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This paper is a general introduction to the internal sorting 
and intermediate merge techniques implemented in IBM S/360 
sort programs. Its main intent is to provide simplified, concise 
presentation of S/360 sort fundamentals. Additionally, the 
manual indicates comparative advantages of techniques in the 
tape and in the disk sorts. 

The techniques discussed pertain to the BPS, BOS, TOS, DOS 
and OS sort programs for S/360 models 30, 40, 50, 65 and 75, 
and for the Model 20 tape system. 
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GENERALIZED SORT PROGRAMS 

The objective of a generalized sort program is to permit sorting of a variety 
of files with reasonably high overall efficiency and without intervention by the 
user. A generalized sort accepts the introduction of file and system para:­
meters, entered on control cards, and modifies the sort at execution time in 
accordance with those specific characteristics. It does not actually generate 
the object code to be executed, though it may assemble the sort program for 
a particular job from a series of relocatable subroutines. 

A typical IBM generalized sorting or merging program accomplishes its 
objectives in approximately the following manner: 

The user first specifies on control cards the relevant file, machine, and 
peripheral information that defines the sort. The file information, for example, 
must include a general description of the records to be processed, the control 
fields upon which the records are to be sorted, and the modifications to be 
made to the program. The range of specifications permissible is set by the 
sort designer. 

The control cards bearing the parameter specifications are sometimes 
presented to a separate routine, known by such names as sort definition pro­
gram, edit program, and analysis program, whose function is to select the 
subprograms needed for the type of sort or merge program required by the 
user. The selected subprograms are then combined into an absolute program 
through a linkage loader. 

At object time, the selected sort/merge program adjusts itself to meet 
the requirements of the specific application, in accordance with the control 
card information supplied by the user. 

The selected sort/merge program is divided into four phases: 

1. The General Assignment Phase 
2. The Sort Phase 
3. The Intermediate Merge Phase 
4. The Final Merge Phase 

Where a complete sort is to be done, the program normally consists of 
all four phases, as shown in the flowchart (Figure 1). Where only a merge is 
to be performed, the general assignment and final merge phases are executed, 
while the sort and intermediate merge phases are omitted. A more detailed 
description of the four phases is presented in the following paragraphs. 
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GENERAL ASSIGNMENT PHASE 

This phase is loaded into storage when the selected sort/merge program is 
called for execution, and it contains the initial entry point for the program 
itself. Unless control is assumed by an external monitor, part of the general 
assignment phase remains in storage throughout the execution of the program, 
to control the loading of each program phase. 

The main functions of the general assignment phase are to perform the 
initial housekeeping for the program and to reserve and set up the common or 
phase-to-phase information area used by all phases of the sort or merge program. 
The assignment phase calls in the control cards and analyzes the control state­
ments that describe the sort or merge to be performed. It checks the control 
information for validity and consistency. Based on these specifications, and 
on other information supplied by the system, the assignment phase sets up the 
common information area for all phases. This information is then used to 
select the most efficient technique (among those built in) for the specified sort 
and to calculate its basic parameters. Among specific tasks carried out by the 
general assignment phase, the following are typical: 

1. Setting up of appropriate input-output device addresses 
2. Establishing the initial storage addresses, in accordance with record 

length, blocking factors, and other parameters 
3. Determining the size of G (the number of logical records accommo­

dated in core storage during the sort phase), the maximum volume of records, 
the order of merge, etc., and setting up the appropriate counters, constants, 
and switches 

4. Activating routines for interruption procedures, editing, controls, 
labels, etc. 

5. Typing appropriate messages to the operators 

In addition, if a separate sort definition program has not been set up, 
the general assignment phase also takes over the function of defining the other 
program phases by creating a list of the subroutines used for execution. It may 
call upon a linkage editor to link together the subprograms to be executed. 

SORT PHASE 

This phase performs the initial internal sorting of the records from the input 
file. It is divided into two parts: the assignment program and the running 
program. The assignment program performs the final initialization and 
modification of the running program. As part of the initialization, a record 
storage area is set up to contain the records being sorted. The running program 
performs the internal sort required to produce a set of ordered sequences, for 
eventual merging by later phases. 
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INTERMEDIATE MERGE PHASE 

This phase performs one or more merging passes of the ordered sequences 
from the sort phase, until the number of sequences is fewer than or equal 
to the order of merge possible in the final merge phase. Control then 
passes to the final merge phase. As does the sort phase, this phase also 
contains a separate assignment portion, which initializes the running program. 

FINAL MERGE PHASE 

A final merge of the sort is performed during this phase, and the output 
data are arranged in the file format specified by the user. The assignment 
and running program portions are similar to those used in the intermediate 
merge phase. The assignment portion performs the final initialization and 
modifies the running program for either a sort or a merge. 
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SYSTEMf360 SORT TECHNIQUE TABLE 

M20 BPS 
SYSTEM 360U- 360P-
NUMBER SM-150 SM-043 

WHAT Records Records 
SORTED 

1 Selr 
VO: Chan 

INPUT Tape Tape 
DEVICE 

INTERMEDIATE Tape- Tape-
WORK STORAGE 3 to 6 3 to 6 
DEVICE 

OUTPUT Tape Tape 
DEVICE 

MAXIMUM 
CORE USED: BK x x 

16K x x 
32K x 
64K x 

128K 
256K 
512K 

1024K 

TECHNIQUES: 
SORT puadratic Binary 
PHASE-INTERNAL Selection Insertion 

INTERMEDIATE Polyphase Poly phase 
and FINAL 
MERGE 
PHASE-EX TERNA~ 

BPS 
360P-
SM-044 

'Records 

1or2 
Selr 
Chans 

Tape 

Tape-
3 to 6 

Tape 

x 
x 
x 
x 

Binary 
Insertion 

Polyphase 

BOS TOS DOS DOS OS 
360B- 360M- 360N- 360N- 360-
SM- 308 SM-400 SM-400 SM-450 SM-023 

Record Record 
or Records Records or Records 

Tag Tag 

Mpx Mpx or Mpx or Mpx Selr 
or 1or2 1or2 or or 
Selr Selr Selr Selr Mpx 

Tape/ Tape Tape Tape/ Devices 
Disk Disk Supported 

by QSAM 

Disk- Tape- Tape- Disk- Tape-

1 to 4 3 to 7 3 to 7 1 to 6 3 to 32, 
2311, 2301 

Tape/ Tape Tape Tape/ Devices 
Disk Disk Supported 

by QSAM 

x 
x x x x 
x x x x x 
x x x x x 

x x x x 
x x x 
x x x 

x -
Straight Binary Binary Straight Replace-
Two way Insertion Insertion Two way ment 
Merge Merge Selection 

Interleave Polyphase Polyphase Interleave Balanced 
Tape 

Polyphase 
Tape 

Oscillating 
Tape 

Balanced 
Direct 
Access 
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SORT PHASE - INTERNAL SORTING TECHNIQUES 

Internal sorting is defined as the sequencing of a group of logical records 
contained in the internal high-speed (core) storage of the computer. It 
generally involves reading successive records from auxiliary storage into 
the record storage area (RSA) of core, sorting the group in storage by one 
of the methods to be desc-ribed and then writing the sequenced group onto an 
external storage device. 

In most sort applications, the file of records to be sorted is too 
large to be contained, at one time, within internal core storage. Thus, 
the internal sort passes serve only as a prelude to the subsequent external 
(intermediate) merge phase of the sort. The purpose of the internal sort, 
then, is to form a number of sequences, or strings which are placed on an 
external storage device and subsequently merged. The more efficient the 
internal sort technique, the longer the strings it generates, and hence, the 
fewer extern~ merge passes required. 

Since logical records can be many bytes in length, internal sorts do 
not usually manipulate the records themselves, but rather, the control words 
and/or address tags, thus conserving time and space. Generally, records 
can be sorted by (1) physically moving them about until they are in order; 
(2) forming tables of record addresses (tags) in storage, which are then 
sorted; or (3) combining the control wor-d and the record key and sorting the 
resulting short key record. Either tag or key sorting is the preferred method 
and one or the other is assumed in the specific examples in this section. 

5 

STRAIGHT TWO-WAY MERGE 

Merging is the process of combining several sequences of records to form a 
single specified sequence. The same rules by which sequences are combined 
may also be used to form sequences (of two or more items). Thus, the 
merging process has, essentially, a dual nature: it can be used for creating 
sequences (usually in an internal sort), and it is also capable of reducing 
previously created sequences to one (usually in an external sort). The 
versatility, speed, and simplicity of merging make it one of the most widely 
used sorting techniques. 

The straight two-way merge with fixed-length strings is the simplest 
internal sort technique. The programming is straightforward, and the required 
number of comparisons is not affected by adverse sequences within the file. 
The group of records (G) to be merged is stored initially in two areas of core. 
The keys of pairs of records, one from each area, are then examined in turn 
and placed in sequence by exchanging the elements of a pair whenever necessary. 
The first merge pass combines single items (records, keys, or tags) to create 
strings of two items. At the end of this first pass the initial group of G items 
has been reduced to G/2 strings, each of length 2. In the second pass, pairs of 
these two-item strings are merged to produce G/4 strings, each of length 4. 
This is accomplished by successive comparisons of the keys in each of the 
strings (see example 1). 

During the third pass, pairs of four-item strings are again merged in 
proper sequence to create G/8 strings, each of length 8. Each successive 
merge pass, therefore, cuts the number of strings in half, while doubling the 
length of each string until, finally, a single string of length G results. If the 
number of items, G, is equal to a power of two (2n), a total of n passes is 
required to complete a two-way merge sort. Example 1 illustrates the 
principles of a standard two-way merge. 

The first pass in example 1 compares single items, alternately drawn 
from storage areas A and B, and, by means of simple exchange, merges them 
into ascending sequences of two items each. At the end of this pass, eight 
strings of two items each are stored in core areas C and D. On the second 
pass, pairs of these two-item strings are merged into four strings of four 
items each. Consider the first pair of strings (13-69 and 02-56), stored in 
areas C and D, respectively. The following comparisons are required to 
arrive at the first output string (02, 13, 56, 69) in area A: 

6 



Comparisons 

1st: item 13 (area C) to item 02 (area D) 
2nd: item 56 (area D) to item 13 (area C) 
3rd: item 69 (area C) to item 56 (area D) 
4th: copy item 69 (area C) 

Output String (Area A) 

02 
13 
56 
69 

All comparisons are done in this manner. During the third pass, the 
four strings of four items are merged into two strings of eight items each, 
and on the final (fourth) pass a single ordered string of all 16 items results. 
Thus, for G = 16 = 24, a total of four 2-way merge passes were required. 
In general, any size G between 2n-l and 2n will require n merge passes. 
Equivalently, the number of passes for a two-way merge is the smallest 
integer that is equal to, or greater than, the log of G to base 2 (that is, 
log2 G). 

It is evident, from example 1, that the number of comparisons during 
each pass equals the number of items to be sorted (G), so that the total number 
of comparisons (C) for a two-way merge becomes 

C = G x No. of Passes = G log2G 

Four storage areas (A, B, C, D), capable of holding eight items each, 
were required to sort the 16 items in the example. In general, for a file of 
G items, the required total storage is 2G items. However, this is true only 
if complete records are moved during the sort. The required storage is much 
less if record addresses or tags, alone, are moved about and sorted. In the 
latter case, the records are held during the sort in a record storage area with 
a capacity equal to G x Record Length, or G · L. The tags are assembled and 
ordered in two working areas, each with a capacity of G words or addresses. 
The required total storage (S) for a two-way tag sort, therefore, is 

S = G · L + 2G · Address size1 
i.:::...._:;::J \; v------

Records Tags 

Summing up, the straight two-way merge is a rapid, efficient technique 
for sorting large files. It is relatively easy to program and is unaffected by 
adverse sequences, or even by reverse ordering. · 

BINARY INSERTION 

A fairly effective method for sorting a small number of items, the 
insertion technique, places each item in sequence as soon as it is encountered. 
The records (or tags) are brought into the record storage area one at a time, 
the key of each is examined in turn, and the item is then inserted in the correct 
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place of an increasing file. Ear lier members of the partial file are moved 
aside, when necessary, to make room for new items. The method is straight­
forward but is relatively slow, compared to other techniques. 

Sorting by simple insertion has two inherent drawbacks: (1) excessive 
shifting of the sorted records is necessary for each new insertion; (2) the 
partial file must be searched each time to locate the correct place for 
inserting the new item. 

The first drawback -- the large amount of record movement -- can be 
avoided by sorting record addresses (tags), r·ather than the records them­
selves. 

The second limitation can be overcome, to some extent, by subdividing 
the area that must be searched to locate the correct position of each new item. 
A binary search may be used for this purpose. 

The binary search technique eliminates from consideration, with each 
comparison, one-half of the remaining items in the partial file (hence, the 
name "binary search"). This greatly reduces the required number of com­
parisons, though at the expense of more extensive programming. 

The method starts by an examination of the middle item of the partial 
file. If the key of the new item is smaller than that of the center item, it 
belongs in the upper half of the file, and the middle item of the top half (that 
is, the quarter point of the partial file) is examined next. If the key of the 
new item is larger than that of the center item, however, it belongs in the 
bottom half of the partial file, and the middle item of this lower half (that is, 
the three-quarter point of the partial file) is examined next. The examinations, 
thus, reveal whether the item belongs in the first, second, third, or fourth 
quarter of the partial file. The middle item of the selected quarter file is 
examined next to see whether the new item belongs in the top or in the bottom 
half of the quarter file, and so on. The division stops when there is but one 
item in the segment of the file under examination. The new item belongs next 
to this item and is inserted above or below it, depending upon whether it 
compares low or high, respectively. In the insertion itself old items are 
shifted up or down, as required. 

Example 2 illustrates the technique of binary insertion, using the same 
sequence of 16 keys as in the previous example. After nine insertion steps 
~not shown) a partial file of nine items has been built up. The tenth item, 45, 
is now to be inserted. The 45 is compared first with the center, or G' /2, item 
of the partial file, which is the 34. Since it compares high, the 45 belongs in 
the bottom half of the partial file. The next comparison is with the (3/4) G' 
item, the 60, to which the 45 compares low. It, therefore, belongs in the 
third quarter of the file. The 45 is next compared to the (5/8) G' item, 
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the 56, and still compares low. Since this segment of the file contains only 
one item (the 56), the 45 belongs next to the 56 and is inserted immediately 
above it. Insertion step 10 shows the 45 inserted in this slot, the old items 
(56, 60, 69, and 83) having been shifted down one position. 

The next item to be inserted is the 37. The first compare at the 
center (G' /2) item, 34, is high; hence, the 37 belongs in the bottom half of 
G' (see insertion step 10). The second compare, at the (3/4)G' item (60) is 
low; this eliminates the bottom (fourth) quarter file. The third compare, at 
the approximate (5/8) G' item (45), shows the 37 still low; it is, therefore, 
inserted immediately above the 45, the old items (45, 56, 60, 69, 83) being 
shifted down one place (see insertion step 11). This procedure is continued 
until the file is in order after 16 steps of insertion. Note that from step 13 
on, four comparisons are necessary to locate the insertion point for each new 
item in the lengthening file. (The number of comparisons increases logarith­
mically with G'. ) Note also, in step 13, that no shifts are necessary to insert 
the 96, since it compares high to the remainder of the file and is placed at 
the bottom. 

It can be shown that for a file of G items, the approximate total number 
of comparisons (C) required in the binary insertion method is 

C = G log2 (G/e) 

where 
e • 2. 7183 

Thus, in example 2, the approximate number of comparisons is 

C = 16 log2 (16/2. 72) 
= 16 log2 (5. 9) = 16 x 2. 56 = 41 

The total number of shifts required in binary insertion is (G2 - G)/8. 
A record storage area for G items must be provided. The major disadvantage 
of the binary insertion technique is the need for a large and complicated 
program. This offsets considerably the benefits derived from the relatively 
efficient search technique. 

The binary insertion technique is affected, to a major extent, by the 
natural ordering of the original file. Although the number of insertion steps and 
comparisons does not depend upon the original order, the amount of record 
movement required is greatly increased with adverse, or reverse sequencing. 

The method is too slow for larger G's (G>50) primarily because the 
number of shifts and comparisons goes up with the square of the number of 
items to be sorted. Insertion, however, can be used to advantage when the 
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input is buffered and consists of single records, which may be read in one 
at a time while a previous record is being inserted. 

REPLACEMENT SELECTION 

The internal sorting methods described thus far are all capable of sorting a 
group (G) of records that can be contained at one time in the record storage 
area. The maximum string length is, therefore, limited to G items. The 
replacement (sometimes, replenishment) technique, endeavors to keep the 
record storage area filled with G items by replacing records that have been 
withdrawn during the sort. As a result, for a file in random order, an average 
string length of approximately 2G items is developed in an area with a capacity 
of only G records. For a given amount of available core storage, the replace­
ment technique produces the maximum possible sequence length. This 
characteristic makes the technique eminently suitable as a premerge sort and 
permits a significant reduction in the number of merge passes required for a 
subsequent external sort. The price paid for this adva.11tage is increased 
complexity of programming, relatively long processing time per recor~, an~ 
a slight increase in the required working storage. One must also keep m mmd 
the fact that the number and length of the sequences is variable and, hence, 
not predictable. Most replacement sorts, however, will generate string length 
approximating 2G. 

Essentially, the replacement-selecb.on method determines the lowest 
record in the record storage area, moves it to the output area, and then 
replaces it with a new record from the input file. If the new record is lower 
than the one just moved to the output, it cannot be part of the current sequence 
and, therefore, is flagged or held for the next sequence .. The proces~ then 
continues with the selection of the next-lowest record, and so on, until there 
are no more replacement records in the record storage area that fit into the 
current sequence. A new sequence then is started, and the procedure con­
tinues until the entire input file is processed. Since the sequences are usually 
formed by a binary tree procedure (see example 3), the method has also become 
known as a 11 Christmas Tree Sort11

• However, not all replacement sorts are 
of the tree variety. 

Basic Tournament (Christmas Tree) Sort 

In a basic simplified version of replacement selection, illustrated by 
example 3 the method is implemented by playing an elimination 11 tournament" 1 

1 t II • II (1 ) of matches (compares) between pairs of records to se ec a wmner ow 
record. The number of records to be sorted internally (G) is a power of 
2 (G = 4 in example 3), though this is not necessary in the more sophisticated 
practical versions to be described later. 
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The tournament is initialized by selection of the first winner (that is, 
the record with the lowest key). The keys of successive pairs of records in 
the record storage area are compared, and the winner of each match (that is, 
the lowest key or its address) is placed in a first-level table. Pairs of level 1 
winners are then compared, and the winners are placed in the second-level 
table of winners. The procedure is continued, in standard tournament style, 
until the winner of the final match is determined, and the winner record is 
moved to the output. This completes the initialization round. 

During the second round, or pass, the next record from the input file 
replaces the vacancy created by the winner, and the tournament continues. 
If the key of the new record is lower than that of the previous winner, it is 
flagged (shown by asterisks in example 3) and held for the next string. When 
all records in the storage area have been flagged, the current sequence is 
complete. The tournament then is initialized again to process the next string. 
This procedure is continued until the input file is exhausted. 

Iri'example 3, four items (13, 69, 56, 02) from the input file of 16 are 
read initially into storage. (To keep the number of comparisons to a minimum, 
a G of only 4 has been chosen; this permits the entire procedure to be illustrated 
on one page.) The first pair of items, 13 and 69, are compared, and the 
winner of this match, the 13, is placed on the first leveL The second pair of 
items, 56 ·and 02, are compared, and the winner (02) is also placed on the first 
level. The winners of the first two matches, 13 and 02, are now compared in 
the "finals" match. The winner (02) is moved to the second level and thence 
to the output area. This completes the initialization. 

On the second pass, a new item {08) has been moved into the location of 
the first winner. The 00 is compared with the 56, and the wiIDler (00) is 
moved to the first level. The finals are played between the 00 and the 13, and 
the winner (08) is moved to the output. Note that on this pass (and on every 
pass after the first) only two compares are needed to determine the final 
winner. In general, the number of comparisons to find a winner -- after the 
first -- equals the number of levels in the tournament. 

The procedure contirrues on subsequent passes with the determination of 
additional winners, but starting with pass 7, each replacement item is lower 
than the previous winner and is, therefore, :flagged for the next sequence (as 
indicated by the asterisk). First-level winners, between flagged items, are 
determined, but no flagged item can be moved to the ouq)ut. In pass 9, all 
items except the 83 are flagged; thus, the 83 completes the first sequence. 
In pass 10, all items are flagged, and the tournament must be initialized again 
to begin the second string. Agajn, three matches are necessary to determine 
the first winner, the 17, in this case. The second string is completed at the 
end of pass 16 with the transfer of the winner {96) to the output area. 
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{An additional pass would be required to determine that all locations have 
been flagged and that no more input items are left.) Note that the first string 
is nine items long, or more than twice the number of items (G} in storage, 
while the second string of seven items is a little less than 2G in length. When 
the input :file has good natural sequencing, the strings are generally longer 
than 2G in length, and in the worst case of reverse sequencing, string length 
is either G or G + 1. 

It is easily shown that G - 1 comparisons are required to select the first 
winner record. The number of comparisons {c) required to select each ad­
ditional record, after the first, equals the number of testing levels. When G 
is a power of 2, 

2c = G, and hence, the number of testing levels or comparisons per 
record, 

c = log2 G 

Accordingly, the total number of compares (C) for G records in storage is: 

C = (G - 1) + G log2 G 

When G is not an exact power of 2, the formula above is still approximately 
correct. The number of testing levels in this case is the smallest integer 
greater than log2G, but since some records are not tested on every level, the 
average number of compares per record is a fraction, which approximately 
equals log2G. (See discussion of example 4.) 

Variations and Refinements 

It is not necessary, in practice, that the number of records sorted internally 
{G) be equal to a power of 2. This would waste a great deal of storage space, 
especially if G were nearly, but not quite, equal to a power of 2. (For example, 
if 127 records could be contained in the record storage area, the next-lower 
power of 2 would be 64 records only, thus wasting almost half the available 
space.) If the branches of the binary-tree structure are properly organized, 
practically any number of items that can be contained in the record storage 
area can be sorted by replacement selection. However, departures from a 
power-of-2 structure frequently involve minor inefficiencies, and care must 
be taken to keep the average number of comparisons to a minimum. In 
general, the more symmetrical the tree structure, the lower will be the 
average number of comparisons per record. 

Example 4 illustrates the possible organization of the binary tree when the 
number of records in storage {G) equals 12. Only the initialization of the 
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tournament through selection of the first winner record (key 02) is shown. 
Four testing levels are required. (Note that 4 is the smallest integer 
greater than log2(12) = 3. 59, approximately.) The keys of pairs of records 
are compared to select the first-level (quarter-finals) winners -- 13, 02, 
08, 34, 45, and 22. Pairs of level-1 winners are then compared to select 
three level-2 (semi-finals) winners: 02, 08, and 22. Only two of these (02 
and 08) need be compared to select the level-3 winners, or finalists (02 and 
22). The winner of the finals, 02, is placed on level 4, and the corresponding 
record (R 4) is moved to the output area. 

In example 4, the total number of comparisons required to select the 
first winner is 11, or one fewer than the number of records in storage (that 
is, G-1). Note that records 1 through 8 go through four testing levels, while 
records 9 through 12 go through only three testing levels. Thus, the average 
number of tests per record (after the first) is a fraction, given approximately 
by log2(12), or 3. 59. (The actual average number of compares is 3. 66, 
rather than 3. 59. ) 

Further flexibility for sorting any group (G) of records in storage can 
be attained by abandoning the binary tree structure. A binary tree results 
when the comparison point, or node, is between two records to be compared at 
one time. However, a node may be established between any given number of 
records, such as three, four, or even eight records. The nodes are tied 
together in a treelike structure, similar to·the binary tree. Larger-size nodes 
tend to be more efficient for a given group (G) of records. A node of four items 
to be compared is commonly used. 

Example 5 illustrates the possible organization for an internal sort of 
64 records (G = 64), using nodes of four, each. The number of testing levels 
here is log4(64) = 3, as shown. The first winner to initialize the tournament 
is selected by (G-1), or 63, comparisons, as for the binary tree. However, 
the number of compares required for the selection of subsequent winners tends 
to be proportional to log4G, rather than to log2G, and, therefore, is somewhat 
more efficient than for a binary tree. 

Tag Sorting 

If replacement selection required the continual movement of records through 
every testing level, it would be a relatively cumbersome and slow sorting 
technique. Actually, records are not moved at all during the comparison 
procedure, but only the record addresses or tags. Records are moved 
initially from the input to the record storage area for participation in the 
tournament. While the tournament is progressing, the records hold their 
positions in storage, and only the record addresses (tags) are used. Com­
parisons between records are made through an index register or other coding 
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methods. After a record has been selected as the smallest, it is written out 
or moved to an output area, and a new input record replaces the winner in the 
identical storage location. Tag sorting not only saves an undue amount of 
record movement, but becomes essential when dealing with records of variable 
length. 

QUADRATIC SELECTION 

Sorting by selection -- perhaps the simplest of the internal sorting methods -­
consists essentially of an examination of the record storage area to find the 
record with the smallest key (for an ascending sort) and placing this record or 
its key in the output area as the first item of the new file. The RSA is then 
scanned for the smallest key of the remaining records, which becomes the 
second item of the new file, and so on, until all items have b een placed in the 
output file. 

When the selection process is carried through the entire RSA in one 
stage, it is called linear selection; when the original file is broken up into 
groups, and the smallest key of each group is chosen, and then the smallest 
of these smallest keys, the process is termed quadratic selection. By breaking 
the groups into smaller subgroups and then selecting the smallest key of such 
a group of groups of groups, cubic selection may be accomplished, and so on, 
up to nth degree selection of (groups)n. 

Selection requires a relatively small working storage area, equal to the 
number of items being sorted (G). 

In linear selection, the entire RSA is searched for the record with the 
smallest key (control word) during each pass. When it is found, the key 
{or the record containing it) is placed in the output area. To make sure that the 
same record is not selected again, the key that has been removed is replaced 
by a key of all nines (or all Z 1s) in the original file. The process is continued 
until all keys in the file have been moved to the output and been replaced with 
nines. This is sometimes called sifting with nines. Example 6 shows the 
results of sorting a file of six numeric keys with six selection passes. Keys to 
be selected during the next pass are underlined. 

Note that at the end of pass 6, all keys have been replaced with nines, 
and the output file is in sequential order. 

With quadratic selection, the original RSA G is divided into/G groups 
of/Cf records each. The sort is most efficient if G is a perfect square, such 
as 4, 9, 16, 25, 36, etc. ; hence, the term quadratic. (If G is not a perfect 
square, the file is broken up into,/G' groups, where G1 is the next-largest 
integer that is a perfect square. In this case, not all groups will have the 
same number of items. ) 
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After the RSA has been divided into groups, the record with the smallest 
key in each group is determined by a linear selection pass. The selected least 
keys (and addresses) form a new subgroup, which is moved to a separate 
storage area, or control register, capable of containing/G items. The 
smallest key of this subgroup, which is the smallest of all, is now selected. 
In order not to select this key again, the key is replaced in the original group 
by a number larger than any possible key in the file; for example, all nines 
or Z's. The entire procedure of initially selecting the smallest key in the RSA 
is called initialization or, sometimes, priming. 

The program now goes back to the group from which the smallest key 
was chosen and selects a new minimum from this group. This is moved again 
to the subgroup of smallest keys (in the control register), and a smallest-key­
of-all is chosen. In this way, successive smallest keys are located, and a 
sorted output file is built up. The major advantage of the method is that once 
the file has been initialized (that is, the first minimum key has been found), a 
linear selection pass need be made only over the group of items that contributed 
the last mimmum. This saves many comparisons, especially for a large file. 
Despite the need for a small amount of additional working storage (for the sub­
group of smallest keys), quadratic selection can be a highly efficient internal 
sorting method. 

An example of quadratic selection with a RSA of 16 items, divided into 
four groups of four items each, is shown in example 7. For clarity, the keys 
that have been selected are crossed out, rather than replaced by all nines. 
The first, or initialization pass, results in the selection of keys 02, 08, 22, and 
17 for the control register and of 02 as the smallest-key-of-all. During the 
second pass, a selection is made in group 1, from which the previous key was 
chosen. This results in key 13 being moved to the subgroup of smallest keys, 
or control register. Key 00 "wins" during this pass as the smallest of all. 
The remaining passes, 3 through 16, shown in the example for completeness, 
follow the same procedure and are self-explanatory. The complete list of 
"winners" -- the sorted file -- appears at the output of pass 16. 

It is apparent from example 7 that the required number of comparisons 
decreases drastically as more and more keys are eliminated from the file. 
The total number of comparisons in quadratic selection, for a file of G items, 
is 

C = (G - 1) x (2../G - 1) 

When G is relatively large (G»l), this, approximately, becomes 

C=2G/G 
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Thus, the number of comparisons required in quadratic selection increases 
with the three-halves :power of the number of items to be sorted. 

The initial sequencing of the file has no effect on the total number of 
comparisons. The number of passes inJluadratic selection equals G and the total 
required core storage is equal to G + vG. 
INTERMEDIATE MERGE PHASE - EXTERNAL SORTING TECHNIQUES 

TAPE SORTING METHODS 

The object of tape sorting is to bring together sequences of records, developed 
during the internal sort, into a single, sequenced tape. This is usually accom­
plished by some kind of merging. The merge process may be of the balanced 
type,- using an equal number of input and output work units, or it may be of the 
unbalanced type, using an unequal number of input/butput work devices. Among 
unbalanced merge methods, the following types are described: 

1. Polyphase Sort 
2. Oscillating Sort. 

Balanced Merging 

In any balanced merge the records are moved back and forth between an equal 
number of input and output tapes, so as to avoid tape changing. The output 
sequences from the internal sort of the previous phase are written on one-half 
of the tapes available for merging. About the same number of sequences are 
placed on each of these input tapes. The remaining half of the available tapes 
is reserved for the output of the merge. Initially, one sequence from each 
input tape is merged into one longer sequence, which is placed on the first 
output tape. The second sequence from each of the input tapes is then merged 
onto the second output tape, and so on, until all input sequences have been merged 
onto the output tapes in a cyclic fashion. The output tapes now become the input 
tapes for the second pass, and the input tapes from the previous pass become 
the output tapes. Each record is processed on each pass. During each pass 
the total number of sequences is divided by the order of merge (m), while each 
sequence is lengthened by a factor equal to the order of merge. The process 
continues until the last pass results in a single sequence on one of the output 
tapes. Where 2m tape units are available for an m-way merge, the total number 
of passes (P) required is the smallest integer that is equal to or greater than 
logmS, i.e. 

where S is the total number of sequences to be merged. 
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While it is generally true that the higher the order of merge, the 
fewer passes will be required, this is not necessarily correct for a particular 
generalized sort. The most efficient order of merge is not always the highest, 
but is determined by a combination of the following factors; 

1. Internal storage capacity 
2. Block length 
3. Size of control field 
4. Length of records 
5. Ratio of input/output (tape) speed to processing speed. 

The last factor is particularly relevant in choosing the order of merge. 
For a low order of merge, the time. required for comparing the keys is less 
than that needed for reading in the records, so that the overall speed is deter­
mined by the tape-reading speed, that is, the sorting speed is tape-limited. 
Thus, it is important to keep the tapes moving at all times and to have the block 
that is needed next readily accessible. On the other hand, when botli the tape 
speed and the order of merge are high, the sort may become process-limited; 
that is, the sorting speed is determined by the machine times for basic arith­
metical and transfer operations. Most present day machines have several 
channels available that permit overlapping input/output operations with process­
ing, so that both are performed at the same time. This results in the most 
rapid merge possible for a given machine and method. 

Balanced merging has been adapted for generalized sorting programs 
because it has a number of significant advantages over unbalanced (asym­
metrical) merging. The balanced merge requires no tape changing and a 
minimum amount of programming. A generalized, unbalanced program is not 
only larger, but it reduces the maximum file size to that which can be sorted 
on the side (input or output) with the smaller number of tapes. (As will be seen 
later, the maximum file size for the specialized, unbalanced merges is one to 
m - 2 reels of tape.) It is, moreover, desirable to attain a complete overlap 
of reading and writing, so that reading is performed on one or more channels at 
the same time that records are written out on the other channels. This is 
accomplished most easily with a balanced number of input and output channels. 
Additional economies in rewind time are possible if the tapes can be read 
backward as well as forward. 

In general, the balanced merges used in generalized sorting programs 
are more adaptable to machine schedules and the usual organization of tapes 
than are unbalanced merges. On the other hand, . where maximum sorting 
effieiency and speed are desired, the polyphase or oscillating unbalanced 
merges described below should be considered. 
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Polyphase Merge Sort 

The polyphase technique is capable of performing (m - 1)-way merging 
from m tape units; the output sequences from the internal sort are, however, 
distributed in a prescribed ratio. When the number of available tape drives is 
fewer than eight (m<8), polyphase merging generally is faster and requires 
fewer passes than balanced merging. For a larger number of tapes, polyphase 
techniques begin to lose their advantage. Also, when the total number of 
strings to be sorted cannot be fitted easily into the prescribed distribution ratio, 
an elaborate presort, or adjustment phase, . may be required that will offset 
some of the timing advantage gained from the technique. 

In polyphase merging, the sequences are distributed initially onto 
m - 1 of the available tapes, as is described later. An (m - 1)-way merge pass 
from the (m - 1) input tapes onto the mth output tape is then performed, until 
the tape with the least number of sequences is depleted. At this point, however, 
t.lie previous output is made an input tape, and the {m - 1)-way merge is con­
tinued by merging additional strings from the tapes not yet depleted with strings 
from the tape just created. Note that the original output tape, which is now an 
input, contains records that are entering the merge for the second time, while 
sequences of records from the longer tapes have not yet been merged. As each 
successive input tape reaches its end-of-file, the previous output tape replaces 
it, and the depleted input tape becomes the new output tape. Since this is a 
continuous process, at no point can it be said that a complete pass over the file 
has been made, but instead, there are a series of partial passes, or phases, 
wherein sequences from several previous phases are merged together. The 
sort ends when all strings have been merged into one sequence. 

Example 8 illustrates a read-forward polyphase merge of 57 strings 
with four tape units. The strings are distributed initially in the ratio 13, 20, 
24 onto input tapes A, B, C, respectively, with tape D serving as output. 
After a three-way merge of 13 strings onto tape D, input tape A is exhausted, 
with seven strings left on tape B and eleven on tape C. Tape A now becomes 
the output tape, and tape D, with 13 newly created sequences, serves as input 
tape. After another three-way merge of seven strings, from tapes B, C, and 
D onto tape A, tape Bis exhausted. Four strings remain on tape C, six on 
tape D, and seven new strings have been created on tape A. The next three­
way merge, from tapes A, C, and D, onto tape B, depletes tape C, leaves two 
strings on tape D, three on tape A, and creates four new strings on tape B. 
With tape C serving as output, the next three-way merge of two strings exhausts 
tape D, leaves two strings on tape B, and one on tape A. Another three-way 
merge of one string onto tape D depletes tape A and leaves one string, each, 
on tapes B and C. Tapes B, C, and D now each have one string. A final three­
way merge onto tape A merges these remaining strings into a single sequence. 
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Assuming equal string lengths originally, the total number of records 
read and written in this example amounts to the equivalent of about four full 
passes over the file. This compares to six passes required for a balanced 
two-way merge with four tapes. 

String Distribution for Polyphase Merge Sort 

As mentioned earlier, polyphase merging depends for its operation upon a 
special initial distribution of strings, which is designed to permit merging a 
single string from each tape onto the output tape during the final merge pass. 
If the required initial distribution is absent, an adjustment and starting process 
is necessary before the main merge can be entered. 

For a three-tape (two-way) polyphase merge sort, the initial string 
distribution follows a sequence of numbers developed by Fibonacci in the 13th 
century. In the Fibonacci sequence each term is formed by taking the sum of 
its two predecessors, thus: 0, 1, l, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 
etc. 

In a three-tape polyphase merge, two tapes are available for the initial 
string distribution, while the third tape is used for the output. To find the 
distribution from the Fibonacci sequence, look for the term in the sequence 
that represents the total number of strings to be merged. (If not exact, it 
may require an initial adjustment or presort.) Then, allocate the strings· in 
accordance with the two successive terms preceding the sum term. For example, 
if 13 strings are to be merged, eight strings should be allocated to one of the 
input tapes, and five to the other. Similarly, if 89 strings are to be merged, 
the distribution of strings on the two input tapes would be 55 and 34, respectively. 

The Fibonacci numbers can be generalized to serve for four-tape, five­
tape, and higher merges, but to avoid mathematical intricacies, it is best to 
assemble a string distribution table based upon the following formation rules: 

1. The optimum distribution for one partial polyphase merge pass is 
one sequence on each of them - 1 tapes available for distribution (the mth tape 
serves as initial output). Hence, for the first partial pass (line 1 of table) 
write a 1 under each of the input tapes. 

2. For the second, and each subsequent, partial pass, the tape with 
the largest number of strings (first colUI!'.!11 of table) receives the sum of strings 
allocated in the previous pass to the largest and second largest tapes (first 
and second columns of previous line). The next-smaller tape (second column) 
receives the sum of strings of the largest and third-largest tapes of the previous 
pass (first and third columns of previous line in table). The next-smaller tape 
(next column to the right) receives the sum of strings of the largest and fourth­
largest tapes of the previous pass (first and fourth columns of previous line), 
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and so._ .. on, until the tape with the least number of strings {last column at 
right) is reached; this tape receives the same number of strings as the tape 
with the greatest number of strings {largest tape) of the previous pass (first 
column of previous line). 

3. Continue building the table until the total number of strings 
distributed during a partial pass equals the number of strings to be merged. 
The optimum total number of strings is given in table 4. If one of the optimum 
numbers cannot be obtained from the internal sort, a string adjustment to the 
next-lower optimum distribution becomes necessary. Tables 1-3 for four-tape, 
fi~~-~_,,___;;mg stx-tape polyphase merge sorts illustrate the procedure. 

Read-Backward Considerations 

To eliminate rewinding after merge passes, the input tapes always are :read 
backward and the output tape always is written forward.. However, if the 
sequences from the internal sort are written in one order (either all ascending 
or all descending) and then read backward continued merging soon becomes 
impossible because alternately ascending and descending strings are encountered. 

To understand the nature of the problem consider, for example, a 
simple four-tape (three-way) polyphase merge of 17 ascending strings, dis­
tributed in the ratio of 7, 6, · 4 onto three input tapes. (This is the required 
string distribution shown in Table 1 for 17 strings.) A three-way merge is now 
performed by reading tapes A, B, and C backward and writing the merged output 
strings forward on tape D until tape C is depleted. It is evident that when the 
ascending strings on the input tapes (A, B, C) are read backward and are then 
written out on tape D, they become descending output strings. Thus, at the 
completion of this first merge pass, four descending strings have been placed 
on tape D, three ascending strings remain on tape A, two ascending strings are 
left on tape B, and tape C is empty. The next merge pass, with tape C as out­
put, cannot be done, however, since no way is known to merge the ascending 
strings on tapes A and B with the descending strings on tape D. The attempted 
read-backward polyphase sort, therefore, must be abandoned at this point. 

Attempted read-backward polyphase merge 
of 1 7 ascending strings 

Tape A Tape B Tape C 

IIni.tial Distribution 7 Ase. 6 Ase. 4Asc. 

3-way merge of 4 strings 3 Ase. 2 Ase. 0 
(read-backward) 

3-way merge of 2 strings Impossible 
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Tape D 

0 

4 Desc. 



To solve the difficulty, it becomes necessary to create both ascending 
and descending sequences during the internal sort phase, in such a manner that 
each read-backward merge can be performed with either all ascending or all 
descending strings. 

Certain peculiarities of polyphase sorting provide the clues for the 
pattern of alternately ascending and descending strings that must be generated 
during the internal sort: 

1. It has been found that -- with a few exceptions -- every optimum 
distribution provides one tape with an odd number of strings, and all other 
tapes with an even number of strings. The tape chosen as output for the final 
merge pass is always the one with an odd number of strings. 

2. Therefore, if the final output is to be in ascending order, the final 
output tape must have an ascending string at its beginning and end, while all 
other tapes must begin with a descending string a..11d end with &'1 ascending 
string. (This order would be reversed if the final output is desired in descending 
order. ) Intermediate strings on each tape are alternately ascending and descend­
ing. Generally, it is necessary only to make sure that the first string {from the 
presort) placed on each tape is of the proper ascending or descending type, 
since for every optimum distribution shown in the distribution tables (with a few 
exceptions) the last string will automatically be of the required type. Thus, if 
the first strmg on one of the tapes (the final output tape) is ascending, every odd 
string thereafter will again be ascending, as required; if the first string on each 
of the other tapes is descending, every even string thereafter on these tapes 
will be ascending. If the internal sort cannot attain one of the optimum distribu­
tions shown in the tables, or if the total number of strings falls between table 
entries, marked dummy strings must be used to fill out the proper distribution. 

3. With the output strings from the internal sort being of the kind 
described above and being distributed as described, every partial merge pass 
of the read-backward sort will automatically contain either all ascending or all 
descending strings. The final pass will merge one descending string from each 
of the input tapes, which is written out as an ascending single string on the 
final output tape. 

Example 9 shows how the earlier unsuccessful attempt to sort 17 strings 
by a read-backward polyphase merge can be properly carried through by the 
formation of alternately ascending and descending strings during the internal 
sort phase. 

It is evident that the output from the internal sort in example 9 satisfies 
both the optimum distribution for 17 strings and the conditions laid down earlier 
for string alternation. Tape A, the final output tape, receives seven (odd) 
strings, starting and ending with an ascending sequence. Tape B receives six 
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(even) strings, starting with a descending string and ending with an ascending 
one. Tape C receives four (even) strings, again starting with a descending 
sequence and ending with an ascending string. Tape D is empty. 

Each merge pass is performed by reading the input tapes backward and 
writing the merged strings forward on the output tape. Note that all ascending 
(A) input strings to the merge are written on the output tape in descending (D) 
sequence, and all descending (D) inputs to the merge are written out in ascend­
ing (A) sequence. (This takes full advantage of the read-backward feature 
and avoids all rewinding and copying until after the final merge.) Thus, the 
first three-way merge of four strings starts with the three A-strings (with 
asterisks) on tapes A, B, and C, which are written out in descending sequence 
on output tape D. Three additional strings from each tape, in alternating 
D-A-D sequence, are merged onto tape D in A-D-A sequence. At the end of 
this first merge, three strings (A-D-A) remain on tape A, two strings (D-A) 
remain on tape B, tape C is empty, and four strings (in D-A-D-A sequence) 
have been newly created on tape D. 

Merging continues in the same fashion, and by the end of the third merge, 
tape A is empty, and one D string remains on each of tapes B, C, and D. The 
final three-way merge consists of merging these three descending strings into 
a single string, which is written out in ascending (A) sequence on tape A. 
Example 10, of a five-tape (four-way) read-backward polyphase merge of 25 
strings, further illustrates the procedure. 

Example 10 has the same general features and follows the same merge 
procedure that has been explained for example 9. 

In summing up, it appears that the polyphase merge techniques are 
generally superior to balanced merging, if fewer than eight tape units are used. 
When a greater number of tapes are used, either the balanced merge or the 
oscillating sort (described in the next section) seem to have the advantage. 
Exact generalizations cannot be made, since much depends on tape and central 
processing speeds. 

Finally, for full efficiency, reading and writing must be simultaneous; 
that is, it should be possible to read from one tape and to write on another in 
any combination of tapes. To maintain this complete read-write overlap, cross­
channel switching is required. 

Oscillating Merge 

When more than eight tape units are available for sorting, the oscillating merge 
sort technique generally requires fewer complete passes over the data than do 
polyphase or balanced merge methods. The oscillating sort attains (m - 1)-way 
merging with m tapes, makes use of the tape read-backward feature, and for 
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optimum efficiency, can employ cross-channel switching; that is, the ability 
to read any tape while another is being written. In contrast to other sort 
techniques, however, the oscillating sort method integrates the internal sort 
phase with the tape-merging phase. 

The oscillating sort begins with a conventional internal sort, but enters 
a merging phase immediately after the internal sort has written one string of 
sequenced records on each of m - 1 tapes. The m - 1 strings are read backward 
from the tapes and are merged onto the available mth tape. The other (m - 1) 
tapes are back at the beginning (load point) after being read backward. Control 
is now returned to the internal sort phase of the program. Another (m - 1) 
strings are then written by the internal sort, including one on the previous 
output tape. (A tape mark separates this string from the previously merged 
output. ) Another (m - 1)-way merge pass onto the remaining available tape 
takes place. ' 

This oscillating process is continued until each of the m - 1 tapes has 
had m - 1 "sequences merg~ onto it. At this point, therefore, a total of 
(m - 1) x (m - 1) or (m- 1) strings, generated by the internal sort, have been 
merged into m - 1 tape sequences. These m - 1 sequences are now again 
merged onto the available (mth) tape, resulting in a single sequence. This 
completes the first stage of the sort. 

The iterative process now starts over again (if more internal strings 
are t~ be sorted) and continues in the fa~hion described until another tape will 
contain a sequence formed from (m - 1) internally sorted strings. Similar 
stages ~ollow until, eventually, each of (m - 1) tapes contains a sequence' from 
(m - 1) original strings. At this point, 2herefore, (m - 1) tape sequences 
have been created from (m - 1) x (m - 1) = (m - 1)3 original strings. These 
(m - 1) sequences are now again merged as a single sequence onto the remain­
ing tape. If necessary, additional stages of the sort take place until all input 
records have gone through the internal sort. A single tape sequence occurs 
whenever the number of strings processed equals successive powers of the 
(m - 1) available merge tapes. A final merge onto the output tape concludes 
the sort. Example 11 illustrates the technique graphically for 27 strings sorted 
with four merge tapes. 

The example is largely self-explanatory, except for a few peculiarities 
that should be noted. After the initial three strings have been merged onto tape 
D (steps 1 and 2), the internal sort writes another string on each of tapes B, 
C, and D (step 3). Since tape D was the previous output tape, a tape mark 
(/) must be placed between the new string and the previously merged three 
strings (shown as 3/1). Note that all numbers in the example refer to the 
number of originally created strings contained in each tape sequence. Thus, 
in step 3, with a distribution of 0, 1, 1, 3 /1 on tapes A through D, there are 
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only four tape sequences {two on tape D), which consist of six original 
strings (that is, 1 + 1 + 3 + 1) created by the internal sort. By the end of 
step 6, each of three merge tapes has three original strings, or a total of 
nine strings. These are merged onto tape C as a single sequence (step 7). 
This concludes the first stage. 

The second stage of the sort (steps 8-14) repeats the previous process, 
except that in step 13 it becomes necessary to merge three strings onto the 
already existing sequence of nine strings, no other merge tape being available. 
Again a tape mark separates the two string sequences (shown as 9/3). In 
step 14, another nine strings are merged onto tape A, thus concluding the 
second stage. 

During the third stage (steps 15-22), nine additional strings are merged 
onto tape D (step 21), and all original 27 strings are finally merged as a single 
sequence onto output tape B (step 22). If more strings had been generated by 
the internal sort, the next single sequence (for three-way merging) would have 
resulted for (3)4 or 81 original strings. If the number of strings generated 
falls between powers of (m - 1), it is possible to perform a partial (m - 2)-way 
merge, or lower orders of merge, whenever the number of strings on two or 
more of the tapes are equal. 

Note that the order (power) of merge remains constant at (m - 1) for 
the oscillating sort. Thus, the average reduction factor, i. e. , for each pass 
is the same as the merge order, or (m - 1). The reduction factor begins to 
exceed those for balanced and polyphase merging for as few as four 
tapes, with a merge order of 3. However, in an oscillating sort, the input 
device (even if tape) is never available as merging tape, since it is used for the 
internal sort. Inasmuch as other sorting methods can make use of the input 
tape for merging, the order of merge for the oscillating sort may be considered 
to be (m - 2) of all m tapes in use. In this case, the reduction factor of the 
oscillating sort begins to exceed that of polyphase for a total of six tapes in 
use (m - 6). (Detailed comparisons are given in a later section.) Note also 
that the oscillating sort has the advantage of facilitating interruptions and 
restarting at those points where all records are in a single sequence. 

DIRECT ACCESS SORTING METHODS 

As in the tape sort techniques, the object of the direct access sorting is to 
bring together sequences of records, developed during the internal sort phase, 
into a single sequenced file. A basic characteristic of a direct access, 
namely, that every record in the input area is equally accessible, allows two 
modes of sorting. In record mode, the entire record is always read into the 
core, both in the sort phase and the intermediate merge phases of the sort. 
In tag mode, only the control fields of the record plus the address of 
the record are used. The output of the tag mode is a list of 
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direct access addresses. The records, if retrieved according to this list, 
will be fetched in the desired sequence. The advantages and disadvantages 
of the tag mode of sorting is discussed later. 

Balanced Direct Access Technique 

The sort phase distributes sequences onto all but the largest area used for 
intermediate storage. The order (i.e., ascending or descending} of the 
control fields of all sequences is the same as the order desired for the output. 

The locations of individual sequences in each area are maintained in a 
directory for each area. The directory for each area is kept in that area and 
is pointed to by a parameter in a constant area. 

For example, if 50 tracks are reserved for a work space, data is 
written starting at the first track and the directory is written beginning on the 
last track. The number of tracks u,:sed for the directory (a minimum of one 
track is always used) depends upon the number of sequences to be written in 
the work area. 

The intermediate merge phase combines sequences from a filled area 
into longer sequences and distributes these sequences onto the empty area. 
When all sequences from one area are distributed onto another, the first area 
is considered empty. It can then receive merged sequences from some other 
area. The merging process continues until the number of sequences is less than 
or equal to the merge order (in example 12 a merge order of 5 is used). At 
that time, the final merge phase combines the remaining sequences into a single 
sequence and places it onto the output device. 

Example 12 shows an example of the balanced direct access technique. 
Area A is the same size as or smaller than area B, which is the same size as or 
smaller than area C. The sort phase distributes 18 sequences onto both A and 
B. The intermediate merge phase merges the 18 sequences from B into four 
longer sequences, which are placed onto C. (Since C is the same size as or 
larger than B, all the sequences from B fit on C. ) 

Bis now considered empty and can receive sequences from A. The 18 
sequences on A are merged into four longer sequences and placed onto B. A is 
now considered empty. 

Since the total number of sequences (eight) on B and C is greater than 
the merge order (five), another intermediate merge phase pass is required. 
The four sequences from B are merged into one long sequence, which is 
placed onto A. (Since B consists of sequences from A, the sequences from B 
fit on A.) Bis now considered empty. The four sequences on C are merged 
into one long sequence, which is placed onto B. 
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Since the total number of sequences on A and Bis now less than the 
merge order, the final merge phase is executed next. This phase combines 
the remaining two sequences into a single sequence and places it onto the 
output device. 

In example 12, the merge order is 5 until the final pass, where it 
becomes 2. Performance of the sort can be increased by optimizing the merge 
order to the smallest m which will not cause an additional pass. Secondly, 
the sequential use of the work areas causes a savings in the number of writes 
but pays a penalty by increasing the number of reads over the string interleave 
merge external sort. Finally, the balanced merge allows for variable length 
sequences, whereas the string interleave method requires fixed length records. 
The capability of handling variable length strings in the intermediate and final 
merge phases allows the sort phase to use the replacement selection internal 
sort technique. 

String faterlea1.ring 

String interleaving takes advantage of both the sequential and randum 
characteristics of a disk file to minimize the seek time and, thus, the total 
merge time; The technique assumes that the usual phase 1 internal sort has 
developed strings of records of length G, which are blocked in the output. The 
blocks of each sequence are then interleaved within alternate blocks of disk 
storage, so as to make the strings to be merged accessible with a minimum 
number of head movements. 

Example 13 illustrates the interleaving technique for a simJ?le two-way 
merge of four strings contained on four cylinders of a type 2311 disk drive. 
Two work areas are necessary to perform the sort. As shown in (A) of 
example 13 the output blocks of each sequence from the internal sort have been 
written on alternate blocks of the disk file, so that a block of one sequence is 
a1ways followed by a block of the other sequence. (A sequence or string is 
represented by the symbol S, and a block is represented by Bin the example. 
Thus, S1B1 stands for block 1 of sequence or string 1; S2B1 repres.ents block 1 
of string 2; s4B3 represents block 3 of string 4, and so on.) Note that all the 
blocks of strings 1 and 2 are contained on cylinders 1 and 2, while the blocks 
of strings 3 and 4 are located on cylinders 3 and 4 of each area. 

To initiate the first merge pass, the first biocks of strings 1 and 2 
(S~ B1 an~ s2B1) are retrieved. Since the access arm must move to cylinder 1, 
this reqU1res one positioning move and one rotational delay for both blocks to 
be located. Upon the depletion of one of these blocks, the next block of the 
same sequence must be retrieved. Assume that s2 B1 is depleted, and S2B2 
must be sought. This requires only one rotational delay and no positioning 
move. 
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The merge process continues, with only rotational delays involved, 
until the last blocks of cylinder 1 are to be accessed. Here additional 
positioning moves of the access mechanism to cylinder 2 become likely. 
An analysis reveals that the merging of strings 1 and 2 (on cylinders 1 and 2) 
requires at least two movements of the access mechanism and may require 
as many as ten, with the probable number being fewer than four moves. 
Similarly, the merging of strings 3 and 4 (on cylinders 3 and 4) requires from 
two to ten movements of the access mechanism (fewer than four being probable), 
the remainder of the seeks consisting only of rotational delays. Thus, the 
probable number of positional seeks for the entire first merge pass is fewer 
than eight. This should be compared wit..'1 from 4 to 40 movements (38 probable) 
of the access mechanism, in the same general setup, with conventional non­
interleaved (i.e., balanced merge) file organization. 

At the end of the first two-way merge pass, strings 1-4 have been 
merged into two new sequences (S1 and S ) on cylinders 1 through 4 of the 
alternate disk area. With the blocks of ~ese two sequences again being inter­
leaved throughout the area of the four cylinders, the input to the second (final) 
merge pass is as shown in (B) of example 13. The merging of the two remaining 
sequences proceeds in the same fashion as before, and the probable number of 
positioning moves is again fewer than eight. It is seen that the interleaving 
technique reduces the total seek time considerably, not only because there are 
fewer positioning moves, but also because most seeks involve adjacent cylinders 
only. It should be noted that the string inteI'leave method requires that each 
string is of constant length G. So, while seek time is less, the number of passes 
may be greater than that of the balanced method. 

TAG MODE VS." RECORD MODE 

Usually, tag sorting is of no advantage, even in large disk files, when most or 
all of the original records are to be retrieved. Modifying the sort and reading 
modes to minimize the total seek time can have a considerable effect, but the 
advantage, generally, still lies with record sorting. The choice of the reading 
mode -- whether full-track or record-by-record -- depends on several factors, 
among them the file size, the record length, and the hardware configuration. 
The original records may be retrieved by reading the file sequentially, in a 
full-track mode, and then selecting the desired records as each track is brought 
into core. Records may also be obtained by reading the file, one record at a 
time and bringing into core only the records actually desired for that block. 
In g~neral, the full-track mode appears to be better for relatively small files, 
while the record mode is better for larger files. The actual dividing line is 
determined by the record length and the characteristics of the machine used. 

To bring the various factors into focus, example 14 provides a specific 
illustration of the breakdown of overall sort time for record and key sorts 
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performed on an IBM 7090, with a 1301 disk file, on files of 5000 and 10, 000 
records, respectively. The file has been generally organized to minimize 
seek time. Assume that the records are 100 characters in length and that the 
key records consist of 20 characters each. Assume further that a computer 
core working area of 100, 000 characters is available. Note that the example 
shows only read and write times for the 1301 disk file; the CPU processing time, 
which represents only a small fraction of overall sort time, has been ignored 
for simplicity. 

Part A of example 14 shows the breakdown of sorting time, in accordance 
with the three sorting phases. As expected, the tag sorts are considerably 
faster than record sorting during the internal sort and merge phases. The 
tremendous impact of seek times on the total sort time becomes apparent during 
phase 3 of the key sorts, when the original records must be retrieved. Solely 
because of the retrieval operation, the record sort is seven to ten times faster 
than the tag sort. 

Part B of the example, which gives the breakdown according to file 
operations, points to the seek time as the cause of the disproportionate 
retrieval time. The seek time comprises both the time required to position the 
read-write heads and the rotational delay time. In the 1301 disk file, the time 
required to position the movable heads is relatively high. Rotational delay is 
required for each record retrieved during tag sorting, regardless of the number 
of head movements. Finally, the larger (10, 000-record) file demonstrates even 
more clearly the advantage of record sorting over tag sorting, in this particular 
case. 

In summary, whether a record sort or a tag sort should be used to sort 
a direct access file depends largely on the ultimate disposition of the sorted 
records. If only an index of sorted records is necessary, and few of the sorted 
records are actually used, tag sorting would appear to have the edge. Reports 
by exception, which are extracted from the sorted file, is an example of this 
type of situation. On the other hand, if most or all of the original records are 
to be retrieved, record sorting is preferable to tag sorting. Moreover, the 
advantage increases with the size of the file. There are, however, circumstances 
where the time for record retrieval may be of secondary importance. If, for 
example, after completion of phases 1 and 2 of the sort, the computer can be 
put to work on other tasks, the slow retrieval operation on one or more channels 
may be of no particular consequence. 

28 



COMPARISON OF TAPE SORTlliG TECHNIQUES 

Because of its speed, versatility, and ease of programming, balanced merging 
is still frequently used for merging medium-size to large files in generalized 
sort programs. A balanced number of input and output channels provides the 
most efficient overlap of reading and writing, and where simultaneous tape 
operation is possible only on two channels, the balanced merge is the standard 
method. With T tape units available, the balanced method attains T /2-way 
merging of the internally sorted strings (S) of records in 

[logo. 5T <s>] passes. 

For N items in the file to be sorted, the number of strings (S) created by the 
internal sort is generally N/G, except in the case of replacement sorting, where 
the number of strings, S = N/2G. (Here G is the number of items held at one 
time in internal storage. ) 

Since the power (order) of merge of the balanced method is only half of 
the number of tapes available (T/2), efficient merging of many strings requires 
a relatively large number of tape drives. Unbalanced methods have a consider­
ably higher effective merging power than balanced sorting and, therefore, pro­
vide faster, more efficient sorting, especially when the number of available 
tape drives is limited. As is shown later, this is true even if the number of 
available tapes is large, for example, more than eight. 

The major available unbalanced merge methods have been described 
previously, but their relative effectiveness under various circumstances 
remains to be determined. This cannot be done exactly, since the sort 
efficiency depends not only on the sort parameters, but also on the relative 
tape and central processing speeds (whether tape-or process-limited), the 
file characteristics, and other factors. Moreover, the techniques are not 

directly comparable in some aspects. For example, the partial passes of the 
polyphase merge, which combine previously processed strings, cannot be 
compared to the complete file passes of the balanced merge method. 

Nevertheless, one traditional way of comparing merge techniques has 
been through the effective power of merge, or reduction factor, which may be 
defined as the average reduction in the number of strings occurring during each 
pass (or partial pass) of the merge. In a balanced merge of order (power) m, 
the number of strings is divided by m during each pass, while--at the same 
time--the length of each string is multiplied by m. With T tapes available, the 
reduction factor, or effective power of the balanced merge, is, therefore, 
m = T/2. (For example, for a two-way merge with four tapes, the number of 
strings is halved during each pass. ) 
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Si~lar_ly, for an oscillating sort with T tapes, the effective power of 
the merge is either T-2 or T-1, depending upon whether the input tape is con­
sidered to be a merge tape. Since the input tape in an oscillating sort is used 
for internal so~ting and, hence, is never available for merging, the merging 
proceeds effectively with one fewer merging tape than is available in other 
sorts. For this reason, the effective power of merge for the oscillating sort 
should be taken as T-2. 

. Final!~, for the polyphase merge sort, the effective power of the merge 
varies approximately between T-1 and T/2, depending on the amount of input 
data and the number of strings. (The degree of variation is described later.) 

!ab1:E' 5 compares the effective merging power of the balanced, polyphase, 
and oscillatmg sorts as a function of the available tape drives. The merge powers 
listed for the polyphase technique apply for a very large (theoretically infinite) 
number of strings, which correspond to the optimum initial strina distributions 
from the internal sort. · ~ 

. Note in the table that for the balanced and oscillating sorts, the 
effective_power of merge goes up in approximately equal steps, as the number 
of tapes mcreases. In the polyphase merge, however, the steps become 
successively smaller with an increasing number of tapes, and the merging 
power approaches a maximum (equal to four for an infinite number of strings). 
Thus, as the number of merging tapes goes up, the polyphase technique becomes 
progressively less effective, compared to other merge methods. On the basis 
of the table, a balance between polyphase and other techniques is reached for 
a total of six tapes. When fewer than six tapes are available, the polyphase 
merge would appear to be superior to all other merge techniques. For more 
than six tape units, the oscillating sort would appear to be preferable to poly­
phase merging, and for more than eight available tapes, even balanced merging 
appears more effective. Thus, judging from the table alone, it could be con­
cluded that polyphase merging is superior to other methods for fewer than six 
available tape units, while the oscillating technique is superior for six or more 
tape units. 

Unfortunately, the table of effective powers of merge is an over­
simplification, since it is based on somewhat unrealistic restrictions (perfect 
string distributions, very large number of sequences, etc.) and does not take 
into account many applicable sort and peripheral circumstances. 

For example, for ten available tapes, and ignoring the number of read 
reversals, the oscillating sort would seem to be far superior to the polyphase 
merge (with a merge power of 8 compared to 3. 95). However, for ten tapes 
and, for example, 100 strings to be sorted, the oscillating sort requires 13 
read reversals, the polyphase merge only 4. Thus, if there is any substantial 
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delay in effecting the read reversals (read-reverse interlock time), the 
polyphase merge would be more effective, despite its lower average merging 
power. 

More important, the table of effective powers of merge (Table 5) is 
based on a very large, impractical number of strings and does not gauge the 
power of each method for varying numbers of strings. In most large scale 
machines (for example, a 128K S/360), the OS sort for 100 character records, 
generates on the average string sizes of 1170 logical records. Therefore, the 
initial number of strings to be merged in a 200, 000 record file is about 170. 
A better way of comparing sorting techniques would, therefore, consist of 
determining for each the number of complete passes over all data for varying 
numbers of strinqs. Here the old difficulty is encountered of being unable to 
compare the partial passes (phases) of the polyphase technique with the complete 
file passes of other methods. The balanced and oscillating sorts consist of 
complete passes over the file, though in the oscillating technique these passes 
are not COJ).tiguous. The polyphase merge, however, consists of a number of 
partial passes, or phases, which combine the strings of several prior phas~s. 
Some of the original strings are processed many times, others only a few times, 
and one only once. 

The way out of this difficulty is to count for each method the actual 
number of times each original string must be processed during the entire merge 
(a measure sometimes referred to as string passes). By dividing this total 
number of strings processed (string passes) by the initial number of strings 
(from the internal sort), an equivalent number of complete data passes over 
the file is obtained for each method. For the balanced and oscillating sorts, 
the number of data passes is simply the conventionally calculated number of 
passes since by definition, each pass is over the entire file, with each 
sequen~e being processed only once. Thus, with T tapes available, the number 
of data passes for a balanced merge, 

while for the oscillating sort (power of merge T-2), the number of data passes, 

p = ~ogT - 2(S~ 
where Sis the number of strings generated by the internal sort. 

For the polyphase merge, the number of data passes for each optimum 
initial string distribution (in accordance with Tables 1, 2, 3 and 4) is: 

Total Number of Strings Read (String Passes) 
p = Initial Number of Strings 
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The total number of strings processed must be determined by an actual count 
of the merge process, as is shown in example 15 for 65 initial strings and six 
tapes. (For an imperfect initial string distribution, a sufficient number of dumI'.ly 
strings must be added to attain the next higher optimum distribution.) Thus, the 
number of data 

String Passes = 208 = 3 2 passes= Number of Initial Strings 65 · 

Table 6 shows, for each of the major merge methods, the required 
number of data passes for roughly comparable numbers of initial strings and 
for various numbers of available tapes (T = 4, 5, 6, 8, 10). The table is based 
on perfect string distributions; the string lengths produced by the internal sort, 
as well as the capabilities of the tape drives, are assumed to be identical for 
all methods. 

The table is interpreted as follows: 

For the balanced and oscillating methods, each range of strings listed 
corresponds to the number of integral data passes shown in the adjoining 
column. For the polyphase technique, the high end of each string range 
corresponds to a perfect distribution, while the low end represents an imperfect 
distribution. The number of fractional data passes have been computed for both 
ends of each range and are shown in the adjoining column. Within each polyphase 
string range, the increase in number of data passes is reasonably smooth, so 
that intermediate string numbers can be obtained by interpolation. (For all 
other methods, however, even one additional string at the end of a range causes 
an extra pass. ) All comparisons must be made on the basis of the same number 
of initial strings produced by the internal sort. (There is an exception to this, 
which is explained later. ) 

To compare the relative effectiveness of the merge methods, the data 
in.the table have been plotted as smooth graphs (for T = 4 and T = 10), ignoring 
the stepwise increments in the number of passes (see Figure 2). This 
discriminates somewhat against the polyphase technique, which actually has a 
fairly smooth curve. Nevertheless, the superiority of the polyphase merge 
over the other methods for a four-tape merge is clearly evident. As the number 
of strings increases to 100 and beyond, the polyphase technique outperforms 
the oscillating and balanced merges by about two passes. (If the step increments 
are taken.into account, the difference is even greater.) On the other hand, with 
ten tapes available, the lineup is almost reversed. For 100 strings or more, 
the oscillating sort is clearly best, and the polyphase and balanced techniques 
almost a pass behind. 

An examination of the table of data passes (Table 6) reveals that the 
cutover point in the effectiveness of the techniques occurs somewhere between 
T = 6 and T = 8. With six tapes available, the polyphase merge still appears 
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superior to all other techniques. With eight tapes available, however, the 
polyphase merge appears evenly matched with the oscillating technique for 
fewer than 100 strings, and it is slightly superior for more than 100 strings. 

The following consideration gives an additional edge of effectiveness to 
the polyphase merge over its runner-up, the oscillating sort. When the 
replacement method is used for internal sorting, the average string length is 
twice the number of records stored internally (2G). For N input records, the 
polyphase sort is thus required to process N/2G initial strings. The oscillating 
internal sort, on the other hand, produces somewhat smaller strings, varying 
between G and 2G in length. (The first string is 1. 7 G in length, the last 
1. OG, and the remaining strings are 2 Gin length.) As a result, for a given 
file, the oscillating sort must process a greater number of initial strings than 
the polyphase method (instead of an equal number of strings, as assumed 
previously). The additional number of strings depends on the number of tapes 
available. For T = 4, the oscillating sort must process 48% more strings t...lian 
polyphase; f.or T = 6, 20% more strings; for T = 8, 12% more strings; and for 
T = 10, 8% more strings. 

When the table of the number of data passes (Table 6) is adjusted for 
this additional percentage of strings in the oscillating sort, the polyphase 
technique emerges clearly superior to all other methods for fewer than eight 
tapes available. For eight tape units, the polyphase technique is about equal 
in effectiveness to the oscillating sort. For ·more than eight tape drives, the 
polyphase merge usually requires more data passes than does the oscillating 
sort. For fewer than eight tape drives available, the implementation of the 
polyphase technique is practically always of advantage. 

GENERAL CONSIDERATIONS 

As explained previously, the sort performance depends not only on the choice 
of techniques, but also on the characteristics of the file, the machine, and 
the application. A complete discussion of these characteristics and their 
interactions would require a large volume. Only a brief discussion of some 
relevant factors and considerations is possible here. 

FILE SIZE 

The number of records that must be sorted is obviously important, both with 
respect to the choice of technique and to the type of storage that can be used. 
The maximum number of records that can be handled by a sort program depends 
on the number of tapes used, on the method of writing the records, and on the 
equipment. Some machines permit writing larger blocks of records--thus, 
increasing the maximum file size--than do others. More records can be written 
on a single tape reel if they are blocked, for example, to 3000 characters, 
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instead of to 1000. The length of the records is a limiting factor in terms of 
t~eir maximum number per reel for a given block length and character density. 
Finally, the number of reels, and, hence, the maximum file size, depends on 
the type and order of merge. For a balanced merge, this file size is one reel 
fewer than the order of merge; for example, a four-way merge can accommodate 
three reels of records. 

RECORD LENGTH 

The length of t~e record, or sometimes, the ratio of record length to key 
length, determrnes the amount of manipulation that is feasible and economical 
in sorting the record. This factor is less important when the control word 
(key) is separated from the record, an~ only the keys are sorted. Variable­
length records pose ~ problem in generalized sort programs, since the blocking 
of such records reqIDres considerable processing time. 

LENGTH, LOCATION, AND RANGE OF CONTROL WORD (Key) 

:nie charact~ristics of the control word, or key, are of over-riding importance 
rn most sorting methods. The required time for processing is proportional to 
the length of the key (and the number of control fields contained in it). The 
~ength and type of key--whether numeric, alphabetic, or alphameric--greatly 
influences the choice of sorting method. In some methods, the difference 
between a two-bit numeric key and an 18-character alphameric key is crucial. 

DEGREE OF ORJGINAL ORDERING 

In many internal sorts the degree of original ordering affects the total amount 
of manip~a~on ~d the required number of passes. Several different concepts 
mus~ be distin~shed, however. The degree of ordering may refer to a scale, 
rangmg from a file completely out of sequence (that is, in reverse order) to 
one ~ost ord~r.ed. sev:eral internal sorts, such as selection and exchanging, 
are highly sensitive to this type of ordering. The term may also refer to the 
number of naturally occurring sequences within the file. A file of N items in 
random order will have, theoretically, N/2 such natural sequences, each having 
an average length of two items. Longer sequences, stemming from some 
:rrevious ordering of the file, are used to advantage in the replacement selection 
mternal sort method and may save one or more merging passes later. 

BLOCKING 

Records are blocked for sorting to reduce tape start/stop time per record and 
to increase the total number of items that can be written on one reel of tape. 
Separate factors are used for input blocking, for output blocking and for sort 
blocking. Although the efficiency of the sort does not depend entirely on the 
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relative size of the blocked records, optimum blocking and sort efficiency go 
har1d in hand. 

Several indirect factors must also be considered when discussing 
blocking. Increasing the block size reduces the tape time per record. This 
is of advantage only if the sort is not process-limited. In sorting programs 
that tend to take more processing time than tape time, however, increasing 
block size serves only to increase the number of records per tape reel. On 
the other hand, the maximum block size varies inversely with the order of 
merge. As a consequence, the highest possible order of merge does not 
always provide the fastest sort. Unless a merge pass can be saved, it may be 
preferable to use a lower order of merge and a larger block size. 

In an unbuffered sort, the total running time depends directly on the 
tape time. The tape time is reduced most significantly by completely over­
lapping reading and writing. The block size must be chosen to accomplish this 
purpose. · 

The significance of user choosing an optimal blocking size for the input 
and output blocking factor cannot be overemphasized. It has a direct bearing 
on G and, thus, the efficiency of core utilizatj.on. Also, unless a sort is of 
hours duration, blocking is more critical than sorting technique used in overall 
run time. The optimum technique for a given file size and number of available 
intermediate work units will usually not overcome bad blocking. 

RELATIVE TAPE AND PROCESS SPEEDS 

In any given machine, . sorting is most rapid when tape and process speeds are 
approximately in balance and when both operations are overlapped. When the 
order of merge during the merge phase and the tape speed are both low, the 
sort becomes tape-limited; that is, total sort time depends on tape-reading 
speea. W11e11 both order of merge and tape speed are high, however, the sort 
may become process-limited; that is, the sort time is determined by the speed 
of the basic arithmetic and transfer operations. Some of the factors that tend 
to make a sort process-limited are listed and explained briefly below: 

1. Blocking -- tends to make a buffered operation process-limited 
by reducing tape time per record. 

2. Buffer transfer time -- adds to process time. It may also add to 
tape time when using read-while-write mode. 

3. Checking and restart procedures -- can add as much as 20% to 
process time. 
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4. Size of control word -- affects process time. This is true for 
both var~able-and fixed-length word machines. 

5. Number of control fields -- determines process time during 
internal sort and merge phases. 

6. Order of merge -- process time per record increases with 
merge order. 

7. Record length (at which a sort becomes process-limited) -­
depends on size of control word, tape speed, and particular 
machine involved. Merge type sorts of short records are often 
process-limited. 

8. Start/stop (acceleration) time (per record) -- varies with type of 
tape control used. With fairly short, unblocked records, 
start/stop time may be considerably longer than time required 
to read entire record. 

9. High tape speeds -- tend to create more process-limited situations. 
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S/360 SORT PUBLICATIONS 

S/360 Sort/Merge Specifications 

Mod 20 Tape Programming System C26-3804 
BPS C24-3320 
BOS C24-3321 
TOS C24-3438 

Tape - C24-3438 
DOS Disk - C24-3444 
OS C28-6543 

S/360 Sort/Merge Program Logic Manuals 

Mod 20 Tape Programming System Y33~9005 
. BPS Z24-5008 
BOS Z24-5001 
TOS Z24-5016 

Tape - Z24-5016 
DOS Disk - Y24-5021 
OS Y28-6597 

A general reference to sorting techniques may be found in the following 
IBM publication: 

Sorting Techniques, C20-1639 
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83 
60 
45 
37 
22 
78 
96 
45 
17 

Input End End End End End End 
.fl!!_ ~ ~ ~ ~ ~ ~ 

13 13 ll 99 99 99 99 
69 69 69 69 69 ~ 99 
56 56 56 56 ~ 99 99 
~ 99 99 99 99 99 99 
08 Q§ 99 99 99 99 99 
21 21 21 .6.1 99 99 99 

Output: 02 08 13 21 56 69 

Example 6. Linear selection 

Initialization (Poss I) 

Group 
N 

Control Out­
Keys Register ~ 

Group 
# 

Poss 2 

Control 
Keys Register 

Out· 
E!_ 

8 
02 

------- ------------

Example 7. Quadratic selection, initialization and pass 2 

Con- Out-

~~~ 

#]ID-?9 
56 
;¥£ 

*2 fe(ID-21 
34 
83 

#3 ID-~ 22-
37 
7f 

.. if" 

4 
45 
37 
34 
22 
21 
17 
13. 
08 
.02 

Records 

33-

36-

37-

40-

41-

44-

45 

48-. 

49-

52-

53-

56-

57-

60-

61-

64-

Example 5. Replacement selection, possible organization for G = 64 

fil· 
~21 
]iJ 

ID22- li 
02 

zf 

]'ass 5 

22 
21 
17 
13 
08 
02 

fil~ 

t 
34 
22 
21 
17 
13 
08 
02 

Fr 
}' 

i~ 

}" 
45 

]-

60 ;~ 
22 
21 
17 
13 
08 
02 

Example 7. Quadratic selection (continued), passes 3 through 16 



""" d-~_,. 

Tope Tape Tape Tapt 
A B C D 

Initial Stri"I Dl•trillutlon: 13 20 2.\ 

After 3-woy merge of 13 1trl11fl 11 .!1 

After 3-way marge of 7 llrlnp L 
After 3-way merge of 4 atrl"ll 

Alter 3-way mergt of 2 1trlng1 

After 3-way merge of I airing 

After final 3-woy merge J.. 
~------------- -·---------------------L---------- .. 

li2.t£.; Underlined entries represent output tapes. 

Example 8. Read-forward polyphase merge with four tapes 

Nurr.ber of Me_!j_e T~es Total Number 
~tiol Posses I II Ill of Stri~----

1 1 1 1 3 
2 2 2 1 5 
3 4 3 2 9 
4 7 6 4 17 

5 i:t-.1- Ll 1--'.7 31 (see Ex. 30) 
i- _6 __ -+-_2_l>]4+f'2o;7_2_0--t_l3_-r-___ 57~(_s_e_e ___ E_x._2_9) 

7 
8 
9 

10 
11 
12 

44 37 24 105 
81 68 44 193 

149 125 81 355 
274 230 149 653 
504 423 274 1201 
92 7 778 504 22 09 

Note 1: Final output tape ( 0 strings) is not shown 

Note 2: As on illustration, the distribution used in example 
29 ( 13, 20, 24) for 57 strings is obtained from the 
previous line (partial poss 5), as follows: 

Tope I = Tope I + Tope II of previous line, or 24 = 13 + 11 

Tope II = Tope I + Tope Ill of previous line, or 20 = 13 + 7 

Tope Ill = Tope I of previous line, or 13 ~ 13 

Table l. Initial string distribution for four-tape 

polyphase merge 

Number of Mer e Ta es _ __ To1ol Number• 
--------~- -- -, 

1-Pa_r_tia_l_P_<.,_• .. -+-l--t_l_I -+-~I IV of St1 ings __ 

10 

11 

12 

1 I I 4 

56 52 44 

2

, I 
13 

25 

49 

94 

181 

108 100 85 56 349 

208 193 164 108 673 

401 372 316 208 1297 

n3 717 609 401 

1490 1382 1174 773 

2500 

4819 

Table 2. Initial string distribution for five-tape 

polyphase merge 

Number of Me.!:i!. T~es Total Number 
Partial Passes I II Ill IV v of Strings 

--i ---------
1 1 1 I 1 I 5 
2 2 2 2 2 1 9 
3 4 4 4 3 2 17 
4 8 8 7 6 4 33 
5 16 15 14 12 8 65 
6 31 30 28 24 16 129 
7 61 59 55 47 31 253 
8 120 116 108 92 61 497 
9 236 228 212 181 120 977 

10 464 448 417 356 236 1921 
11 912 881 820 700 464 3777 
12 1793 1732 1612 1376 912 74?~ 

Table 3. Initial string diltrlbution for six-tape 

polyphase merge 

1 
2 
3 
5 
8 

13 
21 
34 
55 
89 

144 
233 
377 

etc. 

1 
3 
5 
9 

17 
31 
57 

105 
193 
355 
653 

1201 
2209 

etc:. 

4 

7 
13 
25 
49 
94 

181 
349 
673 

1297 
2500 
4819 

etc. 

5 
9 

17 
33 
65 

129 
253 
497 
977 

1921 
3777 
7425 

etc. 

Table 4. Optimum tota.l number of SL'qllL'ncl'S for 

polyphas~ merging 

Tope A T~ 8 Tape C Tope D 
r--..::-Ta_p_e -,-,T:-ap-e-.--:::T-ap_e_' r;:;p;--
~ A 8 _s_....e_ 

Output from internal r t' ! 12,esc. 0 

sort (Initial distri-

(7) ~ (6) ~ 
(4) ~ 

bution: 7, 6, 4, 0) A* 
D 
A* 

A• 

After 3-woy merge 

(3) l~ (2) [~ 0 D 

of 4 strings (4) !~ 
After 3-way merge (I) A 0 (2) D (2) D 

A A 
of 2 strings (Output) 

After 3-way merge 0 D D D 

of I string 
(Output) 

Final 3-way merge A 0 0 0 

of l string 
(Output) 

* First strings to be processed by read-backward merge. 

Example 9. Read-1'ackward polyphase merge of 17 strings 

Tope A Tope B Tope C Tope D 

Output from 

inf~ 
D ,,, I~ D 

internal sort 

(8) [ ~ (4) 1~ 
A* 

A* 
A* 

A* 
------

After 4-woy merge A D 
(2) { ~ 

3) l ~ (4) I~ of 4 strings 

----·---------- ---
After 4-woy merge ( 1) A (2) { ~ (2) {~ 

of 2 strings 

After 4-woy merge D Q D 

of l string 

Final 4-woy merge 8. 

~-in_g __ ~ 
~ote: Underlined entries represent output for each merge. 

Example 10. Rc-:1d-hackward polypha:.:c lllC'fC,L' 01 25 strint1;s 

(Output) 

Tope E 

D 

(4) I~ 
(2) { ~ 

D 

10 
11 
12 
13 
14 

j 

3/1 

1 
0 
1 
0 
1 

9/1 
9 

0 9/1 
3 9 

3.71 9 
3 Jf1 
0 9 

O~ration Performed 

0 After first internal sort (3 strings generated) 
l After first 3-way merge (3 internal strings 

merged into 1 tape sequence) 
3/ 1 After next internal sort (6 internal strings 

contained in 4 tape sequences) 
After next 3-way merge (6 internal sort 

strings contained i.1 2 tape sequences} 
3/1 After next internal sort (9 internal sort 

strings contained in 5 tape sequences) 

0 After next internal sort (3 more strings generated) I 
l_ After next merge ( 12 internal sort strings 

contained on 2 tape· sequences) 

After next 3-woy merge (9 internal sort ~ 
strings contained in 3 tape sequences 

After next 3-way merge (9 internal sort 
strings merged into 1 tape sequence) 

3~ 1 ~;::; ~=:: ;..t;~~alm:,~te I 
3 After next 3-way merge 
0 After next 3-woy merge ( 18 internal sort 

3/1 After next internal sort I 
1---+---+---+---1---·- -- --~~~~~~~~--i~-~~ ~~~~-~--- -- -

15 
16 
17 
18 
19 
20 
21 

22 

9/1 
9 

9/1 
9 
9 

!.G 
9 

0 9/1 
.a 9 

3/1 9 

3~1 9:%71 
3 9/3 
0 9 

11 

1 After next internal sort (3 more strings generated) I 
0 After next 3-woy merge 
1 After next internal sort 
0 After next 3-way merge 
1 After next internal sort ! 
0 After next 3-way me1ge I 
1 After next 3-woy merge (27 internal sort 

0 After final 3-woy merge (al I 27 internal 
$Ort strings merged into l tape sequence). [ 

strings contained in 3 tape s~uences) J 
...___...._ _ _.,_ __ _._ __ ,_ - ---------------------

Numbers refer to the number of internal sort strings contained in each 
tape sequence, Underlined entries are output tapes for that merge. 
The sla1h •ymbol V) represents o tape mark that separates new 
sequences from previously merged output. 

Exampl~ 11. Oscillating sort of 27 strirn;~s with four tapl's 



---~ 
Size A( B" C 

A. Block Organization for First Merge Pass (Area 1) 
·~ 

CYLINDER 1 CYLINDER 2 CYLINDER 3 CYLINDER 4 

s1e1 5186 S38i 5386 

5281 5286 5481 5486 
5102 

s107 5382 5387 

5282 5287 5482 s 1.87 
5183 5188 5383 5388 

5283 5288 5483 5488 

5184 5189 5384 5389 

5284 5289 5484 S4B9 

5185 51810 5385 53810 
5285 s2810 5485 5

4810 

B. Input to Second (Final) Merge Pais (Area 2} 

5181 5186 51811 51016 

5281 5286 52811 52816 
5182 5187 51812 51817 
5282 5287 52812 52817 
5183 5188 s18 13 5181e 
5283 5288 528 13 52818 
S184 s189 

51814 51a19 
5284 5289 52814 528 19 
5185 s1e10 51815 51820 

5285 52810 52815 
5
2820 

Example 13, Two-way merge on disks with m;lng interleaving 

Operation 5:000-Record File 

Performed ecord Tag 
Sort Sort 

Phase 1 (Internal 35 13 69 35 
Sort) 

Phase 2 (Merge) 11 25 12 
Phase 3 (Retrieve) 308 940 
Tota I Sort Time 46 321 94 987 

Position Heads 3 750 
Rotational Delay 14 187 
Doto Trans fer 29 50 
Total Sort Time 46 987 

Example 14. Sorting time (In seconds) for record and tag 

sorts with an IJIM 1301 disk file 

Total No. 
of Topos 

E.f~!'ctive Pow~r .of .M•l'A• ( Red.1,1ctjon ~.2! I 
BOl"oneed Po'iYPhose Oseilloth~a_ 

3 
4 
5 
6 
7 
8 
9 

JO 
11 

20 
21 

*~: 

1~s t.95 n :_?! 
2 2.68 (2.7) 
2.5 3.19 (3.3) 
3 3.51 (3.7) 
3.5 3.7.1 (4.0) 
4 3.8-4 (4.2) 
4.5 3.91 
5 3.95 
5.5 3.97 

10 
10.5 

Figures for polypho111 merg•s assume iarfect initial 
string distributions- and an Infinite number of strings. The figures 
In parentheses lndicat• the reduction factors in actual situations 
for o practical number of strings, 

Example 15. Polypha1e data pass determination Table S. Effective power of the merge (reduction factor) for 
(65 ltrings and 6 tapes) tape sortinj( tech11lque1 

String 
Operation Top• 1 Tape 2 Tape 3 Tape 4 Tape 5 Tape 6 Paoses 

Initial String 8 (1) 12 (1) 14 (1) 15 (I) 16 (1) 0 ( 65 strings 
Distribution initially ) 

End of first merge ·o 4 (1) 6 (1) 7 (I) 8 (1) 8 (5) • 40 

36 
Example 12. Balanced direct acces sequence-distribution 

technique 

End of second merge 

End of third merge 

4 (9) • 0 

2 (9) 2 (17) • 

2 (1) 3 (1) 4 (1) 4 (5) 

0 1 (I) 2 (1) 2 (5) 34 

End of fourth merge 1 (9) 1 (17) 1 (33) ~ 0 1 (1) 1 (5) 33 

End of fifth merge 0 0 0 1 (65) • 0 0 65 
-

Totol Strings 208 

·- • Indicates output tape during each merge. !:!2!!i, The number of original strings contained In each resulting 
string I• shown In parentheses. 

Balanctd Polyphase Oscillating 

Number 
Strings 

1-2 
3-4 
5-8 
9-16 

17-32 
33-64 
65-128 

129-256 

T = 5: 

r = 6: 

1-3 
4-9 

10-27 
28-81 

82-243 

Number Number Number Number Number 
Passes Strings Passes String• Passes 

3 - way ,,:Olyph~se merge; 2 - way balanced & 01cilla!ing merges! 

1-3 
4-5 
6-9 

10-17 
18-31 
32-57 
58-105 

106-193 
194-355 

4 - way polyphase merge; 

1-4 
5-7 
8-13 

14-25 
26-49 
50-94 
95-181 

1 
1.5-1.6 
2 -2 .2 

2 .4-2 .8 
3.0-3.5 
3.6-4 
4.2-4.7 
4.85-5.3 
5.4-5.9 

1-2 
3-4 
5-8 

3 - way osclllotlng merge 

1 1-3 
1.4-1.6 4-9 
1.9-2. I 
2 .3-2 .7 10-27 
2 .8-3.3 28-81 
3.4-3.8 
3.9-4.4 82-24.1 

I i 
Same as for 

5 - ~ay polyphase merge; 4 - way oscillating; 3 - way balanced merg• 

1-5 1 1-4 
I 6-9 1.3-1.6 5-16 

10-17 1.8-2. 1 
18-33 2 .2-2 .7 17-64 
34-65 2 .7-3.2 
66-129 3.2-3.7 65-256 

130-253 3.8-4.3 

T = 8: 7 - way polyphose ·merge; 6 - way oscillating; 4 - way balanced merge 

1-4 1-7 1 1-6 
5-16 8-13 1.3-1.6 7-36 

14-25 1.7-2 .1 
17-64 26-49 2 .2-2 .6 37-216 

50-97 2 .6-3. 1 
65-256 98-193 3.1-3.7 217-129.6 

T = JO: 9 - way pol~phose merge; 8 - way oscillating; 5 - way balanced merge 

1-5 1-9 1 1-8 
6-25 10-17 1.2-1.5 9-64 

18-33 1.7~2. I 
34-65 2 .1-2 .6 

26-125 66-129 2 .6-3.1 65-512 
126-625 130-257 3.1-3.6 

258-513 3.6-4. I 

Table 6. Number of data passes for tape sorting techniques 



1000 r-~~~---,,.--~~~--.~~~~--ir--"""""T~~~.---r-~~~,.-~~~~...-~~~---. 

9 
8 t--~~~~--~~~~-"~~~~--1~-_._-

---·---· 

2 
4 

TAPES 

100 
9 
8 

"i 
e> 
~ 

I 
0 

""" ~ 
~ -1 

10 
9 

Number of Complete Data Passes 

Figure 2. Comparison of tape sorting techniques for T = 4 and T = 10 




