

- - -- - - SC21-9037-3 - - - - -- -- File No. 538-01 - ---- - - ---- - --- - • -

IBM System/38

IBM System/38
Internal Microprogramming
Instructions, Formats, and Functions
Reference Manual

Fou'1:h Edition (August 1985)

This major revision makes obsolete SC21-9037-2 and Technical Newsletter
SN21-8302. Changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change or addition. Additions were madA to inc!ude
the 5382 Model 9 System Unit.

Changes are periodically made to the information herein; these changes will be
reported in technical newslette(s or in new editions of this publication.

Use this publication only for the purpose stated in About This Manual.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should he made to
your IBM representativE' or the branch office serving your locality.

This publication could cor.tain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to malo comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Information Development, Department 245, Rochester,
Minnesota 55901. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

@Copyright International Business Machines Corporation 1980, 1981, 1983, 1984,
1985

L

ABOUT THIS MANUAL . .
Purpose of This Manual
Organization of This Manual
What You Should Know . .
If You Need More Information
Definitions of Notes
Terminology

CHAPTER 1. INTRODUCTION
Machine Product
System Features

CHAPTER 2. INTERNAL MICROPROGRAMMING
STRUCTURE.

STORAGE DESCRIPTIONS
REGISTER DESCRIPTIONS
DATA
Data Types .. .

Binary Data
Address Data
Character Data
Decimal Data
Floating-Point Data
Internal Microprogramming Objects

Data Alignment .
Addressing . . .
INSTRUCTIONS.
Operation Codes
Operands
Formats and Examples

Basic IMP Formats
Address Generation
Execution
Branching
Condition Codes
Supervisor Linkage
Program Exceptions and Instructions Length
Count Settings

Concurrent Exceptions and Causes . .
Program Exceptions and Causes . . .

PERMANENT STORAGE ASSIGNMENTS
Control Address Table
Assigned Virtual Storage Locations

CHAPTER 3. HORIZONTAL MICROCODE SUPPORT
FUNCTIONS

HORIZONTAL MICROCODE PROCEDURES. . . .
HORIZONTAL MICROCODE BUILT-IN FUNCTIONS
Task Dispatching

CHAPTER 4. THE PROCESSOR .
PROCESSOR STATES
Operational State
Stopped State
INPUT/OUTPUT AND ASYNCHRONOUS EVENTS
Queue Interface
I/O Event Handler, Operational Unit

xiii
xiii
xiii
xiv
xiv
xv
xv

1-1
1-1
1-1

2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5

2-11
2-12
2-13
2-14
2-14
2-14
2-16
2-16
2-17
2-17
2-18
2-18
2-18

2-19
2-19
2-20
2-25
2-25
2-25

3-1
3-1
3-2
3-2

4-1
4-2
4-2
4-2
4-3
4-3

Contents

Task, and I/O Devices 4-3
System Console . 4-3

CHAPTER 5. TASKING 5-1
Procedure Execution 5-1
Base Register Assignments . 5-2
I/O Interruptibility . 5-2
Internal Microprogram Tasking 5-3
Tasking Structure 5-4

Task Dispatching Queue . 5-4
Task Dispatching Element 5-4
Send/Receive Queue 5-10
Send/Receive Message 5-12
Send/Receive Counter 5-13
Enqueue/Dequeue Instructions 5-14
Send / Receive Queue Busy Status 5-14

Task Control 5-16
Task Dispatching 5-16
Task Switching. 5-17
Task Dispatcher Enable/Disable Functions 5-17
Task Timing 5-17

Intertask Communications and Synchronization 5-18

CHAPTER 6. SUPERVISOR LINKAGE AND
EXCEPTION PRESENTATION 6-1

SUPERVISOR LINKAGE 6-2
Supervisor Linkage Structures . 6-2

Call/Return Element 6-3
Available Call/Return Element Queue 6-6
Supervisor Linkage Table 6-6

Supervisor Linkage Control 6-7
Supervisor Linkage Summary 6-12
EXCEPTIONS . 6-14
Presentation 6-14
Concurrent Exceptions 6-14
Program Exceptions 6-14

Address Compare Exception 6-14
Address Translation Exception 6-14
Addressing Exception 6-15
Allocate Page Frame Exception 6-15
Binary Divide Exception 6-15
Binary Overflow Exception 6-15
Chain Conflict Exception . 6-15
Conversion Exception 6-15
Data Exception . 6-16
Decimal Overflow Exception 6-16
Decimal Zero Divide Exception 6-16
Descriptor Access Exception 6-16
Edit Digit Count Exception . 6-17
Edit Mask Syntax Exception 6-17
Effective Address Overflow Exception 6-17
End of Chain Exception 6-18
Execute Exception 6-18
Invalid Descriptor Exception 6-18
Floating-Point Inexact Result Exception 6-19
Floating-Point Invalid Operand Exception 6-19
Floating- Point Overflow Exception 6-19
Floating-Point Underflow Exception. 6-21

Contents iii

Floating-Point Zero Divide Exception 6-22 Input/Output Status Fields 7-42

:J Invalid Floating-Point Conversion. 6-22 Basic Status 7-42
Invalid Page Exception (Synchronous Requests Functional Status . 7-43

Only) 6-22 Device Status 7-43
Invalid Pin Request Exception (Synchronous Intervention-Required Signal 7-44

Requests Only) 6-22 Function Operation Block Time-Out 7-44
Invalid Pool State Exception (Synchronous Operation 7-45

Requests Only) 6-22 I/O Example 7-45
Invalid Segment Exception (Synchronous I/O ERRORS 7-73

Requests Only) 6-22 Operational Unit E:rrors . 7-73
Invalid Segment Group Address Exception 6-22 Operation Program Errors 7-74
Invalid Write Request Exception (Synchronous Task Error Status Field 7-74

Requests Only) 6-23 Device Errors 7-74
Length Conformance Exception . 6-23 Operational Unit Error Recovery 7-74
Main Storage E~ror Exception 6-23 Operation Progr3m Error Recording 7-74
Monitored ACQ Exception 6-23 Error Recovery Procedures 7-76
Monitored Call/Return Element Exception 6-23 Channel Errors 7-76
Monitored SRM Descriptor Exception 6-23 Channel Error Reporting 7-77
Monitored SRQ Descriptor Exception 6-23 Channel Error Recovery 7-77
Monitored TDE Descr;ptm Exception 6-23 Channel Error Recording . 7-78
Operation Exception 6-23 Error Recovery Procedures 7-78
Page Read Error Exception . 6-23 Device Halt . 7-79
Program Event Monitoring Exception 6-24
Second Chain Search Exception 6-24 CHAPTER 8. VIRTUAL STORAGE ADDRESSING 8·1
Send / Receive Counter Overflow Exception 6-24 VIRTUAL ADDRESS TRANSLATION OVERVIEW 8-2
Specification Exception 6-24 Translation Process 8-2
Stack Exception 6-26 VIRTUAL ADDRESS TRANSLATOR COMPONENTS 8-4
Task Interval Timer Exception 6-26 Control Information 8-4
Verify Exception 6-26 Hash Table. 8-4

Instruction Length Count and Instruction Hash Tables Entry Format 8-4
Address Register Settings 6-26 Hash Table Lookup . 8-4

Primary Directory 8-6

~ CHAPTER 7. I/O AND ASYNCHRONOUS EVENTS 7·1 Primary Directory Lookup 8-8
ASYNCHRONOUS OPERATIONS 7-4 Storage Address Formation 8-9
OPERATIONAL UNIT TASK 7-6 Lookaside Buffer 8-9
IMP Objects: Their Formats and Operation 7-8 VAT COMPONENT MAINTENANCE 8-10
INTERNAL MICROPROGRAMMING CHANNEL Modification Of Hash Table Entries 8-10
OBJECTS 7-9 Modification Of Primary Directory Entries . 8-10

Operation'll Unit. 7-9 Reference And Change Rec1:>rding 8-10
Assignments . 7-3

Operational Unit Queue 7-10 CHAPTER 9. MACHINE SUPPORT FUNCTIONS. 9·'
I/O Manager Queue. 7-11 IrJITIAL MICROPROGRAM LOAD .' . 9-2
Operation Request Element 7-12 PROGRAM EVENT MONITORING 9-3
Operation Blocks 7-14 INTERNAL MICROPROGRAMMING TIMER

Types of Operation Blocks . 7-16 SUPPORT 9-4
OPERATION PROGRAM 7-26 Time· Of-Day Clock 9-4

Operation Program Example 7-26 Clock Comparator 9-4
Queue Control Table . 7-28 Interval Timers 9-5
QCT Event Stack 7-32 SYSTEM CONTROL 9-6
Address List Element 7-33 System Control Adapter 9-6
I/O STORAGE ADDRESSING. 7-35 MACHINE CHECK. 9-7
I/O Resolved Address Registers 7-35 Machine Check Handling 9-7
Page Chaining 7-35 Check Stop 9-7
Page Faults . 7-36 Machine Check Mode 9-8
Virtual = Real . 7-36 Processor Machine Check Handler . 9-8
I/O Addressing Restrictions 7-37 Machine Check Process Procedures and States . 9-9
I/O EVENTS 7-38 Stop State Machine Check. 9-10
I/O Event Fields 7-38 Wait State Machine Check . 9-10

Function Event 7·38 Restart Task if Machine Check Is in Run State 9-10
Address Event 7-39 Machine Check Log Buffer 9-12
Error Event 7-39 Machine Check Log . 9-12

I/O Event Handler. 7-40 Processor Status 9-12
I/O Event Stack . 7-41 Task Status 9-26

~ I/O Register Table 7-41 Machine Check Special Error Conditions 9-28
I/O COMMAND RESPONSES 7-42 Virtual Address Translation Machine Checks 9-28

iv

L
Machine Check During Translate Instruction
Error Recording / Error Definition

STACK HANDLING
Stack Structure
Hold/Free Function . .

Hold Chain Structure
Hardware Tags
VMC SERVICE AIDS

Task Switch Trace Facility
Trace Control Table

Task Switch Trace Record
Operation

Address Compere Mode . .
Function Call Linkage

Function Routine Address Table
Function Call Stack Usage
Space Pointer Support

CHAPTER 10. INSTRUCTION DESCRIPTIONS . . .
Add Characters (AC) . . .

Instruction Description
AC Example

Add Fullword Space Pointer Offset (AFSPO)
Instruction Description
AFSPO Example . . .

Add Halfword (AH)
instruction Description
AH Example

Add Halfword Immediate (AHI)
Instruction Description
AHI Example

Add Halfword Register (AHR)
Instruction Description
AHR Example

Add Halfword Register Immediate (AHRI) .
Instruct.ion Description
AH RI Example

Add Halfward Space Pointer Offset (AHSPO)
Instruction Description
AHSPO Example' . .

Add Halfword Space Pointer Offset Immediate
(AHSPOI)

Instruction Description
AHSPOI Example . . .

Add Logical Byte (ALB)
Instruction Description
ALB Example

Add Logical Byte Register (ALBR)
Instruction Description
ALBR Example

Add Logical Byte Register Immediate (ALBRI)
Instruction Description
ALBRI Example

Add Logical Character (ALC)
I nstruction Description
ALC example

Add Logical Halfword (ALH)
Instruction Description
ALH Example

Add Logical Halfword and Branch On Limit
(ALHBL)

Instruction Description
ALHBL Example

Add Logical Halfword Immediate (ALHI)
Instruction Description

9-28
9-28
9-29
9-29
9-31
9-31
9-36
9-37
9-37
9-37
9-39
9-40
9-41
9-44
9-44
9-45
9-46

10-1
10-2
10-2
10-2
10-4
10-4
10-5
10-6
10-6
10-6
10-7
10-7
10-7
10-8
10-8
10-8
10-9
10-9
10-9

10-10
10-10
10-11

10-12
10-12
10-13
10-14
10-14
10-14
10-15
10-15
10-15
10-16
10-16
10-16
10-17
10-17
10-17
10-18
10-18
10-18

10-20
10-20
10-21
10-22
10-22

ALHI Example 10-22
Add Logical Halfword Register (ALHR) 10-23

Instruction Description 10-23
ALHR Example. 10-23

Add Logical Halfword Register Immediate (ALHRI) . 10-24
Instruction Description 10-24
ALHRI Example 10-24

Add Long Float (ALF) 10-25
Instruction Description 10-25
ALF Example . 10-27

Add Packed (AP) 10-28
Instruction Description 10-28
AP Example 10-28

Add Short Float (ASF) 10-29
Instruction Description 10-29
ASF Example 10-31

AND Byte (NB) 10-32
Instruction Description 10-32
NB Example 10-32

AND Byte Immediate (NBI) 10-33
Instruction Description 10-33
NEI Example. 10-33

AND Byte Register (NBR) 10-34
Instruction Description 10-34
NBR Example 10-34

AND Byte rlegister Immediate (NBRI) 10-35
Instruction Description 10-35
NBRI Example 10-35

AND Characters (NC) 10-36
Instruction Description 10-36
NC Example 10-36

AND Halfword (NH) 10-37
Instruction Description 10-37
NH Example 10-37

AND Halfword Register (NHR) 10-38
Instruction Description 10-38
NHR Example 10-38

AND Halfword Register Immediate (NHRI) 10-39
Instruction Description 10-39
NHRI Example 10-39

Branch And Link (BAL) . 10-40
Instruction Description 10-40
BAL Example 10-40

-Branch And Link Long (BALL) . 10-41
Instruction Description 10-41
BALL Example 10-41

Branch Internal (BI) 10-42
Instruction Description 10-42
BI Example 10-42

Branch On Condition (BC) 10-43
Instruction Descrip,ion 10-43
BC Example 10-43

Branch On Condition Indirect (BCN) 10-44
Instruction Description 10-44
BCN Example 10-44

Branch On Condition Indirect Indexed (BCNX) . 10-45
Instruction Description 10-45
BCNX Example . 10-45

Branch On Count (BCT) 10-46
Instruction Description 10-46
BCT Example 10-46

Branch Register (BR) . 10-47
I"struction Description 10-47
BR Example 10-47

Branch Register Long (BRL) . 10-48

Contents v

Instruction Description
BRL Example

Branch Unconditional (BU)
Instruction Description
BU Example

Call Internal (CALLI) . . .
Instruction Description
CALLI Example

Compare and Swap Halfword (CSH)
Instruction Description
CSH Example

Compare Byte Immediate and Branch Equal
(CBIBE)

Instruction Description
CBIBE Example

Compare Byte Immediate and Branch Not Equal .
Instruction Description
CBIBN Example

Compare Characters (CC) .
I nstruction Description
CC Example

Compare Halfword (CH) .
Instruction Description
CH Example

Compare Halfword Immediate (CHI)
Instruction Description
CHI Example.

Compare Halfword Register (CHR)
I nstruction Description
CHR Example

Compare Halfword Register Immediate (CHRI)
Instruction Description
CHRI Example

Compare Logical Address Register (CLAR)
Instruction Description
CLAR Example

Compare Logical Byte (CLB)
Instruction Description
CLB Example

Compare Logical Byte Immediate (CLBI)
Instruction Description
CLBI Example

Compare Logical Byte Register (CLBR)
Instruction Description
CLBR Example

Compare Logical Byte Register Immediate (CLBRI)
Instruction Description
CLBRI Example.

Compare Logical Characters (CLC)
Instruction Description
CLC Example

Compare Logical Character Register (CLCR) .
Instruction Description
CLCR Example

Compare Logical Characters Long (CLCL)
Instruction Description
CLCl Example

Compare Logical Halfword (CLH)
Instruction Description
CLH Example

Compare Logical Halfword Immediate (CLHI)
Instruction Description
CLHI Example

Compare Logical Halfword Register (CLHR)
Instruction Desciption

vi

10-48
10-48
10-49
10-49
10-49
10-50
10-50
10-50
10-52
10-52
10-53

10-54
10-54
10-54

10-54.1
10-54.1
10-54.1
10-54.2
10-54.2
10-54.2

10-55
10-55
10-55
10-56
10-56
10-56
10-57
10-57
10-57
10-58
10-58
10-58
10-59
10-59
10-59
10-60
10-60
10-60
10-61
10-61
10-61
10-62
10-62
10-62
10-63
10-63
10-63
10-64
10-64
10-64
10-65
10-65
10-65
10-66
10-66
10-67
10-68
10-68
10-68
10-69
10-69
10-69
10-70
10-70

CLHR Example
Compare Logical Halfword Register Immediate (CLHRI)

I nstruction Description
ClHRI Example

Compare Long Float (CLF)
Instruction Description
ClF Example

Compare Packed (CP) . .
I nstruction Description
CP Example

Compare Short Float (CSF)
Instruction Description
CSF Example

Compute Address Long (CAL) .
Instruction Description
CAL Example

Compute Address Long Halfword (CALH) .
Instruction Description
CALH Example

Compute Address Long Halfword Immediate
(CALHI)

Instruction Description
CAlHI Example

Compute Long Float Math Function Using
One Input Value (CLFMF1) .

Instruction Description
CLFMFl Example.

Compute Long Float Math Function Using Two
Input Values (CLFMF2)

Instruction Description
CLFMF2 Example.

Compute Short Float Math Function Using One
Input Value (CSFMF1) ..

I nstruction Description
CSFMFl Example

Compute Short Float Math Function Using Two
Input Values (CSFMF2) .

Instruction Description
CSFMF2 Example

Compute Subscript Address (CSA)
Instruction Description
CSA Example

Compute Subscript Address Constrained (CSAC)
I nstruction Description
CSAC Example

Compute Subscript Address Constrained
Halfword (CSACH) . . .

Instruction Description
CSACH Example

Convert Binary to Long Float (CVBLF)
Instruction Description
CVBLF Example

Convert Binary To Packed (CVBP)
I nstruction Description
CVBP Example

Convert Binary to Short Float (CVBSF)
Instruction Description
CVBSF Example

Convert Character to SNA (CVTCS)
Instruction Description
Source Operand . . .
Result Operand. . . .
String Processing Mode
Record Processing Mode
Instruction Termination

10-70
10-71
10-71
10-71
10-72
10-72
10-74
10-75
10-75
10-75
10-78
10-78
10-78
10-80
10-80
10-81
10-82
10-82
10-83

10-84
10-84.1
10-84.2

10-84
10-84
10-86

10-87
10-87
10-88

10-90
10-90
10-91

10-92
10-92
10-93
10-94
10-94
10-94
10-96
10-96
10-97

10-98
10-98
10-99

10-100
10-100
10-100
10-101
10-101
10-101
10-102
10-102
10-102
10-103
10-10:1
10-105
10-106
10-106
10-108
10-110

CVTCS Example
Convert Characters to Multi-Leaving
Remote Job Entry (CVTCM)

Instruction Description
CVTCM Example

Convert Decimal Form to Long Float (CVDFLF)
Instruction Description
CVDFLF Example

Convert Decimal Form to Short Float (CVDFSF)
Instruction Description
CVDFSF Example.

Convert Long Float to Binary (CVLFB)
Instruction Description
CVLFB Example

Convert Long Float to Decimal Form (CVLFDF)
Instruction Description
CVLFDF Example

Convert Long Float to Packed Decimal (CVLFPD)
Instruction Description
CVLFPD Example.

Convert Long to Short Float (CVLSF)
Instruction Description
CVLSF Example

Convert Multi-Leaving Remote Job Entry
to Character (CVTMC). .

Instruction Description
CVTMC Example

Convert Packed Decimal to Long Float (CVPDLF)
Instruction Description
CVPDLF Example.

Convert Packed Decimal to Short Float
(CVPDSF)

Instruction Description
CVPDSF Example. . .

Convert Packed to Binary (CVPB)
Instruction Description
CVPB Example

Convert Packed To Zoned (CVPZ)
Instruction Description
CVPZ Example

Convert Packed to Zoned with Data Checking
(CVPZC)

Instruction Description
CVPZC Example

Convert Short Float to Binary (CVSFB)
Instruction Description
CVSFB Example

Convert Short Float to Decimal Form
(CVSFDF)

Instruction Description
CVSFDF Example.

Convert Short Float to Packed Decimal
(CVSFPD)

Instruction Description
CVSFPD Example.

Convert Short to Long Float (CVSLF)
Instruction Description
CVSLF Example

Convert SNA to Character (CVTSC)
Instruction Description
String Processing Mode .
Record Processing Mode
Instruction Termination
Programming Notes.
CVTSC Example . . .

10-111

10-112
10-112
10-117
10-118
10-118
10-119
10-120
10-120
10-121
10-122
10-122
10-123
10-124
10-124
10-126
10-127
10-127
10-129
10-130
10-130
10-131

10-132
10-132
10-134
10-136
10-136
10-137

10-138
10-138
10-139
10-140
10-140
10-140
10-141
10-141
10-141

10-142
10-142
10-142

10-142.1
10-142.1

10-143

10-144
10-144
10-146

10-147
10-147
10-149
10-150
10-150
10-151
10-152
10-152
10-155
10-157
10-160
10-160
10-161

Convert Zoned To Packed (CVZP)
Instruction Description
CVZP Example

Convert Zoned to Packed with Data Checking
(CVZPC)

Instruction Description
CVZPC Example

Convert Zoned to Packed with Data Checking and
Blank Conversion (CVZPB) .

Instruction Description 2.2
CVZPB Example . . .

Dequeue Message (DQM)
Instruction Description
DQM Example

Dequeue Task Dispatching Element (DQTDE)
Instruction Description
DQTDE Example . . .

Diagnose (DIAG)
Instruction Description
DIAG Example

Disable Task Dispatching (DTD)
Instruction Description
DTD Example

Dispatch Task Dispatching QUEUE (DTDQ)
Instruction Description
DTDQ Example

Divide Halfword Storage (DHS)
Instruction Description
DHS Example

Divide Long Float (DLF)
Instruction Description
DLF Example

Divide Packed (DP)
Instruction Description
DP Example

Divide Packed Long (DPL)
Instruction Description
DPL Example

Divide Short Float (DSF) ..
Instruction Description
DSF Example

Divide Word Storage (DWS)
Instruction Description
DWS Example

Edit Packed Decimal (EDPD)
Instruction Description
EPDP Example

Enable Task Dispatching (ETD)
Instruction Description
ETD Example

Enqueue Message (EQM) .
Instruction Description
EQM Example

Enqueue Task Dispatching Element (EOTDE)
Instruction Description
EOTDE Example

Examine Primary Directory Entry (EPDE)
Instruction Description
EPDE Example

Exclusive Or Byte (XB) . .
Instruction Description
XB Example

Exclusive Or Byte Immediate (XBI) .
Instruction Description
XBI Example

10-162
10-162
10-162

10-162.1
10-162.1
10-162.1

10-162.2

10-162.2
10-164
10-164
10-165
10-166
10-166
10-167
10-168
10-168
10-168
10-169
10-169
10-169
10-170
10-170
10-170
10-171
10-171
10-171
10-172
10-172
10-175
10-176
10-176
10-177
10-178
10-178
10-179
10-180
10-180
10-182
10-183
10-183
10-183
10-184
10-184
10-190
10-192
10-192
10-192
10-194
10-194
10-195
10-196
10-196
10-197
10-198
10-198
10-199
10-201
10-201
10-201
10-202
10-202
10-202

Contents vii

Exclusive Or Byte Register (XBR) 10-203 LVT Example. 10-254

..J Instruction Description 10-203 Load Byte (LB) 10-255
XBR Example 10-203 Instruction Description 10-255

Exclusive Or Byte Register Immediate (XBRI) 10-204 LB Example 10-255
Instruction Description 10-204 Load Byte Register (LBR) . 10-256
XBRI Example 10-204 Instruction Description 10-256

Exclusive Or Character (XC) . 10-205 LBR Example 10-256
Instruction Description 10-205 Load Byte Register Immediate (LBRI) 10-257
XC Example 10-205 Im:truction Description 10-257

Exclusive Or Halfword (XH) 10-206 LBRI Example lO-257
Instruction Description 10-206 Load Halfword (LH) 10-258
XH Example 10-206 Instruction Description 10-258

Exclusive Or Halfword Register (XHR) 10-207 LH Example 10-258
Instruction Descript'ion 10-207 Load Halfword Register (LHR) . 10-259
XHR Example 10-207 Instruction Example . 10-259

Exclusive Or Halfword Register Immediate (XHRI) 10-208 LHR Example 10-259
Instruction Desc~iptior. 10-208 Load Ha!fword Register Immediate (LHRI) 10-260
XHRI Example 10-208 Instruction Description 10-260

Execute (EX) 10-210 LHRI Examp!e 10-260
Instruction Description 10-210 Load Hash Table Entry Address (LHTEA) 10-261
EX Example 10-211 Instruction Description 10-261

Extract Tags (EXTAG) 10-212 LHTEA Example 10-261
Instruction Description 10-212 Load Multiple (LM) 10-262
EXTAG Example 10-213 Instruction Description 10-262

Free Hold Record (FHR) 10-214 LM Example 10-262
Instruction Description 10-214 Load Multiple Byte (LMB) 10-263
FHR Example 10-215 Instruction Description 10-263

Free Hold Record First (FHRF) 10-216 LMB Example 10-263
Instruction Description 10-216 Load Multiple Halfword (LMH) 10-264
FHRF Example 10-220 Instruction Description 10-264

Function Call Doubl.3 (FNC2) 10-223 LMH Example 10-264
Instruction Description 10-223 Load Primary Directory Entry Address (LPDEA) 10-265

~ FNC2 Examp!e 10-224 Instruction Description 10-265
Grant Hold Record (GHR) ~0-228 LPDEA Example 10-265

Instruction Description 10-228 Load Primary Directory Entry Address
GrlR Example 10-229 Register (LPDEAR) 10-266

Grant Hold Record First (GHRF) 10-230 Instruction Description 10-266
Instruction Description 10-230 LPDEAR Example. 10-266
GHRF Example . 10-234 Load Register (LR) . 10-267

Hash And Verify Virtual Address (HVVA) 10-237 Instruction Description 10-267
Instruction Description 10-237 LR Example 10-267
HVVA Example. 10-239 Load Space Offset Pointer (LSOP) 10-268

Insert Tags (iNTAG) 10-240 Instruction Description 10-268
I nstruction Description 10-240 LSOP Example 10-268
INTAG Example 10-241 Move And Set Tags (MVAST) 10-269

Invalidate Primary Directory Entry (iPDE) 10-242 Instruction Description 10-269
Instruction Description 10-242 MVAST Example 10-269
IPDE Example 10-244 Move Byte Immediate (MVBI) 10-270

Jump On Bits Off (JBF) 10-245 Instruction Description 10-270
Instruction Description 10-245 MVBI Example 10-270
JBF Example. 10-245 Move Byte Immediate and Propogate (MVBIP) 10-271

Jump On Bits On (JBN) 10-246 Instruction Description 10-271
Instruction Description 10-246 MVBIP Example 10-271
JBN Example 10-246 Move Character Regi~ter (MVCR) 10-272

Jump On Condition (JC) 10-248 Instruction Description 10-272
Instruction Description 10-248 MVCR Example 10-272
JC Example 10-249 Move Characters (MVC) 10-273

Load (L) 10-250 Instruction Description 10-273
Instruction Description 10-250 MVC Example 10-273
L Example 10-250 Move Characters And Tags (MVCAT) 10-274

Load Address (LA) . 10-251 Instruction Description 10-274
Instruction Description 10-251 MVCAT Example 10-275
LA Example 10-251 Move Characters Long (MVCL) 10-276

..J Load And Verify Tags (LVT) 10-252 Instruction Description 10-276
Instruction Description 10-252 MVCL Example. 10-277

viii

Move Halfword Immediate (MVHI) .
Instruction Description
MVHI Example

Move Virtual Page with Corrected Double-Bit
Errors Suppressed (MVMC)

Instruction DescriptiOl'
M'IMC Example

Move Numeric To Numeric (MVNN)
Instruction Description
MVN N Example

Move Numeric To Zone (MVNZ)
Instruction Description
MVNZ Example

Move Packed Shifted (MVPS)
Instruction Description
MVPS Example

Move Packed Shifted Zero (MVPSZ)
Instruction Description
MVPSZ Example

Move Zone To Numeric (MVZN)
Instruction Description
MV2:N Example

Move Zone To Zone (MVZZ)
Instruction Description
MVZZ Example.

Multiply Halfword Storage (MhS)
Instruction Dtlscription
M HS Example

Multiply Long Float (MLF)
Instruction Description
MLF Example

Multiply Packed (MP)
Instruction Description
MP Example

Multiply Packed Long (MPL)
Instruction Description
MPL Example

Multiply Short Float (MSF)
Instruction Description
MSF Example

MUltiply Word Storage (MWS)
Instructiun Description
MWS Example

OR Ryte (DB)
Instruction Description
OB Example

OR Byte Immediate (OBI) .
Instruction Description
OBI Example.

OR Byte Register (OBR)
Instruction Description
OBR Example

OR Byte Register Immediate (OBRI)
Instruction Description
OBRI Example

OR Characters (OC) . . .
Instruction Description
OC Example ...

OR Halfword (OH) . .
Instruction Example
OH Example ...

OR Halfword Register (OHR)
Instruction Description
OHR Example

OR Halfword Register Immediate (OHRI)

10-278
10-278
10-278

10-278.1
10-278.1
10-278.1

10-279
10-279
10-279
10-280
10-280
10-280
10-282
10-282
10-283
10-284

10-284.1
10-284.2
10-284.3
10-284.4
10-284.5

10-285
10-285
10-285
10-286
10-286
10-286
10-287
10-287
10-290
10-291
10-291
10-291
10-292
10-292
10-293
10-294
10-294
10-L96
10-297
10-297
10-297
10-298
10-298
10-298
10-299
10-299
10-299
10-300
10-300
10-300
10-301
10-301
10-301
10-302
10-302
10-302
10-303
10-303
10-303
10-304
10-304
10-304
10-305

Instruction Description
OHRI Example

Perform Paging Request (PPR)
Instruction Description
PPR Example

Read Reference And Change And Reset
Reference (RRCRR) . . .

Instruction Description
RRCRR Example ...

Receive Count (RECC) ..
Instruction Description
RECC Example

Receive Message (RECM)
Instruction Description
RECM Example

Remove Primary Directory Entry (RPDE)
Instruction Description
RPDE Example

Reset Address Compare Mode (RACM)
Instruction Description
RACM Example

Reset Chain Busy (RCB) .
Instruction Description
RCB Example

Reset Machine Check Mode (RMCM)
Instruction Description
RMCM Example

Return Available Hold Record (RAHR)
Instruction Description
RAHR Example

Scan (SCAN)
Instruction Description
SCAN Example. . . .

Send Count (SENDC)
Instruction Des<:rilltion
SEN DC Examllie . . .

Send Message (SENDM) .
Instruction Description
SENDM Exc:;nple . . .

Sdnd Message and Wait (SENDMW)
Instru"tiun Description
SEI\'DMW Example . .

Set Addr"ss Compare Mode (SACM)
Instru(',ion Description
SACM Example

Set Chain Busy (SCB) . .
Instruction Description
SCB Example

Set Clock Comparator (SETCC)
I nstruction Description
SETCC Example . . .

Set Indicator (SETIND) . .
Instruction Description
SETIND Example ...

Set Interval Timer (SETIT)
Instruction Description
SETIT Example. . . .

Set Time-Of-Day Clock (SETTOD)
Instruction Description
SETTOD Example

Shift Left Arithmetic (SLA)
Instruction Description
SLA Example

Shift Left Halfword And Count (SLHCT)
I nstruction Description

10-305
10-305
10-306
10-306
10-308

10-310
10-310
10-311
10-312
10-312
10-313
10-315
10-315
10-316
10-319
10-319
10-319
10-320
10-320
10-320
10-321
10-321
10-322
10-324
10-324
10-324
10-325
10-325
10-326
10-328
10-328
10-333
10-334
10-334
10-335
10-337
10-337
10-338
10-341
10-341
10-342
10-346
10-346
10-347
10-348
10-348
10-349
10-350
10-350
10-351
10-352

10-352.1
10-352.2
10-352.3
10-352.4

10-353
10-354
10-354
10-355
10-356
10-356
10-356
10-357
10-357

Contents ix

SLHCT Example 10-357 Instruction Description 10-390

. ..;) Shift Left Logical (SLL) . 10-358 SLC Example 10-390
I nstruction Description 10-358 Subtract Logical Halfword (SLH) . 10-391
SLL Example . 10-358 Instruction Description 10-391

Shift Right Arithmetic (SRA) 10-359 SLH Example 10-391
Instruction Description 10-359 Subtract Logical Halfword Register (SLHR) 10-392
SRA Example 10-359 Instruction Description 10-392

Shift Right Logical (SRL) 10-360 SLHR Example . 10-392
Instruction Description 10-360 Subtract Long Float (SLF) 10-393
SRL Example 10-360 Instruction Description 10-393

Stack (STACK) 10-362 SLF Example. 10-395
Instruction Description 10-362 Subtract Packed (SP) 10-396
STACK Example 10-363 Instruction Description 10-396

Store (ST) 10-364 SP Example 10-397
Instruction Description 10-364 Subtract Short Float (SSF) 10-398
ST Example 10-364 Instruction Description 10-398

Store and Set Computational Attributes (SSCA) 10-365 SSF Example 10-400
I nstruction Description 10-365 Supervisor Exit (SVX) 10-402
SSCA Example . 10-367 Instruction Description 10-402

Store And Set Tags (STST) 10-368 SVX Example 10-403
Instruction Description 10-368 Supervisor Link Double (SVL2) 10-404
STST Example 10-369 Instruction Description 10-404

Store Byte (STB) 10-370 SVL2 Example 10-405
Instruction Description 10-370 Supervisor Link Monitored (SVLM) . 10-407
STB Example 10-370 Instruction Description 10-407

Store Clock Comparator (STCC) 10-372 SVLM Example . 10-407
Instruction Description 10-372 Supervisor Link Short (SVLO) 10-408
STCC Example . 10-373 Instruction Description 10-408

Store Halfword (STH) 10-374 SVLO Example . 10-409
Instruction Description 10-374 Supervisor Link Single (SVL 1) 10-411
STH Example 10-374 Instruction Description 10-411

Store Interval Timer (STIT) 10-376 SVL 1 Example 10-412

..;) Instruction Description 10-376 Supervisor Link Single Monitored (SVLM 1) 10-414
STIT Example 10-377 Instruction Description 10-414

Store Multiple (STM) 10-378 SVLM 1 Example 10-415
Instruction Description 10-378 Terminate Immediately (TI) 10-417
STM Example 10-378 Instruction Description 10-417

Store Multiple Byte (STMB) . 10-379 TI Example 10-417
Instruction Description 10-379 Test Under Mask Byte Immediate (TMBI) . 10-418
STMB Example. 10-379 Instruction Description 10-418

Store Multiple Halfword (STMH) 10-380 TMBI Example 10-418
Instruction Description 10-380 Test Under Mask Byte Immediate and Branch
STMH Example 10-380 If Ones (TMBIBO) 10-419

Store Space Offset Pointer (STSOP) 10-381 Instruction Description 10-419
Instruction Descriptin 10-381 TMBIBO Example 10-419
STSOP Example 10-381 Test Under Mask Byte Immediate and Branch If

Store Time-Of-Day Clock (STIOD) 10-382 Zeros (TMBIBZ) 10-420
Instruction Description 10-382 Instruction Description 10-420
STIOD Example 10-383 TMBIBZ Example. 10-420

Subtract Characters (SC) 10-384 Test Under Mask Byte Register (TMBR) 10-421
Instruction Description 10-384 Instruction Description 10-421
SC Example 10-385 TMBR Example 10-421

Subtract Halfword (SH) 10-386 Translate (TR) . 10-422
Instruction Description 10-386 Instruction Description 10-422
SH Example 10-386 TR Example 10-422

Subtract Halfword Register (SHR) 10-387 Translate And Test (TRT) . 10-424
I nstruction Description 10-387 Instruction Description 10-424
SHR Example 10-387 TRT Example 10-425

Subtract Logical Byte (SLB) . 10-388 Translate Register (TRR) 10-426
Instruction Description 10-388 I nstruction Description 10-426
SLB Example 10-388 TRR Example 10-426

Subtract Logical Byte Register (SLBR) 10-389 Trim (TRIM) 10-427
Instruction Description 10-389 I nstruction Description 10-427

;J SLBR Example 10-389 TRIM Example 10-427
Subtract Logical Characters (SLC) 10-390 Unstack (UNSTK) 10-428

x

Instruction Description
UNSTK Example . . .

Zero And Add Characters (ZAC) .
Instruction Description
ZAC Example

APPENDIX A. TELEPROCESSING
INSTRUCTION FLOW CHARTS

10-428
10-429
10-430
10-430
10-430

A-l

APPENDIX B. OPERATION CODE ASSIGNMENTS B-1

APPENDIX C. INSTRUCTION INDEX C-l

APPENDIY D. GLOSSARY D-l

INDEX X-l

Contents xi

This page is intentionally left blank.

xii

PURPOSE OF THIS MANUAL

This reference manual provides a detailed definition of
the machine functions performed by the processor but
should not be considered tutorial for the IMP (internal
microprogramming) instruction set. This manual does
not attempt to describe how the VMC (vertical
microcode) routines prepare the information or how the
HMC (horizontal microcode) attempts to use it.

This manual is to be used by support personnel for the
maintenance of System/38.

ORGANIZATION OF THIS MANUAL

The information presented in this manual includes:

Chapter Content

2

3

4

5

Internal Microprogramming Structure-the
IMP data types, the instructions, and
permanent storage assignments.

Horizontal Microcode Support
Functions-the HMC procedures and the
HMC built-in functions.

The processor-the processor, the
processor states, the execution functions,
the input/output and asynchronous
events.

Tasking-the function of the IMP, the IMP
objects the tasking function uses, the
control of tasking, and the intertask
communications and synchronization.

About This Manual

Chapter Content

6 Supervisor Linkage and Exception
Handling-the supervisor linkage concepts
and the objects it uses, the supervisor
linkage control, the exceptions, and the
instruction length count and IAR
(instruction address register) settings.

7 Input/Output and Asynchronous Events-the
methods used to communicate with I/O
devices and the sources of asynchronous
events.

8

9

10

Virtual Storage Addressing-the storage
addressing structure of the IMP.

Machine Support Functions-the additional
services that are available to support IMP
instruction processing.

Instructions-detailed descriptions of IMP
instructions.

The glossary in Appendix C includes definitions
developed by the American National Standards Institute
(ANSI) and the International Organization for
Standardization (ISO). This material is reproduced from
the American National Dictionary for Information
Processing, copyright 1977 by the Computer Business
Equipment Manufacturers Association, copies of which
may be purchased from the American Standards
Institute, 1430 Broadway, New York, New York 10018.

WHAT YOU SHOULD KNOW

The reader should understand computer programming
and the concepts used in System/38 before attempting
to use the information in this manual.

About This Manual xiii

IF YOU NEED MORE INFORMATION

• IBM System/38 Bibliography, GH30-0233

This publication describes technical publications in
support of System/38 machine components, system
programming, application programming, and other
supplemental information (for example forms and
program listings).

• IBM System/38 Functional Concepts Manual,
GA21-9330

This publication is designed to provide an overview of
the System/38 concepts, a definition and description
of structures and objects, and a description of
specific System /38 functions.

• IBM System/38 Functional Reference Manual,
GA21-9331 and GA21-9800

This publication is designed to describe the
System/38 instruction set and contains a detailed
description of each instruction. This publication also
contains the specifications for objects, events,
exceptions, and describes specialized instructions for
source / sink devices.

• IBM System/38 Vertical Microcode Data Areas,
SY21-0892

This publication is designed to aid service personnel
responsible for supporting the IBM System/38 by
providing descriptions of the vertical microcode data
areas within the system.

• IBM System/38 Vertical Microcode Logic Overviews
and Component Descriptions Manual, SY21-0889

This publication is designed to aid service personnel
to isolate a malfunction in the System/38 vertical
microcode.

• IBM System/38 Vertical Microcode Logic Listings,
SYB1-0890

xiv

This publication is designed to aid service personnel
to isolate a malfunction in the System/38 vertical
microcode.

• IBM System/38 Vertical Microcode Module
Descriptions, SYB 1-0891

This publication is designed to aid service personnel
to isolate a malfunction in the System/38 vertical
microcode.

• IBM System/38 Processing Unit Models 3, 4, and 5
Theory-Maintenance, SY31-0524 and IBM
System/38 Processing Unit Models 6, 7, and 8
Theory-Maintenance, SY31-0649

These publications are designed to give service
personnel a brief description of some of the unique
features of System / 38.

• IBM System/38 Channel Theory-Maintenance,
SY31-0619

This publication is designed to provide maintenance
and theory information that will be used by the
service personnel to maintain the System/38 channel.

• IBM System/38 System Control Adapter
Theory-Maintenance, SY31-0527

This publication is designed to provide maintenance
and theory information that will be used by the
service personnel to install and maintain the IBM
System/38.

• IBM System/38 Service Guide, SY31-0523

This publication is designed to provide the
information needed to use the System/38
maintenance library and service functions. The
publication also shows the maintenance overview, the
maintenance library organization, the operator/service
panel switch settings, how to use the MAPs, and
how to select either concurrent or dedicated service
functions.

• IBM System/38 Diagnostic Aids, SY21-0584

This publication provides information about the tools,
documentation, and procedures needed to aid in
problem resolution for programming problems
occurring within the System/38 CPF and the VMC of
the System / 38.

DEFINITIONS OF NOTES

The headings Notes and Programming Notes are used
where additional information is provided on various
topics. Notes further explain or clarify text.
Programming notes either explain instruction
implementation or they suggest additional uses of
instructions for support personnel.

TERMINOLOGY

Certain fields or bit combinations in IMP objects are
undefined. Some of these may be used by the IMP
programmer and some may not. In order to distinguish
between them, the following terminology will be used
throughout this manual:

Term

Not used

Reserved

Invalid

Meaning

The field or bit combination is not
interrogated or modified by the
processor and may be used by the IMP
programmer.

The field or bit combination is
interrogated or modified by the
processor and may not be used by the
IMP programmer.

The bit combination is checked by the
processor and a specification exception
or a machine check occurs if an invalid
combination is detected.

About This Manual xv

xvi

Machine Product

The IMP (internal microprogramming) instruction set is
an internal communications link. The following figure
shows the relationship of the instructions to other parts
of the system.

System/3S Machine Support

Vertical
Microcode

Horizontal
Microcode

Hardware

Chapter 1. Introduction

The user/control program interface to the machine
product is called the System/38 instruction set. The
machine product that supports the System/38
instruction set is composed of hardware and microcode.
Microcode is further subdivided into HMC (horizontal
microcode) and VMC (vertical microcode). Definitions of
these terms are:

• Hardware: A combination of silicon, copper, and
frames providing a hardwired execution instruction
set.

• Microcode: Instructions providing the basic machine
control functions and supporting the System/38
instruction set.

• HMC: Microcode that exhibits a high degree of
parallelism of execution, controls the detailed state of
the hardware, and supports the IMP instruction set.
HMC executes the hardware instruction set.

• VMC: Microcode that defines logical operations on
data, is primarily sequential in execution, and
supports the System/38 instruction set. VMC is
executed in the IMP instruction set.

System Features

The IMP instruction set provides the fundamental
processing capabilities of the machine. It includes
decimal operations, with decimal shifting, providing
instructions for commercial applications. Floating-point
provides an instruction set for scientific computation.

Several of the instructions are executed in VMC. These
instructions are indicated as SVL instructions in
Appendix B. All other instructions shown in Chapter 10
are executed in HMC.

Introduction 1-1

1-2

Storage Descriptions

Storage is composed of more than one technology.
Except on performance, the effects of the physical
differences between storage types is not observable to
the application program.

Fetching and storing of main storage data by the
processor is temporarily prevented by I/O (input/output)
data transfer operations. When concurrent I/O requests
for access to a main storage location occur, access is
normally granted in a priority sequence.

If the first reference to a storage location changes the
contents of that location, any subsequent fetches from
that location will obtain the new contents.

Internal Microprogramming Structure 2-1

Register Descriptions

The hardware registers used with the processor can be
used individually or combined to form larger registers.
There are 16 SID (segment identifier) registers, 16 R
(2 - byte) registers, and 16 r (1-byte) registers as shown
in the following figure. R registers hex 8-F are divided
to form 16 single-byte registers, r(O)-r(F). The Sand R
registers are combined to form the B or base registers.
The 16 base registers can contain addresses during IMP
procedure execution. The address contained in base
register 0 (B[O]) points to the start of the instruction
stream, and all other instruction addressing and
branching within a procedure is relative to BO. Base
registers can be used to address areas in virtual storage
of up to 64 K-bytes each.

Four Bytes

S(O)

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

S(8)

S(9)

SIAl

SIB)

SIC)

S(O)

S(E)

S(F)

Registers-Relative Sizes

Two Bytes

R(O)

R(1)

R(2)

R(3)

R(4)

R(5)

R(6)

R(7)

R(8)

R(9)

R(A)

R(B)

R(C)

R(D)

R(E)

R(F)

One Byte

r(O) r(1)

r(2) r(3)

r(4) r(5)

r(6) r(7)

r(8) r(9)

rIA) rIB)

rIC) rID)

r(E) r(F)

Note: The number in parentheses indicates the number
of the associated register (S, R, or r).

2-2

.~

Data

The basic building block for all IMP formats is the 8-bit
byte.

For the purpose of error detection and correction, one or
more check bits are transmitted with each byte or group
of bytes. The check bits are generated automatically by
the hardware and cannot be directly controlled by the
program. References in this manual to the sizes of data
fields and registers exclude mention of the associated
check bits.

The storage capacity is expressed in the number of
bytes provided without regard to the storage width
(number of bytes fetched or stored in one storage
cycle).

The location of any field or group of bytes is specified
by the address of its leftmost byte.

The length of a field can be implied by the operation to
be performed. When the length is implied, there is no
corresponding length field and the field is said 'to have a
fixed length. Fixed-length data can be 1, 2, 4, 6 (in the
Load instruction), 8, 12, 16, or 32 bytes long.

When the length of a field is not implied by the
instruction operation code but is stated explicitly as a
length field in the instruction or as part of the data
accessed by the instruction, the information is said to
have variable length.

When information is placed in storage, the contents of
only those byte locations included in the designated field
are replaced, even though the width of the physical path
may be wider than the field being stored (fewer bytes
may be stored than the processor is capable of storing
in one storage cycle).

DATA TYPES

The computational instructions of the IMP operate on
five data types: binary, address, character, decimal, and
floating point.

Binary Data

An integer can be expressed as a signed or unsigned
binary number.

In an unsigned binary number, all bits express the
absolute value of the number. When two unsigned
binary numbers are added, the shorter number is treated
as if extended with high-order zeros. An unsigned
binary number can appear as a byte or halfword in
registers, or can be of variable length (1 to 256 bytes) in
storage.

In signed binary numbers, the twos-complement
representation of a negative number is considered the
sum of the integer part of the field (taken as a positive
number) and the maximum negative number. This is
obtained by inverting each bit of the number and adding
a one in the low order (units) position.

When an operand must be extended with high-order
bits, the expansion is achieved by prefixing the field
with bits equal to the sign bit. That is, positive numbers
have leading zeros, and negative numbers have leading
one bits.

Twos-complement notation does not include a negative
zero. The maximum positive number is an all-one
integer with a sign bit of zero. The maximum negative
number (the negative number with the greatest absolute
value) is an all-zero integer with a sign bit of one.

The processor cannot represent the complement of the
maximum negative number. When an operation, such as
a subtraction of the maximum negative number from
zero, attempts to produce the complement of the
maximum negative number, a binary overflow exception
occurs. An overflow does not result, however, when the
maximum negative number is complemented and the
final result is within the representable range. An
example of this is a subtraction of the maximum
negative number from minus one. The product of two
maximum negative numbers is represented as a
double-length positive number.

In discussions of signed binary numbers in this
document, the expression 16-bit signed integer denotes
a 15-bit integer with a sign bit (the maximum value is
+32 767 or -32 768). and 32-bit signed integer denotes
a 31-bit integer with a sign bit (the maximum value is
+2 147 483647 or -2 147483648).

Internal Microprogramming Structure 2-3

Address Data

Address data can have either a 6-byte or 2-byte format.
The 6-byte format consists of a 4-byte SID (segment
identifier) and a 2-byte offset. The SID identifies a 64
K-byte virtual address area called a segment. The offset
identifies a 512-byte page within a segment and a
single-byte location within the page. Base registers are
used to store address data; operations on address data
treat the data as unsigned binary values.

Character Data

Character data is stored in EBCDIC (extended binary
coded decimal interchange code) with each character
occupying an 8-bit byte.

Character strings are variable in length from 1 byte to a
maximum of 65 536 bytes. Operations on character
strings treat the data as unstructured logical quantities.

2-4

Decimal Data

Decimal data operands reside in storage and may be in
either zoned or packed format. IMP instructions are
provided for adding, subtracting, comparing, multiplying,
dividing, editing and shifting decimal data in packed
format only. Conversion instructions may be used to
convert between packed format and signed binary
format, between packed and zoned formats, and
between packed or decimal and long or short
floating-point formats.

Decimal Data Formats

In the zoned format, the rightmost 4 bits of a byte are
called numeric (N) and normally comprise a code
representing a decimal digit. The leftmost 4 bits of a
byte are called zone (Z), except for the rightmost byte of

the field, where these bits are a sign (5) code. In
System/38 a zone character is represented as binary
1111 or hex F.

In the packed format, each byte contains two decimal
digits (0), except for the rightmost byte, which contains
a sign (5) to the right of the decimal digit. The digit and
sign codes each comprise 4 bits.

Zoned Decimal Format

o 4 8 12 16 20 24 28 32 36 40 44 Bits

Packed Decimal Format

I D I ~ I DID I DID I DID I DID I Dis I

o 4 8 12 16 20 24 28 32 36 40 44 Bits

Decimal operands occupy fields in storage that start on
a byte boundary and can be variable in length (1 to 16
bytes). Decimal operands can overlap if the rightmost
bytes coincide (the Move Packed Shifted instruction
allows any overlap).

Decimal Number Representation

All decimal numbers are represented as right-aligned
true integers with plus or minus signs.

The digits and signs are coded as shown in the
following chart:

Binary Digit Sign
Code Symbol Symbol

0000 0 Invalid'
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid' Plus (+)

1011 Invalid Minus H
1100 Invalid Plus (+)

1101 Invalid Minus (-)2

1110 Invalid Plus (+)

1111 Invalid Plus (+)2

'Invalid means this code is not recognized
as valid for this symbol.

2The preferred sign code.

Digit and Sign Codes

A data exception occurs with the detection of an invalid
code. The operation is terminated when the digit code
is invalid, or suppressed when the sign code is invalid
(see Chapter 6).

Although alternate encoding of the sign in an operand is
accepted, the preferred sign codes are always generated
for the results of the decimal arithmetic operations.
Exceptions to this rule are permitted only during decimal
conversion (CVZP and CVPZ instructions) and editing
(EDPD instruction).

Floating-Point Data

A floating-point number is a bit string characterized by a
sign, a signed exponent. and a significand. Its value, if
any, is the signed product of its significand and 2 raised
to the power of its exponent. The exponent of a
floating-point number normally signifies the power to
which 2 is raised in determining the value of the
represented number. The significand of a floating-point
number consists of an implicit leading bit to the left of
its binary point and a fraction field to the right of its
binary point.

Internal Microprogramming Structure 2-5

Floating-point data has a fixed length, 4-bytes long
(short format) or 8-bytes long (long format). Both
formats are designated as operands in storage and must
be fullword aligned, or a specification exception occurs
and the operation is suppressed. The formats are as
follows:

Short Format

II
01 Bits 9 31

Long Format

II
01 Bits 12

Component Short Format Long Format

Sign Bit Bit 0 Bit 0

Exponent Bits 1-8 Bits 1-11

Fraction Bits 9-31 Bits 12-63

Floating-Point Number Representation

The floating-point number values that can be
represented by the short and long floating-point data
formats include both real and symbolic numbers.

Real numbers can be represented in either normalized or
denormalized format. In normalized format, the
significand for the floating-point number is formed by
assuming an implicit 1 bit to the left of the binary point
and concatenating the fraction to the right of the binary
point. As previously stated, the binary point in either
format is assumed to be to the immediate left of the
leftmost bit of the fraction; the fraction is expressed in
binary digits (bits).

2-6

63

The significand is multiplied by a power of 2; the
exponent indicates this power. The exponent field can
contain a value that can range from 0 through 255 for
the short format and 0 through 2047 for the long
format. The minimum bias value 0 identifies plus or
minus 0 and denormalized numbers, all of which are real
numbers. The maximum exponent values (255 and
2047) identify symbolic numbers. The biased exponent
when adjusted by the appropriate bias (-127 for the
short format and -1023 for the long format) yields a
signed (unbiased) exponent. This signed exponent
specifies the power of 2 which is to be multiplied with
the significand to produce the magnitude of the
floating-point number. The sign of the floating-point
number is either positive or negative, depending on
whether the sign bit is 0 or 1 respectively,

In addition to real numbers, the symbolic entities of plus
and minus infinity and a concept of not-a-number
(NaN) can be represented.

Infinity is represented by the maximum exponent value
(255 for short format and 2047 for long format) and a
fraction of all 0 bits. Infinity is either positive or
negative, depending on whether the sign bit is 0 or 1
respectively.

Not-a-number is represented by the maximum exponent
value and a fraction that contains one or more 1 bits.
There are two types of NaNs, masked and unmasked,
with the high-order bit of the fraction indicating the type
through a value of 1 or 0 respectively. The fraction
component of a NaN can have any value other than all
zeros. These values have no meaning, except that the
fraction value of a leading 1 bit followed by all zeros is
the value returned when a masked floating-point invalid
operand occurs and neither operand is an unmasked
NaN. Unmasked NaNs, when encountered in a
floating-point operation, force the detection of the
floating-point invalid operand condition. Masked NaNs"
when encountered in a floating-point operation, are
propagated into the result field, but do not force
detection of the floating-point invalid operand condition.
A potential usage of these NaN values is to set them
into uninitialized floating-point fields. This allows the
detection of a reference to a floating-point field that has
not been set with a value, by the time it is accessed.

The following information provides a summary of the
values that can be represented by floating-point data.
In the following formulas, S = the sign, E = the biased
exponent or reserved value, and F = the fraction
components of a floating-point field as previously
described. Additionally, the ** characters denote
exponentiation, and the'" character denotes a logical
not.

The values that can be represented in the short format
are:

• Normalized number
(For 0<E<255,
value = (-1)**S x 2**(E-127) x 1.F)

• Denormalized number
(For E=O & F..,=O,
value = (-1)**S x 2**(-126) x O.F)

• Signed zero
(For E=O & F=O,
value = (-1)**S x 0)

• Signed infinity
(For E=255 & F=O,
value = (-1)**S x infinity)

• Not-a-number (NaN)
(For S=O or 1, E=255, F..,=O and with:

high-order fraction bit =1 ;
value = masked NaN

- high-order fraction bit = 0;
value = unmasked NaN)

The values that can be represented in the long format
are:
• Normalized number

(For 0<E<2047,
value = (-1)**S x 2**(E-1023) x 1. F)

• Denormalized number
(For E=O & F..,=O,
value = (-1)**S x 2**(-1022) x O.F)

• Signed zero
(For E=O & F=O,
value = (-1)**S x 0)

• Signed infinity
(For E=2047 & F=O,
value = (-1)**S x infinity)

• Not-a-number (NaN)
(For S=O or 1, E=2047, F ... = 0 and with:

high-order fraction bit = 1;
result = masked NaN

- high-order fraction bit = 0;
result = unmasked NaN)

The range covered by the magnitude (M) of a
floating-point number is:
• In the short format:

Normalized
2**-126 ~ M ~ (2-2**-23) x 2**127
Denormalized
2**-149 ~ M ~ (1-2**-23) x 2**-126

• In the long format:
Normalized
2**-1022 ~ M ~ (2-2**-52) x 2**1023

- Denormalized
2**-1074 ~ M ~ (1-2**-52) x 2**-1022

Internal Microprogramming Structure 2-7

2-8

Short Format (4-bytes) Long Format (8-bytes)

Hex 7F800000 +infinity _Hex 7FFOOOOOOOOUOOOO
r---------------------------~

No representation

Maximum ((2-2**-23) x 2**127)
Hex 7F7FFFFF

Normalized

(2**-~26)
Minimum Hex 00800000

Maximum ((1-2**-23) x 2**-126)
Hex oo7FFFFF

Denormalized

(2**-149)
Minimum Hex 00000001

! No representation , , , , ,
: (+0) ,

, ,
I
I
I , , , ,
I
I

+

~' Hex ()()()()()()()Q
, (-0) ,
I Hex 800000OO

J----10
, , ,
I ,
: No representation
I ,
I

Maximum -(2··-149)
Hex 80000001

Denormalized

-((1-2··-23) x 2**-126)

Minimum Hex 807FFFFF

Maximum -(2**-126)
Hex 8080000O

Normalized

-((2-2*·-23) x 2**127)
Minirnum Hex FF7FFFFF

;-.
I
I
I , ,

!\J(C!)f"'; "ntat:or,

I , , , , , ,
I , ,
I

L ____________________________ ~

No representation

Maximum ((2-2**-52) x 2**1023)
Hex 7FEFFFFFFFFFFFFF

Normalized

(2**-1022)

Minimum Hex 0010000000000000

Maximum ((1-2·*-52) x 2**-1022)
Hex OOOFFFFFFFFFFFFF

Denormalized

((2**-1074)
Minimum Hex 0000000000000001

No representation i ,
I (+0) :

'~ Hex OOOOOOOOOOOOOOO]-1' , (-0) , , ,
I Hex 8OOOOOOOOOOOOOO !
1 I , ,
! No representation :

Maximum -(2··-1074)
Hex 8000000000000001

Denormalized

-((1-2**-52) x 2**-1022)
Minimum Hex BOOFFFFFFFFFFFFF

Maximum -(2·*-1022)
Hex 8010000000000000

Normalized

I -((2-2**-52) x 2*·1023)
~mum Hex FFEFFFFFFFFFFFFF

I ! No representation
I

Hex FF800000 -infinity Hex FFFOOOOOOOOOOOOO

Hex 7FCOOOOO
Hex 7FFFFFFF
Hex 7F80001.

Masked NaN minimum
Masked NaN maximt'm

Unmasked NaN minimum

Hex 7 F F8000000000000
Hex 7FFFFFFFFFFFFFFF
Hex 7 F F0000000000001

Hex 7FBFFFF. Unmasked NaN maximum Hex 7FF7FFFFF:-FFF;:FF
Note: Use of sign field bit value of 0 is arbitrary.

Normalization

Normalization is performed on intermediate results prior
to assigning their value to the result field. If the number
is nonzero, its significand bit becomes 1; the exponent
is regarded as if its range is unlimited. This produces
normalized floating-point data for which an implicit 1 bit
is assumed to be to the immediate left of the binary
point. If the significant is 0, the number becomes 0 with
the sign being set as described under Sign Bit and
Signed Zero. Normalizing a number does not change its
sign.

If a normalized floating-point number has an exponent
value that is outside the range supported for normalized
numbers in the destination format, one of the following
conditions is recognized:

• A floating-point overflow condition is recog.lized if
the exponent is greater than the maximum (127 for
short and 1023 for long).

• A floating-point underflow condition is recognized if
the exponent is less than the minimum (-126 for
short and -1022 for long) and either the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled.

Floating-point operations for which the floating-point
underflow condition is detected and masked at the time
of detection produce denormalized floating-point data in
the result field. Denormalization is performed on the
normalized intermediate result by shifting the significand
right while incrementing the exponent until the exponent
attains the formats assumed value for denormalized
numbers (-126 for short and -1022 for long). The
intermediate denormalized floating-point is then
represented in the result field by setting the result
exponent to the minimum value of 0 and the result
signed fraction to the value from the significand of the
intermediate denormalized floating-point number.
Rounding is performed according to the current rounding
mode on assignment of the significand value to the
result fraction. This produces denormalized
floating-point data for which an implicit 0 bit is
assumed to be to the immediate left of the binary point
and for which an unbiased exponent value of -126 for
short and -1022 for long is to be assumed. The
exponent value of 0, which correlates with unbiased
exponent values of -126 for short and -1022 for long,
serves as an identifier for denormalized floating-point
data and is not used to form the true signed exponent
of the floating-point number represented. The
underflow exception is signaled only if the result is not
exact.

Floating-point fields can only contain real numbers in
the normalized or denormalized formats. The concept of
an unnormalized number (one which would allow for a
variable exponent in conjunction with one or more
leading 0 bits prior to the first significant 1 bit) does not
exist and cannot be represented.

Internal Microprogramming Structure 2-9

2-10

Rounding

All floating-point operations are performed as if to
infinite precision and then, if necessary, rounded to fit in
the destination's format. Four mutually exclusive
rounding modes are supported: round to nearest. round
toward zero, round toward positive infinity, and round
toward negative infinity. The rounding mode bits are
kept in the TOE (task dispatching element). If y is the
infinitely precise number that is to be rounded, x is the
number with the largest representable significand less
than y, and z is the number with the smallest
representable significand greater than y (where the
exponents for x and z may be out of range); then, if y is
not representable in the destination format (needs
rounding). the rounding modes change y as follows:

• Round to nearest: y is changed to the closer of x or
z. If they are equally close, the even one (the one
whose least significant bit is a 0) is chosen.

• Round toward zero: y is changed to the smaller (in
magnitude) of x or z.

• Round toward positive infinity: y is changed to z,
unless z is negative and its exponent overflows the
destination's format. In this case, y becomes the
format's largest (in magnitude) negative real number.

• Round toward negative infinity: y is changed to x,
unless x is positive and its exponent overflows the
destination's format. In this case, y becomes the
format's largest positive real number.

Infinity

In infinity arithmetic, infinities compare equal regardless
of sign, and compare unordered with anything else.
Arithmetic operations on infinity are always exact.

Sign Bit and Signed 0

The sign of a product or a quotient is the exclusive OR
of the signs of the operands. The sign of a sum or a
difference differs from, at most, one of the signs of the
operands following the normal rules of algebra. These
rules apply even when operands or results are ° or
infinite. The only exception is when the sum of two
operands with opposite signs (or the difference of two
operands with like signs) is exactly 0, the sign of that
sum (or difference) depends on the current rounding
mode of the process. For round toward negative infinity,
the sign is minus; for all other rounding modes, the sign
is plus.

Exceptions

The following floating-point exception conditions can be
detected during floating-point operations:

• Floating-point inexact result

• Floating-point invalid operand

• Floating-point overflow

• Floating-point underflow

• Floating-point zero divide

• Invalid floating-point conversion

Associated with these exceptions (except the invalid
floating-point conversion) is a set of mask and
occurrence bits in the TOE.

The mask bit controls the signaling of the exception. If
the mask bit is 0, the exception is not signaled; if the
mask bit is 1, the exception is signaled. The mask bit is
only interrogated for its value. It must be set manually.

The occurrence bit records the detection of the
exception condition whether or not the exception is
masked at the time of detection (1 = occurred; 0 = has
not occurred). The occurrence bit must be manually
reset.

The definition of these exception conditions and what
the result of the operation will be when they are
detected is contained under Exceptions in Chapter 6.

Internal Microprogramming Objects

IMP objects are separately addressable units (or
collections of data) that have associated attributes as
well as operational characteristics based on these
attributes. The IMP objects support the tasking and I/O
structures of the IMP. These objects are used by certain
IMP instructions (such as Enqueue Message) and must
begin on fullword main storage boundaries without
crossing page boundarie's (see Data Alignment, in this
chapter). The IMP objects are:

• Task dispatching queue (TOO)

• Task dispatching element (TOE)

• Send/receive queue (SRO)

• Send/receive message (SRM)

• Send/receive counter (SRC)

A characteristic common to all IMP objects is the use of
the descriptor. The descriptor provides type and control
information about an IMP object. It is used during
execution of any IMP instruction that operates on an
IMP object, to ensure that the operand is valid for the
operation and to provide additional information about an
IMP object.

The descriptor is 2 bytes long. Byte 0 identifies the type
of IMP object being described and contains additional
information, including status information (see the
following figure).

Byte 1 of the descriptor is used by the processor to
monitor accesses to the SRM, SRO, and TOE IMP
objects. If the processor detects byte 1 #: hex 00 while
executing an operation that accesses one or more of
these objects, a descriptor access exception occurs.

Byte 1 of the TOO descriptor is ignored.

When an IMP object is initially created, bytes 0 and 1
must be appropriately initialized or unpredictable results
will be encountered. (For more information see Chapter
5, Tasking.)

Internal Microprogramming Structure 2-11

Descriptor Typ&-Byte O. Bit Assignment

Bits'

0 1 2 Mnemonic Name

0 0 0 TDQ Task Dispatching Queue

0 0 1 TDE Task Dispatching Element

0 1 0 SRQ Send / Receive Queue

0 1 1 SRM Send/Receive Message

1 0 0 SRC Send/Receive Counter

1 0 1 - Not valid

1 1 0 - Not valid

1 1 1 - Not valid

, Bits 3 through 7 are object dependent and are described in Chapter 5.

DATA ALIGNMENT

Data alignment must meet the following requirements:

• Instructions must begin on halfword boundaries.

• Halfword storage operands must begin on halfword
boundaries.

• Fullword storage operands must begin on fullword
boundaries.

• Full addresses (6 bytes) in storage must begin on
halfword boundaries.

• Intermediate address fields for certain instructions
(BALL, CLCL, and MVCL) must begin on fullword
boundaries and for CLCL and MVCL cannot cross
page boundaries.

• Floating-point data (long or short format) must begin
on fullword boundaries.

2-12

• IMP objects must begin on fullword boundaries and
cannot cross page boundaries (see the note under
Send/Receive Message in Chapter 5 for an exception).

• Doubleword alignment is required for certain I/O
objects (see I/O Addressing Restrictions in Chapter 7),
some addresses in the control address table (see
Assigned Virtual Storage Locations in this chapter).
and the repetitive interval timer doubleword (see
Interval Timers in Chapter 9).

• Space pointers must be quadword aligned.

• The hash table and primary directory must be aligned
on an SID (segment identifier) boundary.

If the alignment requirements are not met, a
specification exception occurs. If the system is
attempting to recover from some malfunction and the
system encounters an object not in proper alignment, a
machine check occurs.

l
ADDRESSING

All addresses used by the processor in executing
instructions or fetching data are virtual addresses. The
complete virtual address of any byte of storage is 48
bits containing an SID (segment identifier) and an offset.
The offset contains a PID (page identifier) and a BID
(byte identifier).

Segment Identifier Offset

SID PID BID

o Bits 32 39 48

The SID uniquely identifies a 64 K-byte virtual address
area called a segment. The entire virtual storage of the
VMC can be considered a collection of nonoverlapping
segments.

The offset identifies a 512-byte page within a segment
and a single-byte location within the page. Therefore, it
provides for relative addressing of up to 65 535 bytes
beyond the location designated by the SID.

Storage operand addressing is achieved by adding a
displacement to a base register identified by the
instruction. The displacement is a 12-bit field also
found in the instruction.

Address translation uses the VAT (virtual address
translator) facilities described in Chapter 8. These
facilities include:

• Hash Table-a list of entries used to index the primary
directory.

• Primary Directory-a table of the virtual addresses of
a page. The table also provides status information
about the page.

• Lookaside Buffer-a high-speed buffer storage that
contains some of the information specified in the PD
(primary directory). The translation process is
shortened if the virtual address referred to is currently
listed in the LB (lookaside buffer).

The following virtual addresses are called virtual = real
addresses and do not use the VAT facilities. Virtual =
real addresses are invalid if they exceed the amount of
real storage configured for the processor.

Virtual = Real Address

Segments
of Real

Segment Identifier (SID) Storage
Model Values Addressed

3,4, and 0000 0100 through 0000 First 32
5 011F

6, 7, and 0000 0100 through 0000 First 256
8 01FF

Eight system control instructions are used to verify a
virtual address and maintain the VAT facilities. These
instructions are HWA, IPDE, RRCRR, LPDEA, LHTEA,
LPDEAR, EPDE, and RPDE.

Virtual address overflow protection is only on segment
boundaries. When an offset attempts to overflow into
the next SID, either the SID is incremented by 1 or an
effective address overflow exception occurs. Which of
these two events occurs is determined by the instruction
involved, the model. the level of horizontal microcode,
and the hardware. If a carry out of bit 24 occurs when
adding 1 to the high-order 32 bits of a storage address,
an effective address overflow occurs.

Internal Microprogramming Structure 2-13

Instructions

Each instruction consists of two major parts: an op
(operation) code and one or more operands.

• The operation code specifies the operation to be
performed.

• The operands designate the data or address of data
for the operation.

In addition, certain instructions may contain operand
lengths, masks, or other control information needed to
perform the specified operation.

OPERATION CODES

The operation code for an IMP instruction consists of an
8-bit code that is unique to either one instruction or to a
set of instructions that use a unique operation code
extender. The operation code occupies the first byte of
the instruction. Appendix C shows the operation code
assignments.

Operation Instruction
Code Length Format

OOOx xxxx 2 bytes RR

D01x xxxx 2 bytes RR

010x xxxx 4 bytes RI, R5, or 51

011x xxxx 4 bytes RI, R5, or 51

1DOxxxxx 4 bytes RI, R5, or 51

101x xxxx 6 bytes 51 or 55

110x xxxx 6 bytes 51 or 55

111xxxxx 6 bytes 51 or 55

OPERANDS

Operands can be grouped in three classes and can be
either explicitly or implicitly designated. The classes are:

• 5 (storage operands)-Iocated in real storage

• R (register operands)-Iocated in registers (internal
storage)

• I (immediate operands)-Iocated in the instruction
itself

2-14

The length of an operand in storage can either be
implied by the operation code, be specified by a bit
mask, be explicitly provided by a register, or be
specified by a 4-, 8-, or 16-bit L (length) field
contained in the instruction or operand.

For explicitly stated variable length operands, the length
code in the L field specifies the number of additional
bytes to the right of the byte designated by the storage
operand address. Therefore, the length in bytes is one
more than the value of the L field.

The addresses of operands in storage are specified by
means of a format that uses the contents of a B (base)
register as part of the address. This makes it possible
to:

• 5pecify a complete address by using an abbreviated
notation.

• Perform address manipulation using instructions that
use base registers for operands.

• Modify addresses by program means without
alteration of the instruction stream.

• Operate independently of the locations of data areas
by directly using addresses received from other
programs.

The address used to refer to storage is contained in a
register designated by the B field in the instruction, or is
calculated from a base address and displacement
designated by the Band D (displacement) fields in the
instruction.

Register operands are located in registers identified in a
4-bit field in the instruction.

Immediate operands are contained within the instruction
in a half-byte, byte, or halfword I (immediate) field.

To describe the execution of instructions, storage
operands are designated as first and second (and in
some cases, third) operands.

In general, two operands participate in the execution of
an instruction. The result replaces the first operand.
Except for storing the final result, the contents of all
registers and storage locations participating in the
addressing or execution of an operation for most
instructions remain unchanged. A few instructions (such
as TRT) also modify operands other than the final result.

Operand referencing is summarized in Figure 2-1. This
figure shows the use of storage, immediate, and register
operands.

o o
G

Operation Code
Number of a halfword register (hex value).
R(O)-R(F).

Number of a 1-byte register (hex value).
r(O)-r(F); or a 4-bit operation code extension
field, E
Immediate operand

G Number of a base register (hex value). B(O)-B(F)
B(n) = SIn) concatenated to R(n). where n is a
value of hex 0 to F o A 12-bit displacement added to the base

e
«I)

register
Storage operand addressed by B + D

Length of the storage operand in bytes, minus
one

Note: The format used here does not represent an
actual instruction. It does, however, illustrate the use of
actual fields.

4 Bytes 2 Bytes

R(O) 11---------,SIOI \ q
--... --... -r-" -- -- -r-"

I~
S(7) R(7)

1 Byte 1 Byte

--! S(8) \'L R(8) rIO) r(1)

--... -- -- --... --... --... --

T ~d
-- -r-"

S(F) R(F)

-r-" -r-" --
e rIEl r(F)

I

0 eoe 0
Op

R /
Code E

L I B D

G 0 I

6
e \0

Figure 2·1. IMP Operand Reference

Internal Microprogramming Structure 2-15

FORMATS AND EXAMPLES

An instruction is 1, 2, or 3 halfwords in length. Each
instruction must be aligned on a halfword storage
boundary and cannot cross a segment boundary. The
basic instruction formats are shown in the following
figure. The format of an instruction is dictated by the
type of operation to be performed. In the figure, the
bytes in each format are labeled with letters that
indicate the use for each byte. The use of the bits
within a given format can vary from instruction to
instruction.

2-16

Basic IMP Formats

All IMP instructions fall within one of the following
categories. Within each category, some instructions
differ slightly from the basic format shown:

RR (register to register) - 2 Bytes

I~~:ationl Rl IR2/E\

RI (register and immediate) - 4 Bytes

I ~~:ationl RilE 1 12 I

RS (register to storage) - 4 Bytes

\ ~~~:ation 1 Rl 1 E I B21 D2

SI (storage and immediate) - 4 Bytes

1~~:ationF'~j Bl I Dl I

SI (storage and immediate) - 6 Bytes

SS (storage to storage) - 6 Bytes

Legend2

B

D

E
I

J

L

M

R

Base register

Displacement

Operation code extension field

Immediate

Jump displacement'

Length

Mask'
Halfword register

One-byte register'

'Symbols not shown in the examples above are used in the
formats in Chapter 10.

2Subscript numbers that appear with these letters designate
the operand number.

Note: A field left blank in the instruction format
diagram may contain random values that are not
important to the execution of the instruction; the same
field is represented in the instruction example with the
placeholder o.

ADDRESS GENERATION

The storage address can be contained in a register
designated by the B (base register) field in the
instruction or calculated from a B and a D
(displacement) field in the instruction.

The base address is a 48-bit number contained in a
base register specified by the 4-bit B field of the
instruction. A base address can be used as a means of
independently addressing each program and data area.
In array-type calculations. it can specify the location of
an array. In record processing. it can identify the record.

In forming the storage address. the 16-bit offset (page
and byte identifiers) portion of the base register and the
12-bit displacement field of the instruction are added as
unsigned binary integers. The sum is always 16 bits
long and is logically appended on the right to the
lligh-order 32 bits of the base address. When an
overflow occurs. either the high-order 32 bits of the
storage address are incremented by one or an effective
address overflow exception occurs. Which of these
events occurs depends upon the particular instruction
involved. the model and the engineering level of the
horizontal microcode. and the engineering level of the
hardware. If. in adding 1 to the high-order 32 bits of
the storage address. a carry occurs from bit 24. an
effective address overflow exception occurs.

A zero on the R (2-byte register). B (base register). or D
(displacement) fields has no special significance except
to denote the use of register zero or a zero
displacement.

An instruction can designate the same base register
both for address computation and location of an
operand. Address computation is completed prior to the
execution of the operation.

Unless otherwise indicated in the individual instruction
definition. the computed operand address designates an
operand in storage. When a storage operand is
designated, the address points to the leftmost byte of
the operand.

To find the effective address of a storage operand, first
use the B field of the instruction to locate the base
register; then add the contents of the base register and
the contents of the D field of the instruction (see Figure
2-1) as follows:

Effective Address = Contents of Base Register +
12-bit displacement

EXECUTION

The IAR (instruction address register) contains a 2-byte
offset into the segment identified by the SID (segment
identifier) contained in register S(O). In program
execution. the next instruction is fetched from the
location designated by the IAR. The instruction address
is then increased by the number of bytes in the
instruction in order to address the next instruction in
sequence. The instruction is then executed. and the
same steps are repeated using the new value of the
instruction address.

The normal sequential execution of instructions can be
changed by:

• The use of branching instructions to perform
subroutine linkage. decision making. and loop control.

• Conditions arising during program execution that
cause linkage to an exception-handling routine.

• Conditions arising external to the currently executing
program. Such conditions can cause interruption of
processing. the storing of information describing the
current program. and the invocation of another
program that is part of the task whose condition
caused the interruption.

Conceptually. the processor processes one instruction at
a time. executes instructions sequentially. executes the
instruction specified by the branch address following the
successful execution of the branch, and allows interrupts
to take place between the execution of instructions.
Physical storage width and overlap of instruction
execution with storage accessing may cause actual
processing to differ from this concept. Each operation is
performed sequentially with the next instruction being
prefetched before the current operation is completed.
Modification of succeeding instructions while using
prefetch will produce unpredictable results.

It can be assumed that the execution of each instruction
occurs as an indivisible event. However, in actual
operation, the execution of an instruction can consist of
a series of discrete steps. Depending on the instruction,
operands can be fetched and stored in a piecemeal
fashion, and some delay can occur between fetching
and storing a result.

Programming Note: Because of a hardware restriction
the last fullword of a segment on Models 3, 4, and 5
should not contain an instruction.

Internal Microprogramming Structure 2-17

BRANCHING

A branch instruction (ALHBL, BC, BCN, BCNX, BCT,
BU, TMBIBO, and TMBIBZ) is used for branching within
the instruction stream that contains the branch
instruction. The halfword displacement in the instruction
(or pointed to by the instruction) is added to the
contents of register R(O), and the result replaces the IAR
(instruction address register).

The address in registers S(O) and R(O) must always point
to the start of the instruction stream because all
branching is done relative to this address.

The Branch Internal (BI) instruction is used for branching
within the current segment group.

A jump instruction (JBN, JBF, and JC) works relative to
the IAR. A 1-byte displacement is added to the 2-byte
IAR to form the address of the next instruction.

A linkage instruction (BAL, BR, BALL, BRL, and CALLI)
provides a mechanism to do a branch and link and a
return. BAL (Branch and Link) and BR (Branch Register)
instructions provide linkage to instructions in the same
segment. BALL (Branch and Link Long) and BRL
(Branch Register Long) provide linkage to instructions in
a different segment.

Programming Note: The extended mnemonics used by
the IMP instruction assembler for the BC, BU, and JC
instructions are listed with their respective instruction
descriptions.

CONDITION CODES

Facilities for decision making are provided by the branch
instructions. A 4-bit condition code reflects the results
of most of the arithmetic, logical, and other manipulation
and control instructions. Each of these operations can
set (and reset) bits of the condition code and the
branching instructions can specify (by masking) any
selection of the bits as the criterion for branching. (See
Chapter 10, Instruction Descriptions for the specific
condition code settings.)

2-18

SUPERVISOR LINKAGE

The normal sequential execution of instructions can be
changed by conditions arising during program execution.
The IMP SVL (supervisor linkage) provides a trapping
mechanism to handle these interruptions.

The SVL instructions have the following format:

I
I
I
I
I
I
I
I
I
I
I

48

Explicit

jL - -"'---.l ... R_e_9_is_te_rS+-_F_la_9S_t-_A_dd_r_eS_s_---i

Implicit

For explicit SVLs, the second byte of the SVL instruction
is used as an index into a main storage area called an
SVL table. For implicit SVLs, the operation code acts as
an index into the SVL table.

Each entry in the SVL table contains the number of
registers to be stored, the address of the procedure to
which control is passed, and other descriptive and'
control information.

Whenever the processor passes control via an SVL it
automatically saves certain designated machine facilities
such as the IAR (instruction address register), exception
code, and condition code values. In addition, it
optionally saves base registers. These facilities are
saved in a special list element known as the CRE
(call/return element).

See Chapter 6 for a description of the SVL facilities.

PROGRAM EXCEPTIONS AND INSTRUCTION
LENGTH COUNT SETTINGS

Exceptions that result from the execution of instructions
are called program exceptions. The SVL (supervisor
linkage) mechanism is used to indicate exceptions. The
first entry of the SVL table is the implicit index value
associated with program exceptions.

For a more detailed explanation of exceptions and
exception codes. see Call/Return Element and Exceptions
in Chapter 6.

Concurrent Exceptions and Causes

Exception Causes

Soft address compare Main store address compare when in address compare mode.

Task interval timer Task interval timer expired during a timed task.

Monitored ACO (available An exception SVL detected a monitored ACO (header byte 1 #:
call/return element queue) hex (0) during an implicit CRE receive.

Monitored CRE A monitored CRE (byte 1 #: hex (0) was detected. due to an
(call/return element) implicit receive by an exception SVL.

Monitored TDE (task No available CREs exist for an implicit receive by an exception
dispatching element) SVL. and the current TOE is monitored (byte 1 #: hex (0).

Instruction Is

Completed (Note 1)

Nullified

Note 2

Note 2

Note 2

Note 1: A soft address compare exception during an instruction stream fetch nullifies the instruction.

Note 2: The instruction termination state is determined by the concurrent program exception condition.

Internal Microprogramming Structure 2-19

Program Exceptions and Causes

Hex Instruction
Code Exceptions Causes Is

00 No Exception

02 Invalid Descriptor Invalid field encountered during operation on IMP object. Terminated

04 Busy 1. SRO (send/receive queue) busy. Nullified

2. Hold/Free Chain busy. Nullified

06 Reserved

08 Allocate Page Frame OU task requests page frame to be allocated and cleared in main Nullified
storage.

OA Monitored Descriptor SRO (send/receive queue) access attempted when its byte 1 is Suspended
SRO nonzero.

OC Monitored Descriptor SRM (send/receive message) access attempted when its byte 1 is Suspended
SRM nonzero.

OE Monitored Descriptor TDE (task dispatching element) access attempted when its byte 1 is Suspended
TDE nonzero.

10 Send / Receive Counter A carry from the high-order position of the count field occurred Terminated
Overflow during a send operation.

12 Address Translation Unable to translate a virtual to a real address by using VAT. For Nullified
GHRF. GHR. FHRF. and FHR instructions. the instruction is
completed and condition code 3 is set if exception occurs on hold
record chain.

14 Programming Event An instruction is executed in a defined address range.

1. If not masked (bit 8 of TDE exception mask field is set) Nullified

2. If masked (bit 8 of TDE exception mask field is reset) Completed

16 Execute Subject of EX instruction is another EX instruction Suppressed

18 Specification 1. Improper alignment Suppressed

(see note) 2. Other conditions (see Specification Exception in Chapter 6). Suppressed

lA Addressing 1. Invalid virtual = real instruction address. Suppressed

2. Invalid virtual = real operand address. Terminated

1C Effective Address 1. Offset overflow during effective address calculation. Suppressed

Overflow 2. Storage operand crossed segment boundary. Suppressed

lE Data 1. Invalid decimal sign code. Suppressed

2. Invalid decimal digit code. Terminated

3. Insufficient left zeros in multiplicand (MP). Terminated

Note: All instructions are tested for this exception.

2-20

Program Exceptions and Causes (continued)

Hex Instruction
Code Exceptions Causes Is

20 Binary Overflow 1. Carry from sign bit and carry from high-order numeric bit Completed
disagree.

2. Result exceeds 31 bits (CVPB). Completed

3. Significant bits are lost (SLA). Completed

22 Binary Divide Quotient exceeds the size of the result field or an attempt to divide Suppressed
by zero.

24 Decimal Overflow Destination field is too small for the result. Completed

26 Decimal Zero Divide An attempt to divide by zero. Suppressed

28 Floating- Point Resultant exponent is too large. Completed
Overflow

2A Floating- Point Resultant exponent is too small. Completed
Underflow

2C Floating-Point Inexact Rounded result is not exact. Completed
Result

2E Floating-Point Zero An attempt to divide by a number with a zero fraction. Suppressed
Divide if not

masked;
Completed if
masked

30 Operation (see note) Invalid operation code Suppressed

32 Stack 1. Stack entry to be removed during unstack has flag bit 15 (first Suppressed
entry in segment) set.

2. Stack operation adds entry that extends beyond stack limit Suppressed
value.

34 Verify A verify exception occurs when an LVT, AHSPOI. AHSPO, or AFSPO Suppressed
instruction detects an invalid operand.

36 Chain Conflict 1. Conflict on an object hold operation. Nullified

2. Object free operation attempted to free a monitored hold. Nullified

38 End-of-Chain 1. Empty chain on free operation. Nullified

2. End (If available chain on hold operation. Nullified

3. No matching hold on free operation. Nullified

3A Edit Digit Count 1. End-of-source field was reached and there are more control Terminated
characters corrp-sponding to digits in edit-mask field than in
source field.

2. End-of-edit-mask field was reached and there are more digit Terminated
positions in the source field.

Note: All instructions are tested for this exception.

Internal Microprogramming Structure 2-21

Program Exceptions and Causes (continued)

Hex Instruction
Code Exceptions Causes Is

3C Length Conformance 1. More character positions in result than in edit-mask field Terminated
(EDPD).

2. More character positions in edit-mask field than ,in result field Terminated
(EDPD).

3. Incorrect number of hex B2's following a hex B1 (floating Terminated
string) field in the edit mask (EDPD).

4. The converted form of the source record is larger than the Terminated
result record length (CVTMC).

3E Edit Mask Syntax 1. Invalid control characters in edit-mask field. Terminated

2. End-of-string character field termination missing. Terminated

40 Invalid Segment 1. Leftmost 3 bytes of virtual address are invalid. Suppressed

Group Address 2. Address below lower boundary address. Suppressed

3. Overflow generated in calculation of 3-byte address. Suppressed

42 Floating-Point Invalid An operand or operation is invalid. Suppressed if
Operand not masked;

Completed if
masked

44 Reserved

46 Second Chain Search A Grand Hold or Free Hold instruction has determined that a Nullified
secondary chain must be searched.

47 Reserved

48 Conversion 1. Data length in string control byte is zero for CVTMC or CVTSC Terminated
instruction.

2. The end of source is encountered before the end of a Terminated
compression string in CVTSC.

3. A compression string describes a character string which would Terminated
cross a record boundary in the receiver,CVTSC.

4A Invalid Floating-Point When overflow, infinity, or not-a-number precludes accurate Suppressed
Conversion representation in binary format.

4C-7F Reserved

80 Invalid Segment 1. Operand addresses are not within the same segment group. Suppressed

2. Segment or segment group specified by first operand does not Suppressed
exist.

2-22

Program Exceptions and Causes (continued)

Hex Instruction
Code Exceptions Causes Is

81 Invalid Page Segment group size was less than 16 megabytes and a reference Suppressed
was made to an address that would have been valid if segment had
been larger (PPR).

82 Page Read Error Permanent I/O error while reading page from auxiliary storage. Terminated

83 Invalid Pool State Too many pages pinned to perform bring or clear with pin (PPR). Suppressed

84 Invalid Pin Request 1. Attempted pin was 256th pin for same page. Suspended

2. Unpin attempted on unpinned page.

85 Invalid Write Request Write requested to a pinned page. Suppressed

86- Bad Main Storage Changed data in main storage could not be accessed due to a Terminated
8F Page Frame memory failure.

Internal Microprogramming Structure 2-23

The cause of the exception is identified in the exception
code field of a CRE (call/return element). See Chapter 6
for the bit assignment of this field.

The ILC (instruction length count) is a 3-bit code that
provides the length of the last instruction executed. The
ILC permits identifying the instruction causing the
exception when the IAR (instruction address register)
designates the next sequential instruction. The value of
the ILC indicates the number of bytes that the IAR has
been incremented. The status field of a CRE or a TOE
(task dispatching element) contains the ILC after an
exception has occurred.

Program exceptions are treated according to the cause.
The instruction being executed at the time of the
exception is handled in one of the following ways:

• Completed-the instruction is allowed to continue to
completion with predictable results and the IAR is
advanced to the next instruction address. The I LC
indicates the length of the completed instruction.

• Terminated-the instruction is terminated at the point
of the exception with unpredictable results and the
IAR is advanced to the next instruction address. The
ILC indicates the length of the terminated instruction.

2-24

• Suppressed-the instruction is not allowed to continue
and the IAR is advanced to the next instruction
address. The result fields are not changed. The ILC
indicates the length of the suppressed instruction.

• Nullified-the instruction is stopped with the IAR not
advanced to the next instruction address. The ILC is
set to zero.

• Suspended-the instruction is stopped at the point of
the" exception and checkpoint data is stored in a
reserved area. So that the operation can be resumed
at the point of the exception, the IAR is not advanced
to the next instruction address. The ILC is set to
zero.

Permanent Storage Assignments

CONTROL ADDRESS TABLE

To execute the IMP tasks, the location of certain control
information must be known to the processor. This
information includes all of the system-known queue
headers, the addresses of the system exception handling
routines, and the storage management parameters
including the storage page tables. This control
information is located in the segment at hex 0000 0100,
beginning at offset hex 0000.

ASSIGNED VIRTUAL STORAGE LOCATIONS

The control address table entries are shown in Figure
2-2. Those entries that have not already been described
are covered in subsequent chapters.

The addresses are right aligned on doubleword
boundaries for ease of indexing by the processor. The
objects pointed to by the addresses in the table (except
for the Funct!on Routine Address Table or the first
available hold record, neither of which references
resident data) must be resident in main storage and
properly aligned; otherwise a machine check occurs. An
improper alignment of that object causes a program
specification exception.

The leftmost 2 bytes of each table entry are reserved,
and except where specified, must be set to zero.

Internal Microprogramming Structure 2-25

Byte Use Virtual =
(Hex) Code' Real Address Of

0 d Yes Main store defective frame table (If an alternate IMPL is performed, the length of the
overlay area [in bytes 1 is placed in the high-order [leftmost 1 2 bytes for use by
Service Monitor 1; otherwise, the high-order 2 bytes are unused.)

8 a Yes HMC overlay area (If an alternate IMPL IS performed, the length of the overlay area
(in bytes) is plaCf~d in the high-order (leftmost) 2 bytes for use by Service Monitor 1;
otherwise, the high-order 2 bytes are unused.)

10 a Yes Hash. table address and the number of entries-1 in the leftmost 2 bytes2

18 a Yes Primary directory address and the number of entries-1 in the leftmost 2 bytes

20 a No I/O event stack (must be pinned and V=V)

28 a/b3 Yes I/O register table

30 Reserved

38 b Yes Machine check log buffer

40 b Yes Machine check handler

48 c Yes Current TDE (task dispatching element) or previous TDE when the processor is in the
wait state

50 a No Prime TDQ (task dispatching queue)

58 Reserved

60 b No SVL (supervisory linkage) table

68 b No ACQ (available CRE queue)

70 b No Repetitive interval timer doubleword

78 b No SRC (send/receive counter) for interval timer

80 b No SRC for clock comparator

88 a Yes Hash table for hold/free instructions

90 c No First available hold record for hold/free instructions

98 b No Task switch trace table (must be pinned if V=V)

AO b No FRAT (function routine address table)

A8 b No Instruction address sampler control block

'Use codes:
a. Loaded into the processor at IPL (initial program load) or IMPL (initial microprocessor program load) time.
b. Referenced by the processor whenever an address is needed by HMC (horizontal microcode).
c. Altered by the processor as required.
d. Loaded and used at IMPL time.

2Programming note: The number of entries in the hash table must be a power of two.
3The use code is a for Models A and C and b for all other models.

Figure 2·2. Assigned Virtual Storage Locations

The continuation of the control address table (MCA,
machine communications area) is described in the
Vertical Microcode Data Areas manual.

2-26

Chapter 3. Horizontal Microcode Support Functions

Horizontal Microcode Procedures

An HMC (horizontal microcode) procedure has many of
the characteristics of an IMP (internal
microprogramming) procedure in that it uses the IMP
facilities and operates on operands in storage. It is
different in that the horizontal microcode instructions
execute directly on the processor hardware and are
addressed by the CSAR (control store address register)
rather than the IAR (instruction address register).

HMC procedures, the primary communications device in
the OU (operational unit) tasks (see Chapter 71. perform
built-in processor functions that support the IMP. These
procedures provide a highly developed yet controlled
operation to enhance the performance of the processor.
HMC procedure functions are distinguished in this
manual from the processor built-in functions as follows:

• HMC procedures can incur page faults and. other IMP
exceptions; processor built-in functions cannot incur
page faults and other IMP exceptions.

• HMC procedures compete with IMP procedures and
other HMC procedures for system resources via the
task dispatching structure; processor built-in
functions execute immediately (on the next IMP

. instruction boundary or interruptible point if the
instruction is interruptible) when invoked.

An HMC procedure can use the same processor built-in
functions that are invoked by an IMP procedure via an
IMP instruction. An example of this could be a particular
queueing (causing to wait) function that is invoked via
an IMP instruction as well as an HMC procedure .. When
done via an IMP instruction, this is referred to as an
explicit invocation. When done via an HMC procedure, it
is referred to as an implicit invocation. While executing
an HMC built-in procedure or function, no IMP
instructions are executed. That function is accomplished
below the IMP interface.

The IMP processor can also remain idle while waiting
for work; in this condition, no dispatchable task exists.

Transfer of control from an HMC procedure via the SVL
(supervisor linkage) mechanism is performed only for
exceptions.

Horizontal Microcode Support Functions 3-1

Horizontal Microcode Built-In Functions

A built-in function consists of processor operations that
have the following attributes:

• If page faults or other exceptions are detected during
execution, a machine check occurs. (See Chapter 9
for a description of machine check handling.)

• Built-in functions are not associated with any task.

• Built-in functions are not implemented by IMP
procedures.

Built-in functions include:

• I/O event handler (see Chapter 4 fora description)

• Task dispatcher (see Chapter 5 for a description)

• Clock comparator and interval timer event signaling
(see Chaptar 9 for a description)

• Exception handler

• Machine check handler

Built-in functions can be invoked by:

• IMP instructions

• HMC procedures

• Other built-in functions

• Asynchronous events

TASK DISPATCHING

The execution of procedures by the processor is
controlled by the tasking structure. Each IMP task is
represented by an IMP object called a TOE (ta!>k
dispatching element). A task then may be thought of as
a unit of executable work and is composed of one or
more procedures that are synchronously executed to
perform that unit of work.

Since any task may have to wait periodically (for
example, due to I/O requests or page faults), provisions
are made for multiple tasks to compete for the
resources of the processor, each task being represented
by a TOE.

3-2

The TOEs representing dispatchable tasks (those tasks
not waiting for the completion of some operation) are
enqueued in priority sequence on a chained list known
as the TOO (task dispatching queue), which is also an
IMP object.

To initiate processing, a built-in function known as the
task dispatciter ffiinvoked;' The task dispatcher accesses
the TOO and selects the first TOE on the list as the task
to begin executing.

For other than the current task, the TOE contains the
current state of a task (lAR, condition code, base
registers, and so forth). Therefore, the dispatcher
accesses the TOE from which the processor is loaded to
begin executing the current procedure of that task. This
task is then referred to as the current or active task.

Conversely, the task dispatcher may place the active
task in the inactive state by reversing the previous
process. That is, the state of an active task is stored in
its TOE. The loading and storing of the state of an IMP
task is illustrated in the following figure:

TOQ

VMC Processor

Load

Store

TOE =:-J

The processor is the control center of the machine. It
contains the sequencing and processing controls for
instruction execution, tasking and exception handling,
timing facilities, initial program loading, and other
machine related functions.

The processor can process binary integers (in fixed or
variable length), floating-point numbers, decimal
integers of variable length, and logical information in
fixed or variable lengths.

The processor can reference and change virtual
addresses (see Operands in Chapter 2) in the 16 base
registers. These registers are designated by a 4-bit B
(base register) field in an instruction. Some instructions
provide for addressing multiple base registers by having
more than one B field.

Chapter 4. The Processor

The Processor 4-1

Processor States

When machine power is on, the processor is in either
the operational state or the stopped state.

OPERATIONAL STATE

The operational state is the normal execution state of
the processor. In this state, instruction execution can
proceed, built-in functions are enabled, timers are
operational, and the I/O channel facilities are active.

Within the operational state, the processor may be
either in the run state or in the wait state.

When the processor is in the run state, it is executing
either an IMP (internal microprogramming) procedure, an
HMC (horizontal microcode) procedure, or a built-in
function. Conversely, when the processor is in the wait
state, there are no tasks that are dispatchable.

An IMP task is dispatchable only if its TOE (task
dispatching element) is enqueued to the TOO (task
dispatching queue).

Note: A task is not dispatchable if its TOE is enqueued
to the wait list of an SRO (send / receive queue) or SRC
(send/receive counter). In this case, the TDE is said to
be im'lctive and waiting.

The processor is placed in the wait state by the task
dispatcher as the result of a task switch when the TOO
contains no TOEs. In this state, the processor is waiting
for additional work.

Note: The processor is removed from the wait state
either as the result of a built-in function issuing an
implicit send operation that causes a TOE to be moved
to the TOO or as the result of a machine check. .

4-2

STOPPED STATE

The processor can be put into three different stopped
states:

• Processor stop

• M icroprocessbr stop

• Check stop

The processor can be put into the processor stopped
state through the machine console. In the processor
stopped state, no IMP instructions are executed and the
interval timers are not updated. The time-of-day clock
and the clock comparator are still operational. Events
from I/O, timers, and SCA (system control adapter) are
still handled.

The processor can be put into the microprocessor
stopped state through the machine console. In this
state, no HMC or IMP instructions are executed. The
interval timers, time-of-day clock, and clock comparator
are not updated, and exceptions from I/O and timers
are not handled.

The processor can be put into the check stopped state
via one of the following mechanisms:

• The built-in HMC machine-check function determines
that a terminating machine check has occurred.

• The processor hardware encounters a terminating
machine check.

• A VMC procedure issues a Terminate Immediately
instruction while in machine-check mode.

The check-stopped state is a special form of the
microprocessor stopped state that normally requires an
IMPL (initial microprogram load) operation in order to
restart the processor (see Check Stop in Chapter 9 for
further information).

Input/Output and Asynchronous Events

In IMP, all I/O operations and communications with
asynchronous processing run concurrently with task
execution, and are handled as intertask exchanges of
messages on queues. I/O devices, external processors,
and asynchronous operations appear to have
characteristics similar to an IMP task. Rather than
interrupting IMP processing to signal an event or
condition, I/O devices and asynchronous events are
handled by the I/O event handler and the OU
(operational unit) task.

QUEUE INTERFACE

All I/O operations are handled by a queuing structure.
An IMP task, in control of an I/O operation, sends a
command to an OU command queue used as input to
an OU task. After command execution, the OU task
sends the command response to the IMP task. The IMP
task (for example, 10M) completes the I/O processing
cycle when it accepts the response.

I/O EVENT HANDLER, OPERATIONAL UNIT TASK,
AND I/O DEVICES

The I/O event handler and the OU task connect tasks
executing in the processor with I/O devices. The OU
task directs the flow of information between main
storage and I/O devices, relieves the processor of
communicating directly with the devices, and lets IMP
task execution proceed concurrently with I/O
operations. I/O devices include card readers and
punches, magnetic tape units, disk storage,
printer-keyboard devices, printers, and teleprocessing
equipment.

I/O device operation can be handled by a control unit.
The control unit can be an integral part of the i/O
device attachment or an external unit. The control unit
provides the logic and buffering necessary to operate its
I/O device. From a programming view, control unit
functions merge with I/O unit functions. Other I/O
device operations are controlled by hardware adapters.
The processor and storage use the channel as an
interface to I/O devices and their control units. The
channel directs the flow of data between I/O devices
and storage (for details of the channel interface, see
IMP Channel Objects in Chapter 7).

SYSTEM CONSOLE

The system console is used to operate the machine.
The console consists of an operator/service panel, a
display, and a keyboard.

The operator/service panel indicates system status and
provides the operator with controls to intervene in
normal programmed operations. The display and
keyboard allow the operator to communicate with
supervisory and problem programs. (See System Control
in Chapter 9 for a list of the system console functions.)

The Processor 4-3

4-4

This chapter describes the structures and operations of
the tasking functions used by the processor.

IMP (internal microprogramming) tasking is the process
of controlling the execution of IMP tasks. An IMP task
is characterized by the synchronous execution of one or
more IMP procedures. An IMP procedure is composed
of an IMP instruction stream, the data used by the
instruction stream, and the parameters and arguments
used to pass information between IMP procedures.

PROCEDURE EXECUTION

At any time, the status of the processor is one of the
following:

• Executing an IMP instruction in an IMP procedure

• Executing an HMC (horizontal microcode) built-in
function

• Executing an HMC instruction in an HMC procedure

• Idle (waiting for additional work)

An IMP procedure is executed in the environment of an
IMP task. The primary control structure of an IMP task
is the TDE (task dispatching element). While executing
an IMP procedure, IMP instructions are fetched
sequentially by the processor from the storage location
addressed by SID (segment identifier) register 0 plus the
2-byte IAR (instruction address register). As each
instruction is fetched, the IAR is incremented by the
number of bytes in that instruction so as to address the
next instruction. The current instruction is then
executed, and the same steps are repeated, using the
new IAR value. Sequential execution of instructions
within the current procedure can be changed by
branching within the procedure or by causing a transfer
of control to another procedure. If control is transferred
to a new procedure, the new procedure can execute
under the same task (as with a supervisor linkage
operation) or can execute under a different task (as with
a task switching operation). In addition, control can be
transferred to a new procedure in any of the following
ways:

Chapter 5. Tasking

• The current IMP procedure specifies an implicit or
explicit SVL (supervisor linkage) instruction (see
Supervisor Linkage in Chapter 6).

• A program exception occurs causing a built-in
processor function (see Horizontal Microcode Built-In
Functions in Chapter 3) to pass control to the IMP
exception handling procedure. The processor passes
control to the IMP exception handling procedure via a
special invocation of the SVL function termed the
exception SVL function (see Supervisor Linkage in
Chapter 6).

• The current IMP procedure issues a send or receive
instruction and a task switch occurs.

• An I/O or timer event occurs causing a task switch.

• A machine check occurs causing control to be passed
to the IMP machine check handler (see Machine
Check Handling in Chapter 9).

No IMP instructions are executed during the execution
of an HMC procedure or built-in function.

The processor can also be in an idle condition waiting
for work. In this condition, no dispatchable task exists.

Tasking 5-1

BASE REGISTER ASSIGNMENTS

There are 16 base registers that can contain addresses
during IMP procedure execution (see Register
Descriptions in Chapter 2).

Base register 0 points to the start of the instruction
stream. All instruction addressing and branching within
a procedure is relative to B{O). Base registers hex 1, 2,
and E, and byte register hex E are designated to receive
parameters during explicit or implicit SVLs (see
Supervisor Linkage Control in Chapter 6). Base register 3
is used by the Function Call Double instruction to point
to the stack. Byte register hex F is used by the
Translate and Test instruction, the Move Packed Shifted
instruction, and the Move Packed Shifted Zero
instruction. Byte registers hex A and B and base
registers hex E and F are used by the Edit Pack Decimal
instruction. Halfword registers hex E and F are used by
the Convert Character to SNA, Convert Characters to
MULTI-LEAVING Remote Job Entry, Convert
MULTI-LEAVING Remote Job Entry to Character and
Convert SNA to Character instructions. Halfword
register hex E is used by the Trim instruction. However,
these uses do not preclude the use of these registers for
other operations.

The remaining base registers have no specific
assignments and can be used to address various spaces
(up to 64 K-bytes each) in virtual storage.

I/O INTERRUPTIBILITY

Pending interrupts are normally granted following
instruction execution. Two additional special interrupt
tests ensure minimal interruption delay.

The first special interrupt test is at the end of a unit of
operation (the amount of CPU processing that occurs
between interrupt points). Uninterruptible IMP
instructions normally use one unit of operation.
Interruptible IMP instructions, built-in functions, and
HMC procedures may use multiple units of operation.
The microcode handles interruptible IMP instructions
and built-in functions by checkpointing the function to
the beginning of the next unit of operation and then
granting the interrupt. When control is returned to the
procedure containing the interrupted function, execution
is resumed at the checkpointed unit of operation.

The checkpoint facility varies with the IMP instruction or
built-in function (for example, MVCl or GHRF). The
interrupt checkpoint facilities are described as a part of
the instruction specification.

5-2

The second special interrupt test is required by
instructions that take an unusually long time to execute.
This class of instructions has the following
characteristics:

• The instruction or built-in function is not designed as
being interruptible.

• The worst-case path exceeds 450 microseconds,
including overlay time and lookaside buffer-miss
time.

The special interrupt tests are inserted into HMC to
ensure a response time of 450 microseconds. If an I/O
interrupt is pending when a special test is performed,
one of two procedures is used:

• If the result is computed internally in an HMC work
area and is not stored back until the computation has
been completed, the partially computed result is
discarded, the IAR (instruction address register) is
nullified, and the interrupt is granted. Execution is
resumed at the beginning of the instruction or built-in
function that was interrupted. The IMP interface
interprets the partially completed computation as if it
were never performed by the CPU.

Note: Interrupt tests are performed before IMP
facilities (result field and condition code) have been
modified.

• If the result is stored back as it is being computed,
HMC checkpoints the instruction or built-in function
internally, processes the I/O interrupt (any resultant
task switch does not occur until the instruction or
built-in function is completed). and resumes
processing the instruction at the point of interrupt
detection.

This type of interrupt processing can occur during the
execution of a TR or TRR instruction, or during the
execution of built-in functions that perform CRE
(ca"/return element) chain searches or move-TOEs (task
dispatching element [from one queue to another]), or
during IMP queuing instructions. The queuing (built-in
function or IMP instruction) checkpoint mechanism is
described under Send/Receive Queue Busy Status later in
this chapter.

INTERNAL MICROPROGRAM TASKING

IMP tasking allows task switching from a procedure in a
given task to a procedure in a different task. All task
switches are caused by a built-in processor function
known as the task dispatcher.

The following paragraphs deal with the tasking structure
of the IMP, describe the objects that make up the
tasking structure, and describe how the tasking structure
is used.

Tasking 5-3

TASKING STRUCTURE

Task Dispatching Queue

One or more TDOs (task dispatching queues) exist in the
system. The prime TDO is used by the task dispatcher
to allocate processor time to the active tasks in the
system. The elements chained to the prime TDO are
those TDEs (task dispatching elements) associated with
dispatchable tasks (for example, tasks not waiting for a
message from an SRO [send/receive queue p. TDEs
for the dispatchable tasks are ordered on the prime TDO
in priority sequence according to the priority field in the
TDE.

The format of a TDO is as follows:

Descriptor First TDE Address

0 Bytes 2

Bytes
(Hex) Bits Description

0-1 Descriptor:

0-2 Identifies this IMP object as a TDO
(= 0(0).

3 0 The TDO is empty.

This TDO has one or more TDEs.

4-15 Reserved.

2-7 First TDE Address: First TDE if any,
associated with this TDO.

5-4

8

When accessed as the result of a send or receive type
instruction, a TDO must be resident in storage, fullword
aligned, and must not cross a page boundary; otherwise
a machine check will occur when the TDO is accessed.
However, if any of the above conditions are not met for
EOTDE (Enqueue Task Dispatching Element) or DOTDE
(Dequeue Task Dispatching Element) instructions, a
specification, addressing, or address translation
exception occurs.

Task Dispatching Element

A TDE (task dispatching element) is an IMP object used
to identify a task and the attributes (including a priority)
associated with that task. It also contains fields used to
store or load the current state of the task at the time of
a task switch. The TDE for a particular task can appear
as an element on a TDO (task dispatching queue) or can
be enqueued to an SRO (send/receive queue) or an
SRC (send/receive counter) wait list. If a task is eligible
for instruction execution, the associated TDE appears on
the prime TDO.

The format of the TDE is as follows:

Descriptor Next TDE Address

0 Bytes 2

Control
Mode

First CRE Address

C Bytes E

Current Queue Address

16 Bytes

TDQ Address

1E Bytes

Time Quantum Status

29 Bytes 2C

Used by VMC TDE Identifier Hold Count

92 Bytes 94 96

PEM Start Address

9A Bytes

PEM Stop Address

A2 Bytes

Reserved for VMC)
BO Bytes

Used by VMC

DO Bytes

1C

24

98

AO

AS

CO

Exception
Occurrence

8

14

Exception
Mask

Time Quantum

Address Register

30 32

Exception
Code

Computational Not
Attributes Used

A1

Used by VMC

Priority

Base \ Registers

)0
Checkpoint Area Reserved B

C6

\0
FF

Tasking 5-5

Bytes Bytes

;) (Hex) Bits Description (Hex) Bits Description

0-1 Descriptor: 2-7 Next TOE Address: Address of the
next TDE. If this is the last TDE in the

0-2 Identifies this IMP object as a TDE chain, descriptor bit 4 = o.
(= (01).

8-8 Priority:
3 Reserved.

0-31 Highest priority is zero. TDEs are
4 0 This is the last TDE on the chain. enqueued in priority sequence, last

within the same priority, when moved
This is not the last TDE on the to a TDQ by a send type operation or
chain. Enqueue TDE instruction.

5 0 This TDE is free to be enqueued to C-D Control Mode:
a queue header.

0-1 Reserved.
This TDE is already enqueued to a
queue header. 2 0 00 not perform trace function.

On a Dequeue TDE instruction, this bit Perform task trace function.
is reset, indicating that this element is
no longer enqueued to any queue. On 3 0 Any SVLM1 instruction executes as
an Enqueue TDE instruction, this bit is a no-operation.
checked first. If it is one, a
specification exception is raised. If it is Any SVLM1 instruction executed in ;) zero, the TOE is enqueued and this bit this task defaults to an SVL 1
is set to one. instruction.

6 0 This TDE was not removed from the 4 0 The CRE (call return element) list is
prime TDQ by a SENOMW empty.
instruction.

One or more CREs are chained to
This TDE was removed from the this TDE.
prime TDQ by a SENDMW
instruction. 5 0 Task not timed.

7 0 The address of the TDQ to which Timed task.
the TOE will be moved when
dequeued from a wait list is 6 0 Not in PEM (program event monitor)
contained in bytes hex 1 E-23 of the mode.
TDE.

In PEM mode.
The TDE removed from a wait list
by a send operation is to be
enqueued on the prime TOQ.

8-15 Used by the processor to monitor
access of this TOE. If not hex 00, the
TDE is monitored for access
exceptions.

...J
5-6

Bytes Bytes
(Hex) Bits Description (Hex) Bits Description

C-D 7 0 Any SVLM instruction executes as a 16-1B Current Queue Address: Address that
(cont) no-operation. TDE is enqueued to. If TDE is not

enqueued to an SRC, SRO, or TDO,
Any SVLM instruction executed in descriptor bit 5 = O.
this task defaults to an SVLO
instruction. 1C-1D Exception Occurrence:

8-15 The maximum number of available 0 Binary overflow.
CREs to be left chained to the TDE by
the execution of an SVX instruction. Decimal overflow.
Whenever the number of available
CREs would exceed this number as a 2-4 Reserved.
result of an SVX instruction, one is
returned to the ACO (available CRE 5 Monitored SRO header.
queue). At least one available CRE is
always left chained to the TDE by an 6 Monitored SRM header.
SVX instruction.

7 Monitored TDE header.
E-13 First CRE address: If no CREs are

associated with this TDE, bit 4 of byte 8-9 Reserved.
hex C = O.

10 Floating-point overflow.
14-15 Exception Mask:

11 Floating-point underflow.
Bit off = masked, bit on = allowed.

0 Binary overflow. 12 Floating-point zero divide.

Decimal overflow. 13 Floating-point inexact result.

2-4 Reserved. 14 Floating-point invalid operand.

5 Monitored SRO header.
15 Reserved.

6 Monitored SRM header.
1E-23 TDQ Address: If descriptor bit 7 = 0,

7 Monitored TDE header. these bytes contain the address of the

8 PEM (see Chapter 9). TDO to which the TDE it to be
enqueued when removed from a wait

9 Address compare (see Chapter 9). list by a send operation. If descriptor
bit 7 = 1, the address contained in

10 Floati ng - poi nt overflow. these bytes is ignored and the TDE is

11 Floating-point underflow. enqueued to the prime TDO.

12 Floating-point zero divide. 24-2B 0-41 Time Quantum: The time remaining in

13 Floating-point inexact result.
this task (bit 41 = 1024 microseconds).

14 Floating-point invalid operand. 42-63 Reserved.

15 Reserved.

Tasking 5-7

Bytes Bytes

..J (Hex) Bits Description (Hex) Bits Description

2C-2F Status: 98-99 Exception Code: Refer to bytes hex
74-75 of the CRE definition in

0 Reserved. Chapter 6.

0 IMP procedure. 9A-9F PEM Start Address.

HMC procedure. AO Computational Attributes.

2-7 Not used. 0 Reserved.

8-15 Reserved. 1-2 Rounding Mode.

16-20 Zero. 00 Round toward positive infinity.

21-23 ILC (instruction length count). 01 Round toward negative infinity.

24-27 Zero. 10 Round toward zero.

28-31 Condition Code: When initializing the 11 Round to nearest.
condition code field in a new TD~, at
least one, but not all, of the bits must 3-7 Reserved.
be set to 1. Failure to do so may cause
branch instructions to work incorrectly. A1 Not used.

30-31 Address Register: A2-A7 PEM Stop Address. ~
IAR (instruction address register) if bit A8-AF Used by VMC.
1 of byte hex 2C = O.

BO-BF Reserved for VMC.
CSAR (control storage address register)
if bit 1 of byte hex 2C = 1. CO-C5 Checkpoint Area.

The hold/free functions use this area
32-91 Base Registers: Note that all 16 base to pass exception information.

registers are always saved and restored
on a task switch. The registers occupy CO-C1 Hold Hash Table Entry Offset:
6 bytes per register beginning with Contains the offset when a second
byte hex 32. chain search exception is encountered

during a Grant instruction, or when a
92-93 Used by VMC. monitored exception is encountered

during a Free instruction.
94-95 TOE Identifier.

96-97 Hold Count: Object hold count for this
TDE.

5-8

Bytes
(Hex) Bits

C2-C3

C4-C5

C6-CF

DO-FF

Description

Index or Pointer: Contains either
• An index to the hold record

preceding the hold record that is at
the head of the secondary chain
after a second chain search
exception for a Grant instruction,

• A pointer to the head of the
secondary chain for a second chain
search exception on a Free
instruction, or

• A pointer to the hold record (on the
primary chain) preceding the
monitored hold record on a
monitored exception.

Index: An index pointing to an
available hold record.

Reserved for HMC.

U=sed by VMC.

The TDE extends beyond byte hex CF. This portion,
which is not used by HMC, is described in the Vertical
Microcode Data Areas manual.

Task switching mode/task control mode (bytes hex
C-D) for bits 2, 3, 5, 6, and 7 is established by the
processor at task switch time when a task becomes
active. If the task control mode bits 2, 3, 5, 6, and 7
are changed in a TDE while its task is active, the new
mode does not become effective until the next time the
task becomes active as the result of a task switch.
However, the Dispatch TDO instruction will test bit 6
and will appropriately enable or disable PEM mode for
an active task. The Dispatch TDO instruction also tests
bit 1 for a task switch trace, tests control mode bits 3
and 7, and enables or disables the task-wide
SVL-monitored no-operation.

The computational attributes for a task are set when the
task executes its first floating-point instruction after
being dispatched. The floating-point inexact result
exception mask and the exception occurrence bits are
also set at this time. The attributes remain in effect
(even though bytes 15, 1 D, or AO of the TDE may
change) until the task is dispatched once again. In order
to ensure that the computational attributes being used
match the computational attributes in the TDE, a
Dispatch TDO instruction for the current TDO should be
executed. The exception mask (bytes 14 and 15) is
tested each time a maskable exception is recognized to
determine if the exception should be taken.

The following exceptions are maskable:

• Address compare (see Chapter 9)

• Binary overflow

• Decimal overflow

• Floating-point inexact result

• Floating-point invalid operand

• Floating-point overflow

• Floating-point underflow

• Floating-point zero divide

• Monitored SRO header

• Monitored SRM header

• Monitored TDE header

• Program event monitor (see Chapter 9)

Tasking 5-9

The following exceptions can occur at the same time as
any other IMP exception:

• Monitored ACQ descriptor (SVL receive)

• Monitored CRE descriptor (SVL receive)

• Monitored TOE descriptor (SVL receive)

• Address compare

• Task interval timer

Bytes hex 14 and 15 (exception mask) are tested each
time a maskable exception is recognized. If the
exception is not masked, the occurrence is recorded in
the CRE (call/return element) and an SVL (supervisor
linkage) is taken. If the exception is masked, the
occurrence is recorded in the exception occurrence field
of the TOE and an SVL is not taken. See Chapter 6 for
further information in the handling of exceptions.

TOEs must be resident in storage, fullword aligned and
must not cross a page boundary; otherwise a machine
check occurs when the TOE is accessed as the result of
a send or receive type operation. When the TOE is
accessed as a result of an EQTOE or OQTOE instruction,
a specification, addressing, or address translation
exception occurs.

Send/Receive Queue

An SRQ (send/receive queue) is an IMP object used to
exchange intertask information and to synchronize the
flow of control between tasks. One task can
communicate with another task by issuing a send type
instruction to an SRQ or an SRC (send/receive counter).
Another task can then obtain the information from the
queue or counter by issuing a receive type instruction.

5-10

Task synchronization is provided by using send/receive
messages and an SRQ in the following manner. When a
procedure within the active task issues a Receive
Message instruction and the target SRQ either (1) has
no messages, or (2) has no message that satisfies the
search argument for the Receive Message instruction,
the task does not proceed. Instead, the task is placed in
the receive wait state by the processor by dequeuing its
TOE (task dispatching element) from the TOQ (task
dispatching queue) and enqueueing that TOE to the wait
list of the target SRQ. The task dispatcher is then
invoked to determine the next task to be activated.

A Send Message instruction is the counterpart to a
Receive Message instruction. If a message has been
enqueued by a Send Message instruction to an SRQ
and there are TOEs waiting the value of byte 0 bit 7 of
the SRQ determines the action taken. If bit 7 equals:

o The TOEs are dequeued from the SRQ wait list
and enqueued in priority sequence on their
appropriate TOQ.

The first TOE is dequeued from the SRQ wait
list and enqueued in priority sequence on their
appropriate TOQ.

The task dispatcher is then invoked if the task switch
control bit is zero (bit 15 of the SENOM instruction) and
a TOE was enqueued to the TOQ at a higher priority
than the current TDE. If these conditions are present, a
task switch occurs. This switch is referred to as a
preempt wait to the task issuing the send operation.

Send and receive type operations are executed explicitly
as instructions by IMP tasks as well as implicitly by
HMC functions.

The format of the SRQ header is as follows:

Descriptor First TOE Address Reserved Key
Lth-1

o Bytes 2 8 9

L-____________ F_ir_st __ M_es_sa_g_e_A_d_d_re_ss ____________ ~ ____ R_e_se_r_ve_d ______ ~~~
A

Bytes
(Hex) Bits

0-1

0-2

3

4

Bytes 10

Description

Descriptor:

Identifies this IMP object as an SRQ
(= 010).

o The SRQ header contains no TOEs
(task dispatching elements).

One or more TOEs are enqueued to
the wait list.

o The SRQ contains no SRMs
(send / receive messages).

One or more SRMs are enqueued to
the message list.

5 0 An access is not in progress.

6

An access is in progress by a task
whose TOE address is indicated in
the reserved field. An access
attempt by any other task causes a
busy exception.

o No monitored TOEs are enqueued to
the wait list.

One or more monitored TOEs are
enqueued to the wait list.

Note: This bit is set/reset by the VMC and tested by
the HMC.

20

Bytes
(Hex) Bits Description

0-1

2-7

8

9

A-F

10-1F

7 o All TOEs are moved to the
appropriate TDQ when a message is
enqueued by a Send Message
instruction to the SRQ.

The first TOE is moved to the
appropriate TDQ when a message is
enqueued by a Send Message
instruction to the SRQ.

8-15 Used by the processor to monitor
accesses to this object. If not hex 00,
the SRQ is monitored for access
exceptions.

First TOE Address: If no TOEs are
waiting, descriptor bit 3 = O.

Reserved.

Key Length-1: Number of bytes of
message key, starting with byte 8 in
the SRM.

First Message Address: If no SRMs
are enqueued, descriptor bit 4 = O.

Reserved: Bytes hex 10-11 and hex
18-19 contain checkpoint status. Bytes
hex 12-17 contain the owner TOE
address if the queue is busy (descriptor
bit 5 = 1). Bytes hex 1 A-1 F contain
the last message searched address if
interrupted during a message search.

Note: An SRQ header must be fullword aligned and not
cross a page boundary; otherwise a specification
exception occurs when the object is referenced.

Tasking 5-11

Send/Receive Message

The messages that are enqueued to the SRO
(send/receive queue) take the form of an IMP object
called an SRM (send/receive message).

The format of an SRM header is as follows:

L....-_D_es_c_ri_Pt_o_r_-'-______ N_e_xt_M_eS_Sa_ge_A_d_d_re_ss ______ ...J.. ___ K_ey __ \.J ~ I M~ ~ 0
o Bytes 2 8 k+1 n

Bytes Bytes
(Hex) Bits Description (Hex) Bits Description

0-1 Descriptor: 6 a A SENOMW instruction has not been
issued.

0-2 Identifies this IMP object is an SRM (=

011). A SENOMW instruction has been
issued.

3 Reserved.
When the OU task has finished

4 a This is the last SRM on the chain. processing this SRM, the TOE specified
at byte 122 of the SRM is enqueued to

This is not the last SRM on the the TOO indicated by this TOE. When

chain. the OU attempts to restore the TOE to
the TOO, the TOE address field of the

5 a SRM is free to be enqueued to a SRM must be contained in the same

queue header. page as byte a of the SRM or a
machine check occurs.

SRM is already enqueued to a
queue header. When a SENOMW instruction is being

executed, the SRM must contain the

This bit is set to zero by those address of a TOE at byte hex 7 A. This

instructions that dequeue an SRM from address must reside on the same page

a queue header. Those instructions that as the SRM descriptor or a machine
enqueue an SRM check this bit first. If check will occur.
it is one, a specification exceptions
occurs. If it is zero, the SRM is 7 Reserved.
enqueued to the designated queue and
this bit is set to one.

5-12

~

Bytes
(Hex) Bits Description

0-1 8-15 Used by the processor to monitor
accesses of this object. If not hex 00,
the SRM is monitored for access
exceptions.

2-7

8-k

(k+1)-n

Next Message Address: If no
additional SRMs are enqueued,
descriptor bit 4 = o.

Key: Message key of the length
indicated in the SRO, plus the message
text. The length of the key will
determine the location of the starting
point (k+1) of the message.

Message: Text of message does not
have a set length.

Note: While the SRM message text may cross page
boundaries, the SRM descriptor, next SRM pointer, and
SRM message key must be in the same page and the
SRM descriptor must be fullword aligned or a
specification exception occurs when the SRM is
referenced.

The key field is not <;hecked for a page crossing when
an enqueue-first or enqueue-last operation is
performed.

Send/Receive Counter

An SRC (send/receive counter) is an IMP object used in
much the same way as an SRO (send/receive queue)
except that no messages are enqueued. Instead, a Send
Count instruction causes the count field in the SRC
header to be increased by 1 (see note).

A Receive Count instruction causes the count field value
to be decreased by the counter limit value (see note) if
the count field value equals or exceeds the count limit
value. The count field and limit values are treated as
16-bit unsigned numbers. If the count value does not
equal or exceed the limit value, the task is placed in
receive wait state by dequeuing its TOE (task
dispatching element) from the TOO (task dispatching
queue) and enqueuing that TOE to the wait list of the
target SRC. The task dispatcher is then invoked to
determine the next task to be dispatched.

When a Send Count instruction is issued, the count is
incremented by 1; then a check is made to determine if
the count value has reached or exceeded the limit value.
If so, the associated SRC wait list is interrogated. If
there are TOEs waiting and byte 0 bit 7 equals:

o The TOEs are dequeued from the SRC wait list
and enqueued in priority sequence to the TOO
specified by byte hex 1 E of the TOE.

The first TOE is dequeued from the SRC wait list
and enqueued in priority sequence to the TOO
specified by byte hex 1 E of the TOE.

The task dispatcher is then invoked if the task switch
control bit is zero (bit 15 of the SENOC instruction) and
a TOE was enqueued to the current TOO at a higher
priority than the current TOE. This switch is referred to
as a preempt wait to the task issuing the send operation.

Note: The HMC handles the increasing and decreasing
count field value. See the Processing Unit
Theory-Maintenance manual.

Tasking 5-13

The format of an SRC is as follows:

0

Bytes
(Hex)

0-1

2-7

8-9

A-8

Descriptor

Bytes

Bits

0-2

3

First TDE Address

2

Description

Descriptor:

Identifies this IMP object as an SRC
(= 100).

o No TDEs are enqueued to the wait
list.

One or more TDEs are enqueued to
the wait list.

4-6 Reserved.

7 0 All TDEs are moved to the
appropriate TDO when the limit
value has been reached or exceeded.

The first TDE is moved to the
appropriate TDO when the limit
value has been reached or exceeded.

8-15 Reserved.

First TDE Address: If no TDEs are
waiting, then descriptor bit 3 = o.

Count value.

Limit value.

Note: An SRC must be fullword aligned and not cross a
page boundary; otherwise, a specification exception
occurs when the SRC is referenced.

5-14

Count Limit

8 A C

Enqueue/Dequeue Instructions

Enqueue and Dequeue instructions are used to control
IMP objects composing the tasking structure. The
enqueue instructions insert SRMs (send/receive
messages) on SROs (send/receive queues) and insert
TDEs (task dispatching elements) on wait lists of SROs
or SRCs (send/receive counters!. or on TDOs (task
dispatching queues). Dequeue instructions remove
SRMs from SROs and remove TDEs from the wait lists
of SROs, SRCs, or TDOs. Unlike send/receive
instructions, enqueue/dequeue instructions neither
invoke the task dispatcher nor cause a task switch.

Send/Receive Queue Busy Status

Some of the send, receive, enqueue, and dequeue
instructions are interruptible. Figure 5-1 shows the
interruption causes for instructions that are interruptible,
can set busy status, and observe busy protocol. An
SRQ (send/receive queue) is set into busy status by the
processor whenever an instruction that accesses it is
interrupted before completion. Busy status occurs as
follows. When the processor detects that an SRO
access instruction must be interrupted, the descriptor
busy bit (byte 0, bit 5) is set, and the pin count for the
page containing the SRO is incremented if the page is
V=V page (pin count is the value of a counter used to
indicate that a page is pinned [or held 1 in storage). A
nonzero value of pin count indicates that the page is in
use and should not be removed from storage (see
Primary Directory in Chapter 8). The TDE (task
dispatching element) address of the task that was
executing the instruction and the instruction interruption
point are then recorded in the reserved area of the SRO.

If any task attempts to execute an instruction that
accesses a busy SRO, the TDE address of that task is
compared to the TDE address saved in the header of­
the busy queue. If the TDE addresses are not equal, the
accessing instruction is nullified and a descriptor access
busy exception is raised to the issuing task. If the TDE
addresses are equal, this implies to the processor that
the interrupted instruction of the owner task is resuming
the operation. In this case, the busy bit is reset, the pin
count of the page containing the SRO is decreased, the
instruction interrupt point is restored from the
checkpoint area, and instruction execution proceeds
normally.

Note: The exception handling routine should not
perform an operation (other than the original one) that
accesses a busy SRO in the task producing the
exception (task whose TDE address is stored in bytes
hex 18-23 of the SRO). If this condition occurs, the
processor assumes that the suspended instruction is
being resumed, resulting in an unpredictable operation.

Page Fault Access Exception
Due to a Monitored (Note 1)

Nonresident
SRM on a

Interruptible Message
Instruction List TOE SRO SRM

EOM X X X

DOM X X X

EOTDE X X
(Note

2)

DOTDE X X
(Note

2)

SENDM X X X X

SENDMW X X X X

RECM X X X X

~LO X X X

SVL1 X X X

SVL2 X X X

Notes:

1. Refers to nonzero descriptor byte 1 of TDE, SRO, or
SRM.

2. On Enqueue and Dequeue TDE instructions, if the
first operand is a TDE or SRC, a monitored TDE does
not cause an access exception.

Figure 5-1. Interruptible Instruction Summary Chart

Interrupts due to I/O are recognized as follows:

• When the processor searches the second or
subsequent SRM on an SRO (before moving a
second or subsequent TDE from an SRC or SRO wait
list), or

• When the processor searches a TDE or CRE chain

These interrupts are ignored when the processor
searches the first SRM on an SRQ, or when the
processor moves the first TDE from an SRC on an
SRQ. When the I/O interrupt is handled, only the
address events and the load multiple register events
are processed. The remaining events are handled
when the resumed queueing operation completes.

Tasking 5-15

TASK CONTROL

Task control consists of:

• Task dispatching

• Task switching

• Task timing

Task Dispatching

The dispatching of IMP tasks is handled by an HMC
function known as the task dispatcher. The task
dispatcher is invoked explicitly by the Dispatch TDO
(task dispatching queue), the Enable Task Dispatching
instruction, or, under certain conditions, by the
send/receive type instructions or implicit send/receive
operations. It is the responsibility of the task dispatcher
to determine when a task switch is necessary, to
determine which task should be dispatched next, and to
accomplish the indicated task switch. During a task
switch, the status of the old task is saved (as described
under Call/Return Element in Chapter 6) in that task's
TDE (task dispatching element). The status of the new
task is taken from the new task's TDE.

The primary IMP structure associated with the task
dispatching function is the TDO. The TDE that
represents the active task is located in the TDO and is
referred to as the current TDE. The current TDE is
normally the top TDE on the TDO whenever the task
dispatcher is enabled. When the task dispatcher is
disabled or if a send without task switch occurred, the
current TDE mayor may not be the top TDE on the
TDO.

5-16

The task dispatcher is invoked:

1.

2.

3.

When a DTDO (Dispatch TDO) instruction is
encountered.

When an implicit or explicit send operation (Send
Message or Send Count instruction) occurs and a
TDE is placed on the TDO at a higher priority than
the current TDE.

When an implicit or explicit receive operation
(Receive Message or Receive Count instruction)
occurs and the receive is not satisfied. In this
case, the current TDE is removed from the TDO
and placed on an SRC or SRO (send/receive
queue) wait list by the receive operation.

4. When an Enable Task Dispatcher instruction is
issued and the top TDE on the TDO is not the
current TDE.

The task dispatcher functions as follows:

• In the above cases a task switch may occur to the
top TDE on the TDO. For the third case, the TDO
may be empty. If the TDO is empty, the processor
waits until a new TDE is placed on the TDO.

• When a new task is dispatched as a result of any of
the previous conditions, the TDO and the current TDE
addresses in the control address table are updated as
required. If the exception code is nonzero in the new
task TDE, the exception is presented via an exception
SVL. If no exceptions are present, instruction
processing then commences with the instruction
addressed by the IAR (instruction address register) or
CSAR (control store address register) of the new
task.

Dispatcher control addresses are accessed and
maintained by the processor in support of the task
dispatching function. These control addresses, located
in the control address table (see Figure 2-2), are
composed of the TDO address and the current TDE
address.

Task Switching

Having determined that a task switch is required, the
task dispatcher stores the state of the old task in the
TDE (task dispatching element) of the task. Stored
status includes the condition code, the instruction
length, the IAR (or CSAR if a horizontal microcode
function). base registers hex O-F, and the exception
code. Also, bit 1 of byte hex 44 (status) in the TDE is
set to indicate either an IMP or HMC procedure. The
task dispatcher then determines which task is to be
dispatched next as previously described. The new task
TDE address is then stored in the current TDE address
field of the control address table and the status of the
new task is loaded from the new TDE. The control
mode (defined as part of the TDE in this chapter) is
established from the TDE. Any pending exceptions are
presented via an exception SVL (supervisor linkage).
Otherwise instruction execution is initiated beginning
with the instruction addressed by the IAR and register
S(O) or by the CSAR.

The processor enters the wait state as follows. The
active task is the only TDE on the TDO, and it issues a
receive type operation that is not satisfied. This causes
its TDE to be removed from the TDO and placed on the
wait list of the SRO (send/receive queue) or SRC
(send/receive counter) referenced by the receive type
operation. The task dispatcher is then invoked and the
task status is stored In the TDE of the task. The
processor is then placed in the wait state since the TDO
contains no TDEs.

Subsequently, when one or more TDEs are placed on
the TDO and the task dispatcher is invoked, the status
of the first TDE on the TDO is loaded into the
processor, the control address table is updated, and
instruction execution commences.

Task Dispatcher Enable/Di;;able Functions

Two instructions are provided to allow disabling and
enabling of the task dispatcher function. The Disable
Task Dispatching instruction inhibits the task dispatcher
and stops the task interval timer. While in this mode, no
task switches can occur. Furthermore, a machine check
occurs if a Receive Message, Receive Count, or
Dispatch Task Dispatching Oueue instruction, or an SVL
(supervisor linkage) is attempted. This condition is also
entered implicitly as a result of a machine check. The
Enable Task Dispatching instruction resets this condition,
starts the task interval timer if the current task is timed
and no task switch occurs, and invokes the task
dispatcher. If an exception occurs while the task
dispatcher is disabled, it is reported as a machine check
(see Processor Machine Check Handler in Chapter 9).

Task Timing

An IMP task can be either timed or untimed as indicated
by bit 5 of byte hex 12 in the task TDE (task dispatching
element). Task timing is provided by a built-in function
called the task interval timer. When a timed task is
activated by the task dispatcher, the time quantum bytes
(hex 24-28) of the TDE are loaded into the task interval
timer. If this timer decreases to zero while a timed task
is active, a task timer exception occurs. For untimed
tasks, the time quantum field is not used and the task
interval timer is not decreased.

When a timed task is set to the wait state as part of a
task switch, the contents (residual value) of the task
interval timer are stored into the time quantum field of
the task TDE.

Note: If the task dispatcher is disabled by either the
Disable Task Dispatching instruction or a machine check
and the active task is timed, the task interval timer is
stopped. When an Enable Task Dispatching instruction
is issued, the following operation results. If a task
switch occurs, the new task TDE specifies timed or
untimed. If a task switch did not occur, timing is
resumed by the task interval timer if so indicated by the
current TDE.

If an untimed task issues a Set Interval Timer instruction
to the task interval timer, a specification exception is
presented. A Store Interval Timer instruction by an
untimed task that specifies the task interval timer stores
unpredictable results.

Tasking 5-17

INTERTASK COMMUNICATIONS AND
SYNCHRONIZATION

Communication between tasks and control of
synchronization is provided by the send / receive
mechanism within the tasking structure.

An example of intertask communication is shown in
Figure 5-2. The SRO-A is initially empty. Task A then
executes a Send Message" instruction which
enqueues the message to the SRO. Subsequently, when
task B is dispatched and issues a Receive Message
instruction D the message is dequeued from the SRO
for use by task B.

The synchronization function of these two instructions is
illustrated in Figure 5-3. The first two tasks on the TDO
are TDE Band TDE A; TDE B has the higher priority.
Task B is the active task and the processor is executing
procedure B (Figure 5-3 [a]).

When the RECM C instruction is executed, a message
cannot be dequeued since SRO C has no message.

Therefore, the IAR is not incremented and the receive
operation places task B in the receive wait state as
follows:

• Dequeues TDE B from the TDO

• Enqueues TDE B to the wait list of SRO C (Figure
5-3[b])

• Invokes the task dispatcher

Task A SROA

I Wait List I Message List

SENDM-

D
I SRM

Figure 5-2. Intertask Communications

5-18

The task dispatcher then performs a task switch as
follows:

• Determines that the current TDE (TDE B) is not first
on the TDQ

• Stores the state of task B in TDE B

• Determines that TDE A is now the highest priority
dispatchable task

• Loads the state of task A (procedure A) from TDE A

• Updates the control address table entry for the
current TDE

• Initiates processing of procedure A

Procedure A now issues a SENDM C instruction which
enqueues an SRM to SRO C. Since TDE B is on the
wait list, the send operation also:

• Dequeues TDE B from SRO C

• Enqueues TDE B to the TDO above TDE A (Figure
5-3 [c]) since TDE B has a higher priority

• Invokes the task dispatcher since a TDE was moved
to the TDO

Task B

,.........:EJ=-_ RECM

The task dispatcher then:

• Determines that the current TDE (TDE A) is not first
on the TDQ

• Stores the state of task A in TDE A

• Determines that TDE B is now the highest priority
dispatchable task

• Loads the state of task B

• Updates the cO.ntrol address table entry for the
current TDE

• Initiates processing of procedure B

Since the IAR for task B still points to the RECM C
instruction, it is again executed. The SRM is now
dequeued and execution of procedure B continues under
task B since the receive operation was satisfied.

Similar functions are also associated with the SRC (send
receive counter) object together with the Send Count
and Receive Count instructions except that no messages
are passed.

Tasking 5-19

(a)

TOO

r---J
t

Active
Task

SROC

Wait List

Inactive
Oispatchable
Task

Procedure B

I Message List I RECM C

Procedure A

I SENOM C

(b) SROC Procedure A

TOO Wait List Message Li st SENOM C

Procedure B TOE A , Active

1...-.----1-1.....1 Task

r---J
I RECM C

_t ___________________ _

(c)

TOO

TOE A ,

I

Active
Task

SROC

Wait List

Figure 5-3. Task Synchronization Example

5-20

Procedure B

Message Li st I RECM C

Procedure A

Chapter 6. Supervisor Linkage and Exception Presentation

This chapter describes IMP (internal microprogramming)
supervisor linkage concepts and IMP exception
presentation .

• IMP Supervisor Linkage is the method by which IMP
procedure switching within the same task is
accomplished. A supervisor linkage can be explicit or
implicit and saves the status of the procedure from
which the switch occurred.

• IMP Exception Presentation is the mechanism by
which a defined set of exception conditions is
presented, including the invocation of the IMP
exception handling procedure.

Supervisor Linkage and Exception Presentation 6-1

Supervisor Linkage

The IMP extended program linkage facility calls an SVL
(supervisor linkage) routine to perform one of the
following functions:

• An extended IMP operation whose entry point is not
addressed directly (explicit SVL).

• Simulation of an IMP instruction that has been
trapped by the IMP interpreter (implicit SVL).

• Handling of a processor exception (exception SVL).

For all three functions, the IMP routine performing the
function returns via an explicit Supervisor Exit
instruction.

The basic services provided by the SVL mechanism are
selective IMP procedure status saving/restoring and
entry point resolution via a specialized SVL table.

6-2

SUPERVISOR LINKAGE STRUCTURES

Three structures are used to control the supervisor
linkage operation: The CRE (call/return element!. the
ACO (available CRE queue!. and the SVL (supervisor
linkage) table. The ACO address and the SVL table
address are contained in the control address table (see
Figure 2-2).

Call/Return Element

A eRE (call/return element) is a resident storage area
used to save the status of a procedure during an S\fL
(supervisor linkage). If the eRE is not resident, is not
fullword aligned, or crosses a page boundary, a machine
check occurs when the eRE is accessed.

The descriptors of the eRE and the SRM (send/receive
message) are identical. The key is not significant since
all queuing functions are first on the chain. A eRE has
the following format:

Descriptor Next CR E Address

0 Bytes 2

Status
Address

Register

8 Bytes C E

Base Registers ~D

~ ______________ A_C_Q __ A_d_d_re_ss ________________ ~ ____ ~_:~_:_P_ti_o_n __ -L __________ N_o_t_U_se_d _________ ~~~
6E

Bytes
(Hex) Bits

0-1

0-2

3

4

Bytes

Description

Descriptor: Element descriptor
(same as SRM).

74

Identifies this IMP object as an SRM
(011).

Reserved.

o This is the last eRE on the chain.

This is not the last eRE on the
chain.

Bytes
(Hex)

0-1

76

Bits

5

6-7

8-15

Description

o This eRE is not enqueued in a
chained list.

80

This eRE is enqueued in a
chained list (either an SRO or
TDE). This bit is set to zero by
those instructions that dequeue
an SRM from an SRO header.
Those instructions .that enqueue
an SRM check this bit first. If it
is a one bit, a specification
exception is raised.

Reserved.

Used by the procesgor to monitor
accesses to this object. If not hex 00,
the eRE is monitored for access

excelJtions.

Sl'pervisor Linkage and Exception Presentation 6-3

Bytes Bytes ..) (Hex) Bits Description (Hex) Bits Description

2-7 Next CRE Address: Address of the C-D Address Register: IAR (instruction
next CRE in the chain. If this is the last address register) if byte 8, bit 1 = O.
CRE in the chain, descriptor bit 4 = O.

CSAR (control store address register) if
8-8 Status: CRE Status. byte 8, bit 1 = 1.

0 0 Available. E-6D Base Registers: Saved by the SVL
mechanism; if all registers are not

In use. saved, the unused area is available to
the SVL routine as a scratch work area.

0 IMP procedure CRE. The registers occupy 6 bytes per
register beginning with byte hex E.

HMC procedure CRE.
6E-73 ACQ Address: Address of ACQ used

2-7 Reserved. by the SVX operation.

8-11 First base register saved. 74 (Note 1) Exception Code:

12-15 Number of base registers saved minus 0-2 Reserved.
one; must include base register 0 (base
register addresses wrap around from 3 Soft address compare.
hex F to 0).

4 Task interval timer.
16-20 Zero. ~ 5 Monitored ACQ descriptor (SVL
21-23 ILC (instruction length count). receive) (Note 2).

24-27 Zero. 6 Monitored CRE descriptor (SVL
receive) (Note 2).

28-31 Condition code. When initializing the
condition code field in a new CRE, at 7 Monitored TDE descriptor (SVL
least one, but not all, of the bits must wait) (Note 2).
be set to a one value. Failure to do so
may cause branch instructions to work
incorrectly.

6-4

Bytes
(Hex)

75 (Note 1)

Bits Description

0-7 Exception Code: (Hex)

00 No exception in bits 0-7.

02 Invalid descriptor.

04 Busy (Note 2).

06 Reserved.

08 Allocate Page Frame.

OA Monitored SRQ descriptor
(Note 2).

OC Monitored SRM descriptor
(Note 2).

OE Monitored TOE descriptor
(Note 2).

10 SRC (send/receive counter)
ovorflow.

12 Address translation.

14 Program event monitoring.

16 Execute.

18. Specification.

1 A Addressing.

1 C Effective address overflow.

1E Data.

20 Binary overflow.

22 Binary divide.

24 Decimal overflow.

26 Decimal zero divide.

28 Floating-point overflow.

2A F!oating-point underflow.

2C Floating-point inexact result.

2E Floating-point zero divide.

Bytes
(Hex)

75

76-7F

Notes:

Bits Description

Exception Code: (Hex)

30 Operation.

32 Stack.

34 Verify.

36 Chain conflict.

38 End-of-chain.

3A Edit digit count.

3C Length conformance.

3E Edit mask syntax.

40 Invalid segment group address.

42 Floating-point invalid operand.

46 Second chain search.

48 Conversion.

4A Invalid floating-point conversion.

80 Invalid segment.'

81 Invalid page.'

82 Page read error.'

83 Invalid pool state.'

84 Invalid pin request.'

85 Invalid write request.'

86 Main store error.'

Not used.

1. The exceptions indicated in byte hex 74 can occur
simultaneously and are not mutually exclusive with
themselves or with an exception encoded in byte
hex 75.

2. Exception code bits 5 through 7 in byte hex 14 and
exception codes hex 04, OA, OC, and OE in byte hex
75 form the general category of descriptor access
exceptions described under Descriptor Access

Exception, later in this chapter.

, Implicit SVL codes. For description, see Appendix B.

Supervisor Linkage and Exception Presentation 6-5

Available Call/Return Element Queue

The ACQ (available CRE queue) is the mechanism by
which CREs (call/return elements) are made available to
the processor and eventually to a TOE (task dispatching
element).

An ACQ has the following format:

Descriptor First TOE Address

o Bytes 2

Reserved Key
Lth-1

8 9

~ ________ F_ir_st_A_v_a_il_ab_l_e_C_R_E_A_d_d_re_ss ____________ L-_______________ R_es_e_rv_ed ________________ ~~~
A Bytes 10

A CRE is taken from the ACQ by an implicit receive
operation, when needed, to perform an SVL (supervisor
linkage) instruction (explicit or implicit). A CRE is
returned by an implicit send to the ACQ when the SVX
(supervisor exit) instruction is issued. The descriptors of
the ACQ and the SRQ (send/receive queue) are identical
(if no available CREs are enqueued, descriptor bit 4 = 0).
See the SRQ in Chapter 5 for the byte descriptions. All
send/receive operations involving the ACQ must specify
enqueue first/dequeue first.

If the ACQ is not resident in storage, is not fullword
aligned, or crosses a page boundary, a machine check
will occur when the ACQ is accessed.

6-6

20

Supervisor Linkage Table

The SVL (supervisor linkage) table is located in resident
storage and consists of 256 4-byte entries. The format
of each 4-byte entry in the SVL table is as follows:

Base Flag Entry
Address

o 2 Bytes 4

Bytes
(Hex) Bits Descriptions

0 Base: Base registers to be saved.

0-3 First base register saved.

4-7 Number of base registers to be saved
minus 1. The registers saved must
include B(O). Base register addresses
wrap around from hex F to zero.

Flag: Flag byte.

0 0 IMP offset in bytes 2 and 3.

HMC CSAR in bytes 2 and 3.

Reserved.

2 0 If not an exception SVL (SVL table
index = 0). then the SVL procedure
will be inhibited and the SVL
instruction will be executed as a
no-operation. The exception SVL
(SVL table index = 0) will always be
executed regardless of the value of
this bit.

The SVL procedure will be executed
as described.

3-7 Reserved.

2-3 Entry Address: Entry address of SVL
routine. Bytes 2 and 3 are either an
offset into the segment identifier of the
SVL table if Byte 1, bit 0 = 0, or a
CSAR value if byte 1, bit 0 = 1.

All SVLs refer to entries in this table.

SUPERVISOR LINKAGE CONTROL

The SVL (supervisor linkage) operation allows:

• Program to program invocation without explicit
knowledge of program locations by the invoking
program.

• A single, common interface for exception signaling.

The SVL operation can be understood by considering
the usage of CREs (call/return elements) for status
saving and the SVL table for indirect SVL routine entry
point resolution (see the following diagram). An index
into the SVL table can be generated either explicitly or
implicitly, based on the cause of the SVL. Implicit SVLs
and, therefore, implicit entries into the SVL table, are
generated by the processor for either trapped
instructions (using the trapped instruction operation
code). or for exceptions. Explicitly generated SVL
instructions use the I-byte of the SVL to index the SVL
table. The assignment of SVL indexes (binary values) is
as follows:

• All exceptions use SVL table index O.

• Other implicit SVLs use indexes that do not
correspond to the basic operation codes or to the
unused extension fields in those instructions that
make use of operation code extenders. However,
operation codes hex 00, 40, and FF are reserved and
are treated as invalid; operation code OD extended
with E or F is reserved and will yield unpredictable
results if executed. An operation exception results if
execution of one of these operation codes is
attempted. With this exception, the execution of any
operation code that is not implemented as a basic
operation code results in an implicit SVL operation.
In this case, the SVL table index value equals the
operation code.

• Explicit SVLs can use any index value.

Supervisor Linkage and Exception Presentation 6-7

B

B+1

pervisor
Index
(see Su
Linkag f!, Chapter 2)

--I
I

Register
Information

I

SVL Table and CRE Usage

SVL Table

BIFI

I
I
I
I
I

I
Requested
Registers

I
I
I
I

Entry Address

L __ _ !

SVL
Routine

Task Dispatching
Element

I

L ______ _ .,. Available Call/Return Element

I

Legend

-- - .. Information Saved

----;~~ Pointers

6-8

t I
T

t-I LC (instruction length count)

~ CC (condition code)

LIAR (instruction address register)

The occurrence of an exception results in an SVL unless
the exception is masked in the TOE (task dispatching
element) mask field. If the exception is not masked, the
exception code is stored in the exception field of the
CRE and the pending exception is cleared in the
processor. If the exception is masked, the occurrence is
recorded in bytes hex 1 C and 10 of the TOE, no SVL
occurs, and the pending exception is cleared.

When an SVL occurs either explicitly or implicitly, byte 0
of the SVL table entry and the status of the procedure
are saved in the available CRE. The status includes the
following:

• Instruction length count

• Condition code

• Specified base registers

• Exception code

• IAR (instruction address register)

• CSAR (control store address register)

For an exception SVL in an IMP procedure, the stored
IAR points to the instruction that caused the exception if
the instruction was nullified or suspended. Otherwise,
the stored IAR is the updated address of the next
instruction to be executed. The CRE is then flagged as
being in-use and the address of the CRE is loaded into
base register hex E. In addition, as shown in the
following table, optional registers are loaded with
parameters, depending on whether the SVL is implicit or
explicit and whether zero, one, or two operands are
present in the SVL instruction.

SVL Register Loading

Parameters Loaded

Implicit Type SVL Register Parameter

RR (2 bytes) riEl I-byte'

RS, SI (4 bytes, riEl I-byte' First-
operation codes ~

8(1)
or second-

hex 40, <hex AO) operand
riEl address

SS (6 bytes, riEl I-byte'
operation codes ~
hex AO)

8(1) First-operand
address

8(2) Second
operand
address

, In the case of an instruction with an extended operation
code, the low order 4 bits of the I field contain the
operation code extender.

Parameters Loaded

Explicit Type SVL Register Parameter

SVLO', 2 None

SVL".2 8(1) First-operand
address

SVL2,,2 8(1) First-operand
address

8(2) Second
operand
address

Address translation 8(1) Faulting virtual
exception address

Allocate page frame 8(1) Virtual address
exception

All other exceptions None

, B (E) is loaded with the address of the CRE used to save
status for all SVL types.

2See Chapter 10 for the format of the SVL instruction types.

Supervisor Linkage and Exception Presentation 6-9

Effective addresses are calculated and loaded into base
registers for those SVLs having effective address
operands. HMC or IMP instruction processing continues
at the address indicated in the SVL table entry. If bit 0
of the SVL table flag byte is one, the SVL routine
address in the table entry is loaded into the CSAR. This
causes an SVL microprogram indirect branch. If bit 0 of
the flag is zero, the halfword address in the SVL table
entry is an offset into the 510 (segment identifier) where
the SVL table is located. This real address then
becomes the target of an indirect SVL branch to an IMP
procedure (register 5[0] contains the 510 of the SVL
table, register R [0] contains the SVL entry address, and
the IAR contains the value that was placed in R [0]).

When an SVL is executed, a search of the CRE list
chained to the TOE is performed. The current status is
stored in the last available CRE. If there are no available
CREs on the list, or if the list is empty, a CRE is
implicitly received from the ACO (available CRE queue)
and is enqueued first, when a CRE becomes available,
on the TOE CRE list. The current status is then stored in
that CRE. In either case, the status of the CRE is set to
in-use.

SVL access exceptions (monitored ACo. CRE, and TOE),
associated with the implicit receive operation within an
SVL, are detected and presented as follows:

1. Busy is ignored and not presented.

2. If the ACO and CRE are monitored, these
exceptions are presented, after completion of the
implicit receive, in byte 0 of the exception code in
the TOE.

3. Or, if the implicit receive is not satisfied (no CREs
on the ACO) and the current TOE is monitored,
this access exception is reported in byte 0 of the
exception code in the TOE.

6-10

Programming Note: When replenishing the ACO with
CREs, you should specify send message first in order to
place the CRE first on the ACO (busy is ignored by an
SVL implicit receive).

For trapped operations (implicit SVLs) and explicit SVLs,
the original SVL function is nullified (the IAR still points
to the SVL of the trapped operation code) and the ACO
access exception is identified in byte 0, bits 5-7 of the
exception code. If an SVL access exception is detected
while presenting an exception, the access exception is
presented concurrently with other exceptions posted in
byte 1, bits 0-7 of the exception code in the CRE. Bit 6
or 7 of the CRE exception code, byte 0, can be
presented only after a CRE is received. While the task
dispatcher is disabled, due to a machine check, the
function of the exception SVL is altered (as described in
Chapter 9, under Machine Check).

If there are no CREs on the ACO, the implicit receive is
not satisfied, the TOE for the current task is moved to
the wait list of the ACO, and the task dispatcher is
subsequently invoked. For trapped operations and
explicit SVLs, the original SVL function is nullified. For
all exceptions except page fault, the exception code is
saved in the TOE as part of the task switch. The
exception is presented again after the ACO is
replenished and the task is dispatched. For page faults,
the exception code and the faulting address are
discarded. Because the instruction or HMC function
causing the fault is nullified or marked by a checkpoint,
the exception is regenerated when the task becomes
dispatchable and the operation is again performed. If an
HMC procedure causes an access exception, the queue
function, the queue header address, and optionally, the
message or TOE address are saved in the base register
field of the CRE. The register assignments for the
values are documented in Chapter 7, under Operational
Unit Task. The same IMP exception handler is invoked
for HMC exceptions as for IMP exceptions. The second
byte of the exception code always contains a value from
hex 00 to 12 or to 1C for HMC procedure exceptions.

This page is intentionally left blank.

Supervisor Linkage and Exception Presentation 6-11

An explicit SVX (supervisor exit) instruction is used in all
cases to return from an IMP routine called via the SVL
instruction. Ouring execution of the SVX instruction, the
condition code, IAR, or CSAR and base registers are
restored from the first in-use CRE on the current TOE
and the CRE status is set to available. The exception
code and ILC (instruction length count) are not restored
from the CRE. If the number of available CREs
encountered before this CRE was equal to or greater
than the number specified in the control mode field of
the TOE, the first CRE is returned to the ACO via an
implicit send. The CRE is returned to the proper ACO
using the ACO address stored in the CRE. This allows
gathering of CREs added to the ACO due to an earlier
ACO access exception. The in-use CRE is then used to
restore status and is flagged available. Note that when
an SVX is executed, if no in-use CRE is found, or if the
CRE list is empty, a specification exception occurs.
Also, descriptor access exceptions are not detected by
the implicit send when a CRE is returned to the ACO.

Programming Note: A minimum of one available CRE is
always left chained to the TOE by the SVX instruction,
even if the maximum number is set to zero.

6-12

SUPERVISOR LINKAGE SUMMARY

Figure 6-1 and the following text summarize an SVL
operation. Assume that the maximum number of
available CREs specified in the control mode of the TOE
is one.

.. Procedure Z is being executed and the condition
of the TOE and the ACO are as shown below
the procedure in the figure.

II A condition arises (explicit or implicit) in
procedure Z requiring an SVL to procedure X.
At the time of the SVL, since CRE A is in use,
there are no available CREs on the TOE to store
the status and base registers of procedure Z.
Therefore, aCRE (CRE B) is obtained from the
ACO and is enqueued to the TOE. The status
of procedure Z is then saved in CRE B.

II

..
Again an SVL occurs; this time to procedure Y.
CRE C is obtained from the ACO, the status of
procedure X is stored in CRE C, and the
execution of Y begins.

Procedure Y is completed and an SVX
instruction issued. The SVX restores the status
of procedure X flags, CRE C as available, and
restarts the execution of procedure X.

II Procedure X is completed and an SVX
instruction issued. Because an available CRE
exists on the TOE, the top CRE (CRE C) is
returned to the ACO. The status of procedure Z
is then restored from CRE B, CRE B is flagged
available, and the execution of procedure Z ;s
restarted.

Start Z SVL Table Procedure X SVL Table Procedure Y

SVL X

D

II
CRE A CRE B CRE B CRE C

In Use Available

CRE C CREA CRE B

Available In Use

CRE A

In Use

CRE C CRE B CREC

Available

CRE B CRE A

In Use

In Use

Figure 6-1. SVL Summary

Supervisor Linkage and Exception Presentation 6-13

Exceptions

PRESENTATION

Exceptions can occur during the execution of an IMP
task. Causes of exceptions include the improper
specification or use of instructions and data, the
detection of a page fault, the detection of a program
event, and task interval timer. Because an exception is
the direct result of the current task, as opposed to some
external event, the resolution of the exception is handled
under control of the curient task. The function of the
exception SVL during the handling of a machine check is
described in Chapter 9 under Machine Check.

Exceptions are presented through the use of the 2-byte
exception code area in the CRE (call/return element).
The two types of exceptions, concurrent and program,
and the CRE bytes in which they occur are described in
the following paragraphs.

CONCURRENT EXCEPTIONS

Concurrent exception conditions are presented in the
first byte of the CRE exception code field. These
exception conditions are bit significant and can occur
simultaneously.

PROGRAM EXCEPTIONS

Exceptions that result from the execution of IMP
instructions in an IMP procedure or HMC instructions in
an HMC procedure are called program exceptions.
These exceptions include the improper specification or
use of instructions and data, address translation faults,
and detection of program events.

The cause of an exception is identified in the exception
code field of a CRE (call/return element). The bit
assignments for this field are described as a part of
Calif Return Element, earlier in this chapter.

The exception mask field in the TDE (task dispatching
element) allows some exceptions to be masked. A
program exception can only occur when the
corresponding mask bit is 1. When the mask bit is 0,
the occurrence of the condition is recorded in the
exception occurrence field of the TDE but no program
exception occurs.

6-14

The following paragraphs describe each type of program
exception.

Address Compare Exception

A programmable address compare exception occurs
when:

• An address compare for the address and type of
compare (instruction, I/O, or data) is detected.

For instruction stream address compare, the instruction
is nullified. For other types of address compares (data,
I/O, or other), the instruction or current unit of
operation is completed. See the SACM instruction in
Chapter 10 for additional information.

Address Translation Exception

An address translation exception (or page fault
exception) occurs when the processor is unable to
translate a virtual address into a real address using the
VAT (virtual address translator) facilities described in
Chapter 8 because:

• No primary directory entry exists for the page in the
primary directory.

• A primary directory exists for the page in the primary
directory and the valid status bit is set to zero.

• The index field is zero ,in the hash table entry.

The instruction is nullified except for GHRF, GHR, FHRF,
and FHR instructions. For these instructions the
instruction is completed.

Programming Note: When the exception is presented,
base register 1 contains the faulting address.

Addressing Exception

An addressing exception is recognized when:

• A virtual = real address SID (segment identifier) is
used that refers te. a storage location that is beyond
the range of real storage configured to the processor.
Such an address is also invalid.

V=R Address SID Range
Model (Hex)

3,4, and 5 0000 0100 - 0000 011 F

6, 7, and 8 0000 0100 - 0000 01 FF

The operation is suppressed when the address of the
instruction is an invalid address. The operation is
terminated for an invalid operand address.

Allocate Page Frame Exception

An allocate page frame exception occurs when:

• An OU task requests a page frame to be allocated
and cleared in main storage.

The instruction is nullified.

Programming Note: When the exception is presented,
base register 1 contains the virtual address to be
associated with the allocated page frame.

Binary Divide Exception

A binary divide exception occurs when:

• The size of the quotient exceeds the size of the
resultant field in a binary divide operation.

• Division by zero is attempted during a binary divide
operation.

The instruction is suppressed.

Binary Overflow Exception

A binary overflow exception occurs when:

• The carry from the sign-bit position and the carry
from the high-order numeric bit position do not agree
during a signed binary add, subtract, or zero and add
operation.

• The results of a Convert Packed to Binary instruction
exceeds 31 bits.

• Significant bits are lost during a Shift Left Arithmetic
instruction.

The instruction is completed.

Chain Conflict Exception

A chain conflict exception occurs when:

• A hold conflict is found on an object hold operation.

• An object free operation attempts to free a monitored
hold.

The instruction is nullified but the first-operand base
register is updated to point at the offending hold record.

Conversion Exception

A conversion exception occurs when:

• The length field of a stri,lg control byte is 0 for a
CVTMC instruction.

• The end of source is encountered prior to the end of
a compression string for a CVTSC instruction.

• A compression string describes a character string that
would cross a record boundary in the receiver for a
CVTSC instruction.

• The length field of a string control byte is 0 for a
CVTSC instruction.

Supervisor Linkage and Exception Presentation 6-15

Data Exception

A data exception occurs when:

• The sign or digit codes of operands in the decimal
instructions or in a Convert Packed to Binary
instructions are invalid.

• The multiplicand in a Multiply Packed instruction has
an insufficient number of leftmost zeros.

The instruction is suppressed when a sign code is
invalid; otherwise, the instruction is terminated.

Decimal Overflow Exception

A decimal overflow exception occurs when:

• One or more significant digits are lost because the
destination field in a decimal operation is too small to
contain the result.

The instruction is completed.

Decimal Zero Divide Exception

A decimal zero divide exception occurs when:

• Division by zero is attempted by a Divide Packed
instruction.

The instruction is suppressed.

Descriptor Access Exceptions

Descriptor access exceptions occur as:

• Descriptor access busy (SRO is in use)

• Monitored (nonzero byte 1) in an SRO (send/receive
queue) descriptor

• Monitored (nonzero byte 1) in an SRM.(send/receive
message) descriptor

• Monitored (nonzero byte 1) in a TOE (task dispatching
element) descriptor

6-16

A descriptor access busy exception occurs when bit 5 of
descriptor byte 0 is a one during a reference to an SRO.
A descriptor access busy exception also occurs during
object hold/free operations if the hold record chain of
the object is found to be busy. This bit indicates when
an access to the object is in progress. The other three
exceptions (monitored) occur during a reference to an
IMP object whose descriptor byte 1 does not contain all
zeros. The particular exception that occurs depends on
the type of object being referred to. When the
processor encounters a monitored (nonzero byte 1) SRQ,
SRM, or TOE while executing an instruction, an access
exception occurs. The instruction causing the exception
is then suspended, the SRO is set busy, and the
checkpoint information is stored in the reserved area of
the header before the exception is presented. On return
from the exception handler, checkpoint information is
restored, busy is reset, and the normal instruction
execution begins by resuming the suspended instruction.
For the Receive Message and Dequeue Message
instructions on an SRM access exception, the element is
dequeued before the exception is taken. For Send
Message and Enqueue Message instructions the
exception is taken before the element is enqueued.

For Enqueue and Dequeue TOE instructions with a TDO
(task dispatching queue) or SRC (send/receive counter)
as the target, a TOE descriptor access exception does
not occur.

The following chart shows the instructions for which
access exceptions can occur and the sequence (numbers
1, 2, and 3) of occurrence for each IMP instruction and
IMP object.

Sequence
Instructions SRQ4 SRM TOE

DOM 25

DOTDE 2'·5
EOM 2
EOTDE 2'
SENDM 2 3
SENDMW 2 3
RECM 25 2
SVL02 2 2
SVL1 2 2 2
SVL22 2 2
SVX2

, If the second operand is a TOQ or SRC, no descriptor access
exception occurs.

20escriptor access exceptions are not detected by the implicit
send when a CRE is returned to the ACQ.

3The SRM and TOE exceptions are mutually exclusive for a
Receive Message instruction and an SVL if an implicit
receive is necessary.

4The SRQ descriptor byte 0, bit 6 is a summary indicator for
any TOEs that have monitor bits set and are enqueued to
the wait list. This bit is not maintained by the processor, but
is used to test for a TOE access exception on send type
operations. Therefore, the IMP exception handler is
responsible for appropriately setting and resetting the bit
within the exception routine.

5The SRM or TOE access exception is taken after the
SRM has been dequeued.

A TOO or SRC cannot be set busy or monitored. If
descriptor bit 5 (busy) or byte 1 (monitored) are nonzero,
the condition is ignored by the processor.

The instruction is nullified for SRO busy and hold free
chain busy. It is suspended for monitored descriptors of
SRO and SRM.

Note: If the exceptions occur while an SVL instruction
is being serviced, the exception is reported in byte hex
74 of the CRE. The instruction causing the exception is
suspended.

Edit Digit Count Exception

An edit count exception is recognized in EDPD when:

• The end-of-source field is reached and there are
more control characters corresponding to digits in the
edit-mask field than in the source field.

• The end of the edit-mask field is reached and there
are more digit positions in the source field.

The instruction is terminated.

Edit Mask Syntax Exception

An edit mask syntax exception occurs when:

• An invalid control character is in the EDPD mask.

• An end-of-string character is missing.

The instruction is terminated.

Effective Address Overflow Exception

An effective address overflow exception may occur
when a carry from the offset portion of a virtual address
occurs during the calculation of a storage operand
address or a branch address.

An effective address overflow exception occurs when:

• A carry from bit 24 of a virtual address occurs during
the calculation of a storage operand address.

• A storage operand crosses a segment boundary.

The instruction is suppressed.

Supervisor Linkage and Exception Presentation 6-17

End-of-Chain Exception

An end-of-chain exception occurs when:

• An empty (null) chain is found on a free operation.

• An end-of-available (hold record) chain is found on a
hold operation.

• No matching hold record is found on a free
operation.

The instruction is nullified with the first operand
unchanged.

Execute Exception

An execute exception occurs when:

• The subject of an Execute instruction is another
Execute instruction.

The instruction is suppressed.

6-18

Invalid Descriptor Exception

An invalid descriptor exception occurs when:

• An invalid descriptor field is encountered during the
execution of an operation on an IMP object.

Whether or not a descriptor type is valid depends on the
operation being performed. The following chart
summarizes operations on IMP objects.

Header Type Element Type

Instruction SRO TOO SRC SRM TOE

DOM V I I N N

DOTOE V V V N N

DTOO N N N - -
EOM V I I V I

EOTDE V V V I V

RECM V I I N N

RECC I I V - -
SENDM V I I V I

SENDMW V I I V I

SENOC I I V - -
Legend:
V = Valid
I = Invalid descriptor exception
N = Descriptor not checked
- = No element involved

Note: An invalid ACQ descriptor encountered by an
SVL implicit receive or an SVX implicit send causes a
machine check. An invalid SRM descriptor encountered
by an SVX implicit send causes a machine check. An
invalid SRC descriptor encountered by an I/O event
SENDC causes a machine check.

The instruction is terminated.

Floating-Point Inexact Result Exception

A floating-point inexact result exception occurs if the
rounded result of an operation is not exact. The result is
inexact because:

• One or more bits have been lost in the rounding
process.

• A floating-point overflow occurred while the overflow
was masked, and the result has been set either to
infinity or to the largest finite number for that specific
format.

The setting of the floating-point inexact result mask
does not affect the result of the operation. The rounded
or overflowed result is still available in the result
operand.

Floating-Point Invalid Operand Exception

A floating-point invalid operand exception occurs when
an operand is invalid for the operation to be performed.
The operand is invalid because:

• An operand is an unmasked not-a-number.

• Addition or subtraction of infinity with infinity was
attempted.

• Multiplication of zero times infinity was attempted.

• Division of zero by zero, or division of infinity by
infinity was attempted.

The setting of the floating-point invalid operand mask
affects the result of the operation.

• If the exception is masked, the result of the operation
is a masked not-a-number value:

If the exception was because of one or more
operands being an unmasked not-a-number, then
the resulting masked not-a-number value is set
with a fraction value equal to the largest
not-a-number operand fraction value.
If the exception was not because of an operand
being an unmasked not-a-number, then the
resulting masked not-a-number value is set with a
fraction value consisting of a 1 in the leftmost bit
position followed by zeros for the remaining
fraction bits.

• If the exception is not masked, the operation is
suppressed, and the exception is signaled.

Floating-Point Overflow Exception

A floating-point overflow exception occurs if a rounded
result is finite, but its exponent is too large to be
represented in the result format. For this exception to
occur, the exponent must exceed 127 in the short
format and 1023 in the long format. The setting of the
floating-point overflow mask affects the result of the
operation. In addition, the result of the operation
depends on the rounding mode and the sign of the
ntermediate result, as follows:

Supervisor Linkage and Exception Presentation 6-19

Rounding Mode-Toward

Sign of
Overflow Intermediate
Exception Is: Result Is: Zero Positive Infinity Negative Infinity Nearest

Masked Positive To largest positive To infinity To largest positive To infinity
number correctly signed number correctly signed

Negative To largest To largest To infinity To infinity
negative number negative number correctly signed correctly signed

Sign of
Overflow Intermediate
Exception Is: Result Is: Significant Sign Exponent

Unmasked Positive or Correctly rounded Correct Modified (see
negative note)

Note: The modified exponent is set from the overflowed normal biased exponent minus a
bias adjust of 192 for short format and 1536 for long format. The following summarizes the
relationship between what would be the overflowed values for the true exponent signed
exponent, the normal biased exponent, and the modified biased exponent.

Short Format Long Format

Overflowed Modified Modified
Exponent True Signed Normal Biased Biased True Siynad Normal Biased Biased

Minimum 128 255 63 1024 2047 511

Maximum 255 382 190 2047 3070 1534

6-20

Floating-Point Underflow Exception

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. For this
exception to occur, the exponent must be less than
-126 in the short format and -1022 in the long format.
The setting of the floating-point underflow mask affects
the result of the operation and the setting of the
occurrence bit.

• If the exception is masked, the result of the operation
is produced by first denormalizing the unrounded
result, then rounding, then putting it in its result field.
Only when the result is not exact is the underflow
exception occurrence bit set on.

• If the exception is not masked, the result of the
operation is a correctly rounded significant, a correct
sign, and a modified exponent. The underflow
exception occurrence bit is set on. The modified
exponent is set from the underflowed normal biased
exponent plus a bias adjust of 192 for short format
and 1536 for long format. This bias adjust is chosen
to translate underflowed biased exponents as nearly
as possible to the middle of the representable biased
exponent range for the short and long formats. This
allows the exception handler to provide appropriate
information for later reconstruction of the correct
result. The following diagram summarizes the
relationship between what would be the underflowed
values for the true signed exponent, the normal
biased exponent, and the modified biased exponent.

Short Format

Underflowed True Normal Modified
Exponent Signed Biased Biased

Minimum -126 1 193

Maximum -298 -171 21

Long Format

Normal Modified
True Signed Biased Biased

-1022 1 1537

-2148 -1125 411

Supervisor Linkage and Exception Presentation 6-21

Floating-Point Zero Divide Exception

A floating-point zero divide exception occurs if the
divisor is 0 and the dividend is a finite nonzero number.
If the exception is masked, the result of the operation is
a correctly signed infinite value. If the exception is not
masked, the operation is suppressed.

Invalid Floating-Point Conversion

An invalid floating-point conversion exception occurs
during conversion from floating-point to a fixed-point
format when overflow, infinity, or not-a-number
precludes an accurate representation in the fixed point
format. This exception cannot be masked and has no
corresponding occurrence bit. The instruction is
suppressed.

Invalid Page Exception (Synchronous Requests Only)

An invalid page exception occurs when:

• The page does not exist in the segment. The
segment group exists. but has these properties: (1)
the size allocated is less than 16 megabytes and (2) a
reference was made to an address which would have
been legitimate had the segment been made larger.
This exception is raised only on Bring and Clear
(VMC function) and on page faults.

The instruction is suppressed.

Invalid Pin Request Exception (Synchronous
Requests Only)

An invalid pin request exception occurs when:

• Pin failed because an attempted pin was the two
hundred fifty-sixth pin for that page.

• An unpin was attempted on an unpinned page.

The instruction is suppressed.

6-22

Invalid Pool State Exception (Synchronous Requests
Only)

An invalid pool state exception occurs when:

• A Bring or Clear (VMC function) with pin cannot be
performed because too many pages are already
pinned.

The instruction is suppressed.

Invalid Segment Exception (Synchronous Requests
Only)

An invalid segment exception occurs when:

• The page does not exist on a Bring and Clear (VMC
function) or page fault. The requested segment either
never existed or has been destroyed.

The instruction is suppressed.

Invalid Segment Group Address Exception

An invalid segment group exception occurs when:

• The leftmost 3 bytes of the 6-byte virtual address are
invalid for a BI (Branch Internal) instruction.

• The calculated low-order 3-byte segment group
address offset is not a positive value or is not
between a designated lower boundary and 16
megabytes minus 1 inclusive, for a CAL, CALH, or
CALHI instruction.

• An overflow is generated in the intermediate or final
calculation of an instruction which performs 3-byte
address arithmetic.

The instruction is suppressed.

Invalid Write Request Exception (Synchronous
Requests Only)

An invalid write request exception occurs when:

• A write was requested to a pinned page.

The instruction is suppressed.

Length Conformance Exception

A length conformance exception occurs in EDPD when:

• The end of the edit-mask field is reached and there
are more character po;itions in the result field.

• The end of the result field is reached and there are
more character positions in the edit-mask field.

• The number of hex 82 control characters following a
hex 81 (floating string) field cannot accommodate the
longer of the two floating strings.

A length conformance exceptiOfl occurs in a CVTMC
instruction when the converted form of the record is
larger than the result record length.

In either case, the instruction is terminated.

Main Storage Error Exception

A main storage error exception occurs when:

• Changed data in main storage could not be accessed
due to a memory failure. This exception initiates the
reporting of logical damage.

The corresponding page on disk is marked logically bad,
and the instruction is terminated.

Monitored ACQ Exception

A monitored ACO (available CRE queue) exception
occurs when:

• An implicit receive operation attempts to take aCRE
from the ACO when the ACO wait list is empty.

The instruction is nullified.

Monitored Call/Return Element Exception

A monitored call/return element exception occurs when:

• A CRE is accessed during an SVL (supervisor linkage)
and there are no CREs available.

The instruction is nullified.

Monitored SRM Descriptor Exception

See Descriptor Access Exceptions earlier in this chapter.

Monitored SRQ Descriptor Exception

See Descriptor Access Exceptions earlier in this chapter.

Monitored TDE Descriptor Exception

See Descriptor Access Exceptions earlier in this chapter.

Operation Exception

An operation exception occurs when:

• The execution of an instruction with an invalid
operation code is attempted.

Operation codes of hex 00, 40, and FF are invalid. The
instruction is suppressed.

Page Read Error Exception

A page read error exception occurs when:

• A bring (VMC function) or a page fault could not read
a given page from the disk. This exception initiates
the reporting of logical damage to the System/38
instruction set.

The instruction is terminated.

Supervisor Linkage and Exception Presentation 6-23

Program Event Monitoring Exception

A program event monitoring exception occurs when:

• Program event monitoring is specified and the
designated event occurs.

The instruction is nullified.

See Program Event monitoring in Chapter 9 for a
description of the exception condition.

Second Chain Search Exception

A second chain search exception occurs when:

• The Grant Hold or Free Hold instructions determine
that a secondary chain must be searched.

The instruction is nullified.

Send/Receive Counter Overflow Exception

A send/receive counter overflow exception occurs
when:

• A carry from the high-order position of the count
field occurs during a send operation.

The exception cannot be masked and the operation is
terminated. This exception does not occur for the
implicit send count operations caused by the event or
timer functions.

The instruction is terminated.

6-24

Specification Exception

A specification exception occurs when:

• An instruction address does not designate a location
on an even-byte (halfword) boundary.

• An instruction stream crosses a segment boundary.
The exception is recognized after the execution of an
instruction that ends on, but does not cross a
segment boundary.

Programming Note: Because of a hardware restriction
on Models 3, 4, and 5, the last fullword of a segment
should not contain any portion of an instruction.

• An operand address does not designate an integral
boundary in an operation requiring such integral
boundary designation.

• A branch, call, or jump address does not designate a
location on an even-byte (halfword) boundary.

• The multiplier or divisor in decimal arithmetic exceeds
15 digits and sign.

• The first-operand field is shorter than or equal to the
second-operand field in decimal multiplication or
division.

• No in-use CRE (call/return element) is on the TDE
(task dispatching element) during an SVX (supervisor
exit) operation.

• An IMP object used in any queuing operation or a
key operand in a dequeue or receive type operation
crosses a page boundary or is not fullword aligned.

• The second or third operand of a Compute Subscript
Address instruction is zero.

• An enqueue or send type operation designates a TDE
or SRM (send/receive message) that is currently
enqueued idescriptor bit 5 = 1).

• Invalid I (immediate) field in dequeue, receive, or
interval timer instructions.

• The source field of an EDPD (Edit Packed Decimal)
instruction is greater than 31 digits.

• The current stack entry is not doubleword aligned
when accessed by the FCN2 instruction.

• The current stack entry is too short for the FNC2
instruction.

• The address of the FRAT (function routine address
table) is not halfword-aligned when accessed by the
FNC2 instruction.

• The first operand address of a CALLI, STST, or LVT
instruction does not start aligned on a 16-byte
boundary.

• Both operand addresses of a MVAST instruction do
not start aligned on a 16-byte boundary.

• The second"'operand address of an AHSPOI, AHSPO,
or AFSPO instruction does not start aligned on a
16-byte boundary.

• The address of the available hold record does not
start aligned on a 16-byte boundary for the GHR or
GHRF instructions.

• In an EPDE instruction the primary directory entry
specified is for a V=R address.

• In an EPDE instruction the primary directory entry
specified and its associated virtual address are not on
the same hash chain.

• In an RPDE instruction the primary directory entry
specified is not on the specified hash chain.

• The length is negative in a TRIM instruction.

• In an STSOP instruction a binary underflow was
detected when the space locator was subtracted from
the address contained in the first operand.

• In a CVTMC instruction the result record length is O.

• In a CVTCM instruction the source record length is O.

• A source or result field offset is specified beyond the
end of the related source or receiver operand for a
CVTCM, CVTMC, CVTCS, or CVTSC instruction.

An algorithm modifier other than hex 00 or 01 is
specified for a CVTCM or CVTMC instruction.

• The length of the first operand as specified in register
R14, or the length of the second operand as specified
in register R15 is 0 for a CVTCM, CVTMC, CVTSC,
or CVTCS Instruction.

• A single mode SCAN is specified and the mode
control value in byte 0 of the control operand
(operand 1) specifies different modes for the base
string and scan character (bits 0 and 1 are not equal)
for a SCAN instruction.

• Bits hex 2 through 7 of byte 0 (mode control field) of
the control operand are not 0 for a SCAN instruction.

• A source record length of 0 is specified, and record
processing is also specified for a CVTCS instruction.

• The value of the unconverted source record bytes
parameter is greater than the source record length for
a CVTCS instruction.

• Invalid values are specified in the algorithm modifier
byte for a CVTCS or CVTSC instruction.

• A result field record length of 0 is specified, and
record processing is also specified for a CVTSC
instruction.

• The value of the unconverted result field record bytes
parameter is greater than the result field record
length for a CVTSC instruction.

• The algorithm modifier bit 2 = 0 (no transparent data
in source), and transparency conversion status is
active for a CVTSC instruction.

• The field length of a CVSFB or CVLFB instruction is
invalid.

The instruction is suppressed.

Supervisor Linkage and Exception Presentation 6-25

A specification exception condition associated with (1)
an SVL (supervisor linkage) implicit receive for aCRE,
(2) and SVX implicit send of aCRE, (3) a timer event
SENDC (send count), or (4) an I/O event SENDC causes
a machine check.

A specification exception occurs when the Enqueue Task
Dispatching Element instruction references the TDO
(task dispatching queue) or a TDE that is misaligned or
crosses a page boundary or when the Dequeue Task
Dispatching Element instruction references a similarily
invalid TDO. All other references to an invalid
(misaligned or page boundary crossing) TDO or TDE by
the processor result in a machine check.

Implicit SVL instructions are indicated in Appendix B.

Stack Exception

A stack exception occurs when:

• A stack operation attempts to add a stack entry
which extends beyond the stack limit value.

An unstack operation attempts to remove the first
stack entry within the segment of the stack (bit 15 of
the last halfword of stack header = 1).

The instruction operation is suppressed.

Task Interval Timer Exception

A task interval timer exception occurs if the task interval
timer is decremented through zero during the execution
of a timed task. A task interval timer exception causes
control to be passed to the exception handling routine.

Verify Exception

A verify exception occurs when:

• An LVT, AHSPOI. ASHPO, or AFSPO instruction
detects an invalid operand.

The instruction is suppressed.

6-26

INSTRUCTION LENGTH COUNT AND
INSTRUCTION ADDRESS REGISTER SETTINGS

Program Exceptions and Instruction Length Count
Settings in Chapter 2 describes, in general, how the I LC
(instruction length count) and IAR (instruction address
register) fields of the CRE (call/return element) or TDE
(task dispatching element) are set after an exception
occurs. This section provides more detail about how
certain specific situations are handled.

The IAR value stored into the CRE or TDE is reduced by
the value contained in the instruction length register and
zero is stored into the ILC field of the CRE or TDE for
the following situations:

• A programmable address compare exception.

• An address translation exception.

• A completed implicit or explicit SVL (supervisor
linkage) that encounters one or more access
exceptions.

• Any queuing instruction that encounters an access
exception.

• Any of the interruptible operations that are suspended
due to an external interrupt or page fault. The
interruptible instructions are:

Dequeue Message
Enqueue Message
Receive Message
Send Message
Send Message and Wait
Move Characters Long
Compare Logical Characters Long
Edit Packed Decimal
Trim
Convert Characters to Multi-Leaving

Remote Job Entry
Convert Multi-Leaving Remote Job

Entry to Characters
Convert Characters to SNA
Convert SNA to Character

• An unsatisfied receive for the following operations:
Receive Count
Receive Message
Supervisor Linkage Short
Supervisor Linkage Single
Supervisor Linkage Double
Any of the implicit SVLs

The ILC field value is made zero and the IAR field value
is not reduced for the following situations:

• When a programmable address compare exception
that is not on the instruction stream occurs, for
example, data or I/O.

• When filling the MCLB (machine check log buffer) on
a soft machine check report.

• A task interval timer exception occurs.

• When a task is switched out (except when no CRE
was available during an exception SVL). In the case
of an exception SVL with no CRE available, the value
of the IAR and ILC fields are determined by the type
of exception that occurred.

• If in PEM (program event monitor) mode and a PEM
exception occurs.

The value of the ILC field is unpredictable in the CRE or
TOE if a HMC procedure is also indicated in the CRE or
TOE as follows:

• When a new task is switched in, the ILC field value is
loaded into the instruction length register. If no
program exception is pending, the new task is
switched in and the IAR is reduced by the ILC prior
to the execution of the first instruction. When initially
built, a new TOE should have the I LC initialized to
zero.

• When a Supervisor Exit instruction is executed, the
ILC field value is ignored. If no specification
exception is detected during execution of the
Supervisor Exit instruction, the instruction length
register is made zero; if a specification exception is
detected, the instruction length register is left as is
(containing a value of 2) and the exception is
presented.

Supervisor Linkage and Exception Presentation 6-27

6-28

This chapter describes the interface between IMP-10M
(I/O manager) tasks, which translate system I/O
requests into a form recognizable by the I/O channel
(channel-directed commands), and OU (operational unit)
tasks, which execute the translated I/O requests within
the channel. The format and meaning of the information
passed across this interface is described in detail.

A general view of System/38 I/O structure is shown in
the following diagram. The interface under discussion is
the IMP-channel interface.

The other levels of interaction are described in the
Channel Theory-Maintenance manual.

Chapter 7. I/O and Asynchronous Events

Interface Overview

Internal Microprogramming

IMP Channel Interface

Channel

Standard Channel Interface

Channel Connect Units
• Microprogramming I/O

controllers
• Hardwired I/O controllers

External Interface

External World

• Device~
• External processors

• Other

I/O and Asynchronous Events 7-1

The IMP-channel interface is sufficiently generalized to
allow user to user communications with any source of
asynchronous events; for example, I/O devices, external
processors, and operator commands from the system
console.

The interface mechanism used for the IMP-channel
interface is the send/receive queuing structure described
in Chapter 5. All interfaces are handled by exchanges of
messages between tasks on send / receive queues. The
following illustration is an overview of the IMP channel
interface mechanism.

10M
(I/O manager task)

7-2

Send
Message

Operational Unit Queue
(commands)

SRO TOE List

OU·TOE

Receive

Message
List

SRM 1

Message L--______ ---,

Operational
Unit Task

'--______ ---.. Receive

SRO TOE List

10M-TOE

Message

Input/Output Manager Queue
(responses)

Send
Message

Message
List

SRM 1

ISRM X I

From the viewpoint of an IMP-10M task, I/O and other
asynchronous operations appear similar to any other
running IMP task.

An overview of System/38 I/O structure is shown in
Figure 7-1.

Rather than interrupting IMP processing to signal an
event or condition, all I/O and/or other asynchronous
event sources are handled by channel processing
functions and the OU (operational unit) task. The OU
task can receive messages, send messages, or both.

10M 1 10MX

Main
Storage I VAT ~~--.

'----r------J

------ - ------- -- -------------------

IMP-Channel
Interface

o
U
Q

I
o
M
Q

o I
U 0
Q M

Q

--------- -I--------I--I-------r---------r----

OU Task 1 I

HMC Channel

I OU Task X I

Channel Management
• Direct memory access
• Standard channel interface operation

- Protocol and priority
- Bandwidth management

• Command/status interface
• Channel operations (control)

---- - -- -- -1--- -- -- -- - ------ --Standard Channel I nterface- --

Adapter 1 I I Adapter X I
------ - - -1--- -- -- -- - -- ------ - External Interface -- -- .--

Device 1 Device X

External World

Figure 7-1. System/38 I/O Structure

I/O and Asynchronous Events 7-3

Asynchronous Operations

Asynchronous I/O operations are requested or enabled
by 10M (I/O manager)-formed. channel-directed work
requests contained within an ORE (operation request
element). An ORE is a part of an SRM (send/receive
message) in which the text portion has a special
meaning to I/O OU (operational unit) tasks. The text
portion of the ORE consists of two fields:

• A 2-byte OU response field (BSTAT).

• A 16-byte. 10M-formed. channel-directed command
OB (operation block). An OB. of which there are five
types. is. in effect. a channel instruction executed by
the OU task.

The OB always has a channel order field executed by
the OU task and may have a device order field
containing a specific device command and
command-related information. The device order fielq is
passed to the device for execution. Of the five OB types
only the FOB (function operation block) contains. in
addition to the channel order field. the device order
field.

Refer to Figure 7-2. An IMP-10M task can request an
asynchronous I/O operation by sending an ORE to a
predefined oua (operational unit queue). The OU task
responsible for servicing the queue receives the ORE.
initiates the requested action by executing the OB of the
ORE. and passes any required device command and
command related information to the device identified in
the OB.

An I/O device (or other source of asynchronous event).
together with the task that controls the device (or
event). is called a.n OU (operational unit).

7-4

There is one OU task and one pair of queues (OUQ and
10MQ) for each OU.

In general. there is a one-to-one relationship between
10Ms and OUs. However. a single 10M can serve
multiple OUs.

Information about the completion of the requested
operation is sent back to the IMP-10M task when the
OU task places completion status into the 2-byte OU
response field of the ORE and sends the ORE to an
10MQ (I/O manager queue) used as a response queue.
The IMP-10M task obtains the information by issuing a
receive to the 10MQ.

If a SENOMW instruction was used to send the SRM to
an oua, the OU task places the information about the
completion of the requested operation into the 2-byte
OU response field of the ORE. The OU task then
causes the task. whose TOE address is in bytes hex
7A-7F or 122-127 of the SRM. to be enqueued to the
TOQ. It is not necessary for the OU task to issue a
Send Message instruction or for the IMP-10M task to
issue a Receive Message instruction because the TO!:;
created the ORE and knows its address.

The response may indicate successful completion or
error conditions for a requested operation.

OUQ (IMP request queue)

Operational Unit Queue

D Send
ORE

IMP-10M
Task

Receive
ORE

I/O Manager Queue

(IMP response queue)

Receive
ORE

(command completion status)

IMP-10M Task View:

.. Issues I/O request-send ORE to OUO.
II Wait for I/O completion-receive from 10M queue.

I/O Event Handler and OU Task View:

• Gets command-receive from OU queue.
.. Gives command to OU-start signal to device.
II Wait for device completion-wait for command end.
II Gives completion to OU task.

Operational Unit r------,
1 I
I I I I/O
I Device

I
I
I
I
I
I

II Start 1
Signal
Command I

I

Channel
Processing
Function r------,

Receive I
II Command I

End

I/O Event
Handler

I
I
I
I

OU
Task

.--1----11--11
I
I

I
Pass I I Command

L __ L~d ___ -.J

IJ Send ORE

II Indicates command completion to IMP-send ORE to 10M queue.

Figure 7-2. Asynchronous Operation Queuing Structure

I/O and Asynchronous Events 7-5

Operational Unit Task

The OU (operational unit) task uses HMC functions that
allow an I/O unit to participate in the IMP send/receive
queuing structure. A single OU task exists for each I/O
unit, and like an IMP-10M (I/O manager) task, is
represented as a separately identifiable unit of execution
in the machine by a TDE (task dispatching element).
The OU task competes for the processor with IMP tasks
and other OU tasks through the priority mechanism of
the TDQ (task dispatching queue). The IMP facilities for
virtual addressing, addressing exceptions, message
queuing, machine check, and task dispatching are
available to OU tasks.

The OU task associated with an I/O unit is invoked by
either a channel-processing function (I/O event handler)
or an IMP-10M task. The specific operation performed
by the OU task is contained in either the ORE (operation
request element) or an I/O event field located in the
queue control table event stack of the task. The
operations involve command completion functions
(command end and command end-fetch next
command). execution of OBs (operation blocks) and
OPs (operation programs). page fault resolution, and the
modification of addresses contained in I/O resolved
address registers.

7-6

The components of an OU task are referred to in the
following diagram:

• A set of H MC procedures.

• Task control information:
- A OCT (queue control table) that contains task

control parameters.
A OCT event stack that contains I/O event fields
to be processed by the OU task.
An address list containing ALEs (address list
elements) used in page chaining operations.

• A TOE (task dispatching element).

The OU task performs:

• Execution of OBs and OPs.

• Command completion functions.

• Modifications of I/O resolved address registers.

Operational Unit Task Components

Task Control Information 1-------- --,
I I
I Oueue I
I Control I
I Table I

I I
I .-------'/----. ~~----. I
I OCT Address I I Event List I
I Stack I

Proc 1 Proc X

HMC Procedures

I I L ________ J

TDE

I/O and Asynchronous Events 7-7

Programming Notes:
1. Initialization of the task control information is the

responsibility of the 10M of the au.
2. The au has a base register work area (bytes hex

32-91 in the TDE), which must be initialized by the
10M of the au in accordance with the following
diagram.

OU Task Base Register Assignment

Registers
(hex)

o

o [I

,- I

7

I

8

I

9

Bytes

2 3

I

I

Reserved

I
Reserved

I

Reserved

Reserved

I

4

I

lHex DO

I

I I I I I

A I/O Manager Response Queue Address

I I I I I

B Reserved

I I I I I

C Reserved

I I I I

D Queue Control Table Address

I I

E Operational Unit Input Queue Address

I I I I

F Search Key Address

IMP OBJECTS: THEIR FORMATS AND OPERATION

The formats and operation of the IMP system objects
TDQ (task dispatching queue), TDE (task dispatching
element), SRQ (send/receive queue), SRM
(send/receive message), and SRC (sendireceive
counter), are described in Chapter 5.

The application of some of the objects in the I/O
structure and the formats and operational characteristics
of objects unique to the I/O structure are described in
the following sections.

Unless otherwise stated, all unassigned fields in the I/O
object formats are considered to be reserved and must
not be used. Such fields should contain zeros.

7-8

5

I Key II Hex B I Control --r------J

Internal Microprogramming Channel
Objects

OPERATIONAL UNIT

An OU (operational unit) is an I/O object consisting of
an OU task and the I/O unit (device).

An OU has a unique byte code descriptor used for I/O
device addressing by an 10M (I/O manager) task. called
the operational unit number. The OU number is in all
OBs (operation blocks) contained in an operation
program.

The OU number in the FOB (function operation block) is
used by the channel to initiate a start device channel
hardware operation.

Assignments

The assignment of OU numbers. channel priorities. and
I/O resolved address registers for I/O units attached to
System/38 is controlled via the system configurator.

Programming Notes: The OU number is a unique. 8-bit
code. For some I/O devices the code's format allows
hardware field-replaceabl.e unit personalization for
multiple I/O devices of a given type.

The format of the OU code implemented by I/O
adapters is:

Modifier Group Device Code

o Bits 2 4 8

I/O and Asynchronous Events 7-9

Bits

0-1

2-3

Description

Modifier: Indicates multiple devices of a given
type. The 2 bits are hardware programmable at
the card field replaceable unit level on the I/O
port.

00 First device of a given type.

01 Second device of a given type.

10 Third device of a given type.

11 Fourth device of a given type.

Group: A functional group or category of I/O
devices (magnetic media. card I/O.
communications. or other).

00 Group 0

01 Group 1

10 Group 2

11 Group 3

4-7 Device Code: A specific device address code.

OPERATIONAL UNIT aUEUE

The oua (operational unit queue) is an IMP
send/receive queue used to communicate I/O command
request information to a device OU (operational unit)
task from an IMP 10M (I/O manager) task.

The TDE (task dispatching element) of the OU task is
enqueued to the oua when the OU task is not busy.

A Send Message instruction issued to the oua from an
10M procedure will cause the OU task TDE to be
enqueued to the TDO (task dispatching queue) for
dispatching.

7-10

Elements on the OUO message list are OREs (operation
request elements) containing OBs (operation blocks) to
be processed by the OU task.

The ORE is obtained by the OU task performing a
receive message operation on the queue. The key
control (search type) and search key used to dequeue
the ORE are contained in the OU task base registers and
the queue control table.

Format: The OUO header format is the same as an SRO
(send/receive queue) header with a key length
specification of 4 bytes. This format is shown in Figure
7-3 and the description is in Chapter 5.

Programming Notes:
1. The OUO header is fullword aligned and must not

cross a page boundary. It may be located in any
virtual or real storage location (subject to the above
restriction).

2. The address of the OUO header and the key control
used during the receive message operation is
provided in the base registers of the OU task. Note
that the fields must be initialized before an 10M
procedure issues a Send Message instruction to the
queue.

3. The 4-byte search key used by the OU task to
dequeue an ORE during the receive message
operation is in the queue control table. Note that the
field must be initialized before a Send Message
instruction is issued by an 10M task.

4. The key length of all elements on the OUO is 4
bytes. One OUO exists for each OU task in the
system.

Descriptor

o Bytes

Reserved Key
Lth-1

8 9

10

18

2

A

First TOE Address

First Message Address

Bytes

Reserved

Bytes

Reserved

Bytes 20

Figure 7-3. I/O Manager Queue, Operational Unit Queue and Send/Receive Queue Headers

I/O MANAGER QUEUE

The 10MQ (I/O manager queue) is an IMP send/receive
queue used to communicate I/O command response
information to an 10M (I/O manager) task from a device
OU (operational unit) task. Elements on the IOMa
message list are OREs (operation request elements) that
have been processed by the OU task and contain
command completion status. The completed elements
are enqueued on the list by the OU task performing a
send message operation.

The position of the ORE on the message list is
determined by the key field in the ORE and the key
control used for the send message operation.

If the TOE (task dispatching element) of an 10M task is
enqueued to the IOMQ wait list. it is enqueued to the
TOQ (task dispatching queue) when the OU task
performs the send message operation.

Format: The 10MQ is an SRQ (send/receive queue)
with a key length specification of 4 bytes. This format is
shown in Figure 7-3 and the description is in Chapter 5.

Programming Notes:
1. The IOMQ header must be fullword aligned and must

not cross a page boundary. It may be located in any
virtual or real storage address.

2. The address of the 10Ma to be used by a OU task is
contained in the base registers of the OU task. Note
that the address must be initialized before any Send
Message instructions are issued to the oua serviced
by the OU task.

3. The key length specification of all elements on the
IOMa is 4 bytes. In general. one IOMa will exist for
each 10M tasl< in the system.

I/O and Asynchronous Events 7-11

OPERATION REQUEST ELEMENT

The ORE (operation request element) is an IMP
send/receive message element used to communicAte
I/O command and response information between an
10M iliO manager) procedure, and an OU (or>erational
unit). As illustrated in Figure 7-2, the ORE is f'lrmed
and enqueued to the OUO (operational unit queue) by
the 10M procedure 'Jsing a Send Message instruction
(label 1 in the figure). The Send Message instruction
contains both the oua header address and the address
of the ORE to be enqueued.

The OU task removes each ORE from the oua by
performing a receive message operation. The address of
the dequeued ORE is contained in the OU task base
registers during the processing of the opEl(ation blocks
contained in the ORE (label 3 in Figure 7-2).

When all operation blocks in the ORE have been
processed by the OU task and its associated I/O device,
the ORE, containing command completion status, is
enqueued to the 10Ma by a send message operation
performed by the OU task (label 7 in Figure 7-2).

Note: The ORE is not physically moved in main storage
during the above operations. The ORE is enqueued and
dequeued from the OU and 10M queues through the
manipulation of addresses.

Format:

Descriptor Next Message Address

o Bytes 2

Key Reserved

8 Bytes c E

au Status
(BSTAT)

~ ______________ a_p_er_a_ti_on __ 8_IOC __ k ______________ --J~~
10 Bytes 20

7-12

Bytes
(Hex) Bit Description

0-1

2-7

8-B

C-D

E-F

Descriptor: The object descriptor for
an SRM (send/receive message)
element. See Chapter 5 for the SRM
bit description.

Next Message Address: The virtual
address of the next ORE in a list, when
the ORE object is enqueued on an au
or 10MQ.

Key: The value used to enqueue and
dequeue the ORE from the au and
10M queues.

Reserved: Must be zeros.

au Status (BSTAT): au status
information for the 10M procedure that
initially issued the ORE. The au status
may be formed by either the device
adapter or au task. Excluding the
operation program error status provided
by the au task, the au status field is
updated for each FOB (function
operation block) executed in an ORE.

The usage of each status bit is described below.

Bytes
(Hex) Bit Description

E o Reserved: Must be zero.

Operation Program Error: Is set when
an error condition is detected during
the processing of OBs (operation
blocks) by the au task. The specific
type of error is indicated in byte hex F
of the ORE.

2-3 Reserved: Must be zeros.

4 I/O Exception: Is set to indicate a
cievice exception condition during the
execution of an FOB command by a
device adapter (the I/O exception may
be suppressed if command complete
bit is also set).

Bytes
(Hex) Bits

E 5

6

7

F 0-7

10-1F

Description

Command Reject: Is set when a device
adapter detects an invalid command or
is in a state that prevents execution of
the FOB command.

I/O Error: Is set when a device
dependent error condition is detected
during execution of an FOB command.

Command Complete: Is set when an
FOB command has been executed to
successful completion by the au.

au Status: May contain either device
dependent status provided by the I/O
device at the completion of a FOB
command or an OP (operation program)
error provided by the au task. Use of
this byte is optional and device
dependent.

Operation Block: Can contain one of
the following operation blocks: POB
program operation block), FOB
(function operation block), AOB
(address operation block), or MOB
(message operation block). A fifth
operation block, the LOB (loop
operation block), may not appear in an
ORE.

Descriptions of the operation block
formats and their operations are
provided under Operation Blocks in this
chapter.

Programming Notes: The ORE must be doubleword
aligned and may not cross a page boundary. It may be
located at any virtual or real address.

I/O and Asynchronous Events 7-13

OPERATION BLOCKS

The OBs (operation blocks) contain command requests
to an OU (operational unit) from an 10M (I/O manager)
procedure. The OBs are included in an ORE (operation
request element) and are processed by the OU task of
the OU.

The five OB types are:

• POB (program operation block)

• FOB (function operation block)

• AOB (address operation block)

• LOB (loop operation block)

• MOB (message operation block)

The formats and operations of the five OBs are
described in the following sections.

Formats: The OB is a 16-byte object that must be
aligned on a doubleword boundary, and may not cross a
page boundary.

As indicated in the first diagram, byte 0 contains a .type
code to indicate the specific OB. Byte 1 contains control
information used by the OU task during the execution of
the OB. The type code and control bit assignments for
each OB type are shown in the second diagram.

7-14

Operation Blocks: Types and Control Information.

Operation Block
(contents are type-dependent)

Type Control

Byte 1 (Control)

Operation Byte 0
Block (Type 0 2 3 4 5 6 7
Type in Hex)

POB D7 (hex 00)

FOB C6 End of Set Page ,-oad
Operation Data Chain Unique
Program Address I/O

Registers

AOB Cl End of Save Modify Set
Operation Data Address Data
Program Address Address

MOB D4 End of Message
Operation
Program

LOB D3 End of
Operation
Program

I/O and Asynchronous Events 7-15

Types of Operation Blocks

Program Operation Block

The POB (program operation block) specifies that a
sequence of OBs (operation blocks) are to be executed
by the OU (operational unit) before the ORE (operation
request element) is returned to the 10M (I/O manager)
program. The OBs associated with the POB are referred
to as an operation program.

A POB contains the address of the first OB in the
operation program and the address of the current (or
last) OB in the operation program processed.

During the processing of OBs, the address of the
current OB is maintained in bytes 2-7 of the POB and
the current OB address field is incremented by 16 as
each OB in the program is processed. The LOB (loop
operation block) may be used in the operation program
to modify the current OB address nonsequentially.

At the successful completion of an operation program,
the current OB address field contains the address of. the
last OB processed.

Format:

o

8

7-16

Type
D7

OU

Control

Reserved

9

Current Operation Block Address

2 Bytes

Operating Program Address

A Bytes 10

Bytes
(Hex) Description

o Type: POB type code (hex 07).

2-7

Control: Control field (hex 00).

Current OB Address (virtual address): The field
must be initialized with the address of the. first
OB to be executed in the operation program.

Following successful execution of the operation
program, the field contains the address of the
last OB processed. If the operation program is
terminated due to an error, the field contains
the OB address in process when the error was
detected.

8 OU: A valid OU (operational unit) number.

9

A-F

Reserved: Must be zeros.

Operation Program Address: Virtual address
of the first DB (operation block) in the operation
program. The field is not modified during the
operation program.

Programming Notes:
1. The POB must be aligned on a doubleword address

boundary, and may not cross a page boundary. It
may not be imbedded in an operation program.

2. The current OB address field does not have to be the
address of the first OB in the operation program.

Function Operation Block

The FOB (function operation block) conveys command
information to an I/O device attached to the channel.
The FOB may be contained in an operation program.

The virtual storage address used by the I/O device
during execution of the FOB command is provided by
the data address field and the control field as follows:

• If the control field indicates that page chaining is not
used, then the data address field of the FOB contains
the I/O address to be resolved and loaded into the
data I/O resolved address register of the device.

• If page chaining is used during the data transfers, the
data address field contains the address of a stack of
ALEs (address list elements).

Bytes hex 8-15 of the FOB provide command
information to the I/O device and optionally provide
status from the device following execution of the FOB
command.

I/O and Asynchronous Events 7-17

Format:

Type
C6 I ~",", I Data Address

o 2 Bytes

au Com- Command/Response
rnand

8 9 A Bytes

Bytes
(Hex) Bits Description

0 Type: FOB type code (hex C6).

Control: Control field.

0 End-of-Operation Program: Is set to
one if the FOB is the last 08 in an
operation program; otherwise is zero.

1-3 Reserved: Must be zeros.

4 Set Data Address: When set, causes a
virtual address to be resolved and
loaded into the I/O resolved address
register specified by the data register
field of the aCT (queue control table).
The actual address to be resolved is
determined by the page chaining bit.

5 Page Ch'lining: If the page chaining bit
is set, when the set data address bit is
set, then the I/O address to be
resolved and loaded into an I/O'
resolved address register is located in
an ALE (address list element)
addressed by the data address field of
the FOB.

7-18

10

Bytes
(Hex) Bits Description

6 Load-Unique I/O RAR (resolved
address register):

When the load-unique I/O RAR bit is
set simultaneously with the set data
address and page chaining bits, it
indicates that the data address in the
first ALE stack entry will be resolved
and loaded into the I/O resolved
address register specified by the CMD ;J REG field of the queue control table,
plus one. When the unique I/O RAR
is loaded into the specified CMD REG
field, HMC interrogates byte 9, bit 1
and byte hex A. If byte 9, bit 1 is zero
and byte A does not equal hex 01, then
the unique register is marked invalid
and the store allowed bit in the aCT is
set.

After loading the unique I/O resolved
address register, the OU task will load
the address of the second ALE stack
entry into the aCT ALE pointer field.
When the I/O adapter transfers a
load-multiple I/O register function
event to the channel, the I/O event
handler will load ALE data addresses
into consecutive I/O resolved address
registers, starting with the data register
specified in the aCT. The unique I/O
RAR is marked valid and the store
allowed bit is set or reset to reflect the
state of the store allowed bit in the
aCT.

;J
7 Reserved: Must be zero.

Bytes
(Hex) Bits Description

2-7

8

9

0-4

5

6

Data Address: Either an I/O address
or the address of the first ALE (address
list element) of a page chain address
list if the set data address bit is set.
The field should contain zeros if the set
data address bit is zero. If page
chaining is used, then the address must
be virtual = real.

OU: A valid operational unit number.

Command: An I/O command code to
be interpreted and executed by the I/O
device. The format of the CMD field is
as follows:

Device Dependent Control: A device
dependent command code defined by
each device adapter.

Control: An I/O command that mayor
may not involve a data transfer to or
from) main storage.

Read: An I/O command that involves
a data transfer from an I/O device to
main storage.

The change bit in the primary directory
entry (bit 42) for the page to be
resolved is set to the value of the read
bit when the set data address bit (byte
1, bit 4) of the control field is set.

7 Write: An I/O command that involves
a data transfer from main storage to an
I/O device.

Note: The contents of bits 5-7 are not
recognized by horizontal microcode.

Bytes
(Hex) Bits

A-F

Description

Command/Response: Provides
command information to the device and
optionally provides extended response
status from the device.

Two formats of the
command/response field are defined in
the following diagram. Implementation
of the field format is command
dependent with only one format valid
per FOB.

The basic format provides 6 bytes of
device/ command dependent
information in addition to the OU field
and the CMD field (see the following
diagram). The second
command / response format provides 2
bytes of device/command dependent
information (bytes hex A and B) and 4
bytes of response status referred to as
FSTAT (functional status).

The definition of FST AT is
device/command dependent (see
Chapter 9) and may be used by the
device to provide command completion
status in addition to the completion
status provided in the OU status field
of the ORE (operation request element).

I/O and Asynchronous Events 7-19

Formats:

FOB Command/Response Fields (Bytes 8-F)

Format 1

Device Command Dependent

8 9 A , Bytes

Format 2

OU
Com- Device/Command

FSTAT
mand Dependent

8 9 A Bytes c

Note: Unused portions of the command/response
field should be filled with zeros.

Programming Notes:
1. The FOB must be aligned on a doubleword address

boundary and may not cross a page boundary.
2. The I/O data address provided in either the data

address field or an ALE (address list element) must
be aligned on a doubleword address boundary.

3. The addresses in the ALE stack (page chain address
list) must be virtual = real if the load unique I/O
register bit is on.

4. Unused portions of the command/response field
must be filled with zeros.

5. The address of the page chain address list (ALE
stack) must be virtual = real.

Address Operation Block

The AOB (address operation block) provides the ability
to save, modify, or load the I/O resolved address
registers during the processing of an operation program.

The operation of the AOB is controlled by bits 4-7 of
the control field. Proper settings of the control bits
provide the ability to perform selected portions of a
read, modify, and stOre cycle. The control bits provide
the ability to load the address cOiltained in the I/O
resolved address register into thE! AOB, modir/ the
address in the AOB, and to resolve the .. ddress
contained in the AOB and load the selected I/O
resolved address regis·~er.

7-20

10

10

The I/O resolved address register involved in the AOB
operation is selected by adding the register modify field
(byte hex A) in the AOB to the data register field (byte
3) of the aCT (queue control table). The register modify
field is treated as an unsigned logical quantity. For
example, if the data register field in the aCT of the
operational unit task contains hex 10, then a register
modify field value of hex 01 in the AOB would result in
the selection of I/O resolved address register hex 11.

When an address in the AOB is resolved and loaded
into an I/O resolved address register, the change bit in
the page directory entry for the virtual page is set to the
value of the read bit in the command field.

Format:

Type
Control

C1

o

OU Com-
mand

8 9

Bytes
(Hex) Bits

a

a

Data Address Modify
Address

2 Bytes 6

Register Reserved Address
Modify Modifier

A B Bytes E

Description

Type: AOB type code (hex Cll.

Control: Control field.

End Of Operation:

a AOB is not the last OB (operation
block) in an operation program.

AOB is the last OB in an
operation program.

10

Bytes
(Hex) Bits

5

1-3 Reserv.ed: Must be zeros.

4 Save Data Address: Causes the offset
portion of the virtual address contained
in the selected I/O resolved address
register to be loaded into AOB bytes
6-7. The SID (segment identifier)
portion of the virtual address must be
preloaded into AOB bytes 2-5 by the
associated 10M. The save operation is
performed prior to any address
modifications (modify address control
control bit) or address resolution (set
data address control bit).

6

7

Description

Modify Address: When set, causes the
address contained in AOB bytes 6-7 to
be modified by the value specified in
AGB/bytes hex E-F (address modifier
field). The address modifier field is an
unsigned logical quantity and can either
be added or subtracted from the
address according to the value of the
decrement bit. Any carry or borrow
generated during the modification is
indicated as an operation program
error.

Bytes 2-5 of the AOB are not affected
by the addr0ss modification.

Decrement: When set, causes the
address modification specified by the
modify address bit to be an unsigned
subtraction.

Set Data Address: When set, causes
the address in AOB to be resolved and
loaded into the selected I/O resolved
address register.

I/O and Asynchronous Events 7-21

Bytes
(Hex) Bits

2-5

6-7

8

9

A

B-D

E-F

7-22

Description

Data Address: The SID portion of a
virtual address used during an AOB
operation.

Modify Address: The offset portion of
a virtual address used during an AOB
operation.

OU: A valid operational unit number.

Command: Provides control for setting
the change bit in the PD (primary .
directory) entry for the virtual address
that is resolved and loaded into an I/O
address register. The byte is formatted
like the command field of the FOB
(function operation block); however,
only the read bit (bit 6) is used during
the processing of the AOB. If a set
data address operation is selected, the
change bit in the PD entry for the
virtual address is set to the value of the
read bit in the command field.

Register Modify: An unsigned logical
quantity used to generate the effective
I/O resolved address register number.
For V=V data address the maximum
value of the Register Modify field is
hex OE. A value greater than hex OE
will generate an operation program
error. For V=R data addresses the
value contained in the Register Modify
field is not constrained.

Reserved: Must be zeros.

Address Modifier: An unsigned logical
quantity used to modify the address in
the AOB data address field.

Programming Notes:
1. The resultant virtual address in the data address field

of the AOB must be aligned on a doubleword
address boundary. On an AOB read (save data
address) only the offset is obtained from the I/O
register. Programming must supply the SID (segment
identifier) in bytes 2-5 of the AOB and may have to
supply the offset value.

2. The operations selected by the control bits in the
control field are performed in the following sequence:
a. Save data address
b. Modify address
c. Set data address

3. An operation program error (described later in this
chapter) occurs if the selected register number
exceeds the number of I/O resolved address
registers available on the system (see I/O Resolved
Address Registers in this chapter).

4. An operation program error occurs if the register
modify field value is greater than hex OE and the
address in the data address field is not V=R.

5. An operation program error will be indicated if the
modified address crosses a segment boundary.

6. If the AOB read/modify/write or read/write is to be
done, then the 4-byte SID of the address to be read
must be supplied by the user generating the AOB.

7. An operation program error will be indicated if the
decrement bit is on while the modify bit is not on.

Loop Operation Block

The LOB (loop operation block) helps provide sequence
control of the operation blocks in an operation program.

Each time the LOB is encountered during the execution
of an operation program, the count field of the LOB is
incremented by 1 and compared to the contents of the
limit field. If the modified count is less than the limit
value, then the next OB (operation block) to be
processed by the OU (operational unit) task is located by
subtracting the offset field from the current OB address
field of the POB (program operation block) in the ORE
(operation request element).

If the modified count field equals or exceeds the limit
value, then the count field is set to zero and the next
sequential OB in the operation program is executed. If
the limit field is initially zero, the LOB is treated as a
no-operation and the next sequential OB is executed.

If an operation program containing an LOB terminates
before completion, the count field in the LOB will
contain the number of times the OB loop was executed
before the error situation was detected.

Format:

Reserved

o 2 Bytes 6

OU Reserved Count

B 9 Bytes C E

Offset

Limit

10

I/O and Asynchronous Events 7-23

Bytes
(Hex) Bits

o

o

1-7

2-5

6-7

8

9-8

C-O

E-F

7-24

Description

Type: LOB type code (hex 03).

Control: Control field.

End-Of-Operation Program:

o LOB is not the last OB in an
operation program.

LOB is the last OB in an
operation program.

Reserved: Must be zeros.

Reserved: Must be zeros.

Offset: Used to modify the current OB
address field in the POB. The offset
value is the number of OBs in the loop
multiplied by 16.

OU: A valid operational unit number.

Reserved: Must be zeros.

Count: The number of times the LOB
. has been processed. The count field is

set to zero when the count equals or
exceeds the limit value.

Limit: The number of times the OB
loop is to be processed. The limit field
is not modified by the OU task.

Programming Notes:
1. An operation program error occurs if the modified OB

address is less than the operation field in the POB.
2. The LOB may not appear in an ORE (operation

request element).
3. If the LOB is the last OB of an operation program,

the program is not completed until the count of the
LOB equals the limit value.

Message Operation Block

The MOB (message operation block) causes an IMP task
or an OU (operation unit) task to become dispatchable
during the execution of an operation program. This
facility can be useful in prefetching, for example, items
such as virtual storage pages and data translation
operations.

If the message bit of the MOB is set, then an implicit
Send Message instruction is performed by the OU task
processing the MOB. The Send Message instruction
causes the SRM (send/receive message) element whose
address is specified by the message address field of the
MOB to be sent to the SRO (send/receive queue)
designated by the address contained in the target
address field. Any TOE (task dispatching element) on
the SRO wait list is enqueued on the TOO (task
dispatching queue) as a result of the operation.

If the message bit is reset. then an implicit Send Count
instruction is performed with the address of the SRC
(send/receive count) provided in the target address field
of the MOB.

Format:

I
Type I ~"""' I Target Address
04

0 2 Bytes

OU IR~~ool Message Address

8 9 A Bytes

Bytes
(Hex) Bits Description

o

o

1-3

4

Type: MOB type code (hex D4).

Control: Control field.

End-Of-Operation Program:

o The MOB is not the last OB
(operation block) of the operation
program.

The MOB is the last OB of the
operation program.

Reserved: Must be zeros.

Message:

o A Send Count instruction is to be
performed.

A Send Message instruction is to
be performed. The address of the
SRM element to be used in the
Send Message instruction is
provided in the message address
field.

5-7 Reserved: Must be zeros.

10

Bytes
(Hex) Bits

2-7

8

9

A-F

Description

Target Address: The virtual address
of the SRO (send/receive queue) or
SRC (send/receive counter).

au: A valid operational unit number.

Reserved: Must be zeros.

Message Address.

Programming Notes:
1. Depending on the priorities of the TDEs (task

dispatching elements) placed on the TDO (task
dispatching queue), a task switch can occur following
the execution of the MOB by the OU task. When the
OU task that issued the MOB again becomes the
current task, the processing of the operation program
will resume with the OB following the MOB.

2. The key control (search type) used during a Send
Message instruction is contained in the OU task base
register.

I/O and Asynchronous Events 7-25

Operation Program

An operation program consists of one or more OBs
(operation blocks) associated with a single ORE
(operation request element). The OBs of the
rwnoperation program are processed to completion by
the OU (operational unit) task before the ORE is
returned to the 10M (I/O manager) task (via the I/O
manager queue). The operation program can contain
FOBs, AOBs, MOBs, and LOBs.

The LOB (loop operation block) is used to modify the
current OB address in the POB (program operation
block) during OU task execution, providing the capability
for nonsequential execution of OBs.

7-26

Operation Program Example

The following example shows how different types of
operation blocks can be combined to form an operation
program. The example is a printer operation program.

An IMP task uses a send instruction to enqueue OREs
to the OUQ (operational unit queue) of the printer. This
OUQ is associated with a single OU (operational unit).
for example, a printer and control adapter. The first
ORE on the queue contains an FOB (function operation
block) that causes the printer to restore and print a
single line. At the completion of the operation, the OU
task notifies the IMP task by placing a status byte in the
ORE and issuing a Send Message instruction to send
the entire ORE to the OU 10MQ (I/O manager queue).
The 10MQ is not shown in the example.

I
Example of a Printer Routine

SRO I First TOE Address I I First Message Address I
I

I SRM Next Message Address IFOBI au I

I
L

I SRM I POB I
Current OB Address

I

I
AOB

Set
Reg

Data Address au

FOB au

MOB
Send

Target Address au
Count

AOB
Save
& Set

au

LOB
I

Offset au

FOB
End au
Op

The print program:

• Prints three lines

• Indicates to a target queue each time a line is
printed via an MOB

I
Print and Space 1

I

I Loop 3

Restore

Restore I

Operation Program Address I
I

I/O and Asynchronous Events 7-27

Programming Notes:
1. The OBs (operation blocks) of the program must be

aligned on contiguous doubleword address
boundaries.

2. The operation program can be located at any virtual
(or virtual = real) address, subject to the above
consideration. The operation program can not cross a
segment boundary.

3. The last 08 of the program must have the end of
operation program bit set. If an LOB (loop operation
block) is the last OB, then the program will not
complete until the value of the LOB count field is
equal to the value of the LOB limit field.

7-28

QUEUE CONTROL TABLE

The OCT (queue control table) is an au (operational
unit) task control object used by the 10M (I/O manager)
procedure, the au (operational unit) task receiving OREs
(operation request elements) from an au queue, and the
I/O event handler. A OCT must exist for each au task
in the machine.

The OCT contains an SRC (send/receive counter) object
used by the I/O event handler routine to dispatch an
au task and certain physical parameters associated with
the particular I/O device. Certain fields of the OCT are
used by the au task during the processing of operation
blocks in an ORE.

The device 10M task can access the OCT to modify
certain parameters used by the au task and I/O event
handler.

Format:

Com-
Data Type

Control mand
08 Register

Register

o 2 3 4

Current ALE Address

A Bytes

First TOE Address

12 Bytes

Key

1C Bytes 20

aCT Event Stack Entry

I/O Event

o Bytes 4

aCT Entry

Event Count

Bytes

FOB Timer
Count

6

10

18

22

Event Offset

SRC
Descriptor

SRC Count

FOB Timer
Limit

Event Limit

8

SRC Limit

1A

24

I/O and Asynchronous Events 7-29

Bytes Bytes

.J (Hex) Bits Description (Hex) Bits Description

0 Type: OCT type code (hex 08). 1 (cont) 3 FOB Timing In Process:

Control: Control field. 0 VMC does not reset the FOB
timers.

0 Lock:
If this bit is set and the

0 The I/O event handler does not FOB-in-progress bit is reset,
post any event field directed to the VMC resets the FOB
the OCT to the channel 10M timers.
OCT.

This bit is set by VMC to indicate
The I/O event handler posts any that VMC has updated the FOB
event field directed to the OCT to timers. This bit is reset by the OU
the channel 10M OCT. task when the I/O adapter issues a

command end or a command
The bit is set by the event handler if end/fetch next command.
the OCT event stack is full and is
set by a device 10M task when any 4 Store Allowed On Data Registers:
fields in the OCT are being modified.

0 Store not allowed.
Chain Address: Set by the OU task
during the processing of the FOB When an I/O adapter requests
(function operation block) with both set a load multiple I/O register
data address and page chaining bits function, the store allowed bit .J set. The bit, when set, causes the is set in the I/O data register.
event handler to obtain the virtLial This allows the I/O adapter to
address to be resolved from an address transfer data into storage.
list during the servicing of an address
event. This bit is set when the OU task

processes the FOB if bit 6 of the
2 FOB In Progress: FOB command field is set. This bit

is reset when the I/O adapter
0 A command has not been issued responds with a command end or

to an I/O adapter. command end/fetch next command.

A command has been issued to 5-7 Reserved: Must be zeros.
an I/O adapter.

2 Command Register: The address of
This bit is set when an FOB is the I/O resolved address register used
issued to an I/O adapter and reset by a device to access bytes hex 8-F of
when the I/O adapter responds with the FOB. Each device on the system
a command end or a command must have an assigned command
end/fetch next command. address register.

7-30

Bytes
(Hex) Bits

3

4-5

6-7

8-9

A-F

Description

Data Register: The address of the
primary data address register used by
the I/O device. If more than one data
address register is required by the
device, the data register byte contains
the address of the lowest numbered
register assigned to that device.

If the device does not require any data
address registers, the data register field
must be the same as the command
register field.

Event Count: The number of events in
the OCT event stack. This field is
incremented by the event handler when
event fields are placed on the OCT
event stack.

Event Offset: The address offset,
within the same OCT segment, to the
beginning of the OCT event stack.

Event Limit: The number of 4-byte
event entries that can be put into the
OCT event stack.

Current ALE Address: A virtual = real
address to an ALE (address list
element) in a page chain address stack.
The address is valid only during the
execution of an FOB in which page
chaining is used.

This field is modified by the event
handler as each address is obtained
from the page chain address list.

Bytes
(Hex) Bits

10-1B

1 C-1 F

20-21

22-23

Description

Send/Receive Counter: Controls the
dispatching of the OU 'task. The OU
task issues a Receive Count instruction
to increment the count of the SRC; the
event handler issues a Send Count
instruction.

SRC fields are:

Hex Byte Contents

10-11 SRC descriptor

12-17 First TDE address

18-19 SRC count

1A-1B SRC limit

Key: The search key operand during
the Receive Message instruction
performed by the OU task.

FOB Timer Count: Time elapsed for
current FOB in n-second increments;
maintained by VMC (vertical
microcode).

FOB Timer Limit: Timing limit for FOB
in n-se.cond increments; maintained by
VMC.

I/O and Asynchronous Events 7-31

Programming Notes:
1. The aCT (queue control table) must be in V=R (virtual

= real) storage and doubleword aligned. The aCT
must not cross a segment boundary. The aCTs for
all OU (operational unit) tasks must be in the same
V=R segment.

2. Certain fields in the aOT must be initialized by the
10M (I/O Manager) of the OU prior to dispatching
the OU task. All fields except the following should be
initialized to zeros.
a. Type (byte 0): Set to the aCT type code of hex

08.
b. Cmd Reg (byte 2): Set to the address of the

command address register for the device.
c. Data Reg (byte 3): Set to the address of the data

address register for the device. If no data address
registers are required. the byte must contain the
command address register number (same as byte
2).

d. Event Offset (bytes 6-7): Set to the address.
within the segment. of the first byte of the aCT
event stack.

e. Event Limit (bytes 8-9): Set to the number of 4
byte event fields allocated in the aCT event stack.
The limit value must be greater than or equal !o
four.

f. SRC Descriptor (bytes hex 10-11): Initialized to
hex 8000.

g. SRC Limit (bytes hex 1 A-1 B): Initialized to hex
0001.

h. Key (bytes hex 1 C-1 F): Initialized to the key value
used to dequeue OREs (operation request
elements) from the oua (operational unit queue).

3. The 10M may modify aCT entries only if the OU task
is on the wait list of either the oua or the aCT -SRC
(send/receive counter) of the OU task.

7-32

aCT EVENT STACK

The aCT (queue control table) event stack contains I/O
event fields to be processed by the OU (operational unit)
task. The event fields are placed on the stack by either
the 10M (I/O manager) task or the event handler and
are removed and processed by the OU task in a first in.
first out manner.

The event offset field of the aCT provides the offset
address to the beginning of the stack. The event limit,
event count. and SRC count fields of the aCT are used
by the event handler and OU task when posting or
removing fields from the stack.

Although the event fields are normally placed on the
aCT event stack by the event handler; an I/O manager
task. under certain circumstances. can place an event
field on the stack prior to dispatching the OU task.

The 10M must perform the following steps to place an
entry on the stack or modify the aCT:

1. Set the lock bit in the control field of the aCT. to
prevent the event handler from posting an event
while the 10M is modifying the aCT fields.

2. Test for open entries in the event stack field of the
aCT.

3. If the event count equals the event limit. reset the
event count to hex 0000.

4. Place the 4-byte event field on the event stack at
the address equal to the event offset + four times
the event count.

5. Increment the event count field by one.

6. Reset the lock bit to zero.

After the above steps are completed. the OU task is
dispatched to service the event by the 10M issuing a
Send Count instruction to the send/receive counter in
the aCT.

Programming Notes:
1. The nCT event stack must be aligned on a word

address boundary and located in the same virtual =
real resident segment as the nCT.

2. One nCT event stack must be allocated for each
nCT.

3. The maximum size of the nCT event stack associated
with the particular nCT is determined by the number
of event fields that may be posted in the stack from
the device or event handler. A minimum size of four
is specified (event limit = hex 0004).

4. The maximum number of entries allocated for the
nCT event stack is determined by the number of
function events that may be posted to the OU task.
The minimum number of entries allocated must be
greater than or equal to four. If the stack is full
(event count is equal to the event limit field) when
the event handler attempts to place an event on the
stack, the event handler sets the lock bit in the nCT,
changes the event field to an error event, and posts
the event field to the nCT event stack of the channel
operational unit.

ADDRESS LIST ELEMENT

The ALE (address list element) is an 8 byte object
containing a virtual or virtual = real address to be used
during page chaining operations. The ALE is a single
element in a page chain address stack used during the
processing of a function operation block command.

The first ALE data address field is loaded into the data
register specified in the nCT (queue control table) and
the address of the ALE is placed in the nCT in the ALE
pointer field. If the end of multiple load bit in the ALE
control field is not set, the next ALE is processed. This
next ALE data address field is loaded into the data
register calculated by adding 1 to the value of the
previous data register number. The address of the ALE·
is then placed in the aCT -ALE pointer-field in the nCT.
ALEs are continually processed until the end of multiple
load bit is encountered. A maximum of 14 I/O data
registers may be loaded in this manner.

I/O and Asynchronous Events 7-33

Format:

Type
C3 I ~""ol I Data Address

o

Bytes Bits

o

o

2-7

2-7

7-34

2 Bytes

Description

Type: ALE type code (hex C3).

Control: Control field.

End Of List:

o Not the last member of an ALE
stack.

The last member of an ALE stack.

End Of Multiple Load:

The I/O resolved address registers
starting with the primary data register
specified in the OCT, are ioaded with
resolved addresses contained in the
ALE list up to and including tl;le ALE
having the end of multiple load bit set.
A maximum of 14 contiguous I/O
resolved address registers can be
loaded.

Reserved: Must be zeros.

Data Address: A virtual or virtual =
real address to be used during page
chaining.

8

Programming Notes:
1. The address list element must be aligned on a

doubleword address boundary.
2. The address list element stack must be located in a

virtual = real segment. The virtual = real address of
the first ALE in the stack is in bytes 2-7 of the
function operation block using page chaining.

3. The location pointed to by the ALE data address
must be aligned on a doubleword boundary.

I/O Storage Addressing

I/O RESOLVED ADDRESS REGISTERS

The I/O resolved address registers are hardware
registers in the processor that contain resolved virtual
addresses and are used by an I/O device to access
command information, post command completion status,
and to transfer device data to or from real storage.

The I/O resolved address register assignments (made at
system specialization time) are passed to devices at
initialization time, for example, when an active session is
first established.

The number of I/O resolved address registers assigned
to a particular device is variable up to a maximum of 15.
A single device requires a command register to address
the command/response field of the function operation
block and one or more data registers for the transfer of
device data.

The I/O resolved address register, used during a
channel operation, is selected by the device.
Addressability of a maximum of 256'-'cwdress registers is
provided by all models of the 5381 System Unit.
Addressability of a maximum of 384 address registers is
provided by all models of the 5382 System Unit.

Whenever a newly resolved virtual address is loaded
into an I/O resolved address register, the use count in
the primary directory entry (see Chapter 8) for that
address is incremented. When the I/O resolved address
register is invalidated, the use count is decremented.

Notes:
1. Unless loaded by FOB (function operation block) or

an AOB (address operation block). an I/O resolved
address register contains an address that may have
been modified by the last instruction of an FOB. The
modification is device dependent.

2. For those devices using multiple contiguous I/O data
address registers, only the first (primary) data address
register is uniquely specified in the queue control
table for that OU (operational unit) task.

PAGE CHAINING

The page chaining facility of the I/O structure transfers
device data, during the execution of a single function
operation block, to several noncontiguous pages. The
operation is referred to as page chaining, since the
address used by the device during the storage transfers
is changed only on page boundaries.

Page chaining is invoked during the OU task processing
of an FOB. The set data address and page chaining
control bits of the FOB must be set prior to the initiation
of the OU task. When both bits are a 1, the address in
the data address field of the FOB is a V=R address of
the first ALE (address list element) of a page chain
stack. This address is placed into the OCT (queue
control table) for use by the event handler. (See the
following diagram.)

The event handler accesses the OCT (queue control
table) of the device to determine if page chaining is
being used. The OCT contains the page chaining control
bit set by the OU task and the ALE pointer field, which
is updated (from the data address field of the FOB)
during each boundary crossing, to point to the next ALE
in the page chain stack.

The first ALE of the page chain stack is accessed by the
OU task and the address in the ALE is resolved and
loaded into the data address register of the device.
Following resolution of the address in the ALE, which
may be either virtual or V=R, a start device command is
issued to the channel hardware.

A page boundary crossing is always indicated by the
VAT (virtual address translator) hardware if page
chaining is used and the address contained in the
register is modified across a page boundary.

The page boundary crossing is serviced by the event
handler. The new address to be resolved is obtained
from the next ALE in the page chain stack instead of
using the address in the I/O resolved address register.

Notes:
1. The page chain must be in a V=R segment.
2. The data addresses contained in the address list

element can be either virtual or V=R.
3. Page chaining still occurs at a page boundary even

though the address in the ALE is V=R.

I/O and Asynchronous Events 7-35

Page Chain Stacking

OCT

Type (D8)
Control Command Data

11011000 Register Register

t

FOB

Type (C6) Control (11000110 xxxx11xx
Data
Address

I l
Se t Data Address Bit I I Page Chaining -------------_ -----

Bit

I/O Resolved Address Registers

~--+----.

PAGE FAULTS

Page faults can occur during the modification of
resolved virtual addi-esses in I/O resolved address
registers during channel operations or during the
resolution of virtual addresses contained in operation
blocks.

If a resolved virtual address in an I/O resolved address
register is incremented or decremented across a page
boundary during channel operation, the I/O event
handler attempts to resolve the address by reference to
the primary directory. If the virtual address is not in the
primary directory, the I/O event handler performs a
send count to make the OU task dispatchable to resolve
the page fault using the IMP exception mechanism.

A page fault occurring during the execution of an
operation block by an OU task is also resolved through
the IMP exception mechanism (address translation
exception).

7-36

Page Chain Stack

ALE Data Address

ALE Data Address

ALE Data Address

ALE Data Address •
ALE Data Address

..........

VIRTUAL = REAL

The IMP virtual address mechanism is used by I/O
devices operating on the channel. Virtual addresses
containing virtual = real SI Ds (segment identifiers) can
be used as I/O addresses in operation blocks.

Note: Page crossing and page chaining are handled by
the event handler without need for a task switch.

I/O ADDRESSING RESTRICTIONS

Addresses of I/O objects have boundary and alignment
restrictions (see the following table).

Address
I/O Object' Alignment

ORE (operation request element) Doubleword

08 (operation block) Doubleword

OP (operation program) Doubleword

aCT (queue control table) Doubleword

aCT Event Stack Word

ALE (address list element) Doubleword

ALE Stack Doubleword

I/O Event Stack Word

I/O Register Table Halfword

I/O Event Stack Word

Data Address Doubleword

'No object may cross an SID (segment identifier) boundary.
2The first 32 bytes may not cross a page boundary.
3Must be in the same V=R segment as the I/O register table.

I/O Object Address Restrictions

Address Type Cross Page Boundary

V=V,V=R No2

V=V, V=R No

V=V,V=R Yes

V=R3 Yes

V=R3 Yes

V=R Yes

V=R Yes

V=V4 No

V=R No

V=V4 No

V=V,V=R Yes

4Must start and end on a page boundary, and the page must be pinned V=V.

I/O and Asynchronous Events 7-37

I/O Events

An I/O event is a unit of work requested by the
channel, device, or 10M (I/O manager) task of an OU
(operational unit) task or the I/O event handler. This
unit of work is described by 4 bytes called an I/O event
field. The I/O event can be one of three types:
function, address, or error.

I/O EVENT FIELDS

The general formats of the I/O event field for the three
event types are:

Function Event

o

0000
ffff

Event-Dependent

Bytes 4

Legend: f = 4-bit function type code

Address Event

10eO
I/O
Register Hex 00 Hex 00

eeee
Number

o 2 Bytes 4

Legend: e = event-dependent

Error Event

e1ee eeee eeee eeee
eeee eeee eeee eeee

o 2 Bytes 4

Legend: e = event-dependent

7-38

Function Event

The function event communicates device or 10M work
requests to an OU task. The function event normally
requested by an I/O device is the command completion
indication (command end or command end/fetch next
command). The function event used by the 10M task
(fetch next command) is normally used to restart an OU
task following an error situation.

Command End/Fetch Next Command

The command end/fetch next command function is
requested by an I/O device at the completion of an FOB
(function operation block) command. The function event
when requested by an I/O device, signifies that the
current FOB has been successfully completed and the
OU (operational unit) task can proceed to process
operation blocks in the current ORE (operation request
element) if they are available. If the operation blocks in
the current ORE have been processed, then the OU task
places the ORE on the 10MQ (I/O manager queue). the
response queue, and requests (for example, receives) a
new ORE from the OU queue.

The command end/fetch next command function event
contains the BSTAT (basic status) information provided
by the I/O device. The BSTAT information is placed
into the OU status field of the ORE by the OU task.

Format:

Hex 01 10REG Basic Status

o 2 Bytes 4

Command End

The command end function event is used by an I/O
device to communicate error or exception status to the
device 10M task. The function request indicates that the
device cannot proceed to execute commands until
recovery operations are performed.

The command end event field contains the 2-byte
BSTAT information provided by the device. The BSTAT
information is placed into the OU status field in the
current ORE before the ORE is enqueued on the 10MO.

Format:

Hex 02 10REG Basic Status

o 2 Bytes 4

Fetch Next Command

The fetch next command function is normally used by
an 10M task to restart the OU task following an error
situation. The 10M task forms the event field, places
the 4-byte field into the OCT (queue control table) event
stack, and issues a Send Count instruction to the SRC
(send/receive counter) in the OCT to cause the OU task
to be dispatchable.

The fetch next command function causes the OU task to
issue a Receive Message instruction to the OU queue to
obtain a new ORE.

Format:

Hex 03 Hex 00 Hex 00 Hex 00

o 2 Bytes 4

Address Event

The address event indicates that a page boundary
crossing occurred during the modificiltion of a resolved
virtual address contained in an I/O resolved address
register. If address chaining is not being used by the
device, the virtual address to be resolved is contained in
the I/O resolved address register indicated by byte 1 of
the field.

If address chaining is being used, the next virtual
address from the address list will be resolved.

Format: Address events are not seen by the IMP
channel interface; however, for completeness, the
format of the address event is shown below:

10dO
I/O
Register Hex 00 Hex 00

dddd Number

o 2 Bytes 4

Legend: d = device-dependent

Error Event

The error event communicates error and/or exception
conditions involving the ~hannel hardware, interface, and
specific conditions of devices to an IMP (10M) channel
error task_ The channel 10M task performs logging and
recovery operations and communicates with the OU
tasks of the channel. Refer to Channel Error Recovery in
this chapter for details.

Format:

e1ee eeee eeee eeee
eeee eeee eeee eeee

o 2 Bytes 4

Legend: e = event-dependent

The other function events are described in the Channel
Theory-Maintenance manual.

I/O and Asynchronous Events 7-39

I/O EVENT HANDLER

The I/O event handler (Figure 7 -4) is a horizontal
microcode function that is invoked by the channel
hardware to post an I/O channel event request to the
processor. The horizontal microcode services the I/O
events represented by the I/O event fields in the event

stack.

Depending on the event field type, the event operation
can be completely performed by the I/O event handler
or the I/O event handler can send to an OU task to
service the request. The I/O event handler relinquishes
control when all entries in the event stack are removed
and serviced.

10M

Device

I/O Event Field

Formation

Function Event
10M Forms

Function Event

Channel Forms r----------------

Channel

Channel

Address Event
Channel Forms

Error Event
Channel Forms

I/O
Event I---+-__

Stack

Function

Address

Select Allocate Page,
and Resolve Next
Route Page

Error

LlO Event Handler

Update
I/O RAR2

Address

Page

-----,

Form
Function

Event

au
Task

Update
PD Channel

L-------------------------------~OU
Task

1 Primary directory
2Resolved address register

Figure 7-4. Event Handler Overview

7-40

I/O EVENT STACK

The I/O event stack is a list of contiguous 4-byte
elements. The elements are I/O event fields that are
placed on the stack by the channel hardware. The stack
address used by the channel when placing an entry on
the stack is in the event stack I/O resolved address
register (hex 00).

The I/O event fields are removed from the event stack
by the I/O event handler. The event stack I/O resolved
address register is also used by the I/O resolved event
handler when removing entries from the stack. In
removing entries from the stack, priority is given to the
address event class. Outside of this prioritization, events
are removed on a last in, first out basis.

Programming Note: The event stack must start and end
on a page boundary, must be pinned and V=V storage,
and the page must be resident. This limits the stack to
128 entries. If the event stack overflows, a machine
check will occur.

I/O REGISTER TABLE

The I/O resolved register table provides addressability
to the various queue control tables in the machine. The
table is used by the I/O event handler to locate the aCT
(queue control table) of the device. The aCT must be
located to place an I/O event field in the aCT event
stack and to dispatch the OU (operational unit) task.
Dispatching the OU task is done by issuing a Send
Count instruction to the SRC (send receive counter) in
the aCT.

The I/O register table contains a halfword (2-byte) entry
for each I/O resolved address register. Each halfword
entry contains an address offset into the segment to
locate a aCT. Each device must have a aCT assigned.
If a device uses multiple I/O resolved address registers,
there are likewise multiple entries in the I/O register
table. All of the multiple entries for a device contain the
same offset, pointing to the same aCT. For example, if
an I/O device is assigned a command register number
of hex 10 (decimal 16) and a data register number of
hex 11 (decimal 17). then halfword locations 16 and 17
of the I/O register table would contain the same offset
so they would both point to the same aCT.

Programming Notes:
1. The I/O register table is aligned on a halfword

address boundary and must be in the same V=R
segment as all queue control tables. The address of
the I/O register table is in the control address table
(described in Chapter 2).

2. If an I/O resolved address register is not assigned to
a device, then the corresponding entry in the table
must contain hex FFFF. The event handler will then
change the event to an error' event and post it to the
channel 10M.

3. The I/O register table must not cross a segment
boundary.

4. I/O resolved address register 2 (hex 02) contains the
address of the channel OU task aCT.

I/O and Asynchronous Events 7 -41

I/O Command Responses

INPUT/OUTPUT STATUS FIELDS

The types of I/O status information defined are:

• BSTAT (basic status)

• FST AT (functional status)

• DST AT (device status)

The read sense command (issued to the operational unit
task) returns at least 2 bytes of DSTAT. Either
additional read sense commands, or additional (more
thanl two) DSTAT bytes, or both, can be defined to
allow program access to all or additional DSTAT
information.

The status information is contained in the description for
each adapter or device. Only a general description is
given here because the information is device dependent.

Basic Status

The BST AT (basic status) consists of 2 bytes of adapter
response data. The adapter response is provided to the
channel along with the command end or command
end/fetch next command indication. Status is stored in
the I/O event stack by channel hardware and is moved
to the OU (operational unit) status field of the ORE
(operation request element) (operational unit) by the OU
task (see Figure 7-7). Only the first byte of BSTAT is
required; the second byte is optional.

7-42

BSTAT bytes are as follows:

Byte

o

Bit Description

0-1 Reserved for the channel.

2 Halt:

3

4

o No device halt condition
detected by the channel.

Device halt condition detected
by the channel.

Channel Error:

o No error detected during
channel transfers.

Error detected during channel
transfers.

I/O Exception:

o No device exception condition
detected.

Device exception condition
detected.

Note: I/O exceptions can be
suppressed. An exception is
suppressed when the condition
that causes the exception does
not inhibit setting the command
complete bit (bit 7). A
suppressed condition sets the
I/O exception bit on.
Suppression is a device option
and mayor may not be
programmable. Examples of I/O
exceptions that might be
suppressed are last card on card
units and incorrect length on tape
units.

Bytes
(Hex) Bits Description

o 5 Command Reject:

o Command was acceptable for
execution.

Operational unit is not
designed for, or is in a state
that prevents, command
execution.

6 I/O Error:

o No error detected by the
operational unit during
execution of a function
operation block.

Error detected by the
operational unit during
execution of a function
operation block. A read sense
command must be issued to
receive the device status bytes
to determine the error
condition.

7 Command Complete:

o Command specified by an
operation block has not begun,
or not successfl,llly completed
execution.

Command specified by an
operational block has
successfully completed
execution.

Optional and need not be supplied
by the operational unit. This byte is
set to zeros by the channel if not
supplied by the operational unit.

Functional Status

The FST AT (functional status) consists of from 1 to 4
bytes of operational unit information that can be
required by the program for normal device operation,
such as returning a record length from a tape unit.

The FSTAT is transferred into the response portion of
the command response field (see Figure 7 - 7) of the
FOB (function operation block) using the OU (operational
unit) I/O command register.

The FSTAT is device-dependent and may be
command-dependent. The FSTAT is also optional.

If the 10M (I/O manager) needs to interrogate FSTAT
before the next operation block is executed, I/O
exception must be set and command end must be
indicated to the channel by the operational unit.

Device Status

The DST AT (device status) consists of any number of
bytes defined by a device for its status.

The DSTAT is transferred to the data field of the Read
Sense command, using the operational unit primary data
register. The bytes contain information required for
proper device maintenance.

The DSTAT bytes common to all devices are defined as
follows:

Byte Description

o Same as BST AT byte 0 of previous FOB
(function operation block) command executed
by the adapter.

If BSTAT byte 1 is used by the operational
unit, DSTAT byte 1 is the same as the
BSTAT byte for the previous FOB. If BSTAT
byte 1 is not used by the operational unit,
DST AT byte 1 is device dependent.

All remaining DSTAT bytes are device-dependent and
optional.

I/O and Asynchronous Events 7-43

Intervention-Required Signal

The I/O units that require operator intervention include
one or more commands that indicate when the condition
is cleared. Intervention-required conditions include:

• Printers
End of form

- Forms jam

• Card Machines
Stacker full

- Hopper empty

• Tape Units
- Tape not mounted

An intervention-required condition is cleared when the
operational unit can execute functional commands, such
as, print, read card, read block, and so forth. The I/O
error or I/O exception status is returned for all such
functional commands when an intervention-required
condition is present.

To test if the intervention-required condition has ended,
a special command type is used. For example, a printer
could use a return-ready command. This command
notifies the program when an intervention-required
condition, such as end of form, is cleared and the
printer made ready. The I/O unit (printer and
attachment) does not complete the command until the
intervention-required (new forms loaded) condition is
cleared and the printer made ready (by pressing the start
key).

Device conditions other than intervention-required allow
immediate execution of the return ready with I/O
exception or I/O error status bits set. All printer
commands other than return-ready immediately execute
with the I/O exception or I/O error status bit set.

7-44

FUNCTION OPERATION BLOCK TIME-OUT

The FOB (function operation block) time-out capability
of the system provides a mechanism for testing active
I/O operations to determine if a channel end or device
end interrupt has been outstanding for more than the
period of time specified at system specialization.

The FOB time-out mechanism is implemented in the
channel 10M (I/O manager) routines for all I/O devices
except disks which have an implementation-dependent
time-out mechanism. Fields included in each device
aCT (queue control table) to maintain the information
for FOB timing are:

Field

Control

FOB Timer
Count

FOB Timer
Limit

Description

Byte 1, bit 2- FOB in progress

Bytes hex 20 and 21-time
elapsed for current FOB in
n-second increments

Bytes hex 22 and 23-
timing limit for FOB in
in n-second increments

Operation,

The following sequence describes the operation of the
FOB time-out mechanism:

1. The device 10M program loads a value appropriate
for the FOB to be executed into the OCT prior to
sending the ORE (operation request element) to
the OU (operational unit) task. The limit byte in
the OCT provides a range of FOB time-out values
with 1 to 255 timing intervals.

2. The OU task processes the ORE received from the
10M, loads the appropriate command and data
registers, sets the FOB-in-progress bit in the
OCT, and initiates the start-device sequence to the
channel hardware.

3. The channel 10M, concurrent with the processes
described above, tests all device aCTs, on
n-second intervals for an active FOB-in-progress
bit. The actions taken by the channel 10M when it
detects an FOB-in-progress are shown below.

FOB-In- FOB Timing-
Progress In-Progress

o

Channel 10M Action

Resets count byte; sets
FOB timing-in-progress bit

1. Increment count byte.

2. If count byte =
limit byte, then
send time-out
MSG to device
10M; else EXIT.

4. The device OU task resets the FOB-in-progress
and the FOB timing-in-progress bits in the OCT
when the device posts a CE (command end) or a
CE/FNC (fetch next command).

I/O EXAMPLE

Figure 7 -5 (parts 1 through 14) depicts the sequence of
events in an I/O operation under the assumption that
the OB (operational block) contained in the ORE
(operation request element) is an FOB (function
operation block).

Figure 7-6 (parts 1 through 13) depicts the sequence of
events in an I/O operation which is similar to that of
Figure 7-5, but which makes use of the SENDMW
instruction.

Note: The dotted arrows represent an action of the
processor and the solid arrows represent a pointer.

I/O and Asynchronous Events 7-45

With no I/O operations taking place, the 10M (I/O
manager) task D is on the RDO (task dispatching
queue) ready to run and the OU task II is in the wait
list of the OUO (operational unit queue).

The OCT (queue control table) for this OU task was
initialized at IPL (initial program load) time with the
entries shown.

When the 10M task becomes the top priority task on
the TDO, the I/O operation starts.

I/O Manager Queue Task Dispatch Queue

First TDE
Address

D 10M Task

Task B

Queue Control Table

Command Register Number

Data Register Number

OCT Event Stack Offset

SRC

-L.,..

Figure 7-5 (Part 1 of 14). Sequence of I/O Operations

7-46

Operational Unit Queue

-L.,..

First TDE
Address

OU Task

D The 10M task issues a Send Message instruction
to the OUQ.

II The Send Message instruction puts an ORE on -the
message list.

I/O Manager Queue Task Dispatch Queue

First TOE
Address

IJ

Task B

Queue Control Table

Command Register Number

Data Register Number

aCT Event Stack Offset

SRC

..... 1..-

Figure 7-5 (Part 2 of 141. Sequence of I/O Operations

..... ""

Operational Unit Queue

III ORE OU Number 1

I/O and Asynchronous Events 7-47

iii Because the OU task is on the wait list of the
OUO, the Send Message instruction puts the OU
task on the task dispatch queue in priority
sequence. When the OU task is dispatched, the
OU task base registers are loaded with task
control information resident in the OU TDE.

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TDE
Address

OU Task Base Registers

IOMo Address

OUO Address

OCT Address

-I."..

10M Task

Task B

--

Figure 7-5 (Part 3 of 14). Sequence of I/O Operations

7-48

r-------
I -- I
I I L ________ J

Queue Control Table

Command Register Number

Data Register Number

OCT Event Stack Offset

SRC

-I,; -

The OU task issues a Receive Message instruction II
dequeuing the ORE from the oua II.

The oua address, 10Ma address, and the OCT address
are contained in the base register space II of the OU
task.

II The addresses of the executing ORE and the
current 08 (operation block) are stored in OU task
base registers.

III The OU task locates the OCT via an OU task base
register entry.

I/O Manager Queue Task Dispatch Queue

First TOE
Address

OU Task Base Registers

10Ma Address

Current ORE Address

r-

Current OB Address

oua Address

OCT Address

-....

r
I
I
I o I ,

r-

~

I
I

1m I
---------___ J

Figure 7-5 (Part 4 of 14). Sequence of I/O Operations

Operational Unit Queue

First TOE
Address

u
ORE I OU Number

Queue Control Table

Command Register Number

Data Register Number

OCT Event Stack Offset

SRC

-..... -..

I/O and Asynchronous Events 7-49

The OU task uses the command register number III to
locate and load an I/O RAR (resolved address register)
IE with the resolved address of the command/response
field (byte hex 18 of the ORE).

III If required, an I/O RAR is located by the data
register number and loaded with the address in
bytes 2-7 of the operation block.

II The OU task requests a start device sequence of
the channel hardware. The device can now
transfer additional command and data information
without direct CPU involvement.

IE The OU task issues a Receive Count instruction to
the SRC (send receive counter) in the QCT. The
SRC is initialized with a count of zero and a limit
of one.

I/O Manager Queue

First TDE
Address

OU Task Base Registers

10Ma Address

Current ORE Address

Current OB Address

oua Address

OCT Address

-L..

Task Dispatch Queue

I/O Registers (RAR)

Command Address

Data Address

-L.,. -I..

Figure 7-5 (Part 5 of 14). Sequence of I/O Operations

7-50

m
III

-L.,..

Operational Unit Queue

First TDE
Address

ORE OU Number

Queue Control Table

Command Register Number m
Data Register Number III

OCT Event Stack Offset

SRC

- L..- -I..-

IE Because the SRC count is zero and less than the
limit of one, the OU TOE is chained to the SRC,
waiting for a command completion request from
the I/O device.

I/O Manager Queue Task Dispatch Queue

First TOE
Address

OU Task Base Registers

laMa Address

Current ORE Address

Current 08 Address

OUQAddress

OCT Address

- 1.-

L I

TOE I
I/O Re gisters (RAR)

Com mand Address

Dat a Address

Figure 7-5 (Part 6 of 14). Sequence of I/O Operations

au Task

I

~

Operational Unit Queue

...
....

First TOE
Address

ORE au Number

Queue Control Table

Command Register Number

Oata Register Number

OCT Event Stack Offset

SRC m1
I.- L.,.

I/O and Asynchronous Events 7-51

II Control passes (task switch) to the task with the
highest TDE priority. In this example, 10M task
has priority so it resumes execution at the point
following the Send Message instruction of the

ORE to the OUQ.

I/O Manager Queue Task Dispatch Queue

First TDEI
Address

I TDE I

I/O Regist ers (RAR)

Comm and Address

Data A ddress

OU Task ~

'-to--
Figure 7-5 (Part 7 of 14). Sequence of I/O Operations

7-52

Queue Control Table

Command Register Number

Data Register Number

QCT Event Stack Offset

SRC

I..-

Operational Unit Queue

-I..-

First TDE
Address

ORE OU Number

lID When the 10M task TDE reaches a point where it
has to wait for the completion of the I/O
command, the 10M task TDE issues a Receive
Message instruction to the 10M queue.

II Because there are no messages on the 10MO
message (msg list), the 10M task TDE is queued
to the 10MO wait list.

m Control passes to the task with the highest
priority. In this example, task B would begin
execution.

I/O Manager Queue Task Dispatch Queue

First TOE
Address

I TOE I

ters (RAR) I/O Regis

Comma nd Address

Data A ddress

OU Task

Queue Control Table

Command Register Number

~ Data Register Number

aCT Event Stack Offset

"- SRC

-L..o

Figure 7-5 (Part 8 of 14). Sequence of I/O Operations

Operational Unit Queue

.... -

First TOE
Address

ORE OU Number

I/O and Asynchronous Events 7-53

II Upon completing the command, the device
supplies command completion information to the
channel. The channel uses this information to form
a 4-byte I/O event field (function event type in
this case) and place this field on the I/O event
stack (see Figure 7-7). Channel hardware now
signals an I/O channel event to the processor.

I/O Manager Queue

First TOE,
Address

10M Task

Task Dispatch Queue

Queue Control Table

Task B

Command Register Number

Data Register Number

OCT Event Stack Offset

r TDE I au Task I SRC
I

-'-

Figure 7-5 (Part 9 of 14). Sequence of I/O Operations

7-54

-,-

Operational Unit Queue

First TOE
Address

ORE au Number

I/O Event Stack

fJ] I/O Event Field

A channel HMC (horizontal microcode) routine, called
the I/O event handler, executes when the processor
accepts the I/O channel event. The event handler does
not execute as a task (no task switch occurs).

IJ The present task is temporarily suspended.

Ell The I/O event handler accesses an event field in
the I/O event stack.

II The event handler accesses an I/O register table
entry using the I/O register number in the I/O
event field as an offset into the table.

m The I/O register table entry (OCT offset) is used
to locate an offset pointer in the OU OCT.

III The OCT entry (OCT event stack offset) is used to
locate an entry point in the OU OCT event stack.

fI The event handler moves the event field from the
I/O event stack (see Figure 7 - 7) to the OCT event
stack and increments the event count in the OCT.

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TDE
Address

I/O Reg Table

}m
1--------1

QCT Offset fa I--~-------~
-'-

I TDE I OU Task
I
r

....

Figure 7-5 (Part 10 of 14). Sequence of I/O Operations

Task B

Queue Control Table

Command Register Number

Data Register Number

Event Count m
QCT Event Stack Offset

SRC

L.,

First TDE
Address

ORE OU Number

--~r-------

;1 QCT Event Stack

I
I
I
I ~ I/O Event Field

I I

F

I I --'-
~Ifll

I I/O Event Stack
I
I
I
L - I/O Event Field Em

-a....

I/O and Asynchronous Events 7-55

11 A Send Count instruction is issued by the event
handler to the QCT SRC header. The Send Count
instruction increments the SRC count.

PI The TDE of the au Task is placed on the TDQ in
priority sequence.

The event handler repeats the sequence (in this
example, numbered 23-29) until all entries are removed
from the 1/ a event stack.

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TOE
Address

10M Task

I/O Reg Table

QCT Offset

1--­ ------,
I
I
I

fE I
,---+1

I L __ _ ___ --.J

Task B

Queue Control Table

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

-,

I I fD I .. SRC

I

, ___ ---1. __ _

i I TDE I OU Task

L _____ _ --l -L..

Figure 7-5 (Part 11 of 14). Sequence of I/O Operations

7-56

-L..

First TOE
Address

ORE OU Number

QCT Event Stack

I/O Event Field

-...

I/O Event Stack

I/O Event Field

-I;

ED Control Passes to the TOE with the highest
priority. In this example, the au task begins
execution.

&II The au task issues a Receive Count instruction to
the OCT SRC. This implicitly tests for waiting
events in the OCT event stack.

II The au task locates the I/O event field and
checks the channel command byte of the event
field for the function event type.

Ell When the function event type is a command
completion indication, that is, if command end or
command end/fetch next command is the function
type, then the BST AT field of the I/O event is
moved to the au status field of the ORE. (See
Figure 7-7.)

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TOE
Address

10M Task

OU Task Base Registers

10MO Address

Current ORE Address

Current 08 Address

OUO

OCT Address

-I,..

.

EF
..... 1,..

Figure 7-5 (Part 12 of 14). Sequence of I/O Operations

-

Task B

Queue Control Table

Command Register Number

Data Register Number

Event Count

OCT Event Stac k Offset r-

SRC

,... I,..

First TOE
Address

I
I
I
I
I
I

----- I

r-{ :
I QCT Event Stack 1
I
I I
I I
I
I m I/O Event Field I
I
I -L- -I,..

I _J

I/O and Asynchronous Events 7-57

III If command end is the command completion
indication, the OU task issues a Send Message
instruction to the 10MO, placing the ORE on the
IOMO.

II The OU task then issues a Receive Count
instruction to the OCT SRC. The OU task now
resides on the OCT SRC wait list. waiting for an
10M work request to be placed on the OCT event
stack.

ED If (instead of III and II) command end/fetch next
command is the command completion indication,
the OU task checks the current 08 (operation
block) for the last 08 in ORE. When the current
08 is not the last 08, the task processes the next
08. If the current 08 is the last 08, the task
issues a Send Message instruction to 10MO,
placing the current ORE on the 10MO message
list.

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TDE
Address

10M Task

OU Number m
L...-_I.....-__J im

OU Task Base Registers

10Ma Address

Current ORE Address

Current 08 Address

oua Address

OCT Address

"'L,

OU Task

Task 8

Queue Control Table

Command Register Number

Data Register Number

OCT Event Stack Offset

. SRC

.... L,..

Figure 7-5 (Part 13 of 14). Sequence of I/O Operations

7-58

.... -

First TDE
Address

&I Because the TDE of the 10M task is on the IOMO
wait list, the Send Message instruction to the
IOMO places the 10M task on the TDO in priority
sequence.

ED The OU task now issues a Receive Message
instruction to the OUO. With no messages (OREs)
queued to the OUO message list, the OU task is
dequeued from the TDO and placed on the OUO
wait list.

Ell The 10M task resumes execution (task switch) if it
is of higher priority than task B.

I/O Manager Queue

First TOE
Address

1---­ ----,
I
I 10M Task

Task Dispatch Queue

r---­
I
I

Operational Unit Queue

---,
OU Task

1m
!--=----

I
I

I I
L---T----...J

I I L ________ .J

I

i lORE I
I m L ________ _

10M Task

TOE Task B

Figure 7-5 (Part 14 of 14). Sequence of I/O Operations

I/O and Asynchronous Events 7-59

With no I/O operations taking place, the 10M (I/O
manager) task" is on the TOO (task dispatch queue)
ready to run, and the OU task II is on the wait list of
the OUO (operational unit queue).

The OCT (queue control table) for this OU task was
initialized at IPL (initial program load) time with the
entries shown.

When the 10M task becomes the top priority task on
the TOO, the I/O operation starts.

I/O Manager Queue Task Dispatch Queue

First TDE
Address

D

Queue Control Table

Command Register Number

Data Register Number

Event Count

OCT Event Stack Offset

SRC

.... 1..-

Figure 7-6 (Part 1 of 13). Sequence of I/O Operations with SENDMW Instruction

7-60

Operational Unit Queue

.......

First TDE
Address

II OU Task

• The 10M task issues a Send Message and Wait
instruction to the OUO.

• The Send Message and Wait instruction puts an
ORE on the message list of the OUO and
removes the current TDE from the TDO.

I/O Manager Queue Task Dispatch Queue

First TDE
Address

r-------
'II I L ____ _

Task B

Queue Control Table

Command Register Number

Data Register Number

Event Count

aCT Event Stack Offset

SRC

.... 1..0 L.,.

10M Task

Figure 7-6 (Part 2 of 13). Sequence of I/O Operations with SENDMW Instruction

Operational Unit Queue

I/O and Asynchronous Events 7-61

II Because the OU task is on the wait list of the
oua, the Send Message and Wait instruction
puts the OU task on the task dispatch queue in
priority sequence. When the OU task is
dispatched, the OU task base registers are
loaded with task control information resident in
the OU TOE.

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TOE
Address

OU Task Base Registers

laMa Address

oua Address

aCT Address

-1..00

Task B

-"-'

r-------
I -- I
I I L ________ J

10M Task

Queue Control Table

Command Register Number

Data Register Number

Event Count

aCT Event Stack Offset

SRC

-'-

Figure 7~ (Part 3 of 13). Sequence of I/O Operations with SENDMW Instruction

7-62

-L,..

The OU task issues a Receive Message instruction II
dequeing the ORE from the oua B.

The oua address, 10Ma address, and the OCT address
are contained in the base register space II of the OU
task.

II The addresses of the executing ORE and the
current OB (operation block) are stored in the
OU task base registers.

II The OU task locates the OCT via an OU task
base register entry.

I/O Manager Queue

First TOE
Address

OU Task Base Registers

10Ma Address

Current ORE Address

-
Current OB Address

oua ACldress

OCT Address

-L..-

Task Dispatch Queue

.

V

..... L.o

Figure 7-6 (Part 4 of 13). Sequence of I/O Operations with SENDMW Instruction

.,,#

Operational Unit Queue

First TOE
Address

D
lORE ({ OU Number ~L-~_....I

10M Task

Queue Control Table

Command Register Number

Data Register Number

Event Count

OCT Event Stack Offset

.... 1..0 -L..-

I/O and Asynchronous Events 7-63

The OU task uses the command register number III to
locate and load an I/O RAR (resolved address register)
II with the resolved address of the command/response
field (byte hex 18 of the ORE).

II If required an I/O RAR is located by the data
register number and loaded with the address in
bytes 2-7 of the operation block.

III The OU task requests a start device sequence
of the channel hardware. The device can now
transfer additional command and data
information without direct CPU involvement.

The OU task issues a Receive Count instruction
to the SRC (send receive counter) in the aCT.
The SRC is initialized with a count of zero and a
limit of one.

I/O Manager Queue Task Dispatch Queue

First TDE
Address

OU Task Base Registers

laMa Address

Current ORE Address

Current OB Address

oua Address

OCT Address

-I....

I/O Registers (RAR)

Command Address

Data Address

.... "

II

II
-L..o

Figure 7-6 (Part 6 of 13). Sequence of I/O operations with SENDMW Instruction

7-64

Operational Unit Queue

First TDE
Address

lORE I{ au Number \,---...._-,

10M Task

Queue Contro1 Table

Command Register Number II
Data Register Number 11
Event Count

OCT Event Stack Offset

SRC

..... - -,--

II Because the SRC count is zero and less than
the limit of one, the OU TOE is chained to the
SRC, waiting for a command completion
request from the I/O device.

I/O Manager Queue Task Dispatch Queue

First TOE
Address

OU Task Base Registers

IOMa Address

Current ORE Address

Current OB Address

oua Address

OCT Address

-L.,. L.o

TOE I OU Task

I/O Re gisters (RAR)

Com mand Address

Oat a Address

~

Figura 7-6 (Part 6 of 131. Sequence of I/O Operations with SENDMW Instruction

Operational Unit Queue

First TOE
Address

lORE ({ OU Number ~I---""_.J

10M Task

Queue Control Table

Command Register Number

Oata Register Number

OCT Event Stack Offset

~ SRC II

-'-'" -L.,.

I/O and Asynchronous Events 7-65

Control passes (task switch) to the task with
the highest TDE priority. In this example, task
B would begin execution.

I/O Manager Queue Task Dispatch Queue

First TOE
Address

I TDE 1
ers (RAR) I/O Regist

Comm and Address

Data A ddress

ou Task ~

Task B

Queue Control Table

Command Register Number

Data Register Number

aCT Event Stack Offset

4- SRC

"""'--

Figure 7-6 (Part 7 of 13). Sequence of I/O Operations with SENDMW Instruction

7-66

Operational Unit Queue

.... L.,..

First TOE
Address

lORE ({ OU Number ~1-....... _..J

10M Task

II Upon completing the command, the device
supplies command completion information to
the channel. The channel uses this information
to form a 4-byte I/O event field (function event
type in this case) and places this field on the
I/O event stack (see Figure 7-7). Channel
hardware now signals an I/O channel event to
the processor.

I/O Manager Queue

First TOE
Addres$

Task Dispatch Queue

Queue Control Table

Task B

Command Register Number

Data Register Number

aCT Event Stack Offset

I TOE I OU Task I SRC
J

-L... L...

Figure 7-6 (Part 8 of 13). Sequence of I/O Operations with SENDMW Instructions

Operational Unit Queue

First TOE
Address

lORE ({ OU Number ~'----r--.j

10M Task

I/O Event St .. ck

III I/O Event Field

I/O and Asynchronous Events 7-67

A channel HMC (horizontal microcode) routine, called
the I/O event handler, executes when the processor
accepts the I/O event. The event handler does not
execute as a task (no task switch occurs).

The present task is temporarily suspended.

The I/O event handler accesses an event field in
the I/O event stack.

II The event handler accesses an I/O register
table entry using the I/O register number in the
I/O event field as an offset into the table.

The I/O register table entry (OCT offset) is
used to locate an offset pointer in the OU OCT.

The OCT entry (OCT event stack offset) is used
to locate an entry point in the OU OCT event
stack.

fII The event handler moves the event field
from the I/O event stack (see Figure 7 - 7) to
the OCT event stack and increments the event
count in the OCT.

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TOE
Address

I/O Reg Table

QCT Offset E -

Start
of SID

--------.-..

I TOE I OU Task
I
I

....

Task B

Quere Control Table

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

SRC

....

Figura 7-6 (Part 9 of 13). Sequence of I/O Operations with SENDMW Instruction

7-68

-

First TOE
Address

lORE ({ OU Number ~'---.._

10M Task

-~r-------

:1 QCT Event Stack
I

til
I
I ~ I/O Event Field

I I

f-

I I "'1"..

I I fII
-.J 1 I/O Event Stack

I
I
I
L - I/O Event Field m

-.....

II A Send Count instruction is issued by the event
handler to the QCT SRC header. The Send
Count instruction increments to the SRC count.

m The TOE of the OU Task is placed on the TOQ
in priority sequence.

The event handler repeats the sequence (in this
example, numbered 20-26) until all entries are removed
from the I /0 event stack.

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TOE
Address

I/O Register Table

QCT Offset

,---
II I

,---"1
I I I L __ _

I
I
I
I
I
I
I

----,
I
I
I ___ ---1

Task B

Queue Control Table

Command Register Number

Data Register Number

Event Count

QCT Event Stack Offset

• __ --1. ___ --,

i I TOE I OUT~k H-- SRC tI
L ______J

.. I...-

Figure 7-8 (Part 10 of 131. Sequence of I/O operations with SENDMW Instruction

... ~

First TOE
Address

EJ{ OU Number ~&..--.---'

10M Task

OCT Event Stack

I/O Event Field

,
I/O Event Stack

I/O Event Fiald

-L...

I/O and Asynchronous Events 7-69

Control passes to the TDE with the highest
priority. In this example, the OU task begins
execution.

The OU task issues a Receive Count instruction
to the aCT SRC. This implicitly tests for
waiting events in the aCT event stack.

The OU task locates the I/O event field and
checks the channel command byte of the event
field for the function event type.

When the function event type is a command
completion indication, that is, if command end
or command end/fetch next command is the
function type, then the BSTAT field of the I/O
event is moved to the OU status field of the
ORE. (See Figure 7-7.1

I/O Manager Queue Task Dispatch Queue Operational Unit Queue

First TDE
Address

OU Task Base Registers

10Ma Address

Current ORE Address

Current DB Address

oua Address

aCT Address

-I,.,.

II
.... L,.

- ...

Task B

First TDE
Address

'---'----..... I

aueue Control Table

Command Register Number

Data Register Number

Event Count

aCT Event Stack Offset l-

SRC

-..

L __
I

~J--- !III
: 1 QCT Event StaCk!

I i
I I

I F,I I/O Event Field I
I
I -I,.,.

I _J

Figure 7-6 (Part 11 of 13). Sequence of I/O Operations with SENDMW Instruction

7-70

II If command end is the command completion
indication, the OU task issues a Send Message
instruction to the 10MO. Since bit 6 of the
description byte of the SRM is on, the message
is not enqueued on the 10MO. Instead, the
10M task TDE is enqueued to the TDO.

The OU task then issues a Receive Count
instruction to the OCT SRC. The OU task now
resides on the OCT SRC wait list, waiting for an
10M work request to be placed on the ACT
event stack.

I/O Manager Queue Task Dispatch Queue

First TDE
Address

B~ OUNumber

r----------,
1 1
I 1-----
I 1 L ________ .J

OU Task Base Registers Oueue Control Table

If (instead of II and Ell comandl end/fetch
next command is the command ciompletion
indication, the OU task checks thl9 current OB
(operation block) for the. last OB ~n the ORE.
When the current OB is not the I~st OB, the
task processes the next OB. If the current OB
is the last OB. the task issues a $end Message
instruction to 10MO as in II above.

Operational Unit Queue

First TDE
Address

Command Register Number

10Ma Address Data Register Number

Current ORE Address

Current OB Address OCT Event Stack Offset

oua Address
~

OCT Address SRC

-L.o --
-~ -I,..

Figure 7-6 {Part 12 of 131. Sequence of I/O Operations with SENDMW Instruction

I/O and Asynchronous Events 7-71

Ell The OU task now issues a Receive Message
instruction to the oua. With no messages
(OREs) queued to the oua message list, the
OU task is dequeued from the TDa and placed
on the oua wait list.

II The 10M task resumes execution (task switch) if
it is of higher priority than task B.

I/O Manager Queue

First TOE
Address

ORE

Task Dispatch Queue Operational Unit Queue

r---­ ---I
I Ell
~---­

I I

I
I OU Task

L ________ -1

10M Task II

TOE Task B

Figure 7-6 (Part 13 of 13). Sequence of I/O Operations with SENDMW Instruction

7-72

I/O Errors

Extensive error checking is provided within the I/O
structure to ensure correct operation of each component
and to maintain the integrity of device data. I/O errors
are OU (operation unit) errors when reported to the OU
10M (I/O manager) or channel errors when reported to
the channel 10M.

OPERATIONAL UNIT ERRORS

Operational unit errors, that is, operation program errors
and device errors, report to the operational unit 10M via
the 2-byte operational unit status field of the current
ORE (operation request element). See Figure 7-7.

Task Error Status ORE

Identifier Operation

~ au
Hex 40

Error
Status

Type

0 2 E

OR ---------~. OR

o

Basic Status
(BSTAT)

Bytes 2

r Channel
Hardware-X

I/O Event Field 1 I "'-----____ J
o Bytes 4

Figure 7-7. Status Fields

r

\~
10 Bytes

I/O Event Stack

I/O Event Field

OB ..

I
Command/Response

1A 20

aCT Event Stack

~ L-- - I/O Event Field

S
~

-

I/O and Asynchronous Events 7 -73

7-74

Operation Program Errors

Operation program errors occur during the execution of
OBs (operation blocks) by the OU (operational unit) task.
The type of operation program error is indicated in a
2-byte field called the task error status field.

Task Error Status Field

The operation program error type contains an error code
indicating the type of operation program error detected
by the OU task during processing of an operation block.
Refer to the Channel Theory-Maintenance manual.

Device Errors

Device errors occur during the execution of an I/O
command contained in a function operation block. A
device error causes the device to supply a command
end completion indication to its OU task and to provide
status associated with the error condition in a 2-byte
basic status field. (See Basic Status earlier in this
chapter.)

Additional status information is available to the 10M in
the form of device status fields. (See Device Status
earlier in this chapter.)

Operational Unit Error Recovery

Operational unit recovery procedures must be initiated
by an 10M % manager) whenever the 10M is notified
of either a device error, an operation program error, or a
channel-detected error. The associated operational unit
task resides in the receive-wait state on the QCT -SRC
(queue control table, send/receive counter) queue and
must be cleared for further operational unit activity.

The 10M must proceed as follows:

1. Lock the QCT.

2. Test FOB (function operation block) in-use bit.

3.

a. If set, form a command-end function event,
place the function event on the QCT event
stack, and issue a send count to the QCT -SRC.
This sequence, in effect, redispatches the OU
task and supplies it with an 10M-formed work
request.

b. If not set, test for OU (operational unit) task in
receive-wait state on the QCT -SRC queue.

If the OU task is on the QCT -SRC queue, then
form a fetch next command function event. Place
the function event on QCT event stack and issue a
send count to the QCT -SRC. If the OU task is not
on the QCT -SRC, then continue.

Unlock the QCT.

Operation Program Error Recording

Defined operation program errors common to all IOMs
are shown in Figure 7-8. The table defines the error. ~ ~~.

code D error name D error class. record type II ...""
retry limit. and the priority II in which the error
should be decoded from the status information. The
method of handling temporary retryable errors II is also
defined. They may be counted in a storage data register
counter and not logged (x in count-only column). All
errors that cause an entry into retry may be logged (x in
log all column) or they may be thresholded (threshold
value in threshold limit column) and counted in a storage
data register counter. An x in the count-retryable
column indicates that the total number of retries should
be counted in a storage data register counter for this
error.

The error recovery action required and the error log
format for the error are also referenced.

Error Definition

Record Type

Error Error
Code Error Name Class Perm-.. fJ B anent

Record

9998 Operation error-Channel busy
9999 Operation program error

Figure 7-8_ Operation Program Errors

The description of each error in terms of OU-status
bytes and bits is shown in Figure 7-9_

Error Definition

OU Status
Error
Code Error Description Byte 0 Byte 1

1 Operation error-Channel busy 40
1 Operation program error 40

2 3

Legend: Byte = 40 means high-order hex digit = 4
low-order hex digit = 0

Byte = xx means may be any value
Recovery = Error recovery procedures

Figure 7-9_ Error Descriptions

07
XX

..
Temp- Temp-
orary orary

Record Retry

X
X

C

4

Temporary Retry Errors

II Retry Prior-

Thresh- Limit Ity
Count Log hold Count II • Only All Limit Retry

2 5 1

X 1 2

Recovery
FOB Bytes Action Error

Oper- Pro- Log

D E F ation gram Format

1
2

5 6 7 8

I/O and Asynchronous Events 7 -75

Error Recovery Procedures

Repeat the command up to 5 times. If the condition
persists after 5 unsuccessful retries, log the error. 10M
then must initiate error recovery (described in Operational
Unit Error Recovery earlier in this chapter).

The error log format for the OU-IOM is the same for all
operation program errors logged. See the Channel
Theory-Maintenance manual for the format description.

CHANNEL ERRORS

Channel errors are an error class encountered during the
operation of a device on the channel interface. A
channel error causes the device to cease all operation,
and an error event field (refer to I/O Event Stack, earlier
in this chapter) containing all available status information
is passed to the channel 10M (I/O manager) task.
Channel errors fall into three subclasses: channel
hardware error, I/O event handler error, and a special
class of device error report using the p~st event
function. The post event function is lIsed by a device to
communicate error status to its 10M via the channel
10M.

The event field format for each subclass is as follows
with each type of channel error described in detail in the
Channel Theory-Maintenance manual.

7-76

Channel Hardware Error

I/O Channel
d1dddddd Register Priority ppppssOO

Number Code

o Bytes 2 3

Legend: d = Device dependent
p = Primary channel error code
s = Secondary channel error code

Event Handler Error

a1aaaaaa aaaaaaaa aaaaaaaa

o Bytes 2 3

0001
or
1111

J_

/
bbbb

Legend: a = Depends on the event type processed, see the
Channel Theory·Maintenance manual for
specifics.

b = Event handler error code

Post Event

Post I/O
Operational
Unit ddddddyz

Event Register
Reporting

o Bytes 2 3

Legend: d = Device·dependent information provided by the device
y (bit 6) = Post event type

o Error condition detected in adapter and/or
device which cannot be reported via a normal
BSTAT.

Attention request to OU-IOM.
z (bit 7) = OU type

o Single OU reporting, that is, OU number in byte
2 of post event defines a unique reporting OU.
Multiple OUs reporting, that is, OU number in
byte 2 of post event is reporting for all OUs
attached to a particular I/O port.

Channel Error Reporting

The active device at the time of the error has its
operation suspended until the error is resolved. The
error must be posted to the channel 10M and
notification given to the operational unit 10M that a
channel error has occurred and the device halted. The
I/O event handler moves the error event field data from
the I/O event stack (see Figure 7-7) to the aCT (queue
control table) event stack of the channel OU (operational
unit). A Send Count instruction to the SRC
(send/receive counter) of the channel OU-aCT then
signals the channel OU task. The channel OU task
sends the ORE (operation request element) containing
the error event to the 10Ma for the channel 10M.

The channel 10M notifies the operational unit 10M that a
channel error has occurred and the device is halted. The
operational units 10M now proceeds as described under
Operational Unit Error Recovery earlier in this chapter.

Channel Error Recovery

Four FOB (function operation block) commands allow
the channel 10M access to the channel hardware to
perform I/O error recovery operations.

The channel 10M communicates with the channel
hardware via an OU and 10M queue pair. An OU
(operational unit) of hex 00 is used for FOB commands
directed to the first hardware channel on the system.

The channel FOB commands are decoded and executed
by the OU task servicing the OU queue used by the
channel error 10M.

• Start Channel (hex 11)

The start channel FOB command can be used at
IMPL or following a secondary channel error
condition that caused the channel hardware to stop.
The start channel command causes the channel OU
task to reset the secondary error stop bit in register
EO (hardware register), which causes the channel
hardware to log the 4-byte event field in the
hardware into the I/O event stack. The secondary
error stop bit is then set to force the channel
hardware to stop on the next secondary error
condition.

The channel OU task next issues a Receive Count
instruction to the SRC in the channel OU task control
table. When the I/O event handler services the I/O
event stack and issues a Send Count instruction to
the aCT of the channel OU task, the OU task
removes the event from the aCT event stack and
places the 4-byte field into FOB bytes hex C-F.
Following the read event operation, the
command-complete bit in the OU status field of the
ORE is set and the FOB. is completed.

Note: The event field obtained during the start
channel FOB is normally the event field maintained in
the channel hardware when a secondary error is
detected. However, because the event fields are
removed from the event stack on a last in, first out
manner, any event fields posted by I/O devices
between the time the channel hardware starts and
the channel OU task is dispatched can be returned
prior to the secondary error event field.

I/O and Asynchronous Events 7-77

• Start Device (hex 12)

The start device FOB command causes a start device
channel sequence. The start device channel sequence
is normally used by an OU task, during the
processing of an FOB block, to notify an I/O device
that a command is available for execution. Depending
on the device implementation of the channel
sequence, the command information in the FOB may
be transferred to the device during the start device
sequence.

The device address to be used during the channel
sequence is provided in byte hex C of the FOB. The
command complete bit in the OU status field of the
ORE is set upon successful completion of the FOB.

• Halt Device (hex 21)

The halt device command is similar to the start
device command in that an I/O device attached to
the channel is selected by a broadcast of the device
address provided in byte hex C of the FOB. The halt
device command issues a halt condition to the
selected device to cause termination of any active
command.

Completion of the halt device command is indicated
by the command-complete bit in the OU status field
of the ORE being set.

• Read Event (hex 22)

The read event command is used by the channel
error 10M to obtain events from the channel 10M
OCT event stack. The read event causes the OU task
servicing the channel 10M to issue a Receive Count
instruction to the SRC in the queue cO'ltrol table. If
no events are on the OCT event stack, a task switch
occurs with the OU task waiting for a Send Count
instruction from the I/O event handler.

If event fields are in the OCT event stack, or when
the OU task is dispatched by a Send Count
instruction to the SRC, an event field is removed
from the OCT event stack in a first in, first out
manner and placed in FOB bytes hex C-F.

The read event command is completed by setting the
command complete bit in the OU status field of the
ORE.

7-78

Channel Error Recording

Error Definition

Errors defined for the channel are the error code, error
name, error class, record type, retry limit, and the
priority in which the error should be decoded from the
status information. The method of handling temporary
retryable errors is also defined. They may be counted in
a storage data register counter and not logged. All
errors that cause an entry into retry may be logged or
they may be thresholded and counted in an SDR
counter. See the Channel Theory-Maintenance manual for
specific error codes.

Error Recovery Procedures

1.

2.

3.

4.

5.

Repeat the command up to five times. If the
condition persists after five unsuccessful retries,
perform a Terminate Immediately instruction.
Operator panel light-emitting diode readout = hex
0832.

Perform a Terminate Immediately instruction.

Issue an AOB (address operation block) to read
10RAR 0 (I/O resolved address register 0). If
offset of 10RAR is 512 bytes from the beginning
address, or if retry fails, perform a Terminate
Immediately Instruction. Operator penel
light-emitting diode readout = hex 0331.
Otherwise, issue a start channel FOB (fullction
operation block).

Log the error. There is no recovery since the I/O
adapter is not uniquely known.

Send a message containing the post event field
(bytes hex C-F of read event fiela FOB) to 10M
(I/O manager) servicing the OU (operational unit)
whose number is contained in byte hex E of the
read event FOB. In the event that byte hex E
contains an OU number that is cUi"rently ir,actlvu or
invalid, then log the error.

6.

7.

8.

Log the error and send message containing error
event field (bytes hex C-F of read event FOB) to
the 10M servicing the OU having the IORAR
contained in byte hex E of the read event FOB.

Log the error and send message containing error
event field (bytes hex C- F of read event FOB) to
the 10M servicing the OU having the IORAR
contained in byte hex D of the read event FOB.

Log the error and send message containing error
event field (bytes hex C-F of read event FOB) to
the 10M servicing the OU whose IORAR and
channel priority code match respectively bytes hex
D and E of the read event FOB.

9. Log the error and send message containing error
event field (bytes hex C-F of read event FOB) to
the 10M servicing the OU having the IORAR
contained in byte hex E of the read event FOB.

Error Log Format:

The error log format for the channel has the same
format for all errors logged. See the Channel
Theory-Maintenance manual for the formats and error
descriptions.

DEVICE HALT

During the execution of an ORE (operation irequest
element) by an OU (operational' unit), the d~vice 10M
(I/O manager) task can terminate executiOr!l of the ORE.
This is accomplished by the device 10M ta~k requesting
the channel 10M task to perform a halt device function.
The following occurs:

• The channel 10M sends a message (ORE) to the
channel oua (operational unit queue). The ORE
contains an FOB with a command byte of halt device
(hex 21) and with the OU number of the device to be
halted in byte hex C.

• The channel OU task services the channel oua and
passes the command to the channel har~ware, which
issues a halt to the selected device.

• The channel OU task accepts the device's response
to the channel as a device command completion
indication and sends an ORE containing completion
indication to the IOMa of the channel 10M.

I/O and Asynchronous Events 7-79

The device OU task has not received indication of the
termination of the ORE. The OU task resides on the
wait list of the OCT -SRC of the operational unit in the
recieve wait state. To clear this state requires action by
both the channel 10M and device 10M tasks:

• The channel 10M forms an I/O event field (see
Figure 7-7) of the function event type (command

end) as follows:

Hex 02 Hex 00 Hex 20 Hex 00

o Bytes 1 2 3

• The I/O event field is placed on the operational unit
OCT event stack, and a Send Count instruction is
issued to the OCT -SRC of the operational unit.

• The device 10M forms an I/O event field of the
function event type (fetch next command) and places
it on the OU-OCT event stack. A Send Count
instruction is issued to the OCT -SRC of the OU.

• The OU task is now placed on the TOO in priority
sequence.

7-80

The following addresses are virtual:

• All addresses used by the processor in executing
instructions or fetching data operands.

• All storage addresses that are explicitly specified by
an IMP (internal microprogramming) instruction and
are used by the processor.

• The address(es) indicated to the processor on an
exception or as the result of executing an instruction.

• All storage addresses explicitly specified in I/O
messages.

The complete virtual address of any byte of storage is a
48-bit address as shown below.

Segment Identifier Offset

o Bits 32 47

The 48-bit virtual address is translated by the processor
into a real storage address using the VAT (virtual
address translator) facility described in the following
paragraphs.

Chapter 8. Virtual Storage Addressing

Virtual Storage Addressing 8-1

Virtual Address Translator Overview

The VAT facilities:

• Translate virtual storage addresses to real storage
addresses; or, when that translation cannot be
completed,

• Interrupt the execution of IMP instructions, which
allows:

Invocation of storage management functions,
which
Alters the contents of real storage, which allows

- Continuation of processing

TRANSLATION PROCESS

During translation, two units of information are
recognized-segments and pages. A segment is a block
of sequential virtual addresses spanning up to 65 536
(216) bytes. A page is a block of sequential virtual
addresses and contiguous storage locations containing
512 bytes beginning at a virtual address that is a
multiple of the page size. All pages in storage are the
same size.

The 48-bit virtual address logically is divided into two
parts. Bits 0-31 are used as an SID (segment identifier).
Bits 32-47 are used to provide an offset to data within
the segment. For translation to main storage addresses,
bits 32-38 are used as a PID (page identifier). The
remaining bits of offset are used as a BID (byte
identifier) within a page. See the following diagram.

Segment Identifier Offset

SID PID BID

o Bits 32 39 47

Translation is achieved by means of translation tables.
Each table entry describes a block of consecutive real
storage locations. Each such block is called a page

frame. Each page frame contains a page of instructions
or data.

The method used by the virtual address translator to
translate a virtual address to a real stor~ge address
depends on the value of the virtual address. Virtual
addresses, when they are within the SID (segment
identifier) range shown below, are converted to real
storage addresses by selecting the appropriate bits.

8-2

System V=R Address SID Selected
Unit Models Range (Hex) Bits

5381 3,4,5 0000 01 00 - 0000 27-47

011F

6,7,8 0000 0100 - 0000 24-47
01FF

5382 All 0000 01 00 - 0000 22-47
02FF

This is referred to as virtual = real addressing. Those
virtual addresses not in the virtual = real addressing
range are referred to as a virtual = virtual addresses, and
are translated to real addresses by means of the PD
(primary directory). If the resultant real address is too
large for a particular available main storage size, an
addressing exception results.

The assignment of storage occurs in page-size blocks;
the storage locations are assigned contiguously within a
page. Two pages need not be adjacent in storage
(unless they are virtual = real) even though assigned a
set of sequential virtual addresses.

The SID and PID portion of a 48-bit virtual address to
be translated by means of the PD are used to select an
entry from the PD. The PD entry, whose format is
described later in this chapter, contains information that
specifies one of the following actions:

• If the PD entry describes a page frame of storage
that contains the page whose SI D and PI D match
that of the address to be translated, the storage
address is formed from this PD entry.

• If the PD entry does not describe such a page frame
of storage, advance to and examine another PD entry.

• If there are no more PD entries to examine, signal an
address translation exception.

L Virtual-to-Real Address Translation

l HT Size I
fI

HT Selector)
r

D I
Hash I

I Table!

C LB Selector) I
L ..

Lookaside
Buffer (LB)

II

I

'In Storage

D Information extracted from the virtual address is
used to search the LB.

II Information extracted from the virtual address is
used to search the PD.

II If no match exists in the LB, the PD in storage
is searched to translate the address. If a match
exists, the information is used to form an entry
in the LB.

Programming Note: The primary directory and hash
table for storage are in a virtual = real segment in
storage, and can be accessed by the IMP instructions.

SID PID I BID I
I

Primary
Directoryl (PD)

I - f---

II

Storage
Address

I 4- __ I I

Virtual Storage Addressing 8-3

Virtual Address Translator Components

Address translation is performed by means of the HT
(hash table), the PD (primary directory), and the
high-speed LB (lookaside buffed.

The HT and the PD reside in storage and can be
accessed by the IMP instructions. Their structure and
functional characteristics are described in this section.
Also discussed are the functional characteristics of the
LB, which does not reside in storage and whose
contents cannot be accessed as data by the IMP
instructions.

CONTROL INFORMATION

The address of the first HT entry and the address of the
first entry in the PD directory are in the control address
table. The sizes (the number of entries-1) of the HT and
the PD are also contained in the control address table.
These fields are used by the processor during IMPL.
They can be accessed or modified at any time by IMP
instructions, but any changes do not affect the address
translation process.

HASH TABLE

An entry fetched from the HT provides an index into the
PD. The number of hash table entries varies, as the
following chart shows:

System Number of Entries
Unit Model (In Powers-of-2 Increments)

5381 3,4,5 256 - 32768

6,7,8 256 - 65536

5382 All 256 - 65 536

The number of entries is controlled by the HT size field.
Generally the hash table should contain at least two
entries for every PD entry in order to control the length
of PD entry chains. The number of HT entries must be
a power of 2. Each entry has 16 bits of data.

The HT entries occupy contiguous storage beginning at
the address specified by the HT address field. The hash
table must be aligned on a segment boundary. For
Models 3, 4, and 5, the table must be within one virtual
virtual = real segment. For the the 5381 System Unit,
Models 6, 7, and 8, and for all 5382 System Unit
models, the hash table may cross a segment boundary
but must be within two virtual = real segments.

8-4

An entry value of zeros indicates an end-of-chain
condition.

Hash Table Entry Format

Index

o Bits 16

Hash Table lookup

The processor accesses the HT in storage as part of the
address translation process. The SID and PID portion of
the virtual address are used to select an entry from the
HT. The value of the selected HT entry is used to select
a PD entry.

A 16-bit HT entry index value is generated from the
virtual address by address compression (hashing) of the
39-bit field formed by linking the SID to the PID. The
number of significant bits in the result is controlled'by
the hash table size field, The hash table entry index
value is used to select a hash table entry. Hashing is
shown in the following diagram and is described in the
following text:

The PID bits (32-38 of the virtual address) • are
reversed (38-32) 0 then shifted right once for each
zero bit in the HT size register, plus one.

Bytes 1 and 2 of the SID are G exclusively ORed with
bytes 2 and 3 of the SID and then exclusively ORed
with the result of the reversed and shifted PID bits. The
shifted data is then G) ANDed with the halfword HT
size register (from the control address table). This
AN Ding causes the hash on the left to be truncated so
that the result has the same size specified by the HT
size register. The result 0 is shifted left 1 bit position.

The result is 0 added to the beginning address of the
hash table. The sum e is used as an entry into the
hash table.

The virtual address of the selected HT entry is obtai:1ed
by adding bits 0-15 of the index to bit 31-46 of the
virtual address of the HT (as given in the HT address
field). Bit 0 of the HT index is ignored (on Models 3, 4,
and 5) and treated as 0, and low-order bit 47 is forced
to O.

Hash Table
Size Register

Virtual Address

o Bytes 1

Bytes
1 and 2

'"
Shift

Shift control to align Right

2 3

Bytes
2 and 3

/

reverse-ordered bits Control
with most significant I---I---------I----+~
bit of hash table size
register mask data

Starting
Address of
Hash Table

Shift Left
One Position

Shift Register C

Hash Table
Entry Address

4 5

Bits 32-38
/

Virtual Storage Addressing 8-5

As part of the hash table lookup process, the index is
tested for a value of all-zeros (end-of-chain). If
nonzero, the index field is used to access an entry in the
primary directory. The virtual address of the PD entry is
obtained by adding the 16-bit hash table entry to bits
28-43 of the virtual address of the primary directory.
The low-order 4 bits (44-47) are forced to zeros. The
control address table contains the address of the
primary directory. Bits 0-3 of the PD index are ignored
and treated as zeros (Models 3, 4, and 5 only).

A VMC program can use the HWA (Hash and Verify
Virtual Address) instruction and the LHTEA (Load Hash
Table Entry Address) instruction to access a HT entry in
the same way that the processor accesses HT entries.
See Chapter 10 for a discussion of this instruction.

PRIMARY DIRECTORY

One PD (primary directory) entry is provided for each
frame of main storage installed on the system. A PD
entry fetched from the PD (primary directory) indicates
the virtual address of the page stored in the block of
storage represented by the PD entry and the status of
the page. Linkage to other PD entries is also provided.
Each PD entry contains 16 bytes of data. There can be
1 to 65 536 entries, in power-of-2 increments.

The PD entries occupy contiguous storage beginning at
the address specified by the PD address field. For
Models 3, 4, and 5 the primary directory must be
SID-aligned and may not cross a segment boundary.

For Models 6, 7, and 8 the primary directory may cross
segment boundaries but must not exceed 16 virtual =
real segments.

Primary Directory Entry Format

SID PID Status

o Bytes 4 5 6

8-6

Index PINCNT Status
Not
Used

8 9 A

Usage
Code

B c

~ r::l
)~

10

The fields are allocated as follows:

Bytes
(Hex) Bits

0-3

4

5

o

Description

SID: Segment identifier of the page
stored in this block of storage. The
SID field is compared against bits
0-31 of the virtual address to be
translated.

PID: Page identifier of the page
stored in this block of storage. The
PID field is compared against bits
32-38 of the virtual address to be
translated. Bit 39 must be zero.

Status: Information about the page.

Valid: This bit can be set by the
VMC and should be reset by only
the Invalidate Primary Directory
Entry and Examine Primary Directory
Entry instructions.

o Page described by this PO
entry is not available for
access. An address translation
exception is recognized and
the operation being attempted
is nullified.

Paqe described by this PD
entry is available for access.
Address translation proceeds.
using the PD entry.

Reference: This bit is set whenever
the corresponding non V=R page
frame is accessed by the processor
and the corresponding entry is not in
the lookaside buffer. or when an
I/O operation requires use of the
address. This bit should only be
reset by the Read Reference and
Change and Reset Reference
instruction. and in some cases. by
an Examine Primary Directory Entry
instruction.

o Page has not been referred to.

Page has been referred to.

Bytes
(Hex) Bits Description

6-7

8

2

3-4

5-7

Change: This bit is upda~ed (ORed
with the change bit in thf lookaside
buffer) when the corresponding
lookaside buffer entry is removed by
the processor updating t~e lookaside
buffer; by an Invalidate Primary
Directory Entry instruction. a Read
Reference and Change and Reset
Reference instruction, or in some
cases. an Examine Primary Directory
Entry instruction; or when an I/O
operation is started whiq, will store
into the associated non V=R page
frame. This bit is reset by the VMC.

Note: The lookaside buffer change
bit is set whenever the processor
stores data in to the associated non
V=R page frame.

o Page has not been changed.

Page has been changed.

I/O Used by the proces,or when
the page is being used by the I/O.
The bits are both set and reset by
the processor.

Reserved: Must be zeros.

0-15 Index: Index for the next PD entry
in this chain of PD entries. The
value of the index field is used by
the processor to access the next PD
entry in a chain of entries. An
all-zero value indicates an
end-of-chain condition.

PINCNT: A 1-byte use counter for
pinning (holding) pages in storage.
A nonzero value indicat~s that the
page is in use and should not be
removed from storage. The counter
can be updated by eithEjr the IMP
task or the processor. i

Virtual Storage Addressing 8-7

Bytes
(Hex) Bits Description

9 Status: Provides page status
inform~tion, and is defined and
maintained by the vertical
microcode.

0 Not used.

Purge indicator set/reset by EPDE.

2 Not used.

3 Write pending.

4 Access pending.

5 Faulty page.

6 Nucleus.

7 Virtual=Real page.

A Not used.

B Usage Code Byte: Maintained by
the vertical microcode.

0-1 Not used.

2 Usage code.

3-7 Not used.

C-F Not used.

Programming Note: The processor sets the reference
and change bits. The Read Reference and Change and
Reset Reference instruction resets the reference bit. The
program must reset the change bit.

8-8

Primary Directory Lookup

The processor accesses the PO in storage as part of the
address translation process.

The SID and PID portion of the virtual address are used
to select a PO entry as previously described in this
chapter under Translation Process. The PO entry fetched
from the primary directory indicates the virtual address
and status of the page described. The SID of the virtual
address to be translated is compared to the SID of the
page stored in the page frame of storage described by
the fetched PO entry. Bits 0-31 of the PO entry are
compared to the SID of the virtual address to be
translated.

Bits 32-38 of the PO entry are compared to the PID of
the virtual address to be translated. If a match occurs
and bit 40 is 1, this page is available for access. The
storage page address may be formed as described in
Storage Address Formation in this chapter. If a match
occurs and bit 40 is 0, an address translation exception
occurs, and the operation being attempted is nullified.

If no match occurs, the index field is tested for O. If this
field is 0, an address translation exception occurs; if the
field is not 0, the index field is used to access another
PO entry. The virtual address of the PO entry is
obtained by multiplying the index field by 16 and adding
the resultant 20-bit offset to the address of the PD. On
Models 3, 4, and 5, the high-order 4 bits of this 20-bit
offset must be zeros. The PO address must be
SID-aligned and is obtained from the PO address field
of the control address table.

When a virtual address is used in an I/O operation, the
PINCNT field in the PO entry for that address is
incremented by the processor. When the I/O operation
is completed, the processor decrements the PINCNT
field. This ensures that an IMP task does not invalidate
the PO entry in the middle of an I/O operation.

When the next ~;)D entry has been fetched, all tests and
steps described for the first PO entry of the chain are
performed. The lookup operation continues from entry
to entry until encountering either a PO entry with a
matching virtual address or a nonmatching virtual
address and zero index value, indicating an end of chain.

L
Storage Address Formation

When a PO entry is found that contains a virtual address
matching the address to be translated and the page is
available for access (bit 40 = 1), the storage address is
formed. The processor uses bits 0-15 of the index
value pointing at the current PO entry as the page frame
identifier and 9 bits of the BIO (byte identifier) from the
virtual address to be translated in forming the storage
address. The BIO is concatenated to the right of the
page frame identifier to provide 25 bits of storage
address.

LOOKASIDE BUFFER

To enhance performance, the VAT facility is
implemented so that some of the information specified
in the primary directory in storage is also maintained by
the processor in a special buffer called the LB (lookaside
buffer). The processor refers to a PO entry in main
storage for the initial access to the entry, then maintains
the information in the lookaside buffer. All subsequent
translations involving PO entries from the same real
storage page frame can use the information recorded in
the lookaside buffer.

The presence of the lookaside buffer affects the
translation process in that a modification of the contents
of a PO entry in storage does not have an immediate
effect on the translation. Also, changes to the reference
and change status of a page are not immediately visible
in the PO entry in storage if address translation is
accomplished using the lookaside buffer.

The LB entries are not explicitly addressed by IMP
instructions, nor can information be explicitly entered
into the lookaside buffer by executing IMP instructions.
How the reference and change bits can be read out and
how entries can be removed by executing IMP
instructions is described in the next topic. Entries are
implicitly added to and removed from the lookaside
buffer by the translation process explained in Translation
Process earlier in this chapter. A copy of a PO entry is
placed in the lookaside buffer only when the valid status
bit of the PO entry is 1. An address translation
exception is recognized when an attempt is made to use
an invalid PO entry for translation.

When a copy of a PO entry exists in the loo~aside
buffer, the PO entry is said to be active. Th~ LB entry
copy of a PO entry can be implicitly removed from the
lookaside buffer by the processor to fulfill subsequent
translations involving other PO entries. Once the LB
entry copy is removed from the lookaside buffer, the PO
entry is said to be inactive. No status bit is provided to
show the active-inactive state of a PO entry. When an
active p'O entry becomes inactive, the referelilce and
change status bit of the page is updated in the PO entry
to reflect the most recent active status of the page.

Reference and change recording takes place for any
storage access made by the processor and I/O
operations unless the I/O operation uses vir1!ual = real
addresses. Hence, references to a storage IQcation
associated with I/O operations are included.

The change bit is not turned on for an attempt to store
if the storage reference is not permitted, regardless of
whether the IMP instruction responsible for the
reference is suppressed or terminated. In particular, a
processor reference causing an addressing or address
translation exception does not cause the change bit to
be turned on.

Virtual Storage Addressing 8-9

VAT Component Maintenance

The VAT (virtual address translator) components in
storage-the control information, the HT (hash table). and
the PD (primary directory)--can be accessed and
modified by IMP instructions. Control information
modification is discussed in Control Information under
Virtual Address Translator Components in this chapter.
This paragraph describes the effects of any manipulation
of an HT or PD entry by IMP instructions and the
relationship of changes in the primary directory to
changes in the LB (lookaside buffer).

MODIFICATION OF HASH TABLE ENTRIES

The effects of changes to an HT entry depend on the
status of any associated PD entries; that is, a PD entry
indexed by the HT entry or any PD entries connected to
that PD entry by chaining. See the next topic for a
description of the status of PD entries.

A change to an HT entry associated with inactive PD
entries takes place immediately. A change to an HT
entry associated with active PD entries can take effect
for implicit translation any time after the instant of
change (when the entry becomes inactive).

Programming Note: Manipulation of an HT entry
associated with active PD entries can produce
unpredictable results. Prior to changes, all associated
PD entries should be made inactive and invalid. See the
next topic.

MODIFICATION OF PRIMARY DIRECTORY ENTRIES

Entries in the storage PD can be accessed and modified
by IMP instructions. The effects of any manipulation by
an IMP instruction of a PD entry and the recording of its
contents in the LB (lookaside buffer) depend on whether
the entry is valid and whether a copy of the entry exists
in the LB; that is, whether the PD entry is active.

When an inactive, invalid PD entry is made valid, the
change to valid takes place immediately. Also, when an
inactive, valid PD entry is made invalid, the change to
invalid takes place immediately.

8-10

A change to an active PD entry, one for which a copy
exists in LB, can take effect for implicit translation any
time after the instant of the change (when the entry
becomes inactive). An Invalidate Primary Directory Entry
instruction is used to invalidate a PD entry (see Chapter
10).

REFERENCE AND CHANGE RECORDING

Reference recording provides information for use in
selecting storage blocks for page replacement. Change
recording provides information as to which pages have
to be saved in backing storage when they are replaced
in storage by new pages. Both reference and change
recording are done by the processor as part of virtual
address translation.

PD entry bit 41, the reference bit, is set each time the
entry goes from the inactive state to the active state.
This occurs whenever the entry is inactive when a
location in the page contained in the corresponding page
frame is referred to for either the storing or fetching of
information. The PD entry bit 42, the change bit, is set
each time information is stored in the corresponding
page contained in that page frame.

Change recording in the primary directory is accurate
only for inactive PD entries. After the initial reference to
a page, address translation is performed by means of
references to the LB. Change recording takes place in
the LB without corresponding updates of the change bit
in the PD entry in storage until such time as that PD
entry becomes inactive.

An active PD entry becomes inactive when it is purged
from the lookaside buffer. It can be made inactive
implicitly by the processor as a result qf translations
involving other PD entries, and explicitly by executing an
Invalidate Primary Directory Entry instruction, a Read
Reference and Change and Reset Reference instruction,
or in some cases, an Examine Primary Directory Entry
instruction (see Chapter 10).

The current state of the reference and change bits can
be obtained for any PD entry by executing a Read
Reference and Change and Reset Reference instruction
(see Chapter 10).

This section provides detailed descriptions of certain
facilities of VMC (vertical microcode) that enhance the
efficiency, utility, and programmability of the machine.
Included are the facilities for IMPL (initial microprogram
load), monitoring, timers, machine control, and machine
check.

Chapter 9. Machine Support .Functions

Machine Support Functions 9-1

Initial Microprogram Load

Initial microprogram load (lMPL) provides for the
initiation of processing when the contents of storage are
not suitable for processing. Invoking the IMPL function
causes information to be read from a selected input
device (usually the disk file), into preassigned storage
locations. The information read in is the minimum
amount required to execute an IMP task. The IMPL
function can be invoked whenever system power is up.

The IMPL function is started by the hardware/HMC
(horizontal microcode) and is completed by the IMP.
This document addresses only the HMC portion and the
transition to the VMC portion.

IMPL in hardware/HMC performs three functions: (1)
some basic hardware tests and initialization; (2) loading
of control storage and a small portion of main storage;
and (3) HMC initialization. Several
initialization / configuration parameters are required by
these functions and are stored on the IMPL device.
Function 1 requires main storage and control storage
configuration parameters. Function 2 requires the size of
the VMC load to be stored in main storage. Function 3
requires the following parameters to be stored at known
locations within the VMC load (see the control address
table described in Figure 2-2): valid addresses for the
PD (primary directory). the HT (hash table), and the
HMC overlay area and size parameters for the PO and
the HT.

9-2

As part of the hardware test, main storage is
functionally tested. Any page frame found to be failing
will be flagged invalid in the main storage defective
frame table. Previously defective pages, as logged in the
main storage history table (cylinder 0, head 0, sector 3
of the file) are flagged in the main storage defective
frame table. A swap is made, if necessary, to ensure
that the VMC nucleus area contains no defective frames.
The main storage status word is updated showing
whether a swap was performed. If a defect-free VMC
nucleus area cannot be attained, the system halts and
the sequence indicator lights on the CE/Op panel are lit.
The main storage defective frame table contains 512
bytes in Models 3, 4, and 5; 1024 bytes in Models 6
and 7; and, 2048 bytes in Model 8. Each bit represents
one main storage page frame (hex 0 bit = good, hex 1
bit = defective). The address of the main storage
defective frame table is found in the control address
table (see Figure 2-2) at SID (segment identifier) hex
0000 0100 offset hex 0002-0007.

The transition after the HMC initialization to the VMC
code (part of the VMC load) is accomplished by the
HMC task dispatcher code switching to the VMC IMPL
task code. Required to accomplish this are two
addresses in the control address table and a
preinitialized TDO (task dispatching queue) and TOE
(task dispatching element). The two addresses needed
are for the TOO and any current TDE address. The
preinitialized TOO contains a pointer to the preinitialized
TOE belonging to the VMC IMPL task. This TOE is
preinitialized as follows: no pending exceptions; ILC
(instruction length count) equal to zero and CC equal to
zero (hex 08); initial values for all 16 IMP base registers
(base register 0 must point to the VMC IMP task code
space); and an IAR (instruction address register) value
pointing to the first VMC instruction to be executed.

Program Event Monitoring

A program event is recognized whenever the task
dispatcher is enabled and the microprocessor determines
that the initial byte of an instruction is located within a
particular range of virtual addresses. The range is
specified by the PEM (program event monitor) start
address and PEM stop address fields of the TDE (task
dispatching element). Bytes C-D (control mode), bit 6 of
the TDE selectively enables or disables the PEM range
check performed while fetching each successive IMP
instruction.

Once a task has been dispatched, alteration of bit 6 is
not detected until the task is dispatched at a later time.
The PEM range is not checked if the instruction is
altered by an Execute instruction.

A PEM exception is presented as follows:

• If bit 8 of the TDE exception mask field is 1, the
instruction is nullified and the exception ~VL
(supervisor linkage) mechanism is invoke~.

I

• If bit 8 is 0, it is set to 1; no exception isl generated.
The instruction is completed and the nex~ instruction
is fetched and checked for being within t~e PEM
range.

This allows the PEM IMP exception handler to cause a
nullified instruction to be completed without altering the
PEM start and stop addresses in the TDE.

Programming Note: A Dispatch Task Dispat~hing Queue
instruction can be used to cause bit 6 of th1 TDE
control mode field to be reinspected or to r~load the
PEM registers from the TDE.

Machine Support Functions 9-3

Internal Microprogramming Timer
Support

The processor provides these support timing functions:
a time-of-day clock, a clock comparator, and two
interval timers.

TIME-Of-DAY CLOCK

The time-of-day clock provides date and time. The
cycle of the clock is approximately 143 years.

The time-of-day clock is a binary counter with a format
as shown in the following figure. The bit positions of
the clock are numbered 0 to 63, corresponding to the
bit positions of an unsigned binary doubleword. Time is
measured by incrementing the value of the clock,
following the rules for unsigned binary arithmetic.

o

The clock is incremented by adding a 1 in bit position
41 every 1024 microseconds. When incrementing of the
clock causes a carry out of bit position 0, the carry is
ignored and counting continues from zero. No exception
condition is generated as a result of the overflow.

The clock can be inspected by means of the instruction,
Store Time-of-Day Clock, which causes the bits
corresponding to the bits being updated to be stored. In
order to ensure that successive executions do not
provide the same clock value, the Store Time-of-Day
Clock instruction causes a one bit to be added to bit
position 63 every time the instruction is executed. Any
carry from bit position 56 is ignored. Thus, the
rightmost 8 bits of the stored value contain a number
that is used to provide uniqueness and is not a part of
the actual clock value.

9-4

The clock can be set to a specific value by means of the
Set Time-of-Day Clock instruction, which causes bits
corresponding to the bits being updated to be replaced
with the operand designated by the instruction. If a
Store Time-of-Day Clock instruction is issued before
the Set Time-of-Day Clock instruction, an unpredictable
result is stored.

CLOCK COMPARATOR

The clock comparator provides a means of determining
when the TOO (time-of-day) clock has passed a
specified value. The clock comparator has the same
format as the TOO clock, and only those bits that
correspond to the clock bits being incremented
participate in the compare.

The clock comparator can be inspected by means of the
Store Clock Comparator instruction and can be set to a
specific value by means of the Set Clock Comparator
instruction. The address of the location of the target
send/receive counter, when the time-of-day clock value
is equal to or greater than the specified value, is
contained in the control address table shown in Figure
2-2. The results of a compare are unpredictable if a Set
Clock Comparator instruction is issued before the TOO
clock is set. If the value specified in the Set Clock
Comparator instruction is less than the current value in
the TOO clock, the value is loaded in the clock
comparator and a send count is issued immediately after
the Set Clock Comparator instruction.

L
INTERVAL TIMERS

Two interval timers provide the means for mea.suring
elapsed time and determining when a prespecified
amount of time has elapsed. The first interval timer is
known as the task interval timer and is used by the
processor for task timing. (See Task Dispatcher
Enable/Disable Functions in Chapter 5.) The second
interval timer is for general use.

Each interval timer is a binary counter with a format that
is the same as that of the time-of-day clock and is
decremented by subtracting 1 from bit position 41 every
1024 microseconds. Both interval timers and the
time-of-day clock are stepped at the same rate.

The mechanism used to indicate that an interval timer
has been decremented from a positive number (including
zero) to a negative number is different for each interval
timer. For the task interval timer, an exception is
recognized. For the second interval timer, an SRC
(send / receive counter) identified in the control address
table (see Figure 2-2) is the target for a SENDC
operation.

The interval timers can be inspected by means of the
Store Interval Timer instruction and can be set to a
specific value by means of the Set Interval Timer
instruction. When the second interval timer is specified,
the Set Interval Timer instruction indicates whether the
time interval is to be repetitive. A repetitive time interval
can be specified such that the value in the interval timer
is reset to the value contained in the repetitive interval
timer doubleword when the prior interval is decremented
through zero. See Figure 2-2 for the location of the
repetitive interval timer doubleword.

This doubleword must begin on a doubleword boundary,
and be resident in storage or a machine check will occur
when it is used. The repetitive interval timer doubleword
must be set prior to issuing a Set Interval Timer
instruction or a previous value can be used if repetitive
timing is specified.

If an untimed task issues a Set Interval Timer instruction
to the task interval timer, a specification exception is
presented. A Store Interval Timer instruction issued by
an untimed task to the task interval timer stores
unpredictable results.

Programming Note: After the indication has been given
that an interval timer has been decremented through
zero, the interval timer continues to decrement. Thus, a
Store Interval Timer instruction can store a negative
number, because the interval timer format is the same
as an unsigned binary doubleword, which is represented
as a large positive number.

Machine Support Functions 9-5

System Control

The system console and the operator/service panel
provide external control or alteration of the processor.

The system console:

• Displays requested machine status

• Provides operator-to-machine (or service
personnel-to-machine) communication

• Provides controls required by the operator (or service
personnel) to intervene in normal programmed
operation

The operator/service panel and the SCA (system control
adapter) provide:

• Means for the control and indication of power

• System status lights

• Operator control, such as,
IMPL (initial microprogram load)

- Alternative IMPL
- CPU Start
- CPU Stop

• Controls power to devices such as the printer for
concurrent maintenance

Some controls are for the use of service personnel only.

The SCA has a direct interface to the processor. This
interface is described in the System Control Adapter
Theory-Maintenance manual.

The SCA functions as follows:

• When possible, it presents menus to service
personnel on the system console.

• It accepts responses from the operator/service panel
or keyboard.

• It uses the queue structure that is part of the
processor.

9-6

The SCA diagnoses system problems. The
operator / service panel and the SCA assist in
maintaining the dedicated portion of the system.

The diagnostic task, using routines written into and
executed by the SCA, enables concurrent maintenance
to be performed on a portion of the system.

SYSTEM CONTROL ADAPTER

The system control queue is the operational unit queue
of the SCA (system control adapter). au (operationaL
unit) number 1 is the value of the au field of an ORE
(operation request element) that selects the SCA. The
command field for the SCA is as follows:

Command
Field
(Hex) Description

01 Write data-RAM2
02 Read data-RAM2
04 Reset SCA
OC Start up
12 Read rotary switches
19 Write lac LSR/data store
1C Diagnostic write
21 Write control-RAM1
2A Read lac LSR/data store
2C Diagnostic head
34 Execute- RAM 1
44 Terminate routine

The diagnostic task provides functions for system
maintenance using routines that are written into and
executed by the SCA. Some of the functions are:

• Timing tests

• Power down of individual devices

• Test patterns

• Instruction test/address stop

L Machine Check

The machine-check function provides a mechanism for
handling detected machine malfunctions that can occur
in hardware or HMC. A description of the malfunctions
handled by the machine check function are given under
Machine Check Logout later in this chapter. A machine
check is reported as either a soft machine check report
(error corrected) or a hard machine check report (error
not corrected).

Soft and hard machine checks (called IMP machine
checks) are reported to the IMP by the PMCH
(processor machine check handler). The status data for
machine checks are logged into the MCLB (machine
check log buffer) by the PMCH. See Machine Check Log
Buffer for the description of the format and contents of
the MCLB. The address of the MCLB as specified in the
control address table (see Figure 2-2) must be fullword
aligned. If not properly aligned, a second machine check
will cause the processor to enter check stop mode.

Once the machine check has been reported by the
PMCH, the data in the MCLB is used to determine the
response. After this response has been taken, the
MCLB is cleared to zeros and the machine check mode
is reset, thereby clearing the status of the MCLB.

MACHINE CHECK HANDLING

Machine checks are reported to IMP whenever:

• A malfunction is detected below the IMP instruction
set.

• An exception condition occurs and the task
dispatcher is disabled. See Chapter 5.

• A Terminate Immediately instruction is issued and the
machine is not in machine check mode. See Chapter
10.

• An error exists for some VMC objects that are
referenced by an IMP instruction (for example, when
the TOE [task dispatching element] or TDQ [task
dispatching queue] are not aligned to a fullword).
See Chapters 5 and 6.

• Any of the following instructions are exe~uted when
the task dispatcher is disabled. See Chapters 5 and
6.

Receive Message
- Receive Count

Dispatch Task Dispatching Queue
Supervisor Linkage:

Implicit SVL
Explicit SVL
Exception SVL

Check Stop

In some situations, it is either impossible or undesirable
to continue processor operation when a m~chine check
occurs. When these situations arise, the prpcessor
stops all processing and goes to the check stop state.
See Chapter 4 for the definition of processor states.

In the check stop state, the processor executes no
instructions, the interval timers and TOO cl~ck are not
updated, and channel operations are suspended.

Check Stop Initiated by HMC

There are two sources for a check stop by IHMC. The
first is a machine error occurring while an iflstruction is
being retried by the HMC because of an earlier error.
The second is a hard machine error that cannot be
reported because the MCLB (area in storage where
machine checks are logged by the PMCH) contains a
machine check report from a previous error. In each
case, the check stop is caused by machine errors
occurring faster than they can be processecjl. In these
situations, all processor operations stop (including
microprocessor, virtual address translator, ~nd channel),
the SCA (system control adapter) is informed, and the
SCA displays the state of the processor on: the machine
CE/Op panel sequence indicators. IMPL Mitial
microprogram load) is required to remove the system
from the check stop state.

Check Stop Initiated by IMP

An IMP procedure can put the processor into the check
stop state, when an IMP procedure has determined that
error conditions exist such that the IMP processing is no
longer feasible or desirable. In this instance, the
Terminate Immediately instruction is issued by an IMP
procedure (see Chapter 10).

Machine Support Functions 9-7

Machine Check Mode

The processor enters the machine check mode
whenever a machine malfunction or an IMP machine
check is detected. In this mode, the IMP execution
characteristics of the processor are altered such that an
IMP procedure can be activated without the presence of
a tasking structure (current TDE). Rather than
performing a task dispatching or SVL (supervisor
linkage) function to activate an IMP procedure, the
machine check function branches to a routine whose
addressability is at offset hex 40 in the control address
table (see Figure 2-2). The following text (Processor
Machine Check Handler) defines the interface used to
pass control to the IMP procedure when the processor
is in machine check mode. Machine check mode causes
an implicit disabling of the task dispatcher before control
is passed to an IMP procedure. The restrictions on the
machine when the task dispatcher is disabled are
defined in Chapter 5. If the restrictions are violated by
an IMP procedure, a second machine check occurs,
causing the processor machine check function to put the
machine into the check stop state. It is the
responsibility of the activated IMP procedure to enable
the task dispatcher, if desired. The reenabling of the
task dispatcher can be performed via the Enable Task
Dispatching instruction (reference Chapter 10).

It is also the responsibility of the activated IMP
procedure to reset the machine check mode if desired.
This function can be performed via the Reset Machine
Check Mode instruction (reference Chapter 10).

PROCESSOR MACHINE CHECK HANDLER

The PMCH (processor machine check handler) is a
processor HMC routine (built-in function) that:

• Retries hardware-signaled errors

• Loads the MCLB (machine check log buffer) with
machine check status information (see Machine Chec~
Log Buffer, later in this chapter)

• Disables task dispatching

• Branches to the IMP procedure whose address is at
offset hex 40 in the control address table

• Initiates the termination of processing for some error
conditions

9-8

When the processor encounters a hardware malfunction,
it pauses from 1 to 2 milliseconds before trapping to the
PMCH. This pause allows any intermittent electrical
noise to subside. During this time, the processor
hardware determines if the PMCH is being executed at
the time of the machine error; if so, the processor
enters the check stop state.

Wren a processor error occurs, the PMCH determines if
the error can be retried. A retryable error is an error that
occurs in an IMP instruction before source data has
been changed, or an error that occurred in an IMP
instruction that can be executed again without changing
the final results.

If the instruction is successfully retried, the PMCH is
activated again to report successful recovery of a
machine error .. This is a soft machine check report. If
the machine is in machine check mode, the soft
machine check is not r~po~ed and the next sequential
IMP instruction is executed. If the machine is not in
machine check mode, the PMCH loa<ils the error
information into the MCLB whose addressability is at
offset hex 38 in the control address table (reference
Figure 2-2). The task dispatcher is disabled and an exit
is made to the IMP procedure whose addressability is at
offset hex 40 in the control address table.

If the instruction retry is unsuccessful or impossible, and
the PMCH determines that the machine is not in
machine check mode, the PMCH moves the machine
check error status information into the MCLB. The task
dispatcher is disabled and control is passed to the IMP
procedure whose addressability is at offset hex 40 in the
control address table. It the machine is in machine
check mode, the PMCH puts the processor in the check
stop state. At this time, the MCLB contains the earliest
hard machine check processor status and the earliest
soft or hard machine check task status.

Before the PMCH passes control to the IMP procedure,
the PMCH:

• Puts the machine in machine check mode

• Fills the log buffer with the following machine check
information:

Processor status
- Task status

• Disables the task dispatcher

• Stops the task interval timer

Machine Check Process Procedures and States

Following is a diagram of the processor machine check
procedure and the various states that the machine can
be put in by the PMCH.

Machine Check Occurs

Machine
Check
Mode

Check
Stop

l
Machine
Check
Mode

1
Check
Stop

Not Retryable

I

Normal
Model

I
Hard Machine Check
(reported to VMC)

Not Successful

l
Normal
Model

I
Hard Machine Check
(reported to VMC)

!
Stop State

1
Check
Stop

l
Machine
Check
Mode

1
Next
Sequential
Instruction

Retryable

Retry

Successful

l
Normal
Model

I
Soft Machine Check
(reported to VMC)

, Normal mode includes the run and wait states when the processor is not already handling a

previous machine check.

Machine Support Functions 9-9

Stop State Machine Check

If a machine check occurs when the processor is in the
stop state, the processor enters the check stop state.

Wait State Machine Check

Two phases of processor activity are possible when it is
in the wait state; it can either be active, servicing I/O
and timer events, or it can be idle, not servicing I/O or
timer events.

If the processor is active and a machine check occurs,
the processor exits the wait state, logs the processor
and task status into MCLB and reports a hard machine
check.

Programming Note: The IMP machine check handler
programmers should note that, in this situation, the
processor is in the operational state with no TDE
present on the TDO.

The processor maintains internal status indicating a hard
machine check while in the wait state. This status is
used by the processor in the following manner when the
Enable Task Dispatching instruction is executed:

• If there is no TDE on the TDO, the processor returns
to the wait state without storing task status into any
TDE.

• If there is a TDE on the TDo, the processor switches
in the new task without first storing task status into
any TDE.

If the processor is in the wait state and the operation
being executed is retryable (MCLB byte hex E bit 0 = 1)
when a machine check occurs, the PMCH logs the
processor status and returns to the wait state. The
PMCH also sets an internal flag called soft log required;
thus, when the processor is reactivated (from the wait to
run state). the PMCH will regain control. The PMCH will
log the currently activated task into the task status and
report the processor and task status to the IMP machine
check handler.

9-10

If the processor is in the wait state and the operation
being executed is not retryable (MCLB byte hex 14 bit 0
= 0) when a machine check occurs, the PMCH logs the
processor status. If the MCLB was not busy the task
status is also logged. However, if the buffer is already
busy, no log of the task status occurs. Control is passed
to the IMP machine check handler to report this
machine check immediately after logging. The PMCH
resets the wait state before control is transferred to the
IMP machine check handler.

If the processor is in the wait state and the operation
being executed is retryable but has been unsuccessfully
retried by the PMCH, the PMCH logs the task status,
resets the wait state, and transfers control to the IMP
machine check handler.

Programming Note: The task status may not be valid or
consistent with the processor status for wait state
machine checks.

Restart Task if Machine Check Is in Run State

The task status section of the MCLB provides a
mechanism for restarting the IMP procedure that was
executing at the time of the machine check, if the
processor was in the run state. The IMP machine check
procedure can determine the state of the machine at the
time of the machine check by referencing byte hex 15
bit 4 of the MCLB (see Processor Status in this chapter).
If this flag is set to zero, the processor was in the run
state when the machine check occurred. In this
instance, the current TDE that is addressed at offset hex
48 in the control address table is the task that was
active at the time of the machine check. If the task is to
be restarted following a machine check, the task
information in the MCLB must be moved to a CRE; that
CRE is marked as the first CRE to get control following
an SVX instruction. The IMP machine check procedure
uses the SVX instruction to pass control to the IMP
procedure that was active at the time of the machine
check.

The following illustrates the steps that should be
performed by the IMP machine check processor to
restart the IMP procedure that incurred a machine

check:

Step 1

Current TDE

In-Use
CRE 1

In-Use
CRE 2

Step 3

Procedure x
1 -----
2 -----
3 -----

MCLB

Processor Status

Procedure x Status

t
I
I
I
I CRE

I
I
I
I

m - - - - - (a machine check occurs)
m+l ---

n -----

Step 2

IMP Machine Check Routine
(addressed in the IMP
control address table)
1 -----
2 -----
3 -----

Restart Procedure x
• Get an available CRE
• Move procedure x status

in MCLB to CRE

• Enqueue CRE to current TDE
as first CR E

• RMCM (reset machine check mode)

• Clear MCLB
• Enable task dispatcher (see note)

M-----
M + 1

SVX

B If the TDE 1 is redispatched, the IMP machine check
handling is activated to do the SVX.

Current TDE

CRE
Procedure x
Status from
MCLB

~-_ Procedure x
~ (a hard machine check occurs)

~
~

~
~

Note: The Enable Task Dispatcher instruction does one
of two things:
1. Continues processing without a task switch. thereby

using processor status associated with the IMP
machine check handling procedure; or

M - - - - - or M + 1 - - - - -

M+2 ---

N-----

2. Performs a task switch, causing the processor status
associated with the IMP machine check handling
procedure to be stored in the dispatcher'sj CRE
section of the TDE 1. See Chapter 10 for the Enable
Task Dispatcher and Reset Machine Check
instructions.

Machine Support Functions 9-11

MACHINE CHECK LOG BUFFER

Machine check reports are found in the MCLB (machine
check log buffer) whose addressability is at offset hex
38 in the control address table (see Figure 2-2). Figure
9-1 illustrates the format of the MCLB. The MCLB
information contains the type of error that occurred, an
indication of whether it was recovered or not, and the
status of the hardware and processor at time of error
along with the status of the procedure executing at the
time of the error. This information is divided into two
categories of status: processor status and task status.

Task status contains the status associated with the task
whose address is in the current TDE location, offset hex
48 in the control address table. The information in t~e
task status of the MCLB is valid only when the
processor is in the run state. If the processor is in the
wait state, the processor status associated with the
current TDE is invalid because it reflects the processor
status in the wait state at the time of the machine
check.

9-12

Machine Check Log

When a machine check occurs, the data is logged out to
the MCLB (machine check log buffer). Depending on the
prior state of the MCLB, the following condition will be
logged:

• Both the processor status and the task status;

• The task status only; or

• Neither processor status or task status.

The format of the MCLB is described in the text that
follows.

Processor Status

The processor status field of the MCLB contains the
information needed to determine the type and severity
of the machine check. It also contains information that
indicates the state of the H MC at the time of the error.
This field contains 44 bytes.

·
0 1 2 3 i

Bytes

0 Error Type VMC Flags
MCHK Designation MCHK Designation

(primary) (secondary)

4 Hardware Code

8 Main Storage Error Code

C Retry Indicator S-Register G-Register
Operation iCode
Extender:

Operation Code
Current !

10 MCLB Status MCSAR

Processor

Status
14 HMC Flags

18 HMC Exceptions Overlay Index AlB

1C IMP Exceptions Condition Code Reserved

Lookaside Buffer
20

M iss Control Address
Link Register

Instruction
24 Address Register Reserved

Length

28 Exception Register Overlay Index C/D

2C CRE Flags
Base Register

Specification

I nstructi on

Length
Condition Code

30 Address Register

34

Task
Base Register (O-F)

Status
(16 x 6 = 96 bytes)

(CRE)

90 Failing V=V Address

(all 5382 System Unit models)
94 These bytes are reserved for all other models.

98 IMP Exceptions

!

Figure 9-1. Machine Check Log Buffer

Machine Support Functions 9-13

Processor Status (continued) Bytes

:J (Hex) Bits Descriptions

Bytes 6 Recovery report: If this bit is set
(Hex) Bits Descriptions and the secondary designation (byte

3 of MCLB) indicates a value of hex
a Error Type: 2A, successful recovery has been

made from an initial error. This bit
a HMC-detected errors: See HMC can also be set as a result of a

Flags (bytes 14-17) for more successful recovery report attempted
information on specific errors. Also due to a second recoverable error
see Lookaside Buffer-Miss Control while handling the initial error. In
Address (bytes 20-21) and Link this case, the second error report is
Register (bytes 22-23) for additional suppressed with this condition being
information. identified by the bit being set and

the secondary designation (byte 3 of
Channel checks: Secondary channel MCLB) indicating a value of hex 2B.
errors. These are main storage or See Hardware Code for additional
VAT (virtual address translator) information about the error.
errors reported via the microcode.
See Hardware Code and Main 7 Timer errors: Error that occurred in
Storage Error Code (bytes 4- B) for any element of timing.
more information.

Programming Note: All the timers
2 Microprocessor hardware-detected being used (including the TOD) must

error: See Hardware Code and Main be reinitialized following a timer
Storage Error Code (bytes 4- B) for error.
more information.

VMC Flags:
3 FI B (fill instruction buffer) error:

Error occurred while trying to fill the a a Not VMC machine check.
instruction buffer.

VMC machine check.
4 System damage (HMC procedure):

Machine checks occurred during an 1-7 Reserved: May be any value.
operation that cannot be isolated to
a specific task. See Hardware Code Note: HMC initializes this byte to
(bytes 4-6) for more specific hex 00.
information.

5 Instruction-processing damage (IMP
procedure): Errors that can be
isolated to a particular task. See
Hardware Code (bytes 4-6) for more
specific information.

9-14

Bytes
(Hex) Bits

2

Description

MCHK Designation-Primary: See
the following diagram for the
designation number. Each
designation number uniquely
identifies the facility which detected
the machine check, the state of the
processor, the functions performed
by the PMCH (processor machine
check handler), and the exit from the
PMCH. As an example, if the
designation number found in the
MCLB was hex 21, the general
facility that reported this machine
check was microcode. If this column
is followed down to where the first
X appears, the processor was in the
run state when the machine check
occurred. The next X indicates that
the retry indicator was O. The next
X indicates that the MCLB was not
busy. The next group of Xs indicate
what should have been logged as
well as other functions that should
have been set or reset such DTD =

o (disable task dispatcher). Further
down are the exits from PMCH to
checkstop, IMP machine check
handler (startup), or go to wait state.
In this case the machine check
would have reported to IMP via
startup.

Hex Code
00-16
1 B-24
26-29
2A-2B
2C-32
36-37

Hardware facility
Microcode facility
Channel facility
Recovery- Soft
Timer facility
Channel facility

Machine Support Functions 9-15

___ ll!~IL111-===~ _________________ I _____________________]j~~j~~ _________________________________ 1
I I~H1RI_~QIHl_===~ ______________ I ______________________ MH~!~~ _________________________________ �
P IQ~~lgHA1IQH_H]~~~R_===~_jD~!t_I!!I~!I __ IQQIQ11 __ I __ IQ~1Q~IQ~I __ I __ I~~lg~lg!I~~lg£ ~Qlg~IQEI __ 1
R S I II!PL I X I I I I I I I I I I I I I I I I I I
0']) 1ST 0 P I x I I x I x I I I I I I I I I I I I I I I
CAIWAIT I I I I I IX IX IX I I I I I IX X IX X I I
ETIRUN (IMPLIED) I I I I I I I I I IX IX IX IX I I I I
SUI------------------------------I-- --1-- -- 1-- --1--1--1--1--1-- --1--1--1--1--1-- --1--1
SSICAV I 0 I I I 10 10 10 I 10 10 10 11 11 1 I I
o 1------------------------------1 -- --1-- --1-- --1--1--1--1--1-- --1--1--1--1--1-- --1--1
R I SCA HEB IN FROC I X I I 1 I I I I I I I I I I I
I IRETRY INDICATOR = 0 I I I I I 1 I I I I I X IX X I I
I IRETRY INDICATOB = 1 I I I I I I I I I I I I X I I
I I FIB ERBCR I I I I I I I I I I I I I

---1------------------------------1-- --1-- --1--1--1--1-- --1--1-- --1-- --1--1
I I NOT BUSY I X X I II I I I X I I X IX X I I
**1 BUS Y S OFT I X X I I I X I I I X 1 I X X I I
I IBUSY HARD I X IX I I IX I I II I X IX I I

---1------------------------------1-- --1-- --1--1--1--1--1-- -- I--I-~ --1-- --1--1--1
I I LOG PROCESSOR STATUS I X I I X I X I I I X I X I X X X I I I
I ILOGRETRY INDICATOR I X I IX IX I I I X IX I X I I I
I 1------------------------------1-- --1-- --1--1--1--1-- --1-- --1--1--1
I ILOG CRE DATA I X I X IN I I I X N I X I I I
I ISET BETRY INDICATOR = 0 I I I I I I X I X I J I
I I SET R E TR YIN D I C A TO R = 1 I I I J I I I X X X I I I
I 1------------------------------ --1--1--1--1-- --1-- --I
I I D TD = 0 X I X I I I I X X I X I
R II!CLB BUSY = S I I I I I J 1
E I MCIB BUSY = H X X I X I I I IX X I X I
S IRESET WAIT STATE X I I I I I I X X 1
P I SOFT LOG REQUIRED = 0 X IX I I I I X I X I
o I S OFT LOG BEQU IRED = 1 I I I I I I I X IX X I
N IRESET AUTO ERROR IN VAT I I I I I I I I I I

~ :;;~~-~~~~-;~;~;-~;-;~;------- -- -- -- -- -- --:-- --:--,,--,,--:--:-- --1--:-- --: .. ~
I I RESET/RESTART EVERUHING I X I I I I I X I X I X X I """'"
I ISUBTRACT IL FROM lAB IECC) I I I I I I IX I I
I I IL = 0 I I I I I I IX IX I
IISTOPTASKINTERVALTIMER I XI I I I IX IX II X I
I I SET IAR TO IMCH (IL = 0) I X I I I I I X I I X I
I I RESERVED I I I I I I I I I
I ISET WAIT STATE MCHK FLAG I X IX IX I I I I IX X X I
I IUHOO CODE TO SCA X I X IX I I IX IX I I I X X I I I I

---1------------------------------ --1--1--1--1--1--1-- --1--1--1--1--1-- --1-- --1-- --1--1
I ICHECKSTOP STATE X I I IX IX I I I X I X I I I X X I I IX I 1
E IRETURN TO SCA OR FI X UP I X I I I I I I I I I I I I I I I
X ISTART UP W/AT (ESRT.ESRTAT). I I I I I I IX I I I I IX I I X I I I
I ISTART UP W/NT (ESRT.ESBTNT) I I I I I I I I I I I I IX IX I I I
T IGO TO STOP STATE (ESP1.ESCAO) I I I I I I I I I I I I I I I I I
I I GO TO WAIT ST ATE (TWTL. TWTLN!':) I I I I I I I I I I I I I X I I I I

_1_1R~lQR!_IQ_£!11~R_ _____________ 1__1 __ 1 __ 1__1__1 __ 1 __ 1 __ 1__L_-1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1--1 __ 1 __ 1__1

* Designation I = IMPt State .- No log cut
Designation S = SCA Transfer in Process - No Logout

•• indicates MCLB STATUS

X
N

blank

Condition or Response
No Response
No Condition or No Response

Processor Machine Check Handler State (Part 1 of 3)

9-16

___ IK!~!1IIX_===~ _________________ I ______ B!1~~!lg ________________________ £fl!~lif1 ________________ _
I I ~li!S.LgQH.L===L _____________ I _______ !1.!iQ~.LL______ _ ___________________ t!£l!f!E ________________ _
P .QES !~li!nQ!L;iQ.!iB E!L=~=~_Jhf!L I 12 I 11 I 1~ I .11.' .l.!± I 1211£ __ , __ __ 1 __ 1 __ I~.fr I n I ~.§ I ~~ I }§ 112 I __ I __ 1 __
RS HIPL I I I I I " I 1 I I I I I I 1 I I
OT STO P I I I I I 1 Iii I I I x: IX I I I
CA WAIT I I I I I I I I IX IX I I 1 I I I
ET RUN (IMPL:;:ED) IX IX IX X IX IX IX I I I I I IX IX I I I I
SU ------------------------------1--1--1-- --I-~I--I-- --1-- --1--1--1--1--1--1-- --1--1--1--1--
SS CAY 11 11 f1 1 I I 1 1 1 I I 1 I I I I 1 I
o ------------------------------1-- --1--1--1-- --1-- --1--1--1--1--1--1-- ~-I-- --1--
R SCA XFER IN PROC I I I I I I I I I I I
I RETRY INDICATOR = 0 X I I I I I I I I I I I
I RETRY INDICATOR = 1 X X X I I I I I I I I 1 I
I FIB ERROR I X I,{ X I I I I I I I

---1------------------------------ --1--1-- --1--1--1--1-- 1--1-- --\-- --I--
I INOT BUSY X 1'1. I I I \ IX I X I X
** I BUSY SOFT X X I I:{ I I I I I X I X
I I BUSY HARD X X I I X I I I I I I X I X I X

---1------------------------------ --\--1-- --1-- --1--1--1--1-- --1--1--
I fLOG PROCESSOR STATUS X X IX IX I I I IX I X I IX
I ILOG RETRY INl)ICATOR X X IX IX I I I IX I X I IX
I 1------------------------------ --1--1-- --1-- --1--1-- --1-- --I--I~- -- -- --
I ILOG CRE DAT.~ X N IX I I I I Y. I X I IX
I ISET RETRY INl)ICATOR = 0 X X I IX I I I 'I
I ISET RETRY INDICATOR = 1 X I I I I I I
I 1------------------------------ --1-- --1-- -- -- -- --1--1-- --1--1--
I IDTD = 0 X I X f X X I X X X I X I
R I ~CLB BUSY = 5 I I I I I
E IMCLB BUSY = H X I X IX X 1 X X 1 IX
S IRESET WAIT STATE I I I X X I 1
P 150FT LOG REQUIRED 0 X I X IX 1 I I
o SOFT LOG REQUIRED 1 I X I 1 I I I
N RESET AUTO ERROR IN ?AT I I IX I I
S ------------------------------ --1-- --1-- --1-- --1--
E RESET CHAN ERROR IN VAT I 1 I X X X IX
I RESET/RESTART EVERYTHING X I X I X I I
I SUBTRACT IL FROM IAR (EOC) I X I I
I IL = 0 IX I I
I S TO PTA 5 KIN T E R V A L TI 11 E R I X I X X I I X X 1{ I X
I SET lAR TO HIC H (1L = 0) I X I X I I X X X I X
I RESERVED I I I I I I
I SET WAIT STATE I!.CHK FLAG I I I I X X I I
I UHOO CODE TO SCA I I X X I X X I I I X X I

------------------------------1--1-- --1-- --1--1-- --1-- --I--
I CHECKSTOP STATE I I X X I X X I I I I X I X I
E RETURN TO SCA OR FIX UP I I I I I I I I I 1
X START UP W/AT (ESRT.ESRTAT) IX I X I I I I X IX X 11{ " I
I START UP W/NT (ESRT.ESRTNT) I I X I I I I I I I I I
T GO TO STOP STATE (ESP1.ESCAO) I I I I I I 1 1 I 1 I
1 GO TO WAIT STATE (TWTL.TWTLNE) I 1 1 1 1 I 1 I I I I I I

_1_1E~IQS.~_lQ_£!11~B ______________ l __ l_l __ l __ 1 __ l __ l __ 1 __ 1-_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1~_1 __ 1 __ 1 __ 1 __

* Designation I = 1I1PL State - No Logout
Designation S = SCA Transfer in Process - No Logout

** indicates I!.CLP STATUS

X
N

blank

Condition or Response
No Response
No Condition or No Response

Processor Machine Check Handler State (Part 2 of 3)

Machine Support Functions 9-17

P
RS
OT
CA
ET
SU
SS
0
R

I
I
** I

R
E
S
P
0
N
S
E

I
E
X
I

J

FACILITY -> MICROCODE

ENTRY POINT -> MUCOOE

DESIGNATION NUMBER -> (hex) IB lC 10 IE IF 20 21 22 23

IMPl X
STOP X X
HAIT X X X
RUN (IMPLIED) X X X

CAV 0 0 0 0 0

SCA TRANSFER IN PROCESS
RETRY INDICATOR = 0 X
RETRY INDICATOR = 1 X
FIB ERROR

NClB NOT BUSY X X X X
NClB BUSY SOFT X X X
HCLB BUSY HARD X X

lOG PROCESSOR STATUS X X X X X X X
lOG RETRY INDICATOR X X X X X X

lOG CRE DATA X X N X X N
SET RETRY INDICATOR = 0 X X
SET RETRY INDICATOR = 1

DISABLE TASK DISPATCHER X X X X X
~ICLB BUSY = SOFT
MClB BUSY = HARD X X X X X X
RESET HAIT STATE X X X
SET SOFT LOG REQUIRED = 0 X X X X X
SET SOFT lOG REQUIRED = 1
RESET AUTO ERROR IN VAT

RESET CHAN ERROR IN VAT
RESET/RESTART EVERYTHING X X X
SUBTRACT Il FROM IAR (EOC)
Il = 0
STOP TASK INTERVAL TIMER X X X X X X
SET IAR TO INCH III = 0) X X X

RESERVED
SET HAlT STATE MCHK FLAG X X X
UHOO CODE TO SCA X X X X X X

CHECKSTOP STATE X X X X X X
RETURN TO SCA OR FIX UP
START UP HlAT (ESRT.ESRTAT) X X X
START UP HINT (ESRT.ESRTNT)
GO TO STOP STATE (ESPl.ESCAO)
GO TO HAlT STATE ITHTl.THTlNEI
RETURN TO CAllER

** indicates MClB STATUS

X = Condition or Response
D = Hard-hard double bit error corrected condition

will be ORed into processor status
N = No Response

blank = No Condition or No Response

Processor Machine Check Handler State (Part 3 of 3)

9-18

RECOVERY TIMERS

MSOFT HTIMER

24 2A 2B 2C 20 2E 2F 30 31 32

X
X X X

X X X X X X

X X X
X X X

X X X X

0 0 X X X X X
X X X X X

X X N X N
X X

X N X X X X X
X

X X X X X
X

X X X X X X

X X X X X X X

X X

X X X X X X X
X X X

X X X
X X X X X X

X X X X X X

X X

X X

Processor Status (continued)
Bytes
(Hex)

Bytes
Bits Description

(Hex) Bits Description 6 0 Main storage error.

3 MCHK Designations-Secondary: VAT internal parity or VAT error

Designation number if a second during HMC request (such as no

MCHK occurred before the first was traps,invalid register or page, or store

handled or indicates the recovery without set change bit set).

designation number after a recovery 2 VAT error during channel.request.
log has been executed.

3 VAT error during automatic operation
4-6 Hardware Code: Specific hardware (FIB/TOO/IT) (fill instruction buffer

error. Note that byte 6 has meaning time/interval timer). An FIB error is
only when byte 5, bit 1 is a 1; and, detected as VAT hardware machine
if byte 6, bit 0 is a 1. Additional check. TOO/IT error is detected by
information is contained in the Main microcode.
Storage Error Code (bytes hex 7-B).

4 Fetch/Store command when address

4 0-7 Reserved: Must be zero. compare was made.

5 Reserved: Must be zero.
5 0 Main storage time-out error (Models

3, 4, and 5). Reserved: Must be 6-7 Address compare buffer select.

zero (5381 Models 6, 7, and 8; all 7-B Main Storage Error Code (Models
5382 models). 3,4, and 5): Additional main

VAT (virtual address translator)
storage error information.

machine check. 7 0 Read data parity check.

2 ALU (arithmetic logic unit) check.
Main storage address parity check.

2 Main storage write data parity check.

3 Reserved: Must be zero. 3 Main storage invalid address.

4 Control storage read data parity 4 Main storage multibit failure.

check. 5 Reserved: Must be zero.

5 ALU output parity check. 6 Main storage single bit failure (status
only-does not cause a machine

6 IAR (instruction address register) check).

pari'V check. 7 MSAR (main storage address register)

7 Reserved: Must be zero (all 5382
speci'fication:

models). Invalid control storage
0 MSAR2. address (all other models).

MSAR1.

Machine Support Functions 9-19

Processor Status (continued)
Bytes Bytes
(Hex) Bits Description (Hex) Bits Description

8 0-6 Page identifier. 7-B Main Storage Error Code
(Models 6. 7. and 8):

7 Byte identifier (with byte 9).

Additional main storage error
9 0-7 Byte Identifier: The byte identifier information.

makes up the low order 9 bits of the
21-bit real address of the failing 7 a Data parity error-CPU / channel.
storage address.

1-4 Main storage error. See the IBM
A 0-1 00 I/O access: System/38 Processing Unit MAP

Reference. P / N 2550526. for detai Is.
01 Data access.

5-6 Reserved: Must be zero.
10 Data access.

7 MSAR (main storage address
11 Instruction stream access. register) specification:

2 a Fetch from main storage. a MSAR2.
1 MSAR1.

Store to main storage.

S 0-6 Page identifier.
3 a V=V.

7 Word identifier (with byte 9).
1 V=R. ..J 9 0-5 Word identifier.

4-7 Frame identifier (with byte B).

6-7 Access type:
B Frame Identifier: The frame

identifier makes up the high-order 00 I/O access.
14 bits of the 23-bit real address of 01 Data access.
the failing storage address for non 10 Data access.
V=R addresses. For V=R addresses 11 Instruction stream access.
byte hex B. bits 1-7 make up the
high-order 7 bits of the 23-bit real A a Virtual = Real.
address. and bytes Sand 9 make up a Not V=R.
the low-order 16 bits. On Models 3, 1 V=R.
4, and 5, bits 1 and 2 of Byte Bare
zero. Fetch / store from main storage.

a Fetch.
1 Store.

2-7 Frame identifier (with byte B).

9-20

Processor Status (continued)
Bytes Bytes
(Hex) Bits Description (Hex) Bits Description

B 0-7 Frame identifier. 8 0-1 Access type:

00 I/O access.
Note: Bytes 8, 9, A, and B are used
to form a 24-bit real address as 01 Data access.

follows: If byte A, bit 0 is set: 10 Data access.

Add- 11 Instruction stream aqcess.
ress
Bits Bytes and Bits Used 2 Reserved: Must be zero.

0-7 B 0-7 3 Fetch / store from main storage.

8-15 8 0-7
0 Fetch.

16-21 9 0-5
Store.

22,23 Forced to 00
4-6 Failing main storage card number.

If byte A, bit 0 is reset:
7 Word identifier (with byte 9).

Add-
9 0-5 Word identifier.

ress 6-7 Reserved: Must be zero.
Bits Bytes and Bits Used

A 0-7 Frame identifier (with byte B).
0 Forced to 00

B Frame identifier: The frame identifier
1-6 A 0-7 makes up the high-order 1~6 bits of

7-14 B 2-7
the 25-bit real address of the failing
storage address. Bytes 8 and 9 make

15 8 7 up the next 7 bits. The low-order 2

16-21 9 0-5
bits are forced to zeroes.

22,23 Forced to 00
C Retry I nd icato r:

7-B Main Storage Error Code
0-6 Reserved: Must be zero.

I (all 5382 Models) 7 Retry indicator:

Additional main storage error 0 Successful retry. (If a retry
information. was never attempted, bit 7

7 0 Data parity error-CPU / channel. always = 0.)

1-4 Main storage error. See the IBM Unsuccesfui retry.

System/38 Processing Uni~ MAP
Reference P / N 2550526, for details.

5-7 Reserved: Must be zero.

Machine Support Functions 9-20.1

This page is intentionally left blank.

9-20.2

Processor Status (continued)
Bytes
(Hex) Bits Description

D

E

0-3

4

5

6

7

o

S-Register: Processor hardware
status register which contains
temporary HMC status and condition
code.

Temporary HMC flags.

Hardware overflow.

High-order result bit of an indirect
binary add or subtract.

Carry from the ALU (arithmetic logic
unit).

ALU result equal to O.

G-Register: Hardware register
collection of control latches used by
the processor logic and HMC.

Checkpoint address valid. This bit
indicates whether the microprogram
was checkpointed when a machine
check occurred:

o Instruction not retryable.

Instruction retryable.

Temporary HMC flag.

2 Block machine check trap. If this bit
is set, a machine check error will not
trap the microprogram. This bit is
for diagnostic use only.

3 Temporary HMC flag.

4 Local storage partition latch. This bit
is the high-order address bit for
direct addressing.

5 Temporary HMC flag.

6 L-register couple control. This bit,
when set, indicates the L-register is
in the coupled mode.

7 Stop state indication.

Machine Support Functions 9-21

Bytes
(Hex) Bits

F

10

9-22

Description

Extended Operation Code: This
byte contains the second byte of the
instruction if a machine check
occurred while executing an
instruction with an extended
operation code. The low-order 4
bits contain the operation code
extender field. This byte is valid
only if byte hex 10 is equal to one
of the following:

Hex OD
5A
60
71
79

80
83
91
AE
BE
CE

See Chapter 2 for a description
of the extended operation code
format. and Chapter 10 for the
extended operation code
assignments.

Operation Code: This byte
indicates the type of operation being
performed:

Note: See Machine Check Special
Error Conditions in this chapter.

00 Built in function.

40 HMC procedure. Any other
value not equal to 00, 40,
or FF represents the
operation code of the IMP
instruction currently being
executed. See hex byte F
for a listof extended
operation codes.

Bytes
(Hex) Bits

11

o

1-2

3-7

12-13

14-17

Description

Current MCLB Status:

Reserved: May be any value.

Encoded current MCLB staws:

00 Log area not busy.

01 Log area busy with soft
MCHK.

10 Log area busy with hard
MCHK.

11 Not used.

Reserved: May be any value.

MCSAR (machine check control
storage address register): CSAR
address when a hardware-detected
failure has occurred (MCLB byte 0,
bit 2=1). MCLB hex bytes 12-13
will equal 0 if MCLB hex byte 0, bit
2=0.

HMC Flags: Status of various HMC
and VMC facilities as used by HMC.
These HMC internal flags are, in
general, only modified by HMC
routines directly associated with an
individual bit or bits.

Bytes Bytes
(Hex) Bits Description (Hex) Bits Description

14 0 Flag virtual address mapped in PO 7 Flag task switch block~d:
(primary directory) when SCA
(system control adapter) executes o Task switch bloc~ed.
the Set AC (address compare) for
VA (virtual address) command: 1 Task switch not 1lI0cked.

0 Virtual address mapped in PD. 15 0 Flag procedure type ex~cuting:

Virtual address not mapped in 0 IMP procedure.
PD.

HMC procedure.
1-2 Encoded prior MCHK log busy

status: Reserved: May be any! value.

00 Log not busy. 2 Flag interval timer repetitive:

01 Log busy with soft MCHK. 0 Not repetitive.

10 Log busy with hard MCHK. Repetitive.

11 Not used. 3 Reserved: May be any value.

Note: These bits represent the 4 Flag processor in wait state:
status of the log when the MCHK
occurred. 0 Not in wait state.

3 Flag interval timer in use: In wait state.

0 Interval timer not in use. 5 IS (instruction step) mask:

Interval timer in use. o Allow IS exception.

4 Flag TOO (time-of-day clock) in 1 Do not allow IS ekception.
use:

6 SCA (system control adapter) routine
o TOO not in use. retryable:

1 TOO in use. 0 Not retryable.

5 Flag clock comparator in use: Retryable.

0 Clock comparator not in use. 7 FIB (fill instruction buffer) window
flag:

Clock comparator in use.
0 Not FIB retry.

6 Flag task interval timer in use:
FIB retry.

o Task interval timer not in use.

1 Task interval timer in use.

Machine Support Functions 9-23

Bytes Bytes
(Hex) Bits Description (Hex) Bits Description

16 0-1 Reserved: May be any value. 18 HMC Exceptions:

2 Soft address compare mode: 0 Flag execute instruction:

0 Not soft address compare 0 Not execute instruction.
mode.

Execute instruction.
Soft address compare mode.

Flag soft MCHK report pending:
3 SCA exceptions:

0 No soft MCHK report pending.
0 SCA exception.

1 Soft MCHK report pending.
1 SCA trap.

2 Flag IS (instruction step) mode:
4 Timer MCHK flag:

0 Not in IS mode.
0 Not timer error.

In IS mode.
MCHK timer error.

3-7 Reserved: May be any value.
5 MCHK in wait state.

19 Microcode Generated Exceptions:
0 MCHK not in wait state.

.) 0 Flag task dispatcher call required:
MCHK in wait state.

0 No task dispatcher call
6 Task-controlled interrupt allowed. required.

7 SLVM1 instruction enabled. Task dispatcher call required.

17 0-7 Reserved: May be any value. Flag PEM (program event monitor)
mode:

0 Not in PEM mode.

In PEM mode.

9-24

Bytes Bytes
(Hex) Bits Description (Hex) Bits Description

19 2-3 Flag AC (address compare) mode: 24-25 Address Register: These 2 bytes
contain the IAR (instruc;:tion address

00 Not in AC mode. register) if an IMP proc:jedure, or the
left-justified CSAR (cot1trol store

01 In AC sync. address register) if an HMC
procedure.

10 In AC mode.
26 Reserved: May be any value.

11 In data AC mode.
27 Instruction Length: IMP instruction

4 Event Handler call required: length.

0 Normal event processing. 28-29 Exception Register (Models 3, 4,
and 5):

Event handler call required.
28 0-7 Reserved: Must be zerps.

5-7 Reserved: May be any value.
29 0 I/O channel event: (I/O service

1A-1B Overlay Index AlB: HMC routine required).
that was in the control store overlay I/O channel machine check.
area A and B at the time of the
machine check. 2 Main storage address compare.

1C-1D IMP Exceptions: IMP exception 3 Timer carry occurred.
code as described under IMP
Exception Codes, (under Task Status), 4 IMPL (initial microprogram load).
later in this chapter.

5 Reserved: May be any value.
1E Condition Code: IMP condition

code: 6 SCA (system control adapter)
request pending.

0-3 Hex O.
7 Microprocessor exception.

4-7 Condition code.

1F Reserved: May be any value.

20-21 LB-Miss Control Address:
Lookaside buffer-miss control
address.

22-23 Link Register: Control storage link
address at the time of failure.

Machine Support Functions 9-25

Bytes
Task Status

(Hex) Bits Description
The task status field of the MCLB contains information

128- 29 Exception Register (5381 Models 6, 7,
that indicates the state of the task that was running at
the time of the machine check or SCA (system control

and 8; all 5382 Models):
adapter) request. This field contains 110 bytes.

28 0-7 Reserved: Must be zeros.

29 0 I/O channel event: I/O service
Bytes
(Hex) Bits Description

required.

I/O secondary error machine 2C CRE Flags: This byte contains
check-Set by the I/O channel logic to special flags used by the H MC
indicate that a hard channel error has logout routine.
occurred and the I/O channel has been
stopped until error recovery has been 0 0 Valid CRE (call/return element)
completed. data has not been logged out to

2 Main storage address compare.
this area.

3 Timer carry occurred. Valid CRE data has been logged

4 IMPL (initial microprogram load).
out to this area.

5 Main storage double-bit error-Data IMP or HMC task pending:
has been corrected in main storage.

6 SCA (system control adapter) request
0 IMP task.

pending.
HMC task.

7 Microprocessor exception.

~ 2A-2B Overlay Index C/O: HMC routine
2-7 Reserved: May be any value.

that was in the control store overlay
20 Base Register Specification:

area C and 0 at the time of the
machine check. 0-3 Number of the first base register to

be logged.

4-7 Number of base registers logged
minus 1.

2E Instruction Length: Instruction
length. right justified.

2F Condition Code: IMP condition
code.

9-26

Bytes
(Hex) Bits Description

30-31

32-91

92-97

98

Address Register: IAR (instruction
address register! if an IMP procedure
or the left justified CSAR (control
storage address register) if an H MC
procedure.

Base Registers: The next 96 bytes
contain sixteen 6-byte registers
beginning with the base register
specified in bits 0-3 of byte hex 2D.

Failing V=V Address: These 6 bytes
contain the failing virtual address
when a page fault results in a
machine check (all 5382 models).

Reserved: May be any value (all
other models).

IMP Exceptions: Two-byte IMP
exception code.

0-2 Reserved: May be any value.

3 Soft address compare.

4 Dispatcher time increment expired
(task interval timer).

5 Monitored ACO descriptor (SVL
[supervisor linkage] receive).

6 Monitored CRE descriptor (SVL
receive).

7 Monitored TDE (task dispatching
element) descriptor (SVL receive
wait).

Bytes
(Hex)

99

Bits Description

00 No exception
02 Invalid descriptor
04 Busy
06 Reserved
08 Allocate page frame
OA Monitored SRO descriptor
OC Monitored SRM descriptor
OE Monitored TDE descriptor
10 SRC overflow
12 Address translation
14 PEM (program event monitor)
16 Execute
18 Specification
1A Addressing
1C Effective address overflow
1E Data
20 Binary overflow
22 Binary zero divide
24 Decimal overflow
26 Decimal zero divide
28 Floating-point overflow
2A Floating-point underflow
2C Floating-point inexact result
2E Floating-point zero divide
30 Operation
32 Stack
34 Verify
36 Chain Conflict
38 End of Chain
3A Edit Digit Count
3C Length Conformance
3E Edit Mask Syntax
40 Invaiid Segment Group
42 Floating-point invalid operand
44 Reserved
46 Second Chain Search
48 Conversion
4A Invalid floating-point comJersion
4C-74 Reserved
80 Invalid Segment (note)
81 Invalid Page (note)
82 Page Read Error (note)
83 Invalid Pool State (note)
84 Invalid Pin Request (note)
85 Invalid Write Request (note)
86 Main Store Error (note)
87-8F Reserved

Note: Implicit SVL codes. See Chapter 6 for
the description of all IMP exceptions.

Machine Support Functions 9-27

MACHINE CHECK SPECIAL ERROR CONDITIONS

Virtual Address Translator Machine Checks

Since the decode and execution of IMP instructions is
asynchronous with main storage and the VAT (virtual
address translator), any MCHK (machine check)
occurring on a write to main storage cannot be
conclusively isolated to the instruction which caused the
MCHK. When this condition is detected, the task which
incurred the MCHK must be terminated immediately.
The conditions to test for the above MCHK are: byte 5,
bit 1 = 1; byte 6, bit 0 = 1; and byte 7 bit 2 = 1.

Machine Check During Translate Instruction

A Translate instruction, due to its special interrupt mode,
must always force termination of that task if a machine
check occurs while the Translate instruction is retryable.
MCLB (machine check log buffer) byte hex 10 = hex CC
and byte hex OE, bit 0 = 0 identify this condition.

Error/Recording Error Definition

Errors defined for the CPU are described in the
Processing Unit Theory-Maintenance manual.

9-28

Stack Handling

An IMP stack is a group of storage areas assigned
sequentially within the addressing space. The stack
entries provide a means of declaring and using
save/work areas in storage with nested programs.
These stack entries are handled last-in, first-out.

STACK STRUCTURE

An IMP stack is contained within a segment. A
software-maintained and used header is found at the
front of the stack. The stack entries following this
header are variable in length, double-word aligned, and
contain an 8-byte area at the front. Two IMP
instructions (Stack and Unstack) are used to add and
remove stack entries.

The size of a stack entry is presented as the contents of
a halfword register in the Stack instruction. The 8-byte
area at the beginning of each entry contains 4 halfword
fields. The first halfword • is a virtual address offset
(forward pointer) indicating the start of the next stack
entry. The second halfword 0 is a limit for the stack
presented as an upper address offset boundary. The
third halfword G is a virtual address offset (backward
pointer) indicating the start of the previous stack entry.
The fourth halfword e is a flag field in which the only
IMP-recognized flag is' hex bit 15. When set to one,
this bit indicates that the stack entry is the first entry on
the stack. An unstack operation is not permitted when
this flag is set to 1.

Machine Support Functions 9-29

The following diagram shows a typical stack. When an
IMP stack operation is performed with address A3
pointing to the entry currently being used, the entry at
address A4 is formed by computing its end address A5,

filling in its 8-byte area, and updating the stack address
to A4 as the new current entry. When the IMP Unstack
operation is performed with address A3 pointing to the
entry currently being used (the entry at A4 has not been
created in this case), the stack address is backed up to
address A2 because the flag bit hex 15 is not set to 1.

o

IMP Stack

Storage

2 4 6 Bytes

Stack Header

Stack Unstack o 0 G G
Fwd = A2 l Limit

,. Previous 1 F =
Entry = x Hex 0001

X Previous - A2 A3 I Limit I At ~ Hex 0000 }
x X Current - A3 A4 I Limit I A2 1 Hex 0000

x X Next ---.... A4 I I 1 Hex 0000
I,

As Limit A3

x Following - As

9-30

Size 1

Size 2

Size 3

Size 4

HOLD/FREE FUNCTION

The IMP hold/free function is embodied in five IMP
instructions and a storage segment containing chained
hold records. Each chain represents hold activity for a
system object and its hash synonyms. In addition, one
chain contains initialized but as yet unused (in other
words, available) hold records.

The hold chains contain ordered HRs (hold records)
where each record represents an object hold of a
specified type. A process (or task) can have holds on
multiple objects and can have multiple holds (of the
same type or differing types) on the same object.

Hold Chain Structure

Figure 9-2 shows the six data fields involved with hold
and free. Two 6-byte addresses are maintained in the
processor control address table. One is the address of a
4096-byte HHT (hold hash table) and the other is the
address of the first hold record remaining in the
preinitialized chain of available (free) records. Two
halfword fields in the current TDE (task dispatching
element) that are used are a unique TDE I D (task
dispatching element identifier) and a count of the
number of hold records currently in use by the task.

Machine Support Functions 9-31

Control Address Table

0 Bytes 8 Hold

1 1
Hash
Table

o Bytes 2
-,.... -,....

f----
0

1
HHT Address I---

2
AHR Address I---

3
-I." -I." -I." -L-

Entries
-I'"'" -"",

2048 II

Task Dispatching Element

0 Bytes 8

1 1 Available

-,... -,...

ID leNTI

Figure 9-2. Hold/Free Data Fields

Programming Note: The HHT entry of hexadecimal 0000
indicates a null HR chain. Therefore, HRO is not used.

9-32

~

Hold Record Area

0 Bytes 16

HRO (not used)

HRl

HR2

HR3

HR4

HR5

HR6

HR7

HR8

HR9

-L.. -I."

T
Not Initialized

J

The other two storage areas used by hold and free are
the HHT and the HR (hold record) area. The HHT is a
4096-byte storage page which contains 2048 halfword
entries. When hold/free activity is performed in an
object. the 6-byte address of that object is hashed,
forming a 2-byte index as shown below.

Object Address (6-Byte Virtual Address)

o Bytes 2 3

Mask

4

I

I EOR

j

t

0

t

5

I I EOR I
~

,
7 F F

t

Hash Hold
Table Index

This 2-byte index is used as the address of one of the
2048 HHT entries. The halfword contents of the
selected entry (if not = 0) are then used as a halfword
index which, when multipled by 16 and concatenated on
the right of the high-order 28 bits of the address SID
(segment identifier) obtained from the AHR (available
hold record) chain address located in the control address
table, forms the address of the first (most recent) hold
record granted for this object and its hash synonyms
(other object addresses which hash to the same 2-byte
index value).

The second storage area, which is composed of 16
consecutive 64 K segments of address space, is a virtual
addressing segment called the HR (hold record) area. It
contains all the HRs used in all object chains plus the
chain of preinitialized HRs available for additional holds.
It may also contain some uninitialized area for expansion
of the available hold record chain. The HR area
segments are identified by the high-order 28 SID bits of
the AHR chain address contained in the control address
table.

Machine Support Functions 9-33

Hold/Free activity involves the use of seven IMP
instructions. These instructions are:

• SCB Set Chain Busy

• RCB Reset Chain Busy

• GHRF Grant Hold Record First

• GHR Grant Hold Record

• FHRF Free Hold Record First

• FHR Free Hold Record

• RAHR Return Available Hold Record

HRB (hold request block) Format

o

HRB
Text

Byte

HRB
Hold

2

Description

The first six of these instructions have as one operand a
base register containing the 6-byte effective address of
the object involved. The Grant/Free and SCB
instructions have another base register operand to
receive the address of a hold record of interest (GHR
and FHR instructions have this register preloaded with a
HR of interest and update it to a new HR if necessary).
The last four instructions have yet another operand
which is a storage halfword data field called a hold
request block. This hold request block contains (1) the
hold types to be checked for and (2) the holds to be
granted for hold, or which were granted if freeing as
shown in Figure 9-3.

HRBTEST Holds to be tested for

9-34

HRBHOLD Holds to be granted or freed

HR (hold record) Format

o

8

HR
Flag

HR
Hold

HRTDE

2

A

Hold Record Object Address

Bytes

Hold Record Hold Record Cumula-
Primary Secondary tive Hold
Chain Chain Field

BytE C E

Unused

F 10

Figure 9-3 (Part 1 of 2). Formats of the Hold Request Block and the Hold Record

Bytes
(Hex) Bits Description

a

2-7

Hold Record Flag.

a Head of secondary chain:

a = a Not the head of a secondary
chain.

a = 1 Head of a secondary chain.

Secondary chain monitored: The
monitored hold is on a secondary
chain. This bit is set by the VMC
exception handler.

1 = a A request was received to
free the object.

1 = 1 No request was received to
free the object.

2-4 Unused.

5 Hold record busy:

5 = a Not busy.

5 = 1 Busy.

6 Hold record end of primary chain:

6 = a Not end of chain.

6 = 1 End of chain.

7 Hold record monitored:

7 = a Not monitored.
7 = 1 Monitored.

Hold Record Hold: Contains the
HRBHOLO when a hold is granted.
indicating the type of hold.

Hold Record Object Address:
Contains the 6-byte address of a hold
object.

Bytes
(Hex) Bits

8-9

A-B

C-O

E

F

Figure 9-3 (Part 2 of 2). Formats of the Hold Request Block and the Hold Record

Description

Hold Record TOE: Contains the TOE
identifier wRen the hold is granted.

Hold Record Chain: Contains a
halfword index of the next hold record
in the primary chain for hash
synonyms. This index is also used as a
backward pointer on the secondary
chain.

Hold Record Secondary Chain:
Contains a halfword index of the next
hold record in the chain for this object.
A zero indicates the end of chain.

Cumulative Hold Field: Contains the
OR of all the holds on the hold records
in the secondary chain (exists only
when there is a secondary chain).

Unused.

Machine Support Functions 9-35

HARDWARE TAGS

Each word in storage has an associated hardware tag
bit. Tag bits are used to differentiate between data and
pointers. There is one pointer tag (logical AND of the 4
hardware tag bits) associated with each quadword (4
consecutive words) of storage. If a tag bit is set, a valid
pointer is located in the quadword corresponding to that
tag bit. If a tag bit is zero, no pointer is located in that
quadword.

A quadword in storage that is quadword-aligned (on an
address divisible by 16) is considered tagged when all 4
words in the quadword have their hardware tag bits set.
The quadword is not tagged when any or all of the
hardware bits in the quadword are reset.

There are five IMP instructions that can set the
hardware tag bits. These are Call Internal, Store and Set
Tags, Move and Set Tags, Insert Tags, and Move
Characters and Tags. The Add Space Pointer Offset
instructions (AHSPOI, AHSPO, and AFSPO) can be used
to modify tagged pointers without setting the
corresponding tag bits off. The Load and Verify Tags
instruction checks the hardware tags but does not alter
them. All other instructions and other facilities that store
data in storage cause the associated hardware tag bits
of the words stored to be reset. Thus, a tagged
quadword cannot be manipulated by an instruction other
than the instructions referenced above and still remain
tagged.

Storage management must save the tags when it writes
a page to auxiliary storage and restore them when it
reads the page into main storage. Storage management
uses the Extract Tags and Insert Tags instructions to do
this.

9-36

VMC Service Aids

Direct support for servicing the VMC exists in two
facilities: a task switch trace facility and a
programmable address compare facility. Each of these
is described in the following sections.

TASK SWITCH TRACE FACILITY

General

The task switch trace facility provides a trace record for
each IMP task switch in by the processor. Trace records
are placed into the trace event buffer in storage as they
occur. When that buffer is full, a buffer-full condition is
signaled and an alternate buffer is used. Task switch
trace activity is controlled by a bit in the TDE (task
dispatching element) of the task being switched in.

The trace event buffering operation is controlled by the
trace control table (described later in this chapter), which
is a control block addressed by an entry in the
processor control address table (see Figure 2-2). The
processor control address table contains:

• Buffer offsets and thresholds.

• An SRC (send/receive counter) used by the processor
to signal the program of a buffer-full condition, and a
control bit used to suppress that buffer-full condition
signal.

• A damag~ indicator which the processor notifies the
program of a buffer wraparound condition.

The task switch trace record contains:

• The TDE (task dispatching element) identifier.

• A time stamp.

• The binary overflow and Instruction Address Register
(control storage address register if an HMC
procedure) values, for the first procedure to be
executed in the new task only.

TOE Control Bit

The TDE bit that controls TDE tracing is bit 2 of hex
byte ac. If the bit is a one, the trace function is
performed when the task is switched in. If the bit is
zero, the function is not performed.

Trace Control Table Address

Hex bytes 98-9F of the processor control address table
contain the address of the trace control table. Hex bytes
98-99 are reserved, and hex bytes 9A-9F contain the
6-byte address. The address has use code b (see
Permanent Storage Assignments in Chapter 2) and the
table itself must be doubleword aligned, resident in main
storage, and must not cross a page boundary;
otherwise, a machine check occurs.

TRACE CONTROL TABLE

The trace control table is a 28-byte object which
contains the entries that control the logging of trace
records and notification of the program when the trace
event buffer is full.

Machine Support Functions 9-37

Format:

Type Control Reserved Trace Count
Primary Buffer Primary Buffer
Offset Threshold

o 2 Bytes 4 6

Alternate Alternate
Reserved Buffer Buffer

Threshold Offset

A Bytes C E 10

Bytes
(Hex) Bits Description

0 Type: Contains the trace control table
type (hex E3).

Control: Control.

0 o Buffer wraparound has not occurred.

1 Buffer wraparound has occurred.

o Disable SENDC on wraparound
condition.

Enable SENDC on wraparound
condition.

2-7 Reserved: May be any value.

2-3 Reserved: May be any value

4-5 Trace Count: The number of 4-byte
blocks currently in the primary trace
event buffer.

6-7 Primary Buffer Offset: Provides the
address offset within the trace control
table segment to the beginning of the
primary trace event buffer.

9-38

8

Send/Receive Counter

Bytes
(Hex) Bits

8-9

A-B

C-D

E-F

10-1 B

\
1C

Description

Primary Buffer Threshold: The
number of 4- byte blocks of data that
can be put into the primary buffer.

Reserved: May be any value.

Alternate Buffer Threshold: The
number of 4- byte blocks of data which
can be put into the altenate buffer.
When the primary buffer becomes full,
alternate buffer threshold is copied to
the primary buffer threshold by the
processor.

Alternate Buffer Offset: Provides the
address offset within the trace control
table segment to the beginning of the
buffer area which is to be used when
the primary buffer exceeds its limits.
When this occurs, the alternate buffer
offset is copied to the primary buffer
offset by the processor.

Send/Receive Counter: The
send / receive counter in the trace
control table is used to control the
dispatching of the task which handles
buffer-full conditions.

Task Switch Trace Record

The task switch trace record is a 16-byte record _that
contains the information to be logged each time a task

switch occurs. This information includes a time stamp,
the TOE (task dispatching element) identifier, and the
current instruction stream address.

Format:

o

8

Type Length

Address
Register

Bytes

Bytes
(Hex) Bits

o

o

2

A

TOE
Time Stamp

Identifier

Bytes 4

Base Register 0

Description

Type: Contains the task switch
trace record type (hex FO).

Length: Contains the trace record
length, expressed in terms of
number of 4-byte blocks, as well as
the type of procedure contained in
the TOE CRE (call/return element).

o IMP procedure.

HMC procedure.

Reserved: Must be zero.

2-5 Length (= binary 0100).

6-7

2-3

Reserved: Must be zeros.

TOE Identifier: Contains the 10

field of the TOE.

10

Bytes
(Hex) Bits

4-7

8-9

A-F

Description

Time Stamp: Contains bytes 2-5

of the current time of day clock
value. If time of day clock is not

running, it contains all zeros. By
using bytes 2-5 of the clock,
approximately 20 hours of unique
time stamps are available.

Address Register: If byte 1, bit

o is zero, this contains the IAR
(instruction address register) value

of the TOE CRE; otherwise it
contains the CSAR (control store
address register) value of TOE
CRE.

Base Register 0: Contains the

base register zero value of the
TOE CRE.

Machine Support Functions 9-39

Operation

Each time a task switch-in occurs, TDE byte C, bit 2 is
tested by the processor. If on, a task switch trace
record is generated and added to the trace event buffer
in storage, as follows:

1.

2.

3.

4.

The trace control table is accessed via bytes hex
98-9F of the control address table and the trace
count is multiplied by four to obtain an index to
the current entry of the buffer.

The result of step 1 is added to the primary stack
offset to obtain the offset of the first byte of the
new buffer entry. A carry from bit a or a
nonfullword-aligned result causes a machine check
to occur.

The offset obtained in step 2 is concatenated with
the trace control table SID (segment identifier) and
the resulting virtual address is translated. If the
address cannot be translated, a machine check
occurs.

A value of 1 is subtracted from 4 times the length
and this new value is added to the result of step 2
to obtain the offset of the rightmost byte of the
new buffer entry. A carry from bit a of the result
causes a machine check to occur.

5. Step 3 is repeated, using the offset value obtained
in step 4.

6. The trace record is written to the address obtained
in step 4.

9-40

7.

8.

9.

Length is added to the trace count in storage.

The result of step 7 is tested for a value greater
than or equal to the primary buffer limit. If not
greater than or equal, the buffer operation is
complete; otherwise the operation continues.

The trace count is loaded with hex 0000.

10. The primary stack offset and alternate buffer
offset are compared. If equal, byte 1, bit a of the
trace control table is set, and the operation
continues.

11. The alternate trace offset and alternate trace limit
are copied to the primary trace offset and primary
trace limit, respectively.

12. Byte 1, bit 1 of the trace control table is tested. If
set, a send count operation is performed using
bytes hex 10-1 B of the trace control table.

Programming Note: The threshold test ensures that a
trace record does not begin beyond the threshold.
However, it is possible that the end of a record can
extend beyond the threshold. Hence, an overflow area
should be provided at the end of each buffer. The
length of the overflow area should equal the trace
record length minus 4 bytes.

ADDRESS COMPARE MODE

The address compare mode allows the program to be
signaled whenever one or more of the following events
occur:

• An instruction is fetched from a designated virtual
storage location.

• The contents of a designated virtual storage location
are accessed by either the processor or the I/O
channel.

• The contents of a designated virtual storage location
are altered by either the processor or the I/O
channel.

• The contents of a designated virtual storage location
are altered to a predetermined value by either the
processor or I/O channel.

An address compare mode is established through the
use of the Set Address Compare Mode instruction.
When an address compare match occurs, the program is
signaled via an address compare exception; when the
exception occurs, the address compare mode remains
set and the compare address is unchanged. The
address compare mode is terminated via the Reset
Address Compare Mode instruction.

An address compare mode can be set up to occur for
an instruction stream fetch, a processor data access, or
an I/O channel data access, selectively. Also, it can be
set up to occur if any of the preceding three access
types occur. Two other setup options are available with
the address compare mode. The first is the capability to
s?ecify that an exception is to be recognized only if a
store type access to the designated storage location
occurs during a processor or I/O channel data access,
as opposed to the general capability where either a
fetch or store type access causes an exception to be
recognized. The second is the capability to compare the
value of a prespecified character to the character stored
in the designated storage location by the processor or
I/O channel; an address compare exception occurs only
if the two characters compare.

When an address compare match is detected for an
instruction stream fetch, the exception occurs prior to
execution of the designated instruction. If the instruction
consists of multiple units of operation, an exception
occurs prior to execution of each of the units of
operation. When an address compare match occurs for
processor data accesses, an exception occurs after
completion of the unit of operation during which it
occurred, where the unit of operation can be either an
IMP or HMC unit of operation. If the processor is not
executing a unit of operation when the address compare
occurs, the exception is recognized after completion of
the next unit of operation to be executed. For example,
if the processor is in the wait state and an address
compare occurs due to servicing of the IMP timers, the
exception is not recognized until a task switch occurs.

When an address compare match is detected for an I/O
channel access, an exception is recognized after
completion of the unit of operation currently being
executed by the processor. If none is being executed,
the exception is recognized as in the case above.

The address compare exception is maskable if it occurs
on the instruction stream. If bit 9. of the TDE (task
dispatching element) exception mask field is 0, it is set
to 1 by the processor, but no exception occurs and the
instruction is completed normally. The mask allows the
IMP exception handler to leave an address compare set
at a particular instruction after the address compare has
initially occurred. Without the mask, it would be
necessary for the program to remove the address
compare in order to avoid an endless loop.

Machine Support Functions 9-41

The following is the processing sequence for an
instruction address compare, set by the Set Address
Compare Mode Instruction:

1.

2.

3.

4.

5.

9-42

Address compare mode is set for an instruction
fetch at storage location L.

Bit 9 of the TDE (task dispatching element)
exception mask field is set to 1, allowing normal
operation of instruction-fetch address compare
exceptions.

An address compare exception occurs when the
instruction is fetched from storage location L. The
instruction has not yet executed.

The IMP exception handler responds to the
exception by setting bit 9 of the TDE exception
mask to O. The instruction at storage location L is
retried.

No exception occurs and the instruction completes
normally. The processor sets bit 9 of the TDE
exception mask to 1, enabling the address
compare exception to be presented the next time
the instruction at storage location L is fetched.

The address compare exception can occur concurrently
with other exception types, typically PEM (program
event monitor) and certain other program exceptions
that are detected after the instruction has accessed an
operand in storage. A PEM exception and instruction
stream address compare can be detected simultaneously
and, if they are, they will be reported in the same CRE
(call/return element). Also, many of the other program
exception types can be detected simultaneously with a
processor or I/O data exception, in which case both will
be reported in the same CRE.

The processor address compare facility handles both
V=R and V=V addresses. If the compare address is a
V=R address, it is converted to a real address format
and loaded into the address compare facility. If the
compare address is a V=V address, an attempt is made
to translate it to a real address. If the translation is
successful, the real address is loaded into the address
compare facility. If the translation is not successful, the
virtual address is buffered in the processor. Then,
whenever a new address is loaded into the lookaside
buffer or resolved for I/O use, the buffered virtual
address and address being resolved are compared. If
the segment identifier and page identifier portion of the
addresses compare, the buffered virtual address is
converted to a real address and loaded into the address
compare facility. Conversely, when the Invalidate
Primary Directory Entry instruction (or Examine Primary
Directory Entry instruction, under certain conditions) is
executed, a test is made to determine if the page being
invalidated in the primary directory contains the address
in the address compare facility; if it does, address
compare mode remains set and the buffered virtual
address is retained but the address compare facility is
purged.

Next Command

SACM RACM
Current Mode Operation Operation

Reset Set Reset AC mode
programmed
AC mode

Set, from program Cancel old, set Reset AC mode
new

Set, from console Not set Not reset
condition code condition code

Programming Notes:
1. The processor has an address compare facility which

is capable of handling a single AC (address compare)
at a time. This facility is used by both the
programmed and console-set address compare
features and when contention occurs, the console-set
mode receives priority, as shown in the following
table. The instruction length value stored in the CRE
(call/return element) when an address compare
exception occurs is zero.

2. The processor and I/O address compare exceptions
are recognized whenever the fullword containing the
designated byte is accessed.

3. The character compare operation which occurs as the
result of the store with compare option of the Set
Address Compare Mode instruction is performed at
the end of the unit of operation during which the
storage access was detected. This means that if
more than one store to the designated address
occurs within a single unit of operation, the compare
is made using the last character stored·. Also, since
the processor detects only fullword accesses, it is
possible that the compare may occur when in fact
only bytes adjacent to the tested character were
modified.

Set Command Reset Command from
from Console Console

Set console AC Reset AC mode
mode

Cancel old, set Reset AC mode
new

Cancel old, set Reset AC mode
new

4. Normally, the I/O device which causes an address
compare match continues to transfer data. However,
there is a System/38 control facility available to the
customer engineer which, when set, causes the
device to halt its data transfer after the match occurs.
Hence, completion of the data transfer cannot be
guaranteed under all conditions.

5. If an address compare match is detected when the
task dispatcher is blocked, the exception is not
recognized, the match is reset (bit 9 of the TDE [task
dispatching element] exception mask is set), and
processing continues; the match is ignored.

6. Performance is reduced when an address compare
mode is set and the address compare facility is
loaded.

7. For all programmable address compare exceptions,
the instruction length is set to zero in the CRE (call
return element).

Machine Support Functions 9-43

FUNCTION CALL LINKAGE

Function call support is provided to enable the direct
calling of one VMC function by another, and to provide
status retention of the calling function without the use
of the SVL (supervisor linkage) facility. The function call

support provides a means for indexing into a FRAT
(function routine address table) to obtain routing
information for the called function. It also provides a
mechanism by which the status of the calling function
can be saved, through the use of the IMP stack support.

The FNC2 (Function Call Double) instruction assumes
that base register 3 points to the next available stack
entry. Figure 9-4 represents an overview of the function

call flow.

Function Routine Address Table

The FRAT consists of 256 10-byte entries, a nd is
located in virtual storage. The 6- byte address of the
FRAT is maintained in the control address table entry
which starts at byte AO. The format of each entry is as
follows:

o

Entry
Address

2

B (0)

Bytes

Bytes 0-1 Entry address of the first instruction to be
executed in the function

Bytes 2- 7 Instruction base register value for the
function being called

Bytes 8-9 Not used

Note: If the function routine address table is not

halfword aligned when accessed by the processor, a
specification exception is recognized and the operation
is suppressed.

9-44

Not Used

8 A

Function Call Stack Usage

The function call facility uses a stack entry to save the
status of the calling function as follows:

Stack Entry
(Hex Byte)

0-1
2-17

18-23
24-77
78-79

7A-7F

Entry
Address

I

Usage

Forward stack pointer

Not used
Base registers 1-2 save area

Not used
Instruction address register

Base register 0 save area

Function Routine Address Table (FRAT)

B (f'l)

I

Not Used

I
L ____________

I
I

I

B (3)---I~

Stack

Save

Area

Figure 9-4. Function Call Flow

VMC FUllction

Called Entry Point

Machine Support Functions 9-45

Space Pointer Support

A space pointer is a System/38 object which provides
addressability to a specific byte in the data area
associated with that object. The following instructions
assist the VMC in the processing and validation of

space pointers:

• Add Fullword Space Pointer Offset

• Add Halfword Space Pointer Offset

• Add Halfword Space Pointer Offset Immediate

• Compute Address Long

• Compute Address Long Halfword

• Compare Logical Address Register

• Load Space Offset Pointer

• Store Space Offset Pointer

The following discussion defines the space pointer and
segment group header fields referenced or manipulated

by the above listed instructions.

Space Pointer Fields

The format of a space pointer is as follows:

Unused

o Bytes

SID Segment Group Segment Group
Extender Identifier Offset

8 A D

9-46

10

Byte

o

1-7

8-9

A-C

D-F

Bits Description

Type.

0-1 00 System pointer.

01 Instruction pointer.

10 Space pointer.

11 Data pointer.

2 0 The pointer is resolved (contains a

3-7

valid address).

The pointer is not resolved.

Reserved: Must be zeros.

Not used.

SID Extender: These bytes are
specified as a 2-byte logical extension
to the segment group identifier and are
used and assigned by VMC storage
management.

Segment Group Identifier: Used to
identify a16 megabyte address space.
The 3-byte segment group identifier is
the high-order 3 bytes of an IMP
6-byte virtual address.

Segment Group Offset: Used to
address a byte within a 16-megabyte
segment group. The 3-byte segment
group offset is the low-order 3 bytes
of a 6-byte virtual address. The
segment group offset is always greater
than or equal to the space locator
offset found in the segment group
header identified by the segment group
identifier field.

Machine Support Functions 9-47

Segment Group Header

The first 32 bytes of the 16- megabyte segment group

allocated by VMC form the segment group header. The

segment group header fields that can be referenced

implicitly via the IMP instruction set are formatted as

follows:

Unused

o Bytes

Byte Description

0-3 Not used.

4

SID
Extender

6

4-5 SID Extender: Used as a 2-byte logical

extension of the segment group identifier

(bytes A-C of the space pointer), used and

assigned by VMC storage management.

6-1C Not used.

1 D-1 F Space Locator Offset: These bytes specify

a 3-byte offset into the segment group and

identify the lowest available byte in the

segment group.

Note: The segment group offset is greater than or

equal to the space locator offset found in the segment

group header identified by the segment group identifier
field.

9-48

Unused ~(~--J _ _ Space Locator Offset

1D 20

The instructions are described in alphabetical order (by
instruction name) with an example adjacent to each
instruction. Appendix C is an alphabetical list of the
instructions by mnemonic; Appendix B is a chart of
operation code assignments showing the mnemonics
and operation codes.

Refer to Chapter 2 for more detailed information about
instruction formats and registers.

Some VMC instructions are treated as implicit SVLs
(supervisor linkage). (These instructions are identified in
Appendix B.) Whenever an attempt is made to execute
one of these instructions, the processor causes an
implicit SVL operation to be performed. The operation
code of the instruction is used as the index into the SVL
table. The SVL routine located through the SVL table
performs the instruction execution. For a detailed
description of the SVL operation, see Chapter 6.

Notes:
1. The result of an instruction is placed in the first

operand unless stated otherwise within the
description of the instruction.

2. The L, L" and L2 fields in the instructions specify a
value that is one less than the actual number of bytes
for each operand.

Chapter 10. I nstruction Descriptions

Data not critical to the execution of an instruction is
indicated in the instruction format diagram as a blank
field; the same field is represented in the example
format diagram with a placeholder value of O.
Nonessential data is indicated in the storage. example
with one lower case x per half-byte. Other data used in
the examples is assumed for the purpose of explanation.

The examples will be better understood by looking at
them while reading the instruction description and
operation. Sequence numbers (for example, II) have
been used in some of the more complicated instructions.

I nstruction Descriptions 10-1

ADD CHARACTERS lAC)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The addition is performed with both
operands treated as signed binary quantities. If the
operands are unequal in length, the shorter operand is
considered to be extended to the left with bits equal to
the sign bit.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs. If
the first operand is too short to contain all significant
bits of the result, an overflow occurs and significant bits
are lost.

Sign Code: The sign bit of the sum is not changed after
the overflow. The sign of the sum is unpredictable
when significant bits are lost.

Condition Code: If significant bits are lost the condition
code indicates the sign the sum would have if an
overflow had not occurred.

o
1
2
3

Sum
Sum
Sum

<
>

o
o
o

Boundary Requirements: The operands can overlap in
storage if the rightmost byte of the first operand is
coincident with or to the right of the rightmost byte of
the second operand; otherwise the overlap is destructive
and the results are unpredictable.

Program Exceptions:

- Address translation
- Addressing

Binary overflow
- Effective address overflow

AC Example

OBits 8 12 16 20

D,
040

Machine: C054 3040 3152

32 36

Bd3)and B2 (3): 000141200000

Storage - Before

47

0/8 2/ A 4/C 6/E

0001 4120 0040

0001 4120 0152

0001 4120 0040

0001 4120 0152

0000 A542 BC24

2901 1132 A6

Storage - After

0/8 2/A 4/C 6/E

0029 A653 EECA

2901 1132 A6

Carry: See Overflow. Before After

Condition Code: x 2

10-2

This page is intentionally left blank.

Instruction Descriptions '10-3

ADD FUllWORD SPACE POINTER OFFSET
(AFSPO)

Instruction Description

The space pointer specified by the second operand is
verified as a tagged pointer; the third operand is used
as a signed displacement which is added to the 3-byte
offset portion of the second-operand space pointer.
The 6-byte address that results is loaded onto the
first-operand register and the second operand space
pointer, leaving the pointer tagged.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The following validity checks are performed
on the second operand:

• The second operand must be tagged.

• Bits 0-2 must be binary 100 (a space pointer).

• Bytes 8 and 9 of the second operand must matchihe
halfword in storage (segment group header SID
extender field) located at the address determined by
concatenating hex 00 0004 to the right of bytes 10,
11, and 12 of the second operand.

If any of these validity checks fails, a verify exception is
recognized, and the operation is suppressed.

10-4

The address computation is carried out as follows: the
segment group offset portion of the space pointer (bytes
13, 14, and 15) is logically padded on the left with a
byte of zeros, creating a positive 4-byte signed binary
integer. This value is then added to the displacement
identified by the third operand (a 32-bit signed integer).
The result of this calculation must satisfy the following
validity checks:

• It must be a positive result.

• It must not be less than the value of the space
locator offset. The space locator offset is a 3-byte
logical binary field in storage located at the address
determined by concatenating a hex 00 001 D to the
right of the 3-byte segment group identifier specified
in bytes 10, 11, and 12 of the second operand.

The 4-byte sum must be less than hex OOFF FFFF.

If any of these validity checks fails, an invalid segment
group address exception is recognized, and the
operation is suppressed. Otherwise, the rightmost 3
bytes of the calculated result are concatenated to the
right of bytes 10, 11, and 12 of the second operand to
form the resultant 6-byte address. This resultant
address is placed into the first operand and into the
address field of the space pointer (bytes 10-15 of the
second operand). No storage reference is made to
check for addressing exceptions, using the resultant
address. The space pointer remains tagged.

Overflow: See Operation.

Sign Code: See Operation.

Condition Code: Not changed.

Boundary Requirements: The second operand is a
quadword and must begin on a quadword boundary;
otherwise, a specification is recognized and the
operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification
- Invalid segment group address
- Verify

AFSPO Example

OBits 8 12 16 20 32 36 47

Assembler: AFSPO Bl,D2(B2),D3(B3)

Machine: BE82 2020 4104

Before After

Bl (8): xxxx xxxx xxxx 00A52000 1320

B2 (2): 00C1 BOOO 4BCO 00C1 BOOO 4BCO

B3(4): 00C1 BOOO 8C24 00C1 8000 BC24

Storage - Before

0/8 6/E

00C1 BOOO 4BEO 8000 0000 0000 0000
0005 00A5 2000 OB20

00C1 8000 BD28 0000 0800

Storage - After

0/8 6/E

00C1 BOOO 4BEO 8000 0000 0000 0000
0005 00A5 2000 1320

00C1 BOOO BD28 0000 0800

Instruction Descriptions 10-5

ADD HALFWORD (AH)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after the overflow.

Condition Code: If significant bits are lost, the condition
code indicates the sign the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

o

2
3

Sum
Sum
Sum

<

>

Carry: See Overflow.

10-6

o
o
o

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs, and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Binary overflow
- Effective address overflow

Specification

AH Example

OBits 8 12 16 20 31

Machine: 8000 2120

B2 (2): 0023 5430 0000

Storage - Before and After

0023 5430 0120

RJ (0):

0/8

FFFE

2/A

Before After

0019 0017

Condition Code: x 2

4/C 6/E

ADD HALFWORD IMMEDIATE (AHII

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SI

AO 1 10 1 Bll Dl

OBits 8 12 16 20 32 47

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after an overflow.

Condition Code: If an overflow occurs, the condition
code indicates the sign that the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

o
1
2
3

Sum
Sum
Sum

<

>

Carry: See Overflow.

o
o
o

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

- Address translation
Addressing

- Binary overflow
Effective address overflow
Specification

AHI Example

Op

I I ~ I ~11 Dl
AO 130

0 Bits 8 12 16 20

Assembler: AHI DI (8 1),1 2

Machine: AOOO 3130 0234

8 1 (3): 0001 0036 0000

32

Storage - Before

0001 0036 0130

0001 0036 0130

0/8 2/A

0123

Storage - After

0/8

0357

Before After

2/A

Condition Code: x 2

12
0234

47

4/C G/E

4/C G/E

Instruction Descriptions 10-7

ADD HALFWORD REGISTER (AHR)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RR

20 I R, I R21
OBits 8 12 15

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after an overflow.

Condition Code: If an overflow occurs, the condition
code indicates the sign that the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

o
1
2
3

10-8

Sum
Sum
Sum

<

>

o
o
o

Carry: See Overflow.

Boundary Requirements: None.

Program Exception: Binary overflow.

AHR Example

0 Bits 8 12 15

Assembler: AHR RJ, R2

Machine: 2056

Before After

RJ (5): 0021 001E

R2 (6): FFFD FFFD

Condition Code: x 2

ADD HALFWORD REGISTER IMMEDIATE (AHRI)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RI

OBits 8 12 16 31

Operation: Both operands are treated as signed binary
quantities.

Overflow: If the carry from the sign-bit position and the
carry from the leftmost bit position agree, no overflow
occurs; if they disagree, an overflow occurs.

Sign Code: Not changed after an overflow.

Condition Code: If an overflow occurs, the condition
code indicates the sign the sum would have if an
overflow had not occurred. A sum and a negative result
that overflows yields a positive sign.

o
1
2
3

Sum
Sum
Sum

<

>

o
o
o

Carry: See Overflow.

Boundary Requirements: None.

Program Exception: Binary overflow.

AHRI Example

OBits 8 12 16 31

Assembler: AHRI R I , 12

Machine: 5040 0234

Before After

0012 0246

Condition Code: x 2

Instruction Descriptions 10-9

ADD HAlFWORD SPACE POINTER OFFSET
(AHSPO)

Instruction Description

The space pointer specified by the second operand is
verified as a tagged pointer; the third operand is used
as a signed displacement which is added to the 3-byte
offset portion of the second-operand space pointer.
The 6-byte address that results is loaded into the
first-operand register and the second-operand space
pointer, leaving the pointer tagged.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The following validity checks are performed
on the second operand:

• The second operand must be tagged.

• Bits 0-2 must be binary 100 (a space pointer).

• Bytes 8 and 9 of the second operand must match the
halfword in storage (segment group header SID
extender field) located at the address determined by
concatenating hex 00 0004 to the right of bytes 10,
11, and 12 of the second operand.

If any of these validity checks fails, a verify exception is
recognized, and the operation is suppressed.

10-10

The address computation is carried out as follows: the
segment group offset portion of the space pointer (bytes
13, 14, and 15) is logically padded on the left with a
byte of zeros, creating a positive 4-byte signed binary
integer. This value is then added to the displacement
identified by the third operand (a 16-bit signed integer).
The address arithmetic is performed by propagating the
sign bit through the third and fourth (left) offset bytes
and performing the 4-byte signed binary addition. The
result of this calculation must satisfy the following
validity checks:

• It must be a positive result.

• It must not be less than the value of the space
locator offset. The space locator offset is a 3-byte
logical binary field in storage located at the address
determined by concatenating a hex 00 001 D to the
right of the 3-byte segment group identifier specified
in bytes 10, 11, and 12 of the second operand.

• The 4-byte sum must be less than hex OOFF FFFF.

If any of these validity checks fails, an invalid segment
group address exception is recognized, and the
operation is suppressed. Otherwise, the rightmost 3
bytes of the calculated result are concatenated to the
right of bytes 10, 11, and 12 of the second operand to
form the resultant 6-byte address. This resultant
address is placed into the first operand and into the
address field of the space pointer (bytes 10-15 of the
second operand). No storage reference is made to
check for addressing exceptions, using the resulant
address. The space pointer remains tagged.

Overflow: See Operation.

Sign Code: See Operation.

Condition Code: Not changed.

Boundary Requirements: The second operand is a
quadword and must begin on a quadword boundary;
otherwise. a specification is recognized and the
operation is suppressed.

Program Exceptions;

- Address translation
- Addressing
- Effective address overflow
- Invalid segment group address
- Specification
- Verify

AHSPO Example

OBits 8 12 16 20 32 36 47

Machine: BE81 2020 4104

Before After

B1 (8): xxx x xxxx xxxx 00A52000 1320

B2 (2): OOCl BODO 48CO OOCl BODO 4BCO

B3 (4): OOCl BODO BC24 OOCl BODO BC24

Storage - Before

0/8 6/E

OOCl BODO 4BEO 8000 0000 0000 0000
0005 00A5 2000 OB20

OOCl BOOO BD28 0800

Storage - After

0/8 6/E

OOCl BOOO 4BEO 8000 0000 0000 0000
0005 00A5 2000 1320

OOCl BODO BD28 0800

Instruction Descriptions 10-11

ADD HAlFWORD SPACE POINTER OFFSET
IMMEDIATE (AHSPOI)

Instruction Description

The space pointer specified by the second operand is
verified as a tagged pointer; the third operand is used
as a signed displacement which is added to the 3-byte
offset portion of the second-operand space pointer.
The 6-byte address that results is loaded into the
first-operand register and the second-operand space
pointer, leaving the pointer tagged.

Format: SI

OBits 8 12 16 20 32 47

Operation: The following validity checks are performed
on the second operand:

• The second operand must be tagged.

• Bits 0-2 must be binary 100 (a space pointer).

• Bytes 8 and 9 of the second operand must match the
halfword in storage (segment group header SID
extender field) located at the address determined by
concatenating hex 00 0004 to the right of bytes 10,
11, and 12 of the second operand.

If any of these validity checks fails, a verify exception is
recognized and the operation is suppressed.

10-12

The address computation is carried out as follows: the
segment group offset portion of the space pointer (bytes
13, 14, and 15) is logically padded on the left with a
byte of zeros, creating a positive 4-byte signed binary
integer. This value is then added to the displacement
identified by the third operand (a 16-bit signed integer).
The address arithmetic is performed by propagating the
sign bit through the third and fourth (left) offset bytes
and performing the 4-byte signed binary addition. The
result of this calculation must satisfy the following
validity checks:

• It must be a positive result.

• It must not by less than the value of the space
locator offset. The space locator offset is a 3- byte
logical binary field in storage located at the address
determined by concatenating a hex 00 001 D to the
right of the 3-byte segment group identifier specified
in bytes 10, 11, and 12 of the second operand.

• The 4-byte sum must be less than hex OOFF FFFF.

If any of these validity checks fail, an invalid segment
group address exception is recognized, and the
operation is suppressed. Otherwise, the rightmost 3
bytes of the calculated result are concatenated to the
right of bytes 10, 12, and 12 of the second operand to
form the resultant 6-byte address. This resultant
address is placed into the first operand and into the
address field of the space pointer (bytes 10-15 of the
second operand). No storage reference is made to
check for addressing exceptions, using the resultant
address. The space pointer remains tagged.

Overflow: See Operation.

Sign Code: See Operation.

Condition Code: Not changed.

Boundary Requirements: The second operand is a
quadwoid and must begin on a quadword boundary;
otherwise, a specification is recognized and the
operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Invalid segment group address
- Specification
- Verify

AHSPOI Example

OBits 8 12 16 20 32 47

Assembler: AHSPOI B1 ,0 2 (B 2)':3

Machine: BE80 2020 0800

Before After

B 1 (8): xxxx xxxx xxxx 00A5 2000 1320

B2 (2): OOCl BOOO 4BCO OOCl BOOO 4BCO

Storage - Before

0/8 6/E

OOCl BOOO 4BEO 8000 0000 0000 0000
0005 00A5 2000 OB20

Storage - After

0/8 6/E

OOCl BOOO 4BEO 8000 0000 0000 0000
0005 00A5 2000 1320

Instruction Descriptions 10-13

ADD LOGICAL BYTE (ALB)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RS

71 I r, I
OBits 8 12 16 20 31

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

Sum 0, no carry
Sum

""
0, no carry

Sum 0, carry
Sum

""
0, carry

Carry: See Condition Code.

Boundary Requirements: None.

10-14

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

ALB Example

OBits 8 12 16 20 31

Machine: 7181 300A

82 (3): 0012 0001 1000

Storage - Before and After

0/8

0012 00011 OOA

Before After

24 89

Condition Code: x

2/A

95

4/C 6/E

ADD LOGICAL BYTE REGISTER (ALBR)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RR

10 I r, I r2

OBits 8 12 15

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

o
1
2
3

Sum =
Sum ""
Sum

Sum ""

0, no carry
0, no carry
0, carry
0, carry

Carry: See Condition Code.

Boundary Requirements and Program Exceptions: None.

ALBR Example

Op r, r2

10 2 3

OBits 8 12 15

Assembler: ALBR rl, r2

Machine: 1023

Before After

r1 (2): 2A C6

r2 (3): 9C 9C

Condition Code: x

Instruction Descriptions 10-15

ADD LOGICAL BYTE REGISTER IMMEDIATE
(ALBRO

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RI

43 I r, I 0 12
OBits 8 12 16 24 31

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

0 Sum 0, no carry
1 Sum ". 0, no carry
2 Sum = 0, carry
3 Sum ". 0, carry

10-16

Carry: See Condition Code.

Boundary Requirements and Program Exceptions: None.

ALBRI Example

Op I ~ I ~ I 12
43 12

0 Bits 8 12 16 24 31

Assembler: ALBRI rl, 12

Machine: 43AO 1200

Before After

CC DE

Condition Code: x

ADD LOGICAL CHARACTER (ALC)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SS

C3 L I B, I D,
OBits 8 16 20 32 36

Operation: The addition treats both operands as
unsigned binary quantities.

Overflow and Sign Code: Not applicable.

47

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

°
2
3

Sum
Sum
Sum
Sum

0, no carry
0, no carry
0, carry
0, carry

Carry: See Condition Code.

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is coincident with or
to the right of the rightmost byte of the second
operand; otherwise the overlap is destructive and the
results are unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

ALC Example

Op L I~"I D, I ~21 D2
C3 03 108 166

0 Bits 8 16 20 32 36 47

Assembler: ALC Dd L, Bd, D2 (B2)

Machine: C303 3108 3166

B1 (3): 0010 2250 5000

Storage - Before

0/8 2/A 4/C 6/E

0010 2250 5108 7683 A591
0010 2250 5166 3729

5895

Storage - After

0/8 2/A 4/C 6/E

0010 2250 5108 ADAC FE26
0010 2250 5166 3729

5895

Before After

Condition Code: x

Instruction Descriptions 10-17

ADD LOGICAL HALFWORD (ALH)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: The addition treats both operands as
unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

°
2
3

Sum
Sum
Sum
Sum

0, no carry
0, no carry
0, carry
0, carry

Carry: See Condition Code.

Boundary Requirements: The storage operand must start
on & halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-18

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

ALH Example

OBits 8 12 16 20 31

Machine: 9040 6160

B2 (6): 0101 1130 2000

Storage - Before and After

0/8 2/A 4/C G/E

0101 1130 2160 1850

Before After

1150 29AO

Condition Code: x

This page is intentionally left blank.

Instruction Descriptions 10-19

ADD LOGICAL HALFWORD AND BRANCH ON
LIMIT (ALHBL)

Instruction Description

The increment of the second operand is added to the
halfword register specified by the first operand and the
result is stored in the halfword register specified by the
first operand. The sum is then compared to the
comparand of the second operand. If the mask
specified by the third operand has a corresponding mask
bit of 1, the IAR (instruction address register) is replaced
by the sum of the branch displacement of the second
operand and the offset of the instruction stream base
address contained in base register 0; otherwise,
instruction sequencing proceeds with the updated IAR.

Format: RS

OBits 8 12 16 20 31

Operation: The second operand occupies 6 bytes of
storage.

Bytes

1 and 2
3 and 4
5 and 6

Contain

Increment value
Comparand
Branch displacement

The increment is added to the first operand and the sum
is compared logically with the comparand.
Subsequently, the sum is placed in the first-operand
location, regardless of whether the branch is taken.

10-20

The mask field is used as a 4-bit mask generated by
the compare. The 4 bits of the mask correspond, left to
right. with the following comparison result:

Bit Result

o Sum = Comparand
1 Sum < Comparand
2 Sum> Comparand
3

Whenever the comparison result has a corresponding
mask bit of one, the updated instruction address is
replaced by the sum of the branch displacement and the
offset portion of the instruction stream base address
contained in base register O. If the comparison result
does not have a corresponding mask bit of one,
instruction sequencing proceeds with the updated
instruction address.

Logical addition is performed by adding all 16 bits of the
first operand and the increment.

The 16-bit comparison is also performed with the
quantities treated as unsigned binary values.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: If a carry from the high-order bit position occurs
during the addition, it is ignored and does not affect the
comparison.

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

- Address translation
Addressing
Effective address overflow
Specification

ALHBL Example

OBits 8 12 16 20 31

Machine: 9F44 3ABO

Before and After

B(O): 0250 AC2C 2EOO

B2 (3): OOE F 021 E 0000

Storage - Before and After

0/8 2/A 4/C 6/E

OOEF 021 E OABO OODA 002E D03C

Before Updated After

Rd4): 0022 002C

IAR: 3A50 3A54 2E3C

Instruction Descriptions 10-21

ADD LOGICAL HALFWORD IMMEDIATE (ALHI)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SI

BO I I a I B, I 0,

OBits 8 12 16 20 32

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

47

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

a

2
3

Sum
Sum
Sum
Sum

0, no carry
0, no carry
0, carry
0, carry

Carry: See Condition Code.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-22

Program Exceptions:

..J - Address translation
- Addressing
- Effective address overflow
- Specification

ALHI Example

Op I I ~ I~'I D, 12
BO 170 0005

0 Bits 8 12 16 20 32 47

Assembler: ALHI OdBd, 12

Machine: BOOO 3170 0005

B1 (3): 0150 1442 6000

Storage - Before

0/8 2/A 4/C G/E

0150 1442 6170 0136

~
Storage - After

0/8 2/A 4/C G/E

0150 1442 6170 0138

Before After

Condition Code: x

ADD LOGICAL HALFWORD REGISTER (ALHR)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand register.

Format: RR

30 I R, I R21
OBits 8 12 15

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

° Sum = 0, no carry
1 Sum :f: 0, no carry
2 Sum = 0, carry
3 Sum :f: 0, carry

Carry: See Condition Code.

Boundary Requirements and Program Exceptions: None.

ALHR Example

Op R1 R2
30 5 6

OBits 8 12 15

Assembler: ALHR Rt , R2

Machine: 3056

Before After

Rd5): ABCD EEEE

R2 (6): 4321 4321

Condition Code: x

Instruction Descriptions 10-23

ADD LOGICAL HALFWORD REGISTER IMMEDIATE
(ALHRI)

Instruction Description

The second operand is added- to the first operand and
the sum is placed in the first-operand register.

Format: RI

OBits 8 12 16 31

Operation: The addition is performed with both
operands treated as unsigned binary quantities.

Overflow and Sign Code: Not applicable.

Condition Code: A carry from the leftmost bit position is
recorded in the condition code.

o

2
3

10-24

Sum
Sum
Sum
Sum

O. no carry
:I:- O. no carry
= O. carry
:I:- O. carry

Carry: See Condition Code.

Boundary Requirements and Program Exceptions: None.

ALHRI Example

OBits 8 12 16 31

Assembler: ALHRI R1 • 12

Machine: 6020 2002

Before After

RI (2): B001 A003

Condition Code: x

ADD LONG FLOAT (ALF)

Instruction Description

The second operand is added to the first operand
(two-operand format) or the third operand is added to
the second operand (three-operand format), and the
sum is placed in the first operand location.
Interchanging of the two source operands in
floating-point addition does not affect the value of the
sum, but can affect which operand is overwritten.

Format: SS

18,1 D,
OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A two-operand format is used if base
register 0 is specified for the third operand. A
three-operand format is used if one of the base
registers hex 1 through hex F is specified for the third
operand.

The exponents of the two operands are compared. The
significand of the smaller exponent is shifted right as its
exponent is increased until the exponents are the same.
The significands are then added algebraically to form an
intermediate sum.

The significand of the intermediate sum is rounded, if
necessary, according to the rounding mode specified in
the task dispatching element.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
sum. The source operands are checked for this value in
order of their specification. If two masked
not-a-numbers are encountered, the masked
not-a-number with the larger fraction value is used as
the sum.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the sum is determined by the
rules of algebra. If the sum of two operands that have
opposite signs is exactly 0, the sign is made plus for all
rounding modes except round toward negative infinity,
where the sign is made minus.

Condition Code: The result is compared to O. Values of
o compare equal even if they differ in sign.
Not-a-number values and infinite values compare
unordered with everything else.

o Sum = 0
1 Sum < = 0
2 Sum> = 0
3 Sum is unordered

Carry: If a carry occurs, the sum is shifted right one
binary digit position with a high-order 1 bit inserted,
and the exponent is increased by 1.

Boundary Requirements: All operands mus\ be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Operands may overlap only if they are coincidental;
otherwise, the results are unpredictable.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point inexact result
Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

Instruction Descriptions 10-25

Programming Note: The following chart shows the
condition of the sum for various operands.

Sum First Source (Addend)

+0 +0

-0 -0

+0 -Real number"" 0

+0 +Real number"" 0

+Real number "" 0 +Real number"" 0

+Real number "" 0 +0 or -0

-Real number"" 0 - Real number "" 0

- Real number "" 0 +0 or -0

Masked not-a-number Masked not-a-number

Masked not-a-number Not not-a-number

Larger masked Masked not-a-number
not-a-number

Invalid operation Unmasked not-a-number

Invalid operation Any

+Infinity +Real number"" 0 or -real
number"" 0

+Infinity +Infinity

-Infinity +Real number"" 0 or -real
number"" 0

-Infinity -Infinity

Invalid operation +Infinity or -infinity

+0 +0

+0 -0

-0 +0

-0 -0

Notes:

1. Value is not rounded toward negative infinity.

2. Value is rounded toward negative infinity.

10-26

Second Source (Addend)

+0

-0

+Real number "" 0

-Real number"" 0

+0 or -0

+Real number "" 0

+0 or -0

-Real number"" 0

Not not-a-number

Masked not-a-number

Masked not-a-number

Any

Unmasked not-a-number

+Infinity

+Real number"" 0 or -real
number"" 0

-Infinity

+Real number"" 0 or -real
number"" 0

+Infinity or -infinity

-0 Note 1

+0 Note 1

-0 Note 2

+0 Note 2

ALF Example

Op I ~31 E I~' I D, I ~21 CE 050

0 Bits 8 12 16 20 32

Assembler: ALF D1 (B 1), D2 (B2), B3

Machine: CE31 4050 4060

B3 (3): 0010 0200 0070

Bd4) and B2 (4): 0010 0200 0000

0010 0200 0050

0010 0200 0060

0010 0200 0070

0010 0200 0050

0010 0200 0060

0010 0200 0070

Storage - Before

0/8

xxxx xxx x

4880 0010

4807 600A

Storage - After

0/8

4880

4880

4807

1761

0001

600A

Before After
Condition Code: x 2

D2
060

36

xxxx

3000

BCOO

3ABC

3000

BCOO

47

6/E

xxxx

2400

9BOO

6/E

249B

2400

9BOO

Instruction Descriptions 10-27

ADD PACKED (AP)

Instruction Description

The second operand is added to the first operand and
the sum is placed in the first-operand location.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: Addition is algebraic, taking into account the
signs and aU digits of both operands. AU digit codes are
checked for validity. Improper codes cause a data
exception to be recognized, and the operation is
terminated. If necessary, zeros are supplied for the
leftmost bytes of either operand.

Overflow: Two possible causes: The first is the loss of
a carry from the leftmost digit position of the result
field. The second is an oversized result, which occurs
when the first-operand field is too short to contain aU
significant digits of the sum, and significant result digits
are lost.

Sign Code: The sign of the sum is determined by the
rules of algebra. When the operation is completed
without an overflow, a zero sum has a positive sign, but
when significant result digits are lost because of an
overflow, a zero sum may be either positive or negative,
as determined by what the sign of the correct sum
would have been.

The processor uses the preferred signs for the sum as
follows: positive sign is encoded as 1111 (hex F); a
negative sign is encoded as 1101 (hex D). All sign
codes are checked for validity. Improper codes cause a
data exception and the operation is terminated.

Condition Code: If an overflow occurs, the condition
code indicates the sign the sum would have if an
overflow had not occurred.

o
1
2
3

10-28

Sum
Sum
Sum

<

>

o
o
o

Carry: See Overflow.

Boundary Requirements: None.

Program Exceptions:

- Address translation
Addressing

- Data
Decimal overflow

- Effective address overflow

AP Example

D,
210

OBits 8 12 16 20 32 36

Machine: F032 4210 4261

Bd4) and B2 (4):

2793 4766 2210

2793 4766 2261

2793 4766 2210

2793 4766 2261

Condition Code:

2793 4766 2000

Storage - Before

0/8 2/A 4/C

5718 9420

24 270F

Storage - After

0/8 2/A 4/C

5694 6720

24 210F

Before After

x

47

6/E

6/E

ADD SHORT FLOAT (ASF)

Instruction Description

The second operand is added to the first operand
(two-operand format) or the third operand is added to
the second operand (three-operand format), and the
sum is placed in the first operand location.
Interchanging of the two source operands in
floating-point addition does not affect the value of the
sum, but can affect which operand is overwritten.

Format: SS

I B,I D,
OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A two-operand format is used, if base
register 0 is specified for the third operand. A
three-operand format is used, if one of the base
registers hex 1 through hex F is specified for the third
operand.

The exponents of the two operands are compared. The
significand of the smaller exponent is shifted right as its
exponent is increased until the exponents are the same.
The significands are then added algebraically to form an
intermediate sum.

The significand of the intermediate sum is rounded, if
necessary, according to the rounding mode specified in
the task dispatching element.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
sum. The source operands are checked for this value in
order of their specification. The masked not-a-number
with the larger fraction value is used as the sum.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the sum is determined by the
rules of algebra. If the sum of two operands that have
opposite signs is 0, the sign is made plus for all
rounding modes except round toward negative· infinity,
where the sign is made minus.

Condition Code: The result is compared to O. Values of
o compare equal even if they differ in sign.
Not-a-number values and infinite values compare
unordered.

o Sum = 0
1 Sum < 0
2 Sum> 0
3 Sum is unordered

Carry: If a carry occurs, the sum is shifted right one
binary digit position with a high-order 1 bit inserted,
and the exponent increased by 1.

Boundary Requirements: All operands must be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Operands may overlap if they are coincidental;
otherwise, the results are unpredictable.

Program Exceptions:

Address translation
Addressing

- Effective address overflow
Floating-point inexact result
Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

Instruction Descriptions 10-29

Programming Note: The following chart shows the
condition of the sum for various operands.

Sum First Source (Addend)

+0 +0

-0 -0

+0 -Real number #:- 0

+0 +Real number #:- 0

+Real number #:- 0 +Real number #:- 0

+Real number #:- 0 +0 or -0

- Real number #:- 0 -Real number#:- 0

- Real number #:- 0 +0 or -0

Masked not-a-number Masked not-a-number

Masked not-a-number Not not-a-number

Larger masked Masked not-a-number
not-a-number

Invalid operation Unmasked not-a-number

Invalid operation Any

+Infinity +Real number #:- 0 or -real
number #:- 0

+Infinity +Infinity

-Infinity +Real number #:- 0 or -real
number #:- 0

-Infinity -Infinity

Invalid operation +Infinity or -infinity

+0 +0

+0 -0

-0 +0

-0 -0

Notes:

1. Value is not rounded toward negative infinity.

2. Value is rounded toward negative infinity.

10-30

Second Source (Addend)

+0

-0

+Real number #:- 0

-Real number #:- 0

+0 or -0

+Real number #:- 0

+0 or -0

- Real number #:- 0

Not not-a-number

Masked not-a-number

Masked not-a-number

Any

Unmasked not-a-number

+Infinity

+Real number #:- 0 or -real
number #:- 0

-Infinity

+Real number #:- 0 or -real
number #:- 0

+Infinity or -infinity

-0 Note 1

+0 Note 1

-0 Note 2

+0 Note 2

ASF Example

Op
131 ~31 ! 1

D2 I~'I D,
AE 050 060

0 Bits 8 12 16 20 32 36 47

Assembler: ASF DdBd, D2 (B2), B3

Machine: AE31 4050 4060

B3 (3): 0010 0200 0070

Bd4) and B2 (4): 0010 0200 0000

Storage - Before

0/8 6/E

0010 0200 0050 xxxx xxxx xxxx xxxx

0010 0200 0060 4E81 2345

0010 0200 0070 4E81 2345

Storage - After

0/8 6/E

0010 0200 0050 4F01 2345

0010 0200 0060 4E81 2345

0010 0200 0070 4E81 2345

Before After
Condition Code: x 2

Instruction Descriptions 10-31

AND BYTE (NB)

Instruction Description

The first and second operands are ANDed and the result
is placed in the first-operand register.

Format: RS

79 I r, I
OBits 8 12 16 20 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

Result
Result ",.

Carry: Not applicable.

o
o

Boundary Requirements: None.

10-32

Program Exceptions:

- Address Translation
- Addressing
- Effective Address Overflow

NB Example

OBits 8 12 16 20

Machine: 79C1 8542

Bl (8): 1224 1932 0000

0,
542

31

Storage - Before and After

0/8

1224 1932 0542

Before After

45 40

Condition Code: x

2/A

40

4/C 6/E

AND BYTE IMMEDIATE INB!)

Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand location.

Format: SI

98 D,
OBits 8 16 20 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result o
Result ¢ 0

2
3

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

NBI Example

Op 12 I~'I 0,
98 FF 118

0 Bits 8 16 20 31

Assembler: NBI DdBd, 12

Machine: 98FF 7118

Bd7): 1180 11403000

Storage - Before and After

1180 1140 3118

0/8

A1

Before After

Condition Code: x

2/A 4/C 6/E

Instruction Descriptions 10-33

AND BYTE REGISTER (NBR)

Instruction Description

The first and second operands are ANDed and the result
is placed in the first-operand register.

Format: RR

OBits 8 12 15

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

10-34

Result
Result t:

o
o

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

NBR Example

Op r, r2

18 5 6

OBits 8 12 15

Assembler: NBR rj, r2

Machine: 1856

Before After

rj(5): FF 21

21 21

Condition Code: x

AND BYTE REGISTER IMMEDIATE (NBRI)

Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RI

48 I r, I a 12
OBits 8 12 16 24 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

a
1
2
3

Result
Result #:

a
a

Carry: Not applicable.

Boundary Requirements and Program. Exceptions: None.

NBRI Example

Op Ijl ~ I 12
48 32

0 Bits 8 12 16 24 31

Assembler: NBRI rl, 12

Machine: 4830 3200

Before After

rl (3): 4C 00

Condition Code: x o

Instruction Descriptions 10-35

AND CHARACTERS (NC)

Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand location.

Format: SS

C8 L, I B,I D,
OBits 8 16 20 32 36 47

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands (operand fields are processed
left to right) contain a one; otherwise, the result bit is
set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result o
Result.,. 0

2
3

Carry: Not applicable.

Boundary Requirements: The operands can overlap if the
leftmost byte of the first operand is coincident with or
to the left of the leftmost byte of the second operand;
otherwise the overlap is destructive and the results are
unpredictable.

10-36

Program Exceptions:

..J - Address translation
- Addressing
- Effective address overflow

NC Example

Op Ll 1~11 Dl I ~21 D2
C8 03 540 240

0 Bits 8 16 20 32 36 47

Assembler: NC D 1 (L 1 , 8 1), D2 (82)

Machine: C803 6540 5240

8 1 (6): 501 0 6400 AOOO

82 (5): 5010 6400 8000

Storage - Before

0/8 2/A 4/C 6/E

5010 6400 A540 A1Al 8123

5010 6400 8240 A1Al 8111

..)
Storage - After

0/8 2/A 4/C 6/E

5010 6400 A540 A1Al 8101

5010 6400 8240 A1Al 8111

Before After

Condition Code: x

AND HALFWORD (NH)

Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

Result
Result ~

Carry: Not applicable.

o
o

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

NH Example

OBits 8 12 16 20 31

Machine: 8034 5160

B2 (5): 5718 9423 2000

Storage - Before and After

0/8 2/A 4/C 6/E

5718 9423 2160 0503

Before After

008A 0002

Condition Code: x

Instruction Descriptions 10-37

AND HALFWORD REGISTER (NHR)

Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RR

28 I R, I R21
OBits 8 12 15

Operation: Operands are treated as logical quantities and
the connective AN D is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

10-38

Result
Result #:

o
o

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

NHR Example

Op R, R2
28 3 5

OBits 8 12 15

Assembler: NHR R1 , R2

Machine: 2835

Before After

Rd3): 008A 0002

R2 (5): 0503 0503

Condition Code: x

AND HALFWORD REGISTER IMMEDIATE (NHRI)

Instruction Description

The first and second operand are ANDed and the result
is placed in the first-operand register.

Format: RI

OBits 8 12 16 31

Operation: Operands are treated as logical quantities and
the connective AND is applied bit by bit. A bit position
in the result is set to one if the corresponding bit
positions in both operands contain a one; otherwise, the
result bit is set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

Result =
Result -:F

o
o

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

NHRI Example

OBits 8 12 16 31

Assembler: NHR I R 1, 12

Machine: 5840 FFFF

Before After

Rd4): A1A2 A1A2

Condition Code: x

Instruction Descriptions 10-39

BRANCH AND LINK (BAL)

Instruction Description

The updated instruction address is loaded as link
information in the halfword register designated by R,.
Subsequently. the instruction address is replaced by the
branch address.

Format: RI

OBits 8 12 16 31

Operation: The branch address is computed before the
instruction address is loaded. The updated instruction
address is replaced by the sum of the 16-bit
displacement D2 from the instruction and the offset
portion of the instruction in base register O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-40

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

BAL Example

Op I~'I ~ I D2
4F 01C6

0 Bits 8 12 16 31

Assembler: BALRl.D2

Machine: 4F30 01C6

Before Updated After

B(O): 7314 2482 1130 7314 2482 1130

Rd3): xxxx 135A

IAR: 1356 135A 12F6

BRANCH AND LINK LONG (BALL)

Instruction Description

The updated instruction address is loaded as link
information in the halfword register designated by R1 ;

and the instruction stream base address, contained in
base register 0, is loaded in the base register designated
by B3• Subsequently, the instruction stream base
address and instruction address are replaced by the
second operand.

Format: RS

OBits 8 12 16 20 31

Operation: Bits 0-F of the second operand contain the
new instruction address; bits 16-3F contain the new
instruction stream base address that is loaded into base
register O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand occupies 8
bytes in storage and must start on a fullword boundary;
otherwise a specification exception occurs and the
operation is suppressed. Both the instruction stream
base address and the instruction address must start on
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

BALL Example

OBits 8 12 16 20 31

Machine: 8FEF 07DO

Before Updated

B2 (0): 0100 DOOC 0000

B3 (F): xxxx xxxx xxxx

Rl (E): xxx x

IAR: 3304 3308

After

81BC 4560 0000

0100 DOOC 0000

3308

4330

Storage - Before and After

0/8 2/A 4/C 6/E

0100 DOOC 07DO 4330 81BC 4560 0000

Instruction Descriptions 10-41

BRANCH INTERNAL (BI)

Instruction Description

A branch is taken to the address contained in the
first-operand register if that address is internal to the
current segment group.

Format: RR

1E I B, I 0

OBits 8 12 15

Operation: The left 3 bytes of the first operand are
compared with the left 3 bytes of B(O) (base register 0).
If the values are not equal. an invalid segment group
address exception occurs and the operation is
suppressed.

If no exception is signaled, then the following is done:

1. Bytes 0-3 (the left 4 bytes) of B(O) are set equal
to bytes 0-3 of the first operand.

2. Bytes 4-5 of B(O) are set equal to zero.

3. The IAR is set from bytes 4 and 5 of the first
operand.

4. Execution resumes at the new· B(O) and IAR
location.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-42

Boundary Requirements: The first operand must point to
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Invalid segment group address
- Specification

BI Example

Op I~'I ~ I 1E

0 Bits 8 12 15

Assembler: BI Bl

Machine: 1 E30

Before After

B(O): 1133 6422 0000 1133 6422 0000

Bl (3): 1133 6422 6420 1133 6422 6420

IAR: 0330 6420

BRANCH ON CONDITION (BC)

Instruction Description

The updated instruction address is replaced by the
branch address if the condition code is as specified by
M3; otherwise, normal instruction sequencing proceeds
with the updated instruction address.

Format: RI

OBits 8 12 16 31

Operation: M3 is used as a 4-bit mask. The 4 bits of
the mask correspond, left to right. with the four
condition codes (0, 1, 2, and 3). The branch is
successful when the condition code has a corresponding
mask bit of 1. A mask of all zeros results in normal
instruction sequencing.

The updated instruction address is replaced by the sum
of the 1S-bit displacement (02) and the offset portion of
the instruction stream base address contained in the
base register O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

Programming Note: The IMP Instruction Assembler uses
the following extended mnemonics:

Extended
Mnemonics Meaning

Standard
Mnemonic

BH Branch High Be

Be

Be

BL Branch Low

BE Branch Equal

BNH

BNL

BNE

BP

BM

BZ

BNP

BNM

BNZ

BO

BM

BZ

BNO

BC Example

Branch Not High Be

Branch Not Low Be

Branch Not Equal Be

Branch Positive Be

Branch Minus Be

Branch Zero Be

Branch Not Plus Be

Branch Not Minus Be

Branch Not Zero Be

Branch If Ones Be

Branch If Mixed Be

Branch If Zeros Be

Branch If Not Be
Ones

OBits 8 12 16 31

Assembler: BC M3 , D2

Machine: SE04 0430

Condition Code: 1

Before After

Mask

2
4

8

D

B

7
2

4

B
D

B

7

4

8
E

B(O): 5425 3111 5100 5425 31.11 5100

IAR: 5860 5530

I nstruction Descriptions 10-43

BRANCH ON CONDITION INDIRECT (BCN)

Instruction Description

The updated instruction address is replaced by the
branch address if the condition code is as specified by
M3 ; otherwise, normal instruction sequencing proceeds
with the updated instruction address.

Format: RS

9E

OBits 8 12 16 20 31

Operation: M3 is used as a 4-bit mask. The 4 bits of
the mask correspond, left to right. with the four
condition codes (0, 1, 2, and 3). The branch is
successful when the condition code has a corresponding
mask bit of 1. A mask of all zeros results in normal
instruction sequencing.

The halfword at the second-operand location contain~
the branch displacement. The branch address is formed
by adding the branch displacement to the offset portion
of the instruction stream base address contained in base
register O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-44

Boundary Requirements: The halfword storage operand
and the updated instruction address must each start on
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

BCN Example

Op

I I ~31 ~21 O2
9E 310

0 Bits 8 12 16 20 31

Assembler: BCN M3 , D2 (B 2)

Machine: 9E02 C310

Before Updated After

B(O): 0023 1430 5680 0023 1430 5680

B2 (C): 0114 1180 4000 0114 1180 4000

IAR: 6234 6238 6EDO

Condition Code: 2

Storage - Before and After

0/8 2/A 4/C 6/E

0114 1180 4310 1850

BRANCH ON CONDITION INDIRECT INDEXED
(BCNX)

Instruction Description

The updated instruction address is replaced by the
branch address if the condition code is as specified by
the mask; otherwise, normal instruction sequencing
proceeds with the updated IAR.

Format: RS

OBits 8 12 16 20 31

Operation: M3 is used as a 4-bit mask. The 4 bits of
the mask correspond, left to right, with the four
condition codes (0, 1, 2, and 3). The branch is
successful when the condition code has a corresponding
mask bit of 1. A mask of all zeros results in no branch.

The contents of the halfword register specified by R, is
added to the effective address of the second operand to
form the address of a halfword in storage that contains
the branch displacement. The branch address is formed
by adding the branch displacement to the offset portion
of the instruction stream base address contained in base
register O.

Overflow: An overflow is recognized as an effective
address overflow exception, and the operation is
suppressed.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The halfword storage operand
and the updated instruction address must each start on
a halfword boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address ov.erflow

- Specification

BCNX Example

OBits 8 12 16 20 31

Assembler: BCNX RI , M3 , D2 (B 2)

Machine: 7FB8 4630

Before Updated

B(O): 0023 1430 5680

B2 (4): 0375 2102 6000

RI (B): 4C20

IAR: 75CO 75C4

Condition Code: 0

0/8 2/A

0375 2102 B250 19EO

After

0023 1430 5680

0375 2102 6000

4C20

7060

4/C 6/E

Instruction Descriptions 10-45

BRANCH ON COUNT (BCT)

Instruction Description

The binary quantity contained in the halfword register
specified by R, is reduced by 1. When the result is
zero, normal instruction sequencing proceeds with the
updated instruction address. When the result is not
zero, the instruction address is replaced by the branch
address.

Format: RI

OBits 8 12 16 31

Operation: The updated instruction address is replaced
by the sum of the 16-bit displacement D2 from the
instruction and the offset portion of the instruction
stream base address contained in base register 0, if R,
does not equal zero.

The branch address is computed before the counting
operation. Counting does not change the condition
code. The subtraction proceeds as in binary arithmetic
and all 16 bits of the halfword register participate in the
operation.

Overflow: The overflow occurring on transition from
maximum positive number is ignored.

Sign Code: Not applicable.

10-46

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

BCT Example

OBits 8 12 16

Assembler: BCT R I, D2

Machine: 8ECO 02AO

31

Before Updated

RI (C): 0009

After

0008

IAR: IEFO 1EF4 12CO

B(O): OOOA 2130 1020 OOOA 2130 1020

BRANCH REGISTER (BRI

Instruction Description

The instruction address is replaced by the contents of
the halfword register designated by R,.

Format: RR

G IR,la
OBits 8 12 15

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
- Addressing

Specification

BR Example

~~ I~II ~ I
OBits 8 12 15

Assembler: B R R 1

Machine: 2ECO

Before After

R 1 (e): 5320 5320

IAR: 3252 5320

Instruction Descriptions 10-47

BRANCH REGISTER LONG (BRL)

Instruction Description

The instruction address is replaced by the contents of
the halfword register designated by R1 ; the instruction
stream base address, contained in base register 0, is
replaced by the contents of the base register designated
by B2•

Format: RR

2F I Rl I B21
OBits 8 12 15

Operation: See Instruction Description

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

10-48

Program Exceptions:

Address translation
- Addressing

Specification

BRL Example

Op Rl B2
2F 9 5

OBits 8 12 15

Assembler: BRL RI , B2

Machine: 2F95

Before

RI (9): 14EO

B2 (5): 32A3 57C9 0000

IAR: 2344

B(O): 21F2 334A 0000

After

14EO

32A3 57C9 0000

14EO

32A3 57C9 0000

BRANCH UNCONDITIONAL (BUI

Instruction Description

The updated instruction address is replaced by the
branch address.

Format: RI

6F I I 0
OBits 8 12 16 31

Operation: The branch address is the sum of the 16-bit
displacement D2 from the instruction and the offset
portion of the instruction stream base address contained
in base register O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Specification

Programming Note: The IMP instruction assembler uses
the extended mnemonic B meaning branch
unconditional.

BU Example

OBits 8 12 16 31

Assembler: BU D2

Machine: 6FOO 11 BO

Before After

B(O): 1 B30 2CCO 0100 1 B30 2CCO 01 00

IAR: OB20 12BO

Instruction Descriptions 10-49

CALL INTERNAL (CALLI)

Instruction Description

The second operand identifies a branch target. After
execution of this instruction the updated instruction
address is replaced by the sum of the second operand
and the offset portion of base register O.

Format: 51

OBits 8 12 16 20 32 47

Operation: The first operand points to a 16-byte area in
storage, where the instruction creates a tagged pointer
containing the return address by putting the leftmost
two bits of 13 into bits 0 and 1 of byte 0 of the tagged
pointer. The return address points to the next
instruction, which resides in the storage area
immediately following the CALLI instruction. After the
two bits from 13 are put into byte 0 of the tagged
pointer, the instruction zeros bits 2-7 of byte 0 of the
tagged pointer. Bytes 8 and 9 are fetched from the
storage location whose address is formed by
concatenating hex 00 0004 to the right of the leftmost 3
bytes of base register O. Pointer bytes 10-15 are loaded
with the return address formed from the 2-byte updated
IAR contents concatenated to the right of the leftmost 4
bytes of base register O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The tag pointer must be
quadword aligned; otherwise, a specification exception
occurs and the operation is suppressed.-

10-50

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

CALLI Example

OBits 8 12 16 20

D,
100

32

Assembler: CALLI D1 (B 1), D2 , 13

Machine: EF40 5100 11 BO

Before

8(0): 1 B30 2CCO 0000

B(5): 1A40 0000 0000

IAR: OB20

Address Before

1A40 0000 0100 xxxx xxxx

xxxx xxxx

xxxx xxxx

xxx x xxxx

1 B30 2CCO 0004 1234

D2
11 BO

47

After

1B30 2CCO 0000

1A40 0000 0000

11BO

After

4000 0000

0000 0000

1234 1B30

2CCO OB26

1234

..J

This page is intentionally left blank.

Instruction Descriptions 10-51

COMPARE AND SWAP HALFWORD (CSH)

Instruction Description

The first and second operands are compared. If they are
equal, the third operand is stored in the second-operand
location. If they are unequal, the second operand is
loaded into the first-operand location.

Format: RS

OBits 8 12 16 20 31

Operation: The first and third operands are 16 bits in
length, with each operand occupying a halfword register.
The second operand is a halfword in main storage.

The result of the 16-bit comparison, either equal or
unequal, is used to set the condition code. When the
result of the comparison is unequal, no attempt to store
occurs.

When an equal comparison occurs, no access by
another instruction is permitted at the second-operand
location between the moment that the second operand
is fetched for comparison and the moment that the third
operand is stored at the second-operation location.

10-52

Overflow and Sign Code: Not applicable.

Condition code:

o First
Operand
First
Operand

2
3

Second operand; second operand
replaced by third operand.

':# Second operand; first operand
replaced by second operand.

Carry: Not applicable.

Boundary Requirements: The second operand must be
on a halfword boundary; otherwise, a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
- Addressing

Effective address overflow
- Specification

Programming Note: The Compare and Swap Halfword
instruction does not interlock against storage accesses
by the channel. Therefore, the instruction should not be
used to update a halfword that is partly or entirely in an
I/O input area, since the input data may be lost.

CSH Example

OBits 8 12 16 20 31

Machine: 7056 3330

82 (3): 1072 9200 EOOO

RI (5): 58F3

Storage - Before

0/8 2/A 4/C 6/E

1072 9200 E330 58F3

Storage - After

0/8 2/A 4/C 6/E

1072 9200 E330 84F5

Before After

Condition Code: x 0

Instruction Descriptions 10-53

COMPARE BYTE IMMEDIATE AND BRANCH
EQUAL (CBIBE)

Instruction Description

The first operand is compared with the second operand.
If the operands are equal, the updated instruction
address is replaced by the branch address; otherwise,
normal instruction sequencing proceeds with the
updated instruction address.

Format: SI

OBits 8 16 20 32 47

Operation: The immediate operand, 112, is compared with
the byte in storage addressed by BI, D,. If equal, the
updated instruction address is replaced by the sum of
the 16-bit displacement (D 3) and the offset portion of
the instruction stream base address contained in base
register zero.

Overflow and Sign Codes: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise, a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

10-54

CBIBE Example

OBits 8 16 20

D,
009

Assembler: CBIBE DI (B I), 12 , D3

Machine: DOE8 3009 4928

B(O): 3978 21 F4 0100

B(3): 49E2 C301 0200

32

Storage - Before and After

49E2 C301 0209

Before After

IAR: 093C 4A28

0/8

23

2/A

E8

4/C

47

6/E

COMPARE BYTE IMMEDIATE AND BRANCH NOT
EQUAL (CBIBN)

Instruction Description

The first operand is compared with the second operand.
If the operands are equal. the updated instruction
address is replaced by the branch address; otherwise,
normal instruction sequencing proceeds with the
updated instruction address.

Format: SI

01 0,

OBits 8 16 20 32 47

Operation: The immediate operand, 12 , is compared with
the byte in storage addressed by B" 0,. If not equal,
the updated instruction address is replaced by the sum
of the 16-bit displacement (03) and the offset portion of
the instruction stream base address contained in base
register zero.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must start on a halfword boundary; otherwise, a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Specification

CBIBN Example

OBits 8 16 20

D,
005

Machine: 01 E8 4005 4E31

B(O): 56B3 4792 5AC4

B(4): 3590 0200 4EC8

32

Storage - Before and After

3590 0200 4ECO

Before After

IAR: 6F02 6F08

0/8 2/A 4/C

01

47

6/E

02

Instruction Descriptions 10-54.1

COMPARE CHARACTERS (CCI

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: Comparison is algebraic, treating both
operands in signed binary quantities. Operands in
registers or storage are not changed. If the operands
are unequal in length, the shorter operand is considered
to be extended to the left with bits equal to the sign bit.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand Second operand
1 First operand < Second operand
2 First operand > Second operand
3

Carry: Not applicable.

10-54.2

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

CC Example

OBits 8 12 16 20

0,
320

Machine: C233 4320 5130

B1 (4): 1ABC 2DEF 0000

B2 (5): 312B 45C6 0000

32 36

Storage - Before and After

1ABC 2DEF 0320

312B 45C6 0130

0/8 2/A 4/C

8125 B2CC

7ACO 465F

Before After

Condition Code: x

47

6/E

COMPARE HALFWORD (CH)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RS

OBits 8 12 16 20 31

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers or storage are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

CH Example

OBits 8 12 16 20 31

Machine: 8072 2BCO

B2 (2): OOAO 3120 0000

RJ (7): 1AF3

Storage - Before and After

00 AD 3120 OBCO

0/8

1AB2

2/A 4/C 6/E

Carry: Not applicable. Before After

Boundary Requirements: The storage operands must
start on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Condition Code: x 2

Instruction Descriptions 10-55

COMPARE HALFWORD IMMEDIATE (CHI)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: SI

A2 I I a I B,I D,
OBits 8 12 16 20 32 47

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers or storage are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

a First operand Second operand
1 First operand < Second operand
2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-56

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

CHI Example

OBits 8 1 2 1 6 20

0,
Ala

Assembler: CHI DI (BIL 12

Machine: A200 7Al0 B13C

BI (7): OOOA 2480 0000

32

Storage - Before and After

OOOA 24BO OA 10

0/8
B13C

2/A

Before After

Condition Code: x o

4/C

47

G/E

COMPARE HALFWORD REGISTER (CHR)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RR

22 I R, I R21
OBits 8 12 15

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand Second operand
First operand < Second operand

2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CHR Example

Op
22

OBits 8 12 15

Assembler: CHR RI , R2

Machine: 2234

RI (3): 5590

Before After

Condition Code: x 2

Instruction Descriptions 10-57

COMPARE HALFWORD REGISTER IMMEDIATE
(CHRII

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RI

OBits 8 12 16 31

Operation: Comparison is algebraic, treating both
operands as signed binary quantities. Operands in
registers are not changed.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand
First operand < Second operand

2 First operand > Second operand
3

10-58

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CHRI Example

OBits 8 12 16 31

Assembler: CHRI RJ , 12

Machine: 5290 2243

RJ (9): 2233

Before After

Condition Code: x

COMPARE LOGICAL ADDRESS REGISTER (CLAR)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RR

23 I B, I B21
OBits 8 12 15

Operation: The two 6-byte operands are treated as
unsigned binary integers and are compared, setting the
condition code in the following manner.

First, the high-order 3 bytes (segment group) of the two
operands are compared; if they are not equal, the
condition code is set to 3 and the instruction is
complete. If the operands are equal, the low-order 3
bytes (segment group offset) of the operands are
compared as unsigned binary integers.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand.

High-order 3 bytes of the operands are equal;
low-order 3 bytes of the first operand are low.

2 High-order 3 bytes of the operands are equal;
low-order 3 bytes of the first operand are high.

3 High-order 3 bytes of the operands are not
equal.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLAR Example

Op B, B2
23 8 6

OBits 8 12 15

Assembler: CLAR B1 ,B 2

Mach i ne: 2386

B 1 (8): 00C1 BODO 4BEO

B2 (6): 00C1 BODO 4BDO

Before After

Condition Code: x 2

Instruction Descriptions 10-59

COMPARE lOGICAL BYTE (ClB)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RS

OBits 8 12 16 20 31

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand Second operand
First operand < Second operand

2 First operand > Second operand
3

Carry: Not applicable.

10-60

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

ClB Example

OBits 8 12 16 20 31

Assembler: CL8 r 1, D2 (8 2)

Machine: 7182 6120

82 (6): 4022 4045 0000

rd8): 27

Storage - Before and After

4022 4045 0120

0/8

27

2/A

Before After

Condition Code: x 0

4/C 6/E

COMPARE LOGICAL BYTE IMMEDIATE (CLBI)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
codes.

Format: SI

9C 1 B,I 0,
OBits 8 16 20 31

Operation: The comparison is performed with the
operands as unsigned binary quantities. Operands in
registers or storage are not changed by the operation.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 --

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing

Effective address overflow

CLBI Example

Op 12
9C 03

OBits 8 16 20

0,
032

Assembler: CLBI 0 1 (B 1), 12

Machine: 9C03 4032

8 1 (4): 4128 7147 0000

31

Storage - Before and After

0/8

4128 71A7 0032

Before After

Condition Code: x 2

2/A

32

4/C 6/E

I nstruction Descriptions 10-61

COMPARE LOGICAL BYTE REGISTER (CLBR)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RR

12 I r, I r2

a Bits 8 12 15

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers are not changed by the operation.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLBR Example

Op r, r2

12 3 4

a Bits 8 12 15

Assembler: CLBR r1, r2

Machine: 1234

rd3): 42

Overflow and Sign Code: Not applicable. Before After

Condition Code:

a First operand Second operand
1 First operand < Second operand
2 First operand > Second operand
3

10-62

Condition Code: x 0

COMPARE LOGICAL BYTE REGISTER IMMEDIATE
(CLBRI)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RI

42 I r, I 0 12
OBits 8 12 16 24 31

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

o First ()perand Second operand
First operand < Second operand

2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLBRI Example

Op

I ~ I ~ I 12
42 FF

0 Bits 8 12 16 24 31

Assembler: CLBRI rl, 12

Machine: 4250 FFOO

rl (5): F4

Before After

Condition Code: x

Instruction Descriptions 10-63

COMPARE LOGICAL CHARACTERS (CLC)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: SS

C5 L, I B,I 0,
OBits 8 16 20 32 36 47

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

The operation proceeds left to right and ends as soon
as an inequality is found or an end of the field is
reached.

Overflow and Sign Code: Not applicable.

Condition Code:

a First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3

Boundary Requirements: The first and second operands
can overlap in storage. If either operand crosses a
segment boundary, an effective address overflow
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing

- Effective address overflow

CLC Example

Op
C5

OBits 8

L,
00

16 20

0,
001

Machine: C500 2001 7000

Bd2): 4417 8418 0000

B2 (7): 4417 5232 0000

32 36

Storage - Before and After

4417 5232 0000

4417 8418 0001

0/8

18

41

2/A 4/C

47

6/E

Carry: Not applicable. Before After

Condition Code: x 2

10-64

COMPARE LOGICAL CHARACTER REGISTER
(CLCR)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code. The length is variable and is found as the
contents of the third operand byte register.

Format; 55

a Bits 8 12 16 20 32 36 47

Operation; The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

The operation proceeds left to right and ends as soon
as an inequality is found or an end of the field is
reached.

Overflow and Sign Code; Not applicable.

Condition Code;

o First operand Second operand
1 First operand < Second operand
2 First operand > Second operand
3

Carry; Not applicable.

Boundary Requirements; The first and second operands
can overlap in storage. If either operand crosses a
segment boundary, an effective address overflow
exception occurs and the operation is suppressed.

Program Exceptions;

- Address translation
- Addressing
- Effective address overflow

CLCR Example

a Bits 8 12 16 20

0 1

001

Machine: E950 2001 7000

B1 (2): 4417 8418 0000

B2 (7j: 4417 5232 0000

32 36

Storage - Before and After

4417 5232 0000

4417 8418 0001

0/8

18

41

Before After

Condition Code:. x 2

2/A 4/C

47

6/E

Instruction Descriptions 10-65

COMPARE LOGICAL CHARACTERS LONG (CLCL)

Instruction Description

The first operand is compared with the second operand
and the result is indicated in the condition code.

Format: SS

I EA I 13 I B, I D,
OBits 8 16 20 32 36 47

Operation: The shorter operand is considered extended
to the right with the padding character contained in the
13 'Field of the instruction.

The leftmost bytes of the first and second operands as
well as the lengths are located indirectly through
addresses contained in storage. These addresses are
a-byte fields. Bytes 0-1 of these a-byte fields specify
1 less than the number of bytes in the operand location;
bytes 2-7 contain the address of the leftmost byte of
the operand.

Length
Operand Address (0

SID Offset \

o Bytes 2 7

The comparison is performed with the operands treated
as unsigned binary quantities. The operation proceeds
left to right and ends as soon as an inequality is
detected or the end of the longest operand is reached.
If the operands are not of the same length, the shorter
operand is assumed to be extended to the right with the
padding character.

10-66

If the a-byte field associated with either field contains
all zeros, the operand is assumed to be of zero length
and the padding character is used for the entire field. If
both a-byte fields contain all zeros, condition code 0 is
set.

The execution of the instruction is interruptible (the
operation can be suspended). When an interruption
occurs after a unit of operation other than the last one,
the IAR is not advanced to the next instruction address,
the length fields are decremented by the number of
bytes compared, and the address fields are incremented
by the same number, so that the instruction, when
reexecuted, resumes at the point of interruption. If the
operation is interrupted after the shorter operand has
been exhausted, the length and address fields for that
operand are all zeros.

If the operation ends because of a mismatch, the length
and address fields at completion identify the byte of
mismatch. The length counts are decremented by the
number of bytes that matched, and the address fields
are incremented by the same amount. If the mismatch
occurred with the padding character, the length and
address fields of the shorter operand contain all zeros.
If the two operands including the padding character are
equal, then the length and address fields for both
operands contain all zeros.

Overflow and Sign Code: Not applicable.

Condition Code: The condition code is not set by this
instruction until it has completed. Therefore, if the
instruction was interrupted, no mismatch has occurred
up to this point.

o First operand = Second operand, or both
fields are of zero length

1 First operand < Second operand
2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements: The leftmost byte of each
operand address identifies an 8-byte field in storage
that must begin on a word boundary and must not cross
a page boundary; otherwise a specification exception
occurs and the operation is suppressed. The operand
fields can overlap in storage but neither may cross a
segment boundary; otherwise an effective address
overflow exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

CLCL Example

Op 13 1~11 Dl I ~21 D2
EA FF 000 7BO

0 Bits 8 16 20 32 36 47

Assembler: CLCL DdBd. D2(B2).1 3

Machine: EAFF 4000 47BO

B1 (4) and B2 (4): 6250 2938 0000

Storage - Before

0/8 2/A 4/C 6/E

6250 2938 0000 0003 6250 2AOO 0000

6250 2938 07BO 0007 6250 2BOO 0000

Storage - After

0/8 2/A 4/C 6/E

6250 2938 0000

6250 2938 07BO

0000 0000 0000 0000

6250 2AOO 0000

6250 2BOO 0000

0003 6250 2BOO 0004

Storage - Before and After

0/8 2/A 4/C 6/E

1234 5678

1234 5678 9ABC DEFO

Before After

Condition Code: x 2

Instruction Descriptions 10-67

COMPARE LOGICAL HALFWORD (CLH)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: RS

OBits 8 12 16 20 31

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand
First operand < Second operand

2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-68

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

CLH Example

OBits 8 12 16 20 31

Machine: 9230 4280

B2 (4): 9046 71A2 0000

Rl (3): 07DO

Storage - Before and After

9046 71 A2 0280

0/8

07DO

Before After

Condition Code: x 0

2/A 4/C 6/E

COMPARE LOGICAL HALFWORD IMMEDIATE
(CLHI)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: SI

B2 I I 0 I B,I D,
OBits 8 12 16 20 32 47

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

CLHI Example

OBits 8 12 16 20

0,
A90

Assembler: CLHI Dl (8 1), 12

Machine: B200 3A90 F1 F3

Bl (3): 9046 2140 AOOO

12
F1F3

32 47

Storage - Before and After

9046 2140 AA90

0/8

F1A3

2/A 4/C 6/E

Before After

Condition Code: x

Instruction Descriptions 10-69

COMPARE LOGICAL HALFWORD REGISTER (CLHR)

Instruction Description

The first operand is compared with the second operand.
and the result determines the setting of the condition
code.

Format: RR

32 I R, I R21
o Bits 8 12 15

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers are not changed by the operation.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3

10-70

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLHR Example

OBits 8 12 15

Assembler: CLHR R1 • R2

Machine: 3234

Rd3): 2C3E

Before After

Condition Code: x 0

COMPARE LOGICAL HALFWORD REGISTER
IMMEDIATE (CLHRI)

Instruction Description

The first operand is compared with the second operand.
and the result determines the setting of the condition
code.

Format: RI

OBits 8 12 16 31

Operation: The comparison is performed with the
operands treated as unsigned binary quantities.
Operands in registers or storage are not changed by the
operation.

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand Second operand
First operand < Second operand

2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

CLHRI Example

OBits 8 12 16 31

Assembler: CLHRI RI • 12

Machine: 6250 111 C

Rd5): 111F

Before After

Condition Code: x 2

I nstruction Descriptions 10-71

COMPARE lONG FLOAT (ClF)

Instruction Description

The first operand is compared with the second operand.
and the result determines the setting of the condition
code.

Format: SS

CE I I a 18, 1 D,
OBits 8 12 16 20 32 36 47

Operation: Comparison is algebraic. considering the sign.
the significand. and the exponent of each operand.
Neither operand is changed as a result of operation.
The comparison is made following the rules of
floating-point subtraction as follows. The subtrahend is
subtracted from the minuend; if the difference is O. they
compare equal. If the subtrahend is larger than the
minuend. then the first operand is low. If the
subtrahend is smaller than the minuend. then the first
operand is high.

Floating-point values of a compare equal with each
other even when they have different signs.
Floating-point values of infinity compare equal with each
other even when they have different signs. and a
floating-point value of infinity compares unordered with
any other floating point value. A not-a-number
floating-point value compares unordered with all other
values including another not-a-number value.

If a denormalized floating-point number is compared.
the comparison is made as if the denormalized number
had first been normalized.

10-72

Overflow and Sign Code: Not applicable.

Condition Code:

a First operand = Second operand
1 First operand < Second operand
2 First operand > Second operand
3 Operands are unordered

Carry: Not applicable.

Boundary Requirements: 80th operands must be
fullword aligned; otherwise. a specification exception
occurs. and the operation is suppressed.

Operands may overlap only if they are coincidental;
otherwise. the results are unpredictable.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point invalid operand
Specification

Programming Note: The following is a summary of the
results for various combinations of operands.

Second Source (Subtrahend)
finity

Comparison Result First Source (Minuend)

= +0 +0

= +0 -0

= -0 +0

= -0 -0

< -Real number"" 0 +Real number "" 0

> +Real number"" 0 - Real number "" 0

> +Real number"" 0 +0

> +Real number"" 0 -0

< +0 +Real number"" 0

< -0 +Real number"" 0

< -Real number"" 0 +0

< -Real number"" 0 -0

> +0 - Real number "" 0

> -0 - Real number "" 0

Unordered Masked not-a-number Any

Unordered Any Masked not-a-number

See note Unmasked not-a-number Any

See note Any Unmasked not-a-number

= +Infinity +Infinity

= +Infinity -Infinity

= -Infinity +Infinity

= -Infinity -Infinity

Unordered Not infinity +Infinity

Unordered Not infinity -Infinity

Unordered +Infinity Not infinity

Unordered -Infinity Not infinity

Legend:
Not Infinity = Anything but infinity or an unmasked not-a-number.
Any = Any floating-point field value.

Note: An unmasked not-a-number value results in a floating-point invalid operation
exception unless the exception is masked. An unmasked not-a-number value results in an
unordered comparison result if the floating-point invalid operation excpetion is masked.

Instruction Descriptions 10-73

eLF Example

Op I I ~ 1~11 D1 I~I D2
CE 050 060

OBits 8 12 16 20 32 36 47

Assembler: ClF Dd8d, D2 (82)

Machine: CEOO 4050 4060

8d4) and 82(4): 0010 0200 0000

Storage - Before

0/8 6/E

0010 0200 0050 4000 0000 0000 0000

0010 0200 0060 4000 0000 0000 0000

Storage - After

0/8 6/E

0010 0200 0050

0010 0200 0060

4000 0000 0000 0000

4000 0000 0000 0000

Before After
Condition Code: x 0

10-74

COMPARE PACKED (CP)

Instruction Description

The first operand is compared with the second operand
and the result is indicated in the condition code.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The comparison is algebraic including the
signs and all digits of both operands. All digit codes are
checked for validity. Invalid digit codes cause a data
exception and the operation is terminated. If the fields
are unequal in length. the shorter field is considered
extended to the left with zeros.

Overflow; Not applicable.

Sign Code: All sign codes are checked for validity. and
any valid plus or minus sign is considered equal to any
other plus or minus sign. respectively. Invalid sign codes
cause a data exception and the operation is terminated.

Condition Code:

o First operand Second operand
1 First operand < Second operand
2 First operand > Second operand
3

Carry: Not applicable.

Boundary Requirements: The first and second-operand
fields can overlap when their rightmost bytes coincide.
Because digit and sign codes are checked for validity.
improperly overlapping fields cause data exceptions. and
the operation is terminated.

Program Exceptions:

- Address translation
- Addressing

Data
- Effective address overflow

CP Example

OBits 8 12 16 20

0,
410

Machine: F243 3410 4570

Bl (3): 45C8 6928 5000

B2 (4): 45C8 6053 4000

32 36

Storage - Before and After

45C8 6053 4570

45C8 6928 5410

0/8

6121

7061

2/A

521F

4/C

2152 1 F

Before After

Condition Code: x 2

47

6/E

Instruction Descriptions 10-75

COMPARE SHORT FLOAT (CSF)

Instruction Description

The first operand is compared with the second operand,
and the result determines the setting of the condition
code.

Format: SS

AE o 1 Bll 0 1

OBits 8 12 16 20 32 36 47

Operation: Comparison is algebraic,. considering the sign,
the significand, and the exponent of each operand.
Neither operand is changed as a result of operation.
The comparison is made following the rules of
floating-point subtraction as follows. The subtrahend is
subtracted from the minuend; if the difference is 0, they
compare equal. If the subtrahend is larger than the
minuend, then the first operand is low. If the
subtrahend is smaller than the minuend, then the first
operand is high.

Floating-point values of 0 compare equal with each
other even when they have different signs.
Floating-point values of infinity compare equal with each
other even when they have different signs, and a
floating-point value. A not-a-number floating-point
value compares unordered with all other values including
another not-a-number.

If a denormalized floating-point number is compared,
the comparison is made as if the denormalized number
had first been normalized.

10-76

Overflow and Sign Code: Not applicable.

Condition Code:

o First operand = Second operand
First operand < Second operand

2 First operand> Second operand
3 Operands are unordered

Carry: Not applicable.

Boundary Requirements: Both operands must be
fullword aligned; otherwise, a specification exception
occurs, and the operation is suppressed. Operand may
overlap only if they are coincidental; otherwise, the
results are unpredictable.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point invalid operand
Specification

Programming Note: The following is a summary of the
results for various combinations of operands.

Comparison Result First Source (Minuend) Second Source (Subtrahend)

= +0 +0

= +0 -0

= -0 +0

= -0 -0

< -Real number #: 0 +Real number #: 0

> +Real number #: 0 -Real number #: 0

> +Real number #: 0 +0

> +Real number #: 0 -0

< +0 +Real number #: 0

< -0 +Real number #: 0

< -Real number #: 0 +0

< - Real number #: 0 -0

> +0 - Real number #: 0

> -0 -Real number #: 0

Unordered Masked not-a-number Any

Unordered Any Masked not-a-number

See note Unmasked not-a-number Any

See note Any Unmasked not-a-number

= +Infinity +Infinity

= +Infinity -Infinity

= -Infinity +Infinity

= -Infinity -Infinity

Unordered Not infinity +Infinity

Unordered Not infinity -Infinity

Unordered +Infinity Not infinity

Unordered -Infinity Not infinity

Legend:
Not Infinity = Anything but infinity or an unmasked not-a-number.
Any = Any floating-point field value.

Note: An unmasked not-a-number value results in a floating-point invalid operation
exception unless the exception is masked. An unmasked not-a-number value results in an
unordered comparison result if the floating-point invalid operation excpetion is masked.

Instruction Descriptions 10-77

CSF Example

0,
050

OBits 8 12 16 20 32 36

Assem bier: CSF D 1 (B 1 l, D2 (B2)

Machine: AEOO 4050 4060

Bd4) and B2 (4): 0010 0200 0000

0010 0200 0050

0010 0200 0060

0010 0200 0050

0010 0200 0060

Condition Code:

10-78

Storage - Before

0/8

4000 0000

COOO 0000

Storage - After

0/8

4000 0000

COOO 0000

Before After
x 2

47

G/E

G/E

J

This page is intentionally left blank.

I nstruction Descriptions 10-79

COMPUTE ADDRESS LONG (CAL)

Instruction Description

The value located in storage by the second-operand
address is used as a signed displacement to be added
to the address value in the base register identified by
the third operand; the resultant address is placed in the
base register identified by the first operand.

Format: RS

OBits 8 12 16 20 31

Operation: The displacement value is a 32-bit signed
integer, occupying 4 bytes of storage at the
second-operand location.

The address computation is performed as follows. The
rightmost 3 bytes of the address value" identified by
the third operand are logically padded on the left with 1
byte of zeros. The displacement identified by the
second operand II is then added to this value following
the rules of signed arithmetic. The result of this
calculation. must satisfy the following validity checks:

• Must not be greater than a value of 16 megabytes
less 1 (FF FFFF or decimal 16 777 215).

• Must be a positive result.

• Must not be less than the value of the 3-byte logical
binary field in storage located at the address.
determined by concatenating hex 00 001 D on the
right of the leftmost 3 bytes of the third-operand
address value.

10-SO

If any of the above checks fail, an invalid segment group
address exception occurs and the operation is
suppressed. Otherwise, the rightmost 3 bytes of the
calculated result are concatenated on the right with the
leftmost 3 bytes of the third-operand address value
forming the resultant address g. No storage reference
is made using the resultant address placed in the first
operand, so that the address is not inspected for
addressing exceptions.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a fullword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow

- Invalid segment group address
- Specification

CAL Example

OBits 8 1 2 16 20 31

Machine: 4C35 4100

Before After

Bl (3): xxxx xxxx xxxx

B2 (4): 0758 7lD2 0000 0758 7lD2 0000

B3 (5): 0450 63E4 0000 0450 63E4 0000
\

~
0013 0000

FFFF 0854J

II [00F7 0854J "'"

0/8

0450 6300 OOlD
0000

0758 7102 0100 0013

Instruction Descriptions 10-81

COMPUTE ADDRESS LONG HALFWORD (CALH)

Instruction Description

The value located in storage by the second-operand
address is used as a signed displacement to be added
to the address value in the base register identified by
the third operand; the resultant address is placed in the
base register identified by the first operand.

Format: RS

OBits 8 12 16 20 31

Operation: The displacement value is a 16-bit signed
integer on a halfword boundary. If the integer is not
halfword aligned, a specification exception is recognized
and the operation is suppressed. The sign bit is
propagated through the third and fourth (left) offset
bytes, and a 4-byte signed binary add is performed.

The address computation is performed as follows. The
rightmost 3 bytes (segment group offset) of the address
value" identified by the third operand are logically
padded on the left with 1 byte of zeros, creating a
positive 4-byte binary integer. The displacement
identified by the second operand II is then added to
this value following the rules of signed arithmetic. The
result of this calculation II must satisfy the following
validity checks:

• Must not be greater than a value of 16 megabytes
less 1 (hex FF FFFF or decimal 16 777 215).

• Must be a positive result.

• Must not be less than the value of the space locator
offset, 3-byte logical binary field in storage located at
the address. determined by concatenating hex 00
001 D on the right of the leftmost 3 bytes of the
third-operand address value.

10-82

If any of the above checks fail. an invalid segment group
address exception occurs and the operation is
suppressed. Otherwise, the rightmost 3 bytes of the
calculated result are concatenated on the right with the
leftmost 3 bytes of the third-operand address value
(segment group identifier) forming the resultant address
II. No storage reference is made using the resultant
address placed in the first operand, so that the address
is not inspected for addressing exceptions.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise, a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Invalid segment group address
Specification

CALH Example

OBits 8 12 16 20 31

Machine: 4D85 4102

Before After

8 1 (8): xxxx xxxx xxxx

82 (4): 0758 7102 0000 0758 7102 0000

83 (5): 0450 63E4 0000 0450 63E4 0000
\

~
00E4 0000

FFFF D854J

0/8

0450 6300 001 D

0758 71020100 0013

Instruction Descriptions 10-83

COMPUTE ADDRESS LONG HALFWORD
IMMEDIATE (CALHI)

Instruction Description

The second operand (12) is used as a signed
displacement to be added to the address value in the
base register identified by the third operand; the
resultant address is placed in the base register identified
by the first operand.

Format: RI

OBits 8 12 16 31

Operation: The displacement value is a 16-bit signed
integer. The sign bit is propagated through the third and
fourth (left) offset bytes, and a 4-byte signed binary add
is performed.

The address computation is performed as follows. The
rightmost 3 bytes (segment group offset) of the address
value (1) identified by the third operand are logically
padded on the left with 1 byte of zeros, creating a
positive 4-byte binary integer. The displacement
identified by the second operand (2) is then added to
this value following the rules of signed arithmetic. The
result of this calculation (3) must satisfy the following
validity checks:

• Must not be greater than a value of 16 megabytes
less 1 (hex FF FFFF or decimal 16 777 215).

• Must be a positive result.

• Must not be less than the value of the space locator
offset, 3-byte logical binary field in storage located at
the address (4) determined by concatenating hex 00
001 D on the right of the leftmost 3 bytes of the
third-operand address value.

10·84

If any of the above checks fail. an invalid segment group
address exception occurs and the operation is
suppressed. Otherwise, the rightmost 3 bytes of the
calculated result are concatenated on the right with the
leftmost 3 bytes of the third-operand address value
(segment group identifier) forming the resultant address
(5). No storage reference is made using the resultant
address placed in the first operand, so that the address
is not inspected for addressing exceptions.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise, a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Invalid segment group address

CALHI Example

OBits 8 12 16 31

Assembler: CALHI81.B3.1 2

Machine: 5e85 D854

Before After

B1 (8): xxxx xxxx XXXX

B3 (5): 0450 63E4 0000

\

~
00E4 0000

FFFF D854J

11/ II OOE3 D854

II

Storage - Before and After

0/8 2/A

0450 6300 001 D

4/C

21

G/E

D345

Instruction Descriptions 10-84.1

COMPUTE LONG FLOAT MATH FUNCTION USING
ONE INPUT VALUE (CLFMF1)

Instruction Description

The operation is performed by computing the
mathematical function according to the controls
(operand 3). The source (operand 2) is used as the
argument, and the result is placed into the receiver
(operand 1). The computation is always done in
floating-point.

Format: SS

CE I I E 18,1 D,
OBits 8 12 16 20 32 36 47

Operation: The first and second operands occupy 8
bytes each, and have the long floating-point field
format.

The third operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex Value Meaning

0001 Sine

0003 Cosine

0005 Tangent

0006 Arc tangent

0010 Exponential function

0011 Natural logarithm (base e)

0020 Square root

All other values are reserved

10-84.2

• Sine (hex 0001). The sine of the numeric value of the
source operand, whose value is considered to be in
radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -1 :5 SI N(x) :5 1.

• Cosine (hex 00(3). The cosine of the numeric value
of the source operand, whose value is considered to
be in radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -1 :5 COS(x) :5 1.

• Tangent (hex 0005). The tangent of the source
operand, whose value is considered to be in radians,
is computed, and the result is placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

• Arc Tangent (hex 00(6). The arc tangent of the
source operand is computed, and the result (in
radians) is placed in the receiver operand.

If the source operand is a value of positive infinity in
affine mode, the result is +pi/2.

If the source operand is a value of negative infinity in
affine mode, the result is -pi/2.

The result is in the range -pi/2 :5 ATAN(x) :5 pi/2.

• Exponential Function (hex 0010). The value e is raised
to the power specified in the source operand, and the
result is placed in the receiver operand.

If the source operand is a value of positive infinity in
affine mode, the result is positive infinity. If the
source operand is a value of negative infinity in affine
mode, the result is positive O.

• Natural Logarithm (base e) (hex 0011). The natural
logarithm of the source operand is computed, and the
result is placed in the receiver operand.

If the source operand is a value of 0, the result is
negative infinity.

• Square Root (hex 0020). The square root of the
numeric value of the source operand is computed and
placed in the receiver operand.

If the source operand has a value of negative 0, the
result is negative O. Any attempt to form the square
root of any other negative value causes a
floating-point invalid operation exception to be
signaled.

The square root of positive infinity is positive infinity.

The result is accurate to the least significant bit.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

Instruction Descriptions 10-85

CLFMF1 Example

OBits 8 12 16 20

01
040

32 36

Assembler: eLFMF1 0 1 (8 1 1. O2 (82)

Machine: eEOE 2040 2048

8d2) and 82 (2): 8000 oeoo 0000

R(F): 0020

Storage - Before

0/8

47

6/E

8000 oeoo 0040

8000 oeoo 0048

xxxx xxxx xxxx xxxx

8000 oeoo 0040

8000 oeoo 0048

10-86

4000 0000 0000 0000

Storage - After

0/8

3FF6

4000

A09E

0000

667F

0000

6/E

38ee

0000

COMPUTE LONG FLOAT MATH FUNCTION USING
TWO INPUT VALUES (CLFMF2)

Instruction Description

The operation is performed by computing the
mathematical function specified in the controls (operand
4). The two source values (one is operand 2 and the
other is addressed by operand 3) are used as arguments
and the result is placed into the receiver (operand 1).
The computation is always done in floating-point.

Format;· SS

D,
OBits 8 12 16 20 32 36 47

Operation: The first and second operands, and the data
addressed by operand 3, each occupy 8 bytes and have
the long floating-point field format.

Operand 3, bits 8 throllgh 11, specifies a base register
that contains the address of the second souce operand.

The fourth operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex Value Meaning

0001 Power (X to the Y)

Some special cases in affine mode are:

Source 1 Source 2 Result

Infinity Infinity Infinity

Infinity ±Infinity Invalid
operation

Overflow; A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large
to be represented in the result format. See
Floating-Point Overflow Exception in Chapter 6 for
further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code; Not applicable.

Condition Code; Not changed.

Carry; Not applicable.

All other values Boundary Requirements; None.
are reserved

• Power (X to the Y) (hex 0001). The computation X
power Y, where X is the first source operand
(operand 2) and Y is the second (operand 3), is
performed, and the result is placed in the receiver
operand (operand 1).

For each combination of the two source values that
would deliver a complex value as the result, a
floating-point invalid operand exception is signaled
(for example, if source 1 (operand 2) is a real number
less than 0 and source 2 (operand 3) is 1/2).

Program Exceptions;

Address translation
Addressing
Effective address overflow
Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

Instruction Descriptions 10-87

CLFMF2 Example

OBits 8 12 16 20 32 36 47

Machine: CEEF 2040 2050

B1 (2) and Bz (2): BOOD OCOO 0000

83 (E): BOOD OCOO 0300

R(F): 0001

Storage - Before

0/8 6/E

800D OCOO 0040

800D OCOO 0050

800D OCOO 0300

xxxx xxxx xxxx xxx x

405E COOO 0000 0000

4000 0000 0000 0000

10-88

This page is intentionally left blank.

Instruction Descriptions 10-89

COMPUTE SHORT FLOAT MATH FUNCTION USING
ONE INPUT VALUE (CSFMF1)

Instruction Description

The operation is performed by computing the
mathematical function according to the controls
(operand 3). The source (operand 2) is used as the
argument, and the result is placed into the receiver
(operand 1). The computation is always done in
floating-point.

Format: SS

AE I I E I 8, I D,
OBits 8 12 16 20 32 36 47

Operation: The first and second operands occupy 4
bytes each and have the short floating-point field
format.

The third operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex Value Meaning

0001 Sine

0003 Cosine

0005 Tangent

0006 Arc tangent

0010 Exponential function

0011 Natural logarithm (base e)

0020 Square root

All other values are reserved

10-90

• Sine (hex (001). The sine of the numeric value of the
source operand, whose value is considered to be in
radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -1 S SI N(X) s 1.

• Cosine (hex 0003). The cosine of the numeric value
of the source operand, whose value is considered to
be in radians, is computed and placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.
The result is in the range -1 S COS (c) s 1.

• Tangent (hex 0005). The tangent of the source
operand, whose value is considered to be in radians,
is computed, and the result is placed in the receiver
operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

• Arc Tangent (hex 0006). The arc tangent of the
source operand is computed, and the result (in
radians) is placed in the receiver operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

The result is in the range -pi/2 S ATAN(x) S pi/2.

• Exponential Function (hex (010). The value e is raised
to the power specified in the source operand, and the
result is placed in the receiver operand.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

• Natural Logarithm (base e) (hex (011). The natural
logarithm of the source operand is computed, and the
result is placed in the receiver operand.

If the source operand is a value of 0 or less than 0, a
specification exception is signaled.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.

• Square Root (hex 0021j)). The square root of the
numeric value of the source operand is computed and
placed in the receiver operand.

If the source operand has a value of negative 0, the
result is negative O. Any attempt to form the square
root of any other negative value causes a
specification exception to be signaled.

If the source operand is a value of infinity, a
floating-point invalid operand exception is signaled.
The result is accurate to the least significant bit.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large
to be represented in the result format. See
Floating-Point Overflow Exception in Chapter 6 for
further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing

Effective address overflow
Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

CSFMF1 Example

0,
058

OBits 8 12 16 20 32 36

Assembler: CSFMF1 0 1 (B 1), O2 (B2)

Machine: AEOE 2058 205C

B 1 (2) and B2 (2): 8000 OCOO 0000

R(F): 0020

Storage - Before

0/8

8000 OCOO 0058 xxxx xxxx

8000 OCOO 005C 4000

Storage - After

47

6/E

0000

0/8 6/E

8000 OCOO 0058 3FB5 04F3

8000 OCOO 005C 4000 0000

Instruction Descriptions 10-91

COMPUTE SHORT FLOAT MATH FUNCTION USING
TWO INPUT VALUES (CSFMF2)

Instruction Description

The operation is performed by computing the
mathematical function specified in the controls (operand
4). The two source values (one is operand 2 and the
other is addressed by operand 3) are used as
arguments, and the result is placed into the receiver
(operand 1). The computation is always done in
floating-point.

Format: SS

D,
OBits 8 1 2 16 20 32 36 47

Operation: The first and second operands, and the data
addressed by operand 3, each occupy 4 bytes and have
the short floating-point field format.

Operand 3, bits 8 through 11, specifies a base register
that contains the address of the second source operand.

The fourth operand, halfword register hex F, contains
control information that indicates the mathematical
function to be performed. The meaning of the 2-byte
control information is:

Hex
Value Meaning

0001 Power (X to the Y)

All other values are reserved

10-92

• (Power (X to the Y) (hex 0001). The computation X
power Y, where X is the first source operand
(operand 2) and Y is the second (operand 3). is
performed, and the result is placed in the receiver
operand (operand 1).

For each combination of the two source values that
would deliver a complex value as the result, a
specification exception is signaled (for example, if
source 1 (operand 2) is a real number less than 0 and
source 2 (operand 3) is 1/2).

If both source operands have a value of 0, a
specification exception is signaled.

If either of the source operands is a value of infinity,
a floating-point invalid operand exception is signaled.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large
to be represented in the result format. See
Floating-Point Overflow Exception in Chapter 6 for
further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation
Addressing
Effective address overflow

- Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

CSFMF2 Example

D,
058

OBits 8 12 16 20 32 36

Assembler: eSFMF2 0 1 (B 1), O2 (B2), B3

Machine: AEEF 2058 2060

Bl (2) and 82 (2): 8000 oeoo 0000

B3 (E): 8000 oeoo 0300

R(F): 0001

8000 oeoo 0058

BOOD oeoo 0060

8000 oeoo 0300

8000 oeoo 0058

8000 oeoo 0060

8000 oeoo 0300

Storage - Before

0/8

xxxx xxxx

405E eooo

4000 0000

Storage - After

0/8

4141 0190

405E CODa
4000 0000

47

6/E

6/E

Instruction Descriptions 10-93

COMPUTE SUBSCRIPT ADDRESS (CSA)

Instruction Description

The value of the second operand in storage is reduced
by one and multiplied by 13, The product of this
multiplication is added to the first operand, and the sum
is placed in the first-operand register.

Format: SI

OBits 8 12 16 20 32 47

Operation: The second operand is unchanged by the
operation. If the second or third operand is zero, a
specification exception is raised and the operation is
suppressed.

The first operand is treated as a virtual address. The
second and third operands are treated as 16-bit
unsigned binary integers. The second operand, which
occupies 2 bytes in storage, is reduced by a value of 1
and multiplied by the contents of the 13 field from the
instruction. This product, which is considered to be a
24-bit ullsigned binary integer, is then added to the
contents of the base register designated by 8" and the
sum replaces the contents of the register.

Overflow: If a carry occurs from bit 24 to bit 23 as a
result of either the multiply or the add operation, an
effective address overflow exception occurs and the
operation is suppressed.

Sign Code: Not applicable.

Condition Code: Not changed.

10-94

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

CSA Example

OBits 8 12 16 20

Machine: AD70 3410 0050

8 2 (3): 6A39 8357 8000

32

Before After

13
0050

8 1 (7): 5328Cl020380 5328 C102 D580

6A39 8357 8410

Storage - Before and After

0/8

02A1

2/A 4/C

47

6/E

(02A1-1) (0050) + 5328 C102 0380 = 5328 C102 D580

This page is intentionally left blank.

Instruction Descriptions 10-95

COMPUTE SUBSCRIPT ADDRESS CONSTRAINED
(CSAC)

Instruction Description

The value of the third operand in storage is validated,
reduced by one, and multiplied by the halfword found in
bytes 4-5 of the second storage operand. The product
of this multiplication is added to the fourth operand and
the sum is placed in the first-operand register.

Format: 55

OBits 8 12 16 20 32 36 47

Operation: The second, third, and fourth operands are
unchanged by the operation. If the second-operand
bytes 0,-3, the second-operand bytes 4-5, or the third
operand contains zero values, a specification exception
is recognized and the operation is suppressed.

The fourth operand is treated as a 6-byte virtual
address. The third operand is a 32-bit logical value. If it
and the 6-byte second-operand field are not fullword
aligned, a specification exception is recognized and the
operation is suppressed. The third-operand value is
validated as being nonzero, but less than hex 0100 0000
(that is, the high-order byte must be zero) and less than
or equal to the limit value found in bytes 0-3 (a 32-bit
logical value) of the second operand. If found to be
outside this range, a specification exception is
recognized and the operation is suppressed. If valid, the
third operand is reduced by a value of one and
multiplied by the logical value found in bytes 4-5 of the
second operand. This product is a 32-bit logical value
with an absolute value of less than hex 0100 0000;
otherwise, an invalid segment group address exception
is recognized and the operation is suppressed. The
product is added to the base register designated by the
fourth operand, and the result is placed into the
first-operand base register.

10-96

Overflow and Sign Code: Not applicable.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: If a carry occurs from the 3-byte offset as a
result of the add operation, an invalid segment group
address exception occurs and the operation is
suppressed.

Boundary Requirements: The second and third operands
must be fullword aligned. If not, a specification
exception is recognized and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Invalid segment group!tf -Specification

CSAC Example

OBits 8 12 16 20 32 36 47

Machine: BF65 4100 3200

Before After

B(3): 0001 2345 0000 0001 2345 0000

B(4): 0001 2345 0000 0001 23450000

B(5): 9999 9955 5555 9999 9955 5555

B(6): 6666 6666 6666 9999 9955 7777

Main storage is unchanged by the operation.

Storage - Before and After

0/8 2/A 4/C 6/E

0001 23450100 0034 5678 0002

0001 2345 0200 0000 1112 xxxx

Instruction Descriptions 10-97

COMPUTE SUBSCRIPT ADDRESS CONSTRAINED
HALFWORD (CSACH)

Instruction Description

The value of the third operand in storage is validated,
reduced by one, and multiplied by the halfword found in
bytes 4-5 of the second storage-operand. The product
of this multiplication is added to the fourth operand and
the sum is placed in the first-operand register.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The second, third, and fourth operands are
unchanged by the operation. If the second-operand
bytes 0-3, the second-operand bytes 4-5, or third
operand contains zero values, a specification exception
is recognized and the operation is suppressed.

The fourth operand is treated as a 6-byte virtual
address. The third operand is a 16-bit logical value. If
the third-operand field is not halfword aligned, or the
second operand fullword aligned, a specification
exception is recognized and the operation is suppressed.
The third-operand value is validated as being nonzero,
but less than hex 8000 (that is, the high-order bit must
be zero) and less than or equal to the limit value found
in bytes 0-3 (a 32-bit logical value) of the second
operand. If found to be outside this range, a
specification exception is recognized and the operation
is suppressed. If valid, the third operand is reduced by a
value of one and multiplied by the logical value found in
bytes 4-5 of the second operand. This product is a
32-bit logical value with an absolute value of less than
hex 0100 0000; otherwise, an invalid segment group
address exception is recognized and the operation is
suppressed. The product is added to the base register
designated by the fourth operand and the result is
placed into the first-operand base register.

10-98

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: If a carry occurs from the 3-byte offset of the
fourth operand as a result of the add operation, an
invalid segment group exception is recognized and the
operation is suppressed.

Boundary Requirements: The third operand must be
halfword aligned and the second operand 6-byte field
fullword aligned. If not. a specification exception is
recognized and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Invalid segment group
Specification

CSACH Example

Op I ~11 ~41 ~21 D2 I ~31 D3
AF 100 200

0 Bits 8 12 16 20 32 36 47

Assembler: CSACH B1 , O2 (B 2 1. D3 (B 3), B4

Machine: AF65 4100 3200

Before After

B(3): 0001 2345 0000 0001 2345 0000

B(4): 0001 23450000 0001 2345 0000

B(5): 9999 9955 5555 9999 9955 5555

B(6): 6666 6666 6666 9999 9955 7777

Storage - Before and After

0/8 2/A 4/C 6/E

0001 2345 0100 0034 5678 0002

0001 2345 0200 1112 xxxx xxxx

Instruction Descriptions 10-99

CONVERT BINARY TO LONG FLOAT (CVBLF)

Instruction Description

The value of the second operand is converted from
binary to floating point. and the result is placed in the
first operand location.

Format: SS

0,
OBits 8 12 16 20 32 36 47

Operation: The first operand (receiver) occupies 8 bytes
of storage in order to accomodate the long
floating-point format.

The second operand (source) occupies either 4 or 8
bytes. The length (4 or 8 bytes) is specified by ttte
length operand (bits 8 through 11) in the instruction.
The length operand has the following format:

Bits

8

9-11

Meaning

Reserved

Length of source
011 = 4 bytes
111 = 8 bytes
All other values are invalid

The second operand contents is treated as a
right-aligned. signed binary integer value (whole number
rather than a fraction) with an assumed binary point to
the right of its rightmost digit.

The result of the operation is a normalized floating-point
number. rounded. if necessary. according to the
rounding mode specified in the task dispatching
element.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite. but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

Sign Code: Not applicable.

10-100

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Operand 1 data must be
fullword aligned; otherwise. a specification exception
occurs. and the operation is suppressed. The result
obtained from overlapping operands is unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Floating-point inexact result
Specification

CVBLF Exampla

OBits 8 12 16 20

0,
050

Machine: CE79 4050 4060

32 36

Btl4) and B2 (4): 0010 0200 0000

Storage - Before

47

0/8 G/E

0010 0200 0050 xxxx xxxx xxxx xxxx

0010 0200 0060 0000 0000 0000 OOFF

Storage - After

0010 0200 0050

0010 0200 0060

0/8

406F

0000

Condition Code: Not changed.

EOOO 0000

0000 0000

G/E

0000

OOFF

CONVERT BINARY TO PACKED (CVBP)

Instruction Description

The radix of the second operand is changed from binary
to decimal, and the result is placed in the first-operand
location.

Format: SS

F8 I I 0 I Bll 0 1

OBits 8 12 16 20 32 36 47

Operation: The number is treated as a right-aligned,
binary value both before and after conversion.

The second operand is a 32-bit, signed, binary integer
occupying a word in storage. The first operand occupies
8 bytes in storage and is formed using the packed
decimal format with the rightmost 4 bits representing
the sign.

Overflow: Not applicable.

Sign Code: The preferred signs are used for the result
as follows: a positive sign is encoded as 1111 (hex F); a
negative sign is encoded as 1101 (hex 0).

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Both operands must begin on a
word boundary; otherwise a specification exception
occurs and the operation is suppressed. The operands
can overlap in storage.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Specification

CVBP Example

Op

I I ~ 1~11 01 I ~21 O2
F8 210 320

0 Bits 8 12 16 20 32 36 47

Assembler: CVBP 0 1 (B 1), 02(B2)

Machine: F800 3210 3320

B1 (3) and B2 (3): 0310 0004 AOOO

Storage - Before
-

0/8 2/A 4/C 6/E

0310 0004 A210 xxxx xxxx xxxx xxxx

0310 0004 A320 0021 3FA4

Storage - After

0/8 2/A 4/C 6/E

0310 0004 A210

031 0 0004 A320

0000 0000 2178 980F

0021 3FA4

Instruction Descriptions 10-101

CONVERT BINARY TO SHORT FLOAT (CVBSF)

Instruction Description

The value of the second operand is converted from
binary to floating point, and the result is placed in the
first operand location.

Format: SS

CE IL21 9 I B, I D,
OBits 8 12 16 20 32 36 47

Operation: The first operand (receiver) occupies 4 bytes
of storage in order to accomodate the short
floating-point format.

The second operand (source) occupies either 4 or 8
bytes. The length (4 or 8 bytes) is specified by the
length operand (bits 8 through 11) in the instruction.
The length operand has the following format:

Bits

8

9-11

Meaning

Reserved

Length of source

011 = 4 bytes
111 = 8 bytes
All other values are invalid

The second operand contents is treated as a
right-aligned, signed binary integer value (whole number
rather than a fraction) with an assumed binary point to
the right of its rightmost digit.

The result of the operation is a normalized floating-point
number, rounded, if necessary, according to the
rounding mode specified in the task dispatching
element.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

Sign Code: Not applicable.

10-102

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Operand 1 data must be
fullword aligned; otherwise, a specification exception
occurs, and the operation is suppressed. The result
obtained from overlapping operands is unc·adictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Floating-point inexact result

Specification

CVBSF Example

OBits 8 12 16 20

D,
050

Machine: AE39 4050 4060

32 36

B1 (4) and B2 (4): 0010 0200 0000

0010 0200 0050

0010 0200 0060

0010 0200 0050

0010 0200 0060

Storage - Before

0/8

xxxx xxxx

OOFF 0000

Storage - After

0/8

4B7F 0000

OOFF 0000

Condition Code: Not changed.

47

6/E

6/E

CONVERT CHARACTER TO SNA (CVTCS)

Instruction Description

The operation converts the data at the second operand
location from character to SNA (systems network
architecture) compressed format. The conversion is
controlled by information whose address is in the base
register specified in the third operand. The result is
placed in the first operand.

The operands are as follows:

Operand

2

3

4

5

Description

The base and displacement for the
starting address of the result string
that is to contain the converted data.

The base and displacement for the
starting address of the source string
that contains the data to be
converted.

The base register that contains the
address of the control information for
the conversion operation to be
performed.

Halfword register 14 specifies the
length of the first operand (result
string). A length of zero causes a
specification exception.

Halfword register 15 specifies the
length of the second operand (source
string). A length of zero causes a
specification exception.

The source operand (2) contains one or more
fixed-length data fields that may be separated by
fixed-length gaps of characters to be ignored during the
conversion. The source operand is described by the
controls operand (3), which also specifies the number of
bytes of data from the source to be processed to
produce a converted record in the result string. The
source record length does not need to be the same as
the source data field length.

Instruction Descriptions 10-103

The following diagram explains this structure for the

source operand:

Actual Source Operand Bytes

Data Field Gap Data Field Gap

Data Processed as Source Records

Record Rec 0'. I R~ •• I Record Record

For example, notice that the record length is less than
the data field length and some records may have
gaps in the middle.

The controls operand is a 15-byte string that specifies
additional information to be used to control the
conversion. The controls operand has the following
format:

Mod·
Source Source

Result Offset Source Offset
ifier

Record Data Field
Length Length

o 2 4 5 6

Bytes Description

0-1 Offset into the result operand

2-3 Offset into the source operand

4 Modifier

5 Source record length (>0 if record
processing is specified)

6-7 Data field length

8-9 Offset to the next gap in the source
operand

10-11 Gap length

12 Record separator character

13 Prime compression character

14 Unconverted source record bytes

10-104

8

Record Prime Unconverted
Gap Offset Gap Length Separator Compression Source Record

Character Character Bytes

10 12 13 14

Initially, the source offset and the result offset fields
specify which byte of the source field is to be processed
next, and where the next byte of the result shoud be
entered in the result field. The source and result offset
fields are set to values that indicate how much of the
conversion is complete when the instruction is
interrupted or complete. An initial offset beyond the end
of the related source or result operand causes a
specification exception.

The modifier has the following valid values:

Bit(s)

o

1-2

3

4-7

Meaning

Compression

o = Do not perform compression

1 = Perform full compression

Processing Mode

00 = String processing. Do not
use record separators; do not
do blank truncation; do not
perform data transparency
conversion.

01 = Reserved

10 = Record processing. Use
record separators and do
blank truncation; do not
perform data transparency
conversion.

11 Record processing. Use
record separators, do blank
truncation, and perform data
transparency conversion.

Do not perform record Spanning

o = Do not perform record
spanning.

1 Perform record spanning
(allowed only if bit 1 = 1).

Reserved. Must be zero.

Note: An invalid modifier value causes a specification

exception.

The source record length specifies the number of bytes
to be processed to produce a converted record in the
result operand. If record processing a source record
length of zero results in a specification exception. Data
fields in the source may be separated by gaps of
characters. These gaps are ignored during conversion.

The source data field length specifies the number of
bytes in the source data fields. Specifying a data field
length of zero indicates the source length is one data
field; in this case, the gap length and gap offset are
ignored.

The following diagrams illustrate the makeup of the
source and result operands.

Source Operand

,--__ Source
Offset

Cu rrent Byte to be Processed

Record Boundary

~----------Start of Source

~--------Source Length----------I~

The gap offset specifies the offset (relative to the source
offset) to the beginning of the next gap in the source.
Gap offset is updated when the instruction is
terminated. It is not used as input if the source data
field length is specified as zero. It may be modified
during execution of the instruction.

The gap length specifies the number of bytes (hex) of
data between data fields in the source operand. This
length is ignored if the data field length is specified with
a value of zero. The gap length starts with a value of O.

The record separator character field specifies the value
that is to precede the converted form of each record in
the result operand. This value also serves as a delimiter
for the prior record when trailing blanks are truncated;
the last record will not have this delimiter. The record
separator character field can have any hexadecimal
value. However, the Convert SNA to Characters
instruction recognizes only values less than hex 40 as
record separators.

This field is ignored if string processing is specified in
the modifier.

I nstruction Descriptions 10-105

Result Operand

0/111 R,,," 10
Result I LRecord Separator Character (may
Offset..j not be first character stored)

~-------;Start of Result

~-------Result Length---------+-I

The prime compression character specifies the value to
be used as the prime compression character. It can be
any value. It is ignored if compression is not specified
in the algorithm modifier.

The unconverted source record bytes contains a count of
the residual, unconverted bytes in the current source
record. This parameter is not used as input if record
spanning is not specified in the algorithm modifier. The
count may be set to zero during execution of the
instruction.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The operation begins by accessing the bytes
of the source operand at the location specified by the
source offset. This location is assumed to be the start
of a record. Gaps between data fields are ignored,
causing the access of data bytes to occur as if the data
fields were contiguous with one another.

Accessed bytes are considered to be a source record for
the conversion. They are converted according to the
following modes and optional functions and then stored
in the result.

10-106

String Processing Mode

String processing occurs when bit 1 of the algorithm
modifier is equal to zero. The bytes accessed in the
source are converted, compressed, and then stored in
the result.

Compression

The compression function is always performed in string
processing mode. Compression reduces the length of
duplicate character strings in the source data.

Compressed data is built by concatenating one or more
compression strings together to describe the converted
record. The bytes of the converted source data are
checked in order to locate the:

• Prime compression character strings (two or more
consecutive prime compression characters)

• Duplicate character strings (three or more duplicate
non prime characters)

• Nonduplicate character strings occurring in the
source.

The character strings encountered (prime, duplicate, and
non-duplicate) are reflected in the compressed data by
building one or more compression strings to describe
them. Compression strings are comprised of a string
control byte (SCB), followed by prescribed bytes of data
related to the character string being described.

The 5CB has the following format and bit definitions:

Bits Meaning

0-1 Control

00= n nonduplicate characters are
between this 5CB and the
next one. n is the value in
the count field; possible
values are 1-63 (decimal).

01 = Reserved

10 = This 5CB represents n
deleted prime compression
characters. n is the value in
the count field; possible
values are 2-63 (decimal).
The next byte is the next
5CB.

11 = This 5CB represents n
deleted duplicate characters.
n is the value of the count
field; possible values are
3-63 (decimal). The next
byte contains a specimen of
the deleted characters. The
byte following the specimen
character contains the next
5CB.

2-7 Count

The value n (in binary) in this field
represents the count of the number of
characters that have been deleted for a
prime compression character string, a
duplicate character string, or the number
of characters to the next 5CB for a
nonduplicate character string. A count
value of 0 cannot be produced.

In string processing mode:

• Compression is performed on the entire source
operand on a string basis. The fields in the controls
operand related to record processing are ignored.

• If the compressed data cannot be completely
contained in the receiver, the instruction ends with
a receiver overrun condition code.
As much of the compressed data as will fit is
placed into the receiver, and the controls operand
is updated to describe how much of the source
data was successfully converted into the receiver.
The last compression entry placed into the receiver
may be adjusted, if necessary, to a length which
fits in the receiver. This length adjustment applies
only to compression entries for non-duplicate
strings.
Compression entries for duplicate strings are only
placed in the receiver if they fit with no
adjustment. By doing this, no more than 1 byte of
unused space will remain in the receiver; its value
is unpredictable.

• If the compressed data can be completely contained
in the receiver, the instruction ends with a source
exhausted condition code. The compressed data is
placed into the receiver, and the controls operand is
updated to indicate that all of the source data was
successfully converted into the receiver.

Instruction Descriptions 10-107

Record Processing Mode

Record processing occurs when bit 1 of the algorithm
modifier is equal to 1.

The source offset locates either the start of a full or the
start of a partial record. If record spanning is not
specified, source offset locates a full record. If record
spanning is specified, the source offset is assumed to
locate a point at which processing of a partially
converted record is to be resumed (this could actually be
the start of a full record). The unconverted source
record bytes value (which could be 0) gives the length of
the remaining portion of the source record to be
converted. The conversion process is started by
completing the conversion of the current source record
(if such is the casel. before processing the next full
source record.

When the conversion process for a record is complete
(including trailing blank truncation, data transparency
conversion (if specified), and compression (if specified))
and a receiver overrun has not occurred, the process is
started for the next record.

A check for end of source is made at the start of
conversion for each record. If the source does not
contain a full record, the source exhausted condition is
recognized and the instruction is terminated. Conversion
of a partial source record is not performed.

Trailing Blank Truncation

The trailing blank truncation function is always
performed in record processing mode. This function can
be performed with, or without. the optional transparency
conversion and compression functions.

A truncated record is built by logically appending the
record data to the record separator (a value specified in
the controls operand) and removing all blank characters
after the last nonblank character. If a record has no
trailing blanks, then no actual truncation takes place. A
null record (a record consisting entirely of blanks), will
be converted as just the record separator character with
no other data following it. The truncated records, then,
consist of the record separator character followed by the
full record data, the truncated record data, or no data.

10-108

If the truncated record cannot be completely contained
in the receiver, the instruction ends with a receiver
overrun condition code. If record spanning is specified,
as much of the truncated record as will fit is stored into
the receiver, and the controls operand is updated to
describe how much of the source record was
successfully converted. If record spanning is not
specified, the controls operand is updated to describe
only the last fully converted record; the values of the
remaining bytes in the receiver are unpredictable.

Data Transparency Conversion

The data transparency conversion function is performed
in record processing mode only. It is optional. not
mandatory; compression may also be done, but is not
required.

This function makes the data in a record transparent to
the Convert SNA to Character instruction in the area of
its scanning for record separator values.

A transparent record is built by placing 2 bytes of
transparency control information after the record
separator, but before the actual data. The first byte has
a fixed value of hex 35 and is referred to as the TRN
(transparency) control character. The second byte is a
1-byte hexadecimal count (with allowable values of
1-255 decimal) of the number of transparent data bytes
that follow and is referred to as the TRN count. This
count contains the length of the data (before
compression) and does not include these TRN control
information bytes, the record separator, or trailing blanks
that have been truncated.

For a null record, no TRN control information is placed
after the record separator as there is no record data to
be made transparent.

If the transparent record cannot be completely contained
in the receiver, the instruction ends with a receiver
overrun condition code.

• If record spanning is specified, as much of the
transparent record as will fit is placed in the receiver
and the controls operand is updated to describe how
much of the source record was converted. The TRN
count is adjusted to describe the length of the
successfully converted data; thus, the transparent
data for the recor~ is not spanned out of the receiver.
The remaining bytes of the transparent record, if any,
will be processed as a partial source record on the
next invocation of the instruction and will be
preceded by the appropriate TRN control information.

For the special case where only 1 to 3 bytes are
available at the end of the receiver (not enough room
for the record separator, the transparency control,
and a byte of data), just the record separator is
placed in the receiver for the record being converted.
This can cause up to 2 bytes of unused space at the
end of the receiver; the values of these unused bytes
are unpredictable.

• If record spanning is not specified, the controls
operand is updated to describe only the last fully
converted record in the receiver. The values of the
remaining bytes in the receiver are unpredictable.

Compression

The compression function is performed on the converted
form of the current source record, including the record
separator character; this can be a truncated record or a
transparent truncated record. TRN control information
bytes are always treated as part of a non-duplicate
compression entry to provide for length adjustment of
the TRN count, if necessary.

If the compressed record cannot be completely
contained in the receiver, the instruction ends with a
receiver overrun condition code.

When record spanning is specified:

• As much of the compressed record as will fit is
placed into the receiver and the controls operand is
updated to describe how much of the source record
was successfully converted into the receiver.

• The last compression entry placed into the receiver
may be adjusted, if necessary, to a length that fits in
the receiver. This applies only to nonduplicate
strings.

• Compression entries for duplicate strings are placed
in the receiver only if they fit with no adjustment.

• For the special case where data transparency
conversion is specified, the transparent data being
described is not spanned out of the receiver; the TRN
count is adjusted to describe only the amount of data
successfully placed into the receiver.

• For the special case where only 2-5 bytes are
available at the end of the receiver, there may not be
enough room for the compression entry for the
nonduplicate string containing the record separator,
the TRN control, and up to a 2-byte compression
entry for some of the transparent data. In this case,
the non-duplicate compression entry is adjusted to
describe only the record separator. By doing this, no
more than 3 bytes will remain in the receiver; the
values of these unused bytes are unpredictable.
Unconverted source record bytes, if any, will be
processed as a partial source record on the next
invocation of the instruction and will be preceded by
the appropriate TRN control information when
performing transparency conversion.

When record spanning is not specified, the controls
operand is updated to describe only the last full
converted record in the receiver; the values of the
remaining unused bytes in the receiver are
unpredictable.

Instruction Descri ptions 10-109

Instruction Termination

The CVTCS instruction terminates when:

• The end of the source operand is reached (see note).
This results in a source exhausted condition code.

• The end of the receiver is reached (see note). This
results in a receiver overrun condition code.

Note: For the special case of a tie between the source
exhausted and receiver overrun conditions, the source
exhausted condition is recognized first because when
source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the
receiver operand may contain a value equal to the length
specified for the receiver, which would cause an
exception to be detected on the next invocation of the
instruction. The processing performed for the source
exhausted condition should provide for this case if the
instruction is to be invoked multiple times with the same
controls operand value. When the receiver overrun
condition is the resultant condition, the source will
always contain data remaining to be converted.

At the completion of the instruction execution, the
source and receiver offset parameters are updated to
point to the next bytes to be operated on in the source
and receiver, respectively. The source offset may point
to the start of a gap, but will never point within a gap.

If record spanning is specified, the unconverted source
record bytes parameter is updated to specify the number
of remaining unconverted source record bytes.

If the source data field length is not 0, the gap offset
parameter is updated to point to the next gap, relative
to the source offset parameter just updated.

Any form of overlap between the operands of this
instruction yields unpredictable results.

10-110

Programming Notes

If the source operand does not end on a record
boundary (meaning the last record is spanned out of the
source), this instruction performs conversion only up to
the start of that partial record. The user of this
instruction must move this partial record to combine it
with the rest of the record in the source operand to
provide for subsequent correct processing. If full
records are provided, the instruction performs its
conversion out to the end of the source operand and no
special processing is required.

At the completion of this instruction, any bytes in the
receiver beyond the location pointed to by the receiver
offset are unpredictable.

Although any value of record separator is allowed, use
of hex 40 can possibly cause some unanticipated
results. With no transparency, and a completely blank
record, use of a hex 40 record separator will result in no
output being stored for that record. This is because the
record separator is included with the blanks and
discarded as part of blank truncation.

This instruction is interruptible. If interrupted,
information required to continue is stored in the controls
operand and the instruction address register will point to
the instruction so that processing will continue after the
interrupt.

Overflow and Sign Code: Not applicable.

Condition Codes

o Source exhausted
Receiver overrun

2
3

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions

Address translation
Addressing
Effective address overflow
Specification

CVTCS Example

0,
AA3

OBits 8 12 16 20 32 36 47

Assembler: CVTCS Dl (Bd. D2 (B2). B3

Machine: BE76 8AA3 9541

Bd8):
Bz (9):

B3 (7):

0021 A 123 0000 (Base register for result)
0022 0015 0000 (Base register for source)
0100 0303 Fl05 (Address of control operand)

R(14):
R(15) :

0021 A 123 OAA3

0022 0015 0541

0100 0303 Fl05

0021 A 123 OAA3

0022 0015 0541

0100 0303 F105

0005 (Length of result)
0009 (Length of source)

Storage - Before

0/8 6/E

xx xxxx xxxx

AC 5454 ACFl 5454
Fl Fl

00 0000
OODO 0300 0200 0100
0211 AC02

Storage - After

0/8 6/E

82 0111 C3Fl

AC 5454 ACFl 5454
F1Fl

00 0500
09DO 0300 0200 0000
0211 ACOO

Before After
Condition Code: x 0

Instruction Descriptions 10-111

CONVERT CHARACTERS TO MULTI-LEAVING
REMOTE JOB ENTRY (CVTCM)

Instruction Description

The operation converts the data at the second operand
location from character tq MRJE (MULTI-LEAVING
Remote Job Entry) format. The conversion is controlled
by information whose address is in the base register
specified in the third operand. The result is placed in
the first operand.

The operands are as follows:

Operand

1

2

3

4

5

10-112

Description

The base and displacement for the
starting address of the result string
that is to contain the converted data.

The base and displacement for the
starting address of the source string
that contains the data to be
converted.

The base register that contains the
address of the control informatioh for
the conversion operation to be
performed.

Halfword register 14 specifies the
length of the first operand (result
string). A length of zero causes a
specification exception.

Halfword register 15 specifies the
length of the second operand (source
string). A length of zero causes a
specification exception.

The source operand (2) contains one or more
'fixed-length data fields that may be separated by
fixed-length gaps of characters to be ignored during the
conversion. The source operand is described by the
controls operand (3), which also specifies the number of
bytes of data from the source to be processed to
produce a converted record in the result string. The
source record length does not need to be the same as
the source data field length.

The following diagram explains this structure for the
source operand:

Actual Source Operand Bytes

L..-_D_a_t_a_F_ie_l_d....L. ~ ~a: ~L._D_a_t_a_F_ie_l_d_.L._ G: - -1-_D_a_t_a_F_ie_ld_-,- ~ ~a:]
Data Processed as Source Records

Record Rec ord Record

The controls operand is a 13-byte string that specifies
additional information to be used to control the
conversion. The controls operand has the following
format:

Source Mod-
Source

Result
Record

Offset Offset ifier
Length

o 2 Bytes 4 5 6

Bytes Description

0-1 Offset into the result operand
2-3 Offset into the source operand
4 Modifier
5 Source record length (>0)
6-7 Data field length (>0)
8-9 Offset to the next gap in the source operand
10-11 Gap length
12 Record control block value

Upon input to the instruction, the result offset and the
source offset fields specify which bytes of the source
field are processed and entered into the result field. The
source and result offset fields are set to values that
indicate how much of the conversion is complete when
the instruction is interrupted or complete. An offset
beyond the end of the related source or result operand
causes a specification exception.

Record Record

Data Field Gap Gap Record
Control Length Offset Length
Block

8 10 12

The modifier has the following valid values:

Value
(Hex) Description

00 Perform full compression.
01 Perform only truncation of trailing blanks.

Note: An invalid modifier value causes a specification
exception.

The source record length specifies the number of bytes
to be processed to produce a converted record in the
result operand. A source record length of zero results in
a specification exception. Data fields in the source may
be separated by gaps of characters. These gaps are to
be ignored during conversion.

The data field length specifies the number of bytes in
the source data fields. Specifying a data field length of
zero indicates the source length is one data field; in this
case, the gap length and gap offset are ignored.

Instruction Descriptions 10-113

The following diagrams illustrate the makeup of the
source and result operands.

Source Operand

Source
Offset Gap

Offset

Current Byte to be Processed

Record Boundary

...... ------Start of Source

7J

I-o------........ Source Record Length --------1

The gap offset specifies the offset to the next gap in the
source. This offset is both input to and output from the
instruction. The gap offset decreases as the source
increases until the gap is reached. The gap offset then
becomes the offset to the next gap.

The gap length specifies the number of bytes (hex) of
data between data fields in the source operand. This
length is ignored if the data field length is specified with
a value of zero. The gap length starts with a value of 1.

The record control block field specifies the value that is
to precede the converted form of each record in the
result operand. The record control block field can have
any hexadecimal value.

Result Operand

I:~ Resu
Offse

Result

'""'"---- Subrecord Control
Byte (Hex 80)

Record Control Byte

1--------- Start of Result

1-0---------Result Length --------------1

10-114

Format: 55

D1
OBits 8 12 16 20 32 36 47

Operation: The operation begins by accessing the bytes
of the source operand at the location specified by the
source offset. This location is assumed to be the start
of a record. Gaps between data fields are ignored,
causing the access of data bytes to occur as if the data
fields were contiguous with one another.

Accessed bytes are considered to be a source record for
the conversion. They are -converted into the result
according to the following procedure.

The record control block value is put into the first byte
of the result record. A subrecord control block value of
hex 80 is put into the second byte of the result record.

If a modifier specifies full compression, then the bytes
of the source record, as they are accessed in the source,
are checked for:

• Blank character strings (2 or more consecutive blanks)

• Identical character strings (3 or more consecutive
identical characters)

• Unidentical character strings

A blank character string occurring at the end of the
record is treated as follows. If the record is not
completely blank, then an end-of-record string control
bytes (hex 00) is stored in the result. If the entire record
is blank, then a string control byte indicating 1 blank (a
nonrepeating character) followed byan.end-of-record
string control byte is in the result.

If the modifier specifies blank truncation, then the bytes
of the source record are checked for a blank character
string at the end of the source record. If one exists, it is
treated as a string of trailing blanks. All characters prior
to a string of trailing blanks in the record are treated as
one string of unidentical characters.

Instruction Descriptions 10-115

The strings encountered-blank, identical. or
unidentical-are related in the result of building one or
more string control bytes to describe them. The format
of the string control bytes is as follows:

End of Com·
Delete

Number of Characters
Record press (Binary)

0 2 3 Bits

Value
Byte Bit (Binary)

8

0-1 0 0 End of record; the end-of-record string control byte is hex 00.

All other string control bytes.

0 The string is compressed.

The string is not compressed.

2 If bit 1 = o.
0 Blanks have been deleted (hexadecimal 4Os).

Nonblank characters have been deleted.

The next character in the data stream is the specimen character.

If bit 1 = 1, this bit is part of the length field for length of uncompressed
data.

3-7 00010
11111

If bit 1 = 0, this is the number of characters that have been deleted. The
va'lue can be from 2 through 31.

2-7 000001-
111111

If bit 1 = 1, this is the number of characters before the next string control
byte (no compression). The uncompressed (un identical) bytes follow the
string control bytes in the data stream. The value can be from 1 through
63.

When the end-of-source record is encountered, an
end-of-record string control byte (hex 00) is built into
the result operand. Trailing blanks in a record, including
a record of all blanks, are represented in the result by an
end-of-record character. Additionally, the values in the
controls operand for the result offset. and source of set,
and gap offset are updated. These values describe the
offsets for the next record to be converted, allowing for
the interruption of the instruction on a record boundary.

If the end-of-source record is not encountered, the
operation continues as described at the beginning of the
Operation section.

If the end of source is encountered while processing a
field, whether or not in conjunction with a record
boundary, the instruction ends with a condition code of
zero (source exhausted). See Programming Note.

10-116

If the converted record cannot be completely contained
in the result, the instruction ends with a condition code
of 1 (result overrun). See Programming Note.

Programming Note: The source offset locates the byte
following the last source record for which conversion
was completed. The gap offset indicates the offset to
the next gap, The gap offset has no meaning and is not
set when the data field length is zero. The result offset
locates the byte following the last fully converted record
in the result. The contents of the remaining bytes in the
result after the last converted record are unpredictable.

Any form of overlap between the operands yields
unpredictable results in the result operand.

Overflow and Sign Code: Not applicable.

Condition Code:

o Source used up
Result overrun

2
3

Carry and Boundary Requirements: Not applicable.

Program Exceptions:

- Address translation
- Addressing
- Effective address translation
- Specification

Programming Note: If the data field length is zero, the
gap length and gap offset are ignored.

CVTCM Example

OBits 8 12 16 20

0,
BC5

Machine: BE54 4BC5 3582

32 36 47

B 1 (4): 0001 5678 0000 (Base register for result)
B2 (3): 0001 1234 0000 (Base register for source)
B3 (5): 0001 036A 0620 (Address of control operand)
R (14): 0020 (Length of resu It)
R (15): 0020 (Length of source)

Storage-Before

0/8 6/E
0001 036A 0620 0000 0000 0010 0000

XXXX XXXX FOXX XXXX

0001 1234 0580

0001 5678 OBC5

XXXX 1111
E3C5 E2E3
E3E3 4040

1111
E3C5
2222

1111
E2E3
2222

2222 2222 4040 4040
4040 XXXX XXXX XXXX

xx XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXX X XXXX XXXX XXXX
XXXX XXXX XX

Storage-A fter

0/8 2/A 4/C 6/E
0001 036A 0620 0015 0020 0010 FFFF

XXX X XXXX FOXX XXXX

0001 1234 0580

0001 5678 OBC5

Condition Code:

XXX X 1111
E3C5 E2E3
E3E3 4040
2222 2222

1111
E3C5
2222
4040

1111
E2E3
2222
4040

4040 XXXX XXXX XXXX

XXXX F080
C5E2 E3E3
OOFO 8082

XX XXXX
A611
C5E2
A822

C7E3
A3E3
OOXX

XXXX XXX X XX

Before
X

After
o

Instruction Descriptions 10-117

CONVERT DECIMAL FORM TO LONG FLOAT
(CVDFLF)

Instruction Description

The decimal form of a floating-point value specified by
a decimal exponent (operand 2) and a decimal
significand (operand 3) is converted to binary
floating-point format, and the result is placed in the
binary floating-point field specified by the first operand.

Format: SS

CE 1 I D 181 1 D1
OBits 8 12 16 20 32 36 47

Operation: The first operand specifies a binary
floating-point field that occupies 8 bytes, and has the
long floating-point field format.

The second operand specifies the decimal exponent that
occupies from 1 through 16 bytes as specified by the
operand 4 value. This operand has the packed
fixed-point decimal format.

The third operand, base register hex E, specifies the
address of the decimal significand. This operand
occupies up to 16 bytes of storage as specified by the
operand 4 value and has the packed fixed-point decimal
format.

The fourth operand, halfword register hex F, contains
the digit lengths of the second and third operands. The
total number of digits for the exponent (operand 2) is
contained as a value between 1 and 31 in the leftmost
byte of the halfword register. The total number of digits
for the significand (operand 3) is contained as a value
between 1 and 31 in the rightmost byte of the halfword
register. The specified digit lengths must be within the
allowable ranges, or a specification exception is
signaled. The length of operands 2 and 3 (in bytes) is
calculated by dividing the total digit count by 2 and
adding 1 to the resulting quotient. The specified number
of digits are considered right adjusted in their respective
fields. An even value digit length indicates the leftmost
digit position of the packed field is not to be considered
a digit position of the corresponding operand value.

10-118

The exponent and significand contain a decimal form of
a floating-point number. The value of this number is:

Value = M * (10**E)
where:

M = the value of the significand operand
E = the value of the exponent operand
** denotes exponentiation
* denotes multiplication

The exponent is assumed to contain a decimal integer
value. This signed integer value specifies a power of 10
that gives the floating-point value its magnitude. It has
an assumed decimal point immediately to the right of its
rightmost digit position.

The significand is assumed to contain a decimal value
with a leading integer digit in its leftmost digit position
and fractional digits in the digit positions to the right of
the integer digit. The signed decimal value specifies the
decimal digits that give the floating-point value its
precision. The significand has an assumed decimal point
immediately to the right of its leftmost digit position.

The decimal form floating-point value specified by the
exponent and significand operands is converted to
binary floating-point format as if to infinite precision.
However, the precision provided for in floating-point
fields is not as great as the precision that can be
provided for by decimal fields. Long floating-point
provides for unique representation of a maximum of 15
significant decimal digits of precision. The significant
digits of the significand start with the leftmost nonzero
decimal digit and continue to the right out to the end of
the significand value. Significant digits beyond 15 for a
long float receiver may not be preserved in the result
and only serve to provide for uniqueness of the
conversion as well as for proper rounding.

The result of this conversion is then normalized and
rounded (according to the current float rounding mode)
to the significand length of the operand 1 field.

The converted, normalized, and rounded result is then
assigned to operand 1 in the long floating-point format.
The result is subject to the normal floating-point
overflow and underflow exception detection performed
on assignment.

When floating-point overflow or underflow is detected
and unmasked, the instruction operation is suppressed.
This action occurs because all overflowed and
underflowed values cannot be represented in the result
field format even when employing the modified biased
exponent representation.

Conversion of a zero value significand operand results in
a zero value of the same sign being assigned to operand
1.

Operands 2 and 3 are checked for valid decimal sign
and digit codes. The data exception is signaled if any
invalid values are encountered, and the operation is
suppressed. If an even number of digits is specified for
either the exponent or the significand operands, the
leftmost digit position of the packed operand field is not
checked and is not used as part of the decimal value.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: . Not applicable.

Boundary Requirements: The operands may overlap.

Program Exceptions:

Address translation
Addressing
Oata

- Effective address overflow
Floating-point inexact result

- Floating-point overflow
Floating-point underflow
Specification

CVDFLF Example

OBits 8 12 16 20

Machine: CEOO 2040 2064

32 36

B1 (2) and B2 (2): 8000 OCOO 0000

B3 (E): 8000 OCOO 0300

R(F): 0712

Storage - Before

47

0/8 6/E

8000 OCOO 0040 xxxx xxx x xxxx xxxx

8000 OCOO 0064 0000 002F

8000 OCOO 0300 0123 0000 0000 0000

OOOF

Storage - After

0/8 6/E

8000 OCOO 0040 405E COOO 0000 0000

8000 OCOO 0064 0000 002F

8000 OCOO 0300 0123 0000 0000 0000

OOOF

Instruction Descriptions 10-119

CONVERT DECIMAL FORM TO SHORT FLOAT
(CVDFSF)

Instruction Description

The decimal form of a floating-point value specified by
a decimal exponent (operand 2) and a decimal
significand (operand 3) is converted to binary
floating-point format, and the result is placed in the
binary floating-point field specified by the first operand.

Format: SS

AE I I D 18,1 D,
OBits 8 12 16 20 32 36 47

Operation: The first operand specifies a binary
floating-point field that occupies 4 bytes, and has the
short floating-point field format.

The second operand specifies the decimal exponent that
occupies from 1 through 16 bytes as specified by the
operand 4 value. This operand has the packed
fixed-point decimal format.

The third operand, base register hex E, specifies the
address of the decimal significand. This operand
occupies up to 16 bytes of storage as specified by the
operand 4 value and has the packed fixed-point decimal
format.

The fourth operand, halfword register hex F, contains
the digit lengths of the second and third operands. The
total number of digits for the exponent (operand 2) is
contained as a value between 1 and 31 in the leftmost
byte of the halfword register. The total number of digits
for the significand (operand 3) is contained as a value
between 1 and 31 in the rightmost byte of the halfword
register. The specified digit lengths must be within the
allowable ranges or a specification exception is signaled.
The length of operands 2 and 3 (in bytes), is calculated
by dividing the total digit count by 2 and adding 1 to the
resulting quotient. The specified number of digits are
considered right adjusted in their respective fields. An
even value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the corresponding operand value.

10-120

The exponent and significand contain a decimal form of
a floating-point number. The value of this number is:

Value = M * (10**E)
where:

M = the value of the significand
E = the value of the exponent operand
** denotes exponentation
* denotes multiplication

The exponent is assumed to contain a decimal integer
value. This signed integer value specifies a power of 10
that gives the floating-point value its magnitude. It has
an assumed decimal point immediately to the right of its
rightmost digit position.

The significand is assumed to contain a decimal value
with a leading integer digit in its leftmost digit position
and fractional digits in the digit positions to the right of
the integer digit. The signed decimal value specifies the
decimal digits that give the floating-point value its
precision. The significand has an assumed decimal point
immedately to the right of its leftmost digit position.

The decimal form floating-point value specified by the
exponent and significand operands is converted to
binary floating-point format as if to infinite precision.
However, the precision provided for in floating-point
fields is not as great as the precision that can be
provided for by decimal fields. Short floating-point
provides for unique representation of a maximum of 7
significant decimal digits of precision. The significant
digits of the significand start with the leftmost nonzero
decimal digit and continue to the right out to the end of
the significand value. Significant digits beyond 7 for a
short floating-point receiver may not be preserved in the
result and only serve to provide for uniqueness of the
conversion as well as for proper rounding.

The result of this conversion is then normalized and
rounded (according to the current float rounding mode)
to the significand length of the operand 1 field.

The converted, normalized, and rounded result is then
assigned to operand 1 in the short floating-point format.
The result is subject to the normal floating-point
overflow and underflow exception detection performed
on assignment.

When floating-point overflow or underflow is detected
and unmasked, the instruction operation is suppressed.
This action occurs because all overflowed and
underflowed values cannot be represented in the result
field format even when employing the modified biased
exponent representation.

Conversion of a zero value significand operand results in
a zero value of the same sign being assigned to operand
1.

Operands 2 and 3 are checked for valid decimal sign
and digit codes. The data exception is signaled if any
invalid values are encountered, and the operation is
suppressed. If an even number of digits is specified for
either the exponent or the significand operands, the
leftmost digit position of the packed operand field is not
checked and is not used as part of the decimal value.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-PoinfUnderflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands may overlap.

Program Exceptions:

- Address translation
- Addressing
- Data
- Effective address overflow
- Floating-point inexact result
- Floating-point overflow
- Floating-point underflow
- Specification

CVOFSF Example

OBits 8 12 16 20 32 36 47

Assembler: CVOFSF 0 1 (B 1), O2 (B2)

Machine: AEOO 2058 2064

Bd2) and B2 (2): 8000 OCOO 0000

B(E): 8000 OCOO 0300

R(F): 0709

Storage - Before

0/8 6/E

xxxx xxxx 8000 OCOO 0058

8000 OCOO 0064

8000 OCOO 0300

0000 OOOF

8000 OCOO 0058

8000 OCOO 0064

8000 OCOO 0300

3480 4687 5F

Storage - After

0/8 6/E

405E COOO

0000 OOOF

3480 4687 5F

Instruction Descriptions 10-121

CONVERT LONG FLOAT TO BINARY (CVLFB)

Instruction Description

The value stored at the second operand location is
converted from floating-point to binary and placed in
the first operand.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: Operand 1 has a signed binary format and is
either 2, 4, or 8 bytes in length. The length of the
operand is determined by an options mask.

Operand 2 is 8 bytes long, and has a long floating-point
format. The data for this operand must be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Operand 3 is a 4-bit options mask (bits 8 through 11)
that controls the conversion operation. The format of
the options mask is:

Bits Meaning

8

9-11

Mode of rounding to be performed.
o = Round using current floating-point

rounding mode in effect.
1 = Round using decimal round

algorithm.

Length of binary result (operand 1).
001 = 2 bytes.
011 = 4 bytes.
111 = 8 bytes.

All other values are invalid.

The floating-point value of the second operand is
converted to a fixed-point binary integer format. If
necessary, the floating-point value is rounded to an
integer value.

10-122

The rounding mode is specified by the options mask (bit
8 of operand 3). If floating-point rounding is specified,
rounding is performed according to the current
floating-point rounding mode in effect. If decimal
rounding mode is specified, the current floating-point
rounding mode is overridden, and the decimal round
algorithm is performed. In this case, a value of 1/2 (a 1
bit) is added to the leftmost bit position of the fractional
portion of the floating-point value, and that bit and
those bits to the right are truncated from the resulting
value.

The value assigned to operand 1 is formed as a
right-aligned, binary integer value with an assumed
binary point immediately to the right of its rightmost
digit.

If the rounded integer portion of the floating-point value
is 0, the first operand value is set to 0, and the sign is
set positive, regardless of the sign of the second
operand.

An invalid floating-point conversion exception is
signaled for any number outside the range of integer
values that can be contained in operand 1 (this includes
NaNs and infinities).

The result obtained from overlapping operands is
unpredictable.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must be
on a fullword boundary; otherwise, a specification
.exception occurs.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point inexact result
Floating-point invalid operand
Invalid floating-point conversion
Specification

Programming Note: The following is a summary of the
results for various combinations of operands.

Receiver

o
-8

+8

IFPC

IFPC

IFPC

Legend:

R

8

MNAN

UNAN

INF

IFPC

Source

:t:O

-R

+R

:!:INF

MNAN

UNAN

Real nonzero floating-point number

A nonzero binary number

A masked NAN

An unmasked NAN

Infinity

An invalid floating-point conversion
exception.

The assignment of a real number (R) as the value of the
binary field (8) is only successful if R is a value that can
be contained within the value range of the binary field;
otherwise, an invalid floating-point conversion may
result.

CVLFB Example

OBits 8 12 16 20

D,
050

Machine: CE78 4050 4060

32 36

81(4) and 82 (4): 0010 0200 0000

Storage - Before

0/8

47

G/E

0010 0200 0050

0010 0200 0060

xxxx xxxx xxxx xxxx

0010 0200 0050

0010 0200 0060

416F EOOO 0000 0000

Storage - After

0/8

OOFF

G/E

0000

416F EOOO 0000 0000

Condition Code: Not changed.

Instruction Descriptions 10-123

CONVERT LONG FLOAT TO DECIMAL FORM
(CVLFDF)

Instruction Description

The binary floating-point value specified by operand 5 is
converted to a decimal form of a floating-point value (a
decimal exponent and a decimal significand) and placed
into operand 1 (exponent) and operand 2 (significand)
locations.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: The first operand specifies the decimal
exponent and occupies from 3 through 16 bytes as
specified by the operand 4 value. This operand is
formed using the packed fixed-point decimal format.

The second operand specifies the decimal significand,
and occupies a maximum of 16 bytes as specified by
the operand 4 value. This operand is formed using the
packed fixed-point decimal format.

The third operand, bits 8 through 11, specifies an
options mask to control the conversion operation.

Bits

8

Meaning

Mode of rounding to be performed.

o = Round using current float rounding
mode in effect.

1 = Round using decimal round
algorithm.

9-11 Reserved.

10-124

The fourth operand, halfword register hex F, contains
the digit lengths of the first and second operands. The
total number of digits for operand 1 is specified as a
value between 5 and 31 in the leftmost byte of the
halfword register. The total number of digits for
operand 2 is specified as a value between 1 and 31 in
the rightmost byte of the halfword register. The
specified digit lengths must be within the allowable
ranges or a specification exception is signaled. The
length of operands 1 and 2 (in bytes) is calculated by
dividing the total digit count by 2 and adding 1 to the
resulting quotient. The number of digits specified are
considered right adjusted in their respective fields. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the corresponding operand value.

The fifth operand, base register hex E, specifies the
address of the binary floating-point number. The
number occupies 8 bytes, and has the long
floating-point field format.

The exponent (operand 1) and significand (operand 2)
contain a decimal form of a floating-point number. The
value of this number is:

Value = M * (10**E)
where:

M = the value of the decimal significand operand
E = the value of the exponent operand
** denotes exponentiation
* denotes multiplication

The exponent is formed as a decimal integer value. The
exponent, which gives the floating-point value its
magnitude, contains a signed integer value that specifies
a power of 10. The exponent has an assumed decimal
point immediately to the right of its rightmost digit
position.

The significand is formed as a decimal value with a
single integer digit in its leftmost digit position and
fractional digits in the digit positions to the right of the
integer digit. The significand contains a signed decimal
value that specifies decimal digits, to give the
floating-point value its precision. The significand has an
assumed decimal point immediately to the right of its
leftmost digit position.

The binary floating-point source is converted to a
decimal form floating-point value as if to infinite
precision. However, the precision provided for by
floating-point fields is not as great as the precision
provided for by decimal fields. Long floating-point
provides for unique representation of a maximum of 15
significant decimal digits of precision. The significant
digits of the significand start with the leftmost nonzero
decimal digit and continue to the right out to the end of
the significand value. The converted significand value is
formed as a normalized value, the significant digits are
left adjusted in the converted value, and the converted
exponent is set accordingly. Significand digits beyond
the leftmost 15 provide for uniqueness of the conversion
and should be considered only as precise as the
floating-point calculations that produced the source
value.

The converted significand value is adjusted to the
precision of the significand operand, if necessary, by
using the rounding algorithm specified in the options
mask operand. If the rounding algorithm causes a carry
out of the leading integer digit position, the converted
rounded significand value is shifted right one digit
position and the converted exponent incremented by 1
to realign the significand back to having one leading
integer digit. If floating-point rounding is selected,
rounding is performed according to the current
floating-point rounding mode in effect. If decimal
rounding is selected, the current floating-point rounding
mode is overridden and the decimal round algorithm is
performed. In this case, a value of 5 is added to the
converted significand in the leftmost digit position not
provided for in operand 2, and that digit, and those
digits to the right of it, are truncated from the resulting
significand value.

The result of this conversion is then assigned to the
exponent and significand operands. For an exponent or
significand operand with an even number of digits, the
leftmost digit position of the packed field in the operand
is set to binary O.

If the binary floating-point number being converted
contains a value of 0, the exponent operand is set to
positive 0, and the significand operand is set to 0 with
the sign of the binary floating-point number. A positive
o is set with the preferred positive sign of hex F. A
negative 0 is set with the preferred negative sign of hex
D.

A decimal overflow exception cannot occur on the
assignment of the exponent or significand values.

When the binary floating-point number being converted
contains a denormalized floating-point value, the first
and second operand values are set with the correctly
converted and rounded values; no exception is signaled.

When an infinity or NaN value is encountered in the
second operand, the invalid floating-point conversion
exception is signaled and the instruction operation is
suppressed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlap between operands 1 and 2 is unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Invalid floating-point conversion
- Specification

Instruction Descriptions 10-125

Programming Note: The following is a summary of the CVLFOF Example

~ results for various combinations of operands where:

1~31 ~ I ~'I I ~21 OP 0, O2
Receivers Source CE 064 070

0 Bits 8 12 16 20 32 36 47

-0*10**+0 -0
Assembler: CVLFOF 0 1 (BIl. O2 (B 2), M3

+0*10**+0 +0

-M*10**+E -R<-1 Machine: CEOC 2064 2070

+M*10**+E +R>1 BI (2) and B2 (2): 8000 OCOO 0000

-M*10**-E -R>-1
B(E): 8000 OCOO 0300

+M*10**-E +R<1

IFPC ±INF R(F): 0712

IFPC MNaN Storage - Before
IFPC UNaN

0/8 G/E

Legend: 8000 OCOO 0064 xxxx xxxx

R a real nonzero, non-denormal 8000 OCOO 0070 xxxx xxx x xxxx xxxx

floating-point number xxxx

E the exponent, a nonzero decimal 8000 OCOO 0300 405E COOO 0000 0000
number

M the significand, a nonzero decimal
MNaN a masked NaN

Storage - After
UNaN an unmasked NaN

0/8 G/E
INF infinity 8000 OCOO 0064 0000 002F
IFPC invalid floating-point conversion 8000 OCOO 0070 0123 0000 0000 0000

exception
OOOF

** denotes exponentiation 8000 OCOO 0300 405E COOO 0000 0000
* denotes multiplication

10-126

CONVERT LONG FLOAT TO PACKED DECIMAL
(CVLFPD)

Instruction Description

The value of the second operand is converted from
floating-point to packed decimal, and the result is
placed in the first operand location.

Format: 55

D,
OBits 8 12 16 20 32 36 47

Operation: The first operand occupies up to 16 bytes of
storage, as specified by the operand 4 value, and is
formed according to the packed fixed-point decimal
format.

The second operand occupies 8 bytes and has the long
floating-point "field format.

The third operand, bits 8 through 11, specifies an
options mask to control the conversion operation.

Bits Meaning

8 Mode of rounding to be performed.

9-11

a = Round using current float rounding

mode in effect.
1 = Round using decimal round

algorithm.
Reserved.

The fourth operand, halfword register hex F contains the
total and fractional digit count information for the
number of decimal digits contained in the first operand.
The total number of digits for operand 1 is contained, as
a value between 1 and 31, in the leftmost byte of the
halfword register. The number of·fractional digits for
operand 1 is contained as a value between a and 31, in
the rightmost byte of the halfword register. The
specified digit lengths must be within the allowable
ranges or a specification exception is signaled. The
number of integer digits in operand 1 is determined by
subtracting the fractional digit count from the total digit
count. The length of operand 1, in bytes, is calculated
by dividing the total digit count by 2 and adding 1 to the
resulting quotient. The number of digits specified are
considered right adjusted in the operand 1 field. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the operand value.

The floating-point value is converted to a fixed-point
packed decimal number as if to infinite precision.
However, the precision provided for in floating-point
fields i "ot as great as that which can be provided for
by decimal fields. Long floating-point provides for
unique representation of a maximum of 15 significant
decimal digits of precision. The leftmost nonzero digit of
the converted packed decimal number is considered the
start of the significant digits of the number. Significant
digits produced in the first operand beyond the first 15
for long floating-point serve to provide for uniqueness
of conversion and should be considered only as precise
as the calculations that produced the floating-point
number.

The result of this conversion is then rounded, if
necessary, to match the fractional precision of the
operand 1 field .. The rounding algorithm performed is
controlled by the third operand mask value. If
floating-point rounding is selected, rounding is
performed according to the current floating-point
rounding mode in effect. If decimal rounding is selected,
the current floating-point rounding mode is overridden
and the decimal round algorithm is performed. In this
case, a value of 5 is added to the converted number in
the leftmost digit position not provided for in operand 1,
and that digit, and those to the right of it, are truncated
from the resulting sum.

Instruction Descriptions 10-127

The converted and rounded result is then assigned to
operand 1 in the fixed-point packed decimal format for
the number of digits specified by the total digit count
for operand 1. If an even number of digits was
specified, the leftmost digit position of the packed
operand 1 field is set to binary O.

If the converted and rounded result is 0, the first
operand value is set to 0 and the sign is set positive,
regardless of the sign of the second operand.

When a denormalized floating-point value is converted
from the source operand, the first operand is set with
the correctly rounded value, and no exception is
signaled.

When any nonzero integer digits are truncated on the
left in assigning the converted and rounded result to
operand 1, or when an infinity value or a NaN value is
encountered in the second operand, the invalid
floating-point conversion exception is signaled and the
instruction operation is suppressed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlapping operands is unpredicatable.

Program Exceptions:

Address translation
Addressing

- Effective address overflow
- Invalid floating-point conversion

Specification

10-128

Programming Note: The following is a summary of the
results for various combinations of operands.

Receiver

+0

-D

+D

IFPC

IFPC

IFPC

Legend:

R

RO

D

MNaN

UNaN

INF

IFPC

Source

±RO

-R

+R

±INF

MNaN

UNaN

a real nonzero value converted and
rounded form of the source
floating-point number

a real zero value converted and
rounded form of the source
floating-point number

a nonzero decimal number

a masked NaN

an unmasked NaN

infinity

invalid floating-point conversion
exception

The assignment of a real number, R. as the value of the
decimal field, D, is only successful if R is a value that
can be contained within the value range of the decimal
field; otherwise, an invalid floating-point conversion may
result.

CVLFPD Example

0,
068

OBits 8 12 16 20 32 36

Assembler: CVLFPO 0 1 (B1), O2 (B2), M3

Machine: CEOA 2068 2050

Bl (2) and B2 (2): 8000 OCOO 0000

R(F): 0703

Storage - Before

0/8

xxxx xxxx

47

6/E

8000 OCOO 0068

8000 OCOO 0050 405E COOO 0000 0000

8000 OCOO 0068

8000 OCOO 0050

Storage - After

0/8 6/E

0123 OOOF

405E COOO 0000 0000

Instruction Descriptions 10-129

CONVERT LONG TO SHORT FLOAT (CVLSF)

Instruction Description

The value of the second operand is converted from the
long floating-point format to the short floating-point
format, and the result is placed in the first operand
location.

Format: 55

CE I I 7 I 8, I D,
OBits 8 12 16 20 32 36 47

Operation: The first operand occupies 4 bytes in storage
and is formed using the short floating-point field format.

The second operand occupies 8 bytes in storage and
has the long floating-point field format.

When the second operand contains a normalized
nonzero floating-point value, the significand value from
the second operand is rounded (according to the current
rounding mode) to the short floating-point format
significand length. The biased exponent value of the
second operand is adjusted to the correct biased
exponent value for the short floating-point format. This
converted floating-point value is then assigned to the
first operand according to the short floating-point field
format. This operation is subject to the detection of the
floating-point overflow and underflow conditions.

When the second operand contains a value of 0, the
first operand is assigned a zero value of the same sign.

When the second operand contains an infinity
floating-point value or a masked NaN value, the
exponent and significand values are truncated on the
right to the length of the short format prior to their
assignment into the first operand. If the truncation of a
masked NaN results in a fraction value of 0, the system
default masked NaN value is assigned to the first
operand.

10-130

When the second operand contains an unmasked NaN
value, the floating-point invalid operand condition is
detected. For the case where an unmasked NaN value
is encountered and the floating-point invalid operand
exception is masked, the first operand is assigned a
masked NaN value with the fraction value from the
original unmasked NaN truncated on the right to the
short format fraction length. If the truncation of the
unmasked NaN results in a fraction value of 0, the
system default masked NaN value is assigned to the
first operand.

If the second operand contains a denormalized
floating-point number, the floating-point underflow
condition is detected.

If the floating-point underflow condition is detected and
masked, the result is assigned a value as defined by the
floating-point underflow exception in Chapter 6. If this
condition is detected and unmasked, the floating-point
underflow condition is signaled. However, the operation
is suppressed, and no result is stored. This action is
taken because the underflowed value cannot be
represented in the short format result field, even when
employing the modified biased exponent representation.

In addition to the previous exception conditions of
floating-point overflow and floating-point underflow, the
floating-point inexact result and floating-point invalid
operand conditions can be detected as a result of the
execution of this instruction. Refer to Chapter 6 for a
detailed description of these conditions and the
instruction status when one of these conditions is
detected.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not changed.

Boundary Requirements: The result obtained from
overlapping operands is unpredictable.

Program Exceptions:

Address translation
Addressing

- Effective address overflow
- Floating-point overflow
- Floating-point underflow

Floating-point inexact result
- Floating-point invalid operand
- Specification

CVLSF Example

OBits 8 12 16 20

D,
058

32 36

Assembler: CVLSF 0 1 (8 1), O2 (82)

Machine: CE07 2058 2050

8 1 (2) and 8 2 (2): 8000 OCOO 0000

Storage - Before

0/8

xxxx xxxx

47

G/E

8000 OCOO 0058

8000 OCOO 0050 405E COOO 0000 0000

8000 OCOO 0058

8000 OCOO 0050

Storage - After

0/8 6/E

42F6 0000

405E COOO 0000 0000

Instruction Descriptions 10-131

CONVERT MULTI-LEAVING REMOTE JOB ENTRY
TO CHARACTER (CVTMC)

Instruction Description

The operation converts the data at the second operand
location from MRJE (MULTI-LEAVING Remote Job
Entry) to character format. The conversion is controlled
by information whose address is in the base register
specified in the third operand. The result is placed in
the first operand.

The operands are as follows:

Operand Description

2

3

4

5

The base and displacement for the
starting address of the result string that
is to contain the converted data.

The base and displacement for the
starting address of the source string that
contains the data to be converted.

The base register that contains tl')e
address of the control information for
the conversion operation to be
performed.

Halfword register 14 specifies the length
of the first operand (result string). A
length of zero causes a specification
exception.

Halfword register 15 specifies the length
of the second operand (source string). A
length of zero causes a specification
exception.

The controls operand is a 6-byte string that specifies
additional information to control the conversion
operation. The controls operand has the following
format:

Result Source Mod·
Result

Offset Offset ifier
Record
Length

0 Bytes 2 4 5

Bytes Description

0-1 Result offset
2-3 Source offset
4 Modifier
5 Result record length

10-132

Upon input to the instruction, result offset and the
source offset fields specify the offsets at which bytes of
the source field are processed and entered into the
result field. The source and result offset fields are set to
values which indicate how much of the conversion is
complete when the instruction is interrupted or
complete. An offset beyond the end of the related
source or result operand causes a specification
exception.

The modifier has the following valid values:

Value
(Hex) Description

00 Do not move subrecord control blocks
from the source into the result.

01 Move subrecord control blocks
from the source into the result.

Note: An invalid modifier causes a specification
exception.

The result record length specifies the record length to be
used to convert source records into the result. A length
of zero causes a specification exception.

Format: SS

Dl
OBits 8 12 16 20 32 36 47

Operation: The operation begins by accessing the bytes
of the source operand at the location specified by the
source offset. This location is assumed to be the start
of a record. The source operand bytes are converted
into the result according to the following procedure.

The first byte of the source record is considered a byte
of a record control block to be ignored during
conversion.

The second byte of the source record is considered to
be a subrecord control block. If a modifier of hex 00 is
specified, the subrecord control block is ignored. If a
modifier of hex 01 is specified, the subrecord control
block is copied into the result.

The following bytes of the source record make up the
string control bytes. One or more string control bytes
describe the strings to be built in the result record.

The format of the string control bytes is as follows:

Value
Byte Bit (Binary) Description

0-1 a a End of record; the end-of-record string control byte is hex 00.

All other string control bytes.

a The string is compressed.

The string is not compressed.

2 When bit 1 = O.

a Blanks (hex 4Os) have been deleted.

Nonblank characters have been deleted. The next character in the data stream is
the specimen character.

When bit 1 = 1, this bit is part of the length field for length of uncompressed data.

3-7 00001-
11111

If bit 1 = 0, this is the number of characters that have been deleted.

2-7 000001- If bit 1 = 1, this is the number of characters before the next string control block (no
111111 compression). The uncompressed (unidentical) bytes follow the string control bytes

in the data stream.

Note: A length of zero in a string control byte results in
a conversion exception.

Strings of blanks or non blank identical characters
described in the source record are repeated in the result
operand the number of times indicated by the string
control block count. Strings of nonidentical characters
described in the source record are moved into the result
operand for the length indicated by the string control
byte count.

The operation applies the above procedure to each
record in the source until it encounters the end of the
source. Updated values for the result offset and source
offset are put into the appropriate fields in the controls
operand. These values describe the start offsets for the
next record to be converted, allowing for interruption of
the instruction on a record boundary.

When an end-of-record string control byte (hex 00) is
encountered in the source, the result is padded with
blanks out to the end of the current record.

When the end-of-source record is encountered,
whether or not in conjunction with a record boundary or
end-of-string record control byte in the source, the
instruction ends with a condition code of zero (source
used up). See Programming Note.

If the converted form of a record cannot be completely
contained in the result, the instruction ends with a
condition code of 1 (result overrun). See Programming
Note.

If the converted record is larger than the result record
length, the instruction terminates by signaling a length
conformance exception.

I nstruction Descriptions 10-133

Programming Note: The result offset locates the byte
following the last fully converted record in the result.
The source offset locates the byte following the last
source record for which conversion is complete. The
contents of the remaining bytes in the result after the
last converted record are unpredictable.

Any form of overlap between the operands on this
instruction yields unpredictable results in the result
operand.

Overflow and Sign Codes: Not applicable.

Condition Code:

o Source used up
Result overrun

2
3

Carry and Boundary Requirements: Not applicable.

Program Exceptions:

- Address translation
- Addressing
- Conversion
- Effective address overflow
- Length conformance
- Specification

10-134

CVTMC Example

OBits 8 12 16 20

D,
6A8

Machine: BE55 36A8 4644

32 36

D
644

47

B 1 (3): 0001 236A 0000 (Base register for result)
B2 (4): 0001136AOOOO (Base register for source)
B3 (5): 0001 036A 0620 (Address of control operand)
R (14): 0020 (Length of result)
R (15): 0014 (Length of source)

Storage-Before

0/8 2/A 4/C 6/E
0001 036A 0620 0000 0000 0010 XXXX

0001 136A 0644 F080 A811
C8E3 C5E2 E3E3 C5E2
E300 FF80 84A8 2200

0001 236A 06A8 xxx X XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX

Storage-A fter

0/8 2/A 4/C 6/E
0001 036A 0620 0020 0014 0010 XXXX

0001 136A 0644 F080 A811
C8E3 C5E2 E3E3 C5E2
E300 FF80 8488 2200

0001 236A 06A8 1111 1111 1111 1111
E3C5 E2E3 E3C5 E2E3
4040 4040 2222 2222
2222 2222 0000 0000

Before After
Condition Code: X a

This page is intentionally left blank.

Instruction Descriptions 10-135

CONVERT PACKED DECIMAL TO LONG FLOAT
(CVPDLF)

Instruction Description

The value of the second operand is converted from
packed decimal to floating-point, and the result is
placed in the first operand location.

Format: SS

CE I I B I B, I D,
OBits 8 12 16 20 32 36 47

Operation: The first operand occupies 8 bytes and is
formed according to the long floating-point field format.

The second operand occupies up to 16 bytes of storage,
as specified by the operand 3 value, and has the packed
fixed-point decimal format.

The third operand, halfword register hex F, contains the
total and fractional digit count information for the
number of decimal digits contained in the second
operand. The total number of digits for operand 2 is
contained, as a value between 1 and 31, in the leftmost
byte of the halfword register. The number of fractional
digits for operand 2 is contained as a value between 0
and 31 in the rightmost byte of the halfword register.
The specified digit lengths must be within the allowable
ranges or a specification exception is signaled. The
number of integer digits in operand 2 is determined by
subtracting the fractional digit count from the total digit
count. The length of operand 2 in bytes, is calculated by
dividing the total digit count by 2 and adding 1 to the
resulting quotient. The number of digits specified are
considered right adjusted in the operand 2 field. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the operand value.

10-136

The fixed-point decimal value is converted to
floating-point as if to infinite precision. However, the
precision provided by floating-point fields is not as great
as that which can be provided by decimal fields. Long
floating-point provides for unique representation of a
maximum of 15 significant decimal digits of precision.
The leftmost nonzero digit of the packed decimal
number is considered the start of the significant digits of
the number. Significant digits in the second operand
beyond the first 15 for long floating-point may not be
preserved in the result field and only serve to provide
for rounding and uniqueness of conversion.

The result of this conversion is then normalized and
rounded (according to the current floating-point
rounding model to the significand length of the operand
1 field. The converted, normalized, and rounded result is
then assigned to operand 1 in the long floating-point
format.

Conversion of a zero value second operand results in a
zero value of the same sign being assigned to operand
1.

Operand 2 is checked for valid decimal sign and digit
codes. The data exception is signaled if any invalid
values are encountered, and the operation is
suppressed. If an even number of digits was specified,
the leftmost digit position of the packed operand 2 field
is not checked and is not used as part of the fixed-point
decimal value.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlapping operands is unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Oata

Effective address overflow
- Floating-point inexact result
- Specification

CVPOLF Example

OBits 8 12 16 20

0,
040

32 36

Assembler: CVPOLF 0, (B 1), O2 (B2)

Machine: CEOB 2040 206C

B 1 (2) and B2 (2): 8000 OCOO 0000

R(F): 0703
Storage - Before

0/8

47

6/E

8000 OCOO 0040

8000 OCOO 006C

xxxx xxxx xxxx xxxx

8000 OCOO 0040

8000 OCOO 006C

0000 0070

Storage - After

0/8

BF7C AC08 3126

6/E

E979

0070 0000

Instruction Descriptions 10-137

CONVERT PACKED DECIMAL TO SHORT FLOAT
(CVPDSF)

Instruction Description

The value of the second operand is converted from
packed decimal to floating-point. and the result is
placed in the first operand location.

Format: SS

AE liB 1 B,I D,
OBits 8 12 16 20 32 36 47

Operation: The first operand occupies 4 bytes and is
formed according to the short floating-point field
format.

The second operand occupies up to 16 bytes of storage.
as specified by the operand 3 value. and has the packed
fixed-point decimal format.

The third operand. halfword register hex F. contains the
total and fractional digit count information for the
number of decimal digits contained in the second
operand. The total number of digits for operand 2 is
contained. as a value between 1 and 31. in the leftmost
byte of the halfword register. The number of fractional
digits for operand 2 is contained as a value between 0
and 31 in the rightmost byte of the halfword register.
The specified digit lengths must be within the allowable
ranges or a specification exception is signaled. The
number of integer digits in operand 2 is determined by
subtracting the fractional digit count from the total digit
count. The length of operand 2. in bytes. is calculated
by dividing the total digit count by 2 and adding 1 to the
resulting quotient. The number of digits specified are
considered right adjusted in the operand 2 field. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the operand value.

10-138

The fixed-point decimal value is converted to
floating-point as if to infinite precision. However. the
precision provided by floating-point fields is not as great
as that which can be provided by decimal fields. Short
floating-point provides for unique representation of a

maximum of 7 significant decimal digits of precision.
The leftmost nonzero digit of the packed decimal
number is considered the start of the significant digit of
the number. Significant digits in the second operand
beyond the first 7 for short floating-point may not be
preserved in the result field and only serve to provide
for rounding and uniqueness of conversion.

The result of this conversion is then normalized and
rounded (according to the current floating-point
rounding mode) to the significand length of the operand
1 field. The converted. normalized. and rounded result is
then assigned to operand 1 in the short floating-point
format.

Conversion of a zero value second operand results in a
zero value of the same sign being assigned to operand
1.

Operand 2 is checked for valid decimal sign and digit
codes. The data exception is signaled if any invalid
values are encountered. and the operation is
suppressed. If an even number of digits was specified.
the leftmost digit position of the packed operand 2 field
is not checked and is not used as part of the fixed-point
decimal value.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlapping operands is unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Data
- Effective address overflow
- Floating-point inexact result
- Specification

CVPOSF Example

0,
058

a Bits 8 12 16 20 32 36 47

Assembler: CVPDSF Dl (B 1 L Dz (Bz)

Machine: AEOB 2058 206C

Bd2) and Bz (2): 800D OCOO 0000

R(F): 0703

800D OCOO 0058

800D OCOO 006C

800D OCOO 0058

800D OCOO 006C

Storage - Before

0/8

xxxx xxxx

Storage - After

0/8

BBE5 6042

6/E

0000 007D

6/E

0000 007D

I nstruction Descriptions 10-139

CONVERT PACKED TO BINARY (CVPB)

Instruction Description

The radix of the second operand is changed from
decimal to binary, and the result is placed in the
first-operand location.

Format: SS

F7 I I 0 I B, I D,
OBits 8 12 16 20 32 36 47

Operation: The number is treated as a right-aligned,
binary value both before and after conversion. The
second operand occupies 8 bytes in storage and has the
packed decimal format. The digit codes are checked for
validity. Improper codes cause a data exception and the
operation is terminated. The first operand occupies' a
word in storage and is formed using the signed binary
format.

The maximum number that can be converted to a·,
32-bit, signed, binary integer is 2 147 483 647; the
minimum number is -2 147483648. For any number
outside this range, the operation is completed by placing
the rightmost 32 bits in the first-operand location and
causing a binary overflow exception.

Overflow: See Operation.

Sign Code: The sign code is checked for validity. An
improper code causes a data exception and the
operation is terminated.

Condition Code: Not changed.

Carry: Not applicable.

10-140

Boundary Requirements: Both operands must begin on a
word boundary; otherwise a specification exception
occurs and the operation is suppressed. The operands
can overlap in storage.

Program Exceptions:

- Address translation
- Addressing
- Binary overflow
- Data

Effective address overflow
- Specification

CVPB Example

Op I I ~ I~'I D, I ~21 F7 760

0 Bits 8 12 16 20 32

Assembler: CVPB DdBd, D2 (B2)

Machine: F700 3760 3430

B, (3) and B2(3): 1810 2561 COOO

Storage - Before

0/8 2/A

1810 2561 C430 0000 0214

1810 2561 C760 xxxx xxxx

Storage - After

0/8 2/A

D2
430

36 47

4/C 6/E

7483 647F

4/C 6/E

1810 2561 C430

1810 2561 C760

0000 0214 7483 647F

7FFF FFFF

CONVERT PACKED TO ZONED (CVPZ)

Instruction Description

The format of the second operand is changed from
packed to zoned, and the result is placed in the
first-operand location.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: The digits and sign of the second operand
are placed unchanged in the first-operand location,
using the zoned format. Zones with coding of 1111 are
supplied for all bytes except the rightmost byte, which
receives the sign of the packed operand. The operand
sign and digits are not checked for valid codes.

The result is obtained as if the field were processed
right to left. If necessary, the second operand is
logically extended to the left with zero digits.

Overflow: If the first-operand field is too short to
contain all significant digits of the second-operand field,
decimal overflow occurs and the leftmost significant
digits are lost.

Sign Code: See Operation.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is to the right of the
rightmost byte of the second operand by the number of
bytes in the second operand minus two; otherwise the
overlap is destructive and the results are unpredictable.
If 1 or 2 bytes are converted, the rightmost byte of the
two operands can coincide.

Program Exceptions:

Address translation
- Addressing
- Decimal overflow
- Effective address overflow

CVPZ Example

OBits 8 12 16 20

0,
270

Machine: F573 4270 4100

32 36

Bd4) and B2 (4): 30B8 5693 COOO

Storage - Before

47

0/8 21 A 4/C 6/E

30B8 5693 Cl00

30B8 5693 C270

30B8 5693 Cl00

30B8 5693 C270

0210 261F

xxxx xxxx xxxx xxx x

Storage - After

0/8 2/A 4/C 6/E

0210 261F

FOFO F2Fl FOF2 F6Fl

Instruction Descriptions 10-141

CONVERT PACKED TO ZONED WITH DATA
CHECKING (CVPZC)

Instruction Description

The format of the second operand is changed from
packed to zoned, and the result is placed in the
first-operand location.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The digits and sign of the second operand
are placed unchanged in the first-operand location,
using the zoned format. Zones with coding of 1111 are
supplied for all bytes except the rightmost byte, which
receives the sign of the packed operand. If the sign of
the packed operand is positive, the preferred sign of
1111 is used. If the sign of the packed operand is
negative, the preferred sign of 1101 is used, unless the
digits are all zero, in which case a plus sign of 1111 is
used. The operand sign and digits are checked for valid
codes.

The result is obtained as if the field were processed
right to left. If necessary, the second operand is
logically extended to the left with zero digits.

The length of each operand is in digits.

Overflow: If the first-operand field is too short to
contain all significant digits of the second-operand field,
decimal overflow occurs and the leftmost significant
digits are lost.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-142

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is to the right of the
rightmost byte of the second operand by the number of
bytes in the second operand minus two; otherwise, the
overlap is destructive and the results are unpredictable.
If 1 or 2 bytes are converted, the rightmost byte of the
two operands can coincide.

Program Exceptions:

Address translation
- Addressing

Data
Decimal overflow
Invalid segment group address

CVPZC Example

D,
270

OBits 8 12 16 20 32 36 47

Machine: E576 4270 4100

Bl (4) and B2 (4): 30B8 5693 COOO

Storage - Before

0/8 2/A 4/C G/E

30B8 5693 ClOO 0210 261F

30B8 5693 C270 xxxx xxxx xxxx xxxx

Storage - After

0/8 2/A 4/C 6/E

0210 261F 30B8 5693 ClOO

30B8 5693 C270 FOFO F2Fl FOF2 F6F1

CONVERT SHORT FLOAT TO BINARY (CVSFB)

Instruction Description

The value stored at the second operand location is
converted from floating-point to binary and placed in
the first operand location.

Format: SS

OBits 8 1 2 16 20 32 36 47

Operation: Operand 1 has a signed binary format and is
either 2, 4, or 8 bytes in length. The length of the
operand is determined by an options mask.

Operand 2 is 4 bytes long, and has a short
floating-point format. The data for this operand must
be fullword aligned; otherwise, a specification exception
occurs, and the operation is suppressed.

Operand 3 is a 4-bit options mask (bits 8 through 11)
that controls the conversion operation. The format of
the options mask is:

Bits Meaning

8

9-11

Mode of rounding to be performed.

a = Round using current floating-point

rounding mode in effect.
= Round using decimal round

algorithm.

Length of binary result (operand 1).
001 = 2 bytes.
all = 4 bytes.
111 = 8 bytes.
All other values are invalid.

The floating-point value of the second operand is
converted to a fixed-point binary integer format. If
necessary, the floating-point value is rounded to an
integer value.

The rounding mode is specified by the options mask (bit
8 of operand 3). If floating-point rounding is specified,
rounding is performed according to the current
floating-point rounding mode in effect. If decimal
rounding mode is specified, the current floating point
rounding mode is overridden and the decimal round
algorithm is performed. In this case, a value of 1/2 (a 1
bit) is added to the leftmost bit position of the fractional
portion of the floating-point value, and that bit, and
those bits to the right. are truncated from the resulting
value.

The value assigned to operand 1 is formed as a
right-aligned, binary integer value with an assumed
binary point immedately to the right of its rightmost
digit.

If the rounded integer portion of the floating-point value
is zero, the first operand value is set to zero, and the
sign is set positive, regardless of the sign of the second
operand.

An invalid floating-point conversion exception is
signaled for any number outside the range of integer
values that can be contained in operand 1 (this includes
NaNs and infinities).

The result obtained from overlapping operands is
unpredictable.

Overt/ow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must be
on a fullword boundary; otherwise, a specification
exception occurs.

Program Exceptions:

- Address translation
Addressing
Effective address overflow
Floating-point inexact result

- Floating-point invalid operand
Invalid floating-point conversion
Specification

Instruction Descriptions 10-142.1

---------------------------- ---

This page is intentionally left blank.

10-142.2

Programming Note: The following is a summary of the
results for various combinations of operands.

Receiver

o
-B

+B

IFPC

IFPC

IFPC

Legend:

R

B

MNaN

INF

IFPC

Source

±O

-R

+R

:tINF

MNaN

UNaN

a real nonzero floating-point
number

a nonzero binary number

a masked NaN

infinity

an invalid floating-point conversion
exception

The assignment of a real number (R), as the value of the
binary field (B), is only successful if R is a value that can
be contained within the value range of the binary field;
otherwise, an invalid floating-point conversion may
result.

CVSFB Example

0,
050

OBits 8 12 16 20 32 36

Machine: AE38 4050 4060

Bd4) and B2 (4): 0010 0200 0000

0010 0200 0050

0010 0200 0060

0010 0200 0050

0010 0200 0060

Storage - Before

0/8

xxxx xxxx

4D80 8080

Storage - After

0/8

1010 1900

4080 8080

Condition Code: Not changed.

47

6/E

6/E

Instruction Descriptions 10-143

CONVERT SHORT FLOAT TO DECIMAL FORM
(CVSFDF)

Instruction Description

The binary floating-point value specified by operand 5 is
converted to a decimal form of a floating-point value (a
decimal exponent and a decimal significand and placed
into operand 1 (exponent) and operand 2 (significand)
locations.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: The first operand specifies the decimal
exponent and occupies from 3 to 16 bytes as specified
by the operand 4 value. This operand is formed using
the packed fixed-point decimal format.

The second operand specifies the decimal significand,
and occupies a maximum of 16 bytes of storage as
specified by the operand 4 value. This operand is
formed using the packed fixed-point decimal format.

The third operand, bits 8 through 11, specifies an
options mask to control the conversion operation.

Bits Meaning

8 Mode of rounding to be performed.
o = Round using current float rounding

mode in effect.
1 = Round using decimal round

algorithm.

9-11 Reserved.

10-144

The fourth operand, halfword register hex F, contains
the digit lengths of the first and second operands. The
total number of digits for operand 1 is contained as a
value between 5 and 31 in the leftmost byte of the
halfword register. The total number of digits for
operand 2 is contained as a value between 1 and 31 in
the rightmost byte of the halfword register. The
specified digit lengths must be within the allowable
ranges, or a specification exception is signaled. The
length of operands 1 and 2 (in bytes) is calculated by
dividing the total digit count by 2 and adding 1 to the
resulting quotient. The number of digits specified are
considered right adjusted in their respective fields. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the corresponding operand value.

The fifth operand, base register hex E, specifies the
address of the binary floating-point number. The
number occupies 4 bytes, and has the short
floating-point field format.

The exponent (operand 1) and significand (operand 2)
contain a decimal form of a floating-point number. The
value of this number is:

Value = M * (10**E)
where:

M = the value of the significand operand
E = the value of the exponent operand
** denotes exponentiation
* denotes multiplication

The exponent is formed as a decimal integer value. The
exponent, which gives the floating-point value its
magnitude, contains a signed integer value that specifies
a power of 10. The exponent has an assumed decimal
point immediately to the right of its rightmost digit
position.

The significand is formed as a decimal value with a
single integer digit in its leftmost digit position and
fractional digits in the digit positions to the right of the
integer digit. The significand contains a signed decimal
value that specifies decimal digits to give the
floating-point value its precision. The significand has an
assumed decimal point immediately to the right of its
leftmost digit position.

The binary floating-point source is converted to a
decimal form floating-point value as if to infinite
precision. However, the precision provided for by
floating-point fields is not as great as the precision
provided for by decimal fields. Short floating-point
provides for unique representation of a maximum of 7
significant decimal digits of precision. The significant
digits of the significand start with the leftmost nonzero
decimal digit and continue to the right out to the end of
the significand value. The converted significand value is
formed as a normalized value, the significant digits are
left adjusted in the converted value, and the converted
exponent is set accordingly. Significand digits beyond
the leftmost 7 provide for uniqueness of the conversion
and should be considered only as precise as the
floating-point calculations that produced the sourve
value.

The converted significand value is adjusted to the
precision of the significand operand, if necessary, by
using the rounding algorithm specified in the options
mask operand. If the rounding algorithm causes a carry
out of the leading integer digit position, the converted
rounded significand value is shifted right one digit
position and the converted exponent incremented by one
to realign the significand back to having one leading
integer digit. If floating-point rounding is selected,
rounding is performed according to the current
floating-point rounding mode in effect. If decimal
rounding is selected, the current floating-point rounding
mode is overridden and the decimal round algorithm is
performed. In this case, a value of 5 is added to the
converted significand in the leftmost digit position not
provided for in operand 2, and that digit, and those
digits to the right of it are truncated from the resulting
significand value.

The result of this conversion is then assigned to the
exponent and significand operands. For an exponent or
significand operand with an even number of digits, the
leftmost digit position of the packed field in the operand
is set to binary O.

If the binary floating-point number being converted
contains a value of 0, the exponent operand is set to
positive 0, and the significand operand is set to 0 with
the sign of the binary floating-point number. A positive
o is set with the preferred positive sign of hex F. A
negative 0 is set with the preferred negative sign of hex
D.

A decimal overflow exception cannot occur on the
assignment of the exponent significand values.

When the binary floating-point number being converted
contains a denormalized floating-point value, the first
and second operand values are set with the correctly
converted and rounded values; no exception is signaled.

When an infinity or NaN value is encountered in the
second operand, the invalid floating-point conversion
exception is signaled and the instruction operation is
suppressed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlap between operands 1 and 2 is unpredictable.

Program Exceptions:

Address translation
- Addressing

Effective address overflow
Invalid floating-point conversion
Specification

Instruction Descriptions 10-145

Programming Note: The following is a summary of
results for various combinations of operands.

Receivers Source

-0*10**+0 -0

+0*10**+0

-M*10**+E

+M*10**+E

-M*1O**-E

+M*10**-E

IFPC

IFPC

IFPC

Legend:

R

E

M

MNaN

UNaN

INF

IFPC

**

*

10-146

=

+0

-R<-1

+R>1

-R>-1

+R<1

±INF

MNaN

UNaN

a real nonzero, nondenormal
floating-point number

the exponent, a nonzero decimal
number

the significand, a nonzero decimal
number

a masked NaN

an unmasked NaN

infinity

invalid floating-point conversion
exception

denotes exponentiation

denotes multiplication

CVSFOF Example

0,
064

OBits 8 1 2 16 20 32 36

Machine: AEOC 2064 207E

B 1 (2) and B2 (2): 8000 oeoo 0000

B(E): 8000 OCOO 0300

R(F): 070F

Storage - Before

0/8

8000 OCOO 0064 xxxx

8000 OCOO 007E

xxxx xx

800 0 OCOO 0300 405E COOO

Storage - After

0/8

8000 OCOO 0064 0000

8000 OCOO 007E

4687 5F

8000 OCOO 0300 405E COOO

47

6/E

xxxx

xxxx

6/E

OOOF

3480

CONVERT SHORT FLOAT TO PACKED DECIMAL
(CVSFPD)

Instruction Description

The value of the second operand is converted from
floating-point to packed decimal, and the result is
placed in the first operand location.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: The first operand occupies up to 16 bytes of
storage, as specified by the operand 4 value, and is
formed according to the packed fixed-point decimal
format.

The second operand occupies 4 bytes, and has the short
floating-point field format.

The third operand, bits 8 through 11, specifies an
options mask to control the conversion operation.

Bits Meaning

8 Mode of rounding to be performed.

9-11

a = Round using current float rounding

mode in effect.
1 = Round using decimal round

algorithm.

Reserved.

The fourth operand, halfword register hex F, contains
the total, and the fractional digit count information for
the number of decimal digits contained in the first
operand. The total number of digits for operand 1 is
contained, as a value between 1 and 31, in the leftmost
byte of the halfword register. The number of fractional
digits for operand 1 is contained as a vaJue between a
and 31, in the rightmost byte of the halfword register.
The specified digit lengths must be within the allowable
ranges or a specification exception is signaled. The
number of integer digits in operand 1 is determined by
subtracting the fractional digit count from the total digit
count. The length of operand 1, in bytes, is calculated
by dividing the total digit count by 2 and adding 1 to the
reSUlting quotient. The number of digits specified are
considered right adjusted in the operand 1 field. An
even-value digit length indicates the leftmost digit
position of the packed field is not to be considered a
digit position of the operand value.

The floating-point value is converted to a fixed·point
packed decimal number as if to infinite precision.
However, the precision provided by floating-point fields
is not as great as that which can be provided by decimal
fields. Short floating-point provides for unique
representation of a maximum of 7 significant decimal
digits of precision. The leftmost nonzero digit of the
converted packed decimal number is the start of the
significant digits of the number. Significant digits
produced in the first operand beyond the first 7 for
short floating-point provide for uniqueness of
conversion and should be considered only as precise as
the calculations that produced the floating-point
number.

The result of this conversion is then rounded, if
necessary, to match the fractional precision of the
operand 1 field. The rounding algorithm performed is
controlled by the third operand mask value. If
floating-point rounding is selected, rounding is
performed according to the current floating-point
rounding mode in effect. If decimal rounding is selected,
the current floating-point rounding mode is overridden
and the decimal round algorithm is performed. In this
case, a value of 5 is added to the converted number in
the leftmost digit position not provided for in operand 1,
and that digit, and those to the right of it. are truncated
from the resulting sum.

Instruction Descriptions 10-147

The converted and rounded result is then assigned to
operand 1 in the fixed-point packed decimal format for
the number of digits specified by the total digit count
for operand 1. If any even number of digits was
specified, the leftmost digit position of the packed
operand 1 field is set to binary O.

If the converted and rounded result is 0, the first
operand value is set to 0, and the sign is set positive,
regardless of the sign of the second operand.

When a denormalized floating-point value is converted
from the source operand, the first operand is set with
the correctly rounded value, and no exception is
signaled.

When any nonzero integer digits are truncated on the
left in assigning the converted and rounded result to
operand 1, or when an infinity value or a NaN value is
encountered in the second operand, the invalid
floating-point conversion exception is signaled, and the
instruction operation is suppressed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlapping operands is unpredictable.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Invalid floating-point conversion
Specification

10-148

Programming Note: The following is a summary of the
results for various combinations of operands.

Receiver Source

+0 ±RO

-D -R

+0 +R

IFPC ±INF

IFPC MNaN

IFPC UNaN

Legend

R = a real nonzero value converted and
rounded form of the source
floating-point number

RO a real zero value converted and
rounded form of the source
floating-point number

D a nonzero decimal number

MNaN a masked NaN

UNaN an unmasked NaN

INF infinity

IFPC invalid floating-point conversion
exception

The assignment of a real number, R, as the value of the
decimal field, D, is. only successful if R is a value that
can be contained within the value range of the decimal
field; otherwise, an invalid floating-point conversion may
result.

j

.;)

CVSFPO Example

0,
068

OBits 8 12 16 20 32 36

Machine: AEOA 2068 2060

Bl (2) and B2 (2):

R(F): 0703

800D OCOO 0068

800D OCOO 0060

800D acoo 0068

800D acoo 0060

800D OCOO 0000

Storage - Before

0/8

xxxx xxxx

405E COOO

Storage - After

0/8

0003 480F

405E COOO

47

6/E

6/E

Instruction Descriptions 10-149

CONVERT SHORT TO LONG FLOAT (CVSLF)

Instruction Description

The value of the second operand is converted from the
short floating-point format to the long floating-point
format, and the result is placed in the first operand
location.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: The first operand occupies 8 bytes in storage
and is formed using the long floating-point field format.

The second operand occupies 4 bytes in storage and
has the short floating-point field format.

When the second operand contains a normalized
nonzero floating-point value, the significand value ftom
the second operand is padded on the right with 0 bits to
the long floating-point format significand length. The
biased exponent value of the second operand is
adjusted to the correct biased exponent value for the
long floating-point format. This converted floating-point
value is then assigned to the first operand according to
the long floating-point field format. The sign bit value
of operand 2 is assigned to the sign bit for operand 1.

When the second operand contains a value of 0, the
first oprand is assigned a zero value of the same sign.

When the second operand contains an infinity
floating-point value or a masked NaN value, the
exponent is padded on the right with 1 bits to the long
floating-point format exponent length, and the
significand is padded on the right with 0 bits to the long
floating-point format significand length. The padding
occurs prior to their assignment into operand 1. The
sign bit value of operand 2 is assigned to the sign bit
for operand 1.

10-150

When the second operand contains an unmasked NaN
value, the floating-point invalid operand condition is
detected. For the case where the floating-point invalid
operand condition is detected. For the case where the
floating-point invalid operation exception is masked,
operand 1 is assigned with a masked NaN value with
the fraction value from the original unmasked NaN
padded with zeros on the right out to the long
floating-point format fraction length.

When the second operand contains a denormalized
floating-point number, the result field is assigned the
correctly converted and normalized value, and no
exception is signaled.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlapping operands is unpredictable.

Program Exceptions:

Address translation
- Addressing
- Effective address overflow

Floating-point invalid operand
Specification

CVSLF Example

OBits 8 12 16 20

0,
040

32 36

Assembler: eVSLF D, (8,), D2 (82)

Machine: AE07 2040 2060

8,,2) and 82 (2): 800D oeoo 0000

Storage - Before

0/8

47

6/E

800D oeoo 0040

800D oeoo 0060

xxxx xxxx xxxx xxxx

800D oeoo 0040

800D oeoo 0060

405E eooo

Storage - After

0/8 6/E

4008 D800 0000 0000

405E eooo

Instruction Descriptions 10-151

CONVERT SNA TO CHARACTER (CVTSC)

Instruction Description

The operation converts the data at the second operand
location from SNA (systems network architecture)
compressed format. The conversion is controlled by
information whose address is in the base register
specified in the third operand. The result is placed in
the first operand.

The operands are as follows:

Operand

2

3

4

5

10-152

Description

The base and displacement for the
starting address of the result string
that is to contain the converted data.

The base and displacement for the
starting address of the source string
that contains the data to be
converted.

The base register that contains the
address of the control information for
the conversion operation to be
performed.

Halfword register 14 specifies the
length of the first operand (result
string). A length of zero causes a
specification exception.

Halfword register 15 specifies the
length of the second operand (source
string). A length of zero causes a
specification exception.

The controls operand is a 14-byte string with an
optional extension that specifies additional information
to control the conversion operation. The controls
operand has the following format:

Receiver Source
Algo- Receiver Record

Record Separator rithm
Offset Offset

Modifier Length Character

o

0

Bytes

0-1

2-3

4

5

6

7

8

9-10

11

12-13

0-63

2

Record
Separator
Translate
Table

Bytes

Description

Receiver offset

Source offset

4

63

Algorithm modifier

Receiver record length

Record separator character

5

Prime compression character

Unconverted receiver record bytes

Conversion status

6

Unconverted transparency string bytes

Offset to translate table

Record separator translate table

Uncon-) Prime
Uncon- verted Offset
verted

Conversion Trans- to Com· Receiver (pression Status parency Translate
Record

Character String Table
Bytes Bytes

7 8 9 11 12 14

Upon input to the instruction, the result offset and the
source offset fields specify the offsets at which bytes of
the source field are processed and entered into the
result field. The source and result offset fields are set to
values which indicate how much of the conversion is
complete when the instruction is interrupted or
complete. An offset beyond the end of the related
source or resultant operand causes a specification
exception.

Instruction Descriptions 10-153

The modifier has the following valid values:

Bits

a

1-2

3-4

Meaning

Decompression.

a = Do not perform decompression.

1 = Perform decompression.

Processing Mode.

00 = String processing if bits 3 or 4 =
00; record processing if bits 3
or 4 'I' 00. No record separators
in source. Do not perform blank
padding; do not perform data
transparency conversion.

01 = Reserved.

10 = Record processing. Record
separators in source. Do blank
padding; do not perform data
transparency conversion.

11 Record processing. Record
separators in source. Do blank
padding; perform data
transparency conversion.

Record Separator Processing.

00=

01

10 =

11

Do not put record separators
into receiver.

Move record separators from
source to receiver. (Allowed
only if bit 1 = 1.)

Translate record separators from
source to receiver. (Allowed
only if bit 1 = 1.)

Move record separator from
controls to receiver.

5-7 Reserved. Must be zero.

An invalid modifier results in a specification exception.

10-154

The receiver record length specifies the fixed length for
each record stored into the receiver. This length does
not include the record separator character. A value of
zero results in a specification exception. This parameter
is used in record processing mode only; it is ignored in
string processing mode.

The record separator character specifies the character
that is to precede the converted form of each record in
the receiver. It can have any value.

This parameter is used where:

• A missing record separator is detected in the source.

• The move record separator from controls to receiver
function is specified (algorithm modifier bits 3-4).

The prime compression character specifies the prime
compression character for decompression purposes; it
can have any value. This parameter is ignored if
decompression is not specified in the algorithm modifier.

The unconverted receiver record bytes specifies the
number of bytes remaining in the current receiver record
that have not been set with converted bytes. This
parameter is ignored in string processing mode. In
record processing mode, the following meanings apply.

• At start of execution:
A value of hex 00 means this is the start of a new
record and the initial conversion step has not yet
been performed; if a record separator is supposed
to be placed into the receiver, this has not yet
been done.
A nonzero value less then or equal to the receiver
record length specified the number of bytes
remaining in the current receiver record that have
yet to be set with converted bytes. Validity is
assumed and not checked. This value is used to
determine the location of the next record boundary
in the receiver. A specification exception occurs if
this value is greater than the receiver record
length.

• At end of execution:
This field is set equal to the number of bytes in
the current receiver record not yet containing
converted data.

The conversion status contains information for
checkpointing the conversion status over successive
executions of the instruction. It is set to the appropriate
value at instruction termination. Bit definitions are:

Bits Meaning

o 0= No transparency string active.

1 = Transparency string active. The
unconverted transparency string
bytes value contains the remaining
string length.

1-15 Reserved. Must be zero.

The unconverted transparency string bytes specifies the
number of bytes remaining to be converted for a
partially processed transparency string.

If do not perform data transparency conversion is
specified, this parameter is ignored.

When perform data transparency conversion is specified,
this parameter has the following meanings:

• At start of execution:
When the conversion status byte indicates no
transparency string active (bit 0 = 0), this value is
ignored.
When the conversion status byte indicates
transparency string active (bit 0 = 1), this value is
a count of the remaining bytes to be converted for
a transparency string in the source. Validity of this
count is assumed; it is not checked.
A value of hex 00 means the count field for a
transparency string is the first byte to be
processed from the source.
A value of hex 01 through hex FF specifies the
count of the remaining bytes to be converted for a
transparency string.

• At end of execution this parameter is set. along with
transparency string active, to describe a partially
converted transparency string.

A value of hex 00 is set if the count field is the
next byte to be processed for a transparency
string.
A value of hex 01 through hex FF (specifying the
number of remaining bytes to be converted) is set
if the count field has already been processed.

The offset to translate table specifies the offset from the
beginning of the controls operand to the record
separator translate table. This parameter is ignored
unless the translate record separators from source to
receiver function is specified.

The record separator translate table provides for
translation of the source record separator values being
placed into the receiver.

This table is assumed to be 64 bytes in length and
provides for translation of record separator values from
hex 00 through hex 3F.

This table is used only when translate record separators
from source is specified.

Format: SS

D1
OBits 8 12 16 20 32 36 47

Operation: The operation begins by accessing the bytes
of the source operand at the location specified by the
source offset. The data is converted and stored in the
receiver according to the following modes and optional
functions.

String Processing Mode

String processing occurs when algorithm modifier bits 1,
3, and 4 are all equal to zero. The bytes accessed in the
source are converted, decompressed (algorithm modifier
bit 0 must be equal to one), and then stored in the
receiver.

Instruction Descriptions 10-155

Decompression

The decompression function is always performed in
string processing mode. This function converts strings
of duplicate and nonduplicate characters in the
compressed format back to their full length in the
receiver. Decompressed data is built by concatenating
one or more character strings as described by the
compression strings in the source. If necessary, the
processing of a partial decompressed record is
performed.

Each character string to be built in the receiver is
described in the source by a compression string.
Compression strings are comprised of an SCB (string
control byte) followed by prescribed bytes of data
related to the character string to be built in the receiver.

The SCB has the following format and bit definitions:

Bits Meaning

0-1 Control.

10-156

00= n nonduplicate characters are
between this SCB and the
next one. n is the value in
the count field; possible
values are 1-63 (decimal).

01 = Reserved.

10 = This SCB represents n
deleted prime compression
characters. n is the value in
the count field; possible
values are 1-63 (decimal).
The next byte is the next
SCB.

11 This SC B represents n
deleted duplicate characters.
n is the value of the count
field; possible values are
1-63 (decimal). The next
byte contains a specimen of
the deleted characters. The
byte following the specimen
character contains the next
SCB.

Bits Meaning

2-7 Count.

The value n (in binary) in this field
represents the count of the number of
characters that have been deleted for a
prime compression character string, a
duplicate character string, or the number
of characters to the next SCB for a
nonduplicate string. A count value of
zero is invalid and causes a conversion
exception.

Strings of prime compression characters or duplicate
characters described in the source record are repeated
in the decompressed character string the number of
times indicated by the SCB count value.

Strings of nonduplicate characters described in the
source record are formed into a decompressed character
string for the length indicated by the SCB count value.

If the end of the source is encountered prior to the end
of a compression string, a conversion exception is
signaled.

In string processing mode:

• Decompression is performed on a compression string
basis with no record oriented processing implied. The
conversion process for each compression string is
completed by placing the decompressed character
string into the receiver.

• The conversion process continues until the end of the
source or receiver is reached.

When the end of the source is encountered, the
instruction ends with a source exhausted condition
code.
When the end of the receiver is encountered, the
instruction ends with a receiver overrun condition
code.
For either of the previous ending conditions, the
controls operand is updated to describe the status
of the conversion operation as of the last
completely converted compression entry. Partial
conversion of a compression entry is not
performed.

Record Processing Mode

Record processing occurs when bit 1, bit 3, or bit 4 is
equal to one in the algorithm modifier. Source bytes are
accessed, converted, and placed into the receiver on a
record basis.

The source offset locates the point at which processing
should start on a full record or the point at which
processing should be resumed on a partial record. If the
unconverted receiver record bytes value is zero, source
offset points to the start of a full record. If the
unconverted receiver record bytes value is nonzero,
source offset points to the location where processing of
a partial record should be resumed. For resumption of
processing of a partial record, the value in the
conversion status byte indicates whether or not a
transparency string is active.

The conversion process is started by completing the
conversion of a partial source record, if necessary,
before processing the first full source record.

A check is made (before storing the first byte of each
record). to see if the receiver has room for another full
record. If not, a receiver overrun condition is recognized
and the instruction is terminated; the controls operand is
updated to describe the last completely converted
record. Partial conversion of a source record is not
made. Source data is accessed prior to this check and
this may result in a source exhausted condition or a
conversion exception.

Record Separator Conversion

The record separator conversion function is always
performed in record processing mode. This function can
be performed with, or without, the optional
decompression, data transparency conversion, and blank
padding functions.

In record processing mode, a record separator is
recognized in the source when a character value less
thall hex 40 is encountered; however, if decompression
is not specified (algorithm modifier bit a = 0). a
character whose value is hex 00 is ignored. If the
perform data transparency conversion function is also
specified (algorithm modifier bit 2 = 1), a character value
of hex 35 is recognized as the start of a transparency
string instead of a record separator.

Instruction Descriptions 10-157

This function controls the conversion of record
separators into the receiver. The four possible options
are (refer to algorithm modifier bits 3-4 definitions):

• Put no record separators in receiver; any record
separator found in the source data is ignored and not
placed into the receiver.

• Move record separators from source to receiver; any
record separator found in the source is left as is and
placed into the receiver.

• Translate record separators from source to receiver;
the record separator from the source is translated via
the translate table. The translated value is placed into
the receiver as follows:
- The translation is performed as in the Translate

instruction. The source record separator value is
used as an index into the translate table; the value
at that location in the table (if not hex FF) is
placed into the receiver as a record separator.
If the indexed translate table byte is equal to hex
FF, it is recognized as an escape code and the
instruction ends with an escape code encountered
condition code. The controls operand is set to
describe the conversion status as of the
processing completed just prior to the conversion
step for the record separator.

• Move record separator from controls to receiver;
when a record separator is found in the source, the
record separator value specified in the controls
operand is placed in the receiver.

10-158

Missing Record Separator Handling: During the initial
processing for a full record, the controls record
separator character is used as the record separator value
in the receiver and the specified record separator
conversion function is not performed if all of the
following conditions exist:

• The first byte of data is not a record separator

• Record separators are expected in the source
(algorithm modifier bit 1 = 1)

• Record separators are to be placed in the receiver
(algorithm modifier bits 3 or 4 = 1)

Data Transparency Conversion

The data transparency conversion function is performed
only in record processing mode (along with blank
padding); decompression can be performed with this
function, but is not required.

This function correctly identifies record separators in the
source even though the data has value that could be
interpreted as record separators.

The source data is converted and stored into the
receiver and is not transparent to the scan for a record
separator value unless data transparency conversion is
specified, and a source byte with hex 35 value is
detected. Detection of this combination indicates a
transparency string; source data transparent to record
separator scanning is converted.

The hex 35 byte is the first byte of a 2-byte
transparency control field (TRN). The second byte is a
hexadecimal count (with allowable values of 1-255) that
specifies the number of following bytes to be treated as
transparent data. A transparency count of zero causes a
conversion exception. This transparent data is not
scanned for record separators. Only the transparent
data is moved to the receiver; the TRN bytes are not
moved.

A record in the receiver can be a mix of converted
transparent and non-transparent source data; the first
byte is always a record separator unless the algorithm
modifier bits 3 and 4 specify do not put record
separators into receiver (algorithm modifier bits 3 and 4
= (0).

If conversion continues until the length of converted
data equals the specified receiver record length, the
record is complete. An active transparent string is then
handled as described in the definition of the
unconverted transparency string bytes parameter.

Partial record processing is performed as described in
the definition of unconverted receiver record bytes
parameter.

Missing record separator and record separator
conversion are performed as previously described.

If the end of source is encountered before the record is
completed, the controls operand is updated to describe
the partially converted record (and the partially converted
transparency string, if appropriate), and the instruction
ends with a source exhausted condition code.

Blank Padding

The blank padding function is performed in record
processing mode along with record separator
conversion. Decompression and data transparency
conversion can be performed with this function, but are
not required.

This function pads a receiver record with blanks to the
size specified by the receiver record length. The padded
blanks replace the trailing blanks truncated by the
Convert Character-to-SNA instruction. The padded
record can be produced from a partial or full record
from the source.

The record separator for this record is accessed.
Missing record separator and record separator
conversion are performed as previously described.

Blank padding occurs if another record separator is
detected before enough data has been processed to
equal the receiver record length. Blanks are added to
make the length of the converted data equal the receiver
record length.

If the end of the source is encountered instead of
another record separator, the data processed up to that
point is placed into the receiver (no blank padding is
done). The instruction ends with a source exhausted
condition code. The controls operand is updated to
describe the status of the partially converted record.

Decompression

The decompression function is performed one record at
a time.

A conversion exception is signaled if a compression
string describes a character string that would span a
record boundary in the receiver.

Specified record separator conversion is performed as
the first step (after decompression); missing record
separators are handled as described under Record
Separator Conversion.

The specified receiver record length applies to converted
data only; it does not include a record separator.

Decompression continues until one of the following
conditions occur:

• A record separator character for the next record is
recognized and the source contains record separators
is specified.

• The amount of decompressed data required to fill the
receiver record has been processed.

• The end of the source is encountered.

Transparency strings encountered are not scanned for a
record separator value.

The decompressed character strings, appended to the
optional record separator for this record, form the
decompressed record. If the end of the source is
encountered, the data decompressed to that point,
appended to the optional record separator for this
record, forms a partial decompressed record.

Instruction Descriptions 10-159

Instruction Termination

The CVTSC instruction terminates in one of the
following ways:

• The end of source operand is reached. This results in
a source exhausted condition code.

• The end of the receiver is reached. This results in a
receiver overrun condition code.

• A hex FF value is encountered in the record separator
translate table. This results in a escape code
encountered condition code.

At the completion of instruction execution:

• The source offset and receiver offset parameters are
updated to point to the next bytes to be operated on
in the source and receiver, respectively.

• If record processing is specified, the unconverted
receiver record bytes parameter is updated to specify
the number of bytes remaining in the current receiver
record that have yet to be set.

• If perform data transparency conversion is specified,
the conversion status byte is appropriately set, and
the unconverted transparency string bytes are
updated to describe the partially converted string.

Any form of overlap between the operands of this
instruction yields unpredictable results.

10-160

Programming Notes

The CVTSC instruction does not provide support for
compression entries in the source describing data that
would span records in the receiver. SNA data from
some systems may violate this restriction and, as such,
be incompatible with this instruction. A provision can be
made to avoid this incompatibility by performing the
conversion through two invocations of this instruction.
The first invocation would specify just decompression,
with no record separator processing. The second
invocation would specify record separator processing
with no decompression. This technique separates the
two functions, thus avoiding the incompatibility.

When decompression is not performed and the source is
specified to contain record separators, source bytes of hex 00
are ignored. They are not transferred to the receiver and are
not treated as record separators. When decompression is
specified, source bytes of hex 00 are not ignored. If the
source contains record separators and decompression is
specified, source bytes of hex 00 are considered to be record
separators.

This instruction can end with the escape code
encountered condition. In this case, it is expected that
the user of the instruction will do some special
processing for the record separator causing the
condition. In order to resume execution of the
instruction, the user will have to set the appropriate
value for the record separator into the receiver and
update the controls operand offset values correctly to
provide for restarting processing at the right points in
the receiver and source operands.

For the special case of a tie between the source
exhausted and receiver overrun conditions, the source
exhausted condition is recognized first because when
source exhausted is the resultant condition, the receiver
may also be empty. In this case, the offset into the
receiver operand may contain a value equal to the length
specified for the receiver which would cause an
exception to be detected on the next invocation of the
instruction. The processing performed for the source
exhausted condition should provide for this case, if the
instruction is to be invoked mUltiple times with the same
controls operand value. When the receiver overrun
condition is the resultant condition, the source will
always have room for the conversion.

This instruction is interruptible. If interrupted,
information required to continue is stored in the controls
operand the the instruction address register points to
the instruction so that processing continues after the
interrupt.

Overflow and Sign Code: Not applicable.

Condition Codes:

o Source Exhausted
1 Receiver Overrun
2
3 Escape Code Encountered

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Conversion
- Effective address overflow
- Specification

CVTSC Example

OBits 8 12 16 20

0,
6A8

Machine: BED7 36A8 4644

32 36 47

Bl (3): 0001 236A 0000 (Base register for result)
B2 (4): 0001136A 0000 (Base register for source)
B3 (13): 0001 036A 0000 (Address of control operand)
R(14): OOOA (Length of result)
R(15): OOOC (Length of source)

Storage - Before

0/8 6/E

0001 036A 0000 0000 0000 C005 2850
0000 00

0001 136A 0644 02FO F1C3
F201 1785 0118 1785

0001 236A 06A8 xxxx xxxx xxxx xxxx
xxxx

Storage - After

0/8 6/E

0001 036A 0000 OOOA 0008 C005 2850
0000 00

0001 136A 0644 02FO F1C3
F201 1785 0118 1785

0001 236A 06A8 FOF1 F2F2 F250 5050
5050

Before After
Condition Code: x 1

Instruction Descriptions 10-161

CONVERT ZONED TO PACKED (CVZP)

Instruction Description

The format of the second operand is changed from
zoned to packed and the result is placed in the
first-operand location.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The second operand is assumed to have the
zoned format. All zones are ignored, except the zone
over the rightmost digit. which is assumed to represent
a sign. The sign is placed in the right 4 bits of the
rightmost byte and the digits are placed adjacent to the
sign and to each other in the remainder of the result
field. The sign and digits are moved unchanged to the
first-operand field and are not checked for valid codes.

The result is obtained as if the fields were processed
right to left. If necessary, the second operand is
logically extended to the left with zeros.

Overflow: If the first-operand field is too short to
contain all significant digits of the second-operand field,
decimal overflow occurs and the leftmost significant
digits are lost.

Sign Code: See Operation.

Condition Code: Not changed.

Carry: Not applicable.

10-162

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is coincident with or
to the right of the rightmost byte of the second
operand; otherwise, the overlap is destructive and the
results are unpredictable.

Program Exceptions:

Address translation
- Addressing
- Decimal overflow

Effective address overflow

CVZP Example

0 1

124

OBits 8 12 16 20 32 36 47

Machine: F647 3124 3154

B1 (3) and 82 (3): 2881 5655 1000

Storage - Before

0/8 2/A 4/C 6/E

2881 5665 1124 xxxx xxxx
xx

2881 5665 1154 FOF5 F7F1
F8F9 F4F2

Storage - After

0/8 2/A 4/C 6/E

2881 5665 1124 0057 1894
2F

2881 5665 1154 FOF5 F7F1
F8F9 F4F2

CONVERT ZONED TO PACKED WITH DATA
CHECKING AND BLANK CONVERSION (CVZPB)

Instruction Description

The format of the second operand is changed from
zoned to packed and the result is placed in the
first-operand location.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The second operand is assumed to have the
zoned format. All zones are ignored, except the zone
over the rightmost digit, which is assumed to represent
a sign. The updated sign is placed in the right 4 bits of
the rightmost byte and digits are placed adjacent to the
sign in the remainder of the result field. The sign and
digits are checked for valid codes. If the rightmost byte
of the zoned operand is hex 40, it is considered to have
a valid plus sign. If the sign of the zoned operand is
positive, the preferred sign of 1111 is used. If the sign
of the zoned operand is negative, the preferred sign of
1101 is IJsed, unless the digits are all zero, then a sign
of 1111 is used.

The result is obtained as if the fields were processed
right to left. If necessary, the second operand is
logically extended to the left with zeros.

The length of each operand is in digits. When the digit
count of the first operand is even, the first four bits of
the leftmost byte are set to zero.

Overflow: If the first-operand field is too short to
contain all significant digits of the second operand field,
decimal overflow occurs and the leftmost significant
digits are lost.

Sign Code: See Operation.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is coincident with, or
to the right of the rightmost byte of the second
operand; otherwise, the overlap is destructive and the
results are unpredictable.

Program Exceptions:

- Address translation
- Addressing

Data
Decimal overflow

- Effective address overflow

CVZPB Example

D1
124

OBits 8 12 16 20 32 36

Assembler: CVZPB Dl (L l , Bl), Dl (L2 , B2)

Machine: D677 3124 3154

Bl (3) and B2 (3): 2881 5655 1000

Storage - Before

0/8 2/A 4/C

2881 5665 1124 xxxx
xx

47

6/E

xxxx

2881 5665 1154 FOF5 F7F1
F8F9 F4F2

Storage - After

0/8 2/A 4/C 6/E

2881 5665 1124 0057 1894
2F

2881 5665 1154 FOF5 F7F1
F8F9 F4F2

Instruction Descriptions 10-162.1

CONVERT ZONED TO PACKED WITH DATA
CHECKING (CVZPC)

Instruction Description

The format of the second operand is changed from
zoned to packed and the result is placed in the

first-operand location.

Format: SS

D1

OBits 8 12 16 20 32 36 47

Operation: The second operand is assumed to have the
zoned format. All zones are ignored, except the zone
over the rightmost digit, which is assumed to represent
a sign. The updated sign is placed in the right 4 bits of
the rightmost byte and the digits are placed adjacent to
the sign in the remainder of the result field. The sign
and digits are checked for valid codes. If the sign of the
zoned operand is positive, the preferred sign of 1111 is
used. If the sign of the zoned operand is negative, the
preferred sign of 1101 is used, unless the digits are all
zero, in which case a plus sign of 1111 is used.

The result is obtained as if the fields were processed
right to left. If necessary, the second operand is
logically extended to the left with zeros.

The length of the operands is in digits. When the digit

count of the first operand is even, the first four bits of
the leftmose byte are set to zero.

Overflow: If the first-operand field is too short to
contain all significant digits of the second-operand field,
decimal overflow occurs and the leftmost significant
digits are lost.

Sign Code: See Operation.

Condition Code: Not changed.

Carry: Not applicable.

10-162.2

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is coincident with
or to the right of the rightmost byte of the second
operand; otherwise, the overlap is destructive and the
results are unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Data

Decimal overflow
Effective address overflow

CVZPC Example

D1
124

OBits 8 12 16 20 32 36 47

Assembler: CVZPC D1 (L1, B1). D2 (L2, B2)

Machine: E677 3124 3154

Bd3) and B2 (3): 2881 5655 1000

Storage - Before

0/8 2/A

2881 5665 1124
xx

2881 5665 1154
F8F9 F4F2

Storage - After

0/8 2/A

2881 5665 1124
2F

2881 5665 1154
F8F9 F4F2

4/C 6/E

xxxx xxxx

FOF5 F7Fl

4/C

0057

6/E

1894

FOF5 F7F1

This page is intentionally left blank.

I nstruction Destructions 1 D· 163

DEQUEUE MESSAGE (DQM)

Instruction Description

A send/receive message is dequeued from the
send/receive queue designated by the second operand.

Format: SS

DA 1 B11
OBits 8 12 16 20 32 36 47

Operation: The search type is specified by the I-field.
The search key, which is treated as unsigned binary
data, is specified by the third operand and must be of
the length specified in the queue header. The messages
searched are accessed sequentially, starting with the
first message. The first message satisfying the search
type is dequeued. B1 is loaded with the address of the
dequeued message. If no message satisfies the search
type, or if the message list is empty, B1 is not altered.

I-Field Search Type

Bit 12 Message Key = Search Key
(the third operand)

Bit 13 Message Key < Search Key
(the third operand)

Bit 14 Message Key> Search Key
(the third operand)

Bit 15 Not used

The search type is the logical inclusive OR of the I-bits
specified. For a search type of binary OOOx, no keys will
satisfy the searc~ type, therefore, this combination is
invalid. A specification exception occurs and the
operation is suppressed.

Note: A dequeue first operation is accomplished by
setting the I-field to binary 111x. In this case, any
search key provides the desired operation. However,
because the third operand is accessed and used in the
comparison, it is convenient to specify the third operand
(the search key) as the header address to eliminate a
potential address translation exception. The hardware
forces a zero for the length field in the header and the
key value is ignored for specifications of I = binary 111x.
Also, a check is not made for a page crossing in the key
field if enqueue first or enqueue last is specified.

10-164

Overflow and Sign Code: Not applicable.

Condition Code:

a

2
3

One or more messages remaining after
successful dequeue
No messages remaining after
successful dequeue

Not dequeued

Carry: Not applicable.

Boundary Requirements: The search key specified by the
third operand must be fullword aligned and cannot cross
a page boundary.

Program Exceptions:

Address translation
Addressing
Descriptor access: Busy
Descriptor access: Monitored SRM descriptor
Descriptor access: Monitored SRQ descriptor
Effective address overflow

OQM Example

OBits 8 12 16 20 32 36 47

Assembler: DOM B1 , D2 (B2), D3 (B 3)

Machine: DA48 5000 6000

Before

Bd4): xxxx xxxx xxxx 21AO

B2 (5): 0020 3240 0000 0020

B3 (6): 0000 EF20 0000 0000

Before

SRO

0020 3240 0000 Descriptor

o Bytes

SRM

21 AD 1230 0000 Descriptor

o Bytes

SRM

67BO 1110 0000 Descriptor

o Bytes

After

SRO

0020 3240 0000 Descriptor

o Bytes

SRM

67BO 1110 0000 Descriptor

o Bytes

2

2

2

2

2

After

1230 0000

3240 0000

EF20 0000

First Waiting
TDE Address

Key
Reserved Lth-1

o

8 9 A

First Message
Address
21AO 1230 0000

Address Key Message Next Message ~~ ~
67BO 1110 OOOU '--..I._5_3_....L.. _____ ---'

8 9

~::;:::,., ~ \L.......II __ ~x_ey_..L.. __ M_eS_Sa_g_e __ ~.J

First Waiting
TDE Address

8

8

9

9

Key
Lth-1

A

First Message
Address
67BO 1110 0000

~:~:e~sessage ((I Key Message (

xxx x xxxx xxxx)))
L-~ __ ~ ______ -.J

8 9

10 20

10 1F

Instruction Descriptions 10-165

DEQUEUE TASK DISPATCHING ELEMENT (DQTDE)

Instruction Description

The TDE addressed by the first-operand is dequeued
from the SRO (send/receive queue!. wait list, SRC
(send/receive counter) wait list, or TDO (task
dispatching queue) designated by the second operand.

Format: RS

OBits 8 12 16 20 31

Operation: No search key is used.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2

One or more TDEs remaining
after successful dequeue
No TOEs remaining after successful
dequeue

3 Not dequeued

10-166

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Descriptor access: Busy
- Descriptor access: Monitored SRO descriptor
- Descriptor access: Monitored TOE descriptor (if

the second operand is an SRO)
- Effective address overflow
- Invalid descriptor
- Specification

DQTDE Example

Op
I ~1 I E I ~21 O2

6D 000

0 Bits 8 12 16 20 31

Assembler: DOTDE BJ, D2 (B2)

Machine: 6D31 4000

Before After

BJ (3): 0321 B031 0000 0321 B031 0000

B2(4): 0001 D5C1 0000 0001 D5C1 0000

Before

TOO

First TDE Address
0001 D5C1 0000 Descriptor

0321 B031 0000

a 2 8

TOE

Next TDE Address
0321 B031 0000 Descriptor 0321 BCOO 0000

a 2 8

TOE

0321 BCOO 0000 Descriptor
Next TDE Address
xxxx xxxx xxxx

a 2 8

After

TOO

First TDE Address
0001 D5C1 0000 Descriptor

0321 BCOO 0000

a 2 8

TOE

0321 BCOO 0000 Descriptor
Next TDE Address
xxxx xxxx xxxx

a 2 8

Instruction Descriptions 10-167

DIAGNOSE (DIAGI

Instruction Description

This instruction provides a way to test the I/O channel
disconnect line by turning off the valid page bit in a
specified I/O RAR (resolved address register) and a way
to sample the system power status.

Format: SI

60 I 0 I 7 I B, I 0,

OBits 8 12 16 20 31

Operation: The first operand occupies a fullword in
storage and has the following format:

Description Byte
o Must be hex 20 or hex 80.

Specified I/O RAR (reserved if byte 0 is
hex 20).

2-3 Reserved.

I/O RARs begin at VLS (VAT local storagellocation hex
100, so by coding hex Bl in byte 1 of the first operand,
VLS (1 B1) is modified.'

If byte 0 does not equal hex 20 or hex 80 or if byte 0 is
hex 80 and byte 1 specifies I/O RAR greater than hex
OF on Models 3, 4, and 5, the operation is suppressed.
If byte 0 is hex 80, the valid page bit is reset in the
specified I/O RAR. The position of the valid page bit is
indicated below:

Model Bit

3,4, and 5 17

6, 7, and 8 15

If byte 0 is hex 20, the system power status is returned
in base register 5 as follows:

0= Not valid
1 = System under utility power
2 = System under UPS power
3 = System power fluctuating

'VLS (1b1) is location 1Bl in the VAT (virtual address
translator) local storage. The VAT local storage array is used
to buffer the necessary information required during virtual
address translation. For additional information see the IBM
System/38 Processing Unit Theory-Msintensnce manuals, for
Models 3, 4, and 5, SY31-0524, for Model 7, SY31-0649.

10-168

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first operand must begin
on a fullword boundary; otherwise, a specification
exception occurs and the operation is suppressed.

DIAG Example

OBits 8 12 16 20

Assembler: OIAG 0 1 (B1)

Machine: 60073000

8 1 (3): OOAF 0210 0000

D,
000

31

Storage - Before and After

0/8 2/A 4/C

OOAF 0210 0000 80B1 00

6/E

VLS (1811

Before

XXXX EXXX

After

XXX X AXXX

DISABLE TASK DISPATCHING (DTD)

Instruction Description

This instruction disables task dispatching by setting the
task dispatcher mask (byte hex 22, bit 7 of LSR [local
storage register]) off and stops the task interval timer.
This LSR is in HMC (horizontal microcode).

Format: RR

00 I I
OBits 8 12 15

Operation: No other task can be executed until the task
dispatcher mask is turned on by the Enable Task
Dispatching instruction. Program exceptions are handled
by the machine check handler while the task dispatcher
mask is off.

A machine check will be reported if a Receive Message,
Receive Count, Dispatch Task Dispatching Queue, or
Supervisor Linkage instruction is executed while the task
dispatcher mask is off.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

Programming Note: When task dispatching is disabled,
the task interval timer will not be decremented. The
second interval timer, the clock comparator, and the
time-of-day clock will continue to function.

DTD Example

OBits 8 12 15

Assembler: DTD

Machine: 0001

The following bit is reset by this instruction: LSR
byte 22 (FLGO), bit 7 (flag task switch blocked).

I nstruction Descriptions 10-169

DISPATCH TASK DISPATCHING QUEUE (DTDQ)

Instruction Description

See Operation.

Format: SI

60 I 161 I
OBits 8 12 16 20 31

Operation: If the top TOE (task dispatching element) of
the TOQ is the current TOE, the following occur: the
PEM (program event monitor) mode is enabled or
disabled according to the setting of byte hex C, bit 6 of
the current TOE; task switch trace is set according to
byte hex C, bit 2; SVLM 1 operation is set according to
byte hex C, bit 3; the SVLM (supervisor linkage mask)
status is set according to byte hex C, bit 7; and the next
sequential instruction is executed. Otherwise the task
dispatcher is invoked.

10-170

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

DTDQ Example

OBits 8 12 16 20 31

Assembler: OTOQ

Mach i ne: 6D06 0000

DIVIDE HALFWORD STORAGE (DHS)

Instruction Description

The dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient and
remainder.

Format: SS

DD 1 ·1 0 1 B, 1 D,
OBits 8 12 16 20 32 36 47

Operation: The dividend is a 32-bit signed-binary value
occupying a word of storage at the first-operand
location. It is replaced by a 16-bit, signed remainder
and a 16-bit signed quotient occupying the first and
second halfwords, respectively. The divisor is a 16-bit
signed integer.

When the relative magnitude of the dividend and divisor
is such that the quotient cannot be expressed by a
16-bit signed integer, a binary divide exception occurs
and the operation is suppressed. This includes attempts
to divide by zero.

Overflow: Not applicable.

Sign Code: The sign of the quotient is determined by
the rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a zero
remainder is always positive.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements; The halfword storage operand
must start on a halfword boundary and the word storage
operand must start on a word bOl!ndary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Binary divide

Effective address overflow
- Specification

DHS Example

Op I I ~ I~'I 0,
DD A40 I ~21 O2

A80

0 Bits 8 12 16 20 32 36

Assembler: DHS DdBd, D2(B2)

Machine: 0000 3A40 3A80

B1 (3) and B2 (3): 3456 BACD 8000

3456 BACD 8A40

3456 BACD 8A80

3456 BACD 8A40

3456 BACD 8A80

Storage - Before

0/8

0001

0006

2/A

1000

Storage - After

0/8 2/A

0002 2055

0006

4/C

4/C

I
47

6/E

6/E

Instruction Descriptions 10-171

DIVIDE LONG FLOAT (DLF)

Instruction Description

The first operand is divided by the second operand
(two-operand format) or the second operand is divided
by the third operand (three-operand format), and the
quotient is placed in the first operand location. No
remainder is saved.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A two-operand format is used if base
register 0 is specified for the third operand. The
three-operand format is used if one of the base
registers hex 1 through hex F is specified for the third
operand.

Floating-point division uses exponent subtraction and
significand division. The difference between the signed
(unbiased) exponents of the dividend and the divisor
operands is used as the signed exponent of the
intermediate quotient when both the dividend and the
divisor are normalized.

When the dividend is denormalized and the divisor is
normalized and nonzero, the difference between the
signed exponents of the dividend and divisor operands
less 1 is used as the signed exponent of the
intermediate quotient.

All dividend and divisor significand digits participate in
forming the significand of the quotient. The intermediate
quotient is calculated as if to infinite precision.

Normalizing the intermediate quotient is never
necessary, but a right shift of one digit position can be
called for, which causes the intermediate quotient
significand to be shifted right one digit position.

The intermediate quotient is rounded, if necessary,
according to the rounding mode specified in the task
dispatching element.

When the dividend is 0 and the divisor is a finite
number or infinity, the quotient is O.

10-172

If the divisor is denormalized and the dividend is
normalized and not normal 0, an invalid operand
exception is recognized.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
quotient. The source operands are checked for this
value in order of their specification with the masked
not-a-number with the larger fraction value being
provided as the quotient.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite. but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined. is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the quotient is determined by
the rules of algebra. This amounts to the exclusive OR
of the divisor and dividend signs and applies to
quotients of 0 or infinity value as well as for normal
finite results.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: All operands must be fullword
aligned; otherwise, a specification exception occurs. and
th'e operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point inexact result
Floating-point invalid operand

- Floating-point overflow
- Floating-point underflow

Floating-point zero divide
Specification

Programming Note: The following is a summary of the
results for various combinations of operands.

Quotient First Operand (Divisor)

Invalid operand exception +0 or -0

Divide by zero +Real number ¢ 0 or -real
number ¢ 0

+0 +0

+0 -0

-0 -0

-0 +0

+0 (see note) +Real number ¢ 0

+0 (see note) - Real number ¢ 0

-0 (see note) -Real number ¢ 0

Invalid operand exception +Infinity or -infinity

+Infinity +Infinity

+Infinity +Infinity

+Infinity -Infinity

+Infinity -Infinity

-Infinity -Infinity

-Infinity -Infinity

-Infinity +Infinity

-Infinity +Infinity

+0 +Real number ¢ 0

+0 +0

+0 -Real number ¢ 0

Second Operand (Dividend)

+0 or -0

+0 or -0

+Real number ¢ 0

-Real number ¢ 0

+Real number ¢ 0

-Real number ¢ 0

+Larger real number ¢ 0

-Larger real number ¢ 0

+Larger real number ¢ 0

+Infinity or -infinity

+Real number ¢ 0

+0

-Real number ¢ 0

-0

+Real number ¢ 0

+0

- Real number ¢ 0

-0

+Infinity

+Infinity

-Infinity

Note: For a small value real number that is not equal to 0 and a larger value real number
that is not equal to 0, a masked floating-point underflow which yields a 0 rather than a
denormalized result can occur.

Instruction Descriptions 10-173

Quotient First Operand (Divisor) Second Operand (Dividend)

+0 -0 -Infinity

-0 -Real number #< 0 +Infinity

-0 -0 +Infinity

-0 +ReaJ number #< 0 -Infinity

-0 +0 -Infinity

Masked not-a-number Masked not-a-number Not not-a-number

Masked not-a-number Not not-a-number Masked not-a-number

Larger masked Masked not-a-number Masked not-a-number
not-a-number

Invalid operand exception Unmasked not-a-number Any

Invalid operand exception Any Unmasked not a number

Legend:

Any = Any floating-point value.

10-174

DLF Example

0,
050

OBits 8 12 16 20 32 36 47

Machine: CE34 4050 4060

B3 (3): 0010 0200 0070

Bl (4) and B2 (4): 0010 0200 0000

0010 0200 0050

0010 0200 0060

0010 0200 0070

0010 0200 0050

0010 0200 0060

0010 0200 0070

Storage - Before

0/8 G/E

xxxx xxxx xxxx xxxx

4894 AC90 0000 0000

4442 3000 0000 0000

Storage - After

0/8 G/E

4442 3000 0000 0000

4894 AC90 0000 0000

4442 3000 0000 0000

Condition Code: Not changed.

Instruction Descriptions 10-175

DIVIDE PACKED (DP)

Instruction Description

The dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient and
remainder.

Format: 55

D,
OBits 8 12 16 20 32 36 47

Operation: The quotient is placed leftmost in the
first-operand field. The remainder is placed rightmost in
the first-operand field and has a length equal to the
divisor length. Together, the quotient and remainder
occupy the entire dividend field.

The dividend, divisor, and remainder are all signed
integers, right-aligned in their fields. The quotient is a
signed integer, but is left-aligned in its field. The digit
codes are checked for validity; invalid codes cause data
exceptions, and the operation is terminated.

When division by zero is attempted, a decimal zero
divide exception occurs and the operation is suppressed.

10-176

Overflow: When the quotient is larger than the number
of digits allowed, an overflow occurs and the rightmost
significant digits are lost.

Sign Code: The sign of the quotient is determined by
the rules of algebra from the dividend and divisor signs.
The remainder has the same sign as the dividend except
that a zero quotient or a zero remainder is always
positive. The processor uses the preferred signs for the
quotient and remainder as follows: a positive sign is
encoded as 1111 (hex F); a negative sign is encoded as
1101 (hex 0).

The sign codes are checked for validity; invalid codes
cause a data exception, and the operation is terminated.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The divisor and dividend fields
can overlap only if their rightmost bytes coincide.
Improperly overlapping fields cause a data exception,
and the operation is terminated.

Program Exceptions:

- Address translation
- Addressing
- Data
- Decimal overflow
- Decimal zero divide
- Effective address overflow
- Specification

Note: The length of the quotient field is L, minus L2
bytes. When the divisor length is larger than 7 (15 digits
and sign) or larger than or equal to the dividend length,
a specification exception occurs.

DP Example

D,
3BO

OBits 8 12 16 20 32 36

Machine: F432 43BO 4300

Bd4) and B2 (4): OOOA 1234 5000

OOOA 1234 53BO

OOOA 1234 5300

OOOA 1234 53BO

OOOA 1234 5300

Storage - Before

0/8 2/A

0000 256F

0003 OF

Storage - After

0/8 2/A

8FOO 016F

0003 OF

4/C

4/C

47

6/E

6/E

Instruction Descriptions 10-177

DIVIDE PACKED LONG (DPL)

Instruction Description

The dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient and
remainder.

Format: 55

D,
OBits 8 12 16 20 32 36 47

Note: The Divide Packed Long instruction is
implemented in vertical microcode (VMC) and is treated
as an implicit 5VL by the IMP processor. The op code
is used as the index into the 5VL table, as described in
the section on 5VLs in Chapter 6.

Operation: L2 specifies 1 less than the length in bytes of
the divisor. The divisor can contain a maximum of 31
digits and sign.

The quotient is placed leftmost in the first-operand
field, and can contain a maximum of 31 digits and sign,
corresponding to a maximum of 15 for L,. The
remainder is placed rightmost in the first-operand field
and can contain a maximum of 31 digits and sign,
corresponding to a maximum of 15 for L2. Together, the
quotient and remainder occupy the entire first-operand
field.

When division by zero is attempted, a decimal zero
divide exception occurs, and the operation is
suppressed.

Digit codes are checked for validity; invalid codes cause
a data exception, and the operation is terminated.

The dividend, divisor, and remainder are all signed
integers, right-aligned in their fields. The quotient is a
signed integer, but is left-aligned in its field.

10-178

Overflow: Not applicable.

Sign Code: The sign of the quotient is determined by
the rules of algebra from the dividend and divisor signs.
The remainder has the same sign as the dividend except
that a zero quotient or a zero remainder is always
positive. The processor uses the preferred signs for the
quotient and remainder as follows: a positive sign is
encoded as 1111 (hex F) ; a negative sign is encoded as
1101 (hex D).

The sign codes are checked for validity: invalid signs
cause a data exception, and the operation is terminated.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The divisor and dividend fields
may overlap only if their rightmost bytes coincide;
improperly overlapping fields cause a data exception,
and the operation is terminated.

Program Exceptions:

Address translation
- Addressing

Data
- Decimal zero divide

Effective address overflow

Note: L, specifies 1 less than the length in bytes of the
dividend plus the length by which the first-operand
storage area exceeds the length of the divisor. The
dividend is taken from the first L,+1 bytes of the first
operand. The dividend can contain a maximum of 31
digits and sign, corresponding to a maximum of 15 for
L,. The rightmost L2 bytes of the first operand are
ignored unless they contain the divisor (due to
overlapping operands). The maximum length of the first
operand (L,+L2+2) is 32 bytes.

OPL Example

0 1

F30

OBits 8 12 16 20 32 36

Machine: FA40 3F30 3FBO

Bd3) and B2 (3): OOFA 12AB CODa

Storage - Before

0/8 2/A 4/C

OOFA 12AB CF30 2793 4766 2Fxx

OOFA 12AB CFBO 3D

Storage - After

OOFA 12AB CF30

0/8

0931

OOFA 12AB CFBO 3D

2/A 4/C

1588 7D1 F

47

G/E

G/E

Instruction Descriptions 10-179

DIVIDE SHORT FLOAT (DSF)

Instruction Description

The first operand is divided by the second operand
(two-operand format) or the second operand is divided
by the third operand (three-operand format), and the
quotient is placed in the first operand location. No
remainder is saved.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A two-operand format is used if base
register 0 is specified for the third operand. The
three-operand format is used if one of the base
registers hex 1 through hex F is specified for the third
operand.

Floating-point division uses exponent subtraction and
significand division. The difference between the signed
(unbiased) exponents of the dividend and the divisor
operands is used as the signed exponent of the
intermediate quotient when both the dividend and the
divisor are normalized.

When the dividend is denormalized and the divisor is
normalized and nonzero, the difference between the
signed exponents of the dividend and divisor operands
less 1 is used as the signed exponent of the
intermediate quotient.

All dividend and divisor significand digits participate in
forming the significand of the quotient. The intermediate
quotient is calculated as if to infinite precision.

Normalizing the intermediate quotient is never
necessary, but a right shift of one digit position can be
called for, which causes the intermediate quotient
significand to be shifted right one digit position.

The intermediate quotient is rounded, if necessary,
according to the rounding mode specified in the task
dispatching element.

When the dividend is 0 and the divisor is a finite
number or infinity, the quotient is O.

10-180

If the divisor is denormalized and the dividend is
normalized and not normal 0, an invalid operand
exception is recognized.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
quotient. The source operands are checked for this
value in order of their specification with the masked
not-a-number with the larger fraction value being
provided as the quotient.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the quotient is determined by
the rules of algebra. This amounts to the exclusive OR
of the divisor and dividend signs and applies to
quotients of 0 or infinity value as well as for normal
finite results.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: All operands must be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point inexact result
Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Floating-point zero divide
Specification

Programming Note: The following is a summary of
the results for various combinations of operations.

Quotient First Source (Divisor)

Invalid operand exception +0 or -0

Divide by zero exception +Real number ~ 0 or -real
number ~ 0

+0 +0

+0 -0

-0 -0

-0 +0

+0 (see note) +Real number ~ 0

+0 (see note) - Real number ~ 0

-0 (see note) -Real number ~ 0

-0 +Real number ~ 0

Invalid operand exception +Infinity or -infinity

+Infinity +Infinity

+Infinity +Infinity

+Infinity -Infinity

+Infinity -Infinity

-Infinity -Infinity

-Infinity -Infinity

-Infinity +Infinity

-Infinity +Infinity

+0 +Real number ~ 0

+0 +0

+0 -Real number ~ 0

+0 -0

-0 -Rea; number ~ 0

-0 -0

Second Source (Dividend)

+0 or -0

+0 or -0

+Real number ~ 0

-Real number ~ 0

+Real number ~ 0

- Real number ~ 0

+Larger real number ~ 0

-Larger real number ~ 0

+Larger real number ~ 0

- Larger real number ~ 0

+Infinity or -infinity

+Real number ~ 0

+0

-Real number ~ 0

-0

+Real number ~ 0

+0

- Real number ~ 0

-0

+Infinity

+Infinity

-Infinity

-Infinity

+Infinity

+Infinity

Note: For a small value real number that does not equal 0 and a large value real number
that does not equal 0, a masked floating-point underflow which yields a 0 rather than a
denormalized result can occur.

Instruction Descriptions 10-181

Quotient First Source (Divisor)

-0 +Real number #:- 0

-0 +0

Masked not-a-number Masked not-a-number

Masked not-a-number Not not-a-number

Larger masked Masked not-a-number
not-a-number

Invalid operand exception Unmasked not-a-number

Invalid operand exception Any

Legend:

Any = Any floating-point value.

DSF Example

OBits 8 12 16 20

0,
050

Machine: AE34 4050 4060

B3 (3): 0010 0200 0070

32 36

Bd4) and B2 (4): 0010 0200 0000

10-182

47

Second Source (Dividend)

-Infinity

-Infinity

Not not-a-number

Masked not-a-number

Masked not-a-number

Any

Unmasked not-a-number

0010 0200 0050

0010 0200 0060

0010 0200 0070

0010 0200 0050

0010 0200 0060

0010 0200 0070

Storage - Before

0/8

xxxx xxx x

4100 0000

BF80 0000

Storage - After

0/8

ClOO 0000

4100 0000

BF80 0000

Condition Code: Not changed.

6/E

xxxx xxxx

6/E

DIVIDE WORD STORAGE lOWS)

Instruction Description

The dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient and
remainder.

Format: SS

ED 1 1 0 1 B,I 0,
OBits 8 12 16 20 32 36 47

Operation: The dividend is a 64-bit, binary value
occupying 8 bytes of storage at the first-operand
location. It is replaced by a 32-bit signed remainder and
a 32-bit signed quotient occupying the first and second
words, respectively. The divisor is a 32-bit signed
integer.

When the relative magnitude of the dividend and divisor
is such that the quotient cannot be expressed by a
32-bit signed integer, a binary divide exception occurs,
and the operation is suppressed. This includes attempts
to divide by zero.

Overflow: Not applicable.

Sign Code: The sign of the quotient is determined by
the rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a zero
remainder is always positive.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Both operands must start on a
word boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Binary divide

Effective address overflow
- Specification

DWS Example

OBits 8 12 16 20

D,
EFO

32 36

Assembler: DWS Dl (B 1), D2 (B2)

Machine: EDOO 3EFO 3F40

Bl (3) and B2 (3): 1 C4F 3AB9 4000

Storage - Before

0/8 2/A
1C4F 3AB9 4EFO 0000 0000

1C4F 3AB9 4F40 FFFF FFED
(-19)

Storage - After

0/8 2/A

1C4F 3AB9 4EFO 0000 0007
(+7)

1C4F 3AB9 4F40 FFFF FFED
(-19)

47

4/C G/E
0000 A34F

(41807)

4/C G/E
FFFF F768

(-2200)

Instruction Descriptions 10-183

EDIT PACKED DECIMAL (EDPD)

Instruction Description

The format of the source field (the second operand) is
changed from packed to zoned decimal format, and is
modified under control of the edit-mask field (the third
operand).

Format: RS

63

OBits 8 16 20 31

Operation: The edited result is placed in the result field
(the first operand). The address of the first significant
result character is placed in base register hex F.

The first and second-operand addresses and their
associated length codes are obtained implicitly from
registers. Base register 14 points to the leftmost byte of
the result field, and base register 15 points to the
leftmost byte of the source field. Byte register. 1 0 (r10)
specifies one less than the number of bytes in the result
field. Byte register 11 (r11) specifies the number of
decimal digits exclusive of sign in the source field. The
third-operand address (83, D3) points to the leftmost
byte of the edit-mask field. The length field (L3)

specifies one less than the number of bytes in the
edit-mask field.

The maximum length of the source field is 31 decimal
digits. If the source field length is zero, the sign is the
only source data processed. The maximum length of the
edit-mask field is 256 bytes, while the maximum valid
length of the result field is 254 bytes.

The source field is in packed decimal format. The edit
mask contains control characters and data character
strings. Both the edit mask and the source fields are
processed left to right. The edited result from this
processing is placed in the result field left to right.

If the length of the source field is even, the high-order
4 bits of the source field are ignored and not checked
for validity, all other source digits and signs are checked
for validity and a data exception is indicated when
invalid. Any overlapping of these fields will yield
unpredictable results. After validity checking, the sign of
a source field with a value of zero (or digit length of
zero) is considered to be plus (1111).

10-184

There are 10 types of control characters which may be
found in the edit mask: hex AA through hex B3. In
addition to these control characters, if the first character
of the edit-mask field is less than hex 40, the value of
that character is used instead of hex AE as an
end-of-string delimiter. This allows the use of
characters with a value of hex AE within a string. Two
of these control characters indicate the beginning of a
type of field, two control characters indicate the
beginning of a type of character string, and one is used
to indicate the end of the character string. The other
five control characters indicate that a digit from the
source field should be checked and that appropriate
action be taken.

There is a significance indicator used in the execution of
this instruction. At the start of the execution of this
instruction, this indicator is set to the off state. It
remains in this state until a nonzero source digit is
encountered in the source field, or until one of the four
unconditional digits (hex AA through hex AD) or an
unconditional string (hex B3) is encountered in the edit
mask.

When significance is detected, the selected floating
string specified by hex Bl is overlaid into the result field
immediately to the left of the first significant result
character.

When the significance indicator is set to the on state,
the first significant result character has been reached.
The state of the significance indicator determines
whether the fill character or a digit from the source field
is to be inserted into the result field for conditional
digits and characters in conditional strings specified in
the edit-mask field. The fill character will be a hex 40
until it is replaced by the first character following the
floating string control character, hex B 1.

When the indicator is in the off state:

• A conditional digit control character in the edit mask
causes the fill character to be moved to the result
field.

• A character in a conditional string in the edit mask
causes the fill character to be moved to the result
field.

When the indicator is in the on state:

• A conditional digit control character in the edit mask
causes a source digit to be moved to the result field.

• A character in a conditional string in the edit mask is
moved to the result field.

The control characters found in the edit-mask field are:

• End-of-string character (EOSC)

This control character indicates the end of a string of
characters and must be present, even if the string is
null. The value of this character is either that of the
first character of the edit-mask field, if that character
is less than hex 40, or it is hex AE.

• Start-of-static-field control character

Hex AF: This control character indicates the start
of a static field. A static field is used to indicate
that one of two mask character strings
immediately following this character is to be
inserted into the result field, depending upon the
algebraic sign of the source field. The string to be
inserted into the result field, if the sign in the
source field is positive, is the first string in the
field. The second string in this field is the string to
be inserted into the result field if the sign in the
source field is negative.

Static field format:

Hex AF . . . positive string ... EOSC ...
negative string ... EOSC (end-of-string control
character)

• Start-of-floating-string control character

- Hex 81: This control character indicates the start
of a floating string field. The first character of the
field is used as the fill character.

Following the fill character are two optional
strings, delimited by the EOSC. If the sign in the
source field is positive, the first string in the field
is to be inserted into the result field. The second
string is to be inserted into the result field if the
sign in the source field is negative.

The string selected for insertion into the result
field appears immediately to the left of the first
significant result character, and is called a floating
string. If significance is never set, neither string is
placed in the result field. Conditional source digit
positions (hex 82 control characters) must be
provided in the edit mask immediately following
the hex 81 field to accommodate the larger of the
two floating strings, or a length conformance
exception will be presented. For each of these hex
82 control characters, the fill character is inserted
into the result field and source digits are not
consumed.

Floating-string field format:

Hex 81 fill character ... positive string .. .
EOSC negative string ... EOSC, hex 82 .. .

• Start-of-conditional-string control character

- Hex 80: This control character indicates the start
of a conditional string. The string contains any
character and is delimited by EOSC (the
end-of-string control character). This string, or fill
characters replacing it, is inserted into the result
field based on the state of the significance
indicator. When the significance indicator is in the
off state, a fill character for every character in the
conditional string is placed in the result field.
When the significance indicator is in the on state,
the characters in the conditional string are placed
in the result field.

Conditional string format:

Hex 80 ... conditional string ... EOSC

Instruction Descriptions 10-185

• String-of-unconditional-string control character:

Hex 83: This control character turns on the
significance indicator and indicates the start of an
unconditional string. This string consists of any
character and is delimited by the EOSC
(end-of-string control character). This string is
unconditionally inserted into the result field
regardless of the state of the significance
indicator.

If the significance indicator is off when a hex 83
control character is encountered, the appropriate
floating string is inserted (overlaid) into the result
field prior to (to the left of) the hex 83
unconditional string.

Unconditional string format:

Hex 83 ... unconditional string ... EOSC

• Control characters that correspond to digits in the
source fieid

- Hex 82: This control character specifies that the
corresponding source field digit or floating string
(hex 81) field digit is considered a conditional
digit. This means that either the source digit or
the fill character is placed in the result field based
on the state of the significance indicator. When
the significance indicator is in the off state, the fill
character is placed in the result field. When the
significance indicator is in the on state, the source
digit is placed in the result field. When a source
digit is moved to the result field, the hex F zone
receives the source digit. When significance (that
is, a nonzero source digit) is detected, the floating
string is placed to the left of significance.

Control characters hex AA, hex A8, hex AC, and
hex AD will independently turn on the significance
indicator. If the significance indicator is turned off
when one of these control characters is
encountered, the appropriate floating string is
inserted (overlaid) into the result field prior to (to
the left of) the source digit.

10-186

Hex AA: This control character specifies that the
corresponding source field digit is unconditionally
placed in the result field. The zone portion is set
to a hex F. The source digit is placed in the four
low-order result bits.

Hex A8: This control character specifies that the
corresponding source field digit is unconditionally
placed in the result field. The zone portion of the
digit is set to the preferred positive sign bits 1111
(hex F) if the sign of the source field is positive, or
to the negative sign bits 1101 (hex D) if the sign
of the source field is negative.

Hex AC: This control character specifies that the
corresponding source field is unconditionally
placed in the result field. The zone portion of the
digit is set to the preferred positive sign bits 1111
(hex F) only if the sign of the source field is
positive. If it is not positive, the source sign field
is moved to the result zone field.

Hex AD: This control character specifies that the
corresponding source field digit is unconditionally
placed in the result field. The zone portion of the
digit is set to the preferred negative sign 1101
(hex D) only if the sign of the source field is
negative. If it is not negative, the source field sign
will be moved to the zone position of the result
byte.

The Table of Valid Edit Conditions and Results· provides
an overview of the result obtained with the valid edit
conditions and sequences.

Conditions

Significance
Mask Character Indicator Source
(Hex) Before/After Digit Source Sign

AF NI'/NO NI Positive

NI/NC NI Negative

AA Off/On 0-9 Positive

Off/On 0-9 Negative

On/On 0-9 NI

A8 Off/On 0-9 Positive

Off/On 0-9 Negative

On/On 0-9 Positive

On/On 0-9 Negative

AC Off/On 0-9 Positive

Off/On 0-9 Negative

On/On 0-9 Positive

On/On 0-9 Negative

AD Off/On 0-9 Positive

Off/On 0-9 Negative

On/On 0-9 Positive

On/On 0-9 Negative

80 Off/Off NI NI

On/On NI NI

'NI: Not important
2NC: No change

Results

Result Character

Positive string inserted

Negative string inserted

Positive floating string overlaid; hex F, source
digit

Negative floating string overlaid; hex F,
source digit

Hex F, source digit

Positive floating string overlaid; hex F, source
digit

Negative floating string overlaid; hex D,
source digit

Hex F, source digit

Hex D, source digit

Positive floating string overlaid; hex F, source
digit

Negative floating string overlaid; sign, source
digit

Hex F, source digit

Sign, source digit

Positive floating string overlaid; sign, source
digit

Negative floating string overlaid; hex D,
source digit

Sign, source digit

Hex D, source digit

Insert fill character for each hex 80 string
character

Insert hex 80 character string

Instruction Descriptions 10-187

Conditions

Significance
Mask Character Indicator Source
(Hex) Before/After Digit Source Sign

81 (including Off/NO Nil NI
necessary 82s)

82 (not for a 81 Off/Off 0 NI
field)

Off/On 1-9 Positive

Off/On 1-9 Negative

On/On 0-9 NI

83 Off/On NI Positive

Off/On NI Negative

On/On NI NI

lNI: Not important
2NC: No change

Overflow: Not applicable.

Sign Code: See Operation.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Unpredictable results will occur
if the first, second, or third operands are overlapped.
The source field length must not exceed 31 decimal
digits; otherwise a specification exception is recognized
and the operation is suppressed.

10-188

Results

Result Character

Insert the fill character for each hex 82 that
corresponds to a character in the longer of
the two floating strings

Insert fill character

Overlay positive 'floating string and insert hex
F, source digit

Overlay negative floating string and insert hex
F, source digit

Hex F, source digit

Overlay positive floating string and insert hex
83 character string

Overlay negative floating string and insert hex
83 character string

Insert hex 83 string

Program Exceptions:

- Address translation
Addressing
Data
Edit digit count
Edit mask syntax
Effective address overflow
Length conformance
Specification

Programming Notes:

1. A source length equal to zero implies that only the
sign is processed (examined).

2. Base registers 14 and 15 and byte registers 10 and
11 are not altered by this instruction.

3. The result field may be partially modified if EDPD is
interrupted before processing has completed. In this
case, the EDPD operation will be restarted upon
completion of interrupt processing.

4. Any character is a valid fill character, including hex
AE.

5. Hex AF, hex 81, hex BO, and hex 83 strings must be
terminated by the EOSC, even if they are null strings.

6. If a floating string (hex 81) field has not been
encountered (specified) when the significance
indicator is turned on, the floating string is considered
to be a null string and is therefore not used to
overlay into the result field.

The following is a truth table which indicates the valid
ordering of control characters in an edit-mask field.

\

Control Character Y

Hex AA, AB, AC, AD
,

~ AF BO B1 B2 B3

~ a

Control
Character
X

Condition

a

2

3

a 2 2, 2

AF a a a a a

BO 1 a a 2 a

B1 1 a 1 3 1

B2 1 a a 2 a

B3 a a 2 2 2

Definition

80th X and Y can appear in the
edit-mask field in either order.

Y cannot precede X.

X cannot precede Y.

a

a

1

1

1

a

80th control characters (two hex 81s)
cannot appear in the edit mask field.

Note: Violation of the above rules will result in an
edit-mask syntax program exception.

Instruction Descriptions 10-189

EDPD Example

Op
63

OBits 8 16 20

Assembler: EOPO 03(L3,B 3)

Machine: 6320 4342

B3(4): 011A 3247 0000

B(14): 02BC 4431 0680

B(15): 02BC 86AA B012

31

(Base register for mask)

(Address of result)

(Address of source)

r(10): 10 (Length of result-1)

r(11): OB (Number of digits in source field)

21

011 A 3247 0342
(Edit mask)

02BC 4431 0680
(Result field)

02BC 86AA B012
(Source field)

(Number of bytes in edit-mask field -1)

Storage - Before

0/8 2/A

B140
B2B2 B2B2
B2B2 B06B
B34B AEAA
AEC4 C2AE

xxxx xxxx
xxxx xxxx

0000

4/C

5BAE
B06B
AEB2
AAAF

xxxx
xxxx

1234

G/E

5BAE
AEB2
B2B2
4040

xxxx
xxxx

5670

011A 3247 0342
(Edit mask)

02BC 4431 0680
(Result field)

02BC 86AA B012
(Source field)

Storage - After

0/8 2/A 4/C

B140 5BAE
B2B2 B2BO 6BAE
B2BO 6BAE B2B2
4BAE AAAA AF40
C4C2 AE

4040 4040 5BF1
F3F4 F54B F6F7

0000 1234

Result will print as: kSlISl6kSl6$12,345.670B

10-190

GtE

5BAE

~ B2B2
B2B3
40AE

F26B
C4C2

5670

Significance
Edit Mask Characters Source Indicator Character(s)
Source is Negative Digit (Before/After) Placed in Result Description

814058AE58AE82 Not Used Reset / reset 40 Floating string format specifies hex
40 fill character and floating $ (hex
58)

82 0 Reset/ reset 40 Conditional digit

82 0 Reset/reset 40 Conditional digit

82 0 Reset/ reset 40 Conditional digit

8068AE Not Used Reset/ reset 40 Conditional string

82 0 Reset/ reset 40 Conditional digit

82 1 Reset/set 58F1 Conditional digit negative floating
string overlays previous fill character
(58 overlays 40)

82 2 Set/set F2 Conditional digit

8068AE Not Used Set/Set 68 Conditional string

82 3 Set/set F3 Conditional digit

82 4 Set/set F4 Conditional digit

82 5 Set/set F5 Conditional digit

8348AE Not Used Set/set 48 Unconditional string

AA 6 Set/set F6 Unconditional digit

AA 7 Set/set F7 Unconditional digit

AF4040AEC4C2AE Not Used Set/set C4C2 Static field-negative string to result

Instruction Descriptions 10-191

ENABLE TASK DISPATCHING (ETD)

Instruction Description

This instruction enables task dispatching by setting the
task dispatcher mask (byte hex 22, bit 7 of LSR [local
storage register]) and invoking the task dispatcher.

Format: RR

00 I 10
OBits 8 12 15

Operation: Control may not be immediately returned to
the next sequential instruction of the function issuing the
Enable Task Dispatching instruction if a higher priority
task TOE (task dispatching element) is on the TDQ (task
dispatching queue).

This instruction also restarts the task interval timer if no
task switch occurs and the current task is timed. If a
task switch occurs, the task dispatcher sets the task
interval timer depending upon whether the new task Is
timed or untimed.

Overflow and Sign Code: Not applicable.

10-192

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

Programming Note: The Enable Task Dispatching
instruction does not check whether or not the task
dispatcher mask is already set prior to the execution of
this instruction.

ETD Example

OBits 8 12 15

Assembler: ETD

Machine: ODOO

The following bit is set by this instruction: LSR
byte 22 (FLGOl. bit 7 (flag task switch blocked).

This page is intentionally left blank.

Instruction Descriptions 10-193

ENQUEUE MESSAGE (EQM)

Instruction Description

The SRM (send/receive message) addressed by B, is
checked for validity and, if valid, is enqueued to the
message list of the send / receive queue designated by
the second operand.

Format: RS

OBits 8 12 16 20 31

Operation: The enqueuing method is designated by the
I-field~ The message list is searched, in sequence,
beginning with the first message. The new message
(the first operand) is enqueued before the first message
that satisifies the search type. If the list is empty, the
new message is enqueued first. If the search type is not
satisified, the new message is enqueued last. Search
keys begin in byte 8 of the SRM, have a length
specified in the queue header, and are treated as
unsigned binary data.

I-Field

Bit 12

Bit 13

Bit 14

Bit 15

Search Type

Searched Message Key = The first
operand Message Key

Searched Message Key < The first
operand Message Key

Searched Message Key> The first
operand Message Key

Not used

The search type is the logical OR of the I-bits specified.
Therefore, I = binary OOOx results in enqueue last and I
= binary 111 x in enqueue first.

10-194

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing

Descriptor access: Busy
- Descriptor access: Monitored SRM descriptor

Descriptor access: Monitored SRQ descriptor
Effective address overflow
Invalid descriptor
Specification

Note: The key length specification in the queue header
is key length minus 1. Therefore, if enqueue first or
enqueue last is specified, the key /text portion of the
SRM must be at least 1 byte long. Also, no check is
made for a page crossing in the key field, if enqueue
first or enqueue last is specified.

EQM Example

OBits 8 12 16 20 31

Machine: 6C48 5000

Bd4): 21AO 1240 0000

B2 (5): 0020 32AO 0000

SRM

21 AD 1240 0000
Next Message ,(I Key (

L-__ D_e_sc_r_iP_t_or __ ~ __ :_:_:_~_e_~_XX_X __ X_X_X_X __ J~)L~ __ 1_27_9 __ ~ ____________ M_e_S_Sa_g_e ______________ -,)

Before

0020 32AO 0000

0000 0200 1000

After

0020 32AO 0000

21AO 1240 0000

0000 0200 1000

o Bytes 2

SRO

Descriptor

o Bytes 2

SRM

Descriptor

o Bytes 2

SRO

First TDE
Address
XXXX XXXX xxxx

8 9

Key
Reserved Length-1

8 9 A

First Message
Address
0000 0200 1000

10

~::~:~:'" ~~L~I __ ~2_e:_9 __ ~ ____________ M_e_ss_ag_e ____________ ~_()J
8 9

First TDE First Message ~
Descriptor Address Reserved KLey Address Res-

L-__________ ~ ___ x_x_xx __ x_x_x_x_x_x_x_x __ _I 1.~ ______ ~e_n_g_th_-_1 ~_2_1_A_0_12_4_0 __ 0_0_00_....J erved

o Bytes 2 8 9 A 10

SRM

Next Message

~~ I
Key

Descriptor Address
0000 0200 1000 1279

0 Bytes 2 8 9

SRM

Next Message \\ I
Key

Descriptor Address
xxxx xxxx xxxx 1279

0 Bytes 2 8 9

Instruction Descriptions 10-195

ENQUEUE TASK DISPATCHING ELEMENT (EQTDE)

Instruction Description

The TOE (task dispatching element) addressed by B, is
checked for validity and, if valid, is enqueued to the
TDQ (task dispatching queue), SRQ (send/receive
queue) wait list, or SRC (send/receive counter) wait list
designated by the second operand.

Format: RS

OBits 8 12 16 20 31

Operation: Enqueuing is in key sequence; low key first,
last within key value. TOE bytes hex 16-1 B, the address
of the current queue, are set to the second-operand
address.

Overflow and Sign Code: Not applicable.

10-196

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Descriptor access: Busy

Descriptor access: Monitored SRQ descriptor
- Descriptor access: Monitored TOE descriptor (if

the second operand is an SRQ)
- Effective address overflow
- Invalid descriptor
- Specification

EQTOE Example

Op I ~11 ~ I ~21 O2
60 350

0 Bits 8 12 16 20 31

Assembler: EQTOE 8 1 • O2 (82)

Machine: 6030 4350

8 1 (3): 13A2 1442 0550

82 (4): 21A3 A983 0000

TOE

13A2 1442 0550 Descriptor
Next TDE Address Priority ~o xxxx xxxx xxxx 0000 0123

a Bytes 2 8 C

Before

TOO

21A3 A983 0350 Descriptor First TDE Address
0000 0300 4000

a Bytes 2 8

TOE

0000 0300 4000 Descriptor Next TD E Address Priority ~o xxxx xxxx xxxx 0000 0124

a Bytes 2 8 C

After

TOO

21A3 A983 0350 Descriptor
First TDE Address
13A2 1442 0550

a Bytes 2 8

TOE

13A2 1442 0550 Descriptor
Next TDE Address Priority ~\J 0000 0300 4000 0000 0123

a Bytes 2 8 C

TOE

0000 0300 4000 Descriptor Next TDE Address Priority ~\J xxxx xxx x xxx x 0000 0124

a Bytes 2 8 C

Instruction Descriptions 10-197

EXAMINE PRIMARY DIRECTORY ENTRY (EPDE)

Instruction Description

The primary directory entry pointed to by the first
operand is examined to determine if the frame with
which the entry is associated can be reused. The result
is returned via condition code.

Format: SI

83 I I 3 I B1 I D1
OBits 8 12 16 20 31

Operation: The primary directory entry is first checked
for validity. The diagram on the next page outlines the
operation of the EPDE instruction

The primary directory entry is identified by the first
operand, which occupies 2 bytes in storage. Bits 0-15
of the first operand are used as the primary directory
index value. These bits are shifted left 4 bits to convert
them from an index to an offset. Bits 12-15 become
zeros.

The high-order 4 bits of the primary directory index
identified by the first operand are not used.

Overflow and Sign Code: Not applicable.

10-198

Condition Code:

o The page is not pinned, but it does not satisfy
the criteria for reuse.

2

3

The page is not pinned, and it satisfies the
criteria for reuse. It has been removed.
The page is pinned either by a user or storage
management.
The page satisfies the criteria for reuse, but the
change bit is on.

Carry: Not applicable.

Boundary Requirements: The first operand must be
halfword aligned; otherwise, a specification exception is
recognized and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

EPOE Example

0,
002

OBits 8 12 16 20 31

Assembler: EPOE D1 (B 1)

Mach ine: 8303 F002

Before and After

B1 (F): 0000 0102 DF90

Primary Directory Address: 0000 0103 0000

Hash Table Address: 0000 0102 0000

Storage - Before and After

0/8

0000 0102 DF92 0082

PD Entry Index

Storage - Before

0/8

0000 0103 0820 0010 0200 0080

0040 0020
0000 0102 0004 0082

Hash Table Entry"""""

6/E

~----

Storage - After

0/8 G/E

0000 0103 0820 0000 0101 0400

0040 0020

0000 0102 0004 0084

Condition Code:

Hash Table Entry ~ __ _

Before
x

After
1

Directory
Entry

Primary
Directory
Entry

I nstruction Descriptions 10-199

Operation Diagram:

IF the PD entry is valid (bit 40=1),

ELSE

THEN IF the page is not pinned (bits 64-71 and bits 75-79=0).

THEN IF the page has not been referenced (bit 41=0).

THEN IF the purge indicator (bit 73) is a 1,

-or-

the usage code (bit 90) is a 1,

THEN IF the page has been changed (bit 42=1).

THEN the condition code is set to 3.

ELSE the PD I/O use bit (bit 44) is checked. If the page is being used by I/O (bit 44=1), the

page is removed from the I/O resolved address registers. The PD entry virtual address is
hashed and the chain is searched. If the entry is not found on this chain, a specification
exception is recognized and the operation is terminated. If the entry is on the chain, the SID
and PID entries (bit 0-39) are updated as follows: Bits 0-23 are forced to hex 00 0001; bits

24-39 are updated by shifting the index of the PD entry left by 1, inserting a 0 in the vacated
low-order bit position, and storing the result in bits 24-39. Bits 40-63 are forced to zeros. The
entry is then removed from the PD chain and the condition code is set to 1.

ELSE the purge bit is set ON (bit 73=1). the condition code is set to 0, and the instruction is
terminated.

ELSE the purge indicator (bit 73) and reference bit (bit 41) are set to binary O.

I F the directory entry is for a V=R address,

THEN a specification exception is recognized and the operation is terminated.

ELSE if the lookaside buffer contains an entry for the page associated with the directory entry, the
change bit in the loookaside buffer entry is ORed into the change bit (bit 42) of the PD entry,
then removed from the lookaside buffer. The condition code is set to O.

ELSE the condition code is set to 2.

I
I F the page is not pinned (bits 75- 79=0) by storage management.

THEN IF the virtual address is V=R,

THEN the condition code is set to 1.

ELSE the condition code is set to O.

ELSE the condition code is set to 2.

10-200

EXCLUSIVE OR BYTE (XB)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand location.

Format: RS

OBits 8 12 16 20 31

Operation: Operands are treated as logical quantities,
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

Result

Result ""

Carry: Not applicable.

o
o

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

XB Example

OBits 8 12 16 20 31

Machine: 7972 3310

82 (3): 1131 11322000

Storage - Before and After

0/8 2/A 4/C 6tE

113111322310 FA

Before After

AF 55

Condition Code: x

Instruction Descriptions 10-201

EXCLUSIVE OR BYTE IMMEDIATE (XBI)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand location.

Format: SI

D,
OBits 8 16 20 31

Operation: Operands are treated as logical quantities,
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Overflow and Sign Code: Not applicable.

Condition Code:

a
1
2
3

Result

Result '"

Carry: Not applicable.

a
a

Boundary Requirements: None.

10-202

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

XBI Example

Op
9A

OBits 8 16 20

Assembler: XBI D1 (B 1), 12

Machine: 9A32 3980

Bd3): 0000 4250 AOOO

D,
980

31

Storage - Before

0/8 2/A

0000 4250 A980 CE

Storage - After

0/8 2/A

0000 4250 A980 FC

Before After

Condition Code: x

4/C 6/E

4/C 6/E

EXCLUSIVE OR BYTE REGISTER (XBR)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand register.

Format: RR

OBits 8 12 15

Operation: Operands are treated as logical quantities.
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

Result

Result ""

o
o

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

XBR Example

Op r, I r2

1A 6 7

OBits 8 12 15

Assembler: XBR rl. r2

r~ach i ne: 1 A67

Before After

2D 12

3F 3F

Condition Code: x

Instruction Descriptions 10-203

EXCLUSIVE OR BYTE REGISTER IMMEDIATE
(XBRI)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand register.

Format: RI

4A I r1 I a 12
OBits 8 12 16 24 31

Operation: Operands are treated as logical quantities,
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Overflow and Sign Code: Not applicable.

Condition Code:

a
1
2
3

10-204

Result
Result '#-

a
a

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

XBRI Example

Op
4A

OBits 8 12 16

Assembler: XB R I r 1, 12

Machine: 4A30 B900

24

Before After

42 FB

Condition Code: x

31

EXCLUSIVE OR CHARACTER (XC)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand location.

Format: SS

CA

OBits 8 16 20 32 36 47

Operation: Operands are treated as logical quantities,
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Each operand field is processed left to right.

Overflow and Sign Code: Not applicable.

Condition Code:

a

2
3

Result
Result ",

Carry: Not applicable.

a
a

Boundary Requirements: The operands can overlap if the
leftmost byte of the first operand is coincident with or
to the left of the leftmost byte of the second operand;
otherwise the overlap is destructive and the results are
unpredictable.

Program Exceptions:

Address translation
Addressing
Effective address overflow

XC Example

Op
CA

OBits 8 16 20 32 36

Machine: CA03 4800 4810

Bd4) and B2 (4): 1801 1802 1000

1801 1802 1800

1801 1802 1810

Storage - Before

0/8 2/A

C5C6 C7C8

C1C2 C3C4

Storage - After

4/C

0/8 2/A 4/C

1801 1802 1800

1801 1802 1810

0404 040C

C1C2 C3C4

Before After

Condition Code: x

47

6/E

6/E

Instruction Descriptions 10-205

EXCLUSIVE OR HALFWORD (XH)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: Operands are treated as logical quantities,
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

Result
Result ¢

Carry: Not applicable.

o

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-206

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

XH Example

OBits 8 12 16 20 31

Machine: 8085 3330

B2 (3): 0633 0634 0000

Storage - Before and After

0633 0634 0330

0/8

0636

2/A

Before After

0632 0004

Condition Code: x

4/C 6/E

EXCLUSIVE OR HALFWORD REGISTER (XHR)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand register.

Format; RR

OBits 8 12 15

Operation; Operands are treated as logical quantities,
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Overflow and Sign Code: Not applicable.

Condition Code:

a

2
3

Result

Result "'"

a
a

Carry: Not applicable.

Boundary Requirements and Program Exceptions; None.

XHR Example

Op R, R2
2A 9 A

OBits 8 12 15

Assembler: XHR R 1 , R2

Machine: 2A9A

Before After

Rl (9): 8876 44FE

R2 (A): FF88 FF88

Condition Code: x

Instruction Descriptions 10-207

EXCLUSIVE OR HAlFWORD REGISTER IMMEDIATE
(XHRI)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand register.

Format: RI

OBits 8 12 16 31

Operation: Operands are treated as logical quantities,
and the connective exclusive OR is applied bit by bit. A
bit position in the result is set if the corresponding bit
positions in the two operands are unlike; otherwise the
result bit is reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

10-208

Result
Result :f.

o
o

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

XHRI Example

OBits 8 12 16

12
FOFO

Assembler: XHRI R l • 12

Machine: 5ACO FOFO

Before After

A2A2 5252

Condition Code: x

31

This page is intentionally left blank.

Instruction Descriptions 10-209

EXECUTE (EX)

Instruction Description

The single instruction at the second-operand address is
modified by the contents of the byte register specified
by r" and the resulting instruction is executed.

Format: RS

OBits 8 12 16 20 31

Operation: Bits 8-15 of the instruction at the
second-operand address are ORed with the bits of the
register specified by r" except when register zero is
specified, which indicates that no modification takes
place. The ORing does not change either the contents
of the register or the instruction in storage, and it is
effective only for the interpretation of the instruction to
be executed.

The execution and exception handling of the subject
instruction are exactly as if the subject instruction were
obtained in normal sequential operation, except for the
instruction address and the instruction length code. The
instruction address is increased by the length of the
Execute instruction in order to form the updated
instruction address.

When the subject instruction is another Execute
instruction, an execute exception occurs and the
operation is suppressed. The second-operand address
must be even; otherwise a specification exception
occurs.

10-210

Overflow and Sign Code; Not applicable.

Condition Code; The code may be set by the subject
instruction.

Carry; Not applicable.

Boundary Requirements; The second operand must
begin on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions;

Address translation
Addressing
Effective address overflow
Execute
Specification

EX Example

OBits 8 12 16 20 31

Machine: 7El0 AOOO

B2 (A): 0000 3820 0000

Before After

99 99

Storage - Before and After

0/8 2/A 4/C 6/E

0000 3820 0000 9B66 C003

Op
9B

OBits 8 16 20

D,
003

31

Assembler: MVBI DI (B I), 12

Machine: 9B66 C003

BI (C): 0000 8916 0000

Bits 8-15 66
Bits rd1) 99

Result FF

The MVBI instruction is executed as if it were:

Op
9B

OBits 8 16 20

D,
003

31

If the EX instruction is located at 0000 3820 0000,
the next instruction to be executed is at address
0000 3820 0004.

Instruction Descriptions 10-211

EXTRACT TAGS (EXTAG)

Instruction Description

This instruction saves the tags when the page is written
to auxiliary storage. The pointer tag bits associated with
the block of storage addressed by the second operand
are stored in the halfword addressed by the first
operand.

Format: SS

A4 ~ I B, I D,
OBits 8 16 20 32 36 47

Operation: Tags are extracted from the second operand,
one bit for each quadword, and placed in the first
operand. The second operand remains unchanged after
the operation. L2 applies only to the number of bytes of
the second operand minus 1.

The first operand is a halfword in storage with each bit
(starting with the leftmost bit) containing the tagged
indication for each of the quadwords of the second
operand. Any partial quadword at the end of the second
operand would reset the corresponding bit of the first
operand. Any unused bits of the first operand are reset.
The quadword containing the first operand is untagged
by this operation.

10-212

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first operand must start on
a halfword boundary and the second operand must start
on a quadword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

EXTAG Example

The example shows 2 EXTAG instructions being used to
extract the tags from PAGE1 and put them in the two
halfwords at FIELD1 and FIELD1+2.

Op
A4

OBits 8 16 20

D,
000

Machine: A4FF 4000 5000

Op
A4

OBits 8 16 20

D,
002

Machine: A4FF 40025100

B,(4): 020A B76C 0000

32 36 47

32 36 47

B2(5): 020A B62A 0000 (This is the address of PAGE1.)

Assume that PAGE1 contains a tagged pointer in the
quadwords at addresses 020A B62A 0030 and 020A
B62A 0040 but no other pointers exist on the page.

Storage - Before

0/8 2/A 4/C 6/E

020A B76C 0000 xxxx xxxx

~IELDl 'FIELD1+2

Storage - After

0/8 2/A 4/C 6/E

020A B76C 0000 1800 0000

\IELDl "-FIELD1+2

Instruction Descriptions 10-213

FREE HOLD RECORD (FHR)

Instruction Description

This instruction is designed to be a continuation of a
Free Hold Record First instruction that was interrupted.
Therefore, the execution is almost identical except for
some initial conditions. The FHR instruction assumes
that the hold record chain has been marked busy by a
previous Free Hold Record First instruction, and instead
of using an object address and hash table to locate the
first hold record to check, the FHR instruction assumes
the address of a hold record is loaded in a register.

The FHR instruction also checks for pending
interruptions during execution. When the FH R
instruction terminates, it is necessary to check the
condition code to determine if the instruction was
interrupted.

Format: RS

OBits 8 12 16 20 31

Operation: The first-operand hold records are checked
to see if the second-operand free request can be
granted. The outcome of this check is as follows: to
grant the free request, to signal an error condition, or to
indicate that further hold records on the chain must be
checked. In the first and last cases, the first-operand
base register is loaded with the address of the
appropriate hold record.

A 4096-byte HHT (hold hash table) is accessed. Its
address is given in bytes hex 8A-8F of the CAT. This
HHT address is set by IMPL to point to the first byte in
the page.

10-214

This instruction functions the same as the Free Hold
Record First instruction except for the following
differences. The address of the last hold record
previously checked (by a prior execution of a FHRF or a
FHR instruction) is found in the first-operand base
register. Instead of hashing the third object address and
going through HHT, the address of the first hold record
address is calculated by multiplying bytes hex A and B
of the present hold record by 16 and then concatenating
the 20 bit result with the 28 high order bits of the
available hold record entry in bytes 92 through 97 of the
control address table. This hold record is not the first
on the chain, so an end of chain exception is not
invoked by an empty chain. Also, its busy flag is not
checked; thus, a descriptor access busy exception
cannot occur in this instruction.

Because this instruction checks groups of hold records
starting within the object hold chain, it does not set the
chain busy flag in the first hold record of the chain
when the condition code 3 exit is used (the flag is
assumed to have been set by the execution of a
preceding Free Hold Record First instruction). However,
when the condition code 0 exit is used, it must go back
to the first hold record in the chain and reset the
record's busy flat (bit 5 of the first byte).

Finally, when condition code 3 is set, the address loaded
into the first-operand base register points to the alst
hold record checked. This is similar to the Free Hold
Record First or Grand Hold Record instruction, which
loads the address of the next hold record to be checked.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result free was allowed.
1
2
3 Continue searching hold chain.

Carry: Not applicable.

Boundary Requirements: The second-operand hold
request block must be halfword aligned and the
first-operand hold record must be quadword aligned. If
either requirement is violated, a specification exception
occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing

Chain conflict
- Effective address overflow

End of chain
- Second chain search
- Speci'fication

Programming Note: If a program exception occurs, the
busy flag is not reset.

FHR Example

See the Free Hold Record First instruction example.

57 I B I C I D I 006
OBits 8 12 16 20 31

Machine: 57BC D006

Instruction Descriptions 10-215

FREE HOLD RECORD FIRST (FHRF)

Instruction Description

The FHRF instruction removes entries from a list of hold
records, which contain a 6-byte object address, a hold
byte, and the identification of the TDE (task dispatching
element) that requested the hold on the object. The list
of hold records is searched until a record matching the
input data is found. Then, if the maching entry is not
monitored, it is removed. If no match can be found, an
end-of-chain exception occurs.

The starting point for the search of the hold records is
found by hashing the 6-byte object address. An entry in
a hash table points to the first hold record to be
checked. Then each hold record contains the address of
the next hold record to be checked. As each hold
record is checked, its 6-byte address is placed in a
register. The last entry on a chain is indicated by a flag
bit in the hold record. When a hold record is removed
from the chain, it is placed on the chain of available
hold records. The address of the hash table and the
start of the chain are located in the control. address
table. While this instruction is executing, it periodically
checks for pending interruptions.

Format: RS

OBits 8 12 16 20 31

Operation: The first hold records in the hold record
chain of the third-operand object are checked for one of
the following purposes: to free a hold record, to signal
that no matching record can be found to be freed, or to
indicate that further hold records on the chain must be
checked. In the first case, the first-operand base
register is loaded with the address of the freed hold
record. In the third case, the first-operand base register
is loaded with the address of the last checked hold
record in the chain.

10-216

A 4096-byte HHT (hold hash table) is accessed. Its
address is given in bytes hex 8A-8F of the control
address table. This HHT address is set by IMPL to point
to the first byte in the page.

The third-operand register contains an object address.
This 6-byte effective address is hashed to create a
2-byte index into a hold hash table. The 2-byte hash
table entry selected (when multiplied by 16 and
concatenated to the right of the 28 high-order segment
bits of the available hold record address) addresses the
first hold record in the chain for the third-operand
object address and its hash synonyms. If the chain is
empty (contains no hold records), the hold hash table
entry is all zeros. In this case, the free requested by the
second-operand cannot be granted. An end-of-chain
program exception is recognized, the first-operand
register contents are unchanged, and the operation is
nullified.

If the hold hash table entry is not all zeros, the
addressed hold record is accessed. The 2-byte hold
hash table entry is multiplied by 16 and concatenated to
the right of the high-order 28 bits of the AHR (available
hold record) address. This new value points to the first
hold record on the chain (the start of the hold record
area). The chain busy flag (bit 5 of the first byte) of the
hold record is checked. If the chain busy flag is set, the
first-operand register is unchanged, a descriptor access
busy exception occurs and the operation is nullified. If
the chain busy flag is not set, hold records are checked
for a matching record; the figure below indicates the
number of records to be checked. A matching record or
end-of-chain flag set in any hold record prohibits
checking additional hold records. If no matching records
are found in the first or previous check, a check is made
for pending external interrupts. If none are pending,
additional groups of records are checked. If an interrupt
is pending, it is handled the same as in a page fault.
The instruction finishes as follows.

Records Checked

Models Initial Additional

3,4, and 5 9 13

6,7, and 8 14 20

The condition code is set to 3, the first-operand register
is loaded with the address of the last hold record
checked (note this difference from operation of the
Grant Hold Record First instruction), the chain is busy
flag (bit 5 of the first byte) in the first hold record for
this object chain is set, and the operation is completed.

For a matching hold record to be found, three fields in
the hold record are checked. The 6-byte object address
field (bytes 2-7) must match the third-operand register
contents; the 1-byte hold field (byte 1) must match the
second-operand hold field (byte 1); and the 2-byte TOE
identifier field (bytes 8-9) must match the TOE identifier
located in bytes hex 94-95 of the current TOE. If all
three match, this hold record can be removed from the
object hold chain and returned to the available hold
record chain. See Freeing a Hold Record, later in this
instruction description.

Primary Chain Search

If the object address does not match, the EOC
(end-of-chain) flag (byte 0, bit 6) is checked. If the
EOC flag is set, no matching hold record can be found.
The first operand base register is unchanged, an EOG
exception occurs, and the operation is nullified. If the
EOG flag is reset, the processor checks for pending
external interrupts. If there are no pending interrupts,
searching continues with the next hold record on the
primary chain (pointed to by the index in bytes 10 and
11 of the current hold record).

If an object address matches, the other two checks are
made (on the hold record and the TOE identifier). If
either of these does not match, the head of the
secondary chain bit (byte 0, bit 0) is checked. If this bit
is reset. no secondary chain exists and no other holds
could have been placed on this object. The first operand
base register is unchanged, an EOG exception occurs,
and the operation is nullified. If the head of secondary
chain bit is set, the secondary chain must be searched.

Secondary Chain Search

The secondary chain is searched in the same manner as
the primary chain. If a compare is not found, the
end-of-secondary chain flag bit (hold record bytes G
and 0) is checked. If this is the last hold record on the
secondary chain, no matching hold record can be found.
The first operand base register is not changed, an EOG
exception occurs, and the operation is nullified. If the
current hold record is not the EOG, a check is made for
pending external interrupts. If none are pending, the
secondary chain search continues with the next hold
record pointed to by bytes G and o.

Freeing a Hold Record

If the monitor flag is set, the first operand base register
is loaded with the address of the monitored hold record,
the chain busy flag is set, a chain conflict exception
occurs, and the operation is nullified. See Programming
Note. If the monitor flag is reset, the matching hold
record is freed, the condition code is set to 0, and the
operation is completed.

Programming Note: Two other values are passed in the
TOE. If the monitored hold record is at the top of chain,
the TOE contains the hash table entry offset for this
chain. If the monitored hold record is not at the top of
the chain, the TOE contains the index of the hold record
just prior to the monitored hold record.

To be freed, a matching hold record must be removed
from the object hold chain and returned to the available
hold record chain with some of its fields initialized and
both chains updated to reflect the changes. The flag
byte, the TOE identifier field, and the second chain
pointer and cumulative hold field of the freed record are
reset. The address of the AHR (available hold record)
chain from the control address table is converted to a
hold record index and the resultant 2-byte value is
loaded into the object chain field of the freed record.
The address of the freed record is loaded into the
control address table AHR chain entry. The value in the
current TOE's hold count field is decreased by 1.

Instruction Descriptions 10-217

Freeing from the Secondary Chain

If this is the last hold record on the secondary chain,
which is indicated by secondary chain flag, the previous
hold record has its secondary chain field set to zero. If
this hold record is the head of the secondary chain, the
head of the secondary chain flag is reset, and the
cumulative hold fields are updated. See Cumulative Hold
Updates later in this instruction description.

If the hold record to be freed is not last on the
secondary chain, it is removed from the chain by moving
its backward pointer to the backward pointer field of the
next record. Then the secondary chain field is moved to
the secondary chain field of the previous hold record
and the cumulative hold fields are updated.

Freeing from the Primary Chain

If the freed hold record is the head of the secondary
chain, the head of the secondary flag is reset. The
second hold record on the secondary chain becomes the
head of the seconday chain. The secondary chain index
of the freed hold record is moved to the hold record
chain index of the previous hold record on the primary
chain, or into the appropriate hash hold table entry if the
freed record was the first on the object chain. The new
head of secondary chain hold record has its
head-of-secondary chain flag set. unless it is the end of
the secondary chain. The end-of-primary chain flag on
the freed hold record is checked, and if it is set. the
hold record that has just been marked the
end-of-secondary chain is also marked the
end-of-primary chain. If the EOC flag is reset, the hold
record chain index of the freed hold record are moved
to the new head of secondary chain.

If the freed hold record is not the head of secondary
chain and the end-of-primary chain flag is set~ the EOC
flag is set in the preceding hold record in its chain. If it
was first on the chain, the object chain's HHT (hold
hash table) entry is set to zero. If there is no secondary
chain and the freed hold record was not at the end of
the primary chain, the object chain field of the record is
moved into the object chain field of the preceding hold
record on the object chain or into the appropriate hash
table entry if the freed record was the first on the object
chain.

10-218

Cumulative Hold Updates

The cumulative hold field is an OR (noninclusive) of the
remaining holds on the secondary chain. When a hold
record is removed from the secondary chain, all the
preceding holds on that secondary chain may need their
cumulative hold fields updated. A check is made to see
if the removal of the hold affects the cumulative hold
value. The hold of the freed hold record is used as an
AND mask with its cumulative hold field. The result is
then compared with the hold, and if they are equal, the
chain's cumulative hold fields need not be updated.

If the cumulative hold field must be updated, the
cumulative hold of the hold record to be freed is moved
to the previous hold record. If the freed hold record was
last on the secondary chain, this field is set to zero.

If the updated hold record is the head of the secondary
chain, all the records on the secondary chain are up to
date. If the updated hold record is not the head of the
secondary chain, it may not be necessary to continue
updating the cumulative hold fields. The hold fields of
the currently updated hold record and the freed hold
record are compared. If the result of ANDing these two
values equals the hold of the hold record freed, the OR
value does not change and there is no need to continue
the updates. If they are not equal, this hold record's
hold field and cumulative hold are ORed and placed in
the cumulative hold field of the previous hold record and
processing continues as stated at the beginning of this
paragraph.

Programming Note: All activity on the secondary chain is
currently implemented in VMC, but the operation is
nullified. Control is passed by a second chain search
exception when it is determined that a second chain
must be searched. The chain is marked busy and
parameters are passed through the checkpoint area in
the TOE. Bytes hex C2 and hex C3 in the HMC
checkpoint area hold the index to the hold record at the
beginning of the secondary chain. The second and third
operands are unchanged; however, the first operand
may have been altered if the primary chain search was
interrupted. A freed hold record is placed on the
available hold record chain with the Return Available
Hold Record instruction.

Overflow and Sign Code: Not applicable.

Condition Code:

a Requested free was allowed.

2
3 Continue searching hold chain.

Carry: Not applicable.

Boundary Requirements: The second-operand hold
request block must be halfword aligned; otherwise, a
specification exception is recognized and the operation
is suppressed.

Program Exceptions:

Address translation
- Addressing

Chain conflict
- Descriptor access: Busy

Effective address overflow
End of chain
Second chain search
Specification

Instruction Descriptions 10-219

FHRF Example

A hold of hex 02 is to be dropped for an object located
at hex 8001 1803 0000. Three holds exist on the same
primary chain: two from another TDE and one from the
current TDE which is to be freed.

The address of the obejct to be freed has been loaded
into register hex C and register hex D points to an area
that contains the 6-byte object (usually an object but
may be a group of bits or bytes) address and the 2-byte
hold request block.

After executing the FHRF instruction. storage would look
like:

D2
006

OBits 8 12 16 20 31

Assembler: FHRF B\. B3• D2 (B 2)

Machine: 47BC D006

Before

BdB): xxxx xxxx xxxx

B2 (D): 0801 D200 2200

B3 (C): 0801 1803 0000

Storage - Before

TDE

Descriptor

I ~
0 Bytes 2

After

0801 OCOO 0050 (TDE that requested hold)

0801 D200 2200 (pointer to hold request block)

0801 1803 0000 (object address)

TOE Identifier
0002

94 96

Control Address Table Hash Table

100 0088

100 0092

10-220

0801 OCOO 0060

0801 OCOO 0000

10
First hold
record to be 20

checked 30

~40
First available 50

hold record - 60

70

0801 0200 2206

Hold Records-Before

Flags Hold Object Address TOE

00 02 0801 1801 0000 0001

\
84 0801 1802 0000 0001

00 02 0801 1803 0000 0002

00 00 0000 0000 0000 ~OOOO

\OC I
Hold Record
Available

L--' .--------
Storage

0/8 2/A 4/C

1800 0000 0102

Hold Request BlocJ

6/E

0001

Primary Secondary Cumulative
Chain Chain Hold Field Unused

0004 0000 00 00

0000 0000 00 00

0003 0000 00 00

0007 0000 00 00

---------- -
The hold record at address hex 8001 OCOO 0050 was
taken off the chain. This is indicated by the TOE
requesting the hold now showing as not used (hex 000).

Note: Any of the hold records may be in anyone of
2048 possible chains.

Instruction Descriptions 10-221

Storage - After

Control Address Table Hash Table

100 0088

100 0092

0801 OCOO 0000

10

20

30

40

50

60

70

80

10-222

Hold Records - After

Flags Hold Object Address

00 02 0801 1801 0000

O~\
84 0801 1802 0000

00 02 0801 1803 0000

~EOC Hold Reco!
Now Available

L--'
L---L..----""

0003

Primary Second'" ,
TOE Chain Chain

0001 0004 0000

0001 0000 0000

J>0OO 0006 0000

\
Now on
Available
Chain

Cumulative
Hold Field

Unused

00 00

00 00

00 00

-

FUNCTION CALL DOUBLE (FNC2)

Instruction Description

The function call mechanism is used to call the function
routine selected by the index in the I-instruction field.

Format: SS

A8 I I 18, I D, D,
OBits 8 12 16 20 32 36 47

Operation: The index is used to access an entry in the
FRAT (function routine address table) to determine
where the function routine is located. Registers 0, 1, and 2
and the IAR are saved in the current stack entry prior to
that routine.

Using the address found in base register 3, the current
stack entry is accessed to determine if its storage
capability will allow for the storage of up to 128 bytes.
That capability is calculated by subtracting the offset of
the current stack entry from the first halfword of the
stack entry (that halfword pointing to the next stack
entry).

The stack entry is used to save the following:

• Base register 0 in bytes 122 (hex 7 A) through 127
(hex 7F)

• Base registers 1 through 2 in bytes 24 (hex 18)
through 35 (hex 23)

• Updated IAR (instruction address register) in bytes
120 (hex 78) and 121 (hex 79)

After the registers are saved into the stack entry, the
effective address of the first operand is loaded into base
register 1, the effective address of"the second operand
is loaded into base register 2, and the IAR and base
register 0 are loaded with data from the function routine
address table. The IAR is set to the 2-byte instruction
address, and the base register 0 is set to the 6-byte
function address, according to the following procedure:
the I-field is multiplied by 10 (hex A); that product is
added to the address of the FRAT, located at bytes
162-167 (hex A2-A7) in the CAT (control address
table). The resultant address locates a 10-byte entry for
a function routine. The first 2 bytes of the indexed
FRAT entry are loaded into the IAR, and the next 6
bytes are loaded into base register O. The last 2 bytes
are ignored. A branch is then taken to the address that
was formed by concatentating the upper 4 bytes of base
register 0 and the 2 bytes of the IAR.

The effective addresses of the first and second
operands are computed and checked for effective
address overflow exceptions. No attempt is made to
access the first and second operands, and they remain
unchanged in storage.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Reql.:lirements: If the new values of the IAR
and/or base register 0 are not halfword aligned, a
specification exception is recognized and the instruction
is suppressed. If the FRAT is not halfword aligned or
the stack entry is not doubleword aligned, a
specification exception is recognized and the operation
is suppressed. If the FRAT crosses a segment
boundary, an effective address overflow exception
occurs and the instruciton is suppressed.

Instruction Descriptions 10-223

Program Exceptions:

- Addressing
- Address translation
- Effective address overflow
- Specification:

FRAT not halfword aligned
FRAT ENTRY IAR value not halfword aligned
FRAT entry BO value not halfword aligned
Stack entry not doubleword aligned
Stack entry less than 128 bytes long

FNC2 Example

Op 13 I~'I 0, I ~21 O2

AS 00 456 AOO

0 Bits 8 16 20 32 36 47

Assembler: FNC2 D, (8,). O2 (8 2). 13

Machine: A800 7456 4AOO

Before After

8(0): 0000 1111 0000 AAOO OOAA

8(1) : 0101 0101 1000 0707 0707

B(2): 0202 0202 2000 0404 0404

B(4): 0404 0404 4444 0404 0404

B(7) : 0707 0707 1111 0707 0707

IAR: 0800 1234

10-224

0000

1567

4E44

4444

1111

4000

4008

4010

4018

4020

4028

4030

4038

4040

4048

4050

4058

4060

4068

4070

4078

Stack Entry Before Data

4100
address = hex
0303 0303 4000

1
;;;. 128 Bytes

I

Next stack entry
address = hex T 0303 0303 4100

Stack Entry After Data

T

-C ::L
4018 0101 0101 1000 0202

4020 0202 2000

4028

4030

4038

4040

4048

4050

4058

4060

4068

4070

4078 0806 0000 1111 0500

Doubleword Boundary

Forward Pointer Limit Backward Pointer Flags

Instruction Descriptions 10-225

Control Addrp.ss Table

address = hex
0000 0100 0000

address = hex
0000 0100 00A2----+----....

Function Routine
Address Table
address = hex
00 1 a 0200 0800

address = hex
00 1 a 0200 0846

10-226

•

IAR

1234

.. ~
T

10 Bytes

B(O) Flags

AAOO OOAA 0000 xxxx

-'-

T

13 field indexes to one
of these 256 entries:

Entry a
Entry 1

Entry 2

Entry 7

Entry 255

This page is intentionally left blank.

Instruction Descriptions 10-227

GRANT HOLD RECORD (GHR)

Instruction Description

The GHR instruction is designed to be a continuation of
a Grant Hold Record First instruction that was
interrupted. Therefore, the execution is almost identical
except for some initial conditions. The GHR instruction
assumes that the hold record chain has been marked
busy by a previous Grant Hold Record First instruction
and instead of using an object address and the hash
table to locate the first hold record to check, the GHR
instruction assumes the address of a hold record is
loaded in a register.

The GHR instruction also checks for pending interrupts
during execution. When the GHR instruction terminates,
it is necessary to check the condition code to determine
if execution completed or if the operation was
interrupted and must be continued again by reexecuting
the GHR instruction.

Format: RS

OBits 8 12 16 20 31

Operation: The first-operand hold record and
succeeding hold records are checked to see if the
second operand hold request can be granted. The
outcome of this check is: to grant the hold request, to
signal that a conflict exists, or to indicate that further
hold records on the chain of the third-operand object
must be checked. In all three cases, the first-operand
base register is updated to the address of the
appropriate hold record.

10-228

A 4096-byte HHT (hold hash table) is accessed. Its
address is in bytes hex SA-SF of the control address
table. This HHT address is set at IMPL (initial
microprogram load) to point to the first byte in the page.
The first AHR (available hold record) is also accessed
using the AHR address in bytes hex 92-97 of the
control address table.

The instruction functions the same as the Grant Hold
Record First instruction except for the following
differences. The address of the first hold record to be
checked is found in the first-operand base register
instead of by hashing the third-operand object address
and going thrrough the hold hash table. This first hold
record is not the first on the chain, so its busy flag is
not checked; thus no descriptor access busy exception
can occur in this instruction.

Since this instruction checks groups of hold records
starting within the object hold chain, it does not set the
chain busy flag in the first hold record of the chain
when condition code 3 is set (the flag is assumed to
have been set by the execution of a preceding Grant
Hold Record First instruction). However, when condition
code 0 exit is used, it goes back to this first hold record
in the chain and resets the record's busy flag (bit 5 of
the first byte).

Overflow and Sign Code: Not applicable.

Condition Code;

o Requested hold was allowed.

2
3 Continue searching hold chain.

Carry; Not applicable.

Boundary Requirements; The second-operand hold
request block must be halfword aligned; the first
available hold record must be quadword aligned; and the
first-operand hold record must be quadword aligned. If
any of these requirements is violated, specification
exception is recognized and the operation is suppressed.

Program Exceptions;

Address translation
Addressing
Chain conflict
Effective address overflow
End of chain
Second chain search
Specification

Programming Note; If a program exception occurs, the
busy flag is not reset.

GHR Example

006
OBits 8 12 16 20 31

Machine: 56BC 0006

See the GHRF instruction example.

Instruction Descriptions 10-229

GRANT HOLD RECORD FIRST (GHRF)

Instruction Description

The GHRF instruction conditionally adds entries to a list
of hold records that contain a 6-byte object address, a
hold byte, the identification of the TDE (task dispatching
element) that requested the hold on the object, and the
chain address to the next hold record on the hold record
chain. The addition of new entries is conditional
because each grant request specifies a test byte as well
as a hold byte. If an existing hold record has a hold on
the specified object matching any bit in the test byte,
and the existing hold was requested by a different TDE,
then an exception occurs and the new request is not
granted.

The starting point for the search of the hold record list
is found by hashing the 6-byte object address specified
in the third opersnd. An entry in a hold hash table
points to the first hold record to be checked. Each hold
record contains the index to the next hold record to be
checked. As each hold is checked, its 6-byte address is
placed in a register. The last entry on a chain is
indicated by a flag bit in the hold record. The address
of the hold hash table is located in the control address
table. When a new hold record is to be added to a
chain, the record is obtained from a chain of available
hold records. The starting point for this chain is an
address in the control address table, and the entries are
chained the same way as hold records.

While this instruction is executing it periodically checks
for pending interrupts. If an interrupt is pending, the
condition code is set (the busy flag is set for this hold
record chain) and execution of the GHRF instruction
ends. Execution can then be continued by the Grant
Hold Record instruction.

Format: RS

OBits 8 12 16 20 31

10-230

Operation: The hold records in the hold record chain of
the third-operand object are checked. The outcome of
this check is: to grant the second-operand hold request,
to signal that a conflict exists for that request (unless
hold request block byte 1 = 0), or to indicate that further
hold records on the chain must be checked. In all three
cases the first-operand base register is loaded with the
address of the appropriate hold record. If the hold
request block byte 1 is zero, the first-operand base
register is unchanged.

The address of the 4096-byte hold hash table is
accessed in bytes hex 8A-8F of the control address
table. This HHT (hold hash table) address was set by
IMPL (initial microprogram load) to point to the first byte
in the page. The first AH R (available hold record) is
accessed using the AH R address given in bytes hex
92-97 of the control address table.

The third-operand register contains an object address.
The 6-byte effective address is hashed to create a
2-byte index into the hold hash table. If the chain is
empty (contains no hold records) the hold hash table
entry is all zeros. In this case, the hold requested by the
second operand can be granted. (See Granting a Hold
for how a hold is granted).

If the hold hash table entry is not all zeros, the indexed
hold record is accessed. The 2-byte hold hash table
entry is multiplied by 16 and concatenated to the right
of the high-order 28 bits of the AHR (available hold
record) address, found in the control address table, to
point to the first hold record on the chain. These bits of
the AHR point to the start of the hold record area. The
hold record's chain-busy flag (byte 0, bit 5) is checked.
If the chain busy flag is set (indicating chain busy), the
first operand register is unchanged, a descriptor-access
busy occurs, and the operation is nullified.

If the chain busy flag is not set, hold records are
checked for a hold conflict; the figure below indicates
the number of records that can be checked. A conflict
or end of chain in any hold record prohibits checking
additional hold records. If the initial or previous groups
of hold records has been checked without determining if
the requested hold can be granted, a check is made for
pending interrupts. If none are pending, additional
groups of records are checked. If an interrupt is
pending, it is handled the same as in a page fault. The
instruction finishes as follows.

Records Checked

Models Initial Addition

3,4, and 5 9 13

6,7, and 8 14 20

The condition code is set to 3, the first-operand register
is loaded with the address of the next hold record in the
chain, the chain busy flag (bit 5 of the first byte) in the
first hold record for this object chain is set, and the
operation is completed.

The hold chains are set up in a dual chain structure. The
primary chain consists of those hold records with hash
synonyms. The secondary chain has all hold records
with equal object addresses.

Primary Chain Search

Each hold record is checked as follows. The 6- byte
object address field of the hold record (bytes 2-7) is
compared with the third-operand register contents. If
this field does not match (indicating the hold record is
intended for a hold hash synonym of this object), the
hold EOC flag (bit 6 of the first byte) is checked. If this
EOC flag is set; the hold requested by byte 1 of the
second-operand hold request block may be granted (see
Granting a Hold in this instruction description). If the
EOC flag is reset. a check is made to see if pending
interrupts must be checked. If it is, pending interrupts
are checked as described in the preceding paragraphs.
If not, the next hold record in this chain (whose record
index is found in bytes hex A and hex B of the current
hold record) is accessed and checked as described
earlier in this paragraph.

If the comparison of the object address fields of the
preceding paragraph results in a match, the hold test
field (byte 0 from the second-operand hold request
block) is compared with the hold field (byte 1) of the
current hold record. If any corresponding bits in these
fields are both ones, a potential conflict exists and the
hold field is compared to hex Fa. If equal. the hold is an
exclusive hold and no other holds can be placed on this
object; a conflict has arisen (see Conflicts in this
instruction description). If a potential conflict exists and
the hold is not an exclusive hold, the TDE identifier field
(byte 8-9) of the hold record is compared with the TDE
ID field in bytes hex 92-97 of the current TDE. If these
TDE IDs do not match, a conflict has arisen.

If no conflict was detected, the head of secondary chain
bit is checked. If this hold record is not the head of
secondary chain, the hold may be granted (see Granting
a Hold in this instruction description). If there is a
secondary chain, the cumulative hold field is checked
with the hold test field. If any corresponding bits are
set, a potential conflict exists on the secondary chain
and the secondary chain must be searched. If there is
no potential conflict on the cumulative hold field, the
hold may be granted (see Granting a Hold in this
instruction description).

Secondary Chain Search

The secondary chain is searched using the chain field
(bytes hex C and hex D) of the hold record. Object
addresses do not need to be checked because they are
all equal. The hold test field (byte 0) of the second
operand hold request block is compared with the hold
field (byte ,1) of the current hold record. If any
corresponding bits in these fields are set, a potential
conflict exists and the TDE identifier field is compared
with the TDE identifier field of the current TDE. If the
TDE identifiers do not match; a conflict has arisen. If
the TDE identifiers match, it might not be necessary to
continue searching the secondary chain. This hold
record's cumulative hold field is checked. If there are no
corresponding bits in these fields that are both set, the
hold can be granted. If any corresponding bits in these
fields are set, a potential conflict exists and the second
chain search continues with the hold record pointed to
by bytes hex C and hex D of the current hold record. If
the end-of-secondary chain is reached (bytes hex C and
hex D equal 0) before a conflict arises or a hold is
granted, a specification exception is presented.

I nstruction Descriptions 10-231

Granting a Hold

When it is determined that the requested hold may be
granted, the HRB hold field (byte 1 of the hold request
block) is checked. If it is all zeros, the new hold record
is not created and chained, the TDE count field in bytes
hex 96-97 of the TDE is not incremented by 1, and the
first-operand register is not loaded. However, the
condition code is set to zero and the operation is
completed. If the HRB hold field is not all zeros, the
requested hold is granted as follows. A hold record is
obtained from the AHR (available hold record) chain
using the AHR address contained in the CAT. If this is
the last AHR (its EOC flag set), the first-operand
register is unchanged, an end-of-chain program
exception occurs, and the operation is nullified.

If this is not the last available chain record, the acquired
hold record fields are filled in with pertinent data and
the hold record is chained into the front of the object
hold chain. Byte 0 (flags) of the acquired hold record is
reset. Byte 1 (HRHOLD) is filled from HRBHOLD (byte 1
of the hold request block). Bytes 2-7 (HROBJ) are filled
from the contents of the third-operand base register.
Bytes 8-9 (HRTDE) are filled from the task identifier
halfword field (bytes hex 94-95 from the current TDE).
Bytes hex A-B (HRCHN) are filled from the hash table
entry for this object chain. The HRCHN value from the
acquired hold record is multiplied by 16 and the
resultant 20 bit value is loaded into the low order 20
bits of the AHR (available hold record) address field in
the control address table. The address of this acquired
hold record is converted to a 2-byte record index and is
moved to the hold hash table entry for this object chain.

10-232

If no other record exists, the new hold record is placed
at the top of the chain by linking the rest of the chain to
it. The appropriate hash table entry value is placed into
this new record (bytes hex A and hex B). The hash
table entry is then filled with the index pointing to this
new hold record. If other hold records already exist for
this object, the new hold record is marked
head-of-secondary chain (byte 0, bit 0 is set). The
secondary chain is linked to this hold record by placing
the index (address) to the previous head-of-secondary
chain into bytes hex C and hex D of the new hold
record. The new hold record's index (address) is placed
into bytes hex A and hex B of the hold record that was
previously the head of the secondary chain. (This hold
record's head-of-secondary chain bit is reset.) The
cumulative hold field is generated, by ORing the hold
and cumulative hold of the previous head of this
secondary chain, and then placed into bytes hex E of
the new hold record. This previous head-of-secondary
chain is then removed from the primary chain by moving
its chain pointer in bytes hex A and hex B and the EOC
bit (byte 0, bit 6) to the same bytes in the previous hold
record on the primary chain. However, if this previous
head-of-secondary chain was the first hold record on
the primary chain, then the value that was originally in
bytes hex A and hex B is moved to bytes hex A and hex
B of the acquired hold record, updating the primary
chain pointer again. If this new hold record is the only
hold record in its primary hash chain (hash table entry
was zero), the EOC flag is set. The TDE hold count field
in bytes hex 96 and hex 97 of the TDE is incremented
by 1, the first operand base register is loaded with the
address of the new hold record, and the condition code
is set to o.

Conflicts

When a conflict has arisen, the chain busy flag (byte 0,
bit 5 in the first hold record in the chain) is set, the first
operand register is loaded with the address of this
conflicting hold record, a chain conflict exception is
signaled, and the operation is nullified.

Programming Note: All activity on the secondary chain is
currently implemented in VMC. The chain is marked
busy and parameters are passed through the checkpoint
area in the TOE. A second chain search exception is
issued and the operation is nullified.

Checkpoint Area
(Hex Bytes) Contents

C2 and C3 Hash table entry offset.

C4 and C5 An index to the hold record
just prior to the hold record
at the beginning of the
secondary chain. (A value of
o indicates the head of
secondary chain is also first
on the primary chain.)

C6 and C7 An index pointing to an
available hold record. (The
hold record is removed from
the available hold record list
when the second chain
search exception is present.)

Overflow and Sign Code: Not applicable.

Condition Code:

o Requested hold was allowed.

2
3 Continue searching hold chain.

Carry: Not applicable.

Boundary Requirements: The second-operand hold
request block must be halfword aligned, and the first
available hold record must be quadword aligned. If one
of these requirements is not met. a specification
exception occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Chain conflict

Descriptor access: Busy
Effective address overflow
End of chain
Second chain search
Specification

Instruction Descriptions 10-233

GHRF Example

A hold of hex 02 is being requested for hex 8001 1803
0000. The test byte specifies hex 01, so only a previous
hold of hex 01 is considered a conflict. Two holds from
a different TDE already exist on the same hold record
primary chain.

The value for the hold has been loaded into register hex
C. Register hex D points to the 6-byte value that
precedes the hold request block.

OBits 8 12 16 20 31

Assembler: GHRFB 1 ,B 3 ,D 2 (B 2)

Machine: 46BC D006

Before

BdB): xxxx xxxx xxxx 0801

B2 (D): 0801 D200 2200 0801

B3 (C): 0801 1803 0000 0801

Storage - Before

TDE

Descriptor

0 Bytes

100 0088

100 0092

10-234

I S
2 94

Control Address Table

0801 OCOD 0050

After

OCOO 0050

D200 2200

1803 0000

TDE Identifier
0002

96

Hash Table

080 1 OCOO 0000

10
First Hold
Record on

20

the Chain - 30

First Available 40
Hold Record-50

60

70

0801 D200 2206

Hold Records - Before

Flags Hold Object Address TDE

~~
/.~nd of Chain

0000 0001 02 0801 1801

84 0801 1802 0000 0001

00 02 0000 0000 0000 0000

00 00 0000 0000 0000 lOa a
I

Hold Record

l.--" ---~

Storage

0/8

1800 0000 0102

Hold Request BlockJ

Available

6/E
0801

Primary Secondary Cumulative
Chain Chain Hold Field

Unused

0004 0000 00 00

0000 0005 00 00

0006 0000 00 00

0007 0000 00 00

----------- -

Instruction Descriptions 10-235

Storage - After

Control Address Table

100 0088

100 0092

0801 oeoo 0000

10

20

30

40

50

60

70

80

10-236

Hold Records - After

Flags Hold Object Address

00 02 0801 1801 0000

02 84 0801 1802 0000

00 02 0801 1803 0000

00 00 0000 0000 0000

l-,..------

Hash Table

0005

TOE
Primary Secondary Cumulative

Unused
Chain Chain Hold Field

0001 0004 0000 00 00

0001 0000 0000 00 00

0002 0003 0000 00 00

0000 0007 0000 00 00

----~

HASH AND VERIFY VIRTUAL ADDRESS (HWA)

Instruction Description

The HWA instruction provides support for linking virtual
addresses (so the virtual address translator may resolve
them) and for pinning and unpinning pages (to prevent
storage management from stealing them).

Format: 55

08 1 113 1 B, 1 0,
OBits 8 12 16 20 32 36 47

Operation:

The instruction has varying results depending on the
contents of the second operand, which is treated as a
6-byte address in storage.

• If the storage operand contains a V=R address, the
condition code is set to 3 and the instruction ends.
The immediate byte of the instruction is ignored.

• If the storage operand contains a virtual address, the
address is hashed by the VAT (virtual address
translator) microcode. The resulting 2-byte hash
table class is placed in the left 2 bytes of the first
operand.

• If the virtual address represented by the storage
operand is not found by the VAT microcode,
condition code 2 is set and the instruction ends. The
immediate byte is ignored.

• If the virtual address represented by the storage
operand is successfully translated, the PO (primary
directory) entry valid bit is checked. If it is off,
condition code 1 is set. The immediate byte is
ignored. The PO entry identifier is formed and set in
the right 2 bytes of the result.

• If the virtual address represented by the pointer is
successfully translated and the PO entry valid bit is
on, condition code zero is set. The immediate byte is
interrogated. The PO entry identifier is formed and
set in the right 2 bytes of the result. The action
taken for the immediate byte is as follows:

13 Bits
12 = 13 = Actitn

o o

o

Instruction ends; pin
count in PO entry
unchanged

Pin count in PO entry
incremented

Pin count in PO entry
decremented

Bits 14 and 15 are not used. The pin count is 1 byte,
unsigned.

After execution of the HWA instruction the bits of the
first operand have the following meanings:

Bits

0-15
16-31

Contains

Hash table entry index value
Primary directory entry index

If the primary directory entry is not present, bits 16-31
are unchanged.

Overflow: A machine check occurs if the increment or
decrement operation to the pin count causes an
overflow or underflow respectively.

Sign Code: Not applicable.

Instruction Descriptions 10-237

Condition Code:

o Primary directory entry exists and is valid
1 Primary directory entry exists and is invalid
2 Primary directory entry does not exist
3 The second operand is a V=R address

Carry: Not applicable.

Boundary Requirements: The first operand must begin
on a word boundary and the second operand must
begin on a halfword boundary. Otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
Addressing

- Effective address overflow
Specification

Programming Note: The PO entry may be found by
multiplying the second halfword by 16, ignoring any bits
carried out of the halfword, and adding the resulting
halfword to the primary directory address in the control
address table. The address of the hash table entry may
be found by multiplying the first halfword by 2, ignoring
any bit carried out of the halfword, and adding the result
to the hash table address in the control address table.
(In both cases the condition code must indicate that the
halfword [s] are valid.)

10-238

The hash index D for address hex C001 CEOO 0400 is
formed. The result of hashing II is saved in the first 2
bytes of the result. Hash table index hex 0050 II
indicates the first PO entry currently containing a virtual
address of that hash index.

PO entry index hex OOCE II does not contain the
requested address but contains a similar one that
hashes to the same hash index.

Since the next PO entry index II field is not hex 0000
(end-of-chain), at least one more member of the hash
class is present. Index hex 0001, turns out to be the
address searched for. If index hex 0001 had not been
hex C001 CEOO 0400 and had contained end-ot-chain
for its next PO entry index, the HWA microcode would
have (1) concluded that no more PO entries contained
members of hash class hex 0050 and that hex COO1
CEOO 0400 was not resident at this time, and (2) set the
condition code to 2 and ended the i,1struction.

The second 2 bytes of the result II area are set to the
primary directory entry found.

Since the valid bit D (leftmost bit of the sixth byte of
the code address) is on, the page is addressable. If it
was off, the condition code would have been set to one
and the instruction ended.

Since the immediate field says increment pin count and
the page is resident and valid, the pin count is
incremented from zero to 1. The condition code is set
to zero. The instrllction completes.

D1
000

OBits 8 12 16 20 32 36

Machine: 0808 4000 5000

B1 (4): OOOF 2CB1 0000

B2 (5): 0012 AC01 0000

Hash Table

Index Offset PD Entry Index

0050 OOAO OOCE

Ii ----D

Index Offset

0000 0000
Primary Directory

OOCE OCEO 0001 CEOO 0400 0001

47

,11

----I
J

0001 0010 C001 CEOO 0480 0001

\
II

Storage - Before

0/8 2/A 4/C 6/E

OOOF 2CB1 0000 XXXX XXXX

0012 ACOO 0000 COO1 CEOO 0400
...

D 0050

Storage - After

0/8 2/A 4/C 6/E

OOOF 2CB1 0000 0050 0067 -.--.-
II II

0012 ACOO 0000 C001 CEOO 0400

Before After

Condition Code: x 0

Instruction Descriptions 10-239

INSERT TAGS (lNTAG)

Instruction Description

Each quadword of the first operand is tagged if the
corresponding bit of the second operand is set.

Format: 55

A5 L, I B, I D,
OBits 8 16 20 32 36 47

Operation: l, applies only to the number of bytes of the
first-operand minus 1.

The second operand is a halfword in storage with each
bit (starting with the leftmost bit) containing the tagged
indication for each of the quadwords of the first
operand. When a zero bit is encountered, the
corresponding quadword is untagged. When a 1 bit is
encountered, the corresponding quadword is tagged.
Any unused portion of the second operand is ignored.
Any partial quadword at the end of the first operand is
always untagged regardless of the tagged indication of
the second operand.

10-240

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a halfword boundary and the first operand must start
on a quadword boundary. Otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

L
INTAG Example

Op L, 1~11 D,
I ~21 D2

A5 07 000 000

OBits 8 16 20 32 36 47

Assembler: INTAG O,(L" B,),02(B2)

Machine: A507 4000 5000

B,(4): 020A B76C 0000

B2(5): 020A B62A 0000

Storage - Before and After

0/8 2/A 4/C 6/E

020A B62A 0000 AF9F

As a result of this operation the words addressed by the
first operand have their tag bits set as follows:

020A B76C o()()oT 020A B76C 0050~ , 020A B76C OOAOJ' 020A B76C 00F1] ,
\..- 04 54 A4 F4

08 58 A8 F8
OCJ 5C AC FC

...J

lOT :J B"]' 14 B4
18 68 B8

1CJ 6C BC

2"J 7"]' C"]' 24 74 C4

28 78 C8
2C 7C CC

:J B"J DOJ 84 04
38 88 08
3C 8C DC

4"J 90J E"J 44 94 E4
48 98 E8
4C 9C EC

Instruction Descriptions 10-241

INVALIDATE PRIMARY DIRECTORY ENTRY (lPDE)

Instruction Description

The IPOE instruction provides support for main storage
management to steal page frames. Conceptually, pages
are either resident (in main storage) or nonresident (in
auxiliary storage only). However, while a page is in the
process of being paged in from secondary storage or
being eliminated from main storage, the page must be
marked in some manner to account for such things as
multiple address translation exceptions to the same page
by concurrent processes or for attempts by processes to
reference a page being stolen by storage management.

Support for these conditions is provided by the notion
of a valid PO (primary directory) entry. When a virtual
address is inserted in the PO entry, the valid bit within
that PO entry is left off until the page is read from
auxiliary storage (or otherwise set to the correct
contents). Any attempts to reference the address in this
period generates address translation exceptions (page
faults) just as if no PO entry contained the address.

The address translation exception handler, however, by
executing the HWA instruction, distinguishes no PO
entry from a PO entry with the valid bit off. This allows
special case handling for multiple processes with
concurrent address translation exceptions (since only
one may actually insert addressability in the PO entry
and perform the I/O).

10-242

The valid bit may be turned on with any computational
instruction, such as the OR Byte Immediate instruction.
Turning it off, however, requires this instruction for three
reasons: the use by I/O registers, pinning, and the LB
(lookaside buffer). An I/O register is internally
implemented such that an internal 4-byte rather than a
6-byte form of the address is used. First, the 4-byte
form addresses storage directly without going through
virtual address translation when references stay within
the current page. That is, the I/O register pretranslates
the address. Thus, invalidating a page requires
destroying addressability of any I/O registers addressing
the subject page. Second, a page that is pinned by
another user must always remain addressable and be
addressed in the same page frame. Thus, if this page is
pinned, this instruction cannot be allowed to complete
successfully. Finally, the hardware LB must be purged
of the entry for this PO entry, if present. This internal
buffer is not addressable directly by any IMP
instructions.

The operand for this instruction is a PO entry identifier,
which, when multiplied by 16 (ignoring any bits carried
out of the halfword) and added to the base address of
the PO, addresses the PO entry to be invalidated.

Format: 51

83 I I 5 I B, I 0 ,
OBits 8 12 16 20 31

L

Operation: The pin count, bits 64-71 in the PO entry
identified by the operand, is compared to zero. If it
equals zero, the valid bit is then reset. In addition, if a
copy of this directory entry is in the LB, the change bit
in the LB entry is ORed into bit 42 of the PO entry. The
entry is then removed from the LB. In addition, one of
the PO I/O use bits is checked. If the page was being
used by I/O (bit 44=1), the page is removed from the
I/O resolved address register. If the pin count does not
equal zero, the PO is not changed and the LB is not
checked.

Bits 0-15 of the operand are used as the PO index
value. If the index value specifies a directory entry
containing a V=R address, a specification exception
occurs and the operation is suppressed. A specification
exception will not be presented if the index value
specifies a directory entry beyond the range of directory
entries.

The high-order 4 bits (bits 0-3) of the PO index
identified by the first operand are not used. The
high-order bit (bit 0) of the hash table entry index is not
used to index the hash table.

Overflow and Sign Code: Not applicable.

Condition Code:

o PO entry invalidated, pin count = 0
1 PO entry not invalidated, pin count ¥- 0
2
3

Carry: Not applicable.

Boundary Requirements: The operand occupies 2 bytes
in storage and must begin on a halfword boundary;
otherwise a specification exception occurs and the
operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

Programming Note: The PO entry identifier is returned
in bits 16-31 of the result from the Hash and Verify
Virtual Address instruction.

Instruction Descriptions 10-243

IPOE Example

0,
320

OBits 8 12 16 20 31

Storage - Before and After

Assembler: IPOE 0 1 (8 1)

Mach i ne: 8305 4320

8 1 (4): 0000 0101 41EO

0000 0101 4500

0/8

0820

2/A

!r----D-----'
PO Base Address: 0000 0101 0000

0000 0101 0000
Primary Directory

Segment Identifier PID

0 Bits 31 32 39

fI 8200 0000 0000 0000 0000 0000 0101 0000 0101 0101 1100

" ,
v

8210 II

~

The first operand addresses the PO entry index value.
The processor multiplies the PO entry index value by 16,
ignoring any bits carried out by the halfword. This
halfword offset is then added II to the PO base
address found in the control address table in order to
address the PO entry II.

The pin count II is interrogated. If it had been nonzero,
condition code one would have been set and the
instruction ended. Since it is zero, the valid bit II in the
PO entry status field is set to zero and the virtual
address II is used to interrogate the lookaside buffer
and the I/O registers. If the lookaside buffer entry is
present (in the processor), the change bit is ORed into
the PO entry status field and the lookaside buffer entry
is removed. All I/O registers pointing to the subject
page are invalidated.

Before After

Condition Code: o

10-244

Status
40 47

1100 0000

\
0

4/C 6/E

Index Reserved
48 59 60 62

111001000000 000

EOC PINCNT Reserved

63 64 71 72 127

0 0000 0000 --II

JUMP ON BITS OFF (JBF)

Instruction Description

The state of the first-operand bits selected by a mask is
used to determine whether the jump is taken. A mask
of zero results in no jump.

Format: RI

5F I r1 I 0 12

OBits 8 12 16 24 31

Operation: The 12 byte (immediate data) is used as an
8-bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte register
designated by r1•

A set mask bit indicates that the register bit is to be
tested. When the mask bit is reset, the register bit is
ignored. When the selected register bits are all reset,
the updated instruction address is incremented by the
8-bit jump displacement, J3 • The 8-bit jump
displacement is added to bits 8-15 of the updated
instruction address with both operands treated as
unsigned binary quantities. Otherwise instruction
sequencing proceeds with the updated instruction
address.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: If the sum of the updated instruction address
and the jump displacement cause a carry, an effective
address overflow exception occurs and the operation is
suppressed.

Boundary Requirements: The final instruction address
must begin on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

JBF Example

OBits 8 12 16 24 31

Assembler: JBF r I, J3, 12

Machine: 5F50 AF2A

Before Updated After

50 50

IAR: 3500 3504 352E

Instruction Descriptions 10-245

JUMP ON BITS ON (JBN)

Instruction Description

The state of the first-operand bits selected by a mask is
used to determine whether the jump is taken.

Format: RI

5E I r, I 0 12

OBits 8 12 16 24 31

Operation: A mask of zero results in no jump.

The 12 byte (immediate data) is used as an 8-bit mask.
The bits of the mask are made to correspond one for
one with the bits of the byte register designated by r,.

A set mask bit indicates that the register bit is to be
tested. When the mask bit is reset, the register bit is
ignored. When all of the selected register bits are all
set, the updated instruction address is incremented by
the 8-bit jump displacement, J 3 . The 8-bit jump
displacement is added to bits 8-15 of the updated
instruction address with both operands treated as
unsigned binary quantities. Otherwise, instruction
sequencing proceeds with the updated instruction
address.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

10-246

Carry: If the sum of the updated instruction address
and the jump displacement cause a carry, an effective
address overflow exception occurs and the operation is
suppressed.

Boundary Requirements: The final instruction address
must begin on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow

- Specification

JBN Example

Op
5E

OBits 8 12 16

Assembler: JBN rj, J3, 12

Machine: 5E50 AF2A

Before Updated

rl (5): AF

IAR: 1500 1504

24

After

AF

152E

31

..J

This page is intentionally left blank.

Instruction Descriptions 10-247

JUMP ON CONDITION (JC)

Instruction Description

The jump displacement in J 2 is added to the updated
instruction address if the condition code is as specified
by M,; otherwise, normal instruction sequencing
proceeds with the updated instruction address.

Format: RI

OBits 8 12 16 24 31

Operation: M, is used as a 4-bit mask. The 4 bits of
the mask correspond, left to right, with the four
condition codes (0, 1, 2, and 3). The jump is taken
whenever the condition code has a corresponding set
mask bit.

The jump address is formed by adding the 8-bit jump
displacement. J 2, to bits 8-15 of the updated instruction
address with both operands considered as binary
unsigned quantities.

10-248

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The updated instruction address
must begin on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed. If the sum of the jump offset and the
updated instruction offset crosses a segment boundary,
an effective address overflow exception occurs and the
operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Specification

L

Programming Note: The IMP instruction assembler uses
the following extended mnemonics:

Extended Standard
Mnemonic Meaning Mnemonic

JH Jump High JC

JL Jump Low JC

JE Jump Equal JC

JNH Jump Not High JC

JNL Jump Not Low JC

JNE Jump Not Equal JC

JP Jump Plus JC

JM Jump Minus JC

JZ Jump Zero JC

JNP Jump Not Plus JC

JNM Jump Not Minus JC

JNZ Jump Not Zero JC

JO Jump Ones JC

JM Jump If Mixed JC

JZ Jump If Zeros JC

JNO Jump If Not Ones JC

JC Example

OBits 8 12 16 24 31

Assembler: JC M1 , J2

Machine: 4E01 OOCO

Before Updated After

IAR: A200 A204 A2C4

Condition Code: 3 3

Mask Code
(Hexadecimal)

2

4

8

D

B

7

2

4

8

D

B

7

1

4

8

E

Instruction Descri ptions 10-249

LOAD ILl

Instruction Description

The second operand is placed unchanged into the
register designated by the first operand.

Format: RS

94 1 B, 1 0 1 B21
OBits 8 12 16 20 31

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-250

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

L Example

OBits 8 12 16 20 31

Assembler: L B 1 , D2 (B2)

Machine: 9440 3250

Before After

Bl (4): xxxx xxx x xxxx 0000 ABCD EFOO

B2 (3): 0020 2AOO 0000 0020 2AOO 0000

Storage - Before and After

0/8 2/ A 4/C 6/E

0020 2AOO 0250 0000 ABCD EFOO

LOAD ADDRESS (LA)

Instruction Description

The address specified by B2 and D2 is loaded into the
base register specified by B1•

Format: RS

OBits 8 12 16 20 31

Operation: The address computation follows the rules
for address arithmetic.

No storage references for operands take place, and the
address is not inspected for an addressing exception.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: If the sum of the offset portion of B2 and the
displacement results in a carry, an effective address
overflow exception occurs and the operation is
suppressed.

Boundary Requirements: None.

Program Exception: Effective address overflow

LA Example

Op
53

OBits 8 12 16 20

Assembler: LA B1, D2 (B2)

Machine: 5330 4BOO

Before

31

After

B1 (3): xxxx xxxx xxxx 0000 EBOO OBOO

B2 (4): 0000 EBOO 0000 0000 EBOO 0000

Instruction Descriptions 10-251

LOAD AND VERIFY TAGS (LVT)

Instruction Description

The lVT instruction provides support for loading the
address value of a pointer into a base register.
Verifications are performed on the specified storage to
ensure that it does contain a pointer. Checks are
performed to ensure that:

• Boundary alignment is a 16-byte (quadword) multiple.

• The hardware tags are on.

• The pointer type is one of those specified as
allowable on the instruction.

• The pointer is resolved to an object. A pointer may
contain an initial value. requiring it to be resolved.

• The object addressed by the pointer has not been
destroyed.

Upon passing all of these verifications. the address
value within the pointer is loaded into the base register
providing addressability to the object for VMC
instructions. The condition code is set as a result of the
instruction to indicate the type of pointer that was
accessed.

Format: RS

OBits 8 12 16 20 31

10-252

Operation: The address located in bytes hex A-F of the
second operand is placed in the first-operand location.

The following validity checks are made on the second
operand:

• The second operand must be tagged.

• Bit 2 of the second operand must be zero.

• Bytes 8 and 9 of the second operand must match the
halfword in storage located at the address
determined by taking bytes hex A. B. and C of the
second operand and concatenating hex 00 0004 on
the right.

l.

The type of pointer (specified by bits 0-1 of the second
operand) is verified to match with that allowed by 13•

Bits 0-1 specify the pointer type as follows:

Second Operand

Bits 0-1

13

00
01
10
11

0---
1---

-0--
-1--

--0-
--1-

---0
---1

Decode

1000
0100
0010
0001

Description

System pointer
Instruction pointer
Space pointer
Data pointer

Description

System pointer not allowed
System pointer allowed

Instruction pointer not allowed
Instruction pointer allowed

Space pointer not allowed
Space pointer allowed

Data pointer not allowed
Data pointer allowed

To verify the pointer match, the AND of the 13 field with
the decode of bits 0-1 must be nonzero.

If any of the above checks fails, a verify exception
occurs and the operation is suppressed.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

System pointer
Instruction pointer
Space pointer
Data pointer

Carry: Not applicable.

Boundary Requirements: The second operand is a
quadword and must start on a quadword boundary;
otherwise a specification exception occurs and the
operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification
Verify

Instruction Descriptions 10-253

LVT Example

OBits 8 12 16 20 31

Assembler: LVT B1, D2 (B 2), 13

Machine: 6453 20CO

Before After

B1 (5): xxxx xxxx xxxx 0001 2COO 5148

B2 (2): 0001 5005 0000 0001 5005 0000

Condition Code: x 2

The pointer is accessed through the base plus the
displacement D (the second operand) specified in the
instruction. The type of pointer II is verified to match
with that allowed by the 13 field of the instruction. In
the example 13 = 3 (space pointer allowed and data
pointer allowed). If the type is not allowed, a verify
exception occurs.

The initial value indicator, bit 2, of the pointer II is
checked for a value of zero. If not zero, a verify
exception occurs. A value of 1 can only occur for
system and data pointers and indicates that they contain
a pointer to a name and must be resolved to the actual
object. This resolution is done by a default exception
handler for the verify exception.

The segment group extender value II in the pointer is
checked against the extender value. in the header of
the segment group II identified by bytes A-C II of the
pointer. If not equal, a verify exception occurs. (Equal
means that the segment group is still being used to
contain the same object that it contained when ·.he
pointer was built.)

The first oprand is updated with the address value from
bytes A-F of the pointer.

10-254

The condition code is set to indicate the type of pointer
accessed. In this example, it is set to 2 to indicate a
space pointer.

D
0001 5005 OOCO

Byte 0

1000 0000
-t
a lBits 7

II

Pointer

0/8 2/A 4/C 6/E

8000 0000 0000 0000

OOOA 0001 2COO 5148 -- ,

II

Zeros (3 bytes) Catenated

with Value from II
..--,. ./ ,

0001 2COO 0000

I
Forms the Segment
Group Address

Pointer-Type Bits fJ

II
0001 2COO 0000

Storage - Before and After

0/8 I 2/A '4/C I 6/E

xxxx xxxx OOOA ---.-..
IJ

LOAD BYTE (LBI

Instruction Description

The second operand is placed unchanged into the
register designated by the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

LB Example

OBits 8 12 16 20 31

Assembler: L8 rl, O2 (8 2)

Machine: 7450 3210

8 2 (3): 0018 CDEO 0000

Storage - Before and After

0018 CDEO 0210

Before After

xx A5

0/8

A5

2/A 4/C 6/E

Instruction Descriptions 10-255

LOAD BYTE REGISTER (LBR)

Instruction Description

The second operand is placed in the first-operand
register.

Format: RR

OBits 8 12 15

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

10-256

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

LBR Example

~: j ~ J
OBits 8 12 15

Assembler: LBR rj, r2

Machine: 1434

Before After

rl (3): xx FF

FF FF

LOAD BYTE REGISTER IMMEDIATE (LBRII

Instruction Description

The second operand is placed into the register
designated by the first operand.

Format: RI

44 I r, I 0
OBits 8 12 16 24 31

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

LBRI Example

OBits 8 12 16 24 31

Assembler: LBR I rl, 12

Machine: 4450 A900

Before After

xx A9

Instruction Descriptions 10-257

LOAD HALFWORD (LH)

Instruction Description

The second operand is placed into the register
designated by the first operand.

Format: RS

OBits 8 12 16 20 31

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-258

Program Exceptions:

- Address translation
- Addressing

Effective address overflow
Specification

LH Example

OBits 8 12 16 20 31

Machine: 8450 3COO

B2 (3): OOAF 0210 0000

Storage - Before and After

OOAF 0210 OCOO

Before After

0/8

ABCD

Rl (5): xxxx ABeD

2/A 4/C 6/E

LOAD HALFWORD REGISTER (LHR)

Instruction Description

The second operand is placed in the first-operand
register.

Format: RR

24 I Rl I R21
OBits 8 12 15

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

LHR Example

Op Rl R2
24 3 4

OBits 8 12 15

Assembler: LH R R 1 , R2

Machine: 2434

Before After

Rl (3): xxx x ABCD

R2 (4): ABCD ABCD

Instruction Descriptions 10-259

LOAD HALFWORD REGISTER IMMEDIATE (LHRI)

Instruction Description

The second operand is placed into the register
designated by the first operand.

Format: RI

OBits 8 12 16 31

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-260

Boundary Requirements and Program Exceptions: None.

LHRI Example

OBits 8 12 16 31

Assembler: LH R I R I , 12

Machine: 5430 ABCD

Before After

RI (3): xxxx ABCD

LOAD HASH TABLE ENTRY ADDRESS (LHTEA)

Instruction Description

The address of the hash table entry indexed by the
second operand is loaded into the base register
specified by the first operand.

Format: RS

OBits 8 12 16 20 31

Operation: The second operand is used as the 2-byte
hash table index value. The address of the hash table
entry indexed by the second operand is formed by
shifting the index 1 bit to the left, converting it from an
index to an offset (bit 15 becomes zero). That offset is
added to the original address of the hash table and
loaded into the base register specified by the first
operand. No storage reference is made for the hash
table entry, and the high-order bit (bit 0) of the hash
table entry index identified by the second operand is not
used.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand occupies 2
bytes in storage and must begin on a halfword
boundary; otherwise, a specification exception is
recognized and the operation is suppressed.

Program Exceptions:

Address translation
- Addressing
- Effective address overflow

Specification

LHTEA Example

OBits 8 12 16 20 31

Machine: 8382 4074

Before After

B1 (8): xxxx xxxx xxxx 0000 0102 OC42

B2 (4): 0000 0100 2480 0000 01 00 2480

Hash Table Address: 0000 0102 0000

Storage - Before and After

0/8 6/E

0000 0102 24F4 0621

Instruction Descriptions 10-261

lOAD MULTIPLE (lM)

Instruction Description

A set of registers is loaded from the locations
designated by the second-operand address.

Format: RS

OBits 8 12 16 20 31

Operation: The first-operand field identifies the first
register to be loaded, and 13 specifies the number of
additional registers to be loaded.

The storage area from which the contents of the
registers are obtained starts at the location specified by
the second-operand address and continues through as
many locations as needed.

The registers are loaded in the ascending order of their
addresses, starting with the register specified by the
first operand. The register addresses wraparound from
hex F to O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The storage operands must
each start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

10-262

Program Exceptions:

- Address translation
- Addressing
- Effective address
- Specification

lM Example

OBits 8 12 16 20 31

Machine: 9504 4200

B2 (4): 0000 2AOO 0000

Storage - Before and After

0/8 2/A 4/C 6/E
0000 2AOO 0200 0000 1234 5678 0000

2100 2A30 0000 OA30
BC30 3A20 FFF3 21AO
14BC OEFO 33AO

Base
Register Before After

0 xxxx xxxx xxx x 0000 1234 5678

E xxxx xxxx xxxx 0000 2100 2A30

F xxx x xxxx xxxx 0000 OA30 BC30

a xxxx xxxx xxxx 3A20 FFF3 21AO

xxxx xxxx xxxx 14BC OEFO 33AO

LOAD MULTIPLE BYTE (LMB)

Instruction Description

A set of registers is loaded from the locations
designated by the second-operand address.

Format: RS

OBits 8 12 16 20 31

Operation: The first-operand field identifies the first
register to be loaded, and 13 specifies the number of
additional registers to be loaded.

The storage area from which the contents of the
registers are obtained starts at the location specified by
the second-operand address and continues through as
many locations as needed.

The registers are loaded in the ascending order of their
addresses, starting with the register specified by the
first operand. The register addresses wraparound from
hex F to O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation
Addressing
Effective address overflow

LMB Example

OBits 8 12 16 20

Machine: 7552 4000

82 (4): 2A3C F1FA 0000

31

Storage - Before and After

0/8 2/A 4/C

2A3C F1 FA 0000 1234 56

Byte
Registers Before After

5 xx 12

6 xx 34

7 xx 56

6/E

Instruction Descriptions 10-263

lOAD MULTIPLE HAlFWORD (lMH)

Instruction Description

A set of registers is loaded from the locations
designated by the second-operand address.

Format: RS

OBits 8 12 16 20 31

Operation: The first-operand field identifies the first
register to be loaded, and 13 specifies the number of
additional registers to be loaded.

The storage area from which the contents of the
registers are obtained starts at the location specified by
the second-operand address and continues through as
many locations as needed.

The registers are loaded in the ascending order of their
addresses, starting with the register specified by the
first operand. The register addresses wraparound from
hex F to O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-264

Program Exceptions:

Address translation
Addressing

- Effective address overflow
- Specification

lMH Example

OBits 8 12 16 20 31

Machine: 8504 0130

B2 (0): 0135 A210 0000

Storage - Before and After

0/8 2/ A 4/C G/E

0135 A210 0130 0102 A1A2 B1B2 C1C2

D1D2

Halfword
Registers Before After

0 0000 0102

xxx x A1A2

2 xxxx B1B2

3 xxxx C1C2

4 xxxx D1D2

LOAD PRIMARY DIRECTORY ENTRY ADDRESS
(LPDEA)

Instruction Description

The address of the primary directory entry indexed by
the second operand is loaded into the base register
specified by the first operand.

Format: RS

OBits 8 12 16 20 31

Operation:

The second operand is used as the primary directory
index value. The address of the primary directory entry
indexed by the second operand is formed by the shifting
index to the left 4 bits, converting it from an index to an
offset (bits 12-15 become zeros). This offset is added
to the original address of the primary directory and
loaded into the base register specified by the first
operand. The high-order 4 bits (bits 0-3) of the primary
directory index identified by the second operand are
ignored and treated as zeros.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand occupies 2
bytes in storage and must begin on a halfword
boundary; otherwise, a specification exception is
recognized and the operation is suppressed.

Program Exceptions:

- Address translation
Addressing
Effective address overflow

- Specification

LPDEA Example

OBits 8 12 16 20

Assembler: LPDEA B 1, D2 (B2)

Machine: 8361 4076

Before

31

After

Bl (6): xxxx xxxx xxxx 0000 0101 0820

B2 (4): 0000 0100 2480 0000 0100 2480

Primary Directory Address: 0000 0101 0000

0000 0100 24F6

Storage - Before and After

0/8 6/E

0082

I nstruction Descriptions 10-265

LOAD PRIMARY DIRECTORY ENTRY ADDRESS
REGISTER (LPDEAR)

Instruction Description

The address of the primary directory entry indexed by
the second-operand halfword register is loaded into the
base register specified by the first operand.

Format: RR

25 I B, I R21
OBits 8 12 15

Operation: The address of the primary directory entry is
formed by shifting the second operand to the left 4 bits
(bits 12-15 become zeros) to convert the address from
an index to an offset. This offset is then added to the
origin address of the primary directory; the resulting
address is then loaded into the base register specified
by the first operand. The high-order 4 bits (bit 0-3) of
the primary directory index identified by the second
operand are ignored and treated as zeros. No storage
reference is made for the primary directory entry.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

10-266

Boundary Requirements: Not applicable.

Program Exceptions: None.

LPDEAR Example

Op B, R2
25 6 8

OBits 8 12 15

Assembler: LPDEAR B1 , R2

Machine: 2568

Before After

B1 (6): xxxx xxxx xxxx 0000 0101 0820

R2 (8): 0082 0082

Primary Directory Address: 0000 0101 0000

LOAD REGISTER (LR)

Instruction Description

The second operand is placed in the first-operand
register.

Format: RR

15 1 B, 1 B21
OBits 8 12 15

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

LR Example

Op B, B2
15 1 4

OBits 8 12 15

Assembler: LRB 1 ,B2

Machine: 1514

Before After

BI (1): xxxx xxxx xxxx 02A3 1234 5678

B2 (4): 02A3 1234 5678 02A3 1234 5678

Instruction Descriptions 10-267

LOAD SPACE OFFSET POINTER (LSOP)

Instruction Description

The 4-byte unsigned binary displacement identified by
the second operand is added to the 3-byte unsigned
binary space locator specified by the third operand. The
resultant low-order 3 bytes are concatenated to the
right of the high-order 3 bytes of the third-operand
address; the result is placed into the first-operand base
register.

Format: RS

OBits 8 12 16 20 31

Operation: The address computation is performed in the
following manner. The space locator is a 3-byte binary
field located at the storage address found by
concatenating hex 00 001 D to the right of the
high-order 3 bytes (segment group identifier) of the
third-operand address. That space locator is padded on
the left with hex 00 to form a 4-byte binary
displacement. and is added to the second operand. If
the resultant 4-byte sum exceeds hex OOFF FFFF or
causes an overflow. an invalid segment group address
exception is recognized and the operation is terminated.
The resultant segment group offset (low-order 3 bytes)
is concatenated to the right of the segment group
identifier (high-order 3 bytes) of the third operand
address; the result is placed in the base register
specified by the first operand.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

10-268

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Invalid segment group address

LSOP Example

OBits 8 12 16 20 31

Machine: 9386 2020

Before After

B1 (8): xxxx xxxx xxxx 00C1 BODO 08AO

B2 (2): OOCl BODO 4BCO OOCl BODO 4BCO

B3 (6): OOCl BODO 0920 00C1 BODO 0920

Storage - Before and After

OOCl BODO 4BEO

OOCl BODO OOlD

0/8

0000 0800

6/E

00 OOAO

MOVE AND SET TAGS (MVAST)

Instruction Description

The MVAST instruction provides support to build
System/38 pointers from a 16-byte value in storage.
Both the area for the pointers to be built (the first
operand) and that for the source 16-byte value (the
second operand) are ensured to be aligned on a 16-byte
boundary. The second operand value is moved to the
first operand as System/38 pointer (tagged) data.

Format: SS

B4 I I 0 I B, I D,
OBits 8 12 16 20 32 36 47

Operation: The second operand is placed in the
first-operand location with the first operand tagged.
The second operand mayor may not be tagged.

If the two operands are the same quadword, then the
effect is to set the tags with no change to the data.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Each operand is a quadword
and must start on a quadword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

MVAST Example

0,
006

OBits 8 12 16 20 32 36 47

Assembler: MVAST D 1 (8 1), D2 (82)

Machine: 8400 9006 4FOO

8 1 (9): 0001 OOFF FF7A

82 (4): 05AC 0400 0010

0001 OOFF FF80

05AC 0400 OF 1 0

0001 OOFF FF80

05AC 0400 OF 10

Storage - Before

0/8 2/A 4/C G/E

xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx

8000 0000 0000 0000
0412 1000 3A01 5000

Each word has

0/8

8000 0000 0000 0000
0412 1000 3A01 5000

8000 0000 0000 0000
0412 1000 3A01 5000

Instruction Descriptions 10-269

MOVE BYTE IMMEDIATE (MVBII

Instruction Description

The second operand is placed in the first-operand
location.

Format: SI

D,
OBits 8 16 20 31

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

10-270

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

MVBI Example

Op
9B

OBits 8 16 20

D,
lAO

Assembler: MV81 D1 (8 1), b

Machine: 9B5C 31AO

8 1 (3): OOAC 0003 0000

31

Storage - Before

0/8 2/A

OOAC 0003 01 AO xx

Storage - After

0/8 2/A

OOAC 0003 01AO 5C

4/C 6/E

4/C 6/E

MOVE BYTE IMMEDIATE AND PROPOGATE
(MVBIP)

Instruction Description

Each byte of the first operand is filled with the padding
character, 12.

Format: SI

I AC I L I B,I 0,
OBits 8 16 20 32 40 47

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first operand must not
cross a segment boundary; otherwise an effective
address overflow occurs and the operation is
suppressed.

Program Exceptions:

Address Translation
Addressing

- Effective Address Overflow

MVBIP Example

I Op I L, I~' I D,

AC 05 C20

OBits 8 16 20 32

Assembler: MV81P 0 1 (L1 , 8 1),12

Machine: AC05 3C20 F900

8 1 (3): 1234 5678 0000

Storage - Before

0/8 2/A

1234 5678 OC20 xxxx xxxx

Storage - After

12
F9

40 47

4/C 6/E

xxxx

0/8 2/ A 4/C 6/E

1234 5678 OC20 F9F9 F9F9 F9F9

Instruction Descriptions 10-271

MOVE CHARACTER REGISTER (MVCR)

Instruction Description

The second operand is placed in the first-operand
location. The length is variable and is found as the
contents of the third-operand byte register.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: Each operand field is processed left to right.

MVCR Example

OBits 8 12 16 20

0,
2AO

Machine: OB60 32AO 4BCO

B} (3): OOOC AA1B 0000

B2 (4): OOOC AC1B 0000

32 36

Storage - Before

47

Overflow and Sign Code: Not applicable. 0/8 2/A 4/C 6/E

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands can overlap if the
leftmost byte of the first operand is coincident with or
to the left of the leftmost byte of the second operand;
otherwise, the overlap is destructive and the results are
unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

10-272

OOOC AA 1 B 02AO xxxx xxxx xxxx xxxx

OOOC AC1 B OBCO

OOOC AA 1 B 02AO

OOOC AC1B OBCO

1234 5678 9ABC OEFO

Storage - After

0/8 2/A 4/C 6/E

1234 5678 9ABC OEFO

1234 5678 9ABC OEFO

MOVE CHARACTERS (MVC)

Instruction Description

The second operand is placed in the first-operand
location.

Format: SS

CB L I B, I D,
OBits 8 16 20 32 36 47

Operation: Each operand field is processed left to right.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands can overlap if the
leftmost byte of the first operand is coincident with or
to the left of the leftmost byte of the second operand;
otherwise the overlap is destructive and the results are
unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

MVC Example

Op L,
CB 07

0,
2AO

OBits 8 16 20 32 36 47

Machine: CB07 32AO 4BCO

B) (3): OOOC AA 1 B 0000

B2 (4): OOOC AC1B 0000

OODC AA1B 02AO

OOOC AC1 B OBCO

DOOC AA 1 B 02AO

DOOC AC1B OBCO

Storage - Before

0/8 21 A 4/C 6/E

xxxx xxxx xxxx xxxx

1234 5678 9ABC DEFO

Storage - After

0/8 2/A 4/C 6/E

1234 5678 9ABC DEFO

1234 5678 9ABC DEFO

Instruction Descriptions 10-273

MOVE CHARACTERS AND TAGS (MVCAT)

Instruction Description

The MVCAT instruction moves data in storage while
preserving System/38 pointers. Both operands are
assumed to be aligned to the same position relative to a
16-byte boundary. System/38 pointers completely
contained in the second operand are preserved in the
first operand. Partial System/3S pointers are copied
from the second operand into the first operand, but they
do not retain the pointer attribute (copied untagged).
System/38 non pointer data (untagged data) is copied
from the second operand to the first operand.

Format: 55

B5 L I B1 I D1
OBits 8 16 20 32 36 47

Operation: The second operand may contain untagged
data and / or tagged quadwords. If the first byte does
not start on a quadword boundary, then that partial
quadword is moved to the first operand untagged. If the
last byte does not end on a quadword boundary, then
that partial quadword is moved to the first operand
untagged. All other quadwords are moved to the first
operand with their associated tags.

Each operand is processed left to right. The operands
can overlap if the leftmost byte of the first operand is
coincident with or to the left of the leftmost byte of the
second operand; otherwise the overlap is destructive
and the results are unpredictable. This unpredictability
resulting from operand overlap can destroy valid pointers
but cannot create invalid pointers.

10-274

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Both operands must be
comparably aligned within a quadword; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

L

MVCAT Example

Op
85

0,
000

Machine: 8516 7000 2000
OBits 8 16 20 32 36 47

The partial System/38 instruction pointer (tagged) data
in the first 3 bytes of the second operand .. is moved
to the first 3 bytes of the first operand as nonpointer
(untagged) data.

8 1 (7): 001 F C800 CDFD

The complete System/38 pointer in the next 16 bytes of
the second operand II is moved intact as a System/38
pointer (tagged) into the next 16 bytes of the first
operand.

The next 4 bytes of non pointer data in the second
operand II is moved intact as a nonpointer data into
the next 4 bytes of the first operand.

Storage - After

0/8 2/A 4/C 6/E

82 (2): 0105 07AA 700D

001 F CBOO CDFD 00 7D52D (not

CEOO

CE10

0105 07AA 700D

7010

8000
457F

F2F3

8000
457F

tagged)

0000 0000 0000 fI (tagged)
8000 1537 815A

FOC111 (not tagged)

0000
8000

00

0000
1537

7D52 D (tagged)

0000 lI(tagged)
815A

7020 F2F3 FOC1. (not tagged)

Instruction Descriptions 10-275

MOVE CHARACTERS LONG (MVCL)

Instruction Description

The second operand is placed in the first-operand
location. The remaining rightmost byte positions, if any,
of the first operand location are filled with the padding
character, contained in the 13 field of the instruction.

Format: SS

EB D,
OBits 8 16 20 32 36 47

Operation: The leftmost bytes of the first and second
operands are located indirectly through addresses
contained in storage. The first and second-operand
addresses from the instruction identify an 8-byte field in
storage. Bytes 0-1 of these 8-byte fields specify 1 less
than the number of bytes in the operand location, and
bytes 2-7 contain the addresses of the leftmost byte of
the operands.

Length

o Bvtes 2

Operand Address
SID Offset

The operation starts at the leftmost end of both fields,
proceeds to the right, and ends when the end of the
first-operand field is reached. If the second operand is
shorter than the first operand, the remaining rightmost
bytes of the first operand are filled with the padding
character.

If the 8-byte field associated with the second operand
contains all zeros, the second operand is assumed to be
of zero length and the first operand is completely filled
with the padding character. If the 8-byte field
associated with the first operand contains all zeros, the
operation is completed with no data moved.

10-276

8

The execution of the instruction is interruptable (the
operation can be suspended). When an interruption
occurs after a unit of operation other than the last one,
the IAR (instruction address register) is not advanced to
the next instruction address, the length fields are
decremented by the number of bytes moved, and the
address fields are incremented by the same number, so
that the instruction resumes at the point of interruption.
If the operation is interrupted during padding, the length
field for the second operand is zero, the address field
for the second operand is set to contain all zeros, and
the length and address fields for the first operand reflect
the extent of the padding operation.

At the completion of the operation, the length and
address fields associated with the first operand contain
all zeros. The length field of the second operand is
decremented by the number of bytes moved and the
address field is incremented by the same amount. The
length and address fields associated with the second
operand contain all zeros if the second operand is
completely moved by the operation.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first and second-operand
addresses from the instruction identify 8-byte fields in
storage that begin on a word boundary and must not
cross a page boundary; otherwise a specification
exception occurs and the operation is suppressed.
Neither data operand may cross a segment boundary;
otherwise an effective address overflow exception
occurs and the operation is suppressed.

The operands can overlap if the leftmost byte of the
first operand is coincident with or to the left of the
leftmost byte of the second operand; otherwise the
overlap is destructive and the results are unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

MveL Example

Op 13 1~11 D,
I ~21 D2

EB FF 100 BOO

0 Bits 8 16 20 32 36 47

Assembler: MVCl 0 1 (B I), O2 (B 2 1. 13

Machine: EBFF 3100 3BOO

BI (3) and B2 (3): 0001 1AB2 0000

Storage - Before

0/8 2/A 4/C 6/E

0001 1AB2 0100 OOOF 02AC AC1B 2100
OBOO 0000 312A F215 AOCO

02AC AC1B 2100 xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx

312A F215 AOCO C9F3 21A6 ABCD 1234
EF56 7890 FEDC

Storage - After

0/8 2/A 4/C 6/E

0001 lAB2 0100 0000 0000 0000 0000
OBOO 0000 0000 0000 0000

02AC ACl B 2100 C9F3 21A6 ABCD 1234
EF56 7890 FEDC FFFF

312A F215 AOCO C9F3 21A6 ABCD 1234
EF56 7890 FEDC

Instruction Descriptions 10-277

MOVE HALFWORD IMMEDIATE (MVHIl

Instruction Description

The second operand is placed in the first-operand
location.

Format: 51

AB 1 10 1 B,I D,
OBits 8 12 16 20 32 47

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

10-278

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

MVHI Example

Op

I I ~ I ~11 D,
AB 250

0 Bits 8 12 16 20 32

Assembler: MVH I DdBtl. 12

Machine: ABOO 3250 ABCD

Bl (3): 002A 00A2 0000

Storage - Before

002A 00A2 0250

002A 00A2 0250

0/8 2/A

xxx x

Storage - After

0/8

ABCD

2/A

12
ABCD

47

4/C 6/E

4/C G/E

L

L

MOVE VIRTUAL PAGE WITH CORRECTED
DOUBLE-BIT ERRORS SUPPRESSED (MVMC)
(5382 MODELS ONLY)

Instruction Description

The second operand is placed in the first operand
location. The IMPI processor must be in machine check
mode or a machine check will occur.

Format: RR

1D 1 B1 1 B21

OBits 8 12 15

Operation: Each operand field is processed left to right
with tags. If a hard-hard double-bit main storage error
occurs on the second operand during this operation and
is corrected, the machine check will be suppressed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands must be
different main storage frames, page-aligned, and 512
bytes long or a machine check will occur. The second
operand address must be a V=V address or a machine
check will occur.

Program Exception: None.

MVMC Example

Op B1 B2
1D 7 4

OBits 8 12 15

Assembler: MVMC B1, B2

Machine: 1 D74

BP): 0000 0139 CAOO

B2(4): OOOB D0653600

Storage - Before

0/8 I 2/A I 4/C I 6/E

0000 0139 CAOO xxxx xxxx xxxx xxxx

CBF8 xxxx xxxx xxxx xxxx

OOOB D065 3600 C1 F3 ACBD 0123 ABCD

37F8 FEDB 8765 C2C5 FOF5

..... - -
Storage - After

0/8 2/A 4/C 6/E

0000 0139 CAOO C1 F3 ACBD 0123 ABCD

CBF8 FEDB 8765 C2C5 FOF5

OOOB D065 3600 C1 F3 ACBD 0123 ABCD

37F8 FEDB 8765 C2C5 FOF5

I nstruction Descriptions 10-278.1

This page is intentionally left blank.

10·278.2

MOVE NUMERIC TO NUMERIC (MVNN)

Instruction Description

The numeric half of the 1-byte second operand is
placed in the numeric half of the 1-byte first operand.

Format: 55

BA 1 10 1 B,I D,
OBits 8 12 16 20 32 36 47

Operation: The numeric half of the byte is the rightmost
4 bits.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

MVNN Example

0,
100

OBits 8 12 16 20 32 36

Machine: BAOO 3100 3400

B1 (3) and B2 (3): 1234 5678 0000

Storage-Before

0/8 2/A 4/C

1234 5678 0100 xx

1234 5678 0400 F3

Storage-After

0/8 2/A 4/C

1234 5678 0100 X3

1234 5678 0400 F3

47

G/E

G/E

Instruction Descriptions 10-279

MOVE NUMERIC TO ZONE (MVNZ)

Instruction Description

The numeric half of the second operand is placed in the
zone half of the first operand.

Format: SS

BB 1 1 0 1 B,I D,
OBits 8 12 16 20 32 36 47

Operation: The numeric half of the byte is the rightmost
4 bits, and the zone half byte is the leftmost 4 bits.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

10-280

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

MVNZ Example

OBits 8 12 16 20

D,
100

Assembler: MVNZ DdBd,D2 (B2)

Machine: BBOO 3100 3400

B1 (3) and B2 (3): 1234 5678 0000

32 36

Storage - Before

0/8 2/A 4/C

1234 5678 0100 xx

1234 5678 0400 F1

Storage - After

0/8 2/A 4/C

1234 5678 0100 1x

1234 5678 0400 F1

47

6/E

6/E

This page is intentionally left blank.

Instruction Descriptions 10-281

MOVE PACKED SHIFTED (MVPS)

Instruction Description

The second operand is shifted as specified by the
contents of byte register hex F and is placed in the
first-operand location.

Format: SS

0,
OBits 8 12 16 20 32 36 47

Operation: The result is padded on the right or left with
zeros, as required, and the sign is right-adjusted. The
second operand is unchanged by the operation except
when the operands overlap. The contents of byte
register hex F are unchanged by the operation.

Bits 2-7 of byte register hex F indicate the direction of
the shift and the number of digit positions to be shifted.
The remaining bits in the register are ignored. When bit
2 of byte register hex F is zero, a left shift is specified,
and when bit 2 is 1, a right shift is specified. Bits 3-7
of byte register hex F are treated as a true binary
number specifying the number of digit positions to be
shifted (ranging in value from zero to 31).

The operation is performed as if the entire second
operand was shifted prior to modifying any byte of the
first operand.

10-282

The second operand is treated as a packed decimal
format field and is checked for a valid digit code. An
improper code causes a data exception and the
operation is terminated with the first operand
unchanged. Only the digits of the second operand are
shifted; its sign is right-aligned in the first-operand field
and, if necessary, changed to the preferred sign code.
Zeros are supplied to the digits of the first operand that
do not receive a digit from the second operand.

During right shifts, the digits shifted out of the rightmost
digit position are ignored and lost. For a left shift, all
significant digits shifted are placed in the first-operand
field except when the first-operand field is too short to
include all shifted significant digits. Then the rightmost
digits of the shifted second operand are placed in the
first-operand location and a decimal overflow occurs.

Overflow: See Operation.

Sign Code: The second operand is checked for a valid
sign code. An improper code causes a data exception
and the operation is terminated with the first operand
unchanged.

In the absence of a decimal overflow, the sign of a zero
result is made positive. With a decimal overflow, the
sign of a zero result is the same as the original sign, but
the code is the preferred sign code.

See Operation for further information.

Condition Code:

o

2
3

Result
Result
Result

o
< 0
> 0

A shift of zero can be used to set the condition code
based on the value of the field.

Carry: Not applicable.

Boundary Requirements: The first and second operands
can overlap. All combinations of overlap and shift are
allowed. No data alignment is required for either
operand.

Program Exceptions:

- Address translation
- Addressing

Data
- Decimal overflow

Effective address overflow

MVPS Example

D,
CBO

OBits 8 12 16 20 32 36 47

Machine: FBFF 3CBO 4FOO

Bl (3): 0000 OA10 0000

B2 (4): 0000 1 B20 0000

r(F): 08

Storage - Before

0/8 2/A 4/C 6/E

0000 OA 10 OCBO xxxx xxxx xxxx xxxx
xxx x xxx x xxx x xxxx

0000 1 B20 OFOO 0000 0000 1234 5678
9012 3456 7890 123F

Storage - After

0/8 2/A 4/C 6/E

0000 OA 1 0 OCBO 1234 5678 9012 3456
7890 1230 0000 OOOF

0000 1B20 OFOO 0000 0000 1234 5678
9012 3456 7890 123F

Before After

Condition Code: x 2

Instruction Descriptions 10-283

MOVE PACKED SHIFTED ZERO (MVPSZ)

Instruction Description

Byte register hex F is first set to zero and then the
second operand is shifted as specified by the contents
of byte register hex F and is placed in the first-operand
location.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: The result is padded on the right or left with
zeros, as required and the sign is right-adjusted. The
second operand is unchanged by the operation except
when the operands overlap. The contents of byte
register hex F are set to zero before starting the
operation.

Bits 2 through 7 of byte register hex F indicate the
direction of the shift and the number of digit positions
to be shifted. The remaining bits in the register are
ignored. When bit 2 of byte register hex F is zero, a left
shift is specified, and when bit 2 is 1, a right shift is
specified. Bits 3 through 7 of byte register hex Fare
treated as a true binary number specifying the number
of digit positions to be shifted (ranging in value from
zero to 31).

The operation is performed as if the entire second
operand was shifted prior to modifying any byte of the
first operand.

The second operand is treated as a packed decimal
format field and is checked for a valid digit code. An
improper code causes a data exception and the
operation is terminated with the first operand
unchanged. Only the digits of the second operand are
shifted; its sign is right-aligned in the first operand field
and, if necessary, changed to the preferred sign code.
Zeros are supplied to the digits of the first operand that
do not receive a digit from the second operand.

10-284

During right shifts, the digits shifted out of the rightmost
digit position are ignored and lost. For a left shift, all
significant digits shifted are placed in the first-operand
field except when the first-operand field is too short to
include all shifted significant digits. Then the rightmost
digits of the shifted second operand are placed in the
first-operand location and a decimal overflow occurs.

Overflow: See Operation.

Sign Code: The second operand is checked for a valid
sign code. An improper code causes a data exception
and the operation is terminated with the first operand
unchanged.

In the absence of a decimal overflow, the sign of a zero
result is made positive. With a decimal overflow, the
sign of a zero result is the same as the original sign, but
the code is the preferred sign code.

See Operation for further information.

Condition Code:

o Result = 0
1 Result < 0
2 Result> 0
3

A shift of zero can be used to set the condition code
based on the value of the field.

Carry: Not applicable.

Boundary Requirements: The first and second operands
can overlap. All combinations of overlap and shift are
allowed. No data alignment is required for either
operand.

Program Exceptions:

Address translation
- Addressing
- Data

Decimal overflow
- Effective address overflow

MVPSZ Example

OBits 8 12 16 20 32 36 47

Machine: FCFF 3CBO 4FOO

Bl (3): 0000 OA10 0000

B2 (4): 0000 1 B20 0000

Before After

r(F): 08 00

Storage - Before

0/8 2/A 4/C G/E

0000 OA 10 OCBO xxx x xxxx xxxx xxxx
xxxx xxx x xxx x xxx x

0000 1 B20 OFOO 0000 0000 1234 5678
9012 3456 7890 123F

Storage - After

0/8 2/A 4/C G/E

0000 OA 10 OCBO 0000 0000 1234 5678
9012 3456 7890 123F

0000 1B20 OFOO 0000 0000 1234 5678
9012 3456 7890 123F

Before After

Condition Code: x 2

I nstruction Descriptions 10-284.1

MOVE ZONE TO NUMERIC (MVZNI

Instruction Description

The zone half of the second operalld is placed in the
numeric half of the first operand.

Format: SS

BC I I 0 I B,I D,
OBits 8 12 16 20 32 36 47

Operation: The zone half of the byte is the leftmost 4
bits, and the numeric half of the byte is the rightmost 4
bits.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

10-284.2

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

MVZN Example

D,
560

OBits 8 12 16 20 32 36

Assembler: MVZN 0 1 (B 1), O2 (B2)

Machine: BCOO 3560 39AO

B1 (3) and B2 (3): OODC ODB1 0000

Storage - Before

0/8 2/A 4/C

OODC 00 B 1 0560 xx

OODC ODB1 09AO F5

Storage - After

0/8 2/A 4/C

OODC ODB1 0560 xF

OODC ODB1 09AO F5

47

6/E

6/E

MOVE ZONE TO ZONE (MVZZ)

Instruction Description

The zone half of the second operand is placed in the
zone half of the first operand.

Format: 55

BD I 10 I B, I 0,
OBits 8 12 16 20 32 36 47

Operation: The zone half of the byte is the leftmost 4
bits.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

MVZZ Example

D,
560

OBits 8 12 16 20 32 36

Machine: BODO 3560 39AO

B1 (3) and B2 (3): OODe ODB1 0000

Storage - Before

0/8 2/A 4/C

OODC ODB1 0560 xx

OODe ODB1 09AO F5

Storage - After

0/8 2/A 4/C

OODC ODB1 0560 Fx

OODC ODB1 09AO F5

47

G/E

G/E

Instruction Descriptions 10-285

MULTIPLY HALFWORD STORAGE (MHS)

Instruction Description

The product of the multiplier (the second operand) and
the multiplicand (the first operand) replaces the
multiplicand.

Format: SS

DC I I 0 I B,I D,
OBits 8 12 16 20 32 36 47

Operation: Both multiplier and multiplicand are 16-bit
signed binary integers. The product is always a 32-bit
signed binary integer and occupies a word of storage at
the first-operand location. The multiplicand is taken
from the second halfword of the first operand. The
contents of the first halfword are ignored unless it
contains the multiplier.

Overflow: An overflow cannot occur.

Sign Code: The sign of the product is determined (by
the rules of algebra) from the multiplier and multiplicand
signs.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first operand must start on
a word boundary; the halfword storage operand must
start on a halfword boundary; and the word storage
operand must start on a word boundary. Otherwise a
specification exception occurs, and the operation is
suppressed.

10-286

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

MHS Example

OBits 8 12 16 20

D,
150

Machine: DCOO 3150 3160

32 36

B d3) and B2 (3): 1 A45 BC3D 0000

Storage - Before

47

0/8 2/ A 4/C 6/E

lA45 BC3D 0150 0000 FFF4 (-12)

1 A45 BC3D 0160 0002 (+2)

Storage - After

0/8 2/A 4/C 6/E

lA45 BC3D 0150 FFFF FFE8 (-24)

lA45 BC3D 0160 0002 (+2)

MULTIPLY LONG FLOAT (MLF)

Instruction Description

The second operand is multiplied by the first operand
(two-operand format) or the third is multiplied by the
second operand (three-operand format), and the product
is placed in the first operand location.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format can
be specified. A two-operand format is used if base
register ° is specified for the third operand. A
three-operand format is used if one of the base
registers hex 1 through F is specified for the third
operand. Interchanging the two source operands does
not affect the value of the product. However, the first
operand data is overwritten by the result.

Multiplication of two floating-point numbers uses
exponent addition and significand multiplication. The
sum of the signed (unbiased) exponents of the source
operands is used as the exponent of the intermediate
product. This applies for denormalized and normalized
numbers.

The multiplication of the significands is performed as if
to infinite precision to form the intermediate product
significand. This product is normalized, if necessary,
before rounding. The rounding is performed according
to the mode speciified in the task dispatching element.

When either operand is 0, the product is made 0, and
no exceptions occur.

If a masked non-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
product. The source operands are checked for this value
in the order of their specification with the masked
not-a-number with the larger fraction value being
provided as the product.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal ° and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the product is determined by the
rules of algebra. This is the exclusive OR of the signs of
the source operands. This applies to the products of 0,
infinity, and normal finite numbers.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: All operands must be fullword
aligned, otherwise, a specification exception occurs, and
the operation is suppressed.

Program Exceptions:

- Address translation
Addressing
Effective address overflow

- Floating-point inexact result
Floating-point invalid operand

- Floating-point overflow
Floating-point underflow
Specification

Instruction Descriptions 10-287

Programming Note: The following is a summary of the
products for various combinations of operands.

Product First Source (Multiplicand)

+0 +Real number <F 0

+0 +0

+0 -Real number <F 0

+0 -0

+0 +0

+0 -0

-0 +Real number"" 0

-0 +0

-0 - Real number "" 0

-0 -0

-0 -0

-0 +0

+0 (see note) +Small real number"" 0

+0 (see note) -Small real number"" 0

-0 (see note) +Small real number"" 0

-0 (see note) -Small real number"" 0

Invalid operand exception +Infinity

Invalid operand exception +Infinity

Invalid operand exception -Infinity

Invalid operand exception -Infinity

+Infinity +Infinity

+Infinity -Infinity

+Infinity +Real number"" 0

+Infinity - Real number "" 0

+Infinity +Infinity

+Infinity -Infinity

-Infinity -Infinity

-Infinity +Infinity

-Infinity - Real number <F 0

10-288

Second Source (Multiplier)

+0

+0

-0

-0

+Real number"" 0

-Real number"" 0

-0

-0

+0

+0

+Real number"" 0

-Real number"" 0

+Small real number"" 0

-Small real number"" 0

-Small real number"" 0

+Small real number"" 0

+0

-0

+0

-0

+Real number"" 0

-Real number <F 0

+Infinity

-Infinity

+Infinity

-Infinity

+Real number"" 0

- Real number "" 0

+Infinity

Product First Source (Multiplicand) Second Source (Multiplier)

-Infinity +Real number"" 0 -Infinity

-Infinity +Infinity -Infinity

-Infinity -Infinity +Infinity

Masked not-a-number Masked not-a-number Not not-a-number

Masked not-a-number Not not-a-number Masked not-a-number

Larger masked Masked not-a-number Masked not-a-number
not-a-number

Invalid operand exception Unmasked not-a-number Any

Invalid operand exception Any Unmasked not-a-number

Legend:

Not not-a-number = Anything but a not-a-number.

Any = Any floating-point field value.

Note: For two small valued real numbers that are not equal to 0, a floating-point underflow that has a zero product
rather than a denormalized product can occur.

Instruction Descriptions 10-289

MLF Example

OBits 8 12 16 20

D,
050

Machine: CE33 4050 4060

83 (3): 0010 0200 0070

8 1 (4) and 82 (4): 0010 0200 0000

32 36

Storage - Before

0/8

47

G/E

0010 0200 0050

0010 0200 0060

0010 0200 0070

xxxx xxxx xxxx xxxx

0010 0200 0050

0010 0200 0060

0010 0200 0070

C080 0230 0000 0000

5080 0230 0000 0000

Storage - After

0/8 G/E

Dll0 0460 4C90 0000

C080 0230 0000 0000

5080 0230 0000 0000

Condition Code: Not changed,

10-290

~

MULTIPLY PACKED (MP)

Instruction Description

The product of the multiplier (the second operand) and
multiplicand (the first operand) replaces the multiplicand.

Format: SS

D,

OBits 8 12 16 20 32 36 47

Operation: The multiplier size is limited to 15 digits and
sign and must be less than the multiplicand size. A
length code (L2) larger than seven or larger than or equal
to the length code L, causes a specification exception.

The multiplicand must have at least as many bytes of
left zeros as the multiplier field size, in bytes; otherwise
a data exception occurs and the operation is terminated.
The maximum product size is 31 digits. At least one
leftmost digit of the product field is zero.

All operands and results are treated as signed integers,
right-aligned in their field.

Digit codes are checked for validity; invalid codes cause
a data exception, and the operation is terminated.

Overflow: The definition of the multiplicand field ensures
that no product overflow can occur.

Sign Code: The sign of the product (the product is
assigned a preferred sign) is determined by the rules of
algebra from the multiplier and multiplicand signs,
except that a zero result is always positive. The sign is
encoded as 1111 (hex F) for a positive result and 1101
(hex D) for a negative result. The sign codes are
checked for validity; an invalid code causes a data
exception, and the operation is terminated.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The multiplier and product
fields can overlap only if their rightmost bytes coincide.
Improperly overlapping fields cause a data exception,
and the operation is terminated.

Program Exceptions:

- Address translation
- Addressing

Data
- Effective address overflow
- Specification

MP Example

OBits 8 12 16 20

D,
120

Machine: F353 6120 7240

B1 (6): OA38 2310 0000

B2 (7): OA38 6405 0000

32 36

Storage - Before

47

0/8 2/ A 4/C G/E

OA38 2310 0120 0000 0210 261D

OA38 6405 0240 0000 004D

Storage - After

0/8 2/A 4/C

OA38 2310 0120

OA38 6405 0240

0000 0841 044F

0000 004D

G/E

Instruction Descriptions 10-291

MULTIPLY PACKED LONG (MPL)

Instruction Description

The product of the multiplier (the second operand) and
the multiplicand (the first operand) replaces the
multiplicand.

Format: 55

OBits 8 12 16 20 32 36 47

Note: The Multiply Packed Long instruction is
implemented in vertical microcode (VMC) and is treated
as an implicit 5VL by the IMP processor. The operation
code is used as the index into the 5VL table, as
described in the section on 5VLs in Chapter 6.

Operation: The product is placed into the first-operand
field and can contain a maximum of 63 digits and sign
(L,+L2+2=32 bytes). The multiplicand occupies the
leftmost L,+1 bytes of the first operand. The remaining
L2+1 bytes of the first operand are not used as
multiplicand data. At least one leftmost digit of the
product field is zero.

All operands and results are treated as signed integers,
right-aligned in their fields. Digit codes are checked for
validity; an invalid code causes a data exception, and
the operation is terminated.

Overflow: The definition of the multiplicand field ensures
that no product overflow can occur.

Sign Code: The sign of the product (the product is
assigned a preferred sign) is determined by the rules of
algebra from the multiplier and multiplicand signs,
except that a zero result is always positive. A positive
sign is encoded as 1111 (hex F); a negative sign is
encoded as 1101 (hex D).

The sign codes are checked for validity; an invalid code
causes a data exception, and the operation is
terminated.

10-292

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The multiplier and product
fields may overlap if their rightmost bytes coincide.
Improperly overlapping fields caus~s a data exception,
and the operation is terminated.

Program Exceptions:

Address translation
Addressing
Data
Effective address overflow

Notes:
1. L, specifies 1 less than the number of bytes by which

the length of the first operand exceeds the length of
the second operand.

2. L2 specifies 1 less than the length in bytes of the
multiplier. The multiplier can contain a maximum of
31 digits and sign.

MPl' Example

I ~: Ii I ~21 ~' I 0 ,
550

OBits 8 12 16 20 32 36

Machine: F931 3550 4A10

Bd3): 0000 ABCD 0000

B2 (4): 0000 BCDE 0000

Storage - Before

0/8 2/A 4/C

0000 ABCD 0550 1234 5G7F 0000

0000 BCDE OA10 123F

Storage - After

0/8 2/A 4/C

0000 ABCD 0550 0015 1851 741F

0000 BCDE OA10 123F

47

G/E

6/E

Instruction Descriptions 10-293

MULTIPLY SHORT FLOAT (MSF)

Instruction Description

The second operand is multiplied by the first operand
(two-operand format) or the third is multiplied by the
second operand (three-operand format). and the product
is placed in the first operand location.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format can
be specified. A two-operand format is used if base
register 0 is specified for the third operand. A
three-operand format is used if one of the base
registers hex 1 through hex F is specified for the third
operand. Interchanging the two source operands does
not affect the value of the product. However, the first
operand data is overwritten by the result.

Multiplication of two floating-point numbers uses
exponent addition and significand multiplication. The
sum of the signed (unbiased) exponents of the source
operands is used as the exponent of the intermediate
product. This applies for denormalized and normalized
numbers.

The multiplication of the significands is performed as if
to infinite precision to form the intermediate product
significand. This product is normalized, if necessary,
before rounding. The rounding is performed according
to the mode specified in the task dispatching element.

When either operand is 0, the product is made 0, and
no exceptions occur.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
product. The source operands are checked for this value
in the order of their specification with the masked
not-a-number with the larger fraction value being
provided as the product.

10-294

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal ° and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denCirmalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the product is determined by the
rules of algebra. This is the exclusive OR of the signs of
the source operands. This applies to the products of 0,
infinity, and normal finite numbers.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: All operands must be fullword
aligned, otherwise, a specification occurs, and the
operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point inexact result

- Floating-point invalid operand
Floating-point overflow
Floating-point underflow
Specification

Programming Note: The following is a summary of the
products for various combinations of operands.

Product First Source (Multiplicand) Second Source (Multiplier)

+0 +Real number"" 0 +0

+0 +0 +0

+0 - Real number"" 0 -'0

+0 -0 -0

+0 +0 +Real number"" 0

+0 -0 - Real number "" 0

-0 +Real number"" 0 -0

-0 +0 -0

-0 - Real number "" 0 +0

-0 -0 +0

-0 -0 +Real number"" 0

-0 +0 - Real number "" 0

+0 (see note) +Small real number"" 0 +Small real number "" 0

+0 (see note) -Small real number"" 0 -Small real number"" 0

-0 (see note) +Small real number "" 0 -Small real number"" 0

-0 (see note) -Small real number"" 0 +Small real number"" 0

Invalid operand exception +Infinity +0

Invalid operand exception +Infinity -0

Invalid operand exception -Infinity +0

Invalid operand exception -Infinity -0

+Infinity +Infinity +Real number"" 0

+Infinity -Infinity - Real number "" 0

+Infinity +Real number"" 0 +Infinity

+Infinity - Real number "" 0 -Infinity

+Infinity +Infinity +Infinity

+Infinity -Infinity -Infinity

-Infinity -Infinity +Real number"" 0

-Infinity +Infinity -Real number"" 0

Note: For two small values of real numbers that are not equal to 0, a floating-point
underflow which has a zero product rather than a denormalized product can occur.

Instruction Descriptions 10-295

Product First Source (Multiplicand)

-Infinity -Real number ¢ 0

-Infinity +Real number ¢ 0

-Infinity +Infinity

-Infinity -Infinity

Masked not-a-number Masked not-a-number

Masked not-a-number Not not-a-anumber

Larger masked Masked not-a-number
not-a-number

Invalid operand exception Unmasked not-a-number

Invalid operand exception Any

Legend:

Not not-a-number = Anything but not-a-number

Any = Any floating-point field value

MSF Example

a Bits 8 12 16 20

0,
050

32 36

Machine: AE33 4050 4060

B3 (3): 0010 0200 0070

Btl4) and B2 (4): 0010 0200 0000

10-296

47

Second Source (Multiplier)

+Infinity

-Infinity

-Infinity

+Infinity

Not not-a-number

Masked not-a-number

Masked not-a-number

Any

Unmasked not-a-number

Storage - Before

0/8 6/E

0010 0200 0050

0010 0200 0060

0010 0200 0070

xxxx xxxx xxx x xxxx

0010 0200 0050

0010 0200 0060

0010 0200 0070

4000 0000

3F80 0000

Storage - After

0/8

4000 0000

4000 0000

3F80 0000

Condition Code: Not changed.

6/E

MULTIPLY WORD STORAGE (MWS)

Instruction Description

The product of the multiplier (the second operand) and
the multiplicand (the first operand) replaces the
multiplicand.

Format: SS

EC I 10 I B,I 0,
OBits 8 12 16 20 32 36 47

Operation: Both multiplier and multiplicand are 32-bit
signed binary integers. The product is always a 64-bit
signed binary integer and occupies 8 bytes of storage at
the first-operand location. The mulitiplicand is taken
from the second word of the first operand. The
contents of the first word are ignored unless it contains
the multiplier.

Overflow: An overflow cannot occur.

Sign Code: The sign of the product is determined by the
rules of algebra from the multiplier and multiplicand
signs.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Both operands must start on a
word boundary; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Data

- Effective address overflow

MWS Example

0,
100

OBits 8 12 16 20 32 36 47

Machine: ECOO 3100 3AOO

Bd3) and 82 (3): 0000 1234 0000

Storage - Before

0/8 2/A 4/C 6/E

0000 1234 0100 0000 0000 0000 1F40
(8000)

0000 1234 DADO FFFF FFE4 (-28)

Storage - After

0/8 2/A 4/C 6/E

0000 1234 0100 FFFF FFFF FFFC 9500
(-224000)

0000 1234 DADO FFFF FFE4 (-28)

Instruction Descriptions 10-297

OR BYTE (OB)

Instruction Description

The inclusive OR of the first and second operands is
placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result = 0
Result :# 0

2
3

Carry: Not applicable.

Boundary Requirements: None.

10-298

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

OB Example

OBits 8 12 16 20 31

Machine: 7950 31AO

82 (3): 0001 OAOl 0000

Storage - Before and After

0/8 2/A 4/C 6/E

0001 OAOl 01AO 55

Before After

AA FF

Condition Code: x

OR BYTE IMMEDIATE (OBI)

Instruction Description

The inclusive OR of the first and second operands is
placed in the first-operand location.

Format: SI

D,
OBits 8 16 20 31

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result = 0
1
2
3

Result oj: 0

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

OBI Example

Op
99

OBits 8 16 20

Assembler: Dl (BII. 12

Machine: 99A5 31AO

BI (3): OA10 BOC5 0000

D,
lAO

31

Storage - Before

0/8 2/A

OA10 BOC5 01AO AA

Storage - After

0/8 2/A

OA10 BOC5 O1AO AF

Before After

Condition Code: x

4/C G/E

4/C G/E

Instruction Descriptions 10-299

OR BYTE REGISTER (OBR)

Instruction Description

The inclusive OR of the first and second operands is
placed in the first-operand register.

Format: RR

19 I r, I r2

OBits 8 12 15

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result = 0

1 Result '" 0
2
3

10-300

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

OBR Example

Op r, r2

19 3 4

OBits 8 12 15

Assembler: OBR r1, r2

Machine: 1934

Before After

rd3): 59 FD

r2 (4): A4 A4

Condition Code: x

L OR BYTE REGISTER IMMEDIATE (OBRI)

Instruction Description

The inclusive OR of the first and second operands is
placed in the first-operand register.

Format: RI

49 I r, I 0
OBits 8 12 16 24 31

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Overflow and Sign Codes: Not applicable.

Condition Code:

o Result = 0
Result ¢ 0

2
3

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

OBRI Example

OBits 8 12 16 24 31

Assembler: rl, 12

Machine: 4930 3300

Before After

55 77

Condition Code: x

Instruction Descriptions 10-301

OR CHARACTERS (OC)

Instruction Description

The inclusive OR of the first and second operands is
placed in the first-operand location.

Format: SS

C9 L 18,1 D,
OBits 8 16 20 32 36 47

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Each operand field is processed left to right.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

Result = 0

Result "" 0

Carry: Not applicable.

Boundary Requirements: The operands can overlap if the
leftmost byte of the first operand is coincident with or
to the left of the leftmost byte of the second operand;
otherwise the overlap is destructive and the results are
unpredictable. Neither operand may cross a segment
boundary; otherwise an effective address overflow
occurs and the operation is suppressed.

10-302

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

OC Example

Op
C9

D,
2CO

OBits 8 16 20 32 36

Machine: C903 32CO 3A50

B1 (3) and 8 2 (3): OOlA 5C9E 0000

001 A 5C9E 02CO

OOlA 5C9E OA50

001A 5C9E 02CO

OOlA 5C9E OA50

Storage - Before

0/8 2/A

1234 5678

5678 9A8C

Storage - After

0/8 2/A

567C DEFC

5678 9ABC

Before After

Condition Code: x

4/C

4/C

47

6/E

6/E

OR HALFWORD (OH)

Instruction Example

The inclusive OR of the first and second operands is
placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result = 0
1 Result:l: 0
2
3

Carry: Not applicable.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

OH Example

OBits 8 12 16 20 31

Assembler: OH R 1, D2 (B 2)

Machine: 8033 4000

B2 (4): OABl OOOA 1000

Storage - Before and After

0/8 2/A 4/C 6/E

OABl OOOA 1000 A5A5

Before After

Rd3): 5A5A FFFF

Condition Code: x

Instruction Descriptions 10-303

OR HALFWORD REGISTER (OHR)

Instruction Description

The inclusive OR of the first and second operands is
placed in the first-operand register.

Format: RR

29 I R, I R21

OBits 8 12 15

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

10-304

Result = 0
Result :F 0

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

OHR Example

Op R, R2
29 3 4

OBits 8 12 15

Assembler: OHR R1 , R2

Machine: 2934

Before After

1234 567C

5678 5678

Condition Code: x

OR HALFWORD REGISTER IMMEDIATE (OHRI)

Instruction Description

The exclusive OR of the first and second operands is
placed in the first-operand register.

Format: RI

OBits 8 12 16 31

Operation: Operands are treated as logical quantities,
and the inclusive OR is applied bit by bit. A bit position
in the result is set if the corresponding bit position in
one or both operands is set; otherwise the result bit is
reset.

Overflow and Sign Code: Not applicable.

Condition Code:

o Result = 0
1 Result ~ 0
2
3

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

OHRI Example

Op 1~11 ~ I 12
59 1357

0 Bits 8 12 16 31

Assembler: OHRI R1 , 12

Machine: 5930 1357

Before After

2468 377F

Condition Code: x

Instruction Descriptions 10-305

PERFORM PAGING REQUEST (PPR)

Instruction Description

Format: SS

E8 0 1

OBits 8 16 20 32 36 47

Note: The Perform Paging Request instruction is
implemented in vertical microcode (VMC) and is treated
as an implicit SVL by the IMP processor. The operation
code is used as an index into the SVL table, as
described in the section on SVLs in Chapter 6.

Operation: The operation specified by the third operand
is performed on all pages within a contiguous range of
virtual storage addresses.

If the high-order bit of 13 is zero, the first operand
occupies 6 bytes in storage and contains the beginning
address of the range of virtual addresses. The second
operand occupies 6 bytes in storage and contains the
last address of the range of virtual addresses.

If the high-order bit of 13 is 1, the first and second
operand occupy 6 bytes of storage and point to the
beginning of the access group table of contents.

The operation specified by the third operand, 13, is
performed only in page size increments. Bits 0-38 of
both the first and second operands identify the first and
last pages in the range of pages that participate in the
operation. Bits 39-47 of both operands are not used.

Byte register hex F, which is used as an operand for
bring and clear requests, holds either the storage pool
10 or zero. If not zero, the storage pool indicated is
used to allocate page frames to satisfy the request. If
zero, the storage pool in the TOE (task dispatching
element) is used to allocate page frames. If the storage
pool cannot satisfy a request that specifies an increment
pin count (no unpinned pages available). an invalid pool
state exception occurs and the operation is suppressed.

10-306

A specification exception occurs and the operation is
suppressed for any of the following conditions:

• The first and-second operand addresses are not
within the same segment or segment group.

• The second-operand address is less than the
first-operand address.

• Either the first or second-operand address is a V=R
(virtual equals real) address.

• The third-operand is invalid.

If asynchronous request and increment/decrement pin
count are both specified on a bring, purge, or write, a
specification exception occurs.

If the segment or segment group specified by the
contents of the first operand does not exist, an invalid
segment exception occurs and the operation is
suppressed. If the page specified by the contents of the
second operand does not exist. an invalid page
exception occurs and the operation is suppressed. If a
permanent I/O error occurs while trying to read a page
from auxiliary storage, a page read error exception
occurs and the operation is completed abnormally.
These last three exceptions can occur for synchronous
requests only. If a write to auxiliary storage of a pinned
page is attempted, an invalid write request occurs and
the operation is completed abnormally.

If bring or purge access group is indicated by 13, invalid
page, invalid segment, or permanent I/O error
exceptions are signaled if the access group table of
contents indicated by the first and second operands is
smaller than expected, is nonexistent, or has an I/O
error, respectively.

The third operand is interpreted as follows:

Bits Code Operation/Description

0 o Any function described in bits 3-5 may be performed on an access group.

1 Perform the function described in bits 3-5 on an access group. Only bring and
purge are valid and bits 6 and 7 must be zero.

1-2 - Reserved: must be zero.

3-5 000 Used during page faults.

001 Bring: copy the specified pagels) from auxiliary to main storage.

010 Clear: provide zeroed main storage frames for the specified pagels) occurs and the
prior contents are lost.

011 Invalid.

100 Write: copy the specified page(s), if changed, from main storage to auxiliary storage.

101 Purge: copy the specified page(s), if changed, from main storage to auxiliary storage.
In addition, make all the frames associated with the pages available for reassignment.

110 Invalid.

111 Remove: remove the specified pagels) from main storage. Do not copy changed
pages back to auxiliary storage. Make the main storage frames immediately available
for reassignment; the pagels) are no longer addressable in main storage. The
contents of the pages are set to an undefined state by the remove.

6 For Bring, Write, and Purge:
0 Synchronous request (wait).
1 Asynchronous request (do not wait).

For Clear and Remove:
0 Must be zero (always synchronous).

7 For Bring and Clear:
0 Leave pin count unchanged.
1 Increment pin count by 1.

For Write, Purge, and Remove:
0 Leave pin count unchanged.
1 Decrement pin count by 1.

Instruction Descriptions 10-307

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first and second
operands must both begin on a word boundary;
otherwise a specification exception is recognized and
the operation is suppressed.

Program Exceptions:

- Effective address overflow
- Invalid page (synchronous requests only)
- Invalid pin request (synchronous requests only)
- Invalid pool state (synchronous requests only)
- Invalid segment (synchronous requests only)
- Invalid write request (synchronous requests

only)
- Page read error (synchronous requests only)
- Specification

10-308

PPR Example

Op 13
E8 08

OBits 8 16 20

0,
600

32 36 47

Machine: E80S 3600 39FF

Bd3) and B2 (3): 6000 ACOO 0000

Storage - Before and After

0/8 2/A 4/C 6/E

6000 ACOO 0600 xxxx xxxx xxx x xxxx

09F8

Storage - Before and After

0/8 2/A 4/C 6/E

6000 ACOO 0600 0000 0000 0000 0000

09F8

This page is intentionally left blank.

Instruction Descriptions 10-309

READ REFERENCE AND CHANGE AND RESET
REFERENCE (RRCRR)

Instruction Description

The RRCRR instruction aids the page replacement
process. A reference bit is set by the hardware each
time a page is referenced. The bit is periodically
examined and reset by the page replacement process.
The page replacement process is informed in this way
whether the page was referenced since it was last
examined. A second hardware bit called the change bit
is set whenever an instruction alters the contents of a
page. This enables the page replacement process to
know whether or not to page out the page he wishes to
steal before destroying the addressability.

The RRCRR instruction takes care of these functions as
well as accounting for the fact that the current state of
the change flag may be in the internal hardware LB
(lookaside buffer). rather than the PO (primary directory)
entry itself.

Format: SI

83 I I 0 I B,I D,
OBits 8 12 16 20 31

Operation: The reference and change bits of a PO entry
are read, and the result determines the setting of the
condition code. If a copy of the PO entry resides in the
LB, that copy's change bit is ORed into bit 42 of the
actual PO entry. The copy is then removed from the LB.
Subsequently, the reference bit is reset in the PO entry.

The operand for this instruction is a primary directory
index value. This index, when multiplied by 16 (ignoring
any bits carried out of the halfword) and added to the
base address of the primary directory, addresses the PO
entry to be examined.

10-310

The primary directory entry is identified by the first
operand. Bits 0-15 of this halfword storage operand are
used as the primary directory entry index value. If the
index value specifies a directory entry that contains V=R
addresses, a specification exception occurs and the
operation is suppressed. The high-order 4 bits (bits
0-3) of the PO index value are ignored and treated as
zeros.

Overflow and Sign Code: Not applicable.

Condition Code:

o Reference bit zero, change bit zero
1 Reference bit zero, change bit one
2 Reference bit one, change bit zero
3 Reference bit one, change bit one

Carry: Not applicable.

Boundary Requirements: The first operand occupies 2
bytes in storage and must begin on a halfword
boundary; otherwise a specification exception occurs
and the operation is suppressed.

Program Exceptions:

Address translation
- Addressing
- Effective address overflow
- Specification

RRCRR Example

OBits 8 1 2 16 20 31

Assembler: RRCRR 0 1 (8 1)

Machine: 8300 1330

Before After

8 II 1) : 0000 0407 8300 0000 0407 8300

Condition Code: x 3

PO (primary directory) base address 0000 0101 0000

The halfword atthe first-operand effective address
identifies a PO entry index. The processor converts the
PO index (hex 0003) to a PO offset by multiplying the

index by 16.

The PO entry address is the sum of the generated offset
(hex 0300) and the PO base address, which is implicitly
supplied by the machine.

0000 0407 8630

Storage - Before and After

0/8

0003

2/A 4/C 6/E

The first 5 bytes of the PO entry D (base register
contents plus displacement) are verified to be virtual =

virtual.

0000 0101 0000
Primary Directory

Segment Identifier
0 Bits 31 32

PID
39

D300 0000 0000 0000 0000 0000 0101 0000 0101 0101 1100 , - .
D

~

The values of the reference and change bits in the LB
(lookaside buffer) are inclusively ORed into the PO entry
II· The values are used to set the condition code. The
reference bits in both the LB and the PO entry are reset.

~

Status Index Reserved EOC PINCNT Reserved

40 47 48 59 60 62 63 64 71 72 120

1100 0000 1000 0100 0000 000 a 0000 0000
-.-

IfJ

--'--------

Instruction Descriptions 10-311

RECEIVE COUNT (RECC)

Instruction Description

The current value of the counter designated by the
operand is decremented by the limit value in the SRC
(send/receive counter) when the current value of the
counter is equal to or greater than the limit value of the
counter.

Format: SI

67 I lOB, 0,
OBits 8 12 16 24 31

Operation: Normal instruction sequencing proceeds with
the updated instruction address.

If the current value of the counter is less than the limit
value of the counter, the instruction is nullified, and the
TOE (task dispatching element) of the task issuing the
instruction is dequeued from the TOQ (task dispatching
queue) and is enqueued onto the SRC wait queue in the
TOE priority sequence. Bytes hex 16 through 1 B of the
TOE are updated accordingly. The task dispatcher is
invoked; the task issuing the instruction is put into the
wait state and another task is dispatched.

10-312

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Invalid descriptor
Specification

RECC Example

Op
67

0,
000

OBits 8 12 16 20 31

Assembler: RECC 0 1 (B 1)

Machine: 6700 4000

Bl (4): 012A 3C2B 1000

Before

TOQ

Descriptor

o Bytes

Current TOE

1666 76AO 0000 Descriptor

o Bytes

SRC

2

2

First TDE Address
1666 76AO 0000

Next TDE Address
1234 0000 0000

012A 3C2B 1000 ~ ____ ~F_irst_TD_EA_dd_ress~((I _ Descriptor ABCD 0000 0000 ')) .

o Bytes 2

The current TOE is dequeued from the TOO and enqueued to the SRC.
The task issuing the RECC instruction is put in the wait state.

8

The task associated with the highest priority TOE on the TOO is dispatched.

Count
0000

8

A

Limit
0001

C

Instruction Descriptions 10-313

After

TOO

First TDE Address
Descriptor

1234 0000 0000

0 Bytes 2 8

TOE

Next TDE Address 1666 76AO 0000 Descriptor
ABCD 0000 0000

0 Bytes 2 7

SRC

First TDE Address \~ Count Limit 012A 3C2B 1000 Descriptor
1666 76AO 0000 0000 0001

0 Bytes 2 8 A C

TOO
Byte 0, Bit 3 Before After

Empty = a
1 0

One or More = 1

TOE
Byte 0, Bit 4 Before After

Last TOE = a
a a

Not Last TOE = 1

10-314

RECEIVE MESSAGE (RECM)

Instruction Description

An SRM (send/receive message) is dequeued from the
message list of the SRO (send/receive queue)
designated by the second operand, or the task is put
into a wait state. The address of the SRM dequeued is
loaded into B,.

Format: SS

D9 1 B,I
OBits 8 12 16 20 32 36 47

Operation: The search type is specified by the I-field. If
no message satisfies the search type, or if the message
list is empty, B, is not altered. The messages searched
are accessed sequentially, starting with the first
message. The first message satisfying the search type
is dequeued. The key is treated as unsigned binary data.

If no message satisfies the search type, or if the
message list is empty, the instruction is nullified. The
current TDE (task dispatching element) is dequeued from
the TDO (task dispatching queue) and is enqueued to
the SRO wait list in key (priority) sequence, bytes hex
16-1 B of the TDE are updated accordingly, and the task
dispatcher is invoked.

I-Field Search Type

Bit 12 Message Key = Search Key
(the third operand)

Bit 13 Message Key < Search Key
(the third operand)

Bit 14 Message Key > Search Key
(the third operand)

Bit 15 Not used

The search type is the logical OR of the I-bits specified.
For a search type of binary OOOx, no keys satisfy the
search type; therefore a specification exception occurs.

Note: A receive first operation is accomplished by
setting the I-field to binary 111x. In this case any
search key provides the desired operation. However,
because the third operand is accessed and used in the
comparison, it is convenient to specify the third operand
(the search key) as the header address to eliminate a
potential address translation exception. A zero is forced
for the length field in the header and the key value is
ignored for specifications of I = binary 111 x. Also, a
check is not made for a page crossing in the key field if
enqueue-first or enqueue-last is specified.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The search key specified by the
third operand must be fullword aligned, is the length
specified in the queue header, and cannot cross a page
boundary.

Program Exceptions:

- Address translation
- Addressing
- Descriptor access: Busy

Descriptor access: Monitored SRM descriptor
Descriptor access: Monitored SRO descriptor
Descriptor access: Monitored TDE descriptor
Effective address overflow
Invalid descriptor
Specification

Instruction Descriptions 10-315

RECM Example

Op B1 I B2 D2 B3 D3
D9 4 8 5 000 6 000

0 Bits 8 12\ 16 20 32 36 47

fJ
Assembler: RECM B1, D2 (B2), B3 (D3). I

Machine: D948 5000 600(}

Before After

B1 (4): 011 A 57CD 0200 011 A 57 CD 0200

B2 (5): 00A5 236B 0000 00A5 236B 0000

B3 (6): 00A5 23BO 0000 00A5 23BO 0000

Storage - Before and After

0/8 2/A 4/C 6/E

OOA5 23BO 0000 01

The message chain is searched for D a key value of 01. It
is found that no message on the SRO satisfies the equal fJ
search type. The instruction is nullified and the TDE is de­
queued from the TDO II and enqueued to the SRO list.
The task issuing the RECM is put into the wait state, and
the task dispatcher is invoked.

10-316

Before

TOO

Descriptor

o Bytes 2

OOOA CB32 A500

00A5 2368 0000

0138 2AC5 6120

L

First TOE Address
OOOA CB32 A500 II

Current TOE

Descriptor
Next TOE Address
1234 00000000

0 Bytes 2

SRO

Descriptor First TOE Address
ABCD 0000 0000

a Bytes 2

First Message Address \\ 013B 2AC5 6120

9 A

SRM

Descriptor Next Message Address
xxxx xxxx xxxx

0 Bytes 2

TOO
Byte 0, Bit 3 Before After

Empty = 0
1 1

One or More = 1

8

\

a:3
8

I
Reserved \

10

8 9

Instruction Descriptions 10-317

After

TOO

Descriptor

o Bytes 2

000 A C832 A500

OOA5 2368 0000

0138 2AC5 6120

10-318

TOE

Descriptor

0 Bytes

SRO

Descriptor

0 Bytes

9 A

SRM

First TOE Address
1234 0000 0000

Next TOE Address
ABCD 0000 0000

2

First TOE Address
OOOA CB32 A500

2

8

\

~\E
8

First Message Address ((I \
013B 2AC5 6120 \'). Reserved

......... L....-___ --J

10

...... _D __ esc_ri_p_to_r_....l __ N_e_xt __ M_e_ssa_ge_A_d_d_re_ss __ r..JI~2Key ",x xxxx xxxx ') ~

o Bytes 2 8 9

REMOVE PRIMARY DIRECTORY ENTRY (RPDE)

Instruction Description

The RPDE instruction is used to remove an entry from
the primary directory. The primary directory entry is
identified by the first operand.

Format: 51

83 I I 4 I B, I D,
OBits 8 12 16 20 31

Operation: The first halfword of the first operand
contains the hash table index; the high-order bit (bit 0)
of the hash table entry index is not used to index the
hash table. The second halfword of the first operand
contains the PD index, with the high-order 4 bits being
ignored and treated as zeros.

If the primary directory (PD) entry identified by the first
operand is not on the PD chain, a specification
exception is recognized and the operation is terminated.
Otherwise, the SID and PID entries (bits 0-39) are
updated. Bits 0-23 are forced to hex 00 0001; bits
24-39 are updated by shifting the PD index to the left
one position and inserting a 0 into the vacated bit
position, and bits 40-63 are forced to zeros. The entry
is then removed from the PD chain.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first operand occupies a
word in storage and must begin on a fullword boundary;
otherwise, a specification exception is recognized and
the operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow L - Specification

Programming Note: This instruction should be used only
to remove an invalid PD entry.

RPOE Example

0,
074

OBits 8 12 16 20 31

Assembler: RPDE DdBd

Machine: 8304 4074

B1 (4): 0000 0100 2480

Primary Directory: 0000 0103 0000

Hash Table: 0000 0102 0000

0000 0100 24F4

0000 0103 0820

0000 0102 1884

0000 0103 0820

0000 0102 1884

Storage - Before and After

0/8 6/E

. ~C42 0012

Hash Table PO Index
Index

Storage - Before

0/8 6/E

OOOC 4200 0080 0084
0020

0082
Hash Table Entry/_--__

Storage - After

0/8

0000 0101 0400
0020

0084

6/E

Hash Table Entry /_--__

Primary
Directory
Entry

Primary
Directory
Entry

Instruction Descriptions 10-319

RESET ADDRESS COMPARE MODE (RACM)

Instruction Description

This instruction resets the soft address compare mode
previously set by the Set Address Compare Mode
instruction.

Format: RR

00 1 13
OBits 8 12 15

Operation:

This instruction resets the address compare enable and
store-only latches in the virtual address translator, the
soft address compare flag (byte hex 24, bit 2 of the LSR
[local storage register]l, the microprocessor exception
flags (byte hex 27, bits 2 and 3 of the LSR), and the
virtual address-not-mapped flag (byte hex 22, bit 0 of
the LSR).

Overflow and Sign Code: Not applicable.

Condition Code:

o Address compare mode reset or
no previous Set Address Compare
Mode instruction executed.
Address compare mode not reset.

2
3

10-320

Carry: Not applicable.

Boundary Requirements and Program Exceptions; None.

Programming Note: This instruction will not reset an
address compare that has been entered through the
console.

RACM Example

OBits 8 12 15

Assembler: RACM

Machine: 0003

LSR Byte
Hex Bit Description Action

22 0 F LGO-V A Not Mapped Reset

24 2 F LG2-Soft Address Compare Reset

27 2,3 UEX1-Address Compare Status Reset

RESET CHAIN BUSY (RCB)

Instruction Description

This instruction is used to reset the busy bit of the first
hold record on the object hold chain for the first
operand.

Format: RR

OD I R, 16
OBits 8 12 15

Operation: A 4096 byte hold hash table, whose address
is given in bytes hex 8A-8F of the control address table,
is accessed. This hold hash table address is initialized
by the IMPL to point to the first byte in the table.

The first operand register contains an object address.
This 6-byte effective address is hashed to create a
2-byte index into a hash table. If the chain is empty
(contains no hold records), the hash table entry is all
zeros, a specification exception is recognized, and the
operation is suppressed.

If the hash table entry for the second operand object
contains a nonzero value, that value is used as an index
to access the first hold record in the chain. The 2-byte
hash table entry is multiplied by 16 and concatenated to
the right of the high-order 28 bits of the available hold
record address; found in the control address table. The
available hold record contents point to the start of the
hold record area. The busy flag (byte 0, bit 5 of the
hold record) is checked, and if it is a 0, a specification
exception occurs, and the operation is suppressed. If
the busy 'flag is a 1, it is reset and the operation is
completed.

Overflow and Sign Code: Not applicable.

Condition Code: Unchanged.

Carry and Boundary Requirements: Not appiicable.

Program Exceptions:

Address translation
Addressing
Specification

Instruction Descriptions 10-321

RCB Example

~b I ~11 ~ I
OBits 8 12 15

ASsembler: RCB Bl

Machine: 0036

81 (8): 0801 18030000

Control Address Table

100 0088

100 0092

-L

0801 OCOO 0000

10

20

30

40

50

10-322

Hold Records - Before

Flags Hold Object Address

02 02 0801 18020000

04 02 0801 1803 0000

l....--"'" ~---

Hash Table

Primary Secondary Cumulative
TOE

Chain Chain Hold Field Unused

0000 0000 0000 00 00

0000 0003 0000 00 ,00

---------- -

Hold Records - After

Flags Hold Object Address
Primary Secondary Cumulative

Unused TOE Chain Chain Hold Field

0801 OCOO 0000

10

20

30 02 02 0801 1802 0000 0000 0000 0000 00 00

40

50 00 02 0801 18030000 0000 0003 0000 00 00

~
l.,..------ -----~ -

Instruction Descriptions 10-323

RESET MACHINE CHECK MODE (RMCM)

Instruction Description

This instruction is used to reset the processor machine
check mode after a machine check has been reported.

Format: RR

00 1 12
OBits 8 12 15

Operation: This instruction signals the HMC that the
reported error has been processed and another machine
check can be logged into the MCLB (machine check log
buffer).

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

10-324

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

RMCM Example

OBits 8 12 15

Assembler: RMCM

Machine: 0002

RETURN AVAILABLE HOLD RECORD (RAHR)

Instruction Description

This instruction is used to return the hold record
specified to the available hold record chain.

Format: RR

OD 1 R, 15
OBits 8 12 15

Instruction Description: The first operand is a halfword
index that points to a hold record. This hold record is
returned to the available hold record chain. The first
operand contents are not changed.

The address of the available hold record chain (bytes
hex 92-98 of the control address table) is converted to
a hold record index (bits 28-43 of the 6-byte virtual
address) and the resultant 2-byte value is loaded into
the object chain field (bytes A and B) of the hold record
to be returned. The flag byte (0), the TDE identifier field
(bytes 8 and 9), and the second chain pointer and
cumulative hold field (bytes C-F) of the hold record are
set to zero. The address of the hold record is loaded
into the available hold record chain entry of the control
address table and the operation is completed.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry and Boundary Requirements: Not applicable.

Program Exceptions:

Address Translation
- Addressing

Instruction Descriptions 10-325

RAHR Example

~~ 1~1 I ~ I
OBits 8 12 15

Assembler: RAH R Rl

Machine: OD35

Rd3): 0003

Storage - Before

Control Address Table

-L
100 0088

100 0092 0801 OCOO 0050

Hold Records

Flags Hold Object Address

0801 OCOO 0000

10

20

30 80 02 0000 0000 0000

40

50 00 00 0000 0000 0000

....-"'" ~----

10-326

Hash Table

Primary Secondary Cumulative
TDE Chain Chain Hold Field Unused

0101 0002 0001 02 00

0000 0006 0000 00 00

-----~ -

Storage - After

Control Address Table

100 0088

100 0092 0801 oeoo 0030

Hold Records

Flags Hold

0801 oeoo 0000

10

20

30 00 02

40

50 00 00

Object Address

0000 0000 0000

0000 0000 0000

l,--
l..--'"~

Hash Table

Primary Secondary Cumulative
TOE

Chain Chain Hold Field Unused

0000 0005 0000 00 00

0000 0006 0000 00 00

------------ -

Instruction Descriptions 10-327

SCAN (SCAN)

Instruction Description

The character string addressed by operand 5 is scanned
left to right in order to search for the character value
specified in operand 1.

Format: SS

OBits 8 12 16 20 32 47

Operation: The controls operand (operand 1) specifies
the starting address of a doubleword aligned, 8-byte
string; a specification exception is signaled for improper
alignment. The information contained in the controls
operand is used to control the scan operation. The
controls operand has the following format:

Bytes Meaning

0 Mode control

1 Reserved

2,3 Scan character

4 Reserved

5-7 String end

10-328

The mode control byte specifies the mode (simple or
extended) for the base string character and for the scan
character. When a single mode scan is requested in the
options mask (operand 3), the base string character and
the scan character must be specified as having the same
mode. A specification exception occurs if a mixture of
modes is specified for a single mode scan. When a
mixed mode scan is requested in the options mask, the
base string mode bit is used as both input to and output
from the instruction. The mode control byte has the
following format:

Bits Value Meaning

0 0 Base string character is in
simple mode.

1 Base string character is in
extended mode.

1 0 Scan character is in a
simple mode.

1 Scan character is in
extended mode.

2-7 000000 Reserved (must be 0). A
specification exception
occurs if any bits are not
o.

The scan character is either a 1- or a 2-byte value
depending on the mode as specified in bit 1 of byte O.
A scan character in simple mode is specified as a
1-byte value in byte 3 of the controls operand (byte 2 is
ignored). A scan character in extended mode is
specified as a 2-byte value (bytes 2 and 3).

The string end is a 3-byte value specifying the segment
group offset to the last byte of the string to be scanned.
This 3-byte value, when concatenated on the right of
the 3-byte segment group identifier specified in bytes
0-2 of base register hex D (operand 5), forms the
6-byte address of the rightmost byte of the string. If
the base string address specified in operand 5 (base
register D) points beyond the address of the rightmost
byte of the string, a not found condition code is set, and
the instruction is terminated.

Operand 2 is a displacement value and when combined
with the value in base register 0 specifies an address for
a branch. The branch is taken under control of the
options mask if an escape code (any value less than hex
40 with the exceptions listed in the verification step) is
encountered in the base string during the scan
operation.

Operand 3 is an options mask that provides additional
controls over the scan operation. The options mask has
the following format:

Bits Value Meaning

8 0 Branch on encountering an
escape code.

1 Do not branch on
encountering an escape
code.

9 0 Mixed mode scan.'

1 Single mode scan.2

10-11 Reserved.

'The hex OE and hex OF shift mode characters are
recognized when mixed mode scan is specified.
2Th~ hex OE and hex OF shift mode characters are not
recognized when single mode scan is specified.

Operand 4 (bits 12, 13, and 14) is used as a mask to
determine when the scan operation is complete. The
bits correspond to condition codes 0, 1, and 2
respectively. Bit 15 of operand 4 is reserved.

The scan operation ends when one of the following
conditions occur:

• Bit 12 is on, and the scan character compares equal
to the base string character.

• Bit 13 is on, and the scan character compares less
than the base string character.

• Bit 14 is on, and the scan character compares greater
than the base string character.

• The last byte of the base string has been processed,
and one of the previous conditions has not occurred.
In this case, a not found condition code is set.

• A compare mask of all zeros results in completion of
the instruction with a condition code of not found.

Operand 5 (base register hex D) specifies the address of
the leftmost byte of the string to be scanned. When the
instruction is interrupted or completed, this operand
contains the address of the last character in the string
that was scanned.

The scan operation consists of three possible steps:
verification, comparison, and increment.

Verification Step: The verification step determines
whether the base string value is a mode shift character
or an escape character.

One of the following actions occurs if the base string
charcter has a value less than hex 40.

• For mixed mode scan (bit 9 of operand 3 is off!. if
the base string byte contains a hex OE value (shift out
of simple mode) and if the base string is in simple
character mode (bit 0 of the mode control byte is
off), the mode of the base string is changed from
simple to extended character mode. The scan
operation bypasses the comparison step and
continues with the increment step.

• For mixed mode scan (bit 9 of operand 3 is off), if
the base string byte contains a hex OF value (shift
into simple mode), if the base string is in exteneded
character mode (bit 0 of the mode control byte is on),
and if this byte is the first byte of the extended
character code, the mode of the base string is
changed from extended to simple character mode.
The scan operation bypasses the comparison step
and continues with the increment step.

Instruction Descriptions 10-329

• If the base string character value is less than hex 40
and does not result in a mode shift character as
previously described, and if the escape option has not
been specified (bit 8 of operand 3 is on), the scan
operation continues with the comparision step.

• If the base string character value is less than hex 40
and is not a mode shift as previously described, and
if the escape option has been specified (bit 8 of the
instruction is off), then an escape code has been
encountered. The updated instruction address is
replaced by the branch address, and a not found
condition code is set. The branch address is the sum
of the displacement (02) from the instruction and the
offset portion of the instruction stream base address
contained in base register O.

Escape codes are detected under the following
conditions:

If bit 9 of the instruction is on (single mode scan),
a byte of the character being processed (both
bytes are verified in extended mode) contains a
value less than hex 40.
If bit 9 of the instruciton is off (mixed mode scan),
a byte of the character being processed (both
bytes are verified in extended mode) contains a
value less than hex 40, but it is not a valid mode
shift value.

10-330

Comparison Step: The scan operation proceeds by
performing the appropriate comparison (simple or
extended character mode) of the scan character to the
base string character. The compare operation is
performed with both the scan character and the base
string character treated as unsigned quantities.

The mode of the scan character must be the same as
the mode of the base string character; otherwise, no
compare operation occurs, and the scan operation
continues with the increment step.

If the mode of the scan character is the same as the
mode of the base string character, a comparison is
performed as follows:

• In simple character mode, the scan character (byte 3
of the controls operand) is compared with the string
character currently addressed by operand 5.

• In extended character mode, the scan character
(bytes 2 and 3 of the controls operand) is compared
to the base string character. In extended character
mode, the base string character consists of 2 bytes
from the base string. If the rightmost byte of the
2-byte base string character requires a storage
access beyond the last byte of the string, the Scan
instruction is completed with a not found condition
code. If this condition occurs, operand 5 addresses
the leftmost byte of the 2-byte base string character
which is the last byte of the base string.

If the result of the compare operation corresponds to a
condition specified by the mask field (operand 4), the
condition code is set and the Scan instruction is
completed.

If the result of the compare operation does not
correspond to a condition specified by the mask field,
the scan operation continues with the increment step.

Increment Step: The purpose of the increment step is to
alter operand 5 (base register hex 0) so that it
addresses the next base string character to be scanned.
However, depending on certain conditions, operand 5
mayor may not be altered.

Operand 5 is not altered and the Scan instruction is
completed with a not found condition code when one of
the following conditions exist:

• The segment group offset value in bytes 3, 4, and 5
of operand 5 is equal to the base string end value in
bytes 5, 6, and 7 of operand 1.

• The segment group offset in bytes 3, 4, and 5 of
operand 5 is 1 less than the base string end value in
bytes 5, 6, and 7 of operand 1; a mode shift was not
encountered; and the base string is being processed
in extended mode.

Operand 5 is altered and the Scan instruction continues
with the verification step when one of the following
conditions exist:

• For a mixed mode scan, operand 5 is altered by 1 if a
mode shift was encountered.

• Operand 5 is altered by 1 if the base string is in
simple character mode.

• Operand 5 is altered by 2 if the base string is in
extended character mode.

The scan operation continues with the verification step.
The Scan instruction can be interrupted at this point,
except immediately following a shift in or shift out
character. In this case, the operation is interruptible at
the next character.

Instruction Descriptions 10-331

The following defines the conditions that can be
encountered at the end of the string and the
addressability of base register hex D for each case.

Ending Condition

Simple character or mode shift

• Shift into simple character mode

• Shift out of simple character mode

• Simple character

• Escape code in simple character

Extended character split across string
end
• Extended character

• Escape code in extended character

Extended character at string end
• Extended character

• Escape code in extended character

Overflow and Sign Code: Not applicable.

Condition Code:

Addressability-Register Hex 0
Points To Response

Character being compared Mode shift; condition code Not found

Character being compared Mode shift; condition code Not found

Character being compared Condition code: Not found (unless
compare mask satisfied)

First byte of character containing Branch taken
escape code

First byte of character Condition code: Not found

First byte of character containing Branch taken
escape code

First byte of character Condition code Not found (unless
compare mask satisfied)

First byte of character Branch taken

Boundary Requirements: The controls operand (operand
4) is a doubleword aligned, a-byte string. A
specification exception occurs and the instruction is
suppressed if the controls operand is improperly aligned.

o Scan character = character in string

1 Scan character < character in string

2 Scan character > character in string

3 Not found

Carry: Not applicable.

10-332

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

SCAN Example

OBits 8 12 16 20

D,
8F8

Machine: CF8A 08F8 0094

32 47

M3 (8): 1000 (Binary) Mixed mode, no branch on escape character
M4 (A): 1010 (Binary) Looking for base string character which is

less than or equal to SCAN character.
B1 (0): 0102 0101 0000 (Base register for control information)

Before: B(D): 0103 0101 2CDF (Base register for base string start)
After: B(D): 01030101 2CF6

0102 0101 08FO

0102 0101 08F8

0103 0101 2CDO

0103 0101 2CD8

0103 0101 2CFO

0102 0101 08FO

0102 0101 08F8

Storage - Before

0/8 6/E

xxxx xxx x xxxx xxxx

4000 3F3D 0001 2DE3
xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xx51

8CD3 470E FF38 3F3D
xxxx xxxx xxxx xxxx

Storage - After

0/8 6/E

xxxx xxxx xxxx xxxx

COOO 3F3D 0001 2DE3
xxxx xxxx xxxx xxxx

Before After
Condition Code x 0

Instruction Descriptions 10-333

SEND COUNT (SENDC)

Instruction Description

The current value of the count field in the SRC
(send/receive count) designated by the first operand is
incremented by 1.

Format: SI

66 0,
OBits 8 16 20 31

Operation: If the new count value is greater than or
equal to the limit value of the SRC and the wait list is
not empty, if byte 0, bit 7 of the SRC equals:

o

1

All TOEs (task dispatching elements)
are dequeued/enqueued

Only the first TOE is dequeued/enqueued

Byte 0, bit 7 determines the TOEs on the SRC wait list
that are dequeued and subsequently enqueued in priority
sequence to the TOQ (task dispatching queue) specified
by the TOE. TOE bytes hex 16-1 B are updated
accordingly. If a TOE is enqueued at a higher priority
than the current task, and bit 15 of the instruction
equals zero, a task switch will occur.

Execution of the SENOC instruction may be interrupted
by I/O. If an I/O interrupt does occur, the interrupt will
be processed, and instruction processing will resume at
the point the interrupt was granted.

I-Field
Bits Description

8-14 Not used

15 Task Switch Control:

10-334

o Task dispatcher to be invoked
after waiting TOEs are moved
to the TOQ
Task dispatcher not to be
invoked

Overflow: A counter overflow causes an SRC overflow
exception.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation
- Addressing
- Effective address overflow

Invalid descriptor
- Specification
- SRC overflow

SENOC Example

Op I I~'I 0,
66 00 000

0 Bits 8 16 20 31

Assembler: SENOC 0 1 (BIl. I

Machine: 6600 4000

BI (4): OOOA 182C 0000

The count" is incremented by one. The TOE on the
SRC wait list is dequeued II and enqueued to the TOO.

Before

TOQ

OE1A FA2E 3000 Descriptor
First TDE Address
OE1 A F2AE 3100

a Bytes 2

TOE

OE1A F2AE 3100 Descriptor Next TDE Address ~~ 1234 0000 0000

a Bytes 2

SRC

OOOA 1 B2C 0000 Descriptor
First TDE Address ~~ 1 C23 F A34 2BOO

a Bytes 2 fJ

I
8

I
Count
0000

8 D

8

Priority
0000 0001

A

Limit
0001

C

C

Instruction Descriptions 10-335

Priority Address of Object Enqueued To ~o 0000 0002 OE1 A F2AE 3100

8 Bytes C 1C

SRC

First TDE Address \~ I
Count Limit

OOOA 1 B2C 0000 Descriptor
xxxx xxxx xxxx 0001 0001

0 Bytes 2 8 A C

10-336

SEND MESSAGE (SENDM)

Instruction Description

The SRM (send/receive message) addressed by B, is
enqueued to the message list of the SRQ (send/receive
queue) designated by the second operand.

Format: RS

OBits 8 12 16 20 31

Operation: The enqueuing method is designated by the
I-field. The message list is searched, in sequence,
beginning with the first message. The new message
(the first operand) is enqueued above the first message
that satisfies the search type. If the list is empty, the
new message is enqueued first. If the search type is not
satisfied, the new message is enqueued last. Search
keys begin in byte 8 of the SRM, have a length
specified in the queue header, and are treated as
unsigned binary data.

The status of byte 0 bit 7 of the SRQ determines the
TDEs (task dispatching elements) that are dequeued
from the SRQ wait list and subsequently enqueued in
priority sequence to the TDQ (task dispatching queue)
specified by the TDE. If bit 7 is zero, all TDEs are
moved. If bit 7 is one, only the top TDE is moved. TDE
hex bytes 16-1 B are updated accordingly. If a TDE is
enqueued at a higher priority than the current task and if
bit 15 of the instruction equals zero, a task switch will
occur.

I-Field

Bit 12

Bit 13

Bit 14

Bit 15

Search Type

Search message key =
the first operand message key

Search message key <

the first operand message key

Search message key> the
first operand message key

Task switch control:
o Task dispatcher to be

invoked after waiting
TDEs are moved to the
TDQ

Task dispatcher not
to be invoked

The search type is the logical OR of the I-bits specified.
Therefore, a specification of I = binary OOOx results in
enqueue last and I = binary 111 x results in enqueue
first.

Note: The key length specification in the queue header
is key length minus 1. Therefore, if enqueue first (binary
111 x) or enqueue last (binary OOOx) is specified, the
key /text portion of the SRM must be at least 1 byte
long. If enqueue-first or enqueue-last is specified, the
key field is not checked for a page crossing.

Execution of the SENDM instruction may be interrupted
by I/O. If an I/O interrupt does occur, the interrupt will
be processed, and instruction processing will resume at
the point at which the interrupt was granted.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation
Addressing

- Descriptor access: Busy
- Descriptor access: Monitored SRM descriptor

Descriptor access: Monitored SRQ descriptor
Descriptor access: Monitored TDE descriptor
Effective address overflow
Invalid descriptor
Specification

Instruction Descriptions 10-337

SENOM Example

OBits 8 12 16 20 31

Machine: 684E 5000

B1 (4): 002B 3245 A120

B2 (5): 0001 FC30 0000

Before

TOO

OE1A FA2E 3000 Descriptor

o Bytes

Current TOE

OE1 A F2AE 3100 Descriptor

o Bytes

2

2

First TDE Address
OE1A F2AE 3100

Next TDE Address
xxxx xxxx xxxx

8

Priority
0000 0009 I ~\~~ ________ A_d_d_re_S_S_Of_O __ bj_ec_t_E_n_q_ue_u_e_d_T_O ________ ~ _ J 1 OE1A FA2E 3000

8 Bytes C 16 1C

SRO

0001 FC30 0000
First TDE Address

Key
Descriptor

12A7 7EAC OFOO
Reserved Length

-1 = 0

0 Bytes 2 8 9

~\J First Message Address
Reserved

21 AB CB02 DAOO

A Bytes 10 20

10-338

TOE

12A7 7 EAC OFOO Descriptor

002B 3245 A 120

21AB CB02 DAOO

After

OE1A F2AE 3100

o Bytes

8

SRM

2

Priority
0000 0008

Bytes

Descriptor

o Bytes 2

SRM

Descriptor

0 Bytes 2

TOQ

Descriptor

0 Bytes 2

TOE

Descriptor

0 Bytes

8

2

Priority
0000 0009

Bytes

Next TDE Address
ABCD 0000 0000

Address of Object Enqueued To
0001 FC30 0000

[\\
~----------------------~

C 16

Next Message Address
xxx x xxxx xxx x

Next Message Address
xxxx xxxx xxxx

First TDE Address
DEl A F2AE 3100

Next TDE Address
12A7 7EAC OFOO

Key 1

8 9

Key 2

8 9

8

Address of Object Enqueued To
OE1A FA2E 3000

lC

~

\

[~
C

~1-6----------------------------~
lC

Instruction Descriptions 10-339

SRO

0001 FC30 0000 Descriptor First TDE Address
Reserved

Key

xxxx xxxx xxxx Length-1

o Bytes 2 8 9

...
______________ F_ir_st_M __ es_s_ag_e_A __ dd_r_e_ss ______________ L-___________________________ ({O 002B 3245 A120 J

A 10 20

TDE

Next TDE Address
12A7 7EAC OFOO Descriptor

xxxx xxxx xxxx

002B 3245 A 120

21 AB CB02 DAOO

10-340

o Bytes 2

Priority

0000 0008 I (""'-~ ___________ A __ dd_r_e_ss_o_f_O_b_j_e_ct_E_n_q_U_e_U_ed __ T_o ________ ~ . J) OE1A F2AE 3100

8 c 16

SRM

Descriptor Next Message Address

6COO 21 AB CB02 DADO

o Bytes 2

SRM

Descriptor
Next Message Address
6789 0000 0000

o Bytes 2

Since the task switch control bit (bit 15 of the instruction)
was zero, the task dispatcher is now invoked; and since the
highest priority TDE on the TOO is not the current TOE,
the task dispatcher wi" switch out the old TOE and switch
in the new TOE.

Key 1 \ 0000

8 9

Key 2 \ 0000

8 9

20

SEND MESSAGE AND WAIT (SENDMW)

Instruction Description

The SRM (send/receive message) addressed by B1 is
enqueued to the message list of the SRQ (send/receive
queue) designated by the second operand.

Format: RS

69 I B11
OBits 8 12 16 20 31

Operation: The enqueuing method is designated by the
I-field. The message list is searched, in sequence,
beginning with the first message. The new message
(the first operand) is enqueued above the first message
that satisfies the search type. If the list is empty, the
new message is enqueued first. If the search type is not
satisfied, the new message is enqueued last. Search
keys begin in byte 8 of the SRM, have a length
specified in the queue header, and are treated as
unsigned binary data.

I-Field

Bit 12

Bit 13

Bit 14

Bit 15

Search Type

Search message key =
the first operand message key

Search message key <
the first operand message key

Search message key > the
first operand message key

Not used

The search type is the logical OR of the I-bits specified.
Therefore, a specification of I = binary 000x results in
enqueue last and I = binary 111 x results in enqueue
first.

All TOEs (task dispatching elements) on the SRQ wait
list are dequeued and subsequently enqueued in priority
sequence to the TOQ (task dispatching queue) specified
by the TOE. TOE hex bytes 16-1 B are updated
accordingly.

After all TOEs on the SRQ wait list are processed, the
current TDE is dequeued from the prime TOQ and the
task dispatcher is invoked. Bit 6 of the TOE descriptor
is set on to indicate that the TOE is waiting for an SRM
to be processed. Bit 6 of the SRM descriptor is set on
to indicate that a TOE should be returned to the TOQ by
the next OU task SENOM designating this SRM, instead
of enqueuing the SRM to an SRQ.

When an HMC task sends an SRM with bit 6 of its
descriptor on, the message is not enqueued to any
queue. Instead, the 6-byte TOE address field starting at
offset hex 7 A from the beginning of the SRM is
considered to be the address of a TOE. This TOE is
enqueued to the TOQ specified by the TOE and bit 6 of
the TOE descriptor and bit 6 of the SRM descriptor are
reset. The TOE address field must be within the same
page as the SRM descriptor byte or a machine check
will occur.

The TOE address at offset hex 7A from the beginning of
the SRM is not stored there by HMC, but is assumed to
be there prior to the execution of the SENOMW
instruction.

Note: The key length specification in the queue header
is key length minus 1. Therefore, if enqueue first (binary
111 x) or enqueue last (binary OOOx) is specified, the
key /text portion of the SRM must be at least 1 byte
long. If enqueue-first or enqueue-last is specified, the
key field is not checked for a page crossing.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Instruction Descriptions 10-341

Program Exceptions:

- Address translation
- Addressing
- Descriptor access: Busy
- Descriptor access: Monitored SRM descriptor
- Descriptor access: Monitored SRQ descriptor
- Descriptor access: Monitored TDE descriptor
- Effective address overflow
- Invalid descriptor
- Specification

SENDMW Example

OBits 8 12 16 20 31

Machine: 694E 5000

Bd4): 002B 3245 A120

B2 (5): 0001 FC30 0000

10-342

Before

TDO

OE1A FA2E 3000 Descriptor First TDE Address
0"E1A F2AE 3100

0 Bytes 2 8

Current TDE

OE1A F2AE 3100 Descriptor
Next TDE Address
12A7 7EAC OFOO

0 Bytes 2

L-
______ p_rio_rit_y ______ ~l~~ ~ ______________________ ~ Address of Object Enqueued To

0000 0008 OE1A FA2E 3000

8 Bytes C 16 1C

SRO

0001 FC30 0000 Descriptor First TDE Address
Key

12A7 7EAC OFOO
Reserved Length

-1 0

o Bytes 2 8 9

First Message Address \ n
:-_____________ 2_1_A_B~C~B-0-2--D-A-0-0--------------~--------------R-e-se-r_Ved ____________ ~)~
A B~~ 10 20

Instruction Descriptions 10-343

12A7 7EAC OFOO

002B 3245 A 120

21AB CB02 DAOO

After

OE1A F2AE 3100

10-344

TOE

Descriptor

o Bytes 2

Priority
0000 0009

8 Bytes

SRM

Descriptor

o Bytes 2

SRM

Descriptor

0 Bytes 2

~
7A

TOQ

Descriptor

o Bytes 2

TOE

Descriptor

o Bytes 2

Priority
0000 0008

8 Bytes

Next TDE Address
ABCD 0000 0000

Address of Object Enqueued To
0001 FC30 0000 1\\ ~----------------------~

C 16 1C

Next Message Address
xxxx xxxx xxx x

Next Message Address
xxxx xxxx xxxx

TDE Address
xxxx xxxx xxxx

Bytes

First TDE Address
12A7 7EAC OFOO

Next TDE Address
xxx x xxxx xxxx

Key 1

8 9

Key 2

8 9

80

8

Address of Object Enqueued To
xxxx xxxx xxxx

\

\

\

1\\ ~1~6----------------------------~
C 1C

0001 FC30 0000

12A7 7EAC OFOO

002B 3245 A 120

21 AB CB02 OAOO

SRQ

Descriptor
First TOE Address Key

Reserved
xxxx xxxx xxxx Length-1

o Bytes 2 8 9

L
____________ F_i_rs_t_M_e_S_Sa_g_e_A_d_d_re_s_s ______________ ~ __________________________ ~(C(O 002B 3245 A 120 .,)

A

TOE

Descriptor

o Bytes 2

Next TOE Address

xxxx xxxx xxxx

10

L
__________ p_r_io_r_it_y ____________ ~I __ ((-J '-~ ___________ A_d_d_re_s_s_o_f_O_b_je_c_t_E_n_q_U_eU_e_d_T_o ________ ~ 0000 0009 _ .,) OE1A FA2E 3000

8 C 16

SRM

Descriptor Next Message Address Key 1 \ 6COO 21AB CB02 DAOO 0000

o Bytes 2 8 9

SRM

20

20

Descriptor
Next Message Address Key 2 \ 6789 0000 0000 0000

0 Bytes 2

~ TOE Address

xxxx xxxx xxxx

7A Bytes

Since the task switch control bit (bit 15 of the instruction)

was zero, the task dispatcher is now invoked; and since the
highest priority TOE on the TOQ is not the current TOE,
the task dispatcher will switch out the old TDE and switch

in the new TOE.

8 9

~
80

Instruction Descriptions 10-345

SET ADDRESS COMPARE MODE (SACM)

Instruction Description

This instruction establishes address compare mode; the
first operand contains the compare address and,
optionally, a data byte to be used for compare on store.
The address compare type is specified by the second
operand.

Format: SI

4B D,
OBits 8 16 20 31

Operation: If bit 15 of the instruction (immediate field)
equals 1, bits 0-7 of the first operand contain a
character that is compared with the data stored into the
location at the compare address.

The second operand specifies the address compare
type:

Immediate
Field
Bits Value Description

12-13 00 Instruction stream
01 Processor data
10 I/O data
11 Any

14 0 Fetch / store
Store only

15 0 No compare on store
Compare on store

10-346

Bits 12 and 13 specify whether the address compare
exception is to be presented for one or any of the
storage access types. Bit 14 specifies whether the
exception is to be recognized for a fetch/store access or
a store only access. If bit 14 is a 1, bits 12-13 are
ignored and the exception is recognized for any of the
store access types. Bit 15 specifies that bits 0-7 of the
first operand are to be compared to the value stored at
the compare address. If the values are equal, an
address compare exception is recognized; otherwise
normal operation continues. If bit 15 is a 1, bits 12-14
are ignored.

First Operand
Bits Description

0-7
8-15
16-63

Character
Unused
Compare Address

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

Address compare mode set
Address compare mode not set

Carry: Not applicable.

Boundary Requirements: The operand address from the
instruction identifies an 8-byte field in storage that must
be fullword aligned; otherwise a specification exception
is recognized and the operation is suppressed.

Program Exceptions:

Address compare
- Address translation

Addressing
Effective address overflow
Specification

Programming Notes:
1. If an address stop has previously been set via the

console, condition code 1 is set and the operation
completes without disturbing the console stop. If a
console stop is set after the SACM instruction was
processed, the address stop set by the SACM
instruction is overridden.

2. This instruction will not override a compare set
through the console.

3. The exception produced by an address compare can
be masked in a TOE. If this exception is masked and
an address compare occurs due to a previous SCAM
instruction, the exception mask is reversed by the
HMC. Therefore the next time this address compare
occurs, an address exception is presented.

4. The IMP exception handler must mask the address
compare exception within the TOE whenever an
address compare exception occurs. Unless the mask
is set, attempting to execute the IMP instruction on

SACM Example

Op
48

OBits 8 16 20

D,
024

Assembler: SACM 0 1 (B 1 1. 12

Machine: 4808 3024

Bd3): 0123 4567 8000

31

Storage - Before and After

0/8 2/A 4/C 6/E

0123 4567 8024 0000 12C4

1131 1522

Address compare on I/O data fetch is set at address
12C4 1131 1522.

which the address compare exception occurred Before After
results in another address compare exception.

Condition Code: x o

Instruction Descriptions 10-347

SET CHAIN BUSY (SCB)

Instruction Description

The SCB instruction locates the chain of hold records
for an object address and sets the busy flag in the chain
so no other grant or free operations can be done on the
chain.

The second-operand register contains an object
address. The SCB instruction locates the hash table
from the CAT (control address table). hashes the object
address, selects the entry from the hash table, and
loads the 6-byte address of the first hold record into
the first-operand register. The busy flag in the first hold
record is also set to 1.

Format: RR

36 1 B1 1 B21
OBits 8 12 15

Operation: The second-operand register contains an
object address. A 4096-byte HHT (hold hash table)
whose address is given in bytes hex 8A-8F of the CAT
is accessed. This HHT address is initialized by an IMPL
(initial microprogram load) to point to the first byte in
the page.

This 6-byte effective address is hashed to create a
1-byte index into a hash table. The 2-byte hash table
entry is used .as a record index into the segments
containing the hold chains. The selected 2-byte hash
table entry (when multiplied by 16 and concatenated to
the right of the high-order 28 bits of the AHR [available
hold record] address found in bytes 92-95 of the CAT).
addresses the first hold record in the chain for the
second-operand object address and its hash synonyms.
If the chain is empty (contains no hold records), the
hash table entry is all zeros. In this case, the
first-operand register contents are unchanged, and the
condition code is set to 1.

10-348

If the hash table entry for the second-operand object
contains a nonzero value, that value is used as a record
index to access the first hold record in the chain. The
2-byte hash table entry is multipled by 16 and
catenated to the right of the high-order 28 bits of the
AHR (available hold record) address. These bits of the
AHR point to the start of the hold record area. Bit 5 of
the first byte of the hold record (the chain busy flag for
example) is checked. If it is a 1 (indicating the chain is
already busy), a descriptor access busy program
exception is recognized and the operation is nullified. If
the chain busy flag is a zero, it is set to one, the
address of the first hold record in this chain is loaded
into the first-operand register, and the condition code is
set to zero.

Overflow and Sign Code: Not applicable.

Condition Code:

o Chain was set busy
Chain was empty

Carry: Not applicable.

Boundary Requirements: The hold record must be
quadword aligned; otherwise a specification exception
occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Descriptor access: Busy

seB Example

Op B, B2
36 D D

OBits 8 12 15

Assembler: SCB B1 , B2

Machine: 36DD

Before After

BdD) and B2 (D): 8001 1800 0000 8001 OCOO 0030

Base register hex D contains the address of the first hold record
on the chain after the instruction has executed.

Control Address Table Hash Table

100 0088

100 0092 8001 OCOO 0060

Flags Hold

0801 OCOO 0000

0003

Primary
Object Address TOE

Chain
~ebmdary
Chain

/ The chain busy flag (hex 04) is set by this instruction.

0030 01 02 8001 1801 0000 0001 0004 0000

0040 00 84 8001 1802 0000 0001 0005 0000

0050 02 02 8001 1803 0000 0002 0000 0000

0060 00 00 0000 0000 0000 0000 0007 0000

0070

L--'
l---~ ----~

Cumulative
Hold Field

Unused

00 00

00 00

00 00

00 00

-

Instruction Descriptions 10-349

SET CLOCK COMPARATOR (SETCC)

Instruction Description

The current value of the clock comparator is replaced by
the first operand.

Format: SI

60 I I 2 I B, I 0,
OBits 8 12 16 20 31

Operation: The only bits of the operand that are set in
the clock comparator are those that correspond to the
bit positions to be compared with the time-of-day
clock. The remaining rightmost bits are ignored and are
not preserved in the clock comparator. If no Set
Time-Of-Day Clock instruction has been issued prior to
the SETCC, the results of the compare are
unpredictable.

The address of the SRC (send/receive counte.) that
indicates when the value of the time-of-day clock is
equal to or greater than the value of the clock
comparator is indicated in the control address table
(Figure 2-2). No check for a counter limit of zero is
made when SETCC is issued.

10-350

Overflow and Sign Code: Not applicable.

Condition Code; Not changed.

Carry: Not applicable.

Boundary Requirements: The operand occupies 8 bytes
in storage and must begin on a word boundary;
otherwise a specification exception occurs, and the
operation is suppressed.

The SRC associated with this instruction must begin on
a word boundary and be storage resident; otherwise a
machine check will occur when the send to the counter
takes place.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

Programming Note: If the value to be set into the clock
comparator is less than the value of the time-of-day
clock, the value is loaded in the clock comparator and
the send count is issued.

SETCC Example

D,
1AO

OBits 8 12 16 20 31

Assembler: SETCC D1 (B 1)

Machine: 6D02 31AO

B d3): 0000 A 182 COOO

Storage - Before and After

0/8 2/A 4/C

0000 A1B2 C1AO 0000 0008 0400

Clock Comparator - Before

Bits

Clock Comparator - After

G/E

OOxx

42 56 64

0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000: 1000 : 0000 : 0100 I 00 xx : xxxx : xxxx I xxxx

o Bits 42 56 64

Instruction Descriptions 10-351

SET INDICATOR (SETIND)

Instruction Description

An indicator byte in main storage is set according to the
condition code and a mask.

Format: 51

0,

OBits 8 12 16 20 31

Operation: The mask, M 2, is compared to the condition
code and, if a match is found, a hex F1 is stored at the
first operand location. If no match is found, a hex Fa is
stored at the first operand location.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

10-352

SETIND Example

D,
035

OBits 8 12 16 20 31

Assembler: SETINO 0, (B,), M2

Machine: 5A91 3035

B, (3): 029C 1A2C 2000

Storage - Before

0/8 2/A

029C 1 A2C 2035
xx

Storage - After

0/8 2/A

029C 1 A2C 2035
xx

4/C 6/E

xx xxxx

4/C 6/E

F1 xxxx

SET INTERVAL TIMER (SETIT)

Instruction Description

The current value in one of the interval timers is
replaced by the first operand.

Format: SI

6A I B, I D,
OBits 8 16 20 31

Operation: Two interval timers are provided. The first
interval timer is called the task interval timer.

Only those bits of the first operand that correspond to
the bit positions to be updated are set in the timer. The
remaining rightmost bits are ignored and are not
preserved in the timer.

When the second interval timer is specified, the SRC
(send/receive counter), which is used to indicate when
the value in the interval timer has been decremented to
zero, is specified in the control address table (Figure
2-2).

When the task interval timer is specified, a dispatcher
timer exception is generated to indicate when the value
in the task interval timer has been decremented through
zero. If an untimed task issues a Set Interval Timer
instruction to the task interval timer, a specification
exception occurs and the operation is suppressed. Also,
if a timed task issued a SETIT instruction to the task
interval timer when task dispatching is disabled, the new
value is loaded but the task interval timer is not started.

The selection of the particular interval timer to be loaded
with the first-operand interval and the technique for
handling the interval timer is specified in the I-field.
I-field values of hex 3-F cause a specification exception
and the operation is suppressed.

I-Field

Hex 00

Hex 01
Hex 02
Hex 03-FF

Timer Control

First interval timer (also used
as task interval timer)
Second interval timer, single interval
Second interval timer, repeat interval
Invalid

If repetitive timing is specified, the interval timer
function is reinitiated using the value in the repetitive
interval timer doubleword when the prior interval expires
and the SRC specified in the control address table is
used. The repetitive interval timer doubleword is not
changed by this instruction.

Overflow: No overflow is indicated if the SRC increment
causes a carry.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: See Overflow.

Boundary Requirements: The first operand occupies 8
bytes in storage and must begin on a word boundary;
otherwise a specification exception occurs and the
operation is suppressed.

The SRC associated with this instruction must begin on
a word boundary and be storage resident; otherwise a
machine check will occur when the send to the counter
takes place.

A machine check occurs if the repetitive interval timer
doubleword does not begin on a doubleword boundary
and is not resident.

Instruction Descriptions 10-352.1

This page is intentionally left blank.

10-352.2

L

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

SETIT Example

Op 12 I~'I 0,
6A 00 000

0 Bits 8 16 20

Ass~mbler: SETIT DdBd. 12

Machine: 6AOO 3000

B1 (3): 0000 1A2C 2000

31

Storage - Before and After

0/8 2/A 4/C 6/E

0000 1 A2C 2000 0000 0008 C480 0000

Task Interval Timer - Before

xxxx : xxx x : xxxx : xxxx : xxxx : xxxx : xxxx : xxxx I xxxx I xxxx : xx xx : xxxx : xxxx : xxxx

o Bits 42

Task Interval Timer - After

0000: 0000: 0000: 0000: 0000: 0000 I 0000: 1000: 1100: 0100 110 xx I xxxx : xxxx: xxxx

o Bits 42

56 64

56 64

Instruction Descriptions 10-353

SET TIME-Of-DAY CLOCK (SETTOD)

Instruction Description

The current value of the time-of-day clock is replaced
by the first operand.

Format: SI

6D I I 4 I B, I D,
OBits 8 12 16 20 31

Operation: The operand is considered to be an unsigned,
64-bit, binary number. Only bits of the operand that
correspond to the bit positions to be updated are set in
the time-of-day clock. The remaining rightmost bits are
ignored and not saved in the time-of-day clock. If
timing functions are still active due to a prior SETCC
(set clock comparator) instruction, the SETCC is
canceled and no send count is performed.

10-354

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operand occupies 8 bytes
in storage and must begin on a word boundary;
otherwise a specification exception occurs and the
operation is suppressed.

Program Exceptions:

Address translation
- Addressing
- Effective address overflow
- Specification

SETTOD Example

0,
000

OBits 8 12 16 20 31

Assembler: SETTOD D1 (B 1)

Machine: 6D04 3000

B1 (3): 0000 A415 3000

Storage - Before and After

0/8 2/A 4/C 6/E

0000 A415 3000 00A4 OOOE 2100 0000

Time of Day Clock - Before

xxxx : xxxx : xxxx : xxx x : xxxx : xxxx : xxxx : xxxx : xxxx : xxxx : xx xx : xxxx : xxx x : xxx x

o Bits 42

Time of Day Clock - After

1 1 1 I 1 , 1 , 1 1 1 1 I
00001000011010 10100 10000 I 0000 10000 11110 1001010001,00 xx I xxxx I xxxx ,xxxx

o Bits 42

56 64

56 64

Instruction Descriptions 10-355

SHIFT LEFT ARITHMETIC (SLA)

Instruction Description

The integer part of the first operand is shifted left the
number of bits specified by the 12 field.

Format: 55

03 1 R, 112
OBits 8 12 15

Operation: The value in 12 is 1 less than the number of
bits to be shifted. All 15 integer bits of the first operand
participate in the left shift, and zeros are supplied to the
vacated rightmost register positions.

Overflow: If a bit unlike the sign bit is shifted out of
position 1, a binary overflow exception occurs.

Sign Code: The sign of the first operand remains
unchanged.

Condition Code:

o Result = 0
1 Result < 0
2 Result> 0
3

10-356

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions: Binary overflow

SLA Example

OBits 8 12 15

Assembler: SLA R1 , 12

Machine: 03A2

Before After

OA 50

Condition Code: x 2

SHIFT LEFT HALFWORD AND COUNT (SLHCT)

Instruction Description

The second operand is shifted left until a 1 bit is shifted
out of the leftmost bit position. A value equal to the
number of bits shifted out is placed in the byte register
specified by r,.

Format: RS

OBits 8 12 16 20 31

Operation: The second operand occupies a halfword in
storage. All 16 bits of the second operand participate in
the shift left, and zeros are supplied to the vacated
rightmost bit positions.

If the second operand contains no 1 bits, no shift
occurs, and the value zero is placed in the byte register
specified by r,.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The halfword storage operand
must start on a halfword boundary; otherwise, a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

SLHCT Example

OBits 8 12 16 20 31

Assembler: SLHCT rj, D2 (B 2)

Machine: 61CO 3120

B2 (3): 0014 6A3B FOOO

Before After

xx 09

Storage - Before

0/8 2/A

0014 6A3B F120 OOAC

Storage - After

0014 6A3B F120

0/8

5800

2/A

4/C 6/E

4/C 6/E

Instruction Descriptions 10-357

SHIFT LEFT LOGICAL (SLL)

Instruction Description

The first operand is shifted left the number of bits
specified by 12,

Format: RR

01 I R, 112
OBits 8 12 15

Operation: The value contained in the 12 field is 1 less
than the number of bits to be shifted.

All 16 bits of the first operand participate in the shift
left, and zeros are supplied to the vacated rightmost
register positions. Bits shifted out of the register are
lost.

Overflow and Sign Code: Not applicable.

10-358

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

SLL Example

Op R, 12
01 6 2

OBits 8 12 15

Assembler: SLL R 1 , 12

Machine: 0162

Before After

Rl (6): C4BE 25FO

SHIFT RIGHT ARITHMETIC (SRA)

Instruction Description

The integer part of the first operand is shifted right the
number of bits specified by 12,

Format: RR

04 I R,112

OBits 8 12 15

Operation: The value contained in the 12 field is 1 less
than the number of bits to be shifted.

All 15 integer bits of the first operand participate in the
shift right. and bits equal to the sign are supplied to the
vacated bit positions. Bits shifted out are lost.

Overflow: Not applicable.

Sign Code: The sign of the first operand remains
unchanged.

Condition Code:

o
1
2
3

Result
Result <
Result >

Carry: Not applicable.

o
o
o

Boundary Requirements and Program Exceptions: None.

SRA Example

~ I~'I ~ I
OBits 8 12 15

Assembler: SRA Rj • 12

Machine: 0453

Before After

Rd5): C5E6 FC5E

Condition Code: x

I nstruction Descriptions 10-359

SHIFT RIGHT LOGICAL (SRL)

Instruction Description

The first operand is shifted right the number of bits
specified by 12•

Format: RR

02 \ R, \1 2

OBits 8 12 15

Operation: The value in 12 is 1 less than the number of
bits to be shifted.

All 16 bits of the first operand participate in the shift
right, and zeros are supplied to the vacated leftmost
register positions. Bits shifted out are lost.

Overflow and Sign Code: Not applicable.

10-360

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

SRL Example

Op R, 12
02 4 3

OBits 8 12 15

Assembler: SR L R I, 12

Machine: 0243

Before After

Rl (4): C5E6 OC5E

This page is intentionally left blank.

Instruction Descriptions 10-361

STACK (STACK)

Instruction Description

The Stack instruction obtains and loads the address of
the next stack entry into the first operand. The stack
instruction is used by VMC to control the allocation of
storage. The storage area is organized like a stack.
Every storage allocation starts on a 16-byte boundary.
This allows a variable in storage to have any of the
following boundary alignments: byte, halfword, word,
doubleword, or quadword.

The maximum size of a storage allocation is limited to
64 K-16 bytes.

Format: RR

1 BIB, I R21
OBits 8 12 15

Operation: The size of the next stack entry is indicated
by the second operand.

The first operand initially contains the address of the
current stack entry II. The first 8 bytes of the current
stack entry contain four halfword fields that are used by
the Stack and Unstack instructions. The first halfword
contains an offset value II which, when concatenated
to the SID (segment identifier) portion of the current
stack entry address, forms the address of the first byte
of the next stack entry. The second halfword in the
current stack entry contains an upper limit II for the
stack. The third and fourth halfwords are not used by
the Stack instruction.

The address of the stack entry following the next entry
.. is formed by adding the value contained in the first
halfword of the current stack entry to the second
operand. Both values are considered to be 16-bit
unsigned binary integers. If no overflow occurs, the sum
is logically compared with the limit value contained in
the second halfword of the current stack entry. If the
sum is greater than the limit value, a stack exception
occurs and the operation is suppressed. If no stack
exception is found, the sum is then checked to ensure
that it is a multiple of eight (doubleword aligned). If it is
not, a specification exception occurs and the operation
is suppressed.

10-362

The following information is then stored into the first 8
bytes of the next stack entry:

Bytes Description

0-1

2-3
4-5

6-7

Address of the stack entry following the
next entry.
Stack limit value from current stack entry.
Address (offset portion) of the current
stack entry.
Flag field that is set to all zeros.

Finally, the offset portion of the first-operand register is
loaded with the offset portion of the next stack e[ltry
address, thus making this next entry the new current
entry.

Overflow: If an overflow occurs as the result of add
operation, an effective address overflow exception
occurs and the operation is suppressed.

Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Initially, the first operand must
start on a doubleword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

The concatenation of the offset value from the first
halfword of the current stack to the SID portion of the
current stack entry address must be doubleword aligned;
otherwise a specification exception occurs and the
operation is suppressed.

L

Program Exceptions:

- Addressing
- Address translation
- Effective address overflow
- Specification
- Stack

Programming Note: If the operand specifies a length of
zero, the results are unpredictable.

STACK Example

Op B, R2
1B 3 5

OBits 8 12 15

Assembler: STACK B1, R2

Machine: 1 B35

Before After

B1 (3): 0400 BA1C 4000 0400 BA1C 6330

D
0400 BA 1 C 4000 Forward fJ Limit II

Pointer

6330 FFFO

0 Bytes 2

0400 BA 1 C 6330 Forward II Limit
Pointer

67EO FFFO

0 Bytes 2

~

4 6 1
Current

Backward Attributes
Pointer -t

4000 0000 New

4 6 1

Instruction Descriptions 10-363

STORE (ST)

Instruction Description

The first operand is stored at the second-operand
location.

Format: RS

OBits 8 12 16 20 31

Operation: See Instruction Description.

Overflow and Sign Code; Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements; The storage operands must
start on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

The concatenation of the offset value from the first
halfword of the current stack to the SID portion of the
current stack entry address must be doubleword aligned;
otherwise, a specification exceptions occurs and the
operation is suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

10-364

ST Example

OBits 8 12 16 20 31

Machine: 9630 4250

Bd3): 04A5 2330 0000

B2 (4): 04C6 3250 1000

Storage - Before

0/8 2/A 4/C 6/E

04C6 3250 1250 xxxx xxxx xxxx

Storage - After

0/8 2/A 4/C 6/E

04C6 3250 1250 04A5 2330 0000

L

STORE AND SET COMPUTATIONAL ATTRIBUTES
(SSCA)

Instruction Description

The current computational attributes of the task are
stored into the receiver (operand 1). The new
computational attributes of the task are set from the
source (operand 2) as determined by the controls
operand (operand 3). In addition, the current
computational attributes of the task can optionally be
stored in the current invocation control block. The
invocation control block is addressed by base register 3,
and the attributes are stored under control of indicators
in the invocation control block.

Format: 55

D,
OBits 8 12 16 20 32 36 47

Operation: The first operand, the receiver, is always
specified and is addressed through the base
displacement (bits 16 through 31).

The second operation, the source, is optional if third
operand is not specified. The absence of the second
operand is indicated by a value of all zeros for bits 32
through 47. A nonzero value for bits 32 through 47
specifies the base displacement to be used to address
the second operand. If the second operand is not
specified when the third operand is specified, a
specification exception results.

The third operand, the controls, is optional. The
absence of the third operand is indicated by a value of
all zeros for bits 8 through 11. A nonzero value for bits
8 through 11 specifies the base register to be used to
address the third operand.

All three operands (receiver, source, and controls) have
the same format with the meaning of the values
contained within them varying slightly. The common
operand format is as follows:

Exception Exception
Comp

Mask Occurrence

o Bytes 2

Exception Mask

Byte(s)
0-1 Bits

0-9

10

11

12

13

14

15

Exception Occurrence

Byte(s)
2·3 Bits

0-9

10

11

12

13

14

15

4

Meaning

Reserved (binary 0)

Floating-point overflow

Floating-point underflow

Floating-point zero divide

Floating-point inexact result

Floating-point invalid operand

Reserved (binary 0)

Meaning

Reserved (binary 0)

Floating-point overflow

Floating-point underflow

Floating-point zero divide

Floating-point inexact result

Floating-point invalid operand

Reserved (binary 0)

Instruction Descriptions 10-365

Computational Mode

Byte 4 Bits

o

1-2

3-7

Meaning

Reserved (binary 0)

Rounding mode

00 = Round towards positive
infinity

01 = Round towards negative
infinity

10 = Round towards zero

11 = Round to nearest

Reserved (binary 0)

The receiver and source operand bit values for the
exception mask and occurrence bits have the same
meaning.

Exception Mask Bits

o = Exception is masked

Exception Occurrence
Bits

o = Exception has not
occurred

1 = Exception is unmasked 1 = Exception has
occurred

The meaning of the receiver and source operand bit
values for the computational mode are as defined under
the operand format previously described.

The bit values in the controls operand determines which
computational attributes of the task are to be set from
the bit values in the source operand. A value of 0 for a
bit in the controls operand indicates that the
corresponding computational attribute of the task is not
to be set from the value of that bit of the sou.rce
operand. A value of 1 for a bit in the controls operand
indicates that the corresponding computational attribute
of the task is to be set from the value of that bit on the
source operand. For an attribute controlled by a multiple
bit field, such as the rounding modes, all of the bits in
the field must be ones or all of the bits must be zeros.
A mixture of ones and zeros in such a field causes a
specification exception.

10-366

The operation performed by the instruction is dependent
on the number of operands specified.

The initial function of storing the computational
attributes of the task is always performed. The receiver
is set with bit values that reflect the computational
attributes in effect at the start of execution of this
instruction. Additionally, if the computational attributes
of the task are to be altered by the value of the source
operand, the computational attributes of the task are
optionally stored into the current invocation control block
(lCB) addressed by base register hex 3. In the ICB, if bit
7 of the byte at hex offset 06, contains a value of 1 (see
Note 1) and bit 0 of the byte at offset hex A9 contains
a value of 0 (see Note 2). the computational attributes
of the task are stored into the ICB at offset hex EO (see
Note 3) in the format defined for the receiver operand.
Also, in this case, bit 0 at byte offset hex A9 is set with
a value of 1 to indicate the attributes have been stored.

If the source (operand 2) is specified without the
controls (operand 3), the computational attributes of the
task are set with the attributes specified in the source
operand. If the source is not specified, the instruction
does not alter the computational attributes of the task.

If the controls (operand 3) is specified, the source,
operand 2, must also be specified. The computational
attributes of the task are set with those attributes
specified in the source for which the controls contains
corresponding bit values of 1. Bit values of 0 in the
controls indicate that the corresponding attribute is not
to be set from the value in the source operand. If the
controls are not specified, the computational attributes
of the task are set with all of the values specified in the
source operand.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The result obtained from
overlapping operands is unpredictable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

Notes:
1. This bit, AIITYPE, indicates the ICB is an MI ICB if it

has a value of 1.
2. This bit, currently reserved in the ICB, is used to

indicate whether the computational attributes have
already been stored for this MI invocation. A value of
o indicates they have not been stored. A value of 1
indicates they have been stored.

3. This area of the ICB, a new extension, is used as the
storage area for the 5 bytes of computational
attribute information to be stored on an MI invocation
basis. This area will only be set with this information
by this instruction upon a change to the attributes,
thereby avoiding this overhead to the Call External
instruction path. It allows for Return External Instruction
exception handing, and invocation exit handling, to
restore the attributes to those that were in effect
prior to an MI invocation which is being destroyed.

SSCA Example

OP
BE

OBits 8 12 16 20

0,
083

Machine: BEF8 2083 2088

32 36

B,,2) and B2 (2): 8000 OCOO 0000

B3 (F): 8000 OCOO 0301

Storage - Before

0/8

47

6/E

8000 OCOO 0083

8000 OCOO 0088

8000 OCOO 0300

xx xxxx xxxx

8000 OCOO 0083

8000 OCOO 0088

8000 oeoo 0300

001e 0000 EO

0004 0004 80

Storage - After

0/8

001e

0004

00

0000

0004

3AOO

EO

80

6/E

0460

Instruction Descriptions 10-367

STORE AND SET TAGS (STST)

Instruction Description

The STST instruction provides support for building a
Machine Interface pointer from the address value
contained in the first operand. The address value
contained in the first operand is stored in the pointer
along with the segment group extender.

A quadword containing a virtual address is tagged and
is stored at the second-operand location.

Format: RS

OBits 8 12 16 20 31

Operation: The quadword is formed as follows:

• Bits 0 and 1 of byte 0 .. come from the leftmost 2
bits of the 13 field.

Pointer Bits
o and 1

()()

01
10
11

Meaning

System Pointer
Instruction Pointer
Space Pointer
Data Pointer

• Bits 2 through 7 of byte 0 II are reset.

• Bytes 1 through 7 II are reset.

10-368

• Bytes 8 and 9 come from a halfword in storage II
whose address is determined by taking bytes 0, 1,
and 2 of the first operand and concatenating hex 0
0004 on the right.

• Bytes hex A-F come directly from the first operand,
bytes 0-511.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The second operand must start
on a quadword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

STST Example

OBits 8 12 16 20 31

Machine: 6558 20FO

81 (5): 0014 AOOO 3FD6 ... ", .

82 (2): 0001 5005 0000

Storage - Before

0/8 2/A 4/C 6/E

0001 5005 OOFO xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx
0014 AOOO 0004 0050

II Storage - After

0 0/8 G/E
D ,_-----__ "

0001 5005 OOFO 8000 0000 0000 0000

0014
"

3FD~
0014 AOOO 0004

Instruction Descriptions 10-369

STORE BYTE (STB)

Instruction Description

The first operand is stored at the second-operand
location.

Format: RS

OBits 8 12 16 20 31

Operation: See Instruction Description.

Overflow and Sign eode: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

10-370

STB Example

OBits 8 12 16 20 31

Machine: 7680 5100

rl (8): 03

82 (5): oooe 1234 0000

Storage - Before

oooe 1234 0100

oooe 1234 0100

0/8 2/A

xx

Storage - After

0/8

03

2/A

4/e 6/E

4/C 6/E

This page is intentionally left blank.

Instruction Descriptions 10-371

STORE CLOCK COMPARATOR (STCC)

Instruction Description

The current value of the clock comparator is stored at
the first-operand location.

Format: SI

60 318,1 0,
OBits 8 12 16 20 31

Operation: Zeros are provided for the rightmost bit
positions that are not used for comparison with the
time-of-day clock. If no Set Clock Comparator
instruction has been issued prior to the STCC, an
unpredictable value is stored.

Overflow and Sign Code: Not applicable.

10-372

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first operand occupies 8
bytes in storage and must begin on a word boundary;
otherwise a specification exception occurs and the
operation is suppressed.

Program Exceptions:

Address translation
- Addressing
- Effective address overflow
- Specification

STCC Example

D,
2CO

OBits 8 12 16 20 31

Assembler: STCC Dl (B 1)

Machine: 6D03 52CQ

Bd5): OlAO CDEF 0000

Clock Comparator - Before and After

o Bits

Storage - Before

0/8 2/A 4/C 6/E

OlAO CDEF 02CO xxxx xxxx xxxx xxxx

Storage - After

0/8 2/A 4/C 6/E

OlAO CDEF 02CO 0005 A lOB 2280 0000

42 56 64

Instruction Descriptions 10-373

8TORE HALFWORD (8TH)

Instruction Description

The first operand is stored at the second-operand
location.

Format: RS

86 1 R, 1 0 1 B21
OBits 8 12 16 20 31

Operation: See Instruction Description.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The storage operands must
each start on a halfword boundary; othelWise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

10-374

8TH Example

OBits 8 12 16 20 31

Machine: 8640 3AAO

82 (3): 215A C158 0000

Rl (4): FFFF

Storage - Before

0/8 2/A 4/C 6/E

215A C158 0000 xxxx

Storage - After

0/8 2/A 4/C 6/E

215A C158 0000 FFFF

This page is intentionally left blank.

Instruction Descriptions 10-375

STORE INTERVAL TIMER (STIT)

Instruction Description

The current value in one of the interval timers is stored
at the first-operand location.

Format: SI

OBits 8 12 16 20 31

Operation: Zeros are provided for the rightmost bit
positions that are not updated by the interval timer. If
no Set Interval Timer instruction has been issued prior
to the STIT instruction, an unpredictable value is stored.
Since an untimed task cannot set the task interval timer,
any STIT instruction issued by an untimed task to the
task interval timer results in an unpredictable value being
stored.

The second operand selects the specific timer for the
store operation. The second operand values of hex
02-0F causes a specification exception and the
operation is suppressed.

I-Field

Hex 00

Hex 01
Hex 02-FF

10-376

Timer

First interval timer (also
used as task interval timer)
Second interval timer
Invalid

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The first operand occupies 8
bytes in storage and must begin on a word boundary;
otherwise a specification exception occurs and the
operation is suppressed.

Program Execeptions:

Address translation
- Addressing

Effective address overflow
Specification

STIT Example

Op 12 I~'I D,
8C 01 220

0 Bits 8 16 20 31

Assembler: STITD 1 (B 1 1.1 2

Machine: SC01 3220

Bl (3): 2F1A 3CDl 0000

Interval Timer

0001 i 1010 :1011 : 0010 : 0000 : 0011 : 1100 : 01 00 : 0101 : 1101 : 01 10: 0111 : 1000 : 1110

o Bits 42 56 64

Storage - Before

0/8 2/A 4/C 6/E

2F1A 3CDl 0220 xxxx xxxx xxxx xxxx

Storage - After

0/8 2/A 4/C 6/E

2F1A 3CDl 0220 lAB2 03C4 5D40 0000

Instruction Descriptions 10-377

STORE MULTIPLE (STM)

Instruction Description

A set of registers is stored at the locations designated
by the second-operand address.

Format; RS

OBits 8 12 16 20 31

Operation; The first-operand field identifies the first
register to be stored, and the 13 field specifies the
number of additional registers to be stored.

The storage area where the contents of the registers are
stored starts at the location specified by the
second-operand address and continues through as many
locations as needed.

The registers are stored in the ascending order of their
addresses, starting with the register specified by the
first operand. The register addresses wraparound from
hex F to O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry; Not applicable.

Boundary Requirements; The storage operands must
each start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

10-378

STM Example

OBits 8 12 16 20 31

Machine: 9704 C180

82 (C): 003F CFD5 0000

8(0): 0018 2A30 0000
8(1): OC38 1234 4000
8(2): 0001 A8CD EOOO
8(3): 213A C1F4 6000
8(4): A100 0008 AOOO

Storage - Before

0/8 2/A 4/C 6/E

003F CFD5 0000 xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxx x
xxxx xxxx xxxx xxxx
xxx x xxxx xxxx

Storage - After

0/8 2/A 4/C 6/E

003F CFD5 0000 0018 2A30 0000 OC38
1234 4000 0001 A8CD
EOOO 213A C1F4 6000
A100 0008 AOOO

STORE MULTIPLE BYTE (STMB)

Instruction Description

A set of registers is stored at the locations designated
by the second-operand address.

Format: RS

OBits 8 12 16 20 31

Operation: The first-operand field identifies the first
register to be stored, and the 13 field specifies the
number of additional registers to be stored.

The storage area where the contents of the registers are
stored starts at the location specified by the
second-operand address and continues through as many
locations as needed.

The registers are stored in the ascending order of their
addresses, starting with the register specified by the
first operand. The register addresses wraparound from
hex F to O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing

Effective address overflow

STMB Example

OBits 8 12 16 20 31

Machine: 7703 3000

B2 (3): 5FC3 0001 COOO

riD): 2A
riEl: CB
r(F): El
r(O): 40

5FC3 0001 COOD

5FC3 0001 COOD

Storage - Before

0/8 2/A

xx

Storage - After

0/8 2/A

40

4/C

xx

4/C

2A

6/E

xxxx

6/E

CBEl

Instruction Descriptions 10-379

STORE MULTIPLE HALFWORD (STMH)

Instruction Description

A set of registers is stored at the locations designated
by the second-operand address.

Format: RS

OBits 8 12 16 20 31

Operation: The first-operand field identifies the first
register to be stored, and the I-field specifies the
number of additional registers to be stored.

The storage area where the contents of the registers are
stored starts at the location specified by the
second-operand address and continues through as many
locations as needed.

The registers are stored in the ascending order of their
addresses, starting with the register specified by the
first operand. The register addresses wraparound from
hex F to O.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The storage operands must
each start on a halfword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

10-380

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

STMH Example

OBits 8 12 16 20 31

Machine: 8752 3100

B2 (3): OOOA OOOB 0000

R(5): 1234
R(6): 5678
R(7): 9ABC

Storage - Before

0/8 2/A 4/C

OOOA OOOB 0100 xxxx xxxx xxxx

OOOA OOOB 0100

Storage - After

2/A 4/C 0/8

1234 5678 9ABC

6/E

6/E

STORE SPACE OFFSET POINTER (STSOP)

Instruction Description

The segment group offset (low-order 3 bytes) of the
first operand is decremented by the space locator offset
referenced by the first operand; the 4-byte result is
stored in the second operand.

Format: RS

OBits 8 12 16 20 31

Operation: The space locator is a 3-byte logical binary
field located at the storage address found by
concatenating hex 00 0001 to the right of the
high-order 3 bytes (segment group identifier) of the
first-operand address. The space locator is logically
subtracted from the low-order 3 bytes (segment group
offset) of the address found in the first operand. If a
binary underflow results, a specification exception is
recognized and the operation is suppressed. Otherwise,
the resultant 3-byte difference is padded on the left
with 1 byte of zeros, and the result is stored at the
location specified by the second operand.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Specification

STSOP Example

OBits 8 12 16 20 31

Assembler: STSOP B1 ,0 2 (B 2)

Mach i ne: 8389 2020

Before After

B1 (8): 0010 0212 3456 0010 0212 3456

B2 (2): OOCl BOOO 4BEO ODCl BOOO 4BEO

0010 0200 001 D

OOCl Booo 4BEO

0010 0200 0100
OOCl BOOO 4BEO

Storage - Before

0/8

xx

xxxx xxxx

Storage - After

0/8
0034
0012

56xx
0000

6/E

00 3456

6/E

Instruction Descriptions 10-381

STORE TIME-Of-DAY CLOCK (STTOD)

Instruction Description

The current value of the time-of-day clock is stored at
the operand location.

Format: SI

60 I I 5 I B, I 0,
OBits 8 12 16 20 31

Operation: The value of the clock is expressed as an
unsigned 64-bit binary number. Successive STIOD
instructions ensure unique values by adding a binary 1
to bits 56-63. Zeros are provided for the bit positions
to the left of bit position 56 that are not updated by the
time-of-day clock. If a Set Time of Day Clock
instruction is not issued prior to the STIOD instruction,
an unpredictable result is stored.

10-382

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: A carry from bit position 56 is ignored.

Boundary Requirements: The first operand occupies 8
bytes in storage and must begin on a word boundary;
otherwise a specification exception occurs and the
operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

L

SITOD Example

0,
CAO

a Bits 8 12 16 20 31

Assembler: STTOO 0 1 (8 1)

Machine: 6005 3CAO

8113): 0005 35A6 1000

Time-of-Day Clock

0000: 0000 : 0010 \1010 I 0001 : 0010 : 11 00 : 1101 : 0010 : 0000: 00 00 : 0000 : 0000 : 0000

o Bits 42 56 64

Storage - Before

0/8 2/A 4/C 6/E

0005 35A6 1 CAO xxxx xxxx xxxx xxxx

Storage - After

0/8 2/ A 4/C 6/E

0005 35A6 1 CAO 002A 12CO 2000 0062

Instruction Descriptions 10-383

SUBTRACT CHARACTERS (SC)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand
location.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: The operands are treated as signed binary
quantities. Subtraction is performed as if the ones
complement of the second operand and a rightmost one
bit were added to the first operand. If the operands are
unequal in length, the shorter operand is considered to
be extended to the left with bits equal to the sign bit.

Overflow: If the carry from the sign bit position and the
carr{ from the high-order numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

If the first operand is too short to contain all significant
bits of the result. an overflow occurs and significant bits
are lost.

Sign Code: The sign bit of the difference is not changed
after the overflow. A positive result that overflows
yields a negative difference and a negative result that
overflows yields a positive difference.

Note that the sign of the difference is unpredictable
when significant bits are lost (see Overflow).

10-384

Condition Code: If an overflow occurs, the condition
code indicates the sign the difference would have if an
overflow had not occurred. When significant bits are
lost, the condition code indicates the sign the difference
would have if tt,~ first operand had been long enough to
contain all significant bits of the result.

o
1
2
3

Difference o
Difference < 0
Difference > 0

Carry: See Overflow.

Boundary Requirements: The operands can overlap in
storage if the rightmost byte of the first operand is
coincident with or to the right of the rightmost byte of
the second operand; otherwise the overlap is destructive
and the results are unpredictable.

Program Exceptions:

Address translation
Addressing
Binary overflow
Effective address overflow

SC Example

D,
1AO

OBits 8 12 16 20 32 36

Machine: C133 31 AD 4B20

Bd3): 01C2 6430 0000

B2 (4): 02BO 6320 0000

01C2 6430 01AO

02BO 6320 OB20

01 C2 6430 01 AD

02BO 6320 OB20

Storage - Before

0/8 2/A

001 E 8480

0007 A120

Storage - After

0/8 2/A

0016 E360

0007 A120

Before After

Condition Code: x 2

4/C

4/C

47

6/E

6/E

Instruction Descriptions 10-385

SUBTRACT HALFWORD (SH)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: The operands are treated as signed binary
quantities. Subtraction is performed as if the ones
complement of the second operand and a rightmost 1
bit were added to the first operand.

Overflow: If the carry from the sign bit position and the
carry from the high-order numeric bit position agree, no
overflow occurs; if they disagree, an overflow occurs.

Sign Code: The sign bit of the difference is not changed
after the overflow. A positive result that overflows
yields a negative difference and a negative result that
overflows yields a positive difference.

Condition Code: If the overflow occurs the condition
code indicates the sign the difference would have if
overflow had not occurred.

o
1
2
3

10-386

Difference = 0
Difference < 0
Difference > 0

Carry: See Overflow.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception is recognized, and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing
Binary overflow
Effective address overflow
Specification

SH Example

Op
80

OBits 8 12 16 20

Assembler: SH R 1, O2 (82)

Machine: 8061 30AO

82 (3): 001F F100 10AO

Before After

R 1 (6): 1388 OFAO

Condition Code: x 2

31

Storage - Before and After

0/8 2/A 4/C

001 F F100 1140 03E8

6/E

SUBTRACT HALFWORD REGISTER (SHR)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand register.

Format: RR

21 I Rl I R21
OBits 8 12 15

Operation: The operands are treated as unsigned binary
quantities. Subtraction is performed as if the ones
complement of the second operand and a rightmost 1
bit were added to the first operand.

Overflow: If the carry from the sign bit position and the
carry from the high-order numeric bit position agree. the
difference is satisfactory; if they disagree. an overflow
occurs.

Sign Code: The sign bit of the difference is not changed
after the overflow. A positive result that overflows
yields a negative difference. and a negative result that
overflows yields a positive difference.

Condition Code: If an overflow occurs the condition code
indicates the sign the difference would have if overflow
had not occurred.

o
1
2
3

Difference 0
Difference < 0
Difference > 0

Carry: See Overflow.

Boundary Requirements: None.

Program Exceptions: Binary overflow.

SHR Example

Op Rl R2
21 6 7

OBits 8 12 15

Assembler: SHR RI • R2

Machine: 2167

Before After

RI : 1388 OFAO

R2 : 03E8 03E8

Condition Code: x 2

Instruction Descriptions 10-387

SUBTRACT LOGICAL BYTE (SLB)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: The operands are treated as unsigned bin'ary
quantities. Subtraction is performed as if the ones
complement of the second operand and a low-order 1
bit were added to the first operand.

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

Difference oj:. 0, with no carry
Difference = 0, with carry
Difference oj:. 0, with carry

Carry: A carry from the high-order bit position is
recorded in the condition code.

10-388

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing

Effective address overflow

SLB Example

OBits 8 12 16 20

Assembler: SLB rl, D2 (B2)

Machine: 7150 3COO

B2 (3): CA20 1254 3000

rl (5):

Condition Code

Before
64
x

31

After

32

Storage - Before and After

CA20 1254 3COO

0/8

32

2/A 4/C 6/E

SUBTRACT LOGICAL BYTE REGISTER (SLBR)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand register.

Format: RR

11 I r, I r2

OBits 8 12 15

Operation: The operands are treated as unsigned binary
quantities. Subtraction is performed as if the ones
complement of the second operand and a low-order 1
bit were added to the first operand.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1 Difference .,. 0, with no carry
2 Difference = 0, with carry
3 Difference .,. 0, with carry

Carry: A carry from the high-order bit position is
recorded in the condition code.

Boundary Requirements and Program Exceptions: None.

SLBR Example

Op r, r2

11 3 4

OBits 8 12 15

Assembler: SLBR rl, r2

Machine: 1134

Before After

rl (3): 64 32

r2 (4): 32 32

Condition Code: x

Instruction Descriptions 10-389

SUBTRACT LOGICAL CHARACTERS (SLC)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand
location.

Format: SS

C4 L I B1 I D,
OBits 8 16 20 32 36 47

Operation: The operands are treated as unsigned binary
quantities. Subtraction is performed as if the ones
complement of the second operand and a low-order 1
bit were added to the first operand.

Overflow and Sign Code: Not applicable.

Condition code:

o

2
3

Difference '# 0, with no carry
Difference = 0, with carry
Difference '# 0, with carry

Carry: A carry from the high-order bit position is
recorded in the condition code.

Boundary Requirements: The operands can overlap if the
rightmost byte of the first operand is coincident with or
to the right of the rightmost byte of the second
operand; otherwise the overlap is destructive and the
results are unpredictable.

10-390

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

SLC Example

Op L, I~'I 0, I ~21 O2
C4 05 520 6AO

0 Bits 8 16 20 32 36 47

Assembler: SLC Dl (L1 , Btl, D2 (B 2)

Machine: C405 3520 46AO

Bd3): 12C4 1131 1000

B2 (4): 1 2C4 1133 5000

Storage - Before

0/8 2/A 4/C 6/E

12C4 1131 1 520 1234 5678 9ABC

12C4 1133 56AO 0000 1234 5678

Storage - After

0/8 2/A 4/C 6/E

12C4 1131 1520 1234 4444 4444

12C4 1133 56AO 0000 1234 5678

Before After

Condition Code: x

L

SUBTRACT LOGICAL HALFWORD (SLH)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand register.

Format: RS

OBits 8 12 16 20 31

Operation: The operands are treated as unsigned binary
quantities. Subtraction is performed as if the ones
complement of the second operand and a low-order 1
bit were added to the first operand.

Overflow and Sign Code: Not applicable.

Condition Code:

° 1 Difference,#: 0, with no carry
2 Difference = 0, with carry
3 Difference,#: 0, with carry

Carry: A carry from the high-order bit position is
recorded in the condition code.

Boundary Requirements: The storage operand must start
on a halfword boundary; otherwise a specification
exception occurs and the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Specification

SLH Example

OBits 8 12 16 20 31

Assembler: SLH R 1, D2 (B2)

Machine: 9130 7150

B2 (7): OABC 0000 1000

Before After

ABCD 8108

Condition Code: x

Storage - Before and After

0/8

OABC 0000 1150 2AC5

2/A 4/C 6/E

Instruction Descriptions 10-391

SUBTRACT LOGICAL HALFWORD REGISTER
(SLHR)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand register.

Format: RR

31 I Rl I R21
OBits 8 12 15

Operation: The operands are treated as unsigned binary
quantities. Subtraction is performed as if the ones
complement of the second operand and a low-order 1
bit were added to the first operand.

Overflow and Sign Code: Not applicable.

Condition Code:

o
1
2
3

10-392

Difference rI: 0, with no carry
Difference = 0, with carry
Difference rI: 0, with carry

Carry: A carry from the high-order bit position is
recorded in the condition code.

Boundary Requirements and Program Exceptions: None.

SLHR Example

Op Rl R2
31 3 4

OBits 8 12 15

Assembler: SLHR RI , R2

Machine: 3134

Before After

ABCD 8108

2AC5 2AC5

Condition Code: x

SUBTRACT LONG FLOAT (SLF)

Instruction Description

The second operand is subtracted from the first operand
(two-operand format) or the third operand is subtracted
from the second operand (three-operand format), and
the result is placed in the first operand location.

Format: 55

OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A tWo-operand format is used, if base
register 0 is specified for the third operand. A
three-operand format is used, if one of the base
registers hex 1 through hex F is specified for the third
operand.

The exponents of the two operands are compared. The
significand of the smaller exponent is shifted right as its
exponent is increased until the exponents are the same.
The sign bit of the subtrahend (significand of either the
second operand or the third operand for either
two-operand or three-operand format respectively) is
changed. The significands are then added algebraically
to form the intermediate difference.

The intermediate difference is rounded, if necessary,
according to the rounding mode specified in the task
dispatching element.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
difference. The source operands are checked for this
value in order of their specification. The masked
not-a-number with the larger fraction value is provided
as the difference.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, but its exponent is too large to
be represented in the result format. See Floating-Point
Overflow Exception in Chapter 6 for further information.

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented exactly (as a denormalized
number) or the underflow mask bit is enabled. See
Floating-Point Underflow Exception in Chapter 6 for
further information.

Sign Code: The sign of the difference is determined by
the rules of algebra. If the difference of two operands
that have the same sign is 0, the sign is made plus for
all rounding modes except round toward negative
infinity, where the sign is made minus.

Condition Code: The difference is compared to O. Values
of 0 compare equal even if they differ in sign.
Not-a-number values and infinite values compare
unordered.

o Difference o
1 Difference < 0
2 Difference > 0
3 Difference is unordered

Carry: Not applicable.

Boundary Requirements: All operands must be fullword
aligned; otherwise, a specification exception occurs and
the operation is suppressed.

Program Exceptions:

Address translation
Addressing
Effective address overflow
Floating-point inexact result
Floating-point invalid operand
Floating-point overflow

- Floating-point underflow
- Specification

Instruction Descriptions 10-393

Programming Note: The following chart shows the
condition of the difference for various operands.

Difference First Source (Minuend)

+0 +0

-0 -0

+0 - Real number .p. 0

+0 +Real number .p. 0

+Real number .p. 0 +Real number .p. 0

+Real number .p. 0 +0 or -0

- Real number .p. 0 +0 or -0

-Real number .p. 0 -Real number .p. 0

Masked not-a-member Masked not-a-number

Masked not-a-number Not not-a-member

Larger masked Masked not-a-number
not-a-number

Invalid operand Unmasked not-a-number

Invalid operand Any

Invalid operand +Infinity or -infinity

+Infinity +Real number .p. 0 or -real
number.p. 0

+Infinity +Infinity

-Infinity +Real number .p. 0, -real
number .p. 0, or 0

-Infinity -Infinity

+0 +0

+0 -0

-0 +0

-0 -0

Legend:

Not not-a-member = Anthing but a not-a-number

Any = Any floating-point field value

Notes:

1. Value is not rounded toward negative infinity

2. Value is rounded negative infinity

10-394

Second Source (Subtrahend)

-0

+0

-Real number .p. 0

+Real number .p. 0

+0 or -0

-Real number .p. 0

+Real number .p. 0

+0 or -0

Not not-a-number

Masked not-a-number

Masked not-a-number

Any

Unmasked not-a-number

+Infinity or -infinity

-Infinity

+Real number .p. 0, -real
number .p. 0, or 0

+Infinity

+Real number .p.=, -real number
.p. 0, or 0

+0 Note 1

-0 Note 1

+0 Note 2

-0 Note 2

SLF Example

Op 1~31 ~ I~ I D, I ~21 D2
CE 050 060

0 Bits 8 12 16 20 32 36 47

Assembler: SLF D1 (B 1), D2 (B2), B3

Machine: CE32 4050 4060

B3 (3): 0010 0200 0070

Bd4) and B2 (4): 0010 0200 0000

Storage - Before

0/8 6/E

0010 0200 0050 xxxx xxxx xxxx xxxx

0010 0200 0060 4ECO 1234 5678 9ABC

0010 0200 0070 4EBO 1234 5678 9ABC

Storage - After

0/8 6/E

0010 0200 0050

0010 0200 0060

0010 0200 0070

4EBO 1234 5678 9ABC

4ECO 1234 5678 9ABC

4EBO 1234 5678 9ABC

Before After
Condition Code: x 2

Instruction Descriptions 10-395

SUBTRACT PACKED (SP)

Instruction Description

The second operand is subtracted from the first operand
and the difference is placed in the first-operand
location.

Format: SS

OBits 8 12 16 20 32 36 47

Operation: Subtraction is algebraic, taking into account
the signs and all digits of both operands. All digit codes
are checked for validity. Improper codes cause a data
exception to be recognized, and the operation is
terminated. If necessary, zeros are supplied for the
leftmost bytes of either operand.

Overflow: Overflow can occur due to the loss of a carry
from the leftmost digit position of the result field, or due
to an oversized result, which occurs when the
second-operand field is larger than the first-operand
field. Significant digits are lost when an overflow
occurs.

Sign Code: The sign codes are checked for validity.
Improper codes cause a data exception to be
recognized, and the operation is terminated. The sign of
the second operand, if negative, is treated as positive,
and if positive, is treated as negative (this reversal is a
normal function of subtraction).

The processor uses the preferred signs for the results as
follows: a positive sign is encoded as 1111 (hex F); a
negative sign is encoded as 1101 (hex D).

10-396

Condition Code: If an overflow occurs, the condition
code always indicates the sign the difference would
have had if an overflow had not occurred.

o
1
2
3

Difference 0
Difference < 0
Difference > 0

Carry: See Overflow

Boundary Requirements; The first and second-operand
fields can overlap when their rightmost bytes coincide.

Because digit and sign codes are checked for validity,
improperly overlapping fields cause a data exception,
and the operation is terminated.

Program Exceptions:

Address translation
Addressing
Data
Decimal overflow
Effective address overflow

SP Example

0 1

100

OBits 8 12 16 20 32 36

Machine: F173 3100 3104

B 1 (3) and B2 (3): 0101 0202 3000

Storage - Before

0/8 2/A 4/C

47

6/E

0101 0202 3100 1234 5678 2345 678F

Storage - After

0/8 2/A 4/C 6/E

0101 0202 3100 1234 5678 0000 OOOF

Before After

Condition Code: x 2

Instruction Descriptions 10-397

SUBTRACT SHORT FLOAT (SSF)

Instruction Description

The second operand is subtracted from the first operand
(two-operand format) or the third operand is subtracted
from the second operand (three-operand format!. and
the result is placed in the first operand location.

Format: SS

D,
OBits 8 12 16 20 32 36 47

Operation: A two-operand or three-operand format may
be specified. A two-operand format is used, if base
register 0 is specified for the third operand. A
three-operand format is used, if one of the base
registers hex 1 through hex F is specified for the third
operand.

The exponents of the two operands are compared. The
significand of the smaller exponent is shifted right as its
exponent is increased until the exponents are the same.
The sign bit of the subtrahend (significand of either the
second operand or the third operand for either a
two-operand or three-operand format respectively) is
changed. The significands are then added algebraically
to form the intermediate difference.

The intermediate difference is rounded, if necessary,
according to the rounding mode specified in the task
dispatching element.

If a masked not-a-number value is encountered in one
of the source operands, the operation is completed by
providing the not-a-number value encountered as the
difference. The source operands are checked for this
value in order of their specification. The masked
not-a-number with the larger fraction value being
provided as the difference.

Overflow: A floating-point overflow exception occurs if
a rounded result is finite, buts its exponent is too large
to be represented in the result format. See
Floating-Point Overflow Exception in Chapter 6 for
further information.

10-398

A floating-point underflow exception occurs if a result is
not a normal 0 and, when examined, is found to have
too small an exponent to be represented in the result
format without being denormalized and if the number
cannot be represented (as a denormalized number) or
the underflow mask bit is enabled. See Floating-Point
Underflow Exception in Chapter 6 for further information.

Sign Code: The sign of the difference is determined by
the rules of algebra. If the difference of two operands
that have the same sign is 0, the sign is made plus for
all rounding modes except round toward negative
infinity, where the sign is made minus.

Condition Code: The difference is compared to O. Values
of 0 compare equal even if they differ in sign.
Not-a-number values and infinite values compare
unordered.

0 Difference 0
Difference < 0

2 Difference > 0
3 Difference is unordered

Carry: Not applicable.

Boundary Requirements: All operands must be fullword
aligned; otherwise, a specification exception occurs, and
the operation is suppressed.

Program Exceptions:

Address translation
Addressing

- Effective address overflow
Floating-point inexact result
Floating-point invalid operand
Floating-point overflow
Floating-point underflow

- Specification

Programming Note: The following chart shows the
condition of the difference for various operands.

Difference First Source (Minuend)

+0 +0

-0 -0

+0 - Real number #: 0

+0 +Real number #: 0

+Real number #: 0 +Real number #: 0

+Real number #: 0 +0 or -0

-Real number #: 0 +0 or -0

-Real number #: 0 -Real number #: 0

Masked not-a-member Masked not-a-number

Masked not-a-number Not not-a-member

Larger masked Masked not-a-number
not-a-number

Invalid operand Unmasked not-a-number

Invalid operand Any

Invalid operand +Infinity or -infinity

+Infinity +Real number #: 0 or -real
number #: 0

+Infinity +Infinity

-Infinity +Real number #: 0, -real
number #: 0, or 0

-Infinity -Infinity

+0 +0

+0 -0

-0 +0

-0 -0

Legend:

Not not-a-member = Anthing but a not-a-number

Any = Any floating-point field value

Notes:

1. Value is not rounded toward negative infinity

2. Value is rounded negative infinity

Second Source (Subtrahend)

-0

+0

-Real number #: 0

+Real number #: 0

+0 or -0

-Real number #: 0

+Real number #: 0

+0 or -0

Not not-a-number

Masked not-a-number

Masked not-a-number

Any

Unmasked not-a-number

+Infinity or -infinity

-Infinity

+Real number #: 0, -real
number #: 0, or 0

+Infinity

+Real number #:=, -real number
#: 0, or 0

+0 Note 1

-0 Note 1

+0 Note 2

-0 Note 2

Instruction Descriptions 10-399

SSF Example

Op I ~31 ~ I ~11 D,
I ~21 D2

AE 050 060

OBits 8 12 16 20 32 36 47

Assembler: SSF DdBd, D2 (B 2), B3

Machine: AE32 4050 4060

B3(3): 0010 0200 0070

Bd4) and B2 (4): 0010 0200 0000

Storage - Before

0/8 6/E

0010 0200 0050 xxxx xxxx xxxx xxx x

0010 0200 0060 BF80 0000

0010 0200 0070 4000 0000

Storage - After

0/8 6/E

0010 0200 0050 C040 0000 .J 0010 0200 0060 BF80 0000

0010 0200 0070 4000 0000

Before After
Condition Code: x 1

10-400

This page is intentionally left blank.

Instruction Descriptions 10-401

SUPERVISOR EXIT (SVX)

Instruction Description

The routine that invoked the current SVL (supervisor
linkage) is returned to by using the contents of the
current SVL CRE (call/return element).

Format: RR

3E I 10
OBits 8 12 15

Operation: The SVX instruction causes the condition
code, IAR (instruction address register) or CSAR (control
store address register), and the saved base registers to
be restored from the first in-use CRE (call/return
element) on the current TOE (task dispatching element)
CRE chain (current SVL CRE). The exception code and
ILC (instruction length count) fields in this CRE are
ignored. The status of this CRE is then set to available
(byte 8, bit 0 of CRE is reset). If the number of available
CREs encountered before this CRE is equal to or greater
than the number specified in the control mode field of
the TOE, the first CRE is returned to the ACO (available
call/return queue) via an implicit send. This send causes
the TOE on the ACO wait list to be dequeued and
subsequently enqueued to the TOO, possibly causing a
task switch to occur.

Execution of the SVX instruction may be interrupted by
I/O. If an I/O interrupt does occur, the interrupt will be
processed, and instruction processing will resume at the
point at which the interrupt was granted.

10-402

Overflow and Sign Code: Not applicable.

Condition Code: The code is set to the value saved in
the CRE.

Carry: Not applicable.

Boundary Requirements: None.

Program Exception: Specification.

SVX Example

OBits 8 12 15

Assembler: SVX

Machine: 3EOO

TOQ

Descriptor

0 Bytes 2

TOE

First TDE Address
1234 5678 9ABO

8

1234 5678 9A80 Descriptor Next TDE Address

0 Bytes 2

\
E

CRE

Address of CR E
1234 567F 2AOO

14

8

Exception Mask

16

1234 567F 2AOO Descriptor Next CRE Address

Condition Code:

IAR:

8(0):

8(1):

8(2):

8(3):

0 Bytes 2

/ Changes to 4 (bit 8 = 0) Available

COO 3 0 5 0 3 0 1 2 3 Base Register \
/ Status Address Register (10

L...---~t ----'-----L..-.....---------.J

Bytes \ C E

Condition Code (bits 28-31)

8

Before After

x 3

xxxx o 1 2 3

xxxx xxxx xxxx CR E bytes E -13

xxxx xxxx xxxx CR E bytes 14-19

xxxx xxxx xxxx CR E bytes 1 A-1 F

xxxx xxxx xxxx CRE bytes 20-25

Instruction Descriptions 10-403

SUPERVISOR LINK DOUBLE (SVL2)

Instruction Description

The SVL (supervisor linkage) routir selected by the
index in the 13 field of the instruct.on is called using the
supervisor link mechanism.

Format: SS

DF
OBits 8 16 20 32 36 47

Operation: The index is used to access an entry in the
SVL table to determine where the SVL routine is located
and how many registers are to be saved (into an
available CRE) prior to branching to the routine.

The effective addresses of the first and second
operands are computed and checked for an effective
address overflow exception. No attempt is made to
access the first or second operands, and they remain
unchanged in storage.

An available CRE (call/return element) is found by
searching the CRE list chained to the current TDE (task
dispatching element). The current status (lAR
[instruction address register], condition code,
identification of the first base register stored, and, the
number of base registers stored), along with the
contents of the specified base registers, are stored in
the last available CRE on the list. If there are no
available CREs on the list or if the list is empty, aCRE
is implicitly received from the ACQ and is enqueued first
on the TDE CRE list. The current status and base
registers are then stored in that CRE. In either case, the
status of the CRE obtained is set to in-use (byte 8, bit 0
= 1).

If it is necessary to obtain a CRE from the ACQ and the
ACQ is empty, the implicit receive is unsatisfied and the
SVL instruction is nullified. The TDE of the current task
is then dequeued from the TDQ and enqueued to the
ACQ wait list, and the task dispatcher is invoked.

10-404

After the registers specified in the SVL table entry are
saved, the effective address of the first operand is
placed in base register 1 and the effective address of
the second operand is placed in base register 2.

Execution of the SVL2 instruction may be interrupted by
I/O. If an I/O interrupt does occur, the interrupt will be
processed, and instruction processing will resume at the
point at which the interrupt was granted.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Descriptor access: Monitored ACQ descriptor
Descriptor access: Monitored CRE descriptor
Descriptor access: Monitored TDE descriptor (SVL

receive wait)
Effective address overflow
Specification

Programming Notes: If the task dispatcher is disabled
and an SVL2 instruction is attempted, a machine check
occurs. An index value of zero is valid, but is also used
by the processor to signal exceptions.

SVL2 Example

Op 13 I~'I D, I ~21 D2
DF nn 100 200

0 Bits 8 16 20 32 36 47

Assembler: SVL2 D1 (B 1), D2 (B 2), 13

Machine: DFnn 3100 4200

Before After

B(O): 0000 2345 0800 0010 0200 15001

B(1): 0101 0101 1110 0123 4567 0100

B(2): 0202 0202 2220 0246 8AGE 1200

B1 (3): 0123 4567 0000 0123 4567 0000

B2 (4): 0246 8AGE 1000 0246 8AGE 1000

IAR: 8800 1500

Control Address Table

100 0060 SVL Table Address 0010 0200 1000

68 AGO Address

~--------------------------~

SVl Table

001002001000 Base Flag

00

nn 04 20

.....

Entry Address

Offset of SV L
Routine
1500

-
VMG Routine
Not Inhibited

Number of Base
Registers to Save

First B ase Register
to Save

'--------- Two-Digit Hex Value

1 SI D of SV L table address.
Offset from SV L table entry.

Instruction Descriptions 10-405

TOQ

Descriptor

o Bytes 2

021 B 460C 3900

TOE

Descriptor

o

) \

Bytes E

CRE

First TDE Address
021 B 46DC 3900

8

Next TDE Address

2

Address of CRE
1111 2222 AAAO

1111 2222 AAAO Descriptor Next CR E Address

o Bytes 2

Status
C0040203

Address Register

8 ~ytes~- C

\ \.- Condition Code

ILC

Number of Registers Saved

First Register Saved

CRE in Use and a VMC Procedure

10-406

8

14

IAR (value)

Base Register

E

Base Registers 0-4

SUPERVISOR LINK MONITORED (SVLM)

Instruction Description

This instruction provides for the conditional execution of
an SVL (supervisor linkage) that is maskable for each
task.

Format: RR

1F

OBits 8 15

Operation: When the SVL monitored flag (byte hex C,
bit 7) is reset, this instruction acts as a no-operation.
When the flag is set. the instruction executes as an
SVLO using the second SVLM instruction byte as the
SVL table index.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Descriptor access: Monitored ACQ descriptor
Descriptor access: Monitored CRE descriptor

- Descriptor access: Monitored TOE descriptor (SVL
receive wait)

Specification

Programming Note: The processor recognizes a change
in state of the SVL monitored flag bit only after the
execution of a Dispatch Task Dispatching Queue
instruction or after task switch. Thus, if a task sets or
resets the bit and wants immediate action, it should
issue a Dispatch Task Dispatching Queue instruction.

SVLM Example

Op
1 F xx

OBits 8 15

Assembler: SVLM I

Machine: IFxx

If bit 7 of byte hex C (TDE control model is set, this
instruction executes as an SVLO. See the SV LO instruction
for further information.

Instruction Descriptions 10-407

SUPERVISOR LINK SHORT (SVLO)

Instruction Description

The SVL (supervisor linkage) routine selected by the
index in the I-field of the instruction is called using the
supervisor link mechanism.

Format: RR

3F

OBits 8 15

Operation: The index is used to access an entry in the
SVL table to determine where the SVL routine is located
and how many registers are saved in an available CRE
(call/return element) prior to branching to it.

An available CRE is found by searching the CRE list
chained to the current TDE (task dispatching element).
The current status (instruction address register, condition
code, identification of the first base register stored, and
the number of base registers stored) and the contents of
the specified base registers are stored in the last
available CRE on the list. If there are no available CREs
on the list or if the list is empty, a CRE is implicitly
received from the ACQ (available CRE queue) and is
enqueued first on the TDE CRE list. The current status
and base registers are then stored in that CRE. In either
case, the status of the CRE obtained is set to in use
(byte 8, bit 0 = 1).

If it is necessary to obtain a CRE from the ACQ and the
ACQ is empty, the implicit receive is unsatisfied and the
SVL instruction is nullified. The TDE of the current task
is then dequeued from the TDQ (task dispatching queue)
and enqueued to the ACQ wait list, and the task
dispatcher is invoked.

10-408

Execution of the SVLO instruction may be halted due to
an I/O interrupt. If an I/O interrupt does occur, the
interrupt will be processed, and instruction processing
will resume at the point at which the interrupt was
granted.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Descriptor access: Monitored ACQ descriptor
Descriptor access: Monitored CRE descriptor
Descriptor access: Monitored TOE descriptor (SVL

receive wait)
Specification

Programming Notes: An index value of zero is valid, but
is also used by the processor to signal exceptions. If
the task dispatcher is disabled and an SVLO instruction
is attempted, a machine check will occur.

L

SVLO Example

Op
3F nn

OBits 8 15

Assembler: SVLO I

Machine: 3Fnn

Control Address Table

100 0060

68

00

nn

SVL Table Address

ACO Address

SVL Table

Base Flag Entry Address

04 20 Address of SVL
Routine

-
VMC Routine
Not Inhibited

Number of Base
Registers to Save

First Base Re ister g
to Save

1..-_______ Two-Digit Hex Value

Instruction Descriptions 10-409

TOQ

Descriptor

o Bytes 2

TDE

First TDE Address
0000 3ABC 5000

8

0000 3ABC 5000 Descriptor Next TDE Address

o Bytes

~ I

E

CRE

2

Address of CRE
0000 3BCD A100

14

0000 3BCD A 1 001 L __ D_e_sc_r_iP_t_o_r _--'-_______ N_ex_t_C_R_E_A_d_d_r_es_s _______ ~
o

8

Bytes 2

Status
COO 4 0 2 0 3

C

Address Register
3 320

IAR (value)

Base Registers

E

8

Condition Code Base Registers 0-4

Number of Registers Saved

First Register Saved

CRE in Use and a VMC Procedure

10-410

SUPERVISOR LINK SINGLE (SVL1)

Instruction Description

The SVL (supervisor linkage) routine selected by the
index in the I-field of the instruction is called using the
SVL mechanism.

Format: SI

OBits 8 16 20 31

Operation: The index is used to access an entry in the
SVL table to determine where the SVL routine is located
and how many registers are to be saved in an available
CRE (call/return element) prior to branching to the
routine.

The effective address of the first operand is computed
and checked for an effective address overflow
exception. No attempt is made to access the first
operand, and it remains unchanged in storage.

An available CRE is found by searching the CRE list
chained to the current TDE (task dispatching element).
The current status (instruction address register, condition
code, identification of the first base register stored, and
the number of base registers stored) and the contents of
the specified base registers are stored in the last
available CRE on the list. If there are no available CREs
on the list or if the list is empty, a CRE is implicitly
received from the ACO (available call/return element
queue) and is enqueued first on the TDE CRE list. The
current status and base registers are then stored in that
CRE. In either case, the status of the CRE obtained is
set to in use (byte 8, bit 0 = 1).

If it is necessary to obtain a CRE from the ACO and the
ACO is empty, the implicit recieve is unsatisfied and the
SVL instruction is nullified. The TDE of the current task
is then dequeued from the TDO and enqueued to the
ACO wait list, and the task dispatcher is invoked.

After the registers specified in the SVL table are saved,
the effective address of the first operand is placed in
base register 1.

Execution of the SVL 1 instruction may be interrupted
due to I/O. If an I/O interrupt does occur, the interrupt
will be processed, and instruction processing will resume
at the point at which the interrupt was granted.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Descriptor access: Monitored ACO descriptor
- Descriptor access: Monitored CRE descriptor
- Descriptor access: Monitored TDE descriptor (SVL

receive wait)
Effective address overflow
Specification

Programming Notes: An index value of zero is valid, but
is also used by the processor to signal exceptions. If
the task dispatcher is disabled and an SVL 1 instruction
is attempted, a machine check occurs.

I nstruction Descriptions 10-411

SVL 1 Example

Op 12 I~'I 0,
5D nn 100

0 Bits 8 16 20 31

Assembler: SVL 1 D1 (B 1), 12

Machine: 5Dnn 3100

Before After

B(O): xxxx xxxx xxxx 1234 0000 1100

B1 (3): 1234 0000 1000 1234 0000 1000

B(1): xxx x xxxx xxxx 1234 0000 1100

Control Address Table

100 0060

68

00

nn

SVL Table Address

ACO Address

SVL Table

Base Flag Entry Address

04 20 Address of SVL
Routine

VMC Routine
Not Inhibited

Number of Base
Registers to Save

First Base Re ister g

to Save

L..-_______ Two-Digit Hex Value

10-412

TOQ

Descriptor

o Bytes 2

TOE

OOOB 2427 BBOO

0

~
CRE

OOOB 2431 DBOO

0

8

First TOE Address
OOOB 2427 BBOO

Descriptor

2

I
E

Descriptor

Bytes 2

Status
COO 4 0 203

8

Next TOE Address

Address of CR E
OOOB 2431 DBOO

Bytes

Next CRE Address

C

Address Register

1 473

Condition Code

Number of Registers Saved

First Register Saved

CRE in Use and a VMC Procedure

8

14

IAR (value)

E

Base Registers 0-4

Instruction Descriptions 10-413

SUPERVISOR LINK SINGLE MONITORED (SVLM1)

Instruction Description

The SVL 1 function oc~urs conditionally, depending on
the value of a mask bit in the current TOE (task
dispatching element).

Format: SI

58 12 18, I 0,
OBits 8 16 20 31

Operation: When the SVL 1-monitored flag (byte 12, bit
3 of the TOE) is zero, the instruction acts as a
no-operation. When the flag is one, an SVL 1 occurs
using the second SVLM 1 instruction byte as the SVL
table index. The index is used to access an entry in the
SVL table to determine where the SVL routine is located
and how many registers are to be saved in an available
CRE (call/return element) prior to branching to the
routine.

The effective address of the first operand is computed
and checked for an effective address overflow
exception. No attempt is made to access the first
operand, and it remains unchanged in storage.

An available CRE is found by searching the CRE list
chained to the current TDE (task dispatching element).
The current status (instruction address register, condition
code, identification of the first base register stored, and
the number of base registers stored) and the contents of
the specified base registers are stored in the last
available CRE on the list. If there are no available CREs
on the list or if the list is empty, a CRE is implicitly
received from the ACQ (available call/return element
queue) and is enqueued first on the TDE CRE list. The
current status and base registers are then stored in that
CRE. In either case, the status of the CRE obtained is
set to in use (byte 8, bit 0 = 1).

10-414

If it is necessary to obtain a CRE from the ACQ and the
ACQ is empty, the implicit recieve is unsatisfied and the
SVL instruction is nullified. The TDE of the current task
is then dequeued from the TDQ and enqueued to the
ACQ wait list, and the task dispatcher is invoked.

After the registers specified in the SVL table are saved,
the effective address of the first operand is placed in
base register 1.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Descriptor access: Monitored ACQ descriptor
- Descriptor access: Monitored CRE descriptor

Descriptor access: Monitored TDE descriptor (SVL
receive wait)

- Effective address overflow
- Specification

Programming Notes: The processor recognizes a change
in state of the bit only after execution of a Dispatch
Task Dispatching Queue instruction or after a task
switch. Thus, if a task sets the bit on or off and wants
immediate action, it should execute a Dispatch Task
Dispatching Queue instruction.

An index value of zero is valid, but is also used by the
processor to signal exceptions.

If the task dispatcher is disabled and an SVLM1
instruction is attempted, a machine check occurs.

SVLM1 Example

Op 12 I~'I 0,
5B nn 100

0 Bits 8 16 20 31

Assembler: SVLM1 0 1 (B 1), 12

Machine: 5Bnn 3100

Before After

B(O): xxx x xxxx xxxx 1234 0000 1100

BI (3): 1234 0000 1000 1234 0000 1000

Control Address Table

100 0060

68

00

nn

SVL Table Address

ACO Address

SVL Table

Base Flag Entry Address

04 20 Address of SVL
Routine

-
VMC Routine
Not Inhibited

Number of Base
Registers to Save

First Base Re ister g

to Save

L..-_______ Two-Digit Hex Value

Instruction Descriptions 10-415

TDQ

Descriptor

o Bytes 2

ooOB 2427 BBOO

OOOB 2431 DBOO

10-416

TDE

Descriptor

0

~ I
Bytes E

eRE

Descriptor

0 Bytes

o C

8

First TDE Address
OOOB 2427 BBOO

2

8

Next TDE Address

Address of CRE
OOOB 2431 OBOO

2

ILC

Next CRE Address

Address Register

147 3

C

Condition Code

CRE in Use and a VMC Procedure

8

14

IAR (value)

Base Registers

E

Base Regi sters 0-5

TERMINATE IMMEDIATELY (Tn

Instruction Description

This instruction causes termination of processing.

Format: RR

OD I R, 14
OBits 8 12 15

Operation: The operand register contains the bit patterns
used by the SCA to activate the light-emitting diodes on
the CE panel. The TI (terminate immediately) instruction
causes a machine check when issued if the machine is
not already in the machine check mode. If already in
machine check mode, the processor enters check stop
state.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

TI Example

~~ I~' I! I
OBits 8 12 15

The codes displayed in CE panel light-emitting diodes
are related to the first-operand halfword as follows:

CE Panel

First- Machine

Operand Check Light-

Halfword Hex Sequence Emitting

Value # 0-7 Indicator 8-15 Diodes

OOxx-06xx 08 FF On

07xx 07 xx On

08xx 08 xx On

09xx 09 xx Off

OAxx-FFxx 08 FF On

Instl uction Descriptions 10-417

TEST UNDER MASK BYTE IMMEDIATE (TMBII

Instruction Description

The states of the selected first-operand bits are used to
set the condition code.

Format: SI

90 I, 1 B,I 0,
OBits 8 16 20 31

Operation: The second operand is used as an 8-bit
mask that corresponds one-for-one with the bits of the
first operand. A set mask bit indicates that the
first-operand bit is to be tested. When the mask bit is
reset, the first-operand bit is ignored. When all bits
thus selected are reset, condition code zero is set.
Condition code zero is also set when the mask bits are
zeros. When the selected bits are ones, the code is set
to 3; otherwise the code is set to 1.

Overflow and Sign Code: Not applicable.

Condition Code:

o Selected bits are zeros, or
the mask bits are zeros

1 Selected bits are mixed zeros and ones
2
3 Selected bits are ones

10-418

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

Address translation
Addressing
Effective address overflow

TMBI Example

Op 12 I~'I D,
90 AO 000

0 Bits 8 16 20

Assembler: TMBI 0 1 (B 1 !. 12

Machine: gOAD 3000

B 1 (3): 0001 2345 1000

31

Storage - Before and After

0001 2345 1000

0/8

20

2/A

Before After

Condition Code: x

4/C 6/E

TEST UNDER MASK BYTE IMMEDIATE AND
BRANCH IF ONES (TMBIBO)

Instruction Description

The states of the selected first-operand bits are used to
determine if a branch will be taken.

Format: SI

El D,
OBits 8 1t1 20 32 47

Operation: The second operand is used as an 8-bit
mask that corresponds une-for-one with the bits of the
first operand. A set mask bit indicates that the
first-operand bit is to be tested. When the mask bit is
reset. the first-operand bit is ignored. When all bits
thus selected are set, the branch is taken. When the
mask is all zeros, the branch is not taken.

When a branch is taken, the updated instruction address
is replaced by the sum of the 16-bit displacement (D3)

and the offset portion of the instruction stream base
address contained in base register zero.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

TMBIBO Example

OBits 8 16 20

D,
000

Machine: El02 3000 005E

Bd3): 0001 2562 1000

32 47

Storage - Before and After

0/8 2/A 4/C 6/E

0001 2562 1000 F2

Before After

Bo 5425 3111 0122 5425 3111 0122

IAR 0150 0180

Instruction Descriptions 10-419

TEST UNDER MASK BYTE IMMEDIATE AND
BRANCH IF ZEROS (TMBIBZ)

Instruction Description

The states of the selected first-operand bits are used to
determine if a branch will be taken.

Format: SI

EO 12 I B, I 0,

OBits 8 16 20 32 47

Operation: The second operand is used as an 8-bit
mask that corresponds one-for-one with the bits, of the
first operand. A set mask bit indicates that the
first-operand bit is to be tested. When the mask bit is
reset. the first-operand bit is ignored. When all bits
thus selected are reset, the branch is taken. When the
mask is all zeros, the branch is taken.

When a branch is taken, the updated instruction address
is replaced by the sum of the 16-bit displacement (03)

and the offset portion of the instruction stream base
address contained in base register zero.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry; Not applicable.

Boundary Requirements: None.

10-420

Program Exceptions;

- Address translation
- Addressing
- Effective address overflow

TMBIBZ Example

Op
EO

OBits 8 16 20

D,
000

32

Assembler: TMB IBZ 0 1 (B I), 0 3, 12

Machine: EOAO 3000 1 FC2

BI (3): 0001 2345 1000

Storage - Before and After

0001 2345 1000

Before

0/8

lAOO

2/A 4/C

After

47

6/E

Bo 5432 3210 0020 5432 3210 0020

IAR 0130 lFE2

TEST UNDER MASK BYTE REGISTER (TMBR)

Instruction Description

The states of the selected first-operand bits are used to
set the condition code.

Format: RR

OBits 8 12 15

Operation: The second operand is used as an 8-bit
mask that corresponds one-for-one with the bits of the
first operand.

A set mask bit indicates that the first-operand bit is to
be tested. When the mask bit is reset, the first-operand
bit is ignored. When all bits thus selected are zero,
condition code zero is set. Condition code zero is also
set when the mask bits are zeros. When the selected
bits are ones, the code is set to 3; otherwise the code is
set to 1.

Overflow and Sign Code: Not applicable.

Condition Code:

o Selected bits are zeros or
the mask bits are zeros
Selected bits are mixed
zeros and ones

2
3 Selected bits are ones

Carry: Not applicable.

Boundary Requirements and Program Exceptions: None.

TMBR Example

Op r, r2

13 3 4

OBits 8 12 15

Assembler: TMBR r1. r2

Machine: 1334

Before After

r1 (3): 20 20

r2 (4): AO AO

Condition Code: x

Instruction Descriptions 10-421

TRANSLATE (TR)

Instruction Description

The 8-bit bytes addressed by the first operand are used
as arguments to refer to the list of function bytes
addressed by the second-operand address. Each 8-bit
function byte selected from the list replaces the
corresponding argument byte in the first operand.

Format: SS

CC

OBits 8 16 20 32 36 47

Operation: The bytes of the first operand are selected
one by one for translation, proceeding left to right. Each
argument byte is added to the initial second-operand
address. The addition is performed following the rules
for address arithmetic, with the argument byte treated
as an 8-bit unsigned integer and extended to the left
with zeros. The sum is used as the address of the
function byte, which then replaces the original argument
byte. The operation proceeds until the entire
first-operand field is translated. The second operand is
unchanged by the operation unless the operands overlap
in storage.

Execution of the TR instruction may be interrupted due
to I/O. If an I/O interrupt does occur, the interrupt will
be processed, and instruction processing will resume at
the point at which the interrupt was granted.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands may overlap in
storage.

10-422

Program Exceptions:

Address translation
- Addressing
- Effective address overflow

Note: The L-field applies only to the first operand.

TR Example

Op L, I~'I D, I ~21 CC 05 2CO

0 Bits 8 16 20 32

Assembler: TR DdL 1 ,Bd,D 2 (B 2)

Machine: CC05 32CO 4100

BI (3): 010A B12C 3000

B2 (4): 010A C34D 2000

Storage - Before

010A B12C 32CO

010A C34D 2100

FO

010A B12C 32CO

010A C34D 2100

FO

0/8 2/A

F3F1 F4Fl

3031 3233
3839

Storage - After

0/8

3331

3031
3839

2/A

3431

3233

D2
100

36

4/C

F5F9

3435

4/C

3539

47

6/E

3637

6/E

3435 3637

This page is intentionally left blank.

Instruction Descriptions 10-423

TRANSLATE AND TEST (TRT)

Instruction Description

The 8-bit bytes addressed by the first-operand are used
as arguments to refer to the list of function bytes
addressed by the second-operand address.

Format: SS

CD L I B1 I D1
OBits 8 16 20 32 36 47

Operation: Each function byte selected from the list is
used to determine the continuation of the operation.
When the function byte is a zero (that is, hexadecimal
(0)' the operation proceeds by fetching and translating
the next argument byte. When the function byte is
nonzero, the operation is completed by inserting the
related argument address into the base register specified
by B1 and then inserting the function byte in byte
register hex F.

The bytes of the first operand are selected one by one
for translation, proceeding from left to right. The first
and second operands remain unchanged in storage.
Fetching of the function byte from the list is performed
as in the Translate instruction. The function byte
retrieved from the list is inspected for an all-zero
combination.

When all the first-operand field is translated before a
nonzero function byte is encou:1tered, the operation is
completed by setting condition code zero. The contents
of the base register specified by B1 and byte register
hex F remain unchanged.

Condition code 1 is set when one or more argument
bytes have not been translated. Condition code 2 is set
if the last selected function byte is nonzero.

10-424

Overflow and Sign Code: Not applicable.

Condition Code:

o

2
3

All selected function bytes = 0
Function byte selected oF 0 (before
the first-operand field is translated)
Last selected function byte oF 0

Carry: Not applicable.

Boundary Requirements: None.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Note: The L-field applies only to the first operand.

TRT Example

Op L, I~'I D, I ~21 D2
CD 05 000 000

0 Bits 8 16 20 32 36 47

Assembler: TRT D 1 (L 1 , B I)' D2 (B2)

Machine: CD05 3000 4000

Before After

BI (3): 010A B12C 3000 010A B12C 3000

B2 (4): 010A C34D 2000 010A C34D 2000

r(15) : xx 33

Condition Code: x

Storage - Before and After

0/8 2/A 4/C GIE
010A B12C 3000 F3F1 F4F1 F5F9

010A C34D 2000

FO 3031 3233 3435 3637
3839

I nstruction Descriptions 10-425

TRANSLATE REGISTER (TRR)

Instruction Description

The 8-bit bytes addressed by the first operand are used
as arguments to refer to the list of function bytes
addressed by the second-operand address. Each 8-bit
function byte selected from the list replaces the
corresponding argument byte in the first operand.

Format: SS

D
OBits 8 12 16 20 32 36 47

Operation: The bytes of the first operand are selected
one by one for translation, proceeding left to right. Each
argument byte is added to the initial second-operand
address. The addition is performed following the rules
for address arithmetic, with the argument byte treated
as an 8-bit unsigned integer and extended to the left
with zeros. The sum is used as the address of the
function byte, which then replaces the original argument
byte. The operation proceeds until the entire
first-operand field is translated. The second operand is
unchanged by the operation unless the operands overlap
in storage.

This instruction is identical to the TR instruction except
the length is specified in a byte register.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: The operands may overlap in
storage.

10-426

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow

Note: The length specified in the byte register applies
only to the first operand.

TRR Example

Op I ~ I ~ I~' I D, I ~21 D2 I BE 2CO 100

0 Bits 8 12 16 20 32 36 47

Assembler: TRR DdBtl,D2 (B2),r3

Machine: BE80 32CO 4100

Btl3): 010A B12C 3000

B2 (4): 010A C34D 2000

r3(8): 05

Storage - Before

0/8 2/A 4/C G/E

010A B12C 32CO F3F1 F4F1 F5F9

010A C34D 2100

FO 3031 3233 3435 3637

3839

Storage - After

0/8 2/A G/E

010A B12C 32CO 3331 3431 3539

010A C34D 2100

FO 3031 3233 3435 3637

3839

L

TRIM (TRIM)

Instruction Description

The trimmed length of the character string located by
operand 1 is returned in halfword register 15 (R15),
operand 3.

Format: SI

72 D,
OBits 8 16 20 31

Operation: Operand 3 initially contains the untrimmed
length of the string. A negative value in operand 3
causes a specification exception. The character value to
be trimmed is specified by operand 2.

The operation proceeds as follows:

1. If operand 3 is zero, the instruction is complete.

2. The character, located by adding the effective
address of operand 1 to operand 3 and then
decrementing by one, is compared to 12, If the
compare is not equal, the instruction is complete.

3. Operand 3 is decremented by one. Then go to
step 1.

If B, is 15, unpredictable results can occur.

The instruction can be interrupted at any time.

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry; Not applicable.

Boundary Requirements; Not applicable.

Program Exceptions:

- Address translation
- Addressing
- Effective address overflow
- Specification

TRIM Example

Op 12 I~'I D,
72 40 2CO

0 Bits 8 16 20 31

Assembler: TRIM DI (B I 1,12

Machine: 7240 32CO

Before After
BI (3): lOlA B12C 3000 lOlA B12C 3000

40

08 04

Storage - Before and After

0/8 21 A 4/C 6/E

lOlA B12C 32CO 1020 40FE 4040 4040

Instruction Descriptions 10-427

UNSTACK (UNSTK)

Instruction Description

The current stack entry is released and the address of
the previous stack is loaded into the first operand.

The UNSTK instruction is used to control the
deallocation of storage. The storage area is organized
like a stack. Every storage allocation starts on a 16-byte
boundary. The maximum size of a storage allocation is
limited to 64 K-16 bytes.

Format: RR

2B I B, 10
OBits 8 12 15

Operation: The first operand initially contains the
address of the current stack entry. The first 8 bytes of
the current stack entry contain 4 halfword fields that are
used by the Stack and Unstack instructions. The first 2
halfwords are not used by the Unstack instruction. The
third halfword contains an offset value which, when
used with the SID (segment identifier) portion of the
current stack entry address, forms the address of the
first byte of the previous stack entry. The fourth
halfword is the flag field.

Bit position 15 of the fourth halfword in the current
stack entry (for example, the flag field) is checked. If bit
15 is set, a stack exception occurs and the operation is
suppressed. If bit 15 is reset. the contents of the third
halfword of the current stack entry are loaded into the
offset portion of the first-operand register, thus making
the previous entry the new current entry.

10-428

Overflow and Sign Code: Not applicable.

Condition Code: Not changed.

Carry: Not applicable.

Boundary Requirements: Initially the first operand must
start on a doubleword boundary; otherwise a
specification exception occurs and the operation is
suppressed.

Program Exceptions:

Address translation
Addressing
Specification
Stack

Programming Note: The new current entry is not
checked for doubleword alignment.

UNSTK Example

~~ I~' I ~ I
OBits 8 12 15

Assembler: UNSTK B1

Machine: 2B30

Before After

B1 (3): 0125 ABAC FOOO 0125 ABAC ECOO

0125 ABAC ECOO

0125 ABAC FOOO
Forward Limit Backward
Pointer Pointer

ECOO

Attributes

0000

Previous
Entry

1
1

Current
Entry

1

Instruction Descriptions 10-429

ZERO AND ADD CHARACTERS (ZAC)

Instruction Description

The second operand is placed in the first-operand
location.

Format: 55

OBits 8 12 16 20 32 36 47

Operation: The operation is equivalent to an addition to
zero with both operands treated as signed binary
quantities. If the second operand is shorter than the
first operand. the second operand is considered to be
extended to the left with bits equal to the sign bit. If
the first operand is too short to contain all significant
bits of the second operand. an overflow occurs and only
the rightmost bits of the second operand are placed in
the first-operand location.

Overflow: Not applicable.

Sign Code: The sign of the result is unpredictable when
significant bits are lost.

Condition Code: If an overflow occurs, the code
indicates the sign the result would have if the first
operand was long enough to contain all significant bits
of the result.

o
1
2
3

Result
Result <
Result >

Carry: Not applicable.

10-430

o
o
o

Boundary Requirements: The operands can overlap in
storage if the rightmost byte of the first operand is
coincident with or to the right of the rightmost byte of
the second operand; otherwise the overlap is destructive
and the results are unpredictable.

Program Exceptions:

- Address translation
- Addressing

Binary overflow
Effective address overflow

ZAC Example

OBits 8 12 16 20

D,
100

Machine: C675 3100 4200

B1 (3): 2102 6100 AOOO

B2 (4): 5718 9420 BOOO

32 36

Storage - Before

0/8 2/A 4/C

47

6/E

2102 6100 AOOO

5718 9420 BOOO

xxxx xxxx xxxx xxx x

2102 6100 AOOO

5718 9420 BOOO

Condition Code:

114A 118B 240 E

Storage - After

0/8 2/A 4/C 6/E

0000 114A 118B 240E

114A 118B 240E

Before After

x 2

L

Appendix A. Teleprocessing Instruction Flow Charts

These diagrams have been removed from this document.
See the IBM System/38 Communications Operation
Charts, SY31-0911, for diagrams showing the
relationship between segments of the System/38.

Teleprocessing Instruction Flow Charts A-1

A-2

Operation
Code
(Second
Digit}

2-Byte Instructions

Appendix B. Operation Code Assignments

4-Byte Instructions 8-Byte Instructions

Operation Code (Firat Digiti

0 1 2 3 4 6 8 7 8 9 A B C D E F

0 Note 2 ALBR AHR ALHR Note 2 AHRI ALHRI Note 1 ALH AHI ALHI AC CBIBE TMBIBZ AP

1 SLL SLBR SHR SLHR SLHCT Note 1 Note 1 SC CBIBN TMBIBO SP

2 SRL CLBR CHR CLHR CLBRI CHRI CLHRI TRIM CLH CHI CLHI CC CP

3 SLA TMBR CLAR ALBRI LA EDPD Note 1 LSOP ALC MP

4 SRA LBR LHR LBRI LHRI LVT LB LH L EXTAG MVAST SLC DP

6 LR LPDEAR STST LMB LMH LM INTAG MVCAT CLC CVPZC CVPZ

8 SCB GHRF GHR SENDC STB STH ST ZAC CVZPB CVZPC CVZP

7 FHRF FHR RECC STMB STMH STM CVPB

8 NBR NHR NBRI NHRI SENDM NBI FNC2 NC HWA PPR3 CVBP

9 OBR OHR OBRI OHRI SENDMW Note 1 OBI OC RECM CLCR MPL3

A XBR XHR XBRI Note 1 SETIT XBI MVNN XC DaM CLCL DPL3

B STACK UNSTK SACM SVLM1 MVBI MVHI MVNZ MVC MVCR MVCL MVPS

C CAL CALHI EQM STIT CLBI MVBIP MVZN TR MHS MWS MVPSZ

D Note 1 MVMC CALH SVL1 Note 1 CSH TMBI CSA MVZZ TRT DHS DWS

E BI BR SVX JC JBN BC EX BCT BCN Note 1 Note 1 Note 1

F SVLM BRL SVLO BAL JBF BU BCNX BALL ALHBL CSACH CSAC SCAN SVL2 CALLI Note 2

Notes:
1. Extended operation code instruction; see Figure B-2 for assignments.
2. The operation code is reserved and treated as invalid.

31mplicit SVL instructions

Operation Code Assignment 8-1

Operation Code
Extenders

2- Byte Instructions

00

0 ETD

1 DTD

2 RMCM

3 RACM

4 TI

S RAHR

8 RCB

7

8

9

A

B

C

0

E (see note)

F (see note)

SA 80

XHRI EQTDE

SETIND DQTDE

SETCC

STCC

SETIOD

STIOD

DTDQ

DIAG

4- Byte Instructions

Operation Codes

71 79 80 83 91

SLB OB AH RRCRR SLH

ALB NB SH LPDEA

CLB XB CH LHTEA

OH EPDE

NH RPOE

XH IPDE

STSOP

Note: These operation codes are reserved for development testing and will yield unpredictable results if executed.

, Implicit SVL instructions

8-2

6-Byte Instructions

AE BE CE

CSF AHSPOI CLF

ASF AHSPO ALF

SSF AFSPO SLF

MSF TRR MLF

DSF CVTCM DLF

CVTMC

CVTCS

CVSLF' CVTSC CVLSF'

CVSFB SSCA' CVLFB

CVBSF CVBLF

CVSFPO' CVLFPD '

CVPOSF' CVPDLF'

CVSFDF' CVLFDF'

CVDFSF' CVDFLF'

CSFMF1' CLFMF1'

CSFMF2' CLFMF2'

Appendix C. Instruction Index

Mnemonic Instruction Format Operation Extender Page
Code

AC Add Characters SS CO 10-2

AFSPO Add Fullword Space SS BE 2 10-4
Pointer Offset

AH Add Halfword RS 80 0 10-6

AHI Add Halfword Immediate SI AO 10-7

AHR Add Halfword Register RR 20 10-8

AHRI Add Halfword Register RI 50 10-9
Immediate

AHSPO Add Halfword Space SS BE 10-10
Pointer Offset

AHSPOI Add Halfword Space SI BE 0 10-12
Pointer Offset Immediate

ALB Add Logical Byte RS 71 10-14

ALBR Add Logical Byte Register RR 10 10-15

ALBRI Add Logical Byte Register RI 43 10-16
Immediate

ALC Add Logical Characters SS C3 10-17

ALF Add Long Float SS CE 10-25

ALH Add Logical Halfword RS 90 10-18

ALHBL Add Logical Halfword and RS 9F 10-20
Branch On Limit

ALHI Add Logical Halfword SI BO 10-22
Immediate

ALHR Add Logical Halfword RR 30 10-23
Register

ALHRI Add Logical Halfword RI 60 10-24
Register Immediate

AP Add Packed SS FO 10-28

ASF Add Short Float SS AE 10-29

BAL Branch and Link RI 4F 10-40

BALL Branch and Link Long RS 8F 10-41

BC Branch on Condition RI 6E 10-43

Instruction Index C-l

Mnemonic Instruction Format Operation Extender Page
Code

BCN Branch on Condition RS 9E 10-44
Indirect

BCNX Branch on Condition RS 7F 10-45
Indirect Indexed

BCT Branch on Count RI 8E 10-46

BI Branch Internal RR 1E 10-42

BR Branch Register RR 2E 10-47

BRL Branch Register Long RR 2F 10-48

BU Branch Unconditional RI 6F 10-49

CAL Compute Address Long RS 4C 10-80

CALH Compute Address Long RS 40 10-82
Halfword

CALHI Compute Address Long RI 5C 10-82.1
Halfword Immediate

CALLI Call Internal SI EF 10-50

CBIBE Compare Byte Immediate SI 00 10-54
and Branch Equal

CBIBN Compare Byte Immediate SI 01 10-54.1
and Branch Not Equal

CC Compare Characters SS C2 10-54.2

CH Compare Halfword RS 80 2 10-55

CHI Compare Halfword SI A2 10-56
Immediate

CHR Compare Halfword RR 22 10-57
Register

CHRI Compare Halfword RI 52 10-58
Register Immediate

CLAR Compare Logical Address RR 23 10-59
Register

CLB Compare Logical Byte RS 71 2 10-60

CLBI Compare Logical Byte SI 9C 10-61
Immediate

CLBR Compare Logical Byte RR 12 10-62
Register

CLBRI Compare Logical Byte RI 42 10-63
Register Immediate

CLC Compare Logical SS C5 10-64
Characters

~

C-2

L Mnemonic Instruction Format Operation Extender Page
Code

CLCL Compare Logical SS EA 10-66
Characters Long

CLCR Compare Long Character SS E9 10-65
Register

CLF Compare Long Float SS CE 0 10-72

CLFMF1 Compute Long Float Math SS CE E 10-84
Function Using One Input
Value

CLFMF2 Compute Long Float Math SS CE F 10-87
Function Using Two Input
Values

CLH Compare Logical Halfword RS 92 10-68

CLHI Compare Logical Halfword SI B2 10-69
Immediate

CLHR Compare Logical Halfword RR 32 10-70
Register

CLHRI Compare Logical Halfword RI 62 10-71
Register Immediate

CP Compare Packed SS F2 10-75

CSA Compute Subscript SI AD 10-94
Address

CSAC Compute Subscript SS BF 10-96
Address Constrained

CSACH Compute Subscript SS AF 10-98
Address Constrained
Halfword

CSF Compare Short Float SS AE 0 10-76

CSFMF1 Compute Short Float Math SS AE E 10-90
Function Using One Input
Value

CSFMF2 Compute Short Float Math SS AE F 10-92
Function Using Two Input
Values

CSH Compare and Swap RS 7D 10-52
Halfword

CVBLF Convert Binary to Long SS CE 9 10-100
Float

CVBP Convert Binary to Packed SS F8 10-101

Instruction Index C-3

Mnemonic Instruction Format Operation Extender Page
Code

CVBSF Convert Binary to Short SS AE 9 10-102
Float

CVDFLF Convert Decimal Form to SS CE D 10-118

Long Float

CVDFSF Convert Decimal Form to SS AE D 10-120
Short Float

CVLFB Convert Long Float to SS CE 8 10-122
Binary

CVLFDF Convert Long to Decimal SS CE C 10-124
Form

CVLFPD Convert Long Float to SS CE A 10-127
Packed Decimal

CVLSF Convert Long to Short SS CE 7 10-130
Float

CVPB Convert Packed to Binary SS F7 10-140

CVPDLF Convert Packed Decimal to SS CE B 10-136
Long Float

CVPDSF Convert Packed Decimal to SS AE B 10-138
Short Float

;) CVPZ Convert Packed to Zone SS FS 10-141

CVPZC Convert Packed to Zoned SS E5 10-142
with Data Checking

CVSFB Convert Short Float to SS AE 8 10-142
Binary

CVSFDF Convert Short Float to SS AE C 10-144
Decimal Form

CVSFPD Convert Short Float to SS AE A 10-147
Packed Decimal

CVSLF Convert Short to Long SS AE 7 10-150
Float

CVTCM Convert Characters to SS BE 4 10-112
MULTI-LEAVING Remote
Job Entry

CVTCS Convert Characters to SS BE 6 10-103
SNA

CVTMC Convert MULTI-LEAVING SS 5 10-132
Remote Job Entry to
Character

C-4

L Mnemonic Instruction Format Operation Extender Page
Code

CVTSC Convert SNA to SS BE 7 10-152
Characters

CVZP Convert Zoned to Packed SS F6 10-162

CVZPB Convert Zoned to Packed SS D6 10-162.1

with Data Checking and
Blank Conversion

CVZPC Convert Zoned to Packed SS E6 10-162.2

with Data Checking

DHS Divide Halfword Storage SS DD 10-171

DIAG Diagnose SI 6D 7 10-168

DLF Divide Long Float SS CE 4 10-172

DP Divide Packed SS F4 10-176

DPL Divide Packed Long SS FA 10-178

DOM Dequeue Message SS DA 10-164

DOTDE Dequeue Task Dispatching RS 6D 10-166
Element

DSF Divide Short Float SS AE 4 10-180

DTD Disable Task Dispatching RR OD 10-169

DTDO Dispatch Task Dispatching SI 6D 6 10-170
Queue

DWS Divide Word Storage SS ED 10-183

EDPD Edit Packed Decimal RS 63 10-184

EPDE Examine Primary Directory SI 83 3 10-198
Entry

EQM Enqueue Message RS 6C 10-194

EQTDE Enqueue Task Dispatching RS 6D 0 10-196
Element

ETD Enable Task Dispatching RR OD 0 10-192

EX Execute RS 7E 10-210

EXTAG Extract Tags SS A4 10-212

FHR Free Hold Record RS 57 10-214

FHRF Free Hold Record First RS 47 10-216

FNC2 Function Call Double SS A8 10-223

GHR Grant Hold Record RS 56 10-228

GHRF Grant Hold Record First RS 46 10-230

Instruction Index C-5

Mnemonic Instruction Format Operation Extender Page
Code

HWA Hash and Verify Virtual SS 08 10-237
Address

INTAG Insert Tags SS A5 10-240

IPDE Invalidate Primary 51 83 5 10-242
Directory Entry

JBF Jump on Bits Off RI 5F 10-245

JBN Jump on Bits On RI 5E 10-246

JC Jump on Condition RI 4E 10-248

L Load RS 94 10-250

LA Load Address RS 53 10-251

LB Load Byte RS 74 10-255

LBR Load Byte Register RR 14 10-256

LBRI Load Byte Register RI 44 10-257
Immediate

LH Load Halfword RS 84 10-258

LHR Load Halfword Register RR 24 10-259

LHRI Load Halfword Register RI 54 10-260
Immediate

LHTEA Load Hash Table Entry RS 83 2 10-261
Address

LM Load Multiple RS 95 10-262

LMB Load Multiple Byte RS 75 10-263

LMH Load Multiple Halfword RS 85 10-264

LPDEA Load Primary Directory RS 83 10-265
Entry Address

LPDEAR Load Primary Directory RR 25 10-266
Entry Address Register

LR Load Register RR 15 10-267

LSOP Load Space Offset Pointer RS 93 10-268

LVT Load and Verify Tags RS 64 10-252

C-6

Mnemonic Instruction Format Operation Extender Page
Code

MHS Multiply Halfword Storage SS DC 10-286

MlF Multiply long Float SS CE 3 10-287

MP Multiply Packed SS F3 10-291

MPl Multiply Packed long SS F9 10..,292

MSF Multiply Short Float SS AE 3 10-294

MVAST Move and Set Tags SS B4 10-269

MVBI Move Byte Immediate SI 9B 10-270

MVBIP Move Byte Immediate and SI AC 10-271
Propagate

MVC Move Characters SS CB 10-273

MVCAT Move Characters and Tags SS B5 10-274

MVCl Move Characters long SS EB 10-276

MVCR Move Character Register SS DB 10-272

MVHI Move Halfword Immediate SI AB 10-278

MVMC Move Virtual Page RR 10 10-278.1

MVNN Move Numeric to Numeric SS BA 10-279

MVNZ Move Numeric to Zone SS BB 10-280

MVPS Move Packed Shifted SS FB 10-282

MVPSZ Move Packed Shifted Zero SS FC 10-284

MVZN Move Zone to Numeric SS BC 10-284.1

MVZZ Move Zone to Zone SS BD 10-285

MWS Multiply Word Storage SS EC 10-297

NB AND Byte RS 79 10-32

NBI AND Byte Immediate SI 98 10-33

NBR AN D Byte Register RR 18 10-34

NBRI AND Byte Register RI 48 10-35
Immediate

NC AND Characters SS C8 10-36

NH AND Halfword RS 80 4 10-37

NHR AND Halfword Register RR 28 10-38

NHRI AN D Halfword Register RI 58 10-39
Immediate

Instruction Index C-7

Mnemonic Instruction Format Operation Extender Page ~ Code

OB OR Byte RS 79 0 10-298

OBI OR Byte Immediate SI 99 10-299

OBR OR Byte Register RR 19 10-300

OBRI OR Byte Register RI 49 10-301
Immediate

OC OR Characters SS C9 10-302

OH OR Halfword RS 80 3 10-303

OHR OR Halfword Register RR 29 10-304

OHRI OR Halfword Register RI 59 10-305
Immediate

PPR Perform Paging Request SS E8 10-306

RACM Reset Address Compare RR OD 3 10-320
Mode

RAHR Return Available Hold RS OD 5 10-325
Record

RCB Reset Chain Busy RR OD 6 10-321

RECC Receive Count SI 67 10-312

RECM Receive Message SS D9 10-315

RMCM Reset Machine Check RR OD 2 10-324
Mode

RPDE Remove Primary Directory SI 83 4 10-319
Entry

RRCRR Read Reference and SI 83 0 10-310
Change and Reset
Reference

SACM Set Address Compare SI 4B 10-346
Mode

SC Subtract Characters SS C1 10-384

SCAN Scan SS CF 10-328

SCB Set Chain Busy RR 36 10-348

SENDC Send Count SI 66 10-334

SENDM Send Message RS 68 10-337

C-8

Mnemonic Instruction Format Operation Extender Page
Code

SENOMW Send Message and Wait RS 69 10-341

SETCC Set Clock Comparator SI 60 2 10-350

SETINO Set Indicator SI 5A 10-352

SETIT Set Interval Timer SI 6A 10-352

SETIOO Set Time-Of-Oay Clock SI 60 4 10-354

SH Subtract Halfword RS 80 10-386

SHR Subtract Halfword Register RR 21 10-387

SLA Shift Left Arithmetic RR 03 10-356

SLB Subtract Logical Byte RS 71 0 10-388

SLBR Subtract Logical Byte RR 11 10-389
Register

SLC Subtract Logical SS C4 10-390
Characters

SLF Subtract Long Float SS CE 2 10-393

SLH Subtract Logical Halfword RS 91 0 10-391

SLHCT Shift Left Halfword and RS 61 10-357
Count

SLHR Subtract Logical Halfword RR 31 10-392
Register

SLL Shift Left Logical RR 01 10-358

SP Subtract Packed SS F1 10-396

SRA Shift Right Arithmetic RR 04 10-359

SRL Shift Right Logical RR 02 10-360

SSCA Store and Set SS BE 8 10-365
Computational Attributes

SSF Subtract Short Float SS AE 2 10-398

ST Store RS 96 10-364

STACK Stack RR 1B 10-362

STB Store Byte RS 76 10-370

STCC Store Clock Comparator SI 60 3 10-372

STH Store Halfword RS 86 10-374

STIT Store Interval Timer SI 8C 10-376

STM Store Multiple RS 97 10-378

STMB Store Multiple Byte RS 77 10-379

L
STMH Store Multiple Halfword RS 87 10-380

STSOP Store Space Offset Pointer RS 83 9 10-381

Instruction Index C-9

Mnemonic Instruction Format Operation Extender Page ;J
Code

STST Store and Set Tags RS 65 10-368

STIOD Store Time-Of-Day Clock SI 6D 5 10-382

SVLM Supervisor Link Monitored RR lF 10-407

SVLMl Supervisor Link Single SI 5B 10-414

Monitored

SVLO Supervisor Link Short RR 3F 10-408

SVLl Supervisor Link Single SI 5D 10-411

SVL2 Supervisor Link Double SS DF 10-404

SVX Supervisor Exit RR 3E 10-402

TI Terminate Immediately RR OD 4 10-417

TMBI Test Under Mask Byte SI 9D 10-418

Immediate

TMBIBO Test Under Mask Byte SI El 10-419

Immediate and Branch If
Ones

TMBIBZ Test Under Mask Byte SI EO 10-420

Immediate and Branch If
Zeros ;J

TMBR Test Under Mask Byte RR 13 10-421

Register

TR Translate SS CC 10-422

TRIM Trim SI 72 10-417

TRR Translate Register SS 8E 3 10-426

TRT Translate and Test SS CD 10-424

UNSTK Unstack RR 2B 10-428

XB Exclusive 0 R Byte RS 79 2 10-201

XBI Exclusive OR Byte SI 9A 10-202
Immediate

XBR Exclusive OR Byte Register RR lA 10-203

XBRI Exclusive OR Byte Register RI 4A 10-204
Immediate

XC Exclusive OR Characters SS CA 10-205

XH Exclusive OR Halfword RS 80 5 10-206

XHR Exclusive OR Halfword RR 2A 10-207
Register

XHRI Exclusive OR Halfword RI 5A 0 10-208
Register Immediate

ZAC Zero and Add Characters SS C6 10-430

C-l0

<: Less than.

>: Greater than.

~: Greater than or equal to.

-. The value to the left of the symbol is the same as the
value to the right of the symbol.

'f.: The value to the left of the symbol is not the same as
the value to the right of the symbol.

ACQ: Available CRE queue.

active task: The task that is currently executing.

address compare mode: The condition of the machine when
an address compare exception can occur if a storage
location is either referenced, accessed, or altered.

address event: An I/O event stack entry type that indicates
that a page boundary crossing occurred during the
modification of a resolved virtual address contained in an
I/O address register.

address list element (ALE): An 8-byte IMP object
containing a virtual or virtual=real address to be used
during page chaining operations.

address operation block (AOB): One of the five forms of
the operation block that is used to save, modify, or load the
I/O address registers during an operation.

address register (AR): A register in which an address is
stored.

AHR: Available hold record.

ALE: Address list element.

ALU: Arithmetic and logic unit.

ANSI: American National Standards Institute.

AOB: Address operation block.

AR: Address register.

Appendix D. Glossary

argument: (1) (ISO) An independent variable. (2) (ISO)
Any value of an independent variable.

arithmetic and logic unit (ALU): The part of a computer that
performs arithmetic, logic, and related operations.

asynchronous: (1) Without regular time relationship. (2)
Unexpected or unpredictable with respect to the execution
of a program's instruction.

available CRE queue (ACQ): The mechanism by which
CREs (call/return elements) are made available to the
processor and eventually to a TDE (task dispatching
element).

available hold record (AHR): An unused hold record.

Bx: A 6-byte base register represented by B is used as
operand x.

base: The number system in which an arithmetic value is
represented.

base register (B): The register that contains the address of
the start of the instruction stream.

basic status (BST AT): Two bytes of adapter response data
reported by the channel to the 1/ 0 event stack.

bias: In binary floating-point storage formats, the constant
value that, when added to the signed exponent of a binary
floating-point number, produces a non-negative biased
exponent. The bias for short format is 127 and for long
format is 1023.

biased exponent: (1) In binary floating-point storage
formats, the non-negative sum of the signed exponent of a
binary floating-point number and a constant value (bias).
(2) The value between the maximum and minimum field
values that is used to represent the signed exponent of a
normalized binary floating-point number. The range of
biased exponent values is 1 through 254 for the short
format and 1 through 2046 for the long format. Contrast
with signed exponent.

BID: Byte identifier.

Glossary D-l

binary digits: The numbers 0 and I that are used to
represent a value in the numbering system that has 2 as its
base.

binary floating-point number: A conceptual representation of
a numerical value that contains a signed significand and a
signed exponent. Its numerical value is the signed product
of its significand and 2 raised to the power of its exponent.
Contrast with long format and short format which are used
to represent binary floating-point numbers in storage. A
binary floating-point number is either a normalized number,
a denormalized number, or a signed zero.

binary floating-point value: One of the set of values
supported for binary floating-point operations. The set of
values supported is composed of binary floating-point
numbers, infinity, and not-a-number.

binary point: The point that separates the integer digits from
the fraction digits in the numbering system that has 2 as its
base, similar to decimal point.

branching instructions: Instructions that may change the
sequence of program execution.

BSTAT: Basic status.

built-in function: A well defined HMC (horizontal
microcode) operation that is used to enhance the
performance of the processor.

byte: A group of 8 adjacent bits that a computer processes
as a unit.

byte identifier (BID): Bits 39-47 of a virtual address. The
portion of a virtual address that identifies the specific byte
of data addressed within a page.

call/return element (CRE): A resident storage area used to
save the status of a procedure during an SVL (supervisor
linkage).

chain: Two or more objects linked together.

chaining: A system of storing records in which each record
belongs to a list or group of records and has a iinking field
for tracing the chain.

channel interface: The interface between the vertical
microcode I/O manager tasks responsible for I/O and
operational unit tasks that handle I/O operations.

D-2

command end: A function event used by an I/O device to
communicate error or exception status to the device 1/ 0
manager task.

comparison instructions: Instructions that are designed to
test the relationship between items of data.

completed: A term used to describe an action that the
system may take when an exception occurs during the
execution of an instruction. The instruction is allowed to
continue to completion with predictable results and the IAR
is advanced to the next instruction address. The ILC
indicates the length of the completed instruction.

concatenate: To link together two or more operands.

concurrent: (I) (ISO) Pertaining to the occurrence of two
or more activities within a given interval of time. (2)
Contrast with consecutive, sequential, simultaneous.

condition code: A 4-bit code that reflects the results of
most of the arithmetic, logical, and other manipulative and
control instructions.

control address table: The assigned storage location for
certain control information that must be known to the
processor to execute IMP (internal microprogramming)
tasks.

control storage: The storage in which HMC is loaded.

control storage address register (CSAR): The address register
used by the HMC (horizontal microcode) to control
command sequencing.

CPU: Processing unit.

CPU cluster: The planer board, array board, interposers,
main end control storage cards, and the terminators.

CRE: Call/return element.

CSAR: Control storage address register.

Dx: The displacement represented by D is used with
operand X.

dequeue: To remove items from a queue.

data field length: The number of bytes of data in the source
data field.

denormalized number: In binary floating-point storage
formats, the representation of a nonzero number in which
the exponent field contains a reserved value (0) at the
format's minimum and the fraction field is greater than O.
The significand of the number represented has an integer
value of 0, which is implied by the storage representation
and a fraction value from the fraction field. The reserved
value of 0 in the exponent field indicates the value of the
signed exponent (power of 2) is decimal -126 for the short
format and decimal -1022 for the long format.

dequeue: To remove items from a queue.

descriptor: That portion of an IMP (internal
microprogramming) object that is used as a unique
identifier.

destination: See result field.

device status (DSTAT): The bytes of information required
for proper device maintenance.

displacement: (1) The distance from the beginning of a
record, block, or segment to the beginning of a particular
field. (2) Synonym for relative address.

DST AT: Device status.

E: Operation code extender field.

EBCDIC: Extended binary coded decimal interchange code.

enqueue: To place items on a queue.

error event: An I/O event stack entry type that indicates
error conditions involving the channel hardware. These
errors are handled by IMP (internal microprogramming)
channel error microcode.

error recovery procedure: A set of instructions designed to
help isolate and, where possible, recover from errors in
equipment. These instructions are often used with programs
that record the statistics of machine malfunctions.

event handler: A program, specified in an event monitor,
that is to receive control when the event occurs.

event stack: A list of 4-byte entries that contain function.
address. or error events. The entries are placed on the list
by the channel hardware and are removed from the list by
the I/O event handler.

exception: The occurrence of a monitorable machine or
user-defined condition directly associated with the execution
of a particular function within a program. Exceptions
generally represent an abnormality detected by the machine
or by a program. Exceptions are signaled to a single
monitor within the associated process.

explicit designation: Designation by the use of information
contained within an operand of an instruction.

explicit invocation: Causing a procedure to wait by the use
of an IMP (internal microprogramming) instruction.

explicit length: Length of an instruction as stated within the
instruction.

exponent range: In binary floating-point storage formats,
the set of integer exponents that can be represented in a
particular format. The representable signed exponent range
is decimal -126 through + 127 for short format and decimal
-1022 through + 1023 for long format.

extender (E): A 4-bit extension of the IMP operation code.

FIB: Fill instruction buffer.

field replaceable unit: An assembly that is replaced in its
entirety when anyone of its components fails.

fill instruction buffer (FIB): An HMC (horizontal
microcode) status control to fill the instruction stream
buffer.

floating-point format: In binary floating-point representation
the storage format used to represent a binary floating-point
value. See long format and short format.

FOB: Function operation block.

format's maximum: In binary floating-point storage formats,
the value of 255 (short format) or 2037 (long format) in
the exponent field. This value indicates that either a signed
infinity (fraction equals 0) or a not-a-number (fraction does
not equal 0) is represented in the storage format.

format's minimum: In binary floating-point storage formats.
the value of zero in the exponent field. This value indicates
that either a zero floating-point value (fraction equals 0) or
a denormalized number (fraction does not equal 0).

fraction: In binary floating-point representation, the value
to the right of the binary point.

FRAT: Function routine address table.

Glossary D-3

free: To unlock a system or data base object.

FST AT: Functional status.

function event: An I/O event stack entry type that
communicates device or IMP (internal microprogramming)
task request to an operational unit task.

function operation block (FOB): One of five forms of the
operation block that identify the operational unit and

convey the command to be executed by the operational
unit.

function routine address table (FRAT): An indexed table of
addresses to instruction streams that perform specific tasks.

functional status (FST AT): One of 4 bytes of operational
unit information that can be required by the program for
normal device operation.

gap length: The number of bytes of data between fields in
the source operand.

gap offset: The number of bytes to the next gap in the
source.

greater than (»: The value to the left of the symbol is
greater than the value to the right of the symbol.

halfword: 16 bits or 2 bytes on an integral boundary.

hash hold table (HHT): A storage page which contains
halfword entries, that are used as an index (after being

manipulated) into the hold record area.

hash synonyms: Equal hash values that are obtained by
hashing different object addresses.

hashing: The compression of the 39-bit field formed by
linking the segment and page identifier fields of a virtual
address.

HHT: Hash hold table.

HMC: Horizontal microcode.

hold: A lock on a given system or data base object.

hold record (HR): A record of information describing the
constraints that have been imposed on the use of an object.

hold record area: A virtual addressing segment that contains
all object chains of HRs.

D-4

horizontal microcode (HMC): Microcode that exhibits a high
degree of parallelism of execution, controls the detailed
state of the hardware, and supports the IMP (internal

microprogramming) instruction set.

HR: Hold record.

Ix: The immediate data represented by I is used as operand
X in the instruction in which it appears.

I/O manager queue (IOMQ): An IMP send/receive queue
used to communicate I/O command response information to
an I/O manager task from a device operational unit task.

I/O register table: A table containing pointers to the queue
control table. It is accessed by using the operational unit as
an index.

IAR: Instruction address register.

ILC: Instruction length count.

immediate data operand: An operand that contains the data
attributes and the data in the instruction.

IMP: Internal microprogramming.

IMP objects: A separately addressable unit (or collection or
data) that has associated attributes as well as operating
characteristics based on these attributes.

IMPL: Initial microprogram load.

impUcit designation: Designation by the use of the operation
code as an index into a storage table.

impUcit invocation: Causing a procedure to wait by the use
of an HMC (horizontal microcode) procedure.

unpUcit leading bit: A bit that does not appear in the storage

form of a binary floating-point number. This bit is
understood to be to the left of the assumed binary point.
See signi/icand.

impUed length: The length of the instruction as recognized
by the specific operation code being used.

inexact result: A result that occurs when bits of the
significand are lost in rounding the intermediate result to
the precision of the result field or when infinity is stored as
the result of a masked overflow.

infinity: In binary floating-point operation, a name for the
values beyond the minimum and maximum finite values that
can be represented. These finite values are represented in
the storage formats when the exponent field contains a
reserved value (255 for short format and 2047 for long
format) at the formats' maximum and the fraction field is O.
Infinity can be positive or negative.

infinity arithmetic: The adding, subtracting, multiplying,
dividing, and comparing of values that are beyond the
minimum and maximum values that can be represented as
finite values in the binary floating-point format.

initial microprogram load (lMPL): The initiation of
processing when the contents of storage are not suitable for
processing.

initial program load (IPL): The initialization procedure that
causes an operating system to start operations.

input/output: In System/38 the name given the
microprocessor used in the attachment of various I/O
devices.

input/output controller (lOC): (ISO) A functional unit in a
data processing system that controls one or more units of
peripheral equipment.

input/output manager (10M): A YMC (vertical microcode)
programming object that controls the flow of information
(control and I/O data) to and from an I/O unit.

instruction address register (lAR): (ISO) A register from
whose contents the address of the next instruction is
derived.

instruction length count (ILC): A 3-bit code that provides
the length of the last instruction executed.

integral boundary: A location in main storage at which a
fixed-length field, such as a halfword or doubleword, must
be positioned. The address of an integral boundary is a
multiple of the length of the field, in bytes.

intermediate denormalized floating-point number: In binary
floating-point operation, an intermediate unrounded form of
the result in which a value that is too small to be
represented in the floating-point format of the result has
had the significand digits shifted right (zeros are supplied
on the left) and the exponent incremented until the
exponent attains the format's assumed value for
denormalized numbers (-126 for a short format and -1022
for long format).

intermediate result: In floating-point operations, the
normalized result produced prior to the adjustments
required to store it in the result field.

interval timer: A means of measuring elapsed time and
determining when a prespecified amount of time has
elapsed.

invocation: An invocation is the execution of a program. It
represents the status of the process after the program is
invoked. When one programs calls another program, the
two programs are said to be in different invocations. The
invocation of a program that is called a second time by the
same calling invocation is also considered to be a different
invocation. Automatic storage is allocated for a program at
every invocation.

10C: Input/ output controller.

10M: Input/ output manager.

10MQ: I/O manager queue.

ISO: International Organization for Standardization.

J x: Jump displacement.

jump displacement (J): The number of bytes (address
increments) added to the instruction address after a jump
instruction is executed.

Lx: The length of the operand represented by L is used as
operand X in the instruction in which it appears.

LB: Lookaside buffer.

LOB: Loop operation block.

local storage register (LSR): A register that is assigned to
hold processor information.

long format: In binary floating-point operations, the storage
representation of a binary floating-point number, a
not-a-number, or infinity. The long format is a 64-bit string
in which bit 0 is the sign field, bits 1 through •• are the
II-bit exponent field, and bits 12 through 63 are the 52-bit
fraction field. Contrast with binary floating-point number
which is the conceptual view of the number.

Iookaside buffer (LB): A separate hardware storage array
used to store recently translated virtual addresses along with
their corresponding real addresses.

Glossary D-S

loop operation block (LOB): One of the five forms of the
operation block that allows an operation program to contain
a loop for efficient operation.

LSR: Local storage register.

Mx: The mask represented by M is specified for operand X.

machine check (MCHK): A detected machine malfunction
that can occur in hardware or HMC.

machine check log buffer (MCLB): A data area in virtual
storage used to store the processor status and the task
status when a machine check occurs.

machine communications area (MCA): The assigned storage
locations, which contain control information required for
VMC objects to communicate with each other.

machine interface (MI): The instruction set interface to the
machine. The instruction set is called the System/38
instruction set.

main storage: See real storage.

MCA: Machine communications area.

MCHK: Machine check.

MCLB: Machine check log buffer.

message operation block (MOB): One of the five forms of
the operation block that either sends a message to a queue
or increments a counter.

MI: Machine interface.

microcode: The instructions providing the basic machine
functions and supporting the machine interface.

MOB: Message operation block.

monitor: A process that checks for the occurrence of an
event or exception and takes action based on that event or
exception.

MSAR: Main storage address register.

NaN: See not-a-number.

negative inimity: See infinity.

D-6

normalized number: In binary floating-point storage formats,
the representation of a nonzero floating-point number
whose exponent field contains a biased exponent. The
range of biased exponent values is 1 through 254 for the
short format and 1 through 2046 for the long format. The
significand of the number represented has an integer value
of 1 and a fraction value from the fraction field. Note that
the exponent field values of 0 and 255 for the short format
and 0 and 2047 for the long format are used to indicate the
representations of infinity, not-a-number, denormalized
number, and signed O.

no-operation: No operation is performed. The IAR is
updated to the next sequential instruction.

not-a-number: In binary floating-point storage formats, the
name for a value that is not interpreted as a number. A
not-a-number (NaN) is represented by an exponent field
that contains a reserved value at the format's maximum
(255 for short format and 2047 for long format) and a
fraction field that does not contain O. A not-a-number may
represent the results of incorrect combinations of operands
in floating-point operations.

nullified: A term used to describe the action the system may
take when an exception occurs during the execution of an
instruction. The instruction is stopped with the IAR not
advanced to the next instruction address. The ILC is set to
zero.

OB: Operation block.

object: A separately addressable unit that has associated
with it certain attributes as well as operational
characteristics based on these attributes.

offset: The distance from the beginning of a register or
record to the beginning of a particular field.

op code: Operation code.

operation block (OB): The portion of the ORE (operation
request element) that contains operation unit information.
The five types of operation blocks are: address operation
block, function operation block, loop operation block,
message operation block, and program operation block.

operation code: An 8-bit code which specifies the operation
to be performed by the IMP instruction to which the code
is unique.

operation program (OP): A set of operation blocks placed in
storage and executed together prior to any response.

operation request element (ORE): An IMP (internal
microprogramming) message, placed on an operational unit
queue, to cause an I/O operation. It consists of a standard
IMP queue element header, a status field, and an operation
block.

operational unit (OU): An I/O device or source of
asynchronous events together with an OU task that controls
the device or the event.

operational unit number: A I-byte number that uniquely
defines an operational unit and is used as an index into the
operational unit table to locate the queue control table.

operational unit queue (OUQ): The queue upon which
OREs (operation request elements) are placed by the
source/sink component below MI (machine interface).
There is one operational unit queue for each operational
unit.

operational unit task: A microcode task that exists for each
operational unit that performs operations such as operation
block execution and command completion functions. The
operational unit task services the operational unit queue and
I/O events.

ORE: Operation request element.

OU: Operational unit.

OUQ: Operational unit queue.

page: (I) (ISO) In a virtual storage system, a fixed-length
block that has a virtual address and that can be transferred
between real storage and auxiliary storage. (2) * A block of
instruction, or data, or both, that can be located in main
storage or in auxiliary storage. Segmentation and loading of
these blocks is automatically controlled by a computer. (3)

To transfer instructions, or data, or both between real
storage and external page storage. (4) In System/38 a page
contains 512 bytes.

page fault: In a virtual storage system, a program exception
that occurs when a page that is not in main storage is
referred to by an active task.

page frame: In a virtual storage system, a 512-byte block of
main storage that can contain a page.

page identifier (PID): Bits 32 through 38 of a virtual
address.

PD: Primary directory.

PEM: Program event monitor.

permanent storage assignments: The assignments of storage
locations contained within the control address table.

PIO: Page identifier.

pin count (PINCNT): A counter that records the number of
times a page of storage is pinned while the page is in
storage. The pin count is used for holding pages in storage.

PINCNT: Pin count.

pinning: A mechanism used to hold pages in storage.

placeholder: A symbol that may be replaced by some other
value.

PMCH: Processor machine check handler.

POB: Program operation block.

positive infinity: See infinity.

preempt wait: A task switch that occurs if a 'TDE is
enqueued to the TDQ at a higher priority than the current
TDE.

primary directory (PO): A list of entries in which each entry
contains the virtual address and the status of a page frame
in main storage.

procedure: (1) *(ISO) The course of action taken for the
solution of a problem. (2) *The description of the course
of action taken for the solution of a problem.

processing unit (CPU): The unit of the computer that
includes circuits controlling the interpretation and execution
of instructions.

processor machine check handler (PMCH): An HMe
(horizontal microcode) routine that attempts to recover
from apparent machine malfunctions.

program event monitor (PEM): The processor comparing the
initial byte of the instructions to determine if they fall
within the range of the PEM start and PEM stop addresses.

program operation block (POD): One of five forms of the
operation block that is used in an operation request element
when an operation program is to be executed.

QCT: Queue control table.

Glossary 0-7

quadword: A group of 4 consecutive words located at an
integral boundary.

queue: (1) A line or list formed by items in a system
waiting for service. for example. tasks to be performed or
messages to be transmitted in a message switching system.
(2) A system object to which a list or line of items are
related while waiting for service.

queue control table (QCT): A table, accessed by microcode
and machine product code, that controls I/O operations.
There is one table for each operational unit.

r x: A one-byte register represented by r is used as operand
X.

Rx: A halfword register represented by R is used as
operand X.

RAR: Resolved address register.

real storage: (1) (ISO) The main storage in a virtual storage
system. Physically, real storage and main storage are
identical. Conceptually however, real storage represents
only part of the range of addresses available to the user of
a virtual storage system. Traditionally, the total range of
addresses available to the user was that provided by main
storage. (2) Same as processor storage.

reserved values: In binary floating-point representation, the
exponent field values of 0 and 255 for the short format and
o and 2047 for the long format that are used to indicate
representations of infinity, not-anumber, de normalized
number, and O.

resolved address: A translated virtual address.

result offset: The number of bytes of the result field that
are to be processed (upon entry to the instruction).

RI: An instruction type that uses register and immediate
operand parameters.

rotary switches: Those console switches that are used to
control the basic machine functions.

rounding: In binary floating-point operations, a modification
of a value, if necessary, so that it is representable in the
format of the result field. An inexact result exception
condition may occur due to rounding.

D-8

rounding to nearest: In floating-point operations, to modify
a value to the nearest representable value. However, if the
value of those digits being dropped is exactly half of the
least significant digit of the retained value, the nearest
representable value in which the least significant digit is
even is chosen.

round toward negative infinity: In floating-point operations, a
modification of a value to the representable value that is
closest to but no greater than the unmodified value. The
result may be negative infinity.

round toward positive infinity: In floating-point operations, a
modification of a value to the representable value that is
dosest to but not less than the unmodified value. The result
may be positive infinity.

round toward zero: In floating-point operations, a
modification of a value to the representable value that is
closest to and no greater in absolute value than the
unmodified value. The result may be O.

RR: An instruction type that uses only register operands.

RS: An instruction type that uses register and storage
operand parameters.

S: A 4-byte register represented by S is used as operand.

SCA: System control adapter.

scalar: * (1) (ISO) A quantity characterized by a single
number. (2) Contrast with vector.

SDR: Statistical data recording.

segment: A unique, continuous area of virtual storage.
Segments are nonoveriapping and noncontinuous with each
other.

segment identifier (SID): Bits 0 through 31 of a virtual
address.

send/receive counter (SRC): The IMP (internal
microprogramming) instruction object used to exchange
intertask information and to synchronize the flow of control
between tasks; a count field used for control but no
messages are enqueued.

send/receive message (SRM): An IMP (internal
microprogramming) instruction object that contains a
message and may be enqueued to an SRQ (send/receive
queue).

send/receive queue (SRQ): An IMP (internal
microprogramming) instruction object that is used to
exchange intertask information to synchronize the flow of
control between tasks.

set: (l) (ISO) To put all or part of a data processing device
into a specified state. (2) Contrast with reset.

short format: In binary floating-point operations, the
storage representation of a binary floating-point number,
not-a-number, or infinity. The short format is a 32-bit
string in which bit 0 is the sign field, bits 1 through 8 are
the 8-bit exponent field, and bits 9 through 31 are the
23-bit fraction field. See also binary floating-point number.

SI: An instruction type that uses storage and immediate
operand parameters.

SID: Segment identifier.

signed exponent: In floating-point operations, the arithmetic
representation of the exponent value of the floating-point
number.

signed zero: In binary floating-point formats, the
representation of the number 0 whose exponent field
contains a reserved value at the format's minimum and a
fraction field that is equal to O. Zero can be positive or
negative; however, positive 0 for denormalized numbers and
1 for normalized numbers.

significand: In binary floating-point operations, the part of a
binary floating-point number that is composed of binary
digits which contain integers to the left of a binary point
and one or more fraction digits to the right. The value of
the integer is implied by the storage representation of a
binary floating-point number. The value of the integer digit
is 0 for denormalized numbers and 1 for normalized
numbers.

source/sink: Pertaining to devices capable of originating or
accepting data signals to or from a transmission device
(such as a central processor) and pertaining to the data
management components supporting such devices.
Source/sink devices include locally and remotely attached,
batch and work station devices, but not the internal storage
of the system.

source offset: The number of bytes of the source field that
are to be processed (upon entry to the instruction).

source operand: The operand that contains the source as
provided by the user of a data processing system.

source record length: The number of bytes of data in a
source record as provided by the user.

SRC: Send/receive counter.

SRM: Send/receive message.

SRQ: Send/receive queue.

SS: An instruction type that uses only storage operands for
parameters.

stack: (1) (ISO) A list that is constructed and maintained
so that the next item to be retrieved and removed is the
most recently stored item still in the list, that is, last in-first
out. Synonymous with pushdown list.

statistical data recording (SDR): Statistical information for
each I/O device on the system stored in auxiliary storage
by VMC.

storage capacity: The number of bytes provided without
regard to the storage width.

storage width: The number of bytes that can be fetched or
stored in one storage cycle.

string: * (1) (ISO) A linear sequence of entities such as
characters or physical elements.

supervisor linkage (SVL): The method by which IMP
(internal microprogramming) procedure switching is
accomplished within a task and the method by which IMP
exceptions are reported.

suppressed: A term used to describe the action the system
may take when an exception occurs during the execution of
an instruction. The instruction is not allowed to continue
and the IAR is advanced to the next instruction address.
The result fields are not changed. The ILC indicates the
length of the suppressed instruction.

suspended: A term used to describe the action the system
may take when an exception occurs during the execution of
an instruction. The instruction is stopped at the point of the
exception and checkpoint data is stored in a reserved area.
The IAR is not advanced to the next instruction address so
that the operation can be resumed at the point of the
exception. The ILC is set to zero.

SVL: Supervisor linkage.

Glossary D-9

SVL table: A table in storage that is used to contain the
number of registers to be stored, the address of the
procedure to which control is passed, and other descriptive
control information.

synchronous: Pertains to arising, existing, or happening
precisely at the same time.

system control adapter (SCA): An interface used in
conjunction with the CE/operator panel for initiating and
monitoring the system during system initiation.

system specialization: The tailoring of the system
(programming and devices) for installation and the
redefinition of the system when the user adds a device or
feature or changes some part of the programming.

system unit: The main unit of the system, which contains
the processing unit, the system console keyboard/display,
the operator/service panel, the diskette magazine drive,
main sotrage, auxiliary storage, the work station controller,
and the communications subsystem.

tag: One or more characters, attached to a set of data, that
contains information about the set, including its
identification.

task dispatching element (TDE): An IMP (internal
microprogramming) object used to identify a task and the
attributes associated with that task.

task dispatching queue (TDQ): An IMP (internal
microprogramming) object used by the task dispatcher to
allocate processor time to the dispatchable tasks in the
system.

tasking: The process of controlling the execution of IMP
(internal microprogramming) tasks.

tasks: (1) A semi-independent unit of work that can be
performed concurrently with other tasks and requires
coordination with other tasks only at certain points within
the execution. (2) Units of work activated by the task
dispatcher.

TDE: Task dispatching element.

TDQ: Task dispatching queue.

D-1O

terminated: A term used to describe the action the system
takes when an exception occurs during the execution of an
instruction. The instruction is terminated at the point of
the exception with unpredictable results and the IAR is
advanced to the next instruction address. The ILC indicates
the length of the terminated instruction.

time quantum: The time span remaining for a task to
execute.

time-of-day clock: The object used by the system to
accumulate time within the system.

TOD: Time of day.

trap: (ISO) An unprogrammed conditional jump to a
specified address that is automatically activated by
hardware. (2) A recording being made of the location from
which the dump occurred.

trapped instructions: See trap.

V=R: Virtual address equals real address.

V=V: Virtual address equals virtual address.

V AT: Virtual address translator.

vertical microcode (VMC): Microcode that defines logical
operations on data, is primarily sequential in execution and
supports the System/38 machine instruction set.

virtual = real: The planned occurrence in addressing when a
virtual address addresses the same part of memory as the
real address.

virtual address: The address of a storage location in virtual
storage.

virtual address translator (V AT): Hardware which converts a
virtual storage address to a real storage address.

virtual storage: The combination of main storage and
auxiliary storage, treated as a single addressable unit.

VMC: Vertical microcode.

word: 32 bits or 4 bytes on an integral boundary.

zone: The leftmost 4 bits of a byte in a decimal field are
called zone, except for the rightmost byte of the field,
where these bits may be treated either as a zone or as a
sign code.

A

about this manual xi
ACQ (see available CRE queue)
active task D-1,3-2
address

address description
address mechanism
address translation

2-13
7-36

8-2
address compare exception 6-14
address compare mode 9-41

address compare exception 9-41
address compare switch 9-41
concurrent exceptions 2-20
concurrent exceptions, description
definition D-1
maskeable exception 9-41
program exceptions 2-24
program exceptions, description
programming notes 9-43

address compression 8-4
address data

alignment 2-12
description 2-3
page 2-13
virtual address 2-4, 2-13

address event
definition D-1
description 7-39
format 7-39

address generation
base register field 2-17
displacement field 2 -17
effective address 2-17
storage address 2-17

address list element (ALE)
definition D-1
description 7-33
format 7-34
programming notes 7-34

address mechanism 7-36
address operation block (AOB)

definition D-1
description 7-20
format 7-21
programming notes 7-22

address register (AR) D-1. 7-35
address translation

hash table address 2-13
lookaside buffer 2-13
primary directory 2-13
virtual = real address 2-13

address translation exception 6-14

6-14

6-14

addressing
byte identifier (BID) 2-13
exception 6-15
offset 2-13
page 2-13
page identifier (PID) 2-13
segment identifier (SID) 2-13
virtual address translation (VAT) 2-13
virtual addresses 2-13

AHR (see available hold record)
ALE (see address list element)
allocate page frame exception 6-15
ALU (see arithmetic and logic unit)
ANSI (American National Standard Institute)
AOB (see address operation block)
AR (see address register)
argument D-1
arithmetic and logic unit (ALU) D-1
assigned virtual storage locations 2-25
assignment of OU numbers 7-9
asynchronous

definition D-1
events. description 4-3, 7-1
operations 7-4

I/O manager queue (lOMQ) 7-4
operation request element (ORE)

available CRE queue (ACQ)
definition D-1
format 6-6
implicit receive 6-6
implicit send 6-6
in control address table 2-26

available hold record (AHR) D-1
available hold record. description 9-31

B

B (see base register)
base D-1
base register (B)

assignments 5-2. 7-8
definition D-1
description 2-2
field 2-17

basic hardware tests
basic status (BSTAT)
bias D-1
bias. minimum 2-6

9-2
D-1.7-42

biased exponent D-1. 2-6
BID (see byte identifier)

7-4

Index

Index X-1

binary
data 2-3
divide exception
numbers

6-15

maximum value
minumum value

overflow exception
binary data 2-3
binary digits 0-2

2-3
2-3
6-15

binary floating-point number 0-2
binary floating-point value 0-2
binary point 0-2
boundary (see integral boundary)
branching

instruction stream 2-18
instructions definition 0-2
registers S(O) and R(O) 2-18
segment group 2-18

BSTAT (aU response field) 7-4
built-in function 0-2
busy status 5-14
byte 0-2. 2-3
byte identifier (BID) 0-2. 8-2

c

call/ return element (CRE)
definition 0-2
format 6-3
left chained to TOE 6-12
monitored CRE exception 6-23
program exception cause 2-24
status of procedure 6-3

chain 0-2
chain conflict exception 6-15
chaining 0-2
channel errors

channel error recording 7 - 78
channel error recovery 7-78
channel error reporting 7 -78
channel hardware error 7 -76
error recovery procedures 7-78
event handler error 7-76
post event 7-76

channel hardware error 7-76
channel interface

definition 0-2
description 7-1

channel interface (see System Control in
Chapter 7)

channel order field 7-4
cha racter data

character strings 2-4
description 2-3
EBCDIC 2-4

character strings 2-4
check bits 2-3

X-2

check stop
initiated by HMC
initiated by IMP
state 4-2. 9-7

clock comparator
format 9-4

9-7
9-7

target send/receive counter 9-4
command completion functions 7-6
command end (CE)

definition 0-2
description 7-39
format 7-39

command/end fetch next command.
description 7-38

command end/fetch next command.
format 7-38

command registers 7-35
command/response fields 7-20
comparison instructions 0-2
completed instructions 0-2. 2-24
components of an au task 7-7
concatenate 0-2
concurrent 0-2
concurrent exceptions

address compare 2-19.6-14
cause 2-19
description 6-14
monitored ACQ 2-19
monitored CRE 2-19
monitored TOE 2-19
task interval timer 2-19.6-26

condition code D-2
condition codes (see also Instruction
Descriptions .. *

control address table
available CRE queue (ACQ) 2-26
current TOE 2-26
current TOQ 2-26
defective frame table 2-26
definition 0-2
first available hold record 2-26
function routine address table
(FRAT) 2-26

hash table 2-26
HMC overlay area 2-26
I / a event stack 2 - 26
1/0 register table 2-26
machine check handler 2-26
machine check log buffer (MCLB)
main storage defective frame table
primary directory 2-26
repetitive interval timer 2-26
SRC for clock comparator 2-26
SRC for interval timer 2-26
SVL table 2-26
task switch trace table 2-26

control information 8-4
control storage 0-2

2-26
2-26

control storage address register
(CSAR) D-2

control unit 4-3
CPU cluster D-2
CRE (see call return element)
CSAR (see control storage address register)
current state of task 5-4
current task 3- 2
current TDE 2-26

D

D (displacement) D-2
data

alignment 2-12
byte 2-3
check bits 2-3
data types

address data 2-3
binary data 2-3
character data 2-3
decimal data 2-3
floating point 2-3

exception 6-15
field length definition D-2
formats 2-4, 2-6
length of fields 2-3
length of fields, explicit 2-3
length of fields, implied 2-3
registers 7 -35
storage capacity 2-3
storage width 2-3

decimal
data

description 2-4
packed format 2-4
zoned format 2-4

number representation 2-5
overflow exception 6-16
zero divide exception 6-16

defective frame table 2-26
definition of notes

notes XII

programming notes
denormalized number
denormalized numbers
dequeue 0-3
descriptor

access exception
definition D-3
description 2-11

device
errors 7-74
halt 7-79
order field 7-4
status (DSTAT)

xii
0-2
2-6

6-12,6-16

definition D-3
description 7-43

digit and sign codes 2-5
disable PEM mode 5-10
dispatchable tasks 5-4
displacement 0-3, 2-16
displacement field 2-17
display 4-3
OST AT (see device status)

E

E (see extender)
EBCOIC (extended binary coded decimal
interchange code) 2-4

edit digit count exception 6-17
edit mask syntax exception 6-17
effective add ress 2 -17
effective address overflow exception 6-17
enable/ disable task dispatcher 5-17
end-of-chain exception 6-17
enqueue 0-3
enqueue / dequeue instructions 5-14
error

definition 7-78,9-28
event

definition 0-3
description 7-39
format 7-39

log format 7-74,7-79
recording

error definition 9-28
operation program errors 7 -74
recovery procedure,
description 7-76,7-78

error recovery procedure 0-3
event handler 0-3, 7-35
event handler error 7 -76
event signaling 3-2
event stack 0-3, 7-41
exception codes in CRE 6-5
exception codes in MCLB 9-27
exception handling 2-17
exception mask field 6-14
exception signaling 6-7
exceptions

concurrent 2-19
definition 0-3
mask 5-7
occurrences 5- 7
presentation 6-14
program 2-18

exchange intertask information 5-10
execute exception 6-18
execution

branching 2-17
instruction address register (lAR) 2-17
interruption 2-17
prefetched instructions 2-17
sequential 2-17

Index X-3

explicit
designation 0-3, 2-14
invocation 0-3
length 0-3, 2-3
operands 2-14

exponent 2-6
exponent range 0-3
extended mnemonics 2-18
extended operation code assignments B-2
extender (E) 0-3
extension field 2 -16

F

fetch next command 7-39
fetch next command, format 7-39
FIB (see fill instruction buffer)
field replaceable unit 0-3
fill instruction buffer (FIB) 0-3
first available hold record 2-25, 9-31
floating point

bias 2-6
biased exponent 2-6
data

alignment 2-6
numerical value 2-5

exceptions 2-10, 6-4
exponent 2-6
infinity 2-6
long format 2-6
masked not-a-number 2-7
minimum bias 2-6
normalization 2-9
not-a-number 2-7
numbers

denormalization 2-6
real 2-6
representation 2-6
symbolic 2-7

rounding 2-10
short format 2-6
sign bit 2-10
signed exponent 2-6
signed zero 02-0010
significand 2-5
unmasked not-a-number 2-7

floating-point format 0-3
floating-point inexact result
exception 6-19

floating-point invalid operand
exception 6-19

floating-point overflow exception
floating-point underflow exception
floating-point zero divide exception
FOB (see function operation block)
FOB commands 7-77
format of instructions 10-1
format's minimum 0-4

X-4

6-19
6-21
6-22

formats and examples 2-16
fraction 0-4
FRAT (see function routine address table)
free 0-4
FSTAT (see functional status)
function call flow 9-44
function call linkage 9-44

function call flow diagram 9-45
function call stack usage 9-44
function routine address table
(FRAT) 9-44

function event
address event 7 -39
command end 7-39
command end/fetch next command 7-38
definition 0-4
error event 7-39
fetch next command 7-39
load-multiple I/O register 7-18

function operation block (FOB)
command/response fields 7-20
definition 0-4
description 7-17
format 7-18
halt device 7-78
programming notes 7-20
read event 7-78
start channel 7-78
start device 7-78
time-out 7-44
time-out operation 7-45

function routine address table
(FRAT) 9-44

definition 0-4
description 9-44
in control address table

functional status (FSTAT)

G

gap length 0-4
gap offset 0-4
glossary 0-1
greater than (» 0-4

H

halfword 0-4

2-25
0-4, 7-43

halt device command 7-78
handling of program exceptions

completed 2-24
nullified 2-24
suppressed 2-24
suspended 2-24
terminated 2-24

hard machine check 9-7

hardware
adapters 4-3
instruction set 1 -1
registers 2-2, 7-35
tags

quadword 9-36
tag bit 9-36

hardware adapters 4-3
hardware instruction set 1 -1
hash hold table (HHT)

address translation 2-13
alignment 2-12
assigned virtual storage location 2-25
definition D-4
entry 8-4
in control address table 2-26
in hold chain structure 9-31
lookup

address compression 8-4
description 8-4
hashing 8-4

hash synonyms D-4
hashing D-3, 8-4
H HT (see hash hold table)
HMC (see horizontal microcode)
HMC initialization 9-2
hold D-4
hold chain structure

first hold record 9-31
hold free data/fields 9-32
hold hash table 9-31
programming note 9-31

hold/free data field formats 9-32
hold/free data fields 9-32
hold/free function 9-31
hold record (HR) D-4
hold record area D-4, 9-31
horizontal microcode (HMC)

built-in functions 5-1
definition D-4
description 1-1, 3-1
event signaling 3-2
exceptions 6-10
I/O event handler 3-2
initialization 9-2
interval timer 3-2
overlay area 2-26
page fault 3-2
procedure 3-1, 5-1
support functions 3-1
task dispatcher 3-2

HR (see hold record)

I (immediate data operand) D-4
I/O addressing restrictions 7-37
I/O and asynchronous events

channel interface 7-1
I/O channel (lOC) 7-1
I/O manager (10M) 7-1
I/O structure 7-1
operational unit task 7-6

I/O channel (IOC) 7-1
I/O command responses 7-42
I/O devices 4-3
I/O errors 7-73

channel errors 7 - 76
operational unit errors 7 -73

I/O event
fields

address event 7-39
error event 7 -39
function event 7-38

handler
as microcode function 3-2
description 4-3
overview 7 -40
task control 4-3

stack
I/O event fields 7-41
in control address table 2-26
programming notes 7-41

I/O examples 7-45
I/O interruptibility 5-2
I/O manager (10M) 7-1
I/O manager queue D-4
I/O manager queue (lOMO)

description 7-4
format 7-11
operation request element (ORE) 7-11
programming notes 7-11

I/O operations 4-3
I/O register table D-4

assigned virtual storage location 2-26
definition D-4
I/O event field 7-41
programming notes 7 -41
queue control table (OCT) 7-41

I/O resolved address registers
command registers 7-35
data registers 7-35
hardware registers 7-35
multiple contiguous 7-35
number assigned 7-35
resolved virtual addresses 7-35
system initialization time 7-35
system specialization time 7-35

I/O status fields 7 -42
I/O storage addressing 7-35

Index X-5

I/O storage addressing, address
registers 7-35

I/O structure 7-1
IAR (see instruction address register)
idle processor state 5-1
if you need more information xii
ILC (see instruction length count)
immediate data operands 0-4, 2-14
IMP (see internal microprogramming)
IMP objects 0-4, 7-8
IMPL (see initial microprogram load)
implicit

designation 0-5, 2-14
invocation 0-5
operands 2-14
receive SVL 6-7
send SVL 6-7
SVLs 10-1

implicit leading bit 0-5
implied length 0-5, 2-14
inexact result 0-5
infinity 0-5, 2-6, 2-10
infinity arithmetic 0-5
initial microprogram load (lMPL)

definition 0-5
description 9-2
functions

basic hardware tests 9-2
device 9-2
HMC initialization 9-2
loading control and main storage 9-2
required parameters 9-2

initial program load (IPL) 0-5
initialization 9-2
initialization time 7-35
input/output 0-5
input/output and asynchronous events 4-3
input/output controller (laC) 0-5
input/output manager (10M) 0-5
instruction

address register (lAR) 0-5, 2-17
address register settings 6-26
alignment 2-12
descriptions

formats (see also Chapter 2) 2 -16
implicit SVLs 10-1

examples 2-16
length count (lLC) 0-5, 6-26
name-mnemonic cross reference C-1
operands 2-14
operation code extenders 2-16
operation codes 2-14

integral boundary 0-5
intermediate denormalized floating-point
number 0-5

intermediate result 0-5
internal microprogramming (IMP)

exceptions 6-10
instruction formats 2-16
instruction set 10-1

X-6

internal microprogramming (IMP) (continued)
machine check procedure 9-11
machine checks 9-7
objects

definition 2-11
description 211
descriptors 2-11
send/receive counter (SRC) 5-13
send/receive message (SRM) 5-12
send/receive queue (SRO) 5-10
task dispatching element (TOE) 5-4
task dispatching queue (TOO) 5-4

operational unit (aU) numbers 7-9
procedure 5-1
structure 2-1
tasking 5-3
timer support 9-4

interruptible instructions
interruption of instructions
interruptions 2-18
interrupts 5-2

pending 5-2
tests for 5-2

intertask communications
example 5-18

intertask synchronization
example 5-20

interval timer

5-15
2-17

5-18

5-18

as microcode function 3-2
definition 0-5
format 9-5
programming note 9-5
repetitive 9-5
second interval timer 9-5
task interval timer 9-5

intervention required signal 7-44
invalid

definition xii
descriptor exception 6-18
floating-point conversion
exception 6- 22

floating-point operand 6-19
operation codes 6-7
page exception 6-22
pin request exception 6-22
pool state exception 6-22
segment exception 6-22
segment group address exception 6-22
write request exception 6-23

invocation 0-5
lac (see input/output controller)
10M (see input/output manager)

L

J

J (see jump displacement)
jump displacement (J) 0-5, 2-16

K

keyboard 4-3

L

L (operand length) 0-6
LB (see lookaside buffer)
length conformance exception 6-23
length of fields, explicit 2-3
length of fields, implied 2-3
load-multiple I/O register function
event 7-18

load-unique I/O resolved address
register 7 -18

loading control and main storage 9-2
loading state of task 3- 2
LOB (see loop operation block)
local storage register 0-6
long format 0-6

description 2-6
range of magnitude 2-7
values 2-7

lookaside buffer (LB) 0-6, 8-9
loop operation block (LOB)

definition 0-6
description 7-23
format 7-23
programming notes 7-24

M

M (mask operand) 0-6
machine check

definition 0-6
during translate instruction 9-28
handler 2-26
handling

check stop 9-7
check stop state 9-7
description 9-7
machine check mode 9- 7

hard 9-7
IMP machine check 9-8
log 9-12
mode 9-8
procedures 9-9

machine check (continued)
soft 9-7
special error conditions 9-28

machine check log buffer (MCLB)
definition 0-6
format 9-13
in control address table 2-26
machine check log 9-12
processor status 9 -1 2
task status 9-12,9-26

machine communications area (MCA) 0-6
machine interface (MI) 0-6
machine product

hardware 1-1
horizontal microcode (HMC) 1-1
microcode 1 -1
vertical microcode (VMC) 1-1

machine support functions
initial microprogram load (lMPL) 9-2
internal microprogramming timer
support 9-4

machine check 9-7
program event monitoring (PEM) 9-3
stack handling 9-29
system control 9-6

main storage (see real storage) 0-6
main storage error exception 6-23
masked not-a-number 2-7
maximum value 2-3
message operation block (MOB)

definition 0-6
description 7-24
format 7-25
programming notes 7-25

microcode 0-6, 1-1
microprocessor stopped state 4-2
minimum bias 2-6
minimum value 2-3
mnemonic-instruction name cross
reference C-1

mnemonic-operation code cross
reference B-1

MOB (see message operation block)
modification of hash table entries 8-10
modification of primary directory
entries 8-10

monitor 0-6
monitored SRM descriptor 6-23
monitored SRO descriptor 6-23
monitored TOE descriptor 6-23

monitored ACO exception 6-23
monitored CRE exception 6-23
monitored SRM descriptor exception 6-23
monitored SRO descriptor exception 6-23
monitored TOE descriptor exception 6-23
MSAR (see main storage address register)

Index X-7

N

Nan (see not-a-number)
negative infinity (see infinity)
no-operation 0-6
normalization 2-9
normalized number 0-6
not-a-number 0-6, 2-7
not used xii
notes xii
nullified instructions 0-6, 2-24
number

denormalized 2-6
floating point 2-5
real 2-6
symbolic 2-7

o

OB (see operation blocks)
object 00-005
object address 9-33
objects (IMP)

alignment 2-12
definition 0-7

offset 0-7,8-2
one-byte registers (r) 2-2
operands

explicit designation 2 -14
immediate 2-14
implicit designation 2-14
implied length 2-14
referencing diagram 2-15
register 2 -14
storage 2-14

operation block
address operation block (AOB) 7-20
channel order field 7-4
definition 0-7
description 7-14
device order field 7-4
format 7-14
function operation block (FOB) 7 -17
loop operation block (LOB) 7-23
message operation block (MOB) 7-24
program operation block (POB) 7-16

operation code
assignments C-1
definition 0-7
description 2-14
extender field 2-16
extender in MCLB 9-22
mnemonic cross reference B-1

operation exception 6-23

X-8

operation program
definition 0-7
description 7-26
error recording 7-74
errors 7-74
example 7-26
programming notes 7-28

operation request element (ORE)
definition 0-7
description 7 -12
format 7-12
operation block 7-4
programming notes 7-13
response field (BSTAT) 7-4

operational state 4-2
operational unit (OU)

assignment of OU numbers 7-9
definition 0-7
I/O device addressing 7-9
programming notes 7-9
response field 7-4

operational unit error
description 7 - 73
device errors 7-74
error recovery procedures 7-76
operation program error recording 7-74
operation program errors 7-74
operation unit error recovery 7-74
recovery 7 - 74
task error status field 7-74

operational unit number one 9-6
operational unit numbers 0-7
operational unit numbers, assignment 7-9
operational unit queue (OUQ)

definition 0-7
description 7-10
format 7-11
programming notes 7-10

operational unit status fields
basic status (BSTAT) 7-42
device status (DSTAT) 7-43
functional status (FSTAT) 7-43
intervention required signal 7-44

operational unit task
base register assignments 7-8
command completion functions 7-6
definition 0-7
description 4-3, 7-6
invoked 7-6
storage and I/O interface 4-3

operator / service panel 4-3, 9-6
ORE (see operation request element)
organization of this manual xi
OUQ (see operational unit queue)

p

packed data format 2-4
page

boundary crossing 7-35
chain stack 7-35
chaining

description 7 -35
event handler 7 -35

definition 0-7, 0-7,8-2
fault

definition 0-7
description 7-36, 8-2
exception code 6-10
HMC built-in function 3-2

frame
definition 0-7
description 8-2

identifier (PIO)
definition 0-7
description 8- 2

read error exception 6-23
pending interrupts 5- 2
permanent storage assignments 0-7, 2-25
PIO (see page identifier)
pin count (PINCNT) 0-7
pinning 0-7
placeholder 0-7
PMCH (see processor machine check)
PMCH state chart 9-16
POB (see program operation block)
pointer to data area 9-42
positive infinity (see infinity)
post event 7 - 76
preempt wait 0-8
preferred sign and digit codes 2-5
prefetched instructions 2-17
primary directory (PO)

address translation 2-13
alignment 2-12
assigned virtual storage location 2-26
definition 0-8
description 8-6
entry 8-6
entry format 8-6
in control address table 2-26
lookup 8-8
storage address formation 8-9

prime TOO 2-26, 5-4
procedure 0-8
procedure execution 5-1
processing unit (CPU) 0-8
processor 4-1
processor machine check handler (PMCH)

definition 0-8
procedure 9-9
restart task 9-10
stop state machine check 9-10

processor machine check handler (PMCH) (continued)
trapping 9-8
wait state machine check 9-10

processor machine check procedure 9-9
processor states

operational 4-2
stopped 4-2

processor status 9-12, 9-14
processor stopped state 4-2
program event monitor (PEM)

definition 0-8
programming note 9-3
start address 9-3
stop address 9-3

program event monitoring exception 6-24
program exceptions

address compare 6-14,9-41
address translation 6-14
addressing 6-15
allocate page frame 6-15
binary divide 6-15
binary overflow 6-15
cause 2-24, 6-14
chain conflict 6-15
data exception
decimal overflow

6-16
6-16

6-16 decimal zero divide
description 2-19
descriptor access 6-16
edit digit count 6-17
edit mask syntax 6-17
effective address overflow 6-17
end-of-chain 6-18
execute 6-18
floating-point inexact result 6-19
floating-point invalid operand 6-19
floating-point overflow 6-19
floating-point underflow 6-21
floating-point zero divide 6-22
handling 2-24
invalid descriptor 6-18
invalid floating-point conversion 6-22
invalid page 6-22
invalid pin request 6-22
invalid pool state 6-22
invalid segment 6-22
invalid segment group address 6-22
invalid write request 6-23
length conformance 6-23
main storage error 6-23
monitored ACO 6-23
monitored CRE 6-23
monitored SRM (descriptor)
monitored SRO (descriptor)
monitored TOE (descriptor)
operation 6-23
page read error 6-23

6-23
6-23
6-23

program event monitoring 6-24
second chain search 6-24
send/receive counter overflow 6-24

Index X-9

program exceptions (continued)
specification 6-24
stack 6-26
task interval timer 6-26
verify 6-26

program operation block (POB)
definition 0-8
format 7-16
programming notes 7 -17

programming notes xii
purpose of this manual xi

Q

OCT (see queue control table)
quadword 0-8, 9-33
queue 0-8
queue control table (OCT)

definition 0-8
description 7-28
event stack

description 7-32
format 7-29
programming notes 7-33

format 7-29
location of 7 -41
programming notes 7-32

queue interface 4-3

R

r (one-byte register)
R (two-byte register)
range of magnitude
read event command
real numbers 2-6
real storage 0-8

0-8
0-8

2-7
7-78

reference and change recording 8-10
I register, address 0-1,7-35

register descriptions
base registers (B) 2-2
hardware registers 2-2
one- byte registers (r) 2- 2
segment identifier registers (S) 2-2
two-byte registers (R) 2-2

register loading 6-9
register operands 2-14
register to register (see RR)
register to storage (see RS)
registers SO and RO 2-18
repetitive interval timers 2-26, 9-5
replenishing the ACO with CREs 6-10
reserved xii
reserved values 0-8
resolved address 0-8
resolved address register (RAR) 7-35
resolved virtual addresses 7-35

X-10

response field 7-4
restart task 9-10
result field 0-8
result offset 0-8
RI (register to immediate) 0-8
rotary switches 0-8
round to nearest 0-8
round toward negative infinity 0-8
round toward positive infinity 0-8
rounding 0-8, 2-10
rounding toward zero 0-9
RR (register to register) 0-9
RS (register to storage) 0-8

s

saving/restoring 6-2
SCA (see system control adapter)
scalar 0-9
second chain search exception 6-24
second interval timer 9-5
segment 0-9, 8-2
segment group 9-46
segment identifier (SID) 0-9, 8-2
segment identifier registers (S) 2-2
send/receive counter (SRC)

definition 0-9
description 5-13
for clock comparator 2-26
for interval timer 2-26
format 5-13
overflow exception 6-24

send/receive message (SRM)
definition 0-9
description 5 -1 2
format 5-12

send/receive queue (SRO)
busy status 5-15
definition 0-9
description 5-10
exchange intertask information 5-10
format 5-12, 7-11
interruptible instructions 5-15
task synchronization 5-10

sequential execution 2-17
service panel 4-3
set 0-9
short format 0-9

description 2-6
range of magnitude 2-7
values 2-7

SI (storage to immediate) 0-9
SID (see segment identifier)
sign and digit codes 2-5
sign bit 2-10
signed exponent 0-9, 2-6
signed zero 0-9, 2-10
significand 2-5

L

significant 0-9
soft machine check 9-7
source offset 0-9
source operand 0-9
source record length 0-9
source/sink 0-9
space pointers

alignment 2-12
format 9-46
processing 9-46
segment group header 9-48

special interrupt test 5-2
specification exception 6-24
SRC (see send/receive counter)
SRM (see send/receive message)
SRQ (see send/receive queue)
SS (storage to storage) 0-9
stack 0-10
stack exception 6-26
stack handling

hardware tags 09-036.1
hold chain structure 9-31
hold/free function 9-31
stack structure 9- 29

stack structure 9-29
start address 9-3
start channel command
start device command

7-78
7-78

start of the instruction stream 5- 2
statistical data recording 0-10
status of procedure 6-3, 6-9
status of task 5-17
status retention 9-44
stop address 9-3
stop state machine check 9-10
stopped state

(see also Check Stop in Chapter 9)
check stopped 4-2
microprocessor stopped 4-2
processor stopped 4-2

storage
address 2 -17
address formation 8-9
capacity 0-10, 2-3
cycle 2-3
descriptions 2-1
operand addressing 2-17
operands 2-14
width 0-10, 2-3

storage to immediate (see SI)
storage to storage (see SS)
storing state of task 3-2
string 0-10
supervisor exit 6-12
supervisor linkage (SVL)

available CRE queue (ACQ) 6-6
call/return element (CRE) 6-3
concepts 6-1
definition 0-10
description 2-18

supervisor linkage (SVL) (continued)
exception mask 6-9
exception presentation 6-1
interruptions 2-18
mechanism 6-2
register loading 6-9
replenishing the ACQ with CREs 6-10
saving/restoring 6-2
status of the procedure 6-9
summary 6-12
table 6-6
trapping instructions 2-18

supervisor linkage and exception
presentation 6-1

supervisor linkage control
descriptor access exceptions 6-12
exception signaling 6-7
H MC exceptions 6-10
IMP exceptions 6-10
operation code hex 00 and hex 40 6- 7
page fault 6-10
program to program 6-7
programming note 6-12
register loading 6-9
supervisor exit 6-12
trapped instructions 6-7
trapped operation code 6-10
trapped operations 6-10

supervisor linkage structures
available CRE queue (ACQ) 6-6
call/return element (CRE) 6-3
supervisor linkage table 6-6

supervisor linkage table 0-10
definition 0-10
description 6-6
format 6-6

suppressed instructions 0-10, 2-24
suspended instructions 0-10, 2-24
SVL (see supervisor linkage)
symbolic numbers

infinity 2-6
not-a-number 2-7

symbols used in instruction formats 2-16
synchronous 0-10
system console

description 4-3, 9-6
display 4-3
keyboard 4-3
operator / service panel 4-3, 9-6

system control
system console 9-6
system control adapter 9-6

system control adapter (SCA)
command field 9-6
definition 0-10
description 9-6
during stopped state 4-2
operational unit number one 9-6
system control queue 9-6
system maintenance 9-6

Index X-11

system control instructions 2-13
system control queue 9-6
system features 1 -1
system initialization time 7-35
system maintenance 9-6
system specialization time 0-10, 7-35
System/38 I/O structure 7-3
System/38 instruction set 1-1
system units

address registers 7-35
hash table 8-4
machine check log buffer 9-13
MVMC 10-278.1
processor status 9-19,9-20.1, 9-26, 9-27
translation process 8-2
use code 2-26

T

tag bit 0-10, 9-36
target send/receive counter 9-4
task control

enable/disable functions 5-17
task dispatching 5-16
task switching 5-17
task timing 5-17

task control mode 5-10
task dispatching

active task 3- 2
current task 3-2
description 3-2, 5-16

task dispatching element (TOE)
current state of task 5-4
definition 0-10
disable PEM mode 5-10
format 5-5
maskable exception 5-10
task control mode 5-10

task dispatching queue (TOO)
chained list 3-2
definition 0-10
dispatchable tasks 5-4
format 5-4
prime 5-4

task error status field 7 - 73
task interval timer

decremented through zero 6-26
description 9-5
expiration 6-26
in CRE 6-4
task timing 5-17

task status 9-12,9-26
task switch operation 9-40
task switch trace record,
description 9-39

task switch trace record, format 9-39
task switching 5-17
task synchronization 5-11

example 5-20
task timing 5-17
task timing, task interval timer 5-17
task, dispatching

active task 3-2
current task 3-2
description 3-2
invoking task dispatcher 5-16
task switch 5-17

X-12

task, dispatching (continued)
tasking structure 5-4

tasking
definition 0-10
description 5-1
status of task 5-17
task dispatching 5-17
wait state 5-17

tasking structure
send/receive counter (SRC) 5-13
send/receive message (SRM) 5-12
send/receive queue (SRO) 5-10
task dispatching element (TOE) 5-4
task dispatching queue (TOO) 5-4

tasks 0-10
TOE (see task dispatching element)
TOO (see task dispatching queue)
terminated instructions 0-10, 2-24
terminology

invalid xii
not used xii
reserved xii

time-of-day clock (TOO)
definition 0-10
format 9-4

time quantum 0-10
TOO (see time-of-day clock)
trace control table

description 9-37
format 9-38

translation process
byte identifier (BIO) 8-2
page 8-2
page identifier (PIO) 8-2
programming note 8-3
segment 8-2
segment identifier (SIO)
virtual = real addressing
virtual = virtual addressing

trap 0-10
trapped instructions

definition 0-10
description 6-7
operation 6-10
operation code 6-10

trapping mechanism 2-18
trapping to the PMCH 9-8
two-byte registers (R) 2-2

u

8-2
8-2

8-2

unbiased exponent 0-11
unmasked not-a-number 2-7
unordered 0-11
unused operation code extension field 6- 7
use code 2-26

v

VAT (see virtual address translator)
verify exception 6-26
vertical microcode (VMC)

definition 0-11
description
service aids

virtual = real

1-1
9-37

address description 2-13
address mechanism 7-36
address translation 8-2
definition 0-11

virtual = virtual addressing 8-2
virtual address

components 8-2
definition 0-11
description 2-4
operation 2-13
overflow protection 2-13

virtual address translator (VAT)
component maintenance 8-10
components 8-4
control information 8-4
definition 0-11
facilities included 2-13
hash table 2-13, 8-4
lookaside buffer 2-13, 8-9
machine checks 9-28
maintenance instructions 2-13
modify hash table entries 8-10
modify primary directory entries 8-10
overview 8-2
primary directory 8-6
primary directory address 2-13
reference and change recording 8-10
translation process 8- 2

virtual address verification
instructions 2-13

virtual storage 0-11
virtual storage addressing 8-1
VMC (see vertical microcode)
VMC service aids

address compare mode
TOE control bit 9-37
trace control table address 9-37

task switch trace facility 9-37

w

wa it state 5-17
wait state machine check 9-10
what YOIl should know xi
word 0-11
worst-case path 5-2

z

zone 0-11
zoned data format 2-4

Index X-13

X-14

IBM System/38
Internal Microprogramming
Instructions, Formats, and Functions
Reference Manual

SC21-9037-3

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications. Direct any
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not
include your name and address below. If your comment is applicable, we will include it in the next revision
of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s) :

No postage necessary if mailed in the U.S.A.

Please contact your nearest IBM branch office to request additional

publications.

Name

Company or

Organization

Address

Phone No.

City State Zip Code

Area Code

Fold and tape. Please do not staple.

---,

BUSINESS REPLY MAIL
FIRST CLASS I PERMIT NO. 40 I ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
Rochester, Minnesota, U.S.A. 55901

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

._---~
Fold and tape. Please do not staple.

---------- ----- ---- - ---- - - ----------_.-
"

L

IBM System/3S
Internal Microprogramming
Instructions, Formats, and Functions
Reference Manual

SC21-9037-3

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications. Direct any
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not
include your name and address below. If your comment is applicable, we will include it in the next revision
of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

No postage necessary if mailed in the U.S.A.

Please contact your nearest IBM branch office to request additional

publications.

Name

Company or

Organization

Address

Phone No.

City State Zip Code

Area Code

Fold and tape. Please do not staple.

---,

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 40 / ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
Rochester, Minnesota, U.S.A. 55901

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

---~
Fold and tape. Please do not staple.

---------- -------- - ---- - - -----------_.-

"

8

.1111 1111
11-· UIHIII

11:11:11
11111111

" IBM System/38 Internal Microprogramming Instructions, Formats, and Functions Reference Manual Printed in U.S.A. SC21-9037-3

I""l
I

I'­
I""l
a
0-
I

.-
N
U
(/)

"

(V')
I

I'­
(V')
o en

I
.-
N
U
(j)

