
.Z77-6048-2

D ATA ENTRY WITH IBM 2260

Mr. Fred C. Gielow, Jr.
IBM Corporation
Dept. 078, Bldg. 850
Neighborhood Road
Kingston, New York 12401

!

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N. Y. 10601

IUMI

June 13, 1966

The facts and features of the IBM 2260 Display Station are
documented and distributed. Yet though we may be fam iliar with
its principles of operation, we may be unfamiliar with ways to use
the IBM 2260 for data entry. Data entry is a difficult and funda­
mental system-design problem. This paper catalogs and organizes
15 data-entry techniques to stimulate and broaden data-entry
thinking, to assist in information-system design, and to help solve
the data-entry problem.

The data-entry problem, like Gaul, is divided into 3 parts:
human factors, equipment, and programming. The root of the
programming portion of the data-entry problem is simply field
identification: communicating the identity of each data fie ld to the
computer. This report gives attention to the basic problem of
field identification, and to other data-entry factors such as ease,
training, speed, completeness, checking, communication-line use,
and programming. Each technique is examined for its good and bad
points as a means of solving the data-entry problem.

Major revision 8/67

For IBM Internal Use Only

Z
7

7
-6

0
4

8
-2

TABLE OF CONTENTS

*1" '4
I

Page

INTRODUCTION 2

Data-Entry Problem 2

Field Identification 3

Data-Entry Considerations 3

DATA-ENTRY TECHNIQUES 5

Fixed-Form Technique 5

Form Check-or-Change Technique 8

Free-Form-With-Delimiters Technique 10

Conversation-Mode Technique 12

Adjacent-Form Technique 13

Overwrite-Form Technique 16

Code-Identification Technique 17

Code-Link Technique 18

Data-Selection Technique 19

Post-Identification Technique 21

Sequence-Key Technique 21

Content-Decode Technique 22

Cycle-Stop Technique 23

Cycle-Go Technique 25

Data-Bracket Technique 25

Combinations and Modifications 27

Summary 29

TECHNIQUE COMPARISON CHART 30

LIST OF ILLUSTRATIONS

Figure Title Page

1 Fixed-Form Technique Used for Personnel-Resume
Data-Entry. 7

2 Fixed-Form Technique Used for Program-Statement
Data Entry. 7

3 Form Check-or-Change Technique Used for Attendance-
Record Data Entry. 9

4 Free-Form-with-Delimiters Technique Used for
Hospital-Patient Admitting Data Entry. 11

5 Computer-Formatted Display of Information Entered
with the Free-Form-with-Delimiters Technique. 12

6 Conversation-Mode Technique Used for Telephone
Company Service-Order Data Entry. 14

7 Adjacent-Form Technique Used for Sales-Order Data
Entry. 15

8 Overwrite-Form Technique Used for Sales-Order
Data Entry. 16

9 Code-Identification Technique Used for Insurance Data-
Entry. 18

10 Code-Link Technique Used for Income-Tax Data Entry. 19

11 Code-Link Technique Used for Employee-Skills
Inventory Data-Entry. 20

12 Data-Selection Technique Used to Select One of Seven
American States. 20

13 Post-Identification Technique Used for Stolen-Vehicle
Data Entry. 22

14 Sequence-Key Technique Used for Airline-Flight
Reservations Data-Entry. 23

15 Sequence-Key Technique Used for Inventory Data
Entry. 24

16 Content-Decode Technique Used for New-Employee
Data Entry. 24

17 Cycle-Stop Technique Display of Field Identifier. 26

(The Cycle-Go Technique is not illustrated; a display
would appear similar to a display for Cycle Stop.
See Figure 17.)

18 Data-Bracket Technique Used for Text-Editing Data Entry. 27

i i

NOTE

The applications described in this
report are not necessarily best
suited for the particular data-entry
technique they illustrate.

The figures in this report
were designed for illustrative
purposes only. The appearance
of actual displays on the IBM 2260
Display Station will differ from those
shown in the illustrations, as will
the Display Station itself.

The Nondestructive Cursor is shown
for each technique in the figures.
Although some techniques demand
its use, others can do very nicely
without it. However, since the
Nondestructive Cursor allows the
operator freedom and convenience,
it is often desirable even when it's
not essential.

1

INTRODUCTION

Man speaks in English, Chinese, Greek, Afghan... and he has enough difficulties
and misunderstandings trying to converse with his fellow man, even using the same
language. So it's not at all strange then, that when man tries to converse with some­
thing that ’’knows” only Binary — this is, a computer— he often encounters problems.

So the man-machine hurdle has been a high one to jump. But as the machine
becomes more and more invaluable in our businesses and in our lives, we push harder
and harder to simplify the man-machine relationship, to ease the job of entering data
into a computer. From early punched-card days we have striven to find ways to enter
data more quickly, accurately, easily, efficiently into the computer.

DATA-ENTRY PROBLEM

What, really, is the data-entry problem? What makes the man-machine
relationship a difficult one?

The data-entry problem is a 3-sided one; one side is the human factors problem,
another is the equipment problem, and the third is the programming problem. A ll three
are so integrated that specifying any one intimately affects the definition of the other two.
Further, improving one must often be paid for in terms of complicating another or both
others.

So, the data-entry problem is a system-design problem. It's a trade-off problem.
It is the integration of all system elements to achieve the required degree of data-entry
ease, accuracy, speed, efficiency; all balanced against the cost of equipment, programmii^,
and system operation.

What makes the man-machine relationship a difficult one? First, the language
barrier. Man's language is very imprecise. Whether I say, "It's a difficult problem”
or 'It is a difficult problem, ” you know what I mean. But, if the computer is only
programmed to recognized the former, it will make no sense of the tatter.

Second, the man-machine relationship is difficult because it is a trade-off problem.
We could design a system (theoretically) which would allow the operator complete freedom
of data entry. However, to do so is to impose an impossible programming burden. On
the other hand, we eould specify that only die simplest of programs will be allowed. But,
by doing this we create wholely unreasonable human-factors requirements.

How does the IBM 2260 solve the date-entry problem ? Unfortunately, it doesn't
solve it. What it does is reduce the problem to more manageable terms. By providing
an easy-to-use, high-speed, low-cost, remote-or-local terminal, the IBM 2260 (with of
course, the IBM System/360) simplifies the data-entry problem by solving the equipment
portion of the problem.

2

So let me concentrate my attention on the human factors and programming
portions of the data-entry problem. That is the purpose of this report.

FIELD IDENTIFICATION

If we unravel the cloak of confusion from around the programming portion of the
data-entry problem, if we examine it completely naked, we find it only amounts to a matter
o f field identification. That is, how do we, as terminal operators, identify to the computer
each field of data we wish to enter? Or, putting the shoe on the other foot, how does the
computer tell us what fields of data it needs to complete a transaction?

Once field identification has been accomplished, it is a simple matter to enter
the data itself. With the IBM 2260 it ’s as easy as typing: even easier The Destructive
or Nondestructive Cursor eases data positioning and greatly simplifies corrections.

DATA-ENTRY CONSIDERATIONS

The remainder of this report is a discussion of techniques for data entry.
Attention is given to the basic problem of field identification, and other data-entry
factors are considered:

Ease.

Training.

Speed.

Completeness.

Checking.

Programming.

Is the technique easy to use? Is it comfortable?

Is the technique easy to learn? Can it be learned quickly?
Can it be mastered by nontechnical people?

Is the technique speedy? Does it allow efficient data entry?

Does the technique assure that all fields required will be
secured? Does it do this conveniently?

Does the technique permit easy checking of the data by the
operator and by the computer?

Does the technique allow simplified programming?
Does it result in programs of relatively small size,
programs that do not impose heavy CPU-processing
burdens ?

Communication Does die technique permit efficient use of the data
Lines. transmission lines? Is the ratio of the number of data-

entry characters to the number of transmitted characters a
high ratio? Does the technique involve a low message-
frequency? This topic is discussed under die assump­
tion that one of the read-manual-input commands is
used (Read DS MI, Specific Poll, or General Poll)
rather than a read-full-buffer command (Read Full
DS Buffer or Read Addressed Full DS Buffer).

3

Miscellaneous Is the technique affected by length of field, data content,
Considerations. other factors? Are there any unique features? Advantages?

Disadvantages ?
m

Each technique is examined, for its good and bad points, as a means of solving the data-
entry problem.

I have written this report assuming the reader is familiar with the IBM 2260 t
and the IBM 2848. Familiarity with the way the equipment works is absolutely essential
for understanding the techniques and for placing them in proper perspective. If
additional familiarity is desired, I recommend you review the System Reference Library
manual: IBM System/360 Component Description, IBM 2260 Display Station, IBM 2848
Display Control, Form A27-2700.

i

4

DATA ENTRY TECHNIQUES

FIXED-FORM TECHNIQUE

This technique is the one we are most familiar with. It is best described as a
" fill in the blanks” technique. By ’’fixed” I mean rigid; i f the fifth field begins on the
third line, 27th character position, that's the only place it may begin.

The Fixed-Form Technique has been used extensively in the past. For example,
all key-punching operations are based on it. But despite its wide use, the Fixed-Form
Technique severely restricts the operator. Human factors are principally ignored in
favor of programming factors; for this technique is the easiest to program. Each field
of data is in one and only one location. There is no flexibility or variability. Every­
thing is fixed — rigid.

Because of this, the man-machine ratio tips far in favor of the machine;
programming is simplified, but operator training is complicated. It is not an easy
technique to use. With the IBM 2260, the operator must properly position the cursor
to the exact location for each field of data. Precise positioning of this kind is
difficult with any data entry device.

Training for this technique is not easy, but neither is it hard. Experience is
vital, but in spite of good training and good experience the technique may result in a
relatively high error rate. Speed is impaired due to the time wasted in field positioning.
Checking is complicated by the double-checking responsibility: position and control.

Completeness can be a problem. For example: Suppose data entry for trans­
action 1 requires eight fields, data entry for transaction 2 requires six fields, and
suppose the same format is used for both transactions. How then does the operator have
assurance of completeness for transaction 2? He doesn’t, unless he knows positively
each field required for each transaction—a severe restriction.

We can relax, somewhat, the human factors for the Fixed-Form Technique, to
make it easier on the operator, but we do so at programming expense. If we allow the
operator the freedom of several character spaces in field positioning, for example, we
must check and adjust the field with our program.

Communication-line use can be very efficient, but the degree of efficiency depends
highly upon the method of field identification. The more field identifiers and the longer
the field identifiers, the greater the use of communication lines and the poorer the ratio
of the number of data-entry characters to the number of transmitted characters.

* Field identification for the Fixed-Form Technique is done by naming each field
and identifying where it is to be located. This may be done in either of two ways: the
computer can transmit the field names or they may be implied by system procedure.

*

5

The first method is generally easier to use, but the second is of definite value
in certain circumstances. When the computer sends a display of field identifiers,
the operator fills in the blanks according to a predefined location convention. Figure 1,
for example, shows a display of field identifiers partially filled in; each data field starts
one space after its identifier and colon.

If the field names are implied, the convention is expanded to include an understood
fixed-sequence of fields and their starting points. Figure 2 shows this technique used for
entering FORTRAN statements into a computer to create a program ’’on-line.” This
figure includes implied field identifiers: statement number in character positions 1 through
5, continuation designation (if used) in position 6, and the FORTRAN statement in positions
7 through 72.

Note that in Figure 2 the Start Symbol is located in character position 80, line
12. Positioning it so permits the first character in line 1 (the letter C) to be data. Wrap­
around makes this possible.

Note also that the Nondestructive Cursor Feature is required for the Fixed-
Form Technique, if the field identifiers are supplied. The feature may also be very
valuable even if the field identifiers are implied.

Someone suggested that an overlay mask of field identifiers might be placed
on the screen of the IBM 2260 to facilitate the Fixed-Form Technique. The use of
masks is strongly discouraged because the IBM 2260 does not have the ability to absolutely
position the image on the screen. Further, since the character size may be adjusted,
linearity is a function of relative character size and is not tied to any absolute value
or dimension. Consequently, use of a mask is not a satisfactory means of field identification.

The Fixed-Form Technique is a fixed-sequence technique since the data is
arranged on the screen in a never-changing order. Yet the ’’form” can be completed,
that is, filled in, in any sequence. Nevertheless, the resulting message sent to the
computer will always contain fields in the same order.

Note that after the data has been entered, the cursor (the vertical bar in the
figures) must be positioned following the last character of the last word of data to be
entered. This is essential since when the Enter Key is depressed (assuming a read-
manual-input command is used), only the data from the start-of-message character (^)
to the cursor w ill be transmitted to the computer. Furthermore, if the new line symbol
(A) is used, all data to the right of the first new line symbol, on each line, will not be
transmitted. The point is that if the cursor is not properly positioned or i f the new line
symbol is carelessly used, data assumed to be transmitted to the computer may not be.
Consequently, in Figure 2 for example, the cursor must not be positioned anywhere to
the left or above where it is shown, without resulting in incomplete data when the message
is sent to the computer.

Although there are many limitations to the use of the Fixed-Form Technique,
there are many applications where it is the best means of data entry.

6

FIGURE 1. FIXED-FORM TECHNIQUE USED FOR PERSONNEL-RESUME DAT A-ENTRY

FIGURE 2. FIXED-FORM TECHNIQUE USED FOR PROGRAM-STATEMENT DATA ENTRY

FORM CHECK-OR-CHANGE TECHNIQUE

This technique is similar to that above except the form is already filled in
with data. The operator merely changes whatever fields are not correct. This
technique has application where most of the data is predictable by the computer, or
where certain fields contain the same data most of the time.

For example: Suppose the IBM 2260 is used to enter customer address informa­
tion into a computer. Suppose, further, that 90% of the customers live in Detroit,
Michigan and the remaining 10% live across the river in Windsor, Ontario. The Form
Check-or-Change Technique is used, and the computer always supplies ’ 'Detroit'* as
the city for each transaction. The operator checks the city, and in only 10% of the
cases is a change to "Windsor" necessary.

Figure 3 shows the technique used for entering weekly attendance data. In
most cases employees work 8 first-shift hours a day, Monday through Friday, with
Code 64. The display (Figure 3) is completely filled in with data for the usual case.
The figure shows the cursor (Nondestructive) positioned to change the first-shift
hour entry to reflect an employee's Saturday work.

When the record is checked, and changed i f necessary, the operator adds the
employeé number, and sends the entire message to the computer.

For this technique, the Nondestructive Cursor feature is essential. The
ability to skip about the screen, changing only the fields needing change, leaving all
others untouched, is a fundamental requirement. This ability imposes the restriction
of careful cursor positioning before transmission, however.

The Form Check-or-Change Technique is an easy one to use. Since the data
for entry is already displayed, field-positioning problems are greatly simplified. In
some cases the change to a field of information results in fewer characters than the
original field contained. This necessitates "blanking" the characters left over, but this
does not severely affect ease of operation, particularly since changes are infrequent.

Training is not at all difficult for this technique. However, training must teach
to guard against the tendency to skip over or ignore those fields, supplied by the
computer, with unusually infrequent changes. Who can blame an operator who wants to
bypass checking a field which needs no change 99 times out of 100 ?

Another possible danger that training must cope with is the inclination to "manipulate
the situation" to result in no change to a field. Let me give an example. Suppose 82% of
the customers for a telephone company order only one phone. Including "1" in the order-
quantity field with the Form Check-or-Change Technique, may result in the Service Repre­
sentative's selling only one telephone. That is, it may be easier to discourage a customer's
desire for extensions that it is to change the order quantity.

4

8

FIGURE 3. FORM CHICK-OR-CHANGE TECHNIQUE USED FOR
ATTENDANCE-RECORD DATA ENTRY

This "danger" can be used to advantage by turning the tables: Include
"2, " "3, " or more in the order quantity to encourage sales. You can see that the
Form Check-or-Change Technique is filled with subtle implications and demanding
system-design problems.

This technique is fast since the computer does most of the work of data entry.
Completeness is satisfied by the technique, and checking is an intrinsic part of it.
That is, checking is not done separately, as with other techniques; it is part of the
basic data-entry procedure. Checking is enhanced by the fact that fields requiring no
change are bound to be correct; they were supplied by the computer,

n
Programming for this technique is not inherently difficult, but it could be

complicated if complex methods are required to determine each field ’s contents.

Communication-line use is not very efficient for the Form Check-or-Change
Technique because all data is transmitted first from the computer to the IBM 2260, and
then it is all transmitted back again. This inefficiency may increase the number of
communication lines required, but it may be a small price to pay for the benefits of
the technique i f the application demands its features.

9

Like the Fixed-Form Technique, the Form Check-or-Change Technique uses
a fixed-field sequence. Field identification is either computer-supplied or implied. I f
implied, field identification is the responsibility of the operator, a human-factors
degradation.

Because of its unique characteristic of supplying the data for each field, this
technique has limited application.

FREE-FORM-WITH-DELIMITERS TECHNIQUE

For this technique the field identification is not specified on the screen. The
field sequence is fixed, and the field identification is implied. That is , the operator
must know what fields of data must be entered, and he must know their sequence. Note
that if all fields are of constant length, this technique becomes very much like the
Fixed-Form Technique with field identification implied.

This free-form technique uses special characters, "delimiters, " to indicate
the end of one field and the beginning of the next. You may use any convenient special
character as delim iter for example, the slash (/), the asterisk (*), the colon (:),
the semicolon (;), and so on. Characters other than special characters may be used
if desired. You may use 2 X ’s, 2 Q’s, 2 or more blanks, or any combination of
characters which convey no other meaning to the program.

Two adjacent delimiters indicate that a field is to be omitted; that it is un­
necessary for a particular transaction. That is, delimiters separate each field,
whether or not the field is filled.

A principal advantage of the Free-Form-with-Delimiters Technique is the
variability of field length it allows. This technique easily handles data fields that vary
in length from zero to as many as a hundred or more characters.

Speed is also an advantage. This technique allows rapid data entry. Fields
may be entered as rapidly as they can be typed; faster, in fact. IBM 2260 wrap-around
line-to-line frees the operator from end-of-line worries.

Another advantage is the high density of data this technique yields. Since no
identification is displayed, all displayed information, except delimiters, is data.

The Free-Form-with-Delimiters Technique is not particularly difficult to
use. No careful positioning or spacing is required. The operator merely enters field
after field of data, each separated by a delimiter. The technique becomes tricky,
however, if a series of fields have no entries. In these cases, the operator must enter
the precise number of delimiters to maintain field identification with the computer. I f
the operator makes one mistake in doing this, all remaining fields w ill be incorrectly
identified.

Training is difficult because the operator must know not only each field, but
also the sequence of fields. This is a crucial training problem and a fruitful source of
errors.

10

Speed, as I mentioned, is an asset of this technique. Completeness of data,
on the other hand, is only as good as the operator’s memory. If he remembers all
fields, everything is fine. If he forgets one or more, he can cause all sorts of errors
and problems for himself.

Checking for accuracy is awkward since the data fields are jammed one after
another. And besides checking for accuracy, the operator must check for proper
field sequence. To ease these checking problems with the Free-Form-with-Delimiters
Technique, you may wish to first enter the data into the computer without checking it.
Then the computer can format it and send it back, neat and organized, for checking.

Figure 4 shows hospital-patient admitting-data displayed on the IBM 2260 using
the Free-Form-with-Delimiters Technique. Figure 5 shows the same data after it
has been formatted by the computer and displayed to the operator for checking.

Programming for this technique is straightforward and is not much harder than
programming for the Fixed-Form Technique or the Form Check-or-Change Technique.
Inclusion of the checking procedure mentioned above complicates the programming
somewhat, but the added complication is not severe.

The program must depend completely on delimiters to indicate field identity.
This means that the program must examine each character of the entered data and
it must format the entire message.

FIGURE 4. FREE-FORM-WITH-DELIMITERS TECHNIQUE USED FOR
HOSPITAL-PATIENT ADMITTING DATA ENTRY

11

FIGURE 5. COMPUTER-FORMATTED DISPLAY OF INFORMATION ENTERED
WITH THE FREE-FORM-WITH-DELIMITERS TECHNIQUE

Communication-line use for the Free-Form-with-Delimiters Technique is as
efficient as any data-entry technique. Only entered data (aside from delimiters) is trans­
mitted. The ratio of the number of data-entry characters to the number of transmitted
characters can be very high.

CONVERSATION-MODE TECHNIQUE

This is probably the easiest data-entry technique from a human-factors stand­
point. Conversation Mode is a question-and-answer technique. That is, the computer
asks a question, and the operator supplies the answer. The computer asks the next
question, and so on. In this way each field of data is individually secured. At the
conclusion of the conversation sequence, the computer signals END.

Conversation Mode is practically foolproof; it is very easy to use. There are
no field positioning problems, no delimiters, no implied field identifications, no
cursor positioning before transmission. The computer leads the operator "by the hand"
through data entry. Each field is identified by the computer, and the sequence is fixed.
The operator has no choice as to the next data fields entered; the computer takes care
of this.

Training is simplified with Conversation Mode. The operator need only
learn what is meant by each computer question.

12

Conversation Mode is not as fast a technique as the Free-Form-with-Delimiters
technique, for example, but it is not slow. Each field is entered as a separate message,
so computer intervention is required on a field-by-field basis, but this intervention is
not expensive in terms of time.

Completeness is guaranteed. The computer does not signal END until all fields
of data have been entered.

Checking is easy. With the IBM 2260, each field may be completely checked
on the display screen before it is transmitted to the computer. The fields are easily
identified and neatly displayed for easy checking.

Programming, on the other hand, is more complicated with Conversation Mode,
because the computer must individually process every single field of data entered. While
the other techniques I've described so far handle many data fields at a time, that is, many
fields of data per message transmitted to the computer, Conversation Mode handles only
one at a time. This means more messages, more computer interruptions, more
computer time devoted to housekeeping, organization, and control. With hundreds of
terminals each entering data fields, one at a time, this management problem can be
significant. Fortunately, operating-system techniques help a great deal with this
management problem.

The receipt of data field-by-field can be used to great advantage. Reason­
ableness checks and other processing can be performed for each field before sending
the next "question. " These complicate the programming still more, but allow the
immediate flagging of unacceptable fields. Then the next "question" would be a request
to correct the previously entered field. Catching errors this way permits their
correction at the best possible time: as they occur.

The ratio of the number of data-entry characters to the number of transmitted
characters for this technique can be high, but since each data field is entered individually,
the message frequency is high. High message-frequency reduces the efficiency of
communication-line use.

Figure 6 shows the Conversation-Mode Technique used by the telephone-
company Service Representative to enter data for a new customer. This is an "In"
Service Order. The computer has asked for name, address, city, service and
equipment (S&E), credit reference, and deposit, and the Service Representative has
entered all fields except the last, which she is about to enter.

ADJACENT-FORM TECHNIQUE

This is another fixed-sequence technique where the computer supplies the
field identification. For this technique the required fields are identified at the right
side of the display screen, as shown in Figure 7. The operator merely fills in the
"form " by supplying each data field next to its identifier. You will recognize the
similarity between this technique and the first one I described, the Fixed-Form Technique.

Like Conversation Mode, this is a very easy data-entry technique, but unlike
Conversation Mode it allows the operator freedom to choose the sequence in which the
fields are entered. For example, in Figure 7, the name might be entered first, then the
order number, then the phone number, and so on. The ability of free movement of the
Nondestructive Cursor allows this action. However, cursor manipulation, though simple,
imposes an additional responsibility on the. operator, making this technique slightly
more difficult than the Conversation-Mode Technique.

13

The Adjacent-Form Technique, like Conversation Mode is an easy one to
learn. Speed is rapid, encumbered only by cursor manipulations. Checking is assured.
Programming is not difficult. Communication lines are more heavily used for this
technique than for Conversation Mode because a long message from the computer is
necessary before data entry, to establish the field identifiers. On the other hand,
message frequency is lower for the Adjacent-Form Technique.

There are two ways of handling messages with the Adjacent-Form Technique.
The individual fields may be sent to the computer one at a time, like the Conversation-
Mode Technique, or they may be sent collectively as one message. The first way
complicates the programming, but it allows instant flagging of unacceptable fields.
However, field identification becomes messy. That is, how does the computer know which
field is being entered; how can it identify an entered field? Identification must be
handled by numbering fields for entry, by transmitting the computer-supplied field
identifier with the data, or by some other method.

FIGURE 6. CONVERSATION-MODE TECHNIQUE USED FOR TELEPHONE
COMPANY SERVICE-ORDER DATA ENTRY

14

FIGURE 7. ADJACENT-FORM TECHNIQUE USED FOR SALES-ORDER DATA ENTRY

Sending all fields collectively as one message can be done in two ways: (1)
insert a New Line Symbol at the end of each data Held entered (as in Figure 7), thereby
sending only data, no field identifiers, or (2) do not use the New Line Symbol at all,
thereby sending data and field identifiers. The first way is recommended because thé
second necessitates difficult cursor manipulations for each new line. But for either
way you must be careful to position the cursor at the end of the last data field before
transmitting the message to the computer.

This is the price you must pay for flexibility in the sequence of data fields
entered: cursor positioning. I f you don't mind a fixed sequence for entering the fields,
you don't have to worry about positioning the cursor. However, i f you do demand this
flexibility, you must assure that the cursor is properly positioned before sending each
message. You may want to use read-full-buffer commands rather than read-manual-input
commands to circumvent cursor-positioning restrictions, but this is not the answer.
The read-full-buffer commands were intended for diagnostic purposes, not for normal
data-entry operations. Read-full-buffer commands result in End of Message (EOM)
conditions and cursor-reset conditions which make use of these commands unattractive.

15

One limitation of the Adjacent-Form Technique is that the field length has a
maximum size defined by the line length on the IBM 2260. For use with the IBM 2848
Models I and II, the line length is 40 characters; for Model III it is 80 characters.
The length of the field identifier subtracts from the total line length available if the
identifiers are not overwritten. While it is possible to overwrite the identifiers, this
is not recommended because it is confusing for the operator. Data fields of length
greater than one display line would have to be handled on a special basis.

OVERWRITE-FORM TECHNIQUE

This technique is exactly like the Adjacent-Form Technique above, except
the field identifiers are listed on the left and the operator enters each field, over­
writing its identification. Although destruction of the field identifier makes checking
more difficult, this technique may have value in certain applications.

Figure 8 shows the Overwrite-Form Technique with the same data and identifiers
used in Figure 7. Note that the data in the fifth line is shorter than the field identifier,
leaving the remains of the identifier on the screen. This has no effect on the transmitted
message, but it does make for confusion in checking. The cursor in Figure 8 is located
in position to enter the total cost data.

The discussion for the Adjacent-Form Technique applies almost totally for the
Overwrite Form Technique.

FIGURE 8. OVERWRITE-FORM TECHNIQUE USED FOR SALES-ORDER DATA ENTRY

16

CODE-IDENTIFICATION TECHNIQUE

For this technique the operator enters a code for each field of data to be en­
tered. For example (see Figure 9), the operator is entering insurance data into the
computer. The operator first enters MCONTR:M followed by the contract number, then
"NAME:" followed by the name, and so forth.

The data fields may be entered individually, as with the Conversation-Mode
Technique, or collectively. Figure 9 shows the latter method.

This is a difficult technique because the operator must enter each field identifier
precisely as it is programmed; no spelling or spacing errors are allowed. If the
computer can not recognize an entry, it must reject it. Of course, you could program the
computer to recognize several common misspellings of each identifier, but to catch
all possible combinations is impossible. The identification problem becomes sizeable
and a source of much operator error if there are many different identifiers.

Delimiters of one kind or another must be used to indicate the end of one data
field to separate it from the identifier of the next. In Figure 9 both the New Line Symbol
and a series of two or more blanks are used as delimiters.

Since the operator identifies each field he enters, he may choose any sequence
he desires. The Free-Form-with-Delimiters and Conversation-Mode Techniques do
not allow any deviation from a fixed sequence.

Learning all the identifiers and their precise format, however, makes training
a difficult task. Speed is greatly reduced, because besides entering data fields, the
operator must also enter the data-field identifiers. Completeness is left to the operator;
i f he forgets a field, it is lost, unless the program includes completeness checks.

Checking is also difficult, because the operator must check both the data and
the identifiers. Since a field identifier will be rejected by the computer if it is not ex­
actly right, the operator may tend to devote more attention to the correctness of the
identifiers than to the correctness of Hie data.

Programming must include decoding routines to decode each field identifier.
Completeness checks with appropriate messages and procedures should also be included in
the program.

The ratio of the number of data-entry characters to the number of transmitted
characters for this technique and for Conversation Mode is approximately the same. But
since the message frequency is lower, Code Identification makes better use of the
communication lines.

«

-17

FIGURE 9. CODE-IDENTIFICATION TECHNIQUE USED FOR INSURANCE DATA-ENTRY

Figure 9 shows Code Identification with the field identifiers preceding the data.
The identifiers may follow the data if desired, but this only disrupts the neatness o f the
display and makes checking harder.

CODE-LINK TECHNIQUE

This technique starts with the computer supplying a collection of field identifiers,
each of which is numbered. The operator chooses the data field he wishes to enter, he
observes the identifier number, then he enters the number followed by the data. Note
that this technique is sim ilar to the Code-Identification Technique. But with Code
link, the operator has less information to enter, a single number. Consequently, it
can be slightly faster and easier than Code Identification. There is a chance of number
mix-up, however, since the operator is translating from identifier word to number,
and this leads to error.

Code Link should be easier to use; it is easier to learn, and it can be significantly
faster than Code Identification. Completeness is better handled also. Data checking
is not hard, but assuring that the right data field is linked with the right field identifier
requires reverse translation; from code to identifier name.

Programming can be easier for this technique than for Code Identification
because translation is easier; numbers are easier to decode than words or mnemonics.

Efficiency in the use of communication lines for this technique depends on how the
technique is handled; the efficiency can be quite high or it can be not so high.

Figure 10 shows how this technique can be used to enter income-tax data into a
computer system. Figure 11 shows a more complicated use of this technique: to enter
update information for an employee-skills inventory. The first several lines of the
display identify the transaction type and list nine data field identifiers. The remainder
of the display is information entered by the operator. The first entered line means the
operator is adding a skill to the inventory. The skill is soldering. The length of ex­
perience is 4 months; it is in the company, at the Kingston location. The other entries
may be similarly translated.

DATA-SELECTION TECHNIQUE

The Data-Selection Technique of data entry can only be used to select one or
more alternatives from a given list. Figure 12 shows an example of this technique.
The data to be entered is one of the seven west coast states shown. Rather than
enter "NEVADA" with the alpnameric keyboard, the operator merely enters "4". The
computer then responds with a display of data from which the next field is selected and
entered.

This technique can be particularly useful for data entry of alphabetic information,
on a limited basis, with the IBM 2260 Numeric-Only Keyboard. That is, for certain

FIGURE 10. CODE-LINK TECHNIQUE USED FOR INCOME-TAX DATA ENTRY

19

FIGURE 11. CODE-LINK TECHNIQUE USED FOR EMPLOYEE-SKILLS
INVENTORY DATA-ENTRY

20

applications the numeric-only keyboard (no alphabetical can be used to identify, hence
enter, alphabetic data. This technique is similar to the Code-link Technique, except
selection of the identifying number is all that is required.

*
The technique is very easy to use; training is minimal, and it's speedy. Checking

is simple, but programming is difficult; this technique is harder to program than Con­
versation Mode. Completeness is assured since each field of data is handled individually.

f! Since the ratio of the number of data-entry characters to the number of transmitted char­
acters is low, you may think the communication lines are inefficiently used. This is
true i f you define your terms that way, but with Data Selection you can convey a lot of
information to the computer with the little bit of data you actually enter.

POST-IDENTIFICATION TECHNIQUE

This technique is another which allows a variable sequence for data-field entry
and requires the operator to identify the fields. The technique is similar to Code
Identification; the difference being that the field identifiers are not entered until the
very last.

Figure 13 shows this technique used to enter police information about a stolen
car. Each data field has been entered and all are identified on the last line of the dis­
play.

This technique requires delimiters between data fields (New Line Symbols in
Figure 13), and also between field identifiers (asterisks in the example). If you use
fixed-length fields, however, you don't need the delimiters. The fixed length takes
the place of the delimiters to indicate field separation. This applies to both the
identifiers and the data fields.

This technique is subject to most of the comments made about the Code-Identi­
fication Technique.

SEQUENCE-KEY TECHNIQUE

This technique is useful where there are a few basic forms or sequences for the
data fields. Once the form or sequence is identified, tile data is entered via the Free-
Form-with-Delimiters Technique. Sequence Key has the advantage over Free-Form-
with-Delimiters in that it allows format selection and includes a display of the field
identifiers in sequence. The advantage o f Sequence Key over Code link is that it
allows all fields to be entered with only one identification.

The sequence identifier may be positioned before or idler file data field. I
recommend that you position the identifier before the data, however, for the sake of
checking and programming.

%

21

FIGURE 13. POST-IDENTIFICATION TECHNIQUE USED FOR STOLEN-VEHICLE
DATA ENTRY

Figure 14 shows the use of this technique where each format contains the same
field identifiers, but in different sequence. This example shows entry of airline re­
servation data.

Figure 15 shows the use of the technique where each format contains a different
type of identification for the second field. This example shows entry of inventory data.
Both examples use the asterisk as delimiter.

CONTENT-DECODE TECHNIQUE

This unique data-entry technique involves no field identification at all during
the data-entry phase. Field identification is done by the computer based on the data
content alone. Because of this, its use is limited. Only those applications which involve
data fields, all of which are uniquely identifiable by content, are prospects for this
technique.

The technique is very easy to use: no complicated field identifications, no
fixed-field sequence, only delimiters to set fields apart. The data fields may be
entered individually or collectively.

22

The technique is easy to learn and is a fast means of data entry. Completeness
is not inherently a part of the technique and would have to be built into the program. Check­
ing is easy, since all attention can be devoted to data content. Programming is difficult,
since each field must be uniquely identified, but this amounts to little more than a slightly
different form of the reasonableness checks which would probably be included in a pro­
gram anyway. This technique permits very efficient use of the communication lines. The
efficiency is the same as for the Free-Form-with-Delimiters Technique. The length of
field and field-length changeability have no effect on this technique, other than influencing
uniqueness.

Figure 16 illustrates use of the Content-Decode Technique for entering employee
data. The employee name is distinguishable from the address by the address number and
the word "Road. M Note, however, that this is a dangerous distinction. How would the
computer know the difference between Paul Road and his unnumbered address of Pine
Road? The age, birth date, and social security number are more easily differentiated.

CYCLE-STOP TECHNIQUE

This technique, an unusual one which will only be applicable in rare cases, works
in the following way: The computer sends one field identifier followed by a Start Symbol.
A fixed time-interval later, perhaps one second, the computer sends the next identifier
(again followed by a Start Symbol) and destroys the first identifier. This continues on
a regular basis until the operator finds the identifier of the field he wishes to enter. He
then quickly depresses the Shift and Enter keys, before the next identifier appears. This
"message" signals the computer to discontinue the sequence and await entry of the data
field. When the data is entered, the computer continues flashing identifiers.

23

I

?4

Although the technique is riddled with problems — excessive computer use,
excessive communication-line use, awkward human factors, e tc ., — there may be an
application which could put it to good use.

Needless to say, the technique is not easy to use. Although the training is minimal,
the speed is poor. Completeness is assured since the cycling continues over and over again
until all data is secure; checking is not difficult, but programming complexity and overall
operating factors make the value of this technique questionable.

Figure 17 shows how one computer-displayed field identifier appears to
the operator for the Cycle-Stop Technique. A second later this identifier's successor
(perhaps "ADDR") will replace "NAME" and the cycle will continue indefinitely, if the
operator does not disrupt the sequence.

CYCLE-GO TECHNIQUE

This technique is like the Cycle-Stop Technique with one exception. The
cycling is not under computer control: it's under operator control. That is, the operator
depresses the Enter Key after each display is presented, thereby triggering the following
display, until the desired field identifier is reached. Then the data is keyed in, and sent
to the computer.

Though this technique may have limited application, it does bypass the major
problem associated with the Cycle-Stop Technique. That is, Cycle-Stop cycles continuously
until stopped, while Cycle-Go does not cycle until triggered by the operator. However, if
used recklessly, this technique can be as wasteful as Cycle-Stop.

A possible use of this technique is for demonstrations at business shows. In­
terested people could, at their own rate, cycle through a series of displays of possible
data-field identifiers. Each display would include instructions of what data to enter
and how to enter it. Displays could describe how to enter data to identify a record
required for retrieval, data to iqxlate a list, and so forth. So, with Cycle-Go, the
demonstration can explain the application as it demonstrates it.

DATA-BRACKET TECHNIQUE

The Data-Bracket Technique is similar to the Data-Selection Technique in that
the computer supplies the data, and the operator determines what portion of the displayed
data he wishes to send back to the computer.

25

FIGURE 17. CYCLE-STOP TECHNIQUE DISPLAY OF FIELD IDENTIFIER

Figure 18 shows an example where the Data-Bracket Technique is put to good
use. Here the IBM 2260 is used to edit a reference manual. The operator wishes to
delete a portion of the text. He has surrounded that portion with the Start Symbol and
the cursor. When the computer receives this data it can respond with an action interrogation:
Should the data be deleted? Added? Removed and saved?

When the operator signals data deletion, the computer removes the designated
data, reformats the text to close the gap, and redisplays the corrected text for the
operator to check and continue with his editing.

The Data-Bracket Technique is easy to learn and easy to use. It is very speedy:
certainly faster than keying in the data to delete, for example. Completeness is a question
of how the technique is used: In most cases the technique is used to pick out a section
of information displayed, as in the editing example, so completeness isn't a problem.
Checking is easy since the only checking involved is the proper placement o f Start
Symbol and cursor.

Programming data entry for the Data-Bracket Technique is quite easy, but
programming follow-on operations may not be so easy. For example, for text editing,
after the entered data is identified as deletion data, the program must locate the
corresponding data in the text, delete it, and reformat it. These kinds of operations can
involve complicated character manipulations.

26

For this technique, the ratio of the number of data-entry characters to the number
of transmitted characters may be quite low, but like the Data Selection Technique, you
convey a lot of information to the computer with very little actual data entered via the key­
board.

Only certain applications use the Data-Bracket Technique. The major restriction
is that the computer must display whatever data is to be entered; that is, no new data
can be entered.

The technique demands that the Nondestructive Cursor Feature be specified for
the IBM 2848 Display Control.

COMBINATIONS AND MODIFICATIONS

While there are good and bad sides to each of the 15 techniques I've discussed,
probably no one technique will solve all the problems of a data-entry application. Con­
sequently, in all likelihood, your application will require a combination or modification
of techniques to meet your specific data-entry needs.

There is certainly nothing sacred about the details of the 15 techniques as I've
described them. They can be modified, revised, altered. For instance, suppose
you wish to enter several columns of data, each of which is directly below a computer-
supplied identifier on the display screen. This isn't exactly the Fixed-Form Technique,
or any of the 15; it's a modification of Fixed-Form. What I'm saying is that variations
on a technique's theme are indeed allowed.

FIGURE 18. DATA-BRACKET TECHNIQUE USED FOR TEXT-EDITING DATA ENTRY

27

How can you tell what technique you need for your application? Will one of the
15 do the trick, or do you need a combination of techniques or a modification of one or
more? Let's take an example. Let's look at the data-entry needs of the telephone-
company Service Representative and see how they might be satisfied with the IBM 2260.

Which data-entry techniques are best suited for the Service Representative?
Before we answer that we must examine what data-entry operations the Service Repre­
sentative performs.

The first phase of nearly all customer contacts involves information retrieval;
retrieval of the particular information from a particular customer record to handle the
customer's particular problem. So, before information retrieval comes data-entry.
The Service Representative must identify the inquiry type (balance due, toll, pending
order, party interference, etc.) probably with a mnemonic, and she must identify the
specific customer record, probably with the telephone number.

The data-entry technique used here should be fast and easy; it should not re­
quire a preliminary step where the computer supplies field identifiers. In the interest
of speed the Service Representative should not have to identify the data fields. Con­
sequently, only three techniques are readily applicable: Fixed-Form (with implied
field identifiers), Free-Form-with-Delimiters, and Content-Decode. The one with
greatest flexibility is Content Decode. As long as a basic delimiter rule is observed,
the Content-Decode Technique will accept the inquiry type and telephone number in any
sequence or spacing arrangement.

If the Content-Decode Technique offers too much programming complication,
one of the other two techniques may be used. This costs convenience for the Service
Representative, but it may be a valid system design choice, in view of other system
considerations. If none of these three techniques precisely fits the requirements, some
combination or modification may turn the trick.

What about the second phase of the customer contact, the action phase? During
this phase the Service Representative must take action, usually in the form of data entry.
She must enter a few or dozens of fields of information into the computer. What
technique would you use here? What are the requirements?

Ease and speed are again important, but the three above mentioned techniques
will not do. Fixed Form is not flexible enough, and it imposes too many cursor-positioning
manipulations. Free-Form-with-Delimiters is too error-prone, too dependent on the
operator's remembering the fields and their sequence. And Content Decode probably just
won't work at all because of lack of data-field uniqueness. There are perhaps 5 good candidates:
Conversation-Mode, Adjacent-Form, Code-Identification, Code-Link, ̂ and Post-Identifica­
tion. And of course a modified technique or a combination of tecnniques is always a source
of potential candidates.

Once we've chosen the techniques for Service-Representative inquiries and
actions, we can examine the other data-entry operations she performs and choose techniques

28

for these. And after we've designed the system for the Service Representative, what
about the other Commercial Department people who must enter data into the computer?
What about the people in the Plant Department, Revenue Accounting, T raffic ,. . . ?

One technique may not be sufficient, as we saw, to handle an entire application.
Nevertheless, if at all possible, only one technique should be used for any one class or
type of data-entry messages .In the telephone company, for example, the Service
Representative may need the ability to enter 16 different kinds of messages to handle the
different kinds of actions a customer contact demands. Good system design would
provide only one data-entry technique to handle all 16 types of messages. This is im­
portant because it is confusing to enter similar data with différent techniques. We
expect a car to require a different driving technique than an airplane, but we expect
all cars to require pretty much the same technique. So, while there may well be
several data-entry techniques used in an application, sim ilar types of data-entry
activities should be handled with the same technique.

SUMMARY

Every phase of data entry must be carefully explored, analyzed, before the
right data-entry technique can be chosen. What about ease, training, speed, complete­
ness, checking, programming, and all those other complicating factors ? What about
overall system design considerations ? What kind» of trade-offs are involved with
data entry, with processing, with data output, with equipment capabilities, with, pro­
cedural requirements ? The total system must be designed and engineered, and com­
promises with its ingredients are inevitable.

As we have seen, there are a multitude o f data-entry techniques: the 15 I de­
scribed and dozens of combinations and modifications. lik e every system-design
problem, data-entry can be fitted with many solutions. Selection of the "best" solution
is dependent on not only the application itself, but also on the specific way you want
to handle your application.

What I'm trying to say is this: One technique win not solve the data-entry prob­
lems for alt applications, nor will one technique solve all the data-entry problems fo r
any one application. And further, the best technique for your application may not be
the best technique for someone etse*s , even though his application and yours are identical.

Data entry is a difficult and fundamental system-design problem. But, as
we must communicate man to man, and cross the language barrier to reach an under­
standing and an improved mankind, so must we communicate man to machine, and
solve the data-entry proolem, to reach improved service, better control, reduced
expenses, and greater overall company efficiency.

29

TECHNIQUE COMPARISON CHART

The chart on the following page compares the 15 techniques I described in this
report. The charts cover operator considerations, field-identification considerations,
computer considerations, and other considerations.

Comparisons of this kind are difficult, at best, because each technique has
unique uses. It's a little like comparing apples and oranges. That is, although each
technique helps to solve the data-entry problem, all have individual characteristics
which place them in separate categories.

The comparison charts give a YES or NO answer for each question considered.
Unfortunately, in some cases a YES or NO is not appropriate. Some questions are not
applicable to some techniques, and some questions depend on the particular use of the
technique. These cases are appropriately designated.

Some of the questions considered have answers that lie somewhat between
YES and NO depending on precisely how the technique is handled. That is, certain
answers are a shade of gray rather than a strict white or black. In these cases the
most general use of the technique is assumed, and a YES or NO answer is given on
this basis. In this regard, variable-length rather than fixed-length data fields are
assumed.

A word of warning: there is often an inclination to count the good points for
each technique and to claim the technique with the highest score as "best." This is
invalid. The technique with the lowest score may have a unique feature that makes it
the best choice for a particular application, Of crucial importance is the evaluation
of a technique and its features relative to all the requirements of the application. There
is no one best technique. However, there may be one beet technique for you and your
application.

30

D
ata-B

rack
et Tech

n
iqu

e (T
yp

e A
)

j

D
ycle-G

o Tech
n

iqu
e (T

yp
e A

)

C
ycle-S

top
 Tech

n
iqu

e (T
yp

e A
)

C
on

ten
t-D

ecode Tech
n

iqu
e (T

yp
e B

)

C
on

ten
t-D

ecod
e Tech

n
iqu

e (Typ
e A

)

S
equ

en
ce-K

ey Tech
n

iqu
e (Typ

e B
)

P
ost-Id

en
tification

 Tech
n

iqu
e

(Type B
i

D
ata-S

election
 Tech

n
iqu

e (T
yp

e A
)

C
od

e-Lin
k

 Tech
n

iqu
e (T

yp
e B

)

C
od

e-L
in

k
 Tech

n
iqu

e (Typ
e A

)

Lod
e-Iden

tu
ication

 Tech
n

iqu
e

(T
yp

e B
)

C
od

e-ld
en

tiiication
 Tech

n
iqu

e
I

(Type A
)

p
verw

ru
e-h

orm

lech
n

iqu
e (Type B

)

K
\djacen

t-rorm

lech
n

iqu
e w

ith
ou

t
|

N
ew

 Lin
e S

ym
bol (Typ

e B
)

JA
d

jacen
t-Iorm

 lech
n

iqu
e w

ith N
ew

[

Lin
e S

ym
bol (T

yp
e B

)

jA
d

jacen
t-*orm

tech

n
iqu

e (lyp
e A

)

C
on

versation
-M

od
e Tech

n
iqu

e
(Type A

]

p
 ree-F

orm
-w

ith
-D

elim
iters

Tech
n

iqu
e (T

yp
e B

)

F
orm

 C
h

eck-or-C
h

an
ge Tech

niqu
e

(Typ
e B

)

[F
ixed

-F
orm

 Tech
n

iqu
e w

ith
 im

plied
j

field
 id

en
tifiers (Type B

)

[F
ixed

-F
orm

 Tech
n

iqu
e w

ith
 supplied

I
field

 id
en

tifiers (T
yp

e B
)

i i m ibis l

field
 tran

sm
ission

B

:
C

ollective data
field

 tran
sm

ission

Y
E

S

N
O

N
ot applicab

le

D
epends on use

of tech
n

iqu
e

I L _ ■L ■ ■cH Must the operator enter data fields in a
fixed sequence?

■■
1
■

■ c■ A Must the operator remember the data-field
sequence?

*
q no c■ 5:

c
$5 ■1

t

■ A Must the operator remember all data fields
for data entrv?c■ ■■ ■ Must the operator enter each field identifier?

■ ■ ■
—

D
/U Must the operator enter the code of the

field identifier (s)?

■ ■ ■ ■ ■■Must the operator position the cursor for each
data field?

t ■ ■■ AAMust the operator assure the cursor is specially
iositioned Immediately before transmission?

II ■ i E ■ s ■ A Must the operator insert delimiters?

L□ Are time restrictions imposed on the operator?

■
q

m ■ ■■■■ 1E ■■ ■E■ EÉ[s field identification the operator's
responsibility?■ ■ ■■ ■ AAre the field identifiers displayed before
iata is entered?*

G ■■— — ,
mm ■ H

■
■ i

— E
am

■
n

— if_____
am

1 — — j

Are field identifiers displayed on a
:ield-by-field basis?
Are all field identifiers displayed after

—
u
n □c— — m — ■■■

a
■■— m

a
Hi
■

■
■ — ■j

iata is entered?
!s each field identifier next to the entered
iata field?

QL > E ■■ N
/A

H

Must field identification be coded?

□ □□ i_ a m Are field identifiers Implied?

□ L L M ■ ■ A [s only data sent to the computer; that is
io identifiers or delimiters?

□□□1 E a a Are only data and delimiters (or codes) sent
;o the computer; that is no Identifiers?

L I ■E □□ m a m E A Are data and identifiers (or identifier
podes) sent to the computer?

q ■ s ■E ■A EAAre data fields sent to the computer in
only one fixed sequence?

■■ ■ ■ E a tt■ Are data fields sent to the computer
Individually?■■■■■■■m□n ■■ E Must the computer scan a portion of the
data entered?■ *

q ■■■■ m
1 [I■ ■ Must the computer scan each character

3f data entered?

■■ ■ ■■E ■■E ■ A Ï klust the computer send a message to the
operator before data entry begins?

■■ ■ ■ A Must the computer send a message to the
operator for each data field entered?

■ ■□ Does the computer supply the data which
the operator will enter?

E q

i

FI s Is the Nondestructive Cursor required?

E i q ■□□ □ Does the technique assure completeness?

■□□ *
> ■■ Is the technique adversely affected by data-entry

sequences requiring more than one full display?

■■■■ ■□□□ Is the technique adversely affected by variability
(within reason) of data-field length?

■■■ ■ | [b the technique adversely affected by absolute
1 Length of field (within reason)?1■T] E 1 ■A A A□nn In general are the number of messages to the

computer lees than the number of data fields?

■ ■ ■ I ■ I A □ Are the number of messages to the computer
equal to the number of data fields entered?

1 I i
Are the number of messages to the computer
greater then the number of data fields entered?

■ 1 "5"
q AA « 1 poes the technique have potential cursor-

J H positioning problems?

I

E
I
l

I

O
P

E
R

A
T

O
R

 C
O

N
S

ID
E

R
A

TIO
N

S

H
E

L
D

 ID
E

N
T

IF
IC

A
T

IO
N

C

O
M

P
U

T
E

R
 C

O
N

S
ID

E
R

A
TIO

N
S

O

T
H

E
R

 C
O

N
S

ID
E

R
A

TIO
N

S

