
SRI-CSL-77-002n

"WARD 

SWARD ARCHITECTURE 

PRINCIPLES OF OPERATION "	,.,­
.. " 

G. .J. Myers 

Auqus t 31, 1979 (Curren t Version Da tel 

Sentember 16, 1977 (Initial Version Date) 

IBM Syst0ms Research Institute 



PAGE 2 

CONTENTS 

1. Overview••••••••••••••••••••••••••••••••••••••••• 3 


2. D3.ta Typ~s•••••••••••••••••••••••••••••••••• ~ •••• 8 

Primitive Cell Types •••••••••••••••••••••••••• 8 

structure Cell Types ••••••••••••••••••••••••• 12 

Nested Cell Types •••••••••••••••••••••••••••• l) 

~uxiliary Data Types ••••••••••••••••••••••••• 17 


3. Storage Objects ••••••••••••••••••••••••••••••••• 22 

The Module ••••••••••••••••••••••••••••••••••• 22 

The Activation Record•••••••••••••••••••••••• 27 

Tht? Data-Storage Object•••••••••••••••••••••• 27 

Th8 POLt ••••••••••••••••• o ••••••••••••••••••• 27~ 

4. 	 Instruction Formats and operand Addressing •••••• 28 

Operation Codes•••••••••••••••••••••••••••••• 28 

Address Pields ••••••••••••••••••••••••••••••• 28 


5. Fault Handling •••••••••••••••••••••••••••••• : ••• 30 

. Fault Descriptions••••••••••••••••••••••••••• 30 

Entry-Point Zero ••••••••••••••••••••••••••••• )) 

Program state After a Fault•••••••••••••••••• 34 


6. Instruction Summary ............................... 36 


7. Instruction Specifications•••••••••••••••••••••• 40 

General Instructions ••••••••••••••••••••••••• 41 

Arithmetic Instructions•••••••••••••••••••••• 44 

Comparison-and-branch Instructions••••••••••• 46 

Boolean Instructions••••••••••••••••••••••••• 49 

String and Search Instructions••••••••••••••• 50 

Control Instructions ••••••••••••••••••••••••• 52
". Ad~L0ssing Instructions•••••••••••••••••••••• 57 

Debugging Instructions••••••••••••••••••••••• 66 


8. Object-Code Examples •••••••••••••••••••••••••••• 70 

t Calculation of the Address-Field Size•••••• ~.75 


f • 
 9. The One-Level Stor'::! ••••••••••••••••••••••••••••• 77 

10. The Concepts of "Program" and "I/O" ••••••••••••• 79 


11. Instruction-Format Summary•••••••••••••••••••••• 80 


....:. -­

...... 'J.'" 



PAGE 3 


;.. , 

1. OVERVIEW 

The Sw.a.n.o (softw"l.re-reliability-directed) architecture 
h~s two prim~ry objectives: 1) enhancing software 
reli~bility hy 1~tecting or preventing common sem~ntic 
err~rs 4nd certain logic errors, limiting the consequences 
of ~rrors, ~ncouraging the use of good software design and 
proqramming practices, and supporting testing and debugging 
packages, and 2) enhancing system performance by 
suhstantially reducing the number of bits that must be 
processe1 by the CPU to execute a given program. These 
goals are discussed in more detail elsewhere; hence they are 
not discussed in this document. 

This d0cument defines the computer architecture of, the 
proc~ssor (i.e., the abstraction of the processor as seen by 
a machine-language programmer or a compiler writer). The 
first chapter (this one) contains a brief overview of many 
of the conc~pts employed in the architecture. Only chapters 
2-7 form the official architecture definition. A~so, 
occlsionally notes will be seen in rectangular boxes. These 
notes ar~ not part of the architectural specification; in 
most cases they are notes about implementation and are 
included for clarity. 

The maior deviations in this architecture from 
conventional architectures are in the concept of storage and 
addressing. Rather than representing storage as a single 
linear addr~ss space, storage is represented as a 2~1 of 
uniquely named storage objects. Also, rather than treating 
"sacondary" storage (e. y., disk filGs) differently from 
"main" storage, the view of storage has been unified into a 
single representation. 

Furthermore, all data in storage is self-identifying 

(taqged). The machine recognizes composite data types 

(e.g., arrays, structures) as well as primitive data types. 

Rather than employing a fixed-size word concept, data and 
addr~sses are variable in size. The machine provides a 
facility for defining suppl~mental instruction sets and data 
types. 

A major concept in the architecture is that the machine 
should severely restrict the address space available to an 
individual module (e.g., FORTRAN subroutine or function 
subprogram, PL/I external procedure or function, COBOL 
subprogram). That is, d module's address space should be 
reduced to only those data to which the module needs access: 
its parameters, locally defined variables, and constants 
(i.e •• only those data named in the sourc~-language version 
of the module). The implication of this is that the machine 
must manage storage at a high level, much higher than the 
von Nenmann view of a singJ.e linear sequential memory. 
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Relateu to the first concept is a second concept: 
traditional machine addresses should be discarded. There 
are four types of storage objects that must be uniquely 
addr2ssable: a module, an activation record (the collection 
of data allocated for an activation or invocation of a 
module), a data-storage object (explicitly allocated area of 
storag8), and d port (an interprogram communication device). 
When one of these objects is created (i.e., a module is 
defined to the machine, a module is activated (called), a 
proqr~m explicitly allocates some storage, or a port is 
cre~ted), the machine assigns it a ~nlgy~ name (called a 
lQ9.1£!!1 2.!!!!rsz.§§ and stored in an area called a E2.!n!§£). 
Hen~e the machin~ employs capability-based addressing. The 
machin2 prohibits programs from creating logical addresses 
on their own and from altering the value of a pointer. When 
one of these objects is freed, its unique logical address is 
never reused. 

The instructions within a module can only address data 
defined within the module or data within any storage that is 
dynamically created by the module. Since a module cannot, 
on its own, credte or alter a pointer, the only other 
storaqe that it can reference is storage whose pointer is 
passed to the module from another module. Not only does 
this concept facilitate the detection of addressing errors 
(a.g., the dangling-reference problem), but it also serves 
as a storaqe protection mechanism. In addition, it 
introduces a fine granularity of storage protection and 
sharing, even down to the level of a single variable or 
worj, and eliminates the need for privileged states (e.g., 
"sup8rvisor state"). 

One can cause pointers or capabilities to refer through 
other pointers, thus establishing transparent indirect 
addLessing to any level between machine instructions and the 
data or objects upon which they operate. 

The thir~ necessary concept in the architecture is that 
all data must be self-identifying. This means that 
descriptive infoLmation will be stored with each item of 
dat~. describing such attributes as its size and type. This 
self-identificltion allows the machine to detect 
incompatible op~rands of an operation and allows it to 
enforce otheL rules (e.g., the rule above prohibiting the 
creation and manipulation of pointers). Two rules 
concerning self-identification, or tags, must be enforced: 
1) the tag a 1 wa ys desc['ibes the prog rammer' s in tended 
properties of the data (e.g., the attributes in the DECLARE 
statement), and 2) the value and representation of the data 
always agree with the tag. 

In most other non-von NAumann machines, the concepts of 
tags and descriptors are treated distinctly. However the 
con~epts havo. much in comrnop. In the SWARD machine the two 
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con~epts hdV~ been generalized into one concept called a 
tag. 

To close~he semantic gap between language data types 
and machine data representations, most data types known to 
the machine are variable in size. Not only does this 
prevent ;cert~in types of semantic errors that arise when 
variabl8-size language data types are mapped into fixed~size 
machine data types, but it leads to more efficient use of 
storage. 

~mployinq hath tagged storage and capability-based 
addressing giv~s the architecture an added level of 
security. Even if a program were to obtain, from another 
proqram, it pointer (ciipability) to an obj"!ct that it should 
not have, the program would be able to reference the object 
only if it knew its precise attributes (i.e., the 
representations of the data within the object). 

The architgcture also contains important 
data-independence concepts, allowing one to write programs 
that are highly insensitive to the data being processed, yet 
without compromising the reliability and security goals of 
the architecture. These concepts, for instance, allow one 
to write a program to sort (order) the elements in any array 
(i.c., without being dependant on the attributes of the 
arriY elements), or to ~rite a computational subroutine that 
is independent of the attributes of its arguments (e.g., 
binlry, decimal, floating-point). These concepts, called 
Q~1YEg~, Q=§i~g~, and ll=b2Yn~~1 cells, will lead to 
innovative programminq-language extensions not achievable in 
conventional machines. 

One consideration that is influenced by many of the 
previous points is the method used by instructions to 
(lddress their operands. Many for-ms have been proposed, but 
a b~sic underlying consideration is whether the architecture 
should contain general-purpose registers or evaluation 
stacks (or both or neither). In studying various addressing 
mech~nisms, no apparent relationships to software 
reliability wer~ found. However the architecture contains 
neither registers nor- evaluation stacks (but it does use 
st~cks for subr-outine linkages). An instruction addresses 
an ~perand by specifying tbe relative location of that 
oper~nd within the address space of the module. Registers 
and evaluation stacks were not used because, contrary to 
popular belief, storaoe to storage addressing appears to be 
mor-2 efficient. The adrtressing method used in the 
architecturp r~sults in small address fields in 
instructions, thus negating the usually cited advantage of 
register and stack-oriented instruction sets. 

'c.. Another necessary concept in the architecture is the 
\.. ability to oistinguish bet;'dcn defined and undefined data 
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valu~s. In addition to its valid values, each data item can 
have an additional value called "undefined." Any attempt to 
use a data item's "undefined" value will be detected by the 
machine. All addressable data that is not initialized to 
some value is automatically initialized to "undefined." In 
addition, instcuctions are present to explicitly test a data 
item foe an undefined value and to explicitly mark a data 
item as undefined (e.g., for a language in which the value 
of a loop itecation variable is supposed to be undefined 
when the loop terminates). 

For collections of data in which individual items can 
be referenced, the individual items can be defined or 
und~fined. Thus, in an array, it is possible that some 
~lements will have defined values and that some will be 
undefined. In a character string, it is possible that ~ome 
of the charact2r positions are "undefined" values. 

Given that the machine is aware of the concepts of 
modules and activation records, and given that the machine 
must check arguments and parameters for consistent number 
and ~ttributes, a logical deduction is that the architecture 
should provide a call/return mechanism that is semantically 
close to, or equivalent to, the CALL/REtURN statements in 
programming languages. That is, the call mechanism 
allocates an activation record for the called module and 
adds it to the stack of current activation records, 
initializes variables in th~ activation record, initializes 
parlm~t~rs, suspends execution of the current module, and 
begins execution of the called module. Since all data in 
the system is tagged, the call mechanism needs a "die" for 
vari~bl~s in the activation record, describing how each data 
item should be tagged when th8 activation record is created~ 

Since the ~rchitecture is supposed to detect such 
err~rs as exceeding an array dimension bound and 
inconsistent definitions of records (e.g., PL/I structures) 
among modules, the architecture must be aware of these data 
types. Hence the architecture contains the "less primitive" 
data typ~s of arrays, structures (ordered sets of 
heterogeneous data items), and strings. Supporting such 
data types is more involved than it first appears. For 
instance a language such as PL/I provides for arrays of 
structnres, structures of arrays, arrays of strings, 
structures of structures, structures of arrays of 
structures, ani so on. 

~ote that the self-identification property mentioned 
earli~r applies to these data. types. For instance every 
arrly, structure, and string is tagged. The machine 
instructions are generic; for instance there is only one ADD 
instruction, and its two op~rands can be any meaningful data 
types that pass certain consistency tests. For instance an 
op~r~nd to an 'DD can bp a ~imple numeric variable, an array 
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element. an entir~ array, or a numeric field in a structure. 

Another c~nsideration in the architecture is a 
mechanism to handle exceptional conditions. The mechanism 
uniformly applies to any type of "fault" or interrupt, be it 
a m~chine d0taction of an error, detection of some 
explicitly identified event (i.e., for ON-units), or a 
machine detection of some debugging action such as the 
execution of a particular instruction. Each module is 
capable of describing what types of faults it desires to 
han1le. When a fault occurs, the machine searches through 
the activation-record stack looking for the first module 
that wants to handle that type of fault. When one is found, 
the machine "calls" the module (entering it at a particular 
point and making it a subroutine of the module initiating 
the fault) and passes it arguments describing the fault. A 
fault-handling entry point has the ability to resume . 
execution at the point beyond the fault, repeat execution of 
the instruction causing the fault, or to decide to buck the 
fault UP to a higher module. It is assumed that the highest 
module (the first one invoked in executing a program) is 
part of the op~rating system or a debugging tool, and this 
module will specify that it can handle all types of faults. 

In summary, the key attributes of the architecture are: 

- Self-identifying, or tagged, storage 
- N~sted, or recursive tags, for describing less-primitive 

data types 
- Capability-based addressing 
- Indirect addressing with capabilities 
- S~nd/r8ceive machanism for interprogram communication 

and source/sink I/O 
- One address space per program module 
- Variable-size addre~ses 
- Hierarchical fault-handling mechanism 

Domain addressing (addressing columns in tables) 
- One-level store 
- Automatic subroutine management via activation stacks 
- Fixed-point decimal dCita representations 
- Powerful instruction repertoire, including array 

operations, a table-search instruction, field/string 
operations, automatic data conversions 

- Generic instructions 
- Ability to write highly data-independent programs 
- Program-tracing facilities 
- Ability to add supplemental instruction sets and 

data types 
- Frequency-hased-encoded operation codes 
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2. DATA TYPES 

Before discussing the data types, a few basic storage 
concepts must be introduced. The basic unit of storage 
allocation is a !Q~&n, a four-bit quantity. The basic unit 
of storage addressing is a £~!1, a variable-number of 
contiguous tokens. A cell corresponds to a variable or data 
item in a sourc~ program and has two major components: a !~g 
which describes the attributes of the cell, and a £2n1~n1 
which describes the value of the cell. 

!he machine recognizes 15 data or cell types of which 
10 ire consid~red £rim1!112 data types, 1 is a §trQ£!g£~ 
d~ta type, ~nd 4 ~re n~§1Q1 data types. The basic 
diffp.rence ~mong the 3 categories are that primitive cells 
have single values, structure cells describe collections of 
other cells, ana nested cells have tags which in turn 
contain tags. 

PRIMITIVE CELL TYPES 

The primitive cell types are integer, decimal 
fixed-point, decimal floating-point, boolean field, 
character field, token field, boolean string, character 
string, token string, and pointer. The tag of each cell 
describes its type and size, and the contents component 
describes its value. 

An integer (i) cell has the following format: 
• 

The fiest field (one token) indicates that this cell is 
an int-ager cell. The sf::cord field contains the value of the 
cell in base-two two's-complement representation. The value 
can Lange from -8,388,607 to +8,388,607. If the second 
field h~s the value 800000 (in hexadecimal), the cell has 
the v.l1ue "und~fined." 

The • mark is used in this specification to indicate 
the boun~ary hetween the tag and content components. 

A decimal fixed-point (dfx) cell has the following 
format! 

• 
111]Ql~1~Qlf2i~1§ignl_ ya!u~ __1 

1 1 1 1 sizG 

The size field defines the number of digits in the 
number. The fsiz field indicates the number of digits to 
the r-iqht: of an imaginary rl.ecimal point and must be less 
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than or equal to size. The sign field specifies ~he sign of 
the value •. If it is set to 0000, the value is positive; if 
it is set'~o OOP1, the value is neqative; if it is set to 
1111, the ceil: has the value "undefined." The last field 
contlins the absolute value of the number times 10 to the 
power fsiz. The value is expressed in the base-10 
bin 3. Ly-cod ed' dec imal repre sen ta tion. 

As an illustration, a variable with attributes FIXED 
DECIMAL(5,2) and having the value 7.9 would be represented 
as E52000790. 

A decimal floating-point (dfl) cell has the following 
format: 

• 
ljjQjl~11g1~igQlg!£Ql~!£QQ~rrl1_m~nii§s£ _1 

1 1 1 1 2 size 

The second field defines the length of the mantissa, 
the sign field is the same as that described for the 
previous cell, and the fourth field describes the sign of 
the exponent. The fifth field contains the absol~te decimal 
value of the exponent (0 to 99). The last field contains 
the decimal mantissa. Operations on floating-point cells 
alv!ys normalize the mantissa (shift it so that no leading 
zeros occur unless the cell's value is zero). The exponent 
and mantissa are expressed in the base-10 binary-coded 
d~cirnal representation. 

Note that the decimal fixed-point and floating-point 
cells allow two representations of zero (+0 and -0). Only 
+0 is a valid representation of zero; -0 is treated as an 
unknown data format. 

Th~ boolean field (hf) cell has the forma t: 
•

111QQ1__§!~~__1_ yaluQ _1 

1 3 size 


It represents a fixed-length field of boolean (true or 
fa 1se) val ues. The second field indicates the number of 
elements (1 to 4094). The third field, whose length is 
specified by the second field, contains the string elements 
(one pp.r token). The only element val ues are 0000 (false). 
001)1 (true), 'lnci 1111 (undefined). 

A character field (cf) cell has the format: 
•

l1Ql11__§1~f__1__v~l~e__1 

1 3 2 x size 


It represents a fixed-length field of EBCDIC 
characters. The second field specifies the number of 
elements (1 to 4094 characters). The third field, whose 
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length (in tokens) is two times the value of the second 
field, contains the string elements. The element value 
11111111 indicates an undefined element. 

1\ t.oken field (tf) cell has the forma t: 
•

11QJQ1___§!~g___1 __ __1vil~e 

1 5 size 

It represents a fixed-length field of four-bit 
quantities. The second field indicates the number of 
ele~ents (1 to 1,048,574). The third field, whose length is 
specified by the second field, contains the elements (one 
per token). This is the onl y cell type that cannot ha ve the 
"undefined" value • 

.\ boo l(~an s tr ing (bst) ha s th e following format: 

lQ1QQ1____§!~g____1 
11 

___1gng~h___l __ __lvsl~e 

1 1 3 size 

Th~ second field indicates the maximum number of 
booleans in the string <1 to 4094). The third field 
indicates the current number of booleans in the string (a to 
409ij), thus allowing the string to shrink and grow 
dynamically. The fourth field contains the actual string 
where each element is represented as 0000 (false) or 0001 
(true). If the length is FFF, the entire string is 
interpreted to have the undefined value. 

A character string (cst) cell has the format: 
•

lQQ111____~i~g____1_ __l __ yalu£ ___1_:_1~!lg!lL 

1 3 3 2 x size 

The fiolds have the meaning describ~d above. The 
fourth field contains the actual string where each element 
is represented as 8 bits. 

A token string (tst) cell has the format: 
• 

The meaning of the fields is the same as described 
RDOV2, bllt a token string has a maximum size and length of 
1,048,574, and each element in the string is a four-bit 
quantity. If the length field contains fFFFF, the string 
has th8 undf~fined value. The token string is intended for 
use only by compilers and debugging tools. 

The last primitive cell is a pointer (p): it has the 
following format: 
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•

" A pointer is a cell that can hold the unique logical 
address of an object (module, activation record, 
data-st~rageobject, or port) or an entity within an object 
(e.g., a cell within an object). Logical addresses are 
always assigned by the machine and can never be altered by a 
proqram. However, a program is allowed to copy the value of 
one pointer cell into another pointer cell. 

The acod field in the pointer cell represents an access 
or authority code to the object. Its definition is 

.Qi! ~ !!.th~H..!tl_i!_.Q ~!!!:hQ£!iY_!Ll 

1 read no read 
2 write no write 
3 destroy no destroy 
4 copy no copy 

The value 1111 is the undefined value. Copy authority is 
the ability to make a copy of the pointer itself. If a 
pointer does not have copy authority, it cannot be used as 
the source operand of a MOVE or SEND instruction. 

An instruction is available to allow a program to alter 
the access code, but the instruction allows one to only 
!Q~g£ (further restrict) the access • 

•• ~~~**.*** •• *.**.*.*********•• ******* •• **.**.************** 
* Note: Althouqh the bit content of a logical address is * 
* not architected, its interpretation in one implementation*
* of this architecture may be enlightening. ~he logical * 
* address contains a a-token unique system-object name and * 
* two 6-token offsets into the object, offsets of the * 
* addressed item's tag and content components. If * 
* the logical address refers to an entire object, the last * 
* two fields are unused and set to zero. If a logical * 
* address refers to a cell within an object, the first * 
* field contains the object name and the last two fields * 
* are used to locate the cell within the object. Assuming * 
• that object names are assigned on the average of one per * 
* 10 milliseconds, ther~ is a 10-year supply of unique * 
* n~mes. The length of the offset fields imply that the * 
* maximum object size is 16 million tokens. * 
.*~.~*.~**~*~.*.~*~*~***.**.*«*********.******************** 

STRUCTURE CELL TYPES 

The only data type in this category is a structure 
call. A structure describ~s a heterogeneous collection of 
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oth~~ cells. The properties, that distinguish a structure 
feom an 	 array are that r in addition to the entire collection 
of elements having a name r in a structure each element also 
has a namer and the elements in a structure can be different 
dat.l types. 

A structure (st) cell has a tag, but no content, 
component and its format is: 

II 

The second field, a binary number from 1 to 255, 
specifies the number of cells (elements) included in this 
structure. The last field is the cell address of the first 
cell in the structure. The element cells must reside in 
contiguous locations in the address space and must be in the 
same storage die (see Chapter 3) as the structure cell. 
Permissible 01ement types are all primitive cells and array 
cells. Where the structure is an array (see next section) , 
the only permissible element types are domains of primitive 
c~lls. Where a structure is a parameter or relocatable (see 
next section), the only permissible element types are 
r810catable primitive and array cells. 

The concept of a ff!! 1~~!g~§ will be defined in a 
later section, but it will be summarized just briefly here.

Ie... 	 Each !!!QQQ1.:: (e.g., a PL/I external procedure) has an 
associ~ted ~j1I~§§ §Q~g~ in which all cells reside that are 
acc?ssible hy the module. A cell address is simply the 
locltion of a cell within an address space. As an example 
the following PL/I structure 

DECLATIE 1 	 PERSON, 
2 Sl\LARY FIXED DECIMAL (7,2), 
2 NAME, 

3 LASTNM1E CHARACTER {20}, 
3 FIRST NAME CHARACTER (12); 

would result in five cells. A fixed-point cell and two 
character-field cells would reside in contiguous storage 
locations. One structure cell (representing PERSON) would 
specify three elements and contain the cell address of the 
fixed-point cell. Another structure cell (representing 
N~ME) would specify two elements and contain the cell 
address of the first character-field cell. 

A structure is no mor0 than a collective name for a 
sequpnce of otha.r cells ann hence is more general than the 
concep~ of the same name in such languages as PL/I and 
C:)BOL. Machine instructions can ope['ate on structure 
op?rands as well as primitive and other cell types. For 
instance a structure can be passed as an argument, 0[' a 
structure can be moved intq another structure (which causes 
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the machine to locate and move the physical elemerits within 
the structure) •(...c.., 

, --' 

NESTED CELL TYPES 

Ths remaining four cell types are array, parameter, 
relocatable, and domain. 

An array (a) cell has the following format: 
• 

Th~ second field is a binary number which specifies the 
numh~r of dimensions (1 to 15). The third field is a binary 
number (1 to 65535) which indicates the length of the . 
content component of the array element. When an array tag 
app~ars as a nested tag in a parameter or relocatable cell, 
the length field is not used and can contain any value. The 
next fields (six tokens in length, one field per dimension) 
define the upper bound of the array in the corres~onding 
dimension. The product of these fields times the third 
fie11 is tha total number of tokens occupied by the array 
elements. All dimensions have an implicit lower bound of 
on e. 

The next field is a nested tag; it is a tag describing 
the array element. Its length is always seven, but not all 
s~ven tokens are always relevant. For instance, for an 
array of decimal fixed-point values, the nested tag would be 
throe tokens long and would contain 1110 followed by the 
integer size and fraction size and padded with four "don't 
car:?" tokens. Valid element types in an array are all 
primitive cell types and a structure. When an array element 
is a structure, the nested tag is a tag for a structure 
cell. fh8 allowable elements of the structure element are 
primitive cells. They must be defined as domain cells 
(discussed below). 

Conceptually, the last field, the content component of 
the array, is viewed as containing the space for the array 
elements. 
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*••••• *.**.*~~**.****~.**.* ....***********••**.**************** 
* Note: The content component of an array obviously does not. 
• includ~ enouqh space for the array elements. Since the * 
• m~chine performs all subscripting operations, the program • 
* need not know the physical location of the elements. The • 
• l~st unarchit~cted field is used by the machine to identify.
* th~ physical location of the elements. When an array is * 
* crelted (at the time the program is loaded, for "static * 
• arrays," at the time an activation record is created, for * 
* "iutomatic arrays," or at the time an array is explicitly * 
• dynamically allocated by the program), the machine * 
• all~cates storaqe for the elements and places some * 
• internal adlress in this last field. * 
*~.*~.~~***.*~********* ••****.**********.********.****.*••***. 

All subscripting is done by the machine, and many . 
machine instructions function with entire arrays as well as 
array elements as operands. As an illustration of an array 
cell, a one-dimensional, 12 element, array of boolean 
strings of size 10 would be represented as 
71000000000C400\000XXXXXX. 

A parameter (pm) cell has the following format: 
• 

Any variable in a module that is received as a 
p1rameter i~ defined by a parameter cell. The second field 
is a nested tag; it is a tag describing the attributes of 
the parameter and is used by the machine to check the 
correspondence between arguments and parameters. Valid tags 
are tags for all primitive cell types w structures, and 
arrays. The nested-tag field must be seven tokens in 
lenqth, unless the nested tag is for an array. 

If the nested tag in a parameter cell consists of seven 
zero tokens, or if the nested tag in a parameter cell is an 
array tag and the nested tag in the array tag is zero, the 
parameter is a QYU~~!£~!lY ~YE~g (O-typed) parameter. A 
O-typed parameter dynamically takes on the attributes of its 
corresponding argumAnt. If a parameter cell contains a 
nes+.ed ti'!g having a size field (ie e., decimal fixed-point or 
floating point, boolean, character, or token string or 
fi(~l(l) and the size field has the value zero, or: if such is 
the case for a size field in the nested tag of an array tag 
within a parameter, the parameter is a gYn~!i£~l!Y §!~~~ 
(n-sized) parameter, meaning that it dynamically acquires 
the size of the corresponding argument. If the nested tag 
within a parameter tag is an array tag, and one or more 
upper:-bound fields in the array tag have the value zero, the 
parameter is a 1Yrr~ill!£~!!Y QQ~nged (D-bounded) parameter, 
meaning that it dynamically acquires the corresponding 
ext?nt (upner bound) of thp corresponding argument array. 
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" See the last s(?ction of this chapter for more details. 

The last.field is not architected, as was the case for 
the 11st fie1d.·.·in the array cell. However .. if the last 
field has the value FFFFFFF, the parameter has the value 
"undefined.• " R-?gardl~ss of what is placed in the last 
iield, parameter cells are always initialized by the machine 
to the undefined value • 

• ~ ••• ******~k**~~**.**.*********~*********.*.**************** 
* The last field contains an access code and an internal * 
* address to the corresponding argument. The internal * 
~ address points to the content component corresponding to * 
* the argument. * 
****~****.*** ••• *.*** •• ***~~***.*************.*****.********* 

A program uses a parameter cell as if it were a cell 
described by the nested tag. The only difference (which is 
transp~rent to the program) is that a reference to a 
par~meter causes the machine to indirectly locate the 
storage via th~ last field. 

A relocatable (r) cell has the following format: 
• 

iQ1QJi_~~11=11QI_l___B£~____ln~s!eg 1agl 

1 4 4 var 


A relocatable cell represents a cell whose content 
component is located elsewhere (i.e., indirectly located). 
C~lls that would be represented as relocatable cells include 
based variables and element variables in a structure, where 
the structure is based or a parameter. 

The second field is a cell address of the cell from 
which this cell is relocatable. Such cells are referred to 
here as locator cells. A locator cell can only be a 
pointer, parameter pointer, or parameter structure cell. 

The third field (relative cell address), in the case of 
a relocatahle cell that is not an element of a structure, 
must b~ zero. Where the relocatable cell is an element of a 
structurE" (the locator is a pointer to a structure or is a 
parameter structure), the field represents the cell address 
of this cell relative to the first cell in the indirectly 
10cat~d ~tructure. Par example, RCA for the first element 
is 1, RCA for the second element is 1 plus the size (tag and 
content) of the first cell in the indirectly located 
structure. 

If the relocatable cell represents a structure .. but the 
series of cells named by the structure does not begin at the 
cell addressed by the locator (i.e., the structure is a 
"s uhstruct ur e"), PCA is the re la ti va cell address of the 
first cell in the suhstructure.\-' 

l 
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The fourth field is a nested tag defining the type of 
relocatable cell. Valid nested tags are tags for all 
primitive cell types, structures, and arrays. In general, 
if the nest8d tag of the relocatable cell is not the same as 
tha~ of the cell indirectly located by the locator cell, the 
machine will d~tect it as an error when the relocatable cell 
is raferenced i5 an instruction operand. However, 
relocltable cells, in an identical fashion as parameter 
cells, can be Q~iY£~1, Q~2i~g~, or Q=QQQng~Q. See the 
s~ction at the end of this chapter. 

~s was the case for a parameter, a program uses a 
r~locatable cell as if it were not one, that is, it uses the 
cell as if its tag were the nested tag. The machine uses 
the locator cell to locate the appropriate storage location. 

The rules governing the compatibility requirements 
between the attributes of the indirectly located cell and 
th'2 "lttributes of the reloc3.table cell (i.e., the. 
information in its nested tag) are the same as the rules 
qov~rninq argument/parameter compatibility discussed under 
the ACTIV~TE instruction in Chapter 7 and the section at the 
end of this chapter discussing D-typed, D-sized, and 
D-h0u~d~d cells. If the compatibility rules are violated, 
an incompatible-operands fault occurs. 

A domain (d) cell has the following 	format: 

• 


lQQQ11_£gll~29Qf_l__QKK§~1__1ngs!eg 1agl 

1 4 4 var 


It is similar in concept to a relocatable cell, but it 
r~presents a structure element in an array of structures. 
To visualize the concept, think of a one-dimensional array 
of structures (i.e., a table, where entry in the table 
contains multiple data items such as a part name and 
quantity). 1\rray element T corresponds to the Ith row in 
the table, a domain corresponds to a column in the table, 
and a domain element corresponds to the Ith value in a 
particular column. 

The second field is a cell address of the array cell. 
The array must be an array of structures (nested tag is that 
of ~ structure). The array cell can be a parameter or 
r"}loca ta ble. 

The third field defines the offset of the content 
component of this domain within the array element. That is, 
the first domain contains the offset zero, the second . 
contains the size of the content component of the first, and 
so on. 

c., _ The fourth field is a nested tag defining the type of 
l) domain. Valid nested tags are tags for all primitive cells. 
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P~oq~ams add~ess domains as if they we~e arrays having this 
nested tag. The array properties of the domain ~imensions. 
upp~~ bounds)·a.re those in the co~responding array cell. 
Unl~ss otherwise noted in this specification, discussions of 
arn ys include domains, and. discussions of a~ray elements 
include donain elements. 

; 

Hence the machine has 15 cell types. When one accounts 
for the nested or recursively defined tags, however, the 
possible cell types are: 

Primitive Parameter array of primitives 
Structure Parameter array of structures 
Array of primitives Relocatable primitive 
Array of structures Relocatable structure 
?~rameter primitive Helocatable array of primitives 
P~ramet~r structure Relocatable array of structures 

Domain of p~imitives 

wher~ "primitive" denotes a.Dy of the 10 primitive cell 
t.y pes. Al so, most cas es 0 f pa rame te rand reloca table cells 
can have the D-typed, D-sized, and/or D-bounded attribute. 
Uses of many of the cell types are illustrated in examples 
in Chapter 0. 

Note that 15 out of a possible 16 cell types have been 
defined, implying that only one more cell type could be 
added if the architecture is extended. This is not 
necessarily true; if the first four bits of a cell are 0000, 
this is intc~n:J.f}d to rep~es3nt an "escape" code, meaning that 
the next four bits identify the cell type, thus allowing the 
machine to potentially have an unlimited number of cell 
tYP9S. A late~ section do.scribes a feature of the 
archit~ctur~ that allows it to have supplemental instruction 
sets; this p.scape code allows the supplem~ntal instruction 
sets to define new cell types. For instance if a 
FOR~RAN-ori~nted supplemental inst~uction set is active. a 
cell beginning with the bits 00001111 might represent a 
FORTRAN complex numbe~ (e.q. r a numerical value with a real 
and an imaqinal:"Y part) • 

AUXILIARY DATA TYPES 

In addition to the 15 cell types, the a~chitecture also 
provides several auxilia~y data types, which are discussed 
belo w. 

Indi~ect addressing is provided in the architecture by 
the use of indirect pointe~s. An indi~ect pointer 

http:bounds)�a.re
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;'" 

physically points to another pointer (which is not an 
indirect pointer), but logically points to where the latter 
pointer points.. Any reference through an pointer to that 
which it addr~kses, in the case of an indirect pointer, is 
identical to performinq the same operation with the latter 
pointer~ except that the access code in the indirect pointer 
is used. Any operation directly on a indirect pointer 
(e.g., move, comparison) has the same effect as that on ~ 
direct pointer. For instance, if an indirect pointer A 
points to pointer B, any use of A to reference storage in an 
instruction has the same effect as using a, although the 
access code in pointer A, not pointer B, is used. Any 
operation directly on A itself refers to only A and not B. 
Indirect addressing occurs whenever pointer resolution 
occurs (e.g., reference to a relocatable cell, CALL, SEND to 
a port). 

An indirect pointer is not a new data type. It is a 
pointer cell that has been given a value via the 
COMPUTE-T~DI~ECT-POINTER instruction. The pointer is marked 
in the unarchitected logical-address field as an indirect 
po in ter. 

The indirect pointer has many uses. One is security, 
where program A wishes to give program B access to some 
data, hut program A wishes to retain the right to withdraw 
this access at any time. By giving a an indirect pointer to 
a pointer to the data, A, at any time, can modify the latter 
pointer to withdraw B's access to the data. Another use is 
dynamic object or module replacement, without having to 
rebind progr.ams. If module X calls module Y through an 
indirect pointer, module Y can be replaced with a new . 
version by changing the direct pointer to it and not having 
to change module X itself. A third use is by 
ohject-access-control mechanisms, such as in an operating 
system. If an operating system contains a mechanism 
allowinq programs to ask for objects with different types of 
exclusivity (~.g., shared access r exclusive access), it can 
guarantee this integrity hy giving programs indirect, rather 
than direct, pointers. 

Parameter and relocatahle cells can have the properties 
of being dynamically typed (D-typed), dynamically sized 
(D-sized), and/oc dynamically bounded (D-bounded). These 
prop~rties allow one to write generic programs, that is, 
proqrams that ~r2 significantly independent from the data 
th~y are processinq. 

Parameter fields and strings (character, boolean, and 
tok~n) and parameter fixed-point and floating-point cells 
can he specified as D-sizeu by specifying, in the nested tag 
of th~ paramet2r cell, a z~ro-valued size. For instance, 
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6B003000FFffFPP is a parameter character field of size 
three, but 6DOOOOOOFFFFFFF is a D-sized parameter character 
field. Lik~wise, parameter arrays of fields, strings, and 
fix~d-point and floating-point values can be specified as 
D-siz~d by Rp~cifying, in the nested tag in the array nested 
tag, a zero-v~lued size. 

The abov'? is similar to "asterisk notation l1 in PL/I, 
but the full concept, as expanded later, is considerably 
more powerful and efficient. A few examples of D-sized 
par~meters, along with their corresponding representation in 
a PL/I-like syntax, are 

5EO:o:XXX FFFI~ FFF 
671XXXX000009BOOOXXXFFFFFFF 

Q: PROCEDURE (A, D) ; 
DCL ~ FIXED DECIMAL(*); 
DCL B (9) CHARACTER (*) ; 

(The elem~nt-Iength field in 
or relocatable cell is never 

an array 
used and 

nested in a pa
can be set to 

rameter 
any 

value.) As usual, an X represents a don't-care value. 

If a parameter is D-si~ed, it dynamically acquires the 
siz~ attribute of the corresponding argument. See the 
d2finition of the ACTIVATE instruction for the 
type-consistency rules between arguments and parameters. 

Relocatable fields, strings, and fixed-point and 
floating-point values can also be D-sized, providing that 
the RCA fipl~ is zero and that the locator cell is a pointer 
or param~ter pointer. Any relocatable array can be D-sized. 
D-sized relocatable cells are specified in the same manner 
as D-sized param.:~ters. A few examples are 

5YYYY00003000 DCL A CHAR (*) VARYING BASED (P) ; 
5YYYY000071XXXX000009EOX DCL B (9) FIXED DECIMAL ("') BASED (P) ; 

YYYY represents the cell address of the locator cell P. The 
PL/~-like examples are hypothetical, since PL/I does not 
allow such data types. 

If a relocatable cell is D-sized, it dynamically 
acquires, upon each reference, the size of the indirect 
cell. Consistency requirements between a relocatable cell 
and the indirect cell are the same as those for arguments 
and paramet.ers. 

D-hound~d parameter arrays can be specified by 
spe~ifying, in one or more of the. upper-bound fields in the 
nested array tag, a zero v~lue. A few examples are 

Q: PROCEOORE(A,B); 
672XXXX000010000002E42XXXXFFFFFFF DCL A(*,2) FIXED DEC(4,2); 
6 7 1X X X X 0 00 0 0 0 BOO 0 X X X F F F F F F F DC L B (<<) C H A R (*) ; 
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As shown in the second case, the D-bounded and D-sized 
properties are independent: that is, a parameter array can 
be both D~bound~d and D-sized. 

If a parameter array is O-bounded, for each zero-valued 
bound it, .1.cql1ires the corr:~sponding bound of the argument 
arr.1y. 

Any relocatable array can be D-bounded; this is 
achieved in the manner described above. An example is 

5YYYY000071 YX'(XOOOOOO AOGOXXX DCL A ("') CHAR (*) BASED (P) ; 

Again, this example is both D-bounded and D-sized. Again, 
the PL/I notation is hypothetical, since PL/I does not 
provide this capability. 

If a rclocatable array is D-bounded, it dynamically 
acquires upon each reference, for each zero-valued bound, 
the corr~spondinq bound of the indirect array. 

A parameter is specifi~d as being D-typed by having a 
nested tag of seven zero tokens. A parameter array is 
specified as being D-typed by encoding zeros in the nested 
tag (~lement attributes) within the array nested tag. 
Examples an~ 

Q: PROCEDURE (A, B) ; 
600!)OOOOFFFF'FFF DCL AD-TYPED; 
671XXXXOOOOOOOOOCOOOFFFFFFF DC L B (=4<) D - T Y P ED; 

Aqlin, the PL/I-like illustrations are hypothetical. The 
s~cond example is both D-typed and D-bounded. 

If a parameter scalar is D-typed (the first example), 
it dynamicdlly acquires the full attributes of the 
corresponding arqument. How~ver, the argument cannot be a 
structure or array. If a parameter array is D-typed (the 
second example), it dynarnicdlly acquires the full element 
attributes of the corrpsponding array argument. However, 
the argument array cannot hg an array of structures. 

A relocatable cell is sp2cified as being D-typed bYL 
havinq a nested tag of six zero tokens. A relocatable array 
is specified as being D-typeu by encoding zeros in the­
nested tag within the array nested tag. For a relocatable ~ 
scalar to be D-typed, its RCA field must be zero and the 
locator CQll must be a pointer or parameter pointer. Any 
r0locatahle drrdY can b0 D-typed. Examples are 
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5YYYYOOOOOOOOOO DCL A D-TYPED BASED (P) ; 

5YYYY000071XXXXOOOOOOOOOOOOO DCL B (*) D-TYP ED BAS ED (P) ; 


T: PROCEDURE (TA) ; 

6A03QQQQFFffFFF DCL 1 TA, 

5i1RRR000113003 ·2 TB CHAR (.3) , 

5R3?ROOOB71XXXXOOOOOOOOOOOOO 2 TC (~) D-TYFED, 

5R~i1R0024E42 2 T D P I XED 0 Ee (4 , 2) ; 


Again, the FL/I-like illustrations are hypothetical. The 

second exampl~ is both D-typed and D-bounded. The third 

caSA shows a D-typed and D-bounded relocatable array in a 


. p::l r3.:neter st rllcture. QQQQ is the cell address of the second 
cell and RRRR is the cell address of the first cell. 

If a relocatable scalar is D-typed (the first example), 
it ~ynamically acquires, upon each reference, the full 
attributes of the indir~ct cell. The indirect cell cannot 
be a structur? or array. If a relocatable array is typed, 
it dynamically acquires, upon each reference, the full 
element attributes of the indirect array. The in~irect 
arr~y cannot be an array of structures. 

The D-typ9d, O-bounded, and D-sized properties do not 
compio~ise the reliability and security properties of the 
architecture. They, given the concepts of tagged storage 
and generic instructions in the architecture, allowing one 
to ~rite highly data-independent programs. Where there is 
an mismatch of data types (e.g., one is trying to perform 
arithmetic on a qharacter field), the D properties still 
cause the error to be detected, but not perhaps as early as 
it might have heen if the properties were not used. Por 
instance, if a parameter is specified as heing a 
one-dimensional array of 10 character-field elements of size 
6, th~ machine would signal an error (when the procedure or 
module is invok9d, see the ACTIVITE instruction) if the 
corresponding argument did not have identical attributes. 
However, for instance, if this parameter was both D-typed 
and D-bounded, the parameter checking would test for only a 
one-dimensional array argument. If, during the execution of 
instructionR in the procedure, an incorrect assumption was 
made about the argument array (e.q., referencing a 
nonexistent element, usinq it as an 3.rithmeitc value wben it 
is not, referencing heyond the end of a field/string array 
element), the~rror would be detected during the execution 
of the instruction. 
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3. STORAGE OBJECTS 

. '­

The machihecontains four types of storage objects: 
modules, activ3tion records, data-storage objects, and 
ports. 

T HE MODULE 

The principal stor~ge object in the machine is the 
module. A module contains a sequence of machine 
instructions and a definition of the address space for those 
machine instructions. 

A module object corresponds to such programming 
language constructs as PL/I external procedures and 
functions, Cobol subprograms, and Fortran subroutine 
Sll bp C'J qra ms. A mod ule obj Bct is Crea ted wit h a LOAD-MODULE 
instruction, which takes the external form of a module 
(shawn in Figure 3.1), represented in a token string, and 
uses it to form a module object. Hence the form of the 
module object is not architected; it is defined only in 
ter~s of the external module. A module object can be 
destroyed by the DESTROY instruction or, optionally, at the 
time of program termination. 

Fiqure 3. 1 and the subsequent sections define the 
external module, the principal interface to the machine 
since it represents the output of a compiler. As shown, an 
external module consists of three variable-length 
compon9nts: the header, th2 address space, and the 
instruction space. 

-
" .,:~ 

" 



___________ 

1 I 
I INDEX TO I INDEX TO I 
1 MODUr.::: I AUTOM ATtC I 
I NAME I STORAGE DIEI1 ___________ 1 ___________ 1 ___________ _ 

I I I I 
1 INDEX TO I INDEX TO ,INDEX TO I 
I STATIC I INSTPUC­ 1 END OF 1 
I STORAGE DIEI TrONS I MODULE + 1 I1___________ 1 ___________ 1 1 


, I I I I I 
1 I I 1 I FAULT I 
ICASIIASISISI SAl CODES I
1___1___1___1___1 _____________ 1 ________________ 
I I 

MODULE NAME 

1 ____________________________________________ 1 
I I 

AUTOMATIC STORAGE DIE 

1____________________________________________1 

1 I 

STATIC STORAGE DIE 

1 ____________________________________________ 1 

I I 

INSTRUCTIONS 

1____________________________________________1 

FiguL8 3.1 FOLmat of an external module. 
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The modul& header defines certain attributes of the 
module and (lefines sections of the other two components. 
The first five fields in the header are five-token fields 
con tai n~ng t. h~ b ina ry va lup. of the index wi thin the module 
of the beginning of a particular section of information 
(except for the fifth field, which indicates the end of ·the 
module). Since the index of a section is also used to 
indicate the end of the previous section, the sections must 
be ~ontiguous. If a section is not present, its index field 
points to the start of the next section. For instance, if 
there is no autom~tic storage die section, its index field 
and ~he indnx field for the static storage die have the same 
value. 

The next two one-token fields (CAS and lAS) define the 
lengths of cell addresses and instruction addresses within 
instructions in this module. Each field can contain a 
bin~ry value from two to five, indicatinq two-token 
addresses to five-token addresses. Cell and instruction 
addresses are described in the later section on instruction 
formats. (Note that cell addresses within cells, that is, 
in structurp, relocata~le, and domain cells, have a fixed 
length: four tokens.) 

Since the addressing space of a module is limited to 
only thos a cells defined in the module, it is desirable to 
limit the address-field sizes to the smallest size needed. 
That is, rather than defining fixed-length address fields 
within instructions, the size of an address field can vary 
from module to module. Cell addresses need only be large 
enough to artdress the cells within the module (the module's 
address space). Instruction addresses need only be large 
enough to address instructions within the instruction space. 
In other words a modul~ with only a few small cells (a small 
address spac~) n,,?eds only il tiny cell-address field; a 
module with more and bigger cells needs a larger cell 
address. Use of variable-size addresses is worthwhile 
because 1) th·,~ physical size of the module can be reduced, 
2) the number of bits transmitted between the memory and the 
pro~~ssor can be reduced, thus increasing the memory 
bandwidth, and 3) arbitrary compromises concerning the upp~r ....,~ 
bound of an address space can be avoided. 

.;.-:: 

The next. one-token field (SIS - supplemental . 
instruction set) in the header defines the language in which 
this module was written. The motivation for this field was 
the thought that the basic instruction set of the machine 
mi'Tht he extended to provide anditional instructions that 
are specialized toward a particular language. For instance 
if this field is zero, operation code '0007' might be 
in vali d. I ft he field is one, ope ra tion • 0007' might be a 
C03~L-oriented table sAarc~ instruction; if the field is 
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two, operation '0007' might be a PL/I-oriented PICTURE 
editing instruction. If the field is three, operation 
'0007' might he an instruction intended only for the 
operating syst~m. This points out another motivation for 
such a feature: there is no need (nor desire) to bother a 
COBOL compiler writer with inform~tion about instructions 
int~nJed for thA operatinq system. In fact it is desirable 
to hine such instLuctions from those people and programs 
that have no direct use for them. 

This "language" or supplemental instruction set field 
gives the machine the ability to vary part of its 
in~truction s~t dynamically and gives system designer the 
ability to specialize and tailor the instruction set in a 
way that is transparent to existing programs • 

•• *~~~n.u.*~.*tt***.*.*******.**.************.*************** 
* Th~ current implementation of the architecture contains * 
~ one supplemental instruction set (515=1111) for the * 
• benefit of the operating system. It contains a few * 
* instructions, which are not described in this document. * 
* These instructions, like all others, are not privileged. * 
*~** •• -**.*.***~*.********-***~********.***********.******** 

The next one-token field (SA) currently has no purpose. 

The next six-token field specifies the faults 
(machine-detected conditions) that this module wishes to 
handle. The meaning of this field is described in a later 
section on fault handling. 

The next field is variable in length and contains the 
name of the module, using two tokens to represent each 
character. No machine instructions currently access this 
fi~ld, so it need not be present. 

The second component of a module is its address space. 
The lddress spac~ contains a series of cells defining the 
data that is accessible by the module. The index of the 
first token of a cell within the address space is known as 
its cell address. That is, the cell address of the first 
cell is one; the cell address of the second cell is one plus 
the total length of the first cell, and so on. 

Although the address space looks like one entity to the 
proqrlm, it is subdivided into two sections as shown in 
Fiqur~ 3.1. These two sections are used by the machine. for 
storage managempnt and allocation purposes. 

The a~!QffiQtig §iQ£~gg gig holds all cells that are to 
be dynamically allocated space whenever the module is 
invok~J. When the module ~s invoked, tho machine allocates 
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an activation record anJ copies the automatic storage die 
into theactivdtion record. When the module's code refers 
to ! cellin.th~ automatic storage die, the machine 
automatically~ranslates its cell address to a location 
within the activation record. 

Note that the machine does a bit-by-bit copy of the 
automatic stor~ge die into the activation record. This· 
implies that the compiler can cause an automatic variable to 
have an initial value simply by putting the value in the 
variable's cell in the automatic storage die. If an 
automatic variable (or any other variable) has no defined 
initial value, the compiler is responsible for setting the 
cell to the undefined value. An exception to this 
discussion is pointer cells; for reasons of security, the 
machine always initializes them with the undefined value 
when the module object is created. All cell types may 
app~ar in the automatic storage die. If an array cell 
resides in the automatic storage die, space for the array 
elp~ents is c[aated in the activation record and the 
ele~ents are initialized to the undefined value. Parameter 
cells must reside in this storage die and are always set to 
the undefined value when the module object is created. 

The ~i21if §t2I~g~ Qi~ holds all cells that are to be 
allocated once prior to execution (that is, at the time of 
the LOAD-MODULE instruction). If a static variable is to 
have an initial value~ the value should be placed in its 
cell in the die. If not, the cell should be set to the 
"undefined" value. (All pointer cells are always 
initialized by the machine to the "undefined" value.) All 
cell types except parameter may appear in the static storage 
die. ~rray elaments are initialized to the undefined value. 

* •••• **••**.**.~*¥**.**~**.*********.***************.******* 
• Since relocatable, domain. and structure cells do not * 
* directly change during execution (only the cells to * 
* which they refer do), it is recommended, for reasons of * 
* performance, that these cell types be placed in the * 
* st~tic storage die. * 
~* •• *.** •••• *.***.****~.**~**.*****.***.****-*************** 

·1 

The last component of a module is its instruction 
space. The instruction space contains a series of machine ' 
instructions. Most machine instructions are represented in 
a variable numher of tokens. The index of the first token 
of 3n instruction within the instruction space is known as 
its instruction address. The instruction address of the 
first instruction is one; the instruction address of the 
second instruction is one plus the length of the first 
instruction, and so on. 

, . 

.' ,~~:;~~,~.: 
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*~~**.**~•• ****~** •• *****••• *.*****.***~*******.****** .***** 
~ Proqramming ~ote: Since array elements receive no space * 
* in the di~s, it is not immediately obvious how a compiler• 
• would initialize an array. The following suggestion is * 
* offered. If the array is automatic, the compiler must * 
• q2nerate code (one or more MOVE instructions) at each * 
* entry point to initidliz~ the array. To initialize a * 
• st~tic array, the compiler can give the module an extra * 
11< ent['y point and generate code at this entry point to * 
* initialize the array. After the LOAD-MODULE instruction * 
• has been executed, this special entry point can be * 
• c~lled to initialize the static array. * 
» ••••• ~~#*.x*.**~*****.~**~**************.****************** 

THE ACTIVATION RECORD 

~n activation-record object contains space for the 
cells in a module's automatic storage die. It is created 
whenevpr a mortule is invoked (by a CALL instruction) and 
destroyed whenever a module returns to its caller_or the 
proqram terminates. since a program does not directly "see" 
an activation record, but addresses it through the automatic 
storale die, no further information about the activation 
record is architected. 

THE DATA-STORAGE OBJECT 

A data-storage object is created by a program that 
wishes to dynamically allocate space for a relocatable cell. 
It is created by an ALLOCATe instruction and can be 
destroy~d by the DESTROY instruction or~ optionally. at 
proqram termination. Since a program does not directly 
"sce" a da tll-st".orage object, but addresses it through a 
rploc~table cpll, no further information about the 
d3ta-storage object is architected. 

THE PORT 

A port is an abstract obiect that is used to connect 
t~o or more programs together for purposes of interprogram 
comllunication. A port is created by a CREATE-PORT 
instruction and is dest~oyed by the DESTROY instruction or 
at program termination. since a port is defined only by the 
semantics of the two instructions that can operate on it, 
S::;ND and RECEIVE, no furth,}r information about tOhe port is 
architected. 
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4. INSTRUCTION FORMATS AND ADDRESSING 

A machi"ne','instruct.ion consists of an operation code 
follow~d by one 6r more address fields. Some instructions 
hav~ iust one address field, others have two, others have 
threa, ind c~rtain instr~ctions have a variable number of 
address fields. 

OPERATION CODES 

Th~ first field of 8ach instruction is the operation 
c~d~. Rather than use a single-length field for operation 
codes, a frpquency-based encoding was done. That is, the 
operation-code field for the fifteen most-freguent 
instructions is one token 10n9, the field is two tokens' long 
for the second most-frequent set of fifteen instructions, 
and so on. The motivation for doing a frequency-based 
encodinq, the rationale for choosing this particular 
encoding, and the selection of the operation codes is 
discussed in other documentation available from the author. 

A.DDRESS FIELDS 

There are seven types of address fields which are 
grouped into three categories: operand addresses, 
instruction addresses, and immediate fields. 

hn Q~~I~nQ ~QQIt§2 references an operand in the address 
spa=e. There are four types of operand addresses. 

1. 	 ~g11 ~Qd£~2§. A cell address is an N-token binary 
field that refers to a cell in the address space 
(N is the value of the cell-address-size field in 
the module hea!h'r). For instance, if N (CAS) 'has 
the value 2, the operand add~ess 1A refe~s to the 
cell beginning ~t the 26th token in the module's 
address space. Cell add~esses cannot be used to 

~ ..:­
address array or domain cells. 

2. 	 Literal. A lite~al field consists of N tokens of 
i;~~~-~ollowed by one token having the value zer6, 
one, ••• , o~ nine. A literal field is assumed t6 
be a one-digit positive integer. As an example, 
if N (CAS) has the value 2, the operand address • 
004 is a literal of value +4. 

3. 	 Arr~Y ~l~m~nt £Q1£~§2. ~n array element address 
consists of D+1 subfields. The fi~st subfield is 
a cell address of an array (or domain) having D 
dimensions. The next 0 subfields a~e cell 
add~esses, literals, o~ ar~ay element addresses 
specifying the valu~s of the subscripts (the 
vallles must be integers). For example if array 
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cell A has the index (in hexadecimal) of 20 in the 
dddr~ss space, if a variable I has the index 3C, 
and if N is 2, then the operand address for A{4,I) 
is 200043C. If N was 3, the operand address would 
be 02000040)C. 

4. 	 A££~Y ftQg£~22. An array address refers to an 
entir~ array or domain. Array addressing is 
identical to array element addressing, except that 
all of the subscript subfields are specified as 
ft..,,, The U""II is represented by a literal field 
with the value F (1111). Hence array A is 
addressed hy 2000FOOF • 

••• ~ •••*.****~&.*******.****.************.*****.************* 
• Not2: This addressing scheme allows for the possibility * 
* of addressing array cross-sections (e.g., the PL/I * 
• expression A (~,I) would produce the address 2000P3C), * 
* althouqh this is currently not part of the architecture. * 
*.~*.*~~ •• *~~*.*.**~**.***~******.*************************** 

Unless otherwise mentioned, any of these four forms can 
be used as operand address8s in instructions. One general 
exc~ption is that a literal cannot be used as a ta£g~! 
QE~[jn~. An QE~£~n~ is that data referred to by an operand 
address (possibly indirectly through a relocatable, 
structuLe, domain, or parameter cell) i a target operand is 
an operand in which an instruction stores a result •. 

The second category of address fields is an in§1£Y£ii2n 
!~1I~§~. An instruction address is an M-token field that 
refers to an instruction in the instruction space (M is the 
valtl2 of the instruction-address-size field in the module 
header). 

The last ca tegory of address fields is an .!.!!!!!H~Qi2.1,g 
fi~11. An immediate fiQld is a one or two-token field 
containing not an address but some value that is used 
directly by the instruction. Since immediate fields have 
specialized pu~poses and are only used in a few of the 
instructions, definition of the immediate fields is deferred 
to the definitions of these instructions. 
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5. PAULT HANDLING 

Since th~_maior objective of this machine is to prevent 
and/or detect certain classes of programming errors, the 
methods hy. which the machine detects and reports errors are 
of sD~cial importance. This section defines the conditions 
(called f~~1!2) detected by the machine, the information 
that the machine presents to the program when a fault 
occurs, and how the program and machine can interact to 
handle faults. 

FAULT DESCRIPTIONS 

The following descriptions define the types of faults 
det2cted by the machine and the situations under which ~hey 
arise. If multiple fault situations occur during the 
execution of ~n instruction, the first type of fault 
det~cted by the machine, or the order of the faults 
detected, is not architectel. 

An in~11iQ QE~I~ilQQ (type 1) fault occurs when the 
m~chine f~tches an instruction but its operation code is 
invalid, or when the end of the instruction space is 
encounter'ed du["ing thr:: fetching of an instruction. 

An ~11I~§§ing (type 2) fault occurs when (1) a cell 
a~d["2SS is being used but it falls beyond the module's 
addr9ss space or ["esides in an incorrect storage die, (2) 
when an i'l.rray subscript is not an integer, (3) when an array 
c["o~;s-section ilddt"ess is sP2cified, (4) when a ["eference 
within a module f["om outside (e.g., via the LINK or 
CJ~PUTE-ENTRY-POINTER instruction) does not obey the 
addressing ['ules of the instruction, (5) when an erro[' is 
detect~d while processing cell addresses (e.g., the rules 
concerning relocatable cells drA not obeyed), or (6) when a 
loop is detected when resolving indirect pointers (e.g., an 
indirect pointer refers to itself). 

An gn~nQ~n g2i~ fQfm~! (type 3) fault occurs when the 
machine references a cell that has an unrecognizable forma~ 
or val ue. 

A ErQi~£iiQn (type 4) fault occurs when (1) the program 
attempts to destroy, write to, or read from a cell that is 
loc~ted through a pointer cell, but the pointer does not 
hav2 the appropriat(~ access code, (2) the proqram attempts 
to explicitly destroy storage that resides within an 
acti va tion record or mod ul (-~, (3) the prog ram at tern pts to 
alter a parameter that was transmitted as read-only, or (4) 
the program attempts to move the value of a pointer cell 
which does not have copy authority. 

,­

. .:~:;~~ ... 

'I.;.,', 

~:.' 
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An !n!~li4 EQin!~£ (type 5) fault occurs when the 
proqLam uses a pointer cell but the logical address in the 
pointer is unknown to the machine (implying that the storage 
ref?LL2d to by the pointer has been previously freed). 

A hQgn~~~~!£g~Q~l (type 6) fault occurs when the 
proJram refers to an array element using a subscript that is 
bey::>n d t he bOll nds of the correspon ding dimension, or when a 
program refers to a string element that is beyond the size 
or current length of the string. 

An inY~!iQ QQ£££llQ 11E2 (typ~ 7) fault occurs when the 
typ~ of an operand does not match the valid operand type(s) 
in the instruction sp~cification, or when the category of 
storage object being referenced by an instruction does not 
match the categories of storage objects that can be 
referenced hy the instruction. 

An ~nQ~fin~Q Q£££~nQ (type 8) fault occurs when the 
machine attpmpts to use the value of an operand, but 1) the 
opeL~nd, or 2) a pointer or 3) parameter cell used to locate 
the operand, has the value "undefined." This fauit does not 
occur for condition 1 in the DEFINED instruction, which is 
an explicit t~st to determine if an operand has an undefined 
value. 

An in£Q~££~ib!~ QQ=££nd§ (type 9) fault occurs when two 
or more operands of an instruction are incompatible. The 
con~itions of operand compatibility are defined in the 
specifications of the instructions. This fault can also 
occu~ in an ACTIVATE or LOCAL-ACTIVATE instruction when the 
typ2 of a parameter cell is incompatible with the type of 
the corresponding argument cell, or in a RECEIVE or SEND 
instruction when the type of a receiver operand is 
incompatible with the type of corresponding argument. The 
f~ult also occurs when the ~ttributes of a relocatable cell 
do not m~tch the attributes of the indirectly located data. 

An Qygr!lQ~ (type 10) fault occurs when the target 
operand in an instruction is too small to hold the value 
pro~uced by the instruction. For arithmetic operands this 
occurs when loss of high-order non-zero digits would occur 
or when the exponent of a floating-point r~sult is great~r 
than ~9. For string operands this occurs when the size of 
the target string is too small to hold the value produced by 
th e instruction. 

An underflow (type 11) fault occurs when the 
flo~ting:~~I~~-~~sult of an instruction has an exponent of 
less than -99. 

A giYi~~ (type 12) fault occurs when division by zero 
is attempted. 
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An !n!~!i~ mQ~Y!~ (type 13) fault occurs during a 
LOAD-MODOLE instruction when the machine discovers a format 
err3r in ~he mo~ule being loaded. 

An ill!~li1 f£!n§t~£ (type 14) fault occurs for various 
reasons in an instruction that transfers control flow. The 
most common situation is attempting to branch beyond the 
instruction space of the module. 

An ill!~li~ l£~n§~i§§lQn £2Yn! (type 15) fault occurs in 
an ACTIVATE or LOCAL-ACTIVATE instruction when the number of 
parameters specified does not equal the number of arguments 
transmitt~d, or in a RECEIVE and SEND instruction when the 
number of recaiver operands does not equal the number of 
arquments in the corresponding SEND instruction. 

A fQn!~!§iQn (type 16) fault occurs during the CONVERT 
instruction when the operands do not match the conversion 
rules listed in the specification of the CONVERT 
instruction. 

A Y=§~h£~ll£h~!£~££ (type 17) fault occurs during any 
inst~uction in the comparison-and-branch qroup (except 
ITERATE) if 1) the instruction results in a branch being 
taken and 2) yes-branch tracing is enabled for the module 
containing the instruction. 

A nQ:~I~n£h:tId£~ (type 18) fault occurs during any 
instruction in th~ compariosn-and-branch group (except 
ITERATE) is 1) the instruction results in the branch not 
beinq taken and 2) no-branch tracing is enabled for the 
module containing the instruction. 

A ~211-tI2£~ (type 19) fault occurs during the 
execution of a CALL or LCALL instruction if call tracing is 
enabled for the module containing the instruction. 

An in§Qffi£lgni=§lQf~g~ (type 20) fault occurs when an 
instruction requires the machine to dynamically acquire 
storage for a storage object, but sufficient storage is not 
availa ble. 

A 1~~!1~h~n~!lng (type 21) fault occurs when 1) one. 
att~mpts to CONTINUE beyond d fault for which continuing i~ 
prohihited, 2) one attempts to execute a RAISE-FAULT 
in~truction with an invalid fault type, or 3) one attempts ~ 
to execute a CONTINUE or TRANSFER-FAULT instruction While 
not in a fault handler • 

.i.,
L; 
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ENTRY-POINT ZERO 

~ach fault type has an associated number as given in 
the previous section. These numbers also correspond to a 
bit position in the fault-code field in the module header. 
For -"xample tault type 1 (invalid operation) co['['esponds to 
thp bit 1 in the fault-code field. If a bit is set to one 
in th2 fault-code field in a module, this indicates that 
this module d0sires to handle the associated fault. Bit 0 
(thf" first bit) in th~ fault-code field indicates whether 
the module desir8s to handle faults of type 28-255 
(proqram-(iefineJ faults - see the RAISE-FAULT instruction). 

Wh~n a f~ult occurs, the machine attempts to call 
entry-point ze['o of the current module. (Entry-point zero 
is the first instruction in the moduleo) Entry-point zero 
will be callej if the fault is enabled (the correspondi~g 
bit in the fault-code field is one). If not, the machine 
attempts to call another entry-point zero by searching 
bac~wards throuQh the stack of active modules until a module 
is found with this fault enabled. If none are found, the 
program is terminated. 

* Programming Note: It is anticipated that the first * 
• ~odule invok~d in each program is a special module * * a~n~rated by the compiler or operating system that has • 
* 311 faults enabled. * 

~hen an ~ntry-point zero (hereafter called a 1~~11 
fl2D21Q£) is invok3d, it is called by the machine as an 
internal procedure. Therefore the fault handler has 
addressability to the address space in the module in which 
the fault handler resides. The machine also passes the 
following fiv8 arguments to the fault handler: 

1. 	 An in teger conta in ing the fault type. 
2. 	 A pointer to the module object in which the fault 

arose. The pointer has read and copy authority. 
3. 	 A pointer to the entry point at which the faulti~g 

module was entered. The pointer has read and copy 
authority. 

4. 	 A token-field cell of size 5 containing the 
instruction address of the instruction causing the 
fa ul t. 

5. 	 A token-field cell of size 6. 

The fault handler is given rea~-only access to the 
argument.s. 

For the invalid-module fault, argument 5 is an error 
!I~ code desc['ibing the error in the module (provided that the 
'r"'" fault was not raised by the RAISE-FAULT instruction). Por 
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all other faults, argument will be taken, 5 contains the 
fi['st. six tokens of the faulting instruction. 

Machine inst['uctions are available to allow a module to 
dynamically ~nable or disable specific faults, to allow a 
prolram to pxplicitly generate faults, and to allow a fault 
handl~r to ['esume execution at the instruction following the 
faulting instruction, retry the faulting instruction, or to 
transfer the fault to a higher fault handler. 

A fault in a fault handle[' is treated like any other 
fault situation. The only difference is that, to prevent a 
faulting fault handler from entering endless recursion, the 
sp.arch for nn applicable fault handler starts with the 
~odul~ that called the module containing the faulting fault 
handler. 

Faults are nested, meaning that if a fault occurs in 
fault handler A and is handled by fault handler B, which 
returns or continues to fault handler A, A is back in its 
origiual state (i.e., the fault arguments available to A 
still describe the initial fault) • . 

Note that the fault handler is assumed to start at the 
first instruction in the module. Either the fault-handling 
cod.::', (beginning with a LACT instruction) or a branch to the 
fault-handlin~ code, is placed here. 

PROGRAM STlTE AFTER A FAOLT 

A key consi~eration in fault handling is the state in 
which the machine leaves the program when a fault occurs. 
In most cases the faulting instruction does not affect the 
st~te of the program. A fault handler terminates with one 
of four instructions: LOCAL-RETURN, which terminates the 
fault handler and begins execution again of the faulting 
instruction, CONTINUE, which terminates the fault handler 
and resumes execution at the instruction that would have 
been executed next, had the fault not occurred, RETURN, 
which deletes the activation record for this module and all 
later modules and returns control to the module that 
p['eviously called this module, and TRANSFER-FAULT, which 
terminates the fault handler and causes the machine to 
search for and call a higher fault-handler~ Exceptions to 
these general rules are discu~sed below. 

1 • 	 Issuing the LRETURN instruction to return from a 
fault generated by a RAISE-FAULT instruction 
causes execution to resume at the instruction 
following the RAISE-FAULT instruction. 

2. 	 Faults that occur during the processing of a 
field, structure, or array result in the elements 
processed before the fault taking on their new 
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values, but all remaining elements remain 
unchanged. 

3•. "'1f ~n over-flow or underflow faul t occurs, the 
tarq~t operand is given the undefined value. 

4. 	 Issuing the CALL instruction in a fault handler 
causes any and all activations beneath that of the 
currant activation to disappear (to avoid turning 
the activation stack into a tree). 

Idf~J.~;Jf. .~, 

, 	 ;:~~::' 

:...::,.- . 

',: 
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6. IN STRUCTION SU 11MA RY 

This section summarizes the instructions of the 
machine. Chapter 7 describes each instruction in greater 
de t.a i1. 

The thr~e general instructions are MOYE, CONYERT, and 
UNDEFTNE. Operands of the three instructions may be single 
s=alar cells, drrays, strings, domains, fields, and 
structures. ~OVE is uspj to transfer the value of one 
ODeran~ to another. CONVERT performs the same function as 
MOV~, but it ~lso performs an explicit data conversion. For 
ins~ance if one used a MOVE instruction to move a chara~ter 
value into ~n integer, the oppration would fail and an 
inc~mp~tibl~-aperands fault would occur. If one used a 
CONVERT instruction, the operation would succeed; the 
character valll~ would be converted into an integer according 
to a set of predefined rules. . 

The UNDEFINE instruction is used to set the value of an 
operanJ to undefined. 

A£ilhill~!l~ In2!£Q£!lQn~ 

l4. 	 MULrI~i~, a ~~~~~~ :i~E;~~;~~~~ i~~~o~~~~~d~O~~~~M ~~~T~~~~;y
minus), dnd PO\~FR (compute X to the Yth power). The ADD, 
SUBTRACT, MULTIPLY, DIVIDE, REMAINDER, and POWER 
instructions have two operands; the result is stored in the 
first operand. ABSOLUTE and COMPLEMENT have one operand. 
The operands must be arithmetic scalars or arrays. 

The EQUAL-BRANCH-FALSE, NOT-EQUAL-BRANCH-PALSE, 
L~SS-THAN-BRANCH-FALSE, GREATER-THAN-BRANCH-FALSE p 

LE S5 -THA N-OR -EQll AL-BRA NCll- FALSE, an d 
GREATER-THAN-OR-EQUAL-BRANCH-fALSE instructions have two 
ope~lnrls and an instruction address. The values of the 
operands ar3 compared; if the condition is false, control is 
transferred to the specified instruction address. In 
gen2ral the two comparison op0rands may be any cell types 
(e.g., pointer, character string, array, structure). 

The ro?maininq t.wo instructions are DEFINED-BRANCH-FALSE 
and ITERATE. The first t2sts an operand to determine it its 
value is defined. ITERATE is provided for loop control in 
iterative DO loops. 
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Th~ boola~n instructions are AND and OR, which have two 
operands, an~'NOT, which has one operand. The operands may 
be boolean, bool~an strings, or arrays of booleans or 
boolean strings. 

Although many of the machine instructions can have 
string operands, the string instructions work exclusively 
with string opprands. The operands may be boolean, 
character, or token fields or strings. 

The CONCATENATE instruction appends the value of one 
operand to the end of the other operand. The MOVESUBST~ING 
instruction overlays a substring in one operand onto a 
substring in the other operand. The INDEX instruction 
searches a string for a designated substring. The LENGTH 
instruction returns the current length of a string. 

The remaining instruction in this group is SEARCH. 
Givpn an array or domain and a search value, it returns the 
subscript value of the elem~nt whose value is equal to the 
search value. 

Ie... 
\ The control instructions are associated with 

unconditional transfers of execution flow. The CALL, 
ACTIVATE, and RETURN instructions are associated with calls 
to modules, the LOCAL-CALL, LOCAL-ACTIVATE. and LOCAL-RETURN 
instructions are associated with calls to local subroutines 
within a module, and the BRANCH instruction alters execution 
flow within a module. 

The ChLL instruction specifies the entity being called 
(entry-point within a module) and a list of arguments. A 
subset of these arguments may be designated as being 

.1.-:--:­read-only, implying that the called module may not alter nor ....:r ­

free them. CALL allocates the storage sp~cified in the 
auto~atic storage die of the called module and branches to. 
the specified entry point. If parameters are to be receiv~d 
by a called entry point, an ACTIVATE instruction must be 
exe=uted in the called module before the parameters are 
referenced. The ACTIVATE instruction specifies a list of 
parameters. The instruction checks the compatibility of the 
arguments and parameters and initializes the parameters (the 
transmission method is by-reference). The RETURN 
instruction frees the automatic storage and transfers 
control to the module that called this module. 

The LCALL instruction specifies an instruction address 
of 1 loc~l procpdure and a list of arguments. The first 
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instruction of a local procedure must be LACT 
(LOCAL-ACTIVATE). LACT specifies a list of parameters and 
causes the compatibility of the arguments and parameters to 
b8 check8d and the parameters to be initialized. LCALL does 
not allocat~ any automatic storage, which means that the 
mac~ine provides only minimal support of local procedures. 
If stor3qe allocation and scope-of-name rules are necessary, 
thoy arp thp compilers' responsibility. The LRETURN 
instruction transfers control back to the instruction 
following the last LCALL instruction. 

Tha GUARD and UNGUARD instructions are provided to 
protect criticll sections of instructions from simultaneous 
exe=u·ion, ~llowing one to use the program-design concept of 
monit~rs. 

This group of instructions is associated with the 
manipulation of pointers and storage objects. The 
COMPUTE-POINTER instruction produces a pointer to a 
specified operand. COMPUTE-INDIRECT-POINTER creates an 
indir~ct pointer to a pointer. The CHANGE-ACCESS 
instruction is provided to lower (further restrict) the 
access code in a pointer. The ALLOCATE instruction is used 
to 1ynlmically allocate storage space, and the FREE 
instruction is used to dynamically free an object (i.e., a 
rnodu13 or a dynamically allocated storage space). 
CiIANGE-LOGICAL-ADDRESS allows one to rename (cause the 
m~chine to assign a new logical address to) an existing 
object. 

The LOAD-MODULE instruction defines a module to the 
machine and returns a pointer to it. The 
C1MPUTE-ENTRY-POINTER instruction is used to compute the 
loqical address of an ~ntry point or cell in a designated 
module. The LINK instruction is used to assign a value to a 
pointer cell in a loaded module. (COMPUTE-ENTRY-POINTER and 
LINK are used to bind modules; that is, they are used by 
"linka~e-editing" functions.) 

The DESCRIBE instruction, given a pointer as an 
op~rand, returns certain descriptive information about the 
pointer dnd that to which it points. 

Th~ C~EATE-PORT, SEND, and RECEIVE instructions are 
used for interprogram communication. SEND transmits a 
message to a port, and TIECEIVE accepts a message from a 
port. 
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.Qth~2.9.i!!!] Instruction 5 

Th9 last.·set of instructions are associated with 
debuqqing an1 fault-handling functions. The ENABLE and 
nIS~BLE instructions provide the program with a way to 
dynamic~lly ~nable or disable faults designated for the 
module's fault handler. The RAISE-FAULT instruction is used 
to ~xrlicitly trigger a fault and enter a fault handler.· 

The CONTINUE instruction provides a fault handler with 
the 3bility to resume execution of the faulting module at 
th~ instruction following the faulting instruction. 
(LJETURN is used to resume execution at the faulting 
instruct.ion.) I f a faul t handler- determines tha t a faul t 
should he transferred to a "higher" fault handler, the 
TRANSF~n-F~ULT instruction is used. 

The. DISPLAY-TAG and DISPLAY-CONTENTS instructions ar-e 
intended for debugging operations. Given a cell address and 
a pointer to a module, the instructions will place either 
the tag or the content of the referenced cell into a token 
string. 

The TRACE ani NOTR~CE instructions are used for 
monit~ring execution flow. The TRACE inst~uction enables a 
t~ace of br-anch instructions, call instructions, or both in 
a specified module~, and the NOTRACE instruction disables 
the same. If a b~anch trace is enabled for a module, all 
comparison-and-b~anch instructions, except ITERATE, generate • 
a b~~nch-trace fault. Branch tracing can be specified for 
situations where the branch is taken, the branch is not 
taken, or hoth. If a call t~ace is enabled fo~ a module, 
all CALL and LCALL instructions gener-ate a call-trace fault. 

1,.;· 

.; ...;f. 

'. ' 
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7. I~STRUCTION SPECIFICATIONS 

This chapter defin2s the basic instruction set of the 
machin''!. Genora.l notes that are applicable to many of the 
inst.r1lction:; dre: 

1 • 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Where an instruction permits two operands to be 
drrays, the arrays must be fQn!Q£ill~~l§. That is, 

thpy must have the same number of dimensions and 

the same number of elements in each dimension. 

The same applies to domains. 

Where an instruction permits two operands to be 

structures, the structures must be identical. 

TLat is, each structure must contain the same 

number of elements. Correspond~ng elements in 
each struc~ure must have identical attributes 
(ta']s) • 
Where an instruction specifies a particular cell 
type as a valid operand, the operand can also be a 
n8sted cell, unless otherwise noted. For 
instance, if an operand should be an integer, the 
operand address can point to an integer cell, an 
e12m~nt in all array of integers, a relocatable 
int0ger, an inteqer parameter, an integer domain 
elem ~n t, etc. 
Most of the instructions can generate a common set 
of faults. Foe brevity, the set of fault types 
ndilled the ggn~£~! §~l is defined as including the 
following faults: add~essing, unknown data format. 
protection, invalid pointer, bounds-exceeded, 
invilid operand typ~, undefined operand, and 
incompatible operands. 
"Arithmetic operands" are defined as the set ­
integer, literal, fixed-point, and floating-point. 
"Strina/field operands" are defined as the set ­
boolean string and field, character string and 
field, and token string and field. "Character 
opRrands" are the set - character field and 
character string. 
In the specifications of instruction formats, the 
first field is the operation code. which consists 
of one to four tokens depending on the 
instruction. Thp abbreviation "OA" designates an 
operand address; "IA-" designates an instruction 
address. 
Lit8rals are permitted as operand addresses, 
except where the instruction alters the operand's 
value or where the operand cannot be arithmetic. 
The length of a hoolean, character, or token field 
is the valuq of its fixed-size field in the tag. 
The lenqth of a boolean, character, or token 
string is the value of the length field in the 
conti-~n t componen~. 
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GENERAL INSTRUCTIONS 

Instruction: ~QVE 
Function: Th~ v~lue of the second operand is moved 

into the first operand. 
For:nat: 1 • .Df"Of>. 
Op~rand~: ~oth operands must be compatible, that is, 

hath must he arithmetic, character, boolean, 
token, pointers, or structures. Both operands 
can be arrays or domains, implying that 
an element-hy-element move is done, or the 
first operand can be an array or domain and 
the second not, meaning that the value of the 
second operand is moved into each element. 

If th~ operands are arithmetic but have 
different types or sizes, the result is 
first converted to agree with the first 
operand. No rourding ever occurs in the 
MOV?, instruction. ihen a string or field is 
mov~d into a string, the length of the first 
operand is set equal to the length of the 
second operand. On a move into a character or 
boolean field where the second operand is shorter 
than the first, the first operand is padded on the 
right with hlanks (if character) or zeros (if 
boolean). On a move into a token field where the 
second operand is shorter than the first, the'e.., 
first operand is padded on the left with zeros. 

The operand combinations (first/second) 

token field character field 

token field character string 

token string character field 

token string character string 


are valid, and the combinations 

character field token field 

character field token string 

character s~ring token field 

character string token string 


are valid. A straight move is done (no 
conversion of values, other than the length). .: 

-:.rA move of 	a structure into a structure requires 
that both 	structures have the same number of 
elements, 	and that the elements have 
identical 	attributes. A structure move is 
sem~ntically identical to specifying a move 
of each individual element. 

Faults: 	 Genera 1 set (exc ludi ng inva lid ope rand 
type) plus overflow. 
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Instruction: CONVERT 
Fun=tion: 	 The value of the second operand is moved 

into the first operand. A limited number 
of conversions may be done if the types 
of the two operands differ. 

For~n'lt: 09.0A,OA 
Op~[ands: 	 The rules of the MOVE instruction apply, 

but the rules concerning operand 
compatibility are somewhat relaxed. 
Table 7. 1 describes the valid conversions. 
A blank in the matrix indicates that no 
conversion will be performed and the 
inco~patiblg-operands fault will occur. If a 
conv~Lsion is attempted but the value of the 
spcond operand does not meet the conversion 
rules. a conversion fault will occur. 
The operands cannot be entire arrays 
or st('uctures. 

Faults: 	 G(~lh~ral set plus conversion and overflow. 

,\'-'

\ 
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Operand2 type 

d d b c t 
f f b c t s 5 S 

i x I f f f t t t 

i 1 1 1 4 2 4 2 

dfx 1 1 1 5 5 

d.fl 1 1 1 6 6 


Opera.nd1 hf 1 8 9 1 8 9 
t Y pP. cf 15 16 17 11 1 12 11 1 12 

tf 7 13 14 1 13 14 1 
bst 1 8 9 1 8 9 
cst 15 16 17 1 1 1 12 1 1 1 12 
tst 7 13 14 1 13 14 1 

1- Acts identical to a MOVE instruction. 

2- Converts it from binary to a positive integer value. 

4- All characters must be numeric ("0" - "9") except for 


the first, which can optionally be a "+" or II:"". 


5- The string must be numeric optionally preceded by 

3. Iffo" or "_If, or an optional fI+" or II_II followed 

by zero or more numerics followed by a "." followed 

by zero or more numerics. . 


6- The string must be 1) numeric optionally preceded 
by a "+" or It_", or 2) an optional ft+If or fI_1I 

followed by zero or more numerics followed by a "." 

followed by zero or more numerics, or 3) a number of 

form 2 followed by "E", followed by an optional "+11 

or If_tt, followed by one or two numerics. 


8- Character(s) must be "0" or "1", or ifF" or "T". 
9- Token(s) must be 0000 or 0001. 

11-	 Produces the character(s) IfFfI or "Til. 
12-	 Produces +.he character (5) "0"-"9" and "A"-IIFI1. 
1J-	 Produc~s the token(s) 0000 or 0001. 
14-	 Character(s) must be "0"- 11 9 11 and flA"_IIF". 

'.' 

15- Produces a string of numerics, preceded by a 11_11 .. - .:~:~~.-: 
if the number is negative. -:- .~: 

16- Produces a string of the form I1numerics.numericsl1, 
preceded hy a II_II if the number is negative or a 
blank if positive. .: 

17-	 Produces a string of the form "O.nume["icsEnumerics". 
If thp. number is negativ'2, a II_II precedes the string; 
if positive, a bldnk pr2cedes· the st["ing. 
If the 9xponent is neyative, a "_II follows t.he "E". 

Table 7.1 Conve["sion rules. 
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Instruction: UNDEFINE (lJNDEF) 
Function: The value of the op2rand is set to 

und-2fined. 
Forma~: 001,01\ 
Op~rands: Thp operand can bA of any type. If it is 

a token field, the instruction has no effect. 
I~ the operand specifies a collection of 
c0lls (array, dom~in, or structure), 
each element receives the undefined value. 

Faqlts: 	 G~neral set (excluding incompatible operands). 

ARITHMETIC INSTRUCTIONS 

Instruction: .~DD 
Fn/lc:tion: 	 The v;J.lues of the two operands are added 

a!l d the resu It is placed in the first 
operand. 

~ormat: 2,OI\,OA 
Operands: 	 Roth operands must be arithmetic. Doth 

operands can be arrays or domains, implying 
that an element-hy-element addition is performed. 
If the first operand is an array or domain and 
the second op~rand is a scalar, then 
the second operand is added to each element 
of the first operand. 

It the operands have different types or 
sizes, the value of the second operand is 
temporarily converted or adjusted to agree 
with the first operand before the addition 
is performed. The rules of arithmetic are 
identical to those in the PL/I language. 
Floating-point results are always 
normalized. 

Fa u1 ts: 	 General set plus oV2rflow and underflow. 

Instruct ion: SU BTR ACT (SU B) 
Function: 	The value of the second operand is 

subtracted from the value of the first 
operand and the rdsult is placed in the 
first operand. 

Fo rm at: 3,0 A,0 A 

OpPL~nds: See ~DD instruction. 

Faults: Generdl set plus overflow and underflow. 


Instrnction: MULTIPLY (MULT) 
Function: 	 The values of th~ two operands are 

multiplied and tha result is placed in 
the first operand. 

Format: 4,OA,O.lI. 

OoeLan~s: s~~ ADn instruction. 


http:4,OA,O.lI
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Faults: General set plus overflow and underflow. 
Notes: In the case of array operands, an element­

. by-~l~ment multiplication is done, not a 
"matr-ix multiplication." 

lnstr1lction: DIVIDE 
Function: 	 The value of the first operand is divided. 

by the value of the second operand and 
the resu 1 t (quotient) is placed in the 
first operand. If the first operand is an 
integer, it becomes the integer whose magnitude 
is the largest integer that does not exceed the 
mathematical quotient and whose sign is the 
same as the sign of the mathematical quotient. 

ForOldt: 02,01\,OA 
Operands: See ADD instruction. 
Faults: General set plus overflow, underflow, and 

divide. 

lnst.ruction: REMAINDER 
Fun~tion: 	 The value of the first operand is divided 

by the value of the second operand and 
the rpmainder is placed in the first 
operand. 

Format: 002,OA,OA 
Operands: 	 Both oparands must be integers. 

Both can be arrays or scalars, or the 
first can be an array and the second a 
sCd.lar. 
General set plus overflow and divide. 

Instruction: ABSOLUTE (ABS) 

Punction: The sign of the operand is set to positive. 

Format: 01 rOA 


Operands: The operan~ must be arithmatic. If the 

operand is an array, the operation is 
performed on each element. 

r .~. 

Fii ul ts: Gener·3.1 set (excludi ng incompa tible 
operands) • 

.: 

InstL"lJction: COt1PLEt1ENT (CO'1P) 

Function: The sign of the operand is reversed. 

Format: F,OA 

'. 


OpeL"3nds: The opqrand must be arithmetic. If the 

operand is an array, the operation is 
performed on each element. 

Fa III ts: General set (~xc ludi ng i ncom pa ti bl e 
operan ds) • 
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Instruction: POWER 
Function: 	The value of the first operand is raised 

to the power given by the value of the 
second operand and the result is placed 
in the first operand. 

For~at: 008,OA,OA 
0p0rdnds: Both operands must be arithmetic. If the 

first operand is an integer, then the second 
o~erand must be an integer. 
The first operand can be an array, implying 
that the operation is performed on each 
elament. The result is always rounded if 
least-significant diqits will be lost. 
Floating-point results are always 
no r:n lized. 

Faults: General set plus overflow and underflow. 

COMPARISON-AND-BRANCH INSTRUCTIONS 

Instruction: EQUAL-BRANCH-FALSE (EQBF) 
Function: 	 If the values of the operands are equal, the 

instruction has no effect; otherwise, control is 
transferred to the specified instruction address. 

Fo rm a+:: 7, 0 A , 0 A, I A. 
Oper~nds: The operands must be compatible 

(both arithmetic, character, boolean, 
pointer, or token). If they are arithmetic 
but have different types or sizes, the 
valu.;: of the second opecand is temporarily 
converted to agree with the first operand 
hr;fort:~ the compa rison is made. (Overflow 
faults never occur. If an overflow 
condition is encountered, the two operands 
are defined as unegual.) 

Comparisons between arithmetic values of 
dissimilar attributes are consistent with 
the rules of PL/I. 

If the operands are strings and/or fields of 
unequal length, the shorter is temporarily 
paided with blanks (for character) or zeros 
(for boolean or token) before the comparison 
is made. Character and boolean strings/fields 
are padded on the right and token strings/fields 
are paided on the left. 

The first operani may be an array or domain, 
or both operands may be arrays or domains, 
in which case an element-hy-element 
comparison is done. If the first 
operand is a structure, the second operand 

'must be an identical structure and an 
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element-by-element comparison is done. 
~he result is true only if the relation holds 
b8tween all corresponding elements. 
If the operands are pointers r only the 
logical addresses (not the access codes) 
aI:'e compaI:'ed. 

Paults: 	 General set (excluding invalid operand type) 
plus invalid tI:'ansfeI:', yes-branch tracer and, 
rio-bI:'anch trace. 

InstI:'uction: NOT-EQUAL-llRANCH-FALSE (NEBF) 
Function: 	If the valugs of the opgrands are unequal, the 

instruction has no effect; otherwise, control is 
transferred to the specified instruction address. 

Format: (',OA,OA,IA 

Operands: See EQUAL-BRANCH-FALSE instruction. 

Faults: See EQUAL-BRANCH-FALSE instruction. 


Instruction: LESS-THAN-BRANCH-FALSE (LTBF) 

Functiou: 	 If the value of the first operand is less 

than the value of the second operand, the 
ir~struction has no effect; othenlise, control is 
transferred to the specified instruction address. 

form~t: 8,OA,OA,IA 
Operands: 	 The operands must both be 

arithmetic, character, or token. If they 
are arithmetic but have different types or •
sizes, the value of the second operand is 
temporarily converted to agree with the 
first opeI:'and before the comparison occurs. 
(Ov~rflow faults never occur. If an overflow 
condition is encountered, the first operand 
is taken as b~ing less than the second.) 

Comparisons between arithmetic values of 
dissimilar attributes are consistent with 
the rules of PL/I. 

Character strings/fields are compared 
based on the collating sequence of char­
acters (EBCDIC representation). Token 
strings/fields are compared by viewing them 
as positive hexadecimal numbers. Unequal­
length strings or fields are padded as described 
in the EQUAL-BRA~CH-FALSE instruction. 

The fiI:'st operand may be an array or domain, or 
both oparands may be arrays or domains, in which 
caS0 an element-by-element comparison is done. 
The result is true only if the relation holds 
between all corresponding elements. 

Faults: 	 ~eneral set plus invalid transfer, yes-branch 
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trace, and no-branch trace.Ie. 
Instruction: G~EATER-THAN-BRANCH-FALSE (GTBF) 
Function: 	 If the value of the first operand is 

qr~ater than the value of the second operand, 
the instruction has no effect; otherwise, control 
is transferred to the specified instruction address. 

Format: 9,OA,OA,IA 

Oper~nds: See LESS-THAN-BRANCH-FALSE instruction. 

Faults: See LESS-THAN-BRANCH-FALSE instruction. 


In st:. rllction: 1.3 SS- TH AN-OR - EQUAL-BR ANCH -F ALSE (LEBF) 
Fun c t ion: 	 I f t h G valuG 0 f the fir s tope r an dis 1 ess 

than or equal to the value of the second , 
operand, the instruction has no effect; otherwise, 
control is transferred to the specified 
instruction address. 

Format: A,OA,OA,TA 

Oper~nds: Se~ LESS-THAN-BRANCH-FALSE instruction. 

raults: S8e LESS-THAN-BRANCH-FALSE instruction. 


Instruction: GREATER-THAN-OR-EQUAL-BRANCH-FALSE (GEBF) 

Function: 	 If the value of the first operand is 

greater than or equal to the value of the 
second operand, the instruction has no effect; 
otherwise control is transferred to the 
specified instruction address. 

Format: B,OA,OA,IA 

Operands: See LESS-THAN-BRA~CH-FALSE instruction. 

Faults: See LESS-THAN-BRANCH-FALSE instruction. 


Instruction: DEFINED-BRANCH-PALSE (DEFBF) 

Function: 	 If the value of the operand is defined, 

the instruction has no effect; otherwise, control 
is transferred to the specified instruction address. 

Format: 004,OA,IA 
Operands: 	 The operand can be of any type. 

If the operand is a token field, the 
instruction has no effect. If the operand 
spocifies a collection of data (array 
or structure), th3 condition is 
true only if every ~lement has 
a defined value. If the operand is a 
character or boolean field, the 
condition is true only if every 
element in the field is defined. 

Faults: 	 General set (excluding incompatible operands 
and in va lid operand type) pI us in val id transfer, 
yes-branch trace, anu no-branch trace. 
The undefined-()p'~.rand fault will 
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" not occur unless the values of other cells 
"ftre needed to address the operand (e.g., 
'param£ter, pointer, array subscript) and 
one"bf these cells has the undefined value. 

Instruciion:-ITERATE 
Function: 	 An addition is performed between two operands 

and relationships among three operands are 
t~st@d. If true, control is transferred to 
t.he specified instruction; otherwise, control 
is transferred to the next instruction. 

Format: 5,Oh,OA,OA,IA 
Oper~nds: All three operands must be arithmetic and cannot 

bo entire arrays or domains. The instruction 
first performs the operation OP1=OP1+0P3 , 
following the semantics of the ADD instruction. 
Then a branch is taken if either or both or the 
following expressions are true 

(OP 1 > OP2) & (OP3 >= 0) 
(OP 1 < OP2) & (OP3 < 0) 

The comparison between OP1 and OP2 follows the 
semantics of the LTBF instruction. 

Faults: Ganaral set plus invalid transfer. 
No tes: ITERATE is intended to be used at the bottom 

of iterative loops. 

BOOLEAN INSTRUCTIONS 

Instruction: AND 
Fu nct ion: The va lues of th '"~ two operands are "anded" 

and the result is placed in the first 
operand. 

Format: 05,OA,OA 
Oper!nds: 	 The operands must both be equal-length 

boolean strings or fields. The first operand 
may be an array or domain, or both operands 
may be arrays or domains. 

Faults: 	 General set. 

Instruction: OR "~ 
Function: The values of thl~ two operands are "or-ed" 

and the result is placed in the first 
operand. 

Format: 06,OA,OA 
Operands: 	 See AND instruction. 
Faults: 	 G~~n<:'!rdl set. 
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Instruction: NOT 

Fun=tion: The value of the boolean operand is inve~ted.
.~ 
Fo~rnat: 005,01\ 
Ope~lnds: 	 The operand must be a boolean string or 

field, or an a~ray or domain of boolean 
st~inqs or fields. 

Faul·s: 	 Gen~~al set (excluding incompatible 
operands). 

STRING AND SEARCH INSTRUCTIONS 

InstI:'llction: CONCATENATE (CONCAT) 

Fun=tion: The second operand is concaten~ted to the 


first operand. 
Forma.t: 03,Ol\,OA 
Operdnns: Th~ first operand must be a string. The 

second ~perand must be a string or field of 
the 53me type. The length of 
th~ first operand is inc~emented by the 
lAngth of the second operand, and the 
value of the second operand is appended 
to the end of the first operand. 

Faults: 	 Gen~ral set plus ove~flow. 

Instruction: MOVE-SUBSTRING (MOVESS) 
Fun=tion: 	 The 5ubstriny (part of a string or field) 

designated by th0 second set of operands 
is moved into the subst~ing designated by 
the first set of operands. 

FOI:'mat: O~,OA,OA,OA,OA,OA 
Operinds: 	 Oparlnds 2 and 4 designate the two strings 

oc fields. The two operands must be 
compatible (both character, boolean, 
or token). 
Operands 1, 3, and 5 must be integers. 
Operand 1 specifies the length of 
the substring to be moved. Operand 3 
specifies the index of the start of the sub­
string in the target string/field, and operand 
5 specifies the ind~x of the start of the 
SUbstring in the source string/field. 

Faults: 	 G~npral set. 
Notas: 	 MOVESS performs dn overlay rather than an 

insertion. That is, the length of the 
tdrget string is unchanged. 
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Instruction: INDEX 
Function: 	 A string or field is searched for a specified 

sllbs~['ing, starting at a specified 
~osition. If the subst['ing is found, 
the first operand contains the index of 
the sta['t of the matching substring in 
the string/field. If the substring is not 
found, the fi['st ope['and is set to zero. 

Format: 07,OA,OA,OA 
Operands: 	 The first operand must be an integer; it initially 

specifies the index of the point in the string 
at ~hich the search should begin. 
The sc"!cond. op"'!rand is the string or field to be 
searched. The third operand must be a 
string or field having the same type as the second 
operand; it represents the substring to be 
loc,1ted. 

Fi:lults: 	 Goneral set. 

Instruction: LENGTH 
Function: '1'h;~ l2ngth of the second opeI:'and (a string 

OI:' field) is placed in the first operand. 
'Format: 08 ,OA ,OA 
OpeI:'ands: The first operand must be an integer 

and the second operand must be a string or field. 
Faults: General set (excluding incompatible 

operHnds and undefined operand). 

Instruction: SEARCH 
function: 	 The instruction specifies an array or domain cell, a 

subsCI:'ipt value, and a key value. Each element 
of the array or domain is searched for the key 
value, starting with the element specified in 
the subscript operand. If an element is found, 
the subscript opPI:'and is set equal to the 
element's subscript. If not, the subscript 
operand is set to zero. 

Format: 003,OA,OA,OA 
Operands: 	 The first operand must be an integer; it initially 

contains the starting element number and is 
filled with the matching element number (or zerot. 
The second operand must be a one-dimension array 
or domain (the op{~rand addcess must be an aI:'ray or 
domain address). The third operand is the key (t~e 
valup to be searched for). The elements of the 
array are compare~ii to the key value according to the 
rules specified in the EQBF instruction. 

Fa ul ts: 	 Genera 1 set. 
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CONTROL INSTRUCTIONS 

Instruction: C'LL 
Fun~tion: 	 Ex~cution of the current module is 

susp~nded and execution of another module 
heqins at the specified entry point. 
Allocltion and initialization of automatic 
storaqe is performed for the called module. 

Format: D,OA,A,Al,OA1, ••• ,Ax,OAx 
Op0r~nns: 	 Th~ first operand is a pointer to a 

moJule entry point (must have read access). 
Th~ pointer must hav~ been created by a 
C88ATE-ENTRY-POINTER instruction. 
Th~ first immediate field is a two-token 
hexa19cimal number (X) specifying the 
number of arguments to be passed. The 
suhs~quent X pairs of fields specify the 
arquments. Ai is a one-token immediate field 
iO'lic.:tting whether the argument is passed with 
read/write access (value=0011) or read-only access 
(value=0111). OAi is the operand address of the 
argument. Arguments cannot be literals- or domains. 
Arqumpnts cannot be relocatable cells where the 
locator is a pointer or parameter pointer. 

f~ults: 	 General set plus call-trace, invalid 
transfer, and insufficient storage. 

If CALL is execut?d in a fault handler, any 
and all activations beneath (after) the current 
activation disappear. 

~ot~s: 	 The CALL instruction does not actually 
tr~nsfer ~rgum~nt~ to the corresponding 
parameters in the called module. This 
must be done via ~n ACTIVATE instruction 
at the called entry point. 
CALL creates ~n activation record and 
pl~c~s it on the top of the stack of the 
activation records for the program. 

Instruction:I\CTIVATE (ACT) 

Function: Argu~ent/parametpr compatibility is checked 


and the specified p~rameters are initialized. 
Format: C,X,CA1, ••• ,CAx 
Oper1nds: The immediate field (X) is a two-token 

hexadecimal numher specifying the number 
of parameters. The following X fields must be 
cell addresses of parameter cells. The parameters 
are initialized t~ the arguments transmitted 
by th~ last CALL instruction executed in the 
program. 

~aults: 	 Addrpssing, unknown data format, 
invalid operand type .. invalid 
trlnsmission count, incompatible operands. 
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Notes:_ 

...c., 

i .. , 

The rul~s for argument-parameter compati ­
bi li t yare definRd in Ta ble 7.2. An ACTIVATE 
inst~uction need not be the first instruction at 
an-'entry point to a module, but an ACTIVATE 
instru6tion must be executed before any reference 
is made to a parameter cell. (I f not, the 
parameter would have the undefined value.) 

~­, -, 
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D-typed 	 Any primitive cell 

Int~qer, point(~r 	 Identical type 

Yixed-point, flodting­ Identical type, and identical size 

point, bool(~an, charac­ unless the parameter is D-sized. 

ter, or tohHl field/ 

st ri n g 


St ruct uri? 	 A structure having the same number 
elements. The type and size of each 
el~ment must be identical to the type 
and size of each element in the 
parameter structure. Arrays. in the 
structure must have the same number 
of dimensions as the arrays in the 
parameter structure. They must also 
have the same upper-bound values and 
element attributes, unless the arrays 
in the parameter structure are 
D-typed, D-sized, or D-bounded. 

Arra y 	 Array of identical dimensions. Unless 
the parameter array is D-bounded, the 
bounds must be equal. Unless the 
parameter array is D-typed, the 
element type must be identical. 
Unless the parameter array is D-sized, 
the element size must be identical. 

Tab12 7.2 	Rules for argument-parameter compatibility. 

*~.~~&* ••*.******.****~~~*.w***.************************~.* 
* Not~: In th03~ situations in Table 7.2 where the * 
~ p3rameter is D-typed, D-sized, or D-bounded, ACT * 
* adjusts the proper fields in the parameter cell in the * 
* activation record to match those of the argument. * 
• Hence, thera is no need, during execution of the module,* 
~ f~r the m~chine to refer to the tag of an argument. It * 
~ need only ref0rence its content component r which is * 
.,; located through the parametec cell. * 
·***··*~~.~*~*~~.**.*·~.**·f****.****** •• ******~****** ***** 

Instruction: RETURN 
Function: 	 Execution of the cur cent module is 

t8rminated and execution is resumed after 
the CALL instruction that called this 
module. 

Format:.: OA 
Operan ds: None. 
Fault,;:;: Non.:>. 
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No tes: 	 RETU RN "undo es" the effe ct of the previous 
CALL and ACTIVATE instructions. That is, 
the current activation record is destroyed. 
If i~e current activation record is the only one, 
the program is terminated. 

Instruction: LOCAL-CALL (LCALL) 

Function: Execution is suspended and control is 


transferred to an instruction within the 
module. 

Format: OB,IA,X,A1,OA1 , ••• ,Ax,OAx 
Operands: The first address field specifies an 

instruction address to which control is 
transferred. The remaining fields are 
identical to those of the CALL instruction. 
Arguments cannot he literals, domains, or 
relocatable cells. 

Faults: 	 General set plus invalid transfer, call 
trace, and insufficient storage. 

Not2S: 	 LeALL, unlike CALL, does not create an 
activation record, which means that inter­
nal procedures cannot ba recursive (unless 
the compiler uses an ALLOCATE instruction 
to simulate the effect of an activation 
record), and that any scope-of-name rules 
are the compilers' responsibility. 

Instruction: LOCAL-ACTIVATE (LACT) 

Function: Argument/parameter compatibility is checked 


and the specified parameters are initialized. 
Format: OC.X,CA1, •••• CAx 
Operands: The immediate field (X) is a two-token 

hexadecimal number specifying the number 
of parameters. The following X fields must 
be the cell addresses of parameter cells. 
The parameters are initialized to the arguments 
transmitted by the last LCALL instruction 
executed in the program, or by the machine in 
the case of a LAcr beginning a fault handler. 

F~ults: 	 Addressing, unknown data format, 
invalid operand type, invalid 
transmission count, incompatible operands. 

Not~s: 	 The rules for arqument-parameter compat­
ibility are the same as those for the 
ACTIVATE instruction. 
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Instruction: LOCAL-RETUBN (LRETURN) 
Function: 	 Execution is transferred to the instruction 

following the last LCALL instruction 
ex~cuted in the current module. 

Formlt: 00 
Op0ran lIs: NOll::? 

F::tults: Invalid transf~r (if there was no previous 
LCALL instruction). 

Note3: If LRETURN is executed in a fault-handler, 
and if therG is no outstanding LCALL 
instruction in this module, execution of the 
fault-handler is terminated and execution 
begins at the faulting instruction. 

Instruction: BRANCH (8) 
Function: 	Control is transferred to the designated 

ipstcuction addrHss. 
Formdt: E,lA 
Faults: 	 Inv~lid transfer. 

Instruction: GUARD 
Function: 	If the current module is not in the guarded 

stata, it enters the guarded state and 
control is transferred to the next 
instruction. If the current module is in 
the guarded stata, program execution is 
suspended until it leaves th8 guarded 
state. 

format: oaoc 
Faults: None. 
Notes: If a program executes a GUARD instruction 

after the same program has placed the 
modulp. in a guarded state, the GUARD 
instruction has no effect. 
The only exit from the guarded state is by 
the execution of an UNGDARD instruction. 
Executing a RETURN instruction, or an abnormal 
termination of a module activation (e.g., 
as a result of a return of a higher fault 
hiilldlcr) do.~s not affect the guarded state 
of a module. 

Instruction: UNGOARD 
Function: 	 The state of the current module is set to 

unquarded. 

Form at.: OOon 

Faults: None. 
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ADDRESSING INSTRUCTIONS 

Instruction: GOMPUTE-POINTER (CPTR) 

Function: The f'ir.st operand is assigned the logical 


address of the second operand. 

Format: OE,CA,()A 

Op~rlnds: The first operand must be a pointer. The 


second operand may be any operand except a 
parameter, literal, entire domain, or a relo­
catable or domain based on a nonpointer parameter. 
The access code in the pointer is set to copy 
and no-destroy; its read/write access is set to 
the class of access that the module currently 
has to the second operand. 

The logical address is the address of the cell 
represented by t.he second operand. If the 
second operand is a relocatable cell, the 
address of the cell addressed by the relocatable 
cell is computed and assigned to the first 
operand. If the second operand is a relocatable 
c~ll, its associated pointer must have ~opy 
authority. 

If the second operand is a structure, the 
pointer points to the first element of the 
structure. 

F.'lults: 	 Addressing, unknown data format, invalid 
pointer, invalid operand type, and protection. 

~~*.~~**-.**** ••****.*****~***.**************************** 
~ N:1te: Althollgh activation records, being system objects,· 
• h.'lve system obiect names, there is no need to assign * 
* ever.y activation record ~n object name, since the only * 
* time it would be used is when a CPTR instruction refers * 
* t~ a cell in the automatic storage die. Hence, for * 
¥ reasons of performanc~, ~ctivation records should not be. 
• automatically assigned object names during creation. * 
* Rather, CPTR should check to see if the activation * 
• record has a name; if it doesn't, a name should be * 
* assiqned at this point. * 
•••• ~~~ •• *~.*****.**.~**.*.***.*.*****~.**.******.********* 

;:.p-/ 

Instruction: COMPUTE-INDIRECT-POINTER (CIPTR) 

Function: The first operand b2comes an indirect pointer 


to the second oper.and. 
format: 000h,OA.,OA 
Operands: Both must be pointers. Ope~and 1 becomes an 

indirect pointer to operand 2 and is assigned 
the access code in operand 2. Oper-and 2 
must have copy authority and cannot be an ,e... indir-8ct pointer. Operand 2 cannot be a 

~ par1met~r pointer, or a relocatable or 
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domain-elemGnt pointer that is based on a 

non pointer parameter. 

Ganeral set (excluding incompatible operands). 


Instcllct.ion: Cfil\.~GE-ACCESS (CACC) 

Function: Th~ l.ccess corle ('luthority) in the operand 


is rc.>stL"icterl (ch'lnged) to tile value specified. 
Format: 006, X,OA 
OpeL"~njs: The operand must be a pointer. The immediate 

field (X) is a single token. The immediate 
fiell is ORed into the access code of the 
pointer, thus further restricting the 
authority of the pointer. 

T-'auits: Gener,ll set (excluding incompatible 
operands) • 

Instruct.ion: ALLOCATE (ALLOC) 
Fun~tion: A da~~-storaqe object is created, containing 

allocated storage for the operand. 
f'orm'lt: OF,X,O!\ 
Opec:lnds: X is ~ one-token imm8diate field. The last 

bit designates whether the storage area should 
h~ ~utomatically destroyed upon program 
termination. The value xxxO indicates yes; xxx1 
indicates no. 

~he third bit designates whether the stocage should 
be initialized to the undefined value. xxOx 
sp~cifies initialization to undefined; xx1x 
sp'?cifies no initialization. (If no initialization 
is raquested and the storage is to contain pointer 
cells, the requpst is overriden and the pointers 
are given the undefined value.) 

Th~ op~rand address must be a cell address, 
array element address, or 
array address. The operand must be relocatable 
and can describe any type of cell, except a 
domain. The locator cell rAfercnced by the 
rclocltable cell must be a pointer or parameter 
pointer, and RCA in the relocatable cell must be O. 
The relocatable cell cannot be D-sized or D-typed. 
Any associated rclocatable cells {if the relocatable­

,cell operand is a structure, cannot be D-sized, 
D-tYP2d, or D-bounded. 

If the op~rand is an array and it is addressed 
via ~n array address, the upper-bound fields 
in the op~rand are used to determine the sizeI of the allocated array. If the array isL addressed via an array-element address, the 
urpf~r-bollnd field.s in the array tag must be zero 
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(i.~., it must be O-bounded; in this case the 
values of the suhscripts are taken to 
represent the upper bounds desired in the 

" alTocat~d array. 

The allocated storage is constructed identical to 
the storage described by the nested tag (i.e., 
it includes tags). The access code in 
the pointer is set to 0000 (read/write/ 
destroy/copy) and its logical address refers to the 
data-storage ohject. If the storage is not 
explicitly destroyed, it is destroyed when theI 
proqra mends (if X=xxxO).


I Fdults: General set (excluding incompatible operands) 

plus insufficient storage • 


•••• ~****~~~*~*.*****~********~**.***** ••*.************~~*. 
• GiVAn the nature of the architecture, it is recommended * 
'"' tiut programs specify "initialize to undefined" when * 
• executing ALLOCATE. The option was provided primarily * 
* for compilers, when it is known that th~ ALLOCATE will * 
w b~ followed by a programmed initialization. * 
" 'I< ,. '" • " "," .>; *' W( >« ... A, .. ,. ... " • * '" l\' "* '" r.: 'I< ** *.. $: * **.** .., '* *' *,., .. * *. *.. **.. '" *.. *** 

Instruction: DESTROY 
Function: The storage Object specified by the operand 

is destroyed. 
Format: 007,OA 
Operands: The operand must be a relocatable, pointer, 

or parameter pointer cell. If it is relocatable, 

th~ locatoc cell referenced by the relocatable 

cell must be a pointer or parameter pointer and 

the RCA field in the relocatable cell must be zero. 

The object referenced by the pointer is destroyed. 

If the operand is a pointer, the object referenced 

by it is d~stroyed. 


In both cases the pointer must have destroy 

access. The pointer is qiven the undefined 

value at the end of the instruction. 


If a DESTROY instruction is applied to a module 

and that module is still active (i.e., activa­

ti on records sti 11 exist), the s ys tem -ob ject 

name of the module object is immediately des­

troyed (meaning that it can no longer be 

referenced, such as in a CALL instruction), but 

the object is not actually destroyed by the 

system until all of its activations cease to 

exist. If a port is destroyed on which pending 

send and/or receive requests exist, the port is 

destroyed and the pending SEND or RECEIVE ' 

instcuctions tecminate with the invalid-pointer 

f"lulL 
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Faults: 	 General set (excluding incompatible 
oper,lnds) • 

Notes: 	 The pointer must name an entire storage 
obj~ct. For example attempting to destroy 
d cell within an activation record or a 
cell ~ithiD a dynamically allocated 
storaqe area wou11 result in a protection 
fault. 

Instrnction: CHANGE-LOGICAL-ADDRESS 
Function: An Ohj0ct is given a new logical address by the 

system. Its current loqical address is destroyed. 
7or!1l3.t: OOOA,(L\ 
Opcr3.nds: The operand must be ct relocatable or pointer cell. 

If it is relocatable, the locator cell referenced 
by the relocatahle cell must be a pointer and the 
offset field in the relocatable cell must be zero. 
The pointer must have read/write/destroy/copy 
authority and must refer to an entire object. 
The object referenced by the pointer is assigned 
a n~w logical address, which is placed in the 
pointer with read/write/destroy/copy access. 
Any attempt after this point to use the prior 
logical address of the object will result in an 
invalid-pointer fault. 

Faults: 	 General set (excluding incompatible operands). 


Instruction: LOAD-MODULE (LMODULE) 

Function: A module object is created. 

Format: 009,X,OA,OA 

Operan~s: X, a one-token immediate field, indicates 


whether the module object should be 
automatically destroyed upon p~ogram 
termination. The value xxxO indicates 
yes. If it is to be automatically destroyed, 
the same qualific~tion about destroying a 
module as describ8d unde~ the DESTROY 
instruction applies here. 

The next operand must be a pointer and the 
third operand must be a token st~ing or 
fi~ld. Its valu~ must have the form of an 
external module (see Figu~e 3.1). The machine 
ch~cks the validity of the fo~mat of the 
module, copies it into internal storage, 
and creates a pointer to it. The pointer 
is assigned ~aad/write/destroYlcopy access 
(but writing into a module, except with the 
LINK instruction, is prohibited by the 
machine) • All pointer and parameter cells in 
the module are set to the undefined value. 
Spac~ is allocatep within the module object 
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for arrays within the static storage dia. 
Faul ts: General set (excluding incompatible 

'operands) and invalid module and insufficient 
stora~e. If the invalid-module fault occurs, 
ar1u~ent 5 transmitted to the fault handler 
indicates the type of problem. Its value may 
b,~. 

00001 - Error in indexes in module header 
00002 - Unsupport~d CAS, lAS, or SIS value 
00003 - Invalid cell or cell relationship in 

the module 
00004 - An instruction's operand address does 

not refer to the beginning of a cell 

Instruction: COMPUTE-ENTRY-POINTER (CEP) 
Func+ion: 	 A pointer value (logical address) is 

computed for a specified instruction 
in d specified module. 

Format: OOF,OA,OA,OA 
Operands: 	 The first operand is the tarqet pointer. The 

second operand is a pointer to a module-object. 
The third operand is a token field of size 
5 that specifies the instruction address of 
an instruction in the module. 
Th~ logical address of the instruction in 
the module object is stored in the first 
operand. The access code is set to 
re'id/copy. 

F~ults: 	 Gen0ral set (excluding incompatible operands). 
Thg addressing fault will occur if the 
instruction address does not point within the 
instruction space. The protection fault will 
occur if the second operand does not have 
read/copy authority. 

Instruction: LINK 
Function: A pointer value is assigned to a specified 

pointer cell in a loaded module. 
Format: OOA,O]l"OIl.,OA 
Operands: Th~ first operand is a pointer to a loaded 

modula. The pointer must have write access. 
The second operand is a token field of 
Rize 5 which specifies a cell address in 
the loaded module. The third operand is 
a pointer. The value of this pointer is '. 

assigned to the pointer cell specified 
by the first and second operands. 

faul~s: 	 General set (excluding incompatible 
operands). The addressing fault will 
occur if the tarq~t cell is not in the 
adiress space or not a pointer. 
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Instruction: CREATE PORT 
Function: A port storage object is created. 
Format: 0007,X,OA 
Operands: X, ~ one-token immediate field, indicates 

whether the port object should be auto­
mdtically destroyed upon program termination. 
The value xxxO indicates yes. 

The operand must be a pointer cell. The logical 
address of the port is placed in the pointer cell, 
with read/write/destroy/copy access. 

Faults: 	 General set (excluding incompatible operands) 
plus insufficient storage. 

Instruction: SBND 
Function: 	 The specified operands (arguments) are transmitted 

through a port to another program. Execution of 
the instruction does not complete until another 
proqram receives (via a RECEIVE instruction) the 
arguments from the port. 

Porm~t: OOB,OA,X,OA1, ••• ,OAx 
Operands: 	 The first operand is a pointer to a port (must 

have write access). X is a two-token immediate 
field specifying the number of arguments to be 
passed (0-255). The subsequent X operand . 
addresses specify the arguments. Arguments 
cannot be literals, relocatables, or domains. 

Faults: 	 General set plus invalid transmission count. If 
the numher of arguments is unequal to the number 
of ceceiver operands in the corresponding RECEIVE 
instruction, the invalid-transmission-count fault 
occurs. If the arguments are incompatible with 
the types of receiver operands in the corres­
ponding RECEIVE instruction, the incompatible­
operands fault occurs. If an aLgument has an 
und0fined value, the undefined-operand fault occurs. 

Any faults that occur after data movement starts 
(protection, if ~ pointer argument does not have 
copy authoLity, incompatible operands r undefined 
operand) cause the SEND and corLesponding RECEIVE 
instruction to complete with pactial data movement. 
These faults, as well as the invalid-transmission 
count fault, cause both the SEND and corresponding 
RECEIVE instruction to fault. 

Instruction: RECEIVE 
Function: 	 The values of the first set of arguments (a 

set of arguments consists of those named in a 
s1 ngle SEND in st ruction) in the specified port 
dre transmitted to the specified operands and 
r~mov~d from the port. If the port does not 
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contain a set of arguments, execution of the 
instruction do~s not complete until a SBt of 
a~gu~9nts 	has been placed in the port. 

Format: OOc,ol\,.X,OA1, ••• ,Ohx 
Oper~njs: 	 The fitst operand is a pointer to a port (must 

have read access). X is a two-token immediate 
field specifying the number of receiver operands. 
The X operand addresses specify the receiver 
operands. They mdY be of any type except literal, 
relocatables or domains. (They need not be 
parameters, since the arguments in the port are 
transmitted by value. If a receiver operand is 
d parameter, the value is transmitted to the 
associated arqument, an argument transmitted to 
this module by a CALL or LCALL instruction.) 

The rul~s concerning compatibility between 
S2ND arguments and receiver operands are 
id0ntic~l to those for the ACTIVATE 
instruction (i.e., the attributes of the SEND 
arguments and corresponding receiver operands 
must b~ identical). 

Faul ts: 	 Gen8ral set plus invalid transmission count. If 
one or more of the arguments have the undefined 
value, if the number of SEND arguments is 
unequal to the number of receiver operands, if 
one or more SEND arguments are incompatible 
with the corresponding receiver arguments, or if 
a pointer SEND argument does not have copy 

•authority, the undefined-operand, invalid­
transmission-count, incompatible-operands, or 
protection fault is generated in both the 
RECEIVE instruction and the corresponding 
SEND instruction (see description of the SEND 
in struct ion) • 

,. Instruction: DESCRIBE 
Fun=tion: 	Given a pointer, returns information about the " -:i;o:;';".,. 

pointer and that to which it points. 
1' .• : ­

Format: OOOB,OA,OA,OA 	 ..----. 
Oper~nds: 	 The first operand must be an integer. The second 

operand must be a one-dimensional array of 
character fields of size 6. (The operand addres~ 
must h~ an arraYiddress.) The array must contain 0&-::' 

at least four elements. The third operand is the: 
'. ­

pointer. 

The instruction stores information about the 
pointer aud its r?ferenced object in operands 1 
and 2. Table 7.3 defines the information. 
OA2(i) repres~nts the ith element of the third 
operand. 
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If p~inter refers to: Then resultant information is: 

Module 1 6 7 8 12 
Port 2 6 7 9 11 
Dat:l-stor.'lqe object 1 6 7 10 1 1 
Ce 11 in module (SSO) 3 6 7 11 12 
Cell in act. record 3 6 7 11 12 
C211 in OSO :3 6 7 1 1 1 1 
Entry point in module 4 6 7 1 1 12 
Source/sink stream 5 6 7 1 1 1 1 

lol'ot.-"!s: 
1 - size of the object (number of tokens) 
2 - number of programs currently enqueued on the port 
3 - cell type (value = first four bits of tag) 
4 - instruction address of entry point 
5 - unchanged 
6 - authori.y possessed hy the pointer 

char 1 = blank or R (read) 

char 2 = blank or W (write) 

char J = blank or 0 (destroy) 

char 4 = blank or C (copy) 

char 5 = type of pointer - blank (direct) or 


I (ind irect) 
char 6 :: blank 

7 - type of obj~ct referenced by the pointer 
char 1-2 = MO (module object) 

•PO (por:t object) 

00 (data stor:age object) 

MC (cell in module - SSO) 

AC (cell in activation record) 

DC (cell in data storage object) 

ME (entr:y point in module) 

55 (source/sink stream) 


chars 3-6 = blank 
8 - module status 

char 1 = blank or P (to be freed upon program 
termination) 


char 2 = blank. or A (module is active) 

ch ar 3 :: blank or G (mod ule is in guarded state) 

char 4 = blank or C (call trace is active) 

char 5 = blank or Y (yes-branch trace is active) 

char ~ = blank or N (no-branch trace is active) 


9 - port status 
char 1 = blank or p (to be freed upon program 

termination) 
char 2 = blank or S (spnd outstanding) or R 

(r:cc8ivE! outstanding) 
chars 3-6 :: blank 

10- st.atus 
char 1 = blank or P (to be freed upon program 

tprmination) 
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ch'lr 2-6 = blank 
11- bLink 
12- first six _ch~racters of the name of the module, or 

associated module, object 

T~0le 7.3 ~esult fro~ the DESCRIBE instruction. 

DEBUGGING 	 INSTRUCTIONS 

Instrnction: ENA13LE 
Fllnction: The ~:;p('cifien token field is ORed 

into the fault-code field as defined in 
the module header. The fault-code field 
is maintained in the module's activation 
record, meaning that this instruction 
affacts only the current activation. 

Forllat-~ OOOR,OA 
0p0[lnds: The operand must be a token field (of 

size N) whose size is equal to or 
less than the length of the fault-code 
field. If the token field is shorter 
than the fault-code field, only the 
first N tokpns of the fault-code field 
are chanqed. 

fdults! General set (excluding incompatible 
op~rands) and overflow. 

Not~: 	 Tho ENABLE and DISABL~ instructions do not 
alter the fault-code field in the module; 
they affect only the current activation of 
t h'3 module. 

" ' .. 

.~~~-;f~:·.;~~. " 
Instruction: DISABLE 
Function: The inverse (negation) of the specified .... .. -"­~ 

token field is ANDed into the module's 
fault-code field in the activation record. 

Form<lt: 0009,OA 
0p8rands: See ENABLE instruction. 
F:lults: Gen",ral set (o:?xcluding incompatible 

opPL'and~--;) and oVf>cflow. 
'­

Jn~truction: RAISE-FAULT 
Function: A f~ult occurs. The two-token immediate 

field X b~com0s the fault type (i.e., th~ 
value of the first argument to the fault 
handl\~r) • 

Fa rmel t: 0 I) D , X 
P.'itllts: ~~hi1,trlv~r tYpt' is indicated by the immediate 
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field x. X should not be zero or 22-27; if it 
is, the fault-handling fault occurs. If X does 
not sr~cify the value of an architected fault 
typ~, ~he fault is program-defined. 
For pro'·lriim-ciefined faults (28-255), even-valued 
on0S allow the fault handler to resume execution 
aftar the RAISS-FAULT instruction, while odd­
numberdd ones do not. 

Instruction: CONTINUE (CONT) 
Function: 	 Execution of the fault-han1ler is 

t"rr.linated and execution resumes at the 
ins~ruction that would have b~en executed after 
the f3ulting instruction, had the faulting 
inst~uction not faulted. 

form:tt: OOE 
Pault.s: 	 Fault-handling (if there is no current 

fault, if continuing beyond the current 
fault is not permitted, or if CONTINUE 
is issued from a local subroutine called by a 
fault handler). 

Not::->s: 	 If a fault-hdndler wishes to resume 
execution at the faulting instruction, 
it should issue the LRFTURN instruction. 
If the fault-handler wishes to resume 
execution at the instruction following 
the faultinq instruction, it should issue 
th'? CONTIN[J? instruction. The only faults 
that m~y h8 followed by a CONTINUE instruc­
tion are call tr~ce, yes-branch trace, no-branch 
trztc-", or an ev':\n-nn~bered fault in the range 
range 28-254 qenerated by a RAISE-FAOLT 
i nstL"llction. 

Inst["lction: THANSF?R-F,\ULT (TRFAULT) 
Function: 	 The current fault-handler is terminated 

and a higher fault-handler (one lower in 
tht2 3.ctivation stack) is called. If an 
doplicable fault-hanjler cannot be found, 
the program is terminated. 

Forma+-: ()OO') 
Faults: Fault-handling (same first and third 

situ~+-ions as in the CONTINUE instruction). 
Not"s: TilFA[JLT is \l!3·:,d by a fault-handler that 

has 3 particular fault enabled, but after 
r~ceiving such a fault it decides to send 
it to a "hiqh''''r authority." 
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Instruction: DISPLAY-TAG (DTAG) 

Function: The tag of the desiqn~ted cell is assigned 


to a token operand. 
Form at: ') 00 1,01\" , 0 A,0 A 
Operands: The second operand is a pointer to a loaded 

~odule; the pointer must have read access. 
The thi~d oper~nd is a token field of size 5 
which specifies a cell address in the loaded 
modul~. The tag of this cell is moved 
into the first operLlnd, which must be a 
tokGn field or string. 
The overflow fault is suppressed; if the 
taq is longer than the first operand, the 
first operand is filled with the ~eftmost 
tokens of the taq. 
If th~ pointer is undefined, it is assumed 
t.o d?siqnate the current module (i.e., 
all undefined-oper-ind fault will not 
occur for the second operand). 

Faults: 	 General set (excluding incompatible operands). 
Not~s: 	 Thi3 instruction is intended only for use 

by debugginrl functions. For planning 
ptlrposc~s, the largest possible tag is 84 
tokens (a relocatdble array of 15 dimensions). 

Instrllction: DISPLAY-CON'rENTS (DCON) 

Function: The contents compon~~nt of the designated 


c i~ 11 is ass i q ned t 0 a to ken 0 per and. 
Pormat: 0002,OA,OA,OA 
Opec3nds: See DTAG instruction. Overflow faults 

ace similarly suppressed. If the cell 
is in the automatic storage die, its 
value for the most recent, currently 
active, activation of the module is 
displayed. If the module is not active, 
the c'211's initial value in the die in 
the module is displayed. 

Faults: 	 General set (excluding incompatible operands). 
Notes: 	 This instruction returns the £Qnl~n12 of 

a cell, which is not always identical to 
its value. For example the contents of a char­
,lcter strilllj is d three-token length field 
and a variabla-size value; the contents of " .. 
a pointer is a one-token dccess code and a 
20-token logical address. 

If the c,,'ll is an array, the E-~l~~ment contents 
are returned as a contiguous stream of tokens. 
TI~ey are ceturnel ill "cow-milior" order (all the 
elements in the ficst dimension, then the second, 
and so on) • 

The size of a contents component can be 
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det~rmined by first using a DTAG instruction. 

Instruction: TRACE 
Function: Desiqnated traces is enabled for a specified 

mooul;}. 
For:nat: OOOJ,X,OA 
OperJ.nds: The one-token immediate field (X) specifies 

the type of trace. The value 01xx specifies a 
a yes-branch trace, Ox1x specifies a no-branch 
trace, and Oxx1 specifies a call trace. 
The second operand must be a pointer to a 
modulo and must have write access. The 
snecified traces are enabled for all subsequent 
activations of the module. 

Faults: 	 Goneral set (excluding undefined operand 
and incompatible operands). 

Sot~s: 	 TRACE and NOTRACE do not affect any existing 
activations of the specified modules. They 
take ~ffect when such modules are subsequently 
called. 

Instruction: NOTR.a.CE 
Pun~tion: Designated traces are disabled for a 

specified module.r format: aOOU,X,OAc. 	 0p0rands: Se~ TRACE instruction. If a trace was 
not previously enabled in a module, 
disabling it has no effect. 

Faults: 	 Generll set (excluding undefined operand 
dll(l incompatible operands). 

http:NOTR.a.CE
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B. OBJRCT-CODE EXAMPLES 

Piqu~2s 8.1 and 8.2 are PL/I p~ocedures that will be 
used as pxamples. The int~nt of the examples is to 
illus~~dta how a PL/I prog~am would be represented in this 
a r ci1 it C'ct: u reo 

Fiqu~Qs 8.3 and 8.4 represent the obiect modules that 
th? compiler would present to the machine. Rather than 
illustrating the modules as a continuous token string, items 
of interAst (8.g., individual cells and instructions) are 
illustrated on spparate lines. The first and second columns 
arc not part of the module; they indicate, respectively. the 
index in th~ L1o.3.ule of the first token on the line, and the 
ind(~x in th~ acidr.:=ss space or instruction space of the ti~st 
t 0 k2- non t h (~ 1 in e • E a chI in e is a 1so sup pIe men ted with a 
comment. The comments on the instructions take the form of 
anissembly lanqllage. The meaning of the assembly-language 
statements should be obvious. For instance 

MOVE A.B(J),1 

me~ns move the literal 1 into the Jth element of a~~ay B in 
thp structure A. Names beqinning with "';" are inst~uction 
labels (targets of branch instructions). 

.._;;.. _i •• : 
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MATCIIF.S: PROCEDURE (BODY, UNRESNA:1E,MATCHCODE,SIZE); 
DECL,\i1 p. 1 BODY ("'), 

2 NAME CHAR (8) , 
2 i'YPE CHAP. (2) , 
2 ADDRESS POTNT3R; 

D:::CLAPE 
MODUL::: ClIld(2) ST,'\TIC INIT('MD'), 
E NT R Y PT C H A R (2) STAT I C I N IT (' E P .) • 
EXTREF CIf}\R(2) ST.!l.TIC INTT ('Ea'); 

D~CLARE NULL BUILTIN; 

DECLAHE ~.a.TCHCOD~ FIXED DECIMAL (1) ; 

DECLUE UNRESN.a.11F CHAR (8): 

D3C~;~.s SIZE:: FIXED DECIMAL (4); 

D2CLAR E 


I Fn:ED BINAiH(15); 
J FIXED BINARY(15); 

~ATCaCODE=2: 

IF ((SIZE)O) [,. (SIZE-,>20IJO» 
TH 2\/ 

DO: 
~A?CHCODE=I); 

DO 1=1 TO SIZE WHILE (MATCHCODE=O) : 
IF ( 130 D Y (I) • ADD RES S= NUL L ) 

TfIEN DO; 
MATCHCODE=1 ; 
DO J=1 TO SIZE WHILE (ctATCHCODE=1) ; 

IF {(BODY (I) .NAME=BODY(J) .NAME) & 
«nODY (J) .TYPE=MODULE) I 

(130DY(J) .TYPE=ENTRYPT») 
THEN DO; 

MATCHCODE=O; 
BODY (I). ADDRESS=BODY (J) • ADD[?ESS; 

END; 
ELSE: 

EN D; 
IP (~"ITCHCODE=1) THEN UNRESNAME=BODY (I) .NAME; 

ELSE; 
END; 

ELSE: 
END; 

;:: NO; 
ELS:; 
EN D; 

Figurp 8.1. Source Module MATCHES 
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Offsets 	 Comments 

001 000240D026000AOOOOC000173 Header 
alA 2200000000 CAS/IAS/SIS/SA/Faults 
024 00 Module name (omitted) 
026 (} 1 671COOOnOOOOCRC3001C BODY (parameter array of 

FFFFFFP structures) 
lC 100010 (1 008008 NAM E (domain character fteld) 
29 100010010B002 TYPE (do~ain character field) 
36 10(011)0149 ADDRESS (domain pointer) 
,.0 6El00000FFFFFFF MATCHCODE (fixed-pt. param.) 
4F hBOOROOOFFF~FFF UNRESNAME (param. character) 
SF: 6E400()OOFFFFFFf SIZE (fixed-pt. par-am.) 
6n PROOOOa I 
74 F801)000 J 

OAO 	 78 B002D4C4 MODULE (character field). 
83 0002CSD7 ENTRYPT 
RB B002C5D9 EXTREF 
93 E4002000 12000 1 

OcO 01 	 C04014Pl105E ~CT 4.BODY,UNRESNAME,MATCHCODE,SIZE 
1110002 MOVE MATCHCODE,2 
95EOOOB2 GTBF SIZE,O,~H 
A5E9382 LEOF SIZE,2000,%H 
140000 MOVE MATCHCODE,O 
16DOO 1 MOVE 1,1 
A6D5t:B2 LEBF I,SIZE,%H 

34 	 74000082 ~A: EQBF MATCHCODE,O,IH 

004366048 DEFBP BODYoI\DDRESS (I) ,%0 

EAB B %G 


48 	 140001 %0: MOVE MATCHCODE,1 

174001 MOVE J,l 

A745E99 LEBF J.SIZE,%F· 


58 	 74000199 %C: E0.SF MATCHCODE,1,%F 
71C6r>1C748F EQSF BODY.NAME(I) ,BODY.NAME(J) ,~E 
629747B80 Nl:UF BODY.T'fPO;::(J) ,MODULE,%D 
72974H38F EQBF BODY.TYPE(J) ,ENTRYPT,"E 

80 	 140000 ID: MOVE MATCHCODE,O '.' 

1366D3674 MOVE BODY. ADDRESS (I) , BODY. ADDRESS (J) . .~oii-L 
.;.-:--.SF 5745£0;)158 IE: ITERATE J,SIZE,l,IC , . 

99 7400') lAS %f: EQBF MATCHCODE,1,IG 
14F1:6D MOVE UNRESNAME,DODY.NAME(I) 

"'8 56DSE00134 %G: TTER~TE I,SIZE,1,%A .: 
1)2 OA 'VoH: RETU?N 

Figure B.2. Object Module MATCHES 
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TESTEST: PROCEDURE OPTIONS (MAIN); 
DECLARE SIZE FIXED OECIMAL(4); 
DECLARE 1 B (7) , 

2 N CBAR (8) , 
2 T CHAR (2) , 
2 f!, POINTER; 

:JECLABE U~N1\l1E CHAR(S) IN~T(' XXXXXXXX·), 
CODE FIXED DECIMAL(1) INIT(9): 

DECLARE NOLL BUILTIN; 
B (1) .N='A3CDEFGH'; 

B ( 1) • T= , E R' ; 

B (1) .l\=NULL; 

::J (2) • ~j:: , ABC 0 E F G Ii ' ; 

!3 (2) • T= , ~ n I ; 


B (2). A=ADDl (UNNAME); 

SIZE=2; 

C\LI, MATCHES (I3,UN1LHIE,CODE,SIZE); 

END: 


Fiqure 8.3. Source Module TESTEST 
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Offsets 	 Comments 

01 .Q00240002600084000BE0010E Header 

1~ "2200000000 CAS/TAS/SIS/SA/Fe 

24 00 No module name used 

26 	 .01 E4:)FOOOO SIZE 


09 7100290000078030022 D (array of structures) 

000000 

22 1000900008008 N (domain character field) 
2f 100090010B002 T (domain character field) 
]C 10009010149 A (domain pointer) 
40 BOOHE7E7E7E787E7E7 UNNAME (character field) 
5~ Sl009 CODE 

84 	 5F 9FOOOOOOOOl)OOOOO MATCHES (pointer) 

000000 


75 BOOBC1C2C3C4 'ABCDEFGH' 

C5C6C7CB 


AI) 8002C5D9 • ER' 

91 B002D4C4 'MD' 


B2 01 	 cOO ACT 0 

12200175 MOVE B.N(l) ,'ABCDEFGH' 

12 FO 0189 MO V E B. T ( 1) ,. ER ' 

0013COOl UNDEF B.A(l) 

12200275 MOVE B. N(2) " ABCDEFGH' 

12 FO 01 9 1 110 VF. D. T (2) ,. MD ' 

OE3C0024b CPTE B. A (2) ,UNNAME 

109002 MOVE SIZ~,2 


D5F0430g00p C.r.LL MA.TCHES, 4,R/W (B) ,R/W (UNNAME) .. 
34635A301 R/W(CODE) ,R/W{SIZE) 
OA RETURN 

Figure 8.4. Object Module TESTEST 
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CALCULATION OF THE ADDRESS-FIELD SIZE 

The use of variable-size address fields places a burden 
on th;:- compil;>r in th,::> form of determininq the appropriate 
siz~ of the ~dJr~ss field for the module heing compiled. Of 
CO'l["S'~ ~ simplr:-minrlE'd compiler n~ed not face up to this 
burL'n; it coul,} ~>imply us~:. a fixed sizf~ address field that 
is liHqe enou,,!, for the lrir:-gest module that can be compiled, 
but ::iuch a solution does not exploit the advantages of 
varilb10-siz0 addresses. 

~hQ address field sizE' is a function of the size of the 
iHl:jr-,lss Sp,1C 0 • The for;nula for calculating the smallest 
add [' :" S S f i ...:0 1 c1 i s 

~ = C~JL(lo~(1 • address spacA size - size of last ce~l)) 

wh."re Cr.;IL ronnds a number to the next-higher integer. All 
log~rithms are base 16. 

The other type of variable-size address is the 
instruction addr~ss. The formula for calculating the 
small~st instruction address needed is: 

~ = CEIL(loq(B + MI)) 

wher;~ 

n - number of tok~ns in the instruction space 
~xcludinq all instruction add~ess fields and 
excluding the last instruction that is the 
tar,:}pt of a hrdllch or LCALL, and all 
su~s~quent instructions 

I - numhar of instruction address fields 

since ~ app~ars on both sides of the equation, it can be 
:=;olv~~ by substitutinq the valnes 2, 3, ••• for M until both 
si(l'<; are '2qu1.1. 

In producing a compiler for this architecture the 
following approaches are available: 

1. 	 Use fixed larqe vllues for Nand M. This is the 
simp10st approach bnt it does not take advantage 
of the use of short~r addresses. 

2. 	 Use the formulae (or Nand M to find the optimal 
sizes. This approach takes full advantage of the 
encoding but it complicates the compilers. 

3. 	 ~ather than using the formulae, use a few simple 
h·"u['istics to 'TU"S", at the optimal Nand.'1. If, 
durin'} code q,'necc"ltion, the compiler finds that N 
or ~ is too small, increment it by one and begin 
the cod? generati0n aqain. 

4. 	 Ch08S~ constant values for N ani M. Fo~ instance 
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~=4 seems to be a reasonable upper bound, for it 
d~fines an address space of a maximum of 65535 
tokens (which seems even more reasonable 
considering the fact that space for array elements 
does not appear in the address space). A separate 
optimiz'ltion or "module-compression" program can 
then lIe written that is compiler and language 
ind~pendent. Its function is to take a module 
with a possibly over-sized address field and 
produce an equivalent module with a minimal 
a!ldress field. 
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9. THE ONE-LEVEL STORE 

Th.::. machine has no IIO instructions; instead the 
~rchit8ctur~ is based on th~ notion that "storage is storage 
i~; stor.lge" dnd that "storCl.ge mana'lement is storage 
m1niJ~~2nt is storage mand~~m~nt." That is, why represent 
second'lry st;)ragi'! with an interface that is different from 
that of oain storage? 

If onp e~ploys the on~-level-store concept, then the 
archit~ctur;:- is s?en to ,"1r'~ady have memory 1/0 (as distinct 
fro~ s~urc~/sink I/O) with no changes to the definition of 
th~ Jrchitectur~. That is, one can think of a file as a 
on~-Jim~n~iondl ~rr~y of structures. E~ch array element 
con-esponds to a Lacord in t h3 file. Th,~ nested tag in. the 
aLr'lY c~ll ~oull likely be a structure, wheLe the structure 
~Afinps the fiplds in eac~ record. Since the existing 
m'l chi 1\ 'J i n ~; t r uc t i 0 I~ S are yen e ric and a pply t 0 a r Laysand 
arr:-1Y ;:>l'=>ments, tho. "1/0 inst.ructions" ar~ the existing 
ir. st,rllCt. ion~~. 

Storiq~ dreas are creatad with the ALLOCATE 
in~truction. The immediat0 field in the instruction 
indicates wht::ther the object is to be destroyed at program 
ter::tination. To creat~~ a p~rmanp.nt "file," a program issues 
the ALLOCATE instruction, indicating with the immediate 
fi~l~ that the creatp.d d~tG-storage object should not be 
~~stroy~d upon program termination. The ALLOCATE 
instruct.ion points to d relocatable array which in turn 
points to a pointer cell. The logical address (capability) 
th)~ is r~turned serves to uniquely identify the file until 
it is deleted (with a DESTROY instruction). The file is 
constructed by 0xecuting MOVE instructions to move data into 
the arrlY elements. 

Op~r~tinq-system directory services will likely exist 
to allow progr~ms to say such things as "associate the 
following logical address with the following symbolic name 
dnd LeUl~Ulber t.hp associati(){l," "given the following symbolic 
nam0, give me the associdt01 logical address if I am so 
authot-iz~J.," and Ilauthorize the followinq user to do the 
alloy,> with ~his particular symbolic name." 

~iv~n th0 rpmoval, dt the architectural level, of the 
tlistinction h,~tween main-m,'mory operations and 
second~ry-stora~8 f/O, a natural extension is to carry this 
notion into p r () q rliD min \l 1 a l\ ',j U.l 9 e S • that is, the r t:: ill 0 val of 
fil~ TIC) stat",m.~nts from proqrilmming lanqnages. 

One problem associated with a one-level store as 
descrihRd ahove t.hat des~rvas more research is the mechanism 
with which a program searchas a file (represented as an 
drr'1Y) to loc1t·:> d particul.:ir record. (array element). If 

http:p~rmanp.nt
http:storCl.ge
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i., 

hash addr?ssing Cdn be us~d, representing files as arrays is 
natural. qowever, if hash addressing is inapplicable for a 
particular file J the only other alternative appears to be an 
iter1tiv~ sequential search (unless the file is ordered by 
the se~rch field~ in which case a hinary search could be 
US-?'ll), which is unacceptable for ldrge files. Hence the 
pos~ibility of storing one or more indoxes with array cells 
com~s to mind. Another possihility is allowing designated 
arr~ys to bp content-addressable. In short, the 
relationships between the concepts of one-level stores and 
dat~ base processing need further investigation. 
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10. THE CONCEPTS OF A "PROGRAM" AND "I/O" 

It 3h~ulj be apparent that the architecture contains 
nothinq L"D["~sentinq the cOrlcept of sou["ce/sinie I/O (e.g q 

ter;nin:lls, elLd rcaJ·~['s, ma'Jn~~tic: tapes). The intent is 
thlt 1 proc0~30[, having this architecture be coupled to an 
pxto'cnal system (A. g•• host system, intelligent 1/0 
chanfltd), t~:dt the ext.:>rnal system perfor-m such functions. 
and th~t the S~ND/RECErVE instructions serve as the I/O 
mechanism by communicating with the external system. The 
in+erface with the external world is not described here. as 
it is defineJ elsewhere. Also, it is not yet clear whether 
this interfac·;? will hp architected or whether it will be 
12 f t d 5 "i mp 1 ~~ m>..:: n tat ion de pen r1 e n t. " 

~o summ~rize th~ SEND/RECEIVE mechanism when used ~or 
thi~ rucno~p, when a proqra~ executes a SEND or RECEIVE 
instruction ~nd the ohj~ct being referenced is not a port or 
any other recognizable type of storage ohject, the 
infoDlation in the inst[,llction is converted to an 
arpr~pri~te form dnd transmitted to the external system. If 
the loqical address represents something meaningful to the 
ex ternal syst~m (e. g., the name of a "source/sink stream "), 
it performs the dasignated I/O operation, using the SEND 
arguments or r~ceiver operands. Currently, a SEND or 
RECEIVE instruction naming an I/O port can specify only a 
singlo operand, and its type must be a character or token 
fi'~ld 0[" string. 

The SWARD ~rchit~cture has been specified as a 
" s ingl'2-prorrr>lcn" d["chitecture, although it does contain a 
f~w indications of multiplp. programs (e.g., the concept of a 
port). In particular, th~ architecture (purposely) contains 
no conc0pt of int~rrupts nor any way to switch control among 
pro~ra~s. Th~ intent is that the concept of multiple 
prOjLi'l3 (oc process('s), if need'::d, be created by the 
exte[n~l syst~m. The interface to the external system also 
contains provisions to allow it to support and control the 
eX0=ution of pardllel p['ocesses on the SWARD machine. The 
b~sis of ~he re~chanism is the provision for multiple stacks 
of'lct: iv,ition r,~conl'c;, ertch headed by an internal object 
c}112J an activation-stack header, and signals to direct the 
SriA::'D mdchille to quickly s'>Iitch fcom one stack (process) to 
,HI ot he r. 
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1 1 • INSTRUCTION-FORMAT SUMMARY 

s',;run T ~l C; T t' II CT ! 0 N SET SO]T~D DJ 
"JA'1: 

MO V:; 
ADD 
SUrlTEr.CT 
M U Ll'I? 1. Y 
ITES,ATE 
NO "'- ~QU ,\ L- BR,~ ':C Il- F A LS E 
E)!J ,\ L -:1? A~~ Cll - :,' !d. S E 
t s S S - r [U~ N - B:11\ ~.! C i! - 17 1\ L S r;; 

L::: S S - T r1 AN - E(J U A L - IE: ;\ li C H - F ,\ L S E 
(; :; :: 1\ T :: :; - T ILi\ 'J - :' () U .1\ L - IE ,\ N C H - ? A LS :.: 

ACTTV,~TE 

CALL 
13? A;IC{ 

COMPL~MENT 

AI1S0LUT? 
DIVIDE 
CJ "; :.: ATE ~l r. T E 
MOV:>~)UnSTRH)r; 

A~W 

OR 
TN DEX 
L :~ ~I:; T fl 
CONVEPT 
RS'I'UE\' 
LOC.\L CAL1. 
LOCAL l\.CTIVAT::; 
LOC\L RETUPN 
COM PUT;' PO:::~.rT ~ r: 
!d.VKATE 
U:lD7Fr~;:; 

RC;"LUNDE? 
S G A ~I C II 
D:~ n :~ E0- Ba A NC fI - FA L3 E 
Nl) T 
C I L~·. N:;:: l\. C C E S ~) 
DES 1';:\ D Y 
PO ;.; ~ 1:\ 
LU,\!) ~ODUL~~ 

L1 ::K 
SZND 
HEC'IV S 
F,\ISS F:'..fJLT 
COHI~lUf. 

CJ~PU!~ FNTPY rOINT~p 

DT:';PLAY TAG 

DISrLAY CONT2NTS 
Tl!\CE 

OPERATION 
ABBREV. 

M0'1 E 
ADD 
SUB 
~ULT 

ITER AT C; 

NEilF 
EQ3F 
LT lJ F 

GTBF 


LEEF 
GE13F 
ACT 
CALL 
B 
CO~P 


,~ BS 

DIV IDC: 
COt-i CI\'1' 
MOV:::;SS 
./\ NO 

OR 

IND:::X 

LENGT~1 

CONVEJ.T 
RETURN 
LC.\LL 
LACT 
LHET 
CPTR 
ALLOC 
UNDr~f' 

REJ1AIN 
SE,'l.RCH 
DEPRF 
NOT 
CACC 
DESTROY 
POWER 
L:10DULF! 
LINK 
SEND 
RECEIVE 
HF.\ULT 
CONT 
C::;P 
DT .I\G 

DeON 
T:~J\CE 

CODE 

FORMAT 


1,01'1,01\ 
2,OA,OA 
3,OA,OA 
4,OA,01'l 
5,01\,OA,OA,IA 
6,OA,OA,IA 
7,OA,OA,IA 
8,OA,OA,IA 
g,OA,OA,IA 
A,OA,OA,IA , 
8,OA,OA,II\ 
C,X,CA1, ••• CAx 
D,OA,X,Al,OA1, ••• Ax,OAx 
E,lA 
F,OA 

01,01\ 
02,OA,OA 
03,01\,OA 
04,OA,OA,OA,OA,OA,OA 
05,01\,OA 
06,OA,OA 
07,01'.,01\,01\ 
08,OA,OA 
09,0)\,OA 
01\ 
OG,IA,X,Al,OA1, ••• Ax,OAx 
oc, X, CA 1 , ••• C A x 

00 

OE,OA,Oh 

OF,X,OA 


001,OA 

002,OA,OA 


.. , ­003,OA,OA,OA 

004,OA,IA 

005,OA,0I, 

006,X,OA 

007,01\ 

008,OA,O)l. 

009,X,OA,OA 

OOI\,OA,OA,OA 

OOB,OA,X,OA1, ••• OAx 

00C,OA.X,OA1, ••• OAx 

oon,x 

DOE 

OOF,OA,OA,OA 


0001,OA,01\,OA 
0002,OA,01\,01\ 
OOOJ,X,O!\ 

http:PO:::~.rT
http:SUrlTEr.CT
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NOT::i\CE NOTRACE 0004,X,OA 
'l'RA~I:;~~~~ FI\ULT TRFAULT OCOS 
CO~PJTE INDI?ECT POINTER CIPTR C006,OA,OA 
en '2,1\:' F. PO E~ ':' CPOET 0007,X,OA 
ENll.BLE EN,\BLE ()008,OA 
DI5\dL-:-: DIS,\BL:: 0009,OA 
c:1.\ :; G ;;; L C (; : CAL 1\ D D .s t: S 3 eLI\ C)OOll.,OA 
Dr; sc:n Ll r. DESC OOOB,OA,OA,OA 
r;rJ;~i) GUARD OOOC 
U~I(~:J~ r; D UNGUARD OOOD 


