as
appropriate high-level language manual in this manual:

« IBM System/38 Introduction to RPG Ill: External Data

Description and Interactive Processing, GC21-7723

— Describes how to code an interactive RPG
program that prints a report

— Describes how to code an interactive RPG
program that inquires into an externally described
file

— Describes how to enter, compile, and run the
program

o IBM System/38 RPG |l Reference Manual and

Programmer’s Guide, SC21-7725

— Describes how to code RPG Ill programs

— Describes how to compile and run RPG IlI
programs

— Describes how to test and debug RPG IlI
programs

— Describes how to interpret compiler listings and
messages

— Describes how to perform problem determination
procedures

« IBM System/38 Concepts for the COBOL User,
GC21-7855
— Contains conceptual information on the System/38
data base and work station environment
— Relates COBOL language functions to system
functions

« IBM System/38 COBOL Reference Manual and

Programmer’s Guide, SC21-7718

— Describes how to code COBOL programs

— Describes how to interpret COBOL compiler
listings and messages

— Describes how to test and debug COBOL
programs

— Describes how to perform problem determination
procedures

« IBM System/38 Control Program Facility

Programmer’'s Guide, SC21-7730

— Describes, and contains. examples of, control
language programs

— Describes how to use variables, display files, and
messages in control language programs

— Describes how to monitor for messages in control
language programs

viii

Utilities

IBM System/38 Screen Design Aid Reference Manual (
and User’'s Guide, SC21-7755
— Describes how to design, create, maintain, and

test display files interactively (using SDA)

IBM System/38 Source Entry Utility Reference Manual

and User’'s Guide, SC21-7722

— Describes how to enter and maintain DDS source
statements using SEU

— Describes how to browse through a spooled file to
see compiler output, scan for errors, and correct
source statements that contain errors

IBM System/38 Data File Utility Reference Manual

and User’'s Guide, SC21-7714

— Describes how to enter data records into a
physical file using DFU

— Describes how to change or delete data records in
a physical file using DFU

Messages

IBM System/38 Messages Guide: CPF, RPG I, and

IDU, SC21-7736

— Contains an overview of messages and the
circumstances under which they may appear

— Describes the elements of messages

— Contains a problem determination section, which
includes additional information about the problem
for which the message was issued

— Contains all messages other than COBOL
messages

IBM System/38 Messages Guide: COBOL, SC21-7823

— Contains a detailed description of message
structure and the meaning of each message
element

— Explains how to add user-defined messages to the
system

— Lists all COBOL messages with additional
information that is not displayed or printed by the
system

Coding and Debugging Material

« IBM Data Description Specifications, GX21-7754
— To code (specify) DDS

« IBM Data Description Specifications (DDS) Debugging
Template, GX21-7717
— To interpret fields on the DDS source listings

Communications

« IBM System/38 Data Communication Programmer’s

Guide, SC21-7825

— Describes the use of data description
specifications (DDS) for communications; also,
describes the Create Communications File
(CRTCMNF) and Create BSC File (CRTBSCF)
commands

— ldentifies communications programming
considerations and contains examples of RPG Il
and COBOL programs for communications with
BSC and SNA devices and systems

— Describes error handling for communications

— Identifies the device-dependent considerations for
supported SNA hosts, and BSC devices and
systems

Device Operation

« IBM System/38 Programmer’s/User's Work Station
Guide, SC21-7744
— Describes the keys on the 5250 work station
keyboards (typewriter-like and data-entry)
— Describes the keys on the system console
keyboard

Content and Use of System/38 Publications

« IBM System/38 Guide to Publications, GC21-7726
— Describes contents of System/38 manuals
— Describes reading sequences for System/38
manuals

« IBM System/38 Glossary and Master Index,
GC21-7727
— Defines terms used in System/38 manuals
— Combines entries from indexes of System/38
manuals used frequently

About This Manual

ix

Chapter 1. Introduction

THE FUNCTION OF DATA DESCRIPTION SPECIFICATIONS

A traditional means of describing data attributes (such as the names and
lengths of records and fields) is to specify the data attributes in the application
programs themselves. In RPG this is done in the input or output specifications,
and in COBOL this is done in the Data Division. On System/38 this method of
data description is called program-described data; however, a convenient and
powerful alternative is available. Through the use of data description
specifications (DDS), the programmer can describe data attributes externally;
that is, not in the application programs themselves but in file descriptions
independent of the programs. These file descriptions are associated with the
files themselves. The files for which DDS can be used are:

» Physical files (DDS is optional)

.~ » Logical files (DDS is requured)

« Display files (DDS is recommended)
« Printer files (DDS is optional)
» o Communications files and BSC files (DDS is required)

For card files, diskette files, and tape files, program-described data must be
used.

The CPF Reference Manual—DDS is a reference manual for programmers using
externally described files. For information about the cc context within which to
use DDS, and for a description of program- -described files, see the CPF
Programmer’s Guide and the appropriate high-level language manual.

Introduction 1-1

CPF SUPPORT FOR DATA DESCRIPTION SPECIFICATIONS

See Figure 1-1 for an illustration of file access through DDS.

User
Program

. R

Figure 1-1. File Access at Execution Time

The Control Program Facility (CPF), through data base data management and
device data management, provides support for DDS at three points:

B U

+ When you create a file (with a create file command such as CRTLF and
CRTDSPF). In this manual, this is called file creation time.

\{_Yhen you compile an application program (with a create program command
such as CRTRPGPGM and CRTCBLPGM). In this manual, this is called
program compilation time.

When your program issues a request to a file. In this manual, this is called
execution time. Execution time includes the following:

— When the file is opened or closed.
— When your program issues an 1/0 operation to the file, specifically:

a. Write or Put operations (in this manual, output operations)

b. Read or Get operations (in this manual, input operations)

c. Update operations

CPF

Data
Management

Device
Data Management

Y

Data Base
Data Management

At file creation time for externally described files, CPF performs a function
much like the compilation of application programs, invoking the data
description processor, reading the DDS source, printing any diagnostic
messages, and creating a CPF object (type *FILE). Further, CPF provides a
reference function whereby record formats or field descriptions can be
duplicated from an already existing file into the new file. CPF also establishes
access paths as required.

At program compilation time, the language compiler brings data descriptions
from externally described files into the executable program and lists the data
descriptions on the compiler listing.

At execution time, CPF processes data passing between the application
program and the data base or device.

>

Device
File

>

Data Base
File

Device

TYPES OF FILES

Two types of files are used to pass data between the System/38 and
application programs:

o _Data base f:Ies mclude physrcal files (whrch can actually contain data

« Device files include display files, printer files, communications files, and BSC .
(Brnary Synchronous Communications) frles These types of file can be
described using DDS. (Other types of device file, such as diskette, card,
and tape files, cannot be described using DDS.) As illustrated in Figure 1-1,
device files describe devices to the system so that device data management
can pass data between your programs and the devices.

Data Base Files

Data base files describe how your data is stored and how it is presented to
your programs. There are two types of data base files:

» Physical files: The DDS for a physical file describes how your data records
physical file determine the attrrbutes of Ehe fields in the data base The
presence of a key field indicates keyed sequence in the data base; when no
ml_geyrhfreld‘ is specified, arrival sequence is used in the data base.

. Loglcal files: The DDS for a logical file describes how data records appear
" to be stored in the data base; however, the logical file does not actually
) contain data records. A logical file is always based on one or more physical
"files. The Ioglcal file determines how data records are sequenced and
transformed when read by an application program from the physical file(s)
and how data records are transformed and sequenced when written from an
application program to the physical file(s).

Figure 1-2 illustrates the relationship between two logical files (logical file A
and logical file B) and a common physical file. Program A and program B see
only the logical views of the data records as these views are presented by the
logical files A and B. The DDS for the physical file describes how the data
records are actually stored in the data base.

Figure 1-3 illustrates the relationship between one Iogrcal file and two physrcal
files on which it is based. The program can access data in the two f physrcal
files through a record format in the logical file. Even if the physical files have
different record formats or different sequences of records, to the program they

are the same.

Introduction

Program A Program B

Data Description

Data Description

Specifications A Logical File A Logical File B Specifications B
7 > -€ e
r/ A Yy
7 - 1 J b -
7 rd
_ P e P P
How Data How Data
Records Records
A to Data Description Appear to
Ppear Specifications Physical File Program B
Program A
rd > /
L 7
rd ,‘
e
. rd
How Data
Records
Are Actually
Stored

Figure 1-2. Two Logical Files Based on One Physical File

Program
Data Description
Specifications Logical File
e
P rd
How Data -
Records 12
Appearto .~
Program
Data Description Data Description
Specifications A Physical File A Physical File B Specifications B

rd ” g
” 7
' g
4 7
e e
-

P e
How Data How Data
Records Records
Are Actually Are Actually
Stored Stored

Figure 1-3. One Logical File Based on Two Physical Files

Coding Characteristics of Data Base Files

—_— P

Logical files can have more than one record format, and each record format

must have the PFILE keyword specified for it.

F ie_Id Referenee Files

A field reference file is a physical file that defines all fields needed for an
apphcatlon or a group of related files. The field “reference file contains no data
and should be created “without a member (MBR(*NONE) specified for the
Create Physical File (CRTPF) command). Like all physical files, a field reference
" ile has only one record format. As needed, you can define up to 8000 fields
on the field reference file to form a standardized list of named files to be
referenced by other files.

To reference fields in a field reference file, use the reference function provided
_by DDS. To use the reference function in a file you are defining, you spec1fy R
in position 29 for each field that references another field (se_efg_s:t:on 29

(Reference) in the appropriate chapter for details) and the name field’
reference file as a parameter value on the REF or REFFLD keyword

Certain field attributes, such as location, are required in device files but are
invalid in data base files. When yoﬁwﬁference a field reference file from a
device file, you must speC|fy the field attributes required by the device file. If
you specify a field attribute that is already defined in the field reference file,
you override the referenced attribute. Some such overrides affect other
attributes; see Position 29 (Reference) for the effect overriding certain

attributes has on others.

Access Paths

Each member of a data base file has an access path. The access path allows
data management to sequence the records in the member. There are two
types of access paths: arrival sequence and keyed sequence.

« Arrival sequence access path: Data management sequences the records of a
member either sequentially or by relative record number. No key fields are
specified in the DDS.

« Keyed sequence access path: Data management sequences the records of a
member according to the contents of the key fields of the records. If you
want keyed access to the records, you must specify key field information
when you specify the DDS for the file. (See the sections on Key Field
Name in Chapters 2 and 3 in this manual.)

Figure 1-4 shows how arrival sequence and keyed sequence access paths

function. For a discussion of the considerations for access paths and data
base file members, see the CPF Programmer’s Guide.

Introduction

1-5

Program A sees data Program B sees data Program C sees data

records in this order records in this order records in this order
J Boardman l Stromberg I Johnson
I Christensen Latta l Latta
l Johnson l Kaplan 7 IStromberg
Kaplan Johnson 7 Boardman
Latta Christensen Christensen
Stromberg Boardman Kaplan

Logical file A
for ascending
keyed sequence
(key=NAME)

Logical file B
for descending

keyed sequence
(key=NAME)

Logical file C
for arrival
sequence
(no key specified)

PHYSICAL FILE

NAME STREET AMTDUE
Johnson 310 Washington Ave. 98
Latta 120 First St. 00
Stromberg 352 State St. 98-
Boardman 41 Ferry St. 97
Christensen 1400 Washington Ave. 20
Kaplan 567 Morris St. 99

\

Figure 1-4. Ascending Keyed Sequence, Descending Keyed Sequence, and Arrival Sequence Access Paths.
Logical files A and B, with keys specified (key field specifications), determine the order of
records written to or read from the physical file. Logical file C, with no key specified, does
not.

1-6

Device Files

Device files describe how data is processed through input/outpu devices

" attached to System/38, such as display devices, printers, and diskettes. Each
device used by a program has a device file, ‘which is an executable CPF object
created through the use of a create file command. Some of these device files
(those used for display dewces, prmters ‘and communications or BSC devices)
can use DDS to define file, record, and field characteristics. When they do so,
they are called externally described files because the data is described outside
of the programs that use the devices. Other device files (those used for cards,
tapes, and diskettes) cannot use DDS and must be program-described device
files. For these devices, field-level characteristics must be described in the
program itself. (Note that you can have a program-described file that is
externally described using DDS. See the appropriate high-level language
manual for information on how to do this.)

Introduction 1-7

The following diagrams illustrates the difference between using DDS when
creating externally described files and not using DDS when creating
program-described files:

Externally Described Data:

CPF Create File

Command D‘isplay
File
J
Printer Printer
DDS File
Source
File
Communi-
cations or

BSC File

| —~

Program-described Data:

O Diskette
CPF Create File) Magazine
Command Diskette Drive
- /
Card
Card Reader/Punch
e
‘ Tape
Tape Drive
File

Note: Display and printer files can also be program-described.

1-8

Coding Characteristics of Device Files

Device files permit more than one record format.

_Display files and printer files require the locations of fields (except for special
cases); communications files and BSC files do not allow them.

Display files, communications files, and BSC files have specifications related to
both mput and output as follows

+__In display files, you can define a field as input only, output only,
output/input, message, or hidden.

« In display files, communications files, and BSC files, indicators can be used
for output (option indicators) or input (response indicators).

THREE STEPS TO CREATING AN EXTERNALLY DESCRIBED FILE
The three general steps to creating a file are:

1. Fill in the Data Descnptlon Specufncatlons form.

2. Enter the_ DDS source statements into a source file. The source file can
be part of the System/38 data base (in a source physical file such as the
IBM- supphed QDDSSRC) or it can be on cards or diskette.

3. Create the flle usmg the appropriate create file command
This manual is concerned primarily with step 1; however, an overview of all
three steps is provided in the following sections.

Note: Through the SDA utility, display files can be created and tested without
coding DDS directly. See the SDA Reference Manual and User’s Guide.

After a physical file has been created, records can be entered into it and
grouped by members. This can be done through the use of the data file utility
(DFU), which is part of the Interactive Data Base Utilities (IDU) Licensed
Program, program 5714-UT1. This utility is described in the IBM System/38
DFU Reference Manual and User’'s Guide, SC21-7714. If you do not have this
utility, you can write a high-level language program for data entry.

Introduction

1-9

Filling In the Data Description Specifications Form

A sample Data Description Specifications form is printed in reduced size in
Figure 1-5.

The left side of the Data Description Specifications form (positions 1 through
44) is for fixed-format entries called positional entries. Positional entries define
the most common attributes of record formats-and fields, such as names and
lengths of fields. For a brief description of the most important positional
entries, see items 1 through 7 following; for details, see the sections on
Positional Entries in Chapters 2 through 6.

The right side of the Data Description Specifications form (positions 45 through
80) is for DDS keywords. DDS keywords define less-common and
more-varied attributes of files, record formats, and fields; they follow a subset
of the syntax rules for control language. For a brief description of keywords,
see item 8 following; for details, see the sections on Keyword Entries in
Chapters 2 through 6.

Positional Entries

n Sequence Number and Form Type are optional in DDS. Form Type
identifies the source as DDS source. The entries are valid for all types of
files.

n An asterisk in position 7 makes the entire line a comment (for all types of
files). When A (And), O (Or), or blank is in position 7, positions 8
through 16 can provide conditioning for the DDS on or immediately
following the current line (conditioning is not valid in physical or logical
files).

Name Type (position 17) identifies the Name entry (positions 19 through
28) as a record format name (for all types of files), a field name (for all
types of files), a key field name (for physical and logical files only), or a
select/omit field (for logical files only).

n An R specified in position 29 indicates that attributes of the field named
in Name are to be referenced from a field specified elsewhere (ignored
for logical files).

Length, Data Type, and Decimal Positions specify attributes of named
fields within record formats (valid for all types of files).

Usage specifies fields as input, output, output/input, hidden, or message
fields for device files. Each type of device file has its own restrictions
regarding field usage.

Location specifies the location of the field on the display screen or on the
printed page (for display and printer files only).

Keyword Entries

n Functions specified through the use of keywords apply at the file, record,
or field level (for all types of files), or at the key field level (for physical
and logical files only), or at the select/cmit field level (for logical files
only). Also, constants specified within apostrophes become the default
values for displayed or printed fields (for display and printer files only;
see the DFT keyword descriptions in the respective files).

GX21-7754-1 UM/050*
Intormationsl Business Machines Corporstion DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A,
File ; Keying Graphic Description Page of
Programmer l Date} Instruction Key
!
F [g
Conditioning S
) s Location
1 =
u Condition Name B
g [corsonreme 1 g
Sequence g 2 Name Length & S| Functions
Number £ é o I
H = _ < >
£ = 4 Y =
gls _ N § o % § Line Pos
Flalzl £z 2z 2 15IE § S A
eRIE| S 8IS 8 $ S| £l fal
|22 2 (B 2 |3 2 |2)E & S(&&(3
12 3 4 5/6|7|8]9 1011[1213/14[1516[17 /18|19 20 21 22 23 24 25 26 27 282930 31 32 33 34(35[36 37|38(39 40 41|42 43 44|45 46 47 48 49 50 51 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80|
[N —— mn—’| ~ | - - 7;_ v’ ‘} \"‘r‘-—'_ ~ e - -
B 1 NG 4 N 5 N ¢ M 7 | B
1 BINEE 2 |
AlA
7
A
A
A
_ e r S — -
. ——
: This manual describes these : This manual describes these
A attributes in each chapter : attributes in each chapter
A under Positional Entries. under Keyword Entries.
A
A
A
A
A
A
“*Number of sheets per pad may vary slightly,

Figure 1-5. Overview of the Positional and Keyword Entries on the Data Description Specifications Form

Introduction 1-11

Entering Data Description Specifications Source Statements
After filling out the Data Description Specifications forms, you must enter the
source into source files. You can enter the source interactively or in batch.
Interactively (Using SEU)

You can use the source entry utility (SEU) of the Interactive Data Base Utilities
Licensed Program (IDU):

Enter the Edit Source (EDTSRC) command to call SEU. (See the Source Entry
Utility Reference Manual and User's Guide for further information on using SEU
to enter or update DDS source.)

Source

Physical
File

Sample SEU Display: The following shows how DDS source statements,
specified on the Data Description Specifications form, would appear when
being entered through SEU. Line 45 is about to be entered. Notice how the
option indicator at Q and the functions (keywords) field at 0 appear on the

SEU display.
) nditioning § Location
-
N Condition Name 1
g o -
Sequence < <2 Name Length |G S Functions
Number ge é R § § e
E ~ [3 =
§§ N R N 2)1 E % m§ Line Pos
C2E 512 3 [8| clEE
2lel8| 2|2 B |3 B2 2 58813
12 3 4 5|6|7|8]9 10[11)1213[14{1516[17[18/19 20 21 22 23 24 25 26 27 282930 31 32 33 34|35|36 37|38(39 40 41|42 43 4445 46 47 48 49 50 51 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80|
lboo10n BATNU 5 +LDSPATR(MIY) = : ;
po204| | 74 ERRMSG('Batch numbevr does not +
00304 exist' 7L) RN
oovo4onl | [T ERRNSG ('Duelicate batew +
A number' 729 3
A H
A
A
SEU SCREEN
r)
SEU LS\K:6 Mbr: MLG105D Scan:
FMT DP AANDINO2NO3T.Name++++++RLen++TDpBLinPosFunctions++++++++ 4444444444444
0042.00 A BATNUM 5 0 +1DSPATR(HI)
0043.00 A 71 ERRMSG('Batch number does not +
0044.00 A exist' 71)
#%%ANU¥END OF DATA®NNHN*%%
FMT SEQNBR A/0 NOINO2NO3 Rame-Type Name Ref Len Data-T
DpP _ 12 _ _ _
’ Dec Use Line Pos Functions
— ERRMSG('Duplicate batch +
- .

Introduction 1-13

In Batch (Using Cards or Diskette)
You can use one of the following methods:

« Enter an input stream containing DDS source and CL commands on cards or
diskette and start a spooling reader (STRCRDRDR or STRDKTRDR

command):
Diskette
O STRDKTRDR
[I . i command
| Source
Physical
. File
STRCRDRDR
command
Cards

« Enter only source statements on cards or diskette and copy the resulting
data file into a source physical file (CPYF command):

Diskette

| 0
:

) CPYF Source
command Physical

File

Cards

« Enter only source statements on cards or diskette and enter a create file
command (specify the name of the data file on the SRCFILE parameter and
*FILE on the SRCMBR parameter of the create file command):

Diskette
|]
A create file Created
' command File
(See Note)
Cards

Note: When using this method, no source physical file is created.

Creating Files

You create files on System/38 by issuing a create file command. The
particular create file command to use depends on the type of file you are

creating:
Physical file CRTPF/
Logical file CRTLF
Display file CRTDSPF.
Printer file CRTPRTF
Communications file CRTCMNF
BSC file CRTBSCF

Parameter values on the commands identify some of the attributes of the file,
such as the file name, whether the file can be shared, and authority for the file.
For card, tape, and diskette files, DDS is not valid.

A create file command invokes the data description processor for externally
described files. You can enter the create file command from a work station
either interactively or in batch. (See the Programmer’'s/User's Work Station
Guide.) The data description processor retrieves the DDS from the source file
designated on the create file command, validates the specifications, and
creates a data base or device file and a DDS source listing (also called a
compiler listing):

Source
Physical
File

BATCH
(Option 3 or 6 on the programmer

menu or SBMJOB command) -

> Created
File

Sards INTERACTIVE
r

Diskette (a create file command)

The DDS source listing is a printout of the file's data description; any error
condition that relates to the data description specifications is identified in this
listing. If there are no serious errors in the DDS, the file is created. Appendix
F shows a sample DDS source listing and a reduced copy of the Data
Description Specifications Debugging Template (used to interpret fields on the
DDS source listing).

Introduction

HOW TO DESCRIBE FILES

Describing Files Level by Level

When you use data description specifications, you specify the following items,
as illustrated in Figures 1-6 through 1-10:

File level keywords

« Record format names and record level keywords

« Field names, field attributes, and field level keywords

« Key field names and key field level keywords (physical and logical files only)

« Select/omit field names and select/omit level keywords (logical files only)

SYNTAX CODING EXAMPLES

In Figures 1-6 through 1-10, the keywords shown are not actual keywords
(except for PFILE in Figure 1-7). They only show where to specify actual

keywords.
GX21-7754-1 UM/050*
TBEE | netons Busines Machines Corporation DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A.
d
File Keying Graphic Description Page of
Programmer Date Instruction Key
:
ditioni =
Conditioning § Losation
Z
X|
| | Condition Name _ g
9 o o .
Sequence < 3 Name Length (g5 g Functions
Number § & ; Ed
£ i z = vie | o
& S| Line s
¢§2§2§25” g L
ezl S | & I3 Sys & 5|53
HEEHERER R 2 |5l =]

RDC_KEYWORDD

Q
(1}
oo.
4
(2]
O
(o]
o

L [1

“Number of sheets per pad may vary slightly.

level specifications. The K specified in position 17 is required at the key field level.

Figure 1-6. Syntax for a Physical File

File level (optional): File level keywords appear before the record format name (RECORD on line 00040).

Record level (only one allowed in physical files): The R in position 17 identifies RECORD as a record format
name. The record level continues until the first field is named.

Field level (at least one field name required): For fields in physical files, at least a name and length must be
specified. Other attributes can be specified explicitly or by default.

Introduction

Comments (optional): Comments can appear on any line in DDS. They are identified by an asterisk in position 7.

Key field level (optional): The key field level is specified by repeating a field name (here, FIELDA) after the field

1-17

=mes GX21-7754-1 UM/050%
TBM s usms o cororsion DATA DESCRIPTION SPECIFICATIONS 77541 UMoso"
File Keying Graphic Description Page of
Programmer Date Instruction Key
i £
Conditioning S
N Location
Z|
X
+| | Condition Name Py
15 9 <
Sequence 2 E Name Length 2 = Functions
2 2 s
Number € & ol T
g s -] 5
§ . Ei “; : E Line Pos
S| 5 |- _| 5 —@
izl B2 5 2| B 3t 5 SHIH
25| 5 (5| T (8] 2 |s5|8 S HERIE
4

Comments (optional): Comments can appear on any line in DDS. They are identified by an asterisk in position 7.
File level (optional): File level keywords appear before the first record format name (RECORD1 on line 00040).
Record level (at least one required): The R in position 17 identifies RECORD1 as a record format name. In
logical files, the PFILE keyword is required for every record format. The record level continues until the first field

is named.

Field level: Field names and field attributes are not required for logical files. See Chapter 3, Logical Files, for a
description of the various ways to specify a logical file record format.

Key field level (optional): The key field level is specified by repeating one or more field names (such as FIELDA)
after the field level specifications. The K specified in position 17 is required at the key field level.

Select/omit level (optional): The S in position 17 identifies FIELDB as a select/omit field (an O could also be
specified in position 17 at the select/omit level). The select/omit level follows the key field level.

Note: Items e through o can be repeated to specify new record formats within the logical file.

Figure 1-7. Syntax for a Logical File

1-18

ol
Nl
i

B o s s oo DATA DESCRIPTION SPECIFICATIONS O e m USA

File Keying Graphic Description Page of
Programmer Date Instruction Key
3
Conditioning B
N Location
2
X
| Condition Name _ A
S o <
Sequence < g Name Length || s Functions
Number € T . E B
§ z
g El - < s
3 | = 2 Slu Po
88 N S| Line s
5l S e Bl B IR : EEHE
e IR 5 |2
|8l5)2| 2 |2 E 2] B3l) el 5188|3
109w sle 7B D velviia aahalis wivi B 0 3197 23 08 25 96 97 38 3132 33 3438

37138130 40141143143 4414545 47 48 4D B0 5T 52 P2 B4 5 56 57 5950 B0 61 62 6364 6B EE 6188 BS 1071 T2 A A B TS T T8 190l |

DISPLAY [FILE o

RECORDA

FLELDA z T 1] SKEYWORD

example!

KEYWORD :
KEYWORDG

F1ELDB 44| [¢] 2 3

FLIELDC Y| 28] 3 3IKEYWORDY
Es Wit
KEYWo

4 3'T
N

*Number of sheets per pad may vary slightly. \

\

You can specify option indicators and screen
size condition names in the boxed-in positions.

Comments (optional): Comments can appear on any line in DDS. They are identified by an asterisk in position 7.
File level (optional): File level keywords appear before the first record format name (RECORDA on line 00040).

Record level (at least one required): The R position 17 identifies RECORDA as a record format name. The record
level continues until the first field is specified.

Field level (optional): Display file fields that are to be passed between the display device and your program must
be named fields and must have a length specified. Other attributes can be specified explicitly or by default.
Constant (unnamed) fields require only a location and a keyword, as described in the DATE, DFT, and TIME
keyword descriptions in Chapter 4. Positions 17 through 38 do not apply to constant fields.

Note: Items G through Q can be repeated to specify new record formats within the display file.

Figure 1-8. Syntax for a Display File

Introduction 1-19

IBRE et usines Hechines Corporstion DATA DESCRIPTION SPECIFICATIONS ot U

File Keying Graphic Description Page of
Programmer Date Instruction Key
A 7
Conditioning 3
> Location
X
i7| | Condition Name _ g
g g n |3 3| Functi
Sequence g & Name Lengtl 2| s ions
Number £ = | H
g = - < (3
E < [By =
&) a S
S 2 H 8zl
2 [£ c2E
2 3 2] 3
: .

Lodl Lodl Ll (Y SR
N=lo 0o N

l

>I>1>1>1>1>1>|> 15151

Olojojololo (o0 fOlC

I~~~
o\ Jurl [

*Number of shests per pad may vary slightly. \

\

You can specify option indicators
in the boxed-in positions.

Comments (optional): Comments can appear on any line in DDS. They are identified by an asterisk in position 7.
File level (optional): File level keywords appear before the first record format name (RECORDA on line 00040).

Record level (at least one required): The R position 17 identifies RECORDA as a record format name. The record
level continues until the first field is specified.

Field level (at least one field, whether named or unnamed, is required in each record format in the file): Printer
file fields that are to be passed from your program to the printer must be named fields and must have a length
specified. Other attributes can be specified explicitly or by default. Constant (unnamed) fields require only a
location and a keyword, as described in the DATE, DFT, PAGNBR, and TIME keyword descriptions in Chapter 5.
Positions 17 through 38 do not apply to constant fields.

Note: Items Q through Q can be repeated to specify new record formats within the printer file.

Figure 1-9. Syntax for a Printer File

IBME e ons sosines Mechine Cororaion DATA DESCRIPTION SPECIFICATIONS Rt N

Printed in U.S.A,

File Keying Graphic Description Page of
Programmer Date Instruction Key

Conditioning
Location

Condition Name

Name Length Functions

me Type (WR/K/S/0)
ta Type (B A/P/S/B A/S/X/Y/N/IW]

icator

:Usage (6/0/1/B/H/M)
c
3
g

Andicator
Not (N

>
//

*Number of sheets per pad may vary slightly.

—

You can specify option indicators
in the boxed-in positions.

Comments (optional): Comments can appear on any line in DDS. They are identified by an asterisk in position 7.
File level {optional): File level keywords appear before the first record format name (RECORDA on line 00040).

Record level (at least one required): The R position 17 identifies RECORDA as a record format name. The record
level continues until the first field is specified.

Field level (at least one field, whether named or unnamed, is required for at least one record format in the file):
Communications and BSC file fields must have at least a name (as in FIELDA) and a length. Other attributes can
be specified explicitly or by default.

Note: Items e through Q can be repeated to specify new record formats within the communications or BSC file.

Figure 1-10. Syntax for a Communications File or a BSC File

Introduction 1-21

DATA DESCRIPTION SPECIFICATIONS SYNTAX RULES

The syntax for coding DDS keywords and their parameter values is a
compatible subset of the syntax used for the control language. Figures 1-6
through 1-10 show how to use this syntax for each type of file. The general
rules are:

« Code all DDS entries in all uppercase except for character literals.

« Code keywords on the same line as the entry with which they are associated,
or on subsequent lines.

. Separate multiple keywords with one or more blanks. Parameter values for
keywords must be enclosed in parentheses with the initial parenthesis
immediately following the keyword, for example,

KEYWORD(VALUE)

(This rule differs slightly from control language because, when coding
control language, parameter values can be positional. Syntax for data
description specifications requires that the keyword be specified, except
when specifying a constant or the parameter value for the DFT keyword.)

« Separate multiple parameter values for the same keyword with one or more
blanks. For example,

KEYWORD(VALUEA VALUEB)

« Use a period to separate the components of a qualified name. Embedded
blanks are not allowed. For example,

KEYWORD(file.library)

« Use apostrophes to enclose character literals. (Numeric literals appear
without apostrophes; see the coding examples for the COMP, RANGE, and
VALUES keywords.) Character literals can appear in two places in the
syntax for DDS:

— As a parameter value for some keywords. For example, TEXT (in all
types of files) and COLHDG (in data base files) require character literals
as text description. Other keywords such as CAnn and CFnn use
character literals as text descriptions for response indicators.

— With or without the DFT keyword, for display and printer files only, as
the default value of a constant field. In printer files a character literal can
also be specified for named fields. Even if you do not specify the DFT
keyword, specifying a character literal implies the DFT keyword.

« Use double apostrophes (') when specifying any apostrophes within a
quoted parameter value so that one apostrophe will appear in output. For
example,

KEYWORD(Customer’’s name’)
appears as
Customer’'s name

¢ Use a plus (+) or minus (-) sign to indicate that a keyword and its parameter
values are continued on the succeeding line. The sign (+ or -) that you
choose for a continuation character has a particular meaning as follows:
— A minus (-) sign indicates that the continuation is to begin in position 45
of the next line (the first position of the functions field).
— A plus (+) sign indicates that the continuation is to begin with the first
nonblank (first significant) character in the functions field on the next line.

If you specify a continuation character within a parameter value (such as a
character literal), any blanks preceding the continuation character are
included in the parameter value.

The sign must be the last nonblank character in the functions field. One of
the signs must be used when the entire specification for a keyword does
not fit on a single line. A single statement can be continued to a maximum
of 2000 character positions.

« Specify a plus (+) sign as the last nonblank character on a line to continue
conditioning for keywords specified on the next line. This is especially
helpful when a condition includes several option indicators and applies to
several keywords.

« CPF implicitly continues a DDS statement until you specify one of the
following:
— A record format name (R in position 17)
— A field specification (field name or location)
— For device files, an option indicator or condition name that conditions a
field or a field location
« The keyword descriptions use the following punctuation marks:
[1 Enclosed values are optional.
[...] Specify additional values as needed.

§ 1 The upper value is the default value (see REFFLD).

| Specify either the value to the left or the value to the right (may
refer to optional values).

Introduction

Chapter 2. Physical Files

This chapter is divided into two sections. The first, Positional Entries, provides
rules and examples for filling in positions 1 through 44 of the Data Description
Specifications form. To find information in this section, first determine what
position on the form to use, then look up the section describing that position.
The second section of this chapter, Keyword Entries, provides rules and
examples for specifying DDS keywords. The keywords are described in
alphabetical order.

For guidance in choosing positional entries and keywords for physical files, see
the CPF Programmer’s Guide.

Note: If you are using DDS to describe a source file, you cannot use the
ABSVAL, DESCEND, NOALTSEQ, SIGNED, UNIQUE, or ZONE keywords.

DEFINING A PHYSICAL FILE

A physical file can contain only one record format. Specify the record format in
either of two ways:

» Define a new record format: Specify field and key field specifications as
desired for the new record format.

« Share an existing record format: Specify, through the FORMAT keyword,
that CPF is to use a previously defined record format from a physical or a
logical file. When the FORMAT keyword is used, key field level
specifications must be specified again even if they were specified on the
existing record format.

To define a physical file, specify the entries in the following order:

1. File level entries (optional)

2. Record level entries

3. Field level entries

4. Key field level entries (optional)

Note: The file name is provided through the Create Physical File (CRTPF)
command, not through DDS.

Complete physical file examples can be found in Appendix F, Examples.

An explanation of file level, record level, field level, and key field level can be
found in Chapter 1, Introduction.

The syntax rules for specifying DDS keywords can be found in Chapter 1,
Introduction.

Physical Files 2-1

A physical file cannot have more than one record format. The maximum
number of fields in the record format is 8000; the maximum number of bytes
in the record format is 32 766.

11 R — DATA DESCRIPTION SPECIFICATIONS Rt kot arr ol
File Keying Graphic Description Page of
Programmer Date Instruction Key
- B
Conditioning 3
E Location
| Condition Name g
5 5 <|
sequence | & 2 Name g (B |5 Functions
Number £ = < B
i 4 8 E
-4 - b S| Line | Pos
el 1 e 1 I Pk
é%?‘é;ii?sz & HEH
6|7]8|9 10/11]12 1314|156 1617 8 (19 20 21 22 23 24 25 26 27 282930 31 32 33 34(35(36 37(38/39 40 41(42 43 44(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80}
Al¥l IPHNIS TCA Flue;s%PLugL* MPILE 1 _
A EE 1
A UNTaQU
A ORDFMT| TEXT(vs')
A ORDNB T COLHD
OA 1TMN _Ag | :
A SUPNE R +2] , REFFL
A QTYDPRD »
A ORDNB
A K| |ITMNBR BSVAL
A
A
A
A
A
A
A
A
A
A

*Number of shests per pad may vary slightly.

Figure 2-1. Physical File Coding Example

Positional Entries (Positions 1-44) ::;’,:f:; ':i!;s

This section describes how to specify the first 44 positions of the Data
Description Specifications form for physical files. To code the rest of the form,
see the section Keyword Entries (Functions Field, Positions 45-80) later in this
chapter.

Figure 2-1 shows some positional entries for physical files.

Positions 1-5 (Sequence Number)

Use these positions to specify a sequence number for each line on the form.
The sequence number is optional and is used for documentation purposes only.

Position 6 (Form Type)

The A in this position designates this form as a Data Description Specifications
form. The form type is optional and is for documentation purposes only.

Position 7 (Comment)

An asterisk (*) in position 7 identifies the line as a comment line. Comment
lines can appear anywhere in DDS and are retained only in the source file and
printed on the source listing. (Comments are not printed on the expanded
source listing.) Use positions 8 through 80 for comment text. A blank line (no
characters specified in positions 7 through 80) is treated as a comment line.

Positions 8-16 (Conditioning)

These positions do not apply to physical files and must be blank unless an
asterisk appears in position 7 (which indicates a comment line).

Position 17 (Name Type)

The value in this position identifies the type of name in positions 19 through
28 (name). The valid entries are:

Entry Meaning

R Record format name
Blank Field name

K Key field name

Note: There can be only one R specified for a physical file because a physical
file can contain only one record format.

Physical Files 2-3

Physical Files
Position 18 Position 18 (Reserved)

This position does not apply to any file and must be blank unless an asterisk
appears in position 7 (indicates a comment line).
Positions 19-28 (Name)
Use these positions to specify the names of the following:
« The record format for this physical file

.+ The field or fields within the record format (unless you specify the FORMAT
keyword on the record format name)

« The field or fields to be used as key fields (to establish a keyed sequence
access path)

Note: The file name is provided through the create file command, not in the
DDS.

When specifying names in DDS, the following rules apply:
+ Names must be 10 characters or less.
+ Names must start in position 19.

« A name must begin with an alphabetic character (A through Z, @, $, and #).
All subsequent characters can be alphameric (A through Z, O through 9, @,
$, #, and underscore (__)). There can be no embedded blanks.

Figure 2-1 shows how to code the name field; it shows a record format name
(R specified in position 17), a field name (blank specified in position 17) and a
key field name (K specified in position 17).

High-level languages can impose specific length and value restrictions on the
name. For example, RPG Il accepts only field names of 6 characters or less
and record format names of up to 8 characters, and they cannot contain an
underscore. It is your responsibility to ensure that the name syntax used is
acceptable to all language processors that use the file.

Physical Files

Record Format Name Positions 19-28

When you specify R in position 17 (name type), the name specified in positions
19 through 28 is a record format name. You can specify only one record
format name for a physical file. Specify the record format name in either of
two ways:

« As the name of a new record format with field names specified in this
physical file. The name of the record format can be the same as the file
name specified in the create file command; however, a warning message is
issued if the names are not unique, because some language processors do
not allow record format and file names to be the same. RPG lll is such a
language.

« As the name of a record format previously described in a physical or a
logical file. Field names and attributes are not specified and the FORMAT
keyword must be specified. The FORMAT keyword is explained in the
Keyword Entries section in this chapter.

Field Name

When position 17 (name type) is left blank, the name specified in positions 19
through 28 is a field name. Field entries describe the characteristics of a field
of data within the record. Field names must be unique within the record
format. The order in which you specify the field names is the order in which
the fields appear within the physical record. In physical files, all fields must be
named.

Physical Files 2-5

Physical Files
Positions 19-28

2-6

Key Field Name

When you specify K in position 17 (name type), the name specified in positions
19 through 28 is a key field name. It must be one of the field names within
the physical file record format. The contents of this field are used to sequence
the records for retrieval from the data base. Specifying a key is optional; the
default is to sequence the records in arrival sequence (the sequence in which
they were put into the data base). See the CPF Programmer’'s Guide for
general information on access paths and for information on the effect of keyed
or arrival sequence access paths on save/restore operations.

A key can have more than one key field; such a key is a composite key. For a
composite key, you must specify the field names in the order of importance
(major to minor), with each field name on a separate specification line. The
number of fields that make up a key is restricted; the total key length must not
exceed 120 bytes.

For example, suppose a key consists of fields named FIELDA, FIELDB, and
FIELDC (in that order). The DDS appears as follows:

F Conditioni g
o § Location
X
] Condition Name a8
9| S <
Sequence 3| N Name Length |3 H Functions
Number £ 3 E Iz
£ 3 z| s 2
§§— _ s 1l s ;L ; E_mg Line | Pos
Sl 2 B3] E 2] E |2 & 8|8&(3
12 3 4 5|6|7|8|9 1011]12 1314|1516 [17 [18 |19 20 21 22 23 24 25 26 27 28[29[30 31 32 33 34(35/36 37/38[39 40 41/42 43 4445 46 47 48 49 50 51 52 53 64 5556 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80|
0001 04[¥ ISAHPLE| COMPOSITE KEY (PHYS[TCALl FIL EREEE BRERE REN
00020 [| RECORD | v
00030~ FLELDA K
00040/~ IELDB 3
1000504 FLELDC 3
00060~ IELDD 3
0007 0\A FIELDA
80/ F1ELDH v ~
000904 FIELDC N
] A N
A NG
A \\

\ These three fields make up the

composite key

Upon retrieval, the records are sequenced according to the contents of
FIELDA; if two or more records with the same value in FIELDA exist, CPF
sequences those records according to the values in FIELDB. If there are two or
more of those records with the same value in both FIELDA and FIELDB, they
are sequenced according to the values in FIELDC.

Physical Files

Consider the following file: Positions 19-28

Record FIELDA FIELDB FIELDC

1 333 99 67
2 444 10 45
3 222 34 23
4 222 12 01
5 222 23 45
6 RN 06 89
7 222 23 67

Assuming ascending sequencing for all fields, the records are retrieved in this
order:

Record FIELDA FIELDB FIELDC

6 11 06 89
4 222 12 01
5 222 23 45
7 222 23 67
3 222 34 23
1 333 99 67
2 444 10 45

Note that records 3, 4, 5, and 7 have the same contents in FIELDA, so FIELDB
becomes the determining field. Within those four records, 5 and 7 have the
same values in FIELDB, so for these two records, FIELDC becomes the
determining field. If FIELDC also contains duplicate values, the records are
retrieved in first-in-first-out (FIFO) order. FIFO is the default order.
Last-in-first-out (LIFO) processing is available to change this order, and the
UNIQUE keyword can be specified to prevent duplicate key values. LIFO and
UNIQUE are described in Keyword Entries later in this chapter.

See the SIGNED keyword description for an example that includes a key field
with negative (-) contents.

There are special restrictions that apply to the specification of key fields when
FILETYPE(*SRC) is specified on the Create Physical File (CRTPF) or the Create
Source Physical File (CRTSRCPF) command. See the CPF Programmer's Guide
for information about key field specification for source files.

Physical Files 2-7

Physical Files
Position 29

Position 29 (Reference)

Specify R in this position to use the reference function of CPF to copy the
attributes of a previously defined named field (called the referenced field). For
physical files, you must also specify the REF or the REFFLD keyword. The
referenced field can be previously defined in the physical file you are defining;
or it can be in a previously created data base file. The field attributes
referenced are the field's length, data type, and decimal positions, as well as
editing, validity checking, column heading, and text keywords.

If you do not specify R, you cannot use the reference function for this field and
you must specify field attributes for this field.

Position 29 must be blank at the file and record levels.

The name of the referenced field cannot be the same as the field you are
defining if the referenced field is in the file you are defining. If the names are
the same, you must specify the name of the file defining the referenced field
as a parameter value with the REF or REFFLD keyword. If the names are
different, you must specify the name of the referenced field with the REFFLD
keyword. See the REF and REFFLD keyword descriptions later in this chapter
and Appendix A, How to Specify REF and REFFLD.

To override specific attributes of the referenced field, specify those attributes
for the field you are defining. For example, if you specify the EDTCDE
keyword or the EDTWRD keyword on the field you are defining, no editing
specifications are copied from the referenced field. Also, if you specify CHECK
(AB; ME; MF; M10; M11; VN), COMP, RANGE, or VALUES on the field you
are defining, no validity checking specifications are copied from the referenced
field. If you specify data type, field length, or decimal positions for the field
you are defining, then neither editing nor validity checking keywords are copied
from the referenced field.

Note: Once the physical file is created, the referenced file can be deleted or
changed without affecting the field descriptions in the physical file. To
incorporate changes made in the referenced file, delete and re-create the
physical file.

ical Fil
Positions 30-34 (Length) P o

You must specify a field length unless the length is being duplicated from a
referenced field. Specify the number of digits for a numeric type field; specify
the number of characters for a character type field. If you specify length, it
must be right-justified; leading zeros are optional. The following example
shows valid and invalid field length specifications:

A g
Conditioning S
z
X
N Condition Name _ Py
S o N
Sequence < s Name Length |55 s
Number £ & af |3
£ = | < @
£ -K = 2 g Line Pos
g
el 5 sl 2 1l 2 e g g .2
S|Z| § 12| § |2 H - ClES
e ARG 3 S| S 5|3
S|2|2| 2 (2] 2 |3] 2 |5|e 2 S|8&|3
12 3 4 5(6|7]|8{9 10/11{1213[14(1516{17 18 (19 20 21 22 23 24 25 26 27 28{29|30 31 32 33 34[35[36 37/38/39 40 41)42 43 44|45
0004 0" LELDL 7 N Invalid Length Specification
A 1\
©onzoA IELD 7
A T Valid Length Specification
00030|A 1ELD R +7
A
A h
A \

Valid length specifications are:

Data Type Valid Lengths

Character 1 through 32 766 characters
Binary 1 through 9 digits

Zoned decimal 1 through 31 digits

Packed decimal 1 through 31 digits

The sum of the number of bytes occupied by all fields in a record must not
exceed 32 766. The number of bytes actually occupied is determined by the
system as follows:

Data Type Bytes Occupied
Character Number of characters
Binary

1-4 digits 2 bytes

5-9 digits 4 bytes
Zoned decimal Number of digits

Packed decimal (Number of digits/2) + 1

Note: System/38 performs arithmetic operations more efficiently for packed
decimal than for zoned decimal data type.

If you are using a referenced field, you can override the length of the field by
specifying a new value or by specifying an increase or decrease in length. To
increase the length, specify +n, where n is the increase. To decrease the
length, specify -n, where n is the decrease. For example, an entry of +4 for a
numeric field indicates that it is to be 4 digits longer than the referenced field.
Figure 2-1 shows how to change and override the field length.

Note: High-level languages can impose specific length restrictions on the field
length; these restrictions should be observed for files used by those languages.
Physical Files 2-9

Physical Files
Position 35
Position 35 (Data Type)

Use this position to specify the data type of the field within the data base. The
valid data type entries for physical files are:
Entry Meaning

Numeric types

P Packed decimal

S Zoned decimal

B Binary
Alphabetic type

A Character

Figure 2-1 shows how to code the data type.

If you do not specify a data type and do not duplicate one from a referenced
field, CPF assigns a default value as follows:

«+ A (character) if the decimal pésitions (36 through 37) are blank

o P (packed decimal) if the decimal positions (36 through 37) contain a
number in the range O through 31

Note: Placing O in position 37 is a convenient way to specify an integer
numeric field for any of the three numeric types.

Positions 36-37 (Decimal Positions) :::;:f:; ;'227

Use these positions to specify the decimal placement within a packed decimal,
zoned decimal, or binary field. Specify a decimal number from O through 31 to
indicate the number of decimal positions to the right of the decimal point. (The
number here must not be greater than the number of digits specified in the
field length.) Figure 2-1 shows how to code the decimal positions field.

For all data types, data is actually stored in the system without a decimal
point; the decimal point is only implied. For example, the value stored for 1.23
is 123, and this is what appears in display or printer files if editing is not
specified.

If you are using a referenced field, these positions can be either overridden or
changed. To override the positions, specify the new value explicitly. To change
the positions, specify the amount you want the field increased or decreased
and precede it with either a + or -, respectively. For example, an entry of +4
indicates there are to be 4 more digits to the right of the decimal point than
were in the referenced field. If the resulting number of decimal positions is
greater than the maximum allowed, an error message is sent.

Note: High-level languages can impose specific length and value restrictions
on the decimal positions; these restrictions should be observed for files used
by those languages.

Position 38 (Usage)
This position does not apply to physical files and must be blank unless an
asterisk appears in position 7 (which indicates a comment line).

Positions 39-44 (Location)

These positions do not apply to physical files and must be blank unless an
asterisk appears in position 7 (which indicates a comment line).

Physical Files 2-11

E:ﬁ::: Z::zfes Keyword Entries (Positions 45-80)

This section contains keyword entries valid for defining physical files. They are
entered in the functions field (positions 45 through 80). See the section Data
Description Specifications Syntax Rules in Chapter 1 for a discussion of the general
rules for specifying keywords. Figure 2-2 shows how to use the general
syntax rules for specifying DDS for physical files.

1 . T — DATA DESCRIPTION SPECIFICATIONS ot VA
File Keying Graphic Description Page of
Programmer [Dne Instruction Key

Al ‘ :

Conditioning § Location
«| | Condition Name &
S| 5| <
Sequence | |<] 2 Name Lngth (B I Functions
Number § I S
£ 2 g sl S
g > g 4|g| Ue | Pt
Fllz| izl 2 Iz B3 BN
ElB|%| & [3] =| g ‘g PRk g
Z2(5| 2 (32 (5 22 2 282
12 3 4 5|6|7]8|9 to)11]1213]14|1516}17 8|19 20 21 22 23 24 25 26 27 28[29 .313233;“35”37393940'4!‘2}3“‘54847‘849505’52535‘55:56575959805182“““:“3763“70:7'72737‘7573777379“
0010 SYINT, YISIICAL| FIL e ‘ ‘ ‘
OOR0 ' BN
A
030
A
A
A Y C_KEY
A
Q060 TWOR F(‘ h&E_.;n_u_t;H cxample’)
(O A ; B \ 7 d]
OOBG- WORDG (VALUER VALUEC)
OI0 i3 :
OLO0) E ORDH(This fexi cx
O A 1 a_minus Si a')
A WORD (‘Th:s_i_:t§ cx
30A Caontinves with a ol
A
A
A
A

*Number of sheets per ped may very slightly.

Figure 2-2. Syntax for a Physical File

The following keywords are valid for physical files: 22;:;:?; :::_?es
ABSVAL
ALTSEQ
CHECK
CMP
COLHDG
comp
DESCEND
DIGIT
EDTCDE
EDTWRD
FORMAT
LIFO
NOALTSEQ
RANGE
REF
REFFLD
SIGNED
TEXT
UNIQUE
VALUES
ZONE

Note: When you use DDS to describe a source file (usually created without
DDS, using the CRTSRCPF command), you cannot use the following keywords:

ABSVAL

ALTSEQ

DESCENT

LIFO .
NOALTSEQ

SIGNED

UNIQUE

ZONE

Physical Files 2-13

Physical Files
ABSVAL ABSVAL

Use this key field level keyword (absolute values) to specify that when CPF
sequences the values associated with this numeric key field, it is to ignore the
sign of the field.

The following example shows six records with zoned decimal key fields:

Numeric Key Field Hexadecimal

Record (Zoned Decimal) Representation
1 98 FOF8
2 00 FOFO
3 98- FI9D8
4 97 FIF7
5 20 F2FO
6 99 FOF9

If no sequencing keywords are specified, the records are sequenced in this

order:
Numeric Key Field: Hexadecimal
Record (Zoned Decimal) Representation
2 00 FOFO
5 20 F2FO
3 98- FOD8
4 97 FIOF7
1 98 FOF8
6 99 FOF9

If the ABSVAL keyword is specified, the absolute value of the negative field is
used, and the resulting sequence is:

Numeric Key Field Hexadecimal

Record (Zoned Decimal) Representation
2 00 FOFO
5 20 F2F0
4 97 FOF7
1 98 FIF8
3 98- ' FODS8
6 929 FOF9

Physical Files

The ABSVAL keyword is not valid for a field of character data type. You can ABSVAL

not use this keyword with the SIGNED, the ZONE, or the DIGIT keyword.

ABSVAL (a key field level keyword) and ALTSEQ (a file level keyword) are
mutually exclusive; that is, if you specify ABSVAL for a key field, NOALTSEQ
is in effect for that key field, even if ALTSEQ was specified at the file level
(whether the NOALTSEQ keyword is specified or not).

If you do not specify SIGNED, ABSVAL, ZONE, or DIGIT for a key field, the
value of the field is treated as a string of unsigned binary data.

The following is an example of how to specify the ABSVAL keyword:

A :
Conditioning 3
N Location
Z|
X
| Condition Name _ 2
o
g 2 h 2 s Function:
Sequence < N Name Lengt! 3 H ions
Number £ = | z
g = = < |a
E N g = S Po
ine S
88l | . . . 3 8l .S
ZISls| 8| € 15| 8 |F 2 Sisels
<l 8| B 1B 5 el g CIE2lY
cl8lgl 5 2] B |8 5 2 218% 8
21&(2| B3] E 13| B |2 & 8a&13
123 4 s|e|7]a|9 10f1112 13[1a[15 1617|1819 20 21 22 23 24 25 26 27 28[29 {30 31 32 33 34{35[36 37|38[39 40 4142 43 44|45 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80|,
o A ORDNB , 5 (b_. .
00020 K| ORDNB : BSYAL
A :
A
A

Physical Files 2-15

Physical Files
ALTSEQ ALTSEQ(alternate-sequence-table-namel.library-name))

This file level keyword (alternate sequence) tells CPF that if a key has been
specified for this file, CPF is to use an alternate collating table when
sequencing the records of a file member for retreival. Such a table can be
created by the Create Table (CRTTBL) command. The name of the alternate
collating table is a required parameter value; the library name is optional. (If a
library is not specified, the library list, *LIBL, is used.)

The ALTSEQ keyword is not valid when FILETYPE(*SRC) is specified on the
Create File command. See the CPF Programmer’s Guide for information about
the FILETYPE(*SRC) parameter value.

Notes:

1. Alternate collating sequences are not valid for key fields with a data type of
packed decimal or binary, or for key fields with SIGNED or ABSVAL
specified. For these fields, NOALTSEQ (a key field level keyword) is
assumed and need not be specified. NOALTSEQ can also be specified for
any field in a composite key not requiring the alternate sequence.

2. At file creation time, you must have operational rights to the alternate
collating table. The alternate collating table is created using the Create
Table (CRTTBL) command. See the CPF Programmer’s Guide for more
information on how to create and enter a table.

In the following example, records with format DISTR are sequenced by key
NAME, by means of the alternate collating sequence TABLE1 in library

TABLELIB:
i g’
Conditi
tening g Location
2
| | Condition Name | _| g
O [<] o
Sequence ?J g Name Length E § Functions
Number € & % ES
E £ | a
£ = I E N
&(3) & 8 g S| Line | Pos
- 5 5 | _a‘
feeHEHE- £ SHix
8 5| 815 . £
HEE R E L : HEEE
6|7]8)9 10[11}12 13|14]15 16817 [18 /19 20 21 22 23 24 25 26 27 282930 31 32 33 34/35/36 37|38|39 40 41{42 43 4445 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80|
A ' LTSEG({ TABLEL . TABLELTR)
A
A
A
Al
A 2
A
A
A
Al
A

CHECK(edit-check-code [. . .]) g:ﬁ;ﬁal Files
This field level keyword checks the validity of data entered in a field of a
display file by applying one or more edit/check algorithms against the data.
The keyword does not request any action by data base data management, but
can be specified in the data base file description so that it can be duplicated
into display file descriptions when this field is referenced at display file
creation. The rules for specifying this keyword are the same for a data base
record format as for a display file record format. See Chapter 4, Display Files,
for information on how to specify this keyword.

The following edit/check codes are not allowed in data base files even for
reference purposes:

Codes Meanings

FE Field exit check
RL Right-to-left cursor movement
RLTB Right-to-left, top-to-bottom cursor movement

CMP(relational-operator-code constant-value)
The CMP keyword is equivalent to the COMP keyword. The COMP keyword is

preferred because it is compatible with DDS on other systems. See the COMP
keyword description for an explanation of how to use these keywords.

Physical Files 2-17

Cysical Files COLHDG('line-1" ['line-2" [ine-3)

This field level keyword (column heading) specifies column headings to be used
as a label for this field by the query utility, the data file utility (DFU), and the
screen design aid (SDA). A maximum of three lines of 20 characters each is
allowed.

Each line of the column heading must be enclosed in apostrophes. Use double
apostrophes () to specify apostrophes within column headings. One or more
blanks must be used to separate the first column heading line from the second
and the second from the third.

If COLHDG is not specified and is not retrieved from a referenced field, the
field name is used. If COLHDG is specified and TEXT is not specified, 50
positions of column heading information are used as text. For example, a
specification of COLHDG('Order’ 'Date’) is equivalent to TEXT(Order Date’).

The following example shows how to specify the COLHDG keyword:

Conditioning § Location
3l
| | Condition Name g
o 5
Sequence 3 g Name Length S g Functions
Number £l = s Ed
E. 2 g s |2
§§ N N |8 o % o g Line | Pos
Stz § el B B L : fee
HEERREERE L] 3823
12 3 4 5|6|7(8|9 10[11/1213]14]16 16 [17[18[19 20 21 22 23 24 25 26 27 28|29 [30 31 32_‘33:34 35 36‘37 38[39 40 4142 43 44 45:A6 47118 49:50:5| 52;53 64 55 56 57:55159 60 61 :62163:84 6566 67 68 69 70 71 72 73 74 75 76 77 78 79 80|
00150]~ ORDDAT] 5 %L DG (" **Dat;
00160/ %‘AME 2 : Name') ‘
0oL 70~ crTy 28 Field')
The following display illustrates how the column headings could appear when
executing query, DFU, or SDA.
4 ™
Customer
Order City
Date Customer's Name Field
NNNNN XKXXKXKXKKKXKKKKKKKK XXXKXXKKKKKXKKKXKKXKK
. P

Physical Fil
COMP(relational-operator-code value) Coﬁ::a res

This field level keyword (comparison) is a validity checking keyword used when
fields are referenced by a display file. It does not request any action by data
base data management, but can be specified in the data base file description
so that it can be duplicated into device file descriptions when this field is
referenced at device file creation. The rules for specifying this keyword are the
same for a data base record format as for a device file record format. See
Chapter 4, Display Files, for information on how to specify this keyword.

DESCEND

Use this key field level keyword to specify that the values of this character or
numeric key field are to be retrieved in descending sequence. If this keyword
is not specified, ascending sequence is used. See the SIGNED keyword
description for an example of data sorted with the DESCEND keyword. The
following example shows how to specify the DESCEND keyword:

Conditioning §
E Location
|
| | Condition Name _ a8
< S -
Sequence < o Name Length |5 s Functions
Number § = & s
£ = = < 3
£ 2 3 E S
ine 3
8 sl s lal 518 8 g el |
clelz| Bzl 212 BB H 2252
EMEREE R kS =5 Y
s
Slj2| E 3] £ 2| 2 |2 -3 3883
1 2 3 4 5|6(7|8[9 10[11)1213(14[1516{17[18[19 20 21 22 23 24 25 26 27 282930 31 32 33 34(35/|36 37(38|39 40 41[42 43 44|45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80
OO LOTA | [U : | _DESCEND
L N Bl N
t

Physical Files 2-19

Physical Fil
o e DIGIT

Use this key field level keyword to specify that only the digit portion (rightmost
4 bits) of each byte of the key field is to be used when constructing a value
associated with this key field. The zone portion is filled with zeros.

This keyword is applied against the entire key field (not just a position within
the field); it is valid only for character or zoned decimal type fields.

You cannot use this keyword with the ABSVAL, the SIGNED, or the ZONE
keyword.

If you do not specify SIGNED, ABSVAL, ZONE, or DIGIT for a key field, the
value of the field is treated as a string of unsigned binary data.

The following example shows how to specify the DIGIT keyword:

Conditioning §
N Location
2]
2
| | Condition Name . g
g 9 b ,
Sequence g N Name Length | s Functions
Number € = = =
g s = < |3
£ % = =
§§ N 5 g g 3_“2 Line Pos
Fistzl iz B g B R s SHR
Si2ls| 2 (5] 2 (3| £ 15028 3 2/83(%
S1&|2| 2 |2| £ (8] E |2 & S|8&|3
12 3 4 s{6|7|8]9 10[11{1213[14/1516(17 18|19 20 21 22 23 24 25 26 27 28(29(30 31 32 33 3435(36 37(38(39 40 41|42 43 4445 46 47 48 49 50 51 52 53 54 55 56 57 68 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80
00040~ DTy __DIGIT
: " _;

In this example, if ORDTYP is a 3-byte field, the values of the
field for three different records could be as follows:

Values Hexadecimal Digits Used for Key
c4aJ C3F4D1 341
LMA D3D4C1 341
3D1 F3C4F1 341

ical Fil
EDTCDE(edit-code [* | floating-currency-symbol]) ggﬁ:‘g&E res

Use this field level keyword to specify an edit code for editing of output data
using this current field description. The edit code specification is not used by
data base data management, but is retained in the data base file description so
that it can be duplicated into a device file description through the reference
function at device file creation. An edit code is a required parameter value for
this keyword.

EDTCDE is valid for numeric fields only. You cannot specify both the EDTCDE
and the EDTWRD keywords for the same field. You can use the EDTCDE
keyword to perform edit functions, such as the following:

o Suppress leading zeros
« Omit a sign from the low-order position of the field

« Punctuate the field without having to specify an edit word (see the
EDTWRD keyword)

« Perform asterisk fill
« Specify floating currency symbol

« Perform user-defined edit functions

CPF Edit Codes: The edit codes that you can specify as a parameter value for
this keyword are:

1 through 4
A through D
J through M
X through Z2

See the EDTCDE keyword descriptions in Chapter 4, Display Files, and Chapter
5, Printer Files, for summaries of the functions provided by all CPF edit codes
except X. Edit code X is used only to override the default edit codes used in
query (default edit code is J) and the data file utility (default edit code is L).

User-Defined Edit Codes: You can also specify any of five user-defined edit
codes (5 through 9). Before creating a device file from DDS source

containing user-defined edit codes, the user-defined edit codes must exist.
When you create the device file, the editing information is extracted from the
user-defined edit codes as referenced in the DDS. Changing user-defined edit
codes does not affect existing device files unless the device files are
re-created. See the CPF Programmer’s Guide and the CL Reference Manual for
descriptions of how to create user-defined edit codes if those shipped with the
system cannot be used.

Physical Files 2-21

Physical Files
EDTCDE Asterisk Fill and Floating Currency Symbol: You can specify asterisk fill or

floating currency symbol with edit codes 1 through 4, A through D, and J
through M.

When you specify asterisk fill, an asterisk (*) is written for each zero
suppressed. A complete field of asterisks is printed for a zero balance field.

When you specify a floating currency symbol, the symbol appears to the left of
the first significant digit. The symbol does not print on a zero balance when an
edit code is used that suppresses the zero balance. The symbol that you
specify must match the system value for the floating currency symbol
(QCURSYM) when the file is created; it does not have to match when the file
is used. See the CPF Programmer’s Guide for a description of how to change
this symbol.

The following example shows how to specify the EDTCDE keyword:

2
“ Conditioning %I Loction
Z|
| | Condition Name | §
Q|
Sequence 3 é Name Length 5 g Functions
Number £ r s z
E £l |]
£ 2 & E S| Line | pos
&3 - gl _ IS
AR ‘ ~’|.2;§‘
HEEREEEE : SRR
1 234 5/6]7(8]9 10[11)1213]14[15 1817 1819 20 21 22 23 24 25 26 27 28[20[30 31 32 33 343536 37(38) 404142434445‘4347«49.60'51szsa.usssesnesswmezsauesnsuean?oﬂ7273"757077737930
0010 PRICE 5| 2 DICDE(S
A 1
A
A AL AR 8 T TCDE(L %)
x
a

See the EDTCDE keyword descriptions in Chapter 4, Display Files, and Chapter
5, Printer Files, for examples of valid edit codes, source data, and edited
output.

2-22

Physical Files

EDTWRD('edit-word’) EDTWRD

If you cannot accomplish the desired editing by using the EDTCDE keyword,
you can specify an edit word instead. The edit word specification is not used
by data base data management, but is retained in the data base file description
so that it can be duplicated into device file descriptions through the reference
function at device file creation. The edit word specifies the form in which the
field values are to be displayed and clarifies the data by inserting characters
directly (such as decimal points, commas, floating and fixed currency symbols,
and credit balance indicators). The edit word can also be used to suppress
leading zeros and provide asterisk-fill protection.

The following rules apply when you specify an edit word:
« The edit word must be enclosed in apostrophes.
« The EDTWRD keyword is valid for numeric fields only.

« The number of replaceable characters in the edit word must equal the length
of the field.

« When you are using the floating currency symbol, the sum of the number of
blanks and the stop-zero-suppression character (digit positions) contained in
the edit word must be equal to the number of positions in the field to be
edited. The currency symbol is not counted as a digit position.

For example, if you specify a field length of 7 with 2 decimal positions, the
edit word must be specified as:

EDTWRD(bbb5$0.5b)
where the b represents a blank.

« Any printable character is valid, but the following characters in certain
positions have special meanings:

— Blank: A blank is replaced with the character from the corresponding
position of the data field. A blank position is referred to as a digit
position.

— Ampersand: An ampersand causes a blank in the edited field. The
ampersand is not printed.

— Zero: A zero stops zero suppression; place a zero in the rightmost
position where zero suppression is to stop. The zero is replaced with the
character from the corresponding position of the data field, unless that
character is zero. Any zeros in the data that appear to the right of the
stop-zero-suppression character are printed. At least one leading zero is
suppressed. Each zero that is suppressed is replaced by a blank. The
stop-zero-suppression character is considered a digit replace position.

Physical Files 2-23

Physical Files
EDTWRD

— Asterisk: An asterisk stops zero suppression and replaces zeros with

asterisks (asterisk protection). Place the asterisk in the rightmost position
where zero suppression is to stop. Each zero that is suppressed is
replaced by an asterisk. An asterisk preceding a zero is interpreted as
representing asterisk protection; in this case, the zero prints as a
constant. An asterisk is considered a digit replace position.

Currency Symbol: A currency symbol coded immediately to the left of the
zero suppression code causes the insertion of a currency symbol in the
position to the left of the first significant digit. It is called the floating
currency symbol when used in this manner.

A currency symbol coded in the leftmost position of the edit word is
fixed and prints in the same location each time. When used in this
manner, it is called the fixed currency symbol.

The currency symbol is not considered a digit replace position. This
symbol must correspond to the QCURSYM system value.

Decimals and Commas: Decimals and commas are printed in the same
relative positions in which they are coded in the edit word unless they are
to the left of the first significant digit. In that case, those positions are
filled with blanks or replaced by asterisks.

All Other Characters: All other characters are printed if they are to the
right of the significant digits in the data field. If they are to the left of
the high-order significant digits in the data, those positions are filled
with blanks or replaced by asterisks if asterisk protection is being used.

» If you want to show a negative sign with a negative number, include a sign
in the edit word. Use either the minus sign (-) or the letters CR (credit).
These print only if the number is negative.

+ You cannot specify both the EDTWRD and EDTCDE keywords for the same
field.

See

the EDTWRD keyword description in Chapter 4, Display Files, for

examples of edit words, source data, and edited output.

The following example shows how to specify the EDTWRD keyword:

g
Conditioning S N
§ .ocation
| | Condition Name _ g
9| &
Sequence | |<| 2 Name Lengh (3 |5 Functions
Number € < 5 Z|
£ 2 G s g
& = N
Kéﬁ s || 2 8 §__g Line | Pos
e EHERIEH § {1
c|8l=| B 5 8 = §lg 2 =
Sl2|3 2|8 2 |3 2|58 |& HERE
1 2 3 4 s5le|7|8{o 10f11l1213a1s16/17]18}19 20 21 2223242526272829303132333‘35363739394041A243444546474!49505| 52 63 54 6556 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80)
7 O 7 T 1 o v
00010} CRYCST 112 TWRD(
A
" T

2-24

FORMAT(data-base-file-nameL.library-namel]) i

Use this record level keyword to specify that this record format is to share the
specifications for a previously defined record format. The name of the record
format you are defining must be the name of the previously defined record
format. The data base file name is required; it is the name of the physical or
logical file from which the previously defined record format is taken. The
library name is optional; if you do not specify it, the library list in effect at file
creation time is used.

If you specify the FORMAT keyword, you cannot specify field specifications for
this record format; however, you must specify key specifications if you want
them to be in effect for this file. (They can be the same as or different from
the previously defined record format.)

If the data base file from which you are using the record format is deleted, the
record format remains in existence as long as some file is using the record
format. For example, RECORD in FILE2 uses the FORMAT keyword to share
the specifications of RECORD in FILE1. Both files have been created. If FILE1
is deleted and then re-created with different DDS, RECORD?2 still exists and
can itself be referenced for the original record format by other files using the
FORMAT keyword.

The following example shows how to specify the FORMAT keyword:

Conditioning
Location

Condition Name

Functions

& Data Type (B A/P/S/B A/S/X/Y/IN/I/W)

a
I S
Sequence g g Name Length H
Number € = s
§ z
£ 2 3 g
88| g = S| Line | Pos
>1L 5 5 5 2B 8 2|5
| =l = 2 |z 8 |F|e € B 5|2
52555.‘554§g$ = E2lg
HEITIE-R 5 2 3
2|55 2 15 2 2| 2|58 H a8|2
12 3 4 5[6|7|8|9 10f11[12 13}1a]15 16[17]18 |19 20 21 22 23 24 25 26 27 282930 31 32 33 34|3536 373839 40 41/42 43 4445 45 47 48 49 50 51 52 53 54 55 56 57 58 59 6O 61 62 63 64 6566 67 68 €9 70 71 72 73 74 75 76 77 78 79 BO|
000L 0 CUSHST EEEEE FORMAT(CUSHsTR)
A : ;
A
A

The record format for this physical file is the same as the

previously specified record format in file CUSMSTP. The name
of this record format (CUSMST) must be the same as the name
of the record format in CUSMSTP.

Physical Files 2-25

Physical Files
LIFO LIFO

Use this file level keyword to specify that if records with duplicate key values
are retrieved from the same physical file member, they are to be retrieved in a
last-in-first-out (LIFO) order.

If neither LIFO nor UNIQUE is specified, records that have duplicate key values
are retrieved in a first-in-first-out (FIFO) order.

The LIFO keyword is not valid when FILETYPE(*SRC) is specified on the Create
Physical File (CRTPF) command. See the CPF Programmer’'s Guide for more
information about the FILETYPE(*SRC) parameter value.

The following example shows how to specify the LIFO keyword:

g
Conditioning =~
§ Location
X
| | Condition Name @
5 5 3
Sequence | |< 2 Name engh (5 |5 Functions
Number § = % i
ﬁE ‘2 z 3 g Li Po:
8 " «|S| U g
5z Bzl 22| B : flase
eelel 2 (5 2 I3l S8 § 21355
$|%|2 g 3| £ 12| E 2| (1 Sgg:g
12 3 4 5|6|7]|8{9 10)11[12 1314|1516 {1718 19 20 21 22 23 24 25 26 27 28[29[30 31 32 33 34[35[36 37|38|39 40 41|42 43 4445 45 47 48 49 5051 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
00020/ TEXT(
EEAL |
,. I

2-26

Physical Files
NOALTSEQ NOALTSEQ

Use this key field level keyword to specify that the ALTSEQ keyword specified
at the file level is not to apply to this key field. If you specify ABSVAL or
SIGNED for a key field, NOALTSEQ is in effect whether or not the NOALTSEQ
keyword is specified for that key field.

The following example shows how to code the NOALTSEQ keyword. In this
example, records with the record format DISTR are sequenced by the
composite keys CODE and NAME, in which CODE is sequenced by the
alternate collating sequence TABLE1 in TABLELIB, and NAME is sequenced by
the EBCDIC collating sequence. NOALTSEQ prevents the sequence of the
NAME field from being altered.

g
Conditioning S
N Location
%
| | Condition Name @
5 5 <
Sequence < g Name Length s H Functions
Number] < = =
; : R
£ =| @
&5 E = 2 § Line Pos
SO|_| | 513 8 _ .2
o § e 5 B[] ezl
HEE R E- R < 218G
2122 2 |5 212 2|52 E: HEFE
8|78 |o 1011]12 13[14]15 16 17 {1810 20 21 22 23 24 25 26 27 28J29}30 31 32 33 34|35|35 37|38[39 40 41(42 43 44|45 46 47 48 40 5051 52 53 54 6556 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80)
A Nl LTSEQCTABLEL. TABLELIR)
0 A TR »
01 A [/
A
e FaOroY
0008+ CODE 1l
O A AMNE
0! A
;] A
00 L2~ CODE
0013 ME OALTSEQ
T [a L
[a I 1

RANGE(low high)

This field level keyword is a validity checking keyword for display files. RANGE
is not used by data base data management. It is specified in the data base file
description so that it can be duplicated into display file descriptions when this
field is referenced at display file creation. The rules for specifying this keyword
are the same for a physical file as for a display file. See Chapter 4, Display
Files, for information on how to specify this keyword.

Physical Files 2-27

Physical Fil
RE,)_-'Slca res REF(data-base-file-namel.library-namellrecord-format-name])

Use this file level keyword to specify the name of a file from which field
descriptions are to be retrieved. Use it when you want to use field attributes
from several fields in a previously described record format for the file being
defined. You can specify the file name once in the REF keyword instead of
specifying it on several REFFLD keywords with each of the field descriptions
that reference the file. To reference more than one file, use the REFFLD
keyword. (The REF keyword can be specified only once.)

If there is more than one record format in the referenced file, you can specify a
record format name as a parameter value for this keyword to tell CPF which
one to use, unless the formats should be searched sequentially.

The file name is a required parameter value for this keyword; the library name
and the record format name are optional.

If you do not specify the library name, the current library list is used. If the
record format name is not specified, each record format is searched in order
(as they are specified); the first occurrence of the field name is used. For
information on how the choice of REF and REFFLD keywords controls these
searches, see Appendix A, How to Specify REF and REFFLD.

2-28

Physical Files

The following examples show how to specify the REF keyword: REF
A :
Conditioning S
N Location
| Condition Name g
S 5 <
Sequence | |< g Name Length |3 |3 Functions
Number £l = & z
g 2 z g B
§8 s 5 §.§ E § 3 Line | Pos
=N = = [€ SERIE]
e%§§§.§§ tg 3 S| E2ln
5|25 B (3| 2 |3 B |38 K 5|88|3
123 4 5|6{7]|8|9 10/11[12 13|14]15 1617|1819 20 21 22 23 24 25 26 27 28{29[30 31 32 33 34{35(36 37{38|39 40 41(42 43 44|45 48 47 48 49 50 51 62 53 54 5556 57 58 59 60 61 62 63 64 6566 67 63 69 70 71 72 73 74 75 76 77 78 79 80|
OQ 1O R : REF(FILEL) ’ :
0RO Rl REC ORD, : :
000304 FLDL | R
: A
A
A
A
A
A
A In this example, FLD1 has the same attributes as the first (or
A only) FLD1 in FILE1.
:
Conditioning §
> Location
2
| | Condition Name &
3 5 <
Sequence < N Name Length |3 s Functions
Number € = E S
£ 2 z h{ I
§§ 8 E 2 05 Line | Pos
cislz| €1zl £ 2 hg H 2252
HEIER = g k3 PR
Sle|2| 23] 2 (3| E |3|& & 8883
2 3 4 5|6|7{8|9 10/11[1213ha|15 1617|1819 20 21 22232425262723?2930‘31 3233343536373839404142‘43“45.464768495051 525354595357585960.61 8283“.650667686970” 7273747576 77 78 79 80j
Q0L 04 o : ' ’ ' REFCFILEL.L1BL RECORDR)
Q020 Rl RECORD|
0030A FLDL R
A
A
A
A
A
A
A
A In this example, FLD1 has the same attributes as FLD1 in
RECORD2 in FILE1 in LIB1.

Physical Files 2-29

.~ Physical Files
REFFLD REFFLD(referenced-field-namel[.record-format-name] *SRC)
data-base-file-namel.library-name]

Use this field level keyword when referencing a field under one of these three
conditions:

« The name of the referenced field is different from the name in positions 19
through 28.

« The name of the referenced field is the same as the name in positions 19
through 28, but the record format, file, or library of the referenced field is
different from that specified with the REF keyword.

. » The referenced field occurs in the same DDS source file as the referencing
field.

The referenced field name is required even if it is the same as the referencing
field. Use the record format name when the referenced file contains more than
one record format. Use *SRC to search the DDS source file in which the
referencing field occurs (this is the default value when the data base file name
and the library name are not specified). Specify the data base file name
(qualified by its library name, if necessary) when you want to search a
particular data base file.

If, in the same DDS source file, you specify REF at the file level and REFFLD
at the field level, the REFFLD specification is used. The particular search
sequence depends on both the REF and REFFLD keywords. For more
information, see Appendix A, How to Specify REF and REFFLD.

An R must be specified in position 29.

The following example shows how to code the REFFLD keyword. Because the
REF keyword is not specified, the default for line 00030 and 00040 is to search
the DDS source file in which they are specified. In line 00080, the parameter
*SRC explicitly specifies the source file. See the example in Appendix A, How
to Specify REF and REFFLD, for explanations of the various specifications.

A g
Conditioning 3|
E Location
g Condition Name 5 §
Sequence Z g Name Length S H Functions
Number £ X g 2
§§ _ | & = ™ “§ Line | Pos
ceHEE I
2[3(5| 2 (3] 2 5| B |3)8 H HEFE
1 2 3 4 5/6{7{89 10/11{12 131415 1617|1819 20 21 22 23 24 25 26 27 28{2930 31 32 33 34|35[36 37{38]39 40 41|42 43 44/45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
OOL0 R - - - —— — - - - - e
0020 %T:E 4 N E
Cn TEML T R EFFID(ITEN)
z LTEMZ ' L2REFFLD(ITEM.FMATL]
X A [EM3 RRREFFLD(ITEM F1LEX)
gtgg?g'\ ;Eﬁg : .;aREijL (ITEM FIL ‘x.#IBY) 873
000 704 EFFLD(ITEM.FMATL FIL L1BY.
A TEMb R 5;?&&5? (ITEM ¥SRC) ﬁ
A ¢ i : : Lo :
A
A
A
A
A

2-30

Physical Files
SIGNED SIGNED

This key field level keyword specifies that when sequencing the values
associated with this numeric key field, CPF is to consider the signs of the
values (negative versus positive values). SIGNED is not valid for a field of
character data type.

The following example shows six records with zoned decimal key fields:

Numeric Key Field Hexadecimal

Record (Zoned Decimal) Representation
1 98 FIOF8
2 00 FOFO
3 98- FOD8
4 97 FOF7
5 20 F2FO
6 99 FO9F9
If no sequencing keywords are specified, the records are sequenced in this
order:
Numeric Key Field Hexadecimal
Record (Zoned Decimal) Representation
2 00 FOFO
5 20 F2FO
3 98- FOD8
4 97 FOF7
1 98 FIF8
6 99 FI9F9

If SIGNED is specified, the records are sequenced in this order:

Numeric Key Field Hexadecimal

Record (Zoned Decimal) Representation
3 98- FOD8
2 00 FOFO
5 20 F2FO0
4 97 FOF7
1 98 FOF8
6 99 FOF9
If both SIGNED and DESCEND are specified, the records are sequenced in this
order:
Numeric Key Field Hexadecimal
Record (Zoned Decimal) Representation
6 99 FOF9
1 98 FIF8
4 97 FIOF7
5 20 F2FO
2 00 FOFO
3 98- FOD8

Note: SIGNED is the same for logical and physical files.

Physical Files 2-31

Physical Files

TEXT SIGNED (a key field level keyword) and ALTSEQ (a file level keyword) are

mutually exclusive. If you specify SIGNED for a key field, NOALTSEQ is in
effect for that key field even if ALTSEQ is specified at the file level (whether
NOALTSEQ is specified or not).

If you do not specify SIGNED, ABSVAL, ZONE, or DIGIT for a key field, the
value of the key is treated as a string of unsigned binary data.

The following example shows how to specify the SIGNED keyword:

nditioning E
. Ny Location
%
| Condition Name 9
15 35 <
Sequence 3 g Name Leﬁgth s s Functions
Number 3 < = B
: = g d B
3>5§ N N § - ; W S| Line | Pos
Z|Z|2| 2 |g| 2 (3| 25l : HEHH
123 4 65|6|7|8]9 10[11]12 13|14 ts}ls 17 18 |9‘202| 22‘2324262627.282930?1»32’33343536?73339‘04' 4243«45.46473405051 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 75 76 77 78 79 80
000 L0 ’ Ecorolp | [' ‘
00020/ FLDA 78 2
00030/~ FLog . r '
0040\a K| [FLD S1GNED
A H
A
A
TEXT('description’)
Use this record or field level keyword to supply a text description with this
record format. The text description must be enclosed in apostrophes, with a
maximum of 50 characters. If more than 50 characters are specified, the
keyword is accepted; however, the excess characters are dropped and a
warning message is issued.
You can specify TEXT at both the record format level and the field level.
However, both TEXT and FORMAT cannot be specified at the record format
level, because the format already contains text.
The following examples show how to specify the TEXT keyword:
5
Conditioning § Loaati
> cation
%
| | Condition Name |
= 8 2
Sequence g g Name Length g g Functions
Number €] = < I .
i s = g 2
€ z £ =
818 - = I~ 8l . S Line Pos
e “jg ! S
EEHEEEE R : 5238
1 23 4 5(6|7|8]|9 10[11[1213[1416161718 19‘20 2|.22.23.24 25 26 27 28[29[30 31 32 33 34[35[36 37/38/3p.40 41{42 QSMH:G 47=48‘49:50:5!:62 53:54155 5859:&) 62}{6‘6{”87“897071 72 73 74 7576 77 78 79 80
A RDNEY o[[Co "OR MBER')
A
A

2-32

Physical Files

If TEXT is not specified and COLHDG is specified, 50 positions of column TEXT

heading information are used as a default for text. If COLHDG is not specmed
there is no text, unless it is retrieved from a referenced field.

AR . :
Conditioning s
Z Location
X
7| | Condition Name &
I 9 <
Sequence < 3 Name Length & s Functions
Number E = o I
E| 3 - < S
&.?E, | £ b § Line | Pos
SR G s LR
ErEREE AR k3 sl e % ¥
2|zf2| £ 12| £ 2| £ |32 e 3|33
12 3 4 5(|6(7|8|9 1011[1213141516{17 51920212223242526271829303‘3233343536373839404142‘3“454647484950515253545556575859808‘61635465”578889707!727374757677787980
0600704 YTDAMT 6 Q CoLHDG(‘Yeav & ote' 'Amount')
" te
A
A
If the TEXT keyword is not specified, the information specified on the
COLHDG keyword is used for the text as if coded as follows:
A B
Conditioning E
N Location
2
a Condition Name | @
S| 9 -
Sequence < 5 Name Length |55 s Functions
' Number £ & o I
H 5 = < @
5 E g 2 S Line Pos
g <}
K IO I I R g Yotgs
NERAE 5 Z| § 2 ® Fleg
BEMERNE R k3 sl
S|512| 2 (3] 2 |2] 2 (2@] 5|&8&(3
12 3 4 s|e|7|8|9 10)11]12 13}1415 16 1711819 20 21 22 23 24 25 26 27 282930 31 32 33 34(35/36 37(38{39 40 41/42 43 44/45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 75 76 77 78 79 80
000704 YTDANT 6 TEXT('Yeor to
A
A
A

Physical Files 2-33

Physical Files

Use this keyword at the file level to specify that records with duplicate key
values are not allowed within a member of this physical file. Any inserts or
additions of new records, or updates to existing records, that would result in a
duplicate key are rejected. The application program issuing the write or the
update operation receives a message. When a work station user is using DFU,
a message is displayed at the work station. A copy file command copying
records that would have duplicate keys in this file cannot be completed.

When a logical file based on this physical file has the UNIQUE keyword, the
physical file member or members cannot have records with duplicate keys.

When the UNIQUE keyword is specified for a physical file, the
MAINT(*IMMED) parameter value must be specified on the Create Physical File
(CRTPF) command that creates the file. This means that the access path is
maintained immediately as changes are made. See the CPF Programmer’s
Guide for a description of the MAINT(*IMMED) parameter value.

If the UNIQUE keyword is not specified, records with duplicate key values are
sequenced in first-in-first-out (FIFO) order, unless the LIFO keyword is
specified, in which case they are sequenced in last-in-first-out order. For an
explanation of how records with duplicate key values are sequenced when
those records are not in the same file member, see the section on data base
records in the CPF Programmer’s Guide.

The following example shows how to specify the UNIQUE keyword:

_ g
Conditioning 2
N Location
B
| | Condition Name @
I3 o N
Sequence < S Name Length 3 S| Functions
Number € & g z
g = = g e
€| = < 5| =
§§ N N N § g % .,.§ Line | Pos
2153 2 (3] 2 5| B |5 2 5|88|3
123 4 5|6|7|8|9 101112131415 1617 [18[19 20 21 22 23 24 25 26 27 282930 31 32 33 34[36|36 37(38|30 40 4142 43 4445 46 47 48 40 5051 62 53 54 5556 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80|
00040~ ! R ™ ™ - :
000201 [SAMPLE| PHNISTCAL FILE (CUSHSTP%)
00 0350|A¥ !
0004-0/A UNIQUE
000504 CUSMS T2 EORNMAT (CUSMSTP)
00060/ NAME j
00070|A K| ADDR
i A
A
A

2-34

Physical Files

VALUES(value-1 [valué-Z . . .[value-20]]) VALUES

This field level keyword is a validity checking keyword for display files. It does
not request any action by data base data management, but can be specified in
the physical file so that it can be duplicated into display file descriptions when
this field is referenced at display file creation. The rules for specifying this
keyword are the same for a data base record format as for a display file record
format. See Chapter 4, Display Files, for information on how to specify this
keyword.

ZONE

Use this key field level keyword to specify that only the zone portion (leftmost
four bits) of each byte of the key field is to be used when constructing a value
associated with this key field. The digit portion is filled with zeros.

This keyword is applied against the entire key field (not just a position within
the field), and it is valid only for character or zoned decimal type fields.

You cannot use ZONE with the ABSVAL, SIGNED, or DIGIT keywords.

If

you do not specify SIGNED, ABSVAL, ZONE, or DIGIT for a key field, the

value of the field is treated as a string of unsigned binary data.

The following example shows how to specify the ZONE keyword:

) Conditioning §
> Location
2
X
| | Condition Name _ g
g ° 5
Sequence g N Name Length | s Functions
Number € = 5 I|
=
E El = > <
818 g 5 9 S| Line | Pos
L _| 5 51| 512 8 8 _ ol
clolEl 3 B[l 514 £ Szl
cl8lsl 5 12| 5 %l 8 2 218G
23|22 5| B 15 25| 2 HEEE
12 3 4 5/6]|7]8]9 10)11]12 13]14[15 16 |17 18 19 20 21 22 23 24 25 26 27 28{29[30 31 32 33 34(3536 37{38[a9 40 41(42 43 44|45 46 47 48 49 50 51 52 53 54 55 56 57 68 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80
~ T — T I Tt
00o%OA [| CODE [| [ZONE
D P . N
Tl 0 I A SR N " ' T 1

In this example, if CODE is a 1-byte field, the values of the field for
three different records could be as follows:

Values Hexadecimal Zone Used for Key
A Cco c

B C1 C

E C4 C

Physical Files 2-35

2-36

Chapter 3. Logical Files

This chapter is divided into two sections. The first, Positional Entries, provides
rules and examples for filling in positions 1 through 44 of the Data Description
Specifications form. To find information in this section, first determine what
position on the form to use, then look up the section describing that position.

The second section of this chapter, Keyword Entries, provides rules and

examples for. specifying DDS keywords. The keywords are described in
alphabetical order.

For guidance in choosing positional entries and keywords for logical files, see
the CPF Programmer’s Guide.

Logical Files 3-1

DEFINING A LOGICAL FILE
To define a logical file, specify the entries in the following order:
1. File level entries (optional)
2. Record level entries

3. Field level entries (optional) Repeat these entries for
\ each record format in

) . . the file.
4, Key field level entries (optional)

5. Select/omit level entries (optional) |

Note: The file name is provided through the Create Logical File (CRTLF)
command, not through DDS.

Complete logical file examples can be found in Appendix F, Examples.

An explanation of file level, record level, field level, key field level, and
select /omit field level can be found in Chapter 1, Introduction.

The syntax rules for specifying DDS keywords can be found in Chapter 1,
Introduction.

For the maximum number of record formats in a logical file, see the PFILE
keyword description in the Keyword Entries section in this chapter. The
maximum number of fields in any one record format is 8000; the maximum
number of bytes in any one record format is 32 766.

SPECIFYING MORE THAN ONE RECORD FORMAT IN A LOGICAL FILE
When you specify more than one record format in a logical file, each record
format requires the PFILE keyword. In a logical file, there are three ways to
specify the fields to be used in any record format, as follows:

« Specify only the record format name and the PFILE keyword.

« Specify only the record format name, the PFILE keyword, and the FORMAT
keyword.

« Specify the record format name, the PFILE keyword, and individual
fields as needed.

Each of the above ways of specifying the fields in a record format can also
have the following access path specifications:

« Specify no key fields and no select/omit fields (arrival sequence access
path; only one record format with one based-on physical file can be

specified for the logical file).

« Specify one or more key fields (keyed sequence access path; all record
formats in the logical file must have at least one key field specified).

« Specify the ACCPTH keyword (keyed sequence access path; the file you are
defining shares an access path defined by another physical or logical file).

In addition, in any logical file with a keyed sequence access path, select/omit
fields can be specified for any number of the record formats in the file.

Logical Files 3-3

EERT uoarons susines Mchines Corporation DATA DESCRIPTION SPECIFICATIONS GX21-7754-1 UM/050"

Printed in U.S.A,
File Keying Graphic ! Description Page of
Programmer —IPa“ Instruction Key
P Conditioning § Lot
§ .ocation
] | Condition Name _ g
O (=]
Sequence 3 g Name Length g S| Functions
Number € = < S
g = z o (2
8 -1 = 2| S| Line | Pos
3lg| 5 5 |5 S |E|8 s|c 2
SlZ18| 2 5] 2 18 B2ld K HERE
67é910'112'3|4|5|6|7|81920212223242526272829303132333‘3536373839404102‘34445464748495051525354555657585960616263845668670889707!727374757677781930
Al lLolercal |Flrite ExAmMpLE ERAE
0¥ [ENVENTORY] IFORMAT .
A | ILNVEMT] ; PELLE CINVENTORY)
A K| ITEM
i ﬁ _ l
oAN ORDE FQE T
2 | IOROEMT] ' PF1LE(ORDER)
A f TEXT (' ORDER ANALYSIS')
A ITEL
A ORDER 1d
A SUPPLY +2
- Suep] CONCAT(SHPHMO SAPDA_SHPYR)
. QT Y RENAME (QTYDUE)
A LTEH
oA SHP
6o SHPMO
oA lkl lsupoa
0L80" O l[aTYDU CMPLLT 1)
00L90A
020607 Aciclount ING FoRrM
02104 ACTEMT PEILE(ACCOUNTS)
002204 ORNAT (ACCOUNTL
002304 ITEM
= _
A
A
A
A
A

“Number of sheets per pad may vary slightly.

Figure 3-1. Logical File Coding Example

Logical Files

Positional Entries (Positions 1-44) Positions 1-5

This section describes how to specify the first 44 positions of the Data
Description Specifications form for logical files. To code the rest of the form,
see the section Keyword Entries (Functions Field, Positions 45-80) in this
chapter.

Figure 3-1 shows some positional entries for logical files.

Positions 1-6 (Sequence Number)
Use these positions to specify a sequence number for each line on the form.
The sequence number is optional and is used for documentation purposes only.
Position 6 (Form Type)
The A in this position designates this as a Data Description Specifications
form. The form type is optional and is for documentation purposes only.
Position 7 (Comment)
An asterisk (*) in position 7 identifies the line as a comment line. Comments
can appear anywhere in DDS and are retained only in the source file and
printed on the source listing. (Comments are not printed on the expanded
source listing.) Use positions 8 through 80 for comment text. A blank line (no
characters specified in positions 7 through 80) is treated as a comment line.
Positions 8-16 (Conditioning)
These positions do not apply to logical files and must be blank unless an
asterisk appears in position 7 (indicates a comment line).

Position 17 (Name Type)

The value in this position identifies the type of name specified in positions 19
through 28 (name). The valid entries are:

Entry Meaning

R Record format name

Blank = Field name or select/omit AND condition
K Key field name

S Select field name

(0] Omit field name

Logical Files 3-5

Logical Files

Position 18 Position 18 (Reserved)

This position does not apply to any file and must be blank unless an asterisk
appears in position 7 (indicates a comment line).
Positions 19-28 (Name)
Use these positions to specify the names of the following:
» The record format or formats for this logical file

« For each record format, the field or fields that make up the record format
(unless you specify the FORMAT keyword at the record level)

« For each record format, the field or fields to be used as key fields

« For each record format, the field or fields to be used for select/omit
specifications

When specifying names in DDS, the following rules apply:
« Names must be 10 characters or less.
« Names must start in position 19.

« The name must begin with an alphabetic character (A through Z, @, $, and
#) or asterisk (*) (for *NONE). All subsequent characters can be alphameric
(A through Z, O through 9, @, $, #, and underscore (__)). There can be no
embedded blanks.

« The type of name must be specified in position 17, unless you are
specifying a field name or select/omit AND condition.

Figure 3-1 shows how to code the name field.

High-level languages can impose specific length and value restrictions on the
name field. For example, RPG 1ll accepts only file names of 8 characters or
less, record format names of 8 characters or less, and field names of 6
characters or less, and they cannot contain an underscore. It is your
responsibility to ensure that the name syntax used here is acceptable to all
language processors that process the file.

3-6

1
Logical Fil
Record Format Name Pogi.tions l1:.:)5-28

When you specify R in position 17 (name type), the name specified in positions
19 through 28 is a record format name. More than one record format name
can be specified for a logical file, but each must be unique within that file. (See
the appropriate high-level language manual for exceptions.) Specify the record
format name in one of three ways:

« As the record format name in the first physical file specified on the PFILE
keyword. This is required if you do not specify the FORMAT keyword and if
you do not define individual fields in this record format.

« As the name of a new record format with field names specified in this
logical file. The name of the record format can be the same as the file
name specified in the create file command; however, a warning message is
issued if the names are not unique, because some language processors do
not allow record format and file names to be the same. RPG Ill is such a
language.

« As the name of a record format previously described in a physical or logical
file. Field names and attributes are not specified and the FORMAT keyword
must be specified. The FORMAT keyword is explained in the Keyword
Entries section in this chapter.

Use the PFILE keyword in conjunction with the record format name to specify
the physical file(s) with which the record format is to be associated. A record
format can be used with more than one physical file. If no fields are defined
and the FORMAT keyword is not specified, the format of the first file specified
in the PFILE keyword is used as the format for all the physical files. (This
format is used for field attribute references and attribute and name checking.)

Logical Files 3-7

Logical Files
Positions 19-28

3-8

Field Name

When position 17 (name type) is left blank, the name specified in positions 19
through 28 is a field name. Each field in a logical file must be named. The
order in which you specify the field names is the order in which the fields
appear to programs that use the logical file. Each field name must be unique
within the record format and must correspond to a field in the physical file
record format.

The name you give to a field in a logical file record format will usually be the
same as the name of the corresponding field in the physical file record format.
If different, the two names must be equated by using the RENAME keyword.
A field in a logical file record format can also represent the concatenation of
two or more fields from the physical file. (See the CONCAT keyword.)

Note: The sequence in which the field names are specified in the logical file is
important. If the same physical field is specified more than once in a record
format in the logical file (that is, by using either RENAME or CONCAT), the
sequence in which the fields are specified in the logical file is the sequence in
which the data is moved to the physical file. Thus, the value of the field the
last time the field is specified in the logical file is the value in the physical
record. If a renamed (RENAME keyword) or concatenated (CONCAT keyword)
field is used as a key field, the value of the key for the purposes of ordering
the record is the value assigned to the first occurrence of the field in the
record format.

Key Field Name

When you specify K in position 17 (name type), the name specified in positions
19 through 28 is a key field name. Use key fields (and optionally, select/omit
fields) to define a keyed sequence access path for record formats in the logical
file member. (The logical file member includes the physical file members
specified on the DTAMBRS parameter on the Create Logical File (CRTLF) or
Add Logical File Member (ADDLFM) commands.)

If you specify more than one record format for a logical file or more than one
physical file for the PFILE keyword, you must specify at least one key field for
all record formats of that logical file. A key can have more than one key field;
such a key is a composite key.

The following example shows a logical file with two record formats, one of
which uses a composite key:

Logical Files

Positions 19-28

In this example, RECORD1 has a single key field, FIELD1. RECORD2
has a composite key that includes FIELD4 and FIELDb.

In a composite key, specify the key field names in the order of
importance (major to minor), and specify each key field name on a
separate line.

A s
Conditioning Si
N Location
=
' Condition Name Pq
5 5 <
Sequence < g Name Length 3 H Functions
Number £ r < T
g = = < =
&§ i = § S| Line | Pos
S| 511 51zl 529 3 —2ls
HEEREREEE e 2 HEHE
12 3 4 s5l6|7]|8|9 10[11)12 13]14]15 16 17 [18}19 20 21 22 23 24 25 26 27 282930 31 32 33 34(35(36 37(38(39 40 41[42 43 4445 46 47 48 49 50 51 52 53 54 55 66 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79
00L0A | IRECOROL ' , PEILE(PEFL)
00204 FIELD
oo 39A F1ELD
0oorOA FIELDS
po o504 Kl ELELD Y
00 060A¥
0oo7dA R RECORDZ2 PFILe(PE2)
0o ougols FIELDS
pootd [FIELD
yoLoo|A K [FIELD4
GoLLOA Kl F1EL
: A :
A .
A

Logical Files

3-9

Logical Files
Positions 19-28

If you specify no key field, the logical file you are defining has an arrival
sequence access path. Also, without at least one key field specified, you
cannot specify select/omit fields.

The number of fields that make up a key is restricted in that the total key
length cannot exceed 120 bytes. The total key length includes the length of
each key field. When you specify more than one record format in a logical file,
add 1 byte for each key field (CPF uses the extra byte when records from
different physical files have duplicate key values).

Fields that you specify as key fields must exist in the logical file record format
as well as in the pb 'sical file record format, and the key field name must be
the name specified for the field in the physical file record format. Data type,
length, and decimal positions of the field in the physical file record format
cannot be overridden in the logical file record format; they must be the same
as in the physical file record format. The field used as a key field must exist at
the field level in the record format as well as at the key field level. If you do
not specify field names at the field level, the field must exist in the record
format specified with the FORMAT keyword or in the record format of the first
physical file specified with the PFILE keyword.

You can specify one or more access path keywords to affect the way CPF
builds and uses key values. The access path keywords are the following:

File Level

ACCPTH
ALTSEQ
LIFO

UNIQUE

Key Field Level

DESCEND
DIGIT
NOALTSEQ
SIGNED
ZONE

Different key fields within a composite key can have different access path
keywords.

. . . . Logical Files
Logical Files with More Than One Record Format: When you specify more than ngil:;:ns I19-28

one record format in a logical file, you must specify at least one key field for
every record format in the logical file. It is not necessary to specify the same
number of key fields in each key. Also, key fields specified in one record
format must have the same field attributes and access path keywords as the
corresponding key fields in other record formats in the same logical file.

A key is required for every record format so that the logical file member can
have a single access path sequencing records of each record format. When
records are returned from the various based-on physical file members, they are
merged according to the values of the key fields in the access path for the
logical file member.

When records of a logical file member are sequenced, CPF builds a key value
for each record by concatenating the values in its key fields. The key value is
then used to build the access path for use by your program. See the section
on data base records in the CPF Programmer’s Guide for information about the
1/0 operations permitted by CPF.

Each key field in a composite key has a key position. The first key field
specified is in position 1, the second key field specified is in position 2, and so
on. During 1/0 operations to a ldgical file, CPF compares the key values of the
records written to or read from the data base. When you create a logical file
that has more than one record format (with or without different key fields
specified), CPF performs key position attribute checking. For key position
attribute checking to succeed, key fields of different record formats that are in
the same key positions must have the same data type, length, decimal
positions, and access path keywords specified at the key field level. This
ensures a meaningful record sequence from the comparisons made during an
1/0 operation. For example, in the following logical file, FIELD1 and FLD1
must have the same attributes, and FIELD2 and FLD2 must have the same
attributes. FIELD1 and FLD1 are in key position 1, and FIELD2 and FLD2 are
in key position 2.

Conditioning
Location

Condition Name

ype
~ And/Or/Comment (A/O/*)

@ Not (N}
©

Name Length Functions

Line Pos

& Data Type (8 A/P/S/B A/S/X/Y/N/I/W)

& Decimal

Name Type (#/R/K/S/0)
8 Usage (6/0/1/B/H/M)

- Indicator
Not (N)
Indicator
Indicator

% Reference (R)

k
L

3 Not (N)
< Positions

118 [19 20 21 22 23 24 25 26 27 28! 0 31 32 33 34

s
N
b
&
3
3

39 40 41[42 43 44/45 46 47 48 49 50 51 52 53 54 5556 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71 72 73 74 7576 77 78 79 80

b

RECORDL PEFILE(PFL)
[F1eLoy 5 s f

IR n

F1evps| A

Y.

FIELDL

IELD? DESCEND

RECORDR PFILECPER)
FLDL 5| L

FLD2,

FLD3

NS

K| FLDJL

FLD2 ESCEN

>I21>|2 22> |2l> |2 |>]>|>|>]|>|>|[2FormT

Logical Files 3-11

Logical Files
Positions 19-28

For examples of key fields in a logical file with more than one record format,
refer to Figure 3-1. In Figure 3-1, fields named ITEM are specified in each
key. For record formats INVFMT and ACTFMT, ITEM is the only key field
specifié&.‘Fowecord format ORDFMT, a composite key is specified. This
composite key includes ITEM, SHPYR, SHPMO, and SHPDA. Each of the
fields used in a key must also exist at the field level; therefore, ITEM must
exist in the record format for the physical file INVENTORY so that it can be
copied into this logical file for INVFMT. Also, ITEM must exist in the record
format for the logical file ACCOUNTL so that it can be copied into this logical
file for ACTFMT. (ITEM must also exist in physical file ACCOUNTS.)

How to Use *NONE: Two conditions can occur in which key fields having the
same key position should not be compared. The two conditions are:

« The key fields do not have the same field attributes (data type, length,
decimal positions, or access path keywords at the field level).

« The key fields have the same attributes, but you do not want them to be
merged and sequenced together.

To avoid invalid or unwanted comparisons between key fields, specify *NONE
in place of one of them, and move the displaced key field to the next key
position. CPF compares the values of key positions before and after *NONE,
but retrieves the affected records in the order in which the record formats are
specified in the DDS for the logical file.

Note: You can specify *NONE two or more times on succeeding lines to
displace a key field to a key position for which a comparison of key field
attributes is relevant to your application.

. . S . . Logical Files
Example 1: A logical file views records of two physical files through two - Positions 19-28

different record formats, CLSHST (class history) and JOBHST (job history). In
the logical file, the records from the two physical files can be merged together
and sequenced by employee identification number (EMPNBR) by specifying
EMPNBR in key position 1.

All records that have the same key value for EMPNBR pertain to the same
employee. To merge and sequence all records for a given employee into a
single history of classes and job assignments, specify CLSDTE (date of class)
and JOBDTE (date of job assignment) in key position 2 for the two record
formats, as follows:

Conditioni g
rning § Location
N Condition Name g
B 5l Ed
% § Name Length g g Functions
£ ’ [y I
; . [E
§|§ e o s E ‘5 g . g Line | Pos
HHE R 2 3|82
6|7|8]9 10f11]12 13|1a[15 16 17 18|19 20 21 22 2324252627‘28 1930»3! 3233»3435363738394041 424:!44‘5}64748!95051 52 53 54 55 56 57 58 59 60 61 626304656667qu 707172 73 74 7576 77 78 79 80|
A .¢1R SHST ; PFILE(CLSHSTP)
0 A _Ik| EMPNB : :
0 A K| CLSDTE *ﬂ
0 A : . ‘8 :
o A - R| [TosnST| ¢ PFILE(TOBUSTP
0060 K gnnm
o A 0BDTE|—
A H
A
A Record Format Key Positions
1)
CLSHST EMPNBR CLSDTE
JOBHST EMPNBR JOBDTE

Logical Files 3-13

Logical Files . .
Positions 19-28 Suppose that the job assignment dates and class dates are the dates

(month/year) that the class or assignment started. Records for three students
are retrieved in the following order:

EMPNBR CLSDTE JOBDTE Description

1005 3/79 Completed class

1005 4/79 Withdrew to begin new job

1005 4/79 Completed job

1005 6/79 Completed class

1006 1/79 Completed job

1006 2/79 Completed job

1006 3/79 Completed class

1006 5/79 Transferred to new location

1007 1/79 Completed job

1007 4/79 Completed job

1007 7/79 Completed job

1007 8/79 Withdrew because of illness
Note: Such a report provides a continuous history for each student.

. Logical Files
Example 2: Another logical file views the same two physical files as in Positions 19-28

example 1, but the second record format in the logical file has *NCNE
specified in key position 2, as in the following DDS:

B
Conditioning S
N Location
A ition Name: §
-§ Condition Na § 3
5: g Name Length |5 g Functions
£ = < I
£ 2 = S
88 1 5Ll sl 518 8 Il
Sl2(3| 2 (3| 2 |3] B (2| & 3|8 &[3
3 4 s|e|7]|8|9 101112 1314|1516 {17 /18|19 20 21 22 23 24 25 26 27 28[29[30 31 32 33 34(35[36 37(38]39 40 41)42 43 44(45 46 47 48 49 5051 52 53 54 56 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80|
0LoA {k CLSHST] PFILE(CLSHSTP) |
020|a K| EMPNBRI~. :
030A K| KCLSDTE ~Il
OO040A% N
005 0 AIH ﬂ
0060A R| JoBHST PFILE(TOBHRSTP)
00709 ¥ EvensR——
0040\ | ¥NoNE [~
0070~ JOBDTE *ﬂ
A I~
A | [ﬂ
A
Record Format Key Positions
[1]
CLSHST EMPNBR CLSDTE *NONE
JOBHST EMPNBR *NONE JOBDTE

Logical Files 3-15

Logical Files
Positions 19-28 As in example 1, all records from the two physical files are first merged and

sequenced together on employee number (EMPNBR); however, the records for
each student are merged and sequenced first on class date (CLSDTE) and then
on job assignment date (JOBDTE). The set of records used for example 1 are

retrieved as follows:

EMPNBR CLSDTE JOBDTE Description

1005 3/79 Completed class

1005 4/79 Withdrew to begin new job
1005 6/79 Completed class

1005 4/79 Completed job

1006 3/79 Completed job

1006 5/79 Transferred to new location
1006 1/79 Completed job

1006 2/79 Completed job

1007 8/79 Withdrew because of illness
1007 1/79 Completed job

1007 4/79 Completed job

1007 7/79 Completed job

When several adjacent record formats have *NONE in the same key position,
they form a set, relative to record formats specified before and after them, that
functions in sequencing as an individual record format. Key fields specified
after *NONE serve to merge and sequence records of the formats within the
set. The following example shows how several record formats function as a
set.

Example 3: Consider a logical employee file over five physical files. The five

record formats are defined as follows:

Logical Files
Positions 19-28

Record Format

Key Positions

EMPMST
CLSREG
CLSHST
JOBHST
ACTHST

EMPNBR
EMPNBR
EMPNBR
EMPNBR
EMPNBR

*NONE *NONE
CLSDTE *NONE
CLSDTE *NONE
*NONE JOBDTE
*NONE ACTDTE

A . :
Conditioning g Location
X
.: Condition Name | 3
9 5
Sequence < 5 Name Length g s Functions
Number €| = < ES
: 3 g 3 e
&18[| . . o §E 5 ;_“g Line | Pos
E§§§§§§§E§ FlEsly
SIE3[25| 2|5 2|2 2 HEFE
12345 65?9 l0512|3124|5|6‘z7|c:|92021 222324252527!8;3031 3233%;3‘:37?&39‘04!42434445464748495051 525354.5556575859?0“ 52.6354555657&.%707' 72 7374 7576 77 78 79 80|
0oLo Rl EMPHUST PELLE(EMPMSTP) -
D0 020 K EnPNsk\\" :
0:0030A1% -
D 0040l JE CLSREG ___h PFILE(CLSREGP)
P00 50A K| EMPNBR|™]
0060 % cesorel——)
poo7dak]
D00 ¥olA R lcLsHST __h PEILE(CLSHSTP)
009d)A K| EMPNBR—]
00LOOA K| lcLsoTE~—
D 0L L OAK h ;
ol 2ol F OBWST PFLLECTOBMSTP)
01304 K| EMPNB R~ :
L 4.0 k[kNoNE »——E
LoLsop J| T 3 |
0LbolA o
L0L20OA ACTWST b PELLE(ACTUSTP
oLyolA M EHPNSR B 5 |
00OLTOA K| kNONE //-a
b0 2.00[A K AcTOT € —
A ENIEEERENEEER DN
B . g
‘la

Logical Files

3-17

Logical Files
Positions 19-28 The records are merged and sequenced as follows:

1. All records are merged and sequenced by employee number.

2. For a given employee, records are sequenced by:
a. The master record (of the EMPMST format)
b. Records of the CLSREG and CLSHST formats, merged and-sequenced
together on values of CLSDTE (key position 2)
c. Records of the JOBHST and ACTHST formats, merged together and
sequenced together on values of JOBDTE and ACTDTE (key position
3)

*NONE in the key definitions achieves this sequencing as follows:

« *NONE and a field name, CLSDTE, appear in the second key position of the
adjacent formats, CLSHST and JOBHST. This effectively causes a split
between the two formats after the preceding key position (position 1).
Records of formats above the split are merged and sequenced with records
of formats below the split only on values of EMPNBR.

« An implicit *NONE in the second key position of the format EMPMST forces
a similar split.

« With *NONE in key position 2, the JOBHST and ACTHST formats form a
set in which the values of JOBDTE and ACTDTE are compared in order to
merge and sequence records of these two formats only.

Note that the record sequence defined by the previous key specifications is
totally dependent on the order in which the formats are specified. For example,
if JOBHST had been specified before CLSHST so that key position 2 reads

*NONE, CLSDTE, *NONE, CLSDTE, *NONE,
the values of CLSDTE within CLSREG would not have been sequenced with

the values of CLSDTE within CLSHST, and JOBDTE would not have been
sequenced with ACTDTE.

Logical Files
Example 4: Assume that an employee has repeated a class. To sequence two Positions 19-28

records with the same values for EMPNBR and CLSDTE, a third key field,
DATE, is specified in record format CLSHST. However, DATE cannot be
specified in the next available key position (position 3) because JOBDTE and
ACTDTE appear in that position for other formats. If DATE is specified in this
position, the attributes of DATE are compared with the attributes of CLSHST
and JOBHST, and the key definitions are rejected.

To obtain the sequencing necessary, specify *NONE before DATE, displacing
DATE to key position 4.

The DATE field can be shown in position 4 as follows:

) g
Conditioning §
E Location .
-‘B‘ Condition Name 5 §
% 2 Name et |5 |z Functions
§§-5.\ s _g E g_gg Line | Pos
1 6|7 819 10(11(12 13|14[15 16 7[18(19 20 21 22 23 24 25 26 27 28(29[30 31 32 33 34/35/36 37(38(39 40 41|42 43 44/45 46 47 48 49 50 51 52 53 54 5556 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 7576 77 78 79 80}
0 A Rl EenPmsT . PFILECEWPHSTP) ’
0 A I Enene - =
D A | ;
D A CLSR PFILECCLSREGP)
0: A EMPNB . E
000 60 K| lcLsoTE
po A .
o A Rl jeLsusT PEILECCLSHSTP)D
po A K EMPNB .
po A K l:LS PTE|
oo A NONE
po A DATE @
oo A . .
o A R [JoBWsST PFLLE(TOBHSTP)
5 Ls O k| EvPne R :
o A k| ¥NoNE
Cl A K _FospTE
Do A
00 A ACTWST PELLE(ACTHSTP)
0.0 A K| EMPNBR
0.0 A K| kNnonE!
g A <TIPT.
po. - LR —
Record Format Key Positions
3] 4]
EMPMST EMPNBR *NONE *NONE *NONE
CLSREG EMPNBR CLSDTE *NONE *NONE
CLSHST EMPNBR CLSDTE *NONE DATE 0
JOBHST EMPNBR *NONE JOBDTE *NONE
ACTHST EMPNBR‘ *NONE ACTDTE *NONE
Specifying DATE @ in key position 4 enables records from physical file
CLSHSTP with identical values for EMPNBR and CLSDTE to be merged and
sequenced according to the value for DATE. See the CPF Programmer’s
Guide for detailed information regarding records with duplicate key
values.

Logical Files 3-19

Logical Files
Positions 19-28

3-20

Select/Omit Field Name

Use select/omit fields to tell CPF how to select or omit records when your
program retrieves them using this record format. The only records affected are _
those from the physical file(s) specified for the PFILE keyword for this record
format. If you do not specify any key field names, you cannot specify

select /omit field names.

When using select/omit fields, specify either S or O (or leave it blank for an
AND condition) in position 17. In positions 19 through 28, specify a field name
whose contents at execution time determine whether the record is to be
selected or omitted based upon the select/omit keyword specified for this
field. The select/omit keywords are COMP, RANGE, and VALUES. The last
select/omit specification can be made with the ALL keyword, but no field
name is permitted.

The field must appear in both the physical file record format and the logical file
record format. The field can be renamed or be part of a concatenated field as
long as it exists in the record format. The name you specify must be the one
in the physical file. Select/omit statements must follow all field and key field
level entries for the record format. Both select and omit can be specified for
the same record format. The following information applies:

« If you specify both select and omit for a record format, the order in which
they are specified is important. The select/omit statements are processed in
the order they are specified; if a record satisfies a statement, the record is
either selected or omitted as specified, and remaining select/omit
statements are not examined.

« If you specify both select and omit statements, you can indicate whether
records not meeting any of the criteria specified are to be selected or
omitted. (See the ALL keyword.)

« |If you do not specify the ALL keyword, the action taken for the records that
do not meet the criteria is the converse of the type of the last statement
specified. The records that do not meet selection criteria are omitted;
records that do not meet omission criteria are selected.

There are limits to the number of select/omit statements you can specify in a
single logical file. If you specify many select/omit statements and you cannot
create the file, reduce the overhead for the file through the following changes
in the specifications, in decreasing order of importance:

« Reduce the number of record formats in the file:

« Reduce the number of physical files specified on the PFILE keyword.

« Reduce the number of fields used (single occurrences) in the select/omit
specifications.

Logical Files
Positions 19-28

Conditioning 2|
N Location

ol Condition Na g
c\ indition me _| 2
% § Name Length g g Functions
§§ 8 E 'E “§ Line | Pos
AEREHERIE : cl2E
8|7 8 9 101 |2"3 1411516 17 8 |9»20 2 22‘23 24 25 26 27 28|29 30 31 32433,3‘ 13536 37|38|39 40 41|42 43 44|45 40.47‘48 49.5051‘52.53 54 55'56 57‘58 59'60 6162 szvuves‘es 67,“_“ 70'7!'72 7374 7576»77»78 79 80
A S| 6T RN OMP(EQ “NY') B
A REP | . OMP(_g__ SMITH) |
A YEAR OMP(LT 78) ;
A ol LL . ’ _
A N [H
A O [YEAR COMP(GE_78) E
A [T CORPCEQ ™Y
A REP_ COMP(EQ ~ JSMITH') f
A o ALL e
A 0 REP 11 . OMP(NE “TSMITH")
- N T CONP(NE KT
A SL YEAR B MP(LT 78)
A 0 : LL
A
Al

In this example, you want to select all the records before 1978 for a sales
representative named JSMITH in the state of New York. There are three
ways to code this example.

n All records must be compared with the select fields ST, REP, and
YEAR before they can be selected or omitted.

All records in and after 1978 are omitted in the first comparison.
Then, only the records before 1978 are compared with ST and REP.
Only two select fields must be satisfied. This way is more efficient
than the way used in i}

All records that are not associated with JSMITH in the state of New
York are omitted in the first and second comparisons. Then, all
records left are compared to YEAR. This way is more efficient than

the ways in [fJ] and [}

Logical Files 3-21

Logical Files
Position 29

Position 29 (Reference)

If R is specified in position 29, the R is blanked and ignored. All logical files
automatically provide the reference capability for all specified fields. Any
attributes that are not specified explicitly in the logical file are furnished from
the corresponding field in the physical file record format.

Positions 30-34 (Length)

If the length of the corresponding field in the associated physical file is
acceptable to your program, this attribute need not be specified. If you do
specify length, it must be right-justified; leading zeros are optional. The
following example shows valid and invalid field length specifications:

A TN
Conditioning §
z
X
“|&] | Condition Name Py
S 9 g
Sequence g N Name Length |3 3|
Number H = < I
£ B | < 2
a§ 8 < 2 § Line | Pos
Flalzl 21z 2 lg B IR g Hazl=
eS| S S LG 8 lels k: =538
SI58| 2 |2 2|3 2 |2E & ML
12 3 4 5|6|7{8|9 10{11|1213|14{15 16 {17 18[19 20 21 22 23 24 25 26 27 28{29{30 31 32 33 34/35|36 37/38(39 40 41/42 43 4445
0010 FIELD] 7 —— Invalid Length Specification
H A H
00020~ FIECDZ
A jL 11 — Valid Length Specifications
00304 FIELD NI +7)

3-22

R not required in a logical file

Valid length specifications are:

Data Type Valid Lengths

Character 1 tﬁrough 32 766 characters
Binary 1 through 9 digits

Zoned decimal 1 through 31 digits

Packed decimal 1 through 31 digits

The sum of the number of bytes occupied by all fields in a record format must
not exceed 32 766. The number of bytes actually occupied is determined by
the system as follows:

Data Type Bytes Occupied
Character Number of characters
Binary

1-4 digits 2 bytes

5-9 digits 4 bytes
Zoned decimal Number of digits

Packed decimal (Number of digits/2) + 1

Note: System/38 performs arithmetic operations more efficiently for packed
decimal than for zoned decimal data type.

. . . Logical Files
You can override the length of the field by specifying a new value or by Positions 30-34

specifying the increase or decrease in length. To increase the length, specify
+n, where n is the increase. To decrease the length, specify -n, where n is the
decrease. For example, an entry +4 indicates that a numeric field is to be 4
digits longer in this logical file than it is in the associated physical file. Figure
3-1 shows how to change and override the field length.

If the corresponding field in the physical file record format has a data type of
binary with decimal positions greater than zero, the length cannot be
overridden here. If the field you are describing is a concatenation of fields
from the associated physical record format, you cannot specify the length here.
The sum of the physical field lengths is used.

The field is always a fixed length. If the value of the field is numeric and fits
into a smaller number of positions, it is automatically right-justified with zeros.
It is left-justified with blanks if it is character data type. If the data is dropped
because it is too long, no error is signaled. Figure 3-1 shows how to code the
length field.

These positions are valid only for field specifications and must be blank for
key, select/omit, and record format level specifications.

Note: High-level languages can restrict the field length; any such restriction
should be observed for files used by these languages.

Logical Files 3-23

Logical Files
Position 35

3-24

Position 35 (Data Type)

Use this position to specify the data type of the field when it is presented to
your program.

The valid entries for logical files are:
Entry Meaning

Numeric types

P Packed decimal

S Zoned decimal

B Binary
Alphabetic type

A Character

Figure 3-1 shows how to code the data type.

Any conversion of data types from the physical file record format is permitted
within the numeric types (for example, a binary field in the physical file
converted to zoned decimal in the logical file); however, if a binary field in the
physical file record format has decimal positions greater than zero, the data
type cannot be overridden in the logical file.

You can convert zoned decimal fields to character fields and the converse,
provided that the field lengths are the same. It is your responsibility to ensure
that the data is valid. For example, if the field is zoned decimal in the physical
file and you specify character type (A) for presentation to your programs, you
must ensure that the field contains only decimal data when it is returned
through the logical file to the physical file on which it is based.

If the field in the physical file corresponding to the one you are defining has a
data type that is acceptable to your programs, you need not specify the data
type.

If the field you are defining is a concatenation of fields from the associated
physical file (specified by the CONCAT keyword), you cannot specify the data
type. It is assigned by CPF as follows:

Included Fields Concatenated Field
Numeric (B,S,P) Zoned decimal
Character Character

Mixed Character

Logical Files

Positions 36-37 (Decimal Positions) Positions 36-37

If the placement of the decimal point in the corresponding field in the physical
file is acceptable to your program, leave positions 36 through 37 blank.

To override or change the placement of the decimal point within a packed
decimal or zoned decimal field, specify a number from O through 31 to indicate
the number of decimal positions to the right of the decimal point. (The number
here must not be greater than the number of digits specified in the field
length.) Figure 3-1 shows how to specify decimal positions.

You can specify a value either to override or to change the corresponding value
in the physical file. To override the value, specify the new value. To change
the value, specify the amount you want the field increased or decreased and
precede it with either a + or -, respectively. For example, an entry of +4
indicates there are to be 4 more digits to the right of the decimal point than
there were in the corresponding field in the physical file.

If you specify a value in positions 36 through 37 and your program sends or
retrieves data through the logical file field to the physical file field, CPF aligns
the data on the decimal point. Depending on the case, this can cause the
truncation of decimal values or a data conversion error (CPF issues CPF 5029
to your program). Decimal values are truncated in the following cases:

« When reading from a logical file that reduces the number of decimal
positions specified in the physical file

« When writing to a logical file that increases the number of decimal positions
specified in the physical file

For example, if the physical file field is defined as 4 digits long with 2 decimal
positions and the logical file field decreases the decimal positions to O decimal
positions, a value of 0.20 in the physical file becomes a value of 0 in the
logical file, and a value of 2.52 in the physical file becomes a value of 2 in the
logical file.

When decimal values are truncated, the left side of the field is filled with zeros.
A data conversion error can occur in the following cases:

« When writing to a logical file that reduces the number of decimal positions
specified in the physical file

« When reading from a logical file that increases the number of decimal
positions specified in the physical file

The data conversion error occurs because too many digits would be moved
into the space available to the left of the decimal point. For example, if, as in
the previous example, the physical file field is defined as 4 digits long with 2
decimal positions and the logical file field decreases the decimal positions to O
decimal positions, a value of 3322 written to the logical file cannot fit in the
physical file (only 2 digits are allowed left of the decimal point in the physical
file).

Logical Files 3-25

Logical Files
Position 38

3-26

To avoid data conversion errors, increase or decrease the length (positions 30
through 34) of the logical file field by the same amount that you increase or
decrease the decimal positions.

If the field being described is a concatenation of fields from the associated
physical file, you cannot specify decimal positions. (A field in the physical file
that contains decimal positions cannot be included in a concatenated field.)

You cannot override decimals for binary fields (data type B). When the
corresponding field in the physical file is binary and contains decimal positions
greater than zero, the decimal positions in the physical file record format are
used. When the logical file field is binary and the corresponding field in the
physical file is not binary, the decimal positions must be zero.

Note: High-level languages can impdse specific length and value restrictions
on the decimal positions; these restrictions should be observed for files used
by those languages.

Position 38 (Usage)

This position does not apply to logical files and must be blank unless an
asterisk appears in position 7 (which indicates a comment line).

Positions 39-44 (Location)

These positions do not apply to logical files and must be blank unless an
asterisk appears in position 7 (which indicates a comment line).

Keyword Entries (Positions 45-80)

This section contains keyword entries valid for defining logical files. They are
entered in positions 45 through 80 (functions). See the section Data

- Description Specifications Syntax Rules in Chapter 1 for a discussion of the
general rules for specifying keywords. Figure 3-2 shows how to use the
general syntax rules for specifying DDS for logical files.

Logical Files
Keyword Entries

GX21-7764-1 UM/050°

IBM ntarnationsl Business Mechines Corporation DATA DESCRIPTION SPECIFICATIONS Printed in US.A,
File Keying Graphic Description Page of
Programmer Im Instruction Key
&
‘Conditioning
Location
| | condition Neme | |
Sequence Neme i Functions
Number E = F
£ 2 & g
58 ' 5 Line | Pos
el] E Sleie
FiEls| 2 15| 2 |3) 2|6 Bk
1.2 3 4 sl6|7{3]e 10pr1}12 131415 1817 18! uzomnn}muuz}ﬂnmnmunuuuﬁw‘ um42_4:»«-5:”414349;05'szuuuuneaneoetuuuuunummnnuunnnnn
1 OGTCAL
A
A
A
Al
Al d
TE IDE(
A d (
A a(
A
o Iy T (
A = i i .
al YAORDL(' T
A eints
Al
A
A
Al

*Numbor of sheets per ped mey vary slightly.

Figure 3-2. Syntax for a Logical File

Logical Files 3-27

Logical Files
Keyword Entries The following keywords are valid for logical files:

ABSVAL
ACCPTH
ALL
ALTSEQ
CHECK
CmP
COLHDG
I ComP
CONCAT
DESCEND
DIGIT
EDTCDE
EDTWRD
FORMAT
LIFO
NOALTSEQ
PFILE
RANGE
RENAME
SIGNED
TEXT
UNIQUE
VALUES
ZONE

Note: When a logical file is based on a physical file to be used as a source
file, you cannot use the following Akeywords:

ABSVAL
ALTSEQ
DESCEND
LIFO
NOALTSEQ
SIGNED
UNIQUE
ZONE

3-28

Logical Files
ABSVAL ABSVAL

Use this key field level keyword (absolute values) to specify that when CPF
sequences the values associated with this numeric field, it is to ignore the sign
of the field.

The following example shows six records with zoned decimal key fields:

Numeric Key Field Hexadecimal

Record (Zoned Decimal) Representation
1 98 FIF8
2 00 FOFO
3 98- FID8
4 97 FOF7
5 20 F2FO
6 99 FIF9

If no sequencing keywords are specified, the records are sequenced in this

order:
Numeric Key Field Hexadecimal
Record (Zoned Decimal) Representation
2 00 FOFO
5 20 F2FO
3 98- FOD8
4 97 FOF7
1 98 FOF8
6 99 FOF9

If the ABSVAL keyword is specified, the absolute value of the negative field is
used, and the resulting sequence is:

Numeric Key Field Hexadecimal

Record {Zoned Decimal) Representation
2 00 FOFO
5 20 F2FO
4 97 FOF7
1 98 FOF8
3 98- FOD8
6 99 FOF9

The ABSVAL keyword is not valid for a field of character data type. You
cannot use it with the keywords SIGNED, ZONE, or DIGIT.

Logical Files 3-29

Logical Files
ACCPTH

ABSVAL (a key field level keyword) and ALTSEQ (a file level keyword) are
mutually exclusive. That is, if you specify ABSVAL for a key field, NOALTSEQ
is in effect for that key field, even if ALTSEQ was specified at the file level
(whether the NOALTSEQ keyword is specified or not).

If you do not specify SIGNED, ABSVAL, ZONE or DIGIT for a key field, the
value of the field is treated as a string of unsigned binary data.

The following example shows how to specify the ABSVAL keyword:

Conditioning
Location
=] | Condition Name |
g)
Sequence | 2| 2 Name Length 5 Functions
Number £ © z
E 2 = <
al 8| - S| Lne | Pos
#é— = | [g !g
A EEIERIT 3 28
HEEEEHEEE 5 b
6|7]8(9 10{11|12 1314|156 16 |17 [18 19 20 21 22 23 24 25 26 27 28{29[30 31 32 33 34 37(38[39 40 41]42 43 44/45 46 47 48 49 50 61 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80}
A T ¥ H P H
A
A |
» |

ACCPTH(data-base-file-namel[.library-name])

Use this file level keyword (access path) when you want this logical file to
share the access path with another physical or logical file with a keyed
sequence access path; the name of the file describing the access path is the
parameter value for the keyword.

Use this keyword instead of specifying key fields and select/omit fields for
each record format in the logical file. When you use this keyword, you can
reduce the overhead required on the system for maintenance of separate
access paths.

The following example shows how to specify the ACCPTH keyword:

g
Conditioning §
§ Location
<] | Condition Name _ g
2 3 : |
Sequence Name Length g5 s Functions
Number £l s % S
g s n B
i : g |
do § i § e Bl I
5(35(2 |3 2 5| 2|58 : EEE
6|7]8]9 10}1112 13}1a]15 16)17 1810 20 21 22 23 24 25 26 27 282080 31 32 33 34[36]36 37[28}38 40 41}42 43 44]45 46 47 48 49 5051 62 63 54 5556 57 58 50 80 61 62 63 64 6566 67 63 69 70 71 72 73 74 7576 77 78 79 80)
o/} _DRDER R_LOGTCAL [FILE [(ORDHDRILY[
- cce i)
A FILE
A
a LI R

3-30

. - ical Files
When an access path is shared, the file describing the access path must not 'A%gé‘:m'

already be sharing an access path of another file. That is, there is only one
level of access path sharing. The following illustrates how access paths cannot

be shared.
Describes Access Path: Shares Access Path