
Z77-9058

AN INTRODUCTION TO OS/360 MVT CONTROL

LOGIC AND DEBUGGING WITH MVT CORE

DUMPS

Mr. David G. Norris
IBM Corporation
1720 Zollinger Road

* Columbus, Ohio 43221

>
IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N. Y. 1060l

January 15, 1969

This paper presents, in a logical, step-by-step manner,
an approach to debugging an OS/360 MVT program using
a core dump. Techniques for both programming and
data management errors are presented. A discussion of
MVT control program logic and the use of control blocks is
also included.

For IBM Internal Use Only

Z77-9Ö
58

CONTENTS

P R E F A C E*............................. 1
AN OUTLINE OF THE MVT SYSTEM.................................... 2

G e n e r a l ... 2
The Physical MVT S y s t e m 2
The Logical MVT System...................................... 5

MVT; CONTROL LOGIC AND CONTROL BLOCKS..........................11
G e n e r a l ... 11
Task Management and Control Blocks....................... 11
Data Management and I/O Control Blocks................... 16

JOB MANAGEMENT IN AN MVT S Y S T E M 20
G e n e r a l ... 20
The RSADER/INTERPRETER..................................... 20
The INITIATOR.. 24
Program Exec u t i o n ..25
The TERMINATOR.. 26
The OUTPUT W R I T E R ..27
Comments... 28

CORE DUMPS IN M V T .. 29
Introduction...29
The MVT Core Dump in General.............................. 30
An Approach to Debugging............................... 31
The Newspaper Approach to Programming Errors............ 31
The Newspaper Approach to Data Management Errors. . . 46

APPENDIX A ... 51
Event Synchronization..................................... 51

PREFACE

pS/360 is an awesome creation. In the process of designing,
generating and installing an MVT system, one vital area of the
effort is often overlooked - in depth debugging by the application
programmer. Then one day this programmer timidly enters the systems
engineer's office carrying a card deck and a three inch listing
of an ABEND dump. His eyes declare an obvious state of panic and
desperation. "What is this? - What does it mean? - What do I do?"
he implores.

Suddenly the realization sinks in that the poor devil has no
idea what actually goes bn in the guts of OS/360. He knows the
"concepts" learned from OS/360 class, but is totally bewildered
when faced with a dump and required to find the error.

The present literature is, in the author's opinion, inadequate -
it merely lists the contents of a dump and deals superficially with
its interpretation. This paper is an attempt to fill this (in the
author's opinion) deficiency.

The author bases his paper upon three axioms:
1) A good applications programmer must have a good, if

superficial, knowledge of the internal workings of
OS/360;

2) An applications programmer feels extremely uneasy
with ^n ABEND dump, and is interested in but a very
few of the fields and control blocks displayed;

3) Whet is needed by applications programmers is not
Only an understanding of the contents of a dump, but
if a * more importantly â method of attack, an approach,
to debugging with a core dump.

This manjia}., then, is based upon these three axioms, and is
divided intd three general corresponding areas:

1) An overview of the physical and logical system;
2) System control and the use of control blocks;
3) Debugging with core dumps.

This paper arises from the author's experience and notes used
in teaching a debugging class to applications programmers and
consultants at the Ohio State University, Thanks is given to that
legion of OSU students whose ABEND dumps became the object of this
writer's efforts, and appear in some form in this paper. No attempt
is made herein at exhaustiveness or rigor. The object is to get the
programmer's feet on the ground. Skill comes only with necessity's
practice.

1

AN OUTLINE OF THE MVT SYSTEM

* GENERAL:
An outline of the Operating System falls easily into two major

categories: The physical system, and the logical use of this system.
*

In the broadest sense, the physical Operating System consists
of a number of system data sets and the devices upon which they reside
In main storage the system is physically divided into discrete regions
of core which are used for various specific reasons. When we study the
use of these regions and data sets, we are concerned with the logical
system.

THE PHYSICAL MVT SYSTEM:
When considering the physical Operating System two areas should

be discussed: First the system data sets and devices; Secondly core
storage. We must note, however, that as in figure 1 , communication
exists between all these areas.
System Data Sets and Devices:

Generally we refer to the devices upon which the system data sets
reside (i. e. direct access devices) as "SYSRES" or systems residence.

Figure 1: The overview of the logical OS/360.

2

Every MVT system consists of a number of required system data
sets. The more important these are discussed below.

SYS1.NUCLEUS: The NUCLEI of the system are kept in this
library. This data set is referenced only at
IPL (initial program load) time when the desired
nucleus is loaded into core storage by NIP
(NUCLEUS initialization prografa) . The NUCLEUS
is discussed in the next section.

SYSCATLG: Data set and index pointers are kept in the
system catalogue, called SYSCATLG. Using the
catalogue, references to existing data sets
may be made by data set name alone. For a
discussion of cataloguing, see OS/360 Concepts
and Facilities, and OS/360 Supervisor and Data
Management Services SRiL ’ s .

SYS1. LINKLIB: This is the main system program,library; it
contains the language processors, such as
FORTRAN and the assembler, the job scheduling
modules, task management routines and other
system programs and utilities.

SYS1.SVCLIB: Transient supervisor call routines (SVC's)
are kept in this library until they are called
by the system, at which time they are loaded
into core storage. Transient SVC's are discussed
in the section describing the NUCLEUS. The JE/O
access routines and error recovery routines
are also kept in this data set.

SYS1. PROCLIB: This is the system procedure library; it
contains the catalogued procedures called by
the 'PROC=' parameter on the EXEC job control
statement. The reader, writer, initiator and
remote job entry procedures arexalso kept
in this data set.

SYS1.SYSJ0BQE: The system input and output queues are kept
in this data set. Here the system keeps track
of which jobs are to be executed, and which
jobs have yet to have their output processed.
SYSJOBQE is discussed in the section describing
job management.

SYS1.L0GREC: When a machine error is encountered, a record
of the failure and the machine environment at
the time of failure is made in this data set.

3

In addition to the required system data sets, a number of optional
data sets may be included on SYSRES at the user's discretion. Some
of these are discussed below.

SYS1.MACLIB: Assembler language macro definitions are kept
in this library.

SYS1.SORTLIB: Many of the SORT/MERGE routines are kept in
this library; they are loaded into core by
the SORT/MERGE control routines which are
kept in LINKLIB.

SYS1.ALGLIB: ALGOL subroutines are kept in this library.
SYS1.FORTLIB: In this library are kept FORTRAN subroutines.
SYS1.COBLIB: This data set contains the COBOL subroutines.
SYS1.PLlLIB: Subroutines required by PL/I are kept in this

library.
SYS1.TELCMLIB: Modules which are used to handle tele­

communication lines are stored in this data
set.

SYS1.SYSVLOGXaaridSSYSl.SYSVLOGY: When the write to log

SYS1.ROLLOUT:

(WTL) macro is used, the message referenced
is written into one of theée data sets. The
operator may display these messages upon the
system console as it pleases him.
This data set is used to roll out low priority
jobs when a high priority job needs the storage
occuppied by the low priority job. When the
storage required by the high priority job is
no longer needed, the low priority job is
rolled back into core from this data set.

SYS1.ASRLIB: When the asynchronous machine check handler is
is included in the system, this data set is
used. For further discussion, see the OS/360
Concepts and Facilities SRL.

In MVT, two additional groups of data sets are used; these are
generally called IEFDATA data sets. The MVT job scheduler SPOOL'S
input stream data (i. e. data following a DD * card) to these data
sets; SYSOUT data is also placed in these data sets, to be SPOOL'ed
at a later time to the SYSOUT device.

4

MVT in Core Storage;
Our second area of concern in understanding MVT is the physical

layout of core storage. Four general areas comprise the MVT system in
storage: The NUCLEUS; the SYSTEM QUEUE SPACE; the DYNAMIC AREA; and
the LINK PACK AREA.

high address

low address

Figure 2;
Core storage layout of an MVT system.

THE LOGICAL MVT SYSTEM:
THE NUCLEUS
Part of MVT remains in storage at all times; that is, it is

permanently resident. This is called the NUCLEUS, and is loaded by NIP
at IPL from SYS1.NUCLEUS into the low address portion of storage. In
this area reside the most frequently used MVT routines, such as interrupt
handlers, the input/output supervisor, 0)/O channel scheduling routines,
task schedulers, storage supervisors etc. The NUCLEUS has a s.torage
protection key of zero, and its routines execute in the supervisor state.

5

I/O error analysis and recovery routines are brought into the I/O
supervisor transient area in the NUCLEUS; these are brought in from
SYS1.SVCLIB. This transient area is 1024 bytes long, and is used for
all transient error recovery routines.

Other transient areas exist in the NUCLEUS; these consist of
pairs of 1024 byte areas. A minimum of one pair exists; more pairs may
be generated into the system at the user's option. These are called the
supervisor call transient areas.

There are four types of SVC's in OS/360.
TYPE I SVC's are resident in the NUCLEUS and are executed

with all interrupts masked off (i. e. disabled).
The WAIT, EXCP, POST and GETMAIN SVC's are
examples.

TYPE II SVC's are resident in the NUCLEUS and are executed
in an enabled state (i. e. interrupts are
allowed). The LINK, XCTL and LOAD SVC's are
type II.

TYPE IIISVC's are transient, and consist of a single load
into the transient area (i. e. they are less
than or equal to 1024 bytes long). The WTO
and WTL SVC's are type III.

TYPE IV SVC's are transient, and consist of multiple loads
into the transient areas; each load LINKS to
the following load. ABEND, OPEN and CLOSE
are examples of type IV SVC's .

Hence the NUCLEUS consists of a fixed area of core, containing a
fixed portion of MVT, with the exception of the I/O supervisor transient
area and pairs of supervisor call transient areas which contain, of
course, variable routines loaded dynamically.

i Pairs of SVC transient areas

NUCLEUS

I/O supervisor trans, area
i - .. i

Figure 3 : The NUCLEUS.

Immediately above the NUCLEUS in core is the SYSTEM QUEUE SPACE;
it is set up at IPL by NIP. This area is fixed in size (the size may
be changed at IPL) and has protect key zero.

Here MVT creates and maintains control blocks in order to control
multi-programming and supervise the system. The SYSTEM QUEUE SPACE may
be likened to a work area for the MVT system in core; that is,
SYS1.SYSJOBQE is the work area for controlling the jobs before and
after execution and the SYSTEM QUEUE SPACE for maintaining the jobs
once selected and brought into, core for execution.

These control blocks are formed into queues which are maintained
by MVT to manage storage, protect keys, to keep track of what programs
are in storage, where they are, their status, protect keys, where free
core exists and how much, what devices are allocated etc. When multi­
programming, task switching and task control is maintained through
these queues.

Each region in the DYNAMIC AREA has a queue of control blocks in
the SYSTEM QUEUE SPACE; by using these queues the system manages each
region and also multi-programs between regions. These queues and their
uses are discussed in the section describing MVT control logic and
control blocks.

THE SYSTEM QUEUE SPACE

THE LINK PACK AREA
Beginning at the top core address and extending downward is the

LINK PACK AREA. This area is built at IPL by NIP; it is assigned a
protect key of zero. The contents of the LINK PACK AREA may be altered
at IPL; the contents remain fixed from one IPL to the next.

At the top of the LINK PACK AREA is ‘the system BLDL list. This
is a list of TTR's (relative track and record address) of commonly
used routines in SYS1.LINKLIB and SYS1.SVCLIB. When these routines are
needed, the system can directly access the module through the TTR;
this eliminates the time consuming search through the VTOC for the
data set, the search through the data set directory for the member, then
the actual reading of the member. The BLDL area is built by NIP at
IPL.

Directly below the BLDL list in core is an area in the LINK PACK
AREA which contains re-entrant routines from SYSl.LINKLIB and
SYS1.SVCLIB; these are not SVC routines. Usually these routines are
common access routines, such as GET locate mode fixed, parts of the
MVT initiator, step start and termination routines, parts of the READER/
INTERPRETER and OUTPUT WRITERS. User written re-entrant routines may
be included. All regions and the NUCLEUS will share these routines as
they are re-entrant.

7

The reader should be familiar with the three kinds of code in OS;
these are: Non-re-usable; serially re-usable; and re-entrant. Non-re-
usable code is that which alters itself, in the form of switches,
data etc,,in such a way that for each execution of the module a
fresh copy must be loaded; it is neither re-usable or may it be
shared.

Serially re-usable code is that which is self initializing - i. e.
which staxtf by resetting counters to zero, resetting Switches and
clearing areas. This code may be re-used without loading a fresh
copy, but only in a serial manner; that is, task 2 must wait for task
1 to complete its use of the code before it may use it. Tasks may
not' be restarted in the code other than at the beginning.

Re-entrant code is that which in no way alters itself. Any switches
or data areas are kept external from the code by using GETMAIN's and
registers to isolate any changes. A task using this code may, at an||
time, be interrupted by a higher priority task which uses this code.
As the code is in no way altered, and the data is isolated and pointed
at by a register, the higher priority task does not alter the code,
as it obtains its own data area through a GETMAIN during execution.
When it relinquishes the code, the registers of the lower priority
task are restored, which point to the lower priority task'sjidata
area. In this way the lower priority task may resume execution at the
point of interruption rather'than at the beginning of the code. This
code may be shared and re-used by tasks in a priority fashion, each
interrupted task resuming execution at the point of interruption. Ijt
is this type code which is in the LINK PACK AREA.

The third and final section of the LINK PACK AREA, immediately
under the second section, contains re-entrant modules of type III and
type IV SVC's. Usually these will be the commonly issued SVC's such
as OPEN, CLOSE etc. By residing 'permanently' in core much time is
saved by eliminating searches through SYS1.SVCLIB for them. Not all
type III or type IV SVC’s are re-entrant; great care must be taken in
selecting routines to reside here. This area, like the rest of the
LINK PACK AREA, is set up and filled by NIP at IPL.

These three areas, then, considered together, make up the LINK
PACK AREA.

System BLDL list

Re-entrant routines
from SYS1.LINKLIB and
SYS1.SVCLIB
(not SVC's)

Type III and IV SVC's
(re-entrant)

Figure 4 : The LINK PACK AREA.
8

THE DYNAMIC AREA
The remaining area of core, that which is between the SYSTEM

QUEUE SPACE and the LINK PACK AREA, is called the DYNAMIC AREA. It
is into this area that processing programs and data are loaded and
executed. The DYNAMIC AREA is divided intè dynamically assigned regions?
roughly speaking there is one region per job in the system. These regions
are allocated dynamically as needed, and will vary in size and location;
there will be one region per initiator active in the system. Initiators
are discussed in the section on job management in an MVT system.

Let us now examine the make up of an individual region. A region
consists of three general areas: Subpool 251; subpool£,252; and the data
area. These areas are assigned dynamically within the region as the
need arises.

Subpool 252
(re-entrant code, key ■ 0)
Data area
(key k 0)

Subpool 251
(key A 0)

Figure 5 : One region in the DYNAMIC AREA.

Subpool 252 is assigned from the top end of the region. Here re­
entrant code for the job will be loaded; subpool 252 is assigned a
protection key of zero. This is analagous to the LINK PACK AREA; in
fact, the LINK PACK AREA is actually the subpool 252 for the NUCLEUS.

From the bottom of the region is assigned subpool 251; this-'Will
be assigned a non-zero protect key. Here will be placed non-re-usable
and serially re-usable routines for the job. These two subpools, 251
and 252, are sometimes lumped together in the term JOB PACK AREA.

Between these two subpools is the data area. It is from this area
that GETMAIN's will be satisfied. Usually I/O buffers will reside in
this area. The same non-zero protect key assigned to subpool 251 will
be used for the data area.

There is one region which is permanently assigned; that of the
MASTER SCHEDULER. This is assigned and loaded by NIP at IPL; it is
always immediately below the LINK PACK AREA. The reader will recall
that the MASTER SCHEDULER is the communication link between OS/360
and the operator; it accepts and schedules commands, and displays
the system status upon request.

10

MVT CONTROL LOGIC AND CONTROL BLOCKS

GENERAL:
A job in an OS/360 system is controlled through queues of control

blocks. In order to analyse or debug a job it is necessary to re­
construct the flow of control and I/O; to do this one must have a
basic understanding of the contents and usage of some of these control
blocks. We will discuss these in two stages: Task control and I/O
control.

TASK MANAGEMENT AND CONTROL BLOCKS:
The reader should be familiar with the concept of a task. A TASK

is work to be done; a program is merely a series of steps to perform
a function. There is not a one to one relationship of TASK'S in the
system and programs in the system. For example, consider the square
root program, SQRT. The program SQRT is simply a series of machine
instructions; the actual performance or taking of the square root is
a TASK. Hence the difference: The taking of the square root is a
TASK; the TASK uses the program SQRT. Now, if many jobs (TASKS) in the
system require the taking of the square root, and SQRT is serially
re-usable or re-entrant, is it necessary for each TASK to have its own
copy of SQRT? Of course not; we will load one copy of SQRT into the
LINK PACK AREA, and allow all TASK'S to share this code; we will QUEUE
TASK'S on this code. This will be particularly true in the case of
common I/O routines. Hence we will have many TASK'S and one program.
This QUEUING and sharing and controlling of TASK'S and programs is
what is meant by TASK CONTROL.

For each TASK in the system, a TCB (Task Control Block) is
created. There is at least one TCB per region. The TCB is created by
an ATTACH macro, and consists of roughly 190 bytes; it resides in
the SYSTEM QUEUE SPACE. The TCB contains a multitude of flags indicating
the status of the TASK, and pointers to every conceivable queue of
related control blocks and tables; it is the communication and control
center for the TASK. The contents of the TCB will be discussed in
the section on core dumps in MVT; for more detail refer to the-QS/360
System Control Blocks SRL.

For each PROGRAM required for the performance of the task,
an RB (Request Block) is created in the SYSTEM QUEUE SPACE. These RB's
contain program control information, PSW's, size etc. RB's are created
by the LINK and XCTL macros. Four types of RB's are created: PRB's
for programs; SVRB's for resident and non-resident SVC's; IRB's for
system interrupt blocks (asynchronous requests such as STIMER); and
SIRB's for asynchronous I/O error recovery routines. We will concern
ourselves with PRB's and SVRB's.

These RB's are formed into the ACTIVE RB QUEUE for the task; the
TCB points to the ACTIVE RB QUEUE. This queue represents programs which
are active or have been active.

11

Active RB pointer
~ k _

RB-A

7
RETURN pointer

Figure 6:
Active RB queue with one
avtive RB in the queue.

as the example in Figure 7.

TCB Fq For example, if
program A is the only
program needed by the
task, the active RB
queue would look like
that in Figure 6.

Cons ider, however
if program A contains
a LINK to program B.
At the conclusion of
this "LINK B" macro
execution, the active
RB queue would look

The TCB always points to the RB which is ACTIVE (i. e. the S3
the program currently executing) ; in Figure 7 this is RB«*B, This RB
points back (via the RETURN pointer) to the next most recent RB (in
this case RB-A).

Active RB pointer

RB-A

RETURN
pointer

m

RB-B

RETURN
pointer

Figure 7:
Active RB queue with two RB's in the queue. RB-B is the active
RB at this time; it was the object of a LINK macro in program
A.

Upon completion of program B, the RETURN is made, via the RETURN
pointer, to program A. After execution of this RETURN, the active RB
queue would appear as in Figure 8.

12

pointer pointer
Figure 8:

Active RB queue after execution of the RETURN in program!A
via the RETURN pointer in RB*%. The active RB queue now has
one RB in it.

In this manner, the system controls the flow of control of the
task through the required programs; return of control will follow the
RETURN pointers. Hence we can reconstruct the control flow through the
programs necessary for the completion of the task.

One should be aware that an XCTL macro is handled differently.
If in our example program B executed an XCTL to program C, the active
RB queue would appear as in Figure 9.

pointer pointer
Figure 9:

Active RB queue after program A LINK'ed to program B which
XCTL'ed to program C.

Note that in Figure 9 the RETURN pointer in RB-C indicates return
to program A; this is consistent with the fact that RETURN is always
made to the next higher level of control, and XCTL brings in a program
at the SAME level of control. LINK, however, brings in the program at
the next lower level of control. Note, however, that the system is now
unaware of the existence of RB-B; there is no way of returning to it,
as it has in effect disappeared.

13

For programs which are brought into core as the result of a
LOAD macro, a control block similar to an RB is constructed, called
an LLE (Load List Element). Since there is no such thing as an "active"
LOAD'ed program, LLE's are simply chained together into an LLE queue.
The TCB points to the LLE queue, which resides in the SYSTEM QUEUE
SPACE.

pointer pointer
Figure 10:

Active RB queue and LLE queue, pointed at by the TCB.

One other important control block for task management should be
discussed. The CDE (Contents Directory Entry) queue contains one CDE
for every load module in the region, or being used by the region. There
is one CDE queue for each region; this queue is used by MVT to manage
the contents of storage. Three important pieces of information are
kept in the CDE: 1) The pointer to the corresponding RB; 2) the entry
point address of the related program; 3) the module name. Hence we can
quickly "inventory" our region by scanning the CDE queue. This queue
resides in the SYSTEM QUEUE SPACE.

In the section on core dumps in MVT we will use these control
blocks to pinpoint the program in error.

Figure 11 illustrates the relationships of all the control blocks
so far discussed.

14

Active RB pointer

entry pt entry pt entry pt entry pt
Figure 11:

MVT task control queues and control blocks for a region. All control
blocks and queues shown reside in the SYSTEM QUEUE SPACE.

One additional, extremely important area must be discussed and
understood to completely master program control - that of register
SAVE areas. The reader should know the OS/360 register conventions;

Register 0: Used for passing parameters;
1: Used for a pointer to parameter lists;
2-12: For general program use;
13: Points to the current SAVE area;
14: Used for the RETURN address;
15: For entry point address or return code.

Also he must know and follow the OS/360 conventions concerning
forward and backward chaining of SAVE areas; only if he knows and
follows these conventions will register contents be of any value to
him in debugging. For a discussion of chaining conventions, see the
OS/360 Supervisor and Data Management Services SRL.

15

Program A Program B
SAVE macro

(SAVE's OS/360's
registers in
OS/360's SAVE
area)

SAVE macro
(SAVE's program A's
registers in
program A 's SAVE
area)

FORWARD L _ FORWARD
chain

^ BACKWARD

r
Program A's

SAVE
chain
BACKWARD

r
Program B's

SAVE
chain chain

Figure 12:
SAVE area conventions, showing forward and backward chains; those
to the left of program A point to and from OS/360's SAVE area.

DATA MANAGEMENT AND I/O CONTROL BLOCKS:
Many times the source of an error appearing in a program lies

in the data or data management, such as improper data definition, illegal
data or improper data manipulation. OS/360 performs data management
in a manner similar to task management; that is, with a series <bf
control blocks and queues.

Five major control blocks need be considered; these are located
through the task's TCB.

The DCB (Data Control Block) is the final residing place of the
control information for logical data manipulation. This control block
is assembled into the program, and may be filled in and supplemented
from the DD card and data set label at OPEN time. The reader should
be familiar with the DCB. For further information see the OS/360
Concepts and Facilities manual.

16

While the DCB does contain most of the information concerning
the data set, it does not contain device dependent information or the
channel program necessary to actually perform the I/O operation.
Other I/O blocks and I/O routines must be present; to co-ordinate
and manage these, the OPEN routine constructs in the SYSTEM QUEUE
SPACE a DEB (Data Extent Block) for each DCB. This control block is
the "communications center" for IOS (Input Output Supervisor). It
contains the addresses of the I/O modules such as start I/O (SIO),
end of extent and channel end. The DEB also contains pointers to the
TCB, DCB, IRB and UCB (Unit Control Block) and the next DEB in the DEB
queue. The TCB points to the first DEB in the DEB queue. For direct
access data sets, the extents (beginning and ending TTR's) are kept
in the DEB, giving it its name. No I/O operations may take place
outside this extent.

TCB
DEB queue pointdT

DEB^j.

DEB

DCB-A

DCB-B

DEB

Figure 14 j The DEB queue.
17

IDS uses the DEB to locate the proper start I/O nodule for
the allocated device, and the proper channel end routine for inter­
rupt handling and interpretation.

Communication between IOS and the problem program takes place
through the IOB (Input Output Block)? here the CCW list (the channel
program) and the completion co3e for an I/O request are placed for
program inspection. Contents of the IOB include a pointer to the
DCB, a pointer to the ECB (Event Control Block) and a pointer to the
CCW list. Also such things as the~block count, sense bytes, the last
word of the CSW and error counts are kept in the IOB. In most cases
the actual channel program is built in the IQB. For direct access
devices, the initial se^k TTR is kept here. There is one IOB for
each I/O request;'it is constructed in the user's region by the
user himself. Normally the programmer will re—use the same IOB for
all similar requests. The READ, WRITE, GET and PUT routines usually
construct this IOB.

Figure 15: The DEB, DCB and IOB.

At this point the only thing missing is the link between these
control blocks and the actual physical device. This is accomplished
through the UCB (Unit Control Block). The UCB contains all infor­
mation necessary pertaining to the device and its status, such as
unit type, unit address, volume serial of the volume presently
mounted, TTR of the VTOC for direct access devices and the sense
bytes last read. Flags in the UCB are set and used by IOS to indicate
whether the device is ready, on-line, busy, seeking or has en­
countered a permanent I/O error. Contained in the NUCLEUS, there is
one UCB per device, which is placed there during system generation;
the DEB contains a pointer to the allocated UCB for the DCB.

18

Figure 16: The DEB, DCB, IOB, ECB and UCB.

One additional table should be mentioned which is of minimal
value for debugging but is of considerable importance in 'program­
ming. This is the TIOT (Task Input Output Table), constructed by
the INITIATOR in the SYSTEM QÜEUE sFACE during I/O allocation. The
TIOT contains the jobname, stepname, and one entry for each DD card
containing the DD card name and the address of the allocated UCB
for that DD card. The TCB points to the TIOT.

Figure 17: Complete I/O control blocks for one data set.
19

JOB MANAGEMENT IN AN MVT SYSTEM

GENERAL:
A JOB passing through an OS/360 MVT system encounters five

distinct stages. These stages involve systems routines grouped under
the function of JOB MANAGEMENT; to understand the system we should
be familiar with JOB MANAGEMENT.

The five stages in which a JOB is involved are:
* Entry into the MVT system;
* Initiation of the JOB;
* Execution of the JOB;
* Termination;
* The writing of standard output classes to punches,

printers and tapes.
Handling these stages are the following routines:

* A JOB is read into the system by a READER/INTERPRETER;
* Selecting a JOB for execution and initiating it is
* an INITIATOR (sometimes called an INITIATOR/TER-

MINATOR);
* While executing, use is made by the program of

supervisor services such as OPEN, CLOSE etc.;
* The INITIATOR terminates the JOB by disposing of the

data sets etc.;
* Standard output is SPOOLED to the printers and

punches by an OUTPUT WRITER or SYSOUT WRITER.
THE READER/INTERPRETER:

The main function of the READER/INTERPRETER is to read the JOB
STREAM. The JOB STREAM consists of JCL (Job Control Language)
statements and DD * data (that is, data following a 7/ddname DD *
card and preceding a /* card), sometimes called SYSIN data. In other
words, the READER/INTERPRETER reads the INPUT STREAM, which is
usually cards or tape.

As the JCL statements are read, the READER/INTERPRETER converts
them to internal table form and places these tables on SYS1.SYSJOBQE;
these will form the input queue.

The JOB statement is converted to a JCT (Job Control Table),
containing the information necessary to control the JOB. JOB name,
priority, message class, region size, condition codes and a pointer
to the accounting information are contained in the JCT.

As the EXEC card is encounteredd it is converted into an SCT
(Step Control Table), containing the step name, PARM field values,
program name, condition codes and region size. With the SCT we begin
the real building of the input queue entry for this JOB; the JCT
points to the first SCT, each SCT points to the next SCT. For the
following discussion we will consider a three step JOB; our queue
so far would appear as in figure 18.

20

JCT
for

JOB-A

Figure 18:
Entries built in SYSl.SYSJOBQE from a JOB card and three EXEC
cards by the READER/INTERPRETER.

Each DD card encountered by the READER/INTERPRETER is converted
into a JFCB (Job File Control Block). The JFCB contains all infor­
mation for allocating and disposing of the referenced data set during
the job's execution. OPEN and CLOSE use the JFCB, which contains all
the DCB information coded in the DCB parameter on the DD card, and
the data set label to complete the DCB coded in the program. This
is discussed in the section on the execution of the program. In
the JFCB is stored the data set name (DSNAME), label type, sequence
number, volume serial numbers, space allocation information (from
the SPACE parameter), disposition and all the DCB information coded
in the DD card. All JFCB's for a job step are chained together; the
SCT points to the JFCB queue (through the step I/O table, which we
shall not discuss). Hence the total entry in SYSl.SYSJOBQE created
by the READER/INTERPRETER for our job would appear as in Figure 19.

21

Figure 19:
Complete entry built by a READER/INTERPRETER in SYS1.SYSJOBQE
for a job containing thre steps (SCT's STEP-1, STEP-2, STEP-3).
STEP-1 contains three DD cards (JFCB's la, lb, lc), STEP-2
contains two (JFCB's 2a and 2b) and STEP-3 contains two (JFCB's
3a and 3b)

When the READER/INTERPRETER encounters SYSIN data (that is,
DD * data) it SPOOL'S the data to an IEFDATA data set on a direct
access device and builds the JFCB for the DD * card to point to the
direct access data set.

When a DD card referencing SYSOUT data (i. e. a SYSOUT=x card)
is encountered, the READER/INTERPRETER allocates space for it in the
OUTPUT QUEUE; notice that SPACE is allocated, it is not ENQUEUED or
placed in the OUTPUT QUEUE.

At this time the READER/INTERPRETER has completed building the
queue entry for the job in SYS1.SYSJOBQE, and now the job is ENQUEUED
into the INPUT QUEUE by the READER/INTERPRETER. The system is now,
for the first time, aware of the job's presence in the system. The
INPUT QUEUE is kept in priority sequence, and the job's queue entry
consists of a pointer to its JCT. The INPUT QUEUE resides in SYS1.-
SYSJOBQÈ.

22

This sequence continues until either the READER/INTERPRETER
is stopped or the input stream is exhausted. Many READER/INTER­
PRETER' s may, and probably will be, be active at one time, each
reading a separate job stream.

In summary, the READER/INTERPRETER:
* Reads the JOB STREAM?
* Builds control tables in SYS1.SYSJOBOE from JCL?
* SPOOL'S SYSIN data?
* Reserves space for SYSOUT data;
* ENQUEUES the job into the INPUT QUEUE.

23

THE INITIATOR:
Once a job has been placed into the INPUT QUEUE, there it

remains, until it becomes the next job for execution (i. e. all
jobs of a higher priority have been started). The INITIATOR selects
jobs from the INPUT QUEUE in priority sequence for initiation. The
INITIATOR finds all information for selection and initiation by
following the pointer in the job queue to the job's JCT, SCT's and
JFCB's; these contain all information necessary to the INITIATOR.

From the JCT the INITIATOR determines the region requirements
from the region field. The INITIATOR will request a region the
size of which is determined by the larger of the region parameter
in the JCT (filled in by the READER/INTERPRETER if not present in
the JOB card) or the size of the main INITIATOR modules to be
brought into the region. That is, a region will not be allocated
smaller than the INITIATOR size. This also takes place for each
step, the value being taken from the step's SCT. The INITIATOR
then removes the job's entry from the INPUT QUEUE.

Into this just allocated region the resident portion of the
INITIATOR fetches the non-resident INITIATOR modules and ATTACH'es
to these modules. The INITIATOR queries any condition codes passed
at termination by a previous job step against those in the JCT and
next SCT for possible termination conditions. The INITIATOR (in
the region) now examines the JFCB's for this step (through the
JFCB chain found through this step's SCT) and allocates devices
and DASD space. This allocation is done through the JFCB's and
UCB's; the TIOT is built in the SYSTEM QUEUE SPACE at this time.

After I/O device and space allocation, the INITIATOR goes to
the SCT to determine the program to be initiated. The INITIATOR
then issues an XCTL to this program; this brings the program into
the region on top of the INITIATOR, overlaying it, and places the
program's RB as the only RB in the ACTIVE RB QUEUE. The INITIATOR
has supplied a SAVE area in the region through a GETMAIN (protect
key non-zero). A similar technique is used to relocate the PARM
information from the SCT to the region.

One INITIATOR exists per region; it is created and dedicated
to that region through the START INIT operator command.

In summary, the INITIATOR:
* Selects jobs from the INPUT QUEUE for execution;
* DEQUEUES the job from the INPUT QUEUE;
* Allocates a region for the job;
* Allocates I/O and DASD space - builds the TIOT;
* XCTL's to the problem program.

24

PROGRAM EXECUTION:
Control of problem program execution is, of course, handled

by the program itself. Occasionally, however, the program will issue
SVC's to request supervisor assistance for particular functions,
such as performing I/O, bringing other programs into the region etc.
It is important to understand the general flow of control during
these SVC's, and in some detail for two particular SVC's, OPEN and
CLOSE.

When a program issues an SVC, the SVC interrupt handler receives
control. This interrupt handler determines what is to be done, and
routes control to the proper SVC routine. For a request for a type I
SVC control is' routed via a branch, and the routine is basically
transparent to the user, as no interrupts are permitted during
execution of a type I SVC. When a type II, III or IV SVC is issued,
however, the interrupt handler builds an SVRB for the proper routine,
and enqueues it as the active RB in the active RB queue. That is,
the RB of the program which issued the SVC becomes the second most
active RB, and is chained, via the RETURN pointer, to the newly
created SVRB, which is now the active RB. If the SVC routine is
resident, it will then be given control; if transient, it will be
loaded (if not already present) into one of the SVC transient areas
in the NUCLEUS and given control. Return will be made in the normal
manner to the issuing RB's program via the RETURN pointer in the
SVRB.

Two type IV SVC's are often enough the place of a programmer's
Waterloo to warrent separate discussion; these are OPEN and CLOSE.

OPEN is an SVC designed to.locate and attach a data set to
the program, and make it ready and available for processing. CLOSE
is the logical converse of OPEN; it detaches the data set from the
program, and makes it no longer available for processing by that
program.

OPEN performs a great deal of its processing in what is called
the forward and backward merge of the DCB, JFCB and the data set
label; here a great number of errors in data management coding will be
discovered. As previously mentioned (in the section on control
blocks), the DCB is the final repository of most of the logical
characteristics of a data set. The forward and backward merges of
OPEN fill in information in the DCB which was either unavailable
or not included at assembly or compile time; this information is
supplied from the DD card, via the JFCB, and the data set label, if
present. The JFCB, recall, contains the DCB information which was
coded on the DD card; it was placed in the JFCB by the READER/
INTERPRETER.

25

The FORWARD MERGE consists of two steps;

1) The ZERO fields in the JFCB are filled in from the data
set lahel if possible? note that only ZERO fields are
merged. Data already present.in the JFCB CANNOT be
overridden;

2) The ZERO fields in the DCB are filled in from the
JFCB? note that, as before, only the ZERO fields are
merged. Data coded into the DCB CANNOT be overridden.

At this time the DCB is complete, and the two step BACKWARD
MERGE begins, consisting of:

1) For INPUT data sets, the ZERO fields of the JFCB are
filled in from the DCB? note that no fields are
overridden.

For OUTPUT data sets, ALL JFCB fields except DSORG
are OVERRIDDEN from the DCB?

2) For DASD OUTPUT data sets, all fields in the DSCB are
overridden by the JFCB; for INPUT data sets, the labels
are already existent, and remain inviolate.

After the merges, OPEN builds and fills in the DEB's for the
data sets in the SYSTEM QUEUE SPACE.

CLOSE is the logical converse of OPEN. CLOSE creates any
required trailer labels, and detaches the data set from the program
by dequeuing the data set's DEB from the DEB queue.

THE TERMINATOR :

Execution of a job step terminates when the program control­
led by the highest level RB in the active RB queue issues its
RETURN. This returns control to the resident portion of the
INITIATOR, which XCTL's to the transient portion of the INITIATOR,
consisting of the TERMINATION routines, which overlays the program
in the region.

This TERMINATOR performs any accounting functions and routines.
It then examines the JFCB's for the step and disposes of the data
sets (i. e. DELETE’s, catalogues, PASS'es or KEEP's them). Any I/O
devices no longer needed are de^-allocated. If this was not the last
SCT on the SCT queue for this job (i. e. it was not the last step),
the TERMINATOR returns control to the resident portion of the
INITIATOR which begins all over with the examination of the next
SCT and continues as described in the section on the INITIATOR. If
this just terminated step was the last step in the job (i. e, the
last SCT), the TERMINATOR ENQUEUE's all SYSOUT data sets in the
OUTPUT QUEUE in priority sequence. Note that all SYSOUT from the
job is enqueued at one time, at job end? recall that the READER/
INTERPRETER reserved space for this SYSOUT data, which was written
by the problem program. Now, for the first time, the system is aware
of this SYSOUT data.

26

After the termination of the last step of a job, the TERMINATOR
returns to the resident portion of the INITIATOR, which selects the
next job for initiation from the INPUT QUEUE, thus starting again
the entire sequence described in the section discussing the
INITIATOR. This sequence continues until either the INITIATOR is
stopped, or the INPUT QUEUE is empty, at which time the INITIATOR
waits for the next entry to be ENQUEUED, when the sequence begins
again.

In summary, the TERMINATOR:
* Performs the accounting function;
* Handles data set disposition;
* Frees I/O devices no longer needed;
* If this was the last step in the job, ENQUEUE'S, by

priority, all SYSOUT data sets into the OUTPUT QUEUE,
then returns to the INITIATOR;

* If this was not the last step in the job, returns to
the INITIATOR for initiation of the next step.

THE OUTPUT WRITER:
An OUTPUT WRITER is started for a SYSOUT class; this writer

is then dedicated to that class' OUTPUT QUEUE. For instance, if an
OUTPUT WRITER is started for output class A, it will be dedicated
to the OUTPUT QUEUE containing the entries for SYSOUT=A data sets.

The SYSOUT WRITER selects the top entry in the OUTPUT QUEUE;
these entries were enqueued, recall, by the TERMINATOR at job end.
These are:.selected in priority sequence. Once selected, the OUTPUT
WRITER then SPOOL'S the data set to the specified device (usually a
printer of punch). This data set can consist of SYSOUT= data and
system messages (SMB's) such as allocation and disposition messages
for data sets.

The OUTPUT WRITER then DEQUEUE's this data set's entry from the
OUTPUT QUEUE; it then returns to the first function and selects the
next entry in the OUTPUT QUEUE for output.

The OUTPUT WRITER continues this sequence until either stopped
or there are no more entries in its OUTPUT QUEUE for SPOOL'ing, at
which time it waits for the next entry to be ENQUEUE'd, when it
begins the sequence again.

In summary, the SYSOUT WRITER:
* Selects a completed data set for SPOOL'ing from the

OUTPUT QUEUE ?'
* Writes (or SPOOL'S) the data set?
* DEQUEUE's the entry from the OUTPUT QUEUE;
* Returns to the first step.

27

COMMENTS:
It is perhaps important to remember that these three functions,

the READER/INTERPRETER, INITIATOR/TERMINATOR and SYSOUT WRITER, are
operating continuously, asynchronously and independently, which is
part of the power of the MVT system. Their only real communication
with one another is through the INPUT QUEUE and the OUTPUT QUEUE'S.

28

CfiRE DUMPS IN MVT

INTRODUCTION:
There are generally five kinds of core dumps in an MVT system.
An INDICATIVE dump consists of a single printed line on the

MSGCLASS data set, contairling the system completion code. It is
produced automatically, without control cards and marks the ter­
mination of the job. In many cases, such as step timing violation,
this single line is adequate for determining the cause of abnormal
termination.

A UDUMP or SYSUDUMP is a full core dump listing all control
blocks for the user's region (i. e. TCB's, RB's, DEB's etc.),
and the user's region itself. In addition, any routines being used
in the LINK PACK AREA are dumped. A SYSUDUMP is given when a terminal
error occurrs and a //SYSUDUMP DD card has been included in the JCL
for the current step. This is usually a large data set, so care
should be exercisëé not to exceed space allocation in a SYSOUT data
set. A SYSUDUMP marks the termination of the job. As this is the
most common dump used in an MVT environment, it is this dump that
the remainder of this paper discusses.

When a //SYSABEND DD card is used rather than a //SYSUDUMP DD
card, a terminal error causes an ABEND dump. ABEND dumps are identical
to UDUMPS except that the NUCLEUS and a TRACE TABLE are also included.
As the NUCLEUS is-likely to be very large, this is a very large
data set and care should be taken not to overrun a SYSOUT data set.
The ÏÏUCLEUS is usually of little help to the average programmer, and
an ABEND dump should be taken only when a UDUMP is inadequate.

A SNAP dump may be produced by an assembler language program­
mer. A SNAP macro causes a dump to be taken which is similar to an
ABEND dump; the job, however, then continues, rather than terminating.
The SNAP macro also specifies which control blocks and areas of
core are to be dumped. For further details, see the QS/360 Super­
visor and Data Management Macro Instructions manual.

The fifth kind of dump is the stand-alone or unformatted
dump. It is used when an error causes the operating system to become
inoperable. Not an OS/360 program, it simply dumps all of core, with
little or no formatting of control blocks.

What causes an ABEND error? ABEND is actually an SVC; in fact it
is the "unlucky" SVC 13. An ABEND SVC is issued when either the
processing program or the supervisor is unable to continue with the
job. The reader should notice that we refer to ABEND and UDUMP dumps,
which are caused by the ABEND SVC.

29

The ABEND is usually issued by the control program in response
to some interrupt, such as a program interrupt, from which the job
cannot recover. For example, if the program generates in address
outside its region arid tries to execute an MVC to this address, a
program interrupt will occur with a protection violation interrupt
code. This interrupt will be handled by the MVT program interrupt
handler in the NUCLEUS. Upon determination of the cause of the
interrupt (i. e. a protection violation), the interrupt handler then
determines if the error is recoverable (it is not). Hence an ABEND
is to be issued, so the interrupt handler next determines which
task caused the error (i. e. which region). At this point the inter­
rupt handler issues the ABEND for the program.

Two things should be noted from the preceding paragraph. First
that the executing program in error did not issue the ABEND; it was
issued by the MVT interrupt handler in the NUCLEUS. This is usually
the case, and for this reason the PSW at entry to the ABEND proces­
sor will rarely contain the address of the actual error; it will
contain the address of the MVT routine in the NUCLEUS which actually
issued the SVC 13, the ABEND SVC. Secondly, a considerable amount of
processing occurred in the interrupt handler before the ABEND was
issued. That is, the actual ABEND was quite removed from the actual
error.

The reader should be aware, however, that the problem program
may issue its own ABEND, which make the PSW and general registers
at entry to ABEND the program's own. Several language processors
produce controlling routines which do this, such as IBCOM produced
by FORTRAN. IBCOM, for instance, intercepts most interrupts, and
occasionally issues its own ABEND.

THE MVT CORE DUMP IN GENERAL:
The MVT SYSUDUMP is divided into six general sections (see

figures 22a, 22b, 22c, and 22d):
1) General status, indicative and TCB area, consisting

of the top of the dump through the TCB section;
2) Region contents, showing ACTIVE RB QUEUE, LOAD LIST,

CDE's (contents directory) and XL's (extents list);
3) The I/O section, consisting of the DEB QUEUE and TIOT;
4) Storage management and queue control blocks (the MSS,

D-PQE, FBQE and QCB TRACE);
5) Register contents, consisting of the SAVE AREA TRACE

and REGS AT ENTRY TO ABEND;
6) Load modules, consisting of the load modules being

used by the task.

30

There are a few fields in the general and TCB area of which we
should be aware before continuing. While many examples of dumps have
been included, it is strongly urged that the reader have a dump
readily at hand for his perusal.

Look at the TCB entry in Figure 23; this is followed by the
address of the TCB - note this address, as we shall use it later. The
following fields are of interest:

RBP is the pointer to the active RB; note this address
matches that of the last SVRB in the ACTIVE RB
QUEUE;

DEB points to the first DEB in the DEB queue;
TIO is the TIOT address;
CMP 80322000 contains the system completion codes;

positions three through five contain the SYSTEM
COMPLETION CODE (i. e. 322 which matches that printed
at the top of the dump), and positions six through
eight contain the user code, if any (none in this
case);

PK-FLG contains in the first position the user protection
key; in this example it is "B";

LLS points to the beginning of the LOAD LIST;
JLB contains the address of the JOBLIB DCB, if present.

AN APPROACH TO DEBUGGING:
When debugging a program using a dump, knowing the layout and

contents of the dump is not always adequate; what is needed is a
method of attack. The debugger is usually overwhelmed by the wealth
of data displayed; he must have a plan for debugging to prevent his
thrashing aimlessly through assorted control blocks. The author has
evolved a plan for "normal" debugging which has proved generally
useful; it usually brings one, in an orderly fashion, to a place
where productive debugging can be accomplished. Most of the time
the plan will determine the error itself.

Based on the old newspaper dictum of "Who, Where, Why, When
and What," the author has developed his approach into two "The
five W's approaches to debugging." Plan one, THE NEWSPAPER APPROACH
TO PROGRAMMING ERRORS, is used for tracking down the general program­
ming error, while plan two, THE NEWSPAPER APPROACH TO DATA MANAGE­
MENT ERRORS, is an alternate, aimed at tracking down I/O errors.

THE NEWSPAPER APPROACH TO PROGRAMMING ERRORS:
When approaching a core dump there are generally five things in

which we are interested; these are the same five things a newspaper
reporter wishes to know. They are:

31,

1) WHY does OS/360 think we erred;
2) WHEN in our processing did we terminate?
3) WHO was executing - ourselves or OS?
4) WHERE in storage did we fail;
5) WHAT actually caused the error.

We shall begin interpreting our dump in the order listed.
Why:

The*first *thing we should examine is the reason OS/360 gives
for producing the dump. OS tries to tell us why he thinks we erred?
this is not always the actual reason for the ABEND.

At the top of the dump are displayed the job name, step name
and a COMPLETION CODE, either SYSTEM or USER. A USER code is the
code supplied by the programmer when he issues his own ABEND macro?
the reason is in his own program. Normally a SYSTEM code will be
listed; this indicates that OS/360 issued the ABEND. The meanings
of these codes are listed in the Messages and Completion Codes manual.

Often this code itself is sufficient to determine the cause of
the error. For example:

COMPLETION CODE 804 tells us that insufficient core was
available for a GETMAIN macro. This usually
indicates that the program to be loaded is
too large? that is, the region allocated is too
small?

COMPLETION CODE 001 informs us of an I/O error. In this
case we might use the alternate approach to
I/O errors discussed later;

COMPLETION CODE 806 indicates that a module was not found
by the BLDL SVC. This usually occurs during the
FETCH to a program. It indicates that either the
incorrect program library was specified, or that
we failed during a preceding link edit step. We
may have merely mis-spelled the program name.

COMPLETION CODE OCx indicates a program check and will
p probably require further analysis.

If examination of the reason OS/360 gives for thecdump is
not adequate, we proceed to the next step. In our example, we
ABEND'ed because we exceeded the ti<me allowed for the job step.

32

When:
We should like to know WHEN in our processing we developed our

error. This usually means in what module were we when something
occurred which caused an ABEND to be issued. To determine this we
need to know what modules were in core, and where they resided in
our region.

We begin by examining the ACTIVE RB QUEUE (Figure 24a), which
tells us which programs are in our region and being used. The ACTIVE
RB QUEUE is listed with the oldest RB first, and the newest RB last.
That is, the last RB to have control of the TCB is the RB on the
bottom of the ACTIVE RB QUEUE. Notice that this is the RB whose
address is contained in the RBP field of the TCB at the top of the
dump.

Two kinds of RB's normally appear in the ACTIVE RB QUEUE: PRB's
for programs and SVRB's for supervisor call routines. Let us examine
the RB queue, starting with the most recent RB (i. e. the RB on the
bottom of the queue).

The NEWEST RB is an SVRB controlling a module of ABDUMP (SVC 51).
ABDUMP does the actual formatting and dumping of the control blocks
for the region; this is of course the most recent RB, as it is
printing the dump we are reading.

The next RB (second from bottom on the queue) is an SVRB control­
ling a module of ABEND (SVC 13). ABEND was called (by someone) by the
issuing of an SVC 13. ABEND goes to the TIOT to check whether a
SYSUDUMP or SYSABEND DD card was supplied by the user. If none was
present, an INDICATIVE dump is produced and the job is terminated,
if such a card is found (one obviously was, or we would not have a
dump) then ABEND issues an SVC 51 to bring in ABDUMP which actually
formats and prints the dump.

Hence, the RB which had control of the TCB at the time the ABEND
was issued is the third most recent? that is, the third RB from the
bottom of the ACTIVE RB QUEUE represents the program active at the
time of the ABEND.

Now that we know which RB was in control of the TCB at the time
of ABEND, let us map out the modules in our region to get an idea of
the region's make up. Let us glance first at some of the fields in
a PRB (see Figure 24a).

PRB 018C88 is the address of the PRB in the SYSTEM QUEUE
SPACE ?

APSW 400FF162 is the last half of the program's OLD PSW
at the time of the last interrupt;

FL-CDE 00018DD8 contains, in the last six positions, the
address of the corresponding CDE for this PRB.
In our example this is 018DD8;

33

PSW FFE5000D 40003716 is the RESUME PSW.
Now, to map out the region, we go to the corresponding CDE's

for the RB's (the address of each CDE is in the left hand column in
the CDE section of the core dump). The CDE contains the following
information (for our example, we are using the first CDE at location
018DD8):

018DD8 is the CDE address; note this is the CDE for our
third most recent RB?

NCDE 000000 is the address of the Next Contents Directory
Entry; note that, starting at the bottom of the CDE
queue, each NCDE points to the next CDE up the
queue. The last element on the queue has an NCDE
field of zeroes, marking it as the last;

ROC-RB 00018C88 shows the address of the corresponding
RB for this CDE in the last six digits. Note that
this points back to our third most recent RB;

NM PDS tells us the load module name for this PRB - in
this case PDS;

EPA 0B2C80 tells us the Entry Point Address of the module;
XL/MJ 018E18 gives us a pointer to the extent list (XL)

element for this CDE (i. e. for this module).
More on the extent list in a moment.

Hence, at this point we now know the names and entry point
addresses for all the modules in our region and those we are using
in the LINK PACK AREA.

We should like to know the EXTENTS of all these modules - i. e.
their beginning and ending addresses. To find these for each module
we find the corresponding extent list element for each CDE. Let us
examine the XL entry for the module PDS (see Figure 24b).

01KE18 in the left hand column is the address of this XL
entry. Note that this is the address pointed to
in the XL/MJ for the PDS CDE;

80003B80 in the fourth column contains the length, in
bytes, of the module (the "8" in the first position
signifies that this is the only entry for this
module);

000B2C80 in the fifth column contains the starting address
of this module (note: Not the entry point address).

Upon examination of the CDE list and the XL queue, we notice a
great number of entries which have no corresponding RB. Note, for
instance, that all CDE’s except the one for module PDS have a ROC-RB
pointer of zeroes; this implies that there is no RB for this CDE and
XL pair. CDE’s with zero RB pointers correspond to LOAD'ed modules;

34

that is, modules which were the object of a LOAD macro. Recall that
for such a module, a LOAD'ed module, the LLE (Load List Element)
is the equivalent of the RB. Let us examine the LOAD LIST (see Figure
26).

The list goes across the page rather than up and down. The
first entry contains:

NE 00018258 points to the Next Element.
RSP-CDE 020180A8 points to the corresponding CDE in the

last six positions; note that 0180A8 is the CDE
for IGC0A05A.

The CDE for IGC0A05A points to the proper XL which gives us our
starting address and length. We rarely use the LOAD LIST, as the CDE
and XL contain most of the needed information.

We now can map out the core used by our job step; for illust­
rative purposes let us do it. We list the modules in ascending core
addresses.

Module
PDS
IGC0A05A
IGG019AC
IGG019BB
IGG019BA
IGG019CI
IGG019CD
IGG019CC
IGG019AR
IGG019AQ
XGGQ19AK

Occupiies^
0B2C80 through
0B6700
0CD1E0 through
0CD7FC
0D1918 through
0D1A00
0FEB40 through
0FEB98
0FEB98 through
0FED18
0FED80 through
0FEDF8
0FEDF8C through
0FF000
0FF070 through
0FF0C8
0FF0C8 through.
0FF138
0FF138 through
0FF1B07
QFFIB-Q through.
QFF288

Notice that some modules are contiguous in core, IGG019BB is
contiguous with IGG019BA? ÏGG019CÏ with IGG019CD, while IGG019CC,
IGGQ19AR, IGG019AQ and IGG019AK are all contiguous.

Upon examination of the list, it becomes clear that modules
PDS, IGCt0A05A and IGG019AC reside in our region, while the rest lie
in the LINK PACK AREA at the extreme high end of core.

35

In summary, to discern WHEN in our processing we were ABEND'ed
w e :

* Examine the third most recent RB in the ACTIVE RB QUEUE;
this RB had control of the TCB at the time the task was
ABEND'ed;

* Map out the region, by examining the CDE queue and XL
list for module names, entry points, starting addresses
and module lengths.

Who:
Because we know that the third most active, or recent, RB is

that which was in control of the TCB at the time of the error does
not mean that the error occurred in the corresponding program code.
Recall that transfer is made to a LOAD'ed routine via a branch
instruction; that is, no supervisor action is involved as in a LINK,
ATTACH or XCTL. For this reason, the supervisor is unaware of the
transfer, and the RB queue will not reflect this branch. This is
particularly true of the I/O access routines, all of which are LOAD'ed
modules. In other words, in the case of the common READ or WRITE
in a program, the program BRANCHES to the I/O routine, which is a
LOAD'ed module. If an error occurs in such a LOAD'ed routine, the
RB queue will not reflect that LLE, but the RB for the program which
issued the BRANCH instruction.

To determine where the ABEND was issued, in your program or in
a LOAD'ed routine (usually a system routine) check the RESUME PSW
in your RB (i. e. the third most active RB). If the last six
positions (in our case 003716) point to an address outside your
program (they do), check the LOAD'ed programs to determine if it
falls in one of them; if the address falls within one of these LOAD'ed
modules, we may assume that the ABEND was issued in that routine. In
our example, the address 003716 does not lie within any of our
routines - it is clearly well within the NUCLEUS. The RESUME PSW is
the address (plus four) of the ABEND instruction; that is, it gives
us the address of the SVC 13. This address (003716) matches the
PSW AT ENTRY TO ABEND address; this would follow, as the ABEND macro
causes an SVC interrupt. A high proportion of the time the RESUME
PSW will point to an address within the NUCLEUS; the ABEND was
issued by an interrupt handler. For instance, the I/O interrupt
handler or program check interrupt handler determined that the task
cannot be continued and must be abnormally terminated. In our example,
the time interval for the job step expired, and the timer routine
issued the SVC 13 at address 003716.

The other PSW in a PRB is the APSW; this is the last half of
the user's old PSW at the time of the last interrupt (the APSW
field in an SVRB is discussed later). Since these two PSW's (the
APSW and RESUME PSW) usually differ, let us discuss their contents
in more detail.

36

The RESUME PSW is loaded with the user's OLD PSW at the time of
the interrupt; that is, when an interrupt is taken, say an I/O
interrupt, the I/O interrupt handler stores the program's OLD PSW
in the RESUME PSW slot in the module's RB. This PSW will point to
the instruction following the last instruction executed. The APSW
field in the RB is not touched at this time. The same will be true
of a program check interruption or SVC interrupt.

Now, if the interrupt handler decides it must ABEND the task,
such as in the case of an uncorrectable I/O error, the interrupt
handler branches to the NUCLEUS routine ABTERM which moves the last
half of the RESUME PSW, which marks the last instruction executed
under control of the RB, into the APSW field of the RB, and MOVES
THE ADDRESS OF AN SVC 13 ABEND INSTRUCTION IN THE NUCLEUS INTO THE
RESUME PSW ADDRESS FIELD. Then ABTERM returns control to the task.
Control is returned, of course, by using the RESUME PSW, which now
contains the address of an ABEND SVC 13 in the NUCLEUS. Hence an
ABEND is issued; ABEND does not alter the RESUME PSW or APSW fields
in the RB. The APSW field will contain, in this instance, the
instruction address following the interrupted instruction, and the
RESUME PSW field will contain the address of the SVC 13 in the NUCLEUS.

Now let us consider the case where we in our code issue an
ABEND SVC 13. Like any interrupt handler, the SVC interrupt handler
places the user's OLD PSW (containing, in this case, the address of
our SVC 13) into the RESUME PSW slot in our RB. Since WE issued the
ABEND, we did not branch to the ABTERM routine, as the interrupt
handlers do, which stores the right half of the RESUME PSW into the
APSW, this field (the APSW) remains unchanged, and its contents are
unpredictable.

Let us list the sequence of events in this extremely important
function.

1) An interrupt occurs (I/O, PROGRAM, EXTERNAL or SVC);
2) The appropriate interrupt handler stores the program's

OLD PSW, marking the point of interruption, into the
RESUME PSW slot in the program's RB;

Then performs one of the following:
3a) For a normal interrupt, with no errors detected, and

which was NOT an SVC 13 interrupt, the interrupt handler
returns to the program using the RESUME PSW; the APSW
is untouched;

or
3b) If an error condition is discovered, the interrupt

handler branches to ABTERM which moves the right half
of the RESUME PSW to the APSW field, inserts the address
of a NUCLEUS SVC 13 instruction into the RESUME PSW/
then returns control to the program by restoring the
RESUME PSW. This causes an SVC 13, thereby going to
the explanation of step 3c below;

37

or
3c) For an SVC 13 interrupt, calls the ABEND routine. This

routine does not touch the RESUME PSW or the APSW.
The RESUME PSW remains as in 2 above, pointing to the
SVC 13 instruction.

To further reinforce this concept, let us examine the contents
of the APSW and RESUME PSW in some specific instances.

* For a PROGRAM CHECK INTERRUPT:
** APSW contains the address of the instruction follow­

ing the error; that is, the user's PSW at the
time of the program interrupt.

** RESUME PSW contains the address of the SVC 13 in the
NUCLEUS. The program check interrupt handler
branched to ABTERM in the NUCLEUS which inserted
this address in the RESUME PSW, then returned
control to the user via this RESUME PSW.

* For an I/O INTERRUPT:
** APSW contains the address of the instruction follow­

ing the last user instruction executed; that is,
the instruction at the time of the I/O inter­
rupt .

** RESUME PSW contains the address of the SVC 13 in the
NUCLEUS. The I/O interrupt handler branched to
ABTERM in the NUCLEUS which inserted this address
into the RESUME PSW, then returned control to
the user via this RESUME PSW.

* For an EXTERNAL INTERRUPT:
** APSW contains the address of the instruction follow­

ing the last instruction executed before the
timer interrupt. This address should be within
the user's or a LOAD'ed program.

** RESUME PSW contains the address of the SVC 13 in the
NUCLEUS. The external interrupt handler branch­
ed to ABTERM in the NUCLEUS which inserted this
address into the RESUME PSW, then returned control
to the user via this RESUME PSW.

* For an ABEND issued by the user's code or in a LOAD'ed
routine:
** APSW - unpredictable, as ABTERM was not entered. ABTERM

is the only routine which alters this field.
** RESUME PSW contains the address of the instruction

following the SVC 13, placed there by the SVC
interrupt handler. This should be within your
code or LOAD'ed code.

38

* For an ABEND issued during and by a type II, III or IV
supervisor call:
** APSW is used for a different Durnose in an SVRB. This

use will be discussed shortly.
** RESUME PSW indicates the address of the instruction

following the SVC. This will be an address within
the SVC routine; it will not lie in the user's
code.

In our example, the APSW points to 0FF162, which is the address
following a WAIT instruction (SVC 1), while the RESUME PSW points
to the SVC 13 in the NUCLEUS. The module IGG019AO issued the WAIT
SVC; the SVC interrupt handler placed this address into the RESUME
PSW. Hence when the event occurred, the program would RESUME at the
address following the WAIT, as this is the address in the RESUME PSW.
In this case, however, the event never occurred, and the job step
timed out. This caused an external interrupt; the timer routine
determined that the job was to be abnormally terminated, and branch­
ed to ABTERM in the NUCLEUS, which moved the last half of the RESUME
PSW, which points to the WAIT, to the APSW, which we see now-. It
then placed the address of an SVC 13 in the NUCLEUS into the RESUME
PSW. This is 003714. ABTERM then returned to the program PDS, via
the RESUME PSW. This, of course, caused an SVC 13; the SVC interrupt
handler placed PDS's OLD PSW into the RESUME PSW (the 003716 we
now see) and we ABEND'ed.

We have, thus far, blithely assumed that our third most active
RB was a PRB - indeed, this has been our example. Alas, this is not
always true. Many times we call upon a system function, such as OPEN
or CLOSE, which is a type II, III or IV SVC, and this routine dis­
covers serious errors, and is unable to continue, necessitating its
issuing an ABEND. As type II, III and IV SVC's enter SVRB's into
the ACTIVE RB QUEUE, we now have the case of an SVRB as the third
most active on the queue, and our PRB as the -fourth, or even
further removed.

There are two fundamental differences in our approach to an
SVC, or SVRB. First, as SVC's are either resident in the NUCLEUS,
or operate from the SVC transient areas in the NUCLEUS, we do not
have these modules available in a UDUMP, as the NUCLEUS is not
dumped. Secondly, the format of an SVRB is different from that of
a: PRB. This clearly necessitates a slightly different approach.

Let us first examine the fields of an SVRB. We quickly note the
absence of an FL-CDE entry; this makes sense, as there are CDE's only
for routines in our region or LOAD'ed routines in the LINK PACK AREA,
and an SVC is neither. We note also that the other fields are present,
such as the RB address, the RESUME PSW and the APSW; but that the
APSW looks very odd. The APSW looks "odd" as it is used for a dif­
ferent purpose in an SVRB; it contains the SVC module name for type
III and IV SVC's. The name is represented in the hexadecimal form
of the zoned decimal name. Let us examine, for example, our two SVRB
APSW fields.

39

The bottom SVRB we know represents ABDUMP. The last two zoned digits
in the APSW contain the signed SVC number. ABDUMP is SVC 51; note
that the last four hex digits in the APSW are F5C1 which are the
characters +51, i. e. the SVC number. Note in the next to last SVRB,
the last four hex digits in the APSW are F1C3, which are the signed
characters +13, the SVC number of ABEND. The first character (two
hex digits) is the sequential number of the load of the SVC, start­
ing with zero (hex FO). Notice that the first character of the ABDUMP
APSW is FI which is the character 1, implying that this is the
second load of ABDUMP. In the ABEND SVRB's APSW this is F2, the
character 2, implying this is the third load of the ABEND SVC.

As the APSW field of an SVRB is used differently and indeed
would be useless if used as in a PRB without the module dumped, we
must approach the case of an SVRB as the third most active RB dif­
ferently. This will be discussed in the section on What.

In summary, then, to answer our question WHO:
* Check if the third most active RB is an SVRB; if so

check the APSW, as above, to determine in which system
routine we ABEND'ed;

* If the third most active RB is a PRB, check the
address portion of the RESUME PSW. If this points to
an address higher than the entry point address corres­
ponding to the PRB, check the CDE's and XL's for the
region to determine in which module we executed the
SVC 13 ABEND. In this case the RESUME PSW pinpoints
the SVC 13 in the region's code;

* If the RESUME PSW points to an address lower than our
PRB's entry point address, we continue to the next step
analysing WHERE we ABENDED.

Where:
When determining the actual instruction and location where the

error occurred, we need consider two cases: When the third most recent
RB on the active RB queue is a PRB; and the case when this is an SVRB.

We have already discussed in some detail the case of a PRB
being the third most recent RB in the preceding section. We examine
the RESUME PSW in the PRB; if it contains an address less than any
in the region (reflected in the CDE's and XL's), we probably blew
in a system routine which issued a branch to the ABTERM routine in
the NUCLEUS. The address of the instruction following the last instruc­
tion executed should be in the APSW field of the PRB. This is actually

40

the last half of the user PSW at the time of interrupt, so the instruct­
ion length field will be in the first two bits. To find the last
instruction, subtract the length of the next instruction from this
APSW address value. In our example, the address portion of the APSW
is 0FF162; the length is 4 which means a length of one half word
(i. e. of bits 0 and 1 of the last half of the PSW, only bit 1
is on, signifying one half word length). Hence, 0FF162 less 2 points
to 0FF160; in our case the 0A01 WAIT SVC.

If the RESUME PSW points to an address within our region, we
locate the module, as discussed previously, through the CDE's and
XL's for the region. This implies that the SVC 13 ABEND was given by
code in our region or the LINK PACK AREA. The RESUME PSW should
pbint to the byte following the 0A0D SVC 13 instruction; the APSW
is probably meaningless.

The case of an SVRB being the active RB at the time of error
requires a slightly different approach. These routines usually issue
their own ABEND SVC 13; hence the RESUME PSW should point to the SVC
location. Also we have seen that the APSW field of an SVRB has a
different use; in type III and IV SVC's it contains the SVC name,
as explained in the preceding section, or, if the SVC ABENDED, it
contains the SVC's OLD PSW during execution of ABEND or ABTERM; it
occassionally contains zeroes. For type II SVC's, the APSW will con­
tain either the OLD PSW during execution of ABEND or ABTERM, or
zeroes. Another basic difference to be faced is the fact that the
code for the SVC does not appear in our dump; we cannot examine the
module to locate the actual point of error. We must try to discern
the error from the FUNCTION, of the SVC; further techniques in SVC
debugging are discussed in the section on data management debugging.

Note, though, that the RESUME PSW for the fourth most active RB
should point just past the SVC which called this SVC routine, giving
us the SVC number, from which we can determine the SVC's function.
This also tells us where we were when we issued the SVC. These two
facts are often enough to determine the cause of the error.

In summary, if the third most recent active RB is a PRB;
* Examine the PRB's RESUME PSW address;
* If the RESUME PSW points at an address outside our code,

the APSW should point to the last executed instruction
in our program;

* If the RESUME PSW points to an address within our code,
this should be the address of the ABEND SVC 13. The
contents of the APSW are unpredictable.

41

In the case of the third most active RB being an SVRB:
* The RESUME PSW should point to the SVC routine's ABEND

instruction;
* The APSW should contain the SVC routine *s PSW during

ABEND, or the SVC name;
* The RESUME PSW of the preceding RB should point to the

SVC instruction which called this routine;
* Find the function, of the SVC and try to surmise the

error from this and the location of the SVC in the
calling program.

What:
Much as the author would like- to be able to espouse a "plan"

to pinpoint the actual cause of the error, he of course cannot. What
he wili attempt to do is supply the programmer (and/or debugger)
with some additional bits of information which he might need in
order to continue.

Perhaps the most useful information which is desired are the
contents of the registers at the time of the error. Let us therefore
examine the register SAVE areas, and the SAVE AREA TRACE.

One of the first things incumbent upon a CALL'ed program is
SAVE'ing the registers in the SAVE area provided for him by the
CALL'ing program, and pointed at by register 13. The CALL'ed program
is also responsible for constructing the FORWARD and BACKWARD CHAIN'S
so as to chain all SAVE areas in the region together. One of the
prime reasons for this chain's construction is that the ABDUMP
routine will print out a SAVE AREA TRACE of all SAVE areas in the
region, thus making it far easier to find the register contents upon
entry to and exit from any routine used by the region. Let us look
at the SAVE AREA TRACE (see Figures 24c and 24d).

The first line, PDS WAS ENTERED VIA LINK, is self explanatory;
following this line is the SAVE AREA TRACE for our job step,
reconstructed frbm the FORWARD and BACKWARD chains. Let us examine
the first SAVE area.

SA 0D17B0 marks this as the SAVE area at location 0D17B0;
notice that this lies outside any of our modules,
but well within the region (reference the region
map in the section on WHEN). This is the "high­
est level" SAVE area, it was set up with a
GETMAIN by the INITIATOR. When the INITIATOR
issued the XCTL to the program PDS, it had
loaded register 13 with the address of this
SAVE area. The first program initiated will use
this SAVE area; in this case our program PDS. The
SAVE that PDS executes will store the previous
program's (in this case the INITIATOR'S)
registers in this area; that is, this SAVE area
contains the INITIATOR'S registers. This is an

42

important point: The SAVE area in a program will
(if used) contain that program's registers. Some
of the fields of interest in a SAVE area are
discussed below.

WD1 00000000 areltheJcontehts of the first word of the SAVE
area.

HSA 00000000 contains the address of the next higher, or
previous, SAVE area. As the INITIATOR is the
first program in the region, there is none higher,
hence the address of zeroes. This is the BACK­
WARD CHAIN.

LSA OOOB2CBO points to the next lower SAVE area; in this
case, the SAVE area within our program, PDS.
Note that in our example the next SAVE area is
indeed at 000B2CB0; this is the FORWARD CHAIN.

RET 000085DA displays the contents of the standard RETURN
register, register 14. This is the address
RETURN'ed to by a RETURN macro. The INITIATOR
placed in register 14 the address of its resident
portion in the NUCLEUS.

EPA 010B2C80 shows the contents of register 15, the ENTRY
POINT REGISTER. Notice that 0B2C80 is the entry
point of PDS (check the EPA field in the CDE for
PDS) .

R0 through Rl2 show registers 0 through 12; register 13's
contents, the SAVE area address, is shown im­
mediately following the SA field.

Examining the next SAVE area, SA 0B2CB0, we note that the HSA
does indeed point to the next higher SAVE area,
at QD17B0; the LSA has indeterminate contents,
as there is no lower SAVE area.

Examining the next SAVE area, SA 0B2CB0, we note that the HSA
does indeed point to the next higher SAVE area, at 0D17B0; the LSA
has indeterminate contents, as there is no lower SAVE area.

Continuing in our SAVE area trace, we find INTERRUPT AT 003716;
this is the address portion of the RESUME PSW in the RB for PDS.
PROCEEDING BACK VIA REG 13 indicates that the following SAVE areas
are those starting from the lowest (the current value in register
13) to the highest following the BACKWARD CHAIN. In our case these
match those in the FORWARD CHAIN; this is not necessarily true, for
if the two chains do not correspond neither will the SAVE areas.

Now, the question is, what were my register contents at the
time of the error? One is tempted to say,"Thev are displayed in the
lowest SAVE area; that is, in our example, SA 0B2CB0." But this is
not always true. Let us examine the usage of this lowest SAVE area.

Who uses this SAVE area? Well, if we use no systems routines,
such as the LOAD'ed routines in our example, or if we have not yet
progressed that far, the answer is, "No one." In this case, fields

43

RO through R12 would contain no meaningful information. Well, what
if we do use some of these routines? These routines are branched to,
and they do save some registers, but they do not always save ALL the
registers; often they save only those registers which they alter. The
different routines may save different registers, so our SAVE area
may well contain a composite of register contents, some from thèr.
time one routine was entered, some from the time another was entered.
The point is that we cannot always rely on this SAVE area to contain
our registers unless we know that the routine saved them all. And
what of the registers the LOAD'ed routine was itself using? Where
might they be? To answer these questions we need delve a little more
deeply into the system's use of SAVE areas.

When an interrupt occurs, the interrupt handler stuffs the
user's registers into a SAVE area in low core. All the interrupt
handlers begin in a masked state, so there is no chance of these
registers being overlayed. When the interrupt handlers decide what
is to be done, they dispose of these registers. If control is to be
returned to the user, they are simply restored, and the user
continues as before; this is usually the case of an I/O interrupt.
If the interrupt handlers find that a service needs to be performed,
&uch as OPEN or CLOSE, or if they have determined that an ABEND
need be issued, they first build an SVRB (recall, in our dump we
have an SVRB for ABEND and one for ABDUMP). Into this SVRB the inter­
rupt handlers stuff the user's registers they have so long held in
lower core. These, then, are our registers; they will be contained
in ABEND'S SVRB. Let us therefore examine ABEND'S SVRB.

Recall that the SVRB for ABEND is the one at 017CC0. Notice the
third and fourth lines in this RB indicate RG 0-7 and RG 8-15;
these are our registers. Let us note some interesting things about
these registers in our example. First, register 13 contains 000B2CB0;
this, notice, is the address of the SAVE area in PDS, which is cor­
rect, as register 13 is to point to the current SAVE area. Notice
that registers 2, 12 and 13 contain addresses very close together and
slightly above the entry point of PDS; these could well be base
registers. Register 8 contains 000FF138, and the last instruction
executed, recall, was just before 00FF162 (note the APSW in the RB
for PDS). We determined, recall, that we were ABEND'ed while in
routine IGG019AQ (notice that the entry point address in the CDE for
IGG019AQ is 0FF138). This module must have a base register; it
appears that it was using register 8 (IGG019AQ does indeed use
register 8 as a base register).

Observe that at the bottom of the SAVE AREA TRACE is a SAVE area
entitled REGS AT ENTRY TO ABEND, and that these match those in the
SVRB for ABEND. These are indeed the same, as ABDUMP picks up these
registers from this SVRB.

If we ABEND with an SVRB as the third most recent RB in the
active RB queue, then the registers belonging to the program which
issued the SVC will be in this third most recent RB, and the SVC's
register contents will be in ABEND'S SVRB. This becomes extremely
important when we ABEND in a data management SVC such as OPEN or
CLOSE, as will be explained in the next section.

44

Summary 3
In summary, then, the NEWSPAPER APPROACH TO PROGRAMMING ERRORS

consists of the following steps:
* Check the completion code in the dump to determine why

OS/360 thinks we erred;
* Find which program was in control of the TCB at the time

of the ABEND. This will be the third most active RB in the
active RB queue;

* Determine the location of the ABEND instruction which
caused the dump. The RESUME PSW in the third most recent
RB should point to this instruction; this address should
match that in the PSW AT ENTRY TO ABEND. Check if tihis
SVC was issued within the code of the region; this may
require mapping the region from the CDE's and XL's. If
this RESUME PSW points within the region's code, then
check which module issued it, and discover from document­
ation why the routine issues such a code;

* If the RESUME PSW in the third most recent RB in the
active RB queue points to an address outside the region's
code, it is probably in the NUCLEUS. If this is the case,
then the APSW in this RB points to the last instruction
executed in the region's code before the interrupt which
caused the ABEND to be issued;

* When the third most active RB is an SVRB, then the SVC
number is contained in the APSW field of this RB. In
this case, the RESUME PSW points to the last instruction
executed before the ABEND SVC 13 (indeed this is the
ABEND SVC 13);

* The user's register contents at the time of the last
interrupt will be displayed in the ABEND SVRB register
save area if the third most active RB is a PRB. If the
third most active RB is an SVRB, this SVC's register
contents will be held in the ABEND SVRB's save area. The
program's registers at the time of the SVC which called
the type II, III or IV routine will be contained in this
SVC's SVRB register save area;

* If the indication is at this time that the error was an
I/O error, or occurred in an I/O service, such as OPEN or
CLOSE, continue on to the section on the NEWSPAPER
APPROACH TO DATA MANAGEMENT ERRORS.

45

THE NEWSPAPER APPROACH TO DATA MANAGEMENT ERRORS:

Many times when debugging, we determine that the error occurred
in, or was caused by, a data management routine. This might mean an
improperly declared data set or data definition, bad data, or some
logical misuse of data management. In addition to, or in place of,
our questions concerning programming errors, we have five basic
questions we ask concerning what are generally termed "I/O errors."
They are:

1) WHY does OS/360 think we erred;
2) WHO caused the error - i. e. in which data set were

we processing at the time of the error;
3) WHEN did the ABEND occur; that is, had we successfully

OPEN'ed or CLOSE'd the data set;
4) WHERE were we in the data set; that is, at which record

or block;
5) WHAT actually happened with respect to hardware and

software indicators.
Let us begin interpreting our dump with respect to these

questions.

Why:
As in the case of a programming error, OS will give us a comple­

tion code, this time indicating an I/O error. For examples, let us
consider the following codes:

COMPLETION CODE 001 tells us that an I/O error occurred;
further study will be necessary to determine
the cause;

COMPLETION CODE 400 indicates that some or all of the I/O
control blocks such as the IOB, DCB, DEB or ECB
are incorrect; further study will be necessary
to determine which and why;

COMPLETION CODE 213 usually informs us that a data set's
DSCB could not be found.

Many times this code alone is enough to allow us to determine
the cause of the error. Code 213 usually means that the DD card is
in error, pointing to the incorrect DASD volume, or the DSNAME is
incorrect. If this is not the case, we proceed to the next step.

Who:
We wish to determine WHO has the error; that is, which data set.

46

At this point we might wish to map out the I/O control blocks to
gain a better idea of the available information.

Recall that the DEB is the communication center for a data set's
control blocks; we logically should begin with the DEB queue. Each
DEB is nicely displayed (see figure 25), with the storage addresses
in the left hand column. To find the beginning of the DEB queue we
examine the DEB field in the TCB; this points to the beginning of the
first DEB in the DEB queue. Our example's TCB DEB pointer contains
00017064. Look at this location in our first DEB; notice that it
contains 000169E8, which is the address of the TCB. A DEB always
begins with a pointer back to the TCB; in this way we can verify that
we have found the beginning of the DEB. The code in front of this
pointer to the TCB is called the DEB prologue, and contains a work
space for portions of IOS.

The word following the TCB pointer contains «a pointer to the
next DEB in the DEB queue; notice that our DEB pointers do point to
the beginnings of the DEB's, each DEB beginning with a pointer to the
TCB. The last DEB pointer contains a DEB pointer of zeroes to indicate
that it is the last DEB on the queue. Five words past the DEB pointer,
or six words past the TCB pointer, is the address of the related DCB;
two words past the DCB pointer, or eight words past the TCB pointer,
is a pointer to the allocated UCB for this DCB. At this point we
have the addresses of the UCB's and DCB's of all OPEN'ed data sets
(OPEN, recall, builds the DEB's).

Following the DEB queue in the dump is a display of the job
step's TIOT. The third column lists the DD card ddnames for the step;
this is followed by the TTR for the JFCB corresponding to that DD
card. The last column contains the address of the allocated UCB for
this DD card. Sometimes we can make the correspondence of DD card to
DCB through the UCB pointers in the DEB and TIOT. This cannot always
be done, as many data sets may be allocated on a single direct access
device, giving many duplicate UCB pointers; in our example, however,
all UCB's except the SYSUDUMP and SYNPRINT UCB's are unique, so the
relationship may be attempted. We note, then, that the first DEB has
a DCB at 0D1FA0 which corresponds to the UCB at 001444, the SYSUDUMP
DD card (as the DCB lies outside our program, it is not the SYNPRINT
DCB); the second DEB has a DCB at 0B51B0 corresponding to the UCB
at 001830 and the WRTANS data set. The third DEB's DCB is at 0B512C
with a UCB at 001800 for the READ002 data set, while the fourth DEB
has its DCB at 0B5210 for the UCB at 001860 for the ANSFILE data
set. The other data sets shown in the TIOT have not been OPEN'ed,
as there are no DEB's for them.

DCB's which have not been OPEN'ed may be found by scanning the
EBCDIC portion of the dump for the associated ddnames for the DCB,
which are contained in bytes hex 28 through 30.

47

Now, in the DCB's we find another pointer of interest: That of
the associated IOB. This pointer is contained at varying locations
depending upon the logical organization of the DCB (hex 44 for BSAM,
BPAM, QSAM and BDAM; hex 1C for QTAM, BTAM and GAM) . Hence we can now
find the IOB's for the OPEN'ed data sets.

Looking at the IOB's we find a pointer to the actual channel
program to perform the I/O. This pointer is at hex 10 within the*IOB.

At this point we have a fairly complete map of the control
blocks for the OPEN'ed data sets. The ddnames, DEB's, UCB's, DCB's,
IOB's and CCW lists have been located.

Now, what we are after is WHO caused the error; that is, which
DCB op. data set. There are a number of techniques to determine this.
If the interrupt which caused the ABEND occurred during an I/O access
routine, examine register 1 in the ABEND SVRB (i. e. the problem
program's registers); it may still contain the address of the DCB
being operated upon. Register 2 may point to the work area (if any)
and 14 and 15 were probably stored in the problem program's SAVE
area. Registers 14 and 15 are used as the return and entry registers
for I/O routines. If register 1 does not point to a DCB then scan the
DCB's for a possible error flag. Hex 31 in the DCB contains the error
flags; if bit zero, or bits zero and one are on, then the data set
represented by the DCB encountered an error. This scanning of DCB's
is usually the technique used to detect an error DCB for an error
discovered at I/O interrupt time, such as a data check etc.

If the third most recent RB in the active RB queue is an SVRB
for OPEN CSVC 19), then to identify the data set which was being
OPEN’ed at the time of the ABEND, we should know the register usage
of OPEN; these registers will be contained in the register save area
of the ABEND SVRB, OPEN uses register 2 to point to the DCB being
OPEN'ed; register 3 is used as the base register, while 4 points to
the OPEN work area. Register 5 is a pointer to the parameter list
passed to OPEN, while 7 contains the address of the current entry
in the parameter list. The address of the TIOT is contained in
register 9, while the UCB and DEB addresses are contained in registers
10 and 11 respectively. From these register contents we are usually
able to tell which DCB we were trying to OPEN.

In summary, to determine in which data set we encountered the
error:

* Map out the DCB's and IOB's from the DEB queue;
* Check register 1 of the problem program at the time of

ABEND - it may still point to the sought after DCB;
* Check byte 31 in the DCB's for error flags;
* If the error occurred during OPEN, register 2 of OPEN

points to the DCB being OPEN'ed.

48

When:
When determining when a data management error occurred, we are

trying to determine when with respect to OPEN, CLOSE, READ or WRITE.
The actual data output, if any, will aid us in determining this. For
more concrete indication, however, we examine the DCB. Hex 28 BEFORE
OPEN is performed will contain the DD name; OPEN overlays this field
with other information. If this field has been overlaid, check the
byte at hex 30 in the DCB; bit 3 is set to one if an OPEN has been
successfully performed. If OPEN was successful, we can examine this
byte to determine if the last I/O performed was a READ or WRITE
(bit zero) or a READ BACKWARD (bit one), or whether a tape mark has
been sensed (bit five). Hex 31 in the DCB tells us of any error
conditions. We also have a hint as to the status of the data set by
the DEB; OPEN'ed data sets have a DEB, others have not.

Where:
When determining WHERE we blew in processing a data set, we wish

to know which record we were processing at the time of the error.
Hex 4C in the DCB points to the current or next logical record in
the I/O buffer. Block count for tape processing is also contained
in the DCB.

What:
WHAT caused the error depends upon a great many things; the

author can only supply additional information to allow the debugger
to determine the actual cause of the ABEND.

If the error was caused by a logical inconsistency in the data
definition, recall that the DCB is the final repository of the logical
data definition, containing such things as LRECL, DSORG, BLKSIZE,
etc,

Perhaps as important is the pointer in the DCB to the IOB. The
IOB contains a wealth of information as to the physical status of
the data set. In the IOB are contained such things as the last sense
bytes read. Recall that sense bytes are read from a control unit
after the I/O supervisor determines that an I/O error has occurred.
The CSW (Channel Status Word) is stored after each I/O interrupt;
this tells whether the I/O was successful, and the reason for the
interrupt (channel end, device end, unit check etc.). If the CSW
indicates an error, IOS issues a sense command which is sent to the
appropriate control unit. From two to six bytes of detailed infor­
mation are read into storage, indicating the specific cause of the
error* (see the Programmer's Guide to Debugging SRL for a chart of
sense byte meaning's). The first two of these' sense bytes are placed

49

into the IOB (all the sense bytes are placed into the appropriate
UCB) .

The second half of the CSW is also stored in the IOB; this tells
the reason for the interrupt, as mentioned before. Perhaps as
important is the residual byte count shown in the CSW byte field.
This is the difference between the number of bytes which where to be
manipulated according to the CCW, and the actual number of bytes
acted upon. This is extremely useful in the case of a wrona length
record error, or in determining the end of a variable length or
undefined record.

Byte four in the IOB contains the completion code from the ECB
indicating whether the I/O was successful; this is the only place
which will indicate a DEB violation (the attempt at I/O outside
the limits prescribed in the DEB).

Summary: * **
In summary, then, the NEWSPAPER APPROACH TO DATA MANAGEMENT

ERRORS with a dump consists of the following steps:
* Check the completion code in the dump to determine why

OS/360 thinks we erred;
* Find the DCB which identifies the data set in error, by

the contents of register one, or scanning the DCB's for
error flags;

* If the error occurred during OPEN, check register two
of OPEN for the DCB address;

* Check the DCB for OPEN flags, READ/WRITE flags, tape
mark etc.;

* Look at the present or next data record for data errors;
* From the DCB find the IOB for:

** Completion code from the FCB;
** Last half of the CSW;
** Sense bytes;
** Actual CCW's.

50

APPENDIX A

EVENT SYNCHRONIZATION:
When many events in a computer are taking place simultan­

eously (such as channel programs, etc.), some technique must be
found to synchronize these events, or else utter chaos reigns. In
MVT, in addition to many events occurring concurrently in the computer
hardware, different programs and routines are also executing asynch­
ronously in storage during multi-programming.

The reader will recall that the different events taking place
concurrently in the S/360 hardware are synchronized through the
interrupt mechanizm. For example, when the CPU wishes an asynch­
ronous, or concurrent, event to take place, such as I/O, it com­
municates this desire to the channel via a START I/O command.
The channel immediately tells the CPU whether the command was
accepted and started by supplying the CPU with a condition code
in the current PSW. Assuming the command was started successfully,
the CPU and channel continue with their different and divergent
tasks, with no relationship to or knowledge of the other's prog­
ress. When the channel finishes its assigned task, it notifies the
CPU of its completion by causing an I/O interrupt, and storing a
channel status word (CSW) containing the reason for the interrupt.
In this way the concurrent hardware functions have been synch­
ronized.

In an OS/360 multi-programming environment we have, in addition
to the hardware concurrency, programming concurrency. That is, we
have different programs in different regions executing concurrent­
ly; between regions, however, there is little need for communication,
as these are independent jobs. The user may, however, multi-task
within his own region - this will demand synchronization of these
concurrent tasks. The same is true of I/O buffering; IOS must
have a way of communicating to the program that the channel has
completed its task, and the outcome of this task. The communication
technique for both of these needs is handled identically, through
the ECB, and the WAIT and POST macros.

Event synchronization takes place through the medium of the ECB
(Event Control Block). This is a full word, bit zero being the
wait bit, bit one the post or completion bit, bits 2 through 31
containing the completion code or RB address.

w c Completion code or
RB address

Figure 27: The Event Control Block.

51

When a program issues a request for a service that will require
synchronization, such as a READ, it supplies the asynchronous
routine with the address of one or more ECB's which have been set
to zeroes. The ECB now becomes associated with this asynchronous
event.

Now, when synchronization becomes necessary, a WAIT (SVC 1)
macro is issued by the program; this macro points to the ECB's
upon which to be waited. The WAIT routine then examines the ECB;
if the completion flag is on, the event has occurred, and WAIT
immediately returns control to the instruction following the WAIT
macro in the program. If the completion flag is not on, the event
has not occurred; the WAIT routine then turns the wait flag on,
places the address of the WAIT'ing program's RB into the completion
code field of the ECB, and places the program into the WAIT state.
That is, a task switch is performed, the CPU being given to the
next task which is ready to continue processing. The WAIT'ing
program will remain in this state until the event occurs or the
task is cancelled.

When the awaited event occurs, such as the completion of a
physical I/O event, the WAIT'ing program must be notified. This
will be done through the ECB. When the asynchronous routine, such
as the I/O routine or ATTACH'ed task, determines that an event
has occurred which requires synchronization, it issues a POST SVC
for synchronization and notification of the WAIT'ing routine. The
POST macro points to the ECB to be POST'ed.

POST examines the ECB; if the wait flag is off, which implies
that the event has not had a WAIT issued for it, the complete bit
is set on, the completion code is placed in the ECB, and control is
returned to the next ready task. In this case the subsequent WAIT
issued upon this event will be an effective NO-OP, as explained
previously. If the wait flag in the ECB is on, implying that some
program is WAIT'ing on this event, the completion code is placed
in the ECB, and the task which was WAIT'ing is placed in the ready
queue for dispatching. The program to be placed in the ready queue
was found from the RB address which was placed in the ECB by the
WAIT routine. When the task is dispatched, the RESUME PSW will be
used; the SVC interrupt handler placed the OLD PSW in this slot
at the time the WAIT SVC was issued. This will contain the address
of the instruction following the WAIT SVC 1. Hence processing
will continue at the address following the WAIT SVC.

52

PS
W

AT
 E

NT
RY

 T
O

AB
EN

D
FF

E5
00

00
 4

00
01

71
6

O 00 C CD
O < O CDo c m 4 o CO <c o -• -< — o c o c o o o o o o o c

O O c CO © O O u O O O «Cn o o <fV © O -419 o o o © o o o 00 © © ©

00 < ©
N G U O © <\io -t m
© O 00 O O UJ
O O N
O <D ID

o ̂ir> o ̂
o O' o© — r- c o — o o © o o o © «*■ ©

o oc —* o o o o o o o o o

© O «C© o < o o o o o o o o
O O 00 © o o o <•

cooO O ro© < id

C O UJ
O O N
O © UJ

© C O
—I —I Oslo o o

cl a a. in </) <n
oc ec ec

o o o o o o © o o

e c e o o c c o o o
—' *#■© © « O P u c J i n
UJ f\, r~ <\. fv n' r~, O C S O < < < < < <
o o © © o o o c

< X X X X X

<<<<■<<<«
OC0C0COO00Coiuu.O'^anjNU - C C t f i - O O

o o o o
OD < UJ O© O O' o
O CO O o oo o o oo o o oo o o o

<• to © o «o<-* o c o o o uf>-O00 o o -rf o o © o © c o o o o o o
£ O id ec

e o* oo ©
O O l f l O O < in O
o 'J- r - o
© in — o
o oo o o o o o oO U J O P
o

© 00 o o
CD < ec o
o m f- o
r - O' -* o

Q ©o o o o© <\J — O O O O O
o. in < u

nj cc
O ID — ©U. vC
id — o ©O O O

O O O O O O O O © O © O O O O c

u . *e o u.0 0 O U- u cID < C Ufflr coo
o c u. O O U.

oc m ec oUJ O' ID O' o —o — m c c o oO O O «4-© ö o <• O O c o

u id o m
<M ID O C< o m in o o u
C D O O N O O O O © O o — © © n. u

ID «CO — o O O oc
ID O UJ O < UJnj u. o idU- ID O —< Od o o m

l £ O O O U Z O O O O'
S J O O O U

^ OC ID •—1© n ec id ec on © ** o < © ID ru idf.OOU-O — O O o o o u oc o o o o in. O o o o © u O O © ©

oc o oUJtC © O f- '0 >C o
o o © © o ©
© O UJ

© © n- ID
*0- < O ID <C IL M O
n - id c
O C 0 C . N © O UJ <
O C <M ■+o o a i u

(_>«'*©
U UJ (V ID © © — <r n. *o r- m
o — o o o o o © c o o
oc © o n-

o -> o n. o ©U. O N s* Oh o o c n o
L C N N U H

r-l <3 O O
SC © C O Oz o c m n.

3 J C <fUJ G

© oo © oc
O U. © IDmr-oO'oiD

< f M O 'C C l Dn o o d id u.
O © O © O ID 00 O O O O O - - © O O O O O ©O O

O o c— r - <M O C O

coo O o o O O O

OC O O O < f*- *o o
O n r <r
OD < < <

O O O Onj rn <\j© O c ©

00 c 00 O
IT■ r- ID Oru O' ru c 00 0C O' o oo o o ©O O O Oo o o o

UJIDIDIDIDIDIDID
V) I/Ï l/I V) Ifl V) V) (//

< c < ec se cc © IT O ec ec < < u© O' O' © © © ©< •* -I -•O o c o o c o m o o c o o c c c o o o o o o o

O O O O C O O O ©
O O C C O O C O O
© C C O O C O O
0 D O C C O O O O
— C C O O O C O
O O O O O O O O
O O O O O O C O O O C O Q O O O

uoue'ouou
O C C i C O C O O
t t e c e c .e o e L e c .e o e c

O O O O O C O Oon-oo<'Co<O (M (T M N ̂ ̂ no n - < < < < < <
© o o o o o o o
UJU JUJlDLLUJU JID
O O O C C C O Oo o u o o u u u
2 Z Z Z 2 Z Z Z

ec ec ec co a l-L-l-l-l-
< < < < «

ec ec eci—< < <

ID U
O O O O O O C O O Ofe<<<f“r-a«ö
<g op < < < < < <
S S S c D O O O

Figure 22a: MVT SYSUDUMP
53

- Page 1 of 4.

0L
A3

00

AT
R1
 B

0
NC

DE
 0

1A
33

0
R0

C-
RB

 0
0Q

00
00

0
NM

ÏG

G0
19

CI

US
E

03

EP
A

0F
E0

80

AT
R2

 2
0

XL
/M

J
01

A2
F0

01

72
70

AT

R1

30

NC
DE

 0
18

DD
8

R0
C-

RR
 0

00
00

00
0

NM
 I

GG
01

9A
C

US
E

0?

EP
A

00
19

18

AT
R?

 2
0

XL
/M

J
01

72
60

01

A4
00

AT

R1
 B

0
NC

DE
 0

1A
43

0
R0

C-
RB

 0
00

00
00

0
NM

IG

G0
L9

AQ

US
F

04

EP
A

0F
F1

38

AT
R2

 2
0

XL
/M

J
01

A3
F0

Figure 22b: MVT SYSUDUMP - Page 2 of 4
Figure 22c: MVT SYSUDUMP

Page 3 of 4.

PAGE 0
018EI8 SZ 00000010 NO 00000001 R0003B80 000B2C 80018248 S7 00000010 NO 00000001 R000061C OOOCDIEO
0 lA390 SZ 00000010 NO 00000001 80000208 000FFDF8
01A290 SZ 00000010 NO 00000001 80000180 000FFB98
01A260 SZ 00000010 NO 0000000l 80000058 000FER40
0 lA 42 0 SZ 000000 10 NO 00000001 8000Q0D8 OOOFFIBO
01A3C0 SZ 00000010 NO 00000001 80000070 OOOFFOC 8
01A350 SZ 00000010 NO 00000001 80000058 OOOFFO 70
01A2F0 SZ 00000010 NO 0000000l 80000078 000FF080
017260 SZ 00000010 NO 00000001 800000E 8 00001918
01A3F0 SZ 00000010 NO 00000001 80000078 OOOFF138

DEB
017040 00000C2F o o o o o r> M m 00000C2E 00000C2E 00000C2E 00000000 3200000C 00002BE0 *. i
017060 OEOOOOOO 000169E8 04016E 24 88000000 8F000000 01000000 18000000

C2C2C2CI
EF001FA0
C3C41B00

* . ,
017080 04017040 10001444 OOOOOOOC 00000000 00130028 0001FOF4 * .*
0170A0 0A0218E7 07FF0000 0083D600 C 6122 l IF *. .

DEB
016E00 00000C2E 00000C2E 00000C2E 00000C7E 00000C2E 00000000 00000000 00019BF0
0 16E20 ODOOOOOO 030169E8 04016F94 C 8000000 OFOOOOOO 01000000 1 BO00000

00000000 FF040000
FF0B51B0

016E40 02016E00 33001830 00010000 CID9C1D2 C3C3C002 00005A34 *__ 1
016E60 00000000 00016F68 *. .

DEB
016E60 OOOOOC2F 00000C2E OOOOOC2E 000FED80 *
016E80 OOOOOC2E 00000000 00000000 00009BE0 ODOOOOOO 040169E8 04017624 48000000
016EA0
O16EC0

00000000
C3C9C3C3

01000000
00000000

18000000
00000000

EF0B512C
00000000

0 2 016 E 7 0
OOOBIBIO

3 3001800
OOOOOODO

00010000 C1D8C1C3 *.............

DEB
017600 00000C2E 00000C2E 00000C2E 000FED80 00000C2E 00000000 00000000 00009BE0 ♦ *
017620 ODOOOOOO 040169F8 04000000 C 8000000 00000000 01FFFFFF 1BOOOOOO EF0B5210 * Y.. *
017640
017660

02017600
OOOOF3D3

33001860
C7017970

00010000 CID8CIC3 C3C9C3C3 00017978 OQOOOOOO 04FF1294 *
4..TLG.....

....... *

JOB A0001854 STEP EXEC 1
DD 14040100 PGM=*.DD 001E0C00 80001204
DD 14040100 SYSUDUMP OOOE3700 80001444
DD 14040100 SYNFILF 00123600 80001294
DD 14040100 SYNPRINT OOOE39QO 80001444
OD 14020100 RFAD002 00123C00 80001800
DD 14040100 WRITANS 001D2F00 80001830
DD 14050100 ANSF1LE 001D3100 80001860
OD 14050100 WRI TOOI Ó01D3500 80001890

14040100 WRITELN 00210600 80001*» «t4
PAGE 0

DD 14040100 REAOCRD 001D3700 800014D4

MSS ************ SPQE ************ *************** Q Q £ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CLGS NSPOE SPID DOE BLK FOE LN NDOE NFQE LN
0195A8 00 0196B0 251 018DC8 00082800 00082800 oooocoo 00000000 00000000 00000480
0196B0 80 01A6C8 000 017960
917960 60 000000 000 018DF0 OOODIOOO 000D1768 00000800 0D0184B0 OOODIOOO 00000048

00000000 - 00000430
OOODOOOO OOODOOOO 00001000 00017190 00000000 00000678
OOOCFOOO OOOCFOOO 00001000 00017F 88 00000000 00000030
OOOCFOOO OÓOCEOOO 00001000 00017250 00000000 00000678
OOOCOROO 00OCD8OO 00000800 00000000 OOOOOOOC 000000C8

01A6C8 40 000000 252 018FC8 00001800 OOOD1AOO 00000800 00017CB0 00001800 000005AO
00000000 00000118

ooocnooo OOOCDOOO 00000800 00017968 00000000 00000 1EO
000CC800 000CC800 00000800 00000000 00000000 OOOOQIAO

D-PQ€ 0001A6C8 FIRST OOOlBtoo LAST 00018E88
PQF 018F88 FFB

TCB
Ó00B6800
00016300

LFB i
RSI i

000B680O
0OOIF8OO

NPQ 00000000
RAO 000B2800

PPQ 00000000
FLG 00

FBQE 0B6800 NfB 00018E 88 PFB 00018E88 SZ 00016000

QCB TRACF
MAJ 01A6F8 NMAJ 00018A00 PMAJ OOOOA2CO FMIN 00019480 NM SYSOSN
MIN 019480 FOFL 00019700 PMIN 0001A6F8 NMIN 00019070 NM FF CTSRCH

NQFL 00000000 POEL 00019480 TCB 00016300 SVRR 00016E20
MIN 019070 FQEL 00019440 PMIN 00019480 NMIN 0OO1-8F A8 NM FF SYSl.SDRTLIB

NOEL ODOOOOOO PQEL 80019070 TCB 00016300 SVRB 00016E20
MIN 018FAB FOFL 00019200 PMIN 00019070 NMIN 00018FE8 NM FF SYS1.LINKLIB

NOEL 00000000 PQEL 80018EA8 TCB 00016300 SVRB 00016F20
MAJ 017978 NMAJ 00000000 PMAJ 00018A00 FMIN 00017758 NM SYSIEAO 1
MIN 017758 FQEL 00017CA0 PMIN 00017978 NMIN 00000000 NM FO I E A

NOEL 00000000 PQEL 00017758 TCB 000169E8 SVRB 00016F68

SAVE AREA TRACE
PDS WAS FNTERED VIA LINK
SA 0D17R0 WD1 00000000 HSA 00000000 LSA 000B2CB0 RET 000085DA EPA ÖIOB2C80 RO FD000006

5

s i

s
e
> O -«

1 : itt- o o
*- _J U-I UL'
< U. cc cc

2

SYSUDUMP
56

O O O O O O o

Page 4 o f 4 .

§ ? § ■ £
§ s s s
o o o o
g g g g
f ? s §

S § 2
< ggï i
8 1IS

H l S |

2 1

2 2

00 o

1 I

l i l

Ï S S
2 S B

O - f l ^

O O O
< < f»
S 2 S
o o o

S ë ë
VVV
£ £ £

<s°

I I I I I ï ï

2 S S8 S 2 S S 2 S2UJNrrv.rj^rriiMNr'
00< D < < < < < < < N <

o o o o c o o c o o o

Ï J Ï ? Ï | ? ? 2 ? 5 S
x x x x x x x x x x x

g s s s s s s s s s s
NiNJt\i<\.rv<M<\iN,NifVf\i
ÏÏZÏÏÏÏZÏÏ?: 5

o c e c e e o o o o c o c o c c

N.OUJU-UjU-U.U_UJ~‘U.
S ë ë ë ë ë ë ë ë S ë
< < < < < < < < < < <0-aa.o.o.a.o.aaaa
iULUUJLL'UJLUUJUJUJLUUJ

: £

ï ï
- o o

s s s

I s s s

oc i r cc © c © © rr u.

8-• o ̂ r> -I n-aic
g ê g S § § g £ 2

5 5 o o c o 5
V V V•si Ni u uj © in nj
V V 2£S£ V
g g ssss g

IISS
O 00 < ©
gg£!fe

«o r- in

m oo ro ooo Itl u oo _ _
r s ï g £ £
U . — O - J U O O O C O ^ O Cj o O

11 SS2ISS eIb r s!
I I

= 2 2 2 ;

P U S , 5 Ü E S
5

O n ec u.

2 5

r. o c
s r

§ S g £
§c

* £ ï t ^ - g ï t A A S

*, S S S
‘ * - £ ----------
g
K eo
2 ï

l ï l < < <
2 2 S
O C O

ë ë ë
ï ï ï

S £ 2

" s s _N. 0> Ni C00 OC o- O
i l l i

g $ s
i/> t/> *J

Figure* 23: MVT SYSUDUMP - The TCB.
57

U JIL IU U IU JU JU JU JU JU JU .

sssssssssss

g i l l S S S S S S S
i i i i i i l i l i l

RO
C-
RB

RO
C-
RB

RO
C-
RB

RO
C—
RB

P0
C-
RB

RO
C-
RB

RO
C-
RB

RO
C-
RB

R0
C-
RB

RO
C-
RB

RO
C-
RB

» o o
;;!

§ ? s § s s s s s s s
O N i r n N . N i < « * f o r n c <
O f ' < < < < < < < 0 0 <

i s s
i o c
1 UJ LU

© © © o o o o o c c o

I l I l I I I I i l f

: cc cc
s s s s s s s s s s s

ï z z l ï ï t z l ï ï

2 S S S ? S S S S S SCOINNlNi<f̂ fr(»>NI<
2 2 2 2 2 2 2 2 2 2 2 O O O O O O O O O O o

11
85

4
ST

EP

EX
EC

l
TI

M
E

12
14

42

DA
TI

13

02

Ê m *

?S?ÊS co <r O cc o OSS
§

lfggl

]g

L 1 I S52IS 21* o o 00 r- f- r- o r- r-c

II
ii
II

DO
E

z o «
II « o

*ft
t/>

Iio o
#
ü:

II
i;

I i i l l l I I
§ ggggg gg
S 2 2 2 g g gg

g g
g S
S 5

!2:

?gggg gg
|g£ëg gg

ïil IP ii
i £ |
o o o

s sii
l i l
o o o

g§s

« c o

O' 0> f-

11

§§
ïiII

ill ft
loc Osi! i
31I I| s s i
! i s iu i i
.Ss I

? * Ino. u.

5 S

I I 1

00

o *
2 £

S -
2 s

1 s i 2 I
«o o o o o5*211i 1 1 1 1
Z -J zï s ï

2 2

ft I I

I s §

1 1
1 1

! !
l i i i i i i i i i

1 s

H

i ï i ï i E i i ï l

i m i i i i i i

. £ S
§ 2 < ftK O O

« -» zV < -

12 S

i i
Figure. 24c»- MVT SYSUDUMP - The SAVE Area Trace ,

60

(Si
* s l
! Ü

s i | I I | ! I | A

o

o

5I
*

I

5
gg

II
go
S S

£I
III I
«s
I I

O f f i i e o o e o i f l t f ' f O ' C C O . Ï K i r j ^ O Q O M f f ï O C O■CuOOON̂ 'CirO'C o o oMM|(\N^>tNOÜa;« O O O O C t UC O o ■J- (\1
gg__ . SoLLOJU.O^OOOOOli-OUJ
S S S S S S S S S S S S S S S Ï S S S o - N

O O' <v >ö o o o
S S ï S S S Sv£sS l£5

c r i c r o o o - i i f o o i c o c o ^
u o e o o > t « i - " i - u _ u u _ o o o o r - o0 0 0 0 0 0 0 0 ^ ^ 0 0 0 0 0 O— ITO N O ^ 't 'U .U .U . U_ O O O O «■ <\.
u u o o o o < - > 0 0 (\ ; 0 — 00 o C O er o -> O O — «t- ̂ ■U.^-U^-UJOOOC'J-g g s g ? ? £ ^ £ g s g g g g ^

:ssssïgflS£2£
U lf. u. «c

S S S S ? $ £ £ S ? g f t g g £ S S S E £ £ £O C h J ' - O O O H S C O l C O C O O O ' C - K l - ' l f l
8 s S ï g S £ £ S S S S g S £ g £ S S S £ S
SSSSSSëSSSSSSSSSSSSJt ëgoooou.'i-j-'o-t^of^oocoosro'tu.u.
SSg S£ ? S £ 3 S f t g g § 5 § ^ £ S 2 f t S
ggftft£SS£S5£ggg£iftSftgftft
o r - o o o - ' o o c ' o c t c o c o — c c c o n o o —

g g S S £ g g £ S S S g S S £ S S S £ £ S Siroo^'C'i-^u.O't'CCooooou-oiroo

2K5S£S. SSS£2§§gfeggSSSSC
O O O u . f ' C O H i n n i f f i j j O O ^ C O g ' f K ' C Nililsssclcliiilllsllis- ' u o c c o o o c c - o o c c c o a ' o o o —' o c o
^-«J-OOU- ' t ' tOOOOCOOU^OCOUOO' l -
D >C CC O C COtMOOOOOOU- OOC ' OCOO
ëSaSSSSSSgggggfcSSSSSiSÏ
CSSÊÏiSSg22SgggSSS8:^gSfeSlSisssssslillHIïsSis .IsSsSIISeSgilIIIISSsis
SSSSSSSSSSSSgSggSfcSSSÊn o o o a i ' t s r u L U ' J - c o o o o o o i i . u o o m
S c ? o ° 5 S £ ? S § § g g 3 g g £ S £ S o

g g§£gSSSgCSf t §Sgf t £S£? C§g
‘ § § g f t £ ? 5 f t c 2 o ? S c g g S £ c £ ? go<NJO' ec®ooói r>^: m<oCoooO' i ^oco
u, ë f t g g ë s g g g e s s s i g g s f t ê f t g g_l C'>l-OOU.«r ' rvfUJOOCU.OOO-J'LL' tOOO

ïgSSSSSSSSSJ O C O O O C Q C L - U
_ - j c c c e o c e c f f i t c i c i i_J O C O O O C O O O O O O O O O O O O O O O O

*

Figure 24d: MVT SYSUDUMP The SAVE Area Trace.
61

*

••*•¥

ooooeoooocooooeol l l l l l l l l l io c c o o o o o o o c
g g g g g g g g g g g

(ssi

f i i i i i l i ü i
o o o o o o o o o o o

25SSSSSS25S

t oocccoooooc 5SSS §s?s c o o oO CD < u g£$S
CD ££££ £ e 2222 £ S5SS4 ë o o o o o O O o o a c o o o o o c o o

Figure .25: -MVT SYSUDUMP - The DEB QUEUE.

S J M I s I I

g g g g g g g g
l U g N W I M C C . Ci i i l i i i i

uaviwwa3<3
ai
ÈSSSSSgSS

*.......... ^

62

CO
M

PL
ET

 IO
N

CO
DE

SY

ST
EM

=

32
2

£*
i
ls
£

gsgs
§§22l i l !
I'SSs

I l l iI l l i
£3fc?UTZ
O O OD O
l i s !I l l i
O 4/> t- <
•“ - J «/> K

S2§§
££§ë

§§*§

i l l f
u. ^ ec UJ h JOJ O

U. O 00 o o

“■ o2S|
1 Issl
CD O O O O

a v-» < u
£ SSECS

l i s

s l i l
t 1
1 I

s ;
ï T

:S*
IS

cc < O — O rs. «J
1 IgS
s II!u.
5a

£
o -f n

'S
£ai

25
? ,111 . HèJ o cc O O O O o

sst

ctrtto c o c »«■ a
“

g g||5 §
5SS

SiüS UID-tC
!I ? f 5ëtS VJO S S £§S~ S S£-£

I11S
a.< ïë i.*---O — O O O CC O <- O N o
gg £ £ 2 g £ 2 2SSSS•4-o a O. — o -1 o a c c-fv u

*? s?Hso. ►- a K a H

:ë

— ec a —cneca o a o u
5 : g ^ £ SSSSëïif. o o u o — r* o o — a u
SSSSSS SgSggSo o o o o o — o o c o c

> 2 Y K i <c V

s

ss

25-22S

S 1
o O

gi l < <
2 28o o o

3SS® oc a

aaa

<5° < < <
2SS
O C

SI
£S
ï

SS2cv. a -4-l i l
a a a

2 2 g S S S S S £ S £aiNrKN4r'ifiNNP'ccco<<<<<<<f-<
o o o o c c o c o c o
5 2 2 ? ? 2 5 2 2 2 2W S N S V N S S N S
XX XXX XX XX XX

ss s s g g s s s s s
<\l<\IC\l<\.<\l<\l<\l<v.<M<\f\|

< < < < < < < < < < <

ococccoooocoooec
S 2 £ £ 2 2 g S g a 2(M o a a a a a a a ̂ a
S S ë ë ë S ë ë ë g ë
< < < < < < < < < < <c.cLO.Q.aaaa.aaaa a a a a a a a a a a
-<CVIf*Vf<'fri<M<CvCpOP>v>to o o c o c o o o o o
a a a a a a a a a a a
3 S 3 3 3 3 3 3 3 S 3
<c<ecxcsta-uo

i l l l l l l l l l l
ilii i i l l i i i
C O O O C O O O C O O O
0 D C C O O O O O O O O

g g g g g g g g g g g

t n n r t n n

figure- 26-: MVT SYSUDUMP - The LOAD LIST.
63

