-

ZT7'7-7007

TPRCINIEAL,
NP ORIVUATCHON
RN BE

OPERATING SYSTEM/360 PRINCIPLES

Mr. J. K. Boggs, Jr.
IBM Corporation

6900 Fannin Street
Houston, Texas 77025

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N.Y. 1 0601

January 30, 1967

Two principles are basic to understanding Operating System/380
(0S/360). The first is that of a queue. The important function
to be accomplished is resource allocation. In order to improve
the throughput of the system, maximum use of limited resources
must be accomplished. A method to accomplish this is the queue.
The queue is a way of requesting a resource so that my request
is filled at the earliest possibility.

The second principle is that of events. A dynamic system must
manage multiple requests for resources. When resources later
become available some way to grant unrelated requests must be
accomplished. The event is a way to accomplish this .

For IBM Internal Use Only

LOOL=LLZ

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Operating System/360 Principles

Two principles are basic to understanding Operating System/360 (0S/360).
The first is that of a queue. The important function to be accomplished is
resource allocation. Inactive resources waste time and, thus, cost money. In
order to improve the efficiency (throughput) of the system, maximum use of
limited resources may be accomplished through use of the queue. The queue is a
way of requesting a resource so that my request is filled at the earliest possible
moment. A familiar example of the queue is a waiting line at a ticket booth. The
resource to be allocated is the ticket seller's time and, one by one, those who
wait get the resource.

The second principle is that of events. A dynamic system must manage
multiple requests for resources. When resources later become available some way
to grant unrelated requests must be accomplished. The event is a way to accom-
plish this wait. We have events occurring daily. "Has the mail come yet?" is a
question about an event which must occur before we can pay the bills or read over
our favorite magazine.

Waiting must be 4implemented in a complex system using multiprogramming.
Two ways to accomplish this are queueing and eventing. This paper discusses how
both apply to 0S/360.

1. INTRODUCTION

The advent of very powerful hardware computing systems has placed a new
emphasis of the Programming Systems —— the limitations have become less hardware
oriented. Rather, performance of a system, as measured by throughput, has become
dependent upon the software monitor which coordinates activities. It has become
apparent that it is necessary to use a multiprogramming environment in order to
get the most out of the system. But multiprogramming places a new demand upon
the software; that of waiting without stopping.

"Waiting without stopping" means that Program-1 can be put into a software
wait state while the CPU switches to Program-2 which is ready to execute. To
determine the magnitude of the problem, consider the event that placed Program-1
in the software wait state. Program-1 had control first for some good reason and
should assume control again. How can this be done? (Event means only that "some-
thing happens." This something could be an I/O interrupt or a normal program
termination.) Multiprogrammed systems must have a way of waiting on resources
which are not available and a way of responding to events (things that happen).

IBM
EDUC 10-1
J. K. Boggs 12/8/66

The two principles basic to multiprogramming are also basic to 0S/360.

These principles are Queues and Events.

2. WHAT IS A QUEUE?

The queue is a method whereby one resource may be requested and/or used.
When the resource becomes available, the queue can be used to decide what request
should be satisfied next.

A familiar queue is a waiting line at a ticket booth. The line of people
waiting is itself the queue: the ticket booth is the resource.

There are three types of resources:

1. Immediately usable (re-entrant)
2. One-time usable (self modifying/destroying)
3. Serially reusable (self-initializing)

For the approach to be consistent and flexible, it will be convenient to
create a piece of control information which can "represent" or "stand for" the
resource to be queued upon. In 05/360, this control information is called a
Queue Control Block (QCB). The QCB is one full word of core. Bit O of the QCB
is ? one when the resource it represents is being used (i.e., Bit O is the busy
bit).

The type of the resource affects how many QCB's are required, Only one QCB
is required for a re-entrant resource because any request can immediately be
satisfied. However, a non-reusable resource requires az '"new copy" of the resource
for every request. For example, when a rocket is fired, the rocket is destroyed.
If we require two rockets to meet in space, then we need two resources even though
they might be identical twins. Every request for a non-reusable resource will thus
require a new, additional QCB.

Finally, the serially-reusable resource brings us back to the ticket booth.
This is a resource upon which we can really queue and only one QCB is necessary
for any number of requests.

2.1 HOW ARE REQUESTS MADE?

A queue requires not only a resource (Fig. 1) which can be allocated, but
also requests for the resource. The basic function of a request is to specify
what resource is being requested. This function can be implemented using a full
word in core to address the resource being requested. The physical implementation
of a request is called a Simple Queue Element (QEL) i.e., a part of a queue.

(Fig. 2)

QEL's can be located in core in two different ways: (1) the elements can
be fixed in number and in consecutive core locations in a contiguous set of QEL's
(Fig. 3); or (2) variable in number and distributed in core in & distributed set
of QEL's (Fig. 4 and 5).

gt i

L

-2

IBM IBM
EDUC 10-1 EDUC 10-1
J. K. Boggs 12/8/66

J. K. Boggs 12/8/66

address of
active queue
element

Busy Bit

o|1|2|3|L|5|6]T

Request #1 — Points To

|<———Full Word:

Figure 1. Queue Control Block (QCB)

‘——®»Request #2 — Points To.

Link Address
(address of next)

- Full Word -
L eRequest #3 — Points To
Figure 2. Simple Queue Element (QEL)
X'80" QEL #1 | qcB #1

8 ZERO
QEL #1-
"ACTIVE"
QEL #2 QUEUE . .
ELEMENT Figure L. Chain of Requests
QEL #2 L .
NEXT
QEL #3 QUEUE
ELEMENT
QEL #3
LAST
ZERO QUEUE
(X'000000") ELEMENT

Figure 3. Contiguous Queue

address of next
link in the chain

—

'

address of next
link in the chain

—

|

']

address of next
- link in the chain

1T

]

address of next
link in the chain

Figure 5. Forward Chaining

IBM
EDUC 10-1
J. K. Boggs

12/8/66

IBM
EDUC 10-1 X
J. K. Boggs 12/8/66

In addition to the forward (Fig. 5) chain of the QEL's mentioned, one can
implement requests so that a search can be made in either direction. To imple-
ment this, a second word is required to address the request "behind" each request.
This QEL is now called an Expanded QEL. (Fig.6 and T)

2.3 HOW IS QUEUE BUILT? SERVICED?

It is important to note the difference between the way the queue is built
and the way that requests are granted (Fig. 8). The way that a queue is built
refers to how addresses are placed into the QEL's. There are three common rules
used to order a queue: a. LIFO (last in, first out) — the latest request is
placed ah=ad of all other requests. This is like "cutting in" at the head of the
ticket line, b. FIFO (first in, first out) — the latest requested is placed behind
all other requests. This is the normal way of adding to the ticket line, c. PRIO
(priority) — the order of requests is according to some numeric priority regard-
less of chronological order. There is a parallel between this method and the mayor
walking into a movie while the rest of us wait at the ticket booth.

The manner in which requests are satisfied in a queue depends upon the
resource. The QCB will contain, in bytes 2, 3, and 4, the address of the request
being satisfied (or the request which presently has the resource).

When the present request is finished with the resource, the address of the
next request in the queue is obtained from the then-finshed QEL and the chained
QEL is made active. From this viewpoint, the queue is being serviced in a
manner. Simple QEL's will always be serviced on a first in, first out basis.

Expanded QEL's may use the second word to allow requests to be serviced
LIFO. Using this strategy, word Number 2 of the QEL is used to service the queue
and word Number 1 is used to build the queue.

For example:

EQEL #1

Address of
EQEL #2

EQEL #2

ZERO

1]

LE

8

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Link Address
(address of next)
queue element

Back-chain Address
(address of previous)
queue element

4

Double Word

Bit 0 = Last QEL Bit

if = 0, then more
qel's in queue

if = 1, the this gel
is last in queue

Figure 6. Expanded Queue Element (EQEL)

X'80" EQEL #1 QCB #1
V EQEL #1
ZERO X'80" QCB #1
(X'000000")

<@—Link Address-—>|

IC—Back-chain—’
Address

Figure 7. Backward Chaining

QCB #1
X'80" QEL #1
\i QEL #1
ZERO
(X'000000")
| @—————Link Address—————#»|
Figure 8. One-Request Queue
QEL #1 address of
QEL #2
QEL #2 ZERO

Figure 9. Basic Queue

IBM
EDUC 10-1
J. K. Boggs

"ACTIVE"
QUEUE
ELEMENT

12/8/66

IBM
EDUC 10-1
J. K. Boggs 12/8/66

QEL #1 address of
QEL #2
—1—
]

y

QEL #2 address of

. QEL #3
—
1

QEL #3 ZERO

Figure 10. Basic Queue With Added Request

When another request is made, add it on in a FIFO manner.

IBM
EDUC 10-1
J. K. Boggs 12/8/66

EQEL #1
Address of
EQEL #2
S
EQEL #2
Address of
EQEL #3
l EQEL #3
ZERO
EQEL #1
Address of Address of
EQEL #2 X '80' QCB #1
EQEL #2
Address of Address of
EQEL #3 EQEL #1
EQEL #3
ZERO Address of
EQEL #2

R

IBM
EDUC 10-1
J. K. Boggs 12/8/66

2.4 ADVANTAGES

Contiguous QEL's are less flexible than distributed QEL's and require that
core be permanently allocated. The major reason for using contiguous QEL's is
that it is time consuming to allocate and de-allocate core. For input/output
operations, the time demands are very heavy (literally thousands of records per
minutes) and thus contiguous QEL's are used. For queues that are less demanding,
distributed QEL's allov more freedom to accomplish new approaches (Fig. 11).

2.5 A NOTE ON USE

The QEL's and QCB's discussed in the preceding section are directly involved
in the queueing function. In order to really "do something", additional informa-
tion is required (Fig. 12). The convenient method seems to be to add additional
storage to the control block.

The total of the information in the control block can now be made useful by
way of a control program. The next topics describe how queueing is accomplished
under 0S/360 for the following queueing control blocks:

TASK CONTROL BLOCK - TCB
CPU QUEUE

REQUEST BLOCK - RB
TASK QUEUE
PROGRAM QUEUE

3. PROGRAM MANAGEMENT

Requests for load modules are numerous in any computing system. In an
environment where many assignments can be given the CPU, the multiple use of load
modules becomes very attractive in order to conserve core. For example: in the
FORTRAN shop, the square root routine (SQRT) is called upon. However, if ten
FORTRAN programs are simultaneously executed, it is possible to have ten requests
for the SQRT routine. If the routine is 100 words, we can, through multiple copies,
find ourselves with 1000 words (10 x 100) allocated to SQRT (Fig. 13). If, however,
requests are queued according to some rule, we can reduce the core overhead. Notice

that this is a trade-off, because it will require CPU time to do management functions.

Consider three queuing rules: (1) first in, first out (FIFO); (2) last in,
first out, (LIFO); (3) priority, highest priority first (PULL). The rule itself
will not affect our queueing technique (QCB and QEL). 1In a FIFO queue for SQRT:

IBM
EDUC 10-1
J. K. Boggs
X'80' QEL #1 QCB #1
ZERO
(X'000000")
——
QEL #2 QEL #1
L »
QEL #3 QEL #2
(A) Simple Queue Element
X'80"' EQEL #1 QCB #1
—
I
L
ZERO EQEL #2 T EQEL #3
(X'000000") —T——
| S —.
- [
1
EQEL #2 * X'80" QCB #1 ? EQEL #1
|
i
EQEL #3 * EQEL #1 EQEL #2
]

(B) Expanded Queue Elements

Figure 11. Distributed Queues

12/8/66

IBM
EDUC 10-1
J. K. Boggs 12/8/66

QCB #1/QEL #N

address of
active QEL or
ZERO or link

Additional
"Do Something"
Information

Figure 12. Relation Between Queue and Resource

13

QCB

LIST

address of "TOP"
QEL

address of entry
point to SQRT

IBM
EDUC 10-1
J. K. Boggs 12/8/66

4 Resource

Figure 13. Program Management Queing Control Block

]

IBM IBM
EDUC 10-1 EDUC 10-1
J. K. Boggs 12/8/66 J. K. Boogs 12/8/66
QCB #1 X '80' Address of
QEL #1
Resource
Address of
entry point of QCB #1 X'80' address of
SQRT QEL #1
QEL #1 I I Address of | 1st Request
: QEL_#2 (Active)
»
QEL #2 I l ZERO I 2nd Request
address of
ent oint t
The rule which is used to order the queue does not affect our activation of SQB;’.Y A
- the top queue element. En-queing then is just placing our request (QEL) in its
position in the QEL chain. De-queing is just changing the addresses in the QEL's
so that the chain no longer knows my QEL exists (Fig. 14). QEL #1 [] address of *l 1st Request
L #3
A request is granted, usually, by placing the QEL address into the QCB; thus S
activating that request. We can talk asbout a queue describing the manner 4n. o _____
which requests are granted, not the way the queue is built, e.g., even though the I I address of -Ta
RB's are serviced LIFO, the RB queue on a task in built FIFO. L II QEL #3 ,
Returning to the management of our square root route (SQRT), the QCB and a
list are established as shown in Figure 13. QEL #3 7ERO 2nd Request
With this kind of arrangement, we can easily add or delete requests in our
queue. Suppose a third request occurs. We must scan the queue for the last QEL
and insert in the second word the address of QEL 3. We must then create QEL 3
as follows: Figure 14. Program Management Queing
QCB #1 X'80' Address of
QEL #1 -
& 1
Address of
("‘ entry point to
SQRT
QEL #1 Address of 1st Request
b QEL #2
QEL #2 Address of 2nd Request
QEL #3
QEL #3 ZERO 3rd Request

15 16

IBM
EDUC 10-1
J. K. Boggs 12/3/66

Suppose that now we find that we do not need to satisfy our second request
because the job abnormally ended. To de-enqueue, all that needs to be done is to
look at request 2 and "chain" around it. This process is simplified since, in
fact, expanded QEL's are used.

BEFORE DE-ENQUEING

Address of QEL 2 Address of QCB QEL 1 Request 1
[Address of QEL 3 l Address of QEL 1 QEL 2 Request 2
ZERO Address of QEL 2 QEL 3 Request 3

AFTER DE~ENQUEING

Address of QEL 3 Address of QCB QEL 1 Request 1
[Address of QEL 3 Address of QEL 1 I QEL 2 Request 2
L ZERO Address of QEL 1 I QEL 3 Request 3

Now, if we start at QEL 1, the chain ends on the second element — QEL 3.
QEL 2 has been chained around. The advantage of this approach includes some fast-
executing codes.

Program management can thus be implemented using QEL information and QCB
information. Under 0S/360, the list of load module QCB's is called the Contents
Directory — the QEL is part of the request block (RB). The contents directory

stands for the load modules. The RB consists of a double queue with two resources:

the load module via the contents directory, and task time via the TCB.

The Task is a set of control information, the resource for which is CPU time.

(See Section 4, Task Management)

To get some useful work done by the computing system, we need at least two
resources: Task time (TCB), and a program (Load Module-Contents Directory). The
queue elements, which request these resources, are in the RB.

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Let's see how this might appear in core:

Contents Directory
X = 8|
QCB to manage Load Module
\ having name of 'CAT'.
car N

Task Control Block

A

N ECB to manage
\\\\\ Task time

Request Block - RB #1

X Expanded QEL referencing Load
Module 'CAT'
0 lAddress of
CAT entry Expand@d QEL referencing Task Time
0 TCE
address
Ve

As you might imagine, it is possible for a given Load Module to request the
services of another. All that must be done is to create another RB containing
appropriate QEL's.

However, we know that only one load module at a time can have CPU time. We
must have a rule, therefore, for building our QEL's that reference the TCB. A
good choice appears to b® FIFO. Therefore, a request by CAT for DOG would appear
as: W

RB #1
WX : I
0 Address of QEL referencing 'CAT'
CAT entry
RB #2 TCB
address |address QEL referencing CPU time
RB #2
P —NE
0 Address of] QEL referencing 'DOG'
DOG entry
[§] RE #1
_laddress QEL referencing CPU time
\/

18

IBM IBM
EDUC 10-1 EDUC 10-1
J. K. Boggs 12/8/66 J. K. Boggs 12/8/66

If "BONE" now issues the XCTL to "HOME," a fourth RB is created and replaces the

a . . L oaa s
Note that, for load modules, though the RB queue is built FIFO; it is the third RB. It would appear as:

serviced LIFO.

With this queue of RB's, we can now decide quickly which load module to RB #1 RB #2
activate. All we need to do is maintain, in the TCB-QCB, the address of the
top RB. There: ’ ’ QEL fox "CAT" QEL for,"DOG"
TCB - ASK RB #2 TCB RB #k RB #1
address address address address
Address of QCB to manage TASK
- Lt
RB #2 ime RE #1 RB #2
RB #1 RB #2 QEL for "BONE" QEL for ,"HOME"
»
0 Address to| QEL for 0 Address of] QEL for
— gg 4—~CAT . ggG#l DOG 0 RB #2 0 RE #2
dad: address
address address <-QFEL for address QEL for arcress
TASK time TASK time
To add and delete RB's, we issue in our problem program macro statements A short cut method for describing this sequence in the RB que is:
LINK or XCTL. The LINK macro adds another RB (RB #3) to our present chain making RB #1 B #
it the top RB, i.e., the program that will have the next task time. The XCTL B #2
macro creates an RB to replace the RB for the load module that issued the macro. 0 0
For example, if load module "DOG" issued a LINK to "BONE" we will have a third
RB. And the three would appear as: CAT DOG
RB #1 RB #2 RB-2 RB-4
QEL for "CAT" “QEL for_"DOG"
TCB RB-1
Address of |Address of Address of Address of
RB #2 TCB RB #3 RB #1 RB #3 RB #b
¢ 0 0
RB #3 BONE HOME
QEL for "BONE 0 0
A —
L \
RB-2 RB-2
0 Address of
RB #2

19

(This notation will be used in referring to RB's)

20

IBM IBM

EDUC 10-1 EDUC 10-1

J. K. Boggs 12/8/66 J. K. Boggs 12/8/66
Notice that if "HOME" were to have a LINK to DOG, and if DOG is serially L. TASK MANAGEMENT

reusable, we can queue up this request. In fact, 0S/360 will queue in a FIFO-
queue requests for serially reusable load modules (within a JOB). We now have:
The task is that control block which controls the CPU. In previous systems

RB #1 RB #2 this was called multiprogramming. For instance, the 7090 and 1410 Operating
Systems both had options which included SPOOL (Simultaneous Peripheral Operations
0 0 On-Line). This option allowed two tasks in the system — problem program, and
utility operations (card-to-tape, etc.). When the problem program was not using
CAT DOG CPU time, the operating system switched tasks until the problem program was again
ready to execute. Under 0S/360 there may be many tasks in the system at any given
RB-2 RB-4 time. To efficiently manage these tasks, remember our old friends — the QCB and
QEL's. The task control block is itself a QEL which looks like this:
TCB RB-1
RB #3 RB #k
0 0 Address of Next TCB Expanded QEL
Address of Previous TCB (Double Word)
BONE HOME
0 RB-5 So we might consider three tasks in our queue:
RB-2 RB-2 TASK A TASK B TASK C
RB #5
TCB-B TCB-C o}
RB-2
Address of QCB TCB-A TCB-B
DOG
Note: This QEL (request for a load module)
(Y] portion references its QCB indirectly In this case, the QCB is located from the Communication Vector Table (CVT). The
i.e., is queued (in the contents CVT is a scratch pad the system uses to communicate with itself. The QCB for task
RB-L directory) management looks like any other QCB:
1 Word
0S/360 has two macros which will give the problem programmer the ability to A
create his own FIFO queues. The programmer need only define a full word as a QCB Address of "oLp"
and allocate a double word as a QEL every time he uses the macro. Thus: Active QEL
ENQ QCB = NAME,QEL = FIRST
All that needs to be done to switch tasks is to change the address in the task
DEQUE QCB = NAME,QEL = FIRST QCB which is called "OLD." Tt turns out that we use this location to tell us one
of two things: (1) if an interrupt occurs and the TASK which requested the inter-
NAME DC F'O' rupt is different, and a higher priority, then the higher priority TCB address is

placed in OLD and activated. Consider this decision table:

FIRST DS D
oLD

TCB address in Task QCB

The problem programmer can use this ability if the address of the QCB and
QEL are known. NEW

TCB address requesting interrupt.

21 22

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Give control Consult
Decision to "OLD" Table #2
Table #1
OLD = NEW X
OLD # NEW X
-
. Scans Give control Give control
Decision TCB's to "OLD" to "NEW"
Table #2
d OLD = ZERO X
Priority
OLD > NEW X
Priority
NEW > OLD X
When the operating system scans the TCB's, it gives control to the highest priority
TCB which is ready. If none are ready, the system enters the WAIT state and sets
"OLD" equal to ZERO.

Just a brief review of what Ready means. Since the TCB controls the CPU, it
must also reflect several states. A TCB can be in the READY, WAIT, or ACTIVE state,
one at a time.

R4 ACTIVE: The task has CPU control.
READY: The task is prepared to immediately use CPU
time when it becomes available.
= WAIT: The task is waiting for an event to occur and

cannot use CPU time until the event does occur.

These several states have to do with the rules which activate or dispatch a task.

These states do not affect the queueing technique.

0S/360 builds the TCB queue

by priority. This priority is called Dispatching Priority because it is used in

dispatching a TASK.

cannot be changed by the task itself.
patching Priority at any time.

There is also a limit Priority established for the task which
The task may; however, change its own Dis-
(Dispatching Priority < Limit Priority).

23

IBM
EDUC 10-1
J. K. Boggs 12/8/66

Let's review for a moment....the queues for task and program management are:

System QCB "OLD" I

Highest Priority TASK I

Next TASK with QCB for Programs

]

Top RB

Next TCB

Contents Directoxﬁ;T

Entry Point of Load Module

The management of resources is based on the concept of a control QCB which is
referenced by QEL's. The system is built this way, and the user has available a
control program service to create queues. Now let's consider events.

5. EVENTS

An event is simple from the viewpoint that the event has either occurred or
it hasn't. Considering an event as the completion of the reading of a card record
into an input area, it either has been done or it hasn't. Thus, logically, an
event is binary and can be considered a logical switch. In addition, when an event
occurs, the control program must know what CPU job was concerned with the event.
Events don't just happen, they are caused. Thus, we must know who caused it...and
who is waiting on it. The WHO is 0S/360; the requester of CPU time is a task. Thus
an event must be associated with a task. The implementation of an event is through
an Event Control Block (ECB). The ECB must have a bit to indicate whether the event
has occurred and the address of the RB which requested the event. Thus, we have
defined:

24

IBM
EDUC 10-1
J. K. Boggs 12/8/66

ECB is one full word of core.

Low-order 3 bytes are the address of the RB
or the code posted upon completion of the
event.

Lower order byte

wic

1
Wait l—Completion Bit
Bit

(Note that the TCB can be found by way of the back chain in the expanded QEL
in the RB.)

There are three types of ECB's that must be considered. First, there is an
ECB in supervisor core that is created for every ATTACH done by the Initiator/
Terminator. This means that for every Job Step which is initiated in the System,
there is an ECB in supervisor core with the I/T address. As a result, the Initi-
ator/Terminator need only WAIT on the completion of that ECB (and my job step)
bvefore continuing. When the ECB is placed in the wait state, the wait bit is
turned on, and the address of the RB which is waiting is placed in the ECB.

The second type of event is one created by the use of the interval timer.
The STIMER and WAIT macro can create an ECB to wait on a time event. The imple-
mentation of this is similar to the ATTACH.

We must have ECB's for I/O or Data. The Data Event Control Block (DECB) is
created for the set of requests by a job step for a data set. This DECB is then
manipulated and used by the access methods that obtain the data.

Three types of events were discussed separately because they are separate

logical chains which the control program services. Their use, however, is logically

the same.

25

IBM
EDUC 10-1
J. K. Boggs 12/8/66

' SUMMARY

The many control blocks of 0S/360 appear at first to be confusing and
illogical. However, two concepts are basic to their understanding and to the
appreciation of 0S/360.

The first concept is that of a queue. The gueue is a management method
which allows concurrent but unrelated requests to be satisfied inrslogical order.
Two basic control blocks are used. The QCB represents the resource and QEL's for
requests. Flexibility in the use of queues allows a consistent and powerful tool
for developing as well as implementing 0S/360.

The second basic concept is that of thelevent. The event, or occurrence of
an interrupt, can best be satisfied by making a note in the bits of an ECB to the
effect that "something" is going to happen. When that "something" does happen,
the binary switch — ECB --- is tripped so that tasks may coordinate their activities.

0S/360 has taken a fresh and logical approach to the multiprogramming problems
of data processing. The present consistent approach allows many varied possibilities
for compatible growth. The concepts of queues and events will become as basic as the
Hollerith Card Code.

26

L

IBM
EDUC 10-1

J. K. Boggs 12/8/66

APPENDIX A

QUEUE UTILITIES

The following routines perform service functions in the manipulation of
queues. These functions are:

(1)
(2)
(3)
()
(s)

Adding simple QEL's in a FIFO meanner.
Adding simple QEL's in a LIFO manner.
Adding simple QEL's in a PRIORITY manner.
DELETING the TOP QEL.

DELETING a specific QEL.

27

LR

“*

o

4t 3 sk Gt o

4
— —REGISTER b

28

UPUN ENTRY

RESTSTER QEL ADNRESS

RETURN ADORESS

PEAISTER 14

THIS RCUTINE USES REGISTERS 6,7 AND 2.

REGISTER A = WIRK S

QEGISTER T = WIRK AND RFTURN INOGATOR
REGISTER . 8 = BASE_REGISTER

FRROR CONNIT-LONS AND INDICATIONS

REG T= 9 AINCLEAR ,CHECK

QUEING FUNCTION REQUESTED
BITS 3-7 OF BYTE ADDRESSED BY REG 4, ALL
. REGISTERS LEFT UNCHANGED.

REG 7= 2
RESOURCE. THE OC8 IS ZERQ'D, ALL.

REGISTERS LEFT UNCHANGED.

REG 7= 4 .. ATYEMPYT MADE T3 DR1P A QFL WHICH IS NOT
CHAINED IN THF QUEUF. ALL REGISTERS
LEFT UNCHANGED,

PREVIOUSLY BUSY RFSTURCE HAS NOW ECOMF
. _INACTIVE DUE TN THE DILETION OF A QFL,
(THIS INDICATOR IS NOT ON RY ITSFLF.

- REG.T= 15

.~ PREVIOUSLY INACTIVE RESOURCE HAS JUST
BECOME ACTIVE DUF T SUCESSFUL ADNITINN
OF A _QFL._(THIS INDICATOR IS NOT oN
8Y ITSELF.)

TREG T= 48

REG 7= 32 .. JNDICATES THE_SUCESSFUL ADDITIGN OF A Q5L

" TSFE REG 7216 AND REG 7= 37 .

. _INDICATES __THE SUCESSFUL DELETION 0OF 4 QEL.

REG 7= 64 .

Qq;qn»en»*h&w*»»h«’qoqi**wﬂﬁ&&«**&ww#»wﬁy»*»#»P*ﬁ»

Reg 7= 72 SEE REG 7= 8 AND

RFEG 7=.128 . __ INDECATES A PREVIOUSLY ACTIVE QFL HAS
REEN MADE ACTIVE.

REG 7= 192 SEE REG 7= 64 AND RFG 7= 128 .

29

TTTATTEMPT MADE TG NRAOP A QEL FROM AN INACTIVE

SET RFEG 7=" TO INOTICATE ThVALTHD
H .. .

TEST FOR ADDING FiFN,
- BRANCH. IF YES.

TEST FOR ADCING LIk,

BRANCH IFf YES.

TEST FOR ADGEINSG PRIN,
_BRANCH [F YES,.

BALR A,y
USING *,8
LA Ty

* e e -
™ “4),1117000007] ¢
8C 1,ADDFIFD
™ "4),BYNONNNOL00
ac 1,ADDLIFO
™ ey, RENDNON AN

e BC 1,ADDPRIN

™ N4) 600000109000
aC 1,DELTOP
™ ~l4a),ReNNALANNG
8C 1 DELSPEC
acr 15,14

TEST FOR HELFTING TP QFL.
_BRANCH IF YES.

TEST FNR HELFTING SPFCTIFIC QFL .,
BRANCH IF YES.

ADDFIFY T™

251,801 000

TTYEST TF ace 1S RUSY.

REG 5= ADDELSS NFXT AL IN CHATN,

BRANCH [F NOT LAST QFL IN CHATHN,

__SAVE FIRST RYTET FROY LAST GHL IN

SYORE NEW QFLADDRESS INTO LAST QrL.

_SET REG 7= 32 TO INNICATF a SUCTSSFUL

3C RyLASTAD . ____ BRANCH IF _NDT BUSY.
FIFo L 59 (S)
i L he(5)
LA by (6)
o LTe Q6 e e
BC T,FIFO
Ic 6y7(5) e
* CHAIN.
SI 4,7(5)
STC fy W (5) STORE SAVFD RYTF,
LAST . Sk beh_ GET A FULL WOURD OF ZERD,.
ST hy (&) CLEAR NEW NEL TO ZFRN,
La 1132 . ——
* ADDITION OF A QEL.
AER 15,14
30

> .

DFLSPFC TM™

" A(51,B910000010°+

TEST TO SEE IF QCS IS “USY.

_BC B.NOTBUSY _BRANCH IF NCT BuUSY.
L Hy25) GET FIRST QFL ADDRESS.
La Lo 00 6) CLEAR HIGH OROER RYTE.
CR byt TEST TO SFF IF DFLFTING FIRST OFL.
BC . . B,I0PONE _ . BRANCH IF YES.
LR 745 SAVE 0CB ADDR=SS,
SEARCH LR Se6 R
L 697(5) GET NEXT QFL ADDRESS.
— LA fa01(6) Cl FAR HIGH ORDFR BYTE
CR 496k SFE IF FOUND
. 8C R HITEQUAL -
L 540106)
- LA Se08) .
LTR 545
B BC 7.SFARCH .
NOTFOUND LR Sy 7 RESTORE ORIGINAL VALUE 0OF RFGS,
LA Teb4. SEY REG 7=4 TO INDICATE ATTEMPT,
* TO DELETE A QFL NOT IN THE QUEUR.
. BCR. 15,14 N,
aC 15,14 RETURN TO CALLE?.
HITEQUAL MV(C "(3,51,0(4) MOVE DFLETED QEL LINK ADDRESS INTQ
* PRECEFEDING QEL.
L Teb4 o _SEY BREG 7= .64 .J0 [NDICATE A
* SUCESSFUL NELETIIN
BCR 15414
3C 15,14
END IE£STEIED

ADDLIFQ T™

N(5) 9B 17°000N20O TEST IF QCR IS BUSY,

_._BC. . _ 8,LASTAD . _____BRANCH IF NCT BUSY.
AbDR L 690 5)
. ST fhenl4]) ; IO NEW OFL.
LA 490 (4) CLEAR HIGH NRDER BYTE,
ST _ _4,2(5).. ——— STORE NEW QFL ADDRESS INTO OCH.
n1 N5) 9 X1 TURN ON BUSY BIT OF QCBR.
LA 143207)_ . .. SEY REG 7= 32 TO INDICATE A SUCESSFUL
* ADDITION OF A QFL.
BCR 15,14 —_

31

AnPRLY T TL5),B1INOONN0NTE TEST 1F 2CK 1S RUSY.
3¢ ®yLASTAD BRANCH [+ NUT 3USY.
1 £y (5) GET NEXT JCL ADDRFESS IN CHATN.
CLC 4(1s4)+%(6) COMPARE PRINRITIES,
aC ? 9y HIGH BRANCH IF NFaA OFL IS HIGHFR PaIreITY,
L2 546 REG S= PREVIOUS QFL ADDRESS,
L 7,(6)
LA 79T
LTR 7,7
. BC JaPRID BRANCH IF NOT LAST QEL IN CHAIN,
HTGH 1c 74705) SAVF FIRST BYTT F2OM HIGHFR P2ATORITY
* PREVIIUS QFL.
ST by (8) STORE NEW QEL ADRESS INTO PREVIOUS QFL,
STC 7,7(5) STNRE SAVED BYTF,
’C Ry LAST RRANCH IF PRFVITUS 2FL WAS LAST ON CHATA,
A€ 7s2MA) . SAVE FIRST SYTE F204 VEW QEL.
ST Ly °(4) STIRE ADNRFESS (F LOwWER PRINRITY QFL
* JINTO NEW QFL.
STC Tyt 4) STNRE SAVEDN BYTF,
LA 7432 SET REG. 7= 32 T INDICATE A SHCESSTUL
* ADDITION OF A 9FL.
.. ..BCR 15,14 I
LASTAD LA Tel6 INDICATF RFSUURCF HAS JUST RFCAMs
* BUSY.
RC 15,4022

32

DELTAP M (K ,BTIONANNNN TEST IF 9CP IS BUSY.
BC 8,NOTBUSY BRANCH [F NOT BUSY.
L 490 (5) GET TOP QFL AONRESS.
TOPONE L Z,214) i I
LA T,(7)
LTR 7,7 R - e
3¢ 2, FQUAL BRANCH [F NFLETING LAST UFL IN (MAlw
L 5:0(4) R GET NEXT JEL ADDRESS.
L 7,746) MOVF CONTENTS OF QFL INTH OCB.
ST 1,2(51) - e
T (B),RTI0NNONNN TEST T SEF IF QEL HAD AT ONE Tmb
x B BEEN ACTIVATED. IF IT HAD, TH-N BITS
* 2-7 MAY H4F SIGNIFICANT.
“e LsWASBUSY . BRANCH IF YES.
LA Tyhh SET REG 7=h4 T(i INDICATE A SUCESSE UL
% . . DELETIAN OF A QFL.
ar T(51,811000000N0 TURN IN BUSY BIT.
BCR 15,14 . _ -
AASASY LA 7,192 SET REG 7=64+128 T TNOTCATF A
* - SUCESSFUL DELETION AND THAT Tit
* NFWLY ACTIVATED QFL HAS PREVIAYSLY
* e _BEEN ACTIVE.
ace 15,14
NOTRUSY LA 7.2 L SET REG 7=2 Td INDICATE ATTEMOT
% MADE TN DROP A QFL FRGM AN
* : CINACTIVE RESTCURCE.
AL 15,5u8 G0 CLFAR ACP TO ZF&9.
EQUAL LA 7,72 _.SEI_REG 7272 _TU INDICATE THAT A
* PREVINUSLY RUSY RFSQUHCFE HAS
« L NOw BECIYE INACTIVE.
Su= S Ly h DRTATN A WHORD OF ZF207,
ST £47(5) CLFAR 2C3 TO ZECRO.
4Co 15,14
e BC 15,14 .. RCTURN_TU CALLER.
x CONSTANTS
* . .
QdN 0nc xeannnnang CON= THREF 7FRN 8YTFS,
resa oC X173 I0 8F USED FOR NONSPECIFIC DELETE,

33

