7
M~
™
(@]
e
-
oN
(&)
(9]

o
@
]
A
S
=z
@
u

L

SC21-9037-3
File No. S38-01

IBM System/38

IBM System/38
Internal Microprogramming
Instructions, Formats, and Functions
Reference Manual

I

Fourth Edition (August 1985)

This major revision makes obsolete SC21-9037-2 and Technical Newsletter
SN21-8302. Changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change or addition. Additions were made to inc'ude
the 5382 Model 9 System Unit.

Changes are periodically made to the information herein; these changes will be
reported in technical newsletters or in new editions of this publication.

Use this publication only for the purpose stated in About This Manual.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should he made to
your I1BM representative or the branch office serving your locality.

This publication could cortain technical inaccuracies or typographical errors. Use
the Reader’'s Comment Form at the back of this publication to mak2 comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Information Development, Department 245, Rochester,
Minnesota 55901. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981, 1983, 1984,
1985

ABOUTTHIS MANUAL

Purpose of This Manual
Organization of This Manual

What You Should Know

If You Need More Information e e e
Definitions of Notes
Terminology

CHAPTER 1. INTRODUCTION

Machine Product . . .

System Features

CHAPTER 2. INTERNAL MICROPROGRAMMING

STRUCTURE

STORAGE DESCRIPTIONS .
REGISTER DESCRIPTIONS .
DATA
Data Types
Binary Data R
Address Data
Character Data
Decimal Data
Floating-Point Data

Internal Microprogramming Objects

Data Alignment
Addressing
INSTRUCTIONS
Operation Codes
Operands
Formats and Examples
Basic IMP Formats
Address Generation
Execution .
Branching
Condition Codes e e
Supervisor Linkage
Program Exceptions and Instructions Length
Count Settings
Concurrent Exceptions and Causes

Program Exceptions and Causes

PERMANENT STORAGE ASSIGNMENTS
Control Address Table
Assigned Virtual Storage Locations

CHAPTER 3. HORIZONTAL MICROCODE SUPPORT
FUNCTIONS

HORIZONTAL MICROCODE PROCEDURES
Task Dispatching

CHAPTER 4. THE PROCESSOR
PROCESSOR STATES . . .
Operational State e e e
Stopped State
INPUT/OUTPUT AND ASYNCHRONOUS EVENTS
Queue Interface

1/0 Event Handler, Operatlonal Unlt

w

WN =S PPpWUWWN==

NNNMNNNNMNNNN

HORIZONTAL MICROCODE BUILT-IN FUNCTIONS . .

Contents

Task, and 1/0 Devices PR
SystemConsole

-llh-b

w w

CHAPTERS. TASKING
Procedure Execution e e e e e
Base Register Assignments
1/0 Interruptibility
internal Microprogram Tasking
Tasking Structure e e e
Task Dispatching Queue
Task Dispatching Element

qaaaaaay,
ARPWNN— =

Send/Receive Queue 5-10
Send/Receive Message 5-12
Send/Receive Counter e e e e e e 5-13
Enqueue/Dequeue Instructions 5-14
Send/Receive Queue Busy Status 5-14
Task Control 5-16
Task Dispatching 5-16
Task Switching 5-17
Task Dispatcher Enable/Disable Functions 5-17
Task Timing 5-17
Intertask Communlcatlons and Synchronization 5-18

CHAPTER 6. SUPERVISOR LINKAGE AND

EXCEPTION PRESENTATION oo . 641
SUPERVISOR LINKAGE 6-2
Supervisor Linkage Structures 6-2
Call/Return Element 6-3
Available Call/Return Element Queue 6-6
Supervisor Linkage Table 6-6
Supervisor Linkage Control e 6-7
Supervisor Linkage Summary 6-12
EXCEPTIONS . e e e e e e e e 6-14
Presentation 6-14
Concurrent Exceptlons . e e e e e e e 6-14
Program Exceptions 6-14
Address Compare Exception 6-14
Address Translation Exception 6-14
Addressing Exception e e e e e e 6-15
Allocate Page Frame Exception 6-15
Binary Divide Exception 6-15
Binary Overflow Exception 6-15
Chain Conflict Exception 6-15
Conversion Exception 6-15
Data Exception 6-16
Decimal Overflow Exception 6-16
Decimal Zero Divide Exception 6-16
Descriptor Access Exception 6-16
Edit Digit Count Exception 6-17
Edit Mask Syntax Exception 6-17
Effective Address Overflow Exception 6-17
End of Chain Exception 6-18
Execute Exception 6-18
Invalid Descriptor Exception 6-18
Floating-Point Inexact Result Exception 6-19
Floating-Point invalid Operand Exception 6-19
Floating-Point Overflow Exception 6-19
Floating-Point Underflow Exception 6-21

Contents iii

Floating-Point Zero Divide Exception
Invalid Floating-Point Conversion . . .
Invalid Page Exception (Synchronous Requests

Only)
Invalid Pin Request Exception (Synchronous

Requests Only)
Invalid Pool State Exception (Synchronous

Requests Only)
Invalid Segment Exception (Synchronous

Requests Only)
Invalid Segment Group Address Exception . .
Invalid Write Request Exception (Synchronous

Requests Only)
Length Conformance Exception
Main Storage E:ror Exception
Monitored ACQ Exception e
Monitored Call/Return Element Exception
Monitored SRM Descriptor Exception
Monitored SRQ Descriptor Exception
Monitored TDE Descriptor Exception
Operation Exception
Page Read Error Exception
Program Event Monitoring Exception
Second Chain Search Exception
Send/Receive Counter Overflow Exception
Specification Exception
Stack Exception
Task Interval Timer Exceptlon
Verify Exception

Instruction Length Count and Instruction
Address Register Settings .

CHAPTER 7. 1/0 AND ASYNCHRONOUS EVENTS
ASYNCHRONOUS OPERATIONS
OPERATIONAL UNITTASK
IMP Objects: Their Formats and Operation
INTERNAL MICROPROGRAMMING CHANNEL
OBJECTS o« o ...
Operational Unit . .
Assignments
Operational Unit Queue A
/0O Manager Queue e
Operation Request Element
Cperation Blocks
Types of Operation Blocks . . .
OPERATION PROGRAM
Operation Program Example
Queue Control Table .
QCT Event Stack
Address List Element
I/O STORAGE ADDRESSING .
1/0 Resolved Address Registers
Page Chaining
Page Faults
Virtual = Real
I/O Addressing Restrictions
I/OEVENTS
1/O Event Fields
Function Event P
Address Evento oo
Error Event o000
I/OEventHandler
1/0 Event Stack . .
I/O Register Table
1/0 COMMAND RESPONSES

Input/Output Status Fields . . .
Basic Status
Functional Status
Device Status
Intervention-Required Signal

Function Operation Block Time-Qut
Operation

1/0 Example e e e e e e e

I/OERRORS

Operational Unit Errors
Operation Program Errors
Task Error Status Field
Device Errors
Operational Unit Error Recovery
Operation Program Error Recording
Error Recovery Procedures

Channel Errors
Channel Error Reporting
Channel Error Recovery
Channel Error Recording
Error Recovery Procedures

Device Halt

CHAPTER 8. VIRTUAL STORAGE ADDRESSING
VIRTUAL ADDRESS TRANSLATION OVERVIEW
Translation Process
VIRTUAL ADDRESS TRANSLATOR COMPONENTS . .
Control Information
Hash Table
Hash Tables Entry Format
Hash Table Lookup e
Primary Directory
Primary Directory Lookup
Storage Address Formation
Lookaside Buffer
VAT COMPONENT MAINTENANCE
Modification Of Hash Table Entries
Modification Of Primary Directory Entries
Reference And Change Recording

CHAPTER 9. MACHINE SUPPORT FUNCTIONS

INITIAL MICROPROGRAM LOAD
PROGRAM EVENT MONITORING
INTERNAL MICROPROGRAMMING TIMER
SUPPORT
Time-Of-Day Clock
Clock Comparator . . .
Interval Timers
SYSTEM CONTROL
System Control Adapter
MACHINE CHECK
Machine Check Handling
Check Stop
Machine Check Mode
Processor Machine Check Handler
Machine Check Process Procedures and States . . .
Stop State Machine Check
Wait State Machine Check
Restart Task if Machine Check Is in Run State . . .
Machine Check Log Buffer
Machine Check Log
Processor Status
Task Statuso L.
Machine Check Special Error Conditions
Virtual Address Translation Machine Checks

Qwwooohr~h,hphr,PA,NMNN=

0o
-

WoOooONNNOOODO A~ AP

I(D(,D(D(D

Machine Check During Translate Instruction
Error Recording/Error Definition

STACK HANDLING

Stack Structure .

Hold/Free Function
Hold Chain Structure

Hardware Tags . . .
VMC SERVICE AIDS .
Task Switch Trace Facility .
Trace Control Table A
Task Switch Trace Record . . .
Operation

Address Compare Mode

Function Call Linkage . .
Function Routine Address Table
Function Call Stack Usage .
Space Pointer Support

CHAPTER 10. INSTRUCTION DESCRIPTIONS

Add Characters (AC) .
Instruction Description
AC Example ..
Add Fullword Space Pomter Offset (AFSPO)
Instruction Description
AFSPO Example
Add Halfword (AH)
instruction Description
AH Example . ..
Add Halfword Immediate (AHI)
Instruction Description
AHI Example . .
Add Halfword Register (AHR)
Instruction Description
AHR Example .
Add Halfword Register Immedlate (AHRI)
Instruction Description
AHRI Example - .
Add Halfward Space Pomter Offset (AHSPO) .
Instruction Description
AHSPO Example
Add Halfword Space Pointer Offset Immedlate
(AHSPOI)
Instruction Descnptlon
AHSPOI Example .
Add Logical Byte (ALB)
Instruction Description
ALB Example . .
Add Logical Byte Register (ALBR) .
Instruction Description
ALBR Example . . .

Add Logical Byte Register Immedlate (ALBRI) .

Instruction Description
ALBRI Example -
Add Logical Character (ALC)
Instruction Description
ALC cxample . .
Add Logical Halfword (ALH)
Instruction Description
ALH Example . .
Add Logical Halfword and Branch On L|m|t
(ALHBL) . .
Instruction Descrlptlon
ALHBL Example .
Add Logical Halfword Immednate (ALHI)
Instruction Description

PDWWWWWWWNNNN

1
ﬁg—roww\l\lm—-—awwmm

1
N
[+)}

CDCDCDCDCDCD(DCDCIDQDCDCDQDCDCDQDQD
(4]

ALHI Example .

Add Logical Halfword Reguster (ALHR)
Instruction Description
ALHR Example .

Add Logical Halfword Reglster Immedlate (ALHRI)
Instruction Description
ALHRI Example

Add Long Float (ALF)

Instruction Description
ALF Example .

Add Packed (AP)
Instruction Description
AP Example .

Add Short Float (ASF)
Instruction Description
ASF Example

AND Byte (NB)
Instruction Description
NB Example . -

AND Byte Immediate (NBI)
Instruction Description
NBi Example . -

AND Byte Register (NBR)
Instruction Description
NBR Example .

AND Byte Negister Immedlate lNBRI)
Instruction Description
NBRI Example

AND Characters (NC)

Instruction Description
NC Example .
AND Halfword (NH)
Instruction Description
NH Example
AND Halfword Register (NHR)
Instruction Description
NHR Example . .

AND Halfword Register Immedlate (NHRI)
Instruction Description
NHRI Example . ..

Branch And Link (BAL) . .

Instruction Description
BAL Example -

Branch And Link Long (BALL)
Instruction Description
BALL Example . .

Branch Internal (BI)
Instruction Description
Bl Example .

Branch On Condition (BC)
Instruction Descripiion
BC Example -

Branch On Condition Indnrect (BCN)
Instruction Description
BCN Example .

Branch On Condition Indlrect Indexed (BCNX)
Instruction Description
BCNX Example . .

Branch On Count (BCT)
Instruction Description
BCT Example

Branch Register (BR) .
Instruction Description
BR Example .

Branch Register Long (BRL)

10-22
10-23
10-23
10-23
10-24
10-24
10-24
10-25
10-25
10-27
10-28
10-28
10-28
10-29
10-29
10-31
10-32
10-32
10-32
10-33
10-33
10-33
10-34
10-34
10-34
10-35
10-35
10-35
10-36
10-36
10-36
10-37
10-37
10-37
10-38
10-38
10-38
10-39
10-39
10-39
10-40
10-40
10-40
10-41
10-41
10-41
10-42
10-42
10-42
10-43
10-43
10-43
10-44
10-44
10-44
10-45
10-45
10-45
10-46
10-46
10-46
10-47

.. 10-47

10-47
10-48

Contents v

Instruction Description
BRL Example
Branch Unconditional (BU)
Instruction Description
BU Example .
Call Internal (CALLI)
Instruction Description
CALLI Example . .
Compare and Swap Halfword (CSH)
Instruction Description
CSH Example .
Compare Byte Immediate and Branch Equal
(CBIBE) . .
Instruction Descnptlon
CBIBE Example

Compare Byte Immediate and Branch Not Equal .

Instruction Description
CBIBN Example
Compare Characters (CC) .
Instruction Description
CC Example
Compare Halfword (CH)
Instruction Description
CH Example .
Compare Halfword Immedlate (CHI)
Instruction Description
CHI Example . ..
Compare Halfword Reglster (CHR)
Instruction Description
CHR Example
Compare Halfword Reglster Immednate (CHRI)
Instruction Description
CHRI Example .
Compare Logical Address Reglster (CLAR)
Instruction Description
CLAR Example . ..
Compare Logical Byte (CLB)
Instruction Description
CLB Example
Compare Logical Byte |mmed|ate (CLBI)
Instruction Description
CLBI Example .
Compare Logical Byte Reglster (CLBR)
Instruction Description
CLBR Example .

Compare Logical Byte Reglster Immednate (CLBRI)

Instruction Description
CLBRI Example . .
Compare Logical Characters (CLC)
Instruction Description
CLC Example .. .
Compare Logical Character Reglster (CLCR) .
Instruction Description
CLCR Example . .
Compare Logical Characters Long (CLCL)
Instruction Description
CLCL Example -
Compare Logical Halfword (CLH)
Instruction Description
CLH Example
Compare Logical Halfword Immed|ate (CLHI)
Instruction Description
CLHI Example . .
Compare Logical Halfword Reglster (CLHR) .
Instruction Desciption .

Vi

10-48
10-48
10-49
10-49
10-49
10-50
10-50
10-50
10-52
10-52
10-53

10-54
10-54
10-54
10-54.1
10-54.1
10-54.1
10-54.2
10-54.2
10-54.2
10-55
10-55
10-55
10-56
10-56
10-56
10-57
10-57
10-57
10-58
10-58
10-58
10-59
10-59
10-59
10-60
10-60
10-60
10-61
10-61
10-61
10-62
10-62
10-62
10-63
10-63
10-63
10-64
10-64
10-64
10-65
10-65
10-65
10-66
10-66
10-67
10-68
10-68
10-68
10-69
10-69
10-69
10-70
10-70

CLHR Example .
Compare Logical Halfword Reglster |mmed|ate (CLHRI)
Instruction Description
CLHRI Example
Compare Long Float (CLF)
Instruction Description
CLF Example .
Compare Packed (CP)
Instruction Description
CP Example ..
Compare Short Float (CSF)
Instruction Description
CSF Example .
Compute Address Long (CAL)
Instruction Description
CAL Example ..
Compute Address Long Halfword (CALH)
Instruction Description
CALH Example . .
Compute Address Long Halfword Immedlate
(CALHI) .
Instruction Descnptuon
CALHI Example
Compute Long Float Math Funct|on Usmg
One Input Value (CLFMF1) .
Instruction Description
CLFMF1 Example .
Compute Long Float Math Functnon Usnng Two
Input Values (CLFMF2)
Instruction Description
CLFMF2 Example .
Compute Short Float Math Functlon Usmg One
Input Value (CSFMF1) .
Instruction Description
CSFMF1 Example .
Compute Short Float Math Functlon Usmg Two
Input Values (CSFMF2)
Instruction Description
CSFMF2 Example L.
Compute Subscript Address (CSA)
Instruction Description
CSA Example .
Compute Subscript Address Constranned (CSAC)
Instruction Description
CSAC Example . . .
Compute Subscript Address Constramed
Halfword (CSACH)
Instruction Description
CSACH Example ..
Convert Binary to Long Float (CVBLF)
Instruction Description
CVBLF Example . .
Convert Binary To Packed (CVBP) .
Instruction Description
CVBP Example . . o
Convert Binary to Short Float (CVBSF) .
Instruction Description
CVBSF Example .
Convert Character to SNA (CVTCS)
Instruction Description
Source Operand
Result Operand . . L.
String Processing Mode .
Record Processing Mode
Instruction Termination

10-70
10-71
10-71
10-71
10-72
10-72
10-74
10-75
10-75
10-75
10-78
10-78
10-78
10-80
10-80
10-81
10-82
10-82
10-83

10-84
10-84.1
10-84.2

10-84
10-84
10-86

10-87
10-87
10-88

10-90
10-90
10-91

10-92
10-92
10-93
10-94
10-94
10-94
10-96
10-96
10-97

10-98

10-98

10-99
10-100
10-100
10-100
10-101
10-101
10-101
10-102
10-102
10-102
10-103
10-103
10-105
10-106
10-106
10-108
10-110

CVTCS Example
Convert Characters to Multi-Leaving
Remote Job Entry (CVTCM)
Instruction Description
CVICM Example
Convert Decimal Form to Long Float (CVDFLF)
Instruction Description
CVDFLF Example
Convert Decimal Form to Short Float (CVDFSF) . . .
Instruction Description
CVDFSF Example
Convert Long Float to Binary (CVLFB)
Instruction Description
CVLFB Example
Convert Long Fioat to Decimal Form (CVLFDF)
Instruction Description e e e e e
CVLFDF Example
Convert Long Float to Packed Decimal (CVLFPD)
Instruction Description
CVLFPD Example
Convert Long to Short Float (CVLSF)
Instruction Description
CVLSF Example
Convert Multi-Leaving Remote Job Entry
to Character (CVTMC) .
Instruction Description
CVTMC Example
Convert Packed Decimal to Long Float (CVPDLF)
Instruction Description
CVPDLF Example
Convert Packed Decimal to Short Float
(CVPDSF)o
Instruction Description
CVPDSF Example . .
Convert Packed to Binary (CVPB)
Instruction Description
CVPB Example
Convert Packed To Zoned (CVPZ)
Instruction Description

CVPZ Example
Convert Packed to Zoned with Data Checkmg
(CVPZC)o
Instruction Description
CVPZC Example
Convert Short Float to Binary (CVSFB)
Instruction Description
CVSFB Example
Convert Short Float to Decimal Form
(CVSFDF)
Instruction Description
CVSFDF Example .
Convert Short Float to Packed Decnmal
(CVSFPD)
Instruction Description
CVSFPD Example
Convert Short to Long Float (CVSLF)
Instruction Description
CVSLF Example T
Convert SNA to Character (CVTSC)
Instruction Description
String Processing Mode
Record Processing Mode
Instruction Termination
Programming Notes
CVTSC Example

10-111

10-112
10-112
10-117
10-118
10-118
10-119
10-120
10-120
10-121
10-122
10-122
10-123
10-124
10-124
10-126
10-127
10-127
10-129
10-130
10-130
10-131

10-132
10-132
10-134
10-136
10-136
10-137

10-138
10-138
10-139
10-140
10-140
10-140
10-141
10-141
10-141

10-142

Convert Zoned To Packed (CVZP) 10-162
Instruction Description 10-162
CVZP Example 10-162

Convert Zoned to Packed with Data Checking

(CVZPC) oo 10-162.1
Instruction Description 10-162.1
CVZPC Example 10-162.1

Convert Zoned to Packed with Data Checking and
Blank Conversion (CVZPB) 10-162.2
Instruction Description 2.2

CVZPB Example 10-162.2
Dequeue Message (DQM) 10-164
Instruction Description 10-164
DQM Exampleo L. 10-165
Dequeue Task Dispatching Element (DQTDE) 10-166
Instruction Description 10-166
DQTDE Example 10-167
Diagnose (DIAG) 10-168
Instruction Description 10-168
DIAG Example 10-168
Disable Task Dispatching (DTD) 10-169
Instruction Description 10-169
DTD Example 10-169
Dispatch Task Dispatching QUEUE (DTDQ) 10-170

Instruction Description 10-170

DTDQ Example 10-170
Divide Halfword Storage (DHS) 10-171
Instruction Description 10-171
DHS Example 10-171
Divide Long Float (DLF) 10-172
Instruction Description 10-172
DLF Example 10-175
Divide Packed (DP) 10-176
Instruction Description 10-176
DPExample 10-177
Divide Packed Long (DPL) 10-178
Instruction Description 10-178
DPL Example 10-179
Divide Short Float (DSF) 10-180
Instruction Description 10-180
DSF Example 10-182
Divide Word Storage (DWS) 10-183
Instruction Description 10-183
DWS Example 10-183
Edit Packed Decimal (EDPD) 10-184
Instruction Description 10-184
EPDP Example 10-190
Enable Task Dispatching (ETD) 10-192
Instruction Description 10-192
ETD Example 10-192
Enqueue Message (EQM) 10-194
Instruction Description 10-194
EQM Example 10-195
Enqueue Task Dispatching Element (EQTDE) 10-196
Instruction Description 10-196
EQTDE Example 10-197
Examine Primary Directory Entry (EPDE) 10-198
Instruction Description 10-198
EPDE Example 10-199
Exclusive OrByte (XB) 10-201
Instruction Description 10-201
XB Example o000 L. 10-201
Exclusive Or Byte Immediate (XBI) 10-202
Instruction Description 10-202
XBl Example o oo, 10-202

Contents vii

Exclusive Or Byte Register (XBR)
Instruction Description
XBR Example

Exclusive Or Byte Register Immedlate (XBRI)
Instruction Description
XBRI Example .

Exclusive Or Character (XC)
Instruction Description
XC Example .

Exclusive Or Halfword (XH)
Instruction Description
XH Example .

Exclusive Or Halfword Reglster (XHR)
Instruction Descrrptlon
XHR Example

Exclusive Or Halfword Reglster Immedrate (XHRI)
Instruction Descriptior
XHRI Example

Execute (EX)

Instruction Description
EX Example ..

Extract Tags (EXTAG)

Instruction Description
EXTAG Example

Free Hold Record (FHR)
Instruction Description
FHR Example .

Free Hold Record First (FHRF)
Instruction Description
FHRF Example . -

Function Call Double \FNCZ)
Instruction Description
FNC2 Example .

Grant Hold Record (GHR)
Instruction Description
GHR Example ..

Grant Hold Record First (GHRF)
Instruction Description
GHRF Example

Hash And Verify Virtual Address (HVVA) .
Instruction Description
HVVA Example .

Insert Tags (INTAG) .
Instruction Description
INTAG Example .

Invalidate Primary Directory Entry (IPDE)
Instruction Description
IPDE Example

Jump On Bits Off (JBF)
Instruction Description
JBF Example . .

Jump On Bits On (JBN)
Instruction Description
JBN Example .

Jump On Condition (JC)
Instruction Description
JC Example

Load (L) .
Instruction Descrlptlon
L Example . .

Load Address (LA)

Instruction Description
LA Example .

Load And Verify Tags (LVT)

Instruction Description

viii

10-203
10-203
10-203
10-204
10-204
10-204
10-205
10-205
10-205
10-206
10-206
10-206
10-207
10-207
10-207
10-208
10-208
10-208
10-210
10-210
10-211
10-212
10-212
10-213
10-214
10-214
10-215
10-216
10-216
10-220
10-223
10-223
10-224
10-228
10-228
10-229
10-230
10-230
10-234
10-237
10-237
10-239
10-240
10-240
10-241
10-242
10-242
10-244
10-245
10-245
10-245
10-246
10-246
10-246
10-248
10-248
10-249
10-250
10-250
10-250
10-251
10-251
10-251
10-252
10-252

LVT Example .

Load Byte (LB)
Instruction Description
LB Example .

Load Byte Register (LBR)
Instruction Description
LBR Example .

Load Byte Register Immedrate (LBRI)
Inctruction Description
LBRI Example

Load Halfword (LH)
Instruction Description
LH Example -

Load Halfword Register (LHR)
Instruction Example .

LHR Example .

Load Ha'fword Register |mmed|ate (LHRI)
Instruction Description
LHRI Example ..

Load Hash Table Entry Address (LHTEA)
Instruction Description
LHTEA Example

Load Multiple (LM)

Instruction Description
LM Example . -

Load Multiple Byte (LMB)
Instruction Description
LMB Example .

Load Multiple Halfword (LMH)
Instruction Description
LMH Examnle

Load Primary Directory Entry Address (LPDEA)

Instruction Description
LPDEA Example

Load Primary Directory Entry Address

Register (LPDEAR)

Instruction Description
LPDEAR Example .

Load Register (LR) .
Instruction Description
LR Example .

Load Space Offset Pomter (LSOP)
Instruction Description
LSOP Example . .

Move And Set Tags (MVAST)
Instruction Description
MVAST Example .

Move Byte Immediate (MVBI)
Instruction Description
MVBI Example .

Move Byte Immediate and Propogate (MVBIP)

Instruction Description
MVBIP Example .
Move Character Register (MVCR)
Instruction Description

MVCR Example

Move Characters (MVC)
Instruction Description
MVC Example . .

Move Characters And Tags (MVCAT)
Instruction Description
MVCAT Example . -

Move Characters Long (MVCL)
Instruction Description
MVCL Example .

10-254
10-255
10-255
10-255
10-256
10-256
10-256
10-257
10-257
10-257
10-258
10-258
10-258
10-259
10-259
10-259
10-260
10-260
10-260
10-261
10-261
10-261
10-262
10-262
10-262
10-263
10-263
10-263
10-264
10-264
10-264
10-265
10-265
10-265

10-266
10-266
10-266
10-267
10-267
10-267
10-268
10-268
10-268
10-269
10-269
10-269
10-270
10-270
10-270
10-271
10-271
10-271
10-272
10-272
10-272
10-273
10-273
10-273
10-274
10-274
10-275
10-276
10-276
10-277

Move Halfword Immediate (MVHI)
Instruction Description
MVH! Example . .
Move Virtual Page with Corrected Doub|e Blt
Errors Suppressed (MVMC)
Instruction Description

MVYMC Example

Move Numeric To Numeric (MVNN) .
Instruction Description
MVNN Example ..

Move Numeric To Zone (MVNZ)
Instruction Description
MVNZ Example

Instruction Description

MVPS Example . . .
Move Packed Shifted Zero (MVPSZ)

Instruction Description

MVPSZ Example

Move Zone To Numeiic (MVZN)
Instruction Description
MVZN Example .

Move Zone To Zone (MVZZ)

Instruction Description

MVZZ Example .

Multiply Halfword Storage (MHS)

Instruction Description

Multiply Long Float (MLF)
Instruction Description

MLF Example

Multiply Packed (MP)
Instruction Description
MP Example

Multiply Packed Long (MPL)
Instruction Description
MPL Example e .

Multiply Short Float (MSF)
Instruction Description
MSF Example -

Multiply Word Storage (MWS)
Instruction Description
MWS Erample

OR Byte (OB}
Instruction Description e
OB Example

OR Byte Immediate (OBI) .
Instruction Description
OBl Example . .

OR Byte Register (OBR)
Instruction Description
OBR Example

OR Byte Register 4mmed|ate (OBRI)

Instruction Description

OBRI Example
OR Characters (OC)

Instruction Description

OC Example
OR Halfword (OH)

Instruction Example . . .

OH Example

Instruction Description
OHR Example L.
OR Halfword Register Immeduate (OHRI) ..

Move Packed Shifted (MVPS)

MHS Exampleo

OR Halfword Register (OHR)

Instruction Description
OHRI Example . .
Perform Paging Request (PPR)
Instruction Description

PPR Example
Read Reference And Change And Reset
Reference (RRCRR) . . .

Instruction Description

RRCRR Example

Receive Count (RECC) e
Instruction Description
RECC Example

Receive Message (RECM)
Instruction Description
RECM Example . e

Remove Primary Directory Entry (RPDE) ..
Instruction Description
RPDE Example

Reset Address Compare Mode (RACM) . . .
Instruction Description
RACM Example

Reset Chain Busy (RCB)
Instruction Description
RCB Example

Reset Machine Check Mode (RMCM) e
Instruction Description
RMCM Example

Return Available Hold Record (RAHR)
Instruction Description
RAHR Example

Scan (SCAN)
Instruction Description

SCAN Example

Send Count (SENDC)
Instruction Description
SENDC Example

Send Message (SENDM) . .
Instruction Description
SENDM Exeinple

Send Message and Wait (SEN DMW)
Instruction Description
SENDMW Example

Set Address Compare Mode (SACM)
Instruciion Description
SACM Example

Set Chain Busy (SCB)

Instruction Description
SCB Example
Set Clock Comparator (SETCC)

Instruction Description
SETCC Example

Set Indicator (SETIND)
Instruction Description
SETIND Example

Set Interval Timer (SETIT)
Instruction Description
SETIT Example

Set Time-0Of-Day Clock (SETTOD)
Instruction Description
SETTOD Example

Shift Left Arithmetic (SLA)

Instruction Description
SLAExample
Shift Left Halfword And Count (SLHCT) R
Instruction Description

Contents ix

SLHCT Example
Shift Left Logical (SLL)
Instruction Description

SLL Example
Shift Right Arithmetic (SRA)
Instruction Description

SRA Example
Shift Right Logical (SRL)
Instruction Description
SRL Example
Stack (STACK)
Instruction Description
STACK Example
Store (ST)
Instruction Description
STExample
Store and Set Computational Attributes (SSCA) . . .
Instruction Description
SSCAExample
Store And Set Tags (STST)
Instruction Description
STST Example
Store Byte (STB)
Instruction Description
STB Example
Store Clock Comparator (STCC) . . .
Instruction Description
STCC Example . . .
Store Halfword (STH)
Instruction Description
STH Example
Store Interval Timer (STIT)
Instruction Description
STIT Example L.
Store Multiple (STM)
Instruction Description
STM Example
Store Multiple Byte (STMB) . . .
Instruction Description
STMB Example
Store Multiple Halfword (STMH)
Instruction Description
STMH Example e
Store Space Offset Pointer (STSOP)
Instruction Descriptin
STSOP Example e e e e e e
Store Time-Of-Day Clock (S‘ITOD)
Instruction Description
STTOD Example e e e e e e e
Subtract Characters (SC)
Instruction Description
SCExample
Subtract Halfword (SH)
Instruction Description e e e e e .
SH Example,
Subtract Halfword Register (SHR)
Instruction Description
SHR Example e e e e e e e e e e
Subtract Logical Byte (SLR)
Instruction Description
SLB Example -
Subtract Logical Byte Register (SLBR)
Instruction Description
SLBR Example .
Subtract Logical Characters (SLC)

Instruction Description
SLC Example
Subtract Logical Halfword (SLH)
Instruction Description
SLH Example
Subtract Logical Halfword Register (SLHR)
Instruction Description
SLHR Example
Subtract Long Float (SLF)
Instruction Description
SLFExample
Subtract Packed (SP)
Instruction Description
SPExample
Subtract Short Float (SSF)
Instruction Description
SSF Example
Supervisor Exit (SVX)
Instruction Description
SVX Example e e e e e e
Supervisor Link Double (SVL2)
Instruction Description
SVL2 Example
Supervisor Link Monitored (SVLM)
Instruction Description
SVLM Example . T
Supervisor Link Short (SVLO)
Instruction Description
SVLO Example . . A
Supervisor Link Single (SVL1)
Instruction Description
SVL1 Example
Supervisor Link Single Monitored (SVLM1)
Instruction Description
SVLM1 Example
Terminate Immediately (TI)
Instruction Description
TIExample
Test Under Mask Byte Immediate (TMBI)
Instruction Description
TMBI Example
Test Under Mask Byte Immediate and Branch
If Ones (TMBIBO)
Instruction Description
TMBIBO Example
Test Under Mask Byte Immediate and Branch If
Zeros (TMBIBZ)
Instruction Description
TMBIBZ Example
Test Under Mask Byte Register (TMBR)
Instruction Description
TMBR Example
Translate (TR) .
Instruction Description
TR Exampleo,
Translate And Test (TRT)
Instruction Description
TRT Example e e e e e e e e e e e
Translate Register (TRR)
Instruction Description
TRR Example
Trim (TRIM)
Instruction Description
TRIM Example . . .
Unstack (UNSTK)

Instruction Description 10-428

UNSTK Example 10-429
Zero And Add Characters (ZAC) 10-430

Instruction Description 10-430

ZAC Example 10-430
APPENDIX A. TELEPROCESSING
INSTRUCTION FLOW CHARTS A-1
APPENDIX B. OPERATION CODE ASSIGNMENTS B-1
APPENDIX C. INSTRUCTION INDEX C-1
APPENDI¥ D. GLOSSARY D-1
INDEX e e e X-1

Contents

Xi

xii

This page is intentionally left blank.

PURPOSE OF THIS MANUAL

This reference manual provides a detailed definition of
the machine functions performed by the processor but
should not be considered tutorial for the IMP (internal
microprogramming) instruction set. This manual does
not attempt to describe how the VMC (vertical
microcode) routines prepare the information or how the
HMC (horizontal microcode) attempts to use it.

This manual is to be used by support personnel for the
maintenance of System/38.

ORGANIZATION OF THIS MANUAL
The information presented in this manual includes:
Chapter Content

2 Internal Microprogramming Structure-the
IMP data types, the instructions, and
permanent storage assignments.

3 Horizontal Microcode Support
Functions-the HMC procedures and the
HMC built-in functions.

4 The processor-the processor, the
processor states, the execution functions,
the input/output and asynchronous
events.

5 Tasking-the function of the IMP, the IMP
objects the tasking function uses, the
control of tasking, and the intertask
communications and synchronization.

About This Manual

Chapter Content

6 Supervisor Linkage and Exception
Handling-the supervisor linkage concepts
and the objects it uses, the supervisor
linkage control, the exceptions, and the
instruction length count and IAR
(instruction address register) settings.

7 Input /Output and Asynchronous Events-the
methods used to communicate with 1/0
devices and the sources of asynchronous
events.

8 Virtual Storage Addressing-the storage
addressing structure of the IMP.

9 Machine Support Functions-the additional
services that are available to support IMP
instruction processing.

10 Instructions-detailed descriptions of IMP
instructions.

The glossary in Appendix C includes definitions
developed by the American National Standards Institute
(ANSI) and the International Organization for
Standardization (ISO). This material is reproduced from
the American National Dictionary for Information
Processing, copyright 1977 by the Computer Business
Equipment Manufacturers Association, copies of which
may be purchased from the American Standards
Institute, 1430 Broadway, New York, New York 10018.

WHAT YOU SHOULD KNOW
The reader should understand computer programming

and the concepts used in System/38 before attempting
to use the information in this manual.

About This Manual xiii

IF

xiv

YOU NEED MORE INFORMATION
IBM System/38 Bibliography, GH30-0233

This publication describes technical publications in
support of System/38 machine components, system
programming, application programming, and other
supplemental information (for example forms and
program listings).

IBM System/38 Functional Concepts Manual,
GA21-9330

This publication is designed to provide an overview of
the System/38 concepts, a definition and description
of structures and objects, and a description of
specific System/38 functions.

IBM System/38 Functional Reference Manudal,
GA21-9331 and GA21-9800

This publication is designed to describe the
System/38 instruction set and contains a detailed
description of each instruction. This publication also
contains the specifications for objects, events,
exceptions, and describes specialized instructions for
source/sink devices.

IBM System/38 Vertical Microcode Data Areas,
SY21-0892

This publication is designed to aid service personnel
responsible for supporting the IBM System/38 by
providing descriptions of the vertical microcode data
areas within the system.

IBM System/38 Vertical Microcode Logic Overviews
and Component Descriptions Manual, SY21-0889

This publication is designed to aid service personnel
to isolate a malfunction in the System/38 vertical
microcode.

IBM System/38 Vertical Microcode Logic Listings,
SYB1-0890

This publication is designed to aid service personnel
to isolate a malfunction in the System/38 vertical
microcode.

IBM System/38 Vertical Microcode Module
Descriptions, SYB1-0891

This publication is designed to aid service personnel
to isolate a malfunction in the System/38 vertical
microcode.

IBM System/38 Processing Unit Models 3, 4, and 5
Theory — Maintenance, SY31-0524 and IBM
System/38 Processing Unit Models 6, 7, and 8
Theory —Maintenance, SY31-0649

These publications are designed to give service
personnel a brief description of some of the unique
features of System/38.

IBM System/38 Channel Theory—Maintenance,
SY31-0619

This publication is designed to provide maintenance
and theory information that will be used by the

service personnel to maintain the System/38 channel.

IBM System/38 System Control Adapter
Theory — Maintenance, SY31-0527

This publication is designed to provide maintenance
and theory information that will be used by the
service personnel to install and maintain the IBM
System/38.

IBM System/38 Service Guide, SY31-0523

This publication is designed to provide the
information needed to use the System/38
maintenance library and service functions. The
publication also shows the maintenance overview, the
maintenance library organization, the operator/service
panel switch settings, how to use the MAPs, and
how to select either concurrent or dedicated service
functions.

IBM System/38 Diagnostic Aids, SY21-0584

This publication provides information about the tools,
documentation, and procedures needed to aid in
problem resolution for programming problems
occurring within the System/38 CPF and the VMC of
the System/38.

9

DEFINITIONS OF NOTES

The headings Notes and Programming Notes are used
where additional information is provided on various
topics. Notes further explain or clarify text.
Programming notes either explain instruction
implementation or they suggest additional uses of
instructions for support personnel.

TERMINOLOGY

Certain fields or bit combinations in IMP objects are
undefined. Some of these may be used by the IMP
programmer and some may not. In order to distinguish
between them, the following terminology will be used
throughout this manual:

Term

Not used

Reserved

Invalid

Meaning

The field or bit combination is not
interrogated or modified by the
processor and may be used by the IMP
programmer.

The field or bit combination is
interrogated or modified by the
processor and may not be used by the
IMP programmer.

The bit combination is checked by the

processor and a specification exception
or a machine check occurs if an invalid
combination is detected.

About This Manual xv

Machine Product

The IMP (internal microprogramming) instruction set is
an internal communications link. The following figure
shows the relationship of the instructions to other parts

of the system.

System/38 Machine Support

Y iy
//////////////// %

Vertical
Microcode

% iz
%/////////////// %

Horizontal
Microcode

7//./(//.//////{//7 |
7 R

Hardware

Chapter 1. Introduction

The user/control program interface to the machine
product is called the System/38 instruction set. The
machine product that supports the System/38
instruction set is composed of hardware and microcode.
Microcode is further subdivided into HMC (horizontal
microcode) and VMC (vertical microcode). Definitions of
these terms are:

« Hardware: A combination of silicon, copper, and
frames providing a hardwired execution instruction
set.

« Microcode: Instructions providing the basic machine
control functions and supporting the System/38
instruction set.

« HMC: Microcode that exhibits a high degree of
parallelism of execution, controls the detailed state of
the hardware, and supports the IMP instruction set.
HMC executes the hardware instruction set.

« VMC: Microcode that defines logical operations on
data, is primarily sequential in execution, and
supports the System/38 instruction set. VMC is
executed in the IMP instruction set.

System Features

The IMP instruction set provides the fundamental
processing capabilities of the machine. It includes
decimal operations, with decimal shifting, providing
instructions for commercial applications. Floating-point
provides an instruction set for scientific computation.

Several of the instructions are executed in VMC. These
instructions are indicated as SVL instructions in
Appendix B. All other instructions shown in Chapter 10
are executed in HMC.

Introduction 1-1

Storage Descriptions

Storage is composed of more than one technology.
Except on performance, the effects of the physical
differences between storage types is not observable to
the application program.

Fetching and storing of main storage data by the
processor is temporarily prevented by 1/0 (input/output)
data transfer operations. When concurrent |/0 requests
for access to a main storage location occur, access is
normally granted in a priority sequence.

If the first reference to a storage location changes the
contents of that location, any subsequent fetches from
that location will obtain the new contents.

Internal Microprogramming Structure

2-1

Register Descriptions

The hardware registers used with the processor can be
used individually or combined to form larger registers.
There are 16 SID (segment identifier) registers, 16 R
(2-byte) registers, and 16 r (1-byte) registers as shown
in the following figure. R registers hex 8-F are divided
to form 16 single-byte registers, r(0)-r(F). The S and R
registers are combined to form the B or base registers.
The 16 base registers can contain addresses during IMP
procedure execution. The address contained in base
register O (B[0]) points to the start of the instruction
stream, and all other instruction addressing and
branching within a procedure is relative to BO. Base
registers can be used to address areas in virtual storage
of up to 64 K-bytes each.

Registers—Relative Sizes

Four Bytes Two Bytes
S(0) R(0)
S(1) R(1)
S(2) R(2)
S(3) R(3)
S(4) R(4)
S(5) R(5)
S(6) R(6)
S(7) R(7) One Byte
s(8) R® | | o) | r1)
S(9) R(9) r(2) r(3)
S(A) R(A) r(4) r(5)
S(B) R(B) r(6) r(7)
s(c) R(C) r8) | r(9)
S(D) R(D) r(A) r(B)
S(E) R(E) r(C) r(D)
S(F) R(F) N r(E) r(F)

Note: The number in parentheses indicates the number
of the associated register (S, R, or r).

2-2

Data

The basic building block for all IMP formats is the 8-bit
byte.

For the purpose of error detection and correction, one or
more check bits are transmitted with each byte or group
of bytes. The check bits are generated automatically by
the hardware and cannot be directly controlled by the
program. References in this manual to the sizes of data
fields and registers exclude mention of the associated
check bits.

The storage capacity is expressed in the number of
bytes provided without regard to the storage width
(number of bytes fetched or stored in one storage
cycle).

The location of any field or group of bytes is specified
by the address of its leftmost byte.

The length of a field can be implied by the operation to
be performed. When the length is implied, there is no
corresponding length field and the field is said to have a
fixed length. Fixed-length data can be 1, 2, 4, 6 (in the
Load instruction), 8, 12, 16, or 32 bytes long.

When the length of a field is not implied by the
instruction operation code but is stated explicitly as a
length field in the instruction or as part of the data
accessed by the instruction, the information is said to
have variable length.

When information is placed in storage, the contents of
only those byte locations included in the designated field
are replaced, even though the width of the physical path
may be wider than the field being stored (fewer bytes
may be stored than the processor is capable of storing
in one storage cycle).

DATA TYPES

The computational instructions of the IMP operate on
five data types: binary, address, character, decimal, and
floating point.

Binary Data

An integer can be expressed as a signed or unsigned
binary number.

In an unsigned binary number, all bits express the
absolute value of the number. When two unsigned
binary numbers are added, the shorter number is treated
as if extended with high-order zeros. An unsigned
binary number can appear as a byte or halfword in
registers, or can be of variable length (1 to 256 bytes) in
storage.

In signed binary numbers, the twos-complement
representation of a negative number is considered the
sum of the integer part of the field (taken as a positive
number) and the maximum negative number. This is
obtained by inverting each bit of the number and adding
a one in the low order (units) position.

When an operand must be extended with high-order
bits, the expansion is achieved by prefixing the field
with bits equal to the sign bit. That is, positive numbers
have leading zeros, and negative numbers have leading
one bits.

Twos-complement notation does not include a negative
zero. The maximum positive number is an all-one
integer with a sign bit of zero. The maximum negative
number (the negative number with the greatest absolute
value) is an all-zero integer with a sign bit of one.

The processor cannot represent the complement of the
maximum negative number. When an operation, such as
a subtraction of the maximum negative number from
zero, attempts to produce the complement of the
maximum negative number, a binary overflow exception
occurs. An overflow does not result, however, when the
maximum negative nhumber is complemented and the
final result is within the representable range. An
example of this is a subtraction of the maximum
negative number from minus one. The product of two
maximum negative numbers is represented as a
double-length positive number.

In discussions of signed binary numbers in this
document, the expression 16-bit signed integer denotes
a 15-bit integer with a sign bit (the maximum value is
+32 767 or -32 768), and 32-bit signed integer denotes
a 31-bit integer with a sign bit (the maximum value is
+2 147 483 647 or -2 147 483 648).

Internal Microprogramming Structure 2-3

Address Data

Address data can have either a 6-byte or 2-byte format.
The 6-byte format consists of a 4-byte SID (segment
identifier) and a 2-byte offset. The SID identifies a 64
K-byte virtual address area called a segment. The offset
identifies a 512-byte page within a segment and a
single-byte location within the page. Base registers are
used to store address data; operations on address data
treat the data as unsigned binary values.

Character Data

Character data is stored in EBCDIC (extended binary
coded decimal interchange code) with each character
occupying an 8-bit byte.

Character strings are variable in length from 1 byte to a

maximum of 65 536 bytes. Operations on character
strings treat the data as unstructured logical quantities.

2-4

Decimal Data

Decimal data operands reside in storage and may be in
either zoned or packed format. IMP instructions are
provided for adding, subtracting, comparing, multiplying,
dividing, editing and shifting decimal data in packed
format only. Conversion instructions may be used to
convert between packed format and signed binary
format, between packed and zoned formats, and
between packed or decimal and long or short
floating-point formats.

Decimal Data Formats

In the zoned format, the rightmost 4 bits of a byte are
called numeric (N) and normally comprise a code
representing a decimal digit. The leftmost 4 bits of a
byte are called zone (Z), except for the rightmost byte of
the field, where these bits are a sign (S) code. In
System/38 a zone character is represented as binary
1111 or hex F.

In the packed format, each byte contains two decimal
digits (D), except for the rightmost byte, which contains
a sign (S) to the right of the decimal digit. The digit and
sign codes each comprise 4 bits.

Zoned Decimal Format

z N z N z N z N z N S N
0 4 8 12 16 20 24 28 32 36 40 a4 Bits
Packed Decimal Format

D D D D D D D D D D D S
0 4 8 12 16 20 24 28 32 36 40 44 Bits

Decimal operands occupy fields in storage that start on
a byte boundary and can be variable in length (1 to 16
bytes). Decimal operands can overlap if the rightmost
bytes coincide (the Move Packed Shifted instruction
allows any overlap).

Decimal Number Representation

All decimal numbers are represented as right-aligned
true integers with plus or minus signs.

The digits and signs are coded as shown in the
following chart:

Binary Digit Sign
Code Symbol Symbol
0000 0 Invalid’
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
o111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid' Plus (+)
1011 Invalid Minus (-)
1100 Invalid Plus (+)
1101 Invalid Minus (-)?
1110 Invalid Plus (+)
1111 Invalid Plus (+)2

'Invalid means this code is not recognized
as valid for this symbol.
2The preferred sign code.

Digit and Sign Codes

A data exception occurs with the detection of an invalid
code. The operation is terminated when the digit code
is invalid, or suppressed when the sign code is invalid
(see Chapter 6).

Although alternate encoding of the sign in an operand is
accepted, the preferred sign codes are always generated
for the results of the decimal arithmetic operations.
Exceptions to this rule are permitted only during decimal
conversion {CVZP and CVPZ instructions) and editing
(EDPD instruction).

Floating-Point Data

A floating-point number is a bit string characterized by a
sign, a signed exponent, and a significand. Its value, if
any, is the signed product of its significand and 2 raised
to the power of its exponent. The exponent of a
floating-point number normally signifies the power to
which 2 is raised in determining the value of the
represented number. The significand of a floating-point
number consists of an implicit leading bit to the left of
its binary point and a fraction field to the right of its
binary point.

Internal Microprogramming Structure 2-5

Floating-point data has a fixed length, 4-bytes long
(short format) or 8-bytes long (long format). Both
formats are designated as operands in storage and must
be fullword aligned, or a specification exception occurs
and the operation is suppressed. The formats are as
follows:

Short Format

01 Bits 9 31

Long Format

01 Bits 12

Component Short Format |Long Format
Sign Bit Bit O Bit O
Exponent Bits 1-8 Bits 1-11
Fraction Bits 9-31 Bits 12-63

Floating-Point Number Representation

The floating-point number values that can be
represented by the short and long floating-point data
formats include both real and symbolic numbers.

Real numbers can be represented in either normalized or
denormalized format. In normalized format, the
significand for the floating-point number is formed by
assuming an implicit 1 bit to the left of the binary point
and concatenating the fraction to the right of the binary
point. As previously stated, the binary point in either
format is assumed to be to the immediate left of the
leftmost bit of the fraction; the fraction is expressed in
binary digits (bits).

63

The significand is multiplied by a power of 2; the
exponent indicates this power. The exponent field can
contain a value that can range from O through 255 for
the short format and O through 2047 for the long
format. The minimum bias value O identifies plus or
minus O and denormalized numbers, all of which are real
numbers. The maximum exponent values (255 and
2047) identify symbolic numbers. The biased exponent
when adjusted by the appropriate bias (-127 for the
short format and -1023 for the long format) yields a
signed (unbiased) exponent. This signed exponent
specifies the power of 2 which is to be multiplied with
the significand to produce the magnitude of the
floating-point number. The sign of the floating-point
number is either positive or negative, depending on
whether the sign bit is O or 1 respectively.

In addition to real numbers, the symbolic.entities of plus
and minus infinity and a concept of not-a-number
(NaN) can be represented.

Infinity is represented by the maximum exponent value
(255 for short format and 2047 for long format) and a
fraction of all O bits. Infinity is either positive or
negative, depending on whether the sign bit is 0 or 1
respectively.

9

C

Not-a-number is represented by the maximum exponent

value and a fraction that contains one or more 1 bits.
There are two types of NaNs, masked and unmasked,

with the high-order bit of the fraction indicating the type

through a value of 1 or O respectively. The fraction
component of a NaN can have any value other than all
zeros. These values have no meaning, except that the
fraction value of a leading 1 bit followed by all zeros is
the value returned when a masked floating-point invalid
operand occurs and neither operand is an unmasked
NaN. Unmasked NaNs, when encountered in a
floating-point operation, force the detection of the
floating-point invalid operand condition. Masked NaNs,
when encountered in a floating-point operation, are
propagated into the result field, but do not force
detection of the floating-point invalid operand condition.
A potential usage of these NaN values is to set them
into uninitialized floating-point fields. This allows the
detection of a reference to a floating-point field that has
not been set with a value by the time it is accessed.

The following information provides a summary of the
values that can be represented by floating-point data.
In the following formulas, S = the sign, E = the biased
exponent or reserved value, and F = the fraction
components of a floating-point field as previously
described. Additionally, the ** characters denote
exponentiation, and the ~ character denotes a logical
not.

The values that can be represented in the short format
are:

Normalized number
(For 0<E<255,
value = (-1)**S x 2**(E-127) x 1.F)
« Denormalized number
(For E=0 & F-~=0,
value = (-1)**S x 2**(-126) x O.F)
« Signed zero
(For E=0 & F=0,
value = (-1)**S x 0)
« Signed infinity
(For E=255 & F=0,
value = (-1)**S x infinity)
« Not-a-number (NaN)
(For S=0 or 1, E=255, F-=0 and with:
— high-order fraction bit =1;
value = masked NaN
— high-order fraction bit = O;
value = unmasked NaN)

The values that can be represented in the long format
are:
« Normalized number
(For 0<E<2047,
value = (-1)**S x 2**(E-1023) x 1.F)
« Denormalized number
(FOI' E=0 & Fﬂ=0,
value = (-1)**S x 2**(-1022) x O.F)
« Signed zero
(For E=0 & F=0,
value = (-1)**S x 0)
« Signed infinity
(For E=2047 & F=0,
value = (-1)**S x infinity)
« Not-a-number (NaN)
(For S=0 or 1, E=2047, F-~ = 0 and with:
— high-order fraction bit = 1;
result = masked NaN
— high-order fraction bit = O;
result = unmasked NaN)

The range covered by the magnitude (M) of a
floating-point number is:
« In the short format:
— Normalized
2**-126 < M < (2-2**-23) x 2**127
— Denormalized
2**-149 < M < (1-2**-23) x 2**-126
« In the long format:
— Normalized
2**-1022 < M < (2-2**-52) x 2**1023
— Denormalized
2**-1074 < M < (1-2%**-52) x 2**-1022

Internal Microprogramming Structure

2-7

Short Format (4-bytes)

Long Format (8-bytes)

Hex 7F800000 +infinity Hex 7FFO000000000000
No representation \ No representation i
Maximum ((2-2**-52) x 2**1023)
Hex 7FEFFFFFFFFFFFFF
Maximum ((2-2%*-23) x 2**127)
Hex 7F7FFFFF
Normalized Normalized
(2**-126)
Minimum Hex 00800000
(2**-1022)
Maximum ((1-2%*-23) x 2**-126) Minimum Hex 0010000000000000
Hex 007FFFFF
Maximum ((1-2**-52) x 2**-1022)
Denormalized Hex OOOFFFFFFFFFFFFF
(2**-149) Denormalized
Minimum Hex 00000001
+ ((2=*-1074)

No representation

(+0)

No representation

Minimum Hex 0000000000000001

No representation
(+0)

Hex 00000000 Hex 0000000000000000
i Qe s
Hex 80000000 Hex 8000000000000000

No representation

Maximum -(2**-149)
Hex 80000001

Denormalized

Minimum Hex 807FFFFF

-((1-2%*-23) x 2**-126)

Maximum -(2**-1074)
Hex 8000000000000001

Denormalized

-((1-2**-52) x 2**-1022)

Minimum Hex 800FFFFFFFFFFFFF

Maximum -(2%*-126)
Hex 80800000

Normalized

Minirnum Hex FF7FFFFF

-((2-2#*-23) x 2**127)

Nc ente. sntation

Maximum -(2**-1022)
Hex 8010000000000000

Normalized

-((2-2**-52) x 2**1023)

Minimum Hex FFEFFFFFFFFFFFFF

No representation

Hex FF800000 -infinity Hex FFFCO0Q000000000
Hex 7FC00000 — Masked NaN minimum — Hex 7FF8000000000000
Hex 7FFFFFFF — Masked NaN maximum — Hex 7FFFFFFFFFFFFFFF
Hex 7F80001. — Unmasked NaN minimum — Hex 7FF0000000000001

Hex 7FBFFFF, — Unmasked NaN maximum — Hex 7FF7FFFFFTFFFFFF
Note: Use of sign field bit value of 0 is arbitrary.

Normalization

Normalization is performed on intermediate results prior
to assigning their value to the result field. If the number
is nonzero, its significand bit becomes 1; the exponent
is regarded as if its range is unlimited. This produces
normalized floating-point data for which an implicit 1 bit
is assumed to be to the immediate left of the binary
point. If the significant is O, the number becomes 0 with
the sign being set as described under Sign Bit and
Signed Zero. Normalizing a number does not change its
sign.

If a normalized floating-point number has an exponent

value that is outside the range supported for normalized
numbers in the destination format, one of the following
conditions is recognized: ’

« A floating-point overflow condition is recog.ized if
the exponent is greater than the maximum (127 for
short and 1023 for long).

+ A floating-point underflow condition is recognized if
the exponent is less than the minimum (-126 for
short and -1022 for long) and either the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled.

Floating-point operations for which the floating-point
underflow condition is detected and masked at the time
of detection produce denormalized floating-point data in
the result field. Denormalization is performed on the
normalized intermediate resuit by shifting the significand
right while incrementing the exponent until the exponent
attains the formats assumed value for denormalized
numbers (-126 for short and -1022 for long). The
intermediate denormalized floating-point is then
represented in the result field by setting the result
exponent to the minimum value of O and the result
signed fraction to the value from the significand of the
intermediate denormalized floating-point number.
Rounding is performed according to the current rounding
mode on assignment of the significand value to the
result fraction. This produces denormalized
floating-point data for which an implicit O bit is
assumed to be to the immediate left of the binary point
and for which an unbiased exponent value of -126 for
short and -1022 for long is to be assumed. The
exponent value of 0, which correlates with unbiased
exponent values of -126 for short and -1022 for long,
serves as an identifier for denormalized floating-point
data and is not used to form the true signed exponent
of the floating-point number represented. The
underflow exception is signaled only if the result is not
exact.

Floating-point fields can only contain real numbers in
the normalized or denormalized formats. The concept of
an unnormalized number {(one which would allow for a
variable exponent in conjunction with one or more
leading O bits prior to the first significant 1 bit) does not
exist and cannot be represented.

Internal Microprogramming Structure 2-9

Rounding

All floating-point operations are performed as if to
infinite precision and then, if necessary, rounded to fit in
the destination’s format. Four mutually exclusive
rounding modes are supported: round to nearest, round
toward zero, round toward positive infinity, and round
toward negative infinity. The rounding mode bits are
kept in the TDE (task dispatching element). If y is the
infinitely precise number that is to be rounded, x is the
number with the largest representable significand less
than y, and z is the number with the smallest
representable significand greater than y (where the
exponents for x and z may be out of range); then, if y is
not representable in the destination format (needs
rounding), the rounding modes change y as follows:

« Round to nearest: y is changed to the closer of x or
z. If they are equally close, the even one (the one
whose least significant bit is a 0) is chosen.

« Round toward zero: y is changed to the smaller (in
magnitude) of x or z.

« Round toward positive infinity: y is changed to z,
unless z is negative and its exponent overflows the
destination’s format. In this case, y becomes the
format's largest (in magnitude) negative real number.

« Round toward negative infinity: y is changed to x,
unless x is positive and its exponent overflows the
destination’s format. In this case, y becomes the
format's largest positive real number.

Infinity
In infinity arithmetic, infinities compare equal regardless

of sign, and compare unordered with anything else.
Arithmetic operations on infinity are always exact.

Sign Bit and Signed 0

The sign of a product or a quotient is the exclusive OR
of the signs of the operands. The sign of a sum or a
difference differs from, at most, one of the signs of the
operands following the normal rules of algebra. These
rules apply even when operands or results are O or
infinite. The only exception is when the sum of two
operands with opposite signs (or the difference of two
operands with like signs) is exactly O, the sign of that
sum (or difference) depends on the current rounding
mode of the process. For round toward negative infinity,
the sign is minus; for all other rounding modes, the sign
is plus.

Exceptions

The following floating-point exception conditions can be
detected during floating-point operations:

« Floating-point inexact result

« Floating-point invalid operand

« Floating-point overflow

« Floating-point underflow

« Floating-point zero divide

« Invalid floating-point conversion

Associated with these exceptions (except the invalid
floating-point conversion) is a set of mask and
occurrence bits in the TDE.

The mask bit controls the signaling of the exception. If
the mask bit is O, the exception is not signaled; if the
mask bit is 1, the exception is signaled. The mask bit is
only interrogated for its value. It must be set manually.

The occurrence bit records the detection of the
exception condition whether or not the exception is
masked at the time of detection (1 = occurred; O = has
not occurred). The occurrence bit must be manually
reset.

The definition of these exception conditions and what
the result of the operation will be when they are
detected is contained under Exceptions in Chapter 6.

<9

Internal Microprogramming Objects

IMP objects are separately addressable units (or
collections of data) that have associated attributes as
well as operational characteristics based on these
attributes. The IMP objects support the tasking and 1/0
structures of the IMP. These objects are used by certain
IMP instructions (such as Enqueue Message) and must
begin on fullword main storage boundaries without
crossing page boundaries (see Data Alignment, in this
chapter). The IMP objects are:

« Task dispatching queue (TDQ)

« Task dispatching element (TDE)

« Send/receive queue (SRQ)

« Send/receive message (SRM)

» Send/receive counter (SRC)

A characteristic common to all IMP objects is the use of
the descriptor. The descriptor provides type and control
information about an IMP object. It is used during
execution of any IMP instruction that operates on an
IMP object, to ensure that the operand is valid for the

operation and to provide additional information about an
IMP object.

The descriptor is 2 bytes long. Byte O identifies the type
of IMP object being described and contains additional
information, including status information (see the
following figure).

Byte 1 of the descriptor is used by the processor to
monitor accesses to the SRM, SRQ, and TDE IMP
objects. If the processor detects byte 1 # hex 00 while
executing an operation that accesses one or more of
these objects, a descriptor access exception occurs.

Byte 1 of the TDQ descriptor is ignored.
When an IMP object is initially crea:ed, bytes O and 1
must be appropriately initialized or unpredictable results

will be encountered. (For more information see Chapter
5, Tasking.)

Internal Microprogramming Structure 2-11

Descriptor Type—Byte 0, Bit Assignment l

Bits'
0 1 2 Mnemonic |Name
0 0 0 TDQ Task Dispatching Queue
0 0 1 TDE Task Dispatching Element
0 1 0 SRQ Send/Receive Queue
0 1 1 SRM Send/Receive Message
1 0 0 SRC Send/Receive Counter
1 0 1 = Not valid
1 1 0 - Not valid
1 1 1 - Not valid
'Bits 3 through 7 are object dependent and are described in Chapter 5.

DATA ALIGNMENT « IMP objects must begin on fullword boundaries and
cannot cross page boundaries (see the note under
Data alignment must meet the following requirements: Send/Receive Message in Chapter 5 for an exception).

Instructions must begin on halfword boundaries.

Halfword storage operands must begin on halfword
boundaries.

Fullword storage operands must begin on fullword
boundaries.

Full addresses (6 bytes) in storage must begin on
halfword boundaries.

Intermediate address fields for certain instructions
(BALL, CLCL, and MVCL) must begin on fullword
boundaries and for CLCL and MVCL cannot cross
page boundaries.

Floating-point data (long or short format) must begin
on fullword boundaries.

2-12

» Doubleword alignment is required for certain |/0O
objects (see I/0 Addressing Restrictions in Chapter 7),
some addresses in the control address table (see
Assigned Virtual Storage Locations in this chapter),
and the repetitive interval timer doubleword (see
Interval Timers in Chapter 9).

« Space pointers must be quadword aligned.

« The hash table and primary directory must be aligned
on an SID (segment identifier) boundary.

If the alignment requirements are not met, a
specification exception occurs. If the system is
attempting to recover from some malfunction and the
system encounters an object not in proper alignment, a
machine check occurs.

9

ADDRESSING

All addresses used by the processor in executing
instructions or fetching data are virtual addresses. The
complete virtual address of any byte of storage is 48
bits containing an SID (segment identifier) and an offset.
The offset contains a PID (page identifier) and a BID
(byte identifier).

Segment Identifier Offset
SID PID BID
0 Bits 32 39 48

The SID uniquely identifies a 64 K-byte virtual address
area called a segment. The entire virtual storage of the
VMC can be considered a collection of nonoverlapping
segments.

The offset identifies a 512-byte page within a segment
and a single-byte location within the page. Therefore, it
provides for relative addressing of up to 65 535 bytes
beyond the location designated by the SID.

Storage operand addressing is achieved by adding a
displacement to a base register identified by the
instruction. The displacement is a 12-bit field also
found in the instruction.

Address translation uses the VAT (virtual address
translator) facilities described in Chapter 8. These
facilities include:

e Hash Table—a list of entries used to index the primary
directory.

e Primary Directory—a table of the virtual addresses of
a page. The table also provides status information
about the page.

« Lookaside Buffer—a high-speed buffer storage that
contains some of the information specified in the PD
(primary directory). The translation process is
shortened if the virtual address referred to is currently
listed in the LB (lookaside buffer).

The following virtual addresses are called virtual = real
addresses and do not use the VAT facilities. Virtual =
real addresses are invalid if they exceed the amount of
real storage configured for the processor.

Virtual = Real Address

Segments
of Real
Segment Identifier (SID) Storage
Model Values Addressed
3, 4, and | 0000 0100 through 0000 First 32
5 011F
6, 7, and | 0000 0100 through 0000 First 256
8 O1FF

Eight system control instructions are used to verify a
virtual address and maintain the VAT facilities. These
instructions are HVVA, IPDE, RRCRR, LPDEA, LHTEA,
LPDEAR, EPDE, and RPDE.

Virtual address overflow protection is only on segment
boundaries. When an offset attempts to overflow into
the next SID, either the SID is incremented by 1 or an
effective address overflow exception occurs. Which of
these two events occurs is determined by the instruction
involved, the model, the level of horizontal microcode,
and the hardware. If a carry out of bit 24 occurs when
adding 1 to the high-order 32 bits of a storage address,
an effective address overflow occurs.

Internal Microprogramming Structure 2-13

Instructions

Each instruction consists of two major parts: an op
(operation) code and one or more operands.

« The operation code specifies the operation to be
performed.

« The operands designate the data or address of data
for the operation.

In addition, certain instructions may contain operand
lengths, masks, or other control information needed to
perform the specified operation.

OPERATION CODES

The operation code for an IMP instruction consists of an
8-bit code that is unique to either one instruction or to a
set of instructions that use a unique operation code
extender. The operation code occupies the first byte of
the instruction. Appendix C shows the operation code
assignments.

Operation Instruction

Code Length Format

000X xxxx 2 bytes RR

001x xxxx 2 bytes RR

010x xxxx 4 bytes RIl, RS, or SI

011x xxxx 4 bytes RIl, RS, or SI

100x xxxx 4 bytes RIl, RS, or SI

101x xxxx 6 bytes Sl or SS

110x xxxx 6 bytes Sl or SS

111x xxxx 6 bytes Sl or SS
OPERANDS

Operands can be grouped in three classes and can be
either explicitly or implicitly designated. The classes are:

« S (storage operands)-located in real storage

« R (register operands)—located in registers (internal
storage)

« | (immediate operands)—located in the instruction
itself

The length of an operand in storage can either be
implied by the operation code, be specified by a bit
mask, be explicitly provided by a register, or be
specified by a 4-, 8-, or 16-bit L (length) field
contained in the instruction or operand.

For explicitly stated variable length operands, the length
code in the L field specifies the number of additional
bytes to the right of the byte designated by the storage
operand address. Therefore, the length in bytes is one
more than the value of the L field.

The addresses of operands in storage are specified by
means of a format that uses the contents of a B (base)
register as part of the address. This makes it possible
to:

« Specify a complete address by using an abbreviated
notation.

« Perform address manipulation using instructions that
use base registers for operands.

» Modify addresses by program means without
alteration of the instruction stream.

« Operate independently of the locations of data areas
by directly using addresses received from other
programs.

The address used to refer to storage is contained in a
register designated by the B field in the instruction, or is
calculated from a base address and displacement
designated by the B and D (displacement) fields in the
instruction.

Register operands are located in registers identified in a
4-bit field in the instruction.

Immediate operands are contained within the instruction
in a half-byte, byte, or halfword | (immediate) field.

To describe the execution of instructions, storage
operands are designated as first and second (and in
some cases, third) operands.

In general, two operands participate in the execution of
an instruction. The result replaces the first operand.
Except for storing the final result, the contents of all
registers and storage locations participating in the
addressing or execution of an operation for most
instructions remain unchanged. A few instructions (such
as TRT) also modify operands other than the final result.

<9

J

Operand referencing is summarized in Figure 2-1. This
figure shows the use of storage, immediate, and register

operands.

Operation Code

Number of a halfword register (hex value),
R(O)-R(F).

Number of a 1-byte register (hex value),
r(0)—r(F); or a 4-bit operation code extension
field, E

Immediate operand

Number of a base register (hex value), B(0)-B(F)
B(n) = S(n) concatenated to R(n), where n is a
value of hex O to F

A 12-bit displacement added to the base
register

Storage operand addressed by B + D

Length of the storage operand in bytes, minus
one

Note: The format used here does not represent an
actual instruction. It does, however, illustrate the use of

actual fields.
4 Bytes 2 Bytes

S(0) (B R(0)
AL, -~ ~ L
L V4 L T ’Tu L o

S(7) R(7)

1Byte 1 Byte

> S(8) R(8) r(0) r(1)
‘T-J — N L N L 4 —~

S(F) R(F) O & | m

C

0 000

Op r
CodeRé L|1 |B| D

Figure 2-1. IMP Operand Reference

Internal Microprogramming Structure

FORMATS AND EXAMPLES

An instruction is 1, 2, or 3 halfwords in length. Each
instruction must be aligned on a halfword storage
boundary and cannot cross a segment boundary. The
basic instruction formats are shown in the following
figure. The format of an instruction is dictated by the
type of operation to be performed. In the figure, the
bytes in each format are labeled with letters that
indicate the use for each byte. The use of the bits
within a given format can vary from instruction to
instruction.

Basic IMP Formats
All IMP instructions fall within one of the following
categories. Within each category, some instructions

differ slightly from the basic format shown:

RR (register to register) — 2 Bytes

Operation Ry [Ry/E
Code

RI (register and immediate) — 4 Bytes

Operation

Code Ri| E I2

RS (register to storage) — 4 Bytes

Operation

S| (storage and immediate) — 4 Bytes

Operation 1o —*

Code |+Eo B Dy

S| (storage and immediate) — 6 Bytes

Operationf+— L —

I
Code jE~] By Dy 2

SS (storage to storage) — 6 Bytes

ggz;am" L1 |/ B, D, B, D,
Legend?

B Base register

D Displacement

E Operation code extension field
| Immediate

J Jump displacement’

L Length

M Mask'

R Halfword register

r One-byte register’

'Symbols not shown in the examples above are used in the
formats in Chapter 10.

2Subscript numbers that appear with these letters designate
the operand number.

Note: A field left blank in the instruction format
diagram may contain random values that are not
important to the execution of the instruction; the same
field is represented in the instruction example with the
placeholder O.

<9

9

C

ADDRESS GENERATION

The storage address can be contained in a register
designated by the B (base register) field in the
instruction or calculated from a B and a D
(displacement) field in the instruction.

The base address is a 48-bit number contained in a
base register specified by the 4-bit B field of the
instruction. A base address can be used as a means of
independently addressing each program and data area.
In array-type calculations, it can specify the location of
an array. In record processing, it can identify the record.

In forming the storage address, the 16-bit offset (page
and byte identifiers) portion of the base register and the
12-bit displacement field of the instruction are added as
unsigned binary integers. The sum is always 16 bits
long and is logically appended on the right to the
high-order 32 bits of the base address. When an
overflow occurs, either the high-order 32 bits of the
storage address are incremented by one or an effective
address overflow exception occurs. Which of these
events occurs depends upon the particular instruction
involved, the model and the engineering level of the
horizontal microcode, and the engineering level of the
hardware. If, in adding 1 to the high-order 32 bits of
the storage address, a carry occurs from bit 24, an
effective address overflow exception occurs.

A zero on the R (2-byte register), B (base register), or D
(displacement) fields has no special significance except
to denote the use of register zero or a zero
displacement.

An instruction can designate the same base register
both for address computation and location of an
operand. Address computation is completed prior to the
execution of the operation.

Unless otherwise indicated in the individual instruction
definition, the computed operand address designates an
operand in storage. When a storage operand is
designated, the address points to the leftmost byte of
the operand.

To find the effective address of a storage operand, first
use the B field of the instruction to locate the base
register; then add the contents of the base register and
the contents of the D field of the instruction (see Figure
2-1) as follows:

Effective Address = Contents of Base Register +
12-bit displacement

EXECUTION

The IAR (instruction address register) contains a 2-byte
offset into the segment identified by the SID (segment
identifier) contained in register S(0). In program
execution, the next instruction is fetched from the
location designated by the IAR. The instruction address
is then increased by the number of bytes in the
instruction in order to address the next instruction in
sequence. The instruction is then executed, and the
same steps are repeated using the new value of the
instruction address.

The normal sequential execution of instructions can be
changed by:

« The use of branching instructions to perform
subroutine linkage, decision making, and loop control.

« Conditions arising during program execution that
cause linkage to an exception-handling routine.

« Conditions arising external to the currently executing
program. Such conditions can cause interruption of
processing, the storing of information describing the
current program, and the invocation of another
program that is part of the task whose condition
caused the interruption.

Conceptually, the processor processes one instruction at
a time, executes instructions sequentially, executes the
instruction specified by the branch address following the
successful execution of the branch, and allows interrupts
to take place between the execution of instructions.
Physical storage width and overlap of instruction
execution with storage accessing may cause actual
processing to differ from this concept. Each operation is
performed sequentially with the next instruction being
prefetched before the current operation is completed.
Modification of succeeding instructions while using
prefetch will produce unpredictable results.

It can be assumed that the execution of each instruction
occurs as an indivisible event. However, in actual
operation, the execution of an instruction can consist of
a series of discrete steps. Depending on the instruction,
operands can be fetched and stored in a piecemeal
fashion, and some delay can occur between fetching
and storing a result.

Programming Note: Because of a hardware restriction

the last fullword of a segment on Models 3, 4, and 5
should not contain an instruction.

Internal Microprogramming Structure 2-17

BRANCHING

A branch instruction (ALHBL, BC, BCN, BCNX, BCT,
BU, TMBIBO, and TMBIBZ) is used for branching within
the instruction stream that contains the branch
instruction. The halfword displacement in the instruction
(or pointed to by the instruction) is added to the
contents of register R(0), and the result replaces the IAR
(instruction address register).

The address in registers S(0) and R(O) must always point
to the start of the instruction stream because all
branching is done relative to this address.

The Branch Internal (BI) instruction is used for branching
within the current segment group.

A jump instruction (JBN, JBF, and JC) works relative to
the IAR. A 1-byte displacement is added to the 2~byte
IAR to form the address of the next instruction.

A linkage instruction (BAL, BR, BALL, BRL, and CALLI)
provides a mechanism to do a branch and link and a
return. BAL (Branch and Link) and BR (Branch Register)
instructions provide linkage to instructions in the same
segment. BALL (Branch and Link Long) and BRL
(Branch Register Long) provide linkage to instructions in
a different segment.

Programming Note: The extended mnemonics used by
the IMP instruction assembler for the BC, BU, and JC
instructions are listed with their respective instruction
descriptions.

CONDITION CODES

Facilities for decision making are provided by the branch
instructions. A 4-bit condition code reflects the results
of most of the arithmetic, logical, and other manipulation
and control instructions. Each of these operations can
set (and reset) bits of the condition code and the
branching instructions can specify (by masking) any
selection of the bits as the criterion for branching. (See
Chapter 10, Instruction Descriptions for the specific
condition code settings.)

SUPERVISOR LINKAGE

The normal sequential execution of instructions can be
changed by conditions arising during program execution.
The IMP SVL (supervisor linkage) provides a trapping
mechanism to handle these interruptions.

The SVL instructions have the following format:

233:;3“0" Index | B1 Dy By D,
0 { 8 16 20 Bits 32 36 48
[
: Explicit
| L
I - -~
| T 7
|
|
[
|

Registers| Flags Address

Implicit

For explicit SVLs, the second byte of the SVL instruction
is used as an index into a main storage area called an
SVL table. For implicit SVLs, the operation code acts as
an index into the SVL table.

Each entry in the SVL table contains the number of
registers to be stored, the address of the procedure to
which control is passed, and other descriptive and '
control information.

Whenever the processor passes control via an SVL it
automatically saves certain designated machine facilities
such as the IAR (instruction address register), exception
code, and condition code values. In addition, it
optionally saves base registers. These facilities are
saved in a special list element known as the CRE
{call/return element).

See Chapter 6 for a description of the SVL facilities.

J

PROGRAM EXCEPTIONS AND INSTRUCTION
LENGTH COUNT SETTINGS

Exceptions that result from the execution of instructions
are called program exceptions. The SVL (supervisor
linkage) mechanism is used to indicate exceptions. The
first entry of the SVL table is the implicit index value
associated with program exceptions.

For a more detailed explanation of exceptions and

exception codes, see Call/Return Element and Exceptions
in Chapter 6.

Concurrent Exceptions and Causes

Exception Causes Instruction Is
Soft address compare Main store address compare when in address compare mode. Completed (Note 1)
Task interval timer Task interval timer expired during a timed task. Nullified

Monitored ACQ (available |An exception SVL detected a monitored ACQ (header byte 1 # Note 2
call/return element queue) | hex 00) during an implicit CRE receive.

Monitored CRE A monitored CRE (byte 1 # hex 00) was detected, due to an Note 2
(call /return element) implicit receive by an exception SVL.

Monitored TDE (task No available CREs exist for an implicit receive by an exception Note 2
dispatching element) SVL, and the current TDE is monitored (byte 1 # hex 00).

Note 1: A soft address compare exception during an instruction stream fetch nullifies the instruction.
Note 2: The instruction termination state is determined by the concurrent program exception condition.

Internal Microprogramming Structure 2-19

Program Exceptions and Causes

Hex Instruction
Code |Exceptions Causes Is
00 No Exception
02 Invalid Descriptor Invalid field encountered during operation on IMP object. Terminated
04 Busy 1. SRQ (send/receive queue) busy. Nullified
2. Hold/Free Chain busy. Nullified
06 Reserved
08 Allocate Page Frame |OU task requests page frame to be allocated and cleared in main Nullified
storage.
OA Monitored Descriptor | SRQ (send/receive queue) access attempted when its byte 1 is Suspended
SRQ nonzero.
oC Monitored Descriptor | SRM (send/receive message) access attempted when its byte 1 is Suspended
SRM nonzero.
OE Monitored Descriptor | TDE (task dispatching element) access attempted when its byte 1 is |Suspended
TDE nonzero.
10 Send/Receive Counter | A carry from the high-order position of the count field occurred Terminated
Overflow during a send operation.
12 Address Translation Unable to translate a virtual to a real address by using VAT. For Nullified
GHRF, GHR, FHRF, and FHR instructions, the instruction is
completed and condition code 3 is set if exception occurs on hold
record chain.
14 Programming Event An instruction is executed in a defined address range.
1. If not masked (bit 8 of TDE exception mask field is set) Nullified
2. If masked (bit 8 of TDE exception mask field is reset) Completed
16 Execute Subject of EX instruction is another EX instruction Suppressed
18 Specification 1. Improper alignment Suppressed
(see note) 2. Other conditions (see Specification Exception in Chapter 6). Suppressed
1A Addressing 1. Invalid virtual = real instruction address. Suppressed
2. Invalid virtual = real operand address. Terminated
1C Effective Address 1. Offset overflow during effective address calculation. Suppressed
Overflow 2. Storage operand crossed segment boundary. Suppressed
1E Data 1. Invalid decimal sign code. Suppressed
2. Invalid decimal digit code. Terminated
3. Insufficient left zeros in multiplicand (MP). Terminated
Note: All instructions are tested for this exception.

2-20

Program Exceptions and Causes (continued)

positions in the source field.

Hex Instruction
Code |Exceptions Causes Is
20 Binary Overflow 1. Carry from sign bit and carry from high-order numeric bit Completed
disagree.
2. Result exceeds 31 bits (CVPB). Completed
3. Significant bits are lost (SLA). Completed
22 Binary Divide Quotient exceeds the size of the result field or an attempt to divide Suppressed
by zero.
24 Decimal Overflow Destination field is too small for the resulit. Completed
26 Decimal Zero Divide |An attempt to divide by zero. Suppressed
28 Floating-Point Resultant exponent is too large. Completed
Overflow
2A Floating-Point Resultant exponent is too small. Completed
Underflow
2C Floating-Point Inexact | Rounded result is not exact. Completed
Result
2E Floating-Point Zero An attempt to divide by a number with a zero fraction. Suppressed
Divide if not
masked;
Completed if
masked
30 Operation (see note) |Invalid operation code Suppressed
32 Stack 1. Stack entry to be removed during unstack has flag bit 15 (first | Suppressed
entry in segment) set.
2. Stack operation adds entry that extends beyond stack limit Suppressed
value.
34 Verify A verify exception occurs when an LVT, AHSPOI, AHSPO, or AFSPO |Suppressed
instruction detects an invalid operand.
36 Chain Conflict 1. Conflict on an object hold operation. Nullified
2. Object free operation attempted to free a monitored hold. Nullified
38 End-of-Chain 1. Empty chain on free operation. Nullified
2. End of available chain on hold operation. Nullified
3. No matching hold on free operation. Nullified
3A Edit Digit Count 1. End-of-source field was reached and there are more control Terminated
characters corresponding to digits in edit-mask field than in
source field.
2. End-of-edit-mask field was reached and there are more digit | Terminated

Note: All instructions are tested for this exception.

Internal Microprogramming Structure

2-21

Program Exceptions and Causes (continued)

Hex Instruction
Code |Exceptions Causes Is
3C Length Conformance |1. More character positions in result than in edit-mask field Terminated
(EDPD).
2. More character positions in edit-mask field than in result field |Terminated
(EDPD).
3. Incorrect number of hex B2's following a hex B1 (floating Terminated
string) field in the edit mask (EDPD).
4. The converted form of the source record is larger than the Terminated
result record length (CVTMC).
3E Edit Mask Syntax 1. Invalid control characters in edit-mask field. Terminated
2. End-of-string character field termination missing. Terminated
40 Invalid Segment 1. Leftmost 3 bytes of virtual address are invalid. Suppressed
Group Address 2, Address below lower boundary address. Suppressed
3. Overflow generated in calculation of 3-byte address. Suppressed
42 Floating-Point Invalid | An operand or operation is invalid. Suppressed if
Operand not masked;
Completed if
masked
44 Reserved
46 Second Chain Search |A Grand Hold or Free Hold instruction has determined that a Nullified
secondary chain must be searched.
47 Reserved
48 Conversion 1. Data length in string control byte is zero for CVTMC or CVTSC |Terminated
instruction.
2. The end of source is encountered before the end of a Terminated
compression string in CVTSC.
3. A compression string describes a character string which would | Terminated
cross a record boundary in the receiver. CVTSC.
4A Invalid Floating-Point | When overflow, infinity, or not-a-number precludes accurate Suppressed
Conversion representation in binary format.
4C-7F | Reserved
80 Invalid Segment 1. Operand addresses are not within the same segment group. Suppressed
2. Segment or segment group specified by first operand does not |Suppressed
exist.

2-22

Program Exceptions and Causes (continued)

Hex Instruction
Code |Exceptions Causes Is
81 Invalid Page Segment group size was less than 16 megabytes and a reference Suppressed
was made to an address that would have been valid if segment had
been larger (PPR).
82 Page Read Error Permanent |/0 error while reading page from auxiliary storage. Terminated
83 Invalid Pool State Too many pages pinned to perform bring or clear with pin (PPR). Suppressed
84 Invalid Pin Request 1. Attempted pin was 256th pin for same page. Suspended
2. Unpin attempted on unpinned page.
85 Invalid Write Request | Write requested to a pinned page. Suppressed
86- Bad Main Storage Changed data in main storage could not be accessed due to a Terminated
8F Page Frame memory failure.

Internal Microprogramming Structure 2-23

The cause of the exception is identified in the exception

code field of a CRE (call/return element). See Chapter 6

for the bit assignment of this field.

The ILC (instruction length count) is a 3-bit code that
provides the length of the last instruction executed. The
ILC permits identifying the instruction causing the
exception when the IAR (instruction address register)
designates the next sequential instruction. The value of
the ILC indicates the number of bytes that the IAR has
been incremented. The status field of a CRE or a TDE
(task dispatching element) contains the ILC after an
exception has occurred.

Program exceptions are treated according to the cause.
The instruction being executed at the time of the
exception is handled in one of the following ways:

« Completed—the instruction is allowed to continue to
completion with predictable results and the IAR is
advanced to the next instruction address. The ILC
indicates the length of the completed instruction.

« Terminated—the instruction is terminated at the point
of the exception with unpredictable results and the
IAR is advanced to the next instruction address. The
ILC indicates the length of the terminated instruction.

2-24

Suppressed—the instruction is not allowed to continue
and the IAR is advanced to the next instruction
address. The result fields are not changed. The ILC
indicates the length of the suppressed instruction.

Nullified—the instruction is stopped with the IAR not
advanced to the next instruction address. The ILC is
set to zero.

Suspended—the instruction is stopped at the point of
the exception and checkpoint data is stored in a
reserved area. So that the operation can be resumed
at the point of the exception, the IAR is not advanced
to the next instruction address. The ILC is set to
zero.

35

Permanent Storage Assignments

CONTROL ADDRESS TABLE

To execute the IMP tasks, the location of certain control
information must be known to the processor. This
information includes all of the system-known queue
headers, the addresses of the system exception handling
routines, and the storage management parameters
including the storage page tables. This control
information is located in the segment at hex 0000 0100,
beginning at offset hex 0000.

ASSIGNED VIRTUAL STORAGE LOCATIONS

The control address table entries are shown in Figure
2-2. Those entries that have not already been described
are covered in subsequent chapters.

The addresses are right aligned on doubleword
boundaries for ease of indexing by the processor. The
objects pointed to by the addresses in the table (except
for the Function Routine Address Table or the first
available hold record, neither of which references
resident data) must be resident in main storage and
properly aligned; otherwise a machine check occurs. An
improper alignment of that object causes a program
specification exception.

The leftmost 2 bytes of each table entry are reserved,
and except where specified, must be set to zero.

Internal Microprogramming Structure 2-25

Byte |[Use Virtual =

(Hex) | Code' |Real Address Of

0 d Yes Main store defective frame table (If an alternate IMPL is performed, the length of the
overlay area [in bytes] is placed in the high-order [leftmost] 2 bytes for use by
Service Monitor 1; otherwise, the high-order 2 bytes are unused.)

8 a Yes HMC overlay area (If an alternate IMPL 1s performed, the length of the overlay area
(in bytes) is placed in the high-order (leftmost) 2 bytes for use by Service Monitor 1;
otherwise, the high-order 2 bytes are unused.)

10 a Yes Hash, 1able address and the number of entries-1 in the leftmost 2 bytes?

18 a Yes Primary directory address and the number of entries-1 in the leftmost 2 bytes

20 a No I/0 event stack (must be pinned and V=V)

28 a/b® |Yes I/0 register table

30 Reserved

38 b Yes Machine check log buffer

40 b Yes Machine check handler

48 c Yes Current TDE (task dispatching element) or previous TDE when the processor is in the
wait state

50 a No Prime TDQ (task dispatching queue)

58 Reserved

60 b No SVL (supervisory linkage) table

68 b No ACQ (available CRE queue)

70 b No Repetitive interval timer doubleword

78 b No SRC (send/receive counter) for interval timer

80 b No SRC for clock comparator

88 a Yes Hash table for hold/free instructions

90 c No First available hold record for hold/free instructions

98 b No Task switch trace table (must be pinned if V=V)

AO b No FRAT (function routine address table)

A8 b No Instruction address sampler control block

'Use codes:

a. Loaded into the processor at IPL (initial program load) or IMPL (initial microprocessor program load) time.
b. Referenced by the processor whenever an address is needed by HMC (horizontal microcode).

c. Altered by the processor as required.

d. Loaded and used at IMPL time.

2pProgramming note: The number of entries in the hash table must be a power of two.

3The use code is a for Models A and C and b for all other models.

Figure 2-2. Assigned Virtual Storage Locations

The continuation of the control address table (MCA,
machine communications area) is described in the
Vertical Microcode Data Areas manual.

2-26

Chapter 3. Horizontal Microcode Support Functions

Horizontal Microcode Procedures

An HMC (horizontal microcode) procedure has many of
the characteristics of an IMP (internal
microprogramming) procedure in that it uses the IMP
facilities and operates on operands in storage. It is
different in that the horizontal microcode instructions
execute directly on the processor hardware and are
addressed by the CSAR (control store address register)
rather than the IAR (instruction address register).

HMC procedures, the primary communications device in
the OU (operational unit) tasks (see Chapter 7), perform
built-in processor functions that support the IMP. These
procedures provide a highly developed yet controlled
operation to enhance the performance of the processor.
HMC procedure functions are distinguished in this
manual from the processor built-in functions as follows:

« HMC procedures can incur page faults and other IMP
exceptions; processor built-in functions cannot incur
page faults and other IMP exceptions.

« HMC procedures compete with IMP procedures and
other HMC procedures for system resources via the
task dispatching structure; processor built-in
functions execute immediately (on the next IMP
instruction boundary or interruptible point if the
instruction is interruptible) when invoked.

An HMC procedure can use the same processor built-in
functions that are invoked by an IMP procedure via an
IMP instruction. An example of this could be a particular
queueing (causing to wait) function that is invoked via
an IMP instruction as well as an HMC procedure. When
done via an IMP instruction, this is referred to as an
explicit invocation. When done via an HMC procedure, it
is referred to as an implicit invocation. While executing
an HMC built-in procedure or function, no IMP
instructions are executed. That function is accomplished
below the IMP interface.

The IMP processor can also remain idle while waiting
for work; in this condition, no dispatchable task exists.

Transfer of control from an HMC procedure via the SVL

(supervisor linkage) mechanism is performed only for
exceptions.

Horizontal Microcode Support Functions 3-1

Horizontal Microcode Built-In Functions

A built-in function consists of processor operations that
have the following attributes:

« If page faults or other exceptions are detected during
execution, a machine check occurs. (See Chapter 9
for a description of machine check handling.)

« Built-in functions are not associated with any task.

« Built-in functions are not implemented by IMP
procedures.

Built-in functions include:
« |/0 event handler (see Chapter 4 for a description)
« Task dispatcher (see Chapter 5 for a description)

« Clock comparator and interval timer event signaling
(see Chapter 9 for a description)

« Exception handler

« Machine check handler

Built-in functions can be invoked by:
« IMP instructions

« HMC procedures

« Other built-in functions

« Asynchronous events

TASK DISPATCHING

The execution of procedures by the processor is
controlled by the tasking structure. Each IMP task is
represented by an IMP ebject called a TDE (task
dispatching element). A task then may be thought of as
a unit of executable work and is composed of one or
more procedures that are synchronously executed to
perform that unit of work.

Since any task may have to wait periodically (for
example, due to 1/0 requests or page faults), provisions
are made for multiple tasks to compete for the
resources of the processor, each task being represented
by a TDE.

3-2

The TDEs representing dispatchable tasks (those tasks
not waiting for the completion of some operation) are
enqueued in priority sequence on a chained list known
as the TDAQ (task dispatching queue), which is also an
IMP object.

To initiate processing, a built-in function known as the
task dispatcher is invoked. The task dispatcher accesses
the TDQ and selects the first TDE on the list as the task
to begin executing.

For other than the current task, the TDE contains the
current state of a task (IAR, condition code, base
registers, and so forth). Therefore, the dispatcher
accesses the TDE from which the processor is loaded to
begin executing the current procedure of that task. This
task is then referred to as the current or active task.

Conversely, the task dispatcher may place the active
task in the inactive state by reversing the previous
process. That is, the state of an active task is stored in
its TDE. The loading and storing of the state of an IMP
task is illustrated in the following figure:

TDQ ®
VMC Processor
Load
Y >
TDE o N (
Ctore
Y
TDE

Chapter 4. The Processor

The processor is the control center of the machine. It
contains the sequencing and processing controls for
instruction execution, tasking and exception handling,
timing facilities, initial program loading, and other
machine related functions.

The processor can process binary integers (in fixed or
variable length), floating-point numbers, decimal
integers of variable length, and logical information in
fixed or variable lengths.

The processor can reference and change virtual
addresses (see Operands in Chapter 2) in the 16 base
registers. These registers are designated by a 4-bit B
(base register) field in an instruction. Some instructions
provide for addressing multiple base registers by having
more than one B field.

The Processor 4-1

Processor States

When machine power is on, the processor is in either
the operational state or the stopped state.

OPERATIONAL STATE

The operational state is the normal execution state of
the processor. In this state, instruction execution can
proceed, built-in functions are enabled, timers are
operational, and the 1/0 channel facilities are active.

Within the operational state, the processor may be
either in the run state or in the wait state.

When the processor is in the run state, it is executing
either an IMP (internal microprogramming) procedure, an
HMC (horizontal microcode) procedure, or a built-in
function. Conversely, when the processor is in the wait
state, there are no tasks that are dispatchable.

An IMP task is dispatchable only if its TDE (task
dispatching element) is enqueued to the TDQ (task
dispatching queue).

Note: A task is not dispatchable if its TDE is enqueued
to the wait list of an SRQ (send/receive queue) or SRC
(send/receive counter). In this case, the TDE is said to
be inactive and waiting.

The processor is placed in the wait state by the task
dispatcher as the result of a task switch when the TDQ
contains no TDEs. In this state, the processor is waiting
for additional work.

Note: The processor is removed from the wait state
either as the result of a built-in function issuing an
implicit send operation that causes a TDE to be moved
to the TDQ or as the result of a machine check.

4-2

STOPPED STATE

The processor can be put into three different stopped
states:

« Processor stop
« Microprocessor stop
« Check stop

The processor can be put into the processor stopped
state through the machine console. In the processor
stopped state, no IMP instructions are executed and the
interval timers are not updated. The time-of-day clock
and the clock comparator are still operational. Events
from 1/0, timers, and SCA (system control adapter) are
still handled.

The processor can be put into the microprocessor
stopped state through the machine console. In this
state, no HMC or IMP instructions are executed. The
interval timers, time-of-day clock, and clock comparator
are not updated, and exceptions from |/0 and timers
are not handled.

The processor can be put into the check stopped state
via one of the following mechanisms:

« The built-in HMC machine-check function determines
that a terminating machine check has occurred.

« The processor hardware encounters a terminating
machine check.

« A VMC procedure issues a Terminate Immediately
instruction while in machine~-check mode.

The check-stopped state is a special form of the
microprocessor stopped state that normally requires an
IMPL (initial microprogram load) operation in order to
restart the processor (see Check Stop in Chapter 9 for
further information).

3

Input/Output and Asynchronous Events

In IMP, all I/0 operations and communications with
asynchronous processing run concurrently with task
execution, and are handled as intertask exchanges of
messages on queues. |/0 devices, external processors,
and asynchronous operations appear to have
characteristics similar to an IMP task. Rather than
interrupting IMP processing to signal an event or
condition, 1/0 devices and asynchronous events are
handled by the 1/0 event handler and the OU
(operational unit) task.

QUEUE INTERFACE

All 1/0 operations are handled by a queuing structure.
An IMP task, in control of an |/0O operation, sends a
command to an OU command queue used as input to
an OU task. After command execution, the OU task
sends the command response to the IMP task. The IMP
task (for example, IOM) completes the 1/0 processing
cycle when it accepts the response.

1/0 EVENT HANDLER, OPERATIONAL UNIT TASK,
AND 1/0 DEVICES

The 1/0 event handler and the OU task connect tasks
executing in the processor with |/0 devices. The OU
task directs the flow of information between main
storage and 1/0 devices, relieves the processor of
communicating directly with the devices, and lets IMP
task execution proceed concurrently with 1/0
operations. 1/0 devices include card readers and
punches, magnetic tape units, disk storage,
printer-keyboard devices, printers, and teleprocessing
equipment.

1/0 device operation can be handled by a control unit.
The control unit can be an integral part of the i/0O
device attachment or an external unit. The control unit
provides the logic and buffering necessary to operate its
I/0O device. From a programming view, control unit
functions merge with 1/0 unit functions. Other 1/0
device operations are controlled by hardware adapters.
The processor and storage use the channel as an
interface to |/O devices and their control units. The
channel directs the flow of data between I/O devices
and storage (for details of the channel interface, see
IMP Channel Objects in Chapter 7).

SYSTEM CONSOLE

The system console is used to operate the machine.
The console consists of an operator/service panel, a
display, and a keyboard.

The operator/service panel indicates system status and
provides the operator with controls to intervene in
normal programmed operations. The display and
keyboard allow the operator to communicate with
supervisory and problem programs. (See System Control
in Chapter 9 for a list of the system console functions.)

The Processor 4-3

This chapter describes the structures and operations of
the tasking functions used by the processor.

IMP (internal microprogramming) tasking is the process
of controlling the execution of IMP tasks. An IMP task
is characterized by the synchronous execution of one or
more IMP procedures. An IMP procedure is composed
of an IMP instruction stream, the data used by the
instruction stream, and the parameters and arguments
used to pass information between IMP procedures.

PROCEDURE EXECUTION

At any time, the status of the processor is one of the
following:

« Executing an IMP instruction in an IMP procedure

« Executing an HMC (horizontal microcode) built-in
function

« Executing an HMC instruction in an HMC procedure
« Idle (waiting for additional work)

An IMP procedure is executed in the environment of an
IMP task. The primary control structure of an IMP task
is the TDE (task dispatching element). While executing
an IMP procedure, IMP instructions are fetched
sequentially by the processor from the storage location
addressed by SID (segment identifier) register O plus the
2-byte IAR (instruction address register). As each
instruction is fetched, the IAR is incremented by the
number of bytes in that instruction so as to address the
next instruction. The current instruction is then
executed, and the same steps are repeated, using the
new IAR value. Sequential execution of instructions
within the current procedure can be changed by
branching within the procedure or by causing a transfer
of control to another procedure. If control is transferred
to a new procedure, the new procedure can execute
under the same task (as with a supervisor linkage
operation) or can execute under a different task (as with
a task switching operation). In addition, control can be
transferred to a new procedure in any of the following
ways:

Chapter 5. Tasking

« The current IMP procedure specifies an implicit or
explicit SVL (supervisor linkage) instruction (see
Supervisor Linkage in Chapter 6).

« A program exception occurs causing a built-in
processor function (see Horizontal Microcode Built-In
Functions in Chapter 3) to pass control to the IMP
exception handling procedure. The processor passes
control to the IMP exception handling procedure via a
special invocation of the SVL function termed the
exception SVL function (see Supervisor Linkage in
Chapter 6).

« The current IMP procedure issues a send or receive
instruction and a task switch occurs.

« An 1/0 or timer event occurs causing a task switch.
« A machine check occurs causing control to be passed
to the IMP machine check handler (see Machine

Check Handling in Chapter 9).

No IMP instructions are executed during the execution
of an HMC procedure or built-in function.

The processor can also be in an idle condition waiting
for work. In this condition, no dispatchable task exists.

Tasking 5-1

BASE REGISTER ASSIGNMENTS

There are 16 base registers that can contain addresses
during IMP procedure execution (see Register
Descriptions in Chapter 2).

Base register O points to the start of the instruction
stream. All instruction addressing and branching within
a procedure is relative to B(0). Base registers hex 1, 2,
and E, and byte register hex E are designated to receive
parameters during explicit or implicit SVLs (see
Supervisor Linkage Control in Chapter 6). Base register 3
is used by the Function Call Double instruction to point
to the stack. Byte register hex F is used by the
Translate and Test instruction, the Move Packed Shifted
instruction, and the Move Packed Shifted Zero
instruction. Byte registers hex A and B and base
registers hex E and F are used by the Edit Pack Decimal
instruction. Halfword registers hex E and F are used by
the Convert Character to SNA, Convert Characters to
MULTI-LEAVING Remote Job Entry, Convert
MULTI-LEAVING Remote Job Entry to Character and
Convert SNA to Character instructions. Halfword
register hex E is used by the Trim instruction. However,
these uses do not preclude the use of these registers for
other operations.

The remaining base registers have no specific
assignments and can be used to address various spaces
(up to 64 K-bytes each) in virtual storage.

1/0 INTERRUPTIBILITY

Pending interrupts are normally granted following
instruction execution. Two additional special interrupt
tests ensure minimal interruption delay.

The first special interrupt test is at the end of a unit of
operation (the amount of CPU processing that occurs
between interrupt points). Uninterruptible IMP
instructions normally use one unit of operation.
Interruptible IMP instructions, built-in functions, and
HMC procedures may use multiple units of operation.
The microcode handles interruptible IMP instructions
and built-in functions by checkpointing the function to
the beginning of the next unit of operation and then
granting the interrupt. When control is returned to the
procedure containing the interrupted function, execution
is resumed at the checkpointed unit of operation.

The checkpoint facility varies with the IMP instruction or
built-in function (for example, MVCL or GHRF). The
interrupt checkpoint facilities are described as a part of
the instruction specification.

5-2

The second special interrupt test is required by
instructions that take an unusually long time to execute.
This class of instructions has the following
characteristics:

+ The instruction or built-in function is not designed as
being interruptible.

« The worst-case path exceeds 450 microseconds,
including overlay time and lookaside buffer-miss
time.

The special interrupt tests are inserted into HMC to
ensure a response time of 450 microseconds. If an 1/0
interrupt is pending when a special test is performed,
one of two procedures is used:

+ If the result is computed internally in an HMC work
area and is not stored back until the computation has
been completed, the partially computed result is
discarded, the IAR (instruction address register) is
nullified, and the interrupt is granted. Execution is
resumed at the beginning of the instruction or built-in
function that was interrupted. The IMP interface
interprets the partially completed computation as if it
were never performed by the CPU.

Note: Interrupt tests are performed before IMP
facilities (result field and condition code) have been
modified.

« |f the result is stored back as it is being computed,
HMC checkpoints the instruction or built-in function
internally, processes the 1/0 interrupt (any resultant
task switch does not occur until the instruction or
built-in furiction is completed), and resumes
processing the instruction at the point of interrupt
detection.

This type of interrupt processing can occur during the
execution of a TR or TRR instruction, or during the
execution of built-in functions that perform CRE
(call/return element) chain searches or move-TDEs (task
dispatching element [from one queue to another]), or
during IMP queuing instructions. The queuing (built-in
function or IMP instruction) checkpoint mechanism is
described under Send/Receive Queue Busy Status later in
this chapter.

9

INTERNAL MICROPROGRAM TASKING

IMP tasking allows task switching from a procedure in a
given task to a procedure in a different task. All task
switches are caused by a built-in processor function
known as the task dispatcher.

The following paragraphs deal with the tasking structure
of the IMP, describe the objects that make up the
tasking structure, and describe how the tasking structure
is used.

Tasking

5-3

TASKING STRUCTURE
Task Dispatching Queue

One or more TDQs (task dispatching queues) exist in the
system. The prime TDQ is used by the task dispatcher
to allocate processor time to the active tasks in the
system. The elements chained to the prime TDQ are
those TDEs (task dispatching elements) associated with
dispatchable tasks (for example, tasks not waiting for a
message from an SRQ [send/receive queue]). TDEs
for the dispatchable tasks are ordered on the prime TDQ
in priority sequence according to the priority field in the
TDE.

The format of a TDQ is as follows:

Descriptor First TDE Address
0 Bytes 2
Bytes
(Hex) Bits Description
0-1 Descriptor:

0-2 Identifies this IMP object as a TDQ
(= 000).

3 0 The TDQ is empty.
1 This TDQ has one or more TDEs.
4-15 Reserved.

2-7 First TDE Address: First TDE if any,
associated with this TDQ.

5-4

8

When accessed as the result of a send or receive type
instruction, a TDQ must be resident in storage, fullword
aligned, and must not cross a page boundary; otherwise
a machine check will occur when the TDQ is accessed.
However, if any of the above conditions are not met for
EQTDE (Enqueue Task Dispatching Element) or DQTDE
(Dequeue Task Dispatching Element) instructions, a
specification, addressing, or address translation
exception occurs.

Task Dispatching Element

A TDE (task dispatching element) is an IMP object used
to identify a task and the attributes (including a priority)
associated with that task. It also contains fields used to
store or load the current state of the task at the time of
a task switch. The TDE for a particular task can appear
as an element on a TDQ (task dispatching queue) or can
be enqueued to an SRQ (send/receive queue) or an
SRC (send/receive counter) wait list. If a task is eligible
for instruction execution, the associated TDE appears on
the prime TDQ.

The format of the TDE is as follows:

Descriptor Next TDE Address Priority
0 Bytes 2 8
Control . Exception
F
Mods irst CRE Address Mask
C Bytes E 14
Current Queue Address Exception
Occurrence
16 Bytes 1C
TDQ Address Time Quantum
1E Bytes 24
Time Quantum Status Address Register Base.
Registers
29 Bytes 2C 30 32
Used by VMC TDE Identifier Hold Count Exception
i Code
92 Bytes 94 96 98
Computational Not
PEM Start Address Attributes Used
9A Bytes AO A1
PEM Stop Address Used by VMC
A2 Bytes A8
Reserved for VMC Checkpoint Area Reserved for HMC
BO Bytes Cco C6
Used by VMC
DO Bytes FF

Tasking

5-5

Bytes
(Hex)

0-1

5-6

Bits

0-2

Description
Descriptor:

Identifies this IMP object as a TDE
(= 001).

Reserved.
0 This is the last TDE on the chain.

1 This is not the last TDE on the
chain.

0 This TDE is free to be enqueued to
a queue header.

1 This TDE is already enqueued to a
queue header.

On a Dequeue TDE instruction, this bit
is reset, indicating that this element is
no longer enqueued to any queue. On
an Enqueue TDE instruction, this bit is
checked first. If it is one, a
specification exception is raised. If it is
zero, the TDE is enqueued and this bit
is set to one.

0 This TDE was not removed from the
prime TDQ by a SENDMW
instruction.

1 This TDE was removed from the
prime TDQ by a SENDMW
instruction.

0 The address of the TDQ to which
the TDE will be moved when
dequeued from a wait list is
contained in bytes hex 1E-23 of the
TDE.

1 The TDE removed from a wait list
by a send operation is to be
enqueued on the prime TDQ.

Used by the processor to monitor
access of this TDE. If not hex 00, the
TDE is monitored for access
exceptions.

Bytes
(Hex)

2-7

Bits

0-31

Description

Next TDE Address: Address of the
next TDE. If this is the last TDE in the
chain, descriptor bit 4 = 0.

Priority:

Highest priority is zero. TDEs are
enqueued in priority sequence, last
within the same priority, when moved
to a TDQ by a send type operation or
Enqueue TDE instruction.

Control Mode:

Reserved.

0 Do not perform trace function.

1 Perform task trace function.

0 Any SVLM1 instruction executes as
a no-operation.

1 Any SVLM1 instruction executed in
this task defaults to an SVL1

instruction.

0 The CRE (call return element) list is
empty.

1 One or more CREs are chained to
this TDE.

0 Task not timed.
1 Timed task.

0 Not in PEM (program event monitor)
mode.

1 In PEM mode.

Bytes
(Hex)

C-D
(cont)

14-15

Bits

7

8-15

10
11
12
13
14
15

Bytes

Description (Hex)
0 Any SVLM instruction executes as a 16-1B
no-operation.
1 Any SVLM instruction executed in

this task defaults to an SVLO

instruction. 1C-1D
The maximum number of available
CREs to be left chained to the TDE by
the execution of an SVX instruction.
Whenever the number of available
CREs would exceed this number as a
result of an SVX instruction, one is
returned to the ACQ (available CRE
queue). At least one available CRE is
always left chained to the TDE by an
SVX instruction.
First CRE address: If no CREs are
associated with this TDE, bit 4 of byte
hex C = 0.
Exception Mask:
Bit off = masked, bit on = allowed.
Binary overflow.
Decimal overflow.
Reserved.
Monitored SRQ header.
Monitored SRM header.

1E-23

Monitored TDE header.
PEM (see Chapter 9).
Address compare (see Chapter 9).
Floating-point overflow.
Floating-point underflow.
Floating-point zero divide. 24-2B

Floating-point inexact result.
Floating-point invalid operand.

Reserved.

Bits Description
Current Queue Address: Address that
TDE is enqueued to. If TDE is not
enqueued to an SRC, SRQ, or TDQ,
descriptor bit 5 = 0.
Exception Occurrence:

0 Binary overflow.

1 Decimal overflow.

2-4 Reserved.

5 Monitored SRQ header.

6 Monitored SRM header.

7 Monitored TDE header.

8-9 Reserved.

10 Floating-point overflow.

11 Floating-point underflow.

12 Floating-point zero divide.

13 Floating-point inexact result.

14 Floating-point invalid operand.

15 Reserved.
TDQ Address: If descriptor bit 7 = 0,
these bytes contain the address of the
TDQ to which the TDE it to be
enqueued when removed from a wait
list by a send operation. If descriptor
bit 7 = 1, the address contained in
these bytes is ignored and the TDE is
enqueued to the prime TDQ.

0-41 Time Quantum: The time remaining in

this task (bit 41 = 1024 microseconds).

42-63 Reserved.

Tasking 5-7

Bytes
(Hex)

2C-2F

30-31

32-91

92-93

94-95

96-97

5-8

Bits

0

1

2-7
8-15
16-20
21-23
24-27
28-31

Description

Status:

Reserved.

0 IMP procedure.

1 HMC procedure.

Not used.

Reserved.

Zero.

ILC (instruction length count).

Zero.

Condition Code: When initializing the
condition code field in a new TDE, at
least one, but not all, of the bits must
be set to 1. Failure to do so may cause
branch instructions to work incorrectly.

Address Register:

IAR (instruction address register) if bit
1 of byte hex 2C = 0.

CSAR (control storage address register)
if bit 1 of byte hex 2C = 1.

Base Registers: Note that all 16 base
registers are always saved and restored
on a task switch. The registers occupy
6 bytes per register beginning with
byte hex 32.

Used by VMC.
TDE Identifier.

Hold Count: Object hold count for this
TDE.

Bytes
{Hex)

98-99

9A-9F

A0

A1l

A2-A7
A8-AF
BO-BF

C0-C5

CO0-C1

Bits

3-7

Description

Exception Code: Refer to bytes hex
74-75 of the CRE definition in
Chapter 6.

PEM Start Address.
Computational Attributes.
Reserved.

Rounding Mode.

00 Round toward positive infinity.
01 Round toward negative infinity.
10 Round toward zero.

11 Round to nearest.

Reserved.

Not used.

PEM Stop Address.

Used by VMC.

Reserved for VMC.

Checkpoint Area.

The hold/free functions use this area
to pass exception information.

Hold Hash Table Entry Offset:
Contains the offset when a second
chain search exception is encountered
during a Grant instruction, or when a

monitored exception is encountered
during a Free instruction.

C

Bytes

(Hex) Bits Description

C2-C3 Index or Pointer: Contains either

« An index to the hold record

preceding the hold record that is at
the head of the secondary chain
after a second chain search
exception for a Grant instruction,

« A pointer to the head of the
secondary chain for a second chain
search exception on a Free
instruction, or

« A pointer to the hold record (on the
primary chain) preceding the
monitored hold record on a
monitored exception.

C4-C5 Index: An index pointing to an
available hold record.

C6-CF Reserved for HMC.
DO-FF Used by VMC.

The TDE extends beyond byte hex CF. This portion,
which is not used by HMC, is described in the Vertical
Microcode Data Areas manual.

Task switching mode/task control mode (bytes hex
C-D) for bits 2, 3, 5, 6, and 7 is established by the
processor at task switch time when a task becomes
active. If the task control mode bits 2, 3, 5, 6, and 7
are changed in a TDE while its task is active, the new
mode does not become effective until the next time the
task becomes active as the result of a task switch.
However, the Dispatch TDQ instruction will test bit 6
and will appropriately enable or disable PEM mode for
an active task. The Dispatch TDQ instruction also tests
bit 1 for a task switch trace, tests control mode bits 3
and 7, and enables or disables the task-wide
SVL-monitored no-operation.

The computational attributes for a task are set when the
task executes its first floating-point instruction after
being dispatched. The floating-point inexact result
exception mask and the exception occurrence bits are
also set at this time. The attributes remain in effect
(even though bytes 15, 1D, or AD of the TDE may
change) until the task is dispatched once again. In order
to ensure that the computational attributes being used
match the computational attributes in the TDE, a
Dispatch TDQ instruction for the current TDQ should be
executed. The exception mask (bytes 14 and 15) is
tested each time a maskable exception is recognized to
determine if the exception should be taken.

The following exceptions are maskable:

Address compare (see Chapter 9)

« Binary overflow

« Decimal overflow

« Floating-point inexact result

« Floating-point invalid operand
« Floating-point overflow

« Floating-point underflow

« Floating-point zero divide

« Monitored SRQ header

« Monitored SRM header

« Monitored TDE header

. Program event monitor (see Chapter 9)

Tasking 5-9

The following exceptions can occur at the same time as
any other IMP exception:

« Monitored ACQ descriptor (SVL receive)
« Monitored CRE descriptor (SVL receive)
« Monitored TDE descriptor (SVL receive)
« Address compare

« Task interval timer

Bytes hex 14 and 15 (exception mask) are tested each
time a maskable exception is recognized. If the
exception is not masked, the occurrence is recorded in
the CRE (call/return element) and an SVL (supervisor
linkage) is taken. If the exception is masked, the
occurrence is recorded in the exception occurrence field
of the TDE and an SVL is not taken. See Chapter 6 for
further information in the handling of exceptions.

TDEs must be resident in storage, fullword aligned and
must not cross a page boundary; otherwise a machine
check occurs when the TDE is accessed as the result of
a send or receive type operation. When the TDE is
accessed as a result of an EQTDE or DQTDE instruction,
a specification, addressing, or address translation
exception occurs.

Send/Receive Queue

An SRQ (send/receive queue) is an IMP object used to
exchange intertask information and to synchronize the
flow of control between tasks. One task can
communicate with another task by issuing a send type
instruction to an SRQ or an SRC (send/receive counter).
Another task can then obtain the information from the
queue or counter by issuing a receive type instruction.

Task synchronization is provided by using send/receive
messages and an SRQ in the following manner. When a
procedure within the active task issues a Receive
Message instruction and the target SRQ either (1) has
no messages, or (2) has no message that satisfies the
search argument for the Receive Message instruction,
the task does not proceed. Instead, the task is placed in
the receive wait state by the processor by dequeuing its
TDE (task dispatching element) from the TDQ (task
dispatching queue) and enqueueing that TDE to the wait
list of the target SRQ. The task dispatcher is then
invoked to determine the next task to be activated.

A Send Message instruction is the counterpart to a
Receive Message instruction. If a message has been
enqueued by a Send Message instruction to an SRQ
and there are TDEs waiting the value of byte O bit 7 of
the SRQ determines the action taken. If bit 7 equals:

0 The TDEs are dequeued from the SRQ wait list
and enqueued in priority sequence on their
appropriate TDQ.

1 The first TDE is dequeued from the SRQ wait
list and enqueued in priority sequence on their
apprepriate TDQ.

The task dispatcher is then invoked if the task switch
control bit is zero (bit 15 of the SENDM instruction) and
a TDE was enqueued to the TDQ at a higher priority
than the current TDE. If these conditions are present, a
task switch occurs. This switch is referred to as a
preempt wait to the task issuing the send operation.

Send and receive type operations are executed explicitly
as instructions by IMP tasks as well as implicitly by
HMC functions.

5

C

The format of the SRQ header is as follows:

Descriptor First TDE Address Reserved | Key
Lth-1
0 Bytes 2 8
First Message Address Reserved
A Bytes 10 20
Bytes Bytes
(Hex) Bits Description (Hex) Bits Description
0-1 Descriptor: 0-1 7 0 All TDEs are moved to the
appropriate TDQ when a message is
0-2 Identifies this IMP object as an SRQ enqueued by a Send Message
(= 010). instruction to the SRQ.
3 0 The SRQ header contains no TDEs 1 The first TDE is moved to the
(task dispatching elements). appropriate TDQ when a message is
enqueued by a Send Message
1 One or more TDEs are enqueued to instruction to the SRQ.
the wait list.
8-15 Used by the processor to monitor
4 0 The SRQ contains no SRMs accesses to this object. If not hex 00,
(send/receive messages). the SRQ is monitored for access
exceptions.
1 One or more SRMs are enqueued to
the message list. 2-7 First TDE Address: If no TDEs are
waiting; descriptor bit 3 = 0.
5 0 An access is not in progress.
8 Reserved.
1 An access is in progress by a task
whose TDE address is indicated in 9 Key Length-1: Number of bytes of
the reserved field. An access message key, starting with byte 8 in
attempt by any other task causes a the SRM.
busy exception.
A-F First Message Address: If no SRMs
6 0 No monitored TDEs are enqueued to are enqueued, descriptor bit 4 = 0.
the wait list.
10-1F Reserved: Bytes hex 10-11 and hex

1 One or more monitored TDEs are
enqueued to the wait list.

Note: This bit is set/reset by the VMC and tested by

the HMC.

18-19 contain checkpoint status. Bytes
hex 12-17 contain the owner TDE
address if the queue is busy {(descriptor
bit 5 = 1). Bytes hex 1A-1F contain
the last message searched address if
interrupted during a message search.

Note: An SRQ header must be fullword aligned and not
cross a page boundary; otherwise a specification
exception occurs when the object is referenced.

Tasking 5-11

Send/Receive Message
The messages that are enqueued to the SRQ
(send/receive queue) take the form of an IMP object

called an SRM (send/receive message).

The format of an SRM header is as follows:

Descriptor Next Message Address Key Message
0 Bytes 2 8 k+1 n
Bytes Bytes
(Hex) Bits Description (Hex) Bits Description
0-1 Descriptor: 6 0 A SENDMW instruction has not been

issued.

0-2 Identifies this IMP object is an SRM (=
o11). A SENDMW instruction has been
issued.
3 Reserved.
When the OU task has finished
4 0 This is the last SRM on the chain. processing this SRM, the TDE specified
at byte 122 of the SRM is enqueued to
1 This is not the last SRM on the the TDQ indicated by this TDE. When
chain. the OU attempts to restore the TDE to
the TDQ, the TDE address field of the
5 0 SRM is free to be enqueued to a SRM must be contained in the same

queue header.

1 SRM is already enqueued to a
queue header.

This bit is set to zero by those
instructions that dequeue an SRM from
a queue header. Those instructions that
enqueue an SRM check this bit first. If
it is one, a specification exceptions
occurs. If it is zero, the SRM is
enqueued to the designated queue and
this bit is set to one.

page as byte O of the SRM or a
machine check occurs.

When a SENDMW instruction is being
executed, the SRM must contain the
address of a TDE at byte hex 7A. This
address must reside on the same page
as the SRM descriptor or a machine
check will occur.

Reserved.

Bytes

(Hex) Bits Description
0-1 8-15 Used by the processor to monitor
accesses of this object. If not hex 00,
the SRM is monitored for access

exceptions.

2-7 Next Message Address: If no
additional SRMs are enqueued,
descriptor bit 4 = 0.

8-k Key: Message key of the length
indicated in the SRQ, plus the message
text. The length of the key will
determine the location of the starting
point (k+1) of the message.

(k+1)-n Message: Text of message does not

have a set length.

Note: While the SRM message text may cross page
boundaries, the SRM descriptor, next SRM pointer, and
SRM message key must be in the same page and the
SRM descriptor must be fullword aligned or a
specification exception occurs when the SRM is
referenced.

The key field is not checked for a page crossing when
an enqueue-first or enqueue-last operation is
performed.

Send/Receive Counter

An SRC (send/receive counter) is an IMP object used in
much the same way as an SRQ (send/receive queue)
except that no messages are enqueued. Instead, a Send
Count instruction causes the count field in the SRC
header to be increased by 1 (see note).

A Receive Count instruction causes the count field value
to be decreased by the counter limit value (see note) if
the count field value equals or exceeds the count limit
value. The count field and limit values are treated as
16-bit unsigned numbers. If the count value does not
equal or exceed the limit value, the task is placed in
receive wait state by dequeuing its TDE (task
dispatching element) from the TDQ (task dispatching
queue) and enqueuing that TDE to the wait list of the
target SRC. The task dispatcher is then invoked to
determine the next task to be dispatched.

When a Send Count instruction is issued, the count is
incremented by 1; then a check is made to determine if
the count value has reached or exceeded the limit value.
If so, the associated SRC wait list is interrogated. If
there are TDEs waiting and byte O bit 7 equals:

0 The TDEs are dequeued from the SRC wait list
and enqueued in priority sequence to the TDQ
specified by byte hex 1E of the TDE.

1 The first TDE is dequeued from the SRC wait list
and enqueued in priority sequence to the TDQ
specified by byte hex 1E of the TDE.

The task dispatcher is then invoked if the task switch
control bit is zero (bit 15 of the SENDC instruction) and
a TDE was enqueued to the current TDQ at a higher
priority than the current TDE. This switch is referred to
as a preempt wait to the task issuing the send operation.

Note: The HMC handles the increasing and decreasing

count field value. See the Processing Unit
Theory-Maintenance manual.

Tasking 5-13

The format of an SRC is as follows:

Descriptor First TDE Address Count Limit
0 Bytes 2 8 A C
Bytes Enqueue/Dequeue Instructions
(Hex) Bits Description
Enqueue and Dequeue instructions are used to control
0-1 Descriptor: IMP objects composing the tasking structure. The

0-2 Identifies this IMP object as an SRC
(= 100).

3 0 No TDEs are enqueued to the wait
list.

1 One or more TDEs are enqueued to
the wait list.

4-6 Reserved.

7 O All TDEs are moved to the
appropriate TDQ when the limit
value has been reached or exceeded.

1 The first TDE is moved to the

appropriate TDQ when the limit
value has been reached or exceeded.

8-15 Reserved.

2-7 First TDE Address: If no TDEs are
waiting, then descriptor bit 3 = 0.

8-9 Count value.
A-B Limit value.
Note: An SRC must be fullword aligned and not cross a

page boundary; otherwise, a specification exception
occurs when the SRC is referenced.

enqueue instructions insert SRMs (send/receive
messages) on SRQs (send/receive queues) and insert
TDEs (task dispatching elements) on wait lists of SRQs
or SRCs (send/receive counters), or on TDQs (task
dispatching queues). Dequeue instructions remove
SRMs from SRQs and remove TDEs from the wait lists
of SRQs, SRCs, or TDQs. Unlike send/receive
instructions, enqueue/dequeue instructions neither
invoke the task dispatcher nor cause a task switch.

Send/Receive Queue Busy Status

Some of the send, receive, enqueue, and dequeue
instructions are interruptible. Figure 5-1 shows the
interruption causes for instructions that are interruptible,
can set busy status, and observe busy protocol. An
SRQ (send/receive queue) is set into busy status by the
processor whenever an instruction that accesses it is
interrupted before completion. Busy status occurs as
follows. When the processor detects that an SRQ
access instruction must be interrupted, the descriptor
busy bit (byte O, bit 5) is set, and the pin count for the
page containing the SRQ is incremented if the page is
V=V page (pin count is the value of a counter used to
indicate that a page is pinned [or held] in storage). A
nonzero value of pin count indicates that the page is in
use and should not be removed from storage (see
Primary Directory in Chapter 8). The TDE (task
dispatching element) address of the task that was
executing the instruction and the instruction interruption

point are then recorded in the reserved area of the SRQ.

3

If any task attempts to execute an instruction that
accesses a busy SRQ, the TDE address of that task is
compared to the TDE address saved in the header of
the busy queue. If the TDE addresses are not equal, the
accessing instruction is nullified and a descriptor access
busy exception is raised to the issuing task. If the TDE
addresses are equal, this implies to the processor that
the interrupted instruction of the owner task is resuming
the operation. In this case, the busy bit is reset, the pin
count of the page containing the SRQ is decreased, the
instruction interrupt point is restored from the
checkpoint area, and instruction execution proceeds
normally.

Note: The exception handling routine should not
perform an operation (other than the original one) that
accesses a busy SRQ in the task producing the
exception (task whose TDE address is stored in bytes
hex 18-23 of the SRQ). If this condition occurs, the
processor assumes that the suspended instruction is
being resumed, resulting in an unpredictable operation.

Page Fault |Access Exception

Due to a Monitored (Note 1)

Nonresident

SRM on a
Interruptible Message
Instruction List TDE SRQ |SRM
EQM X X X
DQM X X X
EQTDE X X

(Note
2)
DQTDE X X
(Note
2)

SENDM X X X X
SENDMW X X X
RECM X X X X
SVLO X X X
SVL1 X X X
SVL2 X X X
Notes:

1. Refers to nonzero descriptor byte 1 of TDE, SRQ, or
SRM.

2. On Enqueue and Dequeue TDE instructions, if the
first operand is a TDE or SRC, a monitored TDE does

not cause an access exception.

Figure 5-1. Interruptible Instruction Summary Chart
Interrupts due to |/0O are recognized as follows:

« When the processor searches the second or
subsequent SRM on an SRQ (before moving a
second or subsequent TDE from an SRC or SRQ wait
list), or

« When the processor searches a TDE or CRE chain

These interrupts are ignored when the processor
searches the first SRM on an SRQ, or when the
processor moves the first TDE from an SRC on an
SRQ. When the 1/0 interrupt is handled, only the
address events and the load multiple register events
are processed. The remaining events are handled
when the resumed queueing operation completes.

Tasking 5-15

TASK CONTROL

Task control consists of:
« Task dispatching

« Task switching

« Task timing

Task Dispatching

The dispatching of IMP tasks is handled by an HMC
function known as the task dispatcher. The task
dispatcher is invoked explicitly by the Dispatch TDQ
(task dispatching queue), the Enable Task Dispatching
instruction, or, under certain conditions, by the
send/receive type instructions or implicit send/receive
operations. It is the responsibility of the task dispatcher
to determine when a task switch is necessary, to
determine which task should be dispatched next, and to
accomplish the indicated task switch. During a task
switch, the status of the old task is saved (as described
under Call/Return Element in Chapter 6) in that task’s
TDE (task dispatching element). The status of the new
task is taken from the new task’s TDE.

The primary IMP structure associated with the task
dispatching function is the TDQ. The TDE that
represents the active task is located in the TDQ and is
referred to as the current TDE. The current TDE is
normally the top TDE on the TDQ whenever the task
dispatcher is enabled. When the task dispatcher is
disabled or if a send without task switch occurred, the
current TDE may or may not be the top TDE on the
TDQ.

The task dispatcher is invoked:

1. When a DTDQ (Dispatch TDQ) instruction is
encountered.

2. When an implicit or explicit send operation (Send
Message or Send Count instruction) occurs and a
TDE is placed on the TDQ at a higher priority than
the current TDE.

3. When an implicit or explicit receive operation
(Receive Message or Receive Count instruction)
occurs and the receive is not satisfied. In this
case, the current TDE is removed from the TDQ
and placed on an SRC or SRQ (send/receive
queue) wait list by the receive operation.

4. When an Enable Task Dispatcher instruction is
issued and the top TDE on the TDQ is not the
current TDE.

The task dispatcher functions as follows:

« |In the above cases a task switch may occur to the
top TDE on the TDQ. For the third case, the TDQ
may be empty. If the TDQ is empty, the processor
waits until a new TDE is placed on the TDQ.

« When a new task is dispatched as a result of any of
the previous conditions, the TDQ and the current TDE
addresses in the control address table are updated as
required. If the exception code is nonzero in the new
task TDE, the exception is presented via an exception
SVL. If no exceptions are present, instruction
processing then commences with the instruction
addressed by the |AR (instruction address register) or
CSAR (control store address register) of the new
task.

Dispatcher control addresses are accessed and
maintained by the processor in support of the task
dispatching function. These control addresses, located
in the control address table (see Figure 2-2), are
composed of the TDQ address and the current TDE
address.

9

Task Switching

Having determined that a task switch is required, the
task dispatcher stores the state of the old task in the
TDE (task dispatching element) of the task. Stored
status includes the condition code, the instruction
length, the IAR (or CSAR if a horizontal microcode
function), base registers hex 0-F, and the exception
code. Also, bit 1 of byte hex 44 (status) in the TDE is
set to indicate either an IMP or HMC procedure. The
task dispatcher then determines which task is to be
dispatched next as previously described. The new task
TDE address is then stored in the current TDE address
field of the control address table and the status of the
new task is loaded from the new TDE. The control
mode (defined as part of the TDE in this chapter) is
established from the TDE. Any pending exceptions are
presented via an exception SVL (supervisor linkage).
Otherwise instruction execution is initiated beginning
with the instruction addressed by the IAR and register
S(0) or by the CSAR.

The processor enters the wait state as follows. The
active task is the only TDE on the TDQ, and it issues a
receive type operation that is not satisfied. This causes
its TDE to be removed from the TDQ and placed on the
wait list of the SRQ (send/receive queue) or SRC
(send/receive counter) referenced by the receive type
operation. The task dispatcher is then invoked and the
task status is stored in the TDE of the task. The
processor is then placed in the wait state since the TDQ
contains no TDEs.

Subsequently, when one or more TDEs are placed on
the TDQ and the task dispatcher is invoked, the status
of the first TDE on the TDQ is loaded into the
processor, the control address table is updated, and
instruction execution commences.

Task Dispatcher Enable/Disable Functions

Two instructions are provided to allow disabling and
enabling of the task dispatcher function. The Disable
Task Dispatching instruction inhibits the task dispatcher
and stops the task interval timer. While in this mode, no
task switches can occur. Furthermore, a machine check
occurs if a Receive Message, Receive Count, or
Dispatch Task Dispatching Queue instruction, or an SVL
(supervisor linkage) is attempted. This condition is also
entered implicitly as a result of a machine check. The
Enable Task Dispatching instruction resets this condition,
starts the task interval timer if the current task is timed
and no task switch occurs, and invokes the task
dispatcher. If an exception occurs while the task
dispatcher is disabled, it is reported as a machine check
(see Processor Machine Check Handler in Chapter 9).

Task Timing

An IMP task can be either timed or untimed as indicated
by bit 5 of byte hex 12 in the task TDE (task dispatching
element). Task timing is provided by a built-in function
called the task interval timer. When a timed task is
activated by the task dispatcher, the time quantum bytes
(hex 24-2B) of the TDE are loaded into the task interval
timer. If this timer decreases to zero while a timed task
is active, a task timer exception occurs. For untimed
tasks, the time quantum field is not used and the task
interval timer is not decreased.

When a timed task is set to the wait state as part of a
task switch, the contents (residual value) of the task
interval timer are stored into the time quantum field of
the task TDE.

Note: If the task dispatcher is disabled by either the
Disable Task Dispatching instruction or a machine check
and the active task is timed, the task interval timer is
stopped. When an Enable Task Dispatching instruction
is issued, the following operation results. If a task
switch occurs, the new task TDE specifies timed or
untimed. If a task switch did not occur, timing is
resumed by the task interval timer if so indicated by the
current TDE.

If an untimed task issues a Set Interval Timer instruction
to the task interval timer, a specification exception is
presented. A Store Interval Timer instruction by an
untimed task that specifies the task interval timer stores
unpredictable results.

Tasking 5-17

INTERTASK COMMUNICATIONS AND
SYNCHRONIZATION

Communication between tasks and control of
synchronization is provided by the send/receive
mechanism within the tasking structure.

An example of intertask communication is shown in
Figure 5-2. The SRQ-A is initially empty. Task A then
executes a Send Message n instruction which
enqueues the message to the SRQ. Subsequently, when
task B is dispatched and issues a Receive Message
instruction the message is dequeued from the SRQ
for use by task B.

The synchronization function of these two instructions is
illustrated in Figure 5-3. The first two tasks on the TDQ
are TDE B and TDE A; TDE B has the higher priority.
Task B is the active task and the processor is executing
procedure B (Figure 5-3[a]).

When the RECM C instruction is executed, a message
cannot be dequeued since SRQ C has no message.

Therefore, the IAR is not incremented and the receive
operation places task B in the receive wait state as
follows:

+« Dequeues TDE B from the TDQ

« Enqueues TDE B to the wait list of SRQ C (Figure
5-3[b])

« Invokes the task dispatcher

Task A SRQ A

The task dispatcher then performs a task switch as
follows:

« Determines that the current TDE (TDE B) is not first
on the TDQ

« Stores the state of task B in TDE B

« Determines that TDE A is now the highest priority
dispatchable task

« Loads the state of task A (procedure A) from TDE A

« Updates the control address table entry for the
current TDE

« Initiates processing of procedure A

Procedure A now issues a SENDM C instruction which
enqueues an SRM to SRQ C. Since TDE B is on the
wait list, the send operation also:

« Dequeues TDE B from SRQ C

« Enqueues TDE B to the TDQ above TDE A (Figure
5-3[c]) since TDE B has a higher priority

« Invokes the task dispatcher since a TDE was moved
to the TDQ

Task B

_— Wait List

Message List

SENDM———,

S SRM

Figure 5-2. Intertask Communications

9

2

The task dispatcher then:

« Determines that the current TDE (TDE A) is not first
on the TDQ

« Stores the state of task A in TDE A

« Determines that TDE B is now the highest priority
dispatchable task

« Loads the state of task B

« Updates the control address table entry for the
current TDE

« Initiates processing of procedure B

Since the IAR for task B still points to the RECM C
instruction, it is again executed. The SRM is now
dequeued and execution of procedure B continues under
task B since the receive operation was satisfied.

Similar functions are also associated with the SRC (send
receive counter) object together with the Send Count
and Receive Count instructions except that no messages
are passed.

Tasking

5-19

(a)

TDQ ®

SRQC

Wait List

Message List

Active

TDE B ®
Task

Message List

Procedure B

Message List @

Inactive
TDE A Dispatchable
'l Task
N
(b) SRQC
TDQ 1r Wait List
Active
TDE A ? Task
|
N
\
(c) SRQC
TDQ ® Wait List
TDEB o ¢::;("e
Y
TDE A b
|
|
[——— d
\

SRM

Figure 5-3. Task Synchronization Example

5-20

| RECM C

Procedure A

| SENDM C

Procedure A

| SENDM C

Procedure B

| RECM C

Procedure B

| RECM C

Procedure A

Chapter 6. Supervisor Linkage and Exception Presentation

This chapter describes IMP (internal microprogramming)
supervisor linkage concepts and |MP exception
presentation.

» IMP Supervisor Linkage is the method by which IMP
procedure switching within the same task is
accomplished. A supervisor linkage can be explicit or
implicit and saves the status of the procedure from
which the switch occurred.

« IMP Exception Presentation is the mechanism by
which a defined set of exception conditions is
presented, including the invocation of the IMP
exception handling procedure.

Supervisor Linkage and Exception Presentation 6-1

Supervisor Linkage

The IMP extended program linkage facility calls an SVL
(supervisor linkage) routine to perform one of the
following functions:

« An extended IMP operation whose entry point is not
addressed directly (explicit SVL).

« Simulation of an IMP instruction that has been
trapped by the IMP interpreter (implicit SVL).

« Handling of a processor exception (exception SVL).
For all three functions, the IMP routine performing the
function returns via an explicit Supervisor Exit
instruction.

The basic services provided by the SVL mechanism are

selective IMP procedure status saving/restoring and
entry point resolution via a specialized SVL table.

6-2

SUPERVISOR LINKAGE STRUCTURES

Three structures are used to control the supervisor
linkage operation: The CRE (call/return element), the
ACQ (available CRE queue), and the SVL (supervisor
linkage) table. The ACQ address and the SVL table
address are contained in the control address table (see
Figure 2-2).

9

Call/Return Element

A CRE (call/return element) is a resident storage area
used to save the status of a procedure during an SVL
(supervisor linkage). If the CRE is not resident, is not
fullword aligned, or crosses a page boundary, a machine
check occurs when the CRE is accessed.

The descriptors of the CRE and the SRM (send/receive
message) are identical. The key is not significant since
all queuing functions are first on the chain. A CRE has
the following format:

Descriptor Next CRE Address
0 Bytes 2
Address
Stat .
atus Register Base Registers
8 Bytes C E
ACQ Address Exception Not Used
Code
6E Bytes 74 76 80
Bytes Bytes
(Hex) Bits Description (Hex) Bits Description
0-1 Descriptor: Element descriptor 0-1 5 O This CRE is not enqueued in a
(same as SRM). chained list.
0-2 Identifies this IMP object as an SRM 1 This CRE is enqueued in a
(011). chained list (either an SRQ or
TDE). This bit is set to zerc by
3 Reserved. those instructions that dequeue
an SRM from an SRQ header.
4 0 This is the last CRE on the chain. Those instructions that enqueue

1 This is not the last CRE on the

chain.

an SRM check this bit first. If it
is a one bit, a specification
exception is raised.

6-7 Reserved.
8-15 Used by the processor to monitor
accesses to this object. If not hex 00,

the CRE is monitored for access
exceptions.

Supervisor Linkage and Exception Presentation 6-3

Bytes Bytes

(Hex) Bits Description (Hex) Bits Description
2-7 Next CRE Address: Address of the Cc-D Address Register: IAR (instruction
next CRE in the chain. If this is the last address register) if byte 8, bit 1 = 0.

CRE in the chain, descriptor bit 4 = 0.
CSAR (control store address register) if

8-B Status: CRE Status. byte 8, bit 1 = 1.
0 0 Available. E-6D Base Registers: Saved by the SVL
mechanism; if all registers are not
1 In use. saved, the unused area is available to
the SVL routine as a scratch work area.
1 0 IMP procedure CRE. The registers occupy 6 bytes per

register beginning with byte hex E.
1 HMC procedure CRE.

6E-73 ACQ Address: Address of ACQ used
2-7 Reserved. by the SVX operation.
8-11 First base register saved. 74 (Note 1) Exception Code:
12-15 Number of base registers saved minus 0-2 Reserved.
one; must include base register O (base
register addresses wrap around from 3 Soft address compare.
hex F to 0).
4 Task interval timer.
16-20 Zero.
5 Monitored ACQ descriptor (SVL
21-23 ILC (instruction length count). receive) (Note 2).
24-27 Zero. 6 Monitored CRE descriptor (SVL

receive) (Note 2).
28-31 Condition code. When initializing the
condition code field in a new CRE, at 7 Monitored TDE descriptor (SVL
least one, but not all, of the bits must wait) (Note 2).
be set to a one value. Failure to do so
may cause branch instructions to work
incorrectly.

6-4

C

Bytes
(Hex)

75 (Note 1)

Bits

0-7

Bytes

Description (Hex)

75

Exception Code: (Hex)

00
02
04
06
08
0A

oc

OE

10

12
14
16

18.

1A
1C
1E
20
22
24
26
28
2A
2C
2E

No exception in bits 0-7.
Invalid descriptor.

Busy (Note 2).
Reserved.

Allocate Page Frame.

Monitored SRQ descriptor
(Note 2).

Monitored SRM descriptor
(Note 2).

Monitored TDE descriptor
(Note 2).

SRC (send/receive counter)
overflow.

Address translation.
Program event monitoring.
Execute.

Specification.

Addressing.

Effective address overflow.
Data.

Binary overflow.

76-7F
Binary divide.

Notes:
. The exceptions indicated in byte hex 74 can occur
simultaneously and are not mutually exclusive with

Decimal overflow. 1

Decimal zero divide.

Bits Description
Exception Code: (Hex)
30 Operation.
32 Stack.
34 Verify.
36 Chain conflict.
38 End-of-chain.
3A Edit digit count.
3C Length conformance.
3E Edit mask syntax.
40 Invalid segment group address.
42 Floating-point invalid operand.
46 Second chain search.
48 Conversion.
4A Invalid floating-point conversion.
80 Invalid segment.’
81 Invalid page.'
82 Page read error.!
83 Invalid pool state.'
84 Invalid pin request.’
85 Invalid write request.’
86 Main store error.!

Not used.

themselves or with an exception encoded in byte
Floating-point overflow. hex 75.
2. Exception code bits 5 through 7 in byte hex 74 and

Floating~point underflow.

Floating-point inexact result.

exception codes hex 04, OA, OC, and OE in byte hex
75 form the general category of descriptor access

exceptions described under Descriptor Access

Floating-point zero divide.

Exception, later in this chapter.

"Implicit SVL codes. For description, see Appendix B.

Supervisor Linkage and Exception Presentation 6-5

Available Call/Return Element Queue

The ACQ (available CRE queue) is the mechanism by
which CREs (call/return elements) are made available to
the processor and eventually to a TDE (task dispatching
element).

An ACQ has the following format:

Descriptor First TDE Address Reserved ':f: 1
0 Bytes 2 8 9
First Available CRE Address Reserved

A Bytes 10

A CRE is taken from the ACQ by an implicit receive
operation, when needed, to perform an SVL (supervisor
linkage) instruction (explicit or implicit). A CRE is
returned by an implicit send to the ACQ when the SVX
(supervisor exit) instruction is issued. The descriptors of
the ACQ and the SRQ (send/receive queue) are identical
(if no available CREs are enqueued, descriptor bit 4 = 0).
See the SRQ in Chapter 5 for the byte descriptions. All
send/receive operations involving the ACQ must specify
enqueue first/dequeue first.

If the ACQ is not resident in storage, is not fullword

aligned, or crosses a page boundary, a machine check
will occur when the ACQ is accessed.

6-6

20

Supervisor Linkage Table

The SVL (supervisor linkage) table is located in resident
storage and consists of 256 4-byte entries. The format
of each 4-byte entry in the SVL table is as follows:

Base Flag Entry
Address

0 1 2 Bytes 4

Bytes
(Hex) Bits
0
0-3
4-7
1
0
1
2
3-7
2-3

Descriptions
Base: Base registers to be saved.
First base register saved.

Number of base registers to be saved
minus 1. The registers saved must
include B(0). Base register addresses
wrap around from hex F to zero.

Flag: Flag byte.

0 IMP offset in bytes 2 and 3.
1 HMC CSAR in bytes 2 and 3.
Reserved.

0 If not an exception SVL (SVL table
index = 0), then the SVL procedure
will be inhibited and the SVL
instruction will be executed as a
no-operation. The exception SVL
(SVL table index = 0) will always be
executed regardless of the value of
this bit.

1 The SVL procedure will be executed
as described.

Reserved.

Entry Address: Entry address of SVL
routine. Bytes 2 and 3 are either an
offset into the segment identifier of the
SVL table if Byte 1, bit0 =0, or a
CSAR value if byte 1, bit 0 = 1.

All SVLs refer to entries in this table.

SUPERVISOR LINKAGE CONTROL
The SVL (supervisor linkage) operation allows:

« Program to program invocation without explicit
knowledge of program locations by the invoking
program.

« A single, common interface for exception signaling.

The SVL operation can be understood by considering
the usage of CREs (call/return elements) for status
saving and the SVL table for indirect SVL routine entry
point resolution (see the following diagram). An index
into the SVL table can be generated either explicitly or
implicitly, based on the cause of the SVL. Implicit SVLs
and, therefore, implicit entries into the SVL table, are
generated by the processor for either trapped
instructions (using the trapped instruction operation
code), or for exceptions. Explicitly generated SVL
instructions use the I-byte of the SVL to index the SVL
table. The assignment of SVL indexes (binary values) is
as follows:

« All exceptions use SVL table index O.

« Other implicit SVLs use indexes that do not
correspond to the basic operation codes or to the
unused extension fields in those instructions that
make use of operation code extenders. However,
operation codes hex 00, 40, and FF are reserved and
are treated as invalid; operation code OD extended
with E or F is reserved and will yield unpredictable
results if executed. An operation exception results if
execution of one of these operation codes is
attempted. With this exception, the execution of any
operation code that is not implemented as a basic
operation code results in an implicit SVL operation.
In this case, the SVL table index value equals the
operation code.

« Explicit SVLs can use any index value.

Supervisor Linkage and Exception Presentation 6-7

Index

SVL Table and CRE Usage

SVL Table

(see Supervisor

Linkage, Chapter 2)

Legend
— — — 3 Information Saved

——— Pointers

6-8

» B | F Entry Address

SVL

Routine

Requested
B W Registers Task Dispatching

B+1 I Element

a [~ Register |
i \
B +x |nforrnat|on |____7
e)] Available Call/Return Element

-4 ~

|

!
l—ILC (instruction length count)

|——CC (condition code)
L. IAR (instruction address register)

The occurrence of an exception results in an SVL unless
the exception is masked in the TDE (task dispatching
element) mask field. If the exception is not masked, the
exception code is stored in the exception field of the
CRE and the pending exception is cleared in the
processor. If the exception is masked, the occurrence is
recorded in bytes hex 1C and 1D of the TDE, no SVL
occurs, and the pending exception is cleared.

When an SVL occurs either explicitly or implicitly, byte O
of the SVL table entry and the status of the procedure
are saved in the available CRE. The status includes the
following:

Instruction length count

« Condition code

« Specified base registers

« Exception code

« |AR (instruction address register)

« CSAR (control store address register)

For an exception SVL in an IMP procedure, the stored
IAR points to the instruction that caused the exception if
the instruction was nullified or suspended. Otherwise,
the stored IAR is the updated address of the next
instruction to be executed. The CRE is then flagged as
being in-use and the address of the CRE is loaded into
base register hex E. In addition, as shown in the
following table, optional registers are loaded with
parameters, depending on whether the SVL is implicit or
explicit and whether zero, one, or two operands are
present in the SVL instruction.

SVL Register Loading

Parameters Loaded
Implicit Type SVL |Register Parameter
RR (2 bytes) r(E) |1-byte’
RS, SI (4 bytes, {3‘(51)) I-byte' First-
operation codes > or second-
hex 40, <hex AQ) operand
r(E) address
SS (6 bytes, r(E) I-byte'
operation codes >
hex AQ)
B(1) First-operand
address
B(2) Second
operand
address

'In the case of an instruction with an extended operation
code, the low order 4 bits of the | field contain the
operation code extender.

Parameters Loaded

Explicit Type SVL |Register Parameter
SVLO'" 2 None
SVL1'"2 B(1) First-operand
address
SvL2' 2 B(1) First-operand
address
B(2) Second
operand
address

Address translation |B{1)
exception

Faulting virtual
address

Allocate page frame |B(1) Virtual address

exception

All other exceptions |None

'B (E) is loaded with the address of the CRE used to save
status for all SVL types.
2See Chapter 10 for the format of the SVL instruction types.

Supervisor Linkage and Exception Presentation 6-9

Effective addresses are calculated and loaded into base
registers for those SVLs having effective address
operands. HMC or IMP instruction processing continues
at the address indicated in the SVL table entry. If bit O
of the SVL table flag byte is one, the SVL routine
address in the table entry is loaded into the CSAR. This
causes an SVL microprogram indirect branch. If bit O of
the flag is zero, the halfword address in the SVL table
entry is an offset into the SID (segment identifier) where
the SVL table is located. This real address then
becomes the target of an indirect SVL branch to an IMP
procedure (register S[0] contains the SID of the SVL
table, register R[0] contains the SVL entry address, and
the IAR contains the value that was placed in R[0]).

When an SVL is executed, a search of the CRE list
chained to the TDE is performed. The current status is
stored in the last available CRE. If there are no available
CREs on the list, or if the list is empty, a CRE is
implicitly received from the ACQ (available CRE queue)
and is enqueued first, when a CRE becomes available,
on the TDE CRE list. The current status is then stored in
that CRE. In either case, the status of the CRE is set to
in-use.

SVL access exceptions (monitored ACQ, CRE, and TDE),
associated with the implicit receive operation within an
SVL, are detected and presented as follows:

1. Busy is ignored and not presented.

2. If the ACQ and CRE are monitored, these
exceptions are presented, after completion of the
implicit receive, in byte O of the exception code in
the TDE.

3. Or, if the implicit receive is not satisfied (no CREs
on the ACQ) and the current TDE is monitored,
this access exception is reported in byte O of the
exception code in the TDE.

Programming Note: When replenishing the ACQ with
CREs, you should specify send message first in order to
place the CRE first on the ACQ (busy is ignored by an
SVL implicit receive).

For trapped operations (implicit SVLs) and explicit SVLs,
the original SVL function is nullified (the IAR still points
to the SVL of the trapped operation code) and the ACQ
access exception is identified in byte O, bits 5-7 of the
exception code. If an SVL access exception is detected
while presenting an exception, the access exception is
presented concurrently with other exceptions posted in
byte 1, bits 0-7 of the exception code in the CRE. Bit 6
or 7 of the CRE exception code, byte 0, can be
presented only after a CRE is received. While the task
dispatcher is disabled, due to a machine check, the
function of the exception SVL is altered (as described in
Chapter 9, under Machine Check).

If there are no CREs on the ACQ, the implicit receive is
not satisfied, the TDE for the current task is moved to
the wait list of the ACQ, and the task dispatcher is
subsequently invoked. For trapped operations and
explicit SVLs, the original SVL function is nullified. For
all exceptions except page fault, the exception code is
saved in the TDE as part of the task switch. The
exception is presented again after the ACQ is
replenished and the task is dispatched. For page faults,
the exception code and the faulting address are
discarded. Because the instruction or HMC function
causing the fault is nullified or marked by a checkpoint,
the exception is regenerated when the task becomes
dispatchable and the operation is again performed. If an
HMC procedure causes an access exception, the queue
function, the queue header address, and optionally, the
message or TDE address are saved in the base register
field of the CRE. The register assignments for the
values are documented in Chapter 7, under Operational
Unit Task. The same IMP exception handler is invoked
for HMC exceptions as for IMP exceptions. The second
byte of the exception code always contains a value from
hex 00 to 12 or to 1C for HMC procedure exceptions.

This page is intentionally left blank.

Supervisor Linkage and Exception Presentation 6-11

An explicit SVX (supervisor exit) instruction is used in all
cases to return from an IMP routine called via the SVL
instruction. During execution of the SVX instruction, the
condition code, IAR, or CSAR and base registers are
restored from the first in-use CRE on the current TDE
and the CRE status is set to available. The exception
code and ILC (instruction length count) are not restored
from the CRE. If the number of available CREs
encountered before this CRE was equal to or greater
than the number specified in the control mode field of
the TDE, the first CRE is returned to the ACQ via an
implicit send. The CRE is returned to the proper ACQ
using the ACQ address stored in the CRE. This allows
gathering of CREs added to the ACQ due to an earlier
ACQ access exception. The in-use CRE is then used to
restore status and is flagged available. Note that when
an SVX is executed, if no in-use CRE is found, or if the
CRE list is empty, a specification exception occurs.
Also, descriptor access exceptions are not detected by
the implicit send when a CRE is returned to the ACQ.

Programming Note: A minimum of one available CRE is
always left chained to the TDE by the SVX instruction,
even if the maximum number is set to zero.

6-12

SUPERVISOR LINKAGE SUMMARY

Figure 6-1 and the following text summarize an SVL
operation. Assume that the maximum number of
available CREs specified in the control mode of the TDE
is one.

n Procedure Z is being executed and the condition
of the TDE and the ACQ are as shown below
the procedure in the figure.

A condition arises (explicit or implicit) in
procedure Z requiring an SVL to procedure X.
At the time of the SVL, since CRE A is in use,
there are no available CREs on the TDE to store
the status and base registers of procedure Z.
Therefore, a CRE (CRE B) is obtained from the
ACQ and is enqueued to the TDE. The status
of procedure Z is then saved in CRE B.

Again an SVL occurs; this time to procedure Y.
CRE C is obtained from the ACQ, the status of
procedure X is stored in CRE C, and the
execution of Y begins.

n Procedure Y is completed and an SVX
instruction issued. The SVX restores the status
of procedure X flags, CRE C as available, and
restarts the execution of procedure X.

Procedure X is completed and an SVX
instruction issued. Because an available CRE
exists on the TDE, the top CRE (CRE C) is
returned to the ACQ. The status of procedura Z
is then restored from CRE B, CRE B is flagged
available, and the execution of procedure Z is
restarted.

5

Start Z SVL Table Procedure X SVL Table Procedure Y
—u — 3
SVL X / SVLY
SVX
SvX
TDE ACQ TDE ACQ TDE ACQ
|T 3]
¥ CRE A \ CRE B \ CRE B y CRE C \ CREC
In Use Available Status of Z Available Status of X
) CRE C Y CRE A) CREB
Available In Use Status of Z
{ CRE A
In Use
TDE ACQ TDE ACQ
\ CRE C Y CREB v CREC
Available Available Available
Y CREB Y CRE A
Status of Z In Use
CRE A
In Use

Figure 6-1. SVL Summary

Supervisor Linkage and Exception Presentation

6-13

Exceptions

PRESENTATION

Exceptions can occur during the execution of an IMP
task. Causes of exceptions include the improper
specification or use of instructions and data, the
detection of a page fault, the detection of a program
event, and task interval timer. Because an exception is
the direct result of the current task, as opposed to some
external event, the resolution of the exception is handled
under control of the current task. The function of the
exception SVL during the handling of a machine check is
described in Chapter 9 under Machine Check.

Exceptions are presented through the use of the 2-byte
exception code area in the CRE (call/return element).
The two types of exceptions, concurrent and program,
and the CRE bytes in which they occur are described in
the following paragraphs.

CONCURRENT EXCEPTIONS

Concurrent exception conditions are presented in the
first byte of the CRE exception code field. These
exception conditions are bit significant and can occur
simultaneously.

PROGRAM EXCEPTIONS

Exceptions that result from the execution of IMP
instructions in an IMP procedure or HMC instructions in
an HMC procedure are called program exceptions.
These exceptions include the improper specification or
use of instructions and data, address translation faults,
and detection of program events.

The cause of an exception is identified in the exception
code field of a CRE (call/return element). The bit
assignments for this field are described as a part of
Call/Return Element, earlier in this chapter.

The exception mask field in the TDE (task dispatching
element) allows some exceptions to be masked. A
program exception can only occur when the
corresponding mask bit is 1. When the mask bit is O,
the occurrence of the condition is recorded in the
exception occurrence field of the TDE but no program
exception occurs.

The following paragraphs describe each type of program
exception.

Address Compare Exception

A programmable address compare exception occurs
when:

« An address compare for the address and type of
compare (instruction, 1/0, or data) is detected.

For instruction stream address compare, the instruction
is nullified. For other types of address compares (data,
1/0, or other), the instruction or current unit of
operation is completed. See the SACM instruction in
Chapter 10 for additional information.

Address Translation Exception

An address translation exception (or page fault
exception) occurs when the processor is unable to
translate a virtual address into a real address using the
VAT (virtual address translator) facilities described in
Chapter 8 because:

« No primary directory entry exists for the page in the
primary directory.

« A primary directory exists for the page in the primary
directory and the valid status bit is set to zero.

« The index field is zero in the hash table entry.
The instruction is nullified except for GHRF, GHR, FHRF,

and FHR instructions. For these instructions the
instruction is completed.

Programming Note: When the exception is presented,
base register 1 contains the faulting address.

»

Addressing Exception
An addressing exception is recognized when:

« A virtual = real address SID (segment identifier) is
used that refers tc. a storage location that is beyond

the range of real storage configured to the processor.

Such an address is also invalid.

=R Address SID Range
Model (Hex)

3,4, and 5 0000 0100 - 0000 O11F

6,7, and 8 0000 0100 - 0000 O1FF

The operation is suppressed when the address of the
instruction is an invalid address. The operation is
terminated for an invalid operand address.

Allocate Page Frame Exception

An allocate page frame exception occurs when:

« An OU task requests a page frame to be allocated
and cleared in main storage.

The instruction is nullified.

Programming Note: When the exception is presented,
base register 1 contains the virtual address to be
associated with the allocated page frame.

Binary Divide Exception

A binary divide exception occurs when:

« The size of the quotient exceeds the size of the
resultant field in a binary divide operation.

« Division by zero is attempted during a binary divide
operation.

The instruction is suppressed.

Binary Overflow Exception

A binary overflow exception occurs when:

« The carry from the sign-bit position and the carry
from the high-order numeric bit position do not agree
during a signed binary add, subtract, or zero and add

operation.

« The results of a Convert Packed to Binary instruction
exceeds 31 bits.

« Significant bits are lost during a Shift Left Arithmetic
instruction.

The instruction is completed.

Chain Conflict Exception
A chain conflict exception occurs when:
« A hold conflict is found on an object hold operation.

« An object free operation attempts to free a monitored
hold.

The instruction is nullified but the first-operand base
register is updated to point at the offending hold record.
Conversion Exception

A conversion exception occurs when:

« The length field of a string control byte is O for a
CVTMC instruction.

« The end of source is encountered prior to the end of
a compression string for a CVTSC instruction.

« A compression string describes a character string that
would cross a record boundary in the receiver for a

CVTSC instruction.

« The length field of a string control byte is O for a
CVTSC instruction.

Supervisor Linkage and Exception Presentation 6-15

Data Exception

A data exception occurs when:

« The sign or digit codes of operands in the decimal
instructions or in a Convert Packed to Binary

instructions are invalid.

o The multiplicand in a Multiply Packed instruction has
an insufficient number of leftmost zeros.

The instruction is suppressed when a sign code is

invalid; otherwise, the instruction is terminated.

Decimal Overflow Exception

A decimal overflow exception occurs when:

« One or more significant digits are lost because the
destination field in a decimal operation is too small to

contain the result.

The instruction is completed.

Decimal Zero Divide Exception
A decimal zero divide exception occurs when:

» Division by zero is attempted by a Divide Packed
instruction.

The instruction is suppressed.

Descriptor Access Exceptions
Descriptor access exceptions occur as:
« Descriptor access busy (SRQ is in use)

» Monitored (nonzero byte 1) in an SRQ (send/receive
queue) descriptor

« Monitored (nonzero byte 1) in an SRM (send/receive
message) descriptor

+ Monitored (nonzero byte 1) in a TDE (task dispatching
element) descriptor

A descriptor access busy exception occurs when bit 5 of
descriptor byte O is a one during a reference to an SRQ.
A descriptor access busy exception also occurs during
object hold/free operations if the hold record chain of
the object is found to be busy. This bit indicates when
an access to the object is in progress. The other three
exceptions (monitored) occur during a reference to an
IMP object whose descriptor byte 1 does not contain all
zeros. The particular exception that occurs depends on
the type of object being referred to. When the
processor encounters a monitored (nonzero byte 1) SRQ,
SRM, or TDE while executing an instruction, an access
exception occurs. The instruction causing the exception
is then suspended, the SRQ is set busy, and the
checkpoint information is stored in the reserved area of
the header before the exception is presented. On return
from the exception handler, checkpoint information is
restored, busy is reset, and the normal instruction
execution begins by resuming the suspended instruction.
For the Receive Message and Dequeue Message
instructions on an SRM access exception, the element is
dequeued before the exception is taken. For Send
Message and Enqueue Message instructions the
exception is taken before the element is enqueued.

For Enqueue and Dequeue TDE instructions with a TDQ
(task dispatching queue) or SRC (send/receive counter)
as the target, a TDE descriptor access exception does
not occur.

9

9

The following chart shows the instructions for which
access exceptions can occur and the sequence (numbers
1, 2, and 3) of occurrence for each IMP instruction and
IMP object.

Sequence
Instructions SRQ* SRM TDE

DQM 1 25

DQTDE 1 25
EQM 1 2

EQTDE 1 2!
SENDM 1 2 3
SENDMW 1 2 3
RECM 1 25 2
SVLO? 1 2 2
SVL12 1 2 2
SvL2? 1 2 2
SvXx?

'If the second operand is a TDQ or SRC, no descriptor access
exception occurs.

2Descriptor access exceptions are not detected by the implicit
send when a CRE is returned to the ACQ.

3The SRM and TDE exceptions are mutually exclusive for a
Receive Message instruction and an SVL if an implicit
receive is necessary.

4The SRQ descriptor byte 0, bit 6 is a summary indicator for
any TDEs that have monitor bits set and are enqueued to
the wait list. This bit is not maintained by the processor, but
is used to test for a TDE access exception on send type
operations. Therefore, the IMP exception handler is
responsible for appropriately setting and resetting the bit
within the exception routine.

5The SRM or TDE access exception is taken after the

SRM has been dequeued.

A TDQ or SRC cannot be set busy or monitored. If
descriptor bit 5 (busy) or byte 1 (monitored) are nonzero,
the condition is ignored by the processor.

The instruction is nullified for SRQ busy and hold free
chain busy. It is suspended for monitored descriptors of
SRQ and SRM.

Note: If the exceptions occur while an SVL instruction
is being serviced, the exception is reported in byte hex
74 of the CRE. The instruction causing the exception is
suspended.

Edit Digit Count Exception

An edit count exception is recognized in EDPD when:

« The end-of-source field is reached and there are
more control characters corresponding to digits in the

edit-mask field than in the source field.

« The end of the edit-mask field is reached and there
are more digit positions in the source field.

The instruction is terminated.

Edit Mask Syntax Exception

An edit mask syntax exception occurs when:

« An invalid control character is in the EDPD mask.
« An end-of-string character is missing.

The instruction is terminated.

Effective Address Overflow Exception

An effective address overflow exception may occur
when a carry from the offset portion of a virtual address
occurs during the calculation of a storage operand
address or a branch address.

An effective address overflow exception occurs when:

« A carry from bit 24 of a virtual address occurs during
the calculation of a storage operand address.

« A storage operand crosses a segment boundary.

The instruction is suppressed.

Supervisor Linkage and Exception Presentation 6-17

End-of-Chain Exception
An end-of-chain exception occurs when:
« An empty (null) chain is found on a free operation.

« An end-of-available (hold record) chain is found on a
hold operation.

« No matching hold record is found on a free
operation.

The instruction is nullified with the first operand
unchanged.

Execute Exception

An execute exception occurs when:

« The subject of an Execute instruction is another
Execute instruction.

The instruction is suppressed.

Invalid Descriptor Exception
An invalid descriptor exception occurs when:

« An invalid descriptor field is encountered during the
execution of an operation on an IMP object.

Whether or not a descriptor type is valid depends on the
operation being performed. The following chart
summarizes operations on IMP objects.

Header Type
TDQ

Element Type
SRM TDE

N N

N N

(/]
]
(o]
(7]
=
(3]

Instruction
DQM
DQTDE

DTDQ
EQM
EQTDE
RECM
RECC
SENDM
SENDMW
SENDC

<|<

—-l<|<|-|<|<|<]|z]|<]|<
—|=1-1=l-l<|-|z|< |-

|- |- I<[=-I<|=-|2|<|-
Zz |- |<
Z|< |-

Legend:

V = Valid

| = Invalid descriptor exception
N = Descriptor not checked

- = No element involved

Note: An invalid ACQ descriptor encountered by an
SVL implicit receive or an SVX implicit send causes a
machine check. An invalid SRM descriptor encountered
by an SVX implicit send causes a machine check. An
invalid SRC descriptor encountered by an 1/0 event
SENDC causes a machine check.

The instruction is terminated.

Floating-Point Inexact Result Exception

A floating-point inexact result exception occurs if the
rounded result of an operation is not exact. The result is
inexact because:

» One or more bits have been lost in the rounding
process.

« A floating-point overflow occurred while the overflow
was masked, and the result has been set either to
infinity or to the largest finite number for that specific
format.

The setting of the floating-point inexact result mask
does not affect the result of the operation. The rounded
or overflowed result is still available in the result
operand.

Floating-Point Invalid Operand Exception

A floating-point invalid operand exception occurs when
an operand is invalid for the operation to be performed.
The operand is invalid because:

* An operand is an unmasked not-a-number.

« Addition or subtraction of infinity with infinity was
attempted.

» Multiplication of zero times infinity was attempted.

» Division of zero by zero, or division of infinity by
infinity was attempted.

The setting of the floating-point invalid operand mask
affects the result of the operation.

« If the exception is masked, the result of the operation
is a masked not-a-number value:

— |If the exception was because of one or more
operands being an unmasked not-a-number, then
the resulting masked not-a-number value is set
with a fraction value equal to the largest
not-a-number operand fraction value.

— If the exception was not because of an operand
being an unmasked not-a-number, then the
resulting masked not-a-number value is set with a
fraction value consisting of a 1 in the leftmost bit
position followed by zeros for the remaining
fraction bits.

« |f the exception is not masked, the operation is
suppressed, and the exception is signaled.

Floating-Point Overflow Exception

A floating-point overflow exception occurs if a rounded
result is finite, but its exponent is too large to be
represented in the result format. For this exception to
occur, the exponent must exceed 127 in the short
format and 1023 in the long format. The setting of the
floating-point overflow mask affects the result of the
operation. In addition, the result of the operation
depends on the rounding mode and the sign of the
ntermediate result, as follows:

Supervisor Linkage and Exception Presentation 6-19

6-20

Rounding Mode-Toward
Sign of
Overflow Intermediate
Exception lIs: Result Is: Zero Positive Infinity |Negative Infinity | Nearest
Masked Positive To largest positive | To infinity To largest positive | To infinity
number correctly signed number correctly signed
Negative To largest To largest To infinity To infinity
negative number |negative number |correctly signed correctly signed
Sign of
Overflow Intermediate
Exception lIs: Result Is: Significant Sign Exponent
Unmasked Positive or Correctly rounded |Correct Modified (see
negative note)

Note: The modified exponent is set from the overflowed normal biased exponent minus a
bias adjust of 192 for short format and 1536 for long format. The following summarizes the
relationship between what would be the overflowed values for the true exponent signed

exponent, the normal biased exponent, and the modified biased exponent.

Short Format

Long Format

Overflowed Modified Modified
Exponent True Signed Normal Biased | Biased True Siynad Normal Biased | Biased
Minimum 128 255 63 1024 2047 511
Maximum 255 382 190 2047 3070 1534

Floating-Point Underflow Exception

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly {as a denormalized
number) or the underflow mask bit is enabled. For this
exception to occur, the exponent must be less than
-126 in the short format and -1022 in the long format.
The setting of the floating-point underflow mask affects
the result of the operation and the setting of the
occurrence bit.

» If the exception is masked, the result of the operation
is produced by first denormalizing the unrounded
result, then rounding, then putting it in its result field.
Only when the result is not exact is the underflow
exception occurrence bit set on.

« |If the exception is not masked, the result of the
operation is a correctly rounded significant, a correct
sign, and a modified exponent. The underflow
exception occurrence bit is set on. The modified
exponent is set from the underflowed normal biased
exponent plus a bias adjust of 192 for short format
and 1536 for long format. This bias adjust is chosen
to translate underflowed biased exponents as nearly
as possible to the middle of the representable biased
exponent range for the short and long formats. This
allows the exception handler to provide appropriate
information for later reconstruction of the correct
result. The following diagram summarizes the
relationship between what would be the underflowed
values for the true signed exponent, the normal
biased exponent, and the modified biased exponent.

Short Format Long Format
Underflowed |True Normal Modified Normal Modified
Exponent Signed Biased Biased True Signed Biased Biased
Minimum -126 1 193 -1022 1 1537
Maximum -298 -171 21 -2148 -1125 411

Supervisor Linkage and Exception Presentation

6-21

Floating-Point Zero Divide Exception

A floating-point zero divide exception occurs if the
divisor is 0 and the dividend is a finite nonzero number.
If the exception is masked, the result of the operation is
a correctly signed infinite value. If the exception is not
masked, the operation is suppressed.

Invalid Floating-Point Conversion

An invalid floating-point conversion exception occurs
during conversion from floating-point to a fixed-point
format when overflow, infinity, or not-a-number
precludes an accurate representation in the fixed point
format. This exception cannot be masked and has no
corresponding occurrence bit. The instruction is
suppressed.

Invalid Page Exception (Synchronous Requests Only)

An invalid page exception occurs when:

« The page does not exist in the segment. The
segment group exists, but has these properties: (1)
the size allocated is less than 16 megabytes and (2) a
reference was made to an address which would have
been legitimate had the segment been made larger.
This exception is raised only on Bring and Clear
(VMC function) and on page faults.

The instruction is suppressed.

Invalid Pin Request Exception (Synchronous

Requests Only)

An invalid pin request exception occurs when:

« Pin failed because an attempted pin was the two
hundred fifty-sixth pin for that page.

« An unpin was attempted on an unpinned page.

The instruction is suppressed.

6-22

Invalid Pool State Exception (Synchronous Requests
Only)

An invalid pool state exception occurs when:

» A Bring or Clear (VMC function) with pin cannot be
performed because too many pages are already
pinned.

The instruction is suppressed.

Invalid Segment Exception (Synchronous Requests

Only)

An invalid segment exception occurs when:

» The page does not exist on a Bring and Clear (VMC
function) or page fault. The requested segment either

never existed or has been destroyed.

The instruction is suppressed.

Invalid Segment Group Address Exception
An invalid segment group exception occurs when:

« The leftmost 3 bytes of the 6-byte virtual address are
invalid for a Bl (Branch Internal) instruction.

« The calculated low-order 3-byte segment group
address offset is not a positive value or is not
between a designated lower boundary and 16
megabytes minus 1 inclusive, for a CAL, CALH, or
CALHI instruction.

« An overflow is generated in the intermediate or final
calculation of an instruction which performs 3-byte

address arithmetic.

The instruction is suppressed.

9

9

Invalid Write Request Exception (Synchronous
Requests Only)

An invalid write request exception occurs when:
« A write was requested to a pinned page.

The instruction is suppressed.

Length Conformance Exception
A length conformance exception occurs in EDPD when:

« The end of the edit-mask field is reached and there
are more character positioné in the result field.

« The end of the result field is reached and there are
more character positions in the edit-mask field.

« The number of hex B2 control characters following a
hex B1 (floating string) field cannot accommodate the
longer of the two floating strings.

A length conformance exception occurs in a CVTMC

instruction when the converted form of the record is

larger than the result record length.

In either case, the instruction is terminated.

Main Storage Error Exception

A main storage error exception occurs when:

« Changed data in main storage could not be accessed
due to a memory failure. This exception initiates the
reporting of logical damage.

The corresponding page on disk is marked logically bad,

and the instruction is terminated.

Monitored ACQ Exception

A monitored ACQ (available CRE queue) exception
occurs when:

« An implicit receive operation attempts to take a CRE
from the ACQ when the ACQ wait list is empty.

The instruction is nullified.

Monitored Call/Return Element Exception
A monitored call/return element exception occurs when:

« A CRE is accessed during an SVL (supervisor linkage)
and there are no CREs available.

The instruction is nullified.

Monitored SRM Descriptor Exception

See Descriptor Access Exceptions earlier in this chapter.

Monitored SRQ Descriptor Exception

See Descriptor Access Exceptions earlier in this chapter.

Monitored TDE Descriptor Exception

See Descriptor Access Exceptions earlier in this chapter.

Operation Exception
An operation exception occurs when:

« The execution of an instruction with an invalid
operation code is attempted.

Operation codes of hex 00, 40, and FF are invalid. The

instruction is suppressed.

Page Read Error Exception

A page read error exception occurs when:

« A bring (VMC function) or a page fault could not read
a given page from the disk. This exception initiates
the reporting of logical damage to the System/38

instruction set.

The instruction is terminated.

Supervisor Linkage and Exception Presentation 6-23

Program Event Monitoring Exception
A program event monitoring exception occurs when:

« Program event monitoring is specified and the
designated event occurs.

The instruction is nullified.

See Program Event monitoring in Chapter 9 for a
description of the exception condition.

Second Chain Search Exception

A second chain search exception occurs when:

« The Grant Hold or Free Hold instructions determine
that a secondary chain must be searched.

The instruction is nullified.

Send/Receive Counter Overflow Exception

A send/receive counter overflow exception occurs
when:

« A carry from the high-order position of the count
field occurs during a send operation.

The exception cannot be masked and the operation is
terminated. This exception does not occur for the
implicit send count operations caused by the event or
timer functions.

The instruction is terminated.

6-24

Specification Exception

A specification exception occurs when:

An instruction address does not designate a location
on an even-byte (halfword) boundary.

An instruction stream crosses a segment boundary.
The exception is recognized after the execution of an
instruction that ends on, but does not cross a
segment boundary.

Programming Note: Because of a hardware restriction
on Models 3, 4, and 5, the last fullword of a segment
should not contain any portion of an instruction.

An operand address does not designate an integral
boundary in an operation requiring such integral
boundary designation.

A branch, call, or jump address does not designate a
location on an even-byte (halfword) boundary.

The multiplier or divisor in decimal arithmetic exceeds
15 digits and sign.

The first-operand field is shorter than or equal to the
second-operand field in decimal multiplication or
division.

No in-use CRE (call/return element) is on the TDE
(task dispatching element) during an SVYX (supervisor
exit) operation.

An IMP object used in any queuing operation or a
key operand in a dequeue or receive type operation
crosses a page boundary or is not fullword aligned.

The second or third operand of a Compute Subscript
Address instruction is zero.

An enqueue or send type operation designates a TDE
or SRM (send/receive message) that is currently
enqueued (descriptor bit 5 = 1).

Invalid | (immediate) field in dequeue, receive, or
interval timer instructions.

The source field of an EDPD (Edit Packed Decimal)
instruction is greater than 31 digits.

The current stack entry is not doubleword aligned
when accessed by the FCN2 instruction.

The current stack entry is too short for the FNC2
instruction.

The address of the FRAT (function routine address
table) is not halfword-aligned when accessed by the
FNC2 instruction.

The first operand address of a CALLI, STST, or LVT
instruction does not start aligned on a 16-byte
boundary.

Both operand addresses of a MVAST instruction do
not start aligned on a 16-byte boundary.

The second<operand address of an AHSPOI, AHSPO,
or AFSPO instruction does not start aligned on a
16-byte boundary.

The address of the available hold record does not
start aligned on a 16-byte boundary for the GHR or
GHREF instructions.

In an EPDE instruction the primary directory entry
specified is for a V=R address.

In an EPDE instruction the primary directory entry
specified and its associated virtual address are not on

the same hash chain.

In an RPDE instruction the primary directory entry
specified is not on the specified hash chain.

The length is negative in a TRIM instruction.

In an STSOP instruction a binary underflow was
detected when the space locator was subtracted from
the address contained in the first operand.

In a CVTMC instruction the result record length is O.

In a CVTCM instruction the source record length is O.

« A source or result field offset is specified beyond the
end of the related source or receiver operand for a
CVTCM, CVTMC, CVTCS, or CVTSC instruction.

« An algorithm modifier other than hex 00 or 01 is
specified for a CVTCM or CVTMC instruction.

« The length of the first operand as specified in register
R14, or the length of the second operand as specified
in register R15 is O for a CVTCM, CVTMC, CVTSC,
or CVTCS instruction.

« A single mode SCAN is specified and the mode
control value in byte O of the control operand
(operand 1) specifies different modes for the base
string and scan character (bits O and 1 are not equal)
for a SCAN instruction.

« Bits hex 2 through 7 of byte O {mode control field) of
the control operand are not O for a SCAN instruction.

« A source record length of O is specified, and record
processing is also specified for a CVTCS instruction.

« The value of the unconverted source record bytes
parameter is greater than the source record length for
a CVTCS instruction.

« Invalid values are specified in the algorithm modifier
byte for a CVTCS or CVTSC instruction.

« A result field record length of O is specified, and
record processing is also specified for a CVTSC
instruction.

« The value of the unconverted result field record bytes
parameter is greater than the result field record
length for a CVTSC instruction.

« The algorithm modifier bit 2 = O (no transparent data

in source), and transparency conversion status is
active for a CVTSC instruction.

« The field length of a CVSFB or CVLFB instruction is
invalid.

The instruction is suppressed.

Supervisor Linkage and Exception Presentation 6-25

A specification exception condition associated with (1)
an SVL (supervisor linkage) implicit receive for a CRE,
(2) and SVX implicit send of a CRE, (3) a timer event
SENDC (send count), or {4) an |1/0 event SENDC causes
a machine check.

A specification exception occurs when the Enqueue Task
Dispatching Element instruction references the TDQ
(task dispatching queue) or a TDE that is misaligned or
crosses a page boundary or when the Dequeue Task
Dispatching Element instruction references a similarily
invalid TDQ. All other references to an invalid
{misaligned or page boundary crossing) TDQ or TDE by
the processor result in a machine check.

Implicit SVL instructions are indicated in Appendix B.

Stack Exception
A stack exception occurs when:

« A stack operation attempts to add a stack entry
which extends beyond the stack limit value.

« An unstack operation attempts to remove the first
stack entry within the segment of the stack (bit 15 of
the last halfword of stack header = 1).

The instruction operation is suppressed.

Task Interval Timer Exception

A task interval timer exception occurs if the task interval
timer is decremented through zero during the execution
of a timed task. A task interval timer exception causes
control to be passed to the exception handling routine.
Verify Exception

A verify exception occurs when:

« An LVT, AHSPOI, ASHPO, or AFSPO instruction
detects an invalid operand.

The instruction is suppressed.

6-26

INSTRUCTION LENGTH COUNT AND
INSTRUCTION ADDRESS REGISTER SETTINGS

Program Exceptions and Instruction Length Count
Settings in Chapter 2 describes, in general, how the ILC
(instruction length count) and IAR (instruction address
register) fields of the CRE (call/return element) or TDE
(task dispatching element) are set after an exception
occurs. This section provides more detail about how
certain specific situations are handled.

The AR value stored into the CRE or TDE is reduced by
the value contained in the instruction length register and
zero is stored into the ILC field of the CRE or TDE for
the following situations:

A programmable address compare exception.
« An address translation exception.

« A completed implicit or explicit SVL (supervisor
linkage) that encounters one or more access
exceptions.

« Any queuing instruction that encounters an access
exception.

« Any of the interruptible operations that are suspended
due to an external interrupt or page fault. The
interruptible instructions are:

Dequeue Message

Enqueue Message

Receive Message

Send Message

Send Message and Wait

Move Characters Long

Compare Logical Characters Long

Edit Packed Decimal

Trim

Convert Characters to Multi-Leaving
Remote Job Entry

Convert Multi-Leaving Remote Job
Entry to Characters

Convert Characters to SNA

Convert SNA to Character

« An unsatisfied receive for the following operations:
Receive Count
Receive Message
Supervisor Linkage Short
Supervisor Linkage Single
Supervisor Linkage Double
Any of the implicit SVLs

9

9

C

The ILC field value is made zero and the IAR field value
is not reduced for the following situations:

« When a programmable address compare exception
that is not on the instruction stream occurs, for
example, data or 1/0.

« When filling the MCLB (machine check log buffer) on
a soft machine check report.

« A task interval timer exception occurs.

« When a task is switched out (except when no CRE
was available during an exception SVL). In the case
of an exception SVL with no CRE available, the value
of the IAR and ILC fields are determined by the type
of exception that occurred.

« If in PEM (program event monitor) mode and a PEM
exception occurs.

The value of the ILC field is unpredictable in the CRE or
TDE if a HMC procedure is also indicated in the CRE or
TDE as follows:

« When a new task is switched in, the ILC field value is
loaded into the instruction length register. If no
program exception is pending, the new task is
switched in and the IAR is reduced by the ILC prior
to the execution of the first instruction. When initially
built, a new TDE should have the ILC initialized to
zero.

« When a Supervisor Exit instruction is executed, the
ILC field value is ignored. If no specification
exception is detected during execution of the
Supervisor Exit instruction, the instruction length
register is made zero; if a specification exception is
detected, the instruction length register is left as is
(containing a value of 2) and the exception is
presented.

Supervisor Linkage and Exception Presentation

6-27

This chapter describes the interface between IMP-IOM
(I/0 manager) tasks, which translate system 1/0
requests into a form recognizable by the 1/0 channel
(channel-directed commands), and OU (operational unit)
tasks, which execute the translated 1/0 requests within
the channel. The format and meaning of the information
passed across this interface is described in detail.

A general view of System/38 1/0 structure is shown in
the following diagram. The interface under discussion is
the IMP-channel interface.

The other levels of interaction are described in the
Channel Theory-Maintenance manual.

Interface Overview

Chapter 7. 1/0 and Asynchronous Events

Internal Microprogramming

IMP Channel Interface

Channel

Standard Channel Interface

Channel Connect Units

® Microprogramming 1/0
controllers

® Hardwired 1/0 controllers

External Interface

External World

® Devices

® External processors
® Other

1/0 and Asynchronous Events

7-1

The IMP-channel interface is sufficiently generalized to
allow user to user communications with any source of
asynchronous events; for example, 1/0 devices, external
processors, and operator commands from the system
console.

The interface mechanism used for the IMP-channel
interface is the send/receive queuing structure described
in Chapter 5. All interfaces are handled by exchanges of
messages between tasks on send/receive queues. The
following illustration is an overview of the IMP channel
interface mechanism.

1I0M
(1/0 manager task)

Send Receive
Message Message
Operational Unit Queue Input/Output Manager Queue
(commands) (responses)
Y

TDE List

Message SRQ | TDE List Message
List List

SRM 1 IOM-TDE SRM 1

SRM X SRM X
¥/ T
Receive Send
Message Message
\
Operational
Unit Task

7-2

From the viewpoint of an IMP-IOM task, |/O and other An overview of System/38 |/0 structure is shown in
L asynchronous operations appear similar to any other Figure 7-1.

running IMP task.

Rather than interrupting IMP processing to signal an

event or condition, all 1/0 and/or other asynchronous

event sources are handled by channel processing

functions and the OU (operational unit) task. The OU

task can receive messages, send messages, or both.

Main
Storage
IOM 1 IOM X VAT >
A 3 A !
—_— — -t
& Y
(0] | (o] |
U (0] U (0]
IMP-Channel Q M Q M
Interface Q Q
| y
\ Y
\' OU Task 1 OU Task X
A A
\d Y Y Y
Channel Management
HMC Channel ® Direct memory access
® Standard channel interface operation
— Protocol and priority
-~ Bandwidth management
® Command/status interface
® Channel operations (control)
A A
-_— — — — — — —— —— — —— —— —— ——Standard Channel Interface» —— ——
\ \
Adapter 1 Adapter X
A A
—_— — —_— — External Interface — —— —— ——
\ y
Device 1 Device X

: External World

Figure 7-1. System/38 1/0 Structure

1/0 and Asynchronous Events 7-3

Asynchronous Operations

Asynchronous |1/0 operations are requested or enabled
by IOM (I/0 manager)-formed, channel-directed work
requests contained within an ORE (operation request
element). An ORE is a part of an SRM (send/receive
message) in which the text portion has a special
meaning to |/Q OU (operational unit) tasks. The text
portion of the ORE consists of two fields:

« A 2-byte OU response field (BSTAT).

« A 16-byte, IOM-formed, channel-directed command
OB (operation block). An OB, of which there are five
types, is, in effect, a channel instruction executed by
the OU task.

The OB always has a channel order field executed by
the OU task and may have a device order field
containing a specific device command and
command-related information. The device order field is
passed to the device for execution. Of the five OB types
only the FOB (function operation block) contains, in
addition to the channel order field, the device order
field.

Refer to Figure 7-2. An IMP-IOM task can request an
asynchronous 1/0 operation by sending an ORE to a
predefined OUQ (operational unit queue). The OU task
responsible for servicing the queue receives the ORE,
initiates the requested action by executing the OB of the
ORE, and passes any required device command and
command related information to the device identified in
the OB.

An 1/0 device (or other source of asynchronous event),

together with the task that controls the device (or
event), is called an OU (operational unit).

7-4

There is one OU task and one pair of queues (OUQ and
IOMQ) for each OU.

In general, there is a one-to-one relationship between
IOMs and OUs. However, a single IOM can serve
multiple OUs.

Information about the completion of the requested
operation is sent back to the IMP-IOM task when the
OU task places completion status into the 2-byte OU
response field of the ORE and sends the ORE to an
IOMQ (I/0 manager queue) used as a response queue.
The IMP-IOM task obtains the information by issuing a
receive to the IOMQ.

If a SENDMW instruction was used to send the SRM to
an OQUQ, the OU task places the information about the
completion of the requested operation into the 2-byte
OU response field of the ORE. The OU task then
causes the task, whose TDE address is in bytes hex
7A-7F or 122-127 of the SRM, to be enqueued to the
TDQ. It is not necessary for the QU task to issue a
Send Message instruction or for the IMP~IOM task to
issue a Receive Message instruction because the TDE
created the ORE and knows its address.

The response may indicate successful completion or
error conditions for a requested operation.

9

9

ouQ (IMP request queue)

—

Operational Unit Queue

B send

IMP-IOM
Task

IOMQ vy

n Receive

ORE

1/0 Manager Queue

Operational Unit

- _—| Channel

(IMP response queue)

(command completion status)

IMP-IOM Task View:

—
] I Processing
| __ Fumoton_
Y | I/O_ ! !_ Receive I
ORE | Device I | Command
| § End |
ORE | /0 Event |
I | I Handler |
| | s ||
ORE | ‘ Commandl | I
| | |
i > 'cl'):;k —++—a |
Receive Pass
ORE I | | Command I
1) e |
Send ORE
A
ORE -

B issues1/0 request-send ORE to OUQ.
Wait for |/0 completion—receive from IOM queue.

1/0 Event Handler and OU Task View:

~]o]]]

Gets command-receive from OU queue.
Gives command to OU-start signal to device.

Wait for device completion—wait for command end.
Gives completion to OU task.
Indicates command completion to IMP—send ORE to IOM queue.

Figure 7-2. Asynchronous Operation Queuing Structure

1/0 and Asynchronous Events 7-5

Operational Unit Task

The OU (operational unit) task uses HMC functions that
allow an 1/0 unit to participate in the IMP send/receive
queuing structure. A single OU task exists for each 1/0
unit, and like an IMP-10M (I/0 manager) task, is
represented as a separately identifiable unit of execution
in the machine by a TDE (task dispatching element).
The OU task competes for the processor with IMP tasks
and other OU tasks through the priority mechanism of
the TDQ (task dispatching queue). The IMP facilities for
virtual addressing, addressing exceptions, message
queuing, machine check, and task dispatching are
available to OU tasks.

The OU task associated with an 1/0 unit is invoked by
either a channel-processing function (1/0 event handler)
or an IMP-10M task. The specific operation performed
by the OU task is contained in either the ORE (operation
request element) or an |/0 event field located in the
queue control table event stack of the task. The
operations involve command completion functions
(command end and command end-fetch next
command), execution of OBs (operation blocks) and
OPs (operation programs), page fault resolution, and the
modification of addresses contained in 1/0 resolved
address registers.

7-6

The components of an OU task are referred to in the
following diagram:

« A set of HMC procedures.
« Task control information:
— A QCT (queue control table) that contains task
control parameters.
— A QCT event stack that contains 1/0 event fields
to be processed by the OU task.
— An address list containing ALEs {(address list
elements) used in page chaining operations.
« A TDE (task dispatching element).
The OU task performs:
« Execution of OBs and OPs.

« Command completion functions.

« Modifications of 1/0 resolved address registers.

Operational Unit Task Components

HMC Procedures

Control
Table

LN

Task Control Information

I/0 and Asynchronous Events

7-7

Programming Notes:

1. Initialization of the task control information is the
responsibility of the IOM of the OU.

2. The OU has a base register work area (bytes hex
32-91 in the TDE), which must be initialized by the
IOM of the OU in accordance with the following

diagram.
OU Task Base Register Assignment
Bytes
Registers 0 1 2 3 4 5
(hex)
T T T T T
0 Reserved
e ————]
T T I
7 f Reserved
T T —T T T
8 Reserved Key
I T ! B ! Hex B | Control
9 Reserved : Hex DO | |
T T T T T \T
A 1/0 Manager Response Queue Address
T T T T T
B Reserved
T T T T T
C Reserved
I I I 1 I
D Queue Control Table Address
T T T T T
E Operational Unit Input Queue Address
T T T T T
F Search Key Address

IMP OBJECTS: THEIR FORMATS AND OPERATION

The formats and operation of the IMP system objects
TDAQ (task dispatching queue), TDE (task dispatching
element), SRQ (send/receive queue), SRM
(send/receive message), and SRC (send/receive
counter), are described in Chapter 5.

The application of some of the objects in the 1/0
structure and the formats and operational characteristics
of objects unique to the 1/0 structure are described in
the following sections.

Unless otherwise stated, all unassigned fields in the 1/0

object formats are considered to be reserved and must
not be used. Such fields should contain zeros.

7-8

Internal Microprogramming Channel
Objects

OPERATIONAL UNIT

An OU (operational unit) is an 1/0 object consisting of
an OU task and the 1/0 unit (device).

An OU has a unique byte code descriptor used for 1/0
device addressing by an IOM (I/O manager) task, called
the operational unit number. The OU number is in all
OBs (operation blocks) contained in an operation
program.

The OU number in the FOB (function operation block) is
used by the channel to initiate a start device channel
hardware operation.

Assignments

The assignment of OU numbers, channel priorities, and
1/0 resolved address registers for 1/0 units attached to
System/38 is controlled via the system configurator.

Programming Notes: The OU number is a unique, 8-bit
code. For some |1/0 devices the code’s format allows
hardware field-replaceable unit personalization for
multiple 1/0 devices of a given type.

The format of the OU code implemented by 1/0
adapters is:

Modifier Group Device Code

0 Bits 2 4

1/0 and Asynchronous Events

7-9

Bits Description
0-1 Modifier: Indicates multiple devices of a given
type. The 2 bits are hardware programmable at
the card field replaceable unit level on the |/0
port.
00 First device of a given type.
01 Second device of a given type.
10 Third device of a given type.
11 Fourth device of a given type.
2-3 Group: A functional group or category of 1/0

devices (magnetic media, card 1/0,
communications, or other).

00 Group O
01 Group 1
10 Group 2
11 Group 3

4-7 Device Code: A specific device address code.

OPERATIONAL UNIT QUEUE

The OUQ (operational unit queue) is an IMP
send/receive queue used to communicate 1/0 command
request information to a device OU (operational unit)
task from an IMP IOM (I/0O manager) task.

The TDE (task dispatching element) of the OU task is
enqueued to the OUQ when the OU task is not busy.

A Send Message instruction issued to the OUQ from an
I0OM procedure will cause the OU task TDE to be
enqueued to the TDQ (task dispatching queue) for
dispatching.

Elements on the OUQ message list are OREs (operation
request elements) containing OBs (operation blocks) to
be processed by the OU task.

The ORE is obtained by the OU task performing a
receive message operation on the queue. The key
control (search type) and search key used to dequeue
the ORE are contained in the OU task base registers and
the queue control table.

Format: The OUQ header format is the same as an SRQ
(send/receive queue) header with a key length
specification of 4 bytes. This format is shown in Figure
7-3 and the description is in Chapter 5.

Programming Notes:

1. The OUQ header is fullword aligned and must not
cross a page boundary. It may be located in any
virtual or real storage location (subject to the above
restriction).

2. The address of the OUQ header and the key control
used during the receive message operation is
provided in the base registers of the OU task. Note
that the fields must be initialized before an IOM
procedure issues a Send Message instruction to the
queue.

3. The 4-byte search key used by the OU task to
dequeue an ORE during the receive message
operation is in the queue control table. Note that the
field must be initialized before a Send Message
instruction is issued by an IOM task.

4. The key length of all elements on the OUQ is 4
bytes. One OUQ exists for each OU task in the
system.

5

Descriptor First TDE Address
0 Bytes 2
Reserved Key First Message Address
Lth-1

8 9 A Bytes
Reserved

10 Bytes
Reserved

18 Bytes

20

Figure 7-3. 1/0 Manager Queue, Operational Unit Queue and Send/Receive Queue Headers

1/0 MANAGER QUEUE

The IOMQ (/0 manager queue) is an IMP send/receive

queue used to communicate |/0 command response

information to an IOM (I/0 manager) task from a device

OU (operational unit) task. Elements on the IOMQ

message list are OREs (operation request elements) that

have been processed by the OU task and contain
command completion status. The completed elements
are enqueued on the list by the OU task performing a
send message operation.

The position of the ORE on the message list is
determined by the key field in the ORE and the key
control used for the send message operation.

If the TDE (task dispatching element) of an IOM task is
enqueued to the IOMQ wait list, it is enqueued to the
TDAQ (task dispatching queue) when the OU task
performs the send message operation.

Format: The IOMQ is an SRQ (send/receive queue)
with a key length specification of 4 bytes. This format is
shown in Figure 7-3 and the description is in Chapter 5.

Programming Notes:

1.

The IOMQ header must be fullword aligned and must
not cross a page boundary. It may be located in any
virtual or real storage address.

. The address of the IOMQ to be used by a OU task is

contained in the base registers of the OU task. Note
that the address must be initialized before any Send
Message instructions are issued to the OUQ serviced
by the OU task.

. The key length specification of all elements on the

IOMQ is 4 bytes. In general, one IOMQ wiill exist for
each IOM task in the system.

1/0 and Asynchronous Events 7-11

OPERATION REQUEST ELEMENT

The ORE (operation request element) is an IMP
send/receive message element used to communicate
1/0 command and response information between an
IOM !/0 manager) procedure, and an OU (operational
unit). As illustrated in Figure 7-2, the ORE is farmed
and enqueued to the OUQ (operational unit queue) by
the IOM procedure 1ising a Send Message instruction
(label 1 in the figure). The Send Message instruction
contains both the OUQ header address and the address
of the ORE to be enqueued.

The OU task removes each ORE from the OUQ by
performing a receive message operation. The address of
the dequeued ORE is contained in the OU task base
registers during the processing of the operation blocks
contained in the ORE (label 3 in Figure 7-2).

When all operation blocks in the ORE have been
processed by the OU task and its associated 1/0 device,
the ORE, containing command completion status, is
enqueued to the IOMQ by a send message operation
performed by the OU task (label 7 in Figure 7-2).

Note: The ORE is not physically moved in main storage
during the above operations. The ORE is enqueued and
dequeued from the OU and IOM queues through the
manipulation of addresses.

Format:

Descriptor Next Message Address

0 Bytes 2
QU Status
K R d
& eserve (BSTAT)
8 Bytes (o4 E
Operation Block

1C Bytes 20

Bytes Bytes

(Hex) Bit Description (Hex) Bits Description

0-1 Descriptor: The object descriptor for E 5 Command Reject: Is set when a device
an SRM (send/receive message) adapter detects an invalid command or
element. See Chapter 5 for the SRM is in a state that prevents execution of
bit description. the FOB command.

2-7 Next Message Address: The virtual 6 1/0 Error: Is set when a device
address of the next ORE in a list, when dependent error condition is detected
the ORE object is enqueued on an OU during execution of an FOB command.
or IOMQ.

7 Command Complete: Is set when an

8-B Key: The value used to enqueue and FOB command has been executed to
dequeue the ORE from the OU and successful completion by the OU.

I0OM queues.
F 0-7 OU Status: May contain either device

C-D Reserved: Must be zeros. dependent status provided by the 1/0

device at the completion of a FOB

E-F OU Status (BSTAT): OU status command or an OP (operation program)
information for the IOM procedure that error provided by the OU task. Use of
initially issued the ORE. The OU status this byte is optional and device
may be formed by either the device dependent.
adapter or OU task. Excluding the
operation program error status provided 10-1F Operation Block: Can contain one of
by the OU task, the OU status field is the following operation blocks: POB
updated for each FOB (function program operation block), FOB
operation block) executed in an ORE. (furction operation block), AOB

(address operation block), or MOB

The usage of each status bit is described below. (message operation block). A fifth

operation block, the LOB (loop

Bytes operation block), may not appear in an

(Hex) Bit Description ORE.

E 0 Reserved: Must be zero. Descriptions of the operation block

formats and their operations are
1 Operation Program Error: Is set when provided under Operation Blocks in this
an error condition is detected during chapter.
the processing of OBs (operation
blocks) by the OU task. The specific
type of error is indicated in byte hex F Programming Notes: The ORE must be doubleword
of the ORE. aligned and may not cross a page boundary. It may be

located at any virtual or real address.

2-3 Reserved: Must be zeros.

4 1/0 Exception: Is set to indicate a
device exception condition during the
execution of an FOB command by a
device adapter (the |/0 exception may
be suppressed if command complete
bit is also set).

1/0 and Asynchronous Events 7-13

OPERATION BLOCKS

The OBs (operation blocks) contain command requests
to an OU (operational unit) from an IOM (/0 manager)
procedure. The OBs are included in an ORE (operation
request element) and are processed by the QU task of
the OU.

The five OB types are:

POB (program operation block)
« FOB (function operation block)

+ AOB (address operation block)

LOB (loop operation block)

MOB (message operation block)

The formats and operations of the five OBs are
described in the following sections.

Formats: The OB is a 16-byte object that must be
aligned on a doubleword boundary, and may not cross a
page boundary.

As indicated in the first diagram, byte O contains a type
code to indicate the specific OB. Byte 1 contains control
information used by the OU task during the execution of
the OB. The type code and control bit assignments for
each OB type are shown in the second diagram.

Operation Blocks: Types and Control Information.

Control

Operation Block

{contents are type-dependent)

|2 Bytes
Byte 1 (Control)
Operation| Byte 0
Block (Type 0 1 2 3 q 5 6 7
Type in Hex)
POB D7 Reserved (hex 00)
FOB Cc6 End of Set Page coad
Operation Data Chain | Unique
Program Address 1/0
Registers
AOB C1 End of Save Modify [Decrement| Set
Operation Data Address Data
Program Address Address
MOB D4 ‘End of Message
Operation
Program
LOB D3 End of
Operation
Program

1/0 and Asynchronous Events

7-15

Types of Operation Blocks

Program Operation Block

The POB (program operation block) specifies that a
sequence of OBs (operation blocks) are to be executed
by the OU (operational unit) before the ORE (operation
request element) is returned to the IOM (I/O manager)
program. The OBs associated with the POB are referred
to as an operation program.

A POB contains the address of the first OB in the
operation program and the address of the current (or
last) OB in the operation program processed.

During the processing of OBs, the address of the
current OB is maintained in bytes 2-7 of the POB and
the current OB address field is incremented by 16 as
each OB in the program is processed. The LOB (loop
operation block) may be used in the operation prograrn
to modify the current OB address nonsequentially.

At the successful completion of an operation program,
the current OB address field contains the address of.the
last OB processed.

Format:
'I;\;pe Control Current Operation Block Address
0 1 2 Bytes
ou Reserved Operating Program Address
8 9 A Bytes

10

Bytes

(Hex) Description

0 Type: POB type code (hex D7).
1 Control: Control field (hex 00).

2-7 Current OB Address (virtual address): The field
must be initialized with the address of the first
OB to be executed in the operation program.

Following successful execution of the operation
program, the field contains the address of the
last OB processed. If the operation program is
terminated due to an error, the field contains
the OB address in process when the error was

detected.
8 OU: A valid OU (operational unit) number.
] Reserved: Must be zeros.

A-F Operation Program Address: Virtual address
of the first OB (operation block) in the operation
program. The field is not modified during the
operation program.

Programming Notes:

1. The POB must be aligned on a doubleword address
boundary, and may not cross a page boundary. It
may not be imbedded in an operation program.

2. The current OB address field does not have to be the
address of the first OB in the operation program.

Function Operation Block

The FOB (function operation block) conveys command
information to an |1/0 device attached to the channel.
The FOB may be contained in an operation program.

The virtual storage address used by the 1/0 device
during execution of the FOB command is provided by
the data address field and the control field as follows:

« If the control field indicates that page chaining is not
used, then the data address field of the FOB contains
the 1/0 address to be resolved and loaded into the
data 1/0 resolved address register of the device.

« If page chaining is used during the data transfers, the
data address field contains the address of a stack of
ALEs (address list elements).

Bytes hex 8-15 of the FOB provide command
information to the 1/0 device and optionally provide
status from the device following execution of the FOB
command.

1/0 and Asynchronous Events 7-17

Format:

Type

Control

Data Address

2 Bytes

ou

Com-
mand

Command/Response

Bytes

(Hex)

0

Bits

1-3

A Bytes

Description
Type: FOB type code (hex C6).
Control: Control field.

End-of-Operation Program: Is set to
one if the FOB is the last OB in an
operation program; otherwise is zero.

Reserved: Must be zeros.

Set Data Address: When set, causes a
virtual address to be resolved and
loaded into the 1/0 resolved address
register specified by the data register
field of the QCT (queue control table).
The actual address to be resolved is
determined by the page chaining bit.

Page Chaining: If the page chaining bit
is set, when the set data address bit is
set, then the 1/0 address to be
resolved and loaded into an 1/0O:
resolved address register is located in
an ALE (address list element)
addressed by the data address field of
the FOB.

Bytes
(Hex)

10

Bits

6

Description

Load-Unique 1/0 RAR (resclved
address register):

When the lcad-unique 1/0 RAR bit is
set simultaneously with the set data
address and page chaining bits, it
indicates that the data address in the
first ALE stack entry will be resolved
and loaded into the 1/0 resolved
address register specified by the CMD
REG field of the queue control table,
plus one. When the unique 1/0 RAR
is loaded into the specified CMD REG
field, HMC interrogates byte 9, bit 1
and byte hex A. If byte 9, bit 1 is zero
and byte A does not equal hex 01, then
the unique register is marked invalid
and the store allowed bit in the QCT is
set.

After loading the unique 1/0 resolved
address register, the OU task will load
the address of the second ALE stack
entry into the QCT ALE pointer field.
When the 1/0 adapter transfers a
load-multiple 1/0 register function
event to the channel, the 1/0 event
handler will load ALE data addresses
into consecutive 1/0 resolved address
registers, starting with the data register
specified in the QCT. The unique 1/0
RAR is marked valid and the store
allowed bit is set or reset to reflect the
state of the store allowed bit in the
QCT.

Reserved: Must be zero.

C

Bytes
(Hex)

2-7

Bits

Description

Data Address: Either an |/O address
or the address of the first ALE (address
list element) of a page chain address
list if the set data address bit is set.
The field should contain zeros if the set
data address bit is zero. If page
chaining is used, then the address must
be virtual = real.

OU: A valid operational unit number.

Command: An |I/0 command code to
be interpreted and executed by the 1/0
device. The format of the CMD field is
as follows:

Device Dependent Control: A device
dependent command code defined by
each device adapter.

Control: An 1/0 command that may or
may not involve a data transfer to or
from/ main storage.

Read: An |/O command that involves
a data transfer from an 1/0 device to
main storage.

The change bit in the primary directory
entry (bit 42) for the page to be
resolved is set to the value of the read
bit when the set data address bit (byte
1, bit 4) of the control field is set.

Write: An I/O command that involves
a data transfer from main storage to an
1/0 device.

Note: The contents of bits 5-7 are not
recognized by horizontal microcode.

Bytes
(Hex)

A-F

Bits

Description

Command/Response: Provides
command information to the device and
optionally provides extended response
status from the device.

Two formats of the
command/response field are defined in
the following diagram. Implementation
of the field format is command
dependent with only one format valid
per FOB.

The basic format provides 6 bytes of
device/command dependent
information in addition to the OU field
and the CMD field (see the following
diagram). The second

command /response format provides 2
bytes of device/command dependent
information (bytes hex A and B) and 4
bytes of response status referred to as
FSTAT (functional status).

The definition of FSTAT is
device/command dependent (see
Chapter 9) and may be used by the
device to provide command completion
status in addition to the completion
status provided in the OU status field
of the ORE (cperation request element).

1/0 and Asynchronous Events 7-19

Formats:

FOB Command/Response Fields (Bytes 8-F)
Format 1

ou Com- Device Command Dependent
mand
8 9 A Bytes 10
Format 2
ou. | Com | poveicommane
8 9 A Bytes c 10

Note: Unused portions of the command/response
field should be filled with zeros.

Programming Notes:

1. The FOB must be aligned on a doubleword address
boundary and may not cross a page boundary.

2. The 1/0 data address provided in either the data
address field or an ALE (address list element) must
be aligned on a doubleword address boundary.

3. The addresses in the ALE stack (page chain address
list} must be virtual = real if the load unique 1/0
register bit is on.

4. Unused portions of the command/response field
must be filled with zeros.

5. The address of the page chain address list (ALE
stack) must be virtual = real.

Address Operation Block

The AOB (address operation block) provides the ability
to save, modify, or load the 1/0 resolved address
registers during the processing of an operation program.

The operation of the AOB is controlled by bits 4-7 of
the control field. Proper settings of the control bits
provide the ability to perform selected portions of a
read, modify, and store cycle. The control bits provide
the ability to load the address contained in the 1/0
resolved address register into the AOB, modify the
address in the AOB, and to resolve the address
contained in the AOB and load the selected 1/0
resolved address regis:er.

7-20

The 1/0 resolved address register involved in the AOB
operation is selected by adding the register modify field
(byte hex A) in the AOB to the data register field (byte
3) of the QCT (queue control table). The register modify
field is treated as an unsigned logical quantity. For
example, if the data register field in the QCT of the
operational unit task contains hex 10, then a register
modify field value of hex 01 in the AOB would result in
the selection of 1/0 resolved address register hex 11.

When an address in the AOB is resolved and loaded
into an 1/0 resolved address register, the change bit in
the page directory entry for the virtual page is set to the
value of the read bit in the command field.

Format:

Type
Cc1

Control

Data Address

Modify
Address

Bytes

ou

Com-
mand

Register
Modify

Reserved

Address
Mcdifier

A

Bytes

10

Bytes

(Hex) Bits

1-3

Bytes
Description (Hex)
Type: AOB type code (hex C1).
Control: Control field.

End Of Operation:

0 AOB is not the last OB (operation
block) in an operation program.

1 AOB is the last OB in an
operation program.

Reserved: Must be zeros.

Save Data Address: Causes the offset
portion of the virtua! address contained
in the selected 1/0 resolved address
register to be loaded into AOB bytes
6-7. The SID (segment identifier)
portion of the virtual address must be
preloaded into AOB bytes 2-5 by the
associated IOM. The save operation is
performed prior to any address
modifications (modify address control
control bit) or address resolution (set
data address control bit).

Bits

Description

Modify Address: When set, causes the
address contained in AOB bytes 6-7 to
be modified by the value specified in
AOB'bytés hex E-F (address modifier
field). The address modifier field is an
unsigned logical quantity and can either
be added or subtracted from the
address according to the value of the
decrement bit. Any carry or borrow
generated during the modification is
indicated as an operation program
error.

Bytes 2-5 of the AOB are not affected
by the address modification.

Decrement: When set, causes the
address modification specified by the
modify address bit to be an unsigned
subtraction.

Set Data Address: When set, causes
the address in AOB to be resolved and
loaded into the selected 1/0 resolved
address register.

1/0 and Asynchronous Events 7-21

Bytes
(Hex) Bits

2-5

6-7

B-D

E-F

Description

Data Address: The SID portion of a
virtual address used during an AOB
operation.

Modify Address: The offset portion of
a virtual address used during an AOB
operation.

OU: A valid operational unit number.

Command: Provides control for setting
the change bit in the PD (primary
directory) entry for the virtual address
that is resolved and loaded into an 1/0
address register. The byte is formatted
like the command field of the FOB
(function operation block); however,
only the read bit (bit 6) is used during
the processing of the AOB. If a set
data address operation is selected, the
change bit in the PD entry for the
virtual address is set to the value of the
read bit in the command field.

Register Modify: An unsigned logical
quantity used to generate the effective
1/0 resolved address register number.
For V=V data address the maximum
value of the Register Modify field is
hex OE. A value greater than hex OE
will generate an operation program
error. For V=R data addresses the
value contained in the Register Modify
field is not constrained.

Reserved: Must be zeros.
Address Modifier: An unsigned logical

quantity used to modify the address in
the AOB data address field.

Programming Notes:

1.

The resultant virtual address in the data address field
of the AOB must be aligned on a doubleword
address boundary. On an AOB read (save data
address) only the offset is obtained from the 1/0
register. Programming must supply the SID (segment
identifier) in bytes 2-5 of the AOB and may have to
supply the offset value.

. The operations selected by the control bits in the

control field are performed in the following sequence:
a. Save data address

b. Modify address

c. Set data address

. An operation program error (described later in this

chapter) occurs if the selected register number
exceeds the number of 1/0 resolved address
registers available on the system (see //O Resolved
Address Registers in this chapter).

. An operation program error occurs if the register

modify field value is greater than hex OE and the
address in the data address field is not V=R.

. An operation program error will be indicated if the

modified address crosses a segment boundary.

. If the AOB read/modify/write or read/write is to be

done, then the 4-byte SID of the address to be read
must be supplied by the user generating the AOB.

. An operation program error will be indicated if the

decrement bit is on while the modify bit is not on.

9

9

Loop Operation Block

The LOB (loop operation block) helps provide sequence
control of the operation blocks in an operation program.

Each time the LOB is encountered during the execution
of an operation program, the count field of the LOB is
incremented by 1 and compared to the contents of the
limit field. If the modified count is less than the limit
value, then the next OB (operation block) to be

processed by the OU (operational unit) task is located by

subtracting the offset field from the current OB address
field of the POB (program operation block) in the ORE
(operation request element).

If the modified count field equals or exceeds the limit
value, then the count field is set to zero and the next
sequential OB in the operation program is executed. [f
the limit field is initially zero, the LOB is treated as a
no-operation and the next sequential OB is executed.

If an operation program containing an LOB terminates
before completion, the count field in the LOB will
contain the number of times the OB loop was executed
before the error situation was detected.

Format:
Type Control Reserved Offset
D3
0 1 2 Bytes 6
ou Reserved Count Limit
8 9 Bytes Cc E

10

I1/0 and Asynchronous Everits

7-23

Bytes
(Hex) Bits

0

1-7
2-5

6-7

E-F

7-24

Description

Type: LOB type code (hex D3).
Control: Control field.
End-Of-Operation Program:

0 LOB is not the last OB in an
operation program.

1 LOB is the last OB in an
operation program.

Reserved: Must be zeros.
Reserved: Must be zeros.

Offset: Used to modify the current OB
address field in the POB. The offset
value is the number of OBs in the loop
multiplied by 16.

OU: A valid operational unit number.
Reserved: Must be zeros.

Count: The number of times the LOB
has been processed. The count field is
set to zero when the count equals or
exceeds the limit value.

Limit: The number of times the OB
loop is to be processed. The limit field
is not modified by the OU task.

Programming Notes:

1. An operation program error occurs if the modified OB
address is less than the operation field in the POB.

2. The LOB may not appear in an ORE (operation
request element).

3. If the LOB is the last OB of an operation program,
the program is not completed until the count of the
LOB equals the limit value.

Message Operation Block

The MOB (message operation block) causes an IMP task
or an OU (operation unit) task to become dispatchable
during the execution of an operation program. This
facility can be useful in prefetching, for example, items
such as virtual storage pages and data translation
operations.

If the message bit of the MOB is set, then an implicit
Send Message instruction is performed by the OU task
processing the MOB. The Send Message instruction
causes the SRM (send/receive message) element whose
address is specified by the message address field of the
MOB to be sent to the SRQ (send/receive queue)
designated by the address contained in the target
address field. Any TDE (task dispatching element) on
the SRQ wait list is enqueued on the TDQ (task
dispatching queue) as a result of the operation.

If the message bit is reset, then an implicit Send Count
instruction is performed with the address of the SRC
{send/receive count) provided in the target address field
of the MOB.

Format:

Type
D4

Control

Target Address

Bytes

ou

Reserved

Message Address

Bytes
(Hex)

0

Bits

1-3

4

5-7

Description

Bytes

Type: MOB type code (hex D4).

Control: Control field.

End-Of-Operation Program:

0 The MOB is not the last OB

{operation block) of the operation
program.

1 The MOB is the last OB of the

operation program.

Reserved: Must be zeros.

Message:

0 A Send Count instruction is to be
performed.

1 A Send Message instruction is to
be performed. The address of the
SRM element to be used in the
Send Message instruction is
provided in the message address

field.

Reserved: Must be zeros.

10

Bytes
(Hex) Bits

2-7

Description

Target Address: The virtual address
of the SRQ (send/receive queue) or
SRC (send/receive counter).

OU: A valid operational unit number.

Reserved: Must be zeros.

Message Address.

Programming Notes:

1. Depending on the priorities of the TDEs (task
dispatching elements) placed on the TDQ (task
dispatching queue), a task switch can occur following
the execution of the MOB by the OU task. When the
OU task that issued the MOB again becomes the
current task, the processing of the operation program
will resume with the OB following the MOB.

2. The key control (search type) used during a Send
Message instruction is contained in the OU task base

register.

1/0 and Asynchronous Events 7-25

Operation Program

An operation program consists of one or more OBs
(operation blocks) associated with a single ORE
(operation request element). The OBs of the
rwnoperation program are processed to completion by
the OU (operational unit) task before the ORE is
returned to the IOM (/0O manager) task (via the 1/0
manager queue). The operation program can contain
FOBs, AOBs, MOBs, and LOBs.

The LOB (loop operation block) is used to modify the
current OB address in the POB (program operation
block) during OU task execution, providing the capability
for nonsequential execution of OBs.

7-26

Operation Program Example

The following example shows how different types of
operation blocks can be combined to form an operation
program. The example is a printer operation program.

An IMP task uses a send instruction to enqueue OREs
to the OUQ (operational unit queue) of the printer. This
0OUQ is associated with a single OU (operational unit),
for example, a printer and control adapter. The first
ORE on the queue contains an FOB (function operation
block) that causes the printer to restore and print a
single line. At the completion of the operation, the OU
task notifies the IMP task by placing a status byte in the
ORE and issuing a Send Message instruction to send
the entire ORE to the OU IOMQ (I/0O manager queue).
The IOMQ is not shown in the example.

9

Example of a Printer Routine

SRQ First TDE Address First Message Address

SRM Next Message Address FOB ou Restore
SRM POB Current OB Address Operation Program Address
- Set
AOB Data Address ou
Reg
FOB ou Print and Space 1
Send
MOB en Target Address ou
Count
Save
AOB & Set ou
LOB Offset ou Loop 3
End
FOB Op ou Restore

The print program:
® Prints three lines

® |ndicates to a target queue each time a line is
printed via an MOB

1/0 and Asynchronous Events 7-27

Programming Notes:

1. The OBs (operation blocks) of the program must be
aligned on contiguous doubleword address
boundaries.

2. The operation program can be located at any virtual
(or virtual = real) address, subject to the above
consideration. The operation program can not cross a
segment boundary.

3. The last OB of the program must have the end of
operation program bit set. If an LOB (loop operation
block) is the last OB, then the program will not
complete until the value of the LOB count field is
equal to the value of the LOB limit field.

7-28

QUEUE CONTROL TABLE

The QCT (queue control table) is an OU (operational
unit) task control object used by the IOM (I/O manager)
procedure, the OU (operational unit) task receiving OREs
(operation request elements) from an OU queue, and the
I/0 event handler. A QCT must exist for each OU task
in the machine.

The QCT contains an SRC (send/receive counter) object
used by the 1/0 event handler routine to dispatch an
OU task and certain physical parameters associated with
the particular 1/0 device. Certain fields of the QCT are
used by the QU task during the processing of operation
blocks in an ORE.

The device IOM task can access the QCT to modify
certain parameters used by the OU task and 1/0 event
handler.

9

Format:

QCT Entry
Com- Dat
Type Control | mand a "_i Event Count Event Offset Event Limit
D8 R Register
Register
0 1 2 3 4 Bytes 6 8
Current ALE Address SRC .
Descriptor
A Bytes 10
First TDE Address SRC Count SRC Limit
12 Bytes 18 1A
Ke FOB Timer FOB Timer
v Count Limit
1C Bytes 20 22 24
QCT Event Stack Entry
1/0O Event
0 Bytes 4

1/0 and Asynchronous Events

7-29

Bytes
(Hex)

0]

Bits

Bytes
Description (Hex) Bits
Type: QCT type code (hex D8). 1 (cont) 3

Control: Control field.
Lock:

0 The 1/0 event handler does not
post any event field directed to
the QCT to the channel IOM
QCT.

1 The 1/0 event handler posts any
event field directed to the QCT to
the channel IOM QCT.

The bit is set by the event handler if

the QCT event stack is full and is

set by a device IOM task when any 4
fields in the QCT are being modified.

Chain Address: Set by the OU task
during the processing of the FOB
(function operation block) with both set
data address and page chaining bits
set. The bit, when set, causes the
event handler to obtain the virtual
address to be resolved from an address
list during the servicing of an address
event.

FOB In Progress:

0 A command has not been issued
to an 1/0 adapter.

1 A command has been issued to 5-7
an 1/0 adapter.

This bit is set when an FOB is
issued to an 1/0 adapter and reset
when the 1/0 adapter responds with
a command end or a command
end/fetch next command.

Description
FOB Timing In Process:

0 VMC does not reset the FOB
timers.

1 If this bit is set and the
FOB-in-progress bit is reset,
the VMC resets the FOB
timers.

This bit is set by VMC to indicate
that VMC has updated the FOB
timers. This bit is reset by the OU
task when the 1/0 adapter issues a
command end or a command
end/fetch next command.

Store Allowed On Data Registers:
0 Store not allowed.

1 When an 1/0 adapter requests
a load multiple 1/0 register
function, the store allowed bit
is set in the 1/0 data register.
This allows the 1/0 adapter to
transfer data into storage.

This bit is set when the OU task
processes the FOB if bit 6 of the
FOB command field is set. This bit
is reset when the 1/0 adapter
responds with a command end or
command end/fetch next command.

Reserved: Must be zeros.

Command Register: The address of
the 1/0 resolved address register used
by a device to access bytes hex 8-F of
the FOB. Each device on the system
must have an assigned command
address register.

<9

C

Bytes
(Hex)

3

6-7

8-9

Bits

Description

Data Register: The address of the
primary data address register used by
the 1/0 device. If more than one data
address register is required by the
device, the data register byte contains
the address of the lowest numbered
register assigned to that device.

If the device does not require any data
address registers, the data register field
must be the same as the command
register field.

Event Count: The number of events in
the QCT event stack. This field is
incremented by the event handler when
event fields are placed on the QCT
event stack.

Event Offset: The address offset,
within the same QCT segment, to the
beginning of the QCT event stack.

Event Limit: The number of 4-byte
event entries that can be put into the
QCT event stack.

Current ALE Address: A virtual = real
address to an ALE (address list
element) in a page chain address stack.
The address is valid only during the
execution of an FOB in which page
chaining is used.

This field is modified by the event
handler as each address is obtained
from the page chain address list.

Bytes
(Hex)

10-1B

1C-1F

20-21

22-23

Bits

Description

Send/Receive Counter: Controls the
dispatching of the OU task. The OU
task issues a Receive Count instruction
to increment the count of the SRC; the
event handler issues a Send Count
instruction.

SRC fields are:

Hex Byte Contents

10-11 SRC descriptor
12-17 First TDE address
18-19 SRC count
1A-1B SRC limit

Key: The search key operand during
the Receive Message instruction
performed by the OU task.

FOB Timer Count: Time elapsed for
current FOB in n-second increments;
maintained by VMC (vertical
microcode).

FOB Timer Limit: Timing limit for FOB

in n-second increments; maintained by
VMC.

1/0 and Asynchronous Events 7-31

Programming Notes:

1. The QCT (queue control table) must be in V=R (virtual
= real) storage and doubleword aligned. The QCT
must not cross a segment boundary. The QCTs for
all OU (operational unit) tasks must be in the same
V=R segment.

2. Certain fields in the QCT must be initialized by the
I0M (1/0 Manager) of the OU prior to dispatching
the OU task. All fields except the following should be
initialized to zeros.

a. Type (byte 0): Set to the QCT type code of hex
D8.

b. Cmd Reg (byte 2): Set to the address of the
command address register for the device.

c. Data Reg (byte 3): Set to the address of the data
address register for the device. If no data address
registers are required, the byte must contain the
command address register number (same as byte
2).

d. Event Offset (bytes 6-7): Set to the address,
within the segment, of the first byte of the QCT
event stack.

e. Event Limit (bytes 8-9): Set to the number of 4
byte event fields allocated in the QCT event stack.
The limit value must be greater than or equal to

four.

f. SRC Descriptor (bytes hex 10-11): Initialized to
hex 8000.

g. SRC Limit (bytes hex 1A-1B): Initialized to hex
0001.

h. Key (bytes hex 1C-1F): Initialized to the key value
used to dequeue OREs (operation request
elements) from the OUQ (operational unit queue).

3. The IOM may modify QCT entries only if the OU task
is on the wait list of either the OUQ or the QCT-SRC

(send/receive counter) of the OU task.

7-32

QCT EVENT STACK

The QCT (queue control table) event stack contains /G
event fields to be processed by the OU (operational unit)
task. The event fields are placed on the stack by either
the IOM (I/0 manager) task or the event handler and
are removed and processed by the OU task in a first in,
first out manner.

The event offset field of the QCT provides the offset
address to the beginning of the stack. The event limit,
event count, and SRC count fields of the QCT are used
by the event handler and OU task when posting or
removing fields from the stack.

Although the event fields are normally placed on the
QCT event stack by the event handler; an 1/0 manager
task, under certain circumstances, can place an event
field on the stack prior to dispatching the OU task.

The IOM must perform the following steps to place an
entry on the stack or modify the QCT:

1. Set the lock bit in the control field of the QCT, to
prevent the event handler from posting an event
while the IOM is modifying the QCT fields.

2. Test for open entries in the event stack field of the
QCT.

3. If the event count equals the event limit, reset the
event count to hex 0000.

4. Place the 4-byte event field on the event stack at
the address equal to the event offset + four times
the event count.

5. Increment the event count field by one.

6. Reset the iock bit to zero.

After the above steps are completed, the CU task is
dispatched to service the event by the IOM issuing a

Send Count instruction to the send/receive counter in
the QCT.

5

9

Programming Notes:

1.

The QCT event stack must be aligned on a word
address boundary and located in the same virtual =
real resident segment as the QCT.

. One QCT event stack must be allocated for each

QcCT.

. The maximum size of the QCT event stack associated

with the particular QCT is determined by the number
of event fields that may be posted in the stack from
the device or event handler. A minimum size of four
is specified (event limit = hex 0004).

. The maximum number of entries allocated for the

QCT event stack is determined by the number of
function events that may be posted to the OU task.
The minimum number of entries allocated must be
greater than or equal to four. If the stack is full
(event count is equal to the event limit field) when
the event handler attempts to place an event on the
stack, the event handler sets the lock bit in the QCT,
changes the event field to an error event, and posts
the event field to the QCT event stack of the channel
operational unit.

ADDRESS LIST ELEMENT

The ALE (address list element) is an 8 byte object
containing a virtual or virtual = real address to be used
during page chaining operations. The ALE is a single
element in a page chain address stack used during the
processing of a function operation block command.

The first ALE data address field is loaded into the data
register specified in the QCT (queue control table) and
the address of the ALE is placed in the QCT in the ALE
pointer field. If the end of multiple load bit in the ALE
control field is not set, the next ALE is processed. This
next ALE data address field is loaded into the data
register calculated by adding 1 to the value of the
previous data register number. The address of the ALE
is then placed in the QCT-ALE pointer-field in the QCT.
ALEs are continually processed until the end of multiple
load bit is encountered. A maximum of 14 1/0 data
registers may be loaded in this manner.

1/0 and Asynchronous Events 7-33

Format:

Type
C3

Control

Data Address

Bytes

0]

2-7

7-34

Bits

2-7

2 Bytes

Description

Type: ALE type code (hex C3).
Control: Control field.

End Of List:

0 Not the last member of an ALE
stack.

1 The last member of an ALE stack.

End Of Multiple Load:

The 1/0 resolved address registers
starting with the primary data register
specified in the QCT, are ioaded with
resolved addresses contained in the
ALE list up to and including the ALE
having the end of multiple load bit set.
A maximum of 14 contiguous 1/0
resolved address registers can be
loaded.

Reserved: Must be zeros.
Data Address: A virtual or virtual =

real address to be used during page
chaining.

Programming Notes:

1.

The address list element must be aligned on a
doubleword address boundary.

. The address list element stack must be located in a

virtual = real segment. The virtual = real address of
the first ALE in the stack is in bytes 2-7 of the
function operation block using page chaining.

. The location pointed to by the ALE data address

must be aligned on a doubleword boundary.

1/0 Storage Addressing

1/0 RESOLVED ADDRESS REGISTERS

The 1/0 resolved address registers are hardware
registers in the processor that contain resolved virtual
addresses and are used by an |/0 device to access
command information, post command completion status,
and to transfer device data to or from real storage.

The 1/0 resolved address register assignments (made at
system specialization time) are passed to devices at
initialization time, for example, when an active session is
first established.

The number of 1/0 resolved address registers assigned
to a particular device is variable up to a maximum of 15.
A single device requires a command register to address
the command/response field of the function operation
block and one or more data registers for the transfer of
device data.

The 1/0 resolved address register, used during a
channel operation, is selected by the device.
Addressability of a maximum of 256 address registers is
provided by all models of the 5381 System Unit.
Addressability of a maximum of 384 address registers is
provided by all models of the 5382 System Unit.

Whenever a newly resolved virtual address is loaded
into an |1/0 resolved address register, the use count in
the primary directory entry (see Chapter 8) for that
address is incremented. When the 1/0 resolved address
register is invalidated, the use count is decremented.

Notes:

1. Unless loaded by FOB (function operation block) or
an AOB (address operation block), an 1/0 resolved
address register contains an address that may have
been modified by the last instruction of an FOB. The
modification is device dependent.

2. For those devices using multiple contiguous 1/0 data
address registers, only the first (primary) data address
register is uniquely specified in the queue control
table for that OU (operational unit) task.

PAGE CHAINING

The page chaining facility of the |/0 structure transfers
device data, during the execution of a single function
operation block, to several noncontiguous pages. The
operation is referred to as page chaining, since the
address used by the device during the storage transfers
is changed only on page boundaries.

Page chaining is invoked during the OU task processing
of an FOB. The set data address and page chaining
control bits of the FOB must be set prior to the initiation
of the OU task. When both bits are a 1, the address in
the data address field of the FOB is a V=R address of
the first ALE (address list element) of a page chain
stack. This address is placed into the QCT (queue
control table) for use by the event handler. (See the
following diagram.)

The event handler accesses the QCT (queue control
table) of the device to determine if page chaining is
being used. The QCT contains the page chaining control
bit set by the OU task and the ALE pointer field, which
is updated (from the data address field of the FOB)
during each boundary crossing, to point to the next ALE
in the page chain stack.

The first ALE of the page chain stack is accessed by the
OU task and the address in the ALE is resolved and
loaded into the data address register of the device.
Following resolution of the address in the ALE, which
may be either virtual or V=R, a start device command is
issued to the channel hardware.

A page boundcary crossing is always indicated by the
VAT (virtual address translator) hardware if page
chaining is used and the address contained in the
register is modified across a page boundary.

The page boundary crossing is serviced by the event
handler. The new address to be resolved is obtained
from the next ALE in the page chain stack instead of
using the address in the 1/0 resolved address register.

Notes:

1. The page chain must be in a V=R segment.

2. The data addresses contained in the address list
element can be either virtual or V=R.

3. Page chaining still occurs at a page boundary even
though the address in the ALE is V=R.

1/0 and Asynchronous Events 7-35

Page Chain Stacking

QcCT FOB
Type (D8) Control Command Data Type (C6) | Control Data
11011000 Register Register 11000110 | xxxx11xx Address
[\
l)
Set Data Address Bit ! lPage Chaining
o+-——————————————— = bt ——
Bit
Page Chain Stack
1/0 Resolved Address Registers ALE | Data Address
< { ALE Data Address
y
- [ALE Data Address

A

A

A

€

ALE Data Address ()

ALE Data Address

__/_N

A

PAGE FAULTS

Page faults can occur during the modification of
resolved virtual addresses in 1/0 resolved address
registers during channel operations or during the
resolution of virtual addresses contained in operation
blocks.

If a resolved virtual address in an 1/0 resolved address
register is incremented or decremented across a page
boundary during channel operation, the 1/0 event
handler attempts to resolve the address by reference to
the primary directory. If the virtual address is not in the
primary directory, the 1/0 event handler performs a
send count to make the OU task dispatchable to resolve
the page fault using the IMP exception mechanism.

A page fault occurring during the execution of an
operation block by an QU task is also resolved through
the IMP exception mechanism (address translation
exception).

7-36

VIRTUAL = REAL

The IMP virtual address mechanism is used by 1/0
devices operating on the channel. Virtual addresses
containing virtual = real SIDs (segment identifiers) can
be used as 1/0 addresses in operation blocks.

Note: Page crossing and page chaining are handled by
the event handler without need for a task switch.

1/0 ADDRESSING RESTRICTIONS

Addresses of 1/0 objects have boundary and alignment

restrictions (see the following table).

1/0 Object Address Restrictions

Address
1/0 Object! Alignment Address Type Cross Page Boundary
ORE (operation request element) Doubleword V=V, V=R No?
OB (operation block) Doubleword V=V, V=R No
OP (operation program) Doubleword V=V, V=R Yes
QCT (queue control table) Doubleword V=R? Yes
QCT Event Stack Word V=R?3 Yes
ALE (address list element) Doubleword =R Yes
ALE Stack Doubleword =R Yes
1/0 Event Stack Word V=Vv4 No
1/0 Register Table Halfword =R No
1/0 Event Stack Word V=V No
Data Address Doubleword V=V, V=R Yes

No object may cross an SID (segment identifier) boundary.
2The first 32 bytes may not cross a page boundary.

3Must be in the same V=R segment as the /0 register table.
4Must start and end on a page boundary, and the page must be pinned V=V.

1/0 and Asynchronous Events

7-37

1/0 Events

An 1/0 event is a unit of work requested by the
channel, device, or IOM (I/0O manager) task of an OU
(operational unit) task or the 1/0 event handler. This
unit of work is described by 4 bytes called an I/0 event
field. The I/0 event can be one of three types:
function, address, or error.

1/0 EVENT FIELDS

The general formats of the |/O event field for the three
event types are:

Function Event

0000

§6f Event-Dependent

0 1 Bytes 4

Legend: f = 4-bit function type code

Address Event

1/0
10e0 Register | Hex 00 | Hex 00
eeee
Number
0 1 2 Bytes 4

Legend: e = event-dependent

Error Event

elee eeee eeee eeee
eeee eeee eeee eeee

0 1 2 Bytes 4

Legend: e = event-dependent

7-38

Function Event

The function event communicates device or IOM work
requests to an OU task. The function event normally
requested by an |/0 device is the command completion
indication (command end or command end/fetch next
command). The function event used by the IOM task
(fetch next command) is normally used to restart an QU
task following an error situation.

Command End/Fetch Next Command

The command end/fetch next command function is
requested by an |/0O device at the completion of an FOB
(function operation block) command. The function event,
when requested by an 1/0 device, signifies that the
current FOB has been successfully completed and the
OU (operational unit) task can proceed to process
operation blocks in the current ORE (operation request
element) if they are available. If the operation blocks in
the current ORE have been processed, then the OU task
places the ORE on the IOMQ (I/O manager queue), the
response queue, and requests (for example, receives) a
new ORE from the OU queue.

The command end/fetch next command function event
contains the BSTAT (basic status) information provided
by the I/0 device. The BSTAT information is placed
into the OU status field of the ORE by the OU task.

Format:

Hex 01 | IOREG Basic Status

0 1 2 Bytes 4

5

Command End

The command end function event is used by an 1/0
device to communicate error or exception status to the
device |IOM task. The function request indicates that the
device cannot proceed to execute commands until
recovery operations are performed.

The command end event field contains the 2-byte
BSTAT information provided by the device. The BSTAT
information is placed into the OU status field in the
current ORE before the ORE is enqueued on the IOMQ.

Format:

Hex 02 | IOREG Basic Status

0 1 2 Bytes 4

Fetch Next Command

The fetch next command function is normally used by
an IOM task to restart the OU task following an error
situation. The IOM task forms the event field, places
the 4-byte field into the QCT (queue control table) event
stack, and issues a Send Count instruction to the SRC
(send/receive counter) in the QCT to cause the OU task
to be dispatchable.

The fetch next command function causes the OU task to

issue a Receive Message instruction to the OU queue to
obtain a new ORE.

Format:

Hex 03 | Hex 00 | Hex 00 | Hex 00

0 1 2 Bytes 4

Address Event

The address event indicates that a page boundary
crossing occurred during the modification of a resolved
virtual address contained in an 1/0 resolved address
register. If address chaining is not being used by the
device, the virtual address to be resolved is contained in
the 1/0 resolved address register indicated by byte 1 of
the field.

If address chaining is being used, the next virtual
address from the address list will be resolved.

Format: Address events are not seen by the IMP
channel interface; however, for completeness, the
format of the address event is shown below:

1/0
;ggg Register | Hex 00 | Hex 00
Number
0 1 2 Bytes 4

Legend: d = device-dependent

Error Event

The error event communicates error and/or exception
conditions involving the channel hardware, interface, and
specific conditions of devices to an IMP (IOM) channel
error task. The channel IOM task performs logging and
recovery operations and communicates with the QU
tasks of the channel. Refer to Channel Error Recovery in
this chapter for details.

Format:
elee eeee eeee eeee
eeee eeee eeee eeee
0 1 2 Bytes 4

Legend: e = event-dependent

The other function events are described in the Channel
Theory-Maintenance manual.

1/0 and Asynchronous Events 7-39

1/0 EVENT HANDLER

The 1/0 event handler (Figure 7-4) is a horizontal
microcode function that is invoked by the channel

hardware to post an |/0 channel event request to the
processor. The horizontal microcode services the 1/0
events represented by the 1/0 event fields in the event

stack.

Depending on the event field type, the event operation
can be completely performed by the 1/0 event handler
or the 1/0 event handler can send to an OU task to

service the request. The I/O event handler relinquishes
control when all entries in the event stack are removed

and serviced.

1/0 Event Field

Formation
I0M Function Event
—_——

IOM Forms
Device Function Event

Channel Forms

ou

Channel Address Event
Channel Forms

Channel Error Event
Channel Forms

1/0
Event
Stack

;Primary directory
Resolved address register

Figure 7-4. Event Handler Overview

7-40

Update
1/0 RAR?

Address
_____ 4 -
|
Function Yes =
!
Address In No !
PD! :
Form i
Select | Allocate Page, Function !
and Resolve Next Event :
Route | Page Page No !
Referenced :
in PD :
1
1
Error :
i
Throw :
Away :
1
1
1

Update
PD

Task

Channel
ou
Task

1/0 EVENT STACK

The 1/0 event stack is a list of contiguous 4-byte
elements. The elements are 1/0 event fields that are
placed on the stack by the channel hardware. The stack
address used by the channel when placing an entry on
the stack is in the event stack 1/0O resolved address
register (hex 00).

The 1/0 event fields are removed from the event stack
by the 1/0 event handler. The event stack 1/0 resolved
address register is also used by the |/0 resolved event
handler when removing entries from the stack. In
removing entries from the stack, priority is given to the
address event class. Outside of this prioritization, events
are removed on a last in, first out basis.

Programming Note: The event stack must start and end
on a page boundary, must be pinned and V=V storage,
and the page must be resident. This limits the stack to
128 entries. If the event stack overflows, a machine
check will occur.

1/0 REGISTER TABLE

The 1/0 resolved register table provides addressability
to the various queue control tables in the machine. The
table is used by the 1/O event handler to locate the QCT
(queue control table) of the device. The QCT must be
located to place an 1/0 event field in the QCT event
stack and to dispatch the OU (operational unit) task.
Dispatching the OU task is done by issuing a Send
Count instruction to the SRC (send receive counter) in
the QCT.

The 1/0 register table contains a halfword (2-byte) entry
for each 1/0 resolved address register. Each halfword
entry contains an address offset into the segment to
locate a QCT. Each device must have a QCT assigned.
If a device uses multiple 1/0 resolved address registers,
there are likewise multiple entries in the 1/0 register
table. All of the multiple entries for a device contain the
same offset, pointing to the same QCT. For example, if
an 1/0 device is assigned a command register number
of hex 10 (decimal 16) and a data register number of
hex 11 (decimal 17), then halfword locations 16 and 17
of the |1/0 register table would contain the same offset
so they would both point to the same QCT.

Programming Notes:

1. The 1/0 register table is aligned on a halfword
address boundary and must be in the same V=R
segment as all queue control tables. The address of
the 1/0 register table is in the control address table
(described in Chapter 2).

2. If an 1/0 resolved address register is not assigned to
a device, then the corresponding entry in the table
must contain hex FFFF. The event handler will then
change the event to an error event and post it to the
channel IOM.

3. The 1/0 register table must not cross a segment
boundary.

4. 1/0 resolved address register 2 (hex 02) contains the
address of the channel QU task QCT.

1/0 and Asynchronous Events 7-41

I/0 Command Responses

INPUT/OUTPUT STATUS FIELDS

The types of 1/0 status information defined are:
« BSTAT (basic status)

« FSTAT (functional status)

« DSTAT (device status)

The read sense command (issued to the operational unit
task) returns at least 2 bytes of DSTAT. Either
additional read sense commands, or additional (more
than two) DSTAT bytes, or both, can be defined to
allow program access to all or additional DSTAT
information.

The status information is contained in the description for
each adapter or device. Only a general description is
given here because the information is device dependent.

Basic Status

The BSTAT (basic status) consists of 2 bytes of adapter
response data. The adapter response is provided to the
channel along with the command end or command
end/fetch next command indication. Status is stored in
the 1/0 event stack by channel hardware and is moved
to the OU (operational unit) status field of the ORE
(operation request element) (operational unit) by the OU
task (see Figure 7-7). Only the first byte of BSTAT is
required; the second byte is optional.

7-42

Bit

0-1

2

BSTAT bytes are as follows:

Description
Reserved for the channel.
Halt:

0 No device halt condition
detected by the channel.

1 Device halt condition detected
by the channel.

Channel Error:

0 No error detected during
channel transfers.

1 Error detected during channel
transfers.

1/0 Exception:

0 No device exception condition
detected.

1 Device exception condition
detected.

Note: 1/0 exceptions can be
suppressed. An exception is
suppressed when the condition
that causes the exception does
not inhibit setting the command
complete bit (bit 7). A
suppressed condition sets the
1/0 exception bit on.
Suppression is a device option
and may or may not be
programmable. Examples of 1/0
exceptions that might be
suppressed are last card on card
units and incorrect length on tape
units.

Bytes

(Hex) Bits Description

Command Reject:

0 Command was acceptable for
execution.

1 Operational unit is not
designed for, or is in a state
that prevents, command
execution.

6 1/0 Error:

0 No error detected by the
operational unit during
execution of a function
operation block.

1 Error detected by the
operational unit during
execution of a function
operation block. A read sense
command must be issued to
receive the device status bytes
to determine the error
condition.

7 Command Complete:

0 Command specified by an
operation block has not begun,
or not successfully completed
execution.

1 Command specified by an
operational block has
successfully completed
execution.

1 Optional and need not be supplied
by the operational unit. This byte is
set to zeros by the channel if not
supplied by the operational unit.

Functional Status

The FSTAT (functional status) consists of from 1 to 4
bytes of operational unit information that can be
required by the program for normal device operation,
such as returning a record length from a tape unit.

The FSTAT is transferred into the response portion of
the command response field (see Figure 7-7) of the
FOB (function operation block) using the OU (operational
unit) /0 command register.

The FSTAT is device-dependent and may be
command-dependent. The FSTAT is also optional.

If the IOM (I/O manager) needs to interrogate FSTAT
before the next operation block is executed, |/0
exception must be set and command end must be
indicated to the channel by the operational unit.

Device Status

The DSTAT (device status) consists of any number of
bytes defined by a device for its status.

The DSTAT is transferred to the data field of the Read
Sense command, using the operational unit primary data
register. The bytes contain information required for
proper device maintenance.

The DSTAT bytes common to all devices are defined as
follows:

Byte Description

o Same as BSTAT byte O of previous FOB
(function operation block) command executed
by the adapter.

1 If BSTAT byte 1 is used by the operational
unit, DSTAT byte 1 is the same as the
BSTAT byte for the previous FOB. If BSTAT
byte 1 is not used by the operational unit,
DSTAT byte 1 is device dependent.

All remaining DSTAT bytes are device~dependent and
optional.

1/0 and Asynchronous Events 7-43

Intervention-Required Signal

The 1/0 units that require operator intervention include
one or more commands that indicate when the condition
is cleared. Intervention-required conditions include:

¢ Printers
— End of form
— Forms jam

« Card Machines
— Stacker full
— Hopper empty

« Tape Units
— Tape not mounted

An intervention-required condition is cleared when the
operational unit can execute functional commands, such
as, print, read card, read block, and so forth. The I/O
error or |/0 exception status is returned for all such
functional commands when an intervention—requiréd
condition is present.

To test if the intervention-required condition has ended,
a special command type is used. For example, a printer
could use a return-ready command. This command
notifies the program when an intervention-required
condition, such as end of form, is cleared and the
printer made ready. The 1/0 unit (printer and
attachment) does not complete the command until the
intervention-required (new forms loaded) condition is
cleared and the printer made ready (by pressing the start
key).

Device conditions other than intervention-required allow
immediate execution of the return ready with |/0
exception or 1/0 error status bits set. All printer
commands other than return-ready immediately execute
with the 1/0 exception or 1/0 error status bit set.

FUNCTION OPERATION BLOCK TIME-OUT

The FOB (function operation block) time-out capability
of the system provides a mechanism for testing active
1/0 operations to determine if a channel end or device
end interrupt has been outstanding for more than the
period of time specified at system specialization.

The FOB time-out mechanism is implemented in the
channel IOM (I/0 manager) routines for all 1/0 devices
except disks which have an implementation-dependent
time-out mechanism. Fields included in each device
QCT (queue control table) to maintain the information
for FOB timing are:

Field Description

Control Byte 1, bit 2- FOB in progress

FOB Timer Bytes hex 20 and 21-time

Count elapsed for current FOB in
n-second increments

FOB Timer Bytes hex 22 and 23-

Limit timing limit for FOB in
in n-second increments

Operation.

The following sequence describes the operation of the
FOB time-out mechanism:

1. The device IOM program loads a value appropriate
for the FOB to be executed into the QCT prior to
sending the ORE (operation request element) to
the OU (operational unit) task. The limit byte in
the QCT provides a range of FOB time-out values
with 1 to 255 timing intervals.

2. The OU task processes the ORE received from the
IOM, loads the appropriate command and data
registers, sets the FOB-in-progress bit in the
QCT, and initiates the start-device sequence to the
channel hardware.

3. The channel IOM, concurrent with the processes
described above, tests all device QCTs, on
n-second intervals for an active FOB-in-progress
bit. The actions taken by the channel IOM when it
detects an FOB-in-progress are shown below.

FOB-In- FOB Timing-

Progress In-Progress Channel IOM Action

1 0 Resets count byte; sets
FOB timing-in-progress bit
1 1 1. Increment count byte.

2. If count byte =
limit byte, then
send time-out
MSG to device
I0M; else EXIT.

4, The device OU task resets the FOB-in-progress
and the FOB timing-in-progress bits in the QCT
when the device posts a CE (command end) or a
CE/FNC (fetch next command).

1/0 EXAMPLE

Figure 7-5 (parts 1 through 14) depicts the sequence of
events in an |/0O operation under the assumption that
the OB (operational block) contained in the ORE
(operation request element) is an FOB (function
operation block).

Figure 7-6 (parts 1 through 13) depicts the sequence of
events in an |/O operation which is similar to that of
Figure 7-5, but which makes use of the SENDMW
instruction.

Note: The dotted arrows represent an action of the
processor and the solid arrows represent a pointer.

1/0 and Asynchronous Events 7-45

With no 1/0 operations taking place, the IOM (I/0

manager) task [fJj is on the RDQ (task dispatching
queue) ready to run and the OU task [fJ is in the wait
list of the OUQ (operational unit queue).

The QCT (queue control table) for this OU task was
initialized at IPL (initial program load) time with the

entries shown.

When the IOM task becomes the top priority task on
the TDQ, the I/0 operation starts.

1/0 Manager Queue

Task Dispatch Queue

Operational Unit Queue

[e]\%[e]

First TDE
Address

D))

First Message
Address

TDQ

oua

First TDE
Address

First Message
Address

\

TDE 10M Task

TDE Task B

Queue Control Table

TDE OU Task

Command Register Number

Data Register Number

QCT Event Stack Offset

SRC

Figure 7-5 (Part 1 of 14). Sequence of 1/0 Operations

The IOM task issues a Send Message instruction
to the OUQ.

n The Send Message instruction puts an ORE on the
message list.

1/0 Manager Queue Task Dispatch Queue

Operational Unit Queue

First TDE First Message First TDE First Message
IOMQ
Address)) Address Tha B oua Address Address
7
/
'/
TDE I10M Task TDE OU Task B3| ore | ou Number
TDE Task B
Queue Control Table
Command Register Number
Data Register Number
QCT Event Stack Offset
SRC
o~ ~
Figure 7-5 (Part 2 of 14). Sequence of 1/0 Operations
1/0 and Asynchronous Events 7-47

Because the QU task is on the wait list of the

0uUQ, the Send Message instruction puts the OU
task on the task dispatch queue in priority
sequence. When the OU task is dispatched, the
OU task base registers are loaded with task
control information resident in the OU TDE.

1/0O Manager Queue

Task Dispatch Queue

Operational Unit Queue

First TDE First Message First TDE First Message
Q ouQ
oM Address)) Address TDbQ Address)) Address
|
| |
TDE OU Task [+ — —|-— TDE OU Task | ORE OU Number
|
L J
/
TDE 10M Task
TDE Task B
OU Task Base Registers Queue Control Table
1OMQ Address Command Register Number
0oUQ Address Data Register Number
QCT Address
QCT Event Stack Offset
-l

Figure 7-5 (Part 3 of 14).

Sequence of 1/0 Operations

SRC

The OU task issues a Receive Message instruction n
dequeuing the ORE from the OUQ [EJ

The OUQ address, IOMQ address, and the QCT address
are contained in the base register space n of the OU
task.

n The addresses of the executing ORE and the
current OB (operation block) are stored in OU task
base registers.

[} The OU task locates the QCT via an OU task base
register entry.

1/0 Manager Queue Task Dispatch Queue

Operational Unit Queue

a '

OU Task Base Registers

TDE IOM Task

TDE Task B

10MQ Address

Current ORE Address

F Current OB Address

OuUQ Address

QCT Address -—————————

Figure 7-56 (Part 4 of 14). Sequence of 1/0 Operations

First TDE First Message First TDE First Message
1I0M >
Q Address) Address TDa B ouva Address ‘)) Address
Y
TDE OU Task ﬂ ORE OU Number

Queue Control Table

Command Register Number

Data Register Number

QCT Event Stack Offset

SRC

I/0 and Asynchronous Events 7-49

The OU task uses the command register number m to
locate and load an I/0 RAR (resolved address register)
m with the resolved address of the command/response
field (byte hex 18 of the ORE).

BB 'f required, an 1/0O RAR is located by the data
register number and loaded with the address in
bytes 2-7 of the operation block.

m The OU task requests a start device sequence of
the channel hardware. The device can now
transfer additional command and data information
without direct CPU involvement.

m The OU task issues a Receive Count instruction to
the SRC (send receive counter) in the QCT. The
SRC is initialized with a count of zero and a limit
of one.

1/0 Manager Queue Task Dispatch Queue

Operational Unit Queue

IoMQ TDQ

Address Address

First TDE)) First Message

First TDE
Address

oua

First Message
Address

14 ORE

Y
TDE OU Task
Y
OU Task Base Registers TOE |OM Task
\
TDE Task B

10MQ Address

Current ORE Address

Current OB Address

0UQ Address 1/0 Registers (RAR)
QCT Address
Command Address
Data Address m
~ ~L ~

Figure 7-5 (Part 5 of 14). Sequence of 1/0 Operations

7-50

OU Number

Queue Control Table

Command Register Number

Data Register Number

QCT Event Stack Offset

[B| src

I8 Because the SRC count is zero and less than the
limit of one, the OU TDE is chained to the SRC,
waiting for a command completion request from

the 1/0 device.

1/0 Manager Queue

Task Dispatch Queue

Operational Unit Queue

First TDE First Message First TDE First Message
I0Ma Address >5 Address Tba oua Address ’) Address
{_ ¥ B
|— -I TDE OU Task : ORE OU Number
| N
I Y
OU Task Base Registers } TDE |OM Task
I \
Queue Control Table
| TDE Task B
I0MQ Address I
Current ORE Address I Command Register Number
Current OB Address |— —> TDE OU Task Data Register Number
OUQ Address
1/0 Registers (RAR)
QCT Address QCT Event Stack Offset
Command Address
L»{ SRC m
Data Address
-~ ~L -~ ’JL’
" N

Figure 7-5 (Part 6 of 14). Sequence of 1/0 Operations

1/0 and Asynchronous Events

7-51

Control passes (task switch) to the task with the
highest TDE priority. In this example, [OM task
has priority so it resumes execution at the point
following the Send Message instruction of the
ORE to the OUQ.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
JoMa First TDE{ First Message TDQ oua First TDE First Message
Address Address Address Address
Y
TDE IOM Task ORE | OU Number
/
TDE Task B
Queue Control Table
Command Register Number
TDE OU Task Data Register Number
1/O Registers (RAR)
- QCT Event Stack Offset
Command Address
SRC
Data Address _I ,J

-~ —~L

Figure 7-5 (Part 7 of 14). Sequence of 1/0 Operations

7-52

has to wait for the completion of the 1/0
command, the IOM task TDE issues a Receive
Message instruction to the IOM queue.

[B Because there are no messages on the IOMQ

When the IOM task TDE reaches a point where it

message (msg list), the IOM task TDE is queued

to the IOMQ wait list.

HJ Control passes to the task with the highest
priority. In this example, task B would begin
execution.

1/0 Manager Queue

Task Dispatch Queue

Operational Unit Que

ue

First TDE First Message First TDE First Message
1omMa Address) 5Address m Tba ouva Address Address
\ 77y —
19 ! '
TDE IOM Task - — — — — — — —I TDE IOM Task | ORE OU Number
| I
e |—_
A
Ey| Toe Task B
Queue Control Table
Command Register Number
TDE OU Task Data Register Number
1/0 Registers (RAR)
QCT Event Stack Offset
Command Address
—»1 SRC
Data Address
~ L =4

~ ‘J.’

Figure 7-5 (Part 8 of 14). Sequence of 1/0 Operations

1/0 and Asynchronous Events 7-53

Bl Upon completing the command, the device
supplies command completion information to the
channel. The channel uses this information to form
a 4-byte 1/0 event field (function event type in
this case) and place this field on the 1/0 event
stack (see Figure 7-7). Channel hardware now
signals an 1/0 channel event to the processor.

1/0 Manager Queue

Task Dispatch Queue

Operational Unit Queue

First TDE|) First Message First TDE } First Message
l1omMa Address lAddress TDQ oua Address) Address
A
TDE IOM Task TDE Task B ORE OU Number

Queue Control Table

Command Register Number

Data Register Number

QCT Event Stack Offset

TDE

OU Task SRC

~L

Figure 7-5 (Part 9 of 14). Sequence of 1/0 Operations

7-54

1/0 Event Stack

m 1/0 Event Field

A channel HMC (horizontal microcode) routine, called m
L the 1/0 event handler, executes when the processor

accepts the 1/0 channel event. The event handler does
not execute as a task (no task switch occurs).

m The present task is temporarily suspended.

The 1/0 event handler accesses an event field in m
the 1/0 event stack.

The event handler accesses an 1/0 register table
entry using the |/0 register number in the 1/0
event field as an offset into the table.

The I/0 register table entry (QCT offset) is used
to locate an offset pointer in the OU QCT.

The QCT entry (QCT event stack offset) is used to
locate an entry point in the OU QCT event stack.

The event handler moves the event field from the
1/0 event stack (see Figure 7-7) to the QCT event
stack and increments the event count in the QCT.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
P i First TDE First Message
First TDE First Message
ioma Alt;dress)) Address ThQ oua Address \) Address
\
TDE IOM Task TDE Task B 22] ORE | OU Number

Queue Control Table

QCT Event Stack

Command Register Number

Data Register Number

1/0 Event Field

Event Count

-
)
(

QCT Event Stack Offset

L5
M, |

1/O Event Stack

r
]

1/0 Event Field

1/0 Reg Table
QCT Offset E —
TDE OU Task » SRC
—
‘ Figure 7-5 (Part 10 of 14). Sequence of 1/0 Operations

L L L

1/0 and Asynchronous Events 7-55

] A Send Count instruction is issued by the event
handler to the QCT SRC header. The Send Count
instruction increments the SRC count.

BBl The TDE of the OU Task is placed on the TDQ in
priority sequence.

The event handler repeats the sequence (in this
example, numbered 23-29) until all entries are removed
from the 1/0 event stack.

/0 Manager Queue

Task Dispatch Queue

Operational Unit Queue

Figure 7-5 (Part 11 of 14). Sequence of 1/0 Operations

First TDE First Message First TDE First Message
ioma Address) } Address TDQ oua Address Address
29] I— —
TDE 1OM Task I——— — —->| TDE OU Task | ORE OU Number
| | |
| e _1
|
I \
| TDE Task B
1/0O Reg Table {
| Queue Control Table
QCT Offset |
| QCT Event Stack
. - I
I Command Register Number
|
| Data Register Number 1/0 Event Field
| Event Count -~ ~L
k Off:
: QCT Event Stack Offset 1/O Event Stack
| I
| | ToE OU Task | src HO 1/O Event Field
[|
I R P I ~L

Control Passes to the TDE with the highest
priority. In this example, the OU task begins
execution.

The OU task issues a Receive Count instruction to
the QCT SRC. This implicitly tests for waiting
events in the QCT event stack.

BBl The OU task locates the 1/0 event field and
checks the channel command byte of the event
field for the function event type.

When the function event type is a command
completion indication, that is, if command end or
command end/fetch next command is the function
type, then the BSTAT field of the 1/0 event is
moved to the OU status field of the ORE. (See

Figure 7-7.)
1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Message
TDQ oua
IoMQ Address)YAddress Address 3) Address
Y \
TDF | 10M Task TDE ouTask [N ORE | OU Status

TDE Task B

OU Task Base Registers

Queue Control Table

10MQ Address

QCT Event Stack

Current ORE Address

Command Register Number

Current OB Address

- - —— Y]

Data Register Number m /O Event Field

ouo

Event Count

QCT Address

QCT Event Stack Offset - —

SRC

Figure 7-5 (Part 12 of 14). Sequence of |/O Operations

1/0 and Asynchronous Events 7-57

If command end is the command completion
indication, the OU task issues a Send Message
instruction to the IOMQ, placing the ORE on the

IOMQ.

m The OU task then issues a Receive Count

instruction to the QCT SRC. The OU task now
resides on the QCT SRC wait list, waiting for an

H} If (instead of Fffl and [J§) command end/fetch next
command is the command completion indication,
the OU task checks the current OB (operation

block) for the last OB in ORE. When the current
OB is not the last OB, the task processes the next
OB. If the current OB is the last OB, the task

I0OM work request to be placed on the QCT event list.

stack.

1/0 Manager Queue

Task Dispatch Queue

issues a Send Message instruction to IOMQ,
placing the current ORE on the IOMQ message

Operational Unit Queue

First TDE First Message First TDE First Messa
IoMQ ge
Address)SAddress Tba oua Address Address
\ Y
TDE 10M Task TDE OU Task
\ m \
ORE OU Number | . TDE Task B
{35}
OU Task Base Registers Queue Control Table
Command Register Number
|OMQ Address Data Register Number
Current ORE Address
Current OB Address QCT Event Stack Offset
0ouUQ Address
QCT Address Ed| src
. —

Figure 7-5 (Part 13 of 14). Sequence of 1/0 Operations

<

1/0 Manager Queue

Because the TDE of the IOM task is on the IOMQ
wait list, the Send Message instruction to the
I0MQ places the IOM task on the TDQ in priority
sequence.

The OU task now issues a Receive Message
instruction to the OUQ. With no messages (OREs)
queued to the OUQ message list, the OU task is
dequeued from the TDQ and placed on the OUQ
wait list.

The I0M task resumes execution (task switch) if it
is of higher priority than task B.

Task Dispatch Queue

Operational Unit Queue

First TDE First Message First TDE First Message
loma Address)3 Address TDQ oua Address Address
oy }_____FF——__} ‘
[
| TDE 1OM Task | | TDE OU Task ———- TDE OU Task
| |] |
I | _— e —_
T
I 1
|
| ORE
I
| /
L
- ——————— — —>| TDE oM Task | KJ3
\
TDE Task B

Figure 7-5 (Part 14 of 14). Sequence of 1/0 Operations

1/0 and Asynchronous Events

7-59

With no |/0 operations taking place, the IOM (/0
manager) task is on the TDQ (task dispatch queue)
ready to run, and the OU task is on the wait list of
the OUQ (operational unit queue).

The QCT (queue control table) for this OU task was
initialized at IPL (initial program load) time with the
entries shown.

When the IOM task becomes the top priority task on
the TDQ, the |/0 operation starts.

1/0 Manager Queue Task Dispatch Queue

Operational Unit Queue

First TDE First Message
TDQ
iomMa Address)) Address

oua

First TDE
Address

First Message
Address

B| oe IOM Task

TDE Task B

Queue Control Table

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

SRC

Figure 7-6 (Part 1 of 13). Sequence of 1/0 Operations with SENDMW Instruction

7-60

B/ Toe

OU Task

The IOM task issues a Send Message and Wait
instruction to the OUQ.

n The Send Message and Wait instruction puts an
ORE on the message list of the OUQ and
removes the current TDE from the TDQ.

I/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Message
loma Address) 5 Address Tba ouva Address 3) Address

| TDE IOM Task | TDE

OU Task

TDE Task B TDE

IOM Task

| ore Number \\ 10°
OU Number Address

Queue Control Table

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

SRC

Figure 7-6 (Part 2 of 13). Sequence of 1/0 Operations with SENDMW Instruction

1/0 and Asynchronous Events 7-61

Because the OU task is on the wait list of the
0OuUQ, the Send Message and Wait instruction
puts the OU task on the task dispatch queue in
priority sequence. When the OU task is
dispatched, the OU task base registers are
loaded with task control information resident in

the OU TDE.

1/0 Manager Queue

Task Dispatch Queue

Operational Unit Queue

OU Task Base Registers

IOMQ Address

0ouUQ Address

QCT Address

aL -~

Figure 7-6 (Part 3 of 13). Sequence of 1/0 Operations with SENDMW Instruction

7-62

Queue Control Table

First TDE First Message First TDE Fll’St Message
Q
loMa Address ,) Address Tba ou Address 3 Address
gl — ~Z1
| ' e TDE
TDE OU Task. e — _| TDE OU Task : OR OU Number W /. 1oc
- _1
TDE Task B TDE IOM Task <

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

SRC

The OU task issues a Receive Message instruction n

dequeing the ORE from the OUQ .

The OUQ address, IOMQ address, and the OCT address

are contained in the base register space n of the OU

task.

The addresses of the executing ORE and the
current OB (operation block) are stored in the

OU task base registers.

The OU task locates the QCT via an OU task

base register entry.

1/0 Manager Queue

ioMma

First TDE
Address

First Message
Address

Task Dispatch Queue

Operational Unit Queue

TDQ

First TDE
Address

First Message
n ova 3) Address

Figure 7-6 (Part 4 of 13). Sequence of 1/0 Operations with SENDMW Instruction

OU Task Base Registers

10MQ Address

Current ORE Address

Current OB Address

0uUQ Address

QCT Address

TDE
OU Number Address

TDE outask |A ORE
\
TDE Task B TDE 10M Task -t
Queue Control Table
7
7 .
// Command Register Number
7
// Data Register Number
7
Event Count
QCT Event Stack Offset
- "\L

1/0 and Asynchronous Events 7-63

The OU

task uses the command register number to

locate and load an |/O RAR (resolved address register)
m with the resolved address of the command/response
field (byte hex 18 of the ORE).

If required an |/0 RAR is located by the data
register number and loaded with the address in
bytes 2-7 of the operation block.

The OU task requests a start device sequence
of the channel hardware. The device can now
transfer additional command and data
information without direct CPU involvement.

The OU task issues a Receive Count instruction
to the SRC (send receive counter) in the QCT.
The SRC is initialized with a count of zero and a
limit of one.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Message
TDQ
Ioma Address)) Address oua Address Address
Y
' TDE
DE k
T Ou Tas ORE }} ou Number\ Address

OU Task Base Registers

TDE Task B
10MQ Address
Current ORE Address
Current OB Address
0ouQ Address 1/O Registers (RAR)
QCT Address
Command Address
Data Address m
- ~L -

TDE IOM Task

Queue Control Table

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

[B| src

Figure 7-6 (Part 5 of 13). Sequence of 1/0 operations with SENDMW Instruction

7-64

m Because the SRC count is zero and less than
the limit of one, the OU TDE is chained to the
SRC, waiting for a command completion
request from the 1/0 device.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Message
loma Address)5Address Tba oua Address 3) Address

ORE be TDE
OU Number Address

|

|

|

l

<!

Bl

|

|
L1

OU Task Base Registers TDE Task B TDE IOM Task |

Queue Control Table

1OMQ Address

Current ORE Address Command Register Number

L

I_
{

Current OB Address TDE OU Task Data Register Number
0uUQ Address
/O Registers (RAR)

QCT Address QCT Event Stack Offset

Command Address

.| src [
Data Address
ﬁL ~L ﬁL ~
— Av

Figure 7-6 {Part 6 of 13). Sequence of 1/0 Operations with SENDMW Instruction

1/0 and Asynchronous Events 7-65

Control passes (task switch) to the task with
the highest TDE priority. In this example, task
B would begin execution.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Message

TDQ 9

1oma Address)) Address oua Address))l\ddress

Y
TDE
17
k| Toe Task B ORE (ou Number—“ Address
TDE IOM Task -t

Queue Control Table

Command Register Number

TDE OU Task Data Register Number

1/0 Registers (RAR)
QCT Event Stack Offset

Command Address

L SRC

Data Address ,_J

-~ ‘J.a

Figure 7-6 (Part 7 of 13). Sequence of 1/0 Operations with SENDMW Instruction

7-66

m Upon completing the command, the device
supplies command completion information to
the channel. The channel uses this information
to form a 4-byte 1/0 event field (function event
type in this case) and places this field on the
I/O event stack (see Figure 7-7). Channel
hardware now signals an 1/0 channel event to
the processor.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Message
IOMQ 1 A ddress))Address TDQ 0UQ | Address 3 Address
Y
TDE
TDE Task B ORE {{ OU Number Address ‘
DE I0OM Task ol
Queue Control Table T
Command Register Number
Data Register Number
QCT Event Stack Offset
1/0 Event Stack
TDE OU Task SRC BB | /0 Event Field
J - ~_ ~_

Figure 7-6 (Part 8 of 13). Sequence of 1/0 Operations with SENDMW Instructions

1/0 and Asynchronous Events 7-67

A channel HMC (horizontal microcode) routine, called
the 1/0 event handler, executes when the processor
accepts the 1/0 event. The event handler does not

execute

19

as a task (no task switch occurs).
The present task is temporarily suspended.

The 1/0 event handler accesses an event field in
the 1/0 event stack.

1/0 Manager Queue

Task Dispatch Queue

The event handler accesses an 1/0 register
table entry using the 1/0 register number in the
1/0 event field as an offset into the table.

The 1/0 register table entry (QCT offset) is
used to locate an offset pointer in the OU QCT.

The QCT entry (QCT event stack offset) is used
to locate an entry point in the QU QCT event
stack.

The event handler moves the event field

from the 1/0 event stack (see Figure 7-7) to
the QCT event stack and increments the event
count in the QCT.

Operational Unit Queue

i i i First Message
First TDE First Message oua First TDE 4)5
loma Address)5 Address TDQ Address Address
\
TDE
TDE Task B 19 ORE || OU Number \\ , .\
TDE IOM Task -
1/0 Reg Table
Start
}m of SID —_———————————
QCT Offset - - |'
Quere Control Table
QCT Event Stack
- ~ !
Command Register Number |
|
Data Register Number | I—-p 1/O Event Field
I B
Event Count | l ~ o~
| &
QCT Event Stack Offset] | 1/O Event Stack
|
|
|
TDE | OU Task > SRC L+ voEventFied BN
A L
- ~e

Figure 7-6 (Part 9 of 13). Sequence of 1/0 Operations with SENDMW Instruction

7-68

3

A Send Count instruction is issued by the event
handler to the QCT SRC header. The Send
Count instruction increments to the SRC count.

The TDE of the OU Task is placed on the TDQ
in priority sequence.

The event handler repeats the sequence (in this
example, numbered 20-26) until all entries are removed
from the 1/0 event stack.

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

1/0O Event Field

1/O Event Stack

I/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Messa
) TDQ 9e
ioma Address) Address oua Address Address
I
I | TDE
—_—— — DE OU Task
,- -—l T as : ORE { OU Number “ Ad dresJ
[S

! -
[
|) TDE | IOMTask |
| TDE Task B

1/O Register Table I
|

QCT Offset |
Queue Control Table

B L l r E QCT Event Stack
|
|
I
I

—»| SRC

Figure 7-6 (Part 10 of 13). Sequence of 1/0 operations with SENDMW Instruction

~ —

1/0 Event Field

1/0 and Asynchronous Events

7-69

Control passes to the TDE with the highest
priority. In this example, the OU task begins

execution.

The OU task issues a Receive Count instruction
to the QCT SRC. This implicitly tests for
waiting events in the QCT event stack.

1/0 Manager Queue

Task Dispatch Queue

The OU task locates the 1/0 event field and
checks the channel command byte of the event
field for the function event type.

When the function event type is a command
completion indication, that is, if command end
or command end/fetch next command is the
function type, then the BSTAT field of the 1/0
event is moved to the OU status field of the
ORE. (See Figure 7-7.)

Operational Unit Queue

First TDE First Message First TDE First Message
TDQ
loMa Address)) Address oua Address > !Address
Y
TOE
TDE OU Task ORE { OU Status “ Address
| |
TDE Task B TDE IOM Task -
OU Task Base Registers IL_
—————— |E
|
r !
Queue Control Table

'OMQ Address : QCT Event Stack !

1

Current ORE Address Command Register Number ! |

I }

Current OB Address Data Register Number | m 1/O Event Field |
I

0UQ Address Event Count | ~ ~

I
QCT Address QCT Event Stack Offset ~— -J

Bl src

~L

Figure 7-6 (Part 11 of 13). Sequence of I/0 Operations with SENDMW Instruction

7-70

5

If command end is the command completion
indication, the OU task issues a Send Message
instruction to the IOMQ. Since bit 6 of the
description byte of the SRM is on, the message
is not enqueued on the IOMQ. Instead, the
IOM task TDE is enqueued to the TDQ.

The OU task then issues a Receive Count
instruction to the QCT SRC. The OU task now
resides on the QCT SRC wait list, waiting for an
IOM work request to be placed on the ACT
event stack.

If (instead of and comand end/fetch
next command is the command completion
indication, the OU task checks the current OB
(operation block) for the last OB in the ORE.
When the current OB is not the last OB, the
task processes the next OB. If the current OB
is the last OB, the task issues a $end Message
instruction to IOMQ as in above.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE First Message First TDE First Message
loma Address ’ 5 Address Tba oua Address 3 > Address

ORE OU Number TDE Number) TDE OU Task
)
r Y | \
| | ToE IOM Task - —| TDE IOM Task
I |
L———— Y
TDE Task B
OU Task Base Registers Queue Control Table
Command Register Number
IOMQ Address Data Register Number

Current ORE Address

Current OB Address QCT Event Stack Offset
0uUQ Address
QCT Address SRC

o~ L "4

Figure 7-6 (Part 12 of 13). Sequence of 1/0 Operations with SENDMW Instruction

1/0 and Asynchronous Events 7-71

The OU task now issues a Receive Message
instruction to the OUQ. With no messages
(OREs) queued to the OUQ message list, the
OU task is dequeued from the TDQ and placed
on the OUQ wait list.

The IOM task resumes execution (task switch) if
it is of higher priority than task B.

1/0 Manager Queue Task Dispatch Queue Operational Unit Queue
First TDE j First Message First TDE First Message
IOMQ TDQ
Address 3 Address oua Address X) Address
r Y Y
| o
| | ToE OU Task F—————] TDE OU Task
| |
L
Y
ORE
y
TDE IOM Task
Y
TDE Task B

Figure 7-6 (Part 13 of 13). Sequence of 1/0 Operations with SENDMW Instruction

7-72

1/O Errors

Extensive error checking is provided within the |/0
structure to ensure correct operation of each component
and to maintain the integrity of device data. 1/0 errors
are OU (operation unit) errors when reported to the OU
IOM (I/0 manager) or channel errors when reported to
the channel IOM.

OPERATIONAL UNIT ERRORS

Operational unit errors, that is, operation program errors
and device errors, report to the operational unit IOM via
the 2-hyte operational unit status field of the current
ORE (operation request element). See Figure 7-7.

OB
Task Error Status ORE - S
.. _|Operation|
Identifier Error ou Command/Response
Hex 40 Status
Type

0 2 E 10 Bytes 1A 20

Y

OR - OR -#—

1/0 Event Stack QCT Event Stack

Basic Status |OM

(BSTAT)
o

/O Event Field

0 Bytes 2 >

Channel 1™ 1/0 Event Field
Hardware — X

1/0 Event Field -~

0 Bytes 4

Figure 7-7. Status Fields

1/0 and Asynchronous Events 7-73

7-74

Operation Program Errors

Operation program errors occur during the execution of
OBs (operation blocks) by the OU (operational unit) task.
The type of operation program error is indicated in a
2-byte field called the task error status field.

Task Error Status Field

The operation program error type contains an error code
indicating the type of operation program error detected
by the OU task during processing of an operation block.
Refer to the Channel Theory-Maintenance manual.

Device Errors

Device errors occur during the execution of an 1/0
command contained in a function operation block. A
device error causes the device to supply a command
end completion indication to its OU task and to provide
status associated with the error condition in a 2-byte
basic status field. (See Basic Status earlier in this
chapter.)

Additional status information is available to the IOM in
the form of device status fields. (See Device Status
earlier in this chapter.)

Operational Unit Error Recovery

Operational unit recovery procedures must be initiated
by an IOM (I/O manager) whenever the I0M is notified
of either a device error, an operation program error, or a
channel-detected error. The associated operational unit
task resides in the receive-wait state on the QCT-SRC
(queue control table, send/receive counter) queue and
must be cleared for further operational unit activity.

The IOM must proceed as follows:
1. Lock the QCT.

2. Test FOB (function operation block) in-use bit.

a. If set, form a command-end function event,
place the function event on the QCT event
stack, and issue a send count to the QCT-SRC.
This sequence, in effect, redispatches the OU
task and supplies it with an IOM-formed work
request.

b. If not set, test for OU (operational unit) task in
receive-wait state on the QCT-SRC queue.

If the OU task is on the QCT-SRC queue, then
form a fetch next command function event. Place
the function event on QCT event stack and issue a
send count to the QCT-SRC. If the OU task is not
on the QCT-SRC, then continue.

3. Unlock the QCT.

Operation Program Error Recording

Defined operation program errors common to all IOMs
are shown in Figure 7-8. The table defines the error
code n, error name B error class record type n
retry limit ﬂ and the priority in which the error
should be decoded from the status information. The
method of handling temporary retryable errors is also
defined. They may be counted in a storage data register
counter and not logged (x in count-only column). All
errors that cause an entry into retry may be logged (x in
log all column) or they may be thresholded (threshold
value in threshold limit column) and counted in a storage
data register counter. An x in the count-retryable
column indicates that the total number of retries should
be counted in a storage data register counter for this
error.

The error recovery action required and the error log
format for the error are also referenced.

2

9

L Error Definition

Record Type Temporary Retry Errors
Error Error n Retry | Prior-
Code | Error Name Class [Perm- |Temp- | Temp- Thresh- Limit Fty

n anent [orary |orary | Count| Log [hold Count B j
Record | Record| Retry | Only All Limit | Retry

9998 Operation error—Channel busy X 2 5 1
9999 Operation program error X X 1 2
Figure 7-8. Operation Program Errors
The description of each error in terms of OU-status
bytes and bits is shown in Figure 7-9.
Error Definition
Recovery
OU Status FOB Bytes Action Error
Error Oper- | Pro- | Log
Code Error Description Byte0 | Byte1 (C D|E F| ation | gram | Format
1 Operation error—Channel busy 40 07 1
Operation program error 40 XX 2
| - 1 2 3 4 5 6 7 8

Legend: Byte = 40 means high-order hex digit = 4
low-order hex digit = 0
Byte = xx means may be any value
Recovery = Error recovery procedures

Figure 7-9. Error Descriptions

1/0 and Asynchronous Events 7-75

Error Recovery Procedures

Repeat the command up to 5 times. If the condition
persists after 5 unsuccessful retries, log the error. I0M
then must initiate error recovery (described in Operational
Unit Error Recovery earlier in this chapter).

The error log format for the OU-IOM is the same for all
operation program errors logged. See the Channel
Theory-Maintenance manual for the format description.

CHANNEL ERRORS

Channel errors are an error class encountered during the
operation of a device on the channel interface. A
channel error causes the device to cease all operation,
and an error event field (refer to 1/0 Event Stack, earlier
in this chapter) containing all available status information
is passed to the channel IOM (I/O manager) task.
Channel errors fall into three subclasses: channel
hardware error, |/0O event handler error, and a special
class of device error report using the post event
function. The post event function is used by a device to
communicate error status to its IOM via the channel
10M.

The event field format for each subclass is as follows
with each type of channel error described in detail in the
Channel Theory-Maintenance manual.

Channel Hardware Error

1/0 Channel
d1dddddd Register Priority PpPppss00
Number Code
0 Bytes 1 2 3
Legend: d = Device dependent
p = Primary channel error code
s = Secondary channel error code
0001
or
Event Handler Error 1111
/
/
alasaaaa aaaaaaaa aaaaaaaa bbbb
0 Bytes 1 2 3

Legend: a = Depends on the event type processed, see the
Channel Theory-Maintenance manual for
specifics.

b = Event handler error code

Post Event
Operational
Post |/0' Unit ddddddyz
Event Register ,
Reporting
0 Bytes 1 2 3

Legend: d = Device-dependent information provided by the device
y (bit 6) = Post event type
0 Error condition detected in adapter and/or
device which cannot be reported via a normal
BSTAT.
1 Attention request to OU-IOM.
z (bit 7) = OU type
0 Single OU reporting, that is, OU number in byte
2 of post event defines a unique reporting OU.
1 Multiple OUs reporting, that is, OU number in
byte 2 of post event is reporting for all OUs
attached to a particular 1/0 port.

Channel Error Reporting

The active device at the time of the error has its
operation suspended until the error is resolved. The
error must be posted to the channel IOM and
notification given to the operational unit IOM that a
channel error has occurred and the device halted. The
1/0 event handler moves the error event field data from
the 1/0 event stack (see Figure 7-7) to the QCT (queue
control table) event stack of the channel OU (operational
unit). A Send Count instruction to the SRC
(send/receive counter) of the channel OU-QCT then
signals the channel OU task. The channel OU task
sends the ORE (operation request element) containing
the error event to the IOMQ for the channel IOM.

The channel IOM notifies the operational unit IOM that a
channel error has occurred and the device is halted. The
operational units IOM now proceeds as described under
Operational Unit Error Recovery earlier in this chapter.

Channel Error Recovery

Four FOB (function operation block) commands allow
the channel IOM access to the channel hardware to
perform |1/O error recovery operations.

The channel IOM communicates with the channel
hardware via an OU and IOM queue pair. An OU
(operational unit) of hex 00 is used for FOB commands
directed to the first hardware channel on the system.

The channel FOB commands are decoded and executed
by the OU task servicing the OU queue used by the
channel error IOM.

Start Channel (hex 11)

The start channel FOB command can be used at
IMPL or following a secondary channel error
condition that caused the channel hardware to stop.
The start channel command causes the channel OU
task to reset the secondary error stop bit in register
EO (hardware register), which causes the channel
hardware to log the 4-byte event field in the
hardware into the 1/0 event stack. The secondary
error stop bit is then set to force the channel
hardware to stop on the next secondary error
condition.

The channel OU task next issues a Receive Count
instruction to the SRC in the channel OU task control
table. When the 1/0 event handler services the |/0
event stack and issues a Send Count instruction to
the QCT of the channel OU task, the OU task
removes the event from the QCT event stack and
places the 4-byte field into FOB bytes hex C-F.
Following the read event operation, the
command-complete bit in the OU status field of the
ORE is set and the FOB.is completed.

Note: The event field obtained during the start
channel FOB is normally the event field maintained in
the channel hardware when a secondary error is
detected. However, because the event fields are
removed from the event stack on a last in, first out
manner, any event fields posted by |/O devices
between the time the channel hardware starts and
the channel OU task is dispatched can be returned
prior to the secondary error event field.

1/0 and Asynchronous Events 7-77

« Start Device (hex 12)

The start device FOB command causes a start device
channel sequence. The start device channel sequence
is normally used by an OU task, during the
processing of an FOB block, to notify an 1/0 device
that a command is available for execution. Depending
on the device implementation of the channel
sequence, the command information in the FOB may
be transferred to the device during the start device
sequence.

The device address to be used during the channel
sequence is provided in byte hex C of the FOB. The
command complete bit in the OU status field of the
ORE is set upon successful completion of the FOB.

« Halt Device (hex 21)

The halt device command is similar to the start
device command in that an 1/0 device attached to
the channel is selected by a broadcast of the device
address provided in byte hex C of the FOB. The halt
device command issues a halt condition to the
selected device to cause termination of any active
command.

Completion of the halt device command is indicated
by the command-complete bit in the OU status field
of the ORE being set.

« Read Event (hex 22)

The read event command is used by the channel
error IOM to obtain events from the channel IOM
QCT event stack. The read event causes the OU task
servicing the channel IOM to issue a Receive Count
instruction to the SRC in the queue coatrol table. If
no events are on the QCT event stack, a task switch
occurs with the OU task waiting for a Send Count
instruction from the 1/0 event handler.

If event fields are in the QCT event stack, or when
the OU task is dispatched by a Send Count
instruction to the SRC, an event field is removed
from the QCT event stack in a first in, first out
manner and placed in FOB bytes hex C-F.

The read event command is completed by setting the

command complete bit in the OU status field of the
ORE.

7-78

Channel Error Recording

Error Definition

Errors defined for the channel are the error code, error
name, error class, record type, retry limit, and the
priority in which the error should be decoded from the
status information. The method of handling temporary
retryable errors is also defined. They may be counted in
a storage data register counter and not logged. All
errors that cause an entry into retry may be logged or
they may be thresholded and counted in an SDR
counter. See the Channel Theory-Maintenance manual for
specific error codes.

Error Recovery Procedures

1. Repeat the command up to five times. If the
condition persists after five unsuccessful retries,
perform a Terminate Immediately instruction.
Operator panel light-emitting diode readout = hex
0832.

2. Perform a Terminate Immediately instruction.

3. Issue an AOB (address operation block) to read
IORAR O (I/0 resolved address register 0). If
offset of IORAR is 512 bytes from the beginning
address, or if retry fails, perform a Terminate
Immediately Instruction. Operator panel
light-emitting diode readout = hex 0331.
Otherwise, issue a start channel FOB (furiction
operation block).

4. Log the error. There is no recovery since the 1/0
adapter is not uniquely known.

5. Send a message containing the post event field
(bytes hex C-F of read event fiela FOB) to IOM
(1/0 manager) servicing the OU (operational unit)
whose number is contained in byte hex E of the
read event FOB. In the event that byte hex E
contains an OU number that is cuirently inactive or
invalid, then log the error.

6. Log the error and send message containing error
event field (bytes hex C-F of read event FOB) to
the IOM servicing the OU having the IORAR
contained in byte hex E of the read event FOB.

7. Log the error and send message containing error
event field (bytes hex C-F of read event FOB) to
the IOM servicing the OU having the IORAR
contained in byte hex D of the read event FOB.

8. Log the error and send message containing error
event field (bytes hex C-F of read event FOB) to
the I0M servicing the OU whose IORAR and
channel priority code match respectively bytes hex
D and E of the read event FOB.

9. Log the error and send message containing error
event field (bytes hex C-F of read event FOB) to
the IOM servicing the OU having the IORAR
contained in byte hex E of the read event FOB.

Error Log Format:

The error log format for the channel has the same
format for all errors logged. See the Channel
Theory-Maintenance manual for the formats and error
descriptions.

DEVICE HALT

During the execution of an ORE (operation frequest
element) by an OU (operational unit), the dbvice IOM
(I/0 manager) task can terminate executionj‘u of the ORE.
This is accomplished by the device IOM task requesting
the channel IOM task to perform a halt device function.

The following occurs:

o The channel IOM sends a message (ORE) to the
channel OUQ (operational unit queue). The ORE
contains an FOB with a command byte of halt device
{hex 21) and with the OU number of the device to be
halted in byte hex C.

« The channel OU task services the channel OUQ and
passes the command to the channel hardware, which
issues a halt to the selected device.

« The channel OU task accepts the device’'s response
to the channel as a device command completion
indication and sends an ORE containing completion
indication to the IOMQ of the channel IOM.

1/0 and Asynchronous Events 7-79

The device OU task has not received indication of the
termination of the ORE. The OU task resides on the
wait list of the QCT-SRC of the operational unit in the
recieve wait state. To clear this state requires action by
both the channel IOM and device IOM tasks:

« The channel IOM forms an I/0 event field (see
Figure 7-7) of the function event type (command
end) as follows:

Hex 02 | Hex 00 | Hex 20 | Hex 00

0 Bytes 1 2 3

« The I/0 event field is placed on the operational unit
QCT event stack, and a Send Count instruction is
issued to the QCT-SRC of the operational unit.

« The device IOM forms an /0 event field of the
function event type (fetch next command) and places
it on the OU-QCT event stack. A Send Count
instruction is issued to the QCT-SRC of the OU.

« The OU task is now placed on the TDQ in priority
sequence.

7-80

Chapter 8. Virtual Storage Addressing

The following addresses are virtual:

« All addresses used by the processor in executing
instructions or fetching data operands.

« All storage addresses that are explicitly specified by
an IMP (internal microprogramming) instruction and
are used by the processor.

« The address(es) indicated to the processor on an
exception or as the result of executing an instruction.

. All storage addresses explicitly specified in 1/0
messages.

The complete virtual address of any byte of storage is a
48-bit address as shown below.

Segment Identifier Offset

0 Bits 32 47

The 48-bit virtual address is translated by the processor
into a real storage address using the VAT (virtual
address translator) facility described in the following
paragraphs.

Virtual Storage Addressing 8-1

Virtual Address Translator Overview
The VAT facilities:

« Translate virtual storage addresses to real storage
addresses; or, when that translation cannot be
completed,

« Interrupt the execution of IMP instructions, which
allows:
— Invocation of storage management functions,
which
— Alters the contents of real storage, which allows
— Continuation of processing

TRANSLATION PROCESS

During translation, two units of information are
recognized—segments and pages. A segment is a block
of sequential virtual addresses spanning up to 65 536
(216) bytes. A page is a block of sequential virtual
addresses and contiguous storage locations containing
512 bytes beginning at a virtual address that is a
multiple of the page size. All pages in storage are the
same size.

The 48-bit virtual address logically is divided into two

parts. Bits 0-31 are used as an SID (segment identifier).

Bits 32-47 are used to provide an offset to data within
the segment. For translation to main storage addresses,
bits 32-38 are used as a PID (page identifier). The
remaining bits of offset are used as a BID (byte
identifier) within a page. See the following diagram.

Segment Identifier Offset
SID PID BID
0 Bits 32 39 47

Translation is achieved by means of translation tables.
Each table entry describes a block of consecutive real
storage locations. Each such block is called a page
frame. Each page frame contains a page of instructions
or data.

The method used by the virtual address translator to
translate a virtual address to a real storage address
depends on the value of the virtual address. Virtual
addresses, when they are within the SID (segment
identifier) range shown below, are converted to real
storage addresses by selecting the appropriate bits.

8-2

System V=R Address SID Selected

Unit Models |Range (Hex) Bits

5381 3.4,5 0000 0100 - 0000 27-47
O11F

6.7, 8 0000 0100 - 0000 24-47

O1FF

5382 All 0000 0100 - 0000 22-47
02FF

This is referred to as virtual = real addressing. Those
virtual addresses not in the virtual = real addressing
range are referred to as a virtual = virtual addresses, and
are translated to real addresses by means of the PD
(primary directory). If the resultant real address is too
large for a particular available main storage size, an
addressing exception results.

The assignment of storage occurs in page-size blocks;
the storage locations are assigned contiguously within a
page. Two pages need not be adjacent in storage
(unless they are virtual = real) even though assigned a
set of sequential virtual addresses.

The SID and PID portion of a 48-bit virtual address to
be translated by means of the PD are used to select an
entry from the PD. The PD entry, whose format is
described later in this chapter, contains information that
specifies one of the following actions:

- If the PD entry describes a page frame of storage
that contains the page whose SID and PID match
that of the address to be translated, the storage
address is formed from this PD entry.

« If the PD entry does not describe such a page frame
of storage, advance to and examine another PD entry.

« If there are no more PD entries to examine, signal an
address translation exception.

Virtual-to-Real Address Translation

SID

PID

BID

HT Size

A

Prim
—’C HT Selector) rimary

Directory! (PD)

I
: Hash
Y v | Table'
C LB Selector I
) L, .
Lookaside
Buffer (LB)
Storage
Address
L
"In Storage
n Information extracted from the virtual address is
used to search the LB.
n Information extracted from the virtual address is
used to search the PD.
If no match exists in the LB, the PD in storage

is searched to translate the address. If a match
exists, the information is used to form an entry

in the LB.

Programming Note: The primary directory and hash

table for storage are in a virtual = real segment in

storage, and can be accessed by the IMP instructions.

Virtual Storage Addressing

8-3

Virtual Address Translator Components

Address translation is performed by means of the HT
(hash table), the PD (primary directory), and the
high-speed LB (lookaside buffer).

The HT and the PD reside in storage and can be
accessed by the IMP instructions. Their structure and
functional characteristics are described in this section.
Also discussed are the functional characteristics of the
LB, which does not reside in storage and whose
contents cannot be accessed as data by the IMP
instructions.

CONTROL INFORMATION

The address of the first HT entry and the address of the
first entry in the PD directory are in the control address
table. The sizes (the number of entries-1) of the HT and
the PD are also contained in the control address table.
These fields are used by the processor during IMPL.
They can be accessed or modified at any time by IMP
instructions, but any changes do not affect the address
translation process.

HASH TABLE

An entry fetched from the HT provides an index into the
PD. The number of hash table entries varies, as the
following chart shows:

System Number of Entries
Unit Model (In Powers-of-2 Increments)
5381 3,45 256 - 32 768
6,7, 8 256 - 65 536
5382 | Al 256 - 65 536

The number of entries is controlled by the HT size field.
Generally the hash table should contain at least two
entries for every PD entry in order to control the length
of PD entry chains. The number of HT entries must be
a power of 2. Each entry has 16 bits of data.

The HT entries occupy contiguous storage beginning at
the address specified by the HT address field. The hash
table must be aligned on a segment boundary. For
Models 3, 4, and 5, the table must be within one virtual
virtual = real segment. For the the 5381 System Unit,
Models 6, 7, and 8, and for all 5382 System Unit
models, the hash table may cross a segment boundary
but must be within two virtual = real segments.

8-4

An entry value of zeros indicates an end-of-chain
condition.

Hash Table Entry Format

Index

0 Bits 16

Hash Table Lookup

The processor accesses the HT in storage as part of the
address translation process. The SID and PID portion of
the virtual address are used to select an entry from the
HT. The value of the selected HT entry is used to select
a PD entry.

A 16-bit HT entry index value is generated from the
virtual address by address compression (hashing) of the
39-bit field formed by linking the SID to the PID. The
number of significant bits in the result is controlled by
the hash table size field. The hash table entry index
value is used to select a hash table entry. Hashing is
shown in the following diagram and is described in the
following text:

The PID bits (32-38 of the virtual address) @ are
reversed (38-32) @ then shifted right once for each
zero bit in the HT size register, plus one.

Bytes 1 and 2 of the SID are @ exclusively ORed with
bytes 2 and 3 of the SID and then exclusively ORed
with the result of the reversed and shifted PID bits. The
shifted data is then @) ANDed with the halfword HT
size register (from the control address table). This
ANDing causes the hash on the left to be truncated so
that the result has the same size specified by the HT
size register. The result G is shifted left 1 bit position.

The result is o added to the beginning address of the
hash table. The sum is used as an entry into the
hash table.

The virtual address of the selected HT entry is obtained
by adding bits 0-15 of the index to bit 31-46 of the
virtual address of the HT (as given in the HT address
field). Bit O of the HT index is ignored {on Models 3, 4,
and 5) and treated as O, and low-order bit 47 is forced
te O.

Virtual Address

Hash Table
Size Register
0 Bytes 1 2 3 4 5
'—.
Bytes Bits 32—38
Bytes 2and 3
1and 2 / !
AN
Reverse Order of Bits 0
) Shift
Shift control to align Right Y
reverse-ordered bits Control
with most significant > Shift Register A e
bit of hash table size
register mask data
—1 4 |
EOR (C]
A
- AND (D]
Shift Left Y
One Positiol
Starting S Shift Register C e
Address of
Hash Table

"/
Ya

Adder

Hash Table
Entry Address

Virtual Storage Addressing 8-5

As part of the hash table lookup process, the index is
tested for a value of all-zeros (end-of-chain). If
nonzero, the index field is used to access an entry in the
primary directory. The virtual address of the PD entry is
obtained by adding the 16-bit hash table entry to bits
28-43 of the virtual address of the primary directory.
The low-order 4 bits (44-47) are forced to zeros. The
control address table contains the address of the
primary directory. Bits 0-3 of the PD index are ignored
and treated as zeros (Models 3, 4, and 5 only).

A VMC program can use the HVVA (Hash and Verify
Virtual Address) instruction and the LHTEA (Load Hash
Table Entry Address) instruction to access a HT entry in
the same way that the processor accesses HT entries.
See Chapter 10 for a discussion of this instruction.

PRIMARY DIRECTORY

One PD (primary directory) entry is provided for each
frame of main storage installed on the system. A PD
entry fetched from the PD (primary directory) indicates
the virtual address of the page stored in the block of
storage represented by the PD entry and the status of
the page. Linkage to other PD entries is also provided.
Each PD entry contains 16 bytes of data. There can be
1 to 65 536 entries, in power-of-2 increments.

The PD entries occupy contiguous storage beginning at
the address specified by the PD address field. For
Models 3, 4, and 5 the primary directory must be
SiD-aligned and may not cross a segment boundary.
For Models 6, 7, and 8 the primary directory may cross
segment boundaries but must not exceed 16 virtual =
real segments.

Primary Directory Entry Format

SID PID Status

Index

PINCNT

Status

Not
Used

Usage
Code

Not
Used

0 Bytes 4 5 6

10

C

The fields are allocated as follows:

Bytes
(Hex) Bits

0-3

Bytes
(Hex) Bits

Description 2

SID: Segment identifier of the page
stored in this block of storage. The
SID field is compared against bits
0-31 of the virtual address to be
translated.

PID: Page identifier of the page
stored in this block of storage. The
PID field is compared against bits
32-38 of the virtual address to be
translated. Bit 39 must be zero.

Status: Information about the page.

Valid: This bit can be set by the
VMC and should be reset by only
the Invalidate Primary Directory
Entry and Examine Primary Directory
Entry instructions.

0 Page described by this PD
entry is not available for
access. An address translation 3-4
exception is recognized and
the operation being attempted

is nullified.

1 Page described by this PD 5-7
entry is available for access.
Address transiation proceeds, 6-7 0-15

using the PD entry.

Reference: This bit is set whenever
the corresponding non V=R page
frame is accessed by the processor
and the corresponding entry is not in
the lookaside buffer, or when an

I/O operation requires use of the 8
address. This bit should only be
reset by the Read Reference and
Change and Reset Reference
instruction, and in some cases, by
an Examine Primary Directory Entry
instruction.

0 Page has not been referred to.

1 Page has been referred to.

Description

Change: This bit is updated (ORed
with the change bit in the lookaside
buffer) when the corresponding
lookaside buffer entry is removed by
the processor updating t're lookaside
buffer; by an Invalidate ;rimary
Directory Entry instruction, a Read
Reference and Change and Reset
Reference instruction, or in some
cases, an Examine Primary Directory
Entry instruction; or when an 1/0
operation is started which will store
into the associated non V=R page
frame. This bit is reset by the VMC.

Note: The lookaside buffer change
bit is set whenever the processor
stores data in to the associated non
V=R page frame.

0 Page has not been changed.
1 Page has been changed.

1/0 Used by the processor when
the page is being used by the 1/0.
The bits are both set and reset by
the processor.

Reserved: Must be zeros.

Index: Index for the next PD entry
in this chain of PD entries. The
value of the index field is used by
the processor to access the next PD
entry in a chain of eniries. An
all-zero value indicates an
end-of-chain condition.

PINCNT: A 1-byte use counter for
pinning (holding) pages in storage.
A nonzero value indicates that the
page is in use and should not be
removed from storage. The counter
can be updated by either the IMP
task or the processor.

Virtual Storage Addressing 8-7

Bytes
(Hex) Bits Description
9 Status: Provides page status
information, and is defined and
maintained by the vertical
microcode.
0] Not used.
1 Purge indicator set/reset by EPDE.
2 Not used.
3 Write pending.
4 Access pending.
5 Faulty page.
6 Nucleus.
7 Virtual=Real page.
A Not used.
B Usage Code Byte: Maintained by
the vertical microcode.
0-1 Not used.
2 Usage code.
3-7 Not used.
C-F Not used.

Programming Note: The processor sets the reference
and change bits. The Read Reference and Change and
Reset Reference instruction resets the reference bit. The
program must reset the change bit.

Primary Directory Lookup

The processor accesses the PD in storage as part of the
address translation process.

The SID and PID portion of the virtual address are used
to select a PD entry as previously described in this
chapter under Translation Process. The PD entry fetched
from the primary directory indicates the virtual address
and status of the page described. The SID of the virtual
address to be translated is compared to the SID of the
page stored in the page frame of storage described by
the fetched PD entry. Bits 0-31 of the PD entry are
compared to the SID of the virtual address to be
translated.

Bits 32-38 of the PD entry are compared to the PID of
the virtual address to be translated. If a match occurs
and bit 40 is 1, this page is available for access. The
storage page address may be formed as described in
Storage Address Formation in this chapter. If a match
occurs and bit 40 is 0, an address translation exception
occurs, and the operation being attempted is nullified.

If no match occurs, the index field is tested for 0. If this
field is 0, an address translation exception occurs; if the
field is not O, the index field is used to access another
PD entry. The virtual address of the PD entry is
obtained by multiplying the index field by 16 and adding
the resultant 20-bit offset to the address of the PD. On
Models 3, 4, and 5, the high-order 4 bits of this 20-bit
offset must be zeros. The PD address must be
SID-aligned and is obtained from the PD address field
of the control address table.

When a virtual address is used in an 1/0O operation, the
PINCNT field in the PD entry for that address is
incremented by the processor. When the 1/0 operation
is completed, the processor decrements the PINCNT
field. This ensures that an IMP task does not invalidate
the PD entry in the middle of an |/O operation.

When the next ©>D entry has been fetched, all tests and
steps described for the first PD entry of the chain are
performed. The lookup operation continues from entry
to entry until encountering either a PD entry with a
matching virtual address or a nonmatching virtual
address and zero index value, indicating an end of chain.

Storage Address Formation

When a PD entry is found that contains a virtual address
matching the address to be translated and the page is
available for access (bit 40 = 1), the storage address is
formed. The processor uses bits 0-15 of the index
value pointing at the current PD entry as the page frame
identifier and 9 bits of the BID (byte identifier) from the
virtual address to be translated in forming the storage
address. The BID is concatenated to the right of the
page frame identifier to provide 25 bits of storage
address.

LOOKASIDE BUFFER

To enhance performance, the VAT facility is
implemented so that some of the information specified
in the primary directory in storage is also maintained by
the processor in a special buffer called the LB (lookaside
buffer). The processor refers to a PD entry in main
storage for the initial access to the entry, then maintains
the information in the lookaside buffer. All subsequent
translations involving PD entries from the same real
storage page frame can use the information recorded in
the lookaside buffer.

The presence of the lookaside buffer affects the
translation process in that a modification of the contents
of a PD entry in storage does not have an immediate
effect on the translation. Also, changes to the reference
and change status of a page are not immediately visible
in the PD entry in storage if address translation is
accomplished using the lookaside buffer.

The LB entries are not explicitly addressed by IMP
instructions, nor can information be explicitly entered
into the lookaside buffer by executing IMP instructions.
How the reference and change bits can be read out and
how entries can be removed by executing IMP
instructions is described in the next topic. Entries are
implicitly added to and removed from the lookaside
buffer by the translation process explained in Translation
Process earlier in this chapter. A copy of a PD entry is
placed in the lookaside buffer only when the valid status
bit of the PD entry is 1. An address translation
exception is recognized when an attempt is made to use
an invalid PD entry for translation.

When a copy of a PD entry exists in the lookaside
buffer, the PD entry is said to be active. The LB entry
copy of a PD entry can be implicitly removed from the
lookaside buffer by the processor to fulfill subsequent
translations involving other PD entries. Once the LB
entry copy is removed from the lookaside buffer, the PD
entry is said to be inactive. No status bit is provided to
show the active-inactive state of a PD entry. When an
active PD entry becomes inactive, the reference and
change status bit of the page is updated in the PD entry
to reflect the most recent active status of the page.

Reference and change recording takes place for any
storage access made by the processor and 1/0
operations unless the 1/0 operation uses virtual = real
addresses. Hence, references to a storage location
associated with |/O operations are included.

The change bit is not turned on for an attempt to store
if the storage reference is not permitted, regardless of
whether the IMP instruction responsible for the
reference is suppressed or terminated. In particular, a
processor reference causing an addressing or address
translation exception does not cause the change bit to
be turned on.

Virtual Storage Addressing 8-9

VAT Component Maintenance

The VAT (virtual address translator) components in
storage—the control information, the HT (hash table), and
the PD (primary directory)—can be accessed and
modified by IMP instructions. Control information
modification is discussed in Control Information under
Virtual Address Translator Components in this chapter.
This paragraph describes the effects of any manipulation
of an HT or PD entry by IMP instructions and the
relationship of changes in the primary directory to
changes in the LB (lookaside buffer).

MODIFICATION OF HASH TABLE ENTRIES

The effects of changes to an HT entry depend on the
status of any associated PD entries; that is, a PD entry
indexed by the HT entry or any PD entries connected to
that PD entry by chaining. See the next topic for a
description of the status of PD entries.

A change to an HT entry associated with inactive PD
entries takes place immediately. A change to an HT
entry associated with active PD entries can take effect
for implicit translation any time after the instant of
change (when the entry becomes inactive).

Programming Note: Manipulation of an HT entry
associated with active PD entries can produce
unpredictable results. Prior to changes, all associated
PD entries should be made inactive and invalid. See the
next topic.

MODIFICATION OF PRIMARY DIRECTORY ENTRIES

Entries in the storage PD can be accessed and modified
by IMP instructions. The effects of any manipulation by
an IMP instruction of a PD entry and the recording of its
contents in the LB (lookaside buffer) depend on whether
the entry is valid and whether a copy of the entry exists
in the LB; that is, whether the PD entry is active.

When an inactive, invalid PD entry is made valid, the
change to valid takes place immediately. Also, when an
inactive, valid PD entry is made invalid, the change to
invalid takes place immediately.

8-10

A change to an active PD entry, one for which a copy
exists in LB, can take effect for implicit translation any
time after the instant of the change (when the entry
becomes inactive). An Invalidate Primary Directory Entry
instruction is used to invalidate a PD entry (see Chapter
10).

REFERENCE AND CHANGE RECORDING

Reference recording provides information for use in
selecting storage blocks for page replacement. Change
recording provides information as to which pages have
to be saved in backing storage when they are replaced
in storage by new pages. Both reference and change
recording are done by the processor as part of virtual
address translation.

PD entry bit 41, the reference bit, is set each time the
entry goes from the inactive state to the active state.
This occurs whenever the entry is inactive when a
location in the page contained in the corresponding page
frame is referred to for either the storing or fetching of
information. The PD entry bit 42, the change bit, is set
each time information is stored in the corresponding
page contained in that page frame.

Change recording in the primary directory is accurate
only for inactive PD entries. After the initial reference to
a page, address translation is performed by means of
references to the LB. Change recording takes place in
the LB without corresponding updates of the change bit
in the PD entry in storage until such time as that PD
entry becomes inactive.

An active PD entry becomes inactive when it is purged
from the lookaside buffer. It can be made inactive
implicitly by the processor as a result of translations
involving other PD entries, and explicitly by executing an
Invalidate Primary Directory Entry instruction, a Read
Reference and Change and Reset Reference instruction,
or in some cases, an Examine Primary Directory Entry
instruction (see Chapter 10).

The current state of the reference and change bits can
be obtained for any PD entry by executing a Read
Reference and Change and Reset Reference instruction
(see Chapter 10).

9

Chapter 9. Machine Support Functions

This section provides detailed descriptions of certain
facilities of VMC (vertical microcode) that enhance the
efficiency, utility, and programmability of the machine.
Included are the facilities for IMPL (initial microprogram
load), monitoring, timers, machine control, and machine
check.

Machine Support Functions 9-1

Initial Microprogram Load

Initial microprogram load (IMPL) provides for the
initiation of processing when the contents of storage are
not suitable for processing. Invoking the IMPL function
causes information to be read from a selected input
device (usually the disk file), into preassigned storage
locations. The information read in is the minimum
amount required to execute an IMP task. The IMPL.
function can be invoked whenever system power is up.

The IMPL function is started by the hardware/HMC
(horizontal microcode) and is completed by the IMP.
This document addresses only the HMC portion and the
transition to the VMC portion.

IMPL in hardware/HMC performs three functions: (1)
some basic hardware tests and initialization; (2) loading
of control storage and a small portion of main storage;
and (3) HMC initialization. Several

initialization/ configuration parameters are required by
these functions and are stored on the IMPL device.
Function 1 requires main storage and control storage
configuration parameters. Function 2 requires the size of
the VMC load to be stored in main storage. Function 3
requires the following parameters to be stored at known
locations within the VMC load (see the control address
table described in Figure 2-2): valid addresses for the
PD (primary directory), the HT (hash table), and the
HMC overlay area and size parameters for the PD and
the HT.

9-2

As part of the hardware test, main storage is
functionally tested. Any page frame found to be failing
will be flagged invalid in the main storage defective
frame table. Previously defective pages, as logged in the
main storage history table (cylinder O, head O, sector 3
of the file) are flagged in the main storage defective
frame table. A swap is made, if necessary, to ensure
that the VMC nucleus area contains no defective frames.
The main storage status word is updated showing
whether a swap was performed. If a defect-free VMC
nucleus area cannot be attained, the system halts and
the sequence indicator lights on the CE/Op panel are lit.
The main storage defective frame table contains 512
bytes in Models 3, 4, and 5; 1024 bytes in Models 6
and 7; and, 2048 bytes in Model 8. Each bit represents
one main storage page frame (hex O bit = good, hex 1
bit = defective). The address of the main storage
defective frame table is found in the control address
table (see Figure 2-2) at SID (segment identifier) hex
0000 0100 offset hex 0002-0007.

The transition after the HMC initialization to the VMC
code (part of the VMC load) is accomplished by the
HMC task dispatcher code switching to the VMC IMPL
task code. Required to accomplish this are two
addresses in the control address table and a
preinitialized TDQ (task dispatching queue) and TDE
(task dispatching element). The two addresses needed
are for the TDQ and any current TDE address. The
preinitialized TDQ contains a pointer to the preinitialized
TDE belonging to the VMC IMPL task. This TDE is
preinitialized as follows: no pending exceptions; ILC
(instruction length count) equal to zero and CC equal to
zero (hex 08); initial values for all 16 IMP base registers
(base register 0 must point to the VMC IMP task code
space); and an IAR (instruction address register) value
pointing to the first VMC instruction to be executed.

9

Program Event Monitoring

A program event is recognized whenever the task
dispatcher is enabled and the microprocessor determines
that the initial byte of an instruction is located within a
particular range of virtual addresses. The range is
specified by the PEM (program event monitor) start
address and PEM stop address fields of the TDE (task
dispatching element). Bytes C-D (control mode), bit 6 of
the TDE selectively enables or disables the PEM range
check performed while fetching each successive IMP
instruction.

Once a task has been dispatched, alteration of bit 6 is
not detected until the task is dispatched at a later time.
The PEM range is not checked if the instruction is
altered by an Execute instruction.

A PEM exception is presented as follows:

« If bit 8 of the TDE exception mask field is 1, the
instruction is nullified and the exception SVL
(supervisor linkage) mechanism is invoked.

« Ifbit 8is O, it is set to 1; no exception is generated.
The instruction is completed and the next instruction
is fetched and checked for being within the PEM
range.

This allows the PEM IMP exception handler to cause a
nullified instruction to be completed without|altering the
PEM start and stop addresses in the TDE.

|
Programming Note: A Dispatch Task Dispat¢hing Queue
instruction can be used to cause bit 6 of thg TDE
control mode field to be reinspected or to réload the
PEM registers from the TDE.

Machine Support Functions 9-3

Internal Microprogramming Timer
Support

The processor provides these support timing functions:
a time-of-day clock, a clock comparator, and two
interval timers.

TIME-OF-DAY CLOCK

The time-of-day clock provides date and time. The
cycle of the clock is approximately 143 years.

The time-of-day clock is a binary counter with a format
as shown in the following figure. The bit positions of
the clock are numbered O to 63, corresponding to the
bit positions of an unsigned binary doubleword. Time is
measured by incrementing the value of the clock,
following the rules for unsigned binary arithmetic.

Unique-
Time Value ness
Value
0 Bits 42 56 63

The clock is incremented by adding a 1 in bit position
41 every 1024 microseconds. When incrementing of the
clock causes a carry out of bit position O, the carry is
ignored and counting continues from zero. No exception
condition is generated as a result of the overflow.

The clock can be inspected by means of the instruction,
Store Time-of-Day Clock, which causes the bits
corresponding to the bits being updated to be stored. In
order to ensure that successive executions do not
provide the same clock value, the Store Time-of-Day
Clock instruction causes a one bit to be added to bit
position 63 every time the instruction is executed. Any
carry from bit position 56 is ignored. Thus, the
rightmost 8 bits of the stored value contain a number
that is used to provide uniqueness and is not a part of
the actual clock value.

9-4

The clock can be set to a specific value by means of the
Set Time-of-Day Clock instruction, which causes bits
corresponding to the bits being updated to be replaced
with the operand designated by the instruction. If a
Store Time-of-Day Clock instruction is issued before
the Set Time-of-Day Clock instruction, an unpredictable
result is stored.

CLOCK COMPARATOR

The clock comparator provides a means of determining
when the TOD (time-of-day) clock has passed a
specified value. The clock comparator has the same
format as the TOD clock, and only those bits that
correspond to the clock bits being incremented
participate in the compare.

The clock comparator can be inspected by means of the
Store Clock Comparator instruction and can be set to a
specific value by means of the Set Clock Comparator
instruction. The address of the location of the target
send/receive counter, when the time-of-day clock value
is equal to or greater than the specified value, is
contained in the control address table shown in Figure
2-2. The results of a compare are unpredictable if a Set
Clock Comparator instruction is issued before the TOD
clock is set. If the value specified in the Set Clock
Comparator instruction is less than the current value in
the TOD clock, the value is loaded in the clock
comparator and a send count is issued immediately after
the Set Clock Comparator instruction.

9

INTERVAL TIMERS

Two interval timers provide the means for measuring
elapsed time and determining when a prespecified
amount of time has elapsed. The first interval timer is
known as the task interval timer and is used by the
processor for task timing. (See Task Dispatcher
Enable/Disable Functions in Chapter 5.) The second
interval timer is for general use.

Each interval timer is a binary counter with a format that
is the same as that of the time-of-day clock and is
decremented by subtracting 1 from bit position 41 every
1024 microseconds. Both interval timers and the
time-of-day clock are stepped at the same rate.

The mechanism used to indicate that an interval timer
has been decremented from a positive number (including
zero) to a negative number is different for each interval
timer. For the task interval timer, an exception is
recognized. For the second interval timer, an SRC
(send/receive counter) identified in the control address
table (see Figure 2-2) is the target for a SENDC
operation.

The interval timers can be inspected by means of the
Store Interval Timer instruction and can be set to a
specific value by means of the Set Interval Timer
instruction. When the second interval timer is specified,
the Set Interval Timer instruction indicates whether the
time interval is to be repetitive. A repetitive time interval
can be specified such that the value in the interval timer
is reset to the value contained in the repetitive interval
timer doubleword when the prior interval is decremented
through zero. See Figure 2-2 for the location of the
repetitive interval timer doubleword.

This doubleword must begin on a doubleword boundary,
and be resident in storage or a machine check will occur
when it is used. The repetitive interval timer doubleword
must be set prior to issuing a Set Interval Timer
instruction or a previous value can be used if repetitive
timing is specified.

If an untimed task issues a Set Interval Timer instruction
to the task interval timer, a specification exception is
presented. A Store Interval Timer instruction issued by
an untimed task to the task interval timer stores
unpredictable results.

Programming Note: After the indication has been given
that an interval timer has been decremented through
zero, the interval timer continues to decrement. Thus, a
Store Interval Timer instruction can store a negative
number, because the interval timer format is the same
as an unsigned binary doubleword, which is represented
as a large positive number.

Machine Support Functions 9-5

System Control

The system console and the operator/service panel
provide external control or alteration of the processor.

The system console:
« Displays requested machine status

« Provides operator-to-machine (or service
personnel-to-machine) communication

« Provides controls required by the operator (or service
personnel) to intervene in normal programmed

operation

The operator/service panel and the SCA (system control
adapter) provide:

« Means for the control and indication of power
« System status lights
« Operator control, such as,

— IMPL (initial microprogram load)

— Alternative IMPL

— CPU Start

— CPU Stop

« Controls power to devices such as the printer for
concurrent maintenance

Some controls are for the use of service personnel only.
The SCA has a direct interface to the processor. This
interface is described in the System Control Adapter
Theory-Maintenance manual.

The SCA functions as follows:

« When possible, it presents menus to service
personnel on the system console.

« It accepts responses from the operator/service panel
or keyboard.

« It uses the queue structure that is part of the
processor.

9-6

The SCA diagnoses system problems. The
operator/service panel and the SCA assist in
maintaining the dedicated portion of the system.

The diagnostic task, using routines written into and
executed by the SCA, enables concurrent maintenance
to be performed on a portion of the system.

SYSTEM CONTROL ADAPTER

The system control queue is the operational unit queue
of the SCA (system control adapter). OU (operational.

unit) number 1 is the value of the OU field of an ORE

(operation request element) that selects the SCA. The

command field for the SCA is as follows:

Command

Field

(Hex) Description

01 Write data-RAM2

02 Read data-RAM2

04 Reset SCA

oc Start up

12 Read rotary switches

19 Write 10C LSR/data store
1C Diagnostic write

21 Write control-RAM1

2A Read I0C LSR/data store
2C Diagnostic head

34 Execute-RAM1

44 Terminate routine

The diagnostic task provides functions for system
maintenance using routines that are written into and
executed by the SCA. Some of the functions are:

« Timing tests

« Power down of individual devices

« Test patterns

Instruction test/address stop

9

Machine Check

The machine-check function provides a mechanism for
handling detected machine malfunctions that can occur
in hardware or HMC. A description of the malfunctions
handled by the machine check function are given under
Machine Check Logout later in this chapter. A machine
check is reported as either a soft machine check report
(error corrected) or a hard machine check report (error
not corrected).

Soft and hard machine checks (called IMP machine
checks) are reported to the IMP by the PMCH
(processor machine check handler). The status data for
machine checks are logged into the MCLB (machine
check log buffer) by the PMCH. See Machine Check Log
Buffer for the description of the format and contents of
the MCLB. The address of the MCLB as specified in the
control address table (see Figure 2-2) must be fullword
aligned. If not properly aligned, a second machine check
will cause the processor to enter check stop mode.

Once the machine check has been reported by the
PMCH, the data in the MCLB is used to determine the
response. After this response has been taken, the
MCLB is cleared to zeros and the machine check mode
is reset, thereby clearing the status of the MCLB.

MACHINE CHECK HANDLING
Machine checks are reported to IMP whenever:

« A malfunction is detected below the IMP instruction
set.

« An exception condition occurs and the task
dispatcher is disabled. See Chapter 5.

« A Terminate Immediately instruction is issued and the
machine is not in machine check mode. See Chapter
10.

« An error exists for some VMC objects that are
referenced by an IMP instruction (for example, when
the TDE [task dispatching element] or TDQ [task
dispatching queue] are not aligned to a fullword).
See Chapters 5 and 6.

« Any of the following instructions are executed when
the task dispatcher is disabled. See Chapters 5 and
6.

Receive Message

Receive Count

Dispatch Task Dispatching Queue
— Supervisor Linkage:

Implicit SVL

Explicit SVL

Exception SVL

Check Stop

In some situations, it is either impossible or undesirable
to continue processor operation when a machine check
occurs. When these situations arise, the processor
stops all processing and goes to the check stop state.
See Chapter 4 for the definition of processor states.

In the check stop state, the processor executes no
instructions, the interval timers and TOD clock are not
updated, and channel operations are suspended.

Check Stop Initiated by HMC

There are two sources for a check stop by HMC. The
first is a machine error occurring while an instruction is
being retried by the HMC because of an earlier error.
The second is a hard machine error that cannot be
reported because the MCLB (area in storage where
machine checks are logged by the PMCH) contains a
machine check report from a previous error. In each
case, the check stop is caused by machine'errors
occurring faster than they can be processed. In these
situations, all processor operations stop (in¢luding
microprocessor, virtual address translator, and channel),
the SCA (system control adapter) is informed, and the
SCA displays the state of the processor on the machine
CE/Op panel sequence indicators. IMPL (initial
microprogram load) is required to remove the system
from the check stop state.

Check Stop Initiated by IMP

An IMP procedure can put the processor into the check
stop state, when an IMP procedure has determined that
error conditions exist such that the IMP processing is no
longer feasible or desirable. In this instance, the
Terminate Immediately instruction is issued by an IMP
procedure (see Chapter 10).

Machine Support Functions 9-7

Machine Check Mode

The processor enters the machine check mode
whenever a machine malfunction or an IMP machine
check is detected. In this mode, the IMP execution
characteristics of the processor are altered such that an
IMP procedure can be activated without the presence of
a tasking structure (current TDE). Rather than
performing a task dispatching or SVL (supervisor
linkage) function to activate an IMP procedure, the
machine check function branches to a routine whose
addressability is at offset hex 40 in the control address
table (see Figure 2-2). The following text (Processor
Machine Check Handler) defines the interface used to
pass control to the IMP procedure when the processor
is in machine check mode. Machine check mode causes
an implicit disabling of the task dispatcher before control
is passed to an IMP procedure. The restrictions on the
machine when the task dispatcher is disabled are
defined in Chapter 5. If the restrictions are violated by
an IMP procedure, a second machine check occurs,
causing the processor machine check function to put the
machine into the check stop state. It is the
responsibility of the activated IMP procedure to enable
the task dispatcher, if desired. The reenabling of the
task dispatcher can be performed via the Enable Task
Dispatching instruction (reference Chapter 10).

It is also the responsibility of the activated IMP
procedure to reset the machine check mode if desired.
This function can be performed via the Reset Machine
Check Mode instruction (reference Chapter 10).

PROCESSOR MACHINE CHECK HANDLER

The PMCH (processor machine check handler) is a
processor HMC routine (built-in function) that:

« Retries hardware-signaled errors

« Loads the MCLB (machine check log buffer) with
machine check status information (see Machine Check
Log Buffer, later in this chapter)

« Disables task dispatching

« Branches to the IMP procedure whose address is at
offset hex 40 in the control address table

« Initiates the termination of processing for some error
conditions

9-8

When the processor encounters a hardware malfunction,
it pauses from 1 to 2 milliseconds before trapping to the
PMCH. This pause allows any intermittent electrical
noise to subside. During this time, the processor
hardware determines if the PMCH is being executed at
the time of the machine error; if so, the processor
enters the check stop state.

When a processor error occurs, the PMCH determines if
the error can be retried. A retryable error is an error that
occurs in an IMP instruction before source data has
been changed, or an error that occurred in an IMP
instruction that can be executed again without changing
the final results.

If the instruction is successfully retried, the PMCH is
activated again to report successful recovery of a
machine error. This is a soft machine check report. If
the machine is in machine check mode, the soft
machine check is not reported and the next sequential
IMP instruction is executed. If the machine is not in
machine check mode, the PMCH loads the error
information into the MCLB whose addressability is at
offset hex 38 in the control address table (reference
Figure 2-2). The task dispatcher is disabled and an exit
is made to the IMP procedure whose addressability is at
offset hex 40 in the control address table.

If the instruction retry is unsuccessful or impossible, and
the PMCH determines that the machine is not in
machine check mode, the PMCH moves the machine
check error status information into the MCLB. The task
dispatcher is disabled and control is passed to the IMP
procedure whose addressability is at offset hex 40 in the
control address table. If the machine is in machine
check mode, the PMCH puts the processor in the check
stop state. At this time, the MCLB contains the earliest
hard machine check processor status and the earliest
soft or hard machine check task status.

Before the PMCH passes control to the IMP procedure,
the PMCH:

« Puts the machine in machine check mode

« Fills the log buffer with the following machine check
information:
— Processor status
— Task status

« Disables the task dispatcher

« Stops the task interval timer

9

Machine Check Process Procedures and States
Following is a diagram of the processor machine check

procedure and the various states that the machine can
be put in by the PMCH.

Machine Check Occurs

! }

Not Retryable Stop State
Machine Normal Check
Check Mode' Stop
Mode
Check Hard Machine Check
Stop (reported to VMC)

|

Retryable

Retry

|

Not Successful

|
l t

Machine Normal
Check Mode!
Mode

|

Check Hard Machine Check Next
Stop (reported to VMC) Sequential
Instruction

\
Successful

¥

Machine
Check
Mode

|

Normal
Mode!

Soft Machine Check
(reported to VMC)

'Normal mode includes the run and wait states when the processor is not already handling a

previous machine check.

Machine Support Functions

9-9

Stop State Machine Check

If a machine check occurs when the processor is in the
stop state, the processor enters the check stop state.

Wait State Machine Check

Two phases of processor activity are possible when it is
in the wait state; it can either be active, servicing |/0
and timer events, or it can be idle, not servicing |/O or
timer events.

If the processor is active and a machine check occurs,
the processor exits the wait state, logs the processor
and task status into MCLB and reports a hard machine
check.

Programming Note: The IMP machine check handler
programmers should note that, in this situation, the
processor is in the operational state with no TDE
present on the TDQ.

The processor maintains internal status indicating a hard,
machine check while in the wait state. This status is
used by the processor in the following manner when the
Enable Task Dispatching instruction is executed:

« If there is no TDE on the TDQ, the processor returns
to the wait state without storing task status into any
TDE.

« If there is a TDE on the TDQ, the processor switches
in the new task without first storing task status into
any TDE.

If the processor is in the wait state and the operation
being executed is retryable (MCLB byte hex E bit 0 = 1)
when a machine check occurs, the PMCH logs the
processor status and returns to the wait state. The
PMCH also sets an internal flag called soft log required;
thus, when the processor is reactivated (from the wait to
run state), the PMCH will regain control. The PMCH wiill
log the currently activated task into the task status and
report the processor and task status to the IMP machine
check handler.

If the processor is in the wait state and the operation
being executed is not retryable (MCLB byte hex 14 bit O
= 0) when a machine check occurs, the PMCH logs the
processor status. If the MCLB was not busy the task
status is also logged. However, if the buffer is already
busy, no log of the task status occurs. Control is passed
to the IMP machine check handler to report this
machine check immediately after logging. The PMCH
resets the wait state before control is transferred to the
IMP machine check handler.

If the processor is in the wait state and the operation
being executed is retryable but has been unsuccessfully
retried by the PMCH, the PMCH logs the task status,
resets the wait state, and transfers control to the IMP
machine check handler.

Programming Note: The task status may not be valid or
consistent with the processor status for wait state
machine checks.

Restart Task if Machine Check Is in Run State

The task status section of the MCLB provides a
mechanism for restarting the IMP procedure that was
executing at the time of the machine check, if the
processor was in the run state. The IMP machine check
procedure can determine the state of the machine at the
time of the machine check by referencing byte hex 15
bit 4 of the MCLB (see Processor Status in this chapter).
If this flag is set to zero, the processor was in the run
state when the machine check occurred. In this
instance, the current TDE that is addressed at offset hex
48 in the control address table is the task that was
active at the time of the machine check. If the task is to
be restarted following a machine check, the task
information in the MCLB must be moved to a CRE; that
CRE is marked as the first CRE to get control following
an SVX instruction. The IMP machine check procedure
uses the SVX instruction to pass control to the IMP
procedure that was active at the time of the machine
check.

9

The following illustrates the steps that should be
performed by the IMP machine check processor to
restart the IMP procedure that incurred a machine
check:

Step 1
Current TDE MCLB
TDE 1 --I
{ Processor Status
in-Use I Procedure x Status
CRE 1 i T
Procedure x l
In-Use |
CRE 2 2 | CRE
3 --—-- |
|
|
. |
m————— (a machine check occurs)
m+1 ———
n _____
Step 3
TDE 1
Current TDE
Procedure x
CRE Status from TDE 1
MCLB
CRE 1 CRE 1
In-Use In-Use
CRE CRE

Note: The Enable Task Dispatcher instruction does one

of two things:

1. Continues processing without a task switch, thereby
using processor status associated with the IMP
machine check handling procedure; or

Step 2

IMP Machine Check Routine
(addressed in the IMP
control address table)

Restart Procedure x
® Get an available CRE
® Move procedure x status
in MCLB to CRE
® Enqgueue CRE to current TDE
as first CRE
® RMCM (reset machine check mode)
® Clear MCLB

\ ® Enable task dispatcher (see note)

If the TDE 1 is redispatched, the IMP machine check
handling is activated to do the SVX.

— — — Procedure x

(a hard machine check occurs)

2. Performs a task switch, causing the processor status
associated with the IMP machine check handling
procedure to be stored in the dispatcher’'s CRE
section of the TDE 1. See Chapter 10 for the Enable
Task Dispatcher and Reset Machine Check
instructions.

Machine Support Functions 9-11

MACHINE CHECK LOG BUFFER

Machine check reports are found in the MCLB (machine
check log buffer) whose addressability is at offset hex
38 in the control address table (see Figure 2-2). Figure
9-1 illustrates the format of the MCLB. The MCLB
information contains the type of error that occurred, an
indication of whether it was recovered or not, and the
status of the hardware and processor at time of error
along with the status of the procedure executing at the
time of the error. This information is divided into two
categories of status: processor status and task status.

Task status contains the status associated with the task
whose address is in the current TDE location, offset hex
48 in the control address table. The information in the
task status of the MCLB is valid only when the
processor is in the run state. If the processor is in the
wait state, the processor status associated with the
current TDE is invalid because it reflects the processor
status in the wait state at the time of the machine
check.

Machine Check Log

When a machine check occurs, the data is logged out to
the MCLB (machine check log buffer). Depending on the
prior state of the MCLB, the following condition will be
logged:

« Both the processor status and the task status;

« The task status only; or

« Neither processor status or task status.

The format of the MCLB is described in the text that
follows.

Processor Status

The processor status field of the MCLB contains the
information needed to determine the type and severity
of the machine check. It also contains information that

indicates the state of the HMC at the time of the error.
This field contains 44 bytes.

9

Figure 9-1. Machine Check Log Buffer

0 1 2 3
Bytes
MCHK Designation | MCHK Designation
0 Error Type VMC Flags . esignation esignati
(primary) (secondary)
T
4 Hardware Code
8 Main Storage Error Code
C Retry Indicator S-Register G-Register Operation Code
Extender
. Current
(6] tion Cod
10 peration Code MCLB Status MCSAR
Processor
HMC Fla
Status 14 9
18 HMC Exceptions Overlay Index A/B
1C IMP Exceptions Condition Code Reservéd
1
Lookaside Buffer . .
20 Miss Control Address Link Register
Instruction
24 Address Register Reserved Length
28 Exception Register Overlay Index C/D
Base Register Instruction Condition Cod
2C CRE Flags Specification Length ondition Lode
30 Address Register
34
Base Register (0—F)
Task (16 x 6 = 96 bytes)
Status
(CRE)
20 Failing V=V Address
(all 5382 System Unit models)
94 These bytes are reserved for all other models.
98 IMP Exceptions

Machine Support Functions

9-13

Processor Status (continued)

Bytes
(Hex)

0

Bits

Descriptions
Error Type:

HMC-detected errors: See HMC
Flags (bytes 14-17) for more
information on specific errors. Also
see Lookaside Buffer-Miss Control
Address (bytes 20-21) and Link
Register (bytes 22-23) for additional
information.

Channel checks: Secondary channel
errors. These are main storage or
VAT (virtual address translator)
errors reported via the microcode.
See Hardware Code and Main
Storage Error Code (bytes 4-B) for
more information.

Microprocessor hardware-detected

error: See Hardware Code and Main
Storage Error Code (bytes 4-B) for

more information.

FIB (fill instruction buffer) error:
Error occurred while trying to fill the
instruction buffer.

System damage (HMC procedure):
Machine checks occurred during an
operation that cannot be isolated to
a specific task. See Hardware Code
(bytes 4-6) for more specific
information.

Instruction-processing damage (IMP
procedure): Errors that can be
isolated to a particular task. See
Hardware Code (bytes 4-6) for more
specific information.

Bytes
(Hex)

Bits

6

1-7

Descriptions

Recovery report: If this bit is set
and the secondary designation (byte
3 of MCLB) indicates a value of hex
2A, successful recovery has been
made from an initial error. This bit
can also be set as a result of a
successful recovery report attempted
due to a second recoverable error
while handling the initial error. In
this case, the second error report is
suppressed with this condition being
identified by the bit being set and
the secondary designation {(byte 3 of
MCLB) indicating a value of hex 2B.
See Hardware Code for additional
information about the error.

Timer errors: Error that occurred in
any element of timing.

Programming Note: All the timers
being used (including the TOD) must
be reinitialized following a timer
error.

VMC Flags:

0 Not VMC machine check.

1 VMC machine check.

Reserved: May be any value.

Note: HMC initializes this byte to
hex 00.

C

Bytes
(Hex)

2

Bits

Description

MCHK Designation—Primary: See
the following diagram for the
designation number. Each
designation number uniquely
identifies the facility which detected
the machine check, the state of the
processor, the functions performed
by the PMCH (processor machine
check handler), and the exit from the
PMCH. As an example, if the
designation number found in the
MCLB was hex 21, the general
facility that reported this machine
check was microcode. If this column
is followed down to where the first
X appears, the processor was in the
run state when the machine check
occurred. The next X indicates that
the retry indicator was 0. The next
X indicates that the MCLB was not
busy. The next group of Xs indicate
what should have been logged as
well as other functions that should
have been set or reset such DTD =
0 (disable task dispatcher). Further
down are the exits from PMCH to
checkstop, IMP machine check
handler (startup), or go to wait state.
In this case the machine check
would have reported to IMP via
startup.

Hex Code

00-16 Hardware facility
1B-24 Microcode facility
26-29 Channel facility
2A-2B Recovery-Soft
2C-32 Timer facility
36-37 Channel facility

Machine Support Functions

9-15

|]] ' [']]]
| [' ' ' [' ' [
(] ' '] [} |] [}]
(S]] b [| (]] b< bd)]]] R]
|| —
(2] ' ' |]] ' [} '
Q) b L i | o] [LI B] L] b4 b Pe ' < ba < L] ' Lo
——— o ——— —— —— —— ————— — — ——— —— —— ——— —— —— ———— —— — — ——— — — ——— ————— —
al ' [}] '] ' |]
(=] b< LI i | [2]] > b ' bs b< Lo 1 b< Pl p D > ' b<
llllllllll ———— —— — —— ——— — —— — — — —— —————— — — —————— — — —— — —
(8]} ']] [} ' [} [} |
191 b "y] (R [' > b] (] ' >4
_ _ II I‘
[T -] ']] [} ' '] '
]) LR [] 1< ' > b ' b< PS bS PS [[
)) | = e o e e e e o e e e — T — ——— — — ———— — — —
| <\ ' [} ']] ' []] |
| (=] <o ' b) ' ' [] |
| | | e e e e e e e e e e e e e — . — e ——— i — —— — — — — — —_
| o ' ']]] ']] |
| ol 1o | L] | PS>) = P [T |] |
IIIIIII ——— ———— g s T —— T — ——— — —— o — — —— ——— ——— ——————— o]
@) ']]] t]] + |
(=] 1o (] | PSS | DS [T] ' > PS>] »<
|||||||||||||||| ——, e e e, e e e . — e — —]
| '] [] ']] '
| [} ['] | '] '
|] ']]]] ']
| ' ' '] ' |] '
Lo] [] | [']] |
m| Yol >4 1o | I] ' [} 1 Lol B
WG (| e = e e = e = e e = e e = g e e e~ e =~ — . e e . g —— 4
) =)L) ' [' ' '] ' |
Q)Q|o)| >4 (=2] >4 [I B [] > >4] aoq 1 D4
)) = = s — e —— .y — T ——— — — T — — T — — e — oy — —— gy gy — T e — —— ey " — oy — — v — — —
<) x| | '] '] ' | ' '
T ol b X=X 15 [] [T) ' 2] L T] >
|| -
' ' ' [' | ' '
1]]]] 1 [] 1
|||||||||||||||||||||||| — e e e — . =~y = — — e —— ——]
| '] ' |] [] '
| [} 1 [| [} '] '
||| -
1+l] ! ' ['] ']
= [' ' >4 ! ! [' o1 b<
| e —— = ——— — — i ——— = — . —— —— —— — — - —— ——— ——— —— —
I 1 1ol ' ' ' [}] [+ ' |
“ ol ' [LI o U] L] ' o M -
_ _] | ' [} []] []]
' [] ' ' | 1 |
||||||||||||||||||||||||||||||||| —_,—— e . e — e ——— —
*| | [} ' ' '] ' '
| > =2] [] 1 ' [>4
] |——— o — . — ——— — T — —— — — T — T — — —— oy, —— oy — — oy — e — o — — T — o — — g —
[' [} | [} [} [] ' v
I IHI>< | ' ' 1 !] ' Lo BN 2 L
|] '] | [] | [—_
- "]]] ' '] Py
) [' []] [] o=
! ' | '] '] ' | ~
£\]] ' | 1 ' ' —_] HEHUOH
[1~ ' ' ' ']] ' [8) ' <z U=
| 1 | ']] []] WO M~ © 1 HEHME
Al | 1] (] [] o | H!'BHZM mo < ' [Y
(Nl]] | [|] I N - -] Punne A
[N } [}] [} ' nn O > I >mn H [[} [SV
(K1] [] (%]] '] HeE e] P e o U x
| ' o ' (=N N Mo W= =] ' HE R
[' ' [1 HO [cNeN HIHEH SH m | by MGG~~~
] ' [} won [} ¢ [N] aA [[l <~ U ! n n
Alm] ' O ' [L MR) &> > = ! RSN
1| =] ' 1 O [[RSN vo! HEARO I OmO [QI MO ~>YHHR
12] 1 OO] [H HH ! HHMN) K [m U [N 3] < <<
Al 1 2= P | P BEHEH] [=} aAl NoDEHDDDMm) NEHM Hx (3] | o 4 A
| At ' <] 10Oz) Zz ! NoOEm)y A = H <O HULZ VN«
1z /m o [N ENS] | tnH I EHHH o " | < H HE 1 N\\]
1= Ol H t HHH (] ' [' HMmO | &SHH o 0 ! - N]
HiH o 1 aQmE) HD.EY.DYY. Db H W.AS MEHA mI! a0 oHO
> Ol H o ¢ EEmE O g Mt UM oo ! Nnagoov P oM 0 MEHAQ ! OB A B <K
[= 1! .EIIR.SOA.OT_ETT.OUUHOOA.CAC gE>HO ! H [=N=R2- 3
H = H = [=R S B S S m m H A | COFHagE gL ! WE =z
H) >4 O ~ 1 P >) M VAt U [T.HTR H M= .KWTTOOR
HimlHl KA A e ' ' @ m ' ol ol ' ' m/mE R M 0 o'vu M HEH D
VHWVAMOHZ I > | tHEHEM | BNV I OO ITOHEH I AgHUOUKREN) NM OHMHO ! MH <« |
GZRAIBEH D !) OFEAHIODDPD 1t OO 1 ORMM I HUOUUVURKMOOM I MMPHEHMAEAERKE | IMEHBOORM
MEAHNEKG | O nEEmsl) Z2@AmM I A3 AN anEgunnmg) &EgnH®NWV SU.CRSSGGm
| NEHEH<GEHD W | * | !]
I—A O UVRNNO R e=—— | —m% = | ——— e ——— ERNAOZNA - — = . — .IEXITlJ
| 1

No Logout

I = IMPL State - No logcut
S = SCA Transfer in Process -

* Designation
Designation

** jndicates MCLB STATUS

[
1]
=]
[}
(=7
n
[[
n =]
a
[} O
ST
[}
(] (&
~ o]
- s
ogQ O
u-A
aR/
O O+
-~ Qo
L 0 a
- ¥ O
o MO
a
000
O=xE=
nwowon
L

blan

Processor Machine Check Handler State (Part 1 of 3)

9-16

* Designation I

| | —m———— e e e e — - e e — e, — e — - e — . —_——— — — — —
oy | | 1 | | | | |
[Kaa TR 4 | | | b b) 1 | |) e
| | —m— - ——_— e — e e e — — — e e, —— ——— —— -
| 1ol 1 | | | | | | i
| I [aal S - 1 1 1o A] < [} L
|| -
| t |] 1 | | | 1
o | | | > < | | [1> ¢ b | >
B — - e e e — —
B ozl ol i |] | | [} | |
=] meN| L | [[[> [e bt | b3
12| = — - — e - e - ——_—— e —_— - e — e — —— ——— e ——— — — — -
<] 0|] | | | | t | | |
) =2 N >< | 1 | b < | | [< (=] > > L] | >
U - - —_—_——_—— - — e —_— e, —_— e -, —— -, ————_—— e — — — —
4l 1 | | | | | | |
o~ >< | | [[) [b< 1> I] > |
| ' | ') | 1 | i
i | | ' | | | | |
| i |] | t [} | |
' | | |] | | ! | |
| | | | | 1 | | | |
_ | | | | | | | | |
| | t | | ' I | |]
| | 1 | | | | | 1 1
||| -—
! | | | | | | | |
| | | 1 | | |]]
|| —
el| | | | | | | | |
—i > | | > > |] | I
|| -
[gl | | | | | | | |
[A < | | o > 1> >) > [> | b B
lll —]
|l | | | | | | | |
o) rale| < | | E A [(] -] > b b > 1 b
L (4] s o o e . . — — . — — — — ——— —— —— —— o —— —_———— —— ———— —————— — -
x| =) 1 | | | | | 1 !
[=i1=lk] T] >4 | e | 1 | | 1
F] = e e e e — e e e e — — —— — ——— o — o —— —]
| X N | | | 1] | | |
i R | I] > | > [1> B < ']
| | | | | | | | |
| >) < | 5 M | LI F] | S bd b b 1 b
|| -
o | | |] | | | |
| > | = | < 1 > |5 bd | be > (] 5 < | >] | b
11 | | | | ' | | | -~
[P= 1 | | 1 | | | | —F
¢ 1 | |)] | | | o=
a4 | | | | | | | | —_—
<! 1 | | ! | | | — 1 HEUH
~1 1 | | | | | |] | <= E
| |] | | | | L= G~ O | B R
A | | | | | o~ | 2K [=> =] | QX e e
| | | | | | } < | < H>~ = 3 | SNVe A
] 1 | | | | LTI o> | > o By | (SRS N
| | | | (%) | | | oo ~) M e s lnE
| | (= | =N @ x| TR [] | HE A e
| | | | | HO | [oNelN] H ol HmEH = - | [T R
5] | | o | | <<) Aa | m <~ O | nn
Alm 1 (S | [< <t | SIS I - o] > 0o <) X E M E e @
1=l | | O ;@ | 1o SRSy HEeO) OMmO o O | Ao ~~HEHRK
[Hi=) | | 5500 | | H - <HHE I o =] My [Aun) e < -l
A= | [V =R 1 | @mo [~ =] NeHDDE | Mk 2= =]) <€ OB W
| a il | <t | | O=) e = 2=) NoOoOMm | Mo = - <O) HOUazZWNNW
1) = m o) I =00 1 | nH) B nn 221851 | 5 =1 (! HEHI NN\ O]
lr]=lo (B | HHH 1 1w | <] HEEQO | EEHH o wn | [3% -V =]
| 4| k| =) | [N =N} A RS OB B4 H EH | < ¥ H A M) MO0 o H Ol
154 O 4 "] Il =220) Ml U) -] NN OWD | EMmE] MEHQ I OHAMEHaBH
| Q| = = | I AHHG | NO< | OKH | MHKH I ODDZEO00< | OO <E>HO | H DoDunx
H = o [|1 ono t mE) KmE) om A3 | N<LTOHCE O | = =
W 5] | ~ | Db) M | A | Oage 1D I) B HMKx | X XEHEHO O
H| Hl = A | [} x o [} DD [] [} MMOREHEBD | AP DA 1%} QI UDbDxmEHEAHD
VDNV OH=Z | > | ®RHEHD | BNV I VD | VHH I AXIANEKEKMN) RO OHMEEHO | K=t &
|lgZREEH<CtD | <€) OBBKHIODD 1 OO0) OMMIBHUOURMOOM | MRADAHKMEMRMT | CAHEHOOM
IMmAHN TS | O NEGR | =200 1 A3 1 ANl ASEnNnE | SEnHNnNN nNoHD | LEnLOx
ll o
| nNEHLEHD WM | #* | |
“I.P EOULUBMUNNO M ——— —% = ——=— — —— — — ERNAUOZNA ——— — ———— | =P 54 H B — —
|

No Logout

IMPL State -

Designation S = SCA Transfer in Process - No Logout

s MCLP STATUS

** indicat

Condition or Response

X =

o Condition or No Response

o Response

N =N
blank = N

Processor Machine Check Handler State (Part 2 of 3)

9-17

Machine Support Functions

FACILITY —>

MICROCODE

RECOVERY

TIMERS

ENTRY POINT —>

MUCODE

MSOFT

MTIMER

DESIGNATION NUMBER —> (hex)

1B

1C

1E|1F|20|21

22

24

2A|2B

2C

2E

2F

30

31

312

IMPL
sTOP
HWAIT
RUN (IMPLIED)

CAV

SCA TRANSFER IN PROCESS
RETRY INDICATOR
RETRY INDICATOR
FIB ERROR

MCLB NOT BUSY
MCLB BUSY SOFT
MCLB BUSY HARD

x

muwzZzZovuvma

LOG PROCESSOR STATUS
LOG RETRY INDICATOR

LOG CRE DATA
SET RETRY INDICATOR
SET RETRY INDICATOR

nn
-

XX | XX

XZ | XX

4

x

DISABLE TASK DISPATCHER
MCLB BUSY = SOFT

MCLB BUSY = HARD
RESET WAIT STATE

SET SOFT LOG REQUIRED
SET SOFT LOG REQUIRED = 1
RESET AUTO ERROR IN VAT

n
o

XXX X
XXX X
x

x

x

X XXX X

X X X X

X X X X

X X X X

RESET CHAN ERROR IN VAT
RESET/RESTART EVERYTHING

SUBTRACT IL FROM IAR (EOC)
IL =0

STOP TASK INTERVAL TIMER
SET IAR TO IMCH (IL = 0)
RESERVED

SET WAIT STATE MCHK FLAG

UHOO CODE TO SCA

L—-—-—u—cx m—

CHECKSTOP STATE

RETURN TO SCA OR FIX UP

START UP W/AT (ESRT.ESRTAT)
START UP W/NT (ESRT.ESRTNT)

GO TO STOP STATE (ESP1.ESCAO)
GO TO WAIT STATE (TWTL.TWTLNE)
RETURN TO CALLER

Processor Machine Check Handler State (Part 3 of 3)

#% indicates MCLB STATUS

X = Condition or Response
D = Hard-hard double bit error corrected condition
will be ORed into processor status
N = No Response
blank = No Condition or No Response

C

Processor Status (continued)

Bytes
(Hex)

3

4-6

Bits

Bytes
(Hex)

Description 6

MCHK Designations-Secondary:
Designation number if a second
MCHK occurred before the first was
handled or indicates the recovery
designation number after a recovery
log has been executed.

Hardware Code: Specific hardware
error. Note that byte 6 has meaning
only when byte 5, bit 1 is a 1; and,
if byte 6, bit O is a 1. Additional

information is contained in the Main
Storage Error Code (bytes hex 7-B).

Reserved: Must be zero.

Main storage time-out error (Models

3, 4, and 5). Reserved: Must be

zero (5381 Models 6, 7, and 8; all 7-B
5382 models).

VAT (virtual address translator)
machine check. 7

ALU (arithmetic logic unit) check.
Reserved: Must be zero.

Control storage read data parity
check.

ALU output parity check.

IAR (instruction address register)
parity check.

Reserved: Must be zero (all 5382
models). Invalid control storage
address (all other models).

Bits

o O » W N

Description

Main storage error.

VAT internal parity or VAT error
during HMC request (such as no
traps, invalid register or page, or store
without set change bit set).

VAT error during channel request.

VAT error during automatic operation
(FIB/TOD/IT) (fill instruction buffer
time/interval timer). An FIB error is
detected as VAT hardware machine
check. TOD/IT error is detected by
microcode.

Fetch/Store command when address
compare was made.

Reserved: Must be zero.
Address compare buffer select.

Main Storage Error Code (Models
3.4, and 5): Additional main
storage error information.

Read data parity check.

Main storage address parity check.
Main storage write data parity check.
Main storage invalid address.

Main storage multibit failure.
Reserved: Must be zero.

Main storage single bit failure (status
only—does not cause a machine
check).

MSAR (main storage address register)
specification:

0 MSAR2.

1 MSAR1.

Machine Support Functions 9-19

Processor Status (continued)

Bytes
(Hex)

8

9-20

Bits

0-6

7

0-7

0-1

4-7

Bytes
Description {Hex)
Page identifier. 7-B

Byte identifier (with byte 9).

Byte Identifier: The byte identifier

makes up the low order 9 bits of the

21-bit real address of the failing 7
storage address.

00 1/0 access:
01 Data access.
10 Data access.
11 Instruction stream access.
0 Fetch from main storage.
1 Store to main storage.
0 V=V.
1 V=R.
Frame identifier (with byte B).

Frame Identifier: The frame
identifier makes up the high-order
14 bits of the 23-bit real address of
the failing storage address for non
V=R addresses. For V=R addresses
byte hex B, bits 1-7 make up the
high-order 7 bits of the 23-bit real A
address, and bytes 8 and 9 make up
the low-order 16 bits. On Models 3,
4, and 5, bits 1 and 2 of Byte B are
zero.

Bits Description
Main Storage Error Code
(Models 6, 7, and 8):
Additional main storage error
information.
0 Data parity error—CPU/channel.
1-4 Main storage error. See the IBM
System/38 Processing Unit MAP
Reference, P/N 25505626, for details.
5-6 Reserved: Must be zero.
7 MSAR (main storage address
register) specification:
0 MSAR2.
1 MSART1.
0-6 Page identifier.
7 Word identifier (with byte 9).
0-5 Word identifier.
6-7 Access type:
00 1/0 access.

01 Data access.
10 Data access.
11 Instruction stream access.

0 Virtual = Real.
0 Not V=R.
1 V=R.

1 Fetch/store from main storage.
0 Fetch.
1 Store.

2-7 Frame identifier (with byte B).

Processor Status (continued)

Bytes
(Hex)

B

Bits

0-7

Description
Frame identifier.

Note: Bytes 8, 9, A, and B are used
to form a 24-bit real address as
follows: If byte A, bit O is set:

Add-
ress
Bits Bytes and Bits Used

0-7 B 0-7
8-15 8 0-7
16-21 9 0-5
22, 23 Forced to 00

If byte A, bit O is reset:

1-4

5-7

Add-
ress
Bits Bytes and Bits Used

0 Forced to 00
1-6 A 0-7
7-14 B 2-7
15 8 7
16-21 9 0-5
22, 23 Forced to 00

Main Storage Error Code
(all 5382 Models)

Additional main storage error
information.

Data parity error—CPU/channel.

Main storage error. See the IBM
System/38 Processing Unii MAP
Reference P/N 2550526, for details.

Reserved: Must be zero.

Bytes
(Hex)

8

Bits

0-1

Description

Access type:

00 1/0 access.

01 Data access.

10 Data access.

11 Instruction stream access.
Reserved: Must be zero.
Fetch/store from main storage.

O Fetch.

1 Store.

Failing main storage card number.
Word identifier (with byte 9).
Word identifier.

Reserved: Must be zero.

Frame identifier (with byte B).

Frame identifier: The frame identifier
makes up the high-order 16 bits of
the 25-bit real address of the failing
storage address. Bytes 8 and 9 make
up the next 7 bits. The low-order 2
bits are forced to zeroes.

Retry Indicator:
Reserved: Must be zero.

Retry indicator:

0 Successful retry. (If a retry
was never attempted, bit 7
always = 0.)

1 Unsuccesfui retry.

Machine Support Functions 9-20.1

This page is intentionally left blank.

9-20.2

Processor Status (continued)
Bytes
(Hex) Bits Description

D S-Register: Processor hardware
status register which contains
temporary HMC status and condition
code.

0-3 Temporary HMC flags.

4 Hardware overflow.

5 High-order result bit of an indirect
binary add or subtract.

6 Carry from the ALU (arithmetic logic
unit).
7 ALU result equal to 0.
E G-Register: Hardware register

collection of control latches used by
the processor logic and HMC.

0 Checkpoint address valid. This bit
indicates whether the microprogram
was checkpointed when a machine
check occurred:

0 Instruction not retryable.
1 Instruction retryable.

1 Temporary HMC flag.

2 Block machine check trap. If this bit
is set, a machine check error will not
trap the microprogram. This bit is
for diagnostic use only.

3 Temporary HMC flag.

4 Local storage partition latch. This bit
is the high-order address bit for
direct addressing.

5 Temporary HMC flag.

6 L-register couple control. This bit,
when set, indicates the L-register is

in the coupled mode.

7 Stop state indication.

Machine Support Functions

9-21

Bytes
{Hex)

10

9-22

Bits

Description

Extended Operation Code: This
byte contains the second byte of the
instruction if a machine check
occurred while executing an
instruction with an extended
operation code. The low-order 4
bits contain the operation code
extender field. This byte is valid
only if byte hex 10 is equal to one
of the following:

Hex OD 80
BA 83

6D 91

1 AE

79 BE

CE

See Chapter 2 for a description
of the extended operation code
format, and Chapter 10 for the
extended operation code
assignments.

Operation Code: This byte
indicates the type of operation being
performed:

Note: See Machine Check Special
Error Conditions in this chapter.

00 Built in function.

40 HMC procedure. Any other
value not equal to 00, 40,
or FF represents the
operation code of the IMP
instruction currently being
executed. See hex byte F
for a listof extended
operation codes.

Bytes
(Hex)

11

12-13

14-17

Bits

1-2

Description

Current MCLB Status:

Reserved: May be any value.

Encoded current MCLB sta:us:
00 Log area not busy.

01 Log area busy with soft
MCHK.

10 Log area busy with hard
MCHK.

11 Not used.
Reserved: May be any value.

MCSAR (machine check control
storage address register): CSAR
address when a hardware-detected
failure has occurred (MCLB byte O,
bit 2=1). MCLB hex bytes 12-13
will equal O if MCLB hex byte O, bit
2=0,

HMC Flags: Status of various HMC
and VMC facilities as used by HMC.
These HMC internal flags are, in
general, only modified by HMC
routines directly associated with an
individual bit or bits.

C

Bytes
(Hex)

14

Bits

0

1-2

Description

Flag virtual address mapped in PD

(primary directory) when SCA

(system control adapter) executes
the Set AC (address compare) for
VA (virtual address) command:

0 Virtual address mapped in PD.

1 Virtual address not mapped in

PD.

Encoded prior MCHK log busy
status:

00 Log not busy.

01 Log busy with soft MCHK.

10 Log busy with hard MCHK.

11 Not used.

Note: These bits represent the
status of the log when the MCHK

occurred.
Flag interval timer in use:
0 Interval timer not in use.

1 Interval timer in use.

Flag TOD (time-of-day clock) in

use:
0 TOD not in use.
1 TOD in use.

Flag clock comparator in use:

0 Clock comparator not in use.

1 Clock comparator in use.

Flag task interval timer in use:

0 Task interval timer not in use.

1 Task interval timer in use.

Bytes
(Hex)

Bits

Description
Flag task switch blocked:
0 Task switch blocked.

1 Task switch not blocked.

Flag procedure type executing:

0 IMP procedure.

1 HMC procedure.
Reserved: May be any value.
Flag interval timer repetitive:

0 Not repetitive.

1 Repetitive.

Reserved: May be any value.
Flag processor in wait state:

0 Not in wait state.

1 In wait state.

IS (instruction step) mask:

O Allow IS exception.

1 Do not allow IS exception.

SCA (system control adapter) routine

retryable:
0 Not retryable.

1 Retryable.

FIB (fill instruction buffer) window

flag:
0 Not FIB retry.

1 FIB retry.

Machine Support Functions

9-23

Bytes
(Hex)

16

17

9-24

Bits

0-7

Description
Reserved: May be any value.
Soft address compare mode:

0 Not soft address compare
mode.

1 Soft address compare mode.

SCA exceptions:

0 SCA exception.

1 SCA trap.
Timer MCHK flag:

O Not timer error.

1 MCHK timer error.
MCHK in wait state.

0 MCHK not in wait state.

1 MCHK in wait state.
Task-controlled interrupt allowed.
SLVM1 instruction enabled.

Reserved: May be any value.

Bytes

(Hex) Bits
18

0

1

2

3-7
19

0

Description
HMC Exceptions:
Flag execute instruction:
0 Not execute instruction.
1 Execute instruction.
Flag soft MCHK report pending:
0 No soft MCHK report pending.
1 Soft MCHK report pending.
Flag IS (instruction step) mode:
0 Not in IS mode.
1 In IS mode.
Reserved: May be any value.
Microcode Generated Exceptions:
Flag task dispatcher call required:

0 No task dispatcher cali
required.

1 Task dispatcher call required.

Flag PEM (program event monitor)
mode:

0 Not in PEM mode.

1 In PEM mode.

Bytes

((Hex) Bits
19 2-3
4
5-7
1A-1B
(1C-1D
1E
0-3
4-7
1F
20-21
22-23

Bytes
Description (Hex)
Flag AC (address compare) mode: 24-25
00 Not in AC mode.
01 In AC sync.
10 In AC mode.
26
11 In data AC mode.
27
Event Handler call required:
0 Normal event processing. 28-29
1 Event handler call required.
28
Reserved: May be any value.
29

Overlay Index A/B: HMC routine
that was in the control store overlay
area A and B at the time of the
machine check.

IMP Exceptions: IMP exception
code as described under IMP
Exception Codes, (under Task Status),
later in this chapter.

Condition Code: |IMP condition
code:

Hex O.

Condition code.

Reserved: May be any value.
LB-Miss Control Address:
Lookaside buffer-miss control

address.

Link Register: Control storage link
address at the time of failure.

Bits

0-7

Description

Address Register: These 2 bytes
contain the IAR (instruction address
register) if an IMP procedure, or the
left-justified CSAR (control store
address register) if an HMC
procedure.

Reserved: May be any value.

Instruction Length: IMP instruction
length.

Exception Register (Models 3, 4,
and 5):

Reserved: Must be zeros.

1/0 channel event: (I/0 service
required).

I/0 channel machine check.
Main storage address compare.
Timer carry occurred.

IMPL (initial microprogram load).

Reserved: May be any value.

SCA (system control adapter)
request pending.

Microprocessor exception.

Machine Support Functions 9-25

Bytes
(Hex)

28-29

28
29

2A-2B

9-26

Bits

a & 0N

Description

Exception Register (6381 Models 6, 7,

and 8; all 5382 Models):

Reserved: Must be zeros.

1/0 channel event: 1/0 service
required.

I1/0 secondary error machine
check—Set by the 1/0 channel logic to
indicate that a hard channel error has
occurred and the |/0 channel has been
stopped until error recovery has been
completed.

Main storage address compare.
Timer carry occurred.
IMPL (initial microprogram load).

Main storage double-bit error-Data
has been corrected in main storage.

SCA (system control adapter) request
pending.

Microprocessor exception.

Overlay Index C/D: HMC routine
that was in the control store overlay
area C and D at the time of the
machine check.

Task Status

The task status field of the MCLB contains information
that indicates the state of the task that was running at
the time of the machine check or SCA (system control
adapter) request. This field contains 110 bytes.

Bytes
(Hex) Bits
2C
0
1
2-7
2D
0-3
4-7
2E
2F

Description

CRE Flags: This byte contains

special flags used by the HMC

logout routine.

0 Valid CRE (call/return element)
data has not been logged out to

this area.

1 Valid CRE data has been logged
out to this area.

IMP or HMC task pending:

0 IMP task.

1 HMC task.
Reserved: May be any value.
Base Register Specification:

Number of the first base register to
be logged.

Number of base registers logged
minus 1.

Instruction Length: Instruction
length, right justified.

Condition Code: IMP condition
code.

5

Bytes
(Hex)

30-31

32-91

92-97

98

Bits

Description

Address Register: |IAR (instruction
address register) if an IMP procedure
or the left justified CSAR (control
storage address register) if an HMC
procedure.

Base Registers: The next 96 bytes
contain sixteen 6-byte registers
beginning with the base register
specified in bits 0-3 of byte hex 2D.

Failing V=V Address: These 6 bytes
contain the failing virtual address
when a page fault results in a
machine check (all 5382 models).

Reserved: May be any value (all
other models).

IMP Exceptions: Two-byte IMP
exception code.

Reserved: May be any value.
Soft address compare.

Dispatcher time increment expired
(task interval timer).

Monitored ACQ descriptor (SVL
[supervisor linkage] receive).

Monitored CRE descriptor (SVL
receive).

Monitored TDE (task dispatching
element) descriptor (SVL receive
wait).

Bytes
(Hex)

99

Bits Description

00 No exception

02 Invalid descriptor
04 Busy

06 Reserved

08 Allocate page frame

0A Monitored SRQ descriptor
ocC Monitored SRM descriptor

OE Monitored TDE descriptor
10 SRC overflow

12 Address translation

14 PEM (program event monitor)
16 Execute

18 Specification

1A Addressing

1C Effective address overflow
1E Data

20 Binary overflow

22 Binary zero divide

24 Decimal overflow

26 Decimal zero divide

28 Floating-point overflow

2A Floating-point underflow
2C Floating-point inexact result
2E Floating-point zero divide
30 Operation

32 Stack

34 Verify

36 Chain Conflict
38 End of Chain
3A Edit Digit Count

3C Length Conformance

3E Edit Mask Syntax

40 Invaiid Segment Group

42 Floating-point invalid operand
44 Reserved

46 Second Chain Search

48 Conversion

4A Invalid floating-point conversion
4C-74 Reserved

80 Invalid Segment (note)

81 Invalid Page (note)

82 Page Read Error (note)

83 Invalid Pool State (note)

84 Invalid Pin Request (note)

85 Invalid Write Request (note)
86 Main Store Error (note)

87-8F Reserved

Note: Implicit SVL codes. See Chapter 6 for
the description of all IMP exceptions.

Machine Support Functions 9-27

MACHINE CHECK SPECIAL ERROR CONDITIONS

Virtual Address Translator Machine Checks

Since the decode and execution of IMP instructions is
asynchronous with main storage and the VAT (virtual
address translator), any MCHK (machine check)
occurring on a write to main storage cannot be
conclusively isolated to the instruction which caused the
MCHK. When this condition is detected, the task which
incurred the MCHK must be terminated immediately.
The conditions to test for the above MCHK are: byte 5,
bit 1 = 1; byte 6, bit 0 = 1; and byte 7 bit 2 = 1.

Machine Check During Translate Instruction

A Translate instruction, due to its special interrupt mode,
must always force termination of that task if a machine

check occurs while the Translate instruction is retryable.
MCLB (machine check log buffer) byte hex 10 = hex CC
and byte hex OE, bit O = O identify this condition.

Error/Recording Error Definition

Errors defined for the CPU are described in the
Processing Unit Theory-Maintenance manual.

9-28

Stack Handling

An IMP stack is a group of storage areas assigned
sequentially within the addressing space. The stack
entries provide a means of declaring and using
save/work areas in storage with nested programs.
These stack entries are handled last-in, first-out.

STACK STRUCTURE

An IMP stack is contained within a segment. A
software-maintained and used header is found at the
front of the stack. The stack entries following this
header are variable in length, double-word aligned, and
contain an 8-byte area at the front. Two IMP
instructions (Stack and Unstack) are used to add and
remove stack entries.

The size of a stack entry is presented as the contents of
a halfword register in the Stack instruction. The 8-byte
area at the beginning of each entry contains 4 halfword
fields. The first halfword @ is a virtual address offset
(forward pointer) indicating the start of the next stack
entry. The second halfword e is a limit for the stack
presented as an upper address offset boundary. The
third halfword O is a virtual address offset (backward
pointer) indicating the start of the previous stack entry.
The fourth halfword Q is a flag field in which the only
IMP-recognized flag is hex bit 15. When set to one,
this bit indicates that the stack entry is the first entry on
the stack. An unstack operation is not permitted when
this flag is set to 1.

Machine Support Functions

9-29

The following diagram shows a typical stack. When an
IMP stack operation is performed with address A,
pointing to the entry currently being used, the entry at
address A, is formed by computing its end address A,,
filling in its 8-byte area, and updating the stack address
to A, as the new current entry. When the IMP Unstack
operation is performed with address A, pointing to the
entry currently being used (the entry at A, has not been
created in this case), the stack address is backed up to
address A, because the flag bit hex 15 is not set to 1.

Stack

9-30

Unstack

X Previous— A,

X Current — A,

X Next — A,

Following — A,

IMP Stack
Storage
0 2 4 6 Bytes
Stack Header
[S ;) SR 0
_ Limit Previous F=
Fwd = A, tm Entry =x | Hex 0001
Size 1
imi A Hex 0000
As Limit ' ° Size 2
A4 Limit Ag Hex 0000 W
L Size 3
)
\
As Limit A; Hex 0000
L Size 4
/

HOLD/FREE FUNCTION

The IMP hold/free function is embodied in five IMP
instructions and a storage segment containing chained
hold records. Each chain represents hold activity for a
system object and its hash synonyms. In addition, one
chain contains initialized but as yet unused (in other
words, available) hold records.

The hold chains contain ordered HRs (hold records)
where each record represents an object hold of a
specified type. A process (or task) can have holds on
multiple objects and can have multiple holds (of the
same type or differing types) on the same object.

Hold Chain Structure

Figure 9-2 shows the six data fields involved with hold
and free. Two 6-byte addresses are maintained in the
processor control address table. One is the address of a
4096-byte HHT (hold hash table) and the other is the
address of the first hold record remaining in the
preinitialized chain of available (free) records. Two
halfword fields in the current TDE (task dispatching
element) that are used are a unique TDE ID (task
dispatching element identifier) and a count of the
number of hold records currently in use by the task.

Machine Support Functions

9-31

Control Address Table

0 Bytes 8 Hold
Hash
Table
L ~ 0 Bytes 2
-+ T]
0
Hold Record Area
: 0 Bytes 16
dd
HHT Address , HRO (not used)
AHR Address > HR1
3
- Entrie: HR2
— L g
HR3
2048
> HR4
HR5
Task Dispatching El t
p ing Elemen HR6
0 Bytes 8
Auvailable
> HR7
L ~L
HR9
ID |CNT ’JL’ itiali ~
- Not Initialized -
- [

Figure 9-2. Hold/Free Data Fields

Programming Note: The HHT entry of hexadecimal 0000
indicates a null HR chain. Therefore, HRO is not used.

9-32

The other two storage areas used by hold and free are
the HHT and the HR (hold record) area. The HHT is a
4096-byte storage page which contains 2048 halfword
entries. When hold/free activity is performed in an
object, the 6-byte address of that object is hashed,
forming a 2-byte index as shown below.

Object Address (6-Byte Virtual Address)

0 1 Bytes 2 3 4 5
EOR EOR
Y Y
Mask 0 7 F F
[} 1
Hash Hold
Table Index

This 2-byte index is used as the address of one of the
2048 HHT entries. The halfword contents of the
selected entry (if not = 0) are then used as a halfword
index which, when multipled by 16 and concatenated on
the right of the high-order 28 bits of the address SID
(segment identifier) obtained from the AHR (available
hold record) chain address located in the control address
table, forms the address of the first (most recent) hold
record granted for this object and its hash synonyms
(other object addresses which hash to the same 2-byte
index value).

The second storage area, which is composed of 16
consecutive 64 K segments of address space, is a virtual
addressing segment called the HR (hold record) area. It
contains all the HRs used in all object chains plus the
chain of preinitialized HRs available for additional holds.
It may also contain some uninitialized area for expansion
of the available hold record chain. The HR area
segments are identified by the high-order 28 SID bits of
the AHR chain address contained in the control address
table.

Machine Support Functions 9-33

Hold/Free activity involves the use of seven IMP
instructions. These instructions are:

« SCB Set Chain Busy
« RCB Reset Chain Busy

« GHRF Grant Hold Record First
« GHR Grant Hold Record

« FHRF Free Hold Record First
« FHR Free Hold Record

« RAHR Return Available Hold Record

HRB (hold request block) Format

HRB HRB
Text Hold

Byte Description
HRBTEST

HRBHOLD

HR (hold record) Format

The first six of these instructions have as one operand a
base register containing the 6-byte effective address of
the object involved. The Grant/Free and SCB
instructions have another base register operand to
receive the address of a hold record of interest (GHR
and FHR instructions have this register preloaded with a
HR of interest and update it to a new HR if necessary).
The last four instructions have yet another operand
which is a storage halfword data field called a hold
request block. This hold request block contains (1) the
hold types to be checked for and (2) the holds to be
granted for hold, or which were granted if freeing as
shown in Figure 9-3.

Holds to be tested for

Holds to be granted or freed

HR HR .
Hol
Flag Hold old Record Object Address
0 1 2 Bytes
Hold Record Hold Record Cumula-
HR TDE Primary Secondary tive Hold | Unused
Chain Chain Field
8 A Byte E F 10

Figure 9-3 (Part 1 of 2). Formats of the Hold Request Block and the Hold Record

9-34

C

C

Bytes
(Hex) Bits
0
0
1
2-4
5
6
7
1
2-7

Figure 9-3 (Part 2 of 2). Formats of the Hold Request Block and the Hold Record

Description
Hold Record Flag.
Head of secondary chain:

0 = 0 Not the head of a secondary
chain.

0 = 1 Head of a secondary chain.
Secondary chain monitored: The
monitored hold is on a secondary
chain. This bit is set by the VMC

exception handler.

1 =0 A request was received to
free the object.

1 =1 No request was received to
free the object.

Unused.
Hold record busy:
5 =0 Not busy.
5 =1 Busy.
Hold record end of primary chain:
6 = 0 Not end of chain.
6 =1 End of chain.
Hold record monitored:

7 = 0 Not monitored.
7 =1 Monitored.

Hold Record Hold: Contains the
HRBHOLD when a hold is granted,
indicating the type of hold.

Hold Record Object Address:
Contains the 6-byte address of a hold
object.

Bytes
{Hex)

Bits

Description

Hold Record TDE: Contains the TDE
identifier when the hold is granted.

Hold Record Chain: Contains a
halfword index of the next hold record
in the primary chain for hash
synonyms. This index is also used as a
backward pointer on the secondary
chain.

Hold Record Secondary Chain:
Contains a halfword index of the next
hold record in the chain for this object.
A zero indicates the end of chain.

Cumulative Hold Field: Contains the
OR of all the holds on the hold records
in the secondary chain (exists only
when there is a secondary chain).

Unused.

Machine Support Functions 9-35

HARDWARE TAGS

Each word in storage has an associated hardware tag
bit. Tag bits are used to differentiate between data and
pointers. There is one pointer tag (logical AND of the 4
hardware tag bits) associated with each quadword (4
consecutive words) of storage. If a tag bit is set, a valid
pointer is located in the quadword corresponding to that
tag bit. If a tag bit is zero, no pointer is located in that
quadword.

A quadword in storage that is quadword-aligned (on an
address divisible by 16) is considered tagged when all 4
words in the quadword have their hardware tag bits set.
The quadword is not tagged when any or all of the
hardware bits in the quadword are reset.

There are five IMP instructions that can set the
hardware tag bits. These are Call Internal, Store and Set
Tags, Move and Set Tags, Insert Tags, and Move
Characters and Tags. The Add Space Pointer Offset
instructions (AHSPOI, AHSPO, and AFSPO) can be used
to modify tagged pointers without setting the
corresponding tag bits off. The Load and Verify Tags
instruction checks the hardware tags but does not alter
them. All other instructions and other facilities that store
data in storage cause the associated hardware tag bits
of the words stored to be reset. Thus, a tagged
quadword cannot be manipulated by an instruction other
than the instructions referenced above and still remain
tagged.

Storage management must save the tags when it writes
a page to auxiliary storage and restore them when it
reads the page into main storage. Storage management
uses the Extract Tags and Insert Tags instructions to do
this.

9-36

VMC Service Aids

Direct support for servicing the VMC exists in two
facilities: a task switch trace facility and a
programmable address compare facility. Each of these
is described in the following sections.

TASK SWITCH TRACE FACILITY

General

The task switch trace facility provides a trace record for
each IMP task switch in by the processor. Trace records
are placed into the trace event buffer in storage as they
occur. When that buffer is full, a buffer-full condition is
signaled and an alternate buffer is used. Task switch
trace activity is controlled by a bit in the TDE (task
dispatching element) of the task being switched in.

The trace event buffering operation is controlled by the
trace control table (described later in this chapter), which
is a control block addressed by an entry in the
processor control address table (see Figure 2-2). The
processor control address table contains:

« Buffer offsets and thresholds.

« An SRC (send/ receive counter) used by the processor
to signal the program of a buffer-full condition, and a
control bit used to suppress that buffer-full condition

signal.

« A damage indicator which the processor notifies the
program of a buffer wraparound condition.

The task switch trace record contains:

« The TDE (task dispatching element) identifier.

« A time stamp.

« The binary overflow and Instruction Address Register
(control storage address register if an HMC

procedure) values, for the first procedure to be
executed in the new task only.

TDE Control Bit

The TDE bit that controls TDE tracing is bit 2 of hex
byte OC. If the bit is a one, the trace function is
performed when the task is switched in. If the bit is
zero, the function is not performed.

Trace Control Table Address

Hex bytes 98-9F of the processor control address table
contain the address of the trace control table. Hex bytes
98-99 are reserved, and hex bytes 9A-9F contain the
6-byte address. The address has use code b (see
Permanent Storage Assignments in Chapter 2) and the
table itself must be doubleword aligned, resident in main
storage, and must not cross a page boundary;
otherwise, a machine check occurs.

TRACE CONTROL TABLE

The trace control table is a 28-byte object which
contains the entries that control the logging of trace
records and notification of the program when the trace
event buffer is full.

Machine Support Functions 9-37

Format:

Primary Buffer Primary Buffer
Type Control Reserved Trace Count Offsetry Thresh‘clyld
0 1 Bytes 6
Alternate Alternate
Reserved Buffer Buffer Send/Receive Counter
Threshold Offset
A Bytes C E 10 1C
Bytes Bytes
(Hex) Bits Description (Hex) Bits Description
0 Type: Contains the trace control table 8-9 Primary Buffer Threshold: The
type (hex E3). number of 4-byte blocks of data that
can be put into the primary buffer.
1 Control: Control.
A-B Reserved: May be any value.
0 0 Buffer wraparound has not occurred.
c-D Alternate Buffer Threshold: The
1 Buffer wraparound has occurred. number of 4-byte blocks of data which
can be put into the altenate buffer.
1 0 Disable SENDC on wraparound When the primary buffer becomes full,
condition. alternate buffer threshold is copied to
the primary buffer threshold by the
1 Enable SENDC on wraparound processor.
condition.
E-F Alternate Buffer Offset: Provides the
2-7 Reserved: May be any value. address offset within the trace control
table segment to the beginning of the
2-3 Reserved: May be any value buffer area which is to be used when
the primary buffer exceeds its limits.
4-5 Trace Count: The number of 4-byte When this occurs, the alternate buffer
blocks currently in the primary trace offset is copied to the primary buffer
event buffer. offset by the processor.
6-7 Primary Buffer Offset: Provides the 10-1B Send/Receive Counter: The

9-38

address offset within the trace control
table segment to the beginning of the
primary trace event buffer.

send/receive counter in the trace
control table is used to control the
dispatching of the task which handles
buffer-full conditions.

Task Switch Trace Record

The task switch trace record is a 16-byte record .that
contains the information to be logged each time a task
switch occurs. This information includes a time stamp,
the TDE (task dispatching element) identifier, and the
current instruction stream address.

Format:
TDE
Type Length |dentifier Time Stamp
0 1 Bytes 4
Address .
Register Base Register O
8 Bytes 10
Bytes Bytes
(Hex) Bits Description (Hex)
0 Type: Contains the task switch 4-7
trace record type (hex FO).
1 Length: Contains the trace record
length, expressed in terms of
number of 4-byte blocks, as well as
the type of procedure contained in
the TDE CRE (call/return element).
8-9
0 0O IMP procedure.
1 1 HMC procedure.
1 Reserved: Must be zero.
2-5 Length (= binary 0100).
A-F
6-7 Reserved: Must be zeros.
2-3 TDE Identifier: Contains the ID

field of the TDE.

Bits

Description

Time Stamp: Contains bytes 2-5
of the current time of day clock
value. If time of day clock is not
running, it contains all zeros. By
using bytes 2-5 of the clock,
approximately 20 hours of unique
time stamps are available.

Address Register: If byte 1, bit
0 is zero, this contains the |IAR
(instruction address register) value
of the TDE CRE; otherwise it
contains the CSAR (control store
address register) value of TDE
CRE.

Base Register 0: Contains the

base register zero value of the
TDE CRE.

Machine Support Functions 9-39

Operation

Each time a task switch-in occurs, TDE byte C, bit 2 is
tested by the processor. If on, a task switch trace
record is generated and added to the trace event buffer
in storage, as follows:

1. The trace control table is accessed via bytes hex
98-9F of the control address table and the trace
count is multiplied by four to obtain an index to
the current entry of the buffer.

2. The result of step 1 is added to the primary stack
offset to obtain the offset of the first byte of the
new buffer entry. A carry from bit O or a

nonfullword-aligned result causes a machine check

to occur.

3. The offset obtained in step 2 is concatenated with
the trace control table SID (segment identifier) and

the resulting virtual address is translated. If the
address cannot be translated, a machine check
oceurs.

4, A value of 1 is subtracted from 4 times the length

and this new value is added to the result of step 2

to obtain the offset of the rightmost byte of the
new buffer entry. A carry from bit O of the result
causes a machine check to occur.

5. Step 3 is repeated, using the offset value obtained

in step 4.

6. The trace record is written to the address obtained

in step 4.

9-40

7. Length is added to the trace count in storage.

8. The result of step 7 is tested for a value greater
than or equal to the primary buffer limit. If not
greater than or equal, the buffer operation is
complete; otherwise the operation continues.

9. The trace count is loaded with hex 0000.

10. The primary stack offset and alternate buffer
offset are compared. If equal, byte 1, bit O of the
trace control table is set, and the operation
continues.

11. The alternate trace offset and alternate trace limit
are copied to the primary trace offset and primary
trace limit, respectively.

12. Byte 1, bit 1 of the trace control table is tested. If
set, a send count operation is performed using
bytes hex 10-1B of the trace control table.

Programming Note: The threshold test ensures that a
trace record does not begin beyond the threshold.
However, it is possible that the end of a record can
extend beyond the threshold. Hence, an overflow area
should be provided at the end of each buffer. The
length of the overflow area should equal the trace
record length minus 4 bytes.

ADDRESS COMPARE MODE

The address compare mode allows the program to be
signaled whenever one or more of the following events
occur:

« An instruction is fetched from a designated virtual
storage location.

« The contents of a designated virtual storage location
are accessed by either the processor or the 1/0
channel.

« The contents of a designated virtual storage location
are altered by either the processor or the 1/0
channel.

» The contents of a designated virtual storage location
are altered to a predetermined value by either the
processor or |/O channel.

An address compare mode is established through the
use of the Set Address Compare Mode instruction.
When an address compare match occurs, the program is
signaled via an address compare exception; when the
exception occurs, the address compare mode remains
set and the compare address is unchanged. The
address compare mode is terminated via the Reset
Address Compare Mode instruction.

An address compare mode can be set up to occur for
an instruction stream fetch, a processor data access, or
an |/0 channel data access, selectively. Also, it can be
set up to occur if any of the preceding three access
types occur. Two other setup options are available with
the address compare mode. The first is the capability to
snecify that an exception is to be recognized only if a
store type access to the designated storage location
occurs during a processor or |/O channel data access,
as opposed to the general capability where either a
fetch or store type access causes an exception to be
recognized. The second is the capability to compare the
value of a prespecified character to the character stored
in the designated storage location by the processor or
1/0 channel; an address compare exception occurs only
if the two characters compare.

When an address compare match is detected for an
instruction stream fetch, the exception occurs prior to
execution of the designated instruction. If the instruction
consists of multiple units of operation, an exception
occurs prior to execution of each of the units of
operation. When an address compare match occurs for
processor data accesses, an exception occurs after
completion of the unit of operation during which it
occurred, where the unit of operation can be either an
IMP or HMC unit of operation. |If the processor is not
executing a unit of operation when the address ccmpare
occurs, the exception is recognized after completion of
the next unit of operation to be executed. For example,
if the processor is in the wait state and an address
compare occurs due to servicing of the IMP timers, the
exception is not recognized until a task switch occurs.
When an address compare match is detected for an 1/0
channel access, an exception is recognized after
completion of the unit of operation currently being
executed by the processor. if none is being executed,
the exception is recognized as in the case above.

The address compare exception is maskable if it occurs
on the instruction stream. If bit 9 of the TDE (task
dispatching element) exception mask field is O, it is set
to 1 by the processor, but no exception occurs and the
instruction is completed normally. The mask allows the
IMP exception handler to leave an address compare set
at a particular instruction after the address compare has
initially occurred. Without the mask, it would be
necessary for the program to remove the address
compare in order to avoid an endless loop.

Machine Support Functions 9-41

The following is the processing sequence for an
instruction address compare, set by the Set Address
Compare Mode Instruction:

1. Address compare mode is set for an instruction
fetch at storage location L.

2. Bit 9 of the TDE (task dispatching element)
exception mask field is set to 1, allowing normal
operation of instruction-fetch address compare
exceptions.

3. An address compare exception occurs when the
instruction is fetched from storage location L. The
instruction has not yet executed.

4, The IMP exception handler responds to the
exception by setting bit 9 of the TDE exception
mask to 0. The instruction at storage location L is
retried.

5. No exception occurs and the instruction completes
normally. The processor sets bit 9 of the TDE
exception mask to 1, enabling the address
compare exception to be presented the next time
the instruction at storage location L is fetched.

The address compare exception can occur concurrently
with other exception types, typically PEM (program
event monitor) and certain other program exceptions
that are detected after the instruction has accessed an
operand in storage. A PEM exception and instruction
stream address compare can be detected simultaneously
and, if they are, they will be reported in the same CRE
(call/return element). Also, many of the other program
exception types can be detected simultaneously with a
processor or |/O data exception, in which case both will
be reported in the same CRE.

The processor address compare facility handles both
V=R and V=V addresses. If the compare address is a
V=R address, it is converted to a real address format
and loaded into the address compare facility. If the
compare address is a V=V address, an attempt is made
to translate it to a real address. If the translation is
successful, the real address is loaded into the address
compare facility. If the translation is not successful, the
virtual address is buffered in the processor. Then,
whenever a new address is loaded into the lookaside
buffer or resolved for |/O use, the buffered virtual
address and address being resolved are compared. If
the segment identifier and page identifier portion of the
addresses compare, the buffered virtual address is
converted to a real address and loaded into the address
compare facility. Conversely, when the Invalidate
Primary Directory Entry instruction (or Examine Primary
Directory Entry instruction, under certain conditions) is
executed, a test is made to determine if the page being
invalidated in the primary directory contains the address
in the address compare facility; if it does, address
compare mode remains set and the buffered virtual
address is retained but the address compare facility is
purged.

9

Next Command

SACM RACM Set Command Reset Command from
Current Mode Operation Operation from Console Console
Reset Set Reset AC mode | Set console AC Reset AC mode
programmed mode
AC mode
Set, from program Cancel old, set | Reset AC mode| Cancel old, set Reset AC mode
new new
Set, from console Not set Not reset Cancel old, set Reset AC mode

condition code |condition code

new

Programming Notes:

1. The processor has an address compare facility which
is capable of handling a single AC (address compare)
at a time. This facility is used by both the
programmed and console-set address compare
features and when contention occurs, the console-set
mode receives priority, as shown in the following
table. The instruction length value stored in the CRE
(call/return element) when an address compare
exception occurs is zero.

2. The processor and 1/0 address compare exceptions
are recognized whenever the fullword containing the
designated byte is accessed.

. The character compare operation which occurs as the
result of the store with compare option of the Set
Address Compare Mode instruction is performed at
the end of the unit of operation during which the
storage access was detected. This means that if
more than one store to the designated address
occurs within a single unit of operation, the compare
is made using the last character stored. Also, since
the processor detects only fullword accesses, it is
possible that the compare may occur when in fact
only bytes adjacent to the tested character were
modified.

4. Normally, the 1/0 device which causes an address

compare match continues to transfer data. However,
there is a System/38 control facility available to the
customer engineer which, when set, causes the
device to halt its data transfer after the match occurs.
Hence, completion of the data transfer cannot be
guaranteed under all conditions.

5. If an address compare match is detected when the

task dispatcher is blocked, the exception is not
recognized, the match is reset (bit 9 of the TDE [task
dispatching element] exception mask is set), and
processing continues; the match is ignored.

6. Performance is reduced when an address compare

mode is set and the address compare facility is
loaded.

7. For all programmable address compare exceptions,

the instruction length is set to zero in the CRE (call
return element).

Machine Support Functions 9-43

FUNCTION CALL LINKAGE

Function call support is provided to enable the direct
calling of one VMC function by another, and to provide
status retention of the calling function without the use
of the SVL (supervisor linkage) facility. The function call
support provides a means for indexing into a FRAT
{function routine address table) to obtain routing
information for the called function. It also provides a
mechanism by which the status of the calling function
can be saved, through the use of the IMP stack support.
The FNC2 (Function Call Double) instruction assumes
that base register 3 points to the next available stack
entry. Figure 9-4 represents an overview of the function
call flow.

Function Routine Address Table

The FRAT consists of 256 10-byte entries, and is
located in virtual storage. The 6-byte address of the
FRAT is maintained in the control address table entry
which starts at byte AO. The format of each entry is as
follows:

Entry

Address B (@)

Not Used

0 2 Bytes

Bytes 0-1 Entry address of the first instruction to be
executed in the function

Bytes 2-7 Instruction base register value for the
function being called

Bytes 8-9 Not used

Note: If the function routine address table is not
halfword aligned when accessed by the processor, a
specification exception is recognized and the operation
is suppressed.

C

Function Call Stack Usage

The function call facility uses a stack entry to save the
status of the calling function as follows:

Stack Entry

(Hex Byte) Usage
0-1 Forward stack pointer
2-17 Not used
18-23 Base registers 1-2 save area
24-77 Not used
78-79 Instruction address register
7A-7F Base register O save area
Function Routine Address Table (FRAT)
Entry
Address B (D) Not Used
|
|
- —

T
I
I
I
|

VMC Function

B (3)————>

Stack

Save
Area

Figure 9-4. Function Call Flow

Called Entry Point

Machine Support Functions

9-45

Space Pointer Support

A space pointer is a System/38 object which provides
addressability to a specific byte in the data area
associated with that object. The following instructions
assist the VMC in the processing and validation of
space pointers:

« Add Fullword Space Pointer Offset

+ Add Halfword Space Pointer Offset

« Add Halfword Space Pointer Offset Immediate

« Compute Address Long

+ Compute Address Long Halfword

» Compare Logical Address Register

+ Load Space Offset Pointer

« Store Space Offset Pointer

The following discussion defines the space pointer and
segment group header fields referenced or manipulated
by the above listed instructions.

Space Pointer Fields

The format of a space pointer is as follows:

Type Unused
0 1 Bytes
SID Segment Group Segment Group
Extender Identifier Offset
8 A D 10

9-46

Byte Bits

0
0-1
2
3-7

1-7

8-9

A-C

D-F

Description

Type.

00 System pointer.
01 Instruction pointer.
10 Space pointer.
11 Data pointer.

0 The pointer is résolved (contains a
valid address).

1 The pointer is not resolved.
Reserved: Must be zeros.
Not used.

SID Extender: These bytes are
specified as a 2-byte logical extension
to the segment group identifier and are
used and assigned by VMC storage
management.

Segment Group ldentifier: Used to
identify a 16 megabyte address space.
The 3-byte segment group identifier is
the high-order 3 bytes of an IMP
6-byte virtual address.

Segment Group Offset: Used to
address a byte within a 16-megabyte
segment group. The 3-byte segment
group offset is the low-order 3 bytes
of a 6-byte virtual address. The
segment group offset is always greater
than or equal to the space locator
offset found in the segment group
header identified by the segment group
identifier field.

Machine Support Functions

9-47

Segment Group Header

The first 32 bytes of the 16-megabyte segment group
allocated by VMC form the segment group header. The
segment group header fields that can be referenced
implicitly via the IMP instruction set are formatted as
follows:

SID
U d
nuse Extender Unused

Space Locator Offset

0 Bytes 4 6 1D

Byte Description
0-3 Not used.

4-5 SID Extender: Used as a 2-byte logical
extension of the segment group idenftifier
(bytes A-C of the space pointer), used and
assigned by VMC storage management.

6-1C Not used.

1D-1F Space Locator Offset: These bytes specify
a 3-byte offset into the segment group and
identify the lowest available byte in the
segment group.

Note: The segment group offset is greater than or
equal to the space locator offset found in the segment
group header identified by the segment group identifier
field.

9-48

20

The instructions are described in alphabetical order (by
instruction name) with an example adjacent to each
instruction. Appendix C is an alphabetical list of the
instructions by mnemonic; Appendix B is a chart of
operation code assignments showing the mnemonics
and operation codes.

Refer to Chapter 2 for more detailed information about
instruction formats and registers.

Some VMC instructions are treated as implicit SVLs
(supervisor linkage). (These instructions are identified in
Appendix B.) Whenever an attempt is made to execute
one of these instructions, the processor causes an
implicit SVL operation to be performed. The operation
code of the instruction is used as the index into the SVL
table. The SVL routine located through the SVL table
performs the instruction execution. For a detailed
description of the SVL operation, see Chapter 6.

Notes:

1. The result of an instruction is placed in the first
operand unless stated otherwise within the
description of the instruction.

2. The L, L,, and L, fields in the instructions specify a
value that is one less than the actual number of bytes
for each operand.

Chapter 10. Instruction Descriptions

Data not critical to the execution of an instruction is
indicated in the instruction format diagram as a blank
field; the same field is represented in the example
format diagram with a placeholder value of O.
Nonessential data is indicated in the storage example
with one lower case x per half-byte. Other data used in
the examples is assumed for the purpose of explanation.

The examples will be better understood by looking at
them while reading the instruction description and
operation. Sequence numbers (for example, n) have
been used in some of the more complicated instructions.

Instruction Descriptions 10-1

ADD CHARACTERS (AC)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SS
Cco L,| L, |B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: The addition is performed with both
operands treated as signed binary quantities. If the
operands are unequal in length, the shorter operand is
considered to be extended to the left with bits equal to
the sign bit.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs. If
the first operand is too short to contain all significant
bits of the result, an overflow occurs and significant bits
are lost.

Sign Code: The sign bit of the sum is not changed after
the overflow. The sign of the sum is unpredictable
when significant bits are lost.

Condition Code: If significant bits are lost the condition
code indicates the sign the sum would have if an
overflow had not occurred.

0 Sum = 0
1 Sum < 0
2 Sum > 0
3 -

Carry: See Overflow.

10-2

Boundary Requirements: The operands can overlap in
storage if the rightmost byte of the first operand is
coincident with or to the right of the rightmost byte of
the second operand; otherwise the overlap is destructive
and the results are unpredictable.

Program Exceptions:

Address translation
Addressing

Binary overflow

Effective address overflow

AC Example
Op |[L,|L,|B, D, B, D,
Cco 543 040 3 152
0O Bits 8 12 16 20 32 36 47

Assembler: ACD,(L,,B,), Dy(L,, B,)
Machine: C054 3040 3152
B, (3) and B,(3): 0001 4120 0000

Storage — Before
[L |
0/8 2/A 4/C 6/E

0001 4120 0040 0000 A542 BC24
0001 4120 0152 2901 1132 A6

Storage — After

T T T
0/8 2/A 4/C 6/E

0001 4120 0040 0029 A653 EECA
0001 4120 0152 2901 1132 A6

V"\/

Before After

Condition Code: X 2

2

This page is intentionally left blank.

Instruction Descriptions 10-3

ADD FULLWORD SPACE POINTER OFFSET
(AFSPO)

Instruction Description

The space pointer specified by the second operand is
verified as a tagged pointer; the third operand is used
as a signed displacement which is added to the 3-byte
offset portion of the second-operand space pointer.
The 6-byte address that results is loaded onto the
first-operand register and the second operand space
pointer, leaving the pointer tagged.

Format: SS
BE |B,| 2 |B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The following validity checks are performed
on the second operand:

« The second operand must be tagged.

« Bits 0-2 must be binary 100 (a space pointer).

+ Bytes 8 and 9 of the second operand must match ihe
halfword in storage (segment group header SID
extender field) located at the address determined by
concatenating hex 00 0004 to the right of bytes 10,

11, and 12 of the second operand.

If any of these validity checks fails, a verify exception is
recognized, and the operation is suppressed.

10-4

The address computation is carried out as follows: the
segment group offset portion of the space pointer (bytes
13, 14, and 15) is logically padded on the left with a
byte of zeros, creating a positive 4-byte signed binary
integer. This value is then added to the displacement
identified by the third operand (a 32-bit signed integer).
The result of this calculation must satisfy the following
validity checks:

« It must be a positive result.

« It must not be less than the value of the space
locator offset. The space locator offset is a 3-byte
logical binary field in storage located at the address
determined by concatenating a hex 00 001D to the
right of the 3-byte segment group identifier specified
in bytes 10, 11, and 12 of the second cperand.

« The 4-byte sum must be less than hex OOFF FFFF.

If any of these validity checks fails, an invalid segment
group address exception is recognized, and the
operation is suppressed. Otherwise, the rightmost 3
bytes of the calculated result are concatenated to the
right of bytes 10, 11, and 12 of the second operand to
form the resultant 6-byte address. This resultant
address is placed into the first operand and into the
address field of the space pointer (bytes 10-15 of the
second operand). No storage reference is made to
check for addressing exceptions, using the resultant
address. The space pointer remains tagged.

9

Overflow: See Operation.

Sign Code: See Operation.

Condition Code: Not changed.

Boundary Requirements: The second operand is a
quadword and must begin on a quadword boundary;
otherwise, a specification is recognized and the
operation is suppressed.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Specification

— Invalid segment group address
— Verify

AFSPO Example

op |B,| E|B, D, B, D,
BE |8]2]2 020 4 104
0O Bits 8 12 16 20 32 36 47

Assembler: AFSPO B,,D,(B,),D;(B3;)

Machine: BE82 2020 4104

Before
B,(8): xxxx XXxXxXx XXXX
B,(2): 00C1 BOOO 4BCO
B;(4): 00C1 BOOO BC24

00C1 BOOO 4BEO

00C1 BOOO BD28

00C1 BOOO 4BEO

00C1 BO0OO BD28

After

00A5 2000 1320

00C1 BOOQ 4BCO

00C1 BOOO BC24

Storage — Before

0/8 !

8000
0005
0000

2/A ' a/c ' eE
0000 0000 0000
00A5 2000 0B20
0800

Storage — After

0/8

8000
0005

0000

Instruction Descriptions

2/A

0000
00A5
0800

6/E

10-5

ADD HALFWORD (AH)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RS
80 R,| 0 | B, D,
0O Bits 8 12 16 20 31

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after the overflow.

Condition Code: If significant bits are lost, the condition
code indicates the sign the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

0 Sum = 0
1 Sum < 0
2 Sum > 0
3 .

Carry: See Overflow.

10-6

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs, and the operation is suppressed.

Program Exceptions:

— Address translation

— Addressing

— Binary overflow

— Effective address overflow
— Specification

AH Example

op |R|E|B, D,
80 |0]|0]2 120
0 Bits 8 12 16 20 31

Assembler: AH R, D,(B;)
Machine: 8000 2120
B,(2): 0023 5430 0000

Storage — Before and After
T T T
0/8 2/A 4/C 6/E

0023 5430 0120 FFFE

Before After
R:(0): 0019 0017

Condition Code: x 2

9

ADD HALFWORD IMMEDIATE (AHI)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SlI
AO 0 (B, D, l,
0O Bits 8 12 16 20 32 47

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after an overflow.

Condition Code: If an overflow occurs, the condition
code indicates the sign that the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

0 Sum = 0
1 Sum < 0
2 Sum > 0
3 -

Carry: See Overflow.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Binary overflow

Effective address overflow
Specification

AHI Example
Op E | B, D, 1,
AO 0|3 130 0234
0O Bits 8 12 16 20 32 47

Assembler: AHI Dy (B;), |,
Machine: A000 3130 0234
B, (3): 0001 0036 0000

Storage — Before
T T |
0/8 2/A 4/C 6/E

0001 0036 0130 0123

Storage — After
T T T
0/8 2/A 4/C 6/E

0001 0036 0130 0357

Before After

Condition Code: x 2

Instruction Descriptions 10-7

ADD HALFWORD REGISTER (AHR)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RR

20 |R,|R,
0 Bits 8 12 15

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after an overflow.

Condition Code: If an overflow occurs, the condition
code indicates the sign that the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

0 Sum = 0
1 Sum < 0
2 Sum > 0
3 -

10-8

Carry: See Overflow.

Boundary Requirements: None.

Program Exception: Binary overflow.

AHR Example
Op |R,|R,
20 5|6

0 Bits 8 12 15

Assembler: AHR Ry, R
Machine: 2056

Before After

R, (5): 0021 001E
R, (6): FFFD FFFD
Condition Code: x 2

ADD HALFWORD REGISTER IMMEDIATE (AHRI)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RI
50 R, 1,
0 Bits 8 12 16 31

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost bit position agree, no overflow
occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after an overflow.

Condition Code: If an overflow occurs, the condition
code indicates the sign the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

0 Sum = 0
1 Sum < 0
2 Sum > 0
3 -

Carry: See Overflow.

Boundary Requirements: None.

Program Exception: Binary overflow.

AHRI Example

Op |R, l,
50 |4 0234
0 Bits 8 12 16 31

Assembler: AHRI Ry, I,
Machine: 5040 0234

Before After
Ry (4): 0012 0246

Condition Code: x 2

Instruction Descriptions

10-9

ADD HALFWORD SPACE POINTER OFFSET
(AHSPO)

Instruction Description

The space pointer specified by the second operand is
verified as a tagged pointer; the third operand is used
as a signed displacement which is added to the 3-byte
offset portion of the second-operand space pointer.
The 6-byte address that results is loaded into the
first-operand register and the second-operand space
pointer, leaving the pointer tagged.

Format: SS
BE B,| 1B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The following validity checks are performed
on the second operand:

« The second operand must be tagged.

« Bits 0-2 must be binary 100 (a space pointer).

« Bytes 8 and 9 of the second operand must match the
halfword in storage (segment group header SID
extender field) located at the address determined by
concatenating hex 00 0004 to the right of bytes 10,

11, and 12 of the second operand.

If any of these validity checks fails, a verify exception is
recognized, and the operation is suppressed.

10-10

The address computation is carried out as follows: the
segment group offset portion of the space pointer (bytes
13, 14, and 15) is logically padded on the left with a
byte of zeros, creating a positive 4-byte signed binary
integer. This value is then added to the displacement
identified by the third operand (a 16-bit signed integer).
The address arithmetic is performed by propagating the
sign bit through the third and fourth (left) offset bytes
and performing the 4-byte signed binary addition. The
result of this calculation must satisfy the following
validity checks:

« It must be a positive result.

« It must not be less than ihe value of the space
locator offset. The space locator offset is a 3-byte
logical binary field in storage located at the address
determined by concatenating a hex 00 001D to the
right of the 3-byte segment group identifier specified
in bytes 10, 11, and 12 of the second operand.

o The 4-byte sum must be less than hex OOFF FFFF.

If any of these validity checks fails, an invalid segment
group address exception is recognized, and the
operation is suppressed. Otherwise, the rightmost 3
bytes of the calculated result are concatenated to the
right of bytes 10, 11, and 12 of the second operand to
form the resultant 6-byte address. This resultant
address is placed into the first operand and into the
address field of the space pointer (bytes 10-15 of the
second operand). No storage reference is made to
check for addressing exceptions, using the resulant
address. The space pointer remains tagged.

9

Overflow: See Operation.

Sign Code: See Operation.

Condition Code: Not changed.

Boundary Requirements: The second operand is a

quadword and must begin on a quadword boundary;

otherwise, a specification is recognized and the
operation is suppressed.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Invalid segment group address
— Specification

— Verify

AHSPO Example

Op |B,| E|B, D, B, D,
BE (8|12 020 4 104
0 Bits 8 12 16 20 32 36 47

Assembler: AHSPO B,,D,(B,),D3(B3)

Machine: BE81 2020 4104

Before

Bl(sk
B,(2):

53(4)2

00C1 BOOO 4BEO

00C1 BOOO BD28

00C1 BOOO 4BEO

00C1 BOOO BD28

XXXX XXXX XXXX

00C1 BOOO 4BCO

00C1 BOOO BC24

After

Storage — Before

00A5 2000 1320

00C1 BOOO 4BCO

00C1 BOOO BC24

0/8 ' 2/A " a;c !
8000 0000 0000
0005 00AS5 2000
0800

Storage — After

6/E

0000
0B20

0/8 ' 2/A '4/c ' efE
8000 0000 0000 0000
0005 00A5 2000 1320
0800

Instruction Descriptions

10-11

ADD HALFWORD SPACE POINTER OFFSET
IMMEDIATE (AHSPOI)

Instruction Description

The space pointer specified by the second operand is
verified as a tagged pointer; the third operand is used
as a signed displacement which is added to the 3-byte
offset portion of the second-operand space pointer.
The 6-byte address that results is loaded into the
first-operand register and the second-operand space
pointer, leaving the pointer tagged.

Format: SI
BE B,| 0 |B, D, Iy
0 Bits 8 12 16 20 32 47

Operation: The following validity checks are performed
on the second operand:

« The second operand must be tagged.

« Bits 0-2 must be binary 100 (a space pointer).

« Bytes 8 and 9 of the second operand must match the
halfword in storage (segment group header SID
extender field) located at the address determined by
concatenating hex 00 0004 to the right of bytes 10,

11, and 12 of the second operand.

If any of these validity checks fails, a verify exception is
recognized and the operation is suppressed.

10-12

The address computation is carried out as follows: the
segment group offset portion of the space pointer (bytes
13, 14, and 15) is logically padded on the left with a
byte of zeros, creating a positive 4-byte signed binary
integer. This value is then added to the displacement
identified by the third operand (a 16-bit signed integer).
The address arithmetic is performed by propagating the
sign bit through the third and fourth (left) offset bytes
and performing the 4-byte signed binary addition. The
result of this calculation must satisfy the following
validity checks:

« It must be a positive result.

« It must not by less than the value of the space
locator offset. The space locator offset is a 3-byte
logical binary field in storage located at the address
determined by concatenating a hex 00 001D to the
right of the 3-byte segment group identifier specified
in bytes 10, 11, and 12 of the second operand.

« The 4-byte sum must be less than hex OOFF FFFF.

If any of these validity checks fail, an invalid segment
group address exception is recognized, and the
operation is suppressed. Otherwise, the rightmost 3
bytes of the calculated result are concatenated to the
right of bytes 10, 12, and 12 of the second operand to
form the resultant 6-byte address. This resultant
address is placed into the first operand and into the
address field of the space pointer (bytes 10-15 of the
second operand). No storage reference is made to
check for addressing exceptions, using the resultant
address. The space pointer remains tagged.

9

Overflow: See Operation. AHSPOI Example

Op (B,| E |B, D, 1,
Sign Code: See Operation. BE 8|02 020 0800
0 Bits 8 12 16 20 32 47
Condition Code: Not changed. Assembler: AHSPOI B, ,D,(B;),i3

Machine: BE8O 2020 0800
Boundary Requirements: The second operand is a

quadwoid and must begin on a quadword boundary; Before After
otherwise, a specification is recognized and the
operation is suppressed. Bi(8): xxxx XXXX XXXX 00A5 2000 1320

B,{(2): 00C1 BOOO 4BCO 00C1 BO0O 4BCO
Program Exceptions:

Storage — Before

_ ﬁjﬂ:ﬁiﬁ;ﬂ:"s'“m" 08 '2/a '"a/c T e
— Effective address overflow 00C1 BO0OO 4BEO 8000 0000 0000 0000
— Invalid segment group address 0005 00A5 2000 O0B20
— Specification

— Verify

Storage — After
0/8

00C1 BOOO 4BEO 8000 0000 0000 0000
0005 00A5 2000 1320

Instruction Descriptions 10-13

ADD LOGICAL BYTE (ALB) Program Exceptions:

Instruction Description — Address translation
— Addressing
The second operand is added to the first operand and — Effective address overflow

the sum is placed in the first-operand register.

ALB Example
Format: RS
Op |(r,| E|B, D,
71 | 1B, D, 71 8|13 00A
0 Bits 8 12 16 20 31 0 Bits 8 12 16 20 31
Operation: The addition is performed with both Assembler: ALBr;, D,(B3)

operands treated as unsigned binary quantities.
Machine: 7181 300A

Overflow and Sign Code: Not applicable. B, (3): 0012 0001 1000

Storage — Before and After

- . . P T T T
Condition .Code. A ca.rry from the leftmost bit position is 0/8 2/A a/c 6/E
recorded in the condition code.

0012 0001 100A 95
0 Sum = 0, no carry
1 Sum # 0, no carry
2 Sum = 0, carry
3 Sum # 0, carry

Before After

Carry: See Condition Code.
ry(8): 24 B9

Boundary Requirements: None. Condition Code: x 1

10-14

ADD LOGICAL BYTE REGISTER (ALBR)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RR

10 r|r
0 Bits 8 12 15

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

0 Sum = 0, no carry
1 Sum # 0, no carry
2 Sum = 0, carry
3 Sum # 0, carry

Carry: See Condition Code.

Boundary Requirements and Program Exceptions: None.

ALBR Example

Op |
10 2

r
3

0 Bits 8 12 15

Assembler: ALBRry,r;

Machine: 1023

r (2)

Iy (3)

Condition Code:

Before After

Cé6

9C

Instruction Descriptions

10-15

ADD LOGICAL BYTE REGISTER IMMEDIATE
(ALBRI)

Instruction Description
The second operand is added to the first operand and

the sum is placed in the first-operand register.

Format: RI

43 |0 I,
0 Bits 8 12 16 24 31

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

0 Sum = 0, no carry
1 Sum # 0, no carry
2 Sum = 0, carry
3 Sum # 0, carry

10-16

Carry: See Condition Code.

Boundary Requirements and Program Exceptions: None.

ALBRI Example

Op (| E l,
43 |A| O 12
O Bits 8 12 16 24 31

Assembler: ALBRIry, 1,
Machine: 43A0 1200

Before After
ry(A): cc DE

Condition Code: x 1

ADD LOGICAL CHARACTER (ALC)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SS
Cc3 L B, D, B, D,
0 Bits 8 16 20 32 36 47

Operation: The addition treats both operands as
unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

0 Sum = 0, no carry
1 Sum # 0, no carry
2 Sum = 0, carry
3 Sum # 0, carry

Carry: See Condition Code.

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is coincident with or
to the right of the rightmost byte of the second
operand; otherwise the overlap is destructive and the
results are unpredictable.

Program Exceptions:

— Address translation
— Addressing
— Effective address overflow

ALC Example
Op L B, D, B, D,
C3 03 3 108 3 166
0 Bits 8 16 20 32 36 47

Assembler: ALC D, (L, By}, D,(B;)
Machine: C303 3108 3166
B, (3): 0010 2250 5000

Storage — Before
| 1 [
0/8 2/A 4/C 6/E

0010 2250 5108 7683 Ab91
0010 2250 5166 3729
5895

Storage — After
T T T
0/8 2/A 4/C 6/E

ADAC FE26

0010 2250 5108

0010 2250 5166 3729
5895

Before After

Condition Code: X 1

Instruction Descriptions 10-17

ADD LOGICAL HALFWORD (ALH)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RS

9 |[R,|0]B, D,
0 Bits 8 12 16 20 31

Operation: The addition treats both operands as
unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

0 Sum = 0, no carry
1 Sum # 0, no carry
2 Sum = 0, carry
3 Sum # 0, carry

Carry: See Condition Code.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-18

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

ALH Example

op |R,| E|B, D,
90 |4]|0]6 160
0O Bits 8 12 16 20 31

Assembler: ALH R, D,(B;)
Machine: 9040 6160
B,(6): 0101 1130 2000

Storage — Before and After

T T T
0/8 2/A 4/c 6/E

0101 1130 2160 1850

Before After
Ri(4): 1150 29A0

Condition Code: x 1

This page is intentionally left blank.

Instruction Descriptions 10-19

ADD LOGICAL HALFWORD AND BRANCH ON
LIMIT (ALHBL)

Instruction Description

The increment of the second operand is added to the
halfword register specified by the first operand and the
result is stored in the halfword register specified by the
first operand. The sum is then compared to the
comparand of the second operand. If the mask
specified by the third operand has a corresponding mask
bit of 1, the IAR (instruction address register) is replaced
by the sum of the branch displacement of the second
operand and the offset of the instruction stream base
address contained in base register O; otherwise,
instruction sequencing proceeds with the updated IAR.

Format: RS

9F |R,|M,|B, D,
0 Bits 8 12 16 20 31

Operation: The second operand occupies 6 bytes of
storage.

Bytes Contain

1and 2 Increment value
3and 4 Comparand

5 and 6 Branch displacement

The increment is added to the first operand and the sum
is compared logically with the comparand.

Subsequently, the sum is placed in the first-operand
location, regardless of whether the branch is taken.

10-20

The mask field is used as a 4-bit mask generated by
the compare. The 4 bits of the mask correspond, left to
right, with the following comparison result:

Bit Result

0 Sum = Comparand
1 Sum < Comparand
2 Sum > Comparand
3 -

Whenever the comparison result has a corresponding
mask bit of one, the updated instruction address is
replaced by the sum of the branch displacement and the
offset portion of the instruction stream base address
contained in base register 0. If the comparison result
does not have a corresponding mask bit of one,
instruction sequencing proceeds with the updated
instruction address.

Logical addition is performed by adding all 16 bits of the
first operand and the increment.

The 16-bit comparison is also performed with the

quantities treated as unsigned binary values.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: If a carry from the high-order bit position occurs
during the addition, it is ignored and does not affect the
comparison.

<

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

ALHBL Example

op |R, (M |B, D,
9F (4|4|3| ABO
0 Bits 8 12 16 20 31

Assembler: ALHBL R;, M3, D;(B;)
Machine: 9F44 3ABO

Before and After
B(0): 0250 AC2C 2EO00

B,(3): 00EF 021E 0000

Storage — Before and After

T T T
0/8 2/A 4/c

00EF 021E 0ABO 000A 002E 003C

Before Updated After
R;(4): 0022 — 002C

IAR: 3A50 3Ab54 2E3C

Instruction Descriptions

6/E

10-21

ADD LOGICAL HALFWORD IMMEDIATE (ALHI)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SI
BO 0 |B, D, 1,
0O Bits 8 12 16 20 32 47

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

0 Sum = 0, no carry
1 Sum # 0, no carry
2 Sum = 0, carry
3 Sum # 0, carry

Carry: See Condition Code.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-22

Program Exceptions:

Address translation

— Addressing
— Effective address overflow
— Specification
ALHI Example
Op E | B, D, 1,
BO 013 170 0005
0O Bits 8 12 16 20 32 47

Assembler: ALHI D,(B,), I,
Machine: BO00 3170 0005
B, (3): 0150 1442 6000

Storage — Before
T T — T
0/8 2/A 4/C 6/E

0150 1442 6170 D136

—

Storage — After
T T T
0/8 2/A 4/C 6/E

0150 1442 6170 D13B

s

Before After

Condition Code: X 1

ADD LOGICAL HALFWORD REGISTER (ALHR) Carry: See Condition Code.

Instruction Description

Boundary Requirements and Program Exceptions: None.
The second operand is added to the first operand and

the sum is placed in the first-operand register.
ALHR Example

Format: RR Op |R,|R,
30 5(6
30 |R,|R, 0 Bits 8 12 15

0 Bits 8 12 15
Assembler: ALHR R,, R,

Operation: The addition is performed with both

. . .. Machine: 3056
operands treated as unsigned binary quantities.

Before After

Overflow and Sign Code: Not applicable.

R;(5): ABCD EEEE
. . e R, (6): 4321 4321

Condition Code: A carry from the leftmost bit position is
recorded in the condition code. Condition Code: x 1

0 Sum = 0, no carry

1 Sum # 0, no carry

2 Sum = 0, carry

3 Sum # O, carry

Instruction Descriptions 10-23

ADD LOGICAL HALFWORD REGISTER IMMEDIATE

(ALHRI)

Instruction Description

The second operand is added: to the first operand and
the sum is placed in the first-operand register.

Format: RI
60 |R,| O l,
0O Bits 8 12 16 31

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

0 Sum
1 Sum
2 Sum
3 Sum

10-24

W

*

0,
0,
o,
o,

no carry
no carry
carry
carry

Carry: See Condition Code.

Boundary Requirements and Program Exceptions: None.

ALHRI Example

op |R/|E I,
60 |2]|0 2002
0O Bits 8 12 16 31

Assembler: ALHRI Ry, I,

Machine: 6020 2002

Before After
R:(2): 8001 A003
Condition Code: x 1

ADD LONG FLOAT (ALF)
Instruction Description

The second operand is added to the first operand
(two-operand format) or the third operand is added to
the second operand (three-operand format), and the
sum is placed in the first operand location.
Interchanging of the two source operands in
floating-point addition does not affect the value of the
sum, but can affect which operand is overwritten.

Format: SS

CE |B,| 1B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A two-operand format is used if base
register O is specified for the third operand. A
three-operand format is used if one of the base
registers hex 1 through hex F is specified for the third
operand.

The exponents of the two operands are compared. The
significand of the smaller exponent is shifted right as its
exponent is increased until the exponents are the same.
The significands are then added algebraically to form an
intermediate sum.

The significand of the intermediate sum is rounded, if
necessary, according to the rounding mode specified in
the task dispatching element.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
sum. The source operands are checked for this value in
order of their specification. If two masked
not-a-numbers are encountered, the masked
not-a-number with the larger fraction value is used as
the sum.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the sum is determined by the
rules of algebra. If the sum of two operands that have
opposite signs is exactly O, the sign is made plus for all
rounding modes except round toward negative infinity,
where the sign is made minus.

Condition Code: The result is compared to 0. Values of
0 compare equal even if they differ in sign.
Not-a-number values and infinite values compare
unordered with everything else.

0 Sum=0
1 Sum<=0
2 Sum>=0

3 Sum is unordered

Carry: If a carry occurs, the sum is shifted right one
binary digit position with a high-order 1 bit inserted,
and the exponent is increased by 1.

Boundary Requirements: All operands must be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Operands may overlap only if they are coincidental;
otherwise, the results are unpredictable.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Floating-point inexact result
~ Floating-point invalid operand
— Floating-point overflow

— Floating-point underflow

— Specification

Instruction Descriptions 10-25

Programming Note: The following chart shows the
condition of the sum for various operands.

Sum First Source (Addend) Second Source (Addend)
+0 +0 +0

-0 -0 -0

+0 -Real number # O +Real number # 0

+0 +Real number # O -Real number # 0

+Real number # O

+Real number # O

+0 or -0

+Real number # O

+0 or -0

+Real number # 0

-Real number # O

-Real number # O

+0 or -0

-Real number # O

+0 or -0

-Real number # O

Masked not-a-number

Masked not-a-number

Not not-a-number

Masked not-a-number

Not not-a-number

Masked not-a-number

Larger masked
not-a-number

Masked not-a-number

Masked not-a-number

Invalid operation

Unmasked not-a-number

Any

Invalid operation Any Unmasked not-a-number
+Infinity +Real number # O or -real | +Infinity
number # 0
+Infinity +Infinity +Real number # O or -real
number # 0
-Infinity +Real number # O or -real | -Infinity
number # O
~Infinity ~Infinity +Real number # O or -real

number # 0

Invalid operation

+Infinity or -infinity

+Infinity or -infinity

1. Value is not rounded toward negative infinity.
2. Value is rounded toward negative infinity.

+0 +0 -0 Note 1
+0 -0 +0 Note 1
-0 +0 -0 Note 2
-0 -0 +0 Note 2
Notes:

10-26

ALF Example

op |B,| E B, D, B, D,
CE [3|1]4 050 4| 060
0O Bits 8 12 16 20 32 36 47

Assembler: ALF Dl (Bl), D2 (Bz), Bg

Machine: CE31 4050 4060

B5(3): 0010 0200 0070

B, (4) and B, (4): 0010 0200 0000

0010 0200 0050
0010 0200 0060
0010 0200 0070

0010 0200 0050
0010 0200 0060
0010 0200 0070

Condition Code:

Storage — Before

Storage — After

08 T2/a Tac TerE

4880 1761 3ABC 249B
4880 0001 3000 2400
4807 600A BCOO 9B0O

Before

X

After
2

Instruction Descriptions

10-27

ADD PACKED (AP)
Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SS
FO L | L |B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: Addition is algebraic, taking into account the
signs and all digits of both operands. All digit codes are
checked for validity. Improper codes cause a data
exception to be recognized, and the operation is
terminated. If necessary, zeros are supplied for the
leftmost bytes of either operand.

Overflow: Two possible causes: The first is the loss of
a carry from the leftmost digit position of the resuit
field. The second is an oversized result, which occurs
when the first-operand field is too short to contain all
significant digits of the sum, and significant result digits
are lost.

Sign Code: The sign of the sum is determined by the
rules of algebra. When the operation is completed
without an overflow, a zero sum has a positive sign, but
when significant result digits are lost because of an
overflow, a zero sum may be either positive or negative,
as determined by what the sign of the correct sum
would have been.

The processor uses the preferred signs for the sum as
follows: positive sign is encoded as 1111 (hex F); a
negative sign is encoded as 1101 (hex D). All sign
codes are checked for validity. Improper codes cause a
data exception and the operation is terminated.

Condition Code: If an overflow occurs, the condition
code indicates the sign the sum would have if an
overflow had not occurred.

0 Sum = 0
1 Sum < 0
2 Sum > 0
3 -

10-28

Carry: See Overflow.

Boundary Requirements: None.

Program Exceptions:

— Address translation

— Addressing

— Data

— Decimal overflow

— Effective address overflow

AP Example
Op |L|L,|B, D, B, D,
FO 3| 2|4 210 4 261
0 Bits 8 12 16 20 32 36 47

Assembler: AP D,(L,, B;), D,(L,, By)
Machine: F032 4210 4261
B, (4) and B, (4): 2793 4766 2000

Storage — Before
| T I
0/8 2/A 4/C 6/E

2793 4766 2210 5718 942D
2793 4766 2261 24 270F

T

Storage — After

T T T
0/8 2/A 4/c 6/E

2793 4766 2210 5694 672D
2793 4766 2261 24 270F

/—_//

Before After

Condition Code: X 1

ADD SHORT FLOAT (ASF)
Instruction Description

The second operand is added to the first operand
(two-operand format) or the third operand is added to
the second operand (three-operand format), and the
sum is placed in the first operand location.
Interchanging of the two source operands in
floating-point addition does not affect the value of the
sum, but can affect which operand is overwritten.

Format: SS

AE |B,| 1 |8, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A two-operand format is used, if base
register O is specified for the third operand. A
three-operand format is used, if one of the base
registers hex 1 through hex F is specified for the third
operand.

The exponents of the two operands are compared. The
significand of the smaller exponent is shifted right as its
exponent is increased until the exponents are the same.
The significands are then added algebraically to form an
intermediate sum.

The significand of the intermediate sum is rounded, if
necessary, according to the rounding mode specified in
the task dispatching element.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the nat-a-number value encountered as the
sum. The source operands are checked for this value in
order of their specification. The masked not-a-number
with the larger fraction value is used as the sum.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the sum is determined by the
rules of algebra. If the sum of two operands that have
opposite signs is 0, the sign is made plus for all
rounding modes except round toward negative infinity,
where the sign is made minus.

Condition Code: The result is compared to 0. Values of
0 compare equal even if they differ in sign.
Not-a-number values and infinite values compare
unordered.

0 Sum=0
1 Sum<0
2 Sum>0
3 Sum is unordered

Carry: If a carry occurs, the sum is shifted right one
binary digit position with a high-order 1 bit inserted,
and the exponent increased by 1.

Boundary Requirements: All operands must be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Operands may overlap if they are coincidental;
otherwise, the results are unpredictable.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Floating-point inexact result
— Floating-point invalid operand
— Floating-point overflow

— Floating-point underflow

— Specification

Instruction Descriptions 10-29

Programming Note: The following chart shows the
condition of the sum for various operands.

Sum First Source (Addend) Second Source (Addend)
+0 +0 +0

-0 -0 -0

+0 -Real number # O +Real number # O

+0 +Real number # 0 -Real number # 0

+Real number # O

+Real number # O

+0 or -0

+Real number # 0

+0 or -0

+Real number # 0

-Real number # O

-Real number # O

+0 or -0

-Real number # O

+0 or -0

-Real number # 0

Masked not-a-number

Masked not-a-number

Not not-a-number

Masked not-a-number

Not not-a-number

Masked not-a-number

Larger masked
not-a-number

Masked not-a-number

Masked not-a-number

Invalid operation

Unmasked not-a-number

Any

Invalid operation Any Unmasked not-a-number
+Infinity +Real number # O or -real | +Infinity
number # O
+Infinity +Infinity +Real number # O or -real
number # O
=Infinity +Real number # O or -real | -Infinity
number # O
~Infinity ~Infinity +Real number # O or -real

number # O

Invalid operation

+Infinity or -infinity

+Infinity or -infinity

1. Value is not rounded toward negative infinity.
2. Value is rounded toward negative infinity.

+0 +0 -0 Note 1
+0 -0 +0 Note 1
-0 +0 -0 Note 2
-0 -0 +0 Note 2
Notes:

10-30

ASF Example

Op B,| E D, B, D,
AE 3|14 050 4 060
0 Bits 8 12 16 20 32 36 47

Assembler: ASF D, (B;), D,(B,), B3
Machine: AE31 4050 4060

B;(3): 0010 0200 0070

B, (4) and B, (4): 0010 0200 0000

Storage — Before

o8 "2a Tacc TeE
0010 0200 0050 XXXX XXXX XXXX XXXX
0010 0200 0060 4E81 2345
0010 0200 0070 4E81 2345

Storage — After

o8 "2/a Tacc 'eE
0010 0200 0050 4F01 2345
0010 0200 0060 4E81 2345
0010 0200 0070 4E81 2345

Before After
Condition Code: X 2

Instruction Descriptions 10-31

AND BYTE (NB)
Instruction Description

The first and second operands are ANDed and the result
is placed in the first-operand register.

Format: RS

79 |r| 1|8, D,
0 Bits 8 12 16 20 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:
0 Result = 0
1 Result # 0
2 -
3 -

Carry: Not applicable.

Boundary Requirements: None.

10-32

Program Exceptions:

— Address Translation
— Addressing
— Effective Address Overflow

NB Example
Op |r,| E|B, D,
79 c|1(8 542
O Bits 8 12 16 20 31

Assembler: NBry, D;(B;)
Machine: 79C1 8542
B;(8): 1224 1932 0000

Storage — Before and After

T T T
0/8 2/A 4/c 6/E

1224 1932 0542 40

Before After
r1 (C): 45 40

Condition Code: x 1

AND BYTE IMMEDIATE (NBI)
Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand location.

Format: SI
98 1, B, D,
0 Bits 8 16 20 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

Result = 0
Result # 0

wnN =0

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:
— Address translation

— Addressing
— Effective address overflow

NBI Example

Op 1, B, D,
98 FF 7 118
0 Bits 8 16 20 31

Assembler: NBI D;(B,), I,
Machine: 98FF 7118

B;(7): 1180 1140 3000

Storage — Before and After

T T T
0/8 2/A 4/C

1180 1140 3118 Al

Before After

Condition Code: X 1

Instruction Descriptions

6/E

10-33

AND BYTE REGISTER (NBR)
Instruction Description

The first and second operands are ANDed and the result
is placed in the first-operand register.

Format: RR

18 nlr,
0 Bits 8 12 15

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

Result = 0
Result # 0

WN =0

10-34

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

NBR Example
Op (rn|rm
18 5|6

0 Bits 8 12 15

Assembler: NBRrq, r,

Machine: 1856

Before After
ri(6): FF 21
ry(6): 21 21
Condition Code: x 1

AND BYTE REGISTER IMMEDIATE (NBRI)
Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RI

48 r,|O 1,
0 Bits 8 12 16 24 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:
0 Result = 0
1 Result # 0
2 -
3 -

Carry: Not applicable.

Boundary Requirements and Program. Exceptions: None.

NBRI Example

Op |r|E 1,
48 3|0 32
O Bits 8 12 16 24 31

Assembler: NBRIry, |,

Machine: 4830 3200

r (3)

Condition Code:

Before After

4C

X

00

0

Instruction Descriptions

10-35

AND CHARACTERS (NC)
Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand location.

Format: SS
C8 L, B, D, B, D,
0 Bits 8 16 20 32 36 47

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands (operand fields are processed
left to right) contain a one; otherwise, the result bit is
set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:
0 Result = 0
1 Result # 0
2 -
3 -

Carry: Not applicable.

Boundary Requirements: The operands can overlap if the
leftmost byte of the first operand is coincident with or
to the left of the leftmost byte of the second operand;
otherwise the overlap is destructive and the results are
unpredictable.

10-36

Program Exceptions:

— Address translation
— Addressing
— Effective address overflow

NC Example
Op L, B, D, B, D,
c8 03 6 540 5 240
0 Bits 8 16 20 32 36 47

Assembler: NCD;(L;, B;), D;(B;)
Machine: C803 6540 5240

B;(6): 5010 6400 A000

B,(5): 5010 6400 BOOO

Storage — Before
T T T
0/8 2/A 4/C 6/E

5010 6400 A540 A1A1 B123
5010 6400 B240 A1A1T B111

Storage — After

T T T
0/8 2/A 4/Cc 6/E

5010 6400 A540 A1A1 B101
5010 6400 B240 A1A1 B111

Before After

Condition Code: X 1

AND HALFWORD (NH)
Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RS

80 |R,|4|B, D,
0O Bits 8 12 16 20 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:
0 Result = 0
1 Result # 0
2 -
3 -

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

NH Example

Op |R,| E |B, D,

80 34|65 160

O Bits 8 12 16 20 31
Assembler: NH R, D,(B;)
Machine: 8034 5160

B,(5): 5718 9423 2000

Storage — Before and After

T T T
0/8 2/A 4/c

5718 9423 2160

0503

Before After
R;(3): 008A 0002
Condition Code: x 1

Instruction Descriptions

6/E

10-37

AND HALFWORD REGISTER (NHR)
Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RR

28 |R,|R,
0 Bits 8 12 15

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:
0 Result = 0
1 Result # 0
2 -
3 -

10-38

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

NHR Example
Op (R;|R,
28 3|56

0 Bits 8 12 15

Assembler: NHR R, R,
Machine: 2835

Before After

R, (3): 008A 0002
R, (5): 0503 0503
Condition Code: x 1

AND HALFWORD REGISTER IMMEDIATE (NHRI)
Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RI
58 R,| O l,
0O Bits 8 12 16 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

Result = 0
Result # 0

WnN =0

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

NHRI Example

Op [R,|E

58 410

FFFF

O Bits 8 12 16

31

Assembler: NHRI Ry, I,

Machine: 5840 FFFF

Before After

Ry (4): A1A2

Condition Code: X

A1A2

Instruction Descriptions

10-39

BRANCH AND LINK (BAL) Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a J
Instruction Description specification exception occurs and the operation is
suppressed.
The updated instruction address is loaded as link
information in the halfword register designated by R,.
Subsequently, the instruction address is replaced by the Program Exceptions:
branch address.

Address translation

— Addressing
Format: RI — Effective address overflow
— Specification
4F (R,| O D,
0 Bits 8 12 16 31
BAL Example
Operation: The branch address is computed before the op |R|E D
instruction address is loaded. The updated instruction 4F 31 0 01 (2:6
address is replaced by the sum of the 16-bit o Bits 8 12 16 31

displacement D, from the instruction and the offset

portion of the instruction in base register O. Assembler: BAL Ry, D,

. Machine: 4F30 01C6
Overflow and Sign Code: Not applicable.

Before Updated After
Condition Code: Not changed. B(0): 7314 2482 1130 — 7314 2482 1130 ’
Ri(3): xxxx - 136A
Carry: Not applicable.
IAR: 1356 136A 12F6

10-40

BRANCH AND LINK LONG (BALL) Program Exceptions:

Address translation

Instruction Description

— Addressing
The updated instruction address is loaded as link — Effective address overflow
information in the halfword register designated by R,; — Specification
and the instruction stream base address, contained in
base register O, is loaded in the base register designated
by B,. Subsequently, the instruction stream base BALL Example
address and instruction address are replaced by the
second operand. Op (R,|B;|B, D,
8F E|F]|O 7D0
O Bits 8 12 16 20 31
Format: RS

Assembler: BALL R;, B3, D,(B,)

8F |R,|B,|B, D,

0 Bits 8 12 16 20 31 Machine: 8FEF 07DO0
Before Updated After
Operation: Bits O-F of the second operand contain the
new instruction address; bits 16-3F contain the new B,(0): 0100 DOOC 0000 — 81BC 4560 0000
instruction stream base address that is loaded into base
register 0. B;(F): xxxx Xxxxx xxxx — 0100 DOOC 0000
R; (E): xxxx - 3308
Overflow and Sign Code: Not applicable.
IAR: 3304 3308 4330
Condition Code: Not changed. Storage — Before and After

T T T
0/8 2/A 4/C 6/E

Carry: Not applicable. 0100 DOOC 07D0O | 4330 81BC 4560 0000

Boundary Requirements: The second operand occupies 8
bytes in storage and must start on a fullword boundary;
otherwise a specification exception occurs and the
operation is suppressed. Both the instruction stream
base address and the instruction address must start on
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Instruction Descriptions 10-41

BRANCH INTERNAL (BI)
Instruction Description
A branch is taken to the address contained in the

first-operand register if that address is internal to the
current segment group.

Format: RR

1E |B,| O
0 Bits 8 12 15

Operation: The left 3 bytes of the first operand are

compared with the left 3 bytes of B(0) (base register 0).

If the values are not equal, an invalid segment group
address exception occurs and the operation is
suppressed.

If no exception is signaled, then the following is done:

1. Bytes 0-3 (the left 4 bytes) of B(0) are set equal
to bytes 0-3 of the first operand.

2. Bytes 4-5 of B(0) are set equal to zero.

3. The IAR is set from bytes 4 and 5 of the first
operand.

4, Execution resumes at the new. B(0) and IAR
location.
Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-42

Boundary Requirements: The first operand must point to
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Invalid segment group address
Specification

Bl Example

Op |B,|E
1E | 3|0
O Bits 8 12 15

Assembler: Bl B,
Machine: 1E30

Before After
B(0): 1133 6422 0000 1133 6422 0000
B;(3): 1133 6422 6420 1133 6422 6420

IAR: 0330 6420

»

9

BRANCH ON CONDITION (BC)
Instruction Description

The updated instruction address is replaced by the
branch address if the condition code is as specified by
M,; otherwise, normal instruction sequencing proceeds
with the updated instruction address.

Format: Rl
6E M, D,
0 Bits 8 12 16 31

Operation: M, is used as a 4-bit mask. The 4 bits of
the mask correspond, left to right, with the four
condition codes (0, 1, 2, and 3). The branch is
successful when the condition code has a corresponding
mask bit of 1. A mask of all zeros results in normal
instruction sequencing.

The updated instruction address is replaced by the sum
of the 16-bit displacement (D,) and the offset portion of
the instruction stream base address contained in the
base register 0.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

Programming Note: The IMP Instruction Assembler uses
the following extended mnemonics:

Extended Standard
Mnemonics Maeaning Mnemonic Mask
BH Branch High BC 2
BL Branch Low BC 4
BE Branch Equal BC 8
BNH Branch Not High BC D
BNL Branch Not Low BC B
BNE Branch Not Equal BC 7
BP Branch Positive BC 2
BM Branch Minus BC 4
BZ Branch Zero BC 8
BNP Branch Not Plus BC D
BNM Branch Not Minus BC B
BNZ Branch Not Zero BC 7
BO Branch if Ones BC 1
BM Branch If Mixed BC 4
BZ Branch If Zeros BC 8
BNO Branch If Not BC E
Ones

BC Example

Op M, D,

6E 4 0430
O Bits 8 12 16 31

Assembler: BC M3, D,
Machine: 6E04 0430
Condition Code: 1
Before After
B(0): 5425 3111 5100 5425 3111 5100

IAR: 5860 5530

Instruction Descriptions 10-43

BRANCH ON CONDITION INDIRECT (BCN)
Instruction Description

The updated instruction address is replaced by the
branch address if the condition code is as specified by
M,; otherwise, normal instruction sequencing proceeds
with the updated instruction address.

Format: RS
9E M,|B, D,
O Bits 8 12 16 20 31

Operation: M, is used as a 4-bit mask. The 4 bits of
the mask correspond, left to right, with the four
condition codes (0, 1, 2, and 3). The branch is
successful when the condition code has a corresponding
mask bit of 1. A mask of all zeros results in normal
instruction sequencing.

The halfword at the second-operand location contains
the branch displacement. The branch address is formed
by adding the branch displacement to the offset portion
of the instruction stream base address contained in base
register 0.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-44

Boundary Requirements: The halfword storage operand
and the updated instruction address must each start on
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

Address translation

— Addressing
— Effective address overflow
— Specification
BCN Example
Op M, | B, D,
9E 2|C 310
0 Bits 8 12 16 20 31

Assembler: BCN M3, D, (B;)
Machine: 9E02 C310

Before Updated After
B(0): 0023 1430 5680 - 0023 1430 5680
B,(C): 0114 1180 4000 - 0114 1180 4000
IAR: 6234 6238 6EDO

Condition Code: 2

Storage — Before and After

| 1 I

0114 1180 4310

9

9

BRANCH ON CONDITION INDIRECT INDEXED
(BCNX)

Instruction Description
The updated instruction address is replaced by the
branch address if the condition code is as specified by

the mask; otherwise, normal instruction sequencing
proceeds with the updated |IAR.

Format: RS

7F |R,|M,|B, D,
0 Bits 8 12 16 20 31

Operation: M, is used as a 4-bit mask. The 4 bits of
the mask correspond, left to right, with the four
condition codes (0, 1, 2, and 3). The branch is
successful when the condition code has a corresponding
mask bit of 1. A mask of all zeros results in no branch.

The contents of the halfword register specified by R, is

added to the effective address of the second operand to
form the address of a halfword in storage that contains

the branch displacement. The branch address is formed
by adding the branch displacement to the offset portion

of the instruction stream base address contained in base
register O.

Overflow: An overflow is recognized as an effective
address overflow exception, and the operation is
suppressed.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The halfword storage operand
and the updated instruction address must each start on
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

BCNX Example

Op |R,|M,|B, D

2
7F B/ 8|4 630

O Bits 8 12 16 20 31
Assembler: BCNX R,, M3, D, (B,)
Machine: 7FB8 4630
Before Updated After

B(0): 0023 1430 5680 - 0023 1430 5680
B,(4): 0375 2102 6000 - 0375 2102 6000
R, (B): 4C20 — 4C20

IAR: 75C0 75C4 7060

Condition Code: 0

Storage — Before and After

T | |
0/8 2/A 4/C 6/E

0375 2102 B250 19EO0

Instruction Descriptions 10-45

BRANCH ON COUNT (BCT)
Instruction Description

The binary quantity contained in the halfword register
specified by R, is reduced by 1. When the result is
zero, normal instruction sequencing proceeds with the
updated instruction address. When the result is not
zero, the instruction address is replaced by the branch
address.

Format: RI
8E R,[O D,
0O Bits 8 12 16 31

Cperation: The updated instruction address is replaced
by the sum of the 16-bit displacement D, from the
instruction and the offset portion of the instruction
stream base address contained in base register O, if R,
does not equal zero.

The branch address is computed before the counting
operation. Counting does not change the condition
code. The subtraction proceeds as in binary arithmetic
and all 16 bits of the halfword register participate in the
operation.

Overflow: The overflow occurring on transition from
maximum positive number is ignored.

Sign Code: Not applicable.

10-46

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary ; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation

— Addressing
— Effective address overflow
— Specification
BCT Example
Op |R,|E D,
8E c|O 02A0
0 Bits 8 12 16 31

Assembler: BCT R, D,
Machine: 8ECO 02A0
Before Updated After
R;(C): 0009 - 0008
IAR: IEFO 1EF4 12CO

B(0): 000A 2130 1020 - 000A 2130 1020

BRANCH REGISTER (BR)
Instruction Description

The instruction address is replaced by the contents of
the halfword register designated by R,.

Format: RR

2E |R,| O
0 Bits 8 12 15

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Ccde: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address

must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:
— Address translation

— Addressing
— Specification

BR Example

Op |R,|E

2E c|O

O Bits 8 12 15
Assembler: BR R;
Machine: 2ECO
Before After
R, (C): 5320 5320

IAR: 3252 5320

Instruction Descriptions

10-47

BRANCH REGISTER LONG (BRL)
Instruction Description

The instruction address is replaced by the contents of
the halfword register designated by R,; the instruction
stream base address, contained in base register 0, is
replaced by the contents of the base register designated
by B,.

Format: RR

2F |R,|B,
0 Bits 8 12 15

Operation: See Instruction Description

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

10-48

Program Exceptions:
— Address translation

— Addressing
— Specification

BRL Example

Op |R,|B,

2F 9|5
0 Bits 8 12 15

Assembler: BRL R, B,
Machine: 2F95

Before After
R;(9): 14EO 14E0
B,(5): 32A3 57C9 0000 32A3 57C9 0000
IAR: 2344 14EQ

B(0): 21F2 334A 0000 32A3 57C9 0000

BRANCH UNCONDITIONAL (BU)
Instruction Description

The updated instruction address is replaced by the
branch address.

Format: Rl
6F 0 D,
0O Bits 8 12 16 31

Operation: The branch address is the sum of the 16-bit
displacement D, from the instruction and the offset
portion of the instruction stream base address contained
in base register 0.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception cccurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

Programming Note: The IMP instruction assembler uses
the extended mnemonic B meaning branch
unconditional.

BU Example
Op E D,
6F 0 11BO
O Bits 8 12 16 31

Assembler: BUD,
Machine: 6F00 11BO

Before After
B(0): 1B30 2CCO 0100 1B30 2CCO 0100

IAR: 0B20 12B0

Instruction Descriptions 10-49

CALL INTERNAL (CALLI)

Instruction Description

The second operand identifies a branch target. After
execution of this instruction the updated instruction
address is replaced by the sum of the second operand
and the offset portion of base register 0.

Format: SI
EF I,| 0B, D, D,
0O Bits 8 12 16 20 32 47

Operation: The first operand points to a 16-byte area in
storage, where the instruction creates a tagged pointer
containing the return address by putting the leftmost
two bits of |, into bits 0 and 1 of byte O of the tagged
pointer. The return address points to the next
instruction, which resides in the storage area
immediately following the CALLI instruction. After the
two bits from I, are put into byte O of the tagged
pointer, the instruction zeros bits 2-7 of byte O of the
tagged pointer. Bytes 8 and 9 are fetched from the
storage location whose address is formed by
concatenating hex 00 0004 to the right of the leftmost 3
bytes of base register 0. Pointer bytes 10-15 are loaded
with the return address formed from the 2-byte updated
IAR contents concatenated to the right of the leftmost 4
bytes of base register 0.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The tag pointer must be
quadword aligned; otherwise, a specification exception
occurs and the operation is suppressed.-

10-50

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

CALLI Example

Op |(I;| E|B, D, D,
EF 410|565 100 11B0O
0O Bits 8 12 16 20 32 47
Assembler: CALLI D,(B;), D,, I3
Machine: EF40 5100 11BO
Before After
B(0): 1B30 2CCO 0000 1B30 2CCO 0000
B(5): 1A40 0000 0000 1A40 0000 0000
IAR: 0B20 11BO
Address Before After
1A40 0000 0100 XXXX XXXX 4000 0000
XXXX XXXX 0000 0000
XXXX XXXX 1234 1B30
XXXX XXXX 2CCO0 0B26
1B30 2CCO 0004 1234 1234

This page is intentionally left blank.

Instruction Descriptions 10-51

COMPARE AND SWAP HALFWORD (CSH)
Instruction Description

The first and second operands are compared. If they are
equal, the third operand is stored in the second-operand

location. If they are unequal, the second operand is
loaded into the first-operand location.

Format: RS

7D |R,|R,|B, D,
0 Bits 8 12 16 20 31

Operation: The first and third operands are 16 bits in
length, with each operand occupying a halfword register.
The second operand is a halfword in main storage.

The result of the 16-bit comparison, either equal or
unequal, is used to set the condition code. When the
result of the comparison is unequal, no attempt to store
occurs.

When an equal comparison occurs, no access by
another instruction is permitted at the second-operand
location between the moment that the second operand
is fetched for comparison and the moment that the third
operand is stored at the second-operation location.

10-52

Overflow and Sign Code: Not applicable.

Condition code:
O First = Second operand; second operand
Operand replaced by third operand.
1 First # Second operand; first operand
Operand replaced by second operand.
2 --
3 --

Carry: Not applicable.

Boundary Requirements: The second operand must be
on a halfword boundary; otherwise, a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

Programming Note: The Compare and Swap Halfword
instruction does not interlock against storage accesses
by the channel. Therefore, the instruction should not be
used to update a halfword that is partly or entirely in an
1/0 input area, since the input data may be lost.

CSH Example

op |(R,|R,|B, D,
7D |5|6|3 330
0 Bits 8 12 16 20 31

Assembler: CSH R, R3, D, (B,)
Machine: 7D56 3330

B, (3): 1072 92D0 E000
R;(5): 58F3

R3(6): 845F

Storage — Before
T T T
0/8 2/A 4/C 6/E

1072 92D0 E330 58F3

—

Storage — After

T T T
0/8 2/A 4/C 6/E

1072 92D0 E330 84F5

L

Before After

Condition Code: X 0

Instruction Descriptions 10-53

COMPARE BYTE IMMEDIATE AND BRANCH
EQUAL (CBIBE)

Instruction Description

The first operand is compared with the second operand.
If the operands are equal, the updated instruction
address is replaced by the branch address; otherwise,
normal instruction sequencing proceeds with the
updated instruction address.

Format: Sl
DO 1, B, D, D,
0 Bits 8 16 20 32 47

Operation: The immediate operand, |,,, is compared with
the byte in storage addressed by B, D,. If equal, the
updated instruction address is replaced by the sum of
the 16-bit displacement {D.) and the offset portion of
the instruction stream base address contained in base
register zero.

Overflow and Sign Codes: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise, a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

10-54

CBIBE Example

Op |2 B1 D-| D3
DO E8 e 009 4928
0 Bits 8 16 20 32 47

Assembler: CBIBE D, (B;), |,, D3
Machine: DOE8 3009 4928
B(0): 3978 21F4 0100

B(3): 49E2 C301 0200

Storage — Before and After
T T T

0/8 2/A 4/C 6/E
49E2 C301 0209 23 E8

Before After

IAR: 093C 4A28

COMPARE BYTE IMMEDIATE AND BRANCH NOT
EQUAL (CBIBN)

Instruction Description

The first operand is compared with the second operand.
If the operands are equal, the updated instruction
address is replaced by the branch address; otherwise,
normal instruction sequencing proceeds with the
updated instruction address.

Format: Sl
D1 , B, D, D,
0 Bits 8 16 20 32 47

Operation: The immediate operand, |,, is compared with
the byte in storage addressed by B,, D,. If not equal,
the updated instruction address is replaced by the sum
of the 16-bit displacement (D,) and the offset portion of
the instruction stream base address contained in base
register zero.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address

must start on a halfword boundary; otherwise, a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

CBIBN Example

Op 1, B, D, D,
D1 E8 |4 005 4E31
0 Bits 8 16 20 32 47
Assembler: CBIBN D, (B,); |,, D;
Machine: D1E8 4005 4E31
B(0): 56B3 4792 5AC4
B(4): 359D 0200 4EC8
Storage — Before and After
0/8 [2/A | 4/c | 6/E

359D 0200 4ECD

Before After

IAR: 6F02 6F08

Instruction Descriptions

10-54.1

COMPARE CHARACTERS (CC)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: SS
C2 |L|L|B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: Comparison is algebraic, treating both
operands in signed binary quantities. Operands in
registers or storage are not changed. If the operands
are unequal in length, the shorter operand is considered

to be extended to the left with bits equal to the sign bit.

Overflow and Sign Code: Not applicable.

Condition Code:
O First operand = Second operand
1 First operand < Second operand

2 First operand > Second operand
3 --

Carry: Not applicable.

10-54.2

Boundary Requirements: None.

Program Exceptions:

— Address translation
— Addressing
— Effective address overflow

CC Example
Op |L/|L,|B, D, B, D,
C2 (3|3 |4 320 5 130
0O Bits 8 12 16 20 32 36 47

Assembler: CC D, (L,,B;),D,(L;,B;)
Machine: C233 4320 5130
B, (4): 1ABC 2DEF 0000
B, (5): 312B 45C6 0000

Storage — Before and After

T T T
0/8 2/A 4/c 6/E

1ABC 2DEF 0320 81256 B2CC
312B 45C6 0130

7ACO 465F

Before After

Condition Code: X 1

COMPARE HALFWORD (CH)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: RS

80 |R,| 2|8, D,
0O Bits 8 12 16 20 31

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers or storage are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand
1 First operand
2 First operand
3 --

Second operand
Second operand
Second operand

v Al

Carry: Not applicable.

Boundary Requirements: The storage operands must
start on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

CH Example

op [R,|E|B, D,
80 |7|2|2| Bco
0 Bits 8 12 16 20 31

Assembler: CH Ry, D,(B;)
Machine: 8072 2BCO
B,(2): 00AO0 3120 0000
R.(7): 1AF3

Storage — Before and After

00AO0 3120 0BCO 1AB2

Before After

Condition Code: X 2

Instruction Descriptions

0/8 2/A 4/c 6/E

10-55

COMPARE HALFWORD IMMEDIATE (CHI)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: SI
A2 0 | B, D, l,
0 Bits 8 12 16 20 32 47

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers or storage are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 --

vV A

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-56

Program Exceptions:

Address translation

— Addressing
— Effective address overflow
— Specification
CHI Example
Op E | B, D, I,
A2 0|7 A10 B13C
0 Bits 8 12 16 20 32 47

Assembler: CHI Dy (B,), |,
Machine: A200 7A10 B13C
B,(7): 000A 24B0 0000

Storage — Before and After
| I |

000A 24B0 0A10

Before After

Condition Code: X 0

COMPARE HALFWORD REGISTER (CHR)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: RR

22 |R,|R,
0 Bits 8 12 15

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand = Second operand
1 First operand Second operand
2 First operand > Second operand
3 --

v A

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CHR Example
Op [(R,|R,
22 3|4

O Bits 8 12 15
Assembler: CHR R, R,

Machine: 2234

R, (3): 5590
R,(4): 8320

Before After
Condition Code: x 2

Instruction Descriptions 10-57

COMPARE HALFWORD REGISTER IMMEDIATE
(CHRI)

Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: RI
52 R,| O l,
0O Bits 8 12 16 31

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 -

10-58

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CHRI Example
Op |R,| E 1,
52 9|0 2243
O Bits 8 12 16 31

Assembler: CHRI Ry, |5
Machine: 5290 2243
R1(9): 2233

Before After

Condition Code: X 1

COMPARE LOGICAL ADDRESS REGISTER (CLAR)

Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: RR

23 |B,|B,
0 Bits 8 12 15

Operation: The two 6-byte operands are treated as
unsigned binary integers and are compared, setting the
condition code in the following manner.

First, the high-order 3 bytes (segment group) of the two
operands are compared; if they are not equal, the
condition code is set to 3 and the instruction is
complete. If the operands are equal, the low-order 3
bytes (segment group offset) of the operands are
compared as unsigned binary integers.

Overflow and Sign Code: Not applicable.

Condition Code:
0 First operand = Second operand.

1 High-order 3 bytes of the operands are equal;
low-order 3 bytes of the first operand are low.

2 High-order 3 bytes of the operands are equal;
low-order 3 bytes of the first operand are high.

3 High-order 3 bytes of the operands are not
equal.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLAR Example
Op |B,|B,
23 8|6

0 Bits 8 12 15
Assembler: CLAR B, ,B;
Machine: 2386

B, (8): 00C1 BOOO 4BEO

B, (6): 00C1 BO0OO 4BDO

Before After

Condition Code: X

2

Instruction Descriptions

10-59

COMPARE LOGICAL BYTE (CLB)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: RS

71 |r,| 2|8, D,
0O Bits 8 12 16 20 31

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.
Condition Code:
O First operand = Second operand
1 First operand < Second operand
>

2 First operand Second operand
3 --

Carry: Not applicable.

10-60

Boundary Requirements: None.

Program Exceptions:
— Address translation

— Addressing
— Effective address overflow

CLB Example

Op |r,| E|B, D,
71 8|26 120

0O Bits 8 12 16 20 31
Assembler: CLBr;, D;(B,)
Machine: 7182 6120

B2 (6): 4022 4045 0000

ry(8): 27

Storage — Before and After
T T T
0/8 2/A 4/C 6/E

4022 4045 0120 27

Before After

Condition Code: X 0

COMPARE LOGICAL BYTE IMMEDIATE (CLBI)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
codes.

Format: SI
9C l, B, D,
0 Bits 8 16 20 31

Operation: The comparison is performed with the
operands as unsigned binary quantities. Operands in
registers or storage are not changed by the operation.

Overflow and Sign Code: Not applicable.

Condition Code:

0 First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 --

Boundary Requirements: None.

Program Exceptions:

— Address translation
— Addressing
— Effective address overflow

CLBI Example
Op l, B, D,
9C 03 4 032
0 Bits 8 16 20 31

Assembler: CLBI D, (B;), I,
Machine: 9C03 4032
B:(4): 4128 7147 0000

Storage — Before and After

T | |
0/8 2/A 4/C

4128 71A7 0032 32

Before After

Condition Code: X 2

Instruction Descriptions

6/E

10-61

COMPARE LOGICAL BYTE REGISTER (CLBR) Carry: Not applicable.

Instruction Description j

Boundary Requirements and Program Exceptions: None.
The first operand is compared with the second operand,

and the result determines the setting of the condition

code. CLBR Example
Op |n|r
Format: RR 12 3|4
0 Bits 8 12 15
12 |r |,
0 Bits 8 12 15 Assembler: CLBRry,r,

. . . . Machine: 1234
Operation: The comparison is performed with the

operands treated as unsigned binary quantities. r(3): 42
Operands in registers are not changed by the operation.

rp(4): 42
Overflow and Sign Code: Not applicable. Before After
Condition Code: x 0
Condition Code:
O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand J

3 --

10-62

COMPARE LOGICAL BYTE REGISTER IMMEDIATE
(CLBRI)

Instruction Description

The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: RI

42 r,|O I,
0O Bits 8 12 16 24 31

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand
1 First operand
2 First operand
3 --

Second operand
Second operand
Second operand

v Al

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLBRI Example

Op (r,|E 1,

42 5[0 FF

0 Bits 8 12 16 24 31

Assembler: CLBRIry, I,
Machine: 4250 FFOO
ry(56): F4

Before After

Condition Code: X 1

Instruction Descriptions 10-63

COMPARE LOGICAL CHARACTERS (CLC)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: SS
C5 L, B, D, B, D,
0 Bits 8 16 20 32 36 47

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

The operation proceeds left to right and ends as soon
as an inequality is found or an end of the field is
reached.

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 --

v A

Carry: Not applicable.

10-64

Boundary Requirements: The first and second operands
can overlap in storage. If either operand crosses a
segment boundary, an effective address overflow
exception occurs and the operation is suppressed.

Program Exceptions:
— Address translation

— Addressing
— Effective address overflow

CLC Example
Op L, B, D, B, D,
C5 00 2 001 7 000
0 Bits 8 16 20 32 36 47

Assembler: CLC D, (L;, B;), D,(B>)
Machine: C500 2001 7000

B;(2): 4417 8418 0000

B,(7): 4417 5232 0000

Storage — Before and After

T T T
0/8 2/A 4/C 6/E

4417 5232 0000 18
4417 8418 0001 41

Before After

Condition Code: X 2

>

COMPARE LOGICAL CHARACTER REGISTER
(CLCR)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code. The length is variable and is found as the
contents of the third operand byte register.

Format: SS
E9 r,| 0 |B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

The operation proceeds left to right and ends as soon
as an inequality is found or an end of the field is
reached.

Overflow and Sign Code: Not applicable.

Condition Code:

0O First operand = Second operand
1 First operand < Second operand
2 First operand Second operand
3 -

vV A

Carry: Not applicable.

Boundary Requirements: The first and second operands
can overlap in storage. If either operand crosses a
segment boundary, an effective address overflow
exception occurs and the operation is suppressed.

Program Exceptions:

— Address translation
— Addressing
— Effective address overflow

CLCR Example

op |r,|E|B, D, B, D,
E9 |5]|0]2 001 7 000
0O Bits 8 12 16 20 32 36 47

Assembler: CLCR D,;(B,),D,(B;), Rs

R3(5): 00

Machine: E950 2001 7000

B,(2): 4417 8418 0000

B, (7): 4417 5232 0000

4417 5232 0000
4417 8418 0001

Condition Code:

Storage — Before and After

Before After

X

2

Instruction Descriptions

10-65

COMPARE LOGICAL CHARACTERS LONG (CLCL)
Instruction Description

The first operand is compared with the second operand
and the result is indicated in the condition code.

Format: SS
EA I, B, D, B, D,
0 Bits 8 16 20 32 36 47

Operation: The shorter operand is considered extended
to the right with the padding character contained in the
1, field of the instruction.

The leftmost bytes of the first and second operands as
well as the lengths are located indirectly through
addresses contained in storage. These addresses are
8-byte fields. Bytes 0-1 of these 8-byte fields specify
1 less than the number of bytes in the operand location;
bytes 2-7 contain the address of the leftmost byte of
the operand.

Operand Address
Length

SID Offset

0 Bytes 2 7

The comparison is performed with the operands treated
as unsigned binary quantities. The operation proceeds
left to right and ends as soon as an inequality is
detected or the end of the longest operand is reached.
If the operands are not of the same length, the shorter
operand is assumed to be extended to the right with the
padding character.

10-66

If the 8-byte field associated with either field contains
all zeros, the operand is assumed to be of zero length
and the padding character is used for the entire field. If
both 8-byte fields contain all zeros, condition code O is
set.

The execution of the instruction is interruptible (the
operation can be suspended). When an interruption
occurs after a unit of operation other than the last one,
the IAR is not advanced to the next instruction address,
the length fields are decremented by the number of
bytes compared, and the address fields are incremented
by the same number, so that the instruction, when
reexecuted, resumes at the point of interruption. If the
operation is interrupted after the shorter operand has
been exhausted, the length and address fields for that
operand are all zeros.

If the operation ends because of a mismatch, the length
and address fields at completion identify the byte of
mismatch. The length counts are decremented by the
number of bytes that matched, and the address fields
are incremented by the same amount. If the mismatch
occurred with the padding character, the length and
address fields of the shorter operand contain all zeros.
If the two operands including the padding character are
equal, then the length and address fields for both
operands contain all zeros.

Overflow and Sign Code: Not applicable.

Condition Code: The condition code is not set by this
instruction until it has completed. Therefore, if the
instruction was interrupted, no mismatch has occurred
up to this point.

0 First operand = Second operand, or both
fields are of zero length

1 First operand < Second operand

2 First operand > Second operand

3 --

Carry: Not applicable.

Boundary Requirements: The leftmost byte of each
operand address identifies an 8-byte field in storage
that must begin on a word boundary and must not cross
a page boundary; otherwise a specification exception
occurs and the operation is suppressed. The operand
fields can overlap in storage but neither may cross a
segment boundary; otherwise an effective address
overflow exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

CLCL Example

op 1, |B, D, B, D,
EA FF |4 000 4| 78O
0 Bits 8 16 20 32 36 47

Assembler: CLCL D, (B;), D,(B3), I3
Machine: EAFF 4000 47BO
B, (4) and B, (4): 6250 2938 0000

Storage — Before
T T T
0/8 2/A 4/C 6/E

6250 2938 0000 0003 6250 2A00 0000
6250 2938 07BO 0007 6250 2BOO 0000

| —

Storage — After
— 1 T T
0/8 2/A 4/C 6/E

6250 2938 0000 0000 0000 0000 0000
6250 2938 07BO 0003 6250 2BO0 0004

L

Storage — Before and After

T T T
0/8 2/A 4/C 6/E

6250 2A00 0000 1234 5678
6250 2B00 0000 1234 5678

L

9ABC DEFO

Before After

Condition Code: X 2

Instruction Descriptions 10-67

COMPARE LOGICAL HALFWORD (CLH) Program Exceptions:

Instruction Description Address translation

— Addressing
The first operand is compared with the second operand, — Effective address overflow
and the result determines the setting of the condition — Specification
code.

CLH Example

Format: RS

Op |(R,| E|B, D,

92 |[R,| 0B, D, 92 3(0]4 280

0 Bits 8 12 16 20 31 0 Bits 8 12 16 20 31

Assembler: CLH Ry, D,(B;)
Operation: The comparison is performed with the

operands treated as unsigned binary quantities. Machine: 9230 4280

Operands in registers or storage are not changed by the

operation. B,(4): 9046 71A2 0000
R, (3): 07D0

Overflow and Sign Code: Not applicable.

Storage — Before and After
T T T
Condition Code: 0/8 2/A 4/C 6/E

9046 71A2 0280 07D0

0 First operand
1 First operand
2 First operand
3 --

Second operand
Second operand
Second operand

v Al

Before After
Carry: Not applicable.

Condition Code: X 0

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-68

COMPARE LOGICAL HALFWORD IMMEDIATE
(CLHI)

Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: Sl
B2 0 | B, D, I,
0O Bits 8 12 16 20 32 47

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand
1 First operand
2 First operand
3 -

Second operand
Second operand
Second operand

vV A

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation

— Addressing
— Effective address overflow
— Specification
CLHI Example
Op E | B, D, l,
B2 0|3 A90 F1F3
0 Bits 8 12 16 20 32 47

Assembler: CLHI D;(B,), I,
Machine: B200 3A90 F1F3

B,(3): 9046 2140 A000

Storage — Before and After
T T T
0/8 2/A 4/Cc 6/E

9046 2140 AA90 F1A3

Before After

Condition Code: X 1

Instruction Descriptions 10-69

COMPARE LOGICAL HALFWORD REGISTER (CLHR) Carry: Not applicable.)

Instruction Description

Boundary Requirements and Program Exceptions: None.
The first operand is compared with the second operand,

and the result determines the setting of the condition

code. CLHR Example
Op (R;|R,
Format: RR 32 3|4
0 Bits 8 12 15
32 [R,|R,
0 Bits 8 12 15 Assembler: CLHR Ry, R,

. Machine: 3234
Operation: The comparison is performed with the

operands treated as unsigned binary quantities. R,(3): 2C3E
Operands in registers are not changed by the operation.

R,(4): 2C3E
Overflow and Sign Code: Not applicable. Before After
Condition Code: x 0
Condition Code:
O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand

3 --

10-70

COMPARE LOGICAL HALFWORD REGISTER
IMMEDIATE (CLHRI)

Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: RI
62 R,| O I,
0O Bits 8 12 16 31

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

0 First operand
1 First operand
2 First operand
3 --

Second operand
Second operand
Second operand

v Al

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLHRI Example

Op |R,| E 1,
62 5|10 111C
O Bits 8 12 16 31

Assembler: CLHRI Ry, I,
Machine: 6250 111C
R;(5): 111F

Before After

Condition Code: X 2

Instruction Descriptions 10-71

COMPARE LONG FLOAT (CLF)
Instruction Description
The first operand is compared with the second operand,

and the result determines the setting of the condition
code.

Format: SS

CE 0 |B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: Comparison is algebraic, considering the sign,
the significand, and the exponent of each operand.
Neither operand is changed as a result of operation.

The comparison is made following the rules of
floating-point subtraction as follows. The subtrahend is
subtracted from the minuend; if the difference is O, they
compare equal. If the subtrahend is larger than the
minuend, then the first operand is low. If the
subtrahend is smaller than the minuend, then the first
operand is high.

Floating-point values of O compare equal with each
other even when they have different signs.
Floating-point values of infinity compare equal with each
other even when they have different signs, and a
floating-point value of infinity compares unordered with
any other floating point value. A not-a-number
floating-point value compares unordered with all other
values including another not-a-number value.

If a denormalized floating-point number is compared,

the comparison is made as if the denormalized number
had first been normalized.

10-72

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 Operands are unordered

Carry: Not applicable.

Boundary Requirements: Both operands must be
fullword aligned; otherwise, a specification exception
occurs, and the operation is suppressed.

Operands may overlap only if they are coincidental;
otherwise, the results are unpredictable.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Floating~point invalid operand
Specification

Programming Note: The following is a summary of the
results for various combinations of operands.

Second Source (Subtrahend)

finity
Comparison Result First Source (Minuend)
= +0 +0
= +0 -0
= |-0 +0
= -0 -0
< -Real number # 0 +Real number # 0
> +Real number # 0 -Real number # O
> +Real number # 0 +0
> +Real number # 0 -0
< +0 +Real number # 0
< -0 +Real number # 0
< -Real number # 0 +0
< -Real number # 0 -0
> +0 -Real number # 0
> -0 -Real number # 0
Unordered Masked not-a-number Any
Unordered Any Masked not-a-number
See note Unmasked not-a-number Any
See note Any Unmasked not-a-number
= +Infinity +Infinity
= +Infinity -Infinity
= ~Infinity +Infinity
= -Infinity =Infinity
Unordered Not infinity +Infinity
Unordered Not infinity ~Infinity
Unordered +Infinity Not infinity
Unordered ~Infinity Not infinity
Legend:

Not Infinity = Anything but infinity or an unmasked not-a-number.
Any = Any floating-point field value.

Note: An unmasked not-a-number value results in a floating-point invalid operation
exception unless the exception is masked. An unmasked not-a-number value results in an
unordered comparison result if the floating-point invalid operation excpetion is masked.

Instruction Descriptions

10-73

CLF Example

Op E |B, D, B, D,
CE 0|4 o050 [4]| os0
O Bits 8 12 16 20 32 36 47

Assembler: CLF Dl (Bl), D2(Bz)
Machine: CEO0 4050 4060
B, (4) and B, (4): 0010 0200 0000

Storage — Before

o8 '2/A 'ac ' e/E
0010 0200 0050 4000 0000 0000 0000
0010 0200 0060 4000 0000 0000 0000

Storage — After

0/8 | 2/A
0010 0200 0050 | 4000 0000 0000 0000
0010 0200 0060 | 4000 0000 0000 0000

Before After
Condition Code: X 0

10-74

COMPARE PACKED (CP)
Instruction Description

The first operand is compared with the second operand
and the result is indicated in the condition code.

Format: SS

F2 |L|L|B, D, B, D,
0 Bts 8 12 16 20 32 36 47

Operation: The comparison is algebraic including the
signs and all digits of both operands. All digit codes are
checked for validity. Invalid digit codes cause a data
exception and the operation is terminated. If the fields
are unequal in length, the shorter field is considered
extended to the left with zeros.

Overflow: Not applicable.

Sign Code: All sign codes are checked for validity, and
any valid plus or minus sign is considered equal to any
other plus or minus sign, respectively. Invalid sign codes
cause a data exception and the operation is terminated.

Condition Code:

O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 --

Vv A

Carry: Not applicable.

Boundary Requirements: The first and second-operand
fields can overlap when their rightmost bytes coincide.
Because digit and sign codes are checked for validity,
improperly overlapping fields cause data exceptions, and
the operation is terminated.

Program Exceptions:

Address translation
Addressing

Data

Effective address overflow

CP Example

op |L|L,|B, D, B, D,
F2 |4|3]|3 410 |4 570
0 Bits 8 12 16 20 32 36 47

Assembler: CP D, (L, B;), Da(L;, B3)
Machine: F243 3410 4570
B, (3): 45C8 6928 5000

B, (4): 45C8 6053 4000

Storage — Before and After
| | 1
0/8 2/A 4/C 6/E

45C8 6053 4570 6121 B21F
45C8 6928 5410 7061 2152 1F

Before After

Condition Code: X 2

Instruction Descriptions 10-75

COMPARE SHORT FLOAT (CSF)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: SS
AE 0 | B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: Comparison is algebraic, considering the sign,
the significand, and the exponent of each operand.
Neither operand is changed as a result of operation.

The comparison is made following the rules of
floating-point subtraction as follows. The subtrahend is
subtracted from the minuend; if the difference is O, they
compare equal. If the subtrahend is larger than the
minuend, then the first operand is low. If the
subtrahend is smaller than the minuend, then the first
operand is high.

Floating-point values of O compare equal with each
other even when they have different signs.
Floating-point values of infinity compare equal with each
other even when they have different signs, and a
floating-point value. A not-a-number floating-point
value compares unordered with all other values including
another not-a-number.

If a denormalized floating-point number is compared,

the comparison is made as if the denormalized number
had first been normalized.

10-76

Overflow and Sign Code: Not applicable.

Condition Code:

O First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 Operands are unordered

Carry: Not applicable.

Boundary Requirements: Both operands must be
fullword aligned; otherwise, a specification exception
occurs, and the operation is suppressed. Operand may
overlap only if they are coincidental; otherwise, the
results are unpredictable.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Floating-point invalid operand
Specification

Programming Note: The following is a summary of the
results for various combinations of operands.

Comparison Result

First Source (Minuend)

Second Source (Subtrahend)

= +0 +0

= +0 -0

= -0 +0

= -0 -0

< -Real number # O +Real number # 0
> +Real number # 0 -Real number # 0
> +Real number # 0 +0

> +Real number # 0 -0

< +0 +Real number # O
< -0 +Real number # 0
< -Real number # O +0

< -Real number # O -0

> +0 -Real number # 0
> -0 -Real number # O
Unordered Masked not-a-number Any

Unordered Any Masked not-a-number
See note Unmasked not-a-number Any

See note Any Unmasked not-a-number
= +Infinity +Infinity

= +Infinity -Infinity

= -Infinity +Infinity

= ~Infinity -Infinity
Unordered Not infinity +Infinity
Unordered Not infinity =Infinity
Unordered +Infinity Not infinity
Unordered =Infinity Not infinity
Legend:

Not Infinity = Anything but infinity or an unmasked not-a-number.
Any = Any floating-point field value.

Note: An unmasked not-a-number value results in a floating-point invalid operation
exception unless the exception is masked. An unmasked not-a-number value results in an
unordered comparison result if the floating-point invalid operation excpetion is masked.

Instruction Descriptions

10-77

CSF Example

Op E |B, D, B, D,
AE 0|4 050 4 060
0 Bits 8 12 16 20 32 36 47

Assembler: CSF D, (B,), D,(B,)
Machine: AEO00 4050 4060
B, (4) and B, (4): 0010 0200 0000

Storage — Before

o8 '2/a !ac
0010 0200 0050 | 4000 0000
0010 0200 0060 | CO00 0000

Storage — After

o8 '2/a '"ac 'elE
0010 0200 0050 4000 0000
0010 0200 0060 C000 0000

Before After
Condition Code: X 2

10-78

This page is intentionally left blank.

Instruction Descriptions 10-79

COMPUTE ADDRESS LONG (CAL)
Instruction Description

The value located in storage by the second-operand
address is used as a signed displacement to be added
to the address value in the base register identified by
the third operand; the resultant address is placed in the
base register identified by the first operand.

Format: RS

ac |B,|B,|B, D,
0O Bits 8 12 16 20 31

Operation: The displacement value is a 32-bit signed
integer, occupying 4 bytes of storage at the
second-operand location.

The address computation is performed as follows. The
rightmost 3 bytes of the address value identified by
the third operand are logically padded on the left with 1
byte of zeros. The displacement identified by the
second operand is then added to this value following
the rules of signed arithmetic. The result of this
calculation must satisfy the following validity checks:

« Must not be greater than a value of 16 megabytes
less 1 (FF FFFF or decimal 16 777 215).

« Must be a positive result.

« Must not be less than the value of the 3-byte logical
binary field in storage located at the address n
determined by concatenating hex 00 001D on the
right of the leftmost 3 bytes of the third-operand
address value.

10-80

If any of the above checks fail, an invalid segment group
address exception occurs and the operation is
suppressed. Otherwise, the rightmost 3 bytes of the
calculated result are concatenated on the right with the
leftmost 3 bytes of the third-operand address value
forming the resultant address . No storage reference
is made using the resultant address placed in the first
operand, so that the address is not inspected for
addressing exceptions.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a fullword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Invalid segment group address
Specification

CAL Example

Op |B,|B,|B, D,
4c | 3|54 100
0 Bits 8 12 16 20 31

Assembler: CAL B,, B,, D, (B,)
Machine: 4C35 4100
Before After

B, (3): xxxx xxxx xxxx 0450 63F7 D854]

B,(4): 0758 71D2 0000 0758 71D2 0000

B;(5): 0450 63E4 0000 0450 63E4 0000
N\

0013 0000
FFFF D854]

[El [00F7 Dgs4] N,
(5

Storage — Before and After

T T T
0/8 2/A 4/c 6/E

0450 6300 001D 04 5063
0000 1D

0758 71D2 0100 0013 D854

Instruction Descriptions

10-81

COMPUTE ADDRESS LONG HALFWORD (CALH)

Instruction Description

The value located in storage by the second-operand
address is used as a signed displacement to be added
to the address value in the base register identified by
the third operand; the resultant address is placed in the
base register identified by the first operand.

Format: RS

4D |B,|B,|B, D,
0O Bits 8 12 16 20 31

Operation: The displacement value is a 16-bit signed
integer on a halfword boundary. If the integer is not
halfword aligned, a specification exception is recognized
and the operation is suppressed. The sign bit is
propagated through the third and fourth (left) offset
bytes, and a 4-byte signed binary add is performed.

The address computation is performed as follows. The
rightmost 3 bytes (segment group offset) of the address
value n identified by the third operand are logically
padded on the left with 1 byte of zeros, creating a
positive 4-byte binary integer. The displacement
identified by the second operand is then added to
this value following the rules of signed arithmetic. The
result of this calculation must satisfy the following
validity checks:

« Must not be greater than a value of 16 megabytes
less 1 (hex FF FFFF or decimal 16 777 215).

« Must be a positive result.

« Must not be less than the value of the space locator
offset, 3-byte logical binary field in storage located at
the address n determined by concatenating hex 00
001D on the right of the leftmost 3 bytes of the
third-operand address value.

10-82

If any of the above checks fail, an invalid segment group
address exception occurs and the operation is
suppressed. Otherwise, the rightmost 3 bytes of the
calculated result are concatenated on the right with the
leftmost 3 bytes of the third-operand address value
(segment group identifier) forming the resultant address
. No storage reference is made using the resultant
address placed in the first operand, so that the address
is not inspected for addressing exceptions.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise, a specification
exception occurs and the operation is suppressed.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Invalid segment group address
— Specification

CALH Example

Op |B,|(B;|B, D,
4D 8(5 |4 102
O Bits 8 12 16 20 31

Assembler: CALH B,,B;,D,(B,;)
Machine: 4D85 4102
Before After

B;(8): xxxx xxxx xxxx 0450 63E3 D854]

B,(4): 0758 71D2 0000 0758 71D2 0000

B;(5): 0450 63E4 0000 0450 63E4 0000
N\

00E4 0000
FFFF D854

[00E3 D854]

N
(5|

Storage — Before and After

T T T
0/8 2/A 4/Cc 6/E

0450 6300 001D 21 D345
0758 71D2 0100 0013 D854

Instruction Descriptions

10-83

COMPUTE ADDRESS LONG HALFWORD
IMMEDIATE (CALHI)

Instruction Description

The second operand (l,) is used as a signed
displacement to be added to the address value in the
base register identified by the third operand; the
resultant address is placed in the base register identified
by the first operand.

Format: RI
5C B, | B, l,
0 Bits 8 12 16 31

Operation: The displacement value is a 16-bit signed
integer. The sign bit is propagated through the third and
fourth (left) offset bytes, and a 4-byte signed binary add
is performed.

The address computation is performed as follows. The
rightmost 3 bytes (segment group offset) of the address
value (1) identified by the third operand are logically
padded on the left with 1 byte of zeros, creating a
positive 4-byte binary integer. The displacement
identified by the second operand (2) is then added to
this value following the rules of signed arithmetic. The
result of this calculation (3) must satisfy the following
validity checks:

+ Must not be greater than a value of 16 megabytes
less 1 (hex FF FFFF or decimal 16 777 215).

« Must be a positive result.

« Must not be less than the value of the space locator
offset, 3-byte logical binary field in storage located at
the address (4) determined by concatenating hex 00
001D on the right of the leftmost 3 bytes of the
third-operand address value.

10-84

If any of the above checks fail, an invalid segment group
address exception occurs and the operation is
suppressed. Otherwise, the rightmost 3 bytes of the
calculated result are concatenated on the right with the
leftmost 3 bytes of the third-operand address value
(segment group identifier) forming the resultant address
(5). No storage reference is made using the resultant
address placed in the first operand, so that the address
is not inspected for addressing exceptions.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise, a specification
exception occurs and the operation is suppressed.

Program Exceptions:
— Address translation

— Addressing
— Invalid segment group address

9

CALHI Example

Op (B,|B, 1,
5C | 8|5 D854
0 Bits 8 12 16 31

Assembler: CALHI By, B3, I,

Machine: 5C85 D854 |

Before After
B;(8): xxxx xxxx xxxx 0450 63E3 D854

B;(5): 0450 63E4 0000 0450 63E4 0000

\

Il

00E4 0000

FFFF D854

00E3 D854

Storage — Before and After

T 1 T
0/8 2/A 4/C

0450 6300 001D 21

6/E
D345

Instruction Descriptions

10-84.1

COMPUTE LONG FLOAT MATH FUNCTION USING

ONE INPUT VALUE (CLFMF1)

Instruction Description

The operation is performed by computing the
mathematical function according to the controls
(operand 3). The source (operand 2) is used as the
argument, and the result is placed into the receiver
{operand 1). The computation is always done in
floating-point.

Format: SS
CE E | B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The first and second operands occupy 8
bytes each, and have the long floating-point field
format.

The third operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex Value Meaning

0001 Sine

0003 Cosine

0005 Tangent

0006 Arc tangent

0010 Exponential function
0011 Natural logarithm (base e)
0020 Square root

All other values are reserved

10-84.2

« Sine (hex 0001). The sine of the numeric value of the

source operand, whose value is considered to be in
radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -1 < SIN(x) < 1.

Cosine (hex 0003). The cosine of the numeric value
of the source operand, whose value is considered to
be in radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -1 < COS(x) < 1.

Tangent (hex 0005). The tangent of the source
operand, whose value is considered to be in radians,
is computed, and the result is placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

Arc Tangent (hex 0006). The arc tangent of the
source operand is computed, and the result (in

radians) is placed in the receiver operand.

If the source operand is a value of positive infinity in
affine mode, the result is +pi/2.

If the source operand is a value of negative infinity in
affine mode, the result is -pi/2.

The result is in the range -pi/2 < ATAN(x) < pi/2.

9

» Exponential Function (hex 0010). The value e is raised
to the power specified in the source operand, and the
result is placed in the receiver operand.

If the source operand is a value of positive infinity in
affine mode, the result is positive infinity. If the
source operand is a value of negative infinity in affine
mode, the result is positive 0.

o Natural Logarithm (base e) (hex 0011). The natural
logarithm of the source operand is computed, and the
result is placed in the receiver operand.

If the source operand is a value of O, the result is
negative infinity.

» Square Root (hex 0020). The square root of the
numeric value of the source operand is computed and
placed in the receiver operand.

If the source operand has a value of negative O, the
result is negative 0. Any attempt to form the square
root of any other negative value causes a
floating-point invalid operation exception to be
signaled.

The square root of positive infinity is positive infinity.

The result is accurate to the least significant bit.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.
Condition Code: Not changed.
Carry: Not applicable.
Boundary Requirements: None.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Floating-point invalid operand
— Floating-point overflow

— Floating-point underflow

— Specification

Instruction Descriptions 10-85

CLFMF1 Example

Op E |B, 01 B, D,
CE E|2]| o040 2| o048
0 Bits 8 12 16 20 32 36 47

Assembler: CLFMF1 D, (B,), D, (B;)
Machine: CEOE 2040 2048

B,(2) and B, (2): 800D 0CO0 0000
R(F): 0020

Storage — Before

o8 '2/a 'aic ' efE

800D 0CO0 0040 XXXX XXXX XXXX — XXXX
800D 0CO0 0048 4000 0000 0000 0000

Storage — After

0/8
800D 0C00 0040 3FF6 AQ9E 667F 3BCC
800D 0C00 0048 4000 0000 0000 0000

10-86

COMPUTE LONG FLOAT MATH FUNCTION USING
TWO INPUT VALUES (CLFMF2)

Instruction Description

The operation is performed by computing the
mathematical function specified in the controls (operand
4). The two source values (one is operand 2 and the
other is addressed by operand 3) are used as arguments
and the result is placed into the receiver (operand 1).
The computation is always done in floating-point.

Format: SS

CE |B,| F |B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The first and second operands, and the data
addressed by operand 3, each occupy 8 bytes and have
the long floating-point field format.

Operand 3, bits 8 through 11, specifies a base register
that contains the address of the second souce operand.

The fourth operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex Value Meaning

0001 Power (X to the Y)

All other values
are reserved

o Power (X to the Y) (hex 0001). The computation X
power Y, where X is the first source operand
(operand 2) and Y is the second (operand 3), is
performed, and the result is placed in the receiver
operand (operand 1).

For each combination of the two source values that
would deliver a complex value as the result, a
floating-point invalid operand exception is signaled
(for example, if source 1 (operand 2) is a real number
less than O and source 2 (operand 3) is 1/2).

Some special cases in affine mode are:

Source 1 Source 2 Result
Infinity Infinity Infinity
Infinity *Infinity Invalid

| operation

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large
to be represented in the result format. See
Floating-Point Overflow Exception in Chapter 6 for
further information.

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Floating-point invalid operand
— Floating-point overflow

— Floating-point underflow

— Specification

Instruction Descriptions 10-87

CLFMF2 Example

Op 33 E B1 D1 B2 D2
CE E[{F|2 040 2 050
OBts 8 12 16 20 32 36 47
Assembler: CLFMF2 D, (B,), D, (B;), B,
Machine: CEEF 2040 2050
B, (2) and B, (2): 800D 0C00 0000
B;(E): 800D 0C00 0300
R(F): 0001
Storage — Before
o8 '2/a "aic ! eE
800D 0COO0 0040 XXXX XXXX XXXX XXXX
800D 0CO0 0050 405E CO00 0000 0000
800D 0C00 0300 4000 0000 0000 0000

Storage — After

o8 '2/a "ac !

800D 0COO0 0040
800D 0C00 0050
800D 0CO0 0300

10-88

6/E

This page is intentionally left blank.

Instruction Descriptions 10-89

COMPUTE SHORT FLOAT MATH FUNCTION USING

ONE INPUT VALUE (CSFMF1)

Instruction Description

The operation is performed by computing the
mathematical function according to the controls
(operand 3). The source (operand 2) is used as the
argument, and the result is placed into the receiver
(operand 1). The computation is always done in
floating-point.

Format: SS
AE E | B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: The first and second operands occupy 4
bytes each and have the short floating-point field
format.

The third operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex Value Meaning

0001 Sine

0003 Cosine

0005 Tangent

0006 Arc tangent

0010 Exponential function

0011 Natural logarithm (base e)
0020 Square root

All other values are reserved

10-90

« Sine (hex 0001). The sine of the numeric value of the

source operand, whose value is considered to be in
radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -1 < SIN(X) < 1.

Cosine (hex 0003). The cosine of the numeric value
of the source operand, whose value is considered to
be in radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.
The result is in the range -1 < COS(c) < 1.

Tangent (hex 0005). The tangent of the source
operand, whose value is considered to be in radians,
is computed, and the result is placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

Arc Tangent (hex 0006). The arc tangent of the
source operand is computed, and the result (in
radians) is placed in the receiver operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -pi/2 < ATAN(x) < pi/2.
Exponential Function (hex 0010). The value e is raised
to the power specified in the source operand, and the

result is placed in the receiver operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

9

C

« Natural Logarithm (base e) (hex 0011). The natural
logarithm of the source operand is computed, and the
result is placed in the receiver operand.

If the source operand is a value of O or less than O, a
specification exception is signaled.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

» Square Root (hex 0020). The square root of the
numeric value of the source operand is computed and
placed in the receiver operand.

If the source operand has a value of negative O, the
result is negative 0. Any attempt to form the square
root of any other negative value causes a
specification exception to be signaled.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.
The result is accurate to the least significant bit.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large
to be represented in the result format. See
Floating-Point Overflow Exception in Chapter 6 for
further information.

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation

— Addressing

Effective address overflow
Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

CSFMF1 Example

op E |B, D, B, D,
AE E|2 058 2| osC
0 Bits 8 12 16 20 32 36 47

Assembler: CSFMF1 D, (B,), D, (B,)
Machine: AEOE 2058 205C

B, (2) and B, (2): 800D 0CO0 0000
R(F): 0020

Storage — Before

o8 '2/a Tac TerE
800D 0CO00 0058 XXXX XXXX
800D 0C00 005C 4000 0000

Storage — After

o8 '2/a "axc Tk
8000 0CO0 0058 | 3FB5 04F3
8000 0CO0 005C 4000 0000

Instruction Descriptions 10-91

COMPUTE SHORT FLOAT MATH FUNCTION USING
TWO INPUT VALUES (CSFMF2)

Instruction Description

The operation is performed by computing the
mathematical function specified in the controls (operand
4). The two source values (one is operand 2 and the
other is addressed by operand 3) are used as
arguments, and the result is placed into the receiver
(operand 1). The computation is always done in
floating-point.

Format: SS

AE |B,| F|B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: The first and second operands, and the data
addressed by operand 3, each occupy 4 bytes and have
the short floating-point field format.

Operand 3, bits 8 through 11, specifies a base register
that contains the address of the second source operand.

The fourth operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex
Value Meaning
0001 Power (X to the Y)

All other values are reserved

10-92

« (Power (X to the Y) (hex 0001). The computation X
power Y, where X is the first source operand
(operand 2) and Y is the second (operand 3), is
performed, and the result is placed in the receiver
operand (operand 1).

For each combination of the two source values that
would deliver a complex value as the result, a
specification exception is signaled (for example, if
source 1 (operand 2) is a real number less than O and
source 2 (operand 3) is 1/2).

If both source operands have a value of O, a
specification exception is signaled.

If either of the source operands is a value of infinity,
a floating-point invalid operand exception is signaled.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large
to be represented in the result format. See
Floating-Point Overflow Exception in Chapter 6 for
further information.

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Floating-point invalid operand

— Floating-point overflow
— Floating-point underflow

— Specification

CSFMF2 Example

op |B,| E |B, D, B, D,
AE |E|F |2 058 2 060
0 Bits 8 12 16 20 32 36 47

Assembler: CSFMF2 D, (B,), D, (B;), B,
Machine: AEEF 2058 2060

B, (2) and B, (2): 800D 0CO0 0000
B;(E): 800D 0CO0 0300

R(F): 0001

Storage — Before
I

o8 ' 2/A ' afc
800D 0C00 0058 XXXX XXXX
800D 0C00 0060 405E CO000
800D 0C00 0300 4000 0000

6/E

Storage — After

o8 '2/a 'ac e
800D 0CO0 0058 | 4141 D190
800D 0CO0 0060 | 405E CO0O
800D 0C00 0300 | 4000 0000

Instruction Descriptions 10-93

COMPUTE SUBSCRIPT ADDRESS (CSA)
Instruction Description

The value of the second operand in storage is reduced
by one and multiplied by I,. The product of this
multiplication is added to the first operand, and the sum
is placed in the first-operand register.

Format: Sl
AD |[B,| O |B, D, I3
0O Bits 8 12 16 20 32 47

Operation: The second operand is unchanged by the
operation. If the second or third operand is zero, a
specification exception is raised and the operation is
suppressed.

The first operand is treated as a virtual address. The
second and third operands are treated as 16-bit
unsigned binary integers. The second operand, which
occupies 2 bytes in storage, is reduced by a value of 1
and multiplied by the contents of the I, field from the
instruction. This product, which is considered to be a
24-bit unsigned binary integer, is then added to the
contents of the base register designated by B,, and the
sum replaces the contents of the register.

Overflow: If a carry occurs from bit 24 to bit 23 as a
result of either the multiply or the add operation, an

effective address overflow exception occurs and the

operation is suppressed.

Sign Code: Not applicable.

Condition Code: Not changed.

10-94

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

CSA Example
Op |B,| E (B, D, I
AD (7|0 |3 410 0050
0O Bits 8 12 16 20 32 47

Assembler: CSA By, D,(B;), I3
Machine: AD70 3410 0050
B,(3): 6A39 8357 B00O

Before After

B,(7): 5328 C102 03B0 5328 C102 D5BO

Storage — Before and After

6A39 8357 B410

{02A1-1) (0050) + 5328 C102 03B0 = 5328 C102 D5B0

This page is intentionally left blank.

Instruction Descriptions 10-95

COMPUTE SUBSCRIPT ADDRESS CONSTRAINED
(CSAC)

Instruction Description

The value of the third operand in storage is validated,
reduced by one, and multiplied by the halfword found in
bytes 4-5 of the second storage operand. The product
of this multiplication is added to the fourth operand and
the sum is placed in the first-operand register.

Format: SS
BF |B,|B,|B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The second, third, and fourth operands are
unchanged by the operation. If the second-operand
bytes 0-3, the second-operand bytes 4-5, or the third
operand contains zero values, a specification exception
is recogriized and the operation is suppressed.

The fourth operand is treated as a 6-byte virtual
address. The third operand is a 32-bit logical value. If it
and the 6-byte second-operand field are not fullword
aligned, a specification exception is recognized and the
operation is suppressed. The third-cperand value is
validated as being nonzero, but less than hex 0100 0000
(that is, the high-order byte must be zero) and less than
or equal to the limit value found in bytes 0-3 (a 32-bit
logical value) of the second operand. If found to be
outside this range, a specification exception is
recognized and the operation is suppressed. If valid, the
third operand is reduced by a value of one and
multiplied by the logical value found in bytes 4-5 of the
second operand. This product is a 32-bit logical value
with an absolute value of less than hex 0100 0000;
otherwise, an invalid segment group address exception
is recognized and the operation is suppressed. The
product is added to the base register designated by the
fourth operand, and the result is placed into the
first-operand base register.

10-96

Overflow and Sign Code: Not applicable.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: If a carry occurs from the 3-byte offset as 4
result of the add operation, an invalid segment group
address exception occurs and the operation is
suppressed.

Boundary Requirements: The second and third operands
must be fullword aligned. If not, a specification
exception is recognized and the operation is suppressed.

Program Exceptions:

Address translation

Addressing

Effective address overflow

Invalid segment group!tf —Specification

CSAC Example

op |B,[B,|B, D, B, D,
BF |6|5 |4 100 3 200
0 Bits 8 12 16 20 32 36 47

Assembler: CSACB,;,D,(B,),D3(B3), B4
Machine: BF65 4100 3200

Before After
B(3): 0001 2345 0000 0001 2345 0000
B(4): 0001 2345 0000 0001 2345 0000
B(5): 9999 9955 5555 9999 9955 5555
B(6): 6666 6666 6666 9999 9955 7777

Main storage is unchanged by the operation.

Storage - Before and After
T T T
0/8 2/A 4/C 6/E

0001 23450100 | 0034 5678 0002
0001 23450200 | 0000 1112 xxxx

Instruction Descriptions

10-97

COMPUTE SUBSCRIPT ADDRESS CONSTRAINED
HALFWORD (CSACH)

Instruction Description

The value of the third operand in storage is validated,
reduced by one, and multiplied by the halfword found in
bytes 4-5 of the second storage-operand. The product
of this multiplication is added to the fourth operand and
the sum is placed in the first-operand register.

Format: SS

AF |B,|B,|B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: The second, third, and fourth operands are
unchanged by the operation. If the second-operand
bytes 0-3, the second-operand bytes 4-5, or third
operand contains zero values, a specification exception
is recognized and the operation is suppressed.

The fourth operand is treated as a 6-byte virtual
address. The third operand is a 16-bit logical value. If
the third-operand field is not halfword aligned, or the
second operand fullword aligned, a specification
exception is recognized and the operation is suppressed.
The third-operand value is validated as being nonzero,
but less than hex 8000 (that is, the high-order bit must
be zero) and less than or equal to the limit value found
in bytes 0-3 (a 32-bit logical value) of the second
operand. If found to be outside this range, a
specification exception is recognized and the operation
is suppressed. If valid, the third operand is reduced by a
value of one and multiplied by the logical value found in
bytes 4-5 of the second operand. This product is a
32-bit logical value with an absolute value of less than
hex 0100 0000; otherwise, an invalid segment group
address exception is recognized and the operation is
suppressed. The product is added to the base register
designated by the fourth operand and the result is
placed into the first-operand base register.

10-98

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: |f a carry occurs from the 3-byte offset of the
fourth operand as a result of the add operation, an
invalid segment group exception is recognized and the
operation is suppressed.

Boundary Requirements: The third operand must be
halfword aligned and the second operand 6-byte field
fullword aligned. If not, a specification exception is
recognized and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Invalid segment group
Specification

CSACH Example

op |B,|B,|B, D, B, D,
AF |6|5|a 100 |3| 200
O Bits 8 12 16 20 32 36 47

Assembler: CSACH B,,D,(B,), D3(B3), B4

Machine: AF65 4100 3200

B(3):
B(4):
B(5):

B(6):

Before

0001 2345 0000

0001 2345 0000

9999 9955 5555

6666 6666 6666

0001 2345 0100

0001 2345 0200

After

0001 2345 0000

0001 2345 0000

9999 9955 5555

9999 9955 7777

Storage — Before and After

0/8 2/A
0034 5678
1112 XXXX

I i

4/C 6/E
0002

XXXX

Instruction Descriptions

10-99

CONVERT BINARY TO LONG FLOAT (CVBLF)

Instruction Description
The value of the second operand is converted from

binary to floating point, and the result is placed in the
first operand location.

Format: SS

CE |L,|9|B, D, B, D,
O Bits 8 12 16 20 32 36 47

Operation: The first operand (receiver) occupies 8 bytes
of storage in order to accomodate the long
floating-point format.

The second operand (source) occupies either 4 or 8
bytes. The length (4 or 8 bytes) is specified by the
length operand (bits 8 through 11) in the instruction.
The length operand has the following format:

Bits Meaning

8 Reserved

9-11 Length of source
011 = 4 bytes
111 = 8 bytes

All other values are invalid

The second operand contents is treated as a
right-aligned, signed binary integer value (whole number
rather than a fraction) with an assumed binary point to
the right of its rightmost digit.

The result of the operation is a normalized floating~point
number, rounded, if necessary, according to the
rounding mode specified in the task dispatching
element.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

Sign Code: Not applicable.

10-100

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Operand 1 data must be
fullword aligned; otherwise, a specification exception
occurs, and the operation is suppressed. The result
obtained from overlapping operands is unpredictable.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Floating-point inexact result
Specification

CVBLF Example

op |L| E|B, D, B, D,
CE [7]|9]|4 050 4 060
0 Bits 8 12 16 20 32 36 47

Assembler: CVBLF D, (B,), D, (L, B,)
Machine: CE79 4050 4060
B, (4) and B, (4): 0010 0200 0000

Storage — Before

o8 '2/A "acc TeE
0010 0200 0050 XXXX XXXX XXXX XXXX
0010 0200 0060 0000 0000 0000 OOFF

Storage — After

o8 '2/a "acc ' eE
0010 0200 0050 406F E000 0000 0000
0010 0200 0060 0000 0000 0000 OOFF

Condition Code: Not changed.

CONVERT BINARY TO PACKED (CVBP)
Instruction Description
The radix of the second operand is changed from binary

to decimal, and the result is placed in the first-operand
location.

Format: SS

F8 0 |B, D, B, D,
O Bits 8 12 16 20 32 36 47

Operation: The number is treated as a right-aligned,
binary value both before and after conversion.

The second operand is a 32-bit, signed, binary integer
occupying a word in storage. The first operand occupies
8 bytes in storage and is formed using the packed
decimal format with the rightmost 4 bits representing
the sign.

Overflow: Not applicable.

Sign Code: The preferred signs are used for the result
as follows: a positive sign is encoded as 1111 (hex F); a
negative sign is encoded as 1101 (hex D).

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Both operands must begin on a
word boundary; otherwise a specification exception
occurs and the operation is suppressed. The operands
can overlap in storage.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Specification

CVBP Example

Op E |B, D, B, D,

F8 0|3 210 3 320

O Bits 8 12 16 20 32 36 47

Assembler: CVBP D,(B,), D,(B,)
Machine: F800 3210 3320
B, (3) and B,{3): 0310 0004 A000

Storage — Before
i] 1
0/8 2/A 4/C 6/E

0310 0004 A210 XXXX XXXX XXXX XXXX
0310 0004 A320 0021 3FA4

—

Storage — After
T T T
0/8 2/A 4/Cc 6/E

0310 0004 A210 | 0000 0000 2178 980F
0310 0004 A320 | 0021 3FA4

V_—_/

Instruction Descriptions 10-101

CONVERT BINARY TO SHORT FLOAT (CVBSF)

Instruction Description
The value of the second operand is converted from

binary to floating point, and the result is placed in the
first operand location.

Format: SS

CE |L,| 9 |B, D, B, D,
0 Bits 8 12 16 20 32 36 a7

Operation: The first operand (receiver) occupies 4 bytes
of storage in order to accomodate the short
floating-point format.

The second operand (source) occupies either 4 or 8
bytes. The length (4 or 8 bytes) is specified by the

length operand (bits 8 through 11) in the instruction.
The length operand has the following format:

Bits Meaning

8 Reserved

9-11 Length of source
011 = 4 bytes
111 = 8 bytes

All other values are invalid

The second operand contents is treated as a
right-aligned, signed binary integer value (whole number
rather than a fraction) with an assumed binary point to
the right of its rightmost digit.

The result of the operation is a normalized floating-point
number, rounded, if necessary, according to the
rounding mode specified in the task dispatching
element.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

Sign Code: Not applicable.

10-102

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Operand 1 data must be
fullword aligned; otherwise, a specification exception
occurs, and the operation is suppressed. The result
obtained from overlapping operands is un; - adictable.

Program Exceptions:

Address translation
Addressing

Effective address overflow
Floating-point inexact result
Specification

CVBSF Example

Op |L,| E|B, D, B, D,
AE (3|94 050 4 060
0 Bits 8 12 16 20 32 36 47

Assembler: CVBSF D, (B,;), D,(L,B,)
Machine: AE39 4050 4060
B, (4) and B, (4): 0010 0200 0000

Storage — Before

o8 "2/a "ac ek
0010 0200 0050 XXXX XXXX
0010 0200 0060 00FF 0000

Storage — After

o8 "2/a 'ac 'eE
0010 0200 0050 4B7F 0000
0010 0200 0060 | OOFF 0000

Condition Code: Not changed.

CONVERT CHARACTER TO SNA (CVTCS)

Instruction Description

The operation converts the data at the second operand
location from character to SNA (systems network
architecture) compressed format. The conversion is
controlled by information whose address is in the base
register specified in the third operand. The result is
placed in the first operand.

The operands are as follows:

Operand Description

1 The base and displacement for the
starting address of the result string
that is to contain the converted data.

2 The base and displacement for the
starting address of the source string
that contains the data to be
converted.

3 The base register that contains the
address of the control information for
the conversion operation to be
performed.

4 Halfword register 14 specifies the
length of the first operand (result
string). A length of zero causes a
specification exception.

5 Halfword register 15 specifies the
length of the second operand (source
string). A length of zero causes a
specification exception.

The source operand (2) contains one or more
fixed-length data fields that may be separated by
fixed-length gaps of characters to be ignored during the
conversion. The source operand is described by the
controls operand (3), which also specifies the number of
bytes of data from the source to be processed to
produce a converted record in the result string. The
source record length does not need to be the same as
the source data field length.

Instruction Descriptions

10-103

The following diagram explains this structure for the
source operand:

Actual Source Operand Bytes

10-11
12
13
14

10-104

Offset into the source operand

Modifier

Source record length (>0 if record
processing is specified)

Data field length

Offset to the next gap in the source

operand

Gap length

Record separator character

Prime compression character

Unconverted source record bytes

Data Field Gap Data Field Gap Data Field Gap
Data Processed as Source Records
Record Rec ord Record Record Record
For example, notice that the record length is less than
the data field length and some records may have
gaps in the middle.
The controls operand is a 15-byte string that specifies
additional information to be used to control the
conversion. The controls operand has the following
format:
Mod- Source Source Record |Prime Unconverted
Result Offset | Source Offset ifier Record Data Field Gap Offset Gap Length [Separator Compression|Source Record
Length Length Character | Character Bytes
0 2 4 5 6 8 10 12 13 14
Bytes Description Initially, the source offset and the result offset fields
specify which byte of the source field is to be processed
0-1 Offset into the result operand next, and where the next byte of the result shoud be

entered in the result field. The source and result offset
fields are set to values that indicate how much of the
conversion is complete when the instruction is
interrupted or complete. An initial offset beyond the end
of the related source or result operand causes a
specification exception.

The modifier has the following valid values:

Bit(s) Meaning

o Compression
0= Do not perform compression
1= Perform full compression
1-2 Processing Mode
00 = String processing. Do not

use record separators; do not
do blank truncation; do not
perform data transparency
conversion.

01 Reserved

10 = Record processing. Use
record separators and do
blank truncation; do not
perform data transparency
conversion.

11 Record processing. Use
record separators, do blank
truncation, and perform data

transparency conversion.

3 Do not perform record Spanning

0 = Do not perform record
spanning.

1= Perform record spanning
(allowed only if bit 1 = 1).

4-7 Reserved. Must be zero.

Note: An invalid modifier value causes a specification
exception.

The source record length specifies the number of bytes
to be processed to produce a converted record in the
result operand. If record processing a source record
length of zero results in a specification exception. Data
fields in the source may be separated by gaps of
characters. These gaps are ignored during conversion.

The source data field length specifies the number of
bytes in the source data fields. Specifying a data field
length of zero indicates the source length is one data
field: in this case, the gap length and gap offset are
ignored.

The following diagrams illustrate the makeup of the
source and result operands.

Source Operand

Data Gap

Data Field |Gap
Length ﬁLength

Source] Gap s
Offset Offset

'——Current Byte to be Processed

Record Boundary

< Start of Source

Source Length —

The gap offset specifies the offset (relative to the source
offset) to the beginning of the next gap in the source.
Gap offset is updated when the instruction is
terminated. It is not used as input if the source data
field length is specified as zero. It may be modified
during execution of the instruction.

The gap length specifies the number of bytes (hex) of
data between data fields in the source operand. This
length is ignored if the data field length is specified with
a value of zero. The gap length starts with a value of O.

The record separator character field specifies the value
that is to precede the converted form of each record in
the result operand. This value also serves as a delimiter
for the prior record when trailing blanks are truncated;
the last record will not have this delimiter. The record
separator character field can have any hexadecimal
value. However, the Convert SNA to Characters
instruction recognizes only values less than hex 40 as
record separators.

This field is ignored if string processing is specified in
the modifier.

Instruction Descriptions 10-105

Result Operand

| Result

Result |—Record Separator Character (may
Offset not be first character stored)

- Start of Result

- Result Length >

The prime compression character specifies the value to
be used as the prime compression character. It can be
any value. It is ignored if compression is not specified
in the algorithm modifier.

The unconverted source record bytes contains a count of
the residual, unconverted bytes in the current source
record. This parameter is not used as input if record
spanning is not specified in the algorithm modifier. The
count may be set to zero during execution of the
instruction.

Format: SS
BE |B,| 6 |B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The operation begins by accessing the bytes
of the source operand at the location specified by the
source offset. This location is assumed to be the start
of a record. Gaps between data fields are ignored,
causing the access of data bytes to occur as if the data
fields were contiguous with one another.

Accessed bytes are considered to be a source record for
the conversion. They are converted according to the
following modes and optional functions and then stored
in the result.

10-106

String Processing Mode

String processing occurs when bit 1 of the algorithm
modifier is equal to zero. The bytes accessed in the
source are converted, compressed, and then stored in
the result.

Compression

The compression function is always performed in string
processing mode. Compression reduces the length of
duplicate character strings in the source data.

Compressed data is built by concatenating one or more
compression strings together to describe the converted
record. The bytes of the converted source data are
checked in order to locate the:

« Prime compression character strings (two or more
consecutive prime compression characters)

« Duplicate character strings (three or more duplicate
nonprime characters)

« Nonduplicate character strings occurring in the
source.

The character strings encountered (prime, duplicate, and
non-duplicate) are reflected in the compressed data by
building one or more compression strings to describe
them. Compression strings are comprised of a string
control byte (SCB), followed by prescribed bytes of data
related to the character string being described.

9

C

The SCB has the following format and bit definitions:

Bits

0-1

2-7

Meaning

Control

m:

01
10

11

Count

n nonduplicate characters are
between this SCB and the
next one. n is the value in
the count field; possible
values are 1-63 (decimal).

Reserved

This SCB represents n
deleted prime compression
characters. n is the value in
the count field; possible
values are 2-63 (decimal).
The next byte is the next
SCB.

This SCB represents n
deleted duplicate characters.
n is the value of the count
field; possible values are

3-63 (decimal). The next

byte contains a specimen of
the deleted characters. The
byte following the specimen
character contains the next

SCB.

The value n (in binary) in this field
represents the count of the number of
characters that have been deleted for a
prime compression character string, a
duplicate character string, or the number
of characters to the next SCB for a
nonduplicate character string. A count
value of O cannot be produced.

In string processing mode:

« Compression is performed on the entire source
operand on a string basis. The fields in the controls
operand related to record processing are ignored.

« If the compressed data cannot be completely
contained in the receiver, the instruction ends with
a receiver overrun condition code.

— As much of the compressed data as will fit is
placed into the receiver, and the controls operand
is updated to describe how much of the source
data was successfully converted into the receiver.

— The last compression entry placed into the receiver
may be adjusted, if necessary, to a length which
fits in the receiver. This length adjustment applies
only to compression entries for non-duplicate
strings.

— Compression entries for duplicate strings are only
placed in the receiver if they fit with no
adjustment. By doing this, no more than 1 byte of
unused space will remain in the receiver; its value
is unpredictable.

« |If the compressed data can be completely contained
in the receiver, the instruction ends with a source
exhausted condition code. The compressed data is
placed into the receiver, and the controls operand is
updated to indicate that all of the source data was
successfully converted into the receiver.

Instruction Descriptions 10-107

Record Processing Mode

Record processing occurs when bit 1 of the algorithm
modifier is equal to 1.

The source offset locates either the start of a full or the
start of a partial record. If record spanning is not
specified, source offset locates a full record. If record
spanning is specified, the source offset is assumed to
locate a point at which processing of a partially
converted record is to be resumed (this could actually be
the start of a full record). The unconverted source
record bytes value (which could be 0) gives the length of
the remaining portion of the source record to be
converted. The conversion process is started by
completing the conversion of the current source record
{if such is the case), before processing the next full
source record.

When the conversion process for a record is complete
{including trailing blank truncation, data transparency
conversion (if specified), and compression (if specified))
and a receiver overrun has not occurred, the process is
started for the next record.

A check for end of source is made at the start of
conversion for each record. If the source does not
contain a full record, the source exhausted condition is
recognized and the instruction is terminated. Conversion
of a partial source record is not performed.

Trailing Blank Truncation

The trailing blank truncation function is always
performed in record processing mode. This function can
be performed with, or without, the optional transparency
conversion and compression functions.

A truncated record is built by logically appending the
record data to the record separator (a value specified in
the controls operand) and removing all blank characters
after the last nonblank character. If a record has no
trailing blanks, then no actual truncation takes place. A
null record (a record consisting entirely of blanks), will
be converted as just the record separator character with
no other data following it. The truncated records, then,
consist of the record separator character followed by the
full record data, the truncated record data, or no data.

10-108

If the truncated record cannot be completely contained
in the receiver, the instruction ends with a receiver
overrun condition code. If record spanning is specified,
as much of the truncated record as will fit is stored into
the receiver, and the controls operand is updated to
describe how much of the source record was
successfully converted. If record spanning is not
specified, the controls operand is updated to describe
only the last fully converted record; the values of the
remaining bytes in the receiver are unpredictable.

Data Transparency Conversion

The data transparency conversion function is performed
in record processing mode only. It is optional, not
mandatory; compression may also be done, but is not
required.

This function makes the data in a record transparent to
the Convert SNA to Character instruction in the area of
its scanning for record separator values.

A transparent record is built by placing 2 bytes of
transparency control information after the record
separator, but before the actual data. The first byte has
a fixed value of hex 35 and is referred to as the TRN
(transparency) control character. The second byte is a
1-byte hexadecimal count (with allowable values of
1-255 decimal) of the number of transparent data bytes
that follow and is referred to as the TRN count. This
count contains the length of the data (before
compression) and does not include these TRN control
information bytes, the record separator, or trailing blanks
that have been truncated.

9

For a null record, no TRN control information is placed
after the record separator as there is no record data to
be made transparent.

If the transparent record cannot be completely contained
in the receiver, the instruction ends with a receiver
overrun condition code.

« If record spanning is specified, as much of the
transparent record as will fit is placed in the receiver
and the controls operand is updated to describe how
much of the source record was converted. The TRN
count is adjusted to describe the length of the
successfully converted data; thus, the transparent
data for the record is not spanned out of the receiver.
The remaining bytes of the transparent record, if any,
will be processed as a partial source record on the
next invocation of the instruction and will be
preceded by the appropriate TRN control information.

For the special case where only 1 to 3 bytes are
available at the end of the receiver (not enough room
for the record separator, the transparency control,
and a byte of data), just the record separator is
placed in the receiver for the record being converted.
This can cause up to 2 bytes of unused space at the
end of the receiver; the values of these unused bytes
are unpredictable.

« If record spanning is not specified, the controls
operand is updated to describe only the last fully
converted record in the receiver. The values of the
remaining bytes in the receiver are unpredictable.

Compression

The compression function is performed on the converted
form of the current source record, including the record
separator character; this can be a truncated record or a
transparent truncated record. TRN control information
bytes are always treated as part of a non-duplicate
compression entry to provide for length adjustment of
the TRN count, if necessary.

If the compressed record cannot be completely
contained in the receiver, the instruction ends with a
receiver overrun condition code.

When record spanning is specified:

« As much of the compressed record as will fit is
placed into the receiver and the controls operand is
updated to describe how much of the source record
was successfully converted into the receiver.

« The last compression entry placed into the receiver
may be adjusted, if necessary, to a length that fits in
the receiver. This applies only to nonduplicate
strings.

« Compression entries for duplicate strings are placed
in the receiver only if they fit with no adjustment.

« For the special case where data transparency
conversion is specified, the transparent data being
described is not spanned out of the receiver; the TRN
count is adjusted to describe only the amount of data
successfully placed into the receiver.

« For the special case where only 2-5 bytes are
available at the end of the receiver, there may not be
enough room for the compression entry for the
nonduplicate string containing the record separator,
the TRN control, and up to a 2-byte compression
entry for some of the transparent data. In this case,
the non-duplicate compression entry is adjusted to
describe only the record separator. By doing this, no
more than 3 bytes will remain in the receiver; the
values of these unused bytes are unpredictable.
Unconverted source record bytes, if any, will be
processed as a partial source record on the next
invocation of the instruction and will be preceded by
the appropriate TRN control information when
performing transparency conversion.

When record spanning is not specified, the controls
operand is updated to describe only the last full
converted record in the receiver; the values of the
remaining unused bytes in the receiver are
unpredictable.

Instruction Descriptions 10-109

Instruction Termination
The CVTCS instruction terminates when:

« The end of the source operand is reached (see note).
This results in a source exhausted condition code.

« The end of the receiver is reached (see note). This
results in a receiver overrun condition code.

Note: For the special case of a tie between the source
exhausted and receiver overrun conditions, the source
exhausted condition is recognized first because when
source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the
receiver operand may contain a value equal to the length
specified for the receiver, which would cause an
exception to be detected on the next invocation of the
instruction. The processing performed for the source
exhausted condition should provide for this case if the
instruction is to be invoked multiple times with the same
controls operand value. When the receiver overrun
condition is the resultant condition, the source will
always contain data remaining to be converted.

At the completion of the instruction execution, the
source and receiver offset parameters are updated to
point to the next bytes to be operated on in the source
and receiver, respectively. The source offset may point
to the start of a gap, but will never point within a gap.

If record spanning is specified, the unconverted source
record bytes parameter is updated to specify the number
of remaining unconverted source record bytes.

If the source data field length is not O, the gap offset
parameter is updated to point to the next gap, relative

to the source offset parameter just updated.

Any form of overlap between the operands of this
instruction yields unpredictable results.

10-110

Programming Notes

If the source operand does not end on a record
boundary (meaning the last record is spanned out of the
source), this instruction performs conversion only up to
the start of that partial record. The user of this
instruction must move this partial record to combine it
with the rest of the record in the source operand to
provide for subsequent correct processing. If full
records are provided, the instruction performs its
conversion out to the end of the source operand and no
special processing is required.

At the completion of this instruction, any bytes in the
receiver beyond the location pointed to by the receiver
offset are unpredictable.

Although any value of record separator is allowed, use
of hex 40 can possibly cause some unanticipated
results. With no transparency, and a completely blank
record, use of a hex 40 record separator will result in no
output being stored for that record. This is because the
record separator is included with the blanks and
discarded as part of blank truncation.

This instruction is interruptible. If interrupted,
information required to continue is stored in the controls
operand and the instruction address register will point to
the instruction so that processing will continue after the
interrupt.

Overflow and Sign Code: Not applicable.

Condition Codes

Source exhausted
Receiver overrun

WN=0

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions

Address translation
Addressing

Effective address overflow
Specification

D

9

CVTCS Example

op |B,| E |B, D, B, D,
BE |7|6|8]| AA3 |9 541
0O Bits 8 12 16 20 32 36 47

Assembler: CVTCS D, (B,), D,(B;), B
Machine: BE76 8AA3 9541

B;(8): 0021 A123 0000 (Base register for result)
B,(9): 0022 0015 0000 (Base register for source)
B;(7): 0100 0303 F105 (Address of control operand)
R(14): 0005 (Length of result)

R(15): 0009 (Length of source)

Storage — Before

o8 '2/A "arc el
0021 A123 0AA3 XX XXXX XXXX
0022 0015 0541 AC 5454 ACF1 5454
F1F1
0100 0303 F105 00 0000
00DO 0300 0200 0100
0211 ACO02

Storage — After

o8 28 'acc ! elE
0021 A123 0AA3 82 0111 C3F1
0022 0015 0541 AC 5454 ACF1 5454
F1F1
0100 0303 F105 00 0500
09D0 0300 0200 0000
0211 ACO00
Before After
Condition Code: X 0

Instruction Descriptions

10-111

CONVERT CHARACTERS TO MULTI-LEAVING
REMOTE JOB ENTRY (CVTCM)

Instruction Description

The operation converts the data at the second operand
location from character to MRJE (MULTI-LEAVING
Remote Job Entry) format. The conversion is controlled
by information whose address is in the base register
specified in the third operand. The result is placed in
the first operand.

The operands are as follows:

Operand Description

1 The base and displacement for the
starting address of the result string
that is to contain the converted data.

2 The base and displacement for the
starting address of the source string
that contains the data to be
converted.

3 The base register that contains the
address of the control information for
the conversion operation to be
performed.

4 Halfword register 14 specifies the
length of the first operand (result
string). A length of zero causes a
specification exception.

5 Halfword register 15 specifies the
length of the second operand (source
string). A length of zero causes a
specification exception.

10-112

The source operand (2) contains one or more
fixed-length data fields that may be separated by
fixed-length gaps of characters to be ignored during the
conversion. The source operand is described by the
controls operand (3), which also specifies the number of
bytes of data from the source to be processed to
produce a converted record in the result string. The
source record length does not need to be the same as
the source data field length.

9

C

The following diagram explains this structure for the

source operand:

Actual Source Operand Bytes

Data Field Gap Data Field Gap Data Field Gap
Data Processed as Source Records
Record Rec ord Record Record Record
The controls operand is a 13-byte string that specifies
additional information to be used to control the
conversion. The controls operand has the following
format:
Result Source Mod- SRourch Data Field Gap Gap Fézcc:rdl
Offset Offset ifier eco Length Offset Length ntro
Length Block
0 2 Bytes 4 5 6 8 10 12
Bytes Description The modifier has the following valid values:
0-1 Offset into the result operand Value
2-3 Offset into the source operand (Hex) Description
4 Modifier
5 Source record length (>0) 00 Perform full compression.
6-7 Data field length (>0) 01 Perform only truncation of trailing blanks.
8-9 Offset to the next gap in the source operand
10-11 Gap length Note: An invalid modifier value causes a specification
12 Record control block value exception.

Upon input to the instruction, the result offset and the
source offset fields specify which bytes of the source
field are processed and entered into the result field. The
source and result offset fields are set to values that
indicate how much of the conversion is complete when
the instruction is interrupted or complete. An offset
beyond the end of the related source or result operand
causes a specification exception.

The source record length specifies the number of bytes
to be processed to produce a converted record in the
result operand. A source record length of zero results in
a specification exception. Data fields in the source may
be separated by gaps of characters. These gaps are to
be ignored during conversion.

The data field length specifies the number of bytes in
the source data fields. Specifying a data field length of
zero indicates the source length is one data field; in this
case, the gap length and gap offset are ignored.

Instruction Descriptions 10-113

The following diagrams illustrate the makeup of the
source and result operands.

Source Operand

Data Gap

k_ _DataField __]Gap [,

Source Length Length
j— | e
Offset . Gap __|
Offset

— Current Byte to be Processed

Record Boundary

Start of Source

Source Record Length

The gap offset specifies the offset to the next gap in the
source. This offset is both input to and output from the
instruction. The gap offset decreases as the source
increases until the gap is reached. The gap offset then
becomes the offset to the next gap.

The gap length specifies the number of bytes (hex) of
data between data fields in the source operand. This
length is ignored if the data field length is specified with
a value of zero. The gap length starts with a value of 1.

The record control block field specifies the value that is

to precede the converted form of each record in the
result operand. The record control block field can have

Result Operand

any hexadecimal value.
Result /

Result
— —
Offset

Subrecord Control
Byte (Hex 80)

Record Control Byte

Start of Result

Result Length

10-114

Format: SS

BE |B,| 4 [B, D, B, D,
0 Bits 8 12 16 20 32 36 a7

Operation: The operation begins by accessing the bytes
of the source operand at the location specified by the
source offset. This location is assumed to be the start
of a record. Gaps between data fields are ignored,
causing the access of data bytes to occur as if the data
fields were contiguous with one another.

Accessed bytes are considered to be a source record for
the conversion. They are converted into the result
according to the following procedure.

The record control block value is put into the first byte
of the result record. A subrecord control block value of
hex 80 is put into the second byte of the result record.
If a modifier specifies full compression, then the bytes
of the source record, as they are accessed in the source,
are checked for:

« Blank character strings (2 or more consecutive blanks)

« Identical character strings (3 or more consecutive
identical characters)

« Unidentical character strings

A blank character string occurring at the end of the
record is treated as follows. If the record is not
completely blank, then an end-of-record string control
bytes (hex 00) is stored in the result. If the entire record
is blank, then a string control byte indicating 1 blank (a
nonrepeating character) followed by an.end-of-record
string control byte is in the result.

If the modifier specifies blank truncation, then the bytes
of the source record are checked for a blank character
string at the end of the source record. If one exists, it is
treated as a string of trailing blanks. All characters prior
to a string of trailing blanks in the record are treated as
one string of unidentical characters.

Instruction Descriptions 10-115

The strings encountered—blank, identical, or
unidentical-are related in the result of building one or
more string control bytes to describe them. The format
of the string control bytes is as follows:

End of | Com- Number of Characters
Delete .
Record | press (Binary)
0 1 2 3 Bits 8
Value
Byte Bit (Binary)
0-1 0 0} End of record; the end-of-record string control byte is hex 00.
1 All other string control bytes.
1 0 The string is compressed.
1 The string is not compressed.
2 If bit 1 =0.
0 Blanks have been deleted (hexadecimal 40s).
1 Nonblank characters have been deleted.
The next character in the data stream is the specimen character.
If bit 1 = 1, this bit is part of the length field for length of uncompressed
data.
3-7 00010 If Vbit 1 =0, this is the number of characters that have been deleted. The
11111 value can be from 2 through 31.
2-7 000001- If bit 1 = 1, this is the number of characters before the next string control
111111 byte (no compression). The uncompressed (unidentical) bytes follow the

string control bytes in the data stream. The value can be from 1 through

63.

When the end-of-source record is encountered, an
end-of-record string control byte (hex 00) is built into
the result operand. Trailing blanks in a record, including
a record of all blanks, are represented in the result by an
end-of-record character. Additionally, the values in the
controls operand for the result offset, and source ofset,
and gap offset are updated. These values describe the
offsets for the next record to be converted, allowing for
the interruption of the instruction on a record boundary.

If the end-of-source record is not encountered, the
operation continues as described at the beginning of the
Operation section.

If the end of source is encountered while processing a
field, whether or not in conjunction with a record
boundary, the instruction ends with a condition code of
zero (source exhausted). See Programming Note.

10-116

If the converted record cannot be completely contained
in the result, the instruction ends with a condition code
of 1 (result overrun). See Programming Note.

Programming Note: The source offset locates the byte
following the last source record for which conversion
was completed. The gap offset indicates the offset to
the next gap. The gap offset has no meaning and is not
set when the data field length is zero. The result offset
locates the byte following the last fully converted record
in the result. The contents of the remaining bytes in the
result after the last converted record are unpredictable.

Any form of overlap between the operands yields
unpredictable results in the result operand.

Overflow and Sign Code: Not applicable.

Condition Code:

0 Source used up
1 Result overrun
2 - -

3 --

Carry and Boundary Requirements: Not applicable.

Program Exceptions:

Address translation
Addressing

Effective address translation
Specification

Programming Note: If the data field length is zero, the
gap length and gap offset are ignored.

CVTCM Example

op |B,| E |B, D, B, D,
BE |5|4|4| BC5E |3 582
0O Bits 8 12 16 20 32 36 47

Assembler: CVTCM D, (B,),D,(B,),B;
Machine: BE54 4BC5 3582

B, (4): 0001 5678 0000 (Base register for result)

B, (3): 0001 1234 0000 (Base register for source)

B3 (6): 0001 036A 0620 (Address of control operand)
R (14): 0020 (Length of result)

R (15): 0020 (Length of source)

0001 036A 0620

0001 1234 0580

0001 5678 0BC5

0001 036A 0620

0001 1234 0580

0001 5678 0BC5

Condition Code:

Storage—Before

0/8 !

0000
XXXX

XXXX
E3C5
E3E3
2222
4040

XXXX
XXXX
XXXX
XXXX

2/A
0000
XXXX

1M1
E2E3
4040
2222
XXXX

XXXX
XXXX
XXXX
XXXX

Storage—After

I
4/C

0010
FOXX

11
E3C5
2222
4040
XXXX

XX
XXXX
XXXX
XXXX
XX

6/E
0000
XXXX

1M1
E2E3
2222
4040
XXXX

XXXX
XXXX
XXXX
XXXX

L

0/8
0015
XXXX

XXXX
E3Cb
E3E3
2222
4040

XXXX
C5E2
00FO0
XXXX

Before
X

Instruction Descriptions

T
2/A

0020

XXXX

111
E2E3
4040
2222
XXXX

F080
E3E3
8082
XXXX

)
4/C
0010
FOXX

1M1
E3C5
2222
4040
XXXX

XX
A611
C5E2
A822
XX

/___/

After

0

1
6/E
FFFF
XXXX

111
E2E3
2222
4040
XXXX

XXXX
C7E3
A3E3
00XX

10-117

CONVERT DECIMAL FORM TO LONG FLOAT
(CVDFLF)

Instruction Description

The decimal form of a floating-point value specified by
a decimal exponent (operand 2) and a decimal
significand (operand 3) is converted to binary
floating-point format, and the result.is placed in the
binary floating-point field specified by the first operand.

Format: SS

CE D |B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: The first operand specifies a binary
floating-point field that occupies 8 bytes, and has the
long floating-point field format.

The second operand specifies the decimal exponent that
occupies from 1 through 16 bytes as specified by the
operand 4 value. This operand has the packed
fixed-point decimal format.

The third operand, base register hex E, specifies the
address of the decimal significand. This operand
occupies up to 16 bytes of storage as specified by the
operand 4 value and has the packed fixed-point decimal
format.

The fourth operand, halfword register hex F, contains
the digit lengths of the second and third operands. The
total number of digits for the exponent (operand 2) is
contained as a value between 1 and 31 in the leftmost
byte of the halfword register. The total number of digits
for the significand (operand 3) is contained as a value
between 1 and 31 in the rightmost byte of the halfword
register. The specified digit lengths must be within the
allowable ranges, or a specification exception is
signaled. The length of operands 2 and 3 (in bytes) is
calculated by dividing the total digit count by 2 and
adding 1 to the resulting quotient. The specified number
of digits are considered right adjusted in their respective
fields. An even value digit length indicates the leftmost
digit position of the packed field is not to be considered
a digit position of the corresponding operand value.

10-118

The exponent and significand contain a decimal form of
a floating-point number. The value of this number is:

Value = M * (10**E)

where:
M = the value of the significand operand
E = the value of the exponent operand
** denotes exponentiation
* denotes multiplication

The exponent is assumed to contain a decimal integer
value. This signed integer value specifies a power of 10
that gives the floating-point value its magnitude. It has
an assumed decimal point immediately to the right of its
rightmost digit position.

The significand is assumed to contain a decimal value
with a leading integer digit in its leftmost digit position
and fractional digits in the digit positions to the right of
the integer digit. The signed decimal value specifies the
decimal digits that give the floating-point value its
precision. The significand has an assumed decimal point
immediately to the right of its leftmost digit position.

The decimal form floating-point value specified by the
exponent and significand operands is converted to
binary floating-point format as if to infinite precision.
However, the precision provided for in floating-point
fields is not as great as the precision that can be
provided for by decimal fields. Long floating-point
provides for unique representation of a maximum of 15
significant decimal digits of precision. The significant
digits of the significand start with the leftmost nonzero
decimal digit and continue to the right out to the end of
the significand value. Significant digits beyond 15 for a
long float receiver may not be preserved in the result
and only serve to provide for uniqueness of the
conversion as well as for proper rounding.

The result of this conversion is then normalized and
rounded (according to the current float rounding mode)
to the significand length of the operand 1 field.

The converted, normalized, and rounded result is then
assigned to operand 1 in the long floating-point format.
The result is subject to the normal floating-point
overflow and underflow exception detection performed
on assignment.

When floating-point overflow or underflow is detected
and unmasked, the instruction operation is suppressed.
This action occurs because all overflowed and
underflowed values cannot be represented in the result
field format even when employing the modified biased
exponent representation.

Conversion of a zero value significand operand results in
a zero value of the same sign being assigned to operand
1.

Operands 2 and 3 are checked for valid decimal sign
and digit codes. The data exception is signaled if any
invalid values are encountered, and the operation is
suppressed. If an even number of digits is specified for
either the exponent or the significand operands, the
leftmost digit position of the packed operand field is not
checked and is not used as part of the decimal value.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands may overlap.

Program Exceptions:

— Address translation

— Addressing

— Data

— Effective address overflow
— Floating-point inexact result
— Floating-point overflow

— Floating-point underflow

— Specification

CVDFLF Example

op E |B, D, B, D,
CE D|2| 040 2| o064
0 Bits 8 12 16 20 32 36 47

Assembler: CVDFLF D, (B,), D,(B;)
Machine: CEOD 2040 2064

B, (2) and B, (2): 800D 0C00 0000
B,(E): 800D 0C0O0 0300

R(F): 0712

Storage — Before

o/8 '2/A 'ac ' e

800D 0CO00 0040 XXXX XXXX XXXX XXXX
800D 0CO0 0064 0000 002F
800D 0CO00 0300 0123 0000 0000 0000

QOF_/_\

Storage — After

0/8 T 2/A Tac ' 6fE
800D 0COO 0040 | 405E €000 0000 0000
800D 0CO0 0064 0000 O0O02F
800D 0COO 0300 | 0123 0000 0000 0000
000F

N~ — N

Instruction Descriptions 10-119

CONVERT DECIMAL FORM TO SHORT FLOAT
(CVDFSF)

Instruction Description

The decimal form of a floating-point value specified by
a decimal exponent {operand 2) and a decimal
significand (operand 3) is converted to binary
floating-point format, and the result is placed in the
binary floating-point field specified by the first operand.

Format: SS

AE D |B, D, B, D,
O Bits 8 12 16 20 32 36 47

Operation: The first operand specifies a binary
floating-point field that occupies 4 bytes, and has the
short floating~point field format.

The second operand specifies the decimal exponent that
occupies from 1 through 16 bytes as specified by the
operand 4 value. This operand has the packed
fixed-point decimal format.

The third operand, base register hex E, specifies the
address of the decimal significand. This operand
occupies up to 16 bytes of storage as specified by the
operand 4 value and has the packed fixed-point decimal
format.

The fourth operand, halfword register hex F, contains
the digit lengths of the second and third operands. The
total number of digits for the exponent (operand 2) is
contained as a value between 1 and 31 in the leftmost
byte of the halfword register. The total number of digits
for the significand (operand 3) is contained as a value
between 1 and 31 in the rightmost byte of the halfword
register. The specified digit lengths must be within the
allowable ranges or a specification exception is signaled.
The length of operands 2 and 3 (in bytes), is calculated
by dividing the total digit count by 2 and adding 1 to the
resulting quotient. The specified number of digits are
considered right adjusted in their respective fields. An
even value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the corresponding operand value.

10-120

The exponent and significand contain a decimal form of
a floating-point number. The value of this number is:

Value = M * (10**E)
where:
M = the value of the significand
E = the value of the exponent operand
** denotes exponentation
* denotes multiplication

The exponent is assumed to contain a decimal integer
value. This signed integer value specifies a power of 10
that gives the floating-point value its magnitude. It has
an assumed decimal point immediately to the right of its
rightmost digit position.

The significand is assumed to contain a decimal value
with a leading integer digit in its leftmost digit position
and fractional digits in the digit positions to the right of
the integer digit. The signed decimal value specifies the
decimal digits that give the floating-point value its
precision. The significand has an assumed decimal point
immedately to the right of its leftmost digit position.

The decimal form floating-point value specified by the
exponent and significand operands is converted to
binary floating-point format as if to infinite precision.
However, the precision provided for in floating-point
fields is not as great as the precision that can be
provided for by decimal fields. Short floating-point
provides for unique representation of a maximum of 7
significant decimal digits of precision. The significant
digits of the significand start with the leftmost nonzero
decimal digit and continue to the right out to the end of
the significand value. Significant digits beyond 7 for a
short floating-point receiver may not be preserved in the
result and only serve to provide for uniqueness of the
conversion as well as for proper rounding.

The result of this conversion is then normalized and
rounded (according to the current float rounding mode)
to the significand length of the operand 1 field.

The converted, normalized, and rounded result is then
assigned to operand 1 in the short floating-point format.
The result is subject to the normal floating-point
overflow and underflow exception detection performed
on assignment.

When floating-point overflow or underflow is detected
and unmasked, the instruction operation is suppressed.
This action occurs because all overflowed and
underflowed values cannot be represented in the result
field format even when employing the modified biased
exponent representation.

Conversion of a zero value significand operand results in
a zero value of the same sign being assigned to operand
1.

Operands 2 and 3 are checked for valid decimal sign
and digit codes. The data exception is signaled if any
invalid values are encountered, and the operation is
suppressed. If an even number of digits is specified for
either the exponent or the significand operands, the
leftmost digit position of the packed operand field is not
checked and is not used as part of the decimal value.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands may overlap.

Program Exceptions:

— Address translation

— Addressing

— Data

— Effective address overflow
— Floating-point inexact result
— Floating-point overflow

— Floating-point underflow

— Specification

CVDFSF Example

Oop E |B, D, B, D,
AE D|2 058 2 064
O Bits 8 12 16 20 32 36 47
Assembler: CVDFSF D, (B,), D, (B,)
Machine: AEOD 2058 2064
B, (2) and B, (2): 800D 0C00 0000
B(E): 800D 0C00 0300
R(F): 0709
Storage — Before
o8 "2a Tac TeE
800D 0C00 0058 XXXX XXXX
800D 0C00 0064 0000 O0O0OF
800D 0C00 0300 3480 4687 5F

800D 0CO0 0058
800D 0C00 0064
800D 0CO00 0300

Storage — After

o8

405E

3480

2/A
Ccooo

4687

0000
5F

000F

Instruction Descriptions 10-121

CONVERT LONG FLOAT TO BINARY (CVLFB)

Instruction Description

The value stored at the second operand location is
converted from floating-point to binary and placed in
the first operand.

Format: SS
CE M| 8 |B, D, B, D,
O Bits 8 12 16 20 32 36 47

Operation: Operand 1 has a signed binary format and is
either 2, 4, or 8 bytes in length. The length of the
operand is determined by an options mask.

Operand 2 is 8 bytes long, and has a long floating-point
format. The data for this operand must be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Operand 3 is a 4-bit options mask (bits 8 through 11)
that controls the conversion operation. The format of
the options mask is:

Bits Meaning

8 Mode of rounding to be performed.
0 = Round using current floating-point
rounding mode in effect.
1 = Round using decimal round
algorithm.

9-11 Length of binary result (operand 1).
001 = 2 bytes.
011 = 4 bytes.
111 = 8 bytes.

All other values are invalid.

The floating-point value of the second operand is
converted to a fixed-point binary integer format. If
necessary, the floating-point value is rounded to an
integer value.

10-122

The rounding mode is specified by the options mask (bit
8 of operand 3). If floating-point rounding is specified,
rounding is performed according to the current
floating-point rounding mode in effect. If decimal
rounding mode is specified, the current floating-point
rounding mode is overridden, and the decimal round
algorithm is performed. In this case, a value of 1/2 (a 1
bit) is added to the leftmost bit position of the fractional
portion of the floating-point value, and that bit and
those bits to the right are truncated from the resulting
value.

The value assigned to operand 1 is formed as a
right-aligned, binary integer value with an assumed
binary point immediately to the right of its rightmost
digit.

If the rounded integer portion of the floating-point value
is 0, the first operand value is set to O, and the sign is
set positive, regardless of the sign of the second
operand.

An invalid floating-point conversion exception is
signaled for any number outside the range of integer
values that can be contained in operand 1 (this includes
NaNs and infinities).

The result obtained from overlapping operands is
unpredictable.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must be
on a fullword boundary; otherwise, a specification
exception occurs.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Floating-point inexact result

— Floating-point invalid operand
— Invalid floating-point conversion
— Specification

9

Programming Note: The following is a summary of the CVLFB Example

‘ results for various combinations of operands.
Op (M| E (B, D, B, D,
CE 71814 050 4 060

Receiver Source 0 Bits 8 12 16 20 32 36 47
0 tO Assembler: CVLFB Dl(Bl)l Dz(Lsz)
-B -R Machine: CE78 4050 4060
+B +R

B, (4) and B, (4): 0010 0200 0000
IFPC +INF
IFPC MNAN Storage — Before
IFPC UNAN o8 "2/a Tacc 'eE

0010 0200 0050 XXXX XXXX
Legend: 0010 0200 0060 | 416F EO00O
R = Real nonzero floating-point number
B = A nonzero binary number
MNAN = A masked NAN Storage — After

I | |
UNAN = An unmasked NAN 0/8 " 2/A " 4/c " 6JE
INF _ Infinity 0010 0200 0050 OOFF 0000 0000 0000
) 0010 0200 0060 416F EO000
IFPC = An invalid floating-point conversion
exception.

The assignment of a real number (R) as the value of the Condition Code: Not changed.
binary field (B) is only successful if R is a value that can

be contained within the value range of the binary field;

otherwise, an invalid floating-point conversion may

result.

Instruction Descriptions 10-123

CONVERT LONG FLOAT TO DECIMAL FORM
(CVLFDF)

Instruction Description

The binary floating-point value specified by operand 5 is
converted to a decimal form of a floating-point value (a
decimal exponent and a decimal significand) and placed
into operand 1 (exponent) and operand 2 (significand)
locations.

Format: SS
CE |M,| C [B, D, B, D,
0 Bits 8 12 16 20 32 36 47

Operation: The first operand specifies the decimal
exponent and occupies from 3 through 16 bytes as
specified by the operand 4 value. This operand is
formed using the packed fixed-point decimal format.

The second operand specifies the decimal significand,
and occupies a maximum of 16 bytes as specified by
the operand 4 value. This operand is formed using the
packed fixed-point decimal format.

The third operand, bits 8 through 11, specifies an
options mask to control the conversion operation.

Bits Meaning

8 Mode of rounding to be performed.

0 = Round using current float rounding
mode in effect.

1 = Round using decimal round
algorithm.

9-11 Reserved.

10-124

The fourth operand, halfword register hex F, contains
the digit lengths of the first and second operands. The
total number of digits for operand 1 is specified as a
value between 5 and 31 in the leftmost byte of the
halfword register. The total number of digits for
operand 2 is specified as a value between 1 and 31 in
the rightmost byte of the halfword register. The
specified digit lengths must be within the allowable
ranges or a specification exception is signaled. The
length of operands 1 and 2 (in bytes) is calculated by
dividing the total digit count by 2 and adding 1 to the
resulting quotient. The number of digits specified are
considered right adjusted in their respective fields. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the corresponding operand value.

The fifth operand, base register hex E, specifies the
address of the binary floating-point number. The
number occupies 8 bytes, and has the long
floating-point field format.

The exponent (operand 1) and significand (operand 2)
contain a decimal form of a floating-point number. The
value of this number is:

Value = M * (10**E)
where:
M = the value of the decimal significand operand
E = the value of the exponent operand
** denotes exponentiation
* denotes multiplication

The exponent is formed as a decimal integer value. The
exponent, which gives the floating-point value its
magnitude, contains a signed integer value that specifies
a power of 10. The exponent has an assumed decimal
point immediately to the right of its rightmost digit
position.

The significand is formed as a decimal value with a
single integer digit in its leftmost digit position and
fractional digits in the digit positions to the right of the
integer digit. The significand contains a signed decimal
value that specifies decimal digits, to give the
floating-point value its precision. The significand has an
assumed decimal point immediately to the right of its
leftmost digit position.

9

The binary floating-point source is converted to a
decimal form floating-point value as if to infinite
precision. However, the precision provided for by
floating-point fields is not as great as the precision
provided for by decimal fields. Long floating-point
provides for unique representation of a maximum of 15
significant decimal digits of precision. The significant
digits of the significand start with the leftmost nonzero
decimal digit and continue to the right out to the end of
the significand value. The converted significand value is
formed as a normalized value, the significant digits are
left adjusted in the converted value, and the converted
exponent is set accordingly. Significand digits beyond
the leftmost 15 provide for uniqueness of the conversion
and should be considered only as precise as the
floating-point calculations that produced the source
value.

The converted significand value is adjusted to the
precision of the significand operand, if necessary, by
using the rounding algorithm specified in the options
mask operand. If the rounding algorithm causes a carry
out of the leading integer digit position, the converted
rounded significand value is shifted right one digit
position and the converted exponent incremented by 1
to realign the significand back to having one leading
integer digit. If floating-point rounding is selected,
rounding is performed according to the current
floating-point rounding mode in effect. If decimal
rounding is selected, the current floating-point rounding
mode is overridden and the decimal round algorithm is
performed. In this case, a value of 5 is added to the
converted significand in the leftmost digit position not
provided for in operand 2, and that digit, and those
digits to the right of it, are truncated from the resulting
significand value.

The result of this conversion is then assigned to the
exponent and significand operands. For an exponent or
significand operand with an even number of digits, the
leftmost digit position of the packed field in the operand
is set to binary O.

If the binary floating-point number being converted
contains a value of O, the exponent operand is set to
positive 0, and the significand operand is set to O with
the sign of the binary floating-point number. A positive
0 is set with the preferred positive sign of hex F. A
negative 0 is set with the preferred negative sign of hex
D.

A decimal overflow exception cannot occur on the
assignment of the exponent or significand values.

When the binary floating-point number being converted
contains a denormalized floating-point value, the first
and second operand values are set with the correctly
converted and rounded values; no exception is signaled.

When an infinity or NaN value is encountered in the
second operand, the invalid floating-point conversion
exception is signaled and the instruction operation is
suppressed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlap between operands 1 and 2 is unpredictable.

Program Exceptions:

Address translation

Addressing

Effective address overflow
Invalid floating-point conversion
Specification

Instruction Descriptions 10-125

Programming Note: The following is a summary of the
results for various combinations of operands where:

Receivers

-0*10**+0
+0*10%*+0
-M*10**+E
+M*10%*+E
-M*10**-E
+M*10%*-E
IFPC

IFPC

IFPC

Legend:
R

MNaN
UNaN
INF
IFPC

4

10-126

Source

-0
+0
-R<-1
+R>1
-R>-1
+R<1
+INF
MNaN
UNaN

a real nonzero, non-denormal
floating-point number

the exponent, a nonzero decimal
number

the significand, a nonzero decimal
a masked NaN

an unmasked NaN

infinity

invalid floating-point conversion
exception

denotes exponentiation

denotes multiplication

CVLFDF Example

oP |M,| E |B, D, B, D,
CE |o|cC 064 2| 070
0 Bits 8 12 16 20 32 36 47

Assembler: CVLFDF D, (B,), D,(B,), M,

Machine: CEOC 2064 2070

B, (2) and B, (2): 800D 0C00 0000

B(E): 800D 0CO00 0300

R(F): 0712

800D 0CO00 0064
800D 0CO00 0070

800D 0CO0 0300

800D 0CO00 0064
800D 0CO00 0070

800D 0C00 0300

Storage — Before

o8 '2/a Tarc TeE

XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX

405E C000 0000 0000

______,_———”"——"“\\\

Storage — After

o8 '2/a Tac TeE
0000 002F

0123 0000 0000 0000

000F

405E CO00 0000 0000

N~ — N

CONVERT LONG FLOAT TO PACKED DECIMAL
(CVLFPD)

Instruction Description
The value of the second operand is converted from

floating-point to packed decimal, and the result is
placed in the first operand location.

Format: SS
CE |[M;| A |B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: The first operand occupies up to 16 bytes of
storage, as specified by the operand 4 value, and is
formed according to the packed fixed-point decimal
format.

The second operand occupies 8 bytes and has the long
floating-point field format.

The third operand, bits 8 through 11, specifies an
options mask to control the conversion operation.

Bits Meaning

8 Mode of rounding to be performed.

0 = Round using current float rounding
mode in effect.
1 = Round using decimal round
algorithm.
9-11 Reserved.

The fourth operand, halfword register hex F contains the
total and fractional digit count information for the
number of decimal digits contained in the first operand.
The total number of digits for operand 1 is contained, as
a value between 1 and 31, in the leftmost byte of the
halfword register. The number of -fractional digits for
operand 1 is contained as a value between O and 31, in
the rightmost byte of the halfword register. The
specified digit lengths must be within the allowable
ranges or a specification exception is signaled. The
number of integer digits in operand 1 is determined by
subtracting the fractional digit count from the total digit
count. The length of operand 1, in bytes, is calculated
by dividing the total digit count by 2 and adding 1 to the
resulting quotient. The number of digits specified are
considered right adjusted in the operand 1 field. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the operand value.

The floating-point value is converted to a fixed-point
packed decimal number as if to infinite precision.
However, the precision provided for in floating-point
fields i 0t as great as that which can be provided for
by decimal fields. Long floating-point provides for
unique representation of a maximum of 15 significant
decimal digits of precision. The leftmost nonzero digit of
the converted packed decimal number is considered the
start of the significant digits of the number. Significant
digits produced in the first operand beyond the first 15
for long floating-point serve to provide for uniqueness
of conversion and should be considered only as precise
as the calculations that produced the floating-point
number.

The result of this conversion is then rounded, if
necessary, to match the fractional precision of the
operand 1 field.. The rounding algorithm performed is
controlled by the third operand mask value. If
floating-point rounding is selected, rounding is
performed according to the current floating-point
rounding mode in effect. If decimal rounding is selected,
the current floating-point rounding mode is overridden
and the decimal round algorithm is performed. In this
case, a value of 5 is added to the converted number in
the leftmost digit position not provided for in operand 1,
and that digit, and those to the right of it, are truncated
from the resulting sum.

Instruction Descriptions 10-127

The converted and rounded result is then assigned to

operand 1 in the fixed-point packed decimal format for

the number of digits specified by the total digit count
for operand 1. If an even number of digits was
specified, the leftmost digit position of the packed
operand 1 field is set to binary O.

If the converted and rounded result is O, the first
operand value is set to 0 and the sign is set positive,
regardless of the sign of the second operand.

When a denormalized floating-point value is converted
from the source operand, the first operand is set with
the correctly rounded value, and no exception is
signaled.

When any nonzero integer digits are truncated on the
left in assigning the converted and rounded result to
operand 1, or when an infinity value or a NaN value is
encountered in the second operand, the invalid
floating-point conversion exception is signaled and the
instruction operation is suppressed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlapping operands is unpredicatable.

Program Exceptions:

Address translation

Addressing

Effective address overflow
Invalid floating-point conversion
Specification

10-128

Programming Note: The following is a summary of the
results for various combinations of operands.

Receiver Source

+0 +RO

-D -R

+D +R

IFPC +INF

IFPC MNaN

IFPC UNaN

Legend:

R = a real nonzero value converted and

rounded form of the source
floating-point number

RO = a real zero value converted and
rounded form of the source
floating-point number

D = a nonzero decimal number

MNaN = a masked NaN

UNaN = an unmasked NaN

INF = infinity

IFPC = invalid floating-point conversion

exception

The assignment of a real number, R, as the value of the
decimal field, D, is only successful if R is a value that
can be contained within the value range of the decimal
field; otherwise, an invalid floating-point conversion may
result.

CVLFPD Example

op [M,| E B, D, B, D,
CE |0|A]|2 068 2 050
0 Bits 8 12 16 20 32 36 47

Assembler: CVLFPD D;(B,), D,(B,), M3
Machine: CEOA 2068 2050

B; (2) and B, (2): 800D 0CO0 0000
R(F): 0703

Storage — Before

o8 '2/a Tac T ek
800D 0CO0 0068 XXXX — XXXX
800D 0CO0 0050 405E CO00 0000 0000

Storage — After

08 '2/A 'a/c ! eE
800D 0CO0 0068 | 0123 OOOF
800D 0CO0 0050 | 405E CO00 0000 0000

Instruction Descriptions

10-129

CONVERT LONG TO SHORT FLOAT (CVLSF)

Instruction Description

The value of the second operand is converted from the
long floating-point format to the short floating-point
format, and the result is placed in the first operand
location.

Format: SS
CE 7 | B, D, B, D,
0O Bits 8 12 16 20 32 36 47

Operation: The first operand occupies 4 bytes in storage

and is formed using the short floating-point field format.

The second operand occupies 8 bytes in storage and
has the long floating-point field format.

When the second operand contains a normalized
nonzero floating-point value, the significand value from
the second operand is rounded (according to the current
rounding mode) to the short floating-point format
significand length. The biased exponent value of the
second operand is adjusted to the correct biased
exponent value for the short floating-point format. This
converted floating-point value is then assigned to the
first operand according to the short floating-point field
format. This operation is subject to the detection of the
floating-point overflow and underflow conditions.

When the second operand contains a value of 0, the
first operand is assigned a zero value of the same sign.

When the second operand contains an infinity
floating-point value or a masked NaN value, the
exponent and significand values are truncated on the
right to the length of the short format prior to their
assignment into the first operand. If the truncation of a
masked NaN results in a fraction value of O, the system
default masked NaN value is assigned to the first
operand.

10-130

When the second operand contains an unmasked NaN
value, the floating-point invalid operand condition is
detected. For the case where an unmasked NaN value
is encountered and the floating-point invalid operand
exception is masked, the first operand is assigned a
masked NaN value with the fraction value from the
original unmasked NaN truncated on the right to the
short format fraction length. If the truncation of the
unmasked NaN results in a fraction value of 0, the
system default masked NaN value is assigned to the
first operand.

If the second operand contains a denormalized
floating-point number, the floating-point underflow
condition is detected.

If the floating-point underflow condition is detected and
masked, the result is assigned a value as defined by the
floating-point underflow exception in Chapter 6. If this
condition is detected and unmasked, the floating-point
underflow condition is signaled. However, the operation
is suppressed, and no result is stored. This action is
taken because the underflowed value cannot be
represented in the short format result field, even when
employing the modified biased exponent representation.

In addition to the previous exception conditions of
floating-point overflow and floating-point underflow, the
floating-point inexact result and floating-point invalid
operand conditions can be detected as a result of the
execution of this instruction. Refer to Chapter 6 for a
detailed description of these conditions and the
instruction status when one of these conditions is
detected.

9

9

Overflow: A floating~point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is

not a normal O and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not changed.

Boundary Requirements: The result obtained from
overlapping operands is unpredictable.

Program Exceptions:

— Address translation

— Addressing

— Effective address overflow

— Floating-point overflow

— Floating-point underflow

— Floating-point inexact result
— Floating-point in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>