dWA R o SRI":-C"SL-77-002n

SWARD ARCHITECTURE

a PRINCIPLES OF OPERATION

G. J. Myers
August 31, 1979 (Current Version Date)

3\" Sentember 16, 1977 (Initial Version Date)

-:,}

IBM Systems Research Institute

T

10.

110 !

PAGE 2

CONTENTS

overvie"n--oo..o.o-.s.-tc.oon.oooooonoooouno..o.n3

Data TYpes..I..QI.......'.'..C...............‘....B

Primitive Cell TypPeSecsccsscscescccsscencsssasced
Structure Cell TYPeS.esescssssccsccsscsassnsell
Nested Cell Types.‘..-...-...................13
Auxiliary Data TYpPeSeecesassesscceccaseasasnsne 1/

Storage ObJjeCtSeesscscsccassvocsesscsasnccsacsansesll
The MOdule.......‘.‘......Q...l."..........‘22
The Activation ReCOLdeccecescecsccscssncsceseall
The Data-Storage ObjeCtisecseesescencscscsccecnesl?

The Port-.....l....IQO...........‘Q........‘.27‘

Instruction Formats and Operand AddressinNgececses28
Operation Codes.‘.‘..‘.......0‘...‘..........28
Ad(lress FieldSI..O...l.Q.....Q...............28

Fault Handlingeeseeeceoe cacceaaacssocsccccccscensall
+ Pault DeSCriptioNS.cescceasecscsccaccscsssncecsss3l
EnttY‘POint Zeto...........................-.33
Proqram State After a Fault.-.........,......3“

INStruction SUMMATLYseseeesesccacscssccscccscsscansce3b

Instruction Specifications.................-.-‘.qo
General INStrUCtiONSeessceescscessscccccsonaaltl
Arithmetic INStruUCtiONS.cecscecaceccsacscnasslil
Comparison-and-branch InstructionS.ceccsessecseslbd
Boolean INStrUCtiONS.seecesccccscecccnsncsccssecld
String and Search InsStructiONS.ecesecceanscsasssdl
Control Instructions.......................-.52
Addressing INStruUCtiONSecescsccecscscsccnsscensd?
Dehugging INStruUCtiONS.eeessescccsascsanscscabb

Object'COde Bxamples. 20 ..Cl...‘..’.‘.‘.......00970
Calculation of the Address-Field SiZCeeecsses’ld

The One_Level Store..QQ............Q............77
The Concepts of "Program"™ and "I/O0".cececsscacaceel9

Instruction-Format SUNMACYeoesesseescscsocsacsceces80

PAGE 3
1« OVERVIEW

The SWARD' (software-reliability-directed) architecture
has two primary objectives: 1) enhancing software
reliability by detecting or preventing common semantic
errars and certain logic errors, limiting the consequences
of =rrors, encouraging the use of good software design and
projramming practices, and supporting testing and debugging
packagz2s, and 2) enhancing system performance by
substantially reducing the number of bits that must be
procaessed by the CPU to execute a given program. These
goals are discussed in more detail elsewhere; hence they are
not discussed in this document.

This document defines the computer architecture of the
proc2ssor (i.e., the abstraction of the processor as seen by
a machine-language programmer or a compiler writer). The
first chapter (this one) contains a brief overview of many
of the concepts 2mployed in the architecture. Only chapters
2-7 form the official architecture definition., Also,
occasionally notes will be seen in rectangular boxes. These
notes are not part of the architectural specification; in
most cases th2y are notes about implementation and are
included for clarity.

The major deviations in this architecture fron
conventional architectures are in the concept of storage and
addressing. DRather than representing storage as a single
linear address space, storage is represented as a set of
uniquely named storage objects. Also, rather than treating
"saecondary" storage (e.4d., disk files) differently from
"main" storage, the view of storage has been unified into a
single representation.

Furthermora, all data in storage is self-identifying
(tagged). The machine recognizes composite data types
(¢eg., arrays, structures) as well as primitive data types.
Rather than employing a fixed-size word concept, data and
addr2sses are variable in size. The machine provides a
facility for defining supplemental instruction sets and data
types.

A major concept in the architecture is that the machine
should severely restrict the address space available to an
individual module (e.g., FORTRAN subroutine or function
subprogram, PL/I external procedure or function, COBOL
subprogram). That is, a module's address space should be
reduced to only those data to which the module needs access:
its parameters, locally defined variables, and constants
(i.2., only those data named in the source-language version
of the module). The implication of this is that the machine
must manage storage at a high level, much higher than the
von Neumann view of a single linear sequential memory.

- e . . R T R L B R A L D R Ll s b

PAGE 4

Related to the first concept is a second concept:
traditional machine addresses should be discarded. There
are four types of storage objects that must be uniquely
addra>ssable: a module, an activation record (the collection
of data allocat=2d for an activation or invocation of a
module), a data-storage object (explicitly allocated area of
storage), and a port (an interprogram communication device).
When one of these objects is created (i.e., a module is
defined to the machine, a module is activated (called), a
program explicitly allocates some storage, or a port is .
created) , the machine assigns it a unique name (called a

Hence the machin=2 employs capability-based addressing. The
machin= prohihits programs from creating logical addresses
on their own and from altering the value of a pointer. When
one of these objects is freed, its unique logical address is
never reused.

The instructions within a module can only address data
defined within the module or data within any storage that is
dynamically created by the module. Since a module cannot,
on 1ts own, create or alter a pointer, the only other
storage that it can reference is storage whose pointer is
passed to the module from another module. Not only does
this concept facilitate the detection of addressing errors

2.9., the dangling-reference problem), but it also serves
as a storage protection mechanism. 1In addition, it
introduces a fins granularity of storage protection and
sharing, even down to the lavel of a single variable or
word, and eliminates the need for privileged states (e.g.,
"supervisor state"),

One can cause pointers or capabilities to refer through
other pointers, thus establishing transparent indirect
addr=2ssing to any level betwesn machine instructions and the
data or objects upon which they operate.

The third necessary concept in the architecture is that
all data must be self-identifying. This means that
dascriptive information will be stored with each item of
data, describing such attributes as its size and type. This
self-identification allows the machine to detect
incompatible operands of an operation and allows it to
enforce other rules (e.g., the rule above prohibiting the
creation and manipulation of pointers). Two rules
concerning self-identification, or tags, must be enforced:

1) the tag always describes the programmer's intended
propaerties of the data (2.9., the attributes in the DECLARE
statement), and 2) the valu=s and representation of the data
always aqrze with the tagq.

In most other non-von Neumann machines, the concepts of
tags and descriptors are treated distinctly. However the
concepts have much in common. In the SWARD machine the two

PAGE 5

Yoy

concepts have bheen generalized into one concept called a
tag.

To close the semantic gap between language data types
and machine data representations, most data types known to
the machine ares variable in size. Not only does this
prevent certain types of semantic errors that arise when
variable-size language data types are mapped into fixed-size
machine data types, but it leads to more efficient use of
storage.

Employing both tagged storag=s and capability-based
addressing gives the architecture an added level of
security. Even if a program were to obtain, from another
proaram, a pointer (capability) to an objact that it should
not have, the program would be able to reference the object
only if it knew its precise attributes (i.e., the
representations of the data within the object).

The architecture also contains important
data-independence concepts, allowing one to write programs
that are highly insensitive to the data being processed, yet
without compromising the reliability and security goals of
the architecture. Thzse concepts, for instance, allow one
to write a proqgram to sort (order) the elements in any array
(i.c., without being dependeont on the attributes of the
arriy elements), or to write a computational subroutine that
is independent of the attributes of its arguments (e.g.,
binary, decimal, floating-point). These concepts, called
D-typ2d, D-sized, and D-bounded cells, will lead to
innovative programming-language extensions not achievable in
conventional machines.

One consideration that is influenced by many of the
pravious points is the method used by instructions to
address their operands. Many forms have been proposed, but
a basic underlying consideration is whether the architecture
should contain general-purpose registers or evaluation
stacks (or both or neither). 1In studying various addressing
mechanisms, no apparent relationships to software
reliability were found. However the architecture contains
neither registers nor evaluation stacks (but it does use
stacks for subroutine linkages). An instruction addresses
an osperand by specifying the relative location of that
operand within the address space of the module. Registers
and evaluation stacks were not used because, contrary to
popular belief, storage to storage addressing appears to be
more efficient. The addressing method used in the
architecture r2sults in small address fields in
instructions, thus negating the usually cited advantage of
register and stack-oriented instruction sets.

Another necessary concept in the architecture is the
ability to distinguish bety2en defined and undefined data

-

PAGE 6

values. In addition to its valid values, each data item can
have an additional value called "undefined." Any attempt to
use a data itam's "undefined" value will be detected by the
michine. All addressable data that is not initialized to
some value is automatically initialized to "undefined." 1In
addition, instructions are present to explicitly test a data
item for an undefined value and to explicitly mark a data
item as undefined (e.g., for a language in which the value
of a loop iteration variable is supposed to be undefined
when the loop terminates).

For collections of data in which individual items can
be referenced, the individual items can be defined or
und=2fined. Thus, in an array, it is possible that some
elements will have defined values and that some will be
undefined. In a character string, it is possible that gsome
of the character positions are "undefined" values.

Given that the machine is aware of the concepts of
modules and activation records, and given that the machine
must check arquments and parameters for consistent number
and attributes, a logical d=duction is that the architecture
should provide a call/return mechanism that is semantically
close to, or 2quivalent to, the CALL/RETURN statements in
programming lanquages. That is, the call mechanism
allocates an activation record for the called module and
adds it to the stack of current activation records,
initializes variables in the activation record, initializes
parim2t2rs, suspends execution of the current module, and
begins execution of the called module. Since all data in
the system is tagged, the call mechanism needs a "die" for
variablas in the activation record, describing how each data
item should be tagged when the activation record is created.

Since the architecture is supposed to detect such
errors as exceeding an array dimension bound and
inconsistent definitions of records (2.9., PL/I structures)
among modules, the architecture must be aware of these data
typ2s. Hence the architecture contains the "less primitive"
data typ=s of arrays, structures (ordered sets of
hetsroganeous data items), and strings. Supporting such
data types is more involved than it first appears. For
instance a language such as PL/I provides for arrays of
structures, structures of arrays, arrays of strings,
structures of structures, structures of arrays of
structures, and so on.

Note that the self-identification property mentioned
earlier applies to these data types. For instance every
array, structure, and string is tagged. The machine
instructions are generic; for instance there is only one ADD
instruction, and its two op2rands can be any meaningful data
types that pass certain consistency tests. For instance an
operand to an ADD can be a simple numeric variable, an array

PAGE 7

a
’

element, an entire array, or a numeric field in a structure.

Another consideration in the architecture is a
mechanism to handle exceptional conditions. The mechanism
uniformly applies to any type of "fault" or interrupt, be it
a machine detection of an arror, detection of some
explicitly identified event (i.e., for ON-units), or a
machine detection of some debugging action such as the
execution of a particular instruction. Each module is
capable of describing what types of faults it desires to
hanile. When a fault occurs, the machine searches through
the activation-record stack looking for the first module
that wants to handle that type of fault. When one is found,
the machine "calls" the module (entering it at a particular
point and making it a subroutine of the module initiating
the fault) and passes it arguments describing the fault, A
fault-handling entry point has the ability to resume
execution at the point beyond the fault, repeat execution of
the instruction causing the fault, or to decide to buck the
fault up to a higher module. It is assumed that the highest
module (the first one invoked in executing a program) is
part of the operating system or a debugging tool, and this
module will specify that it can handle all types of faults,

In summary, the key attributes of the architecture are:

- Self-identifying, or tagged, storage

- Nested, or recursiva tags, for describing less-primitive
data types

- Capability-based addressing

- Indirect addressing with capabilities

- Send/receive machanism for interprogram communication
and source/sink I/0

- One address space per program module

- Variable-size address=s

- Hierarchical fault-handling mechanisnm

- Domain addressing (addressing columns in tables)

- One-level store

- Automatic subroutine management via activation stacks

- Fixed-point decimal data representations

- Powerful instruction repertoire, including array
operations, a table-search instruction, field/string
operations, automatic data conversions

- Generic instructions

- Ability to write highly data-independent programs

- Prograam-tracing facilities

- Ability to add supplemental instruction sets and
data types

- Frequency-based-encoded operation codes

S~

PAGE 8
2. DATA TYPES

Before discussing the data types, a few basic storage
concepts must be introduced. The basic unit of storage
allocation is a token, a four-bit quantity. The basic unit
of storage addressing is a cell, a variable-number of
contiguous tokens. A cell corresponds to a variable or data
item in a source program and has two major components: a tag
which describes the attributes of the cell, and a content

which describes the value of the cell.

The machine recognizes 15 data or cell types of which
10 1re considared primitive data types, 1 is a gtructure

data type, and 4 are nested data types. The basic
differenca among the 3 categories are that primitive cells
have single values, structure cells describe collections of
other cells, and nested cells have tags which in turn

contain tags.

PRIMITIVE CELL TYPES

The primitive cell types are integer, decimal
fixad-point, decimal floating-point, boolean field,
character field, token field, boolean string, character
string, token string, and pointer. The tag of each cell
describes its typs and size, and the contents component
describes its value.

An integer (i) cell has the following format:

[]
111110 ___value __|
1 6

The first €field (one token) indicates that this cell is
an int2qger cell. The second field contains the value of the
cell in base-two two's-complement representation. The value
can range from -8,388,607 to +8,388,607. If the second
field has the value 800000 (in hexadecimal), the cell has
the value "unda2fined."

The » mark is used in this specification to indicate
the boundary between the tag and content components.

A decimal fixed-point (dfx) cell has the following
format:

—_—-mmmd e ll o Sl AT ST - -

1 1 1 1 size

The size field defines the number of digits in the
number. The fsiz field indicates the number of digits to
the right of an imaginary decimal point and must be less

PAGE 9

i
.
¥

than or equal to size. The sign field specifies the sign of
the value. If it is set to 0000, the value is positive; if
it is set to 0001, the value is negative; if it is set to
1111, the cell: has the value "undefined." The last field
contiins the absolute value of the number times 10 to the
power fsiz. The value is expressed in the base-10
binary-coded~decimal representation.

As an illustration, a variable with attributes FIXED
DECIMAL(5,2) and having the value 7.9 would be represented
as £5200079¢C.

A decimal floating-point (dfl) cell has the following
format:
L]
L1101L9;z signlexpd|exponent] man
1 1 2 S

tissa _|
1 Z

ize

The second field defines the length of the mantissa,
the sign field is the same as that described for the
previous cell, and the fourth field describes the sign of
the exponent. The fifth fisld contains the absolute decimal
value of the exponent (0 to 99). The last field contains
the decimal mantissa. Op=rations on floating-point cells
alwiys normalize the mantissa (shift it so that no leading
zeros occur unless the cell's value is zero). The exponent
and mantissa are expressed in the base-10 binary-coded
d2cimal repres=2ntation.

Note that the decimal fixed-point and floating-point
cells allow two representations of zero (+0 and -0). Only
+0 is a valid representation of zero; -0 is treated as an
unknown data format.

The boolean field (bf) cell has the format:

]
131001 _size__|_ value _

1z
1 3 size

It represents a fixed-length field of boolean (true or
false) values. The second field indicates the number of
elements (1 to 4094). The third field, whose length is
specified by the second field, contains the string elements
(one per token). The only element values are 0000 (false),
0001 (true), and 1111 (undefined).

A character field (cf) cell has the format:

ize | _value_ _|
3 2 X size

It represents a fixed-length field of EBCDIC
characters. The second field specifies the number of
elements (1 to 4094 characters). The third field, whose

PAGE 10

length (in tokans) is two times the value of the second
field, contains the string elements. The element value
11111111 indicates an undefined element.

A token field (tf) cell has the format:
110201 __size__ | _ _value_ _|
1 5 size

It represents a fixed-length field of four-bit
guantities. The second field indicates the number of
eleaents (1 to 1,048,574). The third field, whose length is
specified by the second field, contains the elements (one
per token). This is the only cell type that cannot have the
"undefined" value.

A boolean string (bst) has the following format:
-
101001 _size | _ _length __ | _value _j
1 3 3 size

The second field indicates the maximum number of
booleans in the string (1 to 4094). The third field
indicatas the current number of booleans in the string (0 to
4094), thus allowing the string to shrink and grow
dynamically. The fourth field contains the actual string
vhere ecach elemeant is represented as 0000 (false) or 0001
(tru2). If the length is FFF, the entire string is
intarpreted to have the undefined value.

A character string (cst) cell has the format:

12931) __ _size____1___length___|_ _ value _ __|
1 3 3 X siz

The ficlds have the meaning described above. The
fourth field contains the actual string where each element
is represented as 8 bits.

A token string (tst) cell has the format:

e e e e e e s T W . e e i e e e et e T ——— — i ———— ————— - - - — -

The meaning of the fields is the same as described
above, but a token string has a maximum size and length of
1,048,574, and each element in the string is a four-bit
quantity. If the length field contains FFFFF, the string
has tha undefined value. The token string is intended for
use only by compilers and d=2bugging tools.

The last primitive cell is a pointer (p); it has the
following format:

{‘b

PAGE 11

. »
11001]acod] logical address___ L

1 1 TTTTTT20 T

A pointer is a cell that can hold the unique logical
address of-an objact (moduls, activation record,
data-storage obj2ct, or port) or an entity within an object

2¢Je, a c2ll within an object). Logical addresses are
always assigned by the machine and can never be altered by a
program. However, a progqgram is allowed to copy the value of
one pointer c=211 into another pointer cell.

The acod field in the pointer cell represents an access
or authority cod= to the object. Its definition is

Bit Authority if 0 Authority if 1
1 read no read
2 write no write
3 destroy no destroy
4 copy no copy

The value 1111 is the undefined value. Copy authority is
the ability to make a copy of the pointer itself. If a
pointer does not have copy authority, it cannot be used as
the source operand of a MOVE or SEND instruction.

An instruction is available to allow a program to alter
the access cods, but the instruction allows one to only
lower (further restrict) the access.

Mok ke ek Ok o AOR R Kk m ok ok ok sk ok b ook e ook ok w0k okt ok ok X ¥ 3k Ok K IOK 30K ROk Rk
Note: Although the bit content of a logical address is *
not architected, its interpretation in one implementation*
of this architecture may be enlightening. The logical
addreszs contains a B-token unique system-object name and
two 6-token offsets into the object, offsets of the
addressed item's tag and content components. If

the logical address refers to an entire object, the last
two fields are unused and set to zero. If a logical
address refers to a cell within an object, the first
field contains the obiject name and the last two fields
are used to locate the cell within the object. Assuming
that object names are assigned on the average of one per
12 milliseconds, there is a 10-year supply of unique
nimes. The length of the offset fields imply that the

maximum object size is 16 million tokens.
ok w ok wok kAR XX A ok ok Wk Xk ok AW ok o ¥ W ok % ak ol ok ok k% ok 0K 4 ke e e ke dk ok Ak ok ok ok i 3 Xk ol ke ok ok kK

¥ O R B % % K ¥ ¥ W & X OH O %

LR IR B B R B AR B R

STRUCTURE CELL TYPES

The only data type in this category is a structure
c21ll. A structure describes a heterogeneous collection of

-

P

PAGE 12

other cells. The properties, that distinguish a structure
from an array are that, in addition to the entire collection
of elements having a name, in a structure each element also
has a name, and the elements in a structure can be different
data types.

A structure (st) cell has a tag, but no content,
compon2nt and its format is:

s e s . e S e e . . S e s o — . ——

1 2 4

The second field, a binary number from 1 to 255,
specifies the number of cells (elements) included in this
structure. The last field is the cell address of the first
c2ll in the structure. The element cells must reside in
contigquous locations in the address space and must be in the
same storage di~ (see Chapter 3) as the structure cell.
Permissible ~lement types are all primitive cells and array
cells., Where the structure is an array (see next section),
the only permissible element types are domains of primitive
cells. Where a structure is a parameter or relocatable (see
next section), the only permissible element types are
relocatabla primitive and array cells.

The concept of a c2ll address will be defined in a
later section, but it will be summarized just briefly here.
Each moduls (=2.9., a PL/I external procedure) has an

—— e et e S e e i

accassible by the module. A cell address is simply the
location of a cell within an address space. As an example
the following PL/I structure

DECLARE 1 PERSON,
2 SALARY FIXED DECIMAL (7,2),

2 NAME,
3 LASTNAME CHARACTER (20),
3 FIRSTNAME CHARACTER (12);

would result in five cells. A fixed-point cell and tvwo
character-field cells would reside in contiquous storage
locations. One structure c=21ll (representing PERSON) would
specify three elements and contain the cell address of the
fixed-point cell. Another structure cell (representing
NAME) would specify two elements and contain the cell
address of the first character-field cell.

A structure is no more thanm a collective name for a
saquence of other cells and hence is more general than the
concept of the same name in such languages as PL/I and
COBOL. Machine instructions can operate on structure
op2rands as well as primitive and other cell types. For
instance a structure can be passed as an arqument, or a
structure can be moved into another structure (which causes

-

S

PAGE 13

the machine to locate and moye the physical elemehté vithin
the structure).

NESTED CELL TYPES

The rpmalnlng four cell types are array, parameter,
relocatable, and domain.

An array (a) cell has the following format:
a

10111)dips)__leng__{ _ubl__j__| ubn_ | el-tag { _______1
1 1 4 1< 6 x dims >1 7 6

The second field is a binary number which specifies the
numnber of dimensions (1 to 15). The third field is a binary
number (1 to 65535) which indicates the length of the
content component of the array element. When an array tag
app=zars as a nested tag in a parameter or relocatable cell,
the length field is not used and can contain any value. The
next fields (six tokens in length, one field per dimension)
da2fine the upper bound of the array in the corresponding
dimension. The product of these fields times the third
field is the total number of tokens occupied by the array

~elements. All dimensions have an implicit lower bound of

one.

The next field is a nested tag; it is a tag describing
the array element., Its length is always seven, but not all
s2ven tokens are always relevant. For instance, for an
array of decimal fixed-point values, the nested tag would be
thre2e tokens long and would contain 1110 followed by the
integer size and fraction size and padded with four "don't
car2" tokens. Valid element types in an array are all
primitive cell types and a structure. When an array element
is a structure, the nested tag is a tag for a structure
cell. Thes allowablz elements of the structure element are
primitive cells. They must be defined as domain cells
(discussed below).

Conceptually, the last field, the content component of
the array, is viewed as containing the space for the array
elements.

PAGE 14

Aok K & b o ok ok i Ak koK i K 0 ke ok ke ok R sk ok ok ofe ke ke ki ol e e i 3k kK Sk 3 ik o K 3R koK o K ok K

Note: The content componaent of an array obviously does not *
include enough space for the array elements. Since the *
machine performs all subscripting operations, the program *
need not know the physical location of the elements. The *
last unarchitected field is used by the machine to identify*
the physical location of the elements., When an array is
created (at the time the program is loaded, for "static
arrays," at the time an activation record is created, for
"jutomatic arrays," or at the time an array is explicitly
Aynamically allocated by the program), the machine
allocates storage for the elements and places sone

internal adlress in this last field.
W& & r ok o sk e e i ik ak Sk oK ok e i dk dkok e oK ok s Xk ok gk ok ke de ok i K ok ol ke 3k sk ke i oK R 3k ok ik 3k ok ok 3K

* o4 % # X X R ¥ ¥ X # F B
L S BB NS B A

A1l subscripting is done by the machine, and many .
machine instructions function with entire arrays as well as
array elements as operands. As an illustration of an array
cell, a one-dimensional, 12 element, array of boolean
strings of siz2 10 would be represented as
71000D00N0J00CUO0ADDOXXY XXX,

A parameter (pm) cell has the following format:
10110inested taal ______________ 1
1 var27 7

Any variable in a module that is received as a
parameter is defined by a parameter cell. The second field
is a nestad tag; it is a tag describing the attributes of
the parameter and is used by the machine to check the
correspondence between arquments and parameters. Valid tags
are tags for all primitive cell types, structures, and
arrays. The nested-tag field must be seven tokens in
length, unless the nested tag is for an array.

If the nested tag in a parameter cell consists of seven
zero tokens, or if the nested tag in a parameter cell is an
array taq and the nested tag in the array tag is zero, the
parameter is a dynamically typed (D-typed) parameter. A
D-typed parameter dynamically takes on the attributes of its
corrasponding arqument. If a parameter cell contains a
nested tag having a size field (i.e., decimal fixed-point or
floating point, boolean, character, or token string or
fi2ld) and the size field has the value z2ro, or if such is
the case for a size field in the nested tag of an array tag
(D-sized) parameter, meaning that it dynamically acquires
the size of the corresponding arqument. If the nested tag
vithin a parameter tag is an array tag, and one or more
upper-bound fields in the array tag have the value zero, the
meaning that it dynamically acquires the corresponding
extant (upper bound) of the corresponding argument array.

PAGE 15
Yy

See the last section of this chapter for more details.

The last field is not architected, as was the case for
the list field: in the array cell. However, if the last
field has the value FFFFFFF, the parameter has the value
"undefined." R2gardless of what is placed in the last
field, parameter cells are always initialized by the machine
to the undefined value.

o oo %ok koK T o s R R Ak 3 ok ke e ok sk ok ke e 3K ok 3kt 5K ok 5 ok 3o o e e ok K ok e ¢ e ok ok K

* The last field contains an access code and an internal *
* address to the corresponding arqument. The internal *
* address points to the content component corresponding to *
* the arqument, *

Mod ko A K KX o R K R R P MK VTR RO K X W e ol W e X ke o 3 o e ok kol ax ok o ke i o o ok sk ok ok v e o o ok ke

A program uses a parameter cell as if it were a cell
described by the nested tag. The only difference (which is
transparent to the program) is that a reference to a
parameter causes the machine to indirectly locate the
storage via tha last field.

A relocatable (r) cell has the following format:
L]

10101} cell-addr_| RCA Inested tag]|

s e e s S W e v e e e e e e e e s ot e >

1 4 4 var

A relocatable cell represents a cell whose content
compon=2nt is located elsewhere (i.e., indirectly located).
C21ls that would be represented as relocatable cells include
based variables and el=2ment variables in a structure, where
the structure is based or a parameter.

The second field is a cell address of the cell fronm
which this cell is relocatable. Such cells are referred to
here as locator cells. A locator cell can only be a
pointer, parameter pointer, or parameter structure cell.

The third field (relative cell address), in the case of
a relocatable cell that is not an element of a structure,
must be zero. Where the relocatable cell is an element of a
structure (the locator is a pointer to a structure or is a
parameter structure), the field represents the cell address
of this cell relative to the first cell in the indirectly
locatad structure. For example, RCA for the first element
is 1, RCA for the second element is 1 plus the size (tag and
content) of the first cell in the indirectly located
structure.

If the relocatable cell represents a structure, but the
series of cells named by the structure does not begin at the
cell addressed by the locator (i.e., the structure is a
"substructure"), RCA is the relative cell address of the
first cell in the substructure.

Oe

PAGE 16

The fourth field is a nested tag defining the type of
relocatable cell, Valid nested tags are tags for all
primitive cell types, structures, and arrays. In general,
if the nest2d tag of the relocatable cell is not the same as
that of the cell indirectly located by the locator cell, the
machine will d=tect it as an error when the relocatable cell
is referenced as an instruction operand. However,
relocatable c2lls, in an identical fashion as parameter
c2lls, can be D-typed, D-sized, or D-bounded. See the

section at the end of this chapter.

As was the case for a parameter, a program uses a
ralocatable c211 as if it were not one, that is, it uses the
cell as if its tag were the nested tag. The machine uses
the locator cell to locate the appropriate storage location,

The rules governing the compatibility requirements
between the attributes of the indirectly located cell and
the attributes of the relocatable cell (i.e., the
information in its nested tag) are the same as the rules
govarning argument/parameter compatibility discussed under
the ACTIVATE instruction in Chapter 7 and the section at the
end of this chapter discussing D-typed, D-sized, and
D-bnund=d cells. If the compatibility rules are violated,
an incompatible-operands fault occurs.

A domain (d) cell has the following format:
L]

10001) _cell-addr_| _offset_ _|nested tag]

1 4 4 var

It is similar in concept to a relocatable cell, but it
represants a structure element in an array of structures.
To visualize the concept, think of a one-dimensional array
of structures (i.e., a table, where entry in the table
contains multiple data items such as a part name and
quantity). Array element T corresponds to the Ith row in
the table, a domain corresponds to a column in the table,
and a domain element corresponds to the Ith value in a
particular column.

The second field is a cell address of the array cell.
The array must be an array of structures (nested tag is that
of a structure)., The array cell can be a parameter or
relocatable.

The third field defines the offset of the content
compon=nt of this domain within the array element. That is,
the first domain contains the offset zero, the second

contains the size of the content component of the first; and
SO On.

The fourth field is a nested tag defining the type of
domain. Valid nested tags are tags for all primitive cells.

PAGE 17

’
)

Programs address domains as if they were arrays having this
nested tag. The array properties of the domain (dimensions,
upp2r bounds) -are those in the corresponding array cell.
Unl=2ss otherwise noted in this specification, discussions of
arriys include domains, and discussions of array elements
include domain elements.

Hence the machine has 15 cell types. When one accounts
for the nested or recursively defined tags, however, the
possible cell types are:

Primitive Parameter array of primitives
Structure Parameter array of structures
Array of primitives Relocatable primitive .
Array of structures Relocatable structure

Parametar primitive Relocatable array of primitives
Parameter structure Relocatable array of structures

Domain of primitives

wher2 "oprimitive" denotes any of the 10 primitive cell
types. Also, most cases of parameter and relocatable cells
can have the D-typed, D-siza2d, and/or D-bounded attribute,
Uses of many of the cell types are illustrated in examples
in Chapter 8.

Note that 15 out of a possible 16 cell types have been
defin=d, implying that only one more cell type could be
added if the architecture is extended. This is not
necassarily true; if the first four bits of a cell are 0000,
this is int2nded to repres2nt an "escape" code, meaning that
the next four bits identify the cell type, thus allowing the
machine to potentially have an unlimited number of cell
typzs. A later section describes a feature of the
architecture that allows it to have supplemental instruction
sets; this escape code allows the supplemental instruction
sets to define new cell types. For instance if a
FORTRAN-orianted supplemental instruction set is active, a
cell beginning with the bits 00001111 might represent a
FORTRAN complex number (2.9., a numerical value with a real
and an imaginary part).

AUXTILIARY DATA TYPES

In addition to the 15 cell types, the architecture also
providaes several auxiliary data types, which are discussed
below.

Indirect addressing is provided in the architecture by
the use of indirect pointers. An indirect pointer

http:bounds)�a.re

PAGE 18

74,

physically points to another pointer (which is not an
indirect pointer), but logically points to where the latter
pointer points.. Any reference through an pointer to that
which it addresses, in the case of an indirect pointer, is
identical to performing the same operation with the latter
pointer, except that the access code in the indirect pointer
is usad. Any operation directly on a indirect pointer

2.9., move, comparison) has the same effect as that on a
direct pointer. For instance, if an indirect pointer A
points to pointer B, any use of A to reference storage in an
instruction has the same effect as using B, although the
access code in pointer A, not pointer B, is used. Any
operation directly on A its21lf refers to only A and not B.
Indirect addressing occurs whenever pointer resolution
occurs {e,qg., reference to a relocatable cell, CALL, SEND to
a port). N

An indirect pointer is not a new data type. It is a
pointer cell that has been given a value via the
COMPUTE-TNDIRECT-POINTER instruction. The pointer is marked
in the unarchitected logical-address field as an indirect
pointer.

The indirect pointer has many uses. One is security,
where program A wishes to give program B access to some
data, but program A wishes to retain the right to withdraw
this access at any time. By giving B an indirect pointer to
a pointer to the data, A, at any time, can modify the latter
pointer to withdraw B's access to the data. Another use is
dynamic object or module replacement, without having to
rebind programs. If module X calls module Y through an
indirect pointer, module Y can be replaced with a new
version by changing the dirsct pointer to it and not having
to change module X itself. A third use 1is by
object-access-control mechanisms, such as in an operating
system. If an operating system contains a mechanism
allowing programs to ask for objects with different types of
exclusivity (2.g9., shared access, exclusive access), it can
guarantee this integrity by giving programs indirect, rather
than direct, pointers.

D-Typed, D-Sized, and D-Bounded Cells

Parameter and relocatable cells can have the properties
of being dynamically typed (D-typed), dynamically sized
(D-sized), and/or dynamically bounded (D-bounded). These
properties allow one to write generic programs, that is,
programs that are significantly independent from the data
they are processing.,

Parameter fields and strings (character, boolean, and
tok2n) and parameter fixed-point and floating-point cells
can be specified as D-sized by specifying, in the nested tag
of th2 parametar cell, a zero-valued size. For instance,

. e e

PAGE 19

6B003D00FFFFFFF is a parameter character field of size
thr2e, but 6BJI0000OFFFFFFF is a D-sized parameter character
field. Lik2wise, parameter arrays of fields, strings, and
fixed-point and floating-point values can be specified as
D-siz~2d by specifying, in the nested tag in the array nested
tag, a zero-valued size.

The above is similar to "asterisk notation" in PL/I,
but the full concept, as expanded later, is considerably
more powerful and efficient. A few examples of D-sized
parametars, along with their corresponding representation in
a PL/I-like syntax, are

Q: PROCEDURE (A,DB) ;
SEQXYXXXFFFIFFF DCL A FIXED DECIMAL(*);
671XXXX000009BO0OOXXXFFFFFFF DCL B ({9) CHARACTER (*); .
(The element-length field in an array nested in a parameter
or relocatable c2ll is never used and can be set to any
value.) As usual, an X represents a don*t-care value,

If a parameter is D-sized, it dynamically acquires the
siz> attribute of the corresponding arqument. See the
dafinition of the ACTIVATE instruction for the
type-consistency rules between arguments and parameters.

Relocatable fields, strings, and fixed-point and
floating-point values can also be D-sized, providing that
the RCA field is zero and that the locator cell is a pointer
or parameter pointer. Any relocatable array can be D-sized.
D-sized relocatable cells are specified in the same manner
as D-sized parameters. A few examples are

5YYYY00003000 DCL A CHAR(*) VARYING BASED(P);
SYYYYNO0071XXXX000009EOX DCL B(9) FIXED DECIMAL (*) BASED(P);

YYYY represents the cell address of the locator cell P. The
PL/T-like examples are hypothetical, since PL/I does not
allow such data types.

If a relocatable cell is D-sized, it dynamically
acquires, upon cach reference, the size of the indirect
cell., Consistency requirements between a relocatable cell
and the indirect cell are the same as those for arguments
and parameters.

D-boundad parameter arrays can be specified by
specifying, in one or more of the, upper-bound fields in the
nested array tag, a zero value, A few examples are

Q: PROCEDURE (A,B) ;
672XXXX000070000002E42XXXXFFFFFFF DCL A(*,2) FIXED DEC (4,2);
6714{XXXC00000BOOOXXXFFFFFFF DCL B (%) CHAR(*);

e g R

PAGE 20
As shown in the second case, the D-bounded and D-sized
properties ar= independent; that is, a parameter array can
be both D-bounded and D-sized.

Tf a parameter array is D-bounded, for each zero-valued
bound it acquires the corrasponding bound of the argument
array.

Any relocatable array can be D-bounded; this is
achieaved in the manner described above. An example is

SYYYY0ON0071¥XXX000000B3C0KXX DCL A(%*) CHAR(*) BASED(P);

Again, this example is both D-bounded and D-sized. Again,
the PL/I notation is hypothetical, since PL/I does not
provide this capability. .

If a relocatable array is D-bounded, it dynamically
acquires upon each reference, for each zero-valued bound,
the corrasponding bound of the indirect array.

A parameter is specified as being D-typed by having a
nested tag of seven zero tokens. A parameter array is
specified as being D-typed by encoding zeros in the nested
tag (2lement attributes) within the array nested tag.
Examples are

Q: PROCEDURE (R, B);
60000000FFFFFFF DCL A D-TYPED;
671XXXX000000000C000FFFFFFF DCL B(*) D-TYPED;

Again, the PL/I-like illustrations are hypothetical. The
sz2cond example is both D-typed and D-bounded.

If a parameter scalar is D-typed (the first example),
it dynamically acquires the full attributes of the
corresponding arqument, However, the arqument cannot be a
structure or array. If a parameter array is D-typed {(the
second example), it dynamically acquires the full element
attributes of the corresponding array argument. However,
the arqument array cannot b2 an array of structures.

A relocatabhle cell is specified as being D-typed by .,
having a nested tag of six zero tokens. A relocatable array
is specified as being D-typed by encoding zeros in the -
nestad tag within the array nested tag. For a relocatable -
scalar to be D-typed, its RCA field must be zero and the

locator cell must be a pointer or parameter pointer. Any

rrlocatable array can b2 D-typed. Examples are

PAGE 21

5YYYY0000000)00 DCL A D-TYPED BASED(P) ;
S5YYYYO0007 1XXXX0000000000000 DCL B(*) D-TYPED BASED(P) ;

T: PROCEDURE (TA) ;

6803Q0QQFFFFFFF DCL 1 TA,

5RRRR00N01BJ0O3 2 TB CHAR(3),
SRRPROND0BT1XXX%0000000000000 2 TC(*) D-TYPED,
SRRRROO24EU2 2 TD FIXED DEC(4,2);

Again, the PL/I-like illustrations are hypothetical. The
second exampl= is both D-typed and D-bounded. The third
case shows a D-typed and D-bounded relocatable array in a

parameter structure. QQQ0Q is the cell address of the second

cell and RRRR is the cell address of the first cell.

If a relocatable scalar is D-typed (the first example),
it dynamically acquires, upon each reference, the full
attributes of the indirect cell., The indirect cell cannot
be a structur= or array. If a relocatable array is typed,
it dynamically acquires, upon each reference, the full
element attrihutes of the indirect array. The indirect
arriy cannot be an array of structures.

The D-typ2d, D-bounded, and D-sized properties do not
compromise the reliability and security properties of the
architecture. They, given the concepts of tagged storage
and generic instructions in the architecture, allowing one
to write hiqghly data-independent programs. Where there is
an mismatch of data types (e.9., one is trying to perfornm
arithmetic on a character field), the D properties still
cause the error to be detected, but not perhaps as early as
it might have heen if the properties were not used. For
instance, if a parameter is specified as being a
one-dimensional array of 10 character-field elements of size
6, the machine would signal an error (when the procedure or
module is invoka2d, see the ACTIVATE instruction) if the
corresponding arqument did not have identical attributes.
However, for instance, if this parameter was both D-typed
and D-bounded, the parameter checking would test for only a
one-dimensional array argum=2nt. If, during the execution of
instructions in the procedure, an incorrect assumption was
made about the argument array (e.q9., referencing a
nonaxistent element, using it as an arithmeitc value when it
is not, referencing beyond the end of a field/string array
element), the =2rror would be detected during the execution
of the instruction.

Pl

PAGE 22
3. STORAGE OBJECTS

Tha machihe contains four types of storage objects:
modules, activation records, data-storage objects, and
ports.

THE MODULE

The principal storage object in the machine is the
module. A module contains a sequence of machine

instructions and a definition of the address space for those

machine instructions.

A module object corresponds to such programming .
language constructs as PL/I external procedures and
functions, Cobol subprograms, and Fortran subroutine
subprograms. A module object is created with a LOAD-MODULE
instruction, which takes the external form of a module
{(shown in Fiqure 3.1), represented in a token string, and
uses it to form a module object. Hence the form of the
module object is not architected; it is defined only in
terns of the external module. A module object can be
destroyed by the DESTROY instruction or, optionally, at the
time of proqgram termination.

Fiqure 3.1 and the subsequent sections define the
external module, the principal interface to the machine
since it represents the output of a compiler. As shown, an
extarnal module consists of three variable-length
components: the header, th2 address space, and the
instruction space,

W

Jon—

\

<

C

e

PAGE 23

— —— ——— — —— — " —— —— ———— o f— . g, S o

| | |

| INDEX TO | INDEX TO |

| MODULT | AUTOMATIC |

| NAME | STORAGE DIE|
e !l |
INDEX TO	INDEX TO	INDEX TO
STATIC	INSTRUC-	END OF
STORAGE DIE	TIONS	MODULE + 1
Y1 - -1 L		
]	

l | [| l FAULT |
{CAS]IAS|SIS| SA| CODES l
.t __+r & 1

AUTOMATIC STORAGE DIE

STATIC STORAGE DIE

INSTRUCTIONS
| |

) ---1

Figure 3.1 Format of an external module,

PAGE 24

The Header

The module header defines certain attributes of the
module and de=fines sections of the other two components,
The first five fields in the header are five-token fields
containing the binary value of the index within the module
of tha beginning of a particular section of information
(except for the fifth field, which indicates the end of the
module). Since the index of a section is also used to
indicate the end of the previous section, the sections must
be contiquous. If a section is not present, its index field
points to the start of the next section. For instance, if
there is no automatic storage die section, its index field
and the index field for the static storage die have the same
value.

The next two one-token fields (CAS and IAS) define the
lengths of cell addresses and instruction addresses within
instructions in this module. Fach field can contain a
binary value from two to five, indicating two-token
addresses to five-token addresses. Cell and instruction
addresses are described in the later section on instruction
formats. (Note that cell addresses within cells, that is,
in structure, relocatable, and domain cells, have a fixed
length: four tokens.)

Since the addressing space of a module is limited to
only thos= cells defined in the module, it is desirable to
limit the address-field sizes to the smallest size needed.
That is, rather than defining fixed-length address fields
within instructions, the size of an address field can vary
from module to module., Cell addresses need only be large
enough to address the cells within the module (the module's
addrass space). Instruction addresses need only be large

enough to address instructions within the instruction space.

In othar words a module with only a few small cells {(a small
address space) needs only a tiny cell-address field: a
module with more and bigger cells needs a larger cell
address. Usz of variable-size addresses is worthwhile
because 1) the physical size of the module can be reduced,
2) the number of bits transmitted between the memory and the
processor can be reduced, thus 1ncnea51nq the memory
bandwidth, and 3) arbitrary compromises concerning the upper
bound of an address space can be avoided.

The next one-token field (SIS - supplemental -
instruction set) in the header defines the language in which
this module was written. The motivation for this field was
the thought that the basic instruction set of the machine
might be extended to provide additional instructions that -
are specialized toward a particular language. For instance
if this field is zero, operation code '0007' might bhe
invalid. If the field is one, operation '0007' might be a
CO30L-orianted table search instruction; if the field is

PR S M O

pem——.

PAGE 25

two, operation '0007' might be a PL/I-oriented PICTURE
editing instruction. If the field is three, operation
'0007* might be an instruction intended only for the
operating syst=m. This points out another motivation for
such a feature: there is no need (nor desire) to bother a
COBNL compiler writer with information about instructions
intended for the operating system. In fact it is desirable
to hide such instructions from those people and programs
that have no direct use for then.

This "lanquage"™ or supplemental instruction set field
gives the machine the ability to vary part of its
instruction sat dynamically and gives system designer the
ability to sp=acialize and tailor the instruction set in a
way that is transparent to existing programs.

*-«vnmnAn**nA«uﬁk**********#****************:**********i****
* The current implementation of the architecture contains *
* onc supplemental instruction set (SIS=1111) for the *
* bzpefit of the operating system. It contains a few *
* jnstructions, which are not described in this document. *
* *
*

These instructions, like all others, are not privileged.
bk o R m ok ok ok o e dOK K ok ok oK 3ok o ok oKk ook ok ok ok ok o 3K K ROk ok KOR ROK R R

The next one-token field (SA) currently has no purpose.

The next six-token field specifies the faults
(rachina-detected conditions) that this module wishes to
handle. The meaning of this field is described in a later
section on fault handling.

The next field is variable in length and contains the
name of the module, using two tokens to represent each
character. No machine instructions currently access this
fi»ld, so it need not be present.

Thz Addraess Space

[1o)

The second component of a module is its address space.
The address space contains a series of cells defining the
data that is accessible by the module. The index of the
first token of a cell within the address space is known as
its call address. That is, the cell address of the first
cell is one; the cell address of the second cell is one plus
the total length of the first cell, and so on.

Although the address space looks like one entity to the
program, it is subdivided into two sections as shown in
Fiqure 3.1. These two sections are used by the machine. for
storage management and allocation purposes.

—— ———— — — —— ——— o ———] o ———

be dynamically allocated space whenever the module is
invoked. When the module is invoked, the machine allocates

PAGE 26

an activation record and copies the automatic storage die
into the activation record. When the module's code refers
to 1 cell in the automatic storage die, the machine
automatically translates its cell address to a location
within the activation record.

Note that the machine does a bit-by-bit copy of the
automatic storage die into the activation record. This
implies that the compiler can cause an automatic variable to
have an initial value simply by putting the value in the
variable's c=11 in the automatic storage die. If an
automatic variable (or any other variable) has no defined
initial value, the compiler is responsible for setting the
c21ll to the undefined value. An exception to this
discussion is pointer cells; for reasons of security, the
machine always initializes them with the undefined value
when the module object is created. All cell types may
appear in the automatic storage die. If an array cell
resides in the automatic storage die, space for the array
eleaents is created in the activation record and the
elements are initialized to the undefined value. . Parameter
cells must reside in this storage die and are always set to
the undefined value when the module object is created.

The static storage die holds all cells that are to be
allocated once prior to execution (that is, at the time of
the LOAD-MODULE instruction). If a static variable is to
have an initial value, the value should be placed in its
cell in the die. If not, the cell should be set to the
"updefined" value. (All pointer cells are alwvays
initialized by the machine to the "undefined" value.) All
cell types except parametar may appear in the static storage
die. Array elements are initialized to the undefined value.

LI AEEEES R AT ETRLRSIESFERFSERSEIEL IS LI TLFIICEFTELFELI S SRS 2 3 3
* Since relocatable, domain, and structure cells do not *
* directly change during execution (only the cells to *
* which they refer do), it is recommended, for reasons of *
* performance, that these cell types be placed in the *
* static storage die. *
ok ok vk ok ok S %ok ko At Sk ok kK A0 X X e Ik 3 3 Al e ok ol ke ok i K sk e o ke ok ke ok o o AR Kk K ok R R Rk

L

— —— . s o o o s o o e . e S

The last cowmponent of a module is its instruction
space. The instruction space contains a series of machine -
instructions. Most machine instructions are represented in
a variable number of tokens. The index of the first token
of an instruction within the instruction space is known as
its instruction address. The instruction address of the
first instruction is one; the instruction address of the
second instruction is one plus the length of the first
instruction, and so on.

http:cellin.th

6

PAGE 27

MOk K & Wk bk 3 dk O % K K F k% ¢ ok R v e X ok R 3 N e ok ok o W o i 3 % ek S ok ek ok Rk Ok i o ke ok ok ok K R K ok

* Programming Note: Since array elements receive no space %
in the dies, it is not immediately obvious how a compiler=*
* would initialize an array. The following suggestion is

* offered.s If the arrayv is automatic, the compiler nust

* g2nerate code (one or mor2 MOVE instructions) at each

* ontry point to initialize the array. To initialize a

= static array, the compiler can give the module an extra
* entry point and generate code at this entry point to

« jpnitialize the array. After the LOAD-MODULE instruction
* has been executed, this special entry point can be

»x

callad to initialize the static array.
= o oa b kom0 3R K R k¥ e o w W o i i k NT ok MC e e i ok M sk kA K v 3 ok ok ook Kok sk 3 koK 3K ok ok sk

* % F o ¥ ¥ X x ¥

THE ACTIVATION RECORD

An activation-record object contains space for the
cells in a module's automatic storage die. It is created
whenever a module is invoked (by a CALL instruction) and
destroyed whenever a module returns to its caller or the
program terminates. Since a program does not directly "see"
an activation rscord, but addresses it through the automatic
storaje die, no further information about the activation
record is architected.

THE DATA-STORAGE OBJECT

A data-storage object is created by a program that
wishes to dynamically allocate space for a relocatable cell.
It is created by an ALLOCATE instruction and can be
destroyed by the DESTROY instruction or, optionally, at
program termination. Since a program does not directly
"sce" a data-storage object, but addresses it through a
ralocatable cell, no further information about the
data-storage object is architected.

THE PORT

A port is an abstract object that is used to connect
two or more programs together for purposes of interprogran
comaunication. A port is created by a CREATE-PORT
instruction and is destroyed by the DESTROY instruction or
at program t=2rmination. Since a port is defined only by the
semantics of the two instructions that can operate on it,
SEZND and RECEIVE, no further information about the port is
architeacted.

PAGE 28
4, INSTRUCTION FORMATS AND ADDRESSING

A machineé' instruction consists of an operation code
followed by one or more address fields. Some instructions
havas just one address field, others have two, others have
thra2e, dnd certain instructions have a variable number o
address fields.

OPERATION CODES

Tha first field of each instruction is the operation
coda. PRather than use a single-length field for operation
codes, a frequency-based encoding was done. That is, the
oparation-code field for the fifteen most-frequent .
instructions is one token long, the field is two tokens long
for the second most-frequent set of fifteen instructions,
and so on. The motivation for doing a frequency-based
encoding, the rationale for choosing this particular
encoding, and the selection of the operation codes is
discussed in other documentation available from the author.

ADDRESS FIELDS

There are seven types of address fields which are
grouped into three categories: operand addresses,
instruction addresses, and immediate fields.

—— s - ot > o e St

space. There are four types of operand addresses.

1. Cell address. A cell address is an N-token binary
field that refers to a cell in the address space
(N is the value of the cell-address-size field in
the module header). For instance, if N (CAS) 'has
the value 2, the operand address 1A refers to the
cell beginning at the 26th token in the module's
address space. Cell addresses cannot be used to
address array or domain cells.

2. Literal. A literal field consists of N tokens of
zeros followed by one token having the value zero,
one, ..., Or nine., A literal field is assumed t6
he a one-digit positive integer. As an exanmple,
if N (CAS) has the value 2, the operand address
004 is a literal of value +4.

3. Array element address. An array element address
consists of D+1 subfields. The first subfield is
a cell address of an array (or domain) having D
dimensions. The next D subfields are cell
addrasses, literals, or array element addresses
specifying the values of the subscripts (the

values must be integers). For example if array

%

o ——— T

PAGE 29

cell A has the index (in hexadecimal) of 20 in the
addrass space, if a variable I has the index 3C,
and if N is 2, then the operand address for A (4,I)
is 200043C. If N was 3, the operand address would
be 020000403cC.

u, Array address. An array address refers to an
entir=2 array or domain., Array addressing is
identical to array element addressing, except that
all of the subscript subfields are specified as
"«"_ The "=" is represented by a literal field
with the value F (1111). Hence array A is
addressed by 2000rOO0OF.

MR om vk w ok kol o ek A ook o ook o ik Wl ok ke ke e o ko i ok Kk 3K i ok e ok ik ko sk ok ok ik 36k ok ok ke skok o ke K
* Nota: This addressing scheme allows for the possibility *
* of addressing array cross-sections (e.g., the PL/I . *
* expression A (<,I) would produce the address 2000F3C), *

* althouqgh this is currently not part of the architecture. *
ok ok kb % ¥k Xk Xk N ok Rl gk o ok Kok oo xe 8 e ok ok w3k ok 3ok K K koo ok K K 3K ok kK K K 3k 3ok X ok sk ik

Unless otherwise mentioned, any of these four forms can
be used as operand addresses in instructions. One general
excaption is that a literal cannot be used as a target
oparand. An operand is that data referred to by an operand
address (possibly indirectly through a relocatable,
structure, domain, or parameter cell); a target operand is
an operand in which an instruction stores a result.,

The second category of address fields is an instruction
addrzss. An instruction address is an M-token field that

refars to an instruction in the instruction space (M is the

value of the instruction-address-size field in the module
header).

The last category of address fields is an immediate
field. An immediate field is a one or two-token field
corntaining not an address but some value that is used
directly by the instruction. Since immediate fields have
specialized purposes and are only used in a few of the
instructions, definition of the immediate fields is deferred
to the definitions of these instructions.

PAGE 30
5. FAULT HANDLING

Since th2: major objective of this machine is to prevent
and/or detect certain classes of programming errors, the
methods hy. which the machine detects and reports errors are
of sp=2cial importance. This section defines the conditions
(called faults) detected by the machine, the information
that *he machine presents to the program when a fault
occurs, and how the program and machine can interact to
handle faults.

FAUGLT DESCRIPTIONS

The following descriptions define the types of faults
datactad by th= machine and the situations under which they
arise. If multiple fault situations occur during the
execution of an instruction, the first type of fault
detected by the machine, or the order of the faults
detacted, is not architecteld.

An invalid operation (type 1) fault occurs when the
machine fetches an instruction but its operation code is
invalid, or when the end of the instruction space is

encountered during the fetching of an instruction.

255 is beinq used but it falls beyond the module's
addr2ss space or resides in an incorrect storage die, (2)
vhen an array subscript is not an integer, (3) vwhen an array
cross~-section address is specified, (4) when a reference
within a module from outside (e.g., via the LINK or
COMPUTE-ENTRY-POINTER instruction) does not obey the
addressing rules of the instruction, (5) when an error is
detected while processing cell addresses (e.g9., the rules
concarning relocatable cells are not obeyed), or (6) when a
loop is detected when resolving indirect pointers (e.g., an
indirect pointer refers to itself).

An addressing (type 2) fault occurs when (1) a cell

An unknown data format (type 3) fault occurs when the

—— . - — ———— — — ——— ———

machine refarences a cell that has an unrecognizable format
or value.

y
F

attempts to destroy, write to, or read from a cell that is
located through a pointer cell, but the pointer does not
have the appropriate access code, (2) the program attempts
to explicitly destroy storage that resides within an
activation record or module, (3) the program attempts to
alter a parameter that was transmitted as read-only, or (4)
the projram attempts to move the value of a pointer cell
which does not have copy authority.

A protoection (type 4) fault occurs when (1) the program

PAGE 31

An invalid pointar (type 5) fault occurs when the
projram uses a pointer cell but the logical address in the
pointer is unknown to the machine (implying that the storage

refarrad to by the pointer has been previously freed).

A bounds-exceeded (type 6) fault occurs when the
projram refers to an array element using a subscript that is
beyond the hounds of the corresponding dimension, or when a
program refers to a string element that is beyond the size

or current lenqgth of the string.

An invalid operand typs (type 7) fault occurs when the
typ2 of an opesrand does not match the valid operand type (s)
in the instruction specification, or when the category of
storage object being referenced by an instruction does not
match the categories of storage objects that can be
referenced hy the instruction.

»

An undefined operand (type 8) fault occurs when the
machine attempts to use the value of an operand, but 1) the
operand, or 2) a pointer or 3) parameter cell used to locate
the operand, has the value "undefined." This fault does not
occur for condition 1 in the DEFINED instruction, which is
an explicit test to determine if an operand has an undefined
value, :

An incompatible oparands (type 9) fault occurs when two
or more operands of an instruction are incompatible. The
conditions of operand compatibility are defined in the
specifications of the instructions. This fault can also
occur in an ACTIVATE or LOCAL-ACTIVATE instruction when the
typ2 of a parameter cell is incompatible with the type of
the corresponding argument cell, or in a RECEIVE or SEND
instruction when the type of a receiver operand is
incompatible with the type of corresponding arqument. The
fault also occurs when the attributes of a relocatable cell
do not match the attributes of the indirectly located data.

operand in an instruction is too small to hold the value
produced by the instruction. For arithmetic operands this
occurs when loss of high-order non-zero digits would occur
or when the 2xponent of a floating-point result is greateér
than Y9, For string operands this occurs when the size of
the target string is too small to hold the value produced by
the instruction.

An underflow (type 11) fault occurs when the

floating-point rasult of an instruction has an exponent of
less than -99,

A divide (type 12) fault occurs when division by zero

— o —— ——

is attempted.

B s R T

PAGE 32

Yy

LOAD-MODULE instruction when the machine discovers a format
error in the module being loaded.

r2asons in-an instruction that transfers control flow. The
most common Ssituation is attempting to branch beyond the
instruction space of the module.

An invalid transmission count (type 15) fault occurs in
an ACTIVATE or LOCAL-ACTIVATE instruction when the number of
parameters spacified does not equal the number of argquments
transmitted, or in a RECEIVE and SEND instruction when the
nunber of recaiver operands does not equal the number of

arqguments in the corresponding SEND instruction.

instruction when the operands do not match the conversion
rules listed in the specification of the CONVERT
instruction.

A yes-branch-trace (type 17) fault occurs during any
instruction in the comparison-and-branch group (except
ITERATE) if 1) the instruction results in a branch being
taken and 2) yes-branch tracing is enabled for the module

containing the instruction,

A no-branch-tracs (type 18) fault occurs during any
instruction in th2 compariosn-and-branch group (except
ITERATFE) is 1) the instruction results in the branch not
being taken and 2) no-branch tracing is enabled for the

module containing the instruction.

A call-trace (type 19) fault occurs during the

execution of a CALL or LCALL instruction if call tracing is
enabled for the module containing the instruction.

An insufficient-storage (type 20) fault occurs when an
instruction requires the machine to dynamically acquire
storag2 for a storage object, but sufficient storage is not

available.

A fault-handling (type 21) fault occurs when 1) one |
attempts to CONTINUE beyond a fault for which continuing is
prohibited, 2) one attempts to execute a RAISE-FAULT
instruction with an invalid fault type, or 3) one attempts
to execute a CONTINUE or TRANSFER-FAULT instruction while

not in a fault handler.

o

PAGE 33

ENTRY-POINT ZERO

zach fault type has an associated number as given in
the pra2vious section. These numbers also correspond to a
bit position in the fault-code field in the module header.
For -=xample tault type 1 (invalid operation) corresponds to
the bit 1 in the fault-code field. If a bit is set to one
in the fault-code field in a module, this indicates that
this module desires to handle the associated fault. Bit 0
(the first hit) in the fault-code field indicates whether
the module desires to handle faults of type 28-255

(progranm-defin2d faults - see the RAISE-FAULT instruction).

“hen a fault occurs, the machine attempts to call
entrv-point zero of the current module. (Entry-point zero
is *he first instruction in the module.) Entry-point zero
will be called if the fault is enabled (the corresponding
bit in the fault-code field is one). If not, the machine
attempts to call another entry-point zero by searching
backwards through the stack of active modules until a module
is found with this fault enabled. If none are found, the
prograa is terminated.)

dode B oarox ook mow sk o R Vet W 3O K o e R o v 2 e ok 3k ok ke 0 ke e de ke ik ok ok ke e sk ok 3K Ok 3k ok 3 e i ke ok sk

» Programming Note: It is anticipated that the first *
« nmodule invok2d in each program is a special module *
* genmarated by the compiler or operating system that has *
* 311 faults enabled. *

Bk v owom ot w om ok Aok ¥ b o ok ook W R A o o S ok i ik ke ok ok vk 3k s e o 3 ke sk o ok sk ok ok O s 3 ok e ok

ktandler) is invokad, it is called by the machine as an
internal procedure. Therefore the fault handler has
addressability to the address space in the module in which
the fault handler resides. The machine also passes the
following five arguments to the fault handler:

1. An integer containing the fault type.

2. A pointer to the module object in which the fault
arose. The pointer has read and copy authoritye.

3. A pointer to the entry point at which the faulting
module was entered. The pointer has read and copy
authority.

u, A token-field cell of size 5 containing the
instruction address of the instruction causing the
fault.

5. A token-field cell of size 6.

The fault handler is given read-only access to the
arguments. '

For the invalid-wmodule fault, arqument 5 is an error
coda describing the error in the module (provided that the
fault was not raised by the RAISE-FAULT instruction). For

PAGE 34

all other faults, argument will be taken, 5 contains the
first six tokens of the faulting instruction.

Machine instructions are available to allow a module to
dynamically =nable or disable specific faults, to allow a
projram to explicitly generate faults, and to allow a fault
handl=r to resume execution at the instruction following the
faulting instruction, retry the faulting instruction, or to
transfer the fault to a higher fault handler.

A fault in a fault handler is treated like any other
fault situation. The only difference is that, to prevent a
faulting fault handler from entering endless recursion, the
search for an applicable fault handler starts with the
modul~ that called the module containing the faulting fault
handler. .

Faults are nested, meaning that if a fault occurs in
fault handler A and is handled by fault handler B, which
returns or continues to fault handler A, A is back in its
original state (i.e., the fault arguments available to A
still describe the initial fault).)

Nota that the fault handler is assumed to start at the
first instruc*tion in the module. Either the fault-handling
cod>, (beginning with a LACT instruction) or a branch to the
fault-handlinqg code, is placed here.

PROGRAM STATE AFTER A FAULT

A key consideration in fault handling is the state in
which the machine leaves the program when a fault occurs.
In most cases the faulting instruction does not affect the
state of the program. A fault handler terminates with one
of four instructions: LOCAL-RETURN, which terminates the
fault handler and begins execution again of the faulting
instruction, CONTINUE, which terminates the fault handler
and resumes execution at the instruction that would have
been executed next, had the fault not occurred, RETURN,
which deletes the activation record for this module and all
later modules and returns control to the module that
previously called this module, and TRANSFER-FAULT, which
terminates the fault handler and causes the machine to
search for and call a higher fault-handler. Exceptions to
these general rules are discussed below.

1. Issuing the LRETURN instruction to return from a
fault generated by a RAISE-FAULT instruction
causes execution to resume at the instruction
following the RAISE-FAULT instruction.

2. Faults that occur during the processing of a
fi=ld, structure, or array result in the elements
processed before the fault taking on their new

values, but all remaining elements remain

PAGE 35

2y

unchanged.

“Tf an overflow or underflow fault occurs, the

target operand is given the undefined value.
Issuing the CALL instruction in a fault handler
causes any and all activations beneath that of the
currant activation to disappear (to avoid turning
the activation stack into a tree).

-

PAGE 36

6. INSTRUCTION SUMMARY

This section summarizes the instructions of the
machine. Chapter 7 describess each instruction in greater
detail.

General Instructions

The thr2e general instructions are MOVE, CONVERT, and
UNDEFTINE. Operands of the three instructions may be single
scalar cells, arrays, strings, domains, fields, and
structures. MOVE is used to transfer the value of one
operand to another. CONVERT performs the same function as
MOVZ, but it 3lso performs an explicit data conversion. For
instance if one used a MOVE instruction to move a character
value into an integer, the operation would fail and an
incompatibla-operands fault would occur. If one used a
CONVERT instruction, the operation would succeed; the
character valu2 would be converted into an integer according
to a set of predefined rules.

The UNDEFINE instruction is used to set the value of an
oparand to undefined.

Arithmetic Instructions

The arithmetic instructions include ADD, SUBTRACT,
MULTIPLY, DIVIDE, REMAINDER, ABSOLUTE, COMPLEMENT (unary
minus), and POWFR {(compute X to the Yth power). The ADD,
SUBTRACT, MULTIPLY, DIVIDE, REMAINDER, and POWER
instructions have two operands; the result is stored in the
first operand. ABSOLUTE and COMPLEMENT have one operand.
The operands must be arithmetic scalars or arrays.

The EQUAL-BRANCH-FALSE, NOT-EQUAL-BRANCH-FALSE,
LESS-THAN-BRANCH-FALSE, GREATER-THAN-BRANCH-FALSE,
LESS5-THAN-OR-EQUAL-BRANCH-FALSE, and
GREATER-THAN-OR-FQUAL-BRANCH-FALSE instructions have two
operands and an instruction address. The values of the
operands are compared; if the condition is false, control is
transferred to the specified instruction address. In
gen2ral the two comparison operands may be any cell types
(¢.9., pointer, character string, array, structure).

The remaining two instructions are DEFINED-BRANCH-FALSE
and ITERATF. Tha first tests an operand to determine if its
value is defined. ITERATE is provided for loop control in
iterative DO loops.

PAGE 37

Boolean Instructions
The boolean instructions are AND and OR, which have two
oparands, and NOT, which has one operand. The operands may
be boolean, boolean strings, or arrays of booleans or
hoolean strings.

Although many of the machine instructions can have
string operands, the string instructions work exclusively
with string operands. The operands may be boolean,
character, or token fields or strings.

The CONCATENATE instruction appends the value of one
operand to the end of the other operand. The MOVESUBSTRING
instruction overlays a substring in one operand onto a
substring in the other operand. The INDEX instruction
searches a string for a designated substring. The LENGTH
instruction returns the current length of a string.

The remaining instruction in this group is SEARCH.
Given an array or domain and a search value, it returns the
subscript valuz of the element whose valu= is equal to the
search value,

Control Instructions
The control instructions are associated with

unconditional transfers of execution flow. The CALL,
ACTIVATE, and RTETURN instructions are associated with calls
to modules, the LOCAL-CALL, LOCAL-ACTIVATE, and LOCAL-RETURN
instructions are associated with calls to local subroutines
within a module, and the BRANCH instruction alters execution
flow within a module.

The CALL instruction spascifies the entity being called
(entry-point within a module) and a list of arguments. A
subset of these arqguments may be designated as being A
raad-only, implying that the called modulz may not alter nor P
freea them. CALL allocates the storage spacified in the o
automatic storage die of the called module and branches to.
the specified entry point. If parameters are to be received
by a called entry point, an ACTIVATE instruction must be
ex2cuted in the called module before the parameters are . S
referanced. The ACTIVATE instruction specifies a list of
parameters., The instruction checks the compatibility of the
arquments and parameters and initializes the parameters (the
transmission method is by-reference). The RETURN
instruction freses the antomatic storage and transfers
control to the module that called this module.

o
&'-'1'!

The LCALL instruction specifies an instruction address
of 3 local procedure and a list of arguments. The first

PAGE 38

instruction of a local procedure must be LACT
(LOCAL-ACTIVATE). LACT speacifies a list of parameters and
causes the compatibility of the arguments and parameters to
be checked and the parameters to be initialized. LCALL does
not a1llocate any automatic storage, which means that the
machine provid2as only winimal support of local procedures.,
If storige allocation and scope-of-name rules are necessary,
they are the compilers' responsibility. The LRETURN
instruction transfers control back to the instruction
following the last LCALL instruction.

Th2 GUARD and UNGUARD instructions are provided to
protect criticil sections of instructions from simultaneous

exacu*ion, allowing one to use the program-design concept of
monitors,

This group of instructions is associated with the
manipulation of pointers and storage objects. The
COMPUTE-POINTER instruction produces a pointer to a
spa2cified operand. COMPUTE-INDIRECT-POINTER creates an
indirect pointer to a pointer., The CHANGE-ACCESS
instruction is provided to lower (further restrict) the
access code in a pointer. The ALLOCATE instruction is used
to dynamically allocate storage space, and the FREE
instruction is used to dynamically free an object (i.e., a
modul2 or a dynamically allocated storage space).
CHANGE-LOGICAL-ADDRESS allows one to rename (cause the

machine *o assign a new logical address to) an existing
object.

The LOAD-MODULE instruction defines a module to the
machine and returns a pointer to it. The
COMPUTE-ENTRY-POINTER instruction is used to compute the
logical address of an entry point or cell in a designated
module, The LINK instruction is used to assign a value to a
pointer cell in a loaded module. {COMPUTE-ENTRY-POINTER and
LINK are used to bind modules; that is, they are used by
"linkage-editing"™ functions.)

The DESCRIBE instruction, given a pointer as an
operand, returns certain descriptive information about the
pointer and that to which it points.

Tho CREATE-PORT, SFND, and RECEIVE instructions are
used for interprogram communication. SEND transmits a
message to a port, and RECEIVE accepts a message from a
port.

PAGE 39

A‘.' o Debuaging Instructions

Th2 last.'set of instructions are associated with
debugging and fault-handling functions. The ENABLE and
DISABLE instructions provids the program with a way to
dynamically enable or disable faults designated for the
module's fault handler. Ths RAISE-FAULT instruction is used
to 2xplicitly trigger a fault and enter a fault handler.

The CONTINUE instruction provides a fault handler with
the ability to resume execution of the faulting module at
the instruction following the faulting instruction.
(LRETURN is used to resume execution at the faulting
instruction.) If a fault handler determines that a fault
should be transferred to a "higher" fault handler, the
TRANSPER-FAULT instruction is used. .

The DISPLAY-TAG and DISPLAY-CONTENTS instructions are
intanded for debugging operations. Given a cell address and
a pointar to a module, the instructions will place either
the tag or the content of the referenced cell intop a token
string.

The TRACE and NOTRACE instructions are used for
monitoring execution flow. The TRACE instruction enables a

J‘ trace of branch instructions, call instructions, or both in
"‘. a spacified moduleg, and the NOTRACE instruction disables
t, the same. If a branch trace is enabled for a module, all

comparison-and-branch instructions, except ITERATE, generate
a branch-trace fault. Branch tracing can be specified for
situations where the branch is taken, the branch is not
taken, or both. If a call trace is enabled for a module,
all CALL and LCALL instructions generate a call-trace fault.

"

P

PAGE 40

7. INSTRUCTION SPECIFICATIONS

This chapter defines the basic instruction set of the

machinea.

General notes that are applicable to many of the

instructions ares

1.

Where an instruction permits two operands to be
arrays, the arrays must be conformable. That is,
they must have the same number of dimensions and
the same number of elements in each dimension,

The same applies to domains.

Where an instruction permits two operands to be
structures, the structures must be identical.

That is, ecach structure must contain the same
number of elements. Corresponding elements in
2ach structure must have identical attributes
(tags).

Whare an instruction specifies a particular cell
type as a valid operand, the operand can also be a
nested cell, unless otherwise noted. For
irstance, if an operand should be an integer, the
operand address can point to an integer cell, an
element in an array of integers, a relocatable
inteqger, an integer parameter, an integer domain
element, etc.

Most of the instructions can generate a common set
ot faults. For brevity, the set of fault types
named the general set is defined as including the
following faults: addressing, unknown data format,
protaction, invalid pointer, bounds-exceeded,
invalid operand type, undefined operand, and
incompatible operands.

"Arithmetic operands" are defined as the set -
integer, literal, fixed-point, and floating-point.
"Strina/field operands" are defined as the set -
boolean string and field, character string and
field, and token string and field. '"Character
operands" are the set - character field and
character string.

In the specifications of instruction formats, the
first field is the operation code, which consists
of on2 to four tokens depending on the
instruction. The abbreviation "OA" designates an
operand address; "IA" designates an instruction
address.

Literals are permitted as operand addresses,
except where the instruction alters the operand's
value or where the operand cannot bhe arithmetic.
The length of a boolean, character, or token field
is the value of its fixed-size field in the tagqg.
The langth of a bhoolean, character, or token
string is the value of the length field in the
contant component,

PAGE 41

GENERAL INSTRUCTIONS

Instruction: YOVE

Function: The value of the second operand is moved
into the first operand.

Format: 1,0Ak,0R7

Op=rands: Both operands must be compatible, that is,
both must be arithmetic, character, boolean,
token, pointers, or structures. Both operands
can be arrays or domains, implying that
an 2lement-by-element move is done, or the
first operand can be an array or domain and
the second not, meaning that the value of the
second operand is moved into each element.

If the operands are arithmetic but have
different types or sizes, the result is
first converted to agree with the first
operand. No rounding ever occurs in the
¥OVZ instruction. FWRhen a string or field is
movad into a string, the length of the first
oparand is set equal to the length of the
second operand. On a move into a character or
boolean field where the second operand is shorter
than the first, the first operand is padded on the
right with blanks (if character) or zeros (if
i boolzan). On a move into a token field where the
' " sacond operand is shorter than the first, the
‘ first operand is padded on the left with zeros.

The operand combinations (first/second)

token field character field
token field character string
token string character field
token string character string
are valid, and the combinations
character field token field
character field token string _
character string token field -
character string token string =T

are2 valid. A straight move is done (no .
conversion of values, other than the length). ; &

A move of a structure into a structure requires =
that both structures have the same number of - '
elements, and that the elements have
identical attributes. A structure move is
semintically identical to specifying a move
of @ach individual element.

Faults: General set (excluding invalid operand
type) plus overflow.

&

e

*

PAGE

Instruction: CONVERT

Function: The value of the second operand is moved
into the first operand. A limited number
of convarsions may be done if the types
of the two operands differ,

Format: 09,0A,07

Operands: The rules of the MOVE instruction apply,
but the rules concerning operand
compatibility are somewhat r=laxed.
Table 7.1 describes the valid conversions.
A blank in the matrix indicates that no
conversion will be performed and the
incoapatible-operands fault will occur. If a
conversion is attempted but the value of the
second operand does not meet the conversion
rules, a conversion fault will occur.
The operands cannot be entire arrays
or structures.

Faults: General set plus conversion and overflow.

¢

Opar
type

— e i . M s . o e T . o o i s e ot O S T . D

Operand2 type

d
f b
1 £
1
1
1

1

13

d
bl
i x
i 1 1
dfx 1 1
dfl 11
andl bf
cf 15 16 17 11
tf 7
bst

1

cst 15 16 17 11

tst 7

13

c t
f f
o 2
5

6

8 9
112
14 1
8 9
1 12
14 1

b ¢ t
S S s
t t t
4 2

)

6
1 8 9
11 1 12
13 14 1
1 8 9
11 1 12
13 14 1

Acts identical to a MOVE instruction.
Converts it from binary to a positive integer value.
All characters must be numeric ("0" - "9") except for

the first, which can optionally be a "“+" or "-",
The string must be numeric optionally preceded by
a "+" or "-", or an optional "+" or "-"

follovwed

PAGE 43

by zero or more numerics followed by a "." followed
by zero or more numerics. '
The string must be 1)

b‘/ a "4+" or "-"_ or 2)
followed by zero or morz numerics followed by a "."

followed by zero or mor=2 numerics,
form 2 followed by "E",
or "-", followed by one or two numerics.
Character(s) must be "Q" or Wwin,

numeric optionally preceded
an optional *"+'" or "-"

or 3) a number of

followed by an optional "+%

Token (s) must he 0000 or 0001.
Produces the character (s)
Produces the character (s
Produces th=2 token (s)

Character (s) must

Produces a string of the
if the

preceded hy a "-"
blank if positive.

Produces a string of the

if positive, a blank precedes the string.
a "-" follows the

llF"
"0"_"9" and
0000 or 0001.
be l|0"-"9" and "AII-IIF".
Produces a string of numerics,
if the number is negative.
form
number is negative or a

or "T",

or "F" or

"A"-IIF".

preceded by a "-"

“numerics.numerics",

form "0.numericsEnumerics",
If the number 1is negative,

a "-" precedes the string;

If the 2xponent 1is negyative,

Table 7.1

Conversion rules.

"E".

(o

o

PAGE

Instruction: UNDEFINE (UNDEF)
Function: The value of the operand is set to
undefined.
Format: 001,0A
Operands: The operand can be of any type. If it is
a token field, the instruction has no effect.
IZ the operand specifies a collection of
cells (array, domain, or structure),
each element receives the undefined value.
Fanlts: G=neral set (2xcluding incompatible operands).

ARITHMETIC INSTRUCTIONS

Instruction: ADD

Function: The values of the two operands are added
and the result is placed in the first
operand.

Format: 2,0A,0A

Onerands: Both operands must be arithmetic. Both
operands can be arrays or domains, implying

44

that an element-bhy-~lement addition is performed.

If the first operand is an array or domain and
the second operand is a scalar, then

the sacond operand is added to each element

of the first operand.

It the operands have different types or
sizes, the value of the second operand is
temporarily convert=d or adjusted to agree
with the first operand before the addition
is parformed. The rules of arithmetic are
identical to thos= in the PL/I language.
Floating-point results are alwvays
normalized.

Faults: Gen=aral set plus overflow and underflow.

Instruction: SUBTRACT (SUB)

Function: The value of the second operand is
subtracted from the value of the first
operand and the r=2sult is placed in the
first operand.

Format: 3,0A,0R4

Operands: See ADD instruction.

Faults: Genoral set plus overflow and underflow.

Instruction: MULTIPLY (MULT)

Function: The values of the two operands are
multiplied and tha result is placed in
the first operand.

Format: 4,0A,OA

Operands: Sea ADD instruction.

http:4,OA,O.lI

PAGE 45

Faults: General set plus overflow and underflow.

Notes: In the case of array operands, an element-
“by-2lement multiplication is done, not a
"matrix multiplication."

Instruction: DIVIDE

Function: The value of the first operand is divided.
bv the value of the second operand and
the result (quotient) is placed in the
first operand. If the first operand is an
integer, it becomes the integer whose magnitude
is the largest integer that does not exceed the
mAathzamatical quotient and whose sign is the
same as the sign of the mathematical quotient.

Format: 02,04, 0A

Operands: See ADD instruction.

Faults: General set plus overflow, underflow, and
divide.

Instruction: FEMAINDER

Function: The value of the first op=rand is divided
by the value of the second operand and
the remainder is placed in the first
oparand.

Format: 002,0A,0RA

Operands: Both op2rands must be integers.
Both can be arrays or scalars, or the
first can be an array and the second a
scalar.

Faults: General set plus nverflow and divide.

Tnstruction: ABSOLUTE (ABS)

Function: The sign of the operand is set to positive,

Format: 01,047

Operands: The operand must be arithmetic. If the
operand is an array, the operation is
performed on each element. S e

Faults: Genaral set (excluding incompatible -
operands) .

Instruction: COMPLEMENT (COMP) L=
Function: The siqn of the operand is reversed. . '
Format: F,OA
Operands: The opearand must be arithmetic. If the

operand is an array, the operation is

performed on each element.
Faults: General set (excluding incompatible

operands).

PAGE 46

Instruction: POWER

Function: The value of the first operand is raised
to the power given by the value of the
second operand and the result is placed
in the first operand.

Format: 008,01A,0A

Operands: Both operands must be arithmetic. TIf the
first operand is an integer, then the second
operand must be an integer.
The first operand can be an array, implying
that the operation is performed on each
element. The result is always rounded 1if
least-significant digits will be lost.
Floating-point results are always
normalized.

Faults: Genaral set plus overflow and uanderflow. .

COMPARISON-AND-BRANCH INSTRUCTIONS

Instruction: EQUAL-BRANCH-FALSE (EQBF)

Function: If the values of the operands are oqual the
instruction has no effect; otherwise, control is
transferred to the specified instruction address.

Format: 7,0A,034,IA

Operands: The operands must be compatible
(both arithmetic, character, boolean,
pointer, or token}. 1If they are arithmetic
but have different types or sizes, the
value of the second operand is temporarily
converted to agree with the first operand
before the comparison is made. (Overflow
faults never occur. TIf an overflow
condition is encountered, the two operands
are defined as unequal.)

Comparisons between arithmetic values of
dissimilar attributes are consistent with
the rules of PL/I.

If the operands are strings and/or fields of
unequal length, the shorter is temporarily
padd>d with blanks (for character) or zeros

(for hoolean or tokan) before the comparison

is made. Character and boolean strings/fields
are padded on the right and token strings/fields
are padded on the 1l=ft,

The first operand may be an array or domain,
or both operands may be arrays or domains,
in which case an element-bhy-element
comparison is done. If the first

operand is a structure, the second operand
‘must he an identical structure and an

. 8B

&

N

PAGE 47

elemesnt-by-element comparison is done.
The result is true only if the relation holds
between all corresponding elements.
If the operands are pointers, only the
logical addresses (not the access codes)
are compared.

Faults: General set (excluding invalid operand type)

- plus invalid transfer, yes-branch trace, and:

no-branch trace.

Instruction: NOT-EQUAL-BRANCH-FALSE (NEBF)

Function: If the values of the op2rands are unequal, the
instruction has no effect; otherwise, control is
transferred to the specified instruction address.

Format: 6,0A,0A,IA

Operands: See EQUAL-BRANCH-FALSE instruction,

Faults: See FQUAL-BRANCH-FALSE instruction.

v

Instruction: LESS-THAN-BRANCH-FALSE (LTBF)
Function: If the value of the first operand is less
than the value of the second operand, the
inrstruction has no effect; otherwise, control is
transferred to the specified instruction address.
Format: 8,07A,0A4,IA
Operands: The operands must both be
arithmetic, character, or token. If they
are arithmetic but have different types or
sizes, the value of the second operand is
temporarily converted to agree with the
first operand before the comparison occurs.
{Overflow faults never occur. If an overflow
condition is encountered, the first operand
is taken as being less than the second.)

Comparisons between arithmetic values of
dissimilar attributes are consistent with
the rules of PL/I.

Character strings/fields are compared

based on the collating sequence of char-

acters (EBCDIC representation). Token
strings/fields are compared by viewing then

as positive hexadecimal numbers. Unequal-
length strings or fields are padded as described
in the EQUAL-BRANCH-FALSE instruction,

The first operand may be an array or domain, or
both operands may be arrays or domains, in which
case an element-by-element comparison is done.
The result is true only if the relation holds
between all corresponding elements,

Faults: General set plus invalid transfer, yes-branch

#

't

PAGE 48
trace, and no-branch trace.

Instruction: GREATER-THAN-BRANCH-FALSE (GTBF)
Function: If the value of the first operand is
gr=2ater than the value of the second operand,
the instruction has no effect; otherwise, control
is transferred to the specified instruction address.,
Format: 9,0A,0A,IA
Operands: See LESS-THAN-BRANCH-FALSE instruction.
Faults: See LESS-THAN-BRANCH-FALSE instruction.

Instruction: LZSS-THAN-OR-FEQUAL-BRANCH-FALSE (LEBF)

Function: If the value of the first operand is less
than or equal to the value of the second .
operand, the instruction has no effect; otherwise,
control is transferred to the specified
instruction address.

Format: A,QOA,0A,TA

Operands: Sc= LESS-THAN-BRANCH-FALSE instruction..

Faults: See LESS-THAN-BRANCH-FALSE instruction.

Instruction: GREATER-THAN-OR-EQUAL-BRANCH-FALSE (GEBF)

Function: If the value of the first operand is
greater than or equal to the value of the
second operand, the instruction has no effect;
otherwise control is transferred to the
specified instruction address.

Format: B,0OA,0A,IA

Operands: See LESS-THAN-BRANCH-FALSE instruction.

Faults: See LESS-THAN-BRANCH-FALSE instruction.

Instruction: DEFINED-BRANCH-FALSE (DEFBF)
Function: If the value of the operand is defined,
the instruction has no effect; otherwise, control
is transferred to the specified instruction address.
Format: 004,0A,IA
Operands: The operand can be of any type.
If the operand is5 a token field, the
instruction has no effect. If the operand
specifies a collection of data (array
or structure), the condition is
true only if every =lement has
a d=2fined value. If the operand is a
character or boolean field, the
condition is true only if every
element in the field is defined.
Faults: General set (excluding incompatible operands
and invalid operand type) plus invalid transfer,
yes-branch trace, and no-branch trace.
The undefired-opsrand fault will

e

\

PAGE

s

.not occur unless the values of other cells
are needed to address the operand ({e.g.,
‘parameter, pointer, array subscript) and
one of these cells has the undefined value.

Instruction: ITERATE
Function: An addition is performed between two operands

Format:

and relationships among three operands are
tested, If true, control is transferred to
the specified instruction; otherwise, control
is transferred to the next instruction.
5,0A,0h,0A,IR :

Operands: All three operands must be arithmetic and cannot

Faults:
Notes:

be entire arrays or domains. The instruction
first performs the operation OP1=0P1+0P3
following the semantics of the ADD instruction.
Then a branch is taken if either or both or the
following expressions are true

(0P1 > 0P2) & (OP3 >= 0)

{({OP1 < OP2) & (0P3 < 0) .
The comparison between OP1 and NP2 follows the
semantics of the LTBF instruction.
General set plus invalid transfer.
ITERATE is intended to be used at the bottonm
of iterative loops.

BOOLEAN INSTRUCTIONS

Instruction: AND
Function: The values of th2 two operands are "anded"

Format:

and the result is placed in the first
operand.,
05,04,0A

Cperands: The operands must both be equal-length

Faults:

boolean strings or fields. The first operand
may be an array or domain, or both operands
may be arrays or domains.

General set,

Instruction: OR
Function: The values of the two operands are "or-ed"

Format:

and the result is placed in the first
operand.
06,0A,0A7

Operands: See AND instruction.

Faults:

General set,

49

PAGE 50

Instruction: NOT

Function: The value of the boolean operand is inverted.

Format: 005,04

Operands: The operand must he a boolean string or
field, or an array or domain of boolean
strings or fields.

Faul*s: General set (excluding incompatible
operands).

STRING AND SEARCH INSTROUCTIONS

Instruction: CONCATENATE (CONCAT)

Funcrion: The second operand is concatenated to the
first operand.

Format: 03,0A,0A

Operands: The first operand must be a string. The
second operand must be a string or field of
the same type. The length of
the first operand is incremented by the
length of the second operand, and the
value of the second operand is appended
to the end of the first operand.

Faults: Genzaral set plus overflow,

Instruction: MOVE-SUBSTRING (MOVESS)

Function: The substring {(part of a string or field)
designated by the second set of operands
is moved into the substring designated by
the first set of operands.

Format: 0O4,0A,0A,01A,0A,0A

Operands: Opa2rands 2 and 4 designate the two strings
or fields. The two operands must be
compatible (both character, boolean,
or token).

Operands 1, 3, and 5 must be integers.

Operand 1 specifies the length of

the substring to be moved. Operand 3
specifies the index of the start of the sub-
string in the target string/field, and operand
5 specifies the index of the start of the
substring in the source string/field.

Faults: General set,.

Notas: MOVESS performs an ovarlay rather than an
insertion, That is, the length of the
target string is unchanged.

PAGE 51

Instruction: INDEX

Function: A string or field is searched for a specified
"substring, starting at a specified
position. If the substring is found,
the first operand contains the index of
the start of the matching substring in
the string/field. If the substring is not
found, the first operand is set to zero.

Format: 07,0A,0A,O0A

Operands: The first operand must be an integer; it 1initially
specifies the index of the point in the string
at which the search should begin.
The socond operand is tha2 string or field to be
searchad.s The third operand must be a
string or field having the same type as the second
oparand; it represents the substring to be
located,.

Faults: General set.

Instruction: LENGTH _
Function: The langth of the second operand (a string

or field) is placed in the first operand.
Format: 028,0A,0A
Cperands: The first operand must be an integer

and the second opsrand must be a string or field.
Faults: General set (excluding incompatible

operands and undefined operand).

Instruction: SZARCH
Function: The instruction specifies an array or domain ce1l1, a
subscript value, and a key value. Fach element
of the array or domain is searched for the key
value, starting with the element specified in
the subscript operand. If an element is found,
the subscript operand is set equal to the
element's subscript. If not, the subscript
operand is set to zero. R
Format: 003,0A,0A,0A o
Operands: The first operand must be an integer; it initially -
contains the starting element number and is -
filled with the matching element number (or zero). LW
The second operand must be a one-dimension array
or domain (the operand address must be an array or =
domain address). The third operand is the key (the
value to be searched for). The elements of the
array are compared to the key value according to the
rules specified in the EQBF instruction.
Faults: General set.

PAGE 52

CONTROL INSTRUCTIONS

Instruction: CALL

Function:

Format: D,
Operands:

Faults:

Notas:

Execution of the current module is

susp2nded and execution of another module
begins at the specified entry point.
Allocation and initialization of automatic
storaqg2 is performed for the called module.
OA,X,A1,0A1,...,AXx,0AX

Th2> first operand is a pointer to a

module entry point (must have read access).
Th=> pointer must have been created by a
CREATE-ENTRY~POINTER instruction.

Th2 first immediate field is a two-token
hexadzscimal number (X) specifying the

numnber of arquments to be passed. The
suhbsequant ¥ pairs of fields specify the
arquments. Al is a one-token immediate field
indicating whether the argument is passed with
read/write access (value=0011) or read-only access
(value=0111), OAi is the operand address of the
arqument. Arguments cannot be literals or domains.
Arqgquaments cannot be relocatable cells where the
locator is a pointer or parameter pointer.

General set plus call-trace, invalid

transfer, and insnfficient storage.

v

If CALL is execut2d in a fault handler, any

and all activations beneath (after) the current
activation disapp=ar.)
The CALL instruction does not actually

transfer arqum=nts to the corresponding
parameters in the called module. This

must be done via an ACTIVATE instruction

at the called entry point.

CALL creates an activation record and

plac2s it on the top of the stack of the
activation records for the program.

Instruction: ACTIVATE (ACT)

Function:

Format: C,
Operands:

Taults:

Arqument /parameter compatibility is checked
and the specified parameters are initialized.
X,CA%l,...,CAX

The inmediate field (X) is a two-token
hexadecimal number specifying the number

of parameters. The following X fields must be
cell addresses of parameter cells. The parameters
are initialized to» the arquments transmitted
by th2 last CALL instruction executed in the
progranm.

Addressinqg, unknown data format,

invalid operand type, invalid

transmission count, incompatible operands.

ey

PAGE 53

Notes:. The rules for arqgument-parameter compati-

" bility are defined in Table 7.2. An ACTIVATE
"instruction need not be the first instruction at
B an entry point to a module, but an ACTIVATE
instruction must be executed before any reference
is made to a parameter cell. (If not, the
parameter would have the undefined value.)

»,
e
"\Tp

<

¢

If_the_parametar is
D-typed

Integer, pointer
Fixed-point, floating-
point, boolean, charac-
ter, or token field/
string

Structure

Array

PAGE 54

Then_the_argqument must be

Any primitive cell
Identical type

Identical type,

and identical size

unless the parameter is D-sized.

A structure having the same number

elements,

The type and size of each

el2ment must be identical to the type
and size of each element in the

parameter structure.

Arrays.in the

structure must have the same number
of dimensions as the arrays in the

parameter structure.

They must also

have the same upper-bound values and

element attributes,

unless the arrays

in the parameter structure are

D-typed, D-sized,

Array of identical dimensions.

or D-bounded.

Unless

the parameter array is D-bounded, the

bounds must be egual.

Unless the

parameter array is D-typed, the
element type must be identical.

Unless the parameter array is D-sized,
the element size must be identical.

Table 7.2 Rules for argument-parameter compatibility.

Bk ok b ko A K ok ok A KOR K A e ok e v iR e ok ook sk ke ik sk sk ok ok 0K 3k ok K ook K ok ke ok sk sk ke

Nota: In

thos2 situations

in Table 7.2 where the

®

* *
* parameter is D-typed, D-s3ized, or D-bounded, ACT *
* adjusts the proper fields in the parameter cell in the *
* activation record to match those of the argument. *
* Hence, ther2 is no need, during execution of the module,*
* for the machine to refer to the tag of an argument. It *
* need only raference its content component, which is *
=~ located through the parameter cell. *
¥

oo ok W M WK xR R e ok o ok a0 ook e ok R KRk 3k K ko 3 ek o ok e e okook e ke o sk vk vk ko Xk

Instruction:
Function:

RETURN

Execution of the current module is

terminated and execution is resumed after
the CALL instruction that called this

module,
Format: OA
Operands:
Faults:

None,
Non=,

PAGE 55

Notes: RETURN "undoes" the effect of the previous
" CALL and ACTIVATE instructions. That is,
‘the current activation record is destroyed.
If tha current activation record is the only one,
the program is terminated.

Instruction: LOCAL-CALL (LCALL)

Function: Execution is suspended and control is
transferred to an instruction within the
modula.

Format: OB,IA,X,A1,0A1,...,AX,0AX

Operands: The first address field specifies an
instruction address to which control is
transferred. The remaining fields are
identical to those of the CALL instruction,
Argquments cannot be literals, domains, or
relocatable cells.

Faults: General set plus invalid transfer, call
trace, and insufficient storage.
Notzas: LCALL, unlike CALL, does not create an

activation record, which means that inter-
nal procedures cannot be recursive (unless
the compiler uses an ALLOCATE instruction
to simulate tha effect of an activation
record), and that any scope-of-name rules
are the compilers' respounsibility.

Instruction: LOCAL-ACTIVATEZ (LACT) :
Function: Arqument/parameter compatibility is checked
and the specified parameters are initialized.
Format: 0C,X,CAl1,...,CAx
Operands: The immediate field (X) is a two-token
hexadecimal number specifying the number
of parameters. The following X fields must
be the cell addresses of parameter cells.
The parameters are initialized to the arguments o
transmitted by the last LCALL instruction R
executed in the program, or by the machine in B
the case of a LACT beginning a fault handler.
Faults: Addressing, unknown data format,
invalid operand type, invalid
transmission count, incompatible operands.
Notes: The rules for arqument-parameter compat- L =
ibility are the same as those for the ' ‘
ACTIVATE instruction.

Instructio
Function:

Formats: OD
Operands:
Faults:

Notes:

Instructio
Function:

Format: E,
Faults:

Instructio
Function:

Format: 00
Faults:
Notes:

PAGE 56

n: LOCAL-RETURN (LRETURN)

Execution is transferred to the instruction
following the last LCALL instruction
executed in the current module.

Non=a,

Invalid transfer (if there was no previous
LCALL instruction).

If LRETURN is executed in a fault-handler,
and if there is no outstanding LCALL
instruction in this module, execution of the
fault-handler is terminated and execution
begins at the faulting instruction.

n: BRANCH (B)

Control is transferred to the designated
irstruction address.

IA

Invalid transfer.

n: GUARD

If the current module is not in the gquarded
state, it enters the guarded state and
control is transferred to the next
instruction. If the current module is in
the guarded stat=2, program execution is
suspended until it leaves the guarded
state.

ocC

None,

If a program executes a GUARD instruction
after the same program has placed the
module in a guarded state, the GUARD
instruction has no effect.

The only exit from the quarded state is by
the execution of an UNGUARD instruction.
Executing a RETURN instruction, or an abnormal
termination of a module activation (e.g.,
as a result of a return of a higher fault
handler) does not affect the quarded state
of a module.

Instruction: UNGUARD

Function:

Format: 00
Faults: No

The state of the current module is set to
ungquarded.

oD

ne.

PAGE 57

ADDRESSING INSTRUCTIONS

Instruction: COMPUTE-POINTER (CPTR)

Function: The first operand is assigned the logical
address of the second operand.

Format: 0E,CA,0DA

Operands: The first operand must be a pointer. The
second operand may be any operand except a
parameter, literal, entire domain, or a relo-
catable or domain based on a nonpointer parameter.
The access code in the pointer is set to copy
and no-destroy; its read/write access is set to
the class of access that the module currently
has to the second operand.

The logical address is the address of the cell
representad by the second operand. If the '
second operand is a relocatable cell, the
address of the cell addressed by the relocatable
cell is computed and assigned to the first
operand. If the second operand is a relocatable
crll, its associated pointer must have copy
authority.

If the second opsrand is a structure, the
pointar points to the first element of the
structure.

Faults: Addressing, unknown data format, invalid
pointer, invalid operand type, and protection.

A& ok K Aok d oo sk ko S ok m ok ok i Ok ok sk ok sk sk ek M A0 i b o ok 3k ok P ok ok ok ok e i 3k o ok Xk ok 3 o o ke ik

* Note: Although activation records, being system objects,*
* have system object names, there is no need to assign *
* every activation record an obhject name, since the only *
* time it would be used is when a CPTR instruction refers *
* to a cell in the automatic storage die. Hence, for *
* reasons of performance, activation records should not bex*
* automatically assigned object names during creation. *
* Rather, CPTR should check to see if the activation *
* record has a name; if it doesn't, a name should be *
= assigned at this point. *
Aok MW % W X o a % ok ke b e ke sk i i ok 3K K koo Aok R sk ook N ol o oK R K S i 3 kK o ok ok K ok ke ok ok ook ko

.y
&

Instruction: COMPUTE-INDIRECT-POINTER (CIPTR)

Function: The first operand becomes an indirect pointer .
to the second operand.

Format: 0006,0A,047

Op=2rands: Both must be pointers. Operand 1 beccmes an
indirect pointer to operand 2 and is assigned
the access code in operand 2. Operand 2
must have copy authority and cannot be an
indirect pointer. Operand 2 cannot be a
parimeter pointer, or a relocatable or

-

Faults:

PAGE 58

domain-element pointer that is based on a
nonpointer parameter,
General set (excluding incompatible operands).

Instruction: CHANGE-ACCESS (CACC)
Function: The access code (authority) in the operand

Format:

is restricted (changed) to the value specified.

006,X,0A

Operands: The operand must be a pointer. The immediate

Faults:

field (X) is a single token. The immediate
field is OFRed into the access code of the
pointer, thus further restricting the
authority of the pointer,

General set (excluding incompatible
operands).

Instruction: ALLOCATE (ALLOC)
Function: N da*a-storaqge object is creatad, containing

Format:

allocated storage for the operand.
0F,X,0A

Operands: X is5 a on2-token immediate field. The last

bit designates whether the storage area should
he automatically destroyed upon progranm
termination. The value xxx0 indicates yes; xxx1
indicates no.

The +hird bit designates whether the storage should
be initialized to the undefined value. xx0x
sprcifies initialization to undefined; xx1x
specifies no initialization. (If no initialization
is raquested and the storage is to contain pointer
cells, the request is overriden and the pointers
are given the undefined value.)

The operand address must be a cell address,

array @lement address, or

array address. The operand must be relocatable
and can describe any type of cell, except a

domain., The locator cell referenced by the
relocatable c2ll must be a pointer or parameter
pointer, and RCA in the relocatable cell must be 0.
The relocatable cell cannot be D-sized or D-typed.
Any associated relocatable cells (if the relocatable-
cell operand is a structure, cannot be D-sized,
D-typed, or D-bounded.

If the oparand is an array and it is addressed
via an array addr2ss, the upper-bound fields

in the oparand are used to determine the size

of the allocated array. If the array is
addressed via an array-element address, the
upper-bound fields in the array tag must be zero

PAGE 59

(i.2., it must be D-bounded; in this case the
values of the subscripts are taken to

represent the upper bounds desired in the
allocated array.

The allocated storaqge is constructed identical to
the storage described by the nested tag (1.e.,
it includes tags) The access code in
the pointer is set to 0000 (read/write/
destroy/copy) and its logical address refers to the
data-storage object. If the storage is not
explicitly destroyed, it is destroyed when the
program ends (if X=xxx0).

Faults: Gen=ral set (excluding incompatible operands)
plus insufficient storage.

*--uvtnkx«tu*u*nut***x*x*t*&ﬁx**t**t**ttt**c**t*****##*i*tt

Given the nature of the architecture, it is recommended *
that programs specify "initialize to undefined" when *
2xecuting ALLOCATE. The option was provided primarily *
for compilers, when it is known that the ALLOCATE will *

»*

b2 followed by a programmed initialization. :
MWK oME KR Cu R N R A F owe ok O ok o K W ko o e ol ok 3 K K 3 3k ok ke e e ok ook e e sie ak e K i K e O ok ok K

¥ % % X ¥

Instruction: DESTROY

Function: The storage object specified by the operand
is destroyed.

Format: 007,0A

Operands: The operand must be a relocatable, pointer,
or parameter pointer cell., If it is relocatable,
the locator cell referenced by the relocatable
cell must be a polnter or parameter pointer and
the RCA field in the relocatable cell must be zero. .
The object referenced by the pointer is destroyed.
If the operand is a pointer, the object referenced
by i+ is destroyed.
In both cases the pointer must have destroy
access. The pointer is given the undefined o
value at the end of the instruction. o

If a DESTROY instruction is applied to a module

and that module is still active (i.e., activa- =
tion records still exist), the system-object ;
name of the module object is immediately des- et
troyed (meaning that it can no longer be ’ ‘
referenced, such as in a CALL instruction), but

the object 1s not actually destroyed by the

system until all of its activations cease to

exist., If a port is destroyzd on which pending

send and/or receive requests exist, the port is

destroyed and the pending SEND or RECEIVE

instructions terminate with the invalid-pointer

fault.

e

PAGE 60

Faul

e

General set (excluding incompatible
operands).

Notes: The pointer must name an entire storage
object. For example attempting to destroy
a cell within an activation record or a
cell within a dynamically allocated
storage area would result in a protection
fault.

S

Instruction: CHANGE-LOGICAL-ADDRESS

Function: An objact is given a new logical address by the
system. Its current logical address is destroyed.

Formats: COOA,0A

Operands: The operand must be a relocatable or pointer cell.
If it is relocatable, the locator cell referenced
by the relocatable cell must be a pointer and the
offsa2t field in the relocatable cell nmnust be zero.
The pointer must have read/vwrite/destroy/copy
authority and must refer to an entire object.
The object referenced by the pointer is. assigned
a n2w logical address, which is placed in the
pointer with read/write/destroy/copy access.
Any attempt after this point to use the prior
logical address of the object will result in an
invalid-pointer fault.

Faults: Genaral set (excluding incompatible operands).

Instruction: LOAD-MODULE (LMODULE)

Function: A module object is created.

Format: 009,X,0Aa,0A

Operands: X, a one-token immediate field, indicates
whether the module object should be
automatically destroyed upon program
termination. The value xxx0 indicates
yes. If it is to be automatically destroyed,
the same gualification about destroying a
module as descrihed under the DESTROY
instruction applies here.

The next operand must be a pointer and the
third operand must be a token string or

fi=2ld, 1Its valu= must have the form of an
external module (see Fiqure 3.1). The machine
chacks the validity of the format of the
module, copies it into internal storage,

and creates a pointer to it. The pointer

is assigned r=ad/vWrite/destroy/copy access
(but writing into a module, except with the
LINK instruction, is prohibited by the
machine) . All pointer and parameter cells in
the module are set to the undefined value.
Space is allocated within the module object

¢

Faults:

PAGE 61

for arrays within the static storage die.
General set (excluding incompatible

-operands) and invalid module and insufficient

storage. If the invalid-module fault occurs,

argquaent 5 transmitted to the fault handler

indicates the typs of problem. TIts value may

b

00001 - Error in indexes in module header

00002 - Unsupported CAS, IAS, or SIS value

00003 - Invalid cell or cell relationship in
the module

00004 - An instruction's operand address does
not refer to the beginning of a cell

Instruction: COMPUTE-ENTRY-POINTER (CEP)

Function:

A pointer value (logical address) 1is
computed for a specified instruction
in a specified module.

Format: OOF,O0OA,O0A,0QA

Op=rands:

Faul ts

I
\
(X

The first operand is the target pointer. The
second operand is a pointer to a module obiject.
The third operand is a token field of size

5 that specifies the instruction address of

an instruction in the module.

Th2 logical address of the instruction in

the module object is stored in the first
operand. The access code is set to

read/copy.

General set (excluding incompatible operands).
The addressing fault will occur if the
instruction address does not point within the
instruction space. The protection fault will
occur if the second operand does not have
read/copy authority.

Instruction: LINK

Function:

A pointer value is assigned to a specified
pointar cell in a loaded module.

Format: 00A,OMr,OA,ORA

Operands:

Faults:

Th> first operand is a pointer to a loaded
modula, The pointer must have write access.
The second operand is a token field of 4
size 5 which specifies a cell address in

the loaded module. The third operand is

a pointer. The value of this pointer is
assigned to the pointer cell specified

by the first and second operands.

General set (excluding incompatible
operands). The addressing fault will

occur if the target cell is not in the
adiress space or not a pointer.

@

(@

PAGE 62

Instruction: CREATE PORT

Function: A port storage object is created.

Format: 0007,X,0A

Operands: X, a one-token immediate field, indicates
whether the port object should be auto-
matically destroyed upon program termination.
The value xxx0 indicates yes.

The operand must be a pointer cell. The logical
address of the port is placed in the pointer cell,
with read/write/destroy/copy access.

Faults: General set (excluding incompatible operands)
plus insufficient storage.

Instruction: SEND .

Function: The specified operands (arguments) are transnitted
through a port to another program. Execution of
the instruction does not complete until another
program receives (via a RECEIVE instruction) the
arqguments from the port.

Pormat: 00B,0A,X,OA1,...,0AX

Operands: The first operand is a pointer to a port (must
have write access). X is a two-token immediate
field specifying the number of arguments to be
passad (0-255). The subsequent X operand
addresses specify the arguments. Arguments
cannot be literals, relocatables, or domains.

Faults: General set plus invalid transmission count. If
the number of arquments is unequal to the number
of receiver operands in the corresponding RECEIVE
instruction, the invalid-transmission-count fault
occurs. If the arguments are incompatible with
the types of receiver operands in the corres-
ponding RECEIVE instruction, the incompatible-
operands fault occurs, If an argument has an

undefined value, the undefined-operand fault occurs.

Any faults that occur after data movement starts
(protection, if A pointer argument does not have
copy authority, incompatible operands, undefined
operand) cause tha SEND and corresponding RECEIVE
instruction to complete with partial data movement,
These faults, as well as the invalid-transmission
count fault, cause both the SEND and corresponding
RECEIVE instruction to fault.

Instruction: RECEIVE

Function: The values of the first set of arguments (a
s2t of arqguments consists of those named in a
singla SEND instruction) in the specified port
are transmitted to the specified operands and
ra2movaed from the port. TIf the port does not

te At G

PR SRRV

~

PAGE 63

contain a set of argquments, execution of the
instruction does not complete until a set of

“argum=nts has been placed in the port.

Format: 00C,OA,X,021,...,0AX

Operands:

Faults:

The first operand is a pointer to a port (must
have read access). X is a two-token immediate
field specifying the number of receiver operands.
The { operand addresses specify the receiver
operands, They may be of any type except literal,
relocatables or domains. (They need not be
parameters, since the arqguments in the port are
transmitted by value. If a receiver operand is

a parameter, the valus is transmitted to the
associated argument, an arqument transmitted to
this module by a CALL or LCALL instruction.)

The rules concerning compatibility between

SZND arquments and receiver operands are
identical to those for the ACTIVATE

instruction (i.e., the attributes of the SEND
arquments and corresponding receiver operands
must be identical). “

General set plus invalid transmission count. If
one or more of the arguments have the undefined
value, if the number of SEND arquments is
unequal to the number of recziver operands, if
one or more SEND arguments are incompatible

with the corresponding receiver argquments, or if
a pointer SEND argument does not have copy
authority, the undefined-operand, invalid-
transmission-count, incompatible-operands, or
protection fault is generated in both the
RECEIVE instruction and the corresponding

SEND instruction (see description of the SEND
instruction).

Instruction: DESCRIBE

Function:

Given a pointer, returns information about the
pointer and that to which it points.

Format: 000B,0A,O0A,0NA

Operands:

The first operand must be an integer. The second
operand must be a one-dimensional array of .
character fields of size 6. (The operand address
must b2 an array address.) The array must contain
at least four elements. The third operand is the
pointer.

The instruction stores information about the
pointer and its re2ferenced object in operands 1
and 2. Table 7.3 defines the information.

OA2 (i) represents the ith element of the third
operand.

If p

Modu
Port
Data
Cz1l
Cell
Cell
Entr
Sour

10 -

PAGE 64

dinter refers to: Then resultant information is:

———————— ——— —— — S W~ —— . et e W e e V) o ewmmes Veml e ave—wn Vel oeon e

le 1 6 7 8 12
2 6 7 9 11

-storage object 1 6 7 10 1
in module (SSD) 3 6 7 11 12

in act. record 3 6 7 11 12

in DSO 3 6 7 11 1

y point in module 4 6 7 11 12
ce/sink stream 5 6 7 11 1

size of the object (number of tokens)

numher of programs currently engueued on the port
cell type (value = first four bits of tagq)
instruction address of entry point

unchanged

authori+ty possessed by the pointer

[

char 1 = blank or R (read)

char 2 = blank or W (write)

char 3 = blank or D (destroy)

char 4 = blank or C (copy)

char 5 = type of pointer - blank (direct) or
I (indirect)

char 6 = blank

typa of objact referenced by the pointer
char 1-2 = M0 (module obiject)
PO (port obj=ct)
DO (data storage object)
MC (cell in module - SSD)
AC {cell in activation record)
DC (cell in data storage object)
ME (entry point in module)
S5 (source/sink stream)
chars 3-6 = blank
module status

char 1 = blank or P (to be freed upon progranm
termination)

char 2 = blank or A (module is active)

char 3 = blank or 5 (module is in guarded state)

char 4 = blank or C (call trace is active)

char 5 = blank or Y (yes-branch trace is active)

char 6 = blank or N (no-branch trace is active)

port status

char 1 = blank or P (to be freed upon progran
termination)

char 2 = blank or S (send outstanding) or R
(receive outstanding)

chars 3-6 = blank

status

char 1 = blank or P (to be freed upon program
termination)

Foie e PR

PAGE 65

char 2-6 = blank

11- blank

12- first six .characters of the name of the module, or
associated module, object

Tavle 7.3 Result from the DESCRIBE instruction.

DEBUGGING INSTRUCTIONS

Instruction: ENABLE

Function: The specified token field is CRed
into the fault-code field as defined in
the module header. The fault-code field
is maintained in the module's activation
racord, meaning that this instruction
affects only the current activation.

Foraat: 0008,0A

Op2rands: The oporand must be a token field (of
size N) whose size is equal to or
less than the length of the fault-code
fiald, If the token field is shorter
than the fault-code field, only the
first ¥ tokens of the fault-code field
are changed.

Faults: Ganeral set (excluding incompatible)
oparands) and overflow,
Nota: The ENABLE and DISABLE instructions do not

alter the fault-code field in the module;
they affect only the current activation of
the module.

Instrtuction: DISABLE
Function: The inverse (negation) of the specified . e
token field is ANDed into the module's -
fault-code ti=ld in the activation record. :
Formats: N009,0A
Operands: See INABLZ instruction. g5
Faults: Genearal set (2xcluding incompatible
operands) and overflow. L

*a

Tnstruction: RATSE-FAULT

Function: A fault occurs. The two-token immediate
field ¥ ba2comes the fault type (i.e., the
value of the first argument to the fault
handler).

Format: 00OD,X

Faults: Nhatevar type is indicated by the immediate

PAGE 66

field X. X should not be zero or 22-27; if it
is, the fault-handling fault occurs. If X does
not spacify the value of an architected fault
type, the fault is program-defined.

For program-defined faults (28-255), even-valued
onas allow the fault handler to resume execution
after the RAISE-FAULT instruction, while odd-
number=d ones do not.

Instruction: CONTINOUE (CONT)

Furction: Execution of the fault-handler is
tarminated and execution resumes at the
instruction that would have been executed after
the faulting instruction, had the faulting
instruction not faulted.

Format: OOE

Faults: Fault-handling (if there is no current
fault, if continuing beyond the current
fault 1s not permitted, or if CONTINUE
is issued from a local subroutine called by a
fault handler).

Notes: If a fault-handler wishes to resume
execution at the faulting instruction,
it should issue the LRETURN instruction.
Tf the fault-handler wishes to resume
execution at the instruction following
the faulting instruction, it should issue
the CONTINU® instruction. The only faults
that may be followed by a CONTINUE instruc-
tion are call trace, yes-branch trace, no-branch
trac=, or an even-nunbered fault in the range
rang= 28-254 gen=2rated by a RAISE-FAULT
instruction.

Instriuction: TRANSFER-FAULT (TRFAULT)

Function: The current fault-handler is terminated
and a higher fault-handler (one lower in
the activation stack) is called. If an
applicable fault-handler cannot be found,
the program 1is terminated.

Forma*t: 7005

Faults: Fault-handling (same first and third
situations as in the CONTINUE instruction).
Notes: TRFAULT is us-~d by a fault-handler that

has a1 particular fault enabled, but after
r=ceiving such a fault it decides to send
it to a "higher authority."

PAGE 57

Tnstruction: DISPLAY-TAG (DTAG)

Function:

The tag of the designated cell is assigned
to a token operand.

Format: 2001,0A,0A,OA

Operands:

Faults:
Notas:

The second operand is a pointer to a loaded
module; the pointer nust have read access.
The third operand is a token field of size 5
which specifies a cell address in the loaded
modul=, The tag of this cell is moved

into the first op=rand, which must be a
token field or string.

The overflow fault is suppressed; if the

tag is longer than the first operand, the
first operand is filled with the leftmost
tokans of the tagq.

If th-= pointer is undefined, it is assumed
to dasignate the current module (i.e.,

an undefined-operand fault will not

occur for the second operand).

General set (excluding incompatible operands).
This instruction is intended only for use

by debugging functions., For planning
purposas, the largest possible tag is 84
tokens (a relocatable array of 15 dimensions).

Instruction: DISPLAY-CONTENTS (DCON)

Function:

The contents component of the designated
cell is assigred to a token operand.

Format: 0002,04,0a,0A

Operands:

Faul ts:
Notes:

See DTAG instruction. Overflow faults

are similarly suppressed. If the cell

is in the automatic storage die, 1its

valus for the most recent, currantly

active, activation of the module is

displayed. 1If the module is not active,

the c=211's initial valua in the die in

the module is displayed.

General set (excluding incompatible operands).
This instruction returns the contents of

a cell, which is not always identical to

its value. For example the contents of a char-
acter string is a three-token length field

and a variablo-size value; the contents of

a pointer is a on2-token access coda and a
20-token logical address.

If the c~21l is an array, the element contents

are re2turned as a contiquous strecam of tokens.
They are returnel in "row-major" order (all the
2lements in the first dimension, then the second,
and so on).

The size of a contents component can be

p——?

PAGE 68

detormined by first using a DTAG instruction.

Instruction: TRACE

Function: Designated traces is enabled for a specified
modul=a,

Format: 0003,%,0A

Operands: The one-token immadiate field (X) specifies
the type of trace. The value 01xx specifies a
a yes-branch trace, 0x1x specifies a no-branch
trace, and 0xx1 specifies a call trace.
The second operand must be a pointer to a
module and must have write access., The
svecified traces are enabled for all subsequent
activations of the module.

Faults: Geoneral set (excluding undefined operand .
and incompatible operands).
Not=2s: TRACZ and NOTRACE do not affect any existing

activations of the specified modules. They
take =2ffect when such modules are subsequently
called.

Instruction: NOTRACE

Function: Designated traczs are disabled for a
specified module,.

Format: 0004,%X,0A

Opeorands: Se-= TRACE instruction., If a trace wvas
not previously enabled in a module,
disabling it has no effect.,

Faults: General set (excluding undefined operand
and incompatihle oparands).

http:NOTR.a.CE

PAGE 69

8., OBJECT-CODE EXAMPLES

Fiqure2s 8.1 and 8.2 are PL/I procedures that will be
used as examples. The intent of the examples is to
illustrate how a PL/I program would be represented in this
architectursa.

Fiquras 8.3 and 8.4 represent the object modules that
th2 compiler would present to the machine. Rather than

illustrating the modules as a continuous token string, items

of interest (2.g9., individual cells and instructions) are

illustrated on separate lines. The first and second coluans
arce not part of the module; they indicate, respectively, the

index in the module of the first token on the line, and the

ind2x in the address space or instruction space of the first

token on the line. Each line is also supplemented with a
comment. The comments on the instructions take the form of
an assenbly language. The meaning of the assembly-language
statemants should be obvious. For instance

MOVT A, B(J),1
means move the literal 1 into the Jth element of array B in

the structure A, Names beginning with "4%" are instruction
labels (targets of branch instructions).

PAGE 70

MATCHES: PROCEDURE (BODY,UNRESNAME,MATCHCODE,SIZE) ;
DECLARE 1 BODY (*),
2 NAME CHAR (8),
2 TYPE CHAR(2),
2 ADDRESS POINTER;
DICLARE
MODUL® CHAR(2) STATIC INIT('MD'),
ENTRYPT CHAR{2) STATIC INIT (*EP'),
EXTREF CHAR(2) STATIC INIT('ER');
DECLARE NULL BUILTIN:
DECLARE MATCHCOD® FIXED DECIMAL (1) ;
DECLARE UNRESNAMF CHAR (8);
DECLARE SIZE FIXTD DECIMAL (4);
DECLARE
I FTZED BINARY(15):
J FIXED BINARY (15):
MATCHCODE=2;
IF((SIZE>0) & (SIZE-~>2000))
TH =Y
DO;
MATCHCODE=0;
DO I=1 TO SIZE WHILE (MATCHCODE=0) ;
IF(BODY (I).ADDRESS=NULL)
THEN DO;
MATCHCODE=1;
DO J=1 TO SIZE WHILE (4ATCHCODE=1);
IF ({BODY (I) .NAME=BODY(J) .NAME) &
((RODY (J) .TYPE=MODULE) |
(BODY(J) .TYPE=ENTRYPT)))
THEN DO;:
MATCHCODE=0;
BODY (I).ADDRESS=BODY (J) . ADDRESS:

END;
ELSE:
END:
IF(MATCHCODE=1) THEN UNRESNAME=BODY (I).NAME;
ELSTE;
END;
ELSE;
EIND;
END
ELSZ;
END;

Figure 8.1. Source Module MATCHES

Offsets

001
C1A
024
026 01

1C
29
36
40
Ur
57
6D
74
0oa0 78
83
RB
93

CcOd 01

34
us

5B

80

8F
99

A8
B2

PAGE 71

Comments

0002400026000A0000C000173 Header

2200000200 CAS/IAS/SIS/SA/Faults
30 Module name (omitted)
671€00000000C¢8C3001C BODY (parameter array of

" FFFFFFF structures)
1000100008008 NAME (domain character field)
1000100108002 TYPE (domain character field)
1000100149 ADDRESS (domain pointer)
6EL100000FFFFFFF MATCHCODE (fixed-pt. param.)
6BOJBODOFFFFFFF UNRESNAME (param. character)
6 EU00000FFFFFFF SIZE (fixed-pt. param.)
FRO0CHD 1
F80NNOQ J
BO0O2DUCH MODULE (character field)
B0OO2CSH5D7 ENTRYPT
BNO2C5D9 EXTREF
24302000 12000
counN1u4ruoseE ACT 4,BODY,UNRESNAME,MATCHCODE,SIZE
140002 MOVE MATCHCODE, 2
95E0008B2 GTBF SIZE,0,%H
A559382 LEBF SIZE,2000, %H
140000 MOVE MATCHCODE, O
1610001 MOVE I,1
AADS5ZB2 LEBF I,SIZE,%H
74000082 %A: EQBF MATCHCODE, O, %H
00u366DUS8 DEFBF BODY.ADDRESS (I),%B
EAR B %G
140001 %B: MOVE MATCHCODE, 1
174001 MOVE J, 1
A7U5E99 LEBF J,SIZE,%F -
74000199 %C: TQBF MATCHCODE,1,%F
T71C6D1CTUBF EQBF BODY.NAME(I) ,BODY.NAME (J) ,%E
629747880 NIBP BODY.TYPZ(J) ,MODULE, %D
729748387 EQBF BODY.TYPE(J) ,ENTRYPT, %E
140000 %D: MOVE MATCHCODE,O
1366D3674 MOVE BODY.ADDRESS (I),BODY.ADDRESS (J) .
574580015 %E: ITERATF J,SIZE,1,%C
7400271A8 *F: EQBF NATCHCODE, 1, %G
14F 126D MOVE UNRZSNAME, BODY. NAME (I)
56DSE00134 %G: TTERATE I,SIZE,1,%A P
0A %“H: RETURN

Figure 8.2, Object Module MATCHES

PAGE 72

TESTEST: PROCEDURE OPTIONS (MAIN):
DECLARE SIZE FIXED DECIMAL (4);
DECLARE 1 B (7),
2 N CHAR(8),
2 T CHAR(2),
2 A POINTER;
DECLARE UNNAME CHAR(8) INIT('XXXXXXXX'),
CODE FIXED DECIMAL(1) INIT(9);
DECLARE NOULL BUILTIN;
B (1) N="ABCDEFGH";
B(1)«T=*ER';
B(1).A=NULL;
3(2).%='ABCDEFGH";
B(2).T='Mn";
B(2). A=ADDR (UNNAME) ;
SIZ2E=2; \
CALL MATCHES (B,UNNAME,CODE,SIZE);
END;

Fiqure B.3. Source Module TESTEST

Off

01
14
24
26

84

sets

© 2200000000

01

09

22
2F
3cC
u6
S5A
5F

75
89

91
01

Figure 8.4.

00

TYIF000O
7108029000007803002
000000
10008000CBOOS
1000900108002
1000990149
BOOBE7TETETETRTETET
21009
gro00000000C0000
000000
BO0O8C1IC2C3CH
CS5C6C7CB
B002C5D9
BOO2DUCH

coo0

12200175
12F00189
0013C001
12200275
12F00191
0E3C00240

109002
DSFOU43090CF
346352301

OA

2

ACT

PAGE 73

Comnments

-000240002600084000BEQO010E Header

CAS/TAS/SIS/SA/FC

No module name used
SIZE

B (array of structures)

N (domain character field)
T (domain character field)
A (domain pointer)

UNNAME (character field)
COoDE

MATCHES (pointer)

"ABCDEFGH!
1 PR

HL
0

MOVE B.N(1),'ABCDEFGH!

MOV
UND
MOV
Mov

E B.T(1),'ER?
EF B.A(1)

E B.N(2),'ABCDEFGH®
FE B.T(2),'4D!

CPTR B.A(2) ,UNNAME
MOVE SIZE,2
CALL MATCHES,4,R/W(B),R/W (UNNAME),

RET

R/W (CODE) , R/W (SIZE)
URN .

Ohject Module TESTEST

PAGE 74

CALCULATION OF THE ADDRESS-FIELD SIZE

The use of variable-size address fields places a burden
on th> compiler in the form of determining the appropriate
siz» of the adlress field for the module being compiled. Of
conrse? A simple-minded compiler need not face up to this
buri=n; it coull simply use a fixed size address field that
is large enough for the largest module that can be compiled,
but such a solution does not 2xploit the advantages of
variible-size addresses.

The address field size is a function of the size of the
addross space., The foraula for calculating the smallest
addross field is

N = CEZTL(log (1 + address space size - size of last cell))

where CRIL rounds a number to the next-higher integer. All
logarithns are base 16.

The other type of variable-size address is the
instruction address. The formula for calculating the
small2st instruction addre2ss needed is:

1 = CEIL(loag(B + MI))

whera
% - nunber of tok=ns in the instruction space
axcluding all instruction address fields and
excluding the last instruction that is the
target of a branch or LCALL, and all
subs2quent instructions
I - numbaer of instruction address fields

Since M appears on both sidaes of the equation, 1t can be
solvad by substituting the values 2, 3, ... for M until both
sid«s5 are =2qual,

Compiler Considerations

In producing a conmpiler for this architecture the
following approaches are available:

1. Use fixed larqge values for N and M. This is the
simplest approach but it does not take advantage
of the use of short2r addresses.

Use the formulae for N and M to find the optimal

sizes. This approach takes full advantage of the

encoding but it complicates the compilers,

3. Rather than using the formulae, use a few simple
h»uristics to qu-ss at the optimal N and 4. If,
during code g-neration, the compiler finds that N
or M is too small, incra2ment it by one and begin
the cod=2 generatinn again.

u, Choosa constant values for N andl M. For instance

(]
.

PAGE 75

N=4 s=ems to be a reasonable upper bound, for it
defines an address space of a maximum of 65535
“tokans (which seems even more reasonable
considering the fact that space for array elements
does not appear in the address space). A separate
optimization or "module-compression™ program can
then b= written that is compiler and language
independent. Its function is to take a module
with a possibly over-sized address field and
produce an equivalent module with a minimal
address field.

PAGE 76

9. THE ONE-LEVEL STORE

Th> machine has no I/0 instructions; instead the
architactur= is based or th2 notion that "storage is storage
is storadge™ and that "storage management is storage
minajoment is storage management." That is, why represent
secondary storaqge with an interface that is different from
that of main storage?

Tf one employs the on=2-level-store concept, then the
architacture is s2en to alr2ady have memory I/O (as distinct
from source/sink I/0) with no changes to the definition of
th> architecture, That is, one can think of a file as a
ona-dim2nsinnal array of structures. Each array element
corresponds to a record in the file., The nested tag in, the
array cell woull likely be a structure, where the structure
dafines tho fields in each record. Since the existing
michin2 instructions are generic and apply to arrays and
arriy el=ments, the "I/0 instructions®" ara the existing
irstructions.

Storag-= ar=as are creatad with thes ALLOCATE
instruction. The immediate field in the instruction
indicates whether the object is to be destroyed at program
termination., To create a permanent "file," a program issues
th2 ALLOCATE instruction, indicating with the immediate
fi~l1 that the created data-storag2 object should not be
d2stroy=2d upon program termination. The ALLOCATE
instruction points to a roalocatable array which in turn
points to a pointer cell. The logical address (capability)
tha* 1is returned serves to uniquely identify the file until
it is deleted (with a DESTROY instruction). The file is
constructed by executing MOVE instructions to move data into
the arraiy elements.

Operating-system directory services will likely exist
to allow programs to say such things as "associate the
following logical address with the following symbolic nanme
and rew=2wber the association," "given the following symbolic
nam>, give me the associatel logical address if I am so
authoriz=4d," and "authorize the following user to do the
above with +his particular symbolic name."

S5iven the removal, at the architectural level, of the
distinction h2tween main-memory operations and
secondary-storajge I/0, 4 natural extension is to carry this
notion into programming languages, that is, the removal of
fil2 T/0 statements from programming languages.

One problem associated with a one-level store as
described above that deserves more research is the mechanism
with which a program searchz2s a file (represented as an
arciy) to locit> a particular record. (array element). If

http:p~rmanp.nt
http:storCl.ge

PAGE 77

hash addr2ssing can be used, representing files as arrays is
natural. Howavar, if hash addressing is inapplicable for a
particular f£il=, the only other alternative appears to be an
iterative sequential search (unless the file is ordered by
the s2arch field, in which case a binary search could be
usa2d), which is unacceptable for large files. Hence the
possibility of storing one or more indexes with array cells
com?s to mind. Another possibility is allowing designated
arrays to be content-addressable. 1In short, the
r=2lationships between the concepts of one-level stores and
data base processing need further investigation.

o
>
]
t
~
(a2}

10. THE CONCEPTS OF A "PROGRAM" AND "I/O"

I+ should be apparent that the architecture contains
nothing representing the concept of source/sink I1/0 (e.g.,
terainals, card recad=»rs, magnetic tapes). The intent is
thit 1 processor having this architecture be coupled to an
xt=arnal system (e.g., host system, intelligent I/O
channel), that the external system perform such functions,
and that the SZND/RECEIVE 1lnstructions serve as the I/0
mechanisn by communicating with the external system. The
intarface with the external world is not described here, as
it is defined =lsewhere. Also, 1t is not yet clear whether
this interfacz will be architected or whether it will be
left a3 "implenecntation dependent.”

To summarize tha SFND/RECFIVE mechanism when used for
this purnose, when a prograam executes a SEND or RECEIVE
instruction and the object being referenced is not a port or
any other recoqnizable type of storage object, the
information in the instruction is converted to an
appropriate form and transmitted to the external system. If
the logical address represents something meaningful to the
external syst2m (2.9., the name of a "source/sink strean"),
it performs the de2signated I/0 operation, using the SEND
arguments or reca2iver operands. Currently, a SEND or
RECEIVE instruction naming an I/0 port can specify only a
single operand, and its type must be a character or token
field or string.

The SWARD architecture has been specified as a
"single-proaram" architecture, although it does contain a
faw indications of nmultiple programs (e.g., the concept of a
port). In particular, the architecture (purposely) contains
no concept of intarrupts nor any way to switch control among
projrams. Th2 intent 1is that the concept of multiple
projrans (or processes), if needed, be created by the
ext=rnal system. The interface to the external system also
contains provisions to allow it to support and control the
execution of parallel processes on the SWARD machine. The
basis of the mechanism is the provision for multiple stacks
of activation records, each headed by an internal object
called an activation-stack header, and signals to diract the
SHAAPD machine to Juickly switch from one stack (process) to
another.

PAGE 79

1. INSTRUCTION-FORMAT SUMMARY

SWAID INSTRUCTION SET SORTED BY OPERATION CODE

NAME ABBREV. FORMAT

A XTI UNAART AL @R WS R R R W N K m ORI T R A K WK K TR R R OK K KW % R WO A ok ko gtk e ok K kR
MOV MOVE 1,0A,0A

ADD ADD 2,0A,0A

SUBTRACT SUR 3,0A,0A

MULTIPLY MULT 4,0A,0A

ITERATE ITERATZ 5,0A,0A,0A,IA
NOT-FOUAL-BRANCH-FALSE NEBF 6,0A,0A,IA
EOJAL-3RANCH-TALSE EQ3F 7,0A,0A,IA
LE2SS-THAN-BRANCH-FALST LTBF 8,0A,0A,IA
GREATTR-THAN-BRANCH-FALSH GTBF 9,0A,0A,IA
LiS5-THAN-EQUAL-B2ANCH-FALSE LEBF A,0A,CA,IA
GREATIR-THAN-TQUAL-BXANCH-TFTALSZ GEBF B,0A,0A,IA

ACTIVATE ACT C,X,CA1,...CAX

CALL CALL D,0A,X,A1,0a1,...AX,0AX
BRANCH B E,IA

COMPLEMENT comMp F,O0A

ABSOLUTE ABS 01,0A

DIVIDE DIVIDE 02,0A,0A

CORCATENATT CONCAT 03,0A,0A
MOVZ-3UBSTRING MOVZSS 04,0A,0A,0A,0A,0A,0A
AND AND 05,0A,0A

O%k OR 06,0A,0A

TNDEX INDZX 07,0A,0A,0A

LEN5TH LENGTH 08,0A,0A

CONVERT CONVERT 09,0A,0A)
RETURN RETURN 0A

LOCAL CALL LCALL 0B, IA,X,A1,0A1,...AX,0QAx
LOCAL ACTIVATE LACT 0Cc,%,cA1,...CAX

LOCAL RETURN LRET 0D

COMPUTE POINTTD CDPTR 0E,QA,OA

ALLOCATE ALLOC OF,X,0A

UNDTFINE UNDEF 001,04

REMAINDER REMAIN 002,0A,0A

SETARCH SFARCH 003,0A,0A,0A
DEFINED-BRANCH-FALSE DEFBF 004,0A,IA

NOT NOT 005,0A,0A

CHHANSGT ACCESS cACC 006, X,0A

DESTROY DESTROY 007,0A . -
POWTR POWER 008,0A,0A

LOAD MODULE LMODULE 009,X,0A,0A

LINX LINK 00A,0A,0A,OR ‘

STND SEND 00B,0A,X,0A1,...0AX
RECTIVE RECEIVE O09C,OA,%,0A1,...0AX
FAISE FANLT RFAULT 00D, X

CONTINUE CONT 00E

COMPUTE F*NTRY POINTER CEP 0O0F,0A,0A,0OA

DISPLAY TAG DTAG 0001,0A,0A,OA

DISPLAY CONTEIZNTS DCON 0002,0A,0A,0A

TRACE) TRACE 0003,X,0A

http:PO:::~.rT
http:SUrlTEr.CT

NOT2ACE
TRANSF=ER
CO¥PUTE

FAULT
INDIRECT

CREATE PORT

ENABLE
DISASLT

POINTEDR

CHALGE LCSTCAL ADDEESS

DESCRIB™
GiIJALD
NGTARD

NOTRACE
TRFAULT
CIPTR
CPORT
SNABLE
DISABLE
CLA

ESC
GUARD
UNGUARD

0004,%,0A

0C05

c006,0n,07
0007, X,0A

0008,0A
0009, 0A
Q00A,0A

PAGE 80

000B,0A,0A,0A

000cC
Q00D

