TECHNICAL INFORMATION EXCHANGE SORTING ALGORITHMS AND OPERATING PROCEDURES FOR CARD SORTING ON THE IBM/360 MODEL 20 WITH MFCM 2560 Mr. W. N. Holmes IBM Australia Pty. Limited Box 88, P. O. St. Kilda Victoria, Australia September 14, 1965 This paper describes, compares, and evaluates four different card sorting algorithms, giving extensive examples, tabulations and timing charts. This paper also presents certain systems aspects and operating procedures which make system/360 card sorting more attractive than conventional card sorting. For IBM Internal Use Only #### CONTENTS | | Page No. | TITLE: | Sorting Algorithms & Operating Procedures for Card Sorting on the IBM/360/20 with MFCM 2560. | | |-------------------------------------|----------|----------------------|---|--| | Abstract | 1 | AUTHOR: | W.N. Holmes | | | Introduction | 2 | | | | | Straight Merge | 4 | | | | | Retrospective Merge | 5 | DATE: | December 30, 1964 | | | Compressive Merge | 7 . | | | | | Long Input Strings | 10 | | | | | Synchronisation | 12 | DIRECT ENQUIRIES TO: | W.N. Holmes, IBM Australia Pty. Limited, | | | Variable Algorithms | . 14 | | P.O. Box 88, | | | Reduction in Sorting Time | 16 | | St. Kilda, Victoria, Australia. | | | Continuous Operation | 18 | | | | | Reversed Files | 20 | ABSTRACT: | This paper describes, compares and | | | Comparison with Unit Record Sorting | 22 | ABSTRACT. | evaluates four different card sorting algorithms, giving extensive examples, tabulations and timing charts. | | | Appendices | | | This paper also presents certain systems, aspects and operating procedures which make System /360 card sorting more | | | Index | 24 | | attractive than conventional card sorting. | | | Section A - Merge Examples | 25 | | | | | Section B - Logic Diagrams | 39 | | | | | Section C - Test Results | 42 | | | | | Section D - Graphical Summary | 46 | | | | | Section E - Test Program | . 49 | | | | #### INTRODUCTION This paper was inspired by several intra-office discussions on the utility of the 360/20/2560 for card sorting and the efficiency of the supporting program. The investigations carried out to support this paper were hastily executed and the results included in the appendices must not be regarded as anything but flimsy evidence, based as they are on small samples called in an informal manner from the middle of the Smiths in the Melbourne Telephone Directory. The algorithms investigated were merely the first few which sprang to mind and many more remain even unmentioned. In particular, digit sorting similar to conventional card sorting can be performed with the MFCM, but this has been ignored. The casual reader will be mainly interested in the practical conclusions drawn in the section entitled "Comparison with Unit Record Sorting". The paper will be most easily followed if the appendices are separated from the body of the paper for easy reference while reading the narrative. #### INTRODUCTION (continued) Relevant IBM Publications are:- C26-3601 IBM System/360 Model 20 Punched Card Utility Programs F28-8001 General Information Manual Sorting Methods for IBM DP Systems #### STRAIGHT MERGE The concept of merging to create a file with a single sequence is quite distinct from that of digit sorting as with an 082 card sorter. It is assumed that the reader is familiar with both concepts. The straight merge simply feeds two halves of an input file (one half from each hopper) and merges, string for string, then flip/flop stacks output, string by string, into two stackers. The process is exemplified in Appendix A1, with a logic diagram in Appendix B1. Basically, the gain G of the process will be 2.0, the gain being defined so --- G = No. of output strings No. of input strings However, with small input strings, the gain may rise slightly above 2.0. This adventitious process is illustrated in Appendix A2. Using a straight merge, 2N input strings may be merged into a single sequence with N passes of the file. - 4 - #### RETROSPECTIVE MERGE To improve the gain available with straight merging, the circumstances of adventitious gain (as shown by Appendix A2) may be amplified. The value of the control field of the last card selected into EACH stacker is relevant. This information is available to the controlling program and it would be a pity not to use it. A "retrospective" algorithm might be loosely stated as follows. Feed the lower or only "possible" card into the highest "possible" stacker. If neither card is "possible", feed the lower card into the highest stacker. By "possible" card is meant a card that can be stacked without causing sequence break. Also, a "possible" stacker will not break sequence if the card is selected into it. The ranking of stackers is by control field of the last stacked card. The algorithm as stated is for ascending sequence sorting. The retrospective merge is exemplified in Appendix A3, with a logic diagram in Appendix B2. The example of Appendix A3 may be compared with that of App. A1. The retrospective merge is compared with other merges in Appendix A4. #### RETROSPECTIVE MERGE (continued) The appendices referred to above show input strings of average length 2. The process whereby a gain larger than 2 is achieved is more clearly illustrated in Appendix A6 which illustrates a retrospective merge with input string length of about 5. One characteristic of the algorithm for retrospective merging is that its scope is not limited to a mere two stackers. The merge illustrated in Appendix A5 shows the merge of Appendix A3 but using three stackers. The tabulated test results of Appendix C4 give an indication of the dependence of gain on the number of stackers used. #### COMPRESSIVE MERGE In seeking to improve the retrospective merge, its operation must be examined in detail. Consider the merge illustrated in Appendix A3. Notice that card 731 in the primary feed is held (waiting for the 500 and 583 cards to be added to sequence in stacker 2) despite its close proximity to the 709 card in stacker 1. This card would have been held up even if it had been a 710 card. The 731 card is, in fact, followed by cards 504 and 558 which might advantageously be merged with cards 500 and 583 in the secondary feed. The retrospective merge is designed to feed as many cards as possible without causing a sequence break. Taking a more indirect approach, it might be expected that a merge designed to minimise the gap in current stacker sequences, regardless of sequence breaks, would achieve a higher gain, at least with short input strings. Hence, an algorithm for "compressive" merging might be stated as follows. Calculate the "gap" for each feed in combination with each stacker. Select the feed/stacker combination which gives the smallest gap and feed that card into that stacker. #### COMPRESSIVE MERGE (cont.) The gap across a sequence break is calculated according to the modulus of the control field. For example, with a positive three digit numerical field, the gap between 999 in the stacker and 001 in the feed is 002. With alphabetic fields the gap might be calculated by depth of match of the two fields, or by binary subtraction, or some such subterfuge. With /360 internal coding, the use of binary subtraction would tend to emphasise the sequence break, but not as utterly as retrospective merging. In fact, some experimenting with such a binary subtraction with all fields might yield some interesting effects, giving, as it would, a blend of retrospective and compressive merging. The compressive merge is exemplified in Appendix A7, with a logic diagram in Appendix B3. Note that the = exit from the gap comparison was not implemented in the program used to generate the test results of this paper. The example of Appendix A7 may be compared with those of Appendices A1 and A3. Also, the tabulated test results of Appendix C2 show that the expected higher gain is definitely attained with short input strings. The compressive, like the retrospective merge, is not limited to use with two stackers. Appendix A8 (cf. A5) shows the compressive merge using three stackers, and Appendix C4 tabulates test results showing the dependence of gain on the number of stackers used. #### COMPRESSIVE MERGE (continued) The appendices referred to above show input strings of average length 2. The process whereby a gain larger than 2 is achieved is more clearly illustrated in Appendix A9 which shows a compressive merge with input string length of about 5. Comparison of Appendices A9 and A6 clearly displays the essential difference in operation between retrospective and compressive merging. #### LONG INPUT STRINGS The results described so far show that sophisticated merges give gain significantly higher than a straight merge for short input strings. However, with long input strings, the compressive and retrospective merges degenerate to operation very similar to the straight merge. This effect will be seen in Appendix A10, which shows a retrospective merge with input string length of about 8. The similarity to a straight merge is immediately evident. The compressive merge tends to give similar results although cards may be fed in a slightly different sequence or large gaps in input sequence may hold up one feed for a time, giving very poor gain locally. The extra gain achieved by the retrospective and compressive merges comes from the switching of the output from one stacker to another. At the point of switching, the control field in the stacker currently being fed approaches that in another stacker, and the gap in sequence allows the high stacker to take over the output, thereby reducing the gap which would occur by straight merging. In effect, each stacker has a switching point which (when using two stackers) steadily backs down the sequence until it crosses a sequence break, thus causing one less than the straight number of strings in one
stacker. #### LONG INPUT STRINGS (continued) Hence, what might be called local gain approximately equal to one half the average gap will be obtained at each stacker switch. This gain should actually be greater than half the average gap since stacker switching might be expected to occur preferentially at the larger gaps. In commercial sorting applications cards usually cluster, and this will allow greater gain than a random distribution. In the extreme, groups of identical cards will reduce the effective string length since they will be fed and stacked as though they were a single card. The use of more than two stackers will increase the gain possible since each stacker will have a switching point so that each output string will tend to spread itself over all available stackers. Appendices All and Al2 illustrate this effect. #### SYNCHRONISATION Consideration of Appendices A11 and A12 reveals weaknesses in the operation of both retrospective and compressive when the input comprises long strings. The effect is that a blocking condition may occur to prevent one feed from contributing to the output until the block is removed at a significantly later stage. The effect can be so pronounced that merging of the input strings does not actually take place for some time and the controlling program only works one feed. Appendix A11 shows that a high card, in conjunction with one or more low stackers, is a blocking condition for the retrospective merge. Appendix A12 shows that a card fed such that a large gap in sequence separates it from every stacker constitutes a blocking condition for the compressive merge. The blocking effect may be prevented by forcing the input to merge, string for string, using the knowledge of the previously stacked cards to control the stacking of subsequent cards but not the feeding of the cards. The method might be thought of as synchronisation of the primary and secondary feeds. #### SYNCHRONISATION (continued) Benefit from synchronisation would not be expected unless the average input string length were greater than the number of stackers used. Notice that application of this technique removes the distinction between retrospective and compressive merging, emphasising that the relative success of compressive merging at low string length is due to its better control over the cards fed, not from more efficient stacking. Synchronisation was applied to the retrospective merge section of the program which produced the test results of the appendices to this paper. The results of synchronisation may be seen in Appendices A4, A13, C2, C3, C4, D1 and D2. In particular, the comparison in Appendix A4 between the synchronised retrospective merge and the straight merge demonstrates their similarity, at least on the input side. The synchronisation described above is not the only method of removing the blocking effect, but it has the virtue of simplicity. #### VARIABLE ALGORITHMS The algorithms and variations already described are of varying effectiveness depending on such factors as input string length, stackers used and range and type of control field. This variability suggests that increased overall effectiveness could be obtained by keeping a measure of certain factors such as input string length (in each feed, perhaps) and switch from one type of merge to another when conditions appear to be favourable. For example, a weighted moving average string length or control field gap size might be kept (and revised for each card read to enable a switch to be made part way through a long string) or a range (perhaps weighted moving average again) for each digit or character of a field and/or for each field as an entity. Appendix D3 gives an estimate of the performance a variable algorithm might achieve, compared with the performance of simpler merges. It must be emphasised that this appendix is based on rather insubstantial test results and extensive guesswork. #### VARIABLE ALGORITHMS (continued) Notice that retrospective and compressive merges may be interchanged at any point. If synchronism of the feeds is to commence or cease, certain points of interchange may be optimum. The straight merge would not be directly interchangeable unless only two stackers were in use throughout. However, when input strings become very long so there is no point in avoiding the straight merge, the extra stackers may be dropped one by one at sequence breaks, until a straight merge may be commenced. #### REDUCTION IN SORTING TIME The algorithms described in the preceding text are suggested as definite means to significantly reduce sorting time with the 360/20/2560. However, these are not the only means. If a card file is being sorted into sequence solely so that it can be tabulated, then the final merge pass will best be written as part of the tabulating program to save one pass of the file. In fact, any such tabulating program should be written for the general case of two input files (including the special case, as say, an end of file run-out condition) which are incidentally merged. Often a card file must be sorted to a series of related sequences (ringing the changes) to enable a series of related reports to be produced. With unit record sorting, the order in which the sorts are performed can be designed to minimise the number of card passes through the sorter by maximising the pre-sequencing. This can also be done with the 360/20 sorting, but the entire control field must be specified at every stage to force preservation of the pre-sequencing. However, the proportionate saving will probably not be as great. #### REDUCTION IN SORTING TIME (cont.) One incidental aspect of MFCM sorting is that mishandling of the cards will not invalidate the sort and indeed, if it occurs during an early pass, will probably go unnoticed. Another aspect of MFCM sorting which promotes efficient operation is that the front of the file is not a significant point. In other words, the operator merely takes the cards from the front of the stackers and puts them in the hoppers (perhaps via card racks if the file is large) until they all feed into only one stacker. The file is then in sequence. There is no pause between passes to adjust the device. The aspect of continuous operation is examined more closely in the next section. #### CONTINUOUS OPERATION It might be thought that, with a straight merge, the procedure of taking cards out of stacker 1 (2) and putting them into hopper 1 (2) would ensure trouble-free continuous operation. This is not necessarily the case. For the first pass of the sort the operator will arbitrarily split the input file into two halves, one for each hopper. Since it would be very difficult to split the file initially into an equal number of strings, the merge would eventually fall into imbalance, the cards in one stacker/hopper loop building up, in the other disappearing. A little hand-merging of strings with pencil and paper will uncover this phenomenon. Hence the operator should eventually exercise control over the transfer of strings from stacker to hopper. Also, when a more sophisticated merge is used, the problem of feeding two hoppers from say five stackers arises. For small string lengths, selection of large slabs from each stacker in turn will only introduce a few extra strings. However, when relatively few strings are left (if not earlier) the operator must exercise control over the transfer of strings from stacker to hopper. #### CONTINUOUS OPERATION (Continued) With a straight merge (either in its own right or as the last phase of a complex merge) the merge should split the strings between pairs of stackers. Within each pair of stackers, the feed would be switched at the first sequence break after, say, 500 cards. This would enable the operator to balance the hoppers without splitting any strings. The use of marker cards (physically distinctive cards punched all 9's) is also recommended. These cards should be inserted at intervals throughout the initial input deck. They would indicate to the operator both the precise location of some sequence breaks and, indirectly, the progress of the sort and would be removed from the back of the deck on completion of the sort. In effect, the cards in any stacker between two marker cards would constitute a macro-string and the operator could replenish the lower hopper with the front or only macro-string in one of the stackers. #### REVERSED FILES Some reference is made in the IBM reference manual C26-3601-1 to the problem of reversing the sequence of a file from say descending to ascending order. Under any type of merge a strict reversal will be a lengthy procedure. However, if the file is predominantly in a sequence the reverse of that required for a report, a better shorter procedure is possible. Sort, if necessary, the file to the strict reverse of the sequence required. Then, for the report, feed the file from the back face up nine edge first into the read hopper. This will supply input cards to the reporting program in the correct sequence but the card record will be inverted with columns 1 to 80 presented as columns 80 to 1. It is a relatively simple loop to invert the card using two registers for addressing, one incrementing, the other decrementing. The program requires only two instructions, on the other hand, if the translate special feature is installed. The coding used can be as follows. First, some areas should be set up: | CARD | DC | CL80 | CARD INPUT AREA | |------|----|------|--------------------| | DRAC | DC | CL80 | REVERTED CARD AREA | CARR INDUE AREA #### REVERSED FILES (continued) Then a reformatting mask must be defined: | FMAT | DC | XL8'4F4E4D4C4B4A4948 | |------|----|-----------------------| | | DC | XL8'4746454443424140' | | | DC | XL8'3F3E3D3C3B3A3938 | | | | | | | DC | XL8'0706050403020100' | With the input record in DRAC the following instructions can be executed: | MVC | CARD, FMAT | SET MASK | |-----|------------|----------| | | • | | | TR | CARD, DRAC
 INVERT | The inverted card image is now in the area CARD. If it is anticipated that inverted files may occur within an installation, reporting programs may be written to read files optionally either normally or reversed. To determine if the file is in fact predominantly reversed in sequence, the average string length of a file (samples if large) can be determined and reverse sequence holds if the average is significantly less than 2. Alternatively, if the weighted moving average input string length calculated during a sort falls significantly (by some statistical measure) below 2, the sort can be halted by the program to allow reversed sorting to be substituted. #### COMPARISON WITH UNIT RECORD SORTING Two questions should be considered. (i) Should a card sorter be included in an installation? If enough time for all necessary sorting is available on the /360/20/2560 without rental increase or overtime at suitable times of the reporting cycle, then there is no necessity for a card sorter. Advantages of simpler operating and reduced space requirements are gained by not including a sorter. Notice that the 360/20/2560 would not be justified only on the basis of sorting, since great advantage in operating time will rarely be gained (more often lost) and it would be an expensive sorter. Operating time for sorts is discussed under the next question. The conditions within an installation may, on the other hand, prevent a card sorter from being justified. (ii) On which machine should a particular file be sorted? It will not always be practical to sort a card file on the card sorter, for example if the control field contains binary or packed decimal data (summary cards) or is variable in format, or if a complex sequence determination is required. This last assumes that special sorting programs can be written within an installation because such programs would be small even if complex. #### COMPARISON WITH UNIT RECORD SORTING (cont.) A sort performed on the /360/20/2560 will be more reliable since the necessary sequence checking will prevent "mis-sorting". The time taken for a sort (exclusive of operator time) on either machine is proportional to the size of the file, the number of file passes and the feed speed. With a card sorter, the number of passes depends on the size and complexity of the control field. With the MFCM, the number of passes depends on presequencing and file size (hence double dependence) but is not dependent on the nature of the control field. Thus, for any particular sort there is a cutover file size, above which the MFCM is slower, below which faster. The cutover file size, using the fairly sophisticated sorting algorithms and procedures of this paper, is roughly 5000 cards for a nine digit numeric sort, assuming random initial distribution and an 082 sorter. The effective cutover file size is raised (favouring MFCM) by complex control fields, operator time, presequencing and most other incidental factors. Appendix D3 will be found useful in estimating other cutover points, remembering that certain operating procedures described in this paper can reduce the number of passes below the number shown in that appendix. #### INDEX TO APPENDICES #### SECTION A MERGE EXAMPLES - 1,2 Straight Merge - 3, 5, 6 Retrospective Merge - 4 Comparison of Merges - 7-9 Compressive Merge - 10 Retrospective Merge (long input strings) - 11 13 Merges using 5 stackers #### SECTION B LOGIC DIAGRAMS - 1 Straight Merge - 2 Retrospective Merge - 3 Compressive Merge #### SECTION C TEST RESULTS - 1 Explanation of Abbreviations - 2 Sort Type v. Gain - 3 String Length v. Gain - 4 Stackers used v. Gain #### SECTION D GRAPHICAL SUMMARY - 1 String Length v. Gain - 2 Input v. Output String Length - 3 Passes v. Sort Type #### SECTION E TEST PROGRAM LISTING - 24 - # Appendix A1 - Straight Merge. | Pβ | MRY | SECMA | ST.1 | ST.2 | PRMRY | SECNY | ST-1 | ST.2 | |-------------------|------------|------------------------------|--|--|-------------------------------------|----------------------------------|---|---| | 73 | 1 | 709 | | | 978
628* | | 755
978 | | | 50 | 4# | 709
500* | 709
731 | | 922 | 664 | 918 | 021= | | 55
86 | 8 | 583 | | 500
504
558
583
795
869 | 412* | 095* | | 021 *
628
664
922 | | 86 | 9 | 795
211• | | 558
583 | 074* | 922 | 095 =
412
922 | ,,,, | | 16 | 4* | 211• | | 795
869 | | 030 *
142 | 922 | 030* | | 44 | U | 426
158= | 154*
211
426
440 | | 936 | 672
066* | | 074
142 | | 33 | 6 * | 128 *
746 | 440 | 150 | 377* | | | 030*
074
142
672
936 | | 56
05 | 3
n* | 140 | | 158 *
336
563
746 | | 195
696 | 066*
195
377
696
829 | | | 40 | | 227* | 050* | 746 | 829 | 494= | 696 | | | | , | 359
336• | 050*
227
359
403 | | 145*
413
066* | | 829 | 145* | | 156
72 | 6*
3 | ••• | 403 | 156+ | 000- | 755
254# | | 145*
413
494
755 | | 85 | | 765 | | 156+
336
723
765
858 | 238
054* | 234# | 066= | 100 | | 04: | 3* | 284* | | 765
858 | 034- | 295
186• | 066 *
238
254
295 | | | 04:
11
79: | 3 | | 043*
111
284
793 | | 883 | | .,, | 054 *
186
850
883 | | 73 | 2* | 140* | 284
793 - | | 141+ | 850
136* | | 850
883 | | 34 | | 644
993 | | 140*
644
732
993 | 811
394• | 862 | 136*
141
811
862 | | | 342 | | 551* | 343" | 993 | 394* | 325 +
309+ | 811
862 | | | 100 | • | 922
551* | 342*
551
922 | | 855 | 309+ | | 325 *
394
855 | | 014 | 4 = | | 922 | 186•
551
676 | 855
253 *
066 * | 700 | 253+ | 855 | | 297 | , | 676
558* | 014* | 676 | | 70Z
061•
285 | 253 +
309
702 | 041. | | 297
551
735 | į | | 014*
297
551
558
735
753
784 | | 057* | | | 061*
066 | | 753
147 | | 784 | 558
735 | | | 523
631
881
045*
261 | | 066
285
523
631
881 | | | | 436* | 753
784 | | | 045- | 045+ | 881 | | 683 | | 062* | | 147 *
436
683
982 | 084
118
531 | 201 | 045*
057
084
118
261
452
531
798 | | | 982
355 | | 2.5 | | 683
982 | 531 | 452
798 | 118 | | | 223 | | 345
559 | 062*
345
355
559 | | 252* | | 452
531 | | | 223 | , * | 032*
065
644 | 559 | 033- | 456
723 | 755+ | 798 | 252* | | 791 | ı | 644 | | 032*
065
223
644
791 | 723
960 | | | 252*
456
723
755
960 | | 337 | | 837 | | 644 | 214 *
530 | 329* | 214- | 960 | | | | 148 *
137 * | 148= | 837 | 134+ | 728 | 214*
329
530
728 | | | 147 | | 536 | 148 *
337 | 137+ | 568 | 450* | 728 | 134# | | 007 | | 445* | | 137*
147
536 | 402+ | 231* | | 134 *
450
568 | | 657 | | 021* | CO7*
445
657 | · - | 138* | 979 | 231*
402
979 | 200 | | 755 | | | | | 100- | 732* | 979 | | | PRM | 1KY | SECNY | ST.1 | ST.2 | PRMRY | SECNY | ST-1 | ST.2 | | • | with | Str | aight | ntitious
merge | <u>Gain</u> | |--------------------|---------------------|--|---|-------------------|----------------------------------| | PRMA | Y SEC | NY ST. | ST.2 | J | | | 882 | 226 | 063 | • | | | | 529• | | 060
353
882 | | | | | 835 | 619 | | 226•
529 | | | | | 754
675 | , | 226*
529
619
754 | | | | 725 | 860 | | | | | | 516• | - | 6754
725
860 | • | | | | 212. | 269•
5 68 | 860 | 269* | | | | 213* | 209 •
238 | | 269*
516
568 | | | | 959 | 238 | 209
213
238
393
400
959 | , | | | | | 393
400 | 238 | | | | | 144= | 400
389• | 400 | | | | | 166*
255
581 | | 454 | 166. | | | | 281 | 470
297• | | 166*
255
389
470
581 | | | | 357+ | 297• | | 470
581 | | • | | 806 | 832 | 297 •
357
806
832 | 701 | | | | 806
528• | 054= | 806 | | | | | | 056+
194
538 | 832 | 056+ | | | | 876 | | | 056+
194
528
538
747
876 | | | | | 747
185• | | 538 | | | | 630• | 092• | 105. | 876 | | | | 672
619• | 0,2- | 185 •
630
672 | | | | | | 794 | 612 | 092+ | | | | 352= | 735+ | | 092 •
619
794 | | | | 543
205• | | 352•
543
735 | | | | | | 081 •
256 | 735 | 001- | | | | 156• | | | 081 *
205
256
259 | | | | | 259
119•
644 | | 259
259 | Dow so | monce dunt | | 263 | 044 | 119*
156
263
522
644 | | | quence deine)
! mere expeded: | | 263
522
941 | | 263
522 | | Where 2 | mere expedied | | 560= | 418= | 644
941 | | | , | | 97+ | 898 | 771 | 418 | | • | | | 634* | | 418
560
898 | | | | 38 | 282* | 497•
634 | • | | | | /13
-66* | | 634
638
713 | | | | | 66• | 761 | | 282* | | | | 99 | 496* | 24. | 466
761 | | | | 77 | 792
934 | 266*
496
792
899
934 | | | | | 01= | | 792
899 | | | | | | 905* | 937 | | | | | 39 | ,0, | 734 | 201+ | | | | Appe | mdix . | <u> 43 -</u> | Ketn | ospeci | tive M | ege | | |---------------------------|----------------------------|---|----------------------------------|-----------------------|----------------------|----------------------------------|----------------------------------| | PRMRY | SECNY | 51.1 | \$1.2 | PRPRY | SECNY | 57.1 | ST.Z | | 731 | 300 | | | 412• | | 922 | | | | 709
500• | 709 | | 074. | 664 | ,,, | 021•
412
664 | | | 500+
583
795 | | 5CC
583 | • • • | C95• | | 664 | | 504. | | 731 | 263 | 936 | 922 | C74* | | | | 211•
426
158• | 795
211• | | 277- | Ć30• | 0,,, | 922 | | 550 | 158- | 731
795
211•
426
504
558 | | 377
•
829
145 • | | 377 | 936 | | 558
869 | | 558 | | 1450 | 142 | 829 | 030= | | 164• | 746 | | 869
158•
164 | 413 | 142
672 | | 030•
142
145
413
672 | | 44C
336• | | | 164
44C | 666- | | | 413 | | J 3 4 4 | 227•
359 | 746 | 770 | 238 | 006- | C46- | 672 | | 563 | 359 | 746
227•
336
359 | | | 195 | C66
195 | | | 050• | 336• | 359 | 543 | 054+ | | 238 | | | 403 | | | 563
05C• | | 424°
733
234° | 494 | 696 | | 156. | 765 | 403 | 336 | | 254- | 4,4 | 755 | | | 284. | 4C3
765
156• | | 883 | 295
1 96 - | | 755
054•
254
295 | | 723 | 140- | 156 -
284 | | 141- | 106- | | 295 | | 858
043•
111
793 | | | 723
850
043•
111 | 111. | | 111 | | | iii | | | 043. | 394- | 850 | 166 | 811 | | 193 | 644 | | 111
140 | 354- | 134- | 394 | | | 720- | 644
993 | 644
793 | • • • | 253- | 136• | | 850
855
136•
253 | | 732°
342° | | | 732 | 044- | 162 | | 1360 | | 186- | 551• | 593
342•
551 | | | 3250 | 862 | | | | 922
551•
676
558• | 551 | | 857- | | C44-
309 | 325 | | | 476 | 551
676 | 922 | | 702
C61• | 309 | 702 | | 014• | 558+ | 676 | 1844 | 004 | | | 702
657 • | | ••• | 784 | | 1 84-
558 | 110 | 285 | | 084 | | 297
551 | 436= | ć14- | | 531 | | | 118 | | 551 | C62• | 784
C14•.
297
436
551 | | | 523
431 | 523 | 283 | | 735
753
147• | 002- | 351 | | 252• | | 531
631
881
C45•
252 | | | 147. | | | 735
753 | | 881
045-
261 | ěěi | | | 683 | 345 | | 735
753
062•
147
345 | 456 | | 252 | | | 003 | 559
C32• | | 345 | | 452
798 | 261 | 452 | | 982 | C32+ | 559
683
982 | | 723
960 | • • • • | | 456 | | 982
355•
223• | | 982 | 355 | 96 C | 755•
329• | | 456
723
798 | | 2230 | C65 | Ç32• | 333 | 2144 | 329- | 755 | | | 791 | 644 | C32•
C65
223 | | 214 ·· | | | 940
214•
329
530
728 | | | 837 | | 644
791 | 134• | 728 | | 329
530 | | 337÷
147• | | 337 | | | 450+ | 124- | 728 | | CC7+ | 146- | | 837
147•
148 | 568 | 231• | 134°
450
568 | | | | 137• | | 148 | 402= | 979 | 568 | 231= | | 657 | 536 | CC7• | | 138• | | | 231•
402 | | | 536
445*
C21* | 445 | 536 | | 732•
387• | 979 | 732 | | 755
978
628•
922 | CE 1 * | 773 | 657 | 335
105• | | 138°
335
387 | - | | 978
628• | | | 657
755
978 | 103- | 762 | 367 | | | 922 | | 628 | - • • | | 762
620•
475• | 620 | 762 | | PRMRY | SECNY | 51.1 | \$1.2 | PRMRY | SECNY | 51.1 | \$1.2 | | | | | | FACAT | JECHY | 3 | | | | | | | | | | 27 | | | dix A4 (cont.) ~ (| Comparison of | 4 | Appendix A4~
Straight Merge | Compari
versus | ison of
Retrospective Merge | |--|--|---|---------------------------|--|---|--| | PRMR 239 959 247* 287 287 287 287 287 287 287 287 287 287 | Pressive Nerge 4 Y SECNY ST.1 ST.2 868 163* 201 239 247 051* 102 557 198 617 777 045* 868 497 045* 120* 536* 668 782 783 471 616 365* 6616 365* 667 687 567* 567* 133* 671 497 160 779 918 293* 497 671 720 696 293* 830 696 791 697 293* 697 155* 647 155* 647 155* 647 155* 647 155* 647 155* 647 155* 647 155* 647 155* 647 155* 647 179* 179* 179* 179* 179* 179* 179* 179* 179* | PRMRY SECNY ST.1 959 247. 868 287 C51. 045. 497 102 557 120. 457 198. 668 589 617 771 536. 688 771 616. 779 616. 365. 366 386. 887 123. 567. 783 497 161. 783 667 293. 668 685 6782 133. 782 471. 497 667 293. 667 293. 667 144. 783 671. 293. 643. 696 160. 830 647. 779 918 671. 246 155. 144. 799 918 671. 256 779 918 671. 256 779 918 671. 256 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 779 918 671. 266 879 966 966 966 966 966 966 966 966 966 9 |). NETYE | PRMRY SECNY SI.1 959 169* 247* 868 169* 287 045* 868 129* 198* 668 120* 589 668 177 771 536* 668 365* 386* 887 123* 567* 887 782 133* 783 471* 497 616 365* 386* 887 133* 667 647* 685 160* 830 647* 779 155* 671* 246 144* 720 898 459* 610 179* 918 656 708* 179* 9666 317 954* | ST. 2
23959
959
959
959
959
959
959
959
959
959 | Retrospective Merge 169* 9C5 169* 2039 287 2039 287 247* 287 287 1051* 120* 457 1020 10 | | 463
781
3460
PRMI | 781
317 077*
265* 317
RY SECNY ST.1 ST.2 | 528 265*
922
544*
912*
295* 544 | 528
554
922
ST.2 | 528 265*
922 528
544* 9554
912* 922
295*
PRMRY SECNY ST. | 544* | 544* 528 265* 528 295* 512* 922 29 | | App | endix | A5 | <u> - Re</u> | hospec | tive N | lerge i | using | 3 Sta | ckers | |---------------------------|------------------------------------|---------------------------|----------------------------|---------------------------|--------------------------|-----------------------------|--|---------------------------|---| | PRPRY | SECNY | ST.1 | 51.2 | \$1.3 | PRPRY | SECNY | 51.1 | ST.2 | \$1.3 | | 731 | 709
500•
503
795 | 709 | | | 412:
674: | 664 | 522 | 412 | C21a | | 504a | 5 8
3
795 | 731 | 500
583 | | 936 | | | 664 | C21•
C74 | | 504•
558
869 | ., | | | 5C4
558 | 377• | C95•
922
C30• | 922
936 | | 095 | | 164 - | 211• | 795
869 | | | 377•
829
145• | 142 | | 829 | 377 | | _ | 426
158• | 164.
211
426
440 | | | 413 | 142
672 | 030+
142
145 | | | | 336•
563
050• | 746 | 770 | 158+
336 | | 066•
238 | C66• | | 066• | 672 | | 050+
403 | 227• | | | 563
746
050•
227 | | 195
696 | 195
238 | 06é | | | | 359
336• | | 359 | | 054• | 4940 | 238
494 | | 696 | | 156• | 765
284• | 765 | 4C3 | 336 | | 494•
755
254•
295 | | 254
255 | 755 | | 723 | 140• | 765
156•
284 | 722 | • | 883 | 186+
850 | | 293 | 054•
186 | | 650
043•
111 | | | 723
858
043•.
111 | | 141• | 136+
862 | 850
803
136*
141 | | | | 793 | 644
993 | | 111
140 | 444 | 811
394
855
253 | | 141 | 811 | 394 | | 732•
342•
186• | | 732 | | 793 | 253.
066. | | 253 | 855 | 277 | | 196. | 551•
922 | | 342
551 | 993 | 057• | 325•
309• | 325 | 862
066+ | | | | 551•
922
551•
676
550• | 922 | 551
676 | | 084 | 061 - | | 06 6 •
3C5 | 702 | | 014- | 784
436• | | | 186•
558 | 110 | 285 | | | 702
057-
061
084
118
285 | | 297
551 | | C14•
297
436
551 | 784 | | 531 | 523
631 | 523 | | 285 | | 735
753
147• | C62+ | 436
551 | | 735 | 252+ | 881 | 523
531
631
881
C45•
252
261 | | | | | 345 | | 062•
147
345 | 735
753 | 456 | 261 | C45• | | | | 683 | 559
C32• | 559
683 | 345 | | 723 | 452
798 | 261 | 452
456 | | | 982
355•
223• | | 683 | 355 | 982 | 723
960 | 755•
320- | • | 452
456
723
798 | 755 | | 791 | C65
644 | | | 032•
065
223 | ••• | 755•
329•
728
450• | 329
728 | • • • | , | | 337• | 237 | 791 | 644 | | 330 | 231• | | 960
214•
450
530 | | | 147•
007• | 148• | e37
147•
148 | | 337 | 134•
568 | 979 | | 53Č | 134 •
231 | | 557 | 137* | 148 | CC7• | , | 402•
138• | | | 568 | 402 | | | 536
445•
C21• | 445 | . 15/ | 536 | 335 | 732 •
367• | 979
138• | 732 | | | 755
978
528•
922 | | - | | 657
755
978 | 335
105• | 762 | 138•
335
387 | 74.2 | ÷ | | | | 628 | | | | 762
620•
475• | | 762 | 62C | | PRMRY | SECNY | 57.1 | ST.2 | \$1.3 | PRPRY | SECNY | 51.1 | ST.2 | \$1.3 | # Appendix A6 - Retrospective Merge with input string length 5 | PRPRY | SECNY | 51.1 | ST-2 | PRMRY | SECNY | ST.I | \$1.2 | |--|--|--|---|------------------------------|---|--|---| | 297
436
551
559
683
982 | £5 8 | 297
436
551
683
858 | | 531
631
881 | 85C
855
136• | 523
531
631
811
850
855 | | | 982 | C43*
111
140
732
922
186* | | 043
111
140
732 | 045 +
2 5 2 | 85C
855
136*
253
325
702
C57* | 881
C45* | 136
253
325
702 | | 032•
065
223 | | 922
962
1865
186
223
337
558 | | 261 | 061
084
118
285 | 881
G457
C571
084
1182
1251
2285
456 | | | 337
007• | 735
753
062• | 186
223
337
558 | 725 | 261
755 | 452
456
723
798 | 261
285
452
456 | | | 137 | 062+ | | 753
C07*
062 | 134• | 798
960
214• | | 723
755
798 | | 445 | 345
355
644 | | 735
753
G07*
0677
147
147
3455
445 | 45C | 329
530 | | 723
755
798
960
134*
214
329
450 | | 62 8
922 | | 628
644 | 445 | 568
979 | 728
231• | 530
368 | 45C | | 074+
095
377 | 791
£37
147• | 628
644
791
837
922
C74*
C95
148
377 | | 138•
335 | 402 | 530
568
728
979
138*
231
335
387
402 | | | 37 [.] 7
829 | 148
536 | C95
147
148
377 | | 387
620
788 | 732 | 387
402 | 620 | | | 657
755
978 | | 536
6577
755
829
978
021*
066
195
238 | 802
852
154• | 762
105• | | 620
732
762
788
802
852
105+
154
191
348 | | 066 * | C21*
412 | | 978
021*
066 | 154•
348 | 191 | | 852
105+
154 | | 195
238
494 | 664 | 412 | 195
238 | 424
727 | 475 | 424 | 191
348 | | 883
141• | 922
936 | 664
883
922 | | 867 | 613
632
761 | 613
632
727 | | | 168 | 936
C30*
142 | 412
454
664
882
936
930
141
145
168 | | 042•
200 | 134*
187
482 | 425327766724
6327766724
180228 | | | 394
862 | 145 | 145
168 | 394
613 | 228
388
435
610 | 482 | 187
200
228 | 388 | | | 672
696
755
C54* | | 394
413
672
696
755
862
054*
C66 | | 529
690 | | 388
435
482
529
610
671
690 | | 066 +
309 | 254 | 254 | 862
054#
C66 | 669
671
820 | 320+ | | 669
671
690 | | 523 | 255
811 | 254
295
309 | | | 320*
362
367 | 320
362 | | | 28MSA | SECNY | ST.1 | ST.Z | PRMRY | SECNY | ST-1 | ST.2 | # Appendix A7 — Compressive Merge | PRMRY | SECNY | ST.1 | ST.2 | PRMRY | SICNY | ST.1 | ST.2 | |---------------------------|-------------------------------------|---------------------------|----------------------------------|--|----------------------------------|---|----------------------------------| | 731 | 709 | | | 628* | 021- | 978 | | | 504* | 500+ | 709
731 | | 922 | 021 *
664 | 021+ | 445 | | - | 583 | 131 | 500 | 922 | 095 *
922 | 025 | 628
664 | | 558
869 | 705 | | 500
504
558
583 | 412+ | | 095 | 922
922
030* | | 164# | 795
211* | 795 | 505 | | 030*
142
672 | 142 | 030+ | | 440 | 424 | 869
164*
211
426 | | 074 +
936 | 012 | 142
412 | 0.74 | | 336* | 426
158= | 426 | | 950
377* | 066# | 672
936 | 074 | | | 746 | 440 | 158*
336 | 3114 | 195 | 066* | 105 | | 563
050* | 227- | 563
746
050* | 336 | 829 | 696 | | 195
377
696
829 | | 403 | 227* | 050+ | 4.03 | 145* | 494* | | 829 | | 403
156*
723 | 250 | 156 | 403 | 145 +
413
066 + | | 145
413
494 | | | | 359
3 36 * | 156
227
359 | 700 | 238
054* | 755 | 494 | 066* | | 858
043+ | | | 858 | 054* | 254* | 755 | 238 | | 858
043*
111
793 | | | 723
858
043*
111
336 | | 254*
295
186* | | 254
295 | | | 765
284+ | 765
793 | 336 | 883 | 850
136* | 054 +
186 | | | 732 *
342* | | | 732 | 141* | 136* | · | 850
883 | | 186# | 140* | 284 *
342 | | 811 | 862 | | 850
883
136*
141 | | 014= | 644 | | 140*
186 | 394* | 325 •
309• | 811
862 | | | | 993
551* | 644
993
014* | | 855 | | | 325
394 | | 297
551
735 | | 014* | 297 | | 702
061= | 309* | | | | 922 | | 297
551
551
735
753 | 253* | 285 | | 702
855
061*
253
285 | | 753
147*
683 | , | | 735
753 | 066# | | | 253 | | 683 | 551+ | 147 | 922 | | 523
631
881
045*
261 | 523
631
881
045*
066
261 | 20) | | | 551 *
676
558 * | 551
676
683 | , | | 045+ | 881 | | | 982
355*
223* | 330- | 683 | 982 | 057* | | 966 | | | 223- | 784 | • | 982
355*
558 | | 452
798
755• | 201 | 452 | | 791 | 784
436* | 784
223*
436 | J J O | 084 | イフラマ | | 452
798
057*
084
118 | | 337* | 062* | 436 | 701 | 531 | | E 2 1 | 118 | | | 345 | | 791
062*
337
345 | 084
118
531
252*
456
723
960 | | 531 | 252
456 | | 147= | 559 | F.F.O. | 345 | 960 | | 723 | 476 | | | 559
032*
065 | 559
032*
065 | | | 329* | 723
755
960
214+ | | | 007+ | 644 | 065
147 | | 214*
530
134* | 222 | | 530 | | | 837
148*
137* | 1.0 | 644
837 | | 728
450*
231* | 329 | 728 | | 657 | | 148 | 007 *
137 | 568 | | 450 | 134*
231 | | | 536
445* | 536 | 137 | 402*
138* | 979 | 565 | | | 755
978 | | 536
657
755 | | 138# | 732* | 979 | 402 | | PRMRY | SECNY | ST.1 | ST.2 | PRMRY | SECNY | ST-1 | ST.2 | | | | | | | | | | # Appendix A8 - Compressive Merge using 3 stackers | PR | RMRY | SECNY | 51.1 | \$1.2 | 51.3 | PRMRY | SECNY | ST-1 | ST.2 | ST.3 | |----------------|--------------|-------------------------------------|----------------------------|--|--------------------------|---|-------------------------------------|-----------------------------------|--------------------|---------------------------| | 7.3 | 31 | 709 | | | | 022 | 445* | 536
628
922 | • | | | 50 |)4 = | 500* | 709
731 | | | 922
412*
074* | | 922 | 412 | | | 55
86 | 8 | 583 | | 500
504
5 58
5 83 | | | 021 *
664 | 021* | 412
445 | | | 80 | 9 | 795
211* | 795 | 583 | | 936 | | 074 | 664 | | | 16
44 | 0 | | 869 | | 164 | 377* | 095*
922
030* | 095 | 922 | | | | | 426
158* | | | 164
211
426 | 311* | 142 | • | 922
936
030* | 142 | | 33 | 6+ | 746 | 158* | | 440 | 829 | | | | 142
377
672 | | 56 | . 2 | 746
227 *
359 | 227
336
359 | 746 | | | 066*
195
696 | 195 | 066 | - | | | 0 + | 336* | 359 | | 563 | 145*
413 | 494# | | | 696
829 | | 40 | ١٦. | | 403 | 050* | 763 | 413
066* | 7.5 | 413
494 | 145 | | | 72
85 |
6+
3 | | | 156 | 723 | 238
054* | 755 | 494 | 238 | 066* | | 04 | 3* | 765 | | 336 | 723
858 | U) 4 = | 254 +
295
186 + | 755 | | • | | 11
79 | 3 | 201- | 7/5 | | 043*
111 | | 850 | | 254
295 | 186 | | 73 | 2• | .284 =
140= | 765
793 | | 204 | 883 | 136* | 850
054= | | 100 | | | | 644 | 140= | 544 | 284 | | 862
325= | 136 | 862
883 | | | 18 | 2*
6* | | | 644
732 | 342 | 141 -
811 | 200- | 141 | 883 | | | | 4* | 551* | 186 | 993
014• | | | 309 •
702
061• | 309 | | 702 | | 29
55
73 | 1 | | 297 | 014* | | 394 +
855
253 + | 001- | 394 | | 811 | | | | 922 | | | 551
551
735
753 | | 285 | | 061* | 855 | | 14
68 | 3
7•
3 | | | 147 | 753 | 066* | 523 | | 061*
253
285 | | | | - | 551 *
676
558 * | 551 | 171 | 922 | | 523
631
881
045*
261 | 523
631 | | | | 98 | 2 | 558* | 551
676
683 | | | 057* | | | | 881
045*
066
261 | | 98
35
22 | 5*
3* | | | 355
558 | 982 | 051- | 452
798
755* | | 452 | 261 | | 70 | 1 | 784
436 = | 784 | 558 | 222 | 084 | 755* | 798
057* | 1,72 | | | 79
33
14 | 7+
7• | | 791 | | 223* | 118
531
252*
456
723
960 | | 798
057 *
084
118 | | | | • • | • | 062 *
345 | 062* | | 337
436 | 252*
456 | | 252 | 531 | | | 00 | 7* | 559 | 062 *
147
345 | | | 960 | 220× | | 723
755 | 456 | | 65 | 7 | 032* | | 559
007* | | 214* | 329 *
728 | 329 | | | | | | 065
644
837 | | 559
007*
032
065 | | 214*
530
134* | | | 960
214* | 530 | | 75
97 | 5 | 831 | | | 644
657
755
837 | | 450*
231*
979 | 450 | | 530
728 | | 71 | · | 148 *
137* | | 148 | 837 | 5.40 | 979
732* | | 231 | 979 | | 62 | 8# | 536 | | 170 | 978
137* | 568
402* | 207- | 568 | | 134* | | PRI | MRY | SECNY | ST-1 | ST.2 | ST.3 | PRMRY | 387*
SECNY | 732
ST.1 | ST.2 | C T 2 | | | | | | | | | 350147 | 3101 | 3106 | \$1.3 | | ndix A | | | essive Merge | | | | | |---------------------------|----------------------------------|---|----------------------------------|----------------------------|--------------------------|---|---| | | with | ingu | t string length | 5 | | | | | PRMRY | SECNY | ST.1 | ST-2 | PRMRY | SECNY | ST.1 | ST. | | 297 | 858 | | | 245- | 254 | | 054 | | 436
551
559
683 | 676 | 297 | | 045 +
252
261 | | 831
045• | | | 559
559 | | 436
551 | | 261 | 295 | | 252 | | 683
982 | | 559 | | 755 | | | 261 | | 902 | 043+ | 297
436
551
559
683
858 | | 134• | 811 | | 295
755 | | | 043+
111
140
732 | | 043 | | 850
855 | | 252
254
261
295
755
811
850 | | 033- | 732 | 202 | 111
140 | | 136+ | | 855 | | 032•
065
223
337 | | 982
032•
065 | | 450 | 253 | 134
136
253
325
450
568 | | | 223 | | 065 | 223 | | 253
325
702 | 253 | | | 007 + | | | 223
337
732
922
007* | 568
979 | 102 | 450 | | | | 922
186• | | 732
922 | 979
138• | | 568 | 979 | | 137
445 | | 137 | 007• | 130- | 057* | 702 | | | | 558 | 186
445
558
628
735
753 | | | 061
084 | | 057
061 | | 628 | 735 | 445
558 | | | 118
285 | | 084
118
138
285
387
456 | | 922 | 753 | 628 | | 335 | | | 138 | | | 753
062•
147
345 | 753 | | 387 | 452 | | 335 | | | 345 | | 062
147 | 620 | 454 | | 387 | | 074= | | 922
074•
095 | | | 456
723
798
960 | | 456 | | 095
377 | | 095 | | | 960 | 723
798
960 | | | | 355
644 | | 345
355 | 788 | 214= | 960 | 620 | | 829 | | | 277 | 802
852
154• | | | 620
788
802
852 | | | 791
837 | | 791 | 852
154• | | | 852 | | 066= | 147= | | 644
791
829
837 | 348 | 129 | 154. | | | | 147•
148
536 | 147 | | 434 | 333 | ## # | | | 195
238
494
883 | 730 | | 066* | 424
727 | | 424
530
727
728 | | | 238
494 | | 195
238
494
536
657
755
883 | | 867 | 728 | 539 | | | 883 | 457 | 494 | | | 231+ | TŽĖ | ~ | | | 657
755
978 | 657 | | 042*
200
228 | | | 042 | | 141- | 978 | 755
883 | | 228
388 | | | 200 | | 168
394 | | | 141
168 | | 402 | | 867
042
200
228
231
388
402 | | 777 | 021 *
412 | 978
021• | 100 | 435 | 732 | | 388
402 | | 862 | 412 | 021* | 394 | | 732
762
105• | 732
762 | | | | 664
922 | | 412 | 610 | 103 4 | 102 | 435 | | 066- | 422 | | 394
412
664
862 | 610
669
671
820 | | • | 435
610
669
671 | | 309 | AFD | 066 | | 820
289• | | 920 | 671 | | | ó3 ŏ • | | 922
936
030* | 4077 | 191 | 105+ | | | | 936
030•
142
145
413 | 142 | U3U* | 597 | 475 | 820
105*
191
289
475
597
613
632 | | | 523 | 413 | 142
145
309
413
523
531
672
696
755 | | | 613 | 475 | | | | 672 | 413 | | 825 | 632 | 613 | | | 531
631 | | 523
531 | | | 632
761
134+ | 632 | 761 | | 881 | 404 | 631 | | 951 | | | 825 | | | 696
755
054• | 696 | | 240* | 187 | | 761
825
951
137 | | | 054* | 755 | | | 482 | | - | PRMRY SECNY ST.1 ST.2 PRMRY SECNY ST. | 00,000 | 7175 | | |--------|------------|--| | it in | string l | enath 8 | | | with input | rospective Merge
with input string to | | PRMRY | SECNY | 1.12 | ST-2 | PRPRY | SECNY | 57.1 | \$1.2 | |----------------------------------|--------------------------|---|--|-------------------------|----------------------------|--|--| | | 165
202
206
557 | | 153
165
202
202
202
237
255
455
556
8627
641 | 865
CC3+ | 806
882 | | 698
716
8C6
865 | | 237 | | - | 227 | 346 | 082* | | 882 | | 237
454
551 | | | 454 | 340 | 211
426 | | 865
8862
0092
0211
346
373
426
444
483 | | 568 | 627 | | 337 | 373 | 426 | | 346 | | 652 | 641 | | 568
627 | 444 | 440 | | 373
426 | | | 641
651
749 | 451 | 641 | 483 | 644 | | 440 | | 662
832 | 177 | 651
652
662
749
821
832 | | 501
603 | | | 483
501 | | 832 | 821
084= | 749 | | 860
860 | | 603 | 201 | | 056. | 084= | 821
832 | | • | 723
858 | 644
723 | | | 056•
060 | | 056* | | 030 | 593 | 858
860 | | | 194 | 334 | 084 | | 93 8
121• | | 938 | | | 213
255
| | 194
213
255
351
351
352
352
352
353
351
352
353
351
351
351
351
351
351
351
351
351 | | | 043*
062
1111
345 | 938
993
043
062
111
121
152
285
352 | | | 357 | 251 | 255 | | | 111 | 962 | | | | 351
553 | 351 | | 152 | 342 | įŽį | | | 528
619 | | 528 | | 152
282
352 | | 292 | | | _ | 587
643 | 553
587 | | | 536 | 352 | | | 735 | | 619 | 443 | 523
721 | 551 | | 523
536
551
683
721 | | | 673
814 | | 643
673
735 | | 551
683
791 | | 551 | | 266* | 824 | | 914 | 763 | 791 | | 721 | | | 824
946
010• | | 824
946
010* | 787
840 | | | 763
787 | | • | 086 | | 010* | | C07+ | | 791
840 | | | 192
242 | | 192 | 866
889
972 | | | 866 | | 418 | 375 | | 242
266 | 972
107• | | | 989
972 | | 497 | 480 | | 010*
086
192
242
266
375
418 | • | 095
142 | | 007•
095 | | | 664 | | | 310 | | | 866
889
972
007
095
107
142
310 | | 557
589
617
6 68 | | • | 497
557
589
617 | 479 | 377 | | 316 | | 617 | | | 589
617 | 557 | 494 | 377 | | | | 810 | 664 | | | 702 | 479
494
557 | | | 771
779 | | 668
771
779 | | 648
696
709 | | 648 | | | 830 | 963 | 779
810 | | | 811 | 702 | | | 123+ | 156+ | 810
830
963
123• | | 767
928 | | 764929
764929
764929
7645
858
858
820
858
858
858
858
858
858
858
858
858
85 | | | 155
246 | 150- | 123• | | 720 | 855 | ėįį | | | | 515 | 156 | | | 881
045• | 881 | | | 325
400 | | 246
325 | | 000 •
231 | | 928
C00+ | | | 459
528 | | 400 | | 231 | C57
252 | Ç45 | | | | 546 | 515 | | 311 | | 231 | | | 651 | | 1239
1256
1556
12425
12425
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
1246
12465
12465
12465
12465
12465
12465
12465
12465
12465
12465
1246 | | 315 | 387 | 252 | 311 | | | 567
582 | 26/ | | 315
419 | 473 | | 315 | | 698 | 698 | 582 | 651 | 697 | | | 311
315
387
419
473 | | 716 | | | 698 | | 613 | | | | PRMR | r SECN | Y 5T.1 | ST.2 | PRMR | Y SECN | Y ST.1 | \$1.2 | | | | | | | | | | #### A input string length & 271 277 402 617 782 170 417 68451688793122 459034593 684 845 551 342 352 201* 536 PRMRY SECNY ST-1 ST-2 ST.3 ST.4 ST.5 # Appendix 12 ~ Compressive Merge using 5 stackers input string length & # Appendix A12 - Synchronised Retrospective Nego using 5 stackers | | pur d | unng | leng I | 8 | | | |----------------------------|---------------------------|---|--|--|---|---| | PRPRY | SECNY | ST.1 | ST.2 | \$1.3 | 51.4 | ST.5 | | 56C
638 | 713 | 543
560
622
638 | | | | | | 713
898 | - | 638 | | | | 712 | | | 784
830
911 | | | | | 713 | | 855
201* | 911 | | | | | 713
7184
830
898
899
911
089* | | 201* | C89* | | | | | 899
911 | | | C89•
128
194
535 | | | | 104 | 128 | | 239
282
287
536 | | | | | 194
201
239
282
287 | | | 287
536 | 5.0 | | | | 282
287 | | | 616 | 548
570 | | 535
536
548
579
616 | | | | | 494 | 579
775 | | 579 | | | • | | 696
782 | 813 | 696
775 | 010 | | | | | 783
144+ | 053 | 782 · | | | | | | | 857
005+
057
223 | 696
775
782
783
813
857
C05** | | | | | | 16C | 223 | Č57 | | | | 144 | | 16C
179
202
317 | | | | | | 160
179 | | 311 | 270
277
388 | | | | | 144
160
179
202
223
270
277 | | 581 | | | | | 317 | 277 | | | 402
617 | | | 388
402
581 | | | | 636
708 | 644 | | 617 | 581 | | | | | 782 | | 644
708 | | | | | 781
980 | 945
193= | | 781
782 | | , | | | 051 =
085
238 | 193= | | 617
636
644
708
781
782
945
980
C51* | | | | | 238 | 280 | C85
193
238 | 051* | | | | | 345 | | 238 | | | | 280 | | | 331
335
382 | | | | 331
335 | 200 | | 429 | 562 | | | | 345
382 | | | 435
591 | 682 | | | | 331
335
345
382
429
435
562 | | | 638
828 | | | | 591
638 | 202 | | | | 684
645 | | | 591
682
682
682
845
845 | | | | 115• | | | | 828
845 | | | | i | 951
086•
158 | | 980 | 95 I | | | | PRPRY | SECKY | ST.1 | ST.2 | St.3 | ST.4 | \$ 1 | Appendix B1 - Logic Diagram for Straight Nerge/Sptit # Appendix 32 - Logic Diagram for Retrospective Merge Last Card logic is not included. *- A search is made through established rank for the first stacker N which satisfies the '>' exit condition. # Appendix B3 - Logic Diagram for Compressive Monge Last card logic is not included. | N | Total number of cards passed | |----------------|--| | Np | Number of cards through primary | | Ns | Number of cards through secondary | | Sp | Number of strings through primary | | Ss | Number of strings through secondary | | s_1 | Number of strings into stacker 1 | | | | | S ₅ | Number of strings into stacker 5 | | L ₁ | Average length of input strings | | L_o | Average length of output strings | | G | $Gain = L_o/L_1$ | | T | Type of sort/merge | | M | Straight merge/split | | R | Retrospective merge | | C | Compressive merge | | Rs | Retrospective merge with synchronisation | | K | Number of stackers used | | x | Variable Merge | | | | | <u>L</u> 1 | T | G | 4 | N | 14 | N _s | Sp | Ss | S, | S, | S | S ₄ | Ş | |------------|-----|-----|------|-----|-------------|----------------|-----|-----|------------|----|----|----------------|----| | 2 | R | 3.9 | 8./ | 802 | 387 | 45 | /84 | 206 | 20 | 20 | 20 | 20 | 19 | | | C | 4.6 | 9.4 | 809 | 415 | 394 | 203 | 195 | 18 | 17 | 17 | 17 | 17 | | | Rs | 4.0 | 8.1 | 827 | 416 | 411 | 204 | 204 | 2/ | 21 | 20 | 20 | 20 | | 5.3 | R | 2.8 | 4.8 | 754 | 364 | 390 | 67 | 75 | <i>[</i>] | 10 | | Ю | 10 | | | C | 29 | 5.2 | 646 | 390 | 296 | 72 | 57 | 9 | 9 | 9 | 9 | 9 | | | 及 | 3.0 | 57 | 768 | 390 | 378 | 72 | 73 | 10 | 10 | Ø | 10 | 9 | | 8.4 | 7 | 2-3 | 19.3 | 772 | <i>38</i> 2 | 390 | 15 | 47 | 8 | 8 | 8 | , | r | | | C | 2.2 | 18.7 | 746 | <i>390</i> | 356 | 46 | 42 | | | | | | | | Ps. | 2.4 | 20.3 | 773 | 390 | 383 | | 46 | | | | | | Appendix C1 - Sort Type Versus Gain Stackers used = 5 Ž, Appendix (z - Input String Length versus Sain Stackers used = 5 | \mathcal{T} | K | G | Lo | N | N _r | Ns | S, | S | S, | S | S | Ş | Ĵ. | |-------------------|---|-------------|-----|-------------|----------------|----------------|-----|-------------------|-----|-----------|----|----|----| | \mathcal{R} | 2 | 2.6 | 5.2 | 813 | 415 | 3% | 203 | 197 | 77 | 77 | | | | | | 3 | 3./ | 6.2 | 805 | 415 | 390 | 203 | 195 | 43 | 43 | 43 | | | | | 4 | 3 .5 | 7.3 | 802 | 387 | 415 | 184 | 206 | 28 | 28 | 27 | 27 | | | | 5 | 39 | 8.1 | 2 2 | 367 | 415 | 184 |
195
206
206 | 20 | 20 | 20 | 20 | 19 | | С | 2 | 2.7 | 5.6 | 828 | 415 | 413 | 203 | 205 | 15 | 74 | | | | | | 3 | 34 | 7.0 | 628 | 45 | 413 | 203 | 205 | 10 | <i>39</i> | 10 | | | | | 4 | 4-0 | 8-/ | 805 | 415 | 390 | 203 | 265
205
195 | 25 | 25 | 25 | 25 | | | | 5 | 4.6 | 9.4 | 809 | 45 | 394 | 203 | 195 | 18 | 17 | 17 | 17 | 17 | | m | 2 | 2.0 | 42 | 825 | 45 | 40 | 203 | 203 | 100 | 99 | | | | | \mathcal{R}_{s} | 2 | 25 | 5:1 | 82 7 | 416 | 411 | 204 | 204 | 81 | 81 | | | | | • | 5 | 40 | 8./ | 827 | 46 | 411 | 204 | 204
204 | 21 | 21 | 20 | 20 | 20 | Appendix CA - Stackers used versus Gain Input String Longth 2. 方 Appendix D2 - Input versus Output String Length Stackers used = 5 In appropriately from vertical line will give the cutever point against card sorting 082. # APPENDIX E # The Sort Simulation Program On the following five pages, the program used for deriving the results of this paper is listed with interspersed commonts. The program listing is given for interest & ducking only, since it can hardly be presented as a model, having grown piecenteel over two or three days from a modest beginning with modest aims. It has no source program since it was quached directly into self-loading format. The prepram used 3K of 1401, HLE compare, advanced programming, any 1.403 and a 1402 with punch feel read. The loader, a standard one, uses modify address. Primary hopper input is to the read feed, secondary to the punch feed, of the 1402 card reader. A carriage tape with channel 1 sunched is accessary, and 12 channel is interrogated for overflow. Input format is 26 three digit numbers per card in c.c. 1-78, the numbers being processed in turn from RIGHT to LEFT. #### SORTING PROGRAM CLEAR STORAGE & BOOTSTRAP CARDS CONTROL ROUTINE FOR STRAIGHT MERGE ROUTINE TO GET MEXT PRIMARY NUMBER 7Ø158mH734mM8785Ø3mR7385Ø3bmM875878mM737mRØØØmbbbm7Ø8Øm,Ø%1m1mLØ78878mR7Ø5bbbbbbbmPRIMARY INPUT AREA INITIALISATION ROUTINE TO GET MEXT SECOMPARY NUMBER *** #### I/O STORAGE AREA #### SET-UP & PRINT ROUTINE #### FEED PRIMARY & GET NEXT #### FEED SECONDARY & GET NEXT $\label{limits} W515 \mbox{\it gm} HW87 \mbox{\it mM} W4 \mbox{\it gw} 68 \mbox{\it mM} 5 \mbox{\it gf} 65 \mbox{\it gm} B9 \mbox{\it gf} 1 \mbox{\it mM} 5 \mbox{\it gf} 65 \mbox{\it gf} 9 \mbox{\it mM} 89 \mbox{\it gf} 1 \mbox{\it mM} 5 \mbox{\it gf} 65 \mbox{\it gf} 9 \mbox{\it mM} 89 \mbox{\it gf} 1 89$ #### SWAP STACKERS CONTROL ROUTINE FOR RETROSPECTIVE MERGE ROUTINE TO RAMK THE STACKERS BY LAST FED MUMBER! LOOK FOR PRIMARY SLOT LOCK FOR SECONDARY SLOT FORCE STACKER WHEN NO SLCT "CONTROL ROUTINE FOR COMPRESSIVE MERGE ROUTINE CALCULATING GAP BETWEEN NUMBER & STACKER THE PRECEDING CARDS, CONCERNED WITH SYNCHPONISATION, ARE ONLY INCLUDED WHEN HEN THIS VERSION OF THE RETROSPECTIVE MERGE IS REQUIRED! ## SENSE SWITCH SETTINGS B ON - STRAIGHT MERGE & SPLIT G ON - RETROSPECTIVE MERGE ELSE - COMPRESSIVE MERGE C ON - 5 STACKERS D ON - 4 STACKERS E ON - 3 STACKERS ELSE - 2 STACKERS