ZT77-"7257

fREEHNIEANE
JONIF @IRIMUAIC IO
ESEHTWNIGE

October 3, 1967

This paper is a general introduction to the internal sorting

and intermediate merge techniques implemented in IBM S/360
sort programs. Its main intent is to provide simplified, concise
presentation of S/360 sort fundamentals. Additionally, the
manual indicates comparative advantages of technigues in the
tape and in the disk sorts.

SYSTEM /360 SORTING TECHNIQUES

Mr. R. L. Shores

IBM Corporation

112 East Post Road
White Plains, New York

The techniques discussed pertain to the BPS, BCS, TOS, DOS
and OS sort programs for 5/360 models 30, 40, 50, 65 and 75,
and for the Model 20 tape system.

For IBM Internal Use Only

1BM Corporation. Techrical Publications Dept.. 112 E. Post Road. White Plains. N.Y. 10601 L : i o O i s B e

LSGL-LLZ

CONTENTS
Generalized Sort Programs «
System /360 Sort Technique Table

Sort Phase - Internal Sorting Techniques .
Straight Two-Way Merge ..
BinaryImsertion..
Replacement Selection
@uadratic Selection

Intermediate Merge DPhase - External Sortlnq Techmques
Tape Sorting Methods
Balanced Merging
Polyphase Merge Sort . .
Oscillating Merge . . . e
Direct Access Sorting l\/ethods .. .
Balanced Direct Access Technique
String Interleaving

Tag Mode vs. Record Mode

Comparison of Tape Sorting Techniques

General Considerations » « « « « « « ¢ o v 4 o o o .o .
S/360 Sort Publications
FIGURES

1. Phases of a generalized sort/merge program .
2. Comparison of tape sorting techniques for T=4 and T 1O

TABLES

1. Initial string distribution for four-tape polyphase merge .
2. Initial string distribution for five-tape polyphase merge .
3. [Initial string distribution for six-tape polyphase merge

4. Optimum total number of sequences for polyphase merging .
5. Effective power of the merge (reduction factor) for tape

sorting techniques e e e e
Number of data passes for tape sorting techmques

o

.. 38
. 47

EXAMPLES

=

N

10.
11.
12.
13.

14.

18,

Straight two-way merge

Binary insertion.
Replacement selection (G=4)
Replacement selection, possible organization for G=12
Replacement selection, possible organization for G=64
Linear selection

Quadratic selection

Read-forward polyphase merge with four tapes .

Read-backward polyphase merge of 17 strings

Read-backward polyphase merge of 25 strings

Oscillating sort of 27 strings with four tapes

Balanced direct access sequence - distribution technigue
Two-way merge on disks with string interleaving .

Sorting time (in seconds) for record and tag sorts with
an IBM 1301 disk file R e e

Polyphase data pass determination

. 38
. 39

. 40

GENERALIZED SORT PROGRAMS

The objective of a generalized sort program is to permit sorting of a variety
of files with reasonably high overall efficiency and without intervention by the
user. A generalized sort accepts the introduction of file and system para-
meters, entered on control cards, and modifies the sort at execution time in
accordance with those specific characteristics. It does not actually generate
the object code to be executed, though it may assemble the sort program for
a particular job from a series of relocatable subroutines.

A typical IBM generalized sorting or merging program accomplishes its
objectives in approximately the following manner:

The user first specifies on control cards the relevant file, machine, and
peripheral information that defines the sort. The file information, for example,
must include a general description of the records to be processed, the control
fields upon which the records are to be sorted, and the modifications to be
made to the program. The range of specifications permissible is set by the
sort designer.

presented to a separate routlne, known by such names as sort deﬁmtlon pro-
gram, edit program, and analysis program, whose function is to select the
subprograms needed for the type of sort or merge program required by the
user. The selected subprograms are then combined into an absolute program
through a linkage loader.

At object time, the selected sort/merge program adjusts itself to meet
the requirements of the specific application, in accordance with the control
card information supplied by the user.

The selected sort/merge program is divided into four phases:

The General Assignment Phase
The Sort Phase

The Intermediate Merge Phase
. The Final Merge Phase

R

Where a complete sort is to be done, the program normally consists of
all four phases, as shown in the flowchart (Figure 1). Where only a merge is
to be performed, the general assignment and final merge phases are executed,
while the sort and intermediate merge phases are omitted. A more detailed
description of the four phases is presented in the following paragraphs.

GENERAL ASSIGNMENT PHASE

This phase is loaded into storage when the selected sort/merge program is
called for execution, and it contains the initial entry point for the program
itself. Unless control is assumed by an external monitor, part of the general
assignment phase remains in storage throughout the execution of the program,
to control the loading of each program phase.

The main functions of the general assignment phase are to perform the
initial housekeeping for the program and to reserve and set up the common or
phase-to-phase information area used by all phases of the sort or merge program.
The assignment phase calls in the control cards and analyzes the control state-
ments that describe the sort or merge to be performed. It checks the control
information for validity and consistency. Based on these specifications, and
on other information supplied by the system, the assignment phase sets up the
common information area for all phases. This information is then used to
select the most efficient technique (among those built in) for the specified sort
and to calculate its basic parameters. Among specific tasks carried out by the
general assignment phase, the following are typical:

1. Setting up of appropriate input-output device addresses

2. Establishing the initial storage addresses, in accordance with record
length, blocking factors, and other parameters

3. Determining the size of G (the number of log1cal records accommo-
dated in core storage during the sort phase), the maximum volume of records,
the order of merge, etc , and setting up the appropriate counters, constants,
and switches

4, Activating routines for interruption procedures, editing, controls,
labels, etc.

5. Typing appropriate messages to the operators

In addition, if a separate sort definition program has not been set up,
the general assignment phase also takes over the function of defining the other
program phases by creating a list of the subroutines used for execution. It may
call upon a linkage editor to link together the subprograms to be executed.

SORT PHASE

This phase performs the initial internal sorting of the records from the input
file. It is divided into two parts: the assignment program and the running
program. The assignment program performs the final initialization and
modification of the running program. As part of the initialization, a record
storage area is set up to contain the records being sorted. The running program
performs the internal sort required to produce a set of ordered sequences, for
eventual merging by later phases.

INTERMEDIATE MERGE PHASE

This phase performs one or more merging passes of the ordered sequences
from the sort phase, until the number of sequences is fewer than or equal

to the order of merge possible in the final merge phase. Control then

passes to the final merge phase. As does the sort phase, this phase also
contains a separate assignment portion, which initializes the running program.

FINAL MERGE PHASE

A final merge of the sort is performed during this phase, and the output
data are arranged in the file format specified by the user. The assignment
and running program portions are similar to those used in the intermediate
merge phase. The assignment portion performs the final initialization and
modifies the running program for either a sort or a merge.

SYSTEM/360 SORT TECHNIQUE TABLE

M20 BPS BPS BOS TOS DOS DOS oS
SYSTEM 360U- | 360P- 360P- 360B- 360M- |360N- 360N- |360-
NUMBER SM-150 |SM-043 | SM-044 SM- 308 | SM-400 |SM-400 SM-450 |SM-023
WHAT Record Record
- or or R
SORTED Records |Records |Records Tag Records |Records Tag ecords
1 Selr Tor2 Mpx Mpx or [Mpx or Mpx Selr
I/O: Chan Selr or 1or2 lor2 or or
Chans Selr Selr Selr Selr Mpx
INPUT Tape Tape Tape Tape/ Tape Tape Tape/ Devices
DEVICE Disk Disk Supported
by QSAM
:A';JOTEENS\'EDOIQCE;E Tape- Tape- Tape- Disk- Tape- Tape=- Disk- ;a:)egz
14
DEVICE 3to b 3to 6 3to 6 1104 3to 7 3to7 1to b 2311, 2301
QUTPUT Tape Tape Tape Tape/ Tape Tape Tape/ Devices
DEVICE Disk Disk Supported
by QSAM
MAXIMUM
CORE USED: _8K X X X X .
16K X X X X X X X
32K X X X X X X X
84K X X X X X X X
128K X X X X
256K X X X
512K X X X
1024K X
TECHNIQUES:
SORT Kuadratic| Binary | Binary Straight |Binary |Binary Straight |Replace-
PHASE-INTERNAL Selection| Insertion | Insertion | Two way |insertion |Insertion Two way [ment
Merge Merge |Selection
INTERMEDIATE [Polyphase |Polyphase | Polyphase | Interleave | Polyphase| Polyphase | Interleave| Balanced
and FINAL . Tape
MERGE
PHASE-EXTERNAL
Polyphase
Tape
Oscillating
Tape
Balanced
Direct
Access

SORT PHASE - INTERNAL SORTING TECHNIQUES

Internal sorting is defined as the sequencing of a group of logical records
contained in the internal high-speed (core) storage of the computer. It
generally involves reading successive records from auxiliary storage into
the record storage area (RSA) of core, sorting the group in storage by one
of the methods to be described and then writing the sequenced group onto an
external storage device.

In most sort applications, the file of records to be sorted is too
large to be contained, at one time, within internal core storage. Thus,
the internal sort passes serve only as a prelude to the subsequent external
(intermediate) merge phase of the sort. The purpose of the internal sort,
then, is to form a number of sequences, or strings which are placed on an
external storage device and subsequently merged. The more efficient the
internal sort technique, the longer the strings it generates, and hence, the
fewer external merge passes required.

Since logical records can be many bytes in length, internal sorts do
not usually manipulate the records themselves, but rather, the control words
and/or address tags, thus conserving time and space. Generally, records
can be sorted by (1) physically moving them about until they are in order;

(2) forming tables of record addresses (tags) in storage, which are then
sorted; or (3) combining the control word and the record key and sorting the
resulting short key record. Either tag or key sorting is the preferred method
and one or the other is assumed in the specific examples in this section.

Ot

STRAIGHT TWO-WAY MERGE

Merging is the process of combining several sequences of records to form a
single specified sequence. The same rules by which sequences are combined
may also be used to form sequences (of two or more items). Thus, the
merging process has, essentially, a dual nature: it can be used for creating
sequences (usually in an internal sort), and it is also capable of reducing
previously created sequences to one (usually in an external sort). The
versatility, speed, and simplicity of merging make it one of the most widely
used sorting techniques.

The straight two-way merge with fixed-length strings is the simplest
internal sort technigue. The programming is straightforward, and the required
number of comparisons is not affected by adverse sequences within the file.

The group of records (G) to be merged is stored initially in two areas of core.
The keys of pairs of records, one from each area, are then examined in turn
and placed in Sequence by exchanging the elements of a pair whenever necessary.
The first merge pass combines single items (records, keys, or tags) to create
strings of two items. At the end of this first pass the initial group of G items
has been reduced to G/2 strings, each of length 2. In the second pass, pairs of
these two-item strings are merged to produce G/4 strings, each of length 4.
This is accomplished by successive comparisons of the keys in each of the
strings (see example 1).

During the third pass, pairs of four-item strings are again merged in
proper sequence to create G/8 strings, each of length 8. Each successive
merde pass, therefore, cuts the number of strings in half, while doubling the
length of each string until, finally, a single string of length G results. If the

- number of items, G, is equal to a power of two (21, a total of n passes is

required to complete a two-way merge sort. Example 1 illustrates the
principles of a standard two-way merge.

The first pass in example 1 compares single items, alternately drawn
from storage areas A and B, and, by means of simple exchange, merges them
into ascending sequences of two items each. At the end of this pass, eight
strings of two items each are stored in core areas C and D. On the second
pass, pairs of these two-item strings are merged into four strings of four
items each. Consider the first pair of strings (13-69 and 02-56), stored in
areas C and D, respectively. The following comparisons are required to
arrive at the first output string (02, 13, 56, 69) in area A:

Comparisons Output String (Area A)

1st: item 13 (area C) to item 02 (area D) 02
2nd: item 56 (area D) to item 13 (area C) 13
3rd: item 69 (area C) to item 56 (area D) 56
4th: copy item 69 (area C) 69

All comparisons are done in this mamner. During the third pass, the
four strings of four items are merged into two strings of eight items each,
and on the final (fourth) pass a single ordered string of all 16 items results.
Thus, for G = 16 = 2%, a total of four 2-way merge passes were required.
In general, any size G between 201 and 28 will require n merge passes.
Equivalently, the number of passes for a two-way merge is the smallest
integer that is equal to, or greater than, the log of G to base 2 (that is,
logg Q).

It is evident, from example 1, that the number of comparisons during
each pass equals the number of items to be sorted (G), so that the total number
of comparisons (C) for a two-way merge becomes

C = G x No. of Passes = G logoG

Four storage areas (A, B, C, D), capable of holding eight items each,
were required to sort the 16 items in the example. In general, for a file of
G items, the required total storage is 2G items. However, this is true only
if complete records are moved during the sort. The required storage is much
less if record addresses or tags, alone, are moved about and sorted. In the
latter case, the records are held during the sort in a record storage area with
a capacity equal to G x Record Length, or G- L. The tags are assembled and
ordered in two working areas, each with a capacity of G words or addresses.
The required total storage (S) for a two-way tag sort, therefore, is

S=G- 1%t . i
. 1,7, 2G - Address size

Records Tags

Summing up, the straight two-way merge is a rapid, efficient technique
for sorting large files. It is relatively easy to program and is unaffected by
adverse sequences, or even by reverse ordering.

BINARY INSERTION

A fairly effective method for sorting a small number of items, the
insertion technique, places each item in sequence as soon as it is encountered.
The records (or tags) are brought into the record storage area one at a time,
the key of each is examined in turn, and the item is then inserted in the correct

place of an increasing file. Earlier members of the partial file are moved
aside, when necessary, to make room for new items. The method is straight-
forward but is relatively slow, compared to other techniques.

Sorting by simple insertion has two inherent drawbacks: (1) excessive
shifting of the sorted records is necessary for each new insertion; (2) the
partial file must be searched each time to locate the correct place for
inserting the new item.

The first drawback -- the large amount of record movement -- can be
avoided by sorting record addresses (tags), rather than the records them-
selves.

The second limitation can be overcome, to some extent, by subdividing
the area that must be searched to locate the correct position of each new item.
A binary search may be used for this purpose. '

The binary search technique eliminates from consideration, with each
comparison, one-half of the remaining items in the partial file (hence, the
name "binary search"). This greatly reduces the required number of com-
parisons, though at the expense of more extensive programming.

The method starts by an examination of the middle item of the partial
file. If the key of the new item is smaller than that of the center item, it
belongs in the upper half of the file, and the middle item of the top half (that
is, the quarter point of the partial file) is examined next. If the key of the
new item is larger than that of the center item, however, it belongs in the
bottom half of the partial file, and the middle item of this lower half (that is,
the three-quarter point of the partial file) is examined next. The examinations,
thus, reveal whether the item belongs in the first, second, third, or fourth
quarter of the partial file. The middle item of the selected quarter file is
examined next to see whether the new item belongs in the top or in the bottom
half of the quarter file, and so on. The division stops when there is but one
item in the segment of the file under examination. The new item belongs next
to this item and is inserted above or below it, depending upon whether it
compares low or high, respectively. In the insertion itself old items are
shifted up or down, as required.

Example 2 illustrates the technique of binary insertion, using the same
sequence of 16 keys as in the previous example. After nine insertion steps
(not shown) a partial file of nine items has been built up. The tenth item, 45,
is now to be inserted. The 45 is compared first with the center, or G'/2, item
of the partial file, which is the 34. Since it compares high, the 45 belongs in
the bottom half of the partial file. The next comparison is with the (3/4) G'
item, the 60, to which the 45 compares low. It, therefore, belongs in the
third quarter of the file. The 45 is next compared to the (5/8) G' item,

8

the 56, and still compares low. Since this segment of the file contains only
one item (the 56), the 45 belongs next to the 56 and is inserted immediately
above it. Insertion step 10 shows the 45 inserted in this slot, the old items
(56, 60, 69, and 83) having been shifted down one position.

The next item to be inserted is the 37. The first compare at the
center (G'/2) item, 34, is high; hence, the 37 belongs in the bottom half of
G' (see insertion step 10). The second compare, at the (3/4)G! item (80) is
low; this eliminates the bottom (fourth) quarter file. The third compare, at
the approximate (5/8) G' item (45), shows the 37 still low; it is, therefore,
inserted immediately above the 45, the old items (45, 56, 60, 69, 83) being
shifted down one place (see insertion step 11). This procedure is continued
until the file is in order after 16 steps of insertion. Note that from step 13
on, four comparisons are necessary to locate the insertion point for each new
item in the lengthening file. (The number of comparisons increases logarith-
mically with G'.) Note also, in step 13, that no shifts are necessary to insert
the 96, since it compares high to the remainder of the file and is placed at
the bottonr.

It can be shown that for a file of G items, the approximate total number
of comparisons (C) required in the binary insertion method is

C = G logg (G/e)

where
e = 2.7183

Thus, in example 2, the approximate number of comparisons is

C = 186 log, (16/2. 72)
=16 logy (5.9) = 16 x 2. 56 = 41

The total mumber of shifts required in binary insertion is (G2 - G)/S.
A record storage area for G items must be provided. The major disadvantage
of the binary insertion technique is the need for a large and complicated
program. This offsets considerably the benefits derived from the relatively
efficient search technique.

The binary insertion technique is affected, to a major extent, by the
natural ordering of the original file. Although the number of insertion steps and
comparisons does not depend upon the original order, the amount of record
movement required is greatly increased with adverse, or reverse sequencing.

The method is too slow for larger G's (G>50) primarily because the
number of shifts and comparisons goes up with the square of the number of
items to be sorted. Insertion, however, can be used to advantage when the

9

input is buffered and consists of single records, which may be read in one
at a time while a previous record is being inserted.

REPLACEMENT SELECTION

The internal sorting methods described thus far are all capable of sorting a
group (G) of records that can be contained at one time in the record storage
area. The maximum string length is, therefore, limited to G items. The
replacement (sometimes, replenishment) technique, endeavors to keep the
record storage area filled with G items by replacing records that have been
withdrawn during the sort. As a result, for a file in random order, an average
string length of approximately 2G items is developed in an area with a capacity
of only G records. For a given amount of available core storage, the replace-
ment technique produces the maximum possible sequence length. This
characteristic makes the technique eminently suitable as a premerge sort and
permits a significant reduction in the number of merge passes required for a
subsequent external sort. The price paid for this advantage is increased
complexity of programming, relatively long processing time per record, and

a slight increase in the required working storage. One must also keep in -mind
the fact that the number and length of the sequences is variable and, hence,

not predictable. Most replacement sorts, however, will generate string length
approximating 2G.

Essentially, the replacement-selection method determines the lowest
record in the record storage area, moves it to the output area, and then
replaces it with a new record from the input file. If the new record is lower
than the one just moved to the output, it cannot be part of the current sequence
and, therefore, is flagged or held for the next sequence. The process then
continues with the selection of the next-lowest record, ard so on, until there
are no more replacement records in the record storage area that fit into the
current sequence. A new sequence then is started, and the procedure con-
tinues until the entire input file is processed. Since the sequences are usually
formed by a binary tree procedure (see example 3), the method has also become
known as a "Christmas Tree Sort". However, not all replacement sorts are
of the tree variety.

Basic Tournament (Christmas Tree) Sort

In a basic, simplified version of replacement selection, illustrated by
example 3, the method is implemented by playing an elimination "tournament"
of matches (compares) between pairs of records to select a "winner" (low)
record. The number of records to be sorted internally (G) is a power of

2 (G = 4 in example 3), though this is not necessary in the more sophisticated
practical versions to be described later.

10

The tournament is initialized by selection of the first winner (that is,
the record with the lowest key). The keys of successive pairs of records in
the record storage area are compared, and the winner of each match (that is,
the lowest key or its address) is placed in a first-level table. Pairs of level 1
winners are then compared, and the winners are placed in the second-level
table of wirmers. The procedure is continued, in standard tournament style,
until the winner of the final match is determined, and the winner record is
moved to the output. This completes the initialization round.

During the second round, or pass, the next record from the input file
replaces the vacancy created by the winner, and the tournament continues.
If the key of the new record is lower than that of the previous winner, it is
flagged (shown by asterisks in example 3) and held for the next string. When
all records in the storage area have been flagged, the current sequence is
complete. The tournament then is initialized again to process the next string.
This procedure is continued until the input file is exhausted.

In'example 3, four items (13, 69, 56, 02) from the input file of 16 are
read initially into storage. (To keep the number of comparisons to a minimum,

a G of only 4 has been chosen; this permits the entire procedure to be illustrated

on one page.) The first pair of items, 13 and 69, are compared, and the
winner of this match, the 13, is placed on the first level. The second pair of
items, 56 and 02, are compared, and the winner (02) is also placed on the first
level. The winners of the first two matches, 13 and 02, are now compared in
the "finals" match. The winner (02) is moved to the second level and thence

to the output area. This completes the initialization.

On the second pass, a new item (08) has been moved into the location of
the first winner. The 08 is compared with the 56, and the winner (08) is
moved to the first level. The finals are played between the 08 and the 13, and
the winner (08) is moved to the output. Note that on this pass (and on every
pass after the first) only two compares are needed to determine the final
winner. In general, the number of comparisons to find a winner -- after the
first -- equals the number of levels in the tournament.

The procedure contirues on subsequent passes with the determination of
additional winners, but starting with pass 7, each replacement item is lower
than the previous winner and is, therefore, flagged for the next sequence {(as ~
indicated by the asterisk). First-level winners, between flagged items, are
determined, but no flagged item can be moved to the output. In pass 9, all
items except the 83 are flagged; thus, the 83 completes the first sequence.

In pass 10, all items are flagged, and the tournament must be initialized again
to begin the second string. Again, three matches are necessary to determine
the first winner, the 17, in this case. The second string is completed at the
end of pass 16 with the transfer of the winner (96) to the output area.

11

(An additional pass would be required to determine that all locations have
been flagged and that no more input items are left.) Note that the first string
is nine items long, or more than twice the number of items (G) in storage,
while the second string of seven items is a little less than 2G in length. When
the ipput file has good natural sequencing, the strings are generally longer
than 2G in length, and in the worst case of reverse sequencing, string length
is either Gor G + 1.

It is easily shown that G - 1 comparisons are required to select the first
winner record. The number of comparisons (c) required to select each ad-
ditional record, after the first, equals the number of testing levels. When G
is a power of 2,

€= G, and hence, the number of testing levels or comparisons per
record,

c =logg G
Accordingly, the total number of compares (C) for G records in storage is:
C=(G-1)+Glogg G
When G is not an exact power of 2, the formula above is still approximately
correct. The number of testing levels in this case is the smallest integer
greater than logeG, but since some records are not tested on every level, the
average number of compares per record is a fraction, which approximately
equals logoG. (See discussion of example 4.)

Variations and Refinements

It is not necessary, in practice, that the number of records sorted internally
(G) be equal to a power of 2. This would waste a great deal of storage space,
especially if G were nearly, but not quite, equal to a power of 2. (For example,
if 127 records could be contained in the record storage area, the next-lower
power of 2 would be 64 records only, thus wasting almost half the available
space.) If the branches of the binary-tree structure are properly organized,
practically any number of items that can be contained in the record storage
area can be sorted by replacement selection. However, departures from a
power-of-2 structure frequently involve minor inefficiencies, and care must
be taken to keep the average number of comparisons to a minimum. In
general, the more symmetrical the tree structure, the lower will be the
average number of comparisons per record.

Example 4 illustrates the possible organization of the binary tree when the
number of records in storage (G) equals 12, Only the initialization of the

=
EV]

tournament through selection of the first winner record (key 02) is shown.
Four testing levels are required. (Note that 4 is the smallest integer

greater than logy(12) = 3. 59, approximately.) The keys of pairs of records
are compared to select the first-level (quarter-finals) winners -- 13, 02,

08, 34, 45, and 22. Pairs of level-1 winners are then compared to select
three level-2 (semi-finals) winners: 02, 08, and 22. Only two of these (02
and 08) need be compared to select the level-3 winners, or finalists (02 and
22). The winner of the finals, 02, is placed on level 4, and the corresponding
record (R 4) is moved to the output area.

In example 4, the total number of comparisons required to select the
first winner is 11, or one fewer than the number of records in storage (that
is, G-1). Note that records 1 through 8§ go through four testing levels, while
records 9 through 12 go through only three testing levels, Thus, the average
number of tests per record (after the first) is a fraction, given approximately
by logg(12), or 3.59. (The actual average number of compares is 3. 66,
rather than 3. 59.)

Further flexibility for sorting any group (G) of records in storage can
be attained by abandoning the binary tree structure. A binary tree results
when the comparison point, or node, is between two records to be compared at
one time. However, a node may be established between any given number of
records, such as three, four, or even eight records. The nodes are tied
together in a treelike structure, similar to'the binary tree. Larger-size nodes
tend to be more efficient for a given group (G) of records. A node of four items
to be compared is commonly used.

Example 5 illustrates the possible organization for an internal sort of
64 records (G = 64), using nodes of four, each. The number of testing levels
here is log,(64) = 3, as shown. The first winner to initialize the tournament
is selected by (G-1), or 63, comparisons, as for the binary tree. However,
the number of compares required for the selection of subsequent winners tends
to be proportional to logyG, rather than to logoG, and, therefore, is somewhat
more efficient than for a binary tree.

Tag Sorting

If replacement selection required the continual movement of records through
every testing level, it would be a relatively cumbersome and slow sorting
technique. Actually, records are not moved at all during the comparison
procedure, but only the record addresses or tags. Records are moved
initially from the input to the record storage area for participation in the
tournament. While the tournament is progressing, the records hold their
positions in storage, and only the record addresses (tags) are used. Com-
parisons between records are made through an index register or other coding

13

methods. After a record has been selected as the smallest, it is written out
or moved to an output area, and a new input record replaces the winner in the
identical storage location. Tag sorting not only saves an undue amount of
record movement, but becomes essential when dealing with records of variable

length.
QUADRATIC SELECTION

Sorting by selection -~ perhaps the simplest of the internal sorting methods --
consists essentially of an examination of the record storage area to find the
record with the smallest key (for an ascending sort) and placing this record or
its key in the output area as the first item of the new file. The RSA is then
scanned for the smallest key of the remaining records, which becomes the
second item of the new file, and so on, until all items have b een placed in the
output file.

When the selection process is carried through the entire RSA in one
stage, it is called linear selection; when the original file is broken up into
groups, and the smallest key of each group is chosen, and then the smallest
of these smallest keys, the process is termed quadratic selection. By breaking
the groups into smaller subgroups and then selecting the smallest key of such
a group of groups of groups, cubic selection may be accomplished, and so on,
up to nth degree selection of (groups)n.

Selection requires a relatively small working storage area, equal to the
number of items being sorted (G).

In linear selection, the entire RSA is searched for the record with the
smallest key (control word) during each pass. When it is found, the key
{or the record containing it) is placed in the output area. To make sure that the
same record is not selected again, the key that has been removed is replaced
by a key of all nines (or all Z's) in the original file. The process is continued
until all keys in the file have been moved to the output and been replaced with
nines. This is sometimes called sifting with nines. Example 6 shows the
results of sorting a file of six numeric keys with six selection passes. Keys to
be selected during the next pass are underlined.

Note that at the end of pass 6, all keys have been replaced with nines,
and the output file is in sequential order.

With quadratic selection, the original RSA G is divided into/—a groups
of/G_ records each. The sort is most efficient if G is a perfect square, such
as 4, 9, 16, 25, 36, etc.; hence, the term quadratic. (If G is not a perfect
square, the file is broken up intovG' groups, where G' is the next-largest
integer that is a perfect square. In this case, not all groups will have the
same number of items.)

14

After the RSA has been divided into groups, the record with the smallest
key in each group is determined by a linear selection pass. The selected least
keys (and addresses) form a new subgroup, which is moved to a separate
storage area, or control register, capable of containing,/@ items. The
smallest key of this subgroup, which is the smallest of all, is now selected.

In order not to select this key again, the key is replaced in the original group
by a number larger than any possible key in the file; for example, all nines

or Z's. The entire procedure of initially selecting the smallest key in the RSA
is called initialization or, sometimes, priming.

The program now goes back to the group from which the smallest key
was chosen and selects a new minimum from this group. This is moved again
to the subgroup of smallest keys (in the control register), and a smallest-key-
of-all is chosen. In this way, successive smallest keys are located, and a
sorted output file is built up. The major advantage of the method is that once
the file has been initialized (that is, the first minimum key has been found), a
linear selection pass need be made only over the group of items that contributed
the last minimum. This saves many comparisons, especially for a large file.
Despite the need for a small amount of additional working storage (for the sub-
group of smallest keys), quadratic selection can be a highly efficient internal
sorting method.

An example of quadratic selection with a RSA of 16 items, divided into
four groups of four items each, is shown in éxample 7. For clarity, the keys
that have been selected are crossed out, rather than replaced by all nines.
The first, or initialization pass, results in the selection of keys 02, 08, 22, and
17 for the control register and of 02 as the smallest-key-of-all. During the
second pass, a selection is made in group 1, from which the previous key was
chosen. This results in key 13 being moved to the subgroup of smallest keys,
or control register. Key 08 "wins" during this pass as the smallest of all.
The remaining passes, 3 through 16, shown in the example for completeness,
follow the same procedure and are self-explanatory. The complete list of
"winners" -~ the sorted file -~ appears at the output of pass 16.

It is apparent from example 7 that the required number of comparisons
decreases drastically as more and more keys are eliminated from the file.
The total number of comparisons in quadratic selection, for a file of G items,
is :

C=(G-1Dx(/G-1)
When G is relatively large (G>>1), this, approximately, becomes

c=2G/C

15

Thus, the number of comparisons required in quadratic selection increases
with the three-halves power of the number of items to be sorted.

The initial sequencing of the file has no effect on the total number of
comparisons. The number of passes in quadratic selection equals G and the total
required core storage is equal to G + /G.

INTERMEDIATE MERGE PHASE - EXTERNAL SORTING TECHNIQUES

TAPE SORTING METHODS

The object of tape sorting is to bring together sequences of records, developed
during the internal sort, into a single, sequenced tape. This is usually accom-
plished by some kind of merging. The merge process may be of the balanced
type, using an equal number of input and output work units, or it may be of the
unbalanced type, using an unequal number of input/dutput work devices. Among
unbalanced merge methods, the following types are described:

1. Polyphase Sort
2. Oscillating Sort.

Balanced Merging

In any balanced merge the records are moved back and forth between an equal
number of input and output tapes, so as to avoid tape changing. The output
sequences from the internal sort of the previous phase are written on one-half
of the tapes available for merging. About the same number of sequences are
placed on each of these input tapes. The remaining half of the available tapes

is reserved for the output of the merge. Initially, one sequence from each

input tape is merged into one longer sequence, which is placed on the first
output tape. The second sequence from each of the input tapes is then merged
onto the second output tape, and so on, until all input sequences have been merged
onto the output tapes in a cyclic fashion. The output tapes now become the input
tapes for the second pass, and the input tapes from the previous pass become
the output tapes. BEach record is processed on each pass. During each pass

the total number of sequences is divided by the order of merge (m), while each
sequence is lengthened by a factor equal to the order of merge. The process
continues until the last pass results in a single sequence on one of the output
tapes. Where 2m tape units are available for an m-way merge, the total number
of passes (P) required is the smallest integer that is equal to or greater than
logps, i.e.

P= |_10ng]

where S is the total number of sequences to be merged.

16

While it is generally true that the higher the order of merge, the
fewer passes will be required, this is not necessarily correct for a particular
generalized sort. The most efficient order of merge is not always the highest,
but is determined by a combination of the following factors:

Internal storage capacity

Block length

Size of control field

Length of records

Ratio of input/output (tape) speed to processing speed.

1 60 2o

The last factor is particularly relevant in choosing the order of merge.
For a low order of merge, the time required for comparing the keys is less
than that needed for reading in the records, so that the overall speed is deter-
mined by the tape-reading speed, that is, the sorting speed is tape-limited.
Thus, it is important to keep the tapes moving at all times and to have the block
that is needed next readily accessible. On the other hand, when both the tape
speed and the order of merge are high, the sort may become process-limited;
that is, the sorting speed is determined by the machine times for basic arith-
metical and transfer operations. Most present day machines have several
channels available that permit overlapping input/output operations with process-
ing, so that both are performed at the same time. This results in the most
rapid merge possible for a given machine and method.

Balanced merging has been adapted for generalized sorting programs
because it has a number of significant advantages over unbalanced (asym-
metrical) merging. The balanced merge requires no tape changing and a
minimum amount of programming. A generalized, unbalanced program is not
only larger, but it reduces the maximum file size to that which can be sorted
on the side (input or output) with the smaller number of tapes. (As will be seen
later, the maximum file size for the specialized, unbalanced merges is one to
m - 2 reels of tape.) Itis, moreover, desirable to attain a complete overlap
of reading and writing, so that reading is performed on one or more channels at
the same time that records are written out on the other channels. This is
accomplished most easily with a balanced number of input and output channels.
Additional economies in rewind time are possible if the tapes can be read
backward as well as forward.

In general, the balanced merges used in generalized sorting programs
are more adaptable to machine schedules and the usual organization of tapes
than are unbalanced merges. On the other hand, where maximum sorting
effieiency and speed are desired, the polyphase or oscillating unbalanced
merges described below should be considered.

17

Polyphase Merge Sort

The polyphase technique is capable of performing (m - 1)-way merging
from m tape units; the output sequences from the internal sort are, however,
distributed in a prescribed ratio. When the number of available tape drives is
fewer than eight (m<8), polyphase merging generally is faster and requires
fewer passes than balanced merging. For a larger number of tapes, polyphase
techniques begin to lose their advantage. Also, when the total number of
strings to be sorted cannot be fitted easily into the prescribed distribution ratio,
an elaborate presort, or adjustment phase, . may be required that will offset
some of the timing advantage gained from the technique.

In polyphase merging, the sequences are distributed initially onto
m - 1 of the available tapes, as is described later. An (m - 1)-way merge pass
from the (m - 1) input tapes onto the mth output tape is then performed, until
the tape with the least number of sequences is depleted. At this point, however,

. the previous oufput is made an input tape, and the (m - 1)-Wway merge is con-

tinued by merging additional strings from the tapes not yet depleted with strings
from the tape just created. Note that the original output tape, which is now an
input, contains records that are entering the merge for the second time, while
sequences of records from the longer tapes have not yet been merged. As each
successive input tape reaches its end-of-file, the previous output tape replaces
it, and the depleted input tape becomes the new output tape. Since thisis a
continuous process, at no point can it be said that a complete pass over the file
has been made, but instead, there are a series of partial passes, or phases,
wherein sequences from several previous phases are merged together. The
sort ends when all strings have been merged into one sequence.

Example 8 illustrates a read-forward polyphase merge of 57 strings
with four tape units. The strings are distributed initially in the ratio 13, 20,
24 onto input tapes A, B, C, respectively, with tape D serving as output.
After a three-way merge of 13 strings onto tape D, input tape A is exhausted,
with seven strings left on tape B and eleven on tape C. Tape A now becomes
the output tape, and tape D, with 13 newly created sequences, serves as input
tape. After another three-way merge of seven strings, from tapes B, C, and
D onto tape A, tape B is exhausted. Four strings remain on tape C, six on
tape D, and seven new strings have been created on tape A. The next three-
way merge, from tapes A, C, and D, onto tape B, depletes tape C, leaves two
strings on tape D, three on tape A, and creates four new strings on tape B.
With tape C serving as output, the next three-way merge of two strings exhausts
tape D, leaves two strings on tape B, and one on tape A. Another three-way
merge of one string onto tape D depletes tape A and leaves one string, each,
on tapes B and C. Tapes B, C, and D now each have one string. A final three-
way merge onto tape A merges these remaining strings into a single sequence.

18

Assuming equal string lengths originally, the total number of records
read and written in this example amounts to the equivalent of about four full
passes over the file. This compares to six passes required for a balanced
two-way merge with four tapes.

String Distribution for Polyphase Merge Sort

As mentjoned earlier, polyphase merging depends for its operation upon a
special initial distribution of strings, which is designed to permit merging a
single string from each tape onto the output tape during the final merge pass.

If the required inijtial distribution is absent, an adjustment and starting process
is necessary before the main merge can be entered.

For a three-tape (two-way) polyphase merge sort, the initial string
distribution follows a sequence of numbers developed by Fibonacei in the 13th
century. In the Fibonacci sequence each term is formed by taking the sum of
its two predecessors, thus: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
ete. :

In a three-tape polyphase merge, two tapes are available for the initial
string distribution, while the third tape is used for the output. To find the
distribution from the Fibonacci sequence, look for the term in the sequence
that represents the total number of strings to be merged. (If not exact, it
may require an initial adjustment or presort.) Then, allocate the strings'in
accordance with the two successive terms preceding the sum term. For example,
if 13 strings are to be merged, eight strings should be allocated to one of the
input tapes, and five to the other. Similarly, if 89 strings are to be merged,
the distribution of strings on the two input tapes would be 55 and 34, respectively.

The Fibonacci numbers can be generalized to serve for four-tape, five-
tape, and higher merges, but to avoid mathematical intricacies, it is best to
assemble a string distribution table based upon the following formation rules:

1. The optimum distribution for one partial polyphase merge pass is
one sequence on each of the m - 1 tapes available for distribution (the mth tape
serves as initial output). Hence, for the first partial pass (line 1 of table)
write a 1 under each of the input tapes.

2. For the second, and each subsequent, partial pass, the tape with
the largest number of strings (first column of table) receives the sum of strings
allocated in the previous pass to the largest and second largest tapes (first
and second columns of previous line). The next-smaller tape (second column)
receives the sum of strings of the largest and third-largest tapes of the previous
pass (first and third columns of previous line in table). The next-smaller tape
(next column to the right) receives the sum of strings of the largest and fourth-
largest tapes of the previous pass (first and fourth columns of previous line),

19

and so_on, until the tape with the least number of strings (last column at
right) is reached; this tape receives the same number of strings as the tape
with the greatest number of strings (largest tape) of the previous pass (first
column of previous line).

3. Continue building the table until the total number of strings
distributed during a partial pass equals the number of strings to be merged.
The optimum total number of strings is given in table 4. If one of the optimum
numbers cannot be obtained from the internal sort, a string adjustment to the
next-lower optimum distribution becomes necessary. Tables 1-3 for four-tape,
five-tape, and six-tape polyphase merge sorts {llustrate the procedure.

Read-Backward Considerations

To eliminate rewinding after merge passes, the input tapes always are read
backward and the output tape always is written forward. However, if the
sequences from the internal sort are written in one order (either all ascending
or all descending) and then read backward continued merging soon becomes
impossible because alternately ascending and descending strings are encountered.

To understand the nature of the problem consider, for example, a
simple four-tape (three-way) polyphase merge of 17 ascending strings, dis-
tributed in the ratio of 7, 6, 4 onto three input tapes. (This is the required
string distribution shown in Table 1 for 17 strings.) A three-way merge is now
performed by reading tapes A, B, and C backward and writing the merged output
strings forward on tape D until tape C is depleted. It is evident that when the
ascending strings on the input tapes (A, B, C) are read backward and are then
written out on tape D,they become descending output strings. Thus, at the
completion of this first merge pass, four descending strings have been placed
on tape D, three ascending strings remain on tape A, two ascending strings are
left on tape B, and tape C is empty. The next merge pass, with tape C as out-
put, cannot be done, however, since no way is known to merge the ascending
strings on tapes A and B with the descending strings on tape D. The attempted
read-backward polyphase sort, therefore, must be abandoned at this point.

Attempted read-backward polyphase merge
of 17 ascending strings

Tape A Tape B | Tape C Tape D
(nitial Distribution 7 Asc. 8 Asc. 4 Asc. 0
3-way merge of 4 strings 3 Asc. 2 Asc. 0 4 Desc.
(read-backward)
3-way merge of 2 strings Impossible

To solve the difficulty, it becomes necessary to create both ascending
and descending sequences during the internal sort phase, in such a manner that
each read-backward merge can be performed with either all ascending or all
descending strings. .

Certain peculiarities of polyphase sorting provide the clues for the
pattern of alternately ascending and descending strings that must be generated
during the internal sort:

1. It has been found that -- with a few exceptions -- every optimum
distribution provides one tape with an odd number of strings, and all other
tapes with an even number of strings. The tape chosen as output for the final
merge pass is always the one with an odd number of strings.

2. Therefore, if the final output is to be in ascending order, the final
output tape must have an ascending string at its beginning and end, while all
other tapes must begin with a descending string and end with an ascending
string. (This order would be reversed if the final output is desired in descending
order.) Intermediate strings on each tape are alternately ascending and descend-
ing. Generally, it is necessary only to make sure that the first string (from the
presort) placed on each tape is of the proper ascending or descending type,
since for every optimum distribution shown in the distribution tables (with a few
exceptions) the last string will automatically be of the required type. Thus, if
the first string on one of the tapes (the final output tape) is ascending, every odd
string thereafter will again be ascending, as required; if the first string on each
of the other tapes is descending, every even string thereafter on these tapes
will be ascending. If the internal sort cannot attain one of the optimum distribu-
tions shown in the tables, or if the total number of strings falls between table
entries, marked dummy strings must be used to fill out the proper distribution.

3. With the output strings from the internal sort being of the kind
described above and being distributed as described, every partial merge pass
of the read-backward sort will automatically contain either all ascending or all
descending strings. The final pass will merge one descending string from each
of the input tapes, which is written out as an ascending single string on the
final output tape.

Example 9 shows how the earlier unsuccessful attempt to sort 17 strings
by a read-backward polyphase merge can be properly carried through by the
formation of alternately ascending and descending strings during the internal
sort phase.

It is evident that the output from the internal sort in example 9 satisfies
both the optimum distribution for 17 strings and the conditions laid down earlier
for string alternation. Tape A, the final output tape, receives seven (odd)
strings, starting and ending with an ascending sequence. Tape B receives six

21

(even) strings, starting with a descending string and ending with an ascending
one. Tape C receives four (even) strings, again starting with a descending
sequence and ending with an ascending string. Tape D is empty.

Each merge pass is performed by reading the input tapes backward and
writing the merged strings forward on the output tape. Note that all ascending
(A) input strings to the merge are written on the output tape in descending (D)
sequence, and all descending (D) inputs to the merge are written out in ascend-
ing (A) sequence. (This takes full advantage of the read-backward feature
and avoids all rewinding and copying until after the final merge.) Thus, the
first three-way merge of four strings starts with the three A-strings (with
asterisks) on tapes A, B, and C, which are written out in descending sequence
on output tape D. Three additional strings from each tape, in alternating
D-A-D sequence, are merged onto tape D in A-D-A sequence. At the end of
this first merge, three strings (A-D-A) remain on tape A, two strings (D-A)
remain on tape B, tape C is empty, and four strings (1n D A-D-A sequence)
have been newly created on tape D.

Merging continues in the same fashion, and by the end of the third merge,
tape A is empty, and one D string remains on each of tapes B, C, and D. The
final three-way merge consists of merging these three descending strings into
a single string, which is written out in ascending (A) sequence on tape A.
Example 10, of a five-tape (four-way) read-backward polyphase merge of 25
strings, further illustrates the procedure.

Example 10 has the same general features and follows the same merge
procedure that has been explained for example 9.

In summing up, it appears that the polyphase merge techniques are
generally superior to balanced merging, if fewer than eight tape units are used.
When a greater number of tapes are used, either the balanced merge or the
oscillating sort (described in the next section) seem to have the advantage.
Exact generalizations cannot be made, since much depends on tape and central
processing speeds.

Finally, for full efficiency, reading and writing must be simultaneous;
that is, it should be possible to read from one tape and to write on another in
any combination of tapes. To maintain this complete read-write overlap, cross-
channel switching is required.

Oscillating Merge

When more than eight tape units are available for sorting, the oscillating merge
sort technique generally requires fewer complete passes over the data than do
polyphase or balanced merge methods. The oscillating sort attains (m - 1)-way
merging with m tapes, makes use of the tape read-backward feature, and for

22

optimum efficiency, can employ cross-channel switching; that is, the ability
to read any tape while another is being written. In contrast to other sort
techniques, however, the oscillating sort method integrates the internal sort
phase with the tape-merging phase.

The oscillating sort begins with a conventional internal sort, but enters
a merging phase immediately after the internal sort has written one string of
sequenced records on each of m - 1 tapes. The m - 1 strings are read backward
from the tapes and are merged onto the available mth tape. The other (m - 1)
tapes are back at the beginning (load point) after being read backward. Control
is now returned to the internal sort phase of the program. Another (m - 1)
strings are then written by the internal sort, including one on the previous
output tape. (A tape mark separates this string from the previously merged
output.) Another (m - 1)-way merge pass onto the remaining available tape
takes place. ’

This oscillating process is continued until each of the m - 1 tapes has
had m - 1 sequences mergeéi onto it. At this point, therefore, a total of
(m - 1) x (m - 1) or (m- 1)“ strings, generated by the internal sort, have been
merged into m - 1 tape sequences. These m - 1 sequences are now again
merged onto the available (mth) tape, resulting in a single sequence. This
completes the first stage of the sort.

The iterative process now starts over again (if more internal strings
are to be sorted) and continues in the faghion described until another tape will
contain a sequence formed from (m - 1)° internally sorted strings. Similar
stages £0110W until, eventually, each of (m - 1) tapes contains a sequence from
(m - 1)* original strings. At this point, therefore, {m - 1) tape sequences
have been created from (m - 1) x (m - 1)* = (m - 1)3 original strings. These
(m - 1) sequences are now again merged as a single sequence onto the remain-
ing tape. If necessary, additional stages of the sort take place until all input
records have gone through the internal sort. A single tape sequence occurs
whenever the number of strings processed equals successive powers of the
(m - 1) available merge tapes. A final merge onto the output tape concludes
the sort. Example 11 illustrates the technique graphically for 27 strings sorted
with four merge tapes.

The example is largely self-explanatory, except for a few peculiarities
that should be noted. After the initial three strings have been merged onto tape
D (steps 1 and 2), the internal sort writes another string on each of tapes B,

C, and D (step 3). Since tape D was the previous output tape, a tape mark
(/) must be placed between the new string and the previously merged three
strings {(shown as 3/1). Note that all numbers in the example refer to the
number of originally created strings contained in each tape sequence. Thus,
in step 3, with a distribution of O, 1, 1, 3/1 on tapes A through D, there are

W]
(V5]

only four tape sequences (two on tape D), which consist of six original
strings (that is, 1 + 1 + 3 + 1) created by the internal sort. By the end of
step 6, each of three merge tapes has three original strings, or a total of
nine strings. These are merged onto tape C as a single sequence (step 7).
This concludes the first stage.

The second stage of the sort (steps 8-14) repeats the previous process,
except that in step 13 it becomes necessary to merge three strings onto the
already existing sequence of nine strings, no other merge tape being available.
Again a tape mark separates the two string sequences (shown as 9/3). In
step 14, another nine strings are merged onto tape A, thus concluding the -
second stage.

During the third stage (steps 15-22), nine additional strings are merged
onto tape D (step 21), and all original 27 strings are finally merged as a single
sequence onto output tape B (step 22). If more strings had been generated by
the internal sort, the next single sequence (for three-way merging) would have
resulted for (3)4 or 81 original strings. If the number of strings generated
falls between powers of (m - 1), it is possible to perform a partial (m - 2)-way
merge, or lower orders of merge, whenever the number of strings on two or
more of the tapes are equal.

Note that the order (power) of merge remains constant at (m - 1) for
the oscillating sort. Thus, the average reduction factor, i.e., for each pass
is the same as the merge order, or (m - 1). The reduction factor begins to
exceed those for balanced and polyphase merging for as few as four
tapes, with a merge order of 3. However, in an oscillating sort, the input
device (even if tape) is never available as merging tape, since it is used for the
internal sort. Inasmuch as other sorting methods can make use of the input
tape for merging, the order of merge for the oscillating sort may be considered
to be (m - 2) of all m tapes in use. In this case, the reduction factor of the
oscillating sort begins to exceed that of polyphase for a total of six tapes in
use (m - 6). (Detailed comparisons are given in a later section.) Note also
that the oscillating sort has the advantage of facilitating interruptions and
restarting at those points where all records are in a single sequence.

DIRECT ACCESS SORTING METHODS

As in the tape sort techniques, the object of the direct access sorting is to
bring together sequences of records, developed during the internal sort phase,
into a single sequenced file. A basic characteristic of a direct access,
namely, that every record in the input area is equally accessible, allows two
modes of sorting. In record mode, the entire record is always read into the
core, both in the sort phase and the intermediate merge phases of the sort.

In tag mode, only the control fields of the record plus the address of

the record are used. The output of the tag mode is a list of

a

24

direct access addresses. The records, if retrieved according to this list,
will be fetched in the desired sequence. The advantages and disadvantages
of the tag mode of sorting is discussed later.

Balanced Direct Access Technique

The sort phase distributes sequences onto all but the largest area used for
intermediate storage. The order (i.e., ascending or descending) of the
control fields of all sequences is the same as the order desired for the output.

The locations of individual sequences in each area are maintained in a
directory for each area. The directory for each area is kept in that area and
is pointed to by a parameter in a constant area.

For example, if 50 tracks are reserved for a work space, data is
written starting at the first track and the directory is written beginning on the
last track. The number of tracks used for the directory (a minimum of one
track is always used) depends upon the number of sequences to be written in
the work area.)

The intermediate merge phase combines sequences from a filled area
into longer sequences and distributes these sequences onto the empty area.
When all sequences from one area are distributed onto another, the first area
is considered empty. It can'then receive merged sequences from some other
area. The merging process continues until the number of sequences is less than
or equal to the merge order (in example 12 a merge order of 5 is used). At
that time, the final merge phase combines the remaining sequences into a single
sequence and places it onto the output device.

Example 12 shows an example of the balanced direct access technique.
Area A is the same size as or smaller than area B, which is the same size as or
smaller than area C. The sort phase distributes 18 sequences onto both A and
B. The intermediate merge phase merges the 18 sequences from B into four
longer sequences, which are placed onto C. (Since C is the same size as or
larger than B, all the sequences from B fit on C.)

B is now considered empty and can receive sequences from A. The 18
sequences on A are merged into four longer sequences and placed onto B. A is
now considered empty.

Since the total number of sequences (eight) on B and C is greater than
the merge order (five), another intermediate merge phase pass is required.
The four sequences from B are merged into one long sequence, which is
placed onto A. (Since B consists of sequences from A, the sequences from B
fit on A.) B is now considered empty. The four sequences on C are merged
into one long sequence, which is placed onto B.

25

Since the total number of sequences on A and B is now less than the
merge order, the final merge phase is executed next. This phase combines
the remaining two sequences into a single sequence and places it onto the
output device. :

In example 12, the merge order is 5 until the final pass, where it
becomes 2. Performance of the sort can be increased by optimizing the merge
order to the smallest m which will not cause an additional pass. Secondly,
the sequential use of the work areas causes a savings in the number of writes
but pays a penalty by increasing the number of reads over the string interleave
merge external sort. Finally, the balanced merge allows for variable length
sequences, whereas the string interleave method requires fixed length records.
The capability of handling variable length strings in the intermediate and final
merge phases allows the sort phase to use the replacement selection internal
sort technique.

String Interleaving

String interleaving takes advantage of both the sequential and randum
characteristics of a disk file to minimize the seek time and, thus, the total
merge time. The technique assumes that the usual phase 1 internal sort has
developed strings of records of length G, which are blocked in the output. The
blocks of each sequence are then interleaved within alternate blocks of disk
storage, so as to make the strings to be merged accessible with a minimum
number of head movements. :

Example 13 illustrates the interleaving technique for a simple two-way
merge of four strings contained on four cylinders of a type 2311 disk drive.
Two work areas are necessary to perform the sort. As shown in (A) of
example 13 the output blocks of each sequence from the internal sort have been
written on alternate blocks of the disk file, so that a block of one sequence is
always followed by a block of the other sequence. (A sequence or string is
represented by the symbol 8, and a block is represented by B in the example.
Thus, SlBl stands for block 1 of sequence or string 1; S9B; represents block 1
of string 2; S4B3 represents block 3 of string 4, and so on.) Note that all the
blocks of strings 1 and 2 are contained on cylinders 1 and 2, while the blocks
of strings 3 and 4 are located on cylinders 3 and 4 of each area.

To initiate the first merge pass, the first blocks of strings 1 and 2
(31B1 and SZB) are retrieved. Since the access arm must move to cylinder 1,
this requires dne positioning move and one rotational delay for both blocks to
be located. Upon the depletion of one of these blocks, the next block of the
same sequence must be retrieved. Assume that Sp B, is depleted, and S9Bo
must be sought. This requires only one rotational delay and no positioning
move.

26

The merge process continues, with only rotational delays involved,
until the last blocks of cylinder 1 are to be accessed. Here additional
positioning moves of the access mechanism to cylinder 2 become likely.
An analysis reveals that the merging of strings 1 and 2 (on cylinders 1 and 2)
requires at least two movements of the access mechanism and may require
as many as ten, with the probable number being fewer than four moves.
Similarly, the merging of strings 3 and 4 (on cylinders 3 and 4) requires from
two to ten movements of the access mechanism (fewer than four being probable),
the remainder of the seeks consisting only of rotational delays. Thus, the
probable number of positional seeks for the entire first merge pass is fewer
than eight. This should be compared with from 4 to 40 movements (38 probable)
of the access mechanism, in the same general setup, with conventional non-
interleaved (i. e., balanced merge) file organization.

At the end of the first two-way merge pass, strings 1-4 have been
merged into two new sequences (S and S,) on cylinders 1 through 4 of the
alternate disk area. With the blocks of t%ese two sequences again being inter-
leaved throughout the area of the four cylinders, the input to the second (final)
merge pass is as shown in (B) of example 13. The merging of the two remaining
sequences proceeds in the same fashion as before, and the probable number of
positioning moves is again fewer than eight. It is seen that the interleaving
technique reduces the total seek time considerably, not only because there are
fewer positioning moves, but also because most seeks involve adjacent cylinders
only. It should be noted that the string interleave method requires that each
string is of constant length G. So, while seek time is less, the number of passes
may be greater than that of the balanced method.

TAG MODE VS. RECORD MODE

Usually, tag sorting is of no advantage, even in large disk files, when most or
all of the original records are to be retrieved. Modifying the sort and reading
modes to minimize the total seek time can have a considerable effect, but the
advantage, generally, still lies with record sorting. The choice of the reading
mode -- whether full-track or record-by-record -- depends on several factors,
among them the file size, the record length, and the hardware configuration.
The original records may be retrieved by reading the file sequentially, in a
full-track mode, and then selecting the desired records as each track is brought
into core. Records may also be obtained by reading the file, one record at a
time, and bringing into core only the records actually desired for that block.

In general, the full-track mode appears to be better for relatively small files,
while the record mode is better for larger files. The actual dividing line is
determined by the record length and the characteristics of the machine used.

To bring the various factors into focus, example 14 provides a specific
illustration of the breakdown of overall sort time for record and key sorts

27

performed on an IBM 7090, with a 1301 disk file, on files of 5000 and 10, 000
records, respectively. The file has been generally organized to minimize

seek time. Assume that the records are 100 characters in length and that the
key records consist of 20 characters each. Assume further that a computer
core working area of 100, 000 characters is available. Note that the example
shows only read and write times for the 1301 disk file; the CPU processing time,
which represents only a small fraction of overall sort time, has been ignored
for simplicity.

Part A of example 14 shows the breakdown of sorting time, in accordance
with the three sorting phases. As expected, the tag sorts are considerably
faster than record sorting during the internal sort and merge phases. The
tremendous impact of seek times on the total sort time becomes apparent during
phase 3 of the key sorts, when the original records must be retrieved. Solely
because of the retrieval operation, the record sort is seven to ten times faster
than the tag sort.

Part B of the example, which gives the breakdown according to file
operations, points to the seek time as the cause of the disproportionate
retrieval time. The seek time comprises both the time required to position the
read-write heads and the rotational delay time. In the 1301 disk file, the time
required to position the movable heads is relatively high. Rotational delay is
required for each record retrieved during tag sorting, regardless of the number
of head movements. Finally, the larger (10, 000-record) file demonstrates even
more clearly the advantage of record sorting over tag sorting, in this particular
case.

In summary, whether a record sort or a tag sort should be used to sort
a direct access file depends largely on the ultimate disposition of the sorted
records. If only an index of sorted records is necessary, and few of the sorted
records are actually used, tag sorting would appear to have the edge. Reports
by exception, which are extracted from the sorted file, is an example of this
type of situation. On the other hand, if most or all of the original records are
to be retrieved, record sorting is preferable to tag sorting. Moreover, the
advantage increases with the size of the file. There are, however, circumstances
where the time for record retrieval may be of secondary importance. If, for
example, after completion of phases 1 and 2 of the sort, the computer can be
put to work on other tasks, the slow retrieval operation on one or more channels
may be of no particular consequence.

28

COMPARISON OF TAPE SORTING TECHNIQUES

Because of its speed, versatility, and ease of programming, balanced merging
is still frequently used for merging medium-size to large files in generalized
sort programs. A balanced number of input and output channels provides the
most efficient overlap of reading and writing, and where simultaneous tape
operation is possible only on two channels, the balanced merge is the standard
method. With T tape units available, the balanced method attains T/2-way
merging of the internally sorted strings (S) of records in

[logo' 5T (S)] passes.

For N items in the file to be sorted, the number of strings (S) created by the
internal sort is generally N/G, except in the case of replacement sorting, where
the number of strings, S = N/2G. (Here G is the number of items held at one
time in internal storage.)

Since the power (order) of merge of the balanced method is only half of
the number of tapes available (T/2), efficient merging of many strings requires
a relatively large number of tape drives. Unbalanced methods have a consider-
ably higher effective merging power than balanced sorting and, therefore, pro-
vide faster, more efficient sorting, especially when the number of available
tape drives is limited. As is shown later, this is true even if the number of
available tapes is large, for example, more than eight.

The major available unbalanced merge methods have been described
previously, but their relative effectiveness under various circumstances
remains to be determined. This cannot be done exactly, since the sort
efficiency depends not only on the sort parameters, but also on the relative
tape and central processing speeds (whether tape-or process-limited), the
file characteristics, and other factors. Moreover, the techniques are not
directly comparable in some aspects. For example, the partial passes of the
polyphase merge, which combine previously processed strings, cannot be
compared to the complete file passes of the balanced merge method.

Nevertheless, one traditional way of comparing merge techniques has -
been through the effective power of merge, or reduction factor, which may be
defined as the average reduction in the number of strings occurring during each
pass (or partial pass) of the merge. In a balanced merge of order (power) m,
the number of strings is divided by m during each pass, while--at the same
time--the length of each string is multiplied by m. With T tapes available, the
reduction factor, or effective power of the balanced merge, is, therefore,

m = T/2. (For example, for a two-way merge with four tapes, the number of
strings is halved during each pass.)

29

Similarly, for an oscillating sort with T tapes, the effective power of
the merge is either T-2 or T-1, depending upon whether the input tape is con-
sidered to be a merge tape. Since the input tape in an oscillating sort is used
for internal sorting and, hence, is never available for merging, the merging
proceeds effectively with one fewer merging tape than is available in other
sorts. For this reason, the effective power of merge for the oscillating sort
should be taken as T-2.

Finally, for the polyphase merge sort, the effective power of the merge
varies approximately between T-1 and T/2, depending on the amount of input
data and the number of strings. {(The degree of variation is described later.)

Table 5 compares the effective merging power of the balanced, polyphase,
and oscillating sorts as a function of the available tape drives. The merge powers
listed for the polyphase technique apply for a very large (theoretically infinite)
number of strings, which correspond to the optimum initial string distributions
from the internal sort.)

Note in the table that for the balanced and oscillating sorts, the
effective power of merge goes up in approximately equal steps, as the number

- of tapes increases. In the polyphase merge, however, the steps become

successively smaller with an increasing number of tapes, and the merging
power approaches a maximum {equal to four for an infinite number of strings).
Thus, as the number of merging tapes goes up, the polyphase technique becomes
progressively less effective, compared to other merge methods. On the basis
of the table, a balance between polyphase and other techniques is reached for

a total of six tapes. When fewer than six tapes are available, the polyphase
merge would appear to be superior to all other merge techniques. For more
than six tape units, the oscillating sort would appear to be preferable to poly-
phase merging, and for more than eight available tapes, even balanced merging
appears more effective. Thus, judging from the table alone, it could be con-
cluded that polyphase merging is superior to other methods for fewer than six
available tape units, while the oscillating technique is superior for six or more
tape units.

Unfortunately, the table of effective powers of merge is an over-
simplification, since it is based on somewhat unrealistic restrictions (perfect

~string distributions, very large number of sequences, etc.) and does not take

into account many applicable sort and peripheral circumstances.

For example, for ten available tapes, and ignoring the number of read
reversals, the oscillating sort would seem to be far superior to the polyphase
merge (with a merge power of 8 compared to 3.95). However, for ten tapes
and, for example, 100 strings to be sorted, the oscillating sort requires 13
read reversals, the polyphase merge only 4. Thus, if there is any substantial

30

delay in effecting the read reversals (read-reverse interlock time), the
polyphase merge would be more effective, despite its lower average merging
power.

More important, the table of effective powers of merge (Table 5) is
based on a very large, impractical number of strings and does not gauge the
power of each method for varying numbers of strings. In most large scale
machines (for example, a 128K S/360), the OS sort for 100 character records,
generates on the average string sizes of 1170 logical records. Therefore, the
initial number of strings to be merged in a 200, 000 record file is about 170.

A better way of comparing sorting techniques would, therefore, consist of
determining for each the number of complete passes over all data for varying
numbers of strings. Here the old difficulty is encountered of being unable to
compare the partial passes (phases) of the polyphase technique with the complete
file passes of other methods. The balanced and oscillating sorts consist of
complete passes over the file, though in the oscillating technique these passes -
are not contiguous. The polyphase merge, however, consists of a number of
partial passes, or phases, which combine the strings of several prior phases.
Some of the original strings are processed many times, others only a few times,
and one only once.

The way out of this difficulty is to count for each method the actual
number of times each original string must be processed during the entire merge
(a measure sometimes referred to as string passes). By dividing this total
number of strings processed (string passes)} by the initial number of strings
(from the internal sort), an equivalent number of complete data passes over
the file is obtained for each method. For the balanced and oscillating sorts,
the number of data passes is simply the conventionally calculated number of
passes, since, by definition, each pass is over the entire file, with each
sequence being processed only once. Thus, with T tapes available, the number
of data passes for a balanced merge,

P log/ (6]

while for the osci]lé.ting sort (power of merge T-2), the number of data passes,
P= logT .3 (S)J

where S is the number of strings generated by the internal sort.

For the polyphase merge, the mumber of data passes for each optimum
initial string distribution (in accordance with Tables 1, 2, 3 and 4) is:

Total Number of Strings Read (String Passes)
Initial Number of Strings

P=

w
pt

The total number of strings processed must be determined by an actual count

of the merge process, as is shown in example 15 for 65 initial strings and six
tapes. (For an imperfect initial string distribution, a sufficient number of dummy
strings must be added to attain the next higher optimum distribution.) Thus, the
number of data

_ String Passes _ 208 _
PasSSeS = "Nymber of Initial Strings ~ 65

3.2

Table 6 shows, for each of the major merge methods, the required
number of data passes for roughly comparable numbers of initial strings and
for various numbers of available tapes (T =4, 5, 6, 8, 10). The table is based
on perfect siring distributions; the string lengths produced by the internal sort,
as well as the capabilities of the tape drives, are assumed to be identical for
all methods.

The table is interpreted as follows:

For the balanced and oscillating methods, each range of strings listed
corresponds to the number of integral data passes shown in the adjoining
column. For the polyphase technique, the high end of each string range
corresponds to a perfect distribution, while the low end represents an imperfect
distribution. The number of fractional data passes have been computed for both
ends of each range and are shown in the adjoining column. Within each polyphase
string range, the increase in number of data passes is reasonably smooth, so
that intermediate string numbers can be obtained by interpolation. (For all
other methods, however, even one additional string at the end of a range causes
an extra pass.) All comparisons must be made on the basis of the same number
of initial strings produced by the internal sort. (There is an exception to this,
which is explained later.)

To compare the relative effectiveness of the merge methods, the data
in the table have been plotted as smooth graphs (for T = 4 and T = 10), ignoring
the stepwise increments in the number of passes (see Figure 2). This
discriminates somewhat against the polyphase technique, which actually has a
fairly smooth curve. Nevertheless, the superiority of the polyphase merge
over the other methods for a four-tape merge is clearly evident. As the number
of strings increases to 100 and beyond, the polyphase technique outperforms
the oscillating and balanced merges by about two passes. (If the step increments
are taken into account, the difference is even greater.) On the other hand, with
ten tapes available, the lineup is almost reversed. For 100 strings or more,
the oscillating sort is clearly best, and the polyphase and balanced techniques
almost a pass behind.

An examination of the table of data passes (Table 6) reveals that the
cutover point in the effectiveness of the techniques occurs somewhere between

" T=06and T=8. With six tapes available, the polyphase merge still appears

32

superior to all other techniques. With eight tapes available, however, the
polyphase merge appears evenly matched with the oscillating technique for
fewer than 100 strings, and it is slightly superior for more than 100 strings.

The following consideration gives an additional edge of effectiveness to
the polyphase merge over its runner-up, the oscillating sort. When the
replacement method is used for internal sorting, the average string length is
twice the number of records stored internally (2G). For N input records, the
polyphase sort is thus required to process N/2G initial strings. The oscillating
internal sort, on the other hand, produces somewhat smaller strings, varying
between G and 2G in length. (The first string is 1.7 G in length, the last
1.0G, and the remaining strings are 2 G in length.) As a result, -for a given
file, the oscillating sort must process a greater number of initial strings than
the polyphase method (instead of an equal number of strings, as assumed
previously). The additional number of strings depends on the number of tapes
available. For T =4, the oscillating sort must process 48% more strings than
polyphase; for T = 8, 20% more strings; for T = 8, 12% more strings; and for
T =10, 8% more strings. o

When the table of the number of data passes (Table 6) is adjusted for
this additional percentage of strings in the oscillating sort, the polyphase
technique emerges clearly superior to all other methods for fewer than eight
tapes available. For eight tape units, the polyphase technique is about equal
in effectiveness to the oscillating sort. For more than eight tape drives, the
polyphase merge usually requires more data passes than does the oscillating
sort. For fewer than eight tape drives available, the implementation of the
polyphase technique is practically always of advantage.

GENERAL CONSIDERATIONS

As explained previously, the sort performance depends not only on the choice
of techniques, but also on the characteristics of the file, the machine, and
the application. A complete discussion of these characteristics and their
interactions would require a large volume. Only a brief discussion of some
relevant factors and considerations is possible here.

FILE SIZE

The number of records that must be sorted is obviously important, both with
respect to the choice of technique and to the type of storage that can be used.
The maximum number of records that can be handled by a sort program depends
on the number of tapes used, on the method of writing the records, and on the
equipment. Some machines permit writing larger blocks of records--thus,
increasing the maximum file size--than do others. More records can be written
on a single tape reel if they are blocked, for example, to 3000 characters,

33

instead of to 1000. The length of the records is a limiting factor in terms of
their maximum number per reel for a given block length and character density.
Finally, the number of reels, and, hence, the maximum file size, depends on
the type and order of merge. For a balanced merge, this file size is one reel
fewer than the order of merge; for example, a four-way merge can accommodate
three reels of records.

RECORD LENGTH

The length of the record, or sometimes, the ratio of record length to key
length, determines the amount of manipulation that is feasible and economical
in sorting the record. This factor is less important when the control word
(key) is separated from the record, and only the keys are sorted. Variable-
length records pose a problem in generalized sort programs, since the blocking
of such records requires considerable processing time. '

LENGTH, LOCATION, AND RANGE OF CONTROL WORD (Key)

The characteristics of the control word, or key, are of over-riding importance
in most sorting methods. The required time for processing is proportional to
the length of the key (and the number of control fields contained in it). The
length and type of key--whether numeric, alphabetic, or alphameric--greatly
influences the choice of sorting method. In some methods, the difference
between a two-bit numeric key and an 18-character alphameric key is crucial.

DEGREE OF ORIGINAL ORDERING

In many internal sorts the degree of original ordering affects the total amount

of manipulation and the required number of passes. Several different concepts
must be distinguished, however. The degree of ordering may refer to a scale,
ranging from a file completely out of sequence (that is, in reverse order) to

one almost ordered. Several internal sorts, such as selection and exchanging,
are highly sensitive to this type of ordering. The term may also refer to the
number of naturally occurring sequences within the file. A file of N items in
random order will have, theoretically, N/2 such ratural sequences, each having
an average length of two items. Longer sequences, stemming from some
previous ordering of the file, are used to advantage in the replacement selection
internal sort method and may save one or more merging passes later.

BLOCKING

Records are blocked for sorting to reduce tape start/stop time per record and
to increase the total number of items that can be written on one reel of tape.
Separate factors are used for input blocking, for output blocking and for sort
blocking. Although the efficiency of the sort does not depend entirely on the

34

relative size of the blocked records, optimum blocking and sort efficiency go
hand in hand.

Several indirect factors must alsc be considered when discussing
blocking. Increasing the block size reduces the tape time per record. This
is of advantage only if the sort is not process-limited. In sorting programs
that tend to take more processing time than tape time, however, increasing
block size serves only to increase the number of records per tape reel. On
the other hand, the meximum block size varies inversely with the order of
merge. As g consequence, the highest possible order of merge does not
always provide the fastest sort. Unless a merge pass can be saved, it may be
preferable to use a lower order of merge and a larger block size.

In an unbuffered sort, the total running time depends directly on the
tape time. The tape time is reduced most significantly by completely over-
lapping reading and writing. The block size must be chosen to accomplish this
purpose. -

The significance of user choosing an optimal blocking size for the input
and output blocking factor cannot be overemphasized. It has a direct bearing
on G and, thus, the efficiency of core utilization. Also, unless a sort is of
hours duration, blocking is more critical than sorting technique used in overall
run time. The optimum technique for a given file size and number of available
intermediate work units will usually not overcome bad blocking.

RELATIVE TAPE AND PROCESS SPEEDS

In any given machine, .sorting is most rapid when tape and process speeds are
approximately in balance and when both operations are overlapped. When the
order of merge during the merge phase and the tape speed are both low, the
sort becomes tape-limited; that is, total sort time depends on tape-reading
speed. Wueu both order of merge and tape speed are high, however, the sort
may become process-limited; that is, the sort time is determined by the speed
of the basic arithmetic and transfer operations. Some of the factors that tend
to make a sort process-limited are listed and explained briefly below:

1. Blocking -- tends to make a buffered operation process-limited
by reducing tape time per record. :

2. Buffer transfer time -- adds to process time. It may also add to
tape time when using read-while-write mode.

3. Checking and restart procedures -- can add as much as 20% to
process time.

35

Size of control word -- affects process time. This is true for
both variable-and fixed-length word machines.

Number of control fields -- determines process time during
internal sort and merge phases.

Order of merge -~ process time per record increases with
merge order.

Record length (at which a sort becomes process-limited) --
depends on size of control word, tape speed, and particular
machine involved. Merge type sorts of short records are often
process-limited.

Start/stop (acceleration) time (per record) -- varies with type of
tape control used. With fairly short, unblocked records,
start/stop time may be considerably longer than time required
to read entire record.

High tape speeds -- tend to create more process-limited situations.

36

From Sort
Definition Program

General
Assignment
Phase

Orlginal 15t 2nd 3rd 4th

Fille (G) Pass Pass Pass Pass
Storage W W 'FZ_

Areas 13] A 08 08

56 13 13

o 169] 20 ¢c |
o 08 34 2)
21] 8 56 22

o Equal or 34 69 34

8
vs MERGE L83 L83 7

RDER 22 17 45

7| A 2 4

Greater 2 5

45 37 56

Léo | 45| D] {60

INTERMEDIATE 7 45 69
MERGE 45) 8 60 78
PHASE 78 78 83
Lee] loef lss]

END OF Y No..ofslrings: 4 2 1

PROGRAM String length: 1 2 4 8 16

Figure 1. Phases of a generalized sort/ merge program Example 1. Straight two-way merge

/360 SORT PUBLICATIONS

S/360 Sort/Merge Specifications

Mod 20 Tape Programming System C26-3804
BPS C24-3320
- BOS C24-3321
TOS C24-3438
Tape - C24-3438
bos Disk - C24-3444
os C28-8543

S/360 Sort/Merge Program Logic Manuals

Mod 20 Tape Programming System Y33-2005
BPS Z24-5008
BOS 724-5001
TOS 724-5016
Tape - Z24-5016
DOS " pisk - y24-5021
oS Y28-6597

A general reference to sorting techniques may be found in the following
IBM publication:

Sorting Technigues, C20-1639

ov

Insertion Steps

Item Input
&_. File 1...9 10 1 12 13 14 15 16
1 13 02
2 &9 02 02 02 2 08
3
3 56 02 02 2 08 08 08 C/H 13
“
4 02 08 08 13 13 13 C/Hj13 17
@ @
5 08 13 13 /W13 21 21 21 ¢/L2t 21
[©)]
é 21 21 21 C/Hj21 22 22 22 22 22
m [U]
7 4 C/H34 C/H34 34 34 u 34 4 M4
] @) M.] m (1)
8 [] C/L56 C/U4s C/LI7 C/HI? C/HI? C/HI? 7 37
@ “ m
14] [431°) 56 45 45 45 C/E45 C/L4S 45
@) @
10 45 69 C/L{%0 56 56 8 C/L|56 45 45
) @
n 7 83 49 &0 C/H& C/H&W 56 56
) @
12 22 83 & C/Hé9 69 C/L? & &0
@
13 78 a3 \F C/H78 &9 &9
' ()
14 9 C/H83 3 78 78
=
15 45 6 83 83
16 7 96 96

(G/H = Compare High; C/L = Compare Low; C/E = Compare Equal. Arrows indicate
direction of shift.)

Example 2. Bimary imsertion

nput . Qutput
ile Pass 1 : It String
Levely
131 It 20d 02
(Qutput)
69 9 08
02
56 13
02 02 21
08 34
Pass 5
21 i Output 56
4
34 9 60
| 34
83 21 69
56 13 .
60 56 | 08 83
83 l 02
45 2nd String
Pass 9
37 37 17
22*
22 224 22
| 83
17 69 37
45+ . 45
78 83 |[String 45 45
. Completel 78
94 45
Pass 13 Pass
45 * 78
45 9
96 9 96
| 43 | 78 9%
37 45 45 78
45 22 2 37 * . * :
4 17 22 . l 17
78 78 17 78 17 * (2nd String Complete)

Example 3. Replacement selection (G=4)

Level 1 Level 2

(Quorter- (Semi- Loval3 _ Level 4 Records Level | Level 2 Level 3
Record Koy Finals) Finals) - (Finals) (Winner) Winner
Record |
R 1_(13
Record 2 (69, i Nodes
R 4 (02)
Record 3 (56
R 4_(02)
Record 4 (02
R4 02
Record 5 (08
R 5
Record 6 (21)
R 5 (08)
R 4 (02)
Record 7 (34)
R 7 (34
Record 8 (83)
Record 9 (60
RID_(45)
Record 10 (45)
R12_(22)
Record 11 (37)
R12 (22
Record 12 (22)
= (Output)
L Example 4. Replacement selection, possible organization for G = 12 -
Input End End End End End End .
File Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6
13 1313 9 99 9 99
6 69 69 & &9 8 9 .
56 56 56 56 56 9% 99
2 9% 99 9 9 9 9
08 08 99 9 99 99 9
21 21 21 2] 99 9 9
Output: 02 08 1321 56 69
Example 6. Linear selection Example 5. Replacement selection, possible organization for G = 64
Pass 3 Pass 4 Pass 5 Pass 6 Pass 7. Pass 8 Pass 9
Con- Out-
Keys trol pyt
— — _
jra 341 12} 18] 7
'g-— 69 |5 8915 691567 691-56) 695 89156
L4 }aj 4] P 56
56 56
”z o 2 Ei 2
o6 2] I 8] 06 o6
’ gfg—zl— ;{’ 214 b 214 214 83 211834
2 TS 34] i 2
83 i 83 83 83 83
o] p— j— =
m) 13 6 7 @ |21 6 w0 |4 e |
4o 451-22-| 02 45{20-08 45|23 13 45128 17 45|3M 2] A5|SFF) 22 AOaS) 34
Sy 7| |02 s |08 ¥ 3 a7 YA I Y 2
2 24 2| |02 22 |08 2 1327 17 21
= - 02 08 13 17
78] 78] 78] 78 78 02 78 8 78 13
96 |17 96 |17 96 |45l 96145 961454 96145 02 96454 08
hes " s 45 45 48 #5] 45 02
” e 7 i i pe ¥ v
Initiolizstion (Poss 1) Poss 2 Poss 10 Pass 11 Fuig 12 Pass 13 Pass 14 Pass 15 Pass 16
Input Group Control Qut- G;wp Control Out= i . . somed
il * _- i orte
File Keys Register put Keys Register put . . . = - Sored
13 [13] I”3 g 69 156 69 |56 sy B 4% 4917 A
@ 69 69 Vel] 56 56 56| 56 561
—— 07 1 13— : .
56 56 56 07 2| o7 27 27|
02 197 o7 p— j— = = = — 83
08 o8] %] el o8 o8 o8 o8] e |78 o8] |78
2! ?7 2‘.’ 4, 2V 83 217 183+ 2rbes| _ 2rl-ead{es] 2+}-834 69 2183 69 - 2718369
3 2|5, 08 2 (G 2 e | Hedlaal |0] |eo 38 [eo | |eo
b : i 8 83| |56 m8 |se s |56 56 83| |56
60 — — o — {45 = |as= |4 = |45 45 45
45 [€0] &2 [e0] _dkg] 45 o] (45 0] |45 a0 |45 w0 |45] |45 s0] |45
37 3 451 5] 3 45| o | 4y AT60— 37 4B e0-137 481401 37 60{ 37 48t-se 37 s 37 4810 37
22 ¥ 37 S| | | |ae 3] | M 3 3 % 34
78 122 27 27 2 2 2 2 2 2 2 2 2 2 22 22
9 — . — 2 = |a == |2 2 = |2 2 = |2
45 ?‘ ;i __‘ 78 7 17 78 17 78] 77 28 7 5j 7o |7
7 4 o — 4 —i17 4y 96 #5113 96 78-13 9781 13 96178~ 13 961260 13 96° 13 96|-96-13
e e 4 08 45| o8 45| o8 45| o8 45 o8 45| 08 45| 08
— L7 jra 02 | 02 M 02 02 02 02 7] 02

Example 7. Quadratic selection, initialization and pass 2 Example 7. Quadratic selection (continued), passes 3 through 16

Tape [Tape | Tape | Tape Number of Merge Tapes ‘ Totol Number! Three Tapes Four Tapes Five Topes Six Topes
A B C o Partial Passes | RN IV | of Strings . .
s urton: - i 1 1
Initial String Distribution: 13 20 24 0 1 1 1 1 1 4 2 3 . 5
After 3-way merge of 13 strings 0 7 1mila 2 2 2 2 | 7 :53 g I; ‘;
After 3-way merge of 7awings | 7 | O | 4| ¢ 3 44 3 2 13 8 17 25 33
‘ 8| 7| & 4 2 ” 3 i 65
After 3-way merge of 4 strings 3 4 0 2 ! 57 94 129
y merg ng _ 5 1 14 __32_/8 49 34 105 181 253
After 3-way merge of 2 srings 2| 200 6 P 2 . o 55 193 349 497
5 89 355 673 977
After 3-way merge of | string 0 1 1 L 7 56 52 44 29 181 144 653 1297 1921
. 233 1201 2500 3777
After final 3-way merge 1o ofo 8 1081 loo| 85 58 349 377 2209 4819 7425
-l e 9 208 193 164 108 673
Note; Underlined entries represent output tapes, 10 40 72| 316| 208 1297
n 773 | 77| eo9| 01| 2500 etc. ete. ete. ete.
12 1490 | 1382 | 1174] 773 4819 T
Table 2. Initial string distribution for five-tape Table 4. Optimum total number of sequences for

Example 8. Read-forward polyphase merge with four tapes
polyphase merge polyphase merging

Number of Merge Tapes Total Number Number of Merge Tapes Total Number
Partial Passes | 11 11} of Strings . Partial Passes 1 1] m [\% v of Strings
1 1 1 1 3 1 1 1 1 1 ! 5
2 2 2 1 5 2 2 2 2 2 1 9
3 4| 3 2 9 3 4 4 4 3 2 7
4 7] & 4 17 4 8 8 7 6 4 33
5 31 (see Ex. 30) 5 16 15 14 12 8 45
. 57 (see Ex. 29) 6 31 | 28| 24| 18] 129
t— 7 61 59 55 47 3 253
7 105 8 120 16| 08| 92| 61| 497
8 ;’gS 9 236 | 228| 212| 181 120 977
. pes 10 ;i‘; 84;8 47| 356 | 23| 197
V] 821 700 | 464| 3777
11 504 | 423 | 274 1201 12 1793 | 1732 | 1612 | 1376 | 912| 7425
12 927 [778 | 504 2209
Note 1: Final output taps (O strings) is not shown

Note 2: As an illustration, the distribution used in example
29 (13, 20, 24) for 57 strings is obtained from the
previous line (partial pass 5), as follows:

= Tape | + Tape 1l of previous line, or 24 = 13 + 11

Tape |
Tape |l = Tape | + Tope llI of previous line, or 20 = 13 + 7
Tape |1l = Tape | of previous line, or 13 = 13

Table 1. Initial string distribution for four-tape Table 3. Initial string distribution for six-tape

polyphase merge polyphase merge

Tape A Tape B Tape € Tope D Tape | Tape Tape | Tape
Step B C D Operation Performed
Qutput from internal Asc. Desc. DResc. 1]

- " D A A 1 1 1 1 0 After first internal sort (3 strings generated)
sort (Initial distri- A © ° @ ip 2 (] "] 0 3 After first 3-way merge (3 internal strings
bution: 7, 6, 4, 0) |) (D A A* merged into 1 tape sequence)

v ce A D 3 0 1 1 31 After next internal sort (6 internal strings
D A* contained in 4 tape sequences)
A* 4 3 Q 0 3 After next 3~way merge (6 internal sort
) strings contained in 2 tape sequences)
After 3-way merge A @) [D 0 A (Output) 5 N 0 1 3N After next internal sort (9 internal sort
of 4 strings @ 40 A (4) D utpy strings contained In 5 tape sequences)
A a L] 3 3 0 3 After next 3-way merge (9 internal sort
strings contained in 3 tape sequences
After 3-way merge () A 0 (2) D 2) D 7 o 0 2 o After next 3-way merge (9 internal sort
£ 2 s A A strings merged into 1 tape sequence)
of strings —
(Output)] 1 T [/ | o After next internal sort (3 more strings generated)
After 3-way merge 0 D o]] 9 0 0 9 After next merge (12 internal sort strings
(Output) ined on 2 tape)
of 1 string 10 1 0o {91 Lan After next internal sort
A 0 ° 1 0 3 9 3 After next 3-way merge
Final 3-way merge | 0 12 V3| e After next internal sort
of 1 string (Output) B o] 3 9l After next 3-way merge
14 2 [} 9 0 After next 3-way merge (18 internal sort
* First strings to be processed by read-backward merge. strings contained in 2 tape sequences) o
15 /1] /1 1 After next internal sort (3 more strings generated)
§ bac ; . 16 9 3 9 0 After next 3-way merge
i~ Example 9. Read-backward polyphase merge of 17 strings 17 /1 3 9 1 After next interaal sort
18 3 3 76 0 After next 3-way merge
Tape A Tape B Tape C Tape D Tape E 19 o | 31 |1 | 1 After next internal sort
20 9/3 3 9/3 0 After next 3-way merge
Qutput from A D D D 0 21 9 0 9 9 After next 3-way merge (27 internal sort
D A A A strings contained in 3 tape sequences)
internal sort A D D (4 |D 22 0 27 [i] 0 After final 3-way merge (all 27 internal
(7) (D ® {A ©) A * sort strings merged into 1 tope sequence).
A D D
D A A Note: Numbers refer to the number of internal sort strings contained in each
A* D tape sequence. Underlined entries are output tapes for that merge.
A The slash symbol (/) represents o tape mark that seporates new
I sequences from previously merged output,
Afier 4-way mergel A D @ { D 0 D eq P y ged outpu
3) i D 4 1A A {4)) A
of 4 strings A D D
A - A Example 11. Oscilluting sort of 27 strings with four tapes
After 4-way merge(1) A 2) {D 0 (2) {2 (2) { D
A A A
of 2 strings
After 4-way merge| 0 D D D D
of 1 string
Final 4-way merge| A 0 0 0 0
of 1 string ~ o
Note: Underlined entries represent output for eoch merge.

Example 10, Read-backward polyphase merge of 25 strings

517

Access Technique

Summary (Eoch Line Represents One Ordered Record Seauence)

Area Area B

A

n]fiﬂj biﬂummlﬂhr_j
T
Invewed-me] 1) Lt .

Output of
Sort Phase

uiglu-rnlw
Murgs Phose l‘ [,

'
Poss One

Area B Area C

Output of 'I
o

Infen
Merce Py
Py Two

Area B

_Outpnt Device Lgl_fu_j»y

Arka A
18 Sequences
Aca b
18 Sequences

Intermediole Area C
Meige Phase | 5,
1 Pass One) 4 Seqveners
Intermediote

o " Ao 8

-I "--Pa')a: 3‘-7] '(4 Senuences (

Inte mediote
Meorge Phose
{Poss Two)

- Area A
1 Sequence

v ey

A. Block Organization for First Merge Pass (Area 1) Operation -5000-Record File |10, 000-Record File
CYLINDER 1 | CYLINDER2 | CYLINDERS | CYLINDER 4 Performed ';:Td sug| TRy o
58, 5.8 S8 5484 " A._In Accordance with Sorting Phases
S8, A S8 S48, Phase 1 (lgmnul 35 13 &9 s
;1:2 21:7 :3:2 :3:7 Phase 2 (M::;)n) n - 25 12
28y 287 2 47 Phase 3 (Retrieve) - 308 - 940
5,8y SiBg Sq83 S3Bg Total Sort Time 46 321 94 987
5,84 5,8 584 S4By B. In Accordance with File Operations
5,8, S48y S8y SaBy Position Heads 3 |25 7| 750
5254 5299 5454 - 5459 gomﬂonol Delay 14 89 29 187
op 5.8 5.8 5.8 ata Transfer 29 17 48 50
s B0 35 P10 Total Sort Time LR T) 54 | 987
528 52810 585 S0 - 1
3. Inpet to Second (Firal) Mergs Fom (Ares 2) - Example 14. Sorting time (in seconds) for record and tag
= S5, S o, sorts with an 1M 1301 disk file
AR I I B B oy ey sy
i) 518 Si%12 S8y 3 15
5,8, 5,8, 5812 Sz ! s
Ric) 518y S8y3 Sibyg ¢ 3 :
S 558 S8 Sob1s : o 3
S8y 518y S1Byq $1Byp M 5° ;
Sy, 5,8 814 S8 n 5.5 9
Si8s S8y SBis 51850 i, - :
285 5210 P15 %0 i 6.5

*Note: Figures for polyphase merges assume perfect inirial

Example 13, Two-way merge on disks with string interleaving

string disteibutions and ‘an Infinite number of strings. The Figures
In parentheses Indicate the reduction factors in actual situations
for a practicol number of strings,

Inewrmudiate Arso B
T Vege e [T\ sequence (Example 15. Polyphase data pass determination Table 5. Effective power of the merge (reduction factor) for
- (65 strings and 6 tapes) tape sorting techni
. String
Operatlon Tape 1 Tape 2 Tope 3 Tape 4 Tape 5 Tape 6 Passes
Output
""" i"““' ; Initlal String 8 (1) 12 (1) 14 (1) 15 (1) 16 (1) 0 { 65 strings
Distribution initially)
lete; Sire AS BEC End of first merge 0 4 6 (1 7 8 (1) 8(5)* 40
: End of nd 4(9) * 0 20 3 () 40 4 (5) 36
Example 12. Balanced direct acces sequence-distribution nd of second merge] m () ()
technique . End of third merge 2(9) 2(7)* 0 Q) 2() 2.(9 34
End of fourth merge 1(9) 1(17) 1(33) 0 () 1(5) 33
End of fifth merge .0 0 [} 1(65) *] o 65
Total Strings 208
_* Indicates output tape during each merge. No".: The number of original strings contalned In each resulting
string Is shown in parentheses.
Balanced Polyphase Oscillating
Number | Number Number Number Number Number
Strings Passes Strings Passes Strings Passes
T=4 3- way p‘olyphéu merge; 2 - way balanced & oscillating morganf
-2 1 1-3 1 12 1
‘2 4-5 1.5-1.6 3-4 2
3 6-9 2 -2.2 5-8 3
9-16 4 10-17 2.4-2.8 Same as for
17-32 5 18-31 3.0-3.5 Balanced Merge
33-464 6 32-57 3.6-4 " N
65-128 7 58-105 4.2-4,7 " "
129-256 8 104-193 4.85-5.3 " "
194355 5.4-5.9
T =35 4 - woy polyphase merge; 3 - way oscillating merge
.- - 1-4 1 1-3 1
5-7 1.4-1.6 4-9 2
8-13 1.9-2.1
14-25 2.3-2.7 10-27 3
26-49 2.8-3.3 28-81 4
50-94 3.4-3.8
95~181 3.9-4.4 82-243 5
T=6 5= way polyphase mergs; 4 ~ way oscillating; 3 ~ way balanced merge
T -5 1 -4 1
gé 4-9 2 - 1.3-1.6 5-16 2
10-27 3 10-17 1.8-2.1
28-81 4 18-33 2.2-2.7 17-64 3
34-65 2,7-3.2
82-243 5 66-129 3.2-3.7 65-256 4
. 130-253 3.8-4.3
T = 8: 7 - woy polyphase ‘merge; 6 - way oscillating; 4 ~ wc;y balanced merge
T 1-7 1 1-6 1
5-18 2 8-13 1.3-1.6 7-36 2
14-25 1.7-2.1
17-64 3 26-49 2.2-2.6 37-216 3
50~97 2.6-3.1
65-256 4 98-193 3.1-3.7 217-1296 4
T = 10: 9 - way polyphase merge; 8 - way oscillating; 5 - way balanced merge
¥ R 1 1-8 1
6-25 2 10-17 1.2-1.5 9-64 2
18-33 1.7:2.1
34-65 2,1-2.6
26-125 3 66-129 2:6-3.1 65-512 3
126-625 4 130-257 3.1-3.6
258-513 3.6-4.1
Number of data passes for tape sorting techniques

Table 6.

Ly

&mo\lmog

w

Ao N ®03

Number of Strings Merged

s~ ON ®OO

1 2 3 4
Number of Complete Data Passes

Figure 2, Comparison of tape sorting techniques for T=4 and T = 10

