
SRI-CSL-77-002n

"WARD

SWARD ARCHITECTURE

PRINCIPLES OF OPERATION "	,.,­
.. "

G. .J. Myers

Auqus t 31, 1979 (Curren t Version Da tel

Sentember 16, 1977 (Initial Version Date)

IBM Syst0ms Research Institute

PAGE 2

CONTENTS

1. Overview••• 3

2. D3.ta Typ~s•••••••••••••••••••••••••••••••••• ~ •••• 8

Primitive Cell Types •••••••••••••••••••••••••• 8

structure Cell Types ••••••••••••••••••••••••• 12

Nested Cell Types •••••••••••••••••••••••••••• l)

~uxiliary Data Types ••••••••••••••••••••••••• 17

3. Storage Objects ••••••••••••••••••••••••••••••••• 22

The Module ••••••••••••••••••••••••••••••••••• 22

The Activation Record•••••••••••••••••••••••• 27

Tht? Data-Storage Object•••••••••••••••••••••• 27

Th8 POLt ••••••••••••••••• o ••••••••••••••••••• 27~

4. 	 Instruction Formats and operand Addressing •••••• 28

Operation Codes•••••••••••••••••••••••••••••• 28

Address Pields ••••••••••••••••••••••••••••••• 28

5. Fault Handling •••••••••••••••••••••••••••••• : ••• 30

. Fault Descriptions••••••••••••••••••••••••••• 30

Entry-Point Zero •••••••••••••••••••••••••••••))

Program state After a Fault•••••••••••••••••• 34

6. Instruction Summary 36

7. Instruction Specifications•••••••••••••••••••••• 40

General Instructions ••••••••••••••••••••••••• 41

Arithmetic Instructions•••••••••••••••••••••• 44

Comparison-and-branch Instructions••••••••••• 46

Boolean Instructions••••••••••••••••••••••••• 49

String and Search Instructions••••••••••••••• 50

Control Instructions ••••••••••••••••••••••••• 52
". Ad~L0ssing Instructions•••••••••••••••••••••• 57

Debugging Instructions••••••••••••••••••••••• 66

8. Object-Code Examples •••••••••••••••••••••••••••• 70

t Calculation of the Address-Field Size•••••• ~.75

f •
 9. The One-Level Stor'::! ••••••••••••••••••••••••••••• 77

10. The Concepts of "Program" and "I/O" ••••••••••••• 79

11. Instruction-Format Summary•••••••••••••••••••••• 80

....:. -­

...... 'J.'"

PAGE 3

;.. ,

1. OVERVIEW

The Sw.a.n.o (softw"l.re-reliability-directed) architecture
h~s two prim~ry objectives: 1) enhancing software
reli~bility hy 1~tecting or preventing common sem~ntic
err~rs 4nd certain logic errors, limiting the consequences
of ~rrors, ~ncouraging the use of good software design and
proqramming practices, and supporting testing and debugging
packages, and 2) enhancing system performance by
suhstantially reducing the number of bits that must be
processe1 by the CPU to execute a given program. These
goals are discussed in more detail elsewhere; hence they are
not discussed in this document.

This d0cument defines the computer architecture of, the
proc~ssor (i.e., the abstraction of the processor as seen by
a machine-language programmer or a compiler writer). The
first chapter (this one) contains a brief overview of many
of the conc~pts employed in the architecture. Only chapters
2-7 form the official architecture definition. A~so,
occlsionally notes will be seen in rectangular boxes. These
notes ar~ not part of the architectural specification; in
most cases they are notes about implementation and are
included for clarity.

The maior deviations in this architecture from
conventional architectures are in the concept of storage and
addressing. Rather than representing storage as a single
linear addr~ss space, storage is represented as a 2~1 of
uniquely named storage objects. Also, rather than treating
"sacondary" storage (e. y., disk filGs) differently from
"main" storage, the view of storage has been unified into a
single representation.

Furthermore, all data in storage is self-identifying

(taqged). The machine recognizes composite data types

(e.g., arrays, structures) as well as primitive data types.

Rather than employing a fixed-size word concept, data and
addr~sses are variable in size. The machine provides a
facility for defining suppl~mental instruction sets and data
types.

A major concept in the architecture is that the machine
should severely restrict the address space available to an
individual module (e.g., FORTRAN subroutine or function
subprogram, PL/I external procedure or function, COBOL
subprogram). That is, d module's address space should be
reduced to only those data to which the module needs access:
its parameters, locally defined variables, and constants
(i.e •• only those data named in the sourc~-language version
of the module). The implication of this is that the machine
must manage storage at a high level, much higher than the
von Nenmann view of a singJ.e linear sequential memory.

..,
l~

PAGE 4

Relateu to the first concept is a second concept:
traditional machine addresses should be discarded. There
are four types of storage objects that must be uniquely
addr2ssable: a module, an activation record (the collection
of data allocated for an activation or invocation of a
module), a data-storage object (explicitly allocated area of
storag8), and d port (an interprogram communication device).
When one of these objects is created (i.e., a module is
defined to the machine, a module is activated (called), a
proqr~m explicitly allocates some storage, or a port is
cre~ted), the machine assigns it a ~nlgy~ name (called a
lQ9.1£!!1 2.!!!!rsz.§§ and stored in an area called a E2.!n!§£).
Hen~e the machin~ employs capability-based addressing. The
machin2 prohibits programs from creating logical addresses
on their own and from altering the value of a pointer. When
one of these objects is freed, its unique logical address is
never reused.

The instructions within a module can only address data
defined within the module or data within any storage that is
dynamically created by the module. Since a module cannot,
on its own, credte or alter a pointer, the only other
storaqe that it can reference is storage whose pointer is
passed to the module from another module. Not only does
this concept facilitate the detection of addressing errors
(a.g., the dangling-reference problem), but it also serves
as a storaqe protection mechanism. In addition, it
introduces a fine granularity of storage protection and
sharing, even down to the level of a single variable or
worj, and eliminates the need for privileged states (e.g.,
"sup8rvisor state").

One can cause pointers or capabilities to refer through
other pointers, thus establishing transparent indirect
addLessing to any level between machine instructions and the
data or objects upon which they operate.

The thir~ necessary concept in the architecture is that
all data must be self-identifying. This means that
descriptive infoLmation will be stored with each item of
dat~. describing such attributes as its size and type. This
self-identificltion allows the machine to detect
incompatible op~rands of an operation and allows it to
enforce otheL rules (e.g., the rule above prohibiting the
creation and manipulation of pointers). Two rules
concerning self-identification, or tags, must be enforced:
1) the tag a 1 wa ys desc['ibes the prog rammer' s in tended
properties of the data (e.g., the attributes in the DECLARE
statement), and 2) the value and representation of the data
always agree with the tag.

In most other non-von NAumann machines, the concepts of
tags and descriptors are treated distinctly. However the
con~epts havo. much in comrnop. In the SWARD machine the two

PAGE 5

con~epts hdV~ been generalized into one concept called a
tag.

To close~he semantic gap between language data types
and machine data representations, most data types known to
the machine are variable in size. Not only does this
prevent ;cert~in types of semantic errors that arise when
variabl8-size language data types are mapped into fixed~size
machine data types, but it leads to more efficient use of
storage.

~mployinq hath tagged storage and capability-based
addressing giv~s the architecture an added level of
security. Even if a program were to obtain, from another
proqram, it pointer (ciipability) to an obj"!ct that it should
not have, the program would be able to reference the object
only if it knew its precise attributes (i.e., the
representations of the data within the object).

The architgcture also contains important
data-independence concepts, allowing one to write programs
that are highly insensitive to the data being processed, yet
without compromising the reliability and security goals of
the architecture. These concepts, for instance, allow one
to write a program to sort (order) the elements in any array
(i.c., without being dependant on the attributes of the
arriY elements), or to ~rite a computational subroutine that
is independent of the attributes of its arguments (e.g.,
binlry, decimal, floating-point). These concepts, called
Q~1YEg~, Q=§i~g~, and ll=b2Yn~~1 cells, will lead to
innovative programminq-language extensions not achievable in
conventional machines.

One consideration that is influenced by many of the
previous points is the method used by instructions to
(lddress their operands. Many for-ms have been proposed, but
a b~sic underlying consideration is whether the architecture
should contain general-purpose registers or evaluation
stacks (or both or neither). In studying various addressing
mech~nisms, no apparent relationships to software
reliability wer~ found. However the architecture contains
neither registers nor- evaluation stacks (but it does use
st~cks for subr-outine linkages). An instruction addresses
an ~perand by specifying tbe relative location of that
oper~nd within the address space of the module. Registers
and evaluation stacks were not used because, contrary to
popular belief, storaoe to storage addressing appears to be
mor-2 efficient. The adrtressing method used in the
architecturp r~sults in small address fields in
instructions, thus negating the usually cited advantage of
register and stack-oriented instruction sets.

'c.. Another necessary concept in the architecture is the
\.. ability to oistinguish bet;'dcn defined and undefined data

PAGE 6

valu~s. In addition to its valid values, each data item can
have an additional value called "undefined." Any attempt to
use a data item's "undefined" value will be detected by the
machine. All addressable data that is not initialized to
some value is automatically initialized to "undefined." In
addition, instcuctions are present to explicitly test a data
item foe an undefined value and to explicitly mark a data
item as undefined (e.g., for a language in which the value
of a loop itecation variable is supposed to be undefined
when the loop terminates).

For collections of data in which individual items can
be referenced, the individual items can be defined or
und~fined. Thus, in an array, it is possible that some
~lements will have defined values and that some will be
undefined. In a character string, it is possible that ~ome
of the charact2r positions are "undefined" values.

Given that the machine is aware of the concepts of
modules and activation records, and given that the machine
must check arguments and parameters for consistent number
and ~ttributes, a logical deduction is that the architecture
should provide a call/return mechanism that is semantically
close to, or equivalent to, the CALL/REtURN statements in
programming languages. That is, the call mechanism
allocates an activation record for the called module and
adds it to the stack of current activation records,
initializes variables in th~ activation record, initializes
parlm~t~rs, suspends execution of the current module, and
begins execution of the called module. Since all data in
the system is tagged, the call mechanism needs a "die" for
vari~bl~s in the activation record, describing how each data
item should be tagged when th8 activation record is created~

Since the ~rchitecture is supposed to detect such
err~rs as exceeding an array dimension bound and
inconsistent definitions of records (e.g., PL/I structures)
among modules, the architecture must be aware of these data
types. Hence the architecture contains the "less primitive"
data typ~s of arrays, structures (ordered sets of
heterogeneous data items), and strings. Supporting such
data types is more involved than it first appears. For
instance a language such as PL/I provides for arrays of
structnres, structures of arrays, arrays of strings,
structures of structures, structures of arrays of
structures, ani so on.

~ote that the self-identification property mentioned
earli~r applies to these data. types. For instance every
arrly, structure, and string is tagged. The machine
instructions are generic; for instance there is only one ADD
instruction, and its two op~rands can be any meaningful data
types that pass certain consistency tests. For instance an
op~r~nd to an 'DD can bp a ~imple numeric variable, an array

PAGE 7

i .• ,

element. an entir~ array, or a numeric field in a structure.

Another c~nsideration in the architecture is a
mechanism to handle exceptional conditions. The mechanism
uniformly applies to any type of "fault" or interrupt, be it
a m~chine d0taction of an error, detection of some
explicitly identified event (i.e., for ON-units), or a
machine detection of some debugging action such as the
execution of a particular instruction. Each module is
capable of describing what types of faults it desires to
han1le. When a fault occurs, the machine searches through
the activation-record stack looking for the first module
that wants to handle that type of fault. When one is found,
the machine "calls" the module (entering it at a particular
point and making it a subroutine of the module initiating
the fault) and passes it arguments describing the fault. A
fault-handling entry point has the ability to resume .
execution at the point beyond the fault, repeat execution of
the instruction causing the fault, or to decide to buck the
fault UP to a higher module. It is assumed that the highest
module (the first one invoked in executing a program) is
part of the op~rating system or a debugging tool, and this
module will specify that it can handle all types of faults.

In summary, the key attributes of the architecture are:

- Self-identifying, or tagged, storage
- N~sted, or recursive tags, for describing less-primitive

data types
- Capability-based addressing
- Indirect addressing with capabilities
- S~nd/r8ceive machanism for interprogram communication

and source/sink I/O
- One address space per program module
- Variable-size addre~ses
- Hierarchical fault-handling mechanism

Domain addressing (addressing columns in tables)
- One-level store
- Automatic subroutine management via activation stacks
- Fixed-point decimal dCita representations
- Powerful instruction repertoire, including array

operations, a table-search instruction, field/string
operations, automatic data conversions

- Generic instructions
- Ability to write highly data-independent programs
- Program-tracing facilities
- Ability to add supplemental instruction sets and

data types
- Frequency-hased-encoded operation codes

PAGE 8

2. DATA TYPES

Before discussing the data types, a few basic storage
concepts must be introduced. The basic unit of storage
allocation is a !Q~&n, a four-bit quantity. The basic unit
of storage addressing is a £~!1, a variable-number of
contiguous tokens. A cell corresponds to a variable or data
item in a sourc~ program and has two major components: a !~g
which describes the attributes of the cell, and a £2n1~n1
which describes the value of the cell.

!he machine recognizes 15 data or cell types of which
10 ire consid~red £rim1!112 data types, 1 is a §trQ£!g£~
d~ta type, ~nd 4 ~re n~§1Q1 data types. The basic
diffp.rence ~mong the 3 categories are that primitive cells
have single values, structure cells describe collections of
other cells, ana nested cells have tags which in turn
contain tags.

PRIMITIVE CELL TYPES

The primitive cell types are integer, decimal
fixed-point, decimal floating-point, boolean field,
character field, token field, boolean string, character
string, token string, and pointer. The tag of each cell
describes its type and size, and the contents component
describes its value.

An integer (i) cell has the following format:
•

The fiest field (one token) indicates that this cell is
an int-ager cell. The sf::cord field contains the value of the
cell in base-two two's-complement representation. The value
can Lange from -8,388,607 to +8,388,607. If the second
field h~s the value 800000 (in hexadecimal), the cell has
the v.l1ue "und~fined."

The • mark is used in this specification to indicate
the boun~ary hetween the tag and content components.

A decimal fixed-point (dfx) cell has the following
format!

•
111]Ql~1~Qlf2i~1§ignl_ ya!u~ __1

1 1 1 1 sizG

The size field defines the number of digits in the
number. The fsiz field indicates the number of digits to
the r-iqht: of an imaginary rl.ecimal point and must be less

l

PAGE 9

,~ I .• ,

than or equal to size. The sign field specifies ~he sign of
the value •. If it is set to 0000, the value is positive; if
it is set'~o OOP1, the value is neqative; if it is set to
1111, the ceil: has the value "undefined." The last field
contlins the absolute value of the number times 10 to the
power fsiz. The value is expressed in the base-10
bin 3. Ly-cod ed' dec imal repre sen ta tion.

As an illustration, a variable with attributes FIXED
DECIMAL(5,2) and having the value 7.9 would be represented
as E52000790.

A decimal floating-point (dfl) cell has the following
format:

•
ljjQjl~11g1~igQlg!£Ql~!£QQ~rrl1_m~nii§s£ _1

1 1 1 1 2 size

The second field defines the length of the mantissa,
the sign field is the same as that described for the
previous cell, and the fourth field describes the sign of
the exponent. The fifth field contains the absol~te decimal
value of the exponent (0 to 99). The last field contains
the decimal mantissa. Operations on floating-point cells
alv!ys normalize the mantissa (shift it so that no leading
zeros occur unless the cell's value is zero). The exponent
and mantissa are expressed in the base-10 binary-coded
d~cirnal representation.

Note that the decimal fixed-point and floating-point
cells allow two representations of zero (+0 and -0). Only
+0 is a valid representation of zero; -0 is treated as an
unknown data format.

Th~ boolean field (hf) cell has the forma t:
•

111QQ1__§!~~__1_ yaluQ _1

1 3 size

It represents a fixed-length field of boolean (true or
fa 1se) val ues. The second field indicates the number of
elements (1 to 4094). The third field, whose length is
specified by the second field, contains the string elements
(one pp.r token). The only element val ues are 0000 (false).
001)1 (true), 'lnci 1111 (undefined).

A character field (cf) cell has the format:
•

l1Ql11__§1~f__1__v~l~e__1

1 3 2 x size

It represents a fixed-length field of EBCDIC
characters. The second field specifies the number of
elements (1 to 4094 characters). The third field, whose

..4.,

t
'­

PAGE 10

length (in tokens) is two times the value of the second
field, contains the string elements. The element value
11111111 indicates an undefined element.

1\ t.oken field (tf) cell has the forma t:
•

11QJQ1___§!~g___1 __ __1vil~e

1 5 size

It represents a fixed-length field of four-bit
quantities. The second field indicates the number of
ele~ents (1 to 1,048,574). The third field, whose length is
specified by the second field, contains the elements (one
per token). This is the onl y cell type that cannot ha ve the
"undefined" value •

.\ boo l(~an s tr ing (bst) ha s th e following format:

lQ1QQ1____§!~g____1
11

___1gng~h___l __ __lvsl~e

1 1 3 size

Th~ second field indicates the maximum number of
booleans in the string <1 to 4094). The third field
indicates the current number of booleans in the string (a to
409ij), thus allowing the string to shrink and grow
dynamically. The fourth field contains the actual string
where each element is represented as 0000 (false) or 0001
(true). If the length is FFF, the entire string is
interpreted to have the undefined value.

A character string (cst) cell has the format:
•

lQQ111____~i~g____1_ __l __ yalu£ ___1_:_1~!lg!lL

1 3 3 2 x size

The fiolds have the meaning describ~d above. The
fourth field contains the actual string where each element
is represented as 8 bits.

A token string (tst) cell has the format:
•

The meaning of the fields is the same as described
RDOV2, bllt a token string has a maximum size and length of
1,048,574, and each element in the string is a four-bit
quantity. If the length field contains fFFFF, the string
has th8 undf~fined value. The token string is intended for
use only by compilers and debugging tools.

The last primitive cell is a pointer (p): it has the
following format:

I

PAGE 11

•

" A pointer is a cell that can hold the unique logical
address of an object (module, activation record,
data-st~rageobject, or port) or an entity within an object
(e.g., a cell within an object). Logical addresses are
always assigned by the machine and can never be altered by a
proqram. However, a program is allowed to copy the value of
one pointer cell into another pointer cell.

The acod field in the pointer cell represents an access
or authority code to the object. Its definition is

.Qi! ~ !!.th~H..!tl_i!_.Q ~!!!:hQ£!iY_!Ll

1 read no read
2 write no write
3 destroy no destroy
4 copy no copy

The value 1111 is the undefined value. Copy authority is
the ability to make a copy of the pointer itself. If a
pointer does not have copy authority, it cannot be used as
the source operand of a MOVE or SEND instruction.

An instruction is available to allow a program to alter
the access code, but the instruction allows one to only
!Q~g£ (further restrict) the access •

•• ~~~**.*** •• *.**.*.*********•• ******* •• **.**.**************
* Note: Althouqh the bit content of a logical address is *
* not architected, its interpretation in one implementation*
* of this architecture may be enlightening. ~he logical *
* address contains a a-token unique system-object name and *
* two 6-token offsets into the object, offsets of the *
* addressed item's tag and content components. If *
* the logical address refers to an entire object, the last *
* two fields are unused and set to zero. If a logical *
* address refers to a cell within an object, the first *
* field contains the object name and the last two fields *
* are used to locate the cell within the object. Assuming *
• that object names are assigned on the average of one per *
* 10 milliseconds, ther~ is a 10-year supply of unique *
* n~mes. The length of the offset fields imply that the *
* maximum object size is 16 million tokens. *
.*~.~*.~**~*~.*.~*~*~***.**.*«*********.********************

STRUCTURE CELL TYPES

The only data type in this category is a structure
call. A structure describ~s a heterogeneous collection of

PAGE 12

oth~~ cells. The properties, that distinguish a structure
feom an 	 array are that r in addition to the entire collection
of elements having a name r in a structure each element also
has a namer and the elements in a structure can be different
dat.l types.

A structure (st) cell has a tag, but no content,
component and its format is:

II

The second field, a binary number from 1 to 255,
specifies the number of cells (elements) included in this
structure. The last field is the cell address of the first
cell in the structure. The element cells must reside in
contiguous locations in the address space and must be in the
same storage die (see Chapter 3) as the structure cell.
Permissible 01ement types are all primitive cells and array
cells. Where the structure is an array (see next section) ,
the only permissible element types are domains of primitive
c~lls. Where a structure is a parameter or relocatable (see
next section), the only permissible element types are
r810catable primitive and array cells.

The concept of a ff!! 1~~!g~§ will be defined in a
later section, but it will be summarized just briefly here.

Ie... 	 Each !!!QQQ1.:: (e.g., a PL/I external procedure) has an
associ~ted ~j1I~§§ §Q~g~ in which all cells reside that are
acc?ssible hy the module. A cell address is simply the
locltion of a cell within an address space. As an example
the following PL/I structure

DECLATIE 1 	 PERSON,
2 Sl\LARY FIXED DECIMAL (7,2),
2 NAME,

3 LASTNM1E CHARACTER {20},
3 FIRST NAME CHARACTER (12);

would result in five cells. A fixed-point cell and two
character-field cells would reside in contiguous storage
locations. One structure cell (representing PERSON) would
specify three elements and contain the cell address of the
fixed-point cell. Another structure cell (representing
N~ME) would specify two elements and contain the cell
address of the first character-field cell.

A structure is no mor0 than a collective name for a
sequpnce of otha.r cells ann hence is more general than the
concep~ of the same name in such languages as PL/I and
C:)BOL. Machine instructions can ope['ate on structure
op?rands as well as primitive and other cell types. For
instance a structure can be passed as an argument, 0[' a
structure can be moved intq another structure (which causes

PAGE 13

the machine to locate and move the physical elemerits within
the structure) •(...c..,

, --'

NESTED CELL TYPES

Ths remaining four cell types are array, parameter,
relocatable, and domain.

An array (a) cell has the following format:
•

Th~ second field is a binary number which specifies the
numh~r of dimensions (1 to 15). The third field is a binary
number (1 to 65535) which indicates the length of the .
content component of the array element. When an array tag
app~ars as a nested tag in a parameter or relocatable cell,
the length field is not used and can contain any value. The
next fields (six tokens in length, one field per dimension)
define the upper bound of the array in the corres~onding
dimension. The product of these fields times the third
fie11 is tha total number of tokens occupied by the array
elements. All dimensions have an implicit lower bound of
on e.

The next field is a nested tag; it is a tag describing
the array element. Its length is always seven, but not all
s~ven tokens are always relevant. For instance, for an
array of decimal fixed-point values, the nested tag would be
throe tokens long and would contain 1110 followed by the
integer size and fraction size and padded with four "don't
car:?" tokens. Valid element types in an array are all
primitive cell types and a structure. When an array element
is a structure, the nested tag is a tag for a structure
cell. fh8 allowable elements of the structure element are
primitive cells. They must be defined as domain cells
(discussed below).

Conceptually, the last field, the content component of
the array, is viewed as containing the space for the array
elements.

PAGE 14

*••••• *.**.*~~**.****~.**.************••**.****************
* Note: The content component of an array obviously does not.
• includ~ enouqh space for the array elements. Since the *
• m~chine performs all subscripting operations, the program •
* need not know the physical location of the elements. The •
• l~st unarchit~cted field is used by the machine to identify.
* th~ physical location of the elements. When an array is *
* crelted (at the time the program is loaded, for "static *
• arrays," at the time an activation record is created, for *
* "iutomatic arrays," or at the time an array is explicitly *
• dynamically allocated by the program), the machine *
• all~cates storaqe for the elements and places some *
• internal adlress in this last field. *
~.~.~~***.*~********* ••****.**********.********.****.*••***.

All subscripting is done by the machine, and many .
machine instructions function with entire arrays as well as
array elements as operands. As an illustration of an array
cell, a one-dimensional, 12 element, array of boolean
strings of size 10 would be represented as
71000000000C400\000XXXXXX.

A parameter (pm) cell has the following format:
•

Any variable in a module that is received as a
p1rameter i~ defined by a parameter cell. The second field
is a nested tag; it is a tag describing the attributes of
the parameter and is used by the machine to check the
correspondence between arguments and parameters. Valid tags
are tags for all primitive cell types w structures, and
arrays. The nested-tag field must be seven tokens in
lenqth, unless the nested tag is for an array.

If the nested tag in a parameter cell consists of seven
zero tokens, or if the nested tag in a parameter cell is an
array tag and the nested tag in the array tag is zero, the
parameter is a QYU~~!£~!lY ~YE~g (O-typed) parameter. A
O-typed parameter dynamically takes on the attributes of its
corresponding argumAnt. If a parameter cell contains a
nes+.ed ti'!g having a size field (ie e., decimal fixed-point or
floating point, boolean, character, or token string or
fi(~l(l) and the size field has the value zero, or: if such is
the case for a size field in the nested tag of an array tag
within a parameter, the parameter is a gYn~!i£~l!Y §!~~~
(n-sized) parameter, meaning that it dynamically acquires
the size of the corresponding argument. If the nested tag
within a parameter tag is an array tag, and one or more
upper:-bound fields in the array tag have the value zero, the
parameter is a 1Yrr~ill!£~!!Y QQ~nged (D-bounded) parameter,
meaning that it dynamically acquires the corresponding
ext?nt (upner bound) of thp corresponding argument array.

PAGE 15

i.~,

" See the last s(?ction of this chapter for more details.

The last.field is not architected, as was the case for
the 11st fie1d.·.·in the array cell. However .. if the last
field has the value FFFFFFF, the parameter has the value
"undefined.• " R-?gardl~ss of what is placed in the last
iield, parameter cells are always initialized by the machine
to the undefined value •

• ~ ••• ******~k**~~**.**.*********~*********.*.****************
* The last field contains an access code and an internal *
* address to the corresponding argument. The internal *
~ address points to the content component corresponding to *
* the argument. *
****~****.*** ••• *.*** •• ***~~***.*************.*****.*********

A program uses a parameter cell as if it were a cell
described by the nested tag. The only difference (which is
transp~rent to the program) is that a reference to a
par~meter causes the machine to indirectly locate the
storage via th~ last field.

A relocatable (r) cell has the following format:
•

iQ1QJi_~~11=11QI_l___B£~____ln~s!eg 1agl

1 4 4 var

A relocatable cell represents a cell whose content
component is located elsewhere (i.e., indirectly located).
C~lls that would be represented as relocatable cells include
based variables and element variables in a structure, where
the structure is based or a parameter.

The second field is a cell address of the cell from
which this cell is relocatable. Such cells are referred to
here as locator cells. A locator cell can only be a
pointer, parameter pointer, or parameter structure cell.

The third field (relative cell address), in the case of
a relocatahle cell that is not an element of a structure,
must b~ zero. Where the relocatable cell is an element of a
structurE" (the locator is a pointer to a structure or is a
parameter structure), the field represents the cell address
of this cell relative to the first cell in the indirectly
10cat~d ~tructure. Par example, RCA for the first element
is 1, RCA for the second element is 1 plus the size (tag and
content) of the first cell in the indirectly located
structure.

If the relocatable cell represents a structure .. but the
series of cells named by the structure does not begin at the
cell addressed by the locator (i.e., the structure is a
"s uhstruct ur e"), PCA is the re la ti va cell address of the
first cell in the suhstructure.\-'

l

PAGE 16

The fourth field is a nested tag defining the type of
relocatable cell. Valid nested tags are tags for all
primitive cell types, structures, and arrays. In general,
if the nest8d tag of the relocatable cell is not the same as
tha~ of the cell indirectly located by the locator cell, the
machine will d~tect it as an error when the relocatable cell
is raferenced i5 an instruction operand. However,
relocltable cells, in an identical fashion as parameter
cells, can be Q~iY£~1, Q~2i~g~, or Q=QQQng~Q. See the
s~ction at the end of this chapter.

~s was the case for a parameter, a program uses a
r~locatable cell as if it were not one, that is, it uses the
cell as if its tag were the nested tag. The machine uses
the locator cell to locate the appropriate storage location.

The rules governing the compatibility requirements
between the attributes of the indirectly located cell and
th'2 "lttributes of the reloc3.table cell (i.e., the.
information in its nested tag) are the same as the rules
qov~rninq argument/parameter compatibility discussed under
the ACTIV~TE instruction in Chapter 7 and the section at the
end of this chapter discussing D-typed, D-sized, and
D-h0u~d~d cells. If the compatibility rules are violated,
an incompatible-operands fault occurs.

A domain (d) cell has the following 	format:

•

lQQQ11_£gll~29Qf_l__QKK§~1__1ngs!eg 1agl

1 4 4 var

It is similar in concept to a relocatable cell, but it
r~presents a structure element in an array of structures.
To visualize the concept, think of a one-dimensional array
of structures (i.e., a table, where entry in the table
contains multiple data items such as a part name and
quantity). 1\rray element T corresponds to the Ith row in
the table, a domain corresponds to a column in the table,
and a domain element corresponds to the Ith value in a
particular column.

The second field is a cell address of the array cell.
The array must be an array of structures (nested tag is that
of ~ structure). The array cell can be a parameter or
r"}loca ta ble.

The third field defines the offset of the content
component of this domain within the array element. That is,
the first domain contains the offset zero, the second .
contains the size of the content component of the first, and
so on.

c., _ The fourth field is a nested tag defining the type of
l) domain. Valid nested tags are tags for all primitive cells.

PAGE 17

P~oq~ams add~ess domains as if they we~e arrays having this
nested tag. The array properties of the domain ~imensions.
upp~~ bounds)·a.re those in the co~responding array cell.
Unl~ss otherwise noted in this specification, discussions of
arn ys include domains, and. discussions of a~ray elements
include donain elements.

;

Hence the machine has 15 cell types. When one accounts
for the nested or recursively defined tags, however, the
possible cell types are:

Primitive Parameter array of primitives
Structure Parameter array of structures
Array of primitives Relocatable primitive
Array of structures Relocatable structure
?~rameter primitive Helocatable array of primitives
P~ramet~r structure Relocatable array of structures

Domain of p~imitives

wher~ "primitive" denotes a.Dy of the 10 primitive cell
t.y pes. Al so, most cas es 0 f pa rame te rand reloca table cells
can have the D-typed, D-sized, and/or D-bounded attribute.
Uses of many of the cell types are illustrated in examples
in Chapter 0.

Note that 15 out of a possible 16 cell types have been
defined, implying that only one more cell type could be
added if the architecture is extended. This is not
necessarily true; if the first four bits of a cell are 0000,
this is intc~n:J.f}d to rep~es3nt an "escape" code, meaning that
the next four bits identify the cell type, thus allowing the
machine to potentially have an unlimited number of cell
tYP9S. A late~ section do.scribes a feature of the
archit~ctur~ that allows it to have supplemental instruction
sets; this p.scape code allows the supplem~ntal instruction
sets to define new cell types. For instance if a
FOR~RAN-ori~nted supplemental inst~uction set is active. a
cell beginning with the bits 00001111 might represent a
FORTRAN complex numbe~ (e.q. r a numerical value with a real
and an imaqinal:"Y part) •

AUXILIARY DATA TYPES

In addition to the 15 cell types, the a~chitecture also
provides several auxilia~y data types, which are discussed
belo w.

Indi~ect addressing is provided in the architecture by
the use of indirect pointe~s. An indi~ect pointer

http:bounds)�a.re

PAGE 18

;'"

physically points to another pointer (which is not an
indirect pointer), but logically points to where the latter
pointer points.. Any reference through an pointer to that
which it addr~kses, in the case of an indirect pointer, is
identical to performinq the same operation with the latter
pointer~ except that the access code in the indirect pointer
is used. Any operation directly on a indirect pointer
(e.g., move, comparison) has the same effect as that on ~
direct pointer. For instance, if an indirect pointer A
points to pointer B, any use of A to reference storage in an
instruction has the same effect as using a, although the
access code in pointer A, not pointer B, is used. Any
operation directly on A itself refers to only A and not B.
Indirect addressing occurs whenever pointer resolution
occurs (e.g., reference to a relocatable cell, CALL, SEND to
a port).

An indirect pointer is not a new data type. It is a
pointer cell that has been given a value via the
COMPUTE-T~DI~ECT-POINTER instruction. The pointer is marked
in the unarchitected logical-address field as an indirect
po in ter.

The indirect pointer has many uses. One is security,
where program A wishes to give program B access to some
data, hut program A wishes to retain the right to withdraw
this access at any time. By giving a an indirect pointer to
a pointer to the data, A, at any time, can modify the latter
pointer to withdraw B's access to the data. Another use is
dynamic object or module replacement, without having to
rebind progr.ams. If module X calls module Y through an
indirect pointer, module Y can be replaced with a new .
version by changing the direct pointer to it and not having
to change module X itself. A third use is by
ohject-access-control mechanisms, such as in an operating
system. If an operating system contains a mechanism
allowinq programs to ask for objects with different types of
exclusivity (~.g., shared access r exclusive access), it can
guarantee this integrity hy giving programs indirect, rather
than direct, pointers.

Parameter and relocatahle cells can have the properties
of being dynamically typed (D-typed), dynamically sized
(D-sized), and/oc dynamically bounded (D-bounded). These
prop~rties allow one to write generic programs, that is,
proqrams that ~r2 significantly independent from the data
th~y are processinq.

Parameter fields and strings (character, boolean, and
tok~n) and parameter fixed-point and floating-point cells
can he specified as D-sizeu by specifying, in the nested tag
of th~ paramet2r cell, a z~ro-valued size. For instance,

PAGE 19

6B003000FFffFPP is a parameter character field of size
three, but 6DOOOOOOFFFFFFF is a D-sized parameter character
field. Lik~wise, parameter arrays of fields, strings, and
fix~d-point and floating-point values can be specified as
D-siz~d by Rp~cifying, in the nested tag in the array nested
tag, a zero-v~lued size.

The abov'? is similar to "asterisk notation l1 in PL/I,
but the full concept, as expanded later, is considerably
more powerful and efficient. A few examples of D-sized
par~meters, along with their corresponding representation in
a PL/I-like syntax, are

5EO:o:XXX FFFI~ FFF
671XXXX000009BOOOXXXFFFFFFF

Q: PROCEDURE (A, D) ;
DCL ~ FIXED DECIMAL(*);
DCL B (9) CHARACTER (*) ;

(The elem~nt-Iength field in
or relocatable cell is never

an array
used and

nested in a pa
can be set to

rameter
any

value.) As usual, an X represents a don't-care value.

If a parameter is D-si~ed, it dynamically acquires the
siz~ attribute of the corresponding argument. See the
d2finition of the ACTIVATE instruction for the
type-consistency rules between arguments and parameters.

Relocatable fields, strings, and fixed-point and
floating-point values can also be D-sized, providing that
the RCA fipl~ is zero and that the locator cell is a pointer
or param~ter pointer. Any relocatable array can be D-sized.
D-sized relocatable cells are specified in the same manner
as D-sized param.:~ters. A few examples are

5YYYY00003000 DCL A CHAR (*) VARYING BASED (P) ;
5YYYY000071XXXX000009EOX DCL B (9) FIXED DECIMAL ("') BASED (P) ;

YYYY represents the cell address of the locator cell P. The
PL/~-like examples are hypothetical, since PL/I does not
allow such data types.

If a relocatable cell is D-sized, it dynamically
acquires, upon each reference, the size of the indirect
cell. Consistency requirements between a relocatable cell
and the indirect cell are the same as those for arguments
and paramet.ers.

D-hound~d parameter arrays can be specified by
spe~ifying, in one or more of the. upper-bound fields in the
nested array tag, a zero v~lue. A few examples are

Q: PROCEOORE(A,B);
672XXXX000010000002E42XXXXFFFFFFF DCL A(*,2) FIXED DEC(4,2);
6 7 1X X X X 0 00 0 0 0 BOO 0 X X X F F F F F F F DC L B (<<) C H A R (*) ;

PAGE 20

As shown in the second case, the D-bounded and D-sized
properties are independent: that is, a parameter array can
be both D~bound~d and D-sized.

If a parameter array is O-bounded, for each zero-valued
bound it, .1.cql1ires the corr:~sponding bound of the argument
arr.1y.

Any relocatable array can be D-bounded; this is
achieved in the manner described above. An example is

5YYYY000071 YX'(XOOOOOO AOGOXXX DCL A ("') CHAR (*) BASED (P) ;

Again, this example is both D-bounded and D-sized. Again,
the PL/I notation is hypothetical, since PL/I does not
provide this capability.

If a rclocatable array is D-bounded, it dynamically
acquires upon each reference, for each zero-valued bound,
the corr~spondinq bound of the indirect array.

A parameter is specifi~d as being D-typed by having a
nested tag of seven zero tokens. A parameter array is
specified as being D-typed by encoding zeros in the nested
tag (~lement attributes) within the array nested tag.
Examples an~

Q: PROCEDURE (A, B) ;
600!)OOOOFFFF'FFF DCL AD-TYPED;
671XXXXOOOOOOOOOCOOOFFFFFFF DC L B (=4<) D - T Y P ED;

Aqlin, the PL/I-like illustrations are hypothetical. The
s~cond example is both D-typed and D-bounded.

If a parameter scalar is D-typed (the first example),
it dynamicdlly acquires the full attributes of the
corresponding arqument. How~ver, the argument cannot be a
structure or array. If a parameter array is D-typed (the
second example), it dynarnicdlly acquires the full element
attributes of the corrpsponding array argument. However,
the argument array cannot hg an array of structures.

A relocatable cell is sp2cified as being D-typed bYL
havinq a nested tag of six zero tokens. A relocatable array
is specified as being D-typeu by encoding zeros in the­
nested tag within the array nested tag. For a relocatable ~
scalar to be D-typed, its RCA field must be zero and the
locator CQll must be a pointer or parameter pointer. Any
r0locatahle drrdY can b0 D-typed. Examples are

PAGE 21

5YYYYOOOOOOOOOO DCL A D-TYPED BASED (P) ;

5YYYY000071XXXXOOOOOOOOOOOOO DCL B (*) D-TYP ED BAS ED (P) ;

T: PROCEDURE (TA) ;

6A03QQQQFFffFFF DCL 1 TA,

5i1RRR000113003 ·2 TB CHAR (.3) ,

5R3?ROOOB71XXXXOOOOOOOOOOOOO 2 TC (~) D-TYFED,

5R~i1R0024E42 2 T D P I XED 0 Ee (4 , 2) ;

Again, the FL/I-like illustrations are hypothetical. The

second exampl~ is both D-typed and D-bounded. The third

caSA shows a D-typed and D-bounded relocatable array in a

. p::l r3.:neter st rllcture. QQQQ is the cell address of the second
cell and RRRR is the cell address of the first cell.

If a relocatable scalar is D-typed (the first example),
it ~ynamically acquires, upon each reference, the full
attributes of the indir~ct cell. The indirect cell cannot
be a structur? or array. If a relocatable array is typed,
it dynamically acquires, upon each reference, the full
element attributes of the indirect array. The in~irect
arr~y cannot be an array of structures.

The D-typ9d, O-bounded, and D-sized properties do not
compio~ise the reliability and security properties of the
architecture. They, given the concepts of tagged storage
and generic instructions in the architecture, allowing one
to ~rite highly data-independent programs. Where there is
an mismatch of data types (e.g., one is trying to perform
arithmetic on a qharacter field), the D properties still
cause the error to be detected, but not perhaps as early as
it might have heen if the properties were not used. Por
instance, if a parameter is specified as heing a
one-dimensional array of 10 character-field elements of size
6, th~ machine would signal an error (when the procedure or
module is invok9d, see the ACTIVITE instruction) if the
corresponding argument did not have identical attributes.
However, for instance, if this parameter was both D-typed
and D-bounded, the parameter checking would test for only a
one-dimensional array argument. If, during the execution of
instructionR in the procedure, an incorrect assumption was
made about the argument array (e.q., referencing a
nonexistent element, usinq it as an 3.rithmeitc value wben it
is not, referencing heyond the end of a field/string array
element), the~rror would be detected during the execution
of the instruction.

PAGE 22

3. STORAGE OBJECTS

. '­

The machihecontains four types of storage objects:
modules, activ3tion records, data-storage objects, and
ports.

T HE MODULE

The principal stor~ge object in the machine is the
module. A module contains a sequence of machine
instructions and a definition of the address space for those
machine instructions.

A module object corresponds to such programming
language constructs as PL/I external procedures and
functions, Cobol subprograms, and Fortran subroutine
Sll bp C'J qra ms. A mod ule obj Bct is Crea ted wit h a LOAD-MODULE
instruction, which takes the external form of a module
(shawn in Figure 3.1), represented in a token string, and
uses it to form a module object. Hence the form of the
module object is not architected; it is defined only in
ter~s of the external module. A module object can be
destroyed by the DESTROY instruction or, optionally, at the
time of program termination.

Fiqure 3. 1 and the subsequent sections define the
external module, the principal interface to the machine
since it represents the output of a compiler. As shown, an
external module consists of three variable-length
compon9nts: the header, th2 address space, and the
instruction space.

-
" .,:~

"

1 I
I INDEX TO I INDEX TO I
1 MODUr.::: I AUTOM ATtC I
I NAME I STORAGE DIEI1 ___________ 1 ___________ 1 ___________ _

I I I I
1 INDEX TO I INDEX TO ,INDEX TO I
I STATIC I INSTPUC­ 1 END OF 1
I STORAGE DIEI TrONS I MODULE + 1 I1___________ 1 ___________ 1 1

, I I I I I
1 I I 1 I FAULT I
ICASIIASISISI SAl CODES I
1___1___1___1___1 _____________ 1 ________________
I I

MODULE NAME

1 __ 1
I I

AUTOMATIC STORAGE DIE

1__1

1 I

STATIC STORAGE DIE

1 __ 1

I I

INSTRUCTIONS

1__1

FiguL8 3.1 FOLmat of an external module.

PAGE 23

PAGE 24

The modul& header defines certain attributes of the
module and (lefines sections of the other two components.
The first five fields in the header are five-token fields
con tai n~ng t. h~ b ina ry va lup. of the index wi thin the module
of the beginning of a particular section of information
(except for the fifth field, which indicates the end of ·the
module). Since the index of a section is also used to
indicate the end of the previous section, the sections must
be ~ontiguous. If a section is not present, its index field
points to the start of the next section. For instance, if
there is no autom~tic storage die section, its index field
and ~he indnx field for the static storage die have the same
value.

The next two one-token fields (CAS and lAS) define the
lengths of cell addresses and instruction addresses within
instructions in this module. Each field can contain a
bin~ry value from two to five, indicatinq two-token
addresses to five-token addresses. Cell and instruction
addresses are described in the later section on instruction
formats. (Note that cell addresses within cells, that is,
in structurp, relocata~le, and domain cells, have a fixed
length: four tokens.)

Since the addressing space of a module is limited to
only thos a cells defined in the module, it is desirable to
limit the address-field sizes to the smallest size needed.
That is, rather than defining fixed-length address fields
within instructions, the size of an address field can vary
from module to module. Cell addresses need only be large
enough to artdress the cells within the module (the module's
address space). Instruction addresses need only be large
enough to address instructions within the instruction space.
In other words a modul~ with only a few small cells (a small
address spac~) n,,?eds only il tiny cell-address field; a
module with more and bigger cells needs a larger cell
address. Use of variable-size addresses is worthwhile
because 1) th·,~ physical size of the module can be reduced,
2) the number of bits transmitted between the memory and the
pro~~ssor can be reduced, thus increasing the memory
bandwidth, and 3) arbitrary compromises concerning the upp~r,~
bound of an address space can be avoided.

.;.-::

The next. one-token field (SIS - supplemental .
instruction set) in the header defines the language in which
this module was written. The motivation for this field was
the thought that the basic instruction set of the machine
mi'Tht he extended to provide anditional instructions that
are specialized toward a particular language. For instance
if this field is zero, operation code '0007' might be
in vali d. I ft he field is one, ope ra tion • 0007' might be a
C03~L-oriented table sAarc~ instruction; if the field is

PAGE 25

two, operation '0007' might be a PL/I-oriented PICTURE
editing instruction. If the field is three, operation
'0007' might he an instruction intended only for the
operating syst~m. This points out another motivation for
such a feature: there is no need (nor desire) to bother a
COBOL compiler writer with inform~tion about instructions
int~nJed for thA operatinq system. In fact it is desirable
to hine such instLuctions from those people and programs
that have no direct use for them.

This "language" or supplemental instruction set field
gives the machine the ability to vary part of its
in~truction s~t dynamically and gives system designer the
ability to specialize and tailor the instruction set in a
way that is transparent to existing programs •

•• *~~~n.u.*~.*tt***.*.*******.**.************.***************
* Th~ current implementation of the architecture contains *
~ one supplemental instruction set (515=1111) for the *
• benefit of the operating system. It contains a few *
* instructions, which are not described in this document. *
* These instructions, like all others, are not privileged. *
*~** •• -**.*.***~*.********-***~********.***********.********

The next one-token field (SA) currently has no purpose.

The next six-token field specifies the faults
(machine-detected conditions) that this module wishes to
handle. The meaning of this field is described in a later
section on fault handling.

The next field is variable in length and contains the
name of the module, using two tokens to represent each
character. No machine instructions currently access this
fi~ld, so it need not be present.

The second component of a module is its address space.
The lddress spac~ contains a series of cells defining the
data that is accessible by the module. The index of the
first token of a cell within the address space is known as
its cell address. That is, the cell address of the first
cell is one; the cell address of the second cell is one plus
the total length of the first cell, and so on.

Although the address space looks like one entity to the
proqrlm, it is subdivided into two sections as shown in
Fiqur~ 3.1. These two sections are used by the machine. for
storage managempnt and allocation purposes.

The a~!QffiQtig §iQ£~gg gig holds all cells that are to
be dynamically allocated space whenever the module is
invok~J. When the module ~s invoked, tho machine allocates

PAGE 26

an activation record anJ copies the automatic storage die
into theactivdtion record. When the module's code refers
to ! cellin.th~ automatic storage die, the machine
automatically~ranslates its cell address to a location
within the activation record.

Note that the machine does a bit-by-bit copy of the
automatic stor~ge die into the activation record. This·
implies that the compiler can cause an automatic variable to
have an initial value simply by putting the value in the
variable's cell in the automatic storage die. If an
automatic variable (or any other variable) has no defined
initial value, the compiler is responsible for setting the
cell to the undefined value. An exception to this
discussion is pointer cells; for reasons of security, the
machine always initializes them with the undefined value
when the module object is created. All cell types may
app~ar in the automatic storage die. If an array cell
resides in the automatic storage die, space for the array
elp~ents is c[aated in the activation record and the
ele~ents are initialized to the undefined value. Parameter
cells must reside in this storage die and are always set to
the undefined value when the module object is created.

The ~i21if §t2I~g~ Qi~ holds all cells that are to be
allocated once prior to execution (that is, at the time of
the LOAD-MODULE instruction). If a static variable is to
have an initial value~ the value should be placed in its
cell in the die. If not, the cell should be set to the
"undefined" value. (All pointer cells are always
initialized by the machine to the "undefined" value.) All
cell types except parameter may appear in the static storage
die. ~rray elaments are initialized to the undefined value.

* •••• **••**.**.~*¥**.**~**.*********.***************.*******
• Since relocatable, domain. and structure cells do not *
* directly change during execution (only the cells to *
* which they refer do), it is recommended, for reasons of *
* performance, that these cell types be placed in the *
* st~tic storage die. *
~* •• *.** •••• *.***.****~.**~**.*****.***.****-***************

·1

The last component of a module is its instruction
space. The instruction space contains a series of machine '
instructions. Most machine instructions are represented in
a variable numher of tokens. The index of the first token
of 3n instruction within the instruction space is known as
its instruction address. The instruction address of the
first instruction is one; the instruction address of the
second instruction is one plus the length of the first
instruction, and so on.

, .

.' ,~~:;~~,~.:

http:cellin.th

PAGE 27

*~~**.**~•• ****~** •• *****••• *.*****.***~*******.****** .*****
~ Proqramming ~ote: Since array elements receive no space *
* in the di~s, it is not immediately obvious how a compiler•
• would initialize an array. The following suggestion is *
* offered. If the array is automatic, the compiler must *
• q2nerate code (one or more MOVE instructions) at each *
* entry point to initidliz~ the array. To initialize a *
• st~tic array, the compiler can give the module an extra *
11< ent['y point and generate code at this entry point to *
* initialize the array. After the LOAD-MODULE instruction *
• has been executed, this special entry point can be *
• c~lled to initialize the static array. *
» ••••• ~~#*.x*.**~*****.~**~**************.******************

THE ACTIVATION RECORD

~n activation-record object contains space for the
cells in a module's automatic storage die. It is created
whenevpr a mortule is invoked (by a CALL instruction) and
destroyed whenever a module returns to its caller_or the
proqram terminates. since a program does not directly "see"
an activation record, but addresses it through the automatic
storale die, no further information about the activation
record is architected.

THE DATA-STORAGE OBJECT

A data-storage object is created by a program that
wishes to dynamically allocate space for a relocatable cell.
It is created by an ALLOCATe instruction and can be
destroy~d by the DESTROY instruction or~ optionally. at
proqram termination. Since a program does not directly
"sce" a da tll-st".orage object, but addresses it through a
rploc~table cpll, no further information about the
d3ta-storage object is architected.

THE PORT

A port is an abstract obiect that is used to connect
t~o or more programs together for purposes of interprogram
comllunication. A port is created by a CREATE-PORT
instruction and is dest~oyed by the DESTROY instruction or
at program termination. since a port is defined only by the
semantics of the two instructions that can operate on it,
S::;ND and RECEIVE, no furth,}r information about tOhe port is
architected.

PAGE 28

4. INSTRUCTION FORMATS AND ADDRESSING

A machi"ne','instruct.ion consists of an operation code
follow~d by one 6r more address fields. Some instructions
hav~ iust one address field, others have two, others have
threa, ind c~rtain instr~ctions have a variable number of
address fields.

OPERATION CODES

Th~ first field of 8ach instruction is the operation
c~d~. Rather than use a single-length field for operation
codes, a frpquency-based encoding was done. That is, the
operation-code field for the fifteen most-freguent
instructions is one token 10n9, the field is two tokens' long
for the second most-frequent set of fifteen instructions,
and so on. The motivation for doing a frequency-based
encodinq, the rationale for choosing this particular
encoding, and the selection of the operation codes is
discussed in other documentation available from the author.

A.DDRESS FIELDS

There are seven types of address fields which are
grouped into three categories: operand addresses,
instruction addresses, and immediate fields.

hn Q~~I~nQ ~QQIt§2 references an operand in the address
spa=e. There are four types of operand addresses.

1. 	 ~g11 ~Qd£~2§. A cell address is an N-token binary
field that refers to a cell in the address space
(N is the value of the cell-address-size field in
the module hea!h'r). For instance, if N (CAS) 'has
the value 2, the operand add~ess 1A refe~s to the
cell beginning ~t the 26th token in the module's
address space. Cell add~esses cannot be used to

~ ..:­
address array or domain cells.

2. 	 Literal. A lite~al field consists of N tokens of
i;~~~-~ollowed by one token having the value zer6,
one, ••• , o~ nine. A literal field is assumed t6
be a one-digit positive integer. As an example,
if N (CAS) has the value 2, the operand address •
004 is a literal of value +4.

3. 	 Arr~Y ~l~m~nt £Q1£~§2. ~n array element address
consists of D+1 subfields. The fi~st subfield is
a cell address of an array (or domain) having D
dimensions. The next 0 subfields a~e cell
add~esses, literals, o~ ar~ay element addresses
specifying the valu~s of the subscripts (the
vallles must be integers). For example if array

PAGE 	 29

cell A has the index (in hexadecimal) of 20 in the
dddr~ss space, if a variable I has the index 3C,
and if N is 2, then the operand address for A{4,I)
is 200043C. If N was 3, the operand address would
be 02000040)C.

4. 	 A££~Y ftQg£~22. An array address refers to an
entir~ array or domain. Array addressing is
identical to array element addressing, except that
all of the subscript subfields are specified as
ft..,,, The U""II is represented by a literal field
with the value F (1111). Hence array A is
addressed hy 2000FOOF •

••• ~ •••*.****~&.*******.****.************.*****.*************
• Not2: This addressing scheme allows for the possibility *
* of addressing array cross-sections (e.g., the PL/I *
• expression A (~,I) would produce the address 2000P3C), *
* althouqh this is currently not part of the architecture. *
.~.*~~ •• *~~*.*.**~**.***~******.***************************

Unless otherwise mentioned, any of these four forms can
be used as operand address8s in instructions. One general
exc~ption is that a literal cannot be used as a ta£g~!
QE~[jn~. An QE~£~n~ is that data referred to by an operand
address (possibly indirectly through a relocatable,
structuLe, domain, or parameter cell) i a target operand is
an operand in which an instruction stores a result •.

The second category of address fields is an in§1£Y£ii2n
!~1I~§~. An instruction address is an M-token field that
refers to an instruction in the instruction space (M is the
valtl2 of the instruction-address-size field in the module
header).

The last ca tegory of address fields is an .!.!!!!!H~Qi2.1,g
fi~11. An immediate fiQld is a one or two-token field
containing not an address but some value that is used
directly by the instruction. Since immediate fields have
specialized pu~poses and are only used in a few of the
instructions, definition of the immediate fields is deferred
to the definitions of these instructions.

PAGE 30

;...,

5. PAULT HANDLING

Since th~_maior objective of this machine is to prevent
and/or detect certain classes of programming errors, the
methods hy. which the machine detects and reports errors are
of sD~cial importance. This section defines the conditions
(called f~~1!2) detected by the machine, the information
that the machine presents to the program when a fault
occurs, and how the program and machine can interact to
handle faults.

FAULT DESCRIPTIONS

The following descriptions define the types of faults
det2cted by the machine and the situations under which ~hey
arise. If multiple fault situations occur during the
execution of ~n instruction, the first type of fault
det~cted by the machine, or the order of the faults
detected, is not architectel.

An in~11iQ QE~I~ilQQ (type 1) fault occurs when the
m~chine f~tches an instruction but its operation code is
invalid, or when the end of the instruction space is
encounter'ed du["ing thr:: fetching of an instruction.

An ~11I~§§ing (type 2) fault occurs when (1) a cell
a~d["2SS is being used but it falls beyond the module's
addr9ss space or ["esides in an incorrect storage die, (2)
when an i'l.rray subscript is not an integer, (3) when an array
c["o~;s-section ilddt"ess is sP2cified, (4) when a ["eference
within a module f["om outside (e.g., via the LINK or
CJ~PUTE-ENTRY-POINTER instruction) does not obey the
addressing ['ules of the instruction, (5) when an erro[' is
detect~d while processing cell addresses (e.g., the rules
concerning relocatable cells drA not obeyed), or (6) when a
loop is detected when resolving indirect pointers (e.g., an
indirect pointer refers to itself).

An gn~nQ~n g2i~ fQfm~! (type 3) fault occurs when the
machine references a cell that has an unrecognizable forma~
or val ue.

A ErQi~£iiQn (type 4) fault occurs when (1) the program
attempts to destroy, write to, or read from a cell that is
loc~ted through a pointer cell, but the pointer does not
hav2 the appropriat(~ access code, (2) the proqram attempts
to explicitly destroy storage that resides within an
acti va tion record or mod ul (-~, (3) the prog ram at tern pts to
alter a parameter that was transmitted as read-only, or (4)
the program attempts to move the value of a pointer cell
which does not have copy authority.

,­

. .:~:;~~ ...

'I.;.,',

~:.'

PAGE 31

An !n!~li4 EQin!~£ (type 5) fault occurs when the
proqLam uses a pointer cell but the logical address in the
pointer is unknown to the machine (implying that the storage
ref?LL2d to by the pointer has been previously freed).

A hQgn~~~~!£g~Q~l (type 6) fault occurs when the
proJram refers to an array element using a subscript that is
bey::>n d t he bOll nds of the correspon ding dimension, or when a
program refers to a string element that is beyond the size
or current length of the string.

An inY~!iQ QQ£££llQ 11E2 (typ~ 7) fault occurs when the
typ~ of an operand does not match the valid operand type(s)
in the instruction sp~cification, or when the category of
storage object being referenced by an instruction does not
match the categories of storage objects that can be
referenced hy the instruction.

An ~nQ~fin~Q Q£££~nQ (type 8) fault occurs when the
machine attpmpts to use the value of an operand, but 1) the
opeL~nd, or 2) a pointer or 3) parameter cell used to locate
the operand, has the value "undefined." This fauit does not
occur for condition 1 in the DEFINED instruction, which is
an explicit t~st to determine if an operand has an undefined
value.

An in£Q~££~ib!~ QQ=££nd§ (type 9) fault occurs when two
or more operands of an instruction are incompatible. The
con~itions of operand compatibility are defined in the
specifications of the instructions. This fault can also
occu~ in an ACTIVATE or LOCAL-ACTIVATE instruction when the
typ2 of a parameter cell is incompatible with the type of
the corresponding argument cell, or in a RECEIVE or SEND
instruction when the type of a receiver operand is
incompatible with the type of corresponding argument. The
f~ult also occurs when the ~ttributes of a relocatable cell
do not m~tch the attributes of the indirectly located data.

An Qygr!lQ~ (type 10) fault occurs when the target
operand in an instruction is too small to hold the value
pro~uced by the instruction. For arithmetic operands this
occurs when loss of high-order non-zero digits would occur
or when the exponent of a floating-point r~sult is great~r
than ~9. For string operands this occurs when the size of
the target string is too small to hold the value produced by
th e instruction.

An underflow (type 11) fault occurs when the
flo~ting:~~I~~-~~sult of an instruction has an exponent of
less than -99.

A giYi~~ (type 12) fault occurs when division by zero
is attempted.

PAGE 32

An !n!~!i~ mQ~Y!~ (type 13) fault occurs during a
LOAD-MODOLE instruction when the machine discovers a format
err3r in ~he mo~ule being loaded.

An ill!~li1 f£!n§t~£ (type 14) fault occurs for various
reasons in an instruction that transfers control flow. The
most common situation is attempting to branch beyond the
instruction space of the module.

An ill!~li~ l£~n§~i§§lQn £2Yn! (type 15) fault occurs in
an ACTIVATE or LOCAL-ACTIVATE instruction when the number of
parameters specified does not equal the number of arguments
transmitt~d, or in a RECEIVE and SEND instruction when the
number of recaiver operands does not equal the number of
arquments in the corresponding SEND instruction.

A fQn!~!§iQn (type 16) fault occurs during the CONVERT
instruction when the operands do not match the conversion
rules listed in the specification of the CONVERT
instruction.

A Y=§~h£~ll£h~!£~££ (type 17) fault occurs during any
inst~uction in the comparison-and-branch qroup (except
ITERATE) if 1) the instruction results in a branch being
taken and 2) yes-branch tracing is enabled for the module
containing the instruction.

A nQ:~I~n£h:tId£~ (type 18) fault occurs during any
instruction in th~ compariosn-and-branch group (except
ITERATE) is 1) the instruction results in the branch not
beinq taken and 2) no-branch tracing is enabled for the
module containing the instruction.

A ~211-tI2£~ (type 19) fault occurs during the
execution of a CALL or LCALL instruction if call tracing is
enabled for the module containing the instruction.

An in§Qffi£lgni=§lQf~g~ (type 20) fault occurs when an
instruction requires the machine to dynamically acquire
storage for a storage object, but sufficient storage is not
availa ble.

A 1~~!1~h~n~!lng (type 21) fault occurs when 1) one.
att~mpts to CONTINUE beyond d fault for which continuing i~
prohihited, 2) one attempts to execute a RAISE-FAULT
in~truction with an invalid fault type, or 3) one attempts ~
to execute a CONTINUE or TRANSFER-FAULT instruction While
not in a fault handler •

.i.,
L;

PhGE 33

ENTRY-POINT ZERO

~ach fault type has an associated number as given in
the previous section. These numbers also correspond to a
bit position in the fault-code field in the module header.
For -"xample tault type 1 (invalid operation) co['['esponds to
thp bit 1 in the fault-code field. If a bit is set to one
in th2 fault-code field in a module, this indicates that
this module d0sires to handle the associated fault. Bit 0
(thf" first bit) in th~ fault-code field indicates whether
the module desir8s to handle faults of type 28-255
(proqram-(iefineJ faults - see the RAISE-FAULT instruction).

Wh~n a f~ult occurs, the machine attempts to call
entry-point ze['o of the current module. (Entry-point zero
is the first instruction in the moduleo) Entry-point zero
will be callej if the fault is enabled (the correspondi~g
bit in the fault-code field is one). If not, the machine
attempts to call another entry-point zero by searching
bac~wards throuQh the stack of active modules until a module
is found with this fault enabled. If none are found, the
program is terminated.

* Programming Note: It is anticipated that the first *
• ~odule invok~d in each program is a special module * * a~n~rated by the compiler or operating system that has •
* 311 faults enabled. *

~hen an ~ntry-point zero (hereafter called a 1~~11
fl2D21Q£) is invok3d, it is called by the machine as an
internal procedure. Therefore the fault handler has
addressability to the address space in the module in which
the fault handler resides. The machine also passes the
following fiv8 arguments to the fault handler:

1. 	 An in teger conta in ing the fault type.
2. 	 A pointer to the module object in which the fault

arose. The pointer has read and copy authority.
3. 	 A pointer to the entry point at which the faulti~g

module was entered. The pointer has read and copy
authority.

4. 	 A token-field cell of size 5 containing the
instruction address of the instruction causing the
fa ul t.

5. 	 A token-field cell of size 6.

The fault handler is given rea~-only access to the
argument.s.

For the invalid-module fault, argument 5 is an error
!I~ code desc['ibing the error in the module (provided that the
'r"'" fault was not raised by the RAISE-FAULT instruction). Por

I

PAGE 34

c....

I~

all other faults, argument will be taken, 5 contains the
fi['st. six tokens of the faulting instruction.

Machine inst['uctions are available to allow a module to
dynamically ~nable or disable specific faults, to allow a
prolram to pxplicitly generate faults, and to allow a fault
handl~r to ['esume execution at the instruction following the
faulting instruction, retry the faulting instruction, or to
transfer the fault to a higher fault handler.

A fault in a fault handle[' is treated like any other
fault situation. The only difference is that, to prevent a
faulting fault handler from entering endless recursion, the
sp.arch for nn applicable fault handler starts with the
~odul~ that called the module containing the faulting fault
handler.

Faults are nested, meaning that if a fault occurs in
fault handler A and is handled by fault handler B, which
returns or continues to fault handler A, A is back in its
origiual state (i.e., the fault arguments available to A
still describe the initial fault) • .

Note that the fault handler is assumed to start at the
first instruction in the module. Either the fault-handling
cod.::', (beginning with a LACT instruction) or a branch to the
fault-handlin~ code, is placed here.

PROGRAM STlTE AFTER A FAOLT

A key consi~eration in fault handling is the state in
which the machine leaves the program when a fault occurs.
In most cases the faulting instruction does not affect the
st~te of the program. A fault handler terminates with one
of four instructions: LOCAL-RETURN, which terminates the
fault handler and begins execution again of the faulting
instruction, CONTINUE, which terminates the fault handler
and resumes execution at the instruction that would have
been executed next, had the fault not occurred, RETURN,
which deletes the activation record for this module and all
later modules and returns control to the module that
p['eviously called this module, and TRANSFER-FAULT, which
terminates the fault handler and causes the machine to
search for and call a higher fault-handler~ Exceptions to
these general rules are discu~sed below.

1 • 	 Issuing the LRETURN instruction to return from a
fault generated by a RAISE-FAULT instruction
causes execution to resume at the instruction
following the RAISE-FAULT instruction.

2. 	 Faults that occur during the processing of a
field, structure, or array result in the elements
processed before the fault taking on their new

PAGE 35

values, but all remaining elements remain
unchanged.

3•. "'1f ~n over-flow or underflow faul t occurs, the
tarq~t operand is given the undefined value.

4. 	 Issuing the CALL instruction in a fault handler
causes any and all activations beneath that of the
currant activation to disappear (to avoid turning
the activation stack into a tree).

Idf~J.~;Jf. .~,

, 	 ;:~~::'

:...::,.- .

',:

PAGE 36

6. IN STRUCTION SU 11MA RY

This section summarizes the instructions of the
machine. Chapter 7 describes each instruction in greater
de t.a i1.

The thr~e general instructions are MOYE, CONYERT, and
UNDEFTNE. Operands of the three instructions may be single
s=alar cells, drrays, strings, domains, fields, and
structures. ~OVE is uspj to transfer the value of one
ODeran~ to another. CONVERT performs the same function as
MOV~, but it ~lso performs an explicit data conversion. For
ins~ance if one used a MOVE instruction to move a chara~ter
value into ~n integer, the oppration would fail and an
inc~mp~tibl~-aperands fault would occur. If one used a
CONVERT instruction, the operation would succeed; the
character valll~ would be converted into an integer according
to a set of predefined rules. .

The UNDEFINE instruction is used to set the value of an
operanJ to undefined.

A£ilhill~!l~ In2!£Q£!lQn~

l4. 	 MULrI~i~, a ~~~~~~ :i~E;~~;~~~~ i~~~o~~~~~d~O~~~~M ~~~T~~~~;y
minus), dnd PO\~FR (compute X to the Yth power). The ADD,
SUBTRACT, MULTIPLY, DIVIDE, REMAINDER, and POWER
instructions have two operands; the result is stored in the
first operand. ABSOLUTE and COMPLEMENT have one operand.
The operands must be arithmetic scalars or arrays.

The EQUAL-BRANCH-FALSE, NOT-EQUAL-BRANCH-PALSE,
L~SS-THAN-BRANCH-FALSE, GREATER-THAN-BRANCH-FALSE p

LE S5 -THA N-OR -EQll AL-BRA NCll- FALSE, an d
GREATER-THAN-OR-EQUAL-BRANCH-fALSE instructions have two
ope~lnrls and an instruction address. The values of the
operands ar3 compared; if the condition is false, control is
transferred to the specified instruction address. In
gen2ral the two comparison op0rands may be any cell types
(e.g., pointer, character string, array, structure).

The ro?maininq t.wo instructions are DEFINED-BRANCH-FALSE
and ITERATE. The first t2sts an operand to determine it its
value is defined. ITERATE is provided for loop control in
iterative DO loops.

PAGE 37

I •• ,

Th~ boola~n instructions are AND and OR, which have two
operands, an~'NOT, which has one operand. The operands may
be boolean, bool~an strings, or arrays of booleans or
boolean strings.

Although many of the machine instructions can have
string operands, the string instructions work exclusively
with string opprands. The operands may be boolean,
character, or token fields or strings.

The CONCATENATE instruction appends the value of one
operand to the end of the other operand. The MOVESUBST~ING
instruction overlays a substring in one operand onto a
substring in the other operand. The INDEX instruction
searches a string for a designated substring. The LENGTH
instruction returns the current length of a string.

The remaining instruction in this group is SEARCH.
Givpn an array or domain and a search value, it returns the
subscript value of the elem~nt whose value is equal to the
search value.

Ie...
\ The control instructions are associated with

unconditional transfers of execution flow. The CALL,
ACTIVATE, and RETURN instructions are associated with calls
to modules, the LOCAL-CALL, LOCAL-ACTIVATE. and LOCAL-RETURN
instructions are associated with calls to local subroutines
within a module, and the BRANCH instruction alters execution
flow within a module.

The ChLL instruction specifies the entity being called
(entry-point within a module) and a list of arguments. A
subset of these arguments may be designated as being

.1.-:--:­read-only, implying that the called module may not alter nor:r ­

free them. CALL allocates the storage sp~cified in the
auto~atic storage die of the called module and branches to.
the specified entry point. If parameters are to be receiv~d
by a called entry point, an ACTIVATE instruction must be
exe=uted in the called module before the parameters are
referenced. The ACTIVATE instruction specifies a list of
parameters. The instruction checks the compatibility of the
arguments and parameters and initializes the parameters (the
transmission method is by-reference). The RETURN
instruction frees the automatic storage and transfers
control to the module that called this module.

The LCALL instruction specifies an instruction address
of 1 loc~l procpdure and a list of arguments. The first

PAGE 38

instruction of a local procedure must be LACT
(LOCAL-ACTIVATE). LACT specifies a list of parameters and
causes the compatibility of the arguments and parameters to
b8 check8d and the parameters to be initialized. LCALL does
not allocat~ any automatic storage, which means that the
mac~ine provides only minimal support of local procedures.
If stor3qe allocation and scope-of-name rules are necessary,
thoy arp thp compilers' responsibility. The LRETURN
instruction transfers control back to the instruction
following the last LCALL instruction.

Tha GUARD and UNGUARD instructions are provided to
protect criticll sections of instructions from simultaneous
exe=u·ion, ~llowing one to use the program-design concept of
monit~rs.

This group of instructions is associated with the
manipulation of pointers and storage objects. The
COMPUTE-POINTER instruction produces a pointer to a
specified operand. COMPUTE-INDIRECT-POINTER creates an
indir~ct pointer to a pointer. The CHANGE-ACCESS
instruction is provided to lower (further restrict) the
access code in a pointer. The ALLOCATE instruction is used
to 1ynlmically allocate storage space, and the FREE
instruction is used to dynamically free an object (i.e., a
rnodu13 or a dynamically allocated storage space).
CiIANGE-LOGICAL-ADDRESS allows one to rename (cause the
m~chine to assign a new logical address to) an existing
object.

The LOAD-MODULE instruction defines a module to the
machine and returns a pointer to it. The
C1MPUTE-ENTRY-POINTER instruction is used to compute the
loqical address of an ~ntry point or cell in a designated
module. The LINK instruction is used to assign a value to a
pointer cell in a loaded module. (COMPUTE-ENTRY-POINTER and
LINK are used to bind modules; that is, they are used by
"linka~e-editing" functions.)

The DESCRIBE instruction, given a pointer as an
op~rand, returns certain descriptive information about the
pointer dnd that to which it points.

Th~ C~EATE-PORT, SEND, and RECEIVE instructions are
used for interprogram communication. SEND transmits a
message to a port, and TIECEIVE accepts a message from a
port.

PAGE 39

.Qth~2.9.i!!!] Instruction 5

Th9 last.·set of instructions are associated with
debuqqing an1 fault-handling functions. The ENABLE and
nIS~BLE instructions provide the program with a way to
dynamic~lly ~nable or disable faults designated for the
module's fault handler. The RAISE-FAULT instruction is used
to ~xrlicitly trigger a fault and enter a fault handler.·

The CONTINUE instruction provides a fault handler with
the 3bility to resume execution of the faulting module at
th~ instruction following the faulting instruction.
(LJETURN is used to resume execution at the faulting
instruct.ion.) I f a faul t handler- determines tha t a faul t
should he transferred to a "higher" fault handler, the
TRANSF~n-F~ULT instruction is used.

The. DISPLAY-TAG and DISPLAY-CONTENTS instructions ar-e
intended for debugging operations. Given a cell address and
a pointer to a module, the instructions will place either
the tag or the content of the referenced cell into a token
string.

The TRACE ani NOTR~CE instructions are used for
monit~ring execution flow. The TRACE inst~uction enables a
t~ace of br-anch instructions, call instructions, or both in
a specified module~, and the NOTRACE instruction disables
the same. If a b~anch trace is enabled for a module, all
comparison-and-b~anch instructions, except ITERATE, generate •
a b~~nch-trace fault. Branch tracing can be specified for
situations where the branch is taken, the branch is not
taken, or hoth. If a call t~ace is enabled fo~ a module,
all CALL and LCALL instructions gener-ate a call-trace fault.

1,.;·

.; ...;f.

'. '

PAGE 40

7. I~STRUCTION SPECIFICATIONS

This chapter defin2s the basic instruction set of the
machin''!. Genora.l notes that are applicable to many of the
inst.r1lction:; dre:

1 •

2.

3.

4.

5.

6.

7.

8.

Where an instruction permits two operands to be
drrays, the arrays must be fQn!Q£ill~~l§. That is,

thpy must have the same number of dimensions and

the same number of elements in each dimension.

The same applies to domains.

Where an instruction permits two operands to be

structures, the structures must be identical.

TLat is, each structure must contain the same

number of elements. Correspond~ng elements in
each struc~ure must have identical attributes
(ta']s) •
Where an instruction specifies a particular cell
type as a valid operand, the operand can also be a
n8sted cell, unless otherwise noted. For
instance, if an operand should be an integer, the
operand address can point to an integer cell, an
e12m~nt in all array of integers, a relocatable
int0ger, an inteqer parameter, an integer domain
elem ~n t, etc.
Most of the instructions can generate a common set
of faults. Foe brevity, the set of fault types
ndilled the ggn~£~! §~l is defined as including the
following faults: add~essing, unknown data format.
protection, invalid pointer, bounds-exceeded,
invilid operand typ~, undefined operand, and
incompatible operands.
"Arithmetic operands" are defined as the set ­
integer, literal, fixed-point, and floating-point.
"Strina/field operands" are defined as the set ­
boolean string and field, character string and
field, and token string and field. "Character
opRrands" are the set - character field and
character string.
In the specifications of instruction formats, the
first field is the operation code. which consists
of one to four tokens depending on the
instruction. Thp abbreviation "OA" designates an
operand address; "IA-" designates an instruction
address.
Lit8rals are permitted as operand addresses,
except where the instruction alters the operand's
value or where the operand cannot be arithmetic.
The length of a hoolean, character, or token field
is the valuq of its fixed-size field in the tag.
The lenqth of a boolean, character, or token
string is the value of the length field in the
conti-~n t componen~.

PAGE 41

GENERAL INSTRUCTIONS

Instruction: ~QVE
Function: Th~ v~lue of the second operand is moved

into the first operand.
For:nat: 1 • .Df"Of>.
Op~rand~: ~oth operands must be compatible, that is,

hath must he arithmetic, character, boolean,
token, pointers, or structures. Both operands
can be arrays or domains, implying that
an element-hy-element move is done, or the
first operand can be an array or domain and
the second not, meaning that the value of the
second operand is moved into each element.

If th~ operands are arithmetic but have
different types or sizes, the result is
first converted to agree with the first
operand. No rourding ever occurs in the
MOV?, instruction. ihen a string or field is
mov~d into a string, the length of the first
operand is set equal to the length of the
second operand. On a move into a character or
boolean field where the second operand is shorter
than the first, the first operand is padded on the
right with hlanks (if character) or zeros (if
boolean). On a move into a token field where the
second operand is shorter than the first, the'e..,
first operand is padded on the left with zeros.

The operand combinations (first/second)

token field character field

token field character string

token string character field

token string character string

are valid, and the combinations

character field token field

character field token string

character s~ring token field

character string token string

are valid. A straight move is done (no
conversion of values, other than the length). .:

-:.rA move of 	a structure into a structure requires
that both 	structures have the same number of
elements, 	and that the elements have
identical 	attributes. A structure move is
sem~ntically identical to specifying a move
of each individual element.

Faults: 	 Genera 1 set (exc ludi ng inva lid ope rand
type) plus overflow.

PAG"E 42

Instruction: CONVERT
Fun=tion: 	 The value of the second operand is moved

into the first operand. A limited number
of conversions may be done if the types
of the two operands differ.

For~n'lt: 09.0A,OA
Op~[ands: 	 The rules of the MOVE instruction apply,

but the rules concerning operand
compatibility are somewhat relaxed.
Table 7. 1 describes the valid conversions.
A blank in the matrix indicates that no
conversion will be performed and the
inco~patiblg-operands fault will occur. If a
conv~Lsion is attempted but the value of the
spcond operand does not meet the conversion
rules. a conversion fault will occur.
The operands cannot be entire arrays
or st('uctures.

Faults: 	 G(~lh~ral set plus conversion and overflow.

,\'-'

\

PAGE 43

'" i .• ,

Operand2 type

d d b c t
f f b c t s 5 S

i x I f f f t t t

i 1 1 1 4 2 4 2

dfx 1 1 1 5 5

d.fl 1 1 1 6 6

Opera.nd1 hf 1 8 9 1 8 9
t Y pP. cf 15 16 17 11 1 12 11 1 12

tf 7 13 14 1 13 14 1
bst 1 8 9 1 8 9
cst 15 16 17 1 1 1 12 1 1 1 12
tst 7 13 14 1 13 14 1

1- Acts identical to a MOVE instruction.

2- Converts it from binary to a positive integer value.

4- All characters must be numeric ("0" - "9") except for

the first, which can optionally be a "+" or II:"".

5- The string must be numeric optionally preceded by

3. Iffo" or "_If, or an optional fI+" or II_II followed

by zero or more numerics followed by a "." followed

by zero or more numerics. .

6- The string must be 1) numeric optionally preceded
by a "+" or It_", or 2) an optional ft+If or fI_1I

followed by zero or more numerics followed by a "."

followed by zero or more numerics, or 3) a number of

form 2 followed by "E", followed by an optional "+11

or If_tt, followed by one or two numerics.

8- Character(s) must be "0" or "1", or ifF" or "T".
9- Token(s) must be 0000 or 0001.

11-	 Produces the character(s) IfFfI or "Til.
12-	 Produces +.he character (5) "0"-"9" and "A"-IIFI1.
1J-	 Produc~s the token(s) 0000 or 0001.
14-	 Character(s) must be "0"- 11 9 11 and flA"_IIF".

'.'

15- Produces a string of numerics, preceded by a 11_11 .. - .:~:~~.-:
if the number is negative. -:- .~:

16- Produces a string of the form I1numerics.numericsl1,
preceded hy a II_II if the number is negative or a
blank if positive. .:

17-	 Produces a string of the form "O.nume["icsEnumerics".
If thp. number is negativ'2, a II_II precedes the string;
if positive, a bldnk pr2cedes· the st["ing.
If the 9xponent is neyative, a "_II follows t.he "E".

Table 7.1 Conve["sion rules.

PAGE 44

Instruction: UNDEFINE (lJNDEF)
Function: The value of the op2rand is set to

und-2fined.
Forma~: 001,01\
Op~rands: Thp operand can bA of any type. If it is

a token field, the instruction has no effect.
I~ the operand specifies a collection of
c0lls (array, dom~in, or structure),
each element receives the undefined value.

Faqlts: 	 G~neral set (excluding incompatible operands).

ARITHMETIC INSTRUCTIONS

Instruction: .~DD
Fn/lc:tion: 	 The v;J.lues of the two operands are added

a!l d the resu It is placed in the first
operand.

~ormat: 2,OI\,OA
Operands: 	 Roth operands must be arithmetic. Doth

operands can be arrays or domains, implying
that an element-hy-element addition is performed.
If the first operand is an array or domain and
the second op~rand is a scalar, then
the second operand is added to each element
of the first operand.

It the operands have different types or
sizes, the value of the second operand is
temporarily converted or adjusted to agree
with the first operand before the addition
is performed. The rules of arithmetic are
identical to those in the PL/I language.
Floating-point results are always
normalized.

Fa u1 ts: 	 General set plus oV2rflow and underflow.

Instruct ion: SU BTR ACT (SU B)
Function: 	The value of the second operand is

subtracted from the value of the first
operand and the rdsult is placed in the
first operand.

Fo rm at: 3,0 A,0 A

OpPL~nds: See ~DD instruction.

Faults: Generdl set plus overflow and underflow.

Instrnction: MULTIPLY (MULT)
Function: 	 The values of th~ two operands are

multiplied and tha result is placed in
the first operand.

Format: 4,OA,O.lI.

OoeLan~s: s~~ ADn instruction.

http:4,OA,O.lI

PAGE 45

Faults: General set plus overflow and underflow.
Notes: In the case of array operands, an element­

. by-~l~ment multiplication is done, not a
"matr-ix multiplication."

lnstr1lction: DIVIDE
Function: 	 The value of the first operand is divided.

by the value of the second operand and
the resu 1 t (quotient) is placed in the
first operand. If the first operand is an
integer, it becomes the integer whose magnitude
is the largest integer that does not exceed the
mathematical quotient and whose sign is the
same as the sign of the mathematical quotient.

ForOldt: 02,01\,OA
Operands: See ADD instruction.
Faults: General set plus overflow, underflow, and

divide.

lnst.ruction: REMAINDER
Fun~tion: 	 The value of the first operand is divided

by the value of the second operand and
the rpmainder is placed in the first
operand.

Format: 002,OA,OA
Operands: 	 Both oparands must be integers.

Both can be arrays or scalars, or the
first can be an array and the second a
sCd.lar.
General set plus overflow and divide.

Instruction: ABSOLUTE (ABS)

Punction: The sign of the operand is set to positive.

Format: 01 rOA

Operands: The operan~ must be arithmatic. If the

operand is an array, the operation is
performed on each element.

r .~.

Fii ul ts: Gener·3.1 set (excludi ng incompa tible
operands) •

.:

InstL"lJction: COt1PLEt1ENT (CO'1P)

Function: The sign of the operand is reversed.

Format: F,OA

'.

OpeL"3nds: The opqrand must be arithmetic. If the

operand is an array, the operation is
performed on each element.

Fa III ts: General set (~xc ludi ng i ncom pa ti bl e
operan ds) •

PAGE 46

Instruction: POWER
Function: 	The value of the first operand is raised

to the power given by the value of the
second operand and the result is placed
in the first operand.

For~at: 008,OA,OA
0p0rdnds: Both operands must be arithmetic. If the

first operand is an integer, then the second
o~erand must be an integer.
The first operand can be an array, implying
that the operation is performed on each
elament. The result is always rounded if
least-significant diqits will be lost.
Floating-point results are always
no r:n lized.

Faults: General set plus overflow and underflow.

COMPARISON-AND-BRANCH INSTRUCTIONS

Instruction: EQUAL-BRANCH-FALSE (EQBF)
Function: 	 If the values of the operands are equal, the

instruction has no effect; otherwise, control is
transferred to the specified instruction address.

Fo rm a+:: 7, 0 A , 0 A, I A.
Oper~nds: The operands must be compatible

(both arithmetic, character, boolean,
pointer, or token). If they are arithmetic
but have different types or sizes, the
valu.;: of the second opecand is temporarily
converted to agree with the first operand
hr;fort:~ the compa rison is made. (Overflow
faults never occur. If an overflow
condition is encountered, the two operands
are defined as unegual.)

Comparisons between arithmetic values of
dissimilar attributes are consistent with
the rules of PL/I.

If the operands are strings and/or fields of
unequal length, the shorter is temporarily
paided with blanks (for character) or zeros
(for boolean or token) before the comparison
is made. Character and boolean strings/fields
are padded on the right and token strings/fields
are paided on the left.

The first operani may be an array or domain,
or both operands may be arrays or domains,
in which case an element-hy-element
comparison is done. If the first
operand is a structure, the second operand

'must be an identical structure and an

PAGE 47

element-by-element comparison is done.
~he result is true only if the relation holds
b8tween all corresponding elements.
If the operands are pointers r only the
logical addresses (not the access codes)
aI:'e compaI:'ed.

Paults: 	 General set (excluding invalid operand type)
plus invalid tI:'ansfeI:', yes-branch tracer and,
rio-bI:'anch trace.

InstI:'uction: NOT-EQUAL-llRANCH-FALSE (NEBF)
Function: 	If the valugs of the opgrands are unequal, the

instruction has no effect; otherwise, control is
transferred to the specified instruction address.

Format: (',OA,OA,IA

Operands: See EQUAL-BRANCH-FALSE instruction.

Faults: See EQUAL-BRANCH-FALSE instruction.

Instruction: LESS-THAN-BRANCH-FALSE (LTBF)

Functiou: 	 If the value of the first operand is less

than the value of the second operand, the
ir~struction has no effect; othenlise, control is
transferred to the specified instruction address.

form~t: 8,OA,OA,IA
Operands: 	 The operands must both be

arithmetic, character, or token. If they
are arithmetic but have different types or •
sizes, the value of the second operand is
temporarily converted to agree with the
first opeI:'and before the comparison occurs.
(Ov~rflow faults never occur. If an overflow
condition is encountered, the first operand
is taken as b~ing less than the second.)

Comparisons between arithmetic values of
dissimilar attributes are consistent with
the rules of PL/I.

Character strings/fields are compared
based on the collating sequence of char­
acters (EBCDIC representation). Token
strings/fields are compared by viewing them
as positive hexadecimal numbers. Unequal­
length strings or fields are padded as described
in the EQUAL-BRA~CH-FALSE instruction.

The fiI:'st operand may be an array or domain, or
both oparands may be arrays or domains, in which
caS0 an element-by-element comparison is done.
The result is true only if the relation holds
between all corresponding elements.

Faults: 	 ~eneral set plus invalid transfer, yes-branch

PAGE 48

trace, and no-branch trace.Ie.
Instruction: G~EATER-THAN-BRANCH-FALSE (GTBF)
Function: 	 If the value of the first operand is

qr~ater than the value of the second operand,
the instruction has no effect; otherwise, control
is transferred to the specified instruction address.

Format: 9,OA,OA,IA

Oper~nds: See LESS-THAN-BRANCH-FALSE instruction.

Faults: See LESS-THAN-BRANCH-FALSE instruction.

In st:. rllction: 1.3 SS- TH AN-OR - EQUAL-BR ANCH -F ALSE (LEBF)
Fun c t ion: 	 I f t h G valuG 0 f the fir s tope r an dis 1 ess

than or equal to the value of the second ,
operand, the instruction has no effect; otherwise,
control is transferred to the specified
instruction address.

Format: A,OA,OA,TA

Oper~nds: Se~ LESS-THAN-BRANCH-FALSE instruction.

raults: S8e LESS-THAN-BRANCH-FALSE instruction.

Instruction: GREATER-THAN-OR-EQUAL-BRANCH-FALSE (GEBF)

Function: 	 If the value of the first operand is

greater than or equal to the value of the
second operand, the instruction has no effect;
otherwise control is transferred to the
specified instruction address.

Format: B,OA,OA,IA

Operands: See LESS-THAN-BRA~CH-FALSE instruction.

Faults: See LESS-THAN-BRANCH-FALSE instruction.

Instruction: DEFINED-BRANCH-PALSE (DEFBF)

Function: 	 If the value of the operand is defined,

the instruction has no effect; otherwise, control
is transferred to the specified instruction address.

Format: 004,OA,IA
Operands: 	 The operand can be of any type.

If the operand is a token field, the
instruction has no effect. If the operand
spocifies a collection of data (array
or structure), th3 condition is
true only if every ~lement has
a defined value. If the operand is a
character or boolean field, the
condition is true only if every
element in the field is defined.

Faults: 	 General set (excluding incompatible operands
and in va lid operand type) pI us in val id transfer,
yes-branch trace, anu no-branch trace.
The undefined-()p'~.rand fault will

PAGE 49

~ 'j

" not occur unless the values of other cells
"ftre needed to address the operand (e.g.,
'param£ter, pointer, array subscript) and
one"bf these cells has the undefined value.

Instruciion:-ITERATE
Function: 	 An addition is performed between two operands

and relationships among three operands are
t~st@d. If true, control is transferred to
t.he specified instruction; otherwise, control
is transferred to the next instruction.

Format: 5,Oh,OA,OA,IA
Oper~nds: All three operands must be arithmetic and cannot

bo entire arrays or domains. The instruction
first performs the operation OP1=OP1+0P3 ,
following the semantics of the ADD instruction.
Then a branch is taken if either or both or the
following expressions are true

(OP 1 > OP2) & (OP3 >= 0)
(OP 1 < OP2) & (OP3 < 0)

The comparison between OP1 and OP2 follows the
semantics of the LTBF instruction.

Faults: Ganaral set plus invalid transfer.
No tes: ITERATE is intended to be used at the bottom

of iterative loops.

BOOLEAN INSTRUCTIONS

Instruction: AND
Fu nct ion: The va lues of th '"~ two operands are "anded"

and the result is placed in the first
operand.

Format: 05,OA,OA
Oper!nds: 	 The operands must both be equal-length

boolean strings or fields. The first operand
may be an array or domain, or both operands
may be arrays or domains.

Faults: 	 General set.

Instruction: OR "~
Function: The values of thl~ two operands are "or-ed"

and the result is placed in the first
operand.

Format: 06,OA,OA
Operands: 	 See AND instruction.
Faults: 	 G~~n<:'!rdl set.

PAGE 50

Instruction: NOT

Fun=tion: The value of the boolean operand is inve~ted.
.~
Fo~rnat: 005,01\
Ope~lnds: 	 The operand must be a boolean string or

field, or an a~ray or domain of boolean
st~inqs or fields.

Faul·s: 	 Gen~~al set (excluding incompatible
operands).

STRING AND SEARCH INSTRUCTIONS

InstI:'llction: CONCATENATE (CONCAT)

Fun=tion: The second operand is concaten~ted to the

first operand.
Forma.t: 03,Ol\,OA
Operdnns: Th~ first operand must be a string. The

second ~perand must be a string or field of
the 53me type. The length of
th~ first operand is inc~emented by the
lAngth of the second operand, and the
value of the second operand is appended
to the end of the first operand.

Faults: 	 Gen~ral set plus ove~flow.

Instruction: MOVE-SUBSTRING (MOVESS)
Fun=tion: 	 The 5ubstriny (part of a string or field)

designated by th0 second set of operands
is moved into the subst~ing designated by
the first set of operands.

FOI:'mat: O~,OA,OA,OA,OA,OA
Operinds: 	 Oparlnds 2 and 4 designate the two strings

oc fields. The two operands must be
compatible (both character, boolean,
or token).
Operands 1, 3, and 5 must be integers.
Operand 1 specifies the length of
the substring to be moved. Operand 3
specifies the index of the start of the sub­
string in the target string/field, and operand
5 specifies the ind~x of the start of the
SUbstring in the source string/field.

Faults: 	 G~npral set.
Notas: 	 MOVESS performs dn overlay rather than an

insertion. That is, the length of the
tdrget string is unchanged.

PAGE 51

I .• ,

Instruction: INDEX
Function: 	 A string or field is searched for a specified

sllbs~['ing, starting at a specified
~osition. If the subst['ing is found,
the first operand contains the index of
the sta['t of the matching substring in
the string/field. If the substring is not
found, the fi['st ope['and is set to zero.

Format: 07,OA,OA,OA
Operands: 	 The first operand must be an integer; it initially

specifies the index of the point in the string
at ~hich the search should begin.
The sc"!cond. op"'!rand is the string or field to be
searched. The third operand must be a
string or field having the same type as the second
operand; it represents the substring to be
loc,1ted.

Fi:lults: 	 Goneral set.

Instruction: LENGTH
Function: '1'h;~ l2ngth of the second opeI:'and (a string

OI:' field) is placed in the first operand.
'Format: 08 ,OA ,OA
OpeI:'ands: The first operand must be an integer

and the second operand must be a string or field.
Faults: General set (excluding incompatible

operHnds and undefined operand).

Instruction: SEARCH
function: 	 The instruction specifies an array or domain cell, a

subsCI:'ipt value, and a key value. Each element
of the array or domain is searched for the key
value, starting with the element specified in
the subscript operand. If an element is found,
the subscript opPI:'and is set equal to the
element's subscript. If not, the subscript
operand is set to zero.

Format: 003,OA,OA,OA
Operands: 	 The first operand must be an integer; it initially

contains the starting element number and is
filled with the matching element number (or zerot.
The second operand must be a one-dimension array
or domain (the op{~rand addcess must be an aI:'ray or
domain address). The third operand is the key (t~e
valup to be searched for). The elements of the
array are compare~ii to the key value according to the
rules specified in the EQBF instruction.

Fa ul ts: 	 Genera 1 set.

PAGE 52

CONTROL INSTRUCTIONS

Instruction: C'LL
Fun~tion: 	 Ex~cution of the current module is

susp~nded and execution of another module
heqins at the specified entry point.
Allocltion and initialization of automatic
storaqe is performed for the called module.

Format: D,OA,A,Al,OA1, ••• ,Ax,OAx
Op0r~nns: 	 Th~ first operand is a pointer to a

moJule entry point (must have read access).
Th~ pointer must hav~ been created by a
C88ATE-ENTRY-POINTER instruction.
Th~ first immediate field is a two-token
hexa19cimal number (X) specifying the
number of arguments to be passed. The
suhs~quent X pairs of fields specify the
arquments. Ai is a one-token immediate field
iO'lic.:tting whether the argument is passed with
read/write access (value=0011) or read-only access
(value=0111). OAi is the operand address of the
argument. Arguments cannot be literals- or domains.
Arqumpnts cannot be relocatable cells where the
locator is a pointer or parameter pointer.

f~ults: 	 General set plus call-trace, invalid
transfer, and insufficient storage.

If CALL is execut?d in a fault handler, any
and all activations beneath (after) the current
activation disappear.

~ot~s: 	 The CALL instruction does not actually
tr~nsfer ~rgum~nt~ to the corresponding
parameters in the called module. This
must be done via ~n ACTIVATE instruction
at the called entry point.
CALL creates ~n activation record and
pl~c~s it on the top of the stack of the
activation records for the program.

Instruction:I\CTIVATE (ACT)

Function: Argu~ent/parametpr compatibility is checked

and the specified p~rameters are initialized.
Format: C,X,CA1, ••• ,CAx
Oper1nds: The immediate field (X) is a two-token

hexadecimal numher specifying the number
of parameters. The following X fields must be
cell addresses of parameter cells. The parameters
are initialized t~ the arguments transmitted
by th~ last CALL instruction executed in the
program.

~aults: 	 Addrpssing, unknown data format,
invalid operand type .. invalid
trlnsmission count, incompatible operands.

PAGE 53

Notes:_

...c.,

i .. ,

The rul~s for argument-parameter compati ­
bi li t yare definRd in Ta ble 7.2. An ACTIVATE
inst~uction need not be the first instruction at
an-'entry point to a module, but an ACTIVATE
instru6tion must be executed before any reference
is made to a parameter cell. (I f not, the
parameter would have the undefined value.)

~­, -,

PAGE 54

D-typed 	 Any primitive cell

Int~qer, point(~r 	 Identical type

Yixed-point, flodting­ Identical type, and identical size

point, bool(~an, charac­ unless the parameter is D-sized.

ter, or tohHl field/

st ri n g

St ruct uri? 	 A structure having the same number
elements. The type and size of each
el~ment must be identical to the type
and size of each element in the
parameter structure. Arrays. in the
structure must have the same number
of dimensions as the arrays in the
parameter structure. They must also
have the same upper-bound values and
element attributes, unless the arrays
in the parameter structure are
D-typed, D-sized, or D-bounded.

Arra y 	 Array of identical dimensions. Unless
the parameter array is D-bounded, the
bounds must be equal. Unless the
parameter array is D-typed, the
element type must be identical.
Unless the parameter array is D-sized,
the element size must be identical.

Tab12 7.2 	Rules for argument-parameter compatibility.

~.~~& ••*.******.****~~~*.w***.************************~.*
* Not~: In th03~ situations in Table 7.2 where the *
~ p3rameter is D-typed, D-sized, or D-bounded, ACT *
* adjusts the proper fields in the parameter cell in the *
* activation record to match those of the argument. *
• Hence, thera is no need, during execution of the module,*
~ f~r the m~chine to refer to the tag of an argument. It *
~ need only ref0rence its content component r which is *
.,; located through the parametec cell. *
·***··*~~.~*~*~~.**.*·~.**·f****.****** •• ******~****** *****

Instruction: RETURN
Function: 	 Execution of the cur cent module is

t8rminated and execution is resumed after
the CALL instruction that called this
module.

Format:.: OA
Operan ds: None.
Fault,;:;: Non.:>.

PAGE 55

I,.,

No tes: 	 RETU RN "undo es" the effe ct of the previous
CALL and ACTIVATE instructions. That is,
the current activation record is destroyed.
If i~e current activation record is the only one,
the program is terminated.

Instruction: LOCAL-CALL (LCALL)

Function: Execution is suspended and control is

transferred to an instruction within the
module.

Format: OB,IA,X,A1,OA1 , ••• ,Ax,OAx
Operands: The first address field specifies an

instruction address to which control is
transferred. The remaining fields are
identical to those of the CALL instruction.
Arguments cannot he literals, domains, or
relocatable cells.

Faults: 	 General set plus invalid transfer, call
trace, and insufficient storage.

Not2S: 	 LeALL, unlike CALL, does not create an
activation record, which means that inter­
nal procedures cannot ba recursive (unless
the compiler uses an ALLOCATE instruction
to simulate the effect of an activation
record), and that any scope-of-name rules
are the compilers' responsibility.

Instruction: LOCAL-ACTIVATE (LACT)

Function: Argument/parameter compatibility is checked

and the specified parameters are initialized.
Format: OC.X,CA1, •••• CAx
Operands: The immediate field (X) is a two-token

hexadecimal number specifying the number
of parameters. The following X fields must
be the cell addresses of parameter cells.
The parameters are initialized to the arguments
transmitted by the last LCALL instruction
executed in the program, or by the machine in
the case of a LAcr beginning a fault handler.

F~ults: 	 Addressing, unknown data format,
invalid operand type, invalid
transmission count, incompatible operands.

Not~s: 	 The rules for arqument-parameter compat­
ibility are the same as those for the
ACTIVATE instruction.

PAGE 56

Instruction: LOCAL-RETUBN (LRETURN)
Function: 	 Execution is transferred to the instruction

following the last LCALL instruction
ex~cuted in the current module.

Formlt: 00
Op0ran lIs: NOll::?

F::tults: Invalid transf~r (if there was no previous
LCALL instruction).

Note3: If LRETURN is executed in a fault-handler,
and if therG is no outstanding LCALL
instruction in this module, execution of the
fault-handler is terminated and execution
begins at the faulting instruction.

Instruction: BRANCH (8)
Function: 	Control is transferred to the designated

ipstcuction addrHss.
Formdt: E,lA
Faults: 	 Inv~lid transfer.

Instruction: GUARD
Function: 	If the current module is not in the guarded

stata, it enters the guarded state and
control is transferred to the next
instruction. If the current module is in
the guarded stata, program execution is
suspended until it leaves th8 guarded
state.

format: oaoc
Faults: None.
Notes: If a program executes a GUARD instruction

after the same program has placed the
modulp. in a guarded state, the GUARD
instruction has no effect.
The only exit from the guarded state is by
the execution of an UNGDARD instruction.
Executing a RETURN instruction, or an abnormal
termination of a module activation (e.g.,
as a result of a return of a higher fault
hiilldlcr) do.~s not affect the guarded state
of a module.

Instruction: UNGOARD
Function: 	 The state of the current module is set to

unquarded.

Form at.: OOon

Faults: None.

PAGE 57

ADDRESSING INSTRUCTIONS

Instruction: GOMPUTE-POINTER (CPTR)

Function: The f'ir.st operand is assigned the logical

address of the second operand.

Format: OE,CA,()A

Op~rlnds: The first operand must be a pointer. The

second operand may be any operand except a
parameter, literal, entire domain, or a relo­
catable or domain based on a nonpointer parameter.
The access code in the pointer is set to copy
and no-destroy; its read/write access is set to
the class of access that the module currently
has to the second operand.

The logical address is the address of the cell
represented by t.he second operand. If the
second operand is a relocatable cell, the
address of the cell addressed by the relocatable
cell is computed and assigned to the first
operand. If the second operand is a relocatable
c~ll, its associated pointer must have ~opy
authority.

If the second operand is a structure, the
pointer points to the first element of the
structure.

F.'lults: 	 Addressing, unknown data format, invalid
pointer, invalid operand type, and protection.

~~*.~~**-.**** ••****.*****~***.****************************
~ N:1te: Althollgh activation records, being system objects,·
• h.'lve system obiect names, there is no need to assign *
* ever.y activation record ~n object name, since the only *
* time it would be used is when a CPTR instruction refers *
* t~ a cell in the automatic storage die. Hence, for *
¥ reasons of performanc~, ~ctivation records should not be.
• automatically assigned object names during creation. *
* Rather, CPTR should check to see if the activation *
• record has a name; if it doesn't, a name should be *
* assiqned at this point. *
•••• ~~~ •• *~.*****.**.~**.*.***.*.*****~.**.******.*********

;:.p-/

Instruction: COMPUTE-INDIRECT-POINTER (CIPTR)

Function: The first operand b2comes an indirect pointer

to the second oper.and.
format: 000h,OA.,OA
Operands: Both must be pointers. Ope~and 1 becomes an

indirect pointer to operand 2 and is assigned
the access code in operand 2. Oper-and 2
must have copy authority and cannot be an ,e... indir-8ct pointer. Operand 2 cannot be a

~ par1met~r pointer, or a relocatable or

PAGE 58

domain-elemGnt pointer that is based on a

non pointer parameter.

Ganeral set (excluding incompatible operands).

Instcllct.ion: Cfil\.~GE-ACCESS (CACC)

Function: Th~ l.ccess corle ('luthority) in the operand

is rc.>stL"icterl (ch'lnged) to tile value specified.
Format: 006, X,OA
OpeL"~njs: The operand must be a pointer. The immediate

field (X) is a single token. The immediate
fiell is ORed into the access code of the
pointer, thus further restricting the
authority of the pointer.

T-'auits: Gener,ll set (excluding incompatible
operands) •

Instruct.ion: ALLOCATE (ALLOC)
Fun~tion: A da~~-storaqe object is created, containing

allocated storage for the operand.
f'orm'lt: OF,X,O!\
Opec:lnds: X is ~ one-token imm8diate field. The last

bit designates whether the storage area should
h~ ~utomatically destroyed upon program
termination. The value xxxO indicates yes; xxx1
indicates no.

~he third bit designates whether the stocage should
be initialized to the undefined value. xxOx
sp~cifies initialization to undefined; xx1x
sp'?cifies no initialization. (If no initialization
is raquested and the storage is to contain pointer
cells, the requpst is overriden and the pointers
are given the undefined value.)

Th~ op~rand address must be a cell address,
array element address, or
array address. The operand must be relocatable
and can describe any type of cell, except a
domain. The locator cell rAfercnced by the
rclocltable cell must be a pointer or parameter
pointer, and RCA in the relocatable cell must be O.
The relocatable cell cannot be D-sized or D-typed.
Any associated rclocatable cells {if the relocatable­

,cell operand is a structure, cannot be D-sized,
D-tYP2d, or D-bounded.

If the op~rand is an array and it is addressed
via ~n array address, the upper-bound fields
in the op~rand are used to determine the sizeI of the allocated array. If the array isL addressed via an array-element address, the
urpf~r-bollnd field.s in the array tag must be zero

l
PAGE 59

(i.~., it must be O-bounded; in this case the
values of the suhscripts are taken to
represent the upper bounds desired in the

" alTocat~d array.

The allocated storage is constructed identical to
the storage described by the nested tag (i.e.,
it includes tags). The access code in
the pointer is set to 0000 (read/write/
destroy/copy) and its logical address refers to the
data-storage ohject. If the storage is not
explicitly destroyed, it is destroyed when theI
proqra mends (if X=xxxO).

I Fdults: General set (excluding incompatible operands)

plus insufficient storage •

•••• ~****~~~*~*.*****~********~**.***** ••*.************~~*.
• GiVAn the nature of the architecture, it is recommended *
'"' tiut programs specify "initialize to undefined" when *
• executing ALLOCATE. The option was provided primarily *
* for compilers, when it is known that th~ ALLOCATE will *
w b~ followed by a programmed initialization. *
" 'I< ,. '" • " "," .>; *' W(>« ... A, .. ,. ... " • * '" l\' "* '" r.: 'I< ** *.. $: * **.** .., '* *' *,., .. * *. *.. **.. '" *.. ***

Instruction: DESTROY
Function: The storage Object specified by the operand

is destroyed.
Format: 007,OA
Operands: The operand must be a relocatable, pointer,

or parameter pointer cell. If it is relocatable,

th~ locatoc cell referenced by the relocatable

cell must be a pointer or parameter pointer and

the RCA field in the relocatable cell must be zero.

The object referenced by the pointer is destroyed.

If the operand is a pointer, the object referenced

by it is d~stroyed.

In both cases the pointer must have destroy

access. The pointer is qiven the undefined

value at the end of the instruction.

If a DESTROY instruction is applied to a module

and that module is still active (i.e., activa­

ti on records sti 11 exist), the s ys tem -ob ject

name of the module object is immediately des­

troyed (meaning that it can no longer be

referenced, such as in a CALL instruction), but

the object is not actually destroyed by the

system until all of its activations cease to

exist. If a port is destroyed on which pending

send and/or receive requests exist, the port is

destroyed and the pending SEND or RECEIVE '

instcuctions tecminate with the invalid-pointer

f"lulL

PAGE 60

Faults: 	 General set (excluding incompatible
oper,lnds) •

Notes: 	 The pointer must name an entire storage
obj~ct. For example attempting to destroy
d cell within an activation record or a
cell ~ithiD a dynamically allocated
storaqe area wou11 result in a protection
fault.

Instrnction: CHANGE-LOGICAL-ADDRESS
Function: An Ohj0ct is given a new logical address by the

system. Its current loqical address is destroyed.
7or!1l3.t: OOOA,(L\
Opcr3.nds: The operand must be ct relocatable or pointer cell.

If it is relocatable, the locator cell referenced
by the relocatahle cell must be a pointer and the
offset field in the relocatable cell must be zero.
The pointer must have read/write/destroy/copy
authority and must refer to an entire object.
The object referenced by the pointer is assigned
a n~w logical address, which is placed in the
pointer with read/write/destroy/copy access.
Any attempt after this point to use the prior
logical address of the object will result in an
invalid-pointer fault.

Faults: 	 General set (excluding incompatible operands).

Instruction: LOAD-MODULE (LMODULE)

Function: A module object is created.

Format: 009,X,OA,OA

Operan~s: X, a one-token immediate field, indicates

whether the module object should be
automatically destroyed upon p~ogram
termination. The value xxxO indicates
yes. If it is to be automatically destroyed,
the same qualific~tion about destroying a
module as describ8d unde~ the DESTROY
instruction applies here.

The next operand must be a pointer and the
third operand must be a token st~ing or
fi~ld. Its valu~ must have the form of an
external module (see Figu~e 3.1). The machine
ch~cks the validity of the fo~mat of the
module, copies it into internal storage,
and creates a pointer to it. The pointer
is assigned ~aad/write/destroYlcopy access
(but writing into a module, except with the
LINK instruction, is prohibited by the
machine) • All pointer and parameter cells in
the module are set to the undefined value.
Spac~ is allocatep within the module object

PAGE 61

I,.,

for arrays within the static storage dia.
Faul ts: General set (excluding incompatible

'operands) and invalid module and insufficient
stora~e. If the invalid-module fault occurs,
ar1u~ent 5 transmitted to the fault handler
indicates the type of problem. Its value may
b,~.

00001 - Error in indexes in module header
00002 - Unsupport~d CAS, lAS, or SIS value
00003 - Invalid cell or cell relationship in

the module
00004 - An instruction's operand address does

not refer to the beginning of a cell

Instruction: COMPUTE-ENTRY-POINTER (CEP)
Func+ion: 	 A pointer value (logical address) is

computed for a specified instruction
in d specified module.

Format: OOF,OA,OA,OA
Operands: 	 The first operand is the tarqet pointer. The

second operand is a pointer to a module-object.
The third operand is a token field of size
5 that specifies the instruction address of
an instruction in the module.
Th~ logical address of the instruction in
the module object is stored in the first
operand. The access code is set to
re'id/copy.

F~ults: 	 Gen0ral set (excluding incompatible operands).
Thg addressing fault will occur if the
instruction address does not point within the
instruction space. The protection fault will
occur if the second operand does not have
read/copy authority.

Instruction: LINK
Function: A pointer value is assigned to a specified

pointer cell in a loaded module.
Format: OOA,O]l"OIl.,OA
Operands: Th~ first operand is a pointer to a loaded

modula. The pointer must have write access.
The second operand is a token field of
Rize 5 which specifies a cell address in
the loaded module. The third operand is
a pointer. The value of this pointer is '.

assigned to the pointer cell specified
by the first and second operands.

faul~s: 	 General set (excluding incompatible
operands). The addressing fault will
occur if the tarq~t cell is not in the
adiress space or not a pointer.

PAGE 62

Instruction: CREATE PORT
Function: A port storage object is created.
Format: 0007,X,OA
Operands: X, ~ one-token immediate field, indicates

whether the port object should be auto­
mdtically destroyed upon program termination.
The value xxxO indicates yes.

The operand must be a pointer cell. The logical
address of the port is placed in the pointer cell,
with read/write/destroy/copy access.

Faults: 	 General set (excluding incompatible operands)
plus insufficient storage.

Instruction: SBND
Function: 	 The specified operands (arguments) are transmitted

through a port to another program. Execution of
the instruction does not complete until another
proqram receives (via a RECEIVE instruction) the
arguments from the port.

Porm~t: OOB,OA,X,OA1, ••• ,OAx
Operands: 	 The first operand is a pointer to a port (must

have write access). X is a two-token immediate
field specifying the number of arguments to be
passed (0-255). The subsequent X operand .
addresses specify the arguments. Arguments
cannot be literals, relocatables, or domains.

Faults: 	 General set plus invalid transmission count. If
the numher of arguments is unequal to the number
of ceceiver operands in the corresponding RECEIVE
instruction, the invalid-transmission-count fault
occurs. If the arguments are incompatible with
the types of receiver operands in the corres­
ponding RECEIVE instruction, the incompatible­
operands fault occurs. If an aLgument has an
und0fined value, the undefined-operand fault occurs.

Any faults that occur after data movement starts
(protection, if ~ pointer argument does not have
copy authoLity, incompatible operands r undefined
operand) cause the SEND and corLesponding RECEIVE
instruction to complete with pactial data movement.
These faults, as well as the invalid-transmission
count fault, cause both the SEND and corresponding
RECEIVE instruction to fault.

Instruction: RECEIVE
Function: 	 The values of the first set of arguments (a

set of arguments consists of those named in a
s1 ngle SEND in st ruction) in the specified port
dre transmitted to the specified operands and
r~mov~d from the port. If the port does not

PAGE 63

contain a set of arguments, execution of the
instruction do~s not complete until a SBt of
a~gu~9nts 	has been placed in the port.

Format: OOc,ol\,.X,OA1, ••• ,Ohx
Oper~njs: 	 The fitst operand is a pointer to a port (must

have read access). X is a two-token immediate
field specifying the number of receiver operands.
The X operand addresses specify the receiver
operands. They mdY be of any type except literal,
relocatables or domains. (They need not be
parameters, since the arguments in the port are
transmitted by value. If a receiver operand is
d parameter, the value is transmitted to the
associated arqument, an argument transmitted to
this module by a CALL or LCALL instruction.)

The rul~s concerning compatibility between
S2ND arguments and receiver operands are
id0ntic~l to those for the ACTIVATE
instruction (i.e., the attributes of the SEND
arguments and corresponding receiver operands
must b~ identical).

Faul ts: 	 Gen8ral set plus invalid transmission count. If
one or more of the arguments have the undefined
value, if the number of SEND arguments is
unequal to the number of receiver operands, if
one or more SEND arguments are incompatible
with the corresponding receiver arguments, or if
a pointer SEND argument does not have copy

•authority, the undefined-operand, invalid­
transmission-count, incompatible-operands, or
protection fault is generated in both the
RECEIVE instruction and the corresponding
SEND instruction (see description of the SEND
in struct ion) •

,. Instruction: DESCRIBE
Fun=tion: 	Given a pointer, returns information about the " -:i;o:;';".,.

pointer and that to which it points.
1' .• : ­

Format: OOOB,OA,OA,OA 	 ..----.
Oper~nds: 	 The first operand must be an integer. The second

operand must be a one-dimensional array of
character fields of size 6. (The operand addres~
must h~ an arraYiddress.) The array must contain 0&-::'

at least four elements. The third operand is the:
'. ­

pointer.

The instruction stores information about the
pointer aud its r?ferenced object in operands 1
and 2. Table 7.3 defines the information.
OA2(i) repres~nts the ith element of the third
operand.

PAGE 64

If p~inter refers to: Then resultant information is:

Module 1 6 7 8 12
Port 2 6 7 9 11
Dat:l-stor.'lqe object 1 6 7 10 1 1
Ce 11 in module (SSO) 3 6 7 11 12
Cell in act. record 3 6 7 11 12
C211 in OSO :3 6 7 1 1 1 1
Entry point in module 4 6 7 1 1 12
Source/sink stream 5 6 7 1 1 1 1

lol'ot.-"!s:
1 - size of the object (number of tokens)
2 - number of programs currently enqueued on the port
3 - cell type (value = first four bits of tag)
4 - instruction address of entry point
5 - unchanged
6 - authori.y possessed hy the pointer

char 1 = blank or R (read)

char 2 = blank or W (write)

char J = blank or 0 (destroy)

char 4 = blank or C (copy)

char 5 = type of pointer - blank (direct) or

I (ind irect)
char 6 :: blank

7 - type of obj~ct referenced by the pointer
char 1-2 = MO (module object)

•PO (por:t object)

00 (data stor:age object)

MC (cell in module - SSO)

AC (cell in activation record)

DC (cell in data storage object)

ME (entr:y point in module)

55 (source/sink stream)

chars 3-6 = blank
8 - module status

char 1 = blank or P (to be freed upon program
termination)

char 2 = blank. or A (module is active)

ch ar 3 :: blank or G (mod ule is in guarded state)

char 4 = blank or C (call trace is active)

char 5 = blank or Y (yes-branch trace is active)

char ~ = blank or N (no-branch trace is active)

9 - port status
char 1 = blank or p (to be freed upon program

termination)
char 2 = blank or S (spnd outstanding) or R

(r:cc8ivE! outstanding)
chars 3-6 :: blank

10- st.atus
char 1 = blank or P (to be freed upon program

tprmination)

PAGE 65

~' • I

ch'lr 2-6 = blank
11- bLink
12- first six _ch~racters of the name of the module, or

associated module, object

T~0le 7.3 ~esult fro~ the DESCRIBE instruction.

DEBUGGING 	 INSTRUCTIONS

Instrnction: ENA13LE
Fllnction: The ~:;p('cifien token field is ORed

into the fault-code field as defined in
the module header. The fault-code field
is maintained in the module's activation
record, meaning that this instruction
affacts only the current activation.

Forllat-~ OOOR,OA
0p0[lnds: The operand must be a token field (of

size N) whose size is equal to or
less than the length of the fault-code
field. If the token field is shorter
than the fault-code field, only the
first N tokpns of the fault-code field
are chanqed.

fdults! General set (excluding incompatible
op~rands) and overflow.

Not~: 	 Tho ENABLE and DISABL~ instructions do not
alter the fault-code field in the module;
they affect only the current activation of
t h'3 module.

" ' ..

.~~~-;f~:·.;~~. "
Instruction: DISABLE
Function: The inverse (negation) of the specified -"­~

token field is ANDed into the module's
fault-code field in the activation record.

Form<lt: 0009,OA
0p8rands: See ENABLE instruction.
F:lults: Gen",ral set (o:?xcluding incompatible

opPL'and~--;) and oVf>cflow.
'­

Jn~truction: RAISE-FAULT
Function: A f~ult occurs. The two-token immediate

field X b~com0s the fault type (i.e., th~
value of the first argument to the fault
handl\~r) •

Fa rmel t: 0 I) D , X
P.'itllts: ~~hi1,trlv~r tYpt' is indicated by the immediate

PAGE 66

field x. X should not be zero or 22-27; if it
is, the fault-handling fault occurs. If X does
not sr~cify the value of an architected fault
typ~, ~he fault is program-defined.
For pro'·lriim-ciefined faults (28-255), even-valued
on0S allow the fault handler to resume execution
aftar the RAISS-FAULT instruction, while odd­
numberdd ones do not.

Instruction: CONTINUE (CONT)
Function: 	 Execution of the fault-han1ler is

t"rr.linated and execution resumes at the
ins~ruction that would have b~en executed after
the f3ulting instruction, had the faulting
inst~uction not faulted.

form:tt: OOE
Pault.s: 	 Fault-handling (if there is no current

fault, if continuing beyond the current
fault is not permitted, or if CONTINUE
is issued from a local subroutine called by a
fault handler).

Not::->s: 	 If a fault-hdndler wishes to resume
execution at the faulting instruction,
it should issue the LRFTURN instruction.
If the fault-handler wishes to resume
execution at the instruction following
the faultinq instruction, it should issue
th'? CONTIN[J? instruction. The only faults
that m~y h8 followed by a CONTINUE instruc­
tion are call tr~ce, yes-branch trace, no-branch
trztc-", or an ev':\n-nn~bered fault in the range
range 28-254 qenerated by a RAISE-FAOLT
i nstL"llction.

Inst["lction: THANSF?R-F,\ULT (TRFAULT)
Function: 	 The current fault-handler is terminated

and a higher fault-handler (one lower in
tht2 3.ctivation stack) is called. If an
doplicable fault-hanjler cannot be found,
the program is terminated.

Forma+-: ()OO')
Faults: Fault-handling (same first and third

situ~+-ions as in the CONTINUE instruction).
Not"s: TilFA[JLT is \l!3·:,d by a fault-handler that

has 3 particular fault enabled, but after
r~ceiving such a fault it decides to send
it to a "hiqh''''r authority."

PAGE 51

...•

Instruction: DISPLAY-TAG (DTAG)

Function: The tag of the desiqn~ted cell is assigned

to a token operand.
Form at: ') 00 1,01\" , 0 A,0 A
Operands: The second operand is a pointer to a loaded

~odule; the pointer must have read access.
The thi~d oper~nd is a token field of size 5
which specifies a cell address in the loaded
modul~. The tag of this cell is moved
into the first operLlnd, which must be a
tokGn field or string.
The overflow fault is suppressed; if the
taq is longer than the first operand, the
first operand is filled with the ~eftmost
tokens of the taq.
If th~ pointer is undefined, it is assumed
t.o d?siqnate the current module (i.e.,
all undefined-oper-ind fault will not
occur for the second operand).

Faults: 	 General set (excluding incompatible operands).
Not~s: 	 Thi3 instruction is intended only for use

by debugginrl functions. For planning
ptlrposc~s, the largest possible tag is 84
tokens (a relocatdble array of 15 dimensions).

Instrllction: DISPLAY-CON'rENTS (DCON)

Function: The contents compon~~nt of the designated

c i~ 11 is ass i q ned t 0 a to ken 0 per and.
Pormat: 0002,OA,OA,OA
Opec3nds: See DTAG instruction. Overflow faults

ace similarly suppressed. If the cell
is in the automatic storage die, its
value for the most recent, currently
active, activation of the module is
displayed. If the module is not active,
the c'211's initial value in the die in
the module is displayed.

Faults: 	 General set (excluding incompatible operands).
Notes: 	 This instruction returns the £Qnl~n12 of

a cell, which is not always identical to
its value. For example the contents of a char­
,lcter strilllj is d three-token length field
and a variabla-size value; the contents of " ..
a pointer is a one-token dccess code and a
20-token logical address.

If the c,,'ll is an array, the E-~l~~ment contents
are returned as a contiguous stream of tokens.
TI~ey are ceturnel ill "cow-milior" order (all the
elements in the ficst dimension, then the second,
and so on) •

The size of a contents component can be

PAGE 68

det~rmined by first using a DTAG instruction.

Instruction: TRACE
Function: Desiqnated traces is enabled for a specified

mooul;}.
For:nat: OOOJ,X,OA
OperJ.nds: The one-token immediate field (X) specifies

the type of trace. The value 01xx specifies a
a yes-branch trace, Ox1x specifies a no-branch
trace, and Oxx1 specifies a call trace.
The second operand must be a pointer to a
modulo and must have write access. The
snecified traces are enabled for all subsequent
activations of the module.

Faults: 	 Goneral set (excluding undefined operand
and incompatible operands).

Sot~s: 	 TRACE and NOTRACE do not affect any existing
activations of the specified modules. They
take ~ffect when such modules are subsequently
called.

Instruction: NOTR.a.CE
Pun~tion: Designated traces are disabled for a

specified module.r format: aOOU,X,OAc. 	 0p0rands: Se~ TRACE instruction. If a trace was
not previously enabled in a module,
disabling it has no effect.

Faults: 	 Generll set (excluding undefined operand
dll(l incompatible operands).

http:NOTR.a.CE

PAGE 69

I",

B. OBJRCT-CODE EXAMPLES

Piqu~2s 8.1 and 8.2 are PL/I p~ocedures that will be
used as pxamples. The int~nt of the examples is to
illus~~dta how a PL/I prog~am would be represented in this
a r ci1 it C'ct: u reo

Fiqu~Qs 8.3 and 8.4 represent the obiect modules that
th? compiler would present to the machine. Rather than
illustrating the modules as a continuous token string, items
of interAst (8.g., individual cells and instructions) are
illustrated on spparate lines. The first and second columns
arc not part of the module; they indicate, respectively. the
index in th~ L1o.3.ule of the first token on the line, and the
ind(~x in th~ acidr.:=ss space or instruction space of the ti~st
t 0 k2- non t h (~ 1 in e • E a chI in e is a 1so sup pIe men ted with a
comment. The comments on the instructions take the form of
anissembly lanqllage. The meaning of the assembly-language
statements should be obvious. For instance

MOVE A.B(J),1

me~ns move the literal 1 into the Jth element of a~~ay B in
thp structure A. Names beqinning with "';" are inst~uction
labels (targets of branch instructions).

.._;;.. _i •• :

PAGE 70

MATCIIF.S: PROCEDURE (BODY, UNRESNA:1E,MATCHCODE,SIZE);
DECL,\i1 p. 1 BODY ("'),

2 NAME CHAR (8) ,
2 i'YPE CHAP. (2) ,
2 ADDRESS POTNT3R;

D:::CLAPE
MODUL::: ClIld(2) ST,'\TIC INIT('MD'),
E NT R Y PT C H A R (2) STAT I C I N IT (' E P .) •
EXTREF CIf}\R(2) ST.!l.TIC INTT ('Ea');

D~CLARE NULL BUILTIN;

DECLAHE ~.a.TCHCOD~ FIXED DECIMAL (1) ;

DECLUE UNRESN.a.11F CHAR (8):

D3C~;~.s SIZE:: FIXED DECIMAL (4);

D2CLAR E

I Fn:ED BINAiH(15);
J FIXED BINARY(15);

~ATCaCODE=2:

IF ((SIZE)O) [,. (SIZE-,>20IJO»
TH 2\/

DO:
~A?CHCODE=I);

DO 1=1 TO SIZE WHILE (MATCHCODE=O) :
IF (130 D Y (I) • ADD RES S= NUL L)

TfIEN DO;
MATCHCODE=1 ;
DO J=1 TO SIZE WHILE (ctATCHCODE=1) ;

IF {(BODY (I) .NAME=BODY(J) .NAME) &
«nODY (J) .TYPE=MODULE) I

(130DY(J) .TYPE=ENTRYPT»)
THEN DO;

MATCHCODE=O;
BODY (I). ADDRESS=BODY (J) • ADD[?ESS;

END;
ELSE:

EN D;
IP (~"ITCHCODE=1) THEN UNRESNAME=BODY (I) .NAME;

ELSE;
END;

ELSE:
END;

;:: NO;
ELS:;
EN D;

Figurp 8.1. Source Module MATCHES

PAGE 71

Offsets 	 Comments

001 000240D026000AOOOOC000173 Header
alA 2200000000 CAS/IAS/SIS/SA/Faults
024 00 Module name (omitted)
026 (} 1 671COOOnOOOOCRC3001C BODY (parameter array of

FFFFFFP structures)
lC 100010 (1 008008 NAM E (domain character fteld)
29 100010010B002 TYPE (do~ain character field)
36 10(011)0149 ADDRESS (domain pointer)
,.0 6El00000FFFFFFF MATCHCODE (fixed-pt. param.)
4F hBOOROOOFFF~FFF UNRESNAME (param. character)
SF: 6E400()OOFFFFFFf SIZE (fixed-pt. par-am.)
6n PROOOOa I
74 F801)000 J

OAO 	 78 B002D4C4 MODULE (character field).
83 0002CSD7 ENTRYPT
RB B002C5D9 EXTREF
93 E4002000 12000 1

OcO 01 	 C04014Pl105E ~CT 4.BODY,UNRESNAME,MATCHCODE,SIZE
1110002 MOVE MATCHCODE,2
95EOOOB2 GTBF SIZE,O,~H
A5E9382 LEOF SIZE,2000,%H
140000 MOVE MATCHCODE,O
16DOO 1 MOVE 1,1
A6D5t:B2 LEBF I,SIZE,%H

34 	 74000082 ~A: EQBF MATCHCODE,O,IH

004366048 DEFBP BODYoI\DDRESS (I) ,%0

EAB B %G

48 	 140001 %0: MOVE MATCHCODE,1

174001 MOVE J,l

A745E99 LEBF J.SIZE,%F·

58 	 74000199 %C: E0.SF MATCHCODE,1,%F
71C6r>1C748F EQSF BODY.NAME(I) ,BODY.NAME(J) ,~E
629747B80 Nl:UF BODY.T'fPO;::(J) ,MODULE,%D
72974H38F EQBF BODY.TYPE(J) ,ENTRYPT,"E

80 	 140000 ID: MOVE MATCHCODE,O '.'

1366D3674 MOVE BODY. ADDRESS (I) , BODY. ADDRESS (J) . .~oii-L
.;.-:--.SF 5745£0;)158 IE: ITERATE J,SIZE,l,IC , .

99 7400') lAS %f: EQBF MATCHCODE,1,IG
14F1:6D MOVE UNRESNAME,DODY.NAME(I)

"'8 56DSE00134 %G: TTER~TE I,SIZE,1,%A .:
1)2 OA 'VoH: RETU?N

Figure B.2. Object Module MATCHES

PAGE 72

TESTEST: PROCEDURE OPTIONS (MAIN);
DECLARE SIZE FIXED OECIMAL(4);
DECLARE 1 B (7) ,

2 N CBAR (8) ,
2 T CHAR (2) ,
2 f!, POINTER;

:JECLABE U~N1\l1E CHAR(S) IN~T(' XXXXXXXX·),
CODE FIXED DECIMAL(1) INIT(9):

DECLARE NOLL BUILTIN;
B (1) .N='A3CDEFGH';

B (1) • T= , E R' ;

B (1) .l\=NULL;

::J (2) • ~j:: , ABC 0 E F G Ii ' ;

!3 (2) • T= , ~ n I ;

B (2). A=ADDl (UNNAME);

SIZE=2;

C\LI, MATCHES (I3,UN1LHIE,CODE,SIZE);

END:

Fiqure 8.3. Source Module TESTEST

PAGE 73

Offsets 	 Comments

01 .Q00240002600084000BE0010E Header

1~ "2200000000 CAS/TAS/SIS/SA/Fe

24 00 No module name used

26 	 .01 E4:)FOOOO SIZE

09 7100290000078030022 D (array of structures)

000000

22 1000900008008 N (domain character field)
2f 100090010B002 T (domain character field)
]C 10009010149 A (domain pointer)
40 BOOHE7E7E7E787E7E7 UNNAME (character field)
5~ Sl009 CODE

84 	 5F 9FOOOOOOOOl)OOOOO MATCHES (pointer)

000000

75 BOOBC1C2C3C4 'ABCDEFGH'

C5C6C7CB

AI) 8002C5D9 • ER'

91 B002D4C4 'MD'

B2 01 	 cOO ACT 0

12200175 MOVE B.N(l) ,'ABCDEFGH'

12 FO 0189 MO V E B. T (1) ,. ER '

0013COOl UNDEF B.A(l)

12200275 MOVE B. N(2) " ABCDEFGH'

12 FO 01 9 1 110 VF. D. T (2) ,. MD '

OE3C0024b CPTE B. A (2) ,UNNAME

109002 MOVE SIZ~,2

D5F0430g00p C.r.LL MA.TCHES, 4,R/W (B) ,R/W (UNNAME) ..
34635A301 R/W(CODE) ,R/W{SIZE)
OA RETURN

Figure 8.4. Object Module TESTEST

PAGE 74

CALCULATION OF THE ADDRESS-FIELD SIZE

The use of variable-size address fields places a burden
on th;:- compil;>r in th,::> form of determininq the appropriate
siz~ of the ~dJr~ss field for the module heing compiled. Of
CO'l["S'~ ~ simplr:-minrlE'd compiler n~ed not face up to this
burL'n; it coul,} ~>imply us~:. a fixed sizf~ address field that
is liHqe enou,,!, for the lrir:-gest module that can be compiled,
but ::iuch a solution does not exploit the advantages of
varilb10-siz0 addresses.

~hQ address field sizE' is a function of the size of the
iHl:jr-,lss Sp,1C 0 • The for;nula for calculating the smallest
add [' :" S S f i ...:0 1 c1 i s

~ = C~JL(lo~(1 • address spacA size - size of last ce~l))

wh."re Cr.;IL ronnds a number to the next-higher integer. All
log~rithms are base 16.

The other type of variable-size address is the
instruction addr~ss. The formula for calculating the
small~st instruction address needed is:

~ = CEIL(loq(B + MI))

wher;~

n - number of tok~ns in the instruction space
~xcludinq all instruction add~ess fields and
excluding the last instruction that is the
tar,:}pt of a hrdllch or LCALL, and all
su~s~quent instructions

I - numhar of instruction address fields

since ~ app~ars on both sides of the equation, it can be
:=;olv~~ by substitutinq the valnes 2, 3, ••• for M until both
si(l'<; are '2qu1.1.

In producing a compiler for this architecture the
following approaches are available:

1. 	 Use fixed larqe vllues for Nand M. This is the
simp10st approach bnt it does not take advantage
of the use of short~r addresses.

2. 	 Use the formulae (or Nand M to find the optimal
sizes. This approach takes full advantage of the
encoding but it complicates the compilers.

3. 	 ~ather than using the formulae, use a few simple
h·"u['istics to 'TU"S", at the optimal Nand.'1. If,
durin'} code q,'necc"ltion, the compiler finds that N
or ~ is too small, increment it by one and begin
the cod? generati0n aqain.

4. 	 Ch08S~ constant values for N ani M. Fo~ instance

PAGE 75

~=4 seems to be a reasonable upper bound, for it
d~fines an address space of a maximum of 65535
tokens (which seems even more reasonable
considering the fact that space for array elements
does not appear in the address space). A separate
optimiz'ltion or "module-compression" program can
then lIe written that is compiler and language
ind~pendent. Its function is to take a module
with a possibly over-sized address field and
produce an equivalent module with a minimal
a!ldress field.

PAGE 16

9. THE ONE-LEVEL STORE

Th.::. machine has no IIO instructions; instead the
~rchit8ctur~ is based on th~ notion that "storage is storage
i~; stor.lge" dnd that "storCl.ge mana'lement is storage
m1niJ~~2nt is storage mand~~m~nt." That is, why represent
second'lry st;)ragi'! with an interface that is different from
that of oain storage?

If onp e~ploys the on~-level-store concept, then the
archit~ctur;:- is s?en to ,"1r'~ady have memory 1/0 (as distinct
fro~ s~urc~/sink I/O) with no changes to the definition of
th~ Jrchitectur~. That is, one can think of a file as a
on~-Jim~n~iondl ~rr~y of structures. E~ch array element
con-esponds to a Lacord in t h3 file. Th,~ nested tag in. the
aLr'lY c~ll ~oull likely be a structure, wheLe the structure
~Afinps the fiplds in eac~ record. Since the existing
m'l chi 1\ 'J i n ~; t r uc t i 0 I~ S are yen e ric and a pply t 0 a r Laysand
arr:-1Y ;:>l'=>ments, tho. "1/0 inst.ructions" ar~ the existing
ir. st,rllCt. ion~~.

Storiq~ dreas are creatad with the ALLOCATE
in~truction. The immediat0 field in the instruction
indicates wht::ther the object is to be destroyed at program
ter::tination. To creat~~ a p~rmanp.nt "file," a program issues
the ALLOCATE instruction, indicating with the immediate
fi~l~ that the creatp.d d~tG-storage object should not be
~~stroy~d upon program termination. The ALLOCATE
instruct.ion points to d relocatable array which in turn
points to a pointer cell. The logical address (capability)
th)~ is r~turned serves to uniquely identify the file until
it is deleted (with a DESTROY instruction). The file is
constructed by 0xecuting MOVE instructions to move data into
the arrlY elements.

Op~r~tinq-system directory services will likely exist
to allow progr~ms to say such things as "associate the
following logical address with the following symbolic name
dnd LeUl~Ulber t.hp associati(){l," "given the following symbolic
nam0, give me the associdt01 logical address if I am so
authot-iz~J.," and Ilauthorize the followinq user to do the
alloy,> with ~his particular symbolic name."

~iv~n th0 rpmoval, dt the architectural level, of the
tlistinction h,~tween main-m,'mory operations and
second~ry-stora~8 f/O, a natural extension is to carry this
notion into p r () q rliD min \l 1 a l\ ',j U.l 9 e S • that is, the r t:: ill 0 val of
fil~ TIC) stat",m.~nts from proqrilmming lanqnages.

One problem associated with a one-level store as
descrihRd ahove t.hat des~rvas more research is the mechanism
with which a program searchas a file (represented as an
drr'1Y) to loc1t·:> d particul.:ir record. (array element). If

http:p~rmanp.nt
http:storCl.ge

PAGE 11

i.,

hash addr?ssing Cdn be us~d, representing files as arrays is
natural. qowever, if hash addressing is inapplicable for a
particular file J the only other alternative appears to be an
iter1tiv~ sequential search (unless the file is ordered by
the se~rch field~ in which case a hinary search could be
US-?'ll), which is unacceptable for ldrge files. Hence the
pos~ibility of storing one or more indoxes with array cells
com~s to mind. Another possihility is allowing designated
arr~ys to bp content-addressable. In short, the
relationships between the concepts of one-level stores and
dat~ base processing need further investigation.

PAGt; 78

10. THE CONCEPTS OF A "PROGRAM" AND "I/O"

It 3h~ulj be apparent that the architecture contains
nothinq L"D["~sentinq the cOrlcept of sou["ce/sinie I/O (e.g q

ter;nin:lls, elLd rcaJ·~['s, ma'Jn~~tic: tapes). The intent is
thlt 1 proc0~30[, having this architecture be coupled to an
pxto'cnal system (A. g•• host system, intelligent 1/0
chanfltd), t~:dt the ext.:>rnal system perfor-m such functions.
and th~t the S~ND/RECErVE instructions serve as the I/O
mechanism by communicating with the external system. The
in+erface with the external world is not described here. as
it is defineJ elsewhere. Also, it is not yet clear whether
this interfac·;? will hp architected or whether it will be
12 f t d 5 "i mp 1 ~~ m>..:: n tat ion de pen r1 e n t. "

~o summ~rize th~ SEND/RECEIVE mechanism when used ~or
thi~ rucno~p, when a proqra~ executes a SEND or RECEIVE
instruction ~nd the ohj~ct being referenced is not a port or
any other recognizable type of storage ohject, the
infoDlation in the inst[,llction is converted to an
arpr~pri~te form dnd transmitted to the external system. If
the loqical address represents something meaningful to the
ex ternal syst~m (e. g., the name of a "source/sink stream "),
it performs the dasignated I/O operation, using the SEND
arguments or r~ceiver operands. Currently, a SEND or
RECEIVE instruction naming an I/O port can specify only a
singlo operand, and its type must be a character or token
fi'~ld 0[" string.

The SWARD ~rchit~cture has been specified as a
" s ingl'2-prorrr>lcn" d["chitecture, although it does contain a
f~w indications of multiplp. programs (e.g., the concept of a
port). In particular, th~ architecture (purposely) contains
no conc0pt of int~rrupts nor any way to switch control among
pro~ra~s. Th~ intent is that the concept of multiple
prOjLi'l3 (oc process('s), if need'::d, be created by the
exte[n~l syst~m. The interface to the external system also
contains provisions to allow it to support and control the
eX0=ution of pardllel p['ocesses on the SWARD machine. The
b~sis of ~he re~chanism is the provision for multiple stacks
of'lct: iv,ition r,~conl'c;, ertch headed by an internal object
c}112J an activation-stack header, and signals to direct the
SriA::'D mdchille to quickly s'>Iitch fcom one stack (process) to
,HI ot he r.

PAGE 79

1 1 • INSTRUCTION-FORMAT SUMMARY

s',;run T ~l C; T t' II CT ! 0 N SET SO]T~D DJ
"JA'1:

MO V:;
ADD
SUrlTEr.CT
M U Ll'I? 1. Y
ITES,ATE
NO "'- ~QU ,\ L- BR,~ ':C Il- F A LS E
E)!J ,\ L -:1? A~~ Cll - :,' !d. S E
t s S S - r [U~ N - B:11\ ~.! C i! - 17 1\ L S r;;

L::: S S - T r1 AN - E(J U A L - IE: ;\ li C H - F ,\ L S E
(; :; :: 1\ T :: :; - T ILi\ 'J - :' () U .1\ L - IE ,\ N C H - ? A LS :.:

ACTTV,~TE

CALL
13? A;IC{

COMPL~MENT

AI1S0LUT?
DIVIDE
CJ "; :.: ATE ~l r. T E
MOV:>~)UnSTRH)r;

A~W

OR
TN DEX
L :~ ~I:; T fl
CONVEPT
RS'I'UE\'
LOC.\L CAL1.
LOCAL l\.CTIVAT::;
LOC\L RETUPN
COM PUT;' PO:::~.rT ~ r:
!d.VKATE
U:lD7Fr~;:;

RC;"LUNDE?
S G A ~I C II
D:~ n :~ E0- Ba A NC fI - FA L3 E
Nl) T
C I L~·. N:;:: l\. C C E S ~)
DES 1';:\ D Y
PO ;.; ~ 1:\
LU,\!) ~ODUL~~

L1 ::K
SZND
HEC'IV S
F,\ISS F:'..fJLT
COHI~lUf.

CJ~PU!~ FNTPY rOINT~p

DT:';PLAY TAG

DISrLAY CONT2NTS
Tl!\CE

OPERATION
ABBREV.

M0'1 E
ADD
SUB
~ULT

ITER AT C;

NEilF
EQ3F
LT lJ F

GTBF

LEEF
GE13F
ACT
CALL
B
CO~P

,~ BS

DIV IDC:
COt-i CI\'1'
MOV:::;SS
./\ NO

OR

IND:::X

LENGT~1

CONVEJ.T
RETURN
LC.\LL
LACT
LHET
CPTR
ALLOC
UNDr~f'

REJ1AIN
SE,'l.RCH
DEPRF
NOT
CACC
DESTROY
POWER
L:10DULF!
LINK
SEND
RECEIVE
HF.\ULT
CONT
C::;P
DT .I\G

DeON
T:~J\CE

CODE

FORMAT

1,01'1,01\
2,OA,OA
3,OA,OA
4,OA,01'l
5,01\,OA,OA,IA
6,OA,OA,IA
7,OA,OA,IA
8,OA,OA,IA
g,OA,OA,IA
A,OA,OA,IA ,
8,OA,OA,II\
C,X,CA1, ••• CAx
D,OA,X,Al,OA1, ••• Ax,OAx
E,lA
F,OA

01,01\
02,OA,OA
03,01\,OA
04,OA,OA,OA,OA,OA,OA
05,01\,OA
06,OA,OA
07,01'.,01\,01\
08,OA,OA
09,0)\,OA
01\
OG,IA,X,Al,OA1, ••• Ax,OAx
oc, X, CA 1 , ••• C A x

00

OE,OA,Oh

OF,X,OA

001,OA

002,OA,OA

.. , ­003,OA,OA,OA

004,OA,IA

005,OA,0I,

006,X,OA

007,01\

008,OA,O)l.

009,X,OA,OA

OOI\,OA,OA,OA

OOB,OA,X,OA1, ••• OAx

00C,OA.X,OA1, ••• OAx

oon,x

DOE

OOF,OA,OA,OA

0001,OA,01\,OA
0002,OA,01\,01\
OOOJ,X,O!\

http:PO:::~.rT
http:SUrlTEr.CT

PAGE 80

NOT::i\CE NOTRACE 0004,X,OA
'l'RA~I:;~~~~ FI\ULT TRFAULT OCOS
CO~PJTE INDI?ECT POINTER CIPTR C006,OA,OA
en '2,1\:' F. PO E~ ':' CPOET 0007,X,OA
ENll.BLE EN,\BLE ()008,OA
DI5\dL-:-: DIS,\BL:: 0009,OA
c:1.\ :; G ;;; L C (; : CAL 1\ D D .s t: S 3 eLI\ C)OOll.,OA
Dr; sc:n Ll r. DESC OOOB,OA,OA,OA
r;rJ;~i) GUARD OOOC
U~I(~:J~ r; D UNGUARD OOOD

